
Gou
Development of an incentive and

scheduling mechanism for a Peer-to-Peer
computing system

Josep Maria Rius Torrentó

Escola Politécnica Superior
Departament d’Informàtica i Enginyeria Industrial

Development of an incentive and
scheduling mechanism for a Peer-to-Peer

computing system

Memòria presentada per obtenir el grau de
Doctor per la Universitat de Lleida

per

Josep Maria Rius Torrentó

Dirigida per

Dr. Fernando Cores Prado Dr. Francesc Solsona Tehàs
Universitat de Lleida

Programa de doctorat en Enginyeria

Lleida, novembre de 2011

Abstract

Peer-to-Peer (P2P) computing offers new research challenges in the field of
distributed computing. This paradigm can take advantage of a huge number of
idle CPU cycles through Internet in order to solve very complex computational
problems. All these resources are provided voluntarily by millions of users
spread over the world. This means the cost of allocating and maintaining
the resources is split and assumed by each owner/peer. For this reason, P2P
computing can be seen as a low-cost alternative to expensive super-computers.

Obviously, not every kind of parallel application is suitable for a P2P com-
puting environment. Those with high communication requirements between
tasks or with high QoS needs should still be performed in a Local Area Net-
working (LAN) environment. Otherwise, problems with huge computational
requirements that can be easily split into millions of independent tasks are
suitable for P2P computing, especially as solving these problems with a super-
computer would be extremely expensive.

One of the most critical aspects in the design of P2P systems is the de-
velopment of incentive techniques to enforce cooperation and resource sharing
among participants. Incentive policies in P2P distributed computing systems
is a new research field that requires specific policies to fight against malicious
and selfish behavior by peers. Encouraging peers to collaborate in file-sharing
has been widely investigated but, in the P2P computing field, this issue is still
at a very early stage of research. Furthermore, the dynamics of peer partic-
ipation are an inherent property of P2P systems and critical for design and
evaluation. This further increases the difficulty of P2P computing.

Another critical aspect of P2P computing systems is the development of
scheduling techniques to achieve an efficient and scalable management of the

iii

computational resources. Unlike file-sharing, based on such immutable re-
sources as files, the mutable ones, such as CPU and Memory are the principal
resources involved in P2P computing. Inside the scheduling field, P2P com-
puting can be seen as a particular variant of Grid computing. In a similar way
as with the incentive polices, an extensive list of publications can be found that
study the scheduling problems for distributed computing, such as Clusters or
Grid computing, but few of these focus on P2P computing. For this reason,
the scheduling problem in this kind of network is a field that still requires
research in depth.

In this thesis we propose a Distributed Incentive and Scheduling Integrated
Mechanism (DISIM) with a two-level topology and designed to work on large-
scale distributed computing P2P systems. The low level is formed by associa-
tions of peers controlled by super-peers with major responsibilities in managing
and gathering information about the state of these groups. Scalability limita-
tions on the first level are avoided by providing the mechanism with an upper
level, made up of super-peers interconnected through a logical overlay.

Regarding incentives, we propose a mechanism based on credits with a two-
level topology designed to operate on different platforms of shared computing
networks. One of the main contributions is a new policy for managing the
credits, called Weighted, that increases peer participation significantly. This
mechanism reflects P2P user dynamics, penalizes free-riders efficiently and
encourages peer participation. Moreover, the use of a popular pricing strategy,
called reverse Vickrey Auction, protects the system against malicious peer
behavior. Simulation results show that our policy outperforms alternative
approaches, maximizing system throughput and limiting free-riding behavior
by peers.

From the scheduling point of view, the low-level scheduler takes user dy-
namism into account and is almost optimal since it holds all the status infor-
mation about the workload and computational power of its constituent peers.
Our main contribution at the upper level is to propose three criteria that only
use local information for scheduling tasks, providing the overall system with
scalability. By setting these criteria, the system can easily, dynamically and
rapidly adapt its behavior to very different kinds of parallel jobs in order to

achieve an efficient performance. The results obtained proved the efficiency
of the overall model and the convergence with the best assignment, achieved
with an ideal centralized policy with global information.

Acknowledgements

I would like to acknowledge to all the people who supported me during the
course of this thesis. First and foremost, I want express my gratitude to my
supervisors, Dr. Fernando Cores Prado and Dr. Francesc Solsona Tehàs, for
their continued encouragement and invaluable suggestions during this work.
They have patiently supervised every little issue, always guiding me in the right
direction. Without their help, I could not have finished my thesis successfully.

Specially thanks are given to all the seniors from the Group of Distributed
Computing (GCD) from the University of Lleida (UdL). I must say that has
been a great experience working closely with such good people: Concepció
Roig, Francesc Giné, Fernando Guirado, Josep Ll. Lèrida, Josep M. Solà,
Valentí Pardo, Albert Saiz and Xavier Faus.

During my research, I have shared great moments with all my colleagues:
Ivan Teixidor, Miquel Orobitg, Damià Castellà, Héctor Blanco, Anabel Usié,
Alberto Montanyola and, foremost, Ignasi Barri, the person with whom I have
studied and worked since setting foot in this University. Many thanks to all
of them for the wonderful times we shared.

I also want to thank all the members of the Edinburgh Data-Intensive Re-
search group of the University of Edinburgh. During three month last summer,
I had the chance to visit this group and work with great people who made me
feel at home. It was a great experience that marked me in many positive as-
pects. I would especially like to acknowledge Malkolm Atkinson and Jano van
Hermet, for all their support, and Gary McGilvary, for welcoming me as if I
were one more.

Last but not least, I would like to dedicate this thesis to all my friends and,
foremost, to my closest family. Especially to my parents Jaume and Maria,

vii

viii

who have given me the freedom to make my own decisions. To my girlfriend
Soraya for her emotional support. And to my aunt Montserrat, the person
who, without knowing, introduced me into the wonderful world of computers.

Contents

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Parallel and distributed computing 2

1.1.1 Distributed computing 3
1.1.2 Distributed systems . 4

1.2 Peer-to-Peer paradigm . 8
1.2.1 Degree of Decentralization 13

1.2.1.1 Centralized peer-to-peer architectures 13
1.2.1.2 Pure decentralized architectures 14
1.2.1.3 Hybrid systems 15

1.2.2 Overlay architecture . 16
1.2.2.1 Unstructured 16
1.2.2.2 Structured . 17

1.2.3 Network purpose . 18
1.2.3.1 Communications 18
1.2.3.2 File-sharing . 19
1.2.3.3 Computing . 20

1.2.4 Summary . 21
1.3 Peer-to-Peer Computing . 21

1.3.1 Incentive Mechanisms 23

ix

x CONTENTS

1.3.2 Scheduling Policies . 28
1.4 Motivation . 32
1.5 Objectives . 34

1.5.1 Objectives of the incentive policies 34
1.5.2 Objectives of the scheduling policies 36

1.6 Overview . 37

2 Related Work 39
2.1 Introduction . 39
2.2 Incentive policies . 40

2.2.1 Game Theory . 40
2.2.2 Pricing . 42
2.2.3 Reputation . 44
2.2.4 Incentive Policies and Methods Comparison 45

2.3 Scheduling policies . 49
2.4 P2P computing platforms . 51

2.4.1 Tycoon . 51
2.4.1.1 Architecture . 52

2.4.2 Shirako . 54
2.4.2.1 Architecture . 55

2.4.3 OurGrid . 57
2.4.3.1 Architecture . 57
2.4.3.2 Network of Favours 59

2.4.4 CompuP2P . 61
2.4.4.1 Architecture . 61
2.4.4.2 Resource Trading 62
2.4.4.3 Pricing . 63

2.4.5 CoDiP2P . 66
2.4.5.1 Architecture . 66

2.4.6 Summary of Architectures 68

3 DISIM 71
3.1 Introduction . 71
3.2 P2P Computing Framework . 72

CONTENTS xi

3.2.1 Architecture . 72
3.2.2 Scheduling . 75
3.2.3 Operation . 75

3.3 Management of Credits . 76
3.4 Local Mechanism . 79
3.5 Global Mechanism . 79

4 Experimental Results 81
4.1 Introduction . 81
4.2 User Behavior . 81

4.2.1 Collaborative to free-rider 83
4.2.2 Free-rider to collaborative 84

4.3 Global Mechanism Evaluation 85
4.4 Local Mechanism Evaluation . 85

5 Conclusions and Future Work 87
5.1 Conclusions . 87
5.2 Future Work . 92

Bibliography 95

List of Figures

1.1 Peer-to-Peer versus Client-Server network. 9

1.2 Example of a Centralized Peer-to-Peer network. 14

1.3 Example of a Pure Peer-to-Peer network. 15

1.4 Example of a Hybrid Peer-to-Peer network. 16

1.5 Example of an unstructured Peer-to-Peer network. 17

1.6 Example of a structured Peer-to-Peer network. 17

1.7 An example of asymmetry of interest. 25

1.8 Task mapping. 30

2.1 Incentive policies. 40

2.2 Equilibrium in game theory based incentive models. 41

2.3 Transactions in Token-based Incentive Systems. 43

2.4 Transactions in Account-based Incentive Systems. 44

2.5 Overview of how the Tycoon components interact. 52

2.6 Shirako Architecture. 55

2.7 Ourgrid Architecture. 58

2.8 Creation of markets for CPU cycles in CompuP2P. 63

2.9 CoDiP2P, a tree-like architecture. 67

3.1 Example of an area with eight peers. 73

3.2 Example of system overlay where K=2. 74

3.3 Operation of the credit-based mechanism. 76

3.4 Credit transaction. 77

4.1 Peer state diagram. 83

xiii

xiv LIST OF FIGURES

4.2 Probability distribution of stopping collaborating
(Fρ(ColRatio) = 1−ΥColRatio). 84

4.3 Probability distribution of starting to collaborate
(Fσ(FreeRatio) = FreeRatioφ). 85

List of Tables

2.1 Comparison of incentive mechanisms and policies for P2P systems. 48
2.2 Comparison of Distributed P2P architectures. 69

xv

List of Algorithms

xvii

Chapter 1

Introduction

Over recent years, Peer-to-Peer (P2P) systems have become an important part
of Internet. Millions of users have been attracted to their structures and
services. The popularity of P2P systems has speeded up academic research
bringing together researchers from systems, networking and theory. The most
popular P2P networks support file-sharing and content distribution but, most
recently, many new applications are emerging in different fields, such as P2P
computing, the research area of interest in this thesis.

In this chapter, the concept of distributed computing is introduced to the
reader, explaining the most popular distributed systems with special emphasis
on P2P computing networks. First, the difference between parallel computing
and distributed computing -two concepts frequently confused- is introduced in
section 1.1. Next, the most commonly used distributed systems are summed
up, with special emphasis being placed on those that take advantage of Inter-
net to reach as many resources as possible or to make these widely available.
Among all these distributed systems, this thesis is based on P2P networks.
For this reason, section 1.2 explains this kind of network in detail, highlighting
their main features and classifying them according to three different criteria:
the degree of decentralisation, the overlay architecture and their purpose.

The P2P distributed paradigm has been widely used in the research field of
sharing files over Internet. Such well-known applications as Napster [nap06],
Gnutella [KC04], Bittorrent [bit], Kazaa [ZF], eDonkey [edo], Emule [emu],
Freenet [CSWH01], Skype [sky], Groove [Gro09] are examples of this. Nowa-

1

2 Introduction

days, a similar research field in the P2P paradigm is arising, but where com-
putational resources are shared instead. This new research field is called P2P
computing and researches such fields as scheduling, collaborating incentives,
fault tolerance, security, and so on. The most important resource shared among
the nodes making up the P2P network is the CPU, although Memory and Net-
work bandwidth are also being investigated. Generally speaking, we are inter-
ested in building cheap and efficient P2P systems by grouping computational
resources across Internet to be used in the execution of parallel/distributed
applications.

Once the reader is focused on the field of P2P computing, section 1.3 intro-
duces the two critical aspects in the design and construction of these networks,
which are also the research fields where the main contributions of this thesis
are made: the incentive policies and the scheduling mechanisms. Next, once
the main terminology and concepts that make up the context of this thesis
are explained, we present its main challenges and motivations. Finally, this
chapter ends with the main objectives of the dissertation and details of how
this manuscript is structured.

1.1 Parallel and distributed computing

The terms “parallel computing”, “distributed computing” or even “concurrent
computing” have a lot of overlap and there is no clear distinction between
them. Very often, the same system may be classified as both “parallel” and
“distributed”. Despite this, distributed systems can be defined as groups of
computers connected through a network. Distributed computing refers to the
means by which a single computer program is executed in more than one com-
puter at the same time. The different elements and objects of a program are
executed or processed using different computer processors in parallel. Parallel
computing may be seen as a particular tightly-coupled form of distributed com-
puting, and distributed computing may be seen as a loosely-coupled form of
parallel computing. Nevertheless, it is possible to roughly classify concurrent
systems as “parallel” or “distributed” using the following criteria:

• In parallel computing, all processors have access to a shared memory.

1.1 Parallel and distributed computing 3

Shared memory can be used to exchange information between processors.

• In distributed computing, each processor has its own private memory
(distributed memory). Information is exchanged by passing messages
between the processors.

Taking these definitions into account, the systems analysed on this thesis
belong to the distributed computing group.

1.1.1 Distributed computing

Distributed computing is formally defined as “a computer system in which
several interconnected computers share the computing tasks assigned to the
system” [IEE91]. Such systems include computing clusters, Grids and global
computing systems gathering computing resources from individual PCs over
the Internet. There are many reasons to explain the continuous growth of
distributed systems and distributed computing. For example, there are appli-
cations that require connecting several computers to exchange data across a
network. Imagine an application where all the data is produced in one physical
location but it is needed in some other locations.

The use of a distributed system in other applications would be beneficial
for many reasons. For example, in comparison with a single high-end com-
puter, it may be more cost-efficient to obtain better performance by using a
cluster of several low-end computers to avoid Memory contention. As a dis-
tributed system has no single point of failure, it can also be more reliable
than a non-distributed system. A distributed system may be even cheaper,
easier to expand and manage than a supercomputing system with the same
performance.

Nowadays, efforts have been directed towards the design of systems with
low power consumption.Many studies [BGDG+10] show that energy savings
can be achieved by taking advantage of the infra-utilized computational re-
sources connected to Internet. This will be one of the most important chal-
lenges of this dissertation.

4 Introduction

1.1.2 Distributed systems

Distributed systems are those in which components located in networked
computers communicate and coordinate their actions only by passing mes-
sages [DKC05]. Those computing technologies have recently emerged as new
paradigms for solving complex computational problems. These systems en-
able large-scale aggregation and sharing of computational, data and other ge-
ographically distributed computational resources. In recent years, many re-
searchers have reported numerous advances and innovative techniques for such
paradigms, from theoretic to application aspects. Another fact that has con-
tributed strongly to the rapid development of large-scale applications in many
fields of science and engineering is the continuous development of high-speed
networks and more especially, Internet.

Inside the distributed systems category, one can find a wide range of sys-
tems. Next, those that are most popular and closely related to the field of
interest of this thesis, i.e. distributed computing, are briefly explained.

• Cluster computing: A computing cluster or simply cluster is a local
computing system consisting of a set of independent computers and a
network interconnecting them. All the component subsystems of a clus-
ter are locally supervised within a single administrative domain, usually
residing in a single room and managed as a single computer system. The
interconnection network employs a local area network (LAN), which links
the cluster nodes and isolates them from the outside world. Moreover,
the cluster nodes are interconnected through a single point, often using
a switch. This kind of environment operates in a local manner. Taking
into account that we will profit from the endless computing resources of
Internet, we must continue investigating more distributed systems.

• Grid computing: Grid is a distributed paradigm which appeared
many years ago as a real alternative to the expensive supercomputers
for HPC, High Performance Computing (Distributed Supercomputing,
High-Throughput Applications, Data-Intensive Applications, etc.). Grid
computing is defined as “coordinated resource sharing and problem solv-
ing in large, multi-institutional virtual organizations” [KF98]. Grid com-

1.1 Parallel and distributed computing 5

puting joins virtually a large number of separate computers, clusters or
LANs of workstations connected by a network (usually the Internet)
in order to provide the ability to perform many more computations at
once than would be possible on a single computer, by splitting the se-
rial application into smaller and replicable pieces. One feature of Grid
environments that often limits their use in universities, companies or in-
stitutions, is the huge software (such as Globus Toolkit [Fos05]) behind
expensive hardware and which is costly to maintain and manage. We are
interested in cheaper solutions to provide a means to take advantage of
Internet to form distributed environments for parallel/distributed com-
putation. The term “grid computing” has been extended to embrace
different forms of computing.

Grid research is one of the most important sources of inspiration for this
dissertation. As we shall see, the literature in this field has been widely
used for reference. More precisely, advances in Grid computing, Enter-
prise Grid and Economic Grid have been used as guidelines in this thesis
for the proposal for new scheduling and incentive mechanisms to increase
resource collaboration by permitting the use of the computing resources
of companies, organizations, public institutions and individuals, and so
on, connected through Internet.

• Cloud computing: Cloud computing has rapidly spread in recent
times. One of the first known definitions of the term Cloud Comput-
ing was by Prof. Ramnath K. Chellappa in [Che97]. He suggested that
this would be a new “computing paradigm where the boundaries of com-
puting will be determined by economic rationale rather than technical
limits”. More recently, Armbrust et al. [AFG+09] presented some key
concepts of this paradigm, such as the illusion of infinite computing re-
sources available on demand and the ability to pay for the use of com-
puting resources on a short-term basis as needed. This allows companies
to save costs by having a limited set of resources that can be increased
according to their needs. In the same line, Jha et al. [JMF09] estab-
lished how Clouds can be viewed as a logical continuation from Grids

6 Introduction

by providing a higher-level of abstraction. In other words, Cloud Com-
puting is a multi-purpose paradigm that enables efficient management
of data centres, timesharing, and virtualisation of resources with a spe-
cial emphasis on business models. Although rather interesting work has
been developed in this field, its strong entrepreneurial and centralized
style impedes its applicability in the construction of cheap collaborating
systems, like the ones in which we are interested in.

• Internet computing: Internet Computing is the basis of all large scale
distributed paradigms; it has grown very fast into a vast flourishing field
with enormous impact on today’s information societies. Internet tech-
nologies and applications are evolving and growing every day. Despite
there being no closed taxonomy, most authors include Web computing
inside this group, to service complex web applications with a lot of func-
tionalities, the Internet of Things, referring to uniquely identifiable ob-
jects (things) and their virtual representations in an Internet-like struc-
ture, and Volunteer computing, maybe the most popular form of Internet
computing. The Volunteer computing paradigm is based on the idea that
most privately owned computers are idle most of the time, and could be
used during their idle time to solve scientific or engineering problems
that require large amounts of computer power. The basic model is that
the volunteers download software that will do the scientific calculations
from the web. This software typically works as a screensaver program,
and every so often the program will ask the application to upload results
and download more data to be processed. There are many ongoing vol-
unteer computing projects nowadays, but by far the most popular are
SETI@home [Pau02] and BOINC [And04].

1. SETI@home. SETI@home is a volunteer computing project that
analyses the data from the Arecibo radio telescope in Puerto Rico
for signs of extraterrestrial intelligence. SETI@home has been
downloaded to more than 5 million PCs around the world, and
has already used the equivalent of more than 1 million years of PC
processing power.

1.1 Parallel and distributed computing 7

2. BOINC. In 2003, the team behind SETI@home launched BOINC
(Berkeley Open Infrastructure for Network Computing), a general-
purpose open-source platform that allows scientists to adapt their
applications to volunteer computing. BOINC is a program that
makes it possible to subscribe users to one or more projects. This
platform allows several different applications to be run, allocating
different percentages of the users’ idle computer time to each one.
There are many applications running on BOINC, including Cli-
matePrediction.net, studying climate change, and Predictor@home,
investigating protein-related diseases.

• P2P computing: Although P2P computing can be found classified in-
side the Internet computing category in the literature, many authors de-
fine that kind of computing as a different group. This may be because of
its increasing popularity and the fact that many researchers have focused
strongly on that kind of distributed system in recent years. P2P Com-
puting originated as a new paradigm after the traditional client-server
computing. In its beginnings, P2P systems became very popular for file
sharing among Internet between users. Systems like Napster, Gnutella,
FreeNet, BitTorrent and many others with the same purpose entered
strongly into our lives. In fact, it can be said that the P2P structure
was popularized by those file-sharing systems, inspiring new structures
and philosophies in many areas of human interaction. Peer-to-peer net-
working is not restricted to technology, but also covers social processes
with a peer-to-peer dynamic. In such a context, social peer-to-peer pro-
cesses are currently emerging throughout society. Unlike centralized or
hierarchical models of Grid systems, in P2P computing, the users have
equivalent responsibilities and capabilities, so they can be both servers
and clients at the same time. Resource sharing and cooperation between
users is a key point in this kind of networks. Peers make a portion of their
computational resources directly available to other network participants,
without the need for central coordination by servers or stable hosts. In
this kind of distributed paradigm, it may be possible to construct cheap
distributed systems on Internet for parallel/distributed processing with

8 Introduction

management and energy consumption at almost nil cost. We focus our
efforts mainly on these.

The aim of this thesis is to present innovative research results, methods
and development techniques from both theoretical and practical perspectives
related to P2P Computing. This project seeks original contributions in the
field of incentive mechanisms on the sharing of resources and the scheduling
of distributed tasks across Internet.

1.2 Peer-to-Peer paradigm

Conceptually, the P2P paradigm is an alternative to the client-server model,
where there is typically a single or small cluster of servers1. Typically, there are
only one or just a few servers and many clients2 (see Figure 1.1). Client-Server
systems represent single-unit solutions, including single- and multi-processor
machines, as well as high-end machines, such as supercomputers and main-
frames. On the other hand, a Peer-to-Peer model represents the execution of
entities with the roles of clients and servers. Any entity in a system can play
both roles. Similarly, an entity can be a server for one kind of request and
client for others.

In its purest form, the P2P model lacks server nodes since all participants
are treated equally in the system. Despite this, peers can perform different
roles depending on the system needs. P2P models enable peers to share their
resources (information, processing, presence, etc.) with at most a limited
interaction with a centralized server. The peers need to deal with various kinds
of network devices (wireless, unreliable modem links, etc.), support possibly
independent naming, and be able to share the role of the server. There are
many reasons that explain the increasing popularity of those systems. Some
of the most important advantages are explained below [MKL+03].

1A server is formally defined as an entity that serves requests from other entities, but it
does not initiate requests.

2A client is defined as an entity (node, program, module, etc.) that initiates requests but
it is unable to serve requests.

1.2 Peer-to-Peer paradigm 9

Figure 1.1: Peer-to-Peer versus Client-Server network.

• Cost/work sharing/reduction. When the number of clients in a
Client-Server network becomes too large, the server has to deal with
a huge workload, leading to bottlenecks. On the contrary, a P2P archi-
tecture solves this problem by spreading the load over all the peers in a
balanced way when possible.

• Resource aggregation and interoperability. Interoperability in P2P
networks is defined as the ability of the users to work together (inter-
operate), while the concept of resources aggregation refers to the capacity
of such systems to collect a huge number of resources. Each node in the
P2P system collaborates with its own resources, such as computing power
or storage space. Applications that benefit from huge amounts of these
resources, such as compute-intensive simulations or distributed file sys-
tems, naturally lean towards a P2P structure to aggregate computational
resources to solve larger problems.

• Scalability/reliability. Scalability is defined as the system’s capacity
to handle growth on demand (load, users, requests, etc.), and reliability
is defined as the ability of a system to handle node failures or data
losses. Thanks to the lack of a strong central authority for autonomous
peers, another important goal of the P2P networks is to improve system
scalability and reliability.

• Autonomy. In many cases, the users of a distributed system are unwill-

10 Introduction

ing to rely on any centralized service provider. Instead, they prefer that
all data and work to be located and performed locally. Nodes are more
autonomous in making decisions about collaboration with their resources
in other works or jobs.

However, in order to take advantage of such characteristics, it is necessary
to deal with several features that are specific to P2P systems. These features
represent the main obstacles to the design of P2P architectures. Once solved,
they provide great performance advantages to P2P systems that hardly can be
achieved by other architectures using such few resources. The main challenging
features of P2P systems are:

• Heterogeneity. Peers’ resources and capabilities can vary sharply be-
tween peers. In this case, the challenge for the design of P2P systems
is to provide such resources on a bigger scale, taking advantage of any
peer’s resources independently of its particular characteristics.

• Distributed Management. P2P avoids centralized resources and
management, because these can limit the scalability. Also, distribu-
tion of management responsibilities among all the peers increases fault-
tolerance.

• Dynamism. P2P systems assume that the computing environment is
highly dynamic, that is, resources, such as peer nodes, will enter and
leave the system continuously. This phenomenon is also known as churn.
When an application is intended to support a highly dynamic environ-
ment, the P2P approach is a natural fit. Dealing with the dynamic
behavior of P2P components provides the system with built-in fault-
tolerance and an excellent adaptability.

Besides these features, which are implicit from any P2P network, there
are some other important aspects/problems that are the targets of any P2P
network designer.

• Robustness. In general, this concept refers to the ability of a computer
system to cope with errors during execution or the ability of an algorithm

1.2 Peer-to-Peer paradigm 11

to continue to operate despite abnormalities in input, calculations, etc.
A robust system should not break down easily when affected by a single
failure and it should either recovers quickly from or holds up well under
exceptional circumstances. Taking this definition into account, a P2P
system will be robust if it is capable of dealing with any problem that
may arise during the system lifetime.

• Security. In computer science, security usually consists of the provisions
and policies adopted to prevent and monitor unauthorized access, misuse,
modification, or denial of a computer network and network-accessible re-
sources. Network security involves the authorization of access to data
in a network, which is controlled by the network administrator. Users
choose or are assigned an ID and password or other authenticating in-
formation that allows them access to information and programs within
their authority. In a centralized system, security policy can be dictated
from a single location, and can be enforced with firewalls, monitoring and
intervention. On the other hand, centralization offers a single point of
failure. Both direct malicious attacks and lax or negligent administration
at the heart of a centralized network can undermine the security of an
entire system. Otherwise, in a decentralized P2P system, bad behavior
has a locality impediment. Malicious attacks need to occur at or near
every part of the system it wishes to affect. However, P2P systems lack
the tools available to a centralized administrator, so it can be much more
difficult to implement security protection on a deployed P2P system.

• Fault-tolerance. Fault-tolerance is the property that enables a system
to continue operating properly with an overall or partial system failure.
In a P2P system, this aspect becomes crucial since the system itself has
to deal with the unpredictable behavior of millions of users, a fact that
can easily compromise the good performance of the overall system.

• Availability. In computer systems and networking, availability is a
general term that is used to describe the amount of time over a one-year
period that the system resources are available in the wake of component
failures in the system. Availability of a system over its life-cycle is typ-

12 Introduction

ically measured as a factor of its reliability. As reliability increases, so
does availability. However, no system can guarantee 100% reliability; and
as such, no system can assure 100% availability. In a P2P system, the
most widely formula to increase the availability of the shared resources
is based on replication techniques.

• Cooperation. In general, this term is defined as the process by which
the components of a system work together to achieve the global objec-
tives. This aspect becomes crucial in P2P networks. With no cooperation
among peers, the network will reach a point where it will be difficult to
obtain resources. In this kind of network, users tend to exploit the max-
imum resources they are able to obtain, offering minimum resources in
response. For this reason, efficient mechanisms and techniques oriented
towards increasing cooperation between peers must be developed.

• Peer reputation/trust. The reputation of the users in a P2P net-
work is an aspect that has to be taken into consideration each time a
peer has to perform an action that involves the participation of other
peers. Formally, the reputation can be defined as the aggregation of all
the recommendations from the third-party agents about the quality and
the previous behavior of a user. Moreover, the trust concept does not
differ greatly from the reputation term and both of them are considered
important issues in P2P systems. Transactions in this kind of networks
can cross domains and organizations, and not all domains can be trusted
to the same level. A flexible and general-purpose trust management sys-
tem can maintain current and consistent reputation information for the
different entities in a distributed system.

• Quality of Service (QoS). Quality of service is the ability to pro-
vide different priorities to different applications, users, or data flows, or
to guarantee a certain level of performance or response time. In P2P
systems, QoS guarantees are especially important because the network
capacity tends to be insufficient to service all the requests at one time.

• Load balancing. In P2P systems, not all the content is always available

1.2 Peer-to-Peer paradigm 13

from anywhere on the network. In such cases, the system may degen-
erate to a client-server network with all network traffic and computing
requirements being directed to a small number of hosts. For this rea-
son, a good algorithm for balancing the load in the system can greatly
increase the overall performance.

• Free-riding problem. Free-riding is considered one of the most seri-
ous problems encountered in P2P systems. The presence of free-riders
has a significant impact on the overall system performance. A free-rider
is a peer that consumes resources from the network with no compen-
sation/contribution in return. This definition includes those peers that
only want to take advantage of the system but without sharing anything
and those that simply share less than they should. Free-riding was recog-
nized as a major problem in the very early days of peer-to-peer networks.
Studies of real networks indicate that most users tend to behave selfishly
and do not share their resources. For example, according to [AH00] ”al-
most 70% of Gnutella users share no files, and nearly 50% of all responses
are returned by the top 1% of sharing hosts”. Taking this into account,
one can easily understand how important the incentive mechanism that
fight for minimizing the effect of this kind of selfish users is.

1.2.1 Degree of Decentralization

Although it would seem contradictory, not all peer-to-peer networks are com-
pletely decentralized.

1.2.1.1 Centralized peer-to-peer architectures

Like the popular Napster [nap06], these networks contain a central server that
executes vital functions for the system. This central server stores an overview
of the available nodes and resources in the network. In this way, the central
server makes it possible for peers or nodes to rapidly find, locate and share
resources with other peers. Despite this good feature, the whole system stops
functioning if the central servers cannot be reached for whatever reason. Figure
1.2 shows an example of a centralized P2P architecture. In this example, Peer

14 Introduction

A requests “ccc.mp3” from the Server, which is responsible for locating it in
the system and ensuring that the file will be served.

Peer B

Peer A

Peer D

Peer C

Server

¿ccc.mp3?

bbb.mp3

ccc.mp3

ddd.mp3

ccc.mp3

1

2

Figure 1.2: Example of a Centralized Peer-to-Peer network.

1.2.1.2 Pure decentralized architectures

The nodes perform functions without the intervention of centralized compo-
nents. These types of architectures have theoretically unbounded scalability
and a high level of fault tolerance. In addition, these systems are autonomous
and self-organizing in a sense that the peers are responsible for the function-
ing and viability of the network. In practice, a great deal of these systems
have limited scalability because self-organization implies a lot of traffic to
keep the network running. Examples of this kind of network are Gnutella
[KC04], Freenet [CSWH01] and Ares Galaxy [are]. Figure 1.3 shows an exam-
ple of a pure decentralized P2P architecture. In this example, Peer A asks for
“ccc.mp3” to its neighbours, which will propagate the request in the system
until the file is located and directly served to Peer A.

1.2 Peer-to-Peer paradigm 15

Peer F
Peer E

Peer C

Peer B Peer A

Peer D

¿ccc.mp3?
¿ccc.mp3?

ccc.mp3

1
2

3 ccc.mp3

Figure 1.3: Example of a Pure Peer-to-Peer network.

1.2.1.3 Hybrid systems

These architectures are often hierarchical networks that adopt elements of both
centralized and pure decentralized architectures, which combine the advantages
of both. In hybrid peer-to-peer systems, some peers have more capacities than
others. These nodes, that perform more functions in the network, are known as
super-peers and are selected taking into account their computational capacity
and bandwidth. Managing traffic requests inside the network is one of the
main objectives this kind of peer. This kind of network has the advantages of
the centralized P2P architectures but solves the main drawbacks of the latter,
like the reduced scalability and low fault tolerance. In other words, the hybrid
systems take the main advantages of both architectures explained before, i.e.,
the centralized P2P networks and the pure decentralized ones. To achieve that,
when peers connect to the system, they have to inform the super-peer about
the exact type and amount of resources they are going to share. This way, each
request in the system can be delegated to the appropriate super-peer in order to
optimize process of searching for the resources. Because of its great advantages,

16 Introduction

many popular networks that use this kind of structure can be found. Some
examples are eDonkey2000 [edo], BitTorrent [bit], Kazaa [ZF] and Gnutella2
[gnu]. Figure 1.4 shows an example of a hybrid P2P architecture. In this
example, Peer A requests “ccc.mp3” from its super-peer, which will delegate
the request to the super-peer controlling the owner of this file. Finally, the
request is directly served by Peer C.

Figure 1.4: Example of a Hybrid Peer-to-Peer network.

1.2.2 Overlay architecture

Depending on how the nodes are organized in the network, it is possible to
speak of two different kinds of networks, unstructured and structured. Next,
both concepts are explained in detail and two popular networks are presented
as an example of each type.

1.2.2.1 Unstructured

A system is unstructured (see Figure 1.5) when nodes and data are positioned
without certain rules and in an ad hoc manner in the network. The loca-
tion of data is not connected to the topology of the network which results in
cumbersome and rather inefficient search methodologies - such as the “query
flooding model” of Gnutella [KC04] - that hamper scalability. An advantage
is that these systems – e.g. Napster, Gnutella, KaZaA [nap06, KC04, ZF] –

1.2 Peer-to-Peer paradigm 17

mostly support keyword-based searches. Freenet ([CSWH01]) is often called
a "loosely structured" network because it is not rigidly structured in that the
location of the data is not totally specified.

Figure 1.5: Example of an unstructured Peer-to-Peer network.

1.2.2.2 Structured

In this type of network (see Figure 1.6), nodes and data are placed in a struc-
tured way in the network so as to be able to locate data efficiently, which

Figure 1.6: Example of a structured Peer-to-Peer network.

18 Introduction

increases the possible scalability. The nodes, data or other resources are con-
nected to specific locations. Distributed routing tables make it possible to
acquire search results efficiently, i.e. in a smaller number of hops. Structured
systems are, in comparison with unstructured systems, more scalable, reliable
and fault tolerant. A shortcoming is that these systems laboriously handle the
transient connectivity of nodes whereby the system needs to reconfigure the
structure constantly. Examples of structured systems are Chord, CAN, and
Tapestry [SMK+01, RFH+01, ZKJ01].

1.2.3 Network purpose

Nowadays, there are numerous applications of peer-to-peer networks. The
most important and popular ones are briefly explained and classified into three
different fields: communications, file-sharing and computing.

1.2.3.1 Communications

This category consists of applications designed to connect people around the
world. We are talking about phone calls, chats, instant messaging, videocon-
ferences, e-mail, etc. These applications can be divided into two main groups:

• Instant Messaging (IM). These applications allow the users to ex-
change text (and even some kinds of files) in real time. With the contin-
uous growth and propagation of Internet, IM applications become hugely
popular and millions of users were attracted to their networks. That fact,
and the well-known technical limitations of the traditional client-server
IM applications, motivated the appearance of new IM applications imple-
mented over P2P networks. Using this topology, the system’s scalability
can be dramatically increased because each participating peer is respon-
sible for a subset of the system’s load. Additionally, the overall reliability
and security of the IM system is not dependent on any particular peer.
The effect of a peer’s failure or compromise is localized in such a peer.
Thus, P2P IM solves the main issues associated with traditional Client-
Server IM systems.

1.2 Peer-to-Peer paradigm 19

• IP telephony. IP telephony, also called VoIP, is used to conduct voice
conversations across Internet Protocol (IP) based networks. This tech-
nology provides important advantages in the fields of both individuals
and companies. For the former, it can be said that an IP telephone ser-
vice is often cheaper than traditional public telephone network service
and can remove geographic restrictions to telephone numbers. For the
second group, IP telephony separates the voice and data pipelines of the
company’s networks, channelling both types of traffic through the IP
network while giving the telephone user a range of advanced capabilities.
Moreover, besides voice, VoIP software applications also include other
services such as conferencing or virtual FXOs3. As an example, Skype
[sky] is one of the most popular P2P applications that allows users to
make voice and video calls and chats over the Internet.

1.2.3.2 File-sharing

File-sharing is certainly the most popular use of this kind of network. When-
ever someone talks about P2P, the first thing that comes to people’s mind is a
long list of software (kazza [ZF], eMule [emu], bittorrent [bit], etc.) for sharing
files, especially films and music. Formally, file sharing can be defined as the
practice of distributing or providing access to digitally stored information, such
as computer programs, multimedia (audio, images, and video), documents, or
electronic books. Users can use software that connects to a peer-to-peer net-
work to search for shared files on the computers of other users connected to
the same network. Files of interest can then be downloaded directly from
other users on the network. Typically, large files are broken down into smaller
chunks, which may be obtained from multiple peers and then reassembled by
the downloader. This is done while the peer is simultaneously uploading the
chunks it already has to other peers.

Although this use of the P2P networks is the most popular and by far
the most commonly used, those systems have to deal with the important and

3Foreign eXchange Office, or FXO, designates a telephone signaling interface that re-
ceives POTS, or “plain old telephone service”. Analog telephone handsets, fax machines and
(analogue) modems are examples of FXO devices.

20 Introduction

controversial problem of sharing files with copyright. Moreover, since these
networks usually have millions of users and everyone can share whatever they
want, this problem is difficult to solve.

1.2.3.3 Computing

Nowadays, there is a clear trend in which personal computers improves much
faster than the requirements of the common users. That improvement includes
CPU, Memory and storage capacity, and goes in parallel with a continuous
drop in price of that hardware. Moreover, the steady development of Internet,
especially in terms of bandwidth and price reduction, makes it very easy to
provide access for a large part of the world population. These two facts have
motivated the idea of harnessing the millions and millions of small amounts
of idle computational resources that, grouped together into a virtual network,
could overshadow some of the most powerful supercomputers in the world.
Furthermore, if we take into account that the cost of maintaining all of these
resources is shared between the millions of users forming the network, P2P
computing becomes a real alternative to the expensive clusters and supercom-
puters.

However, it must be said that not everything in this kind of distributed
computing is positive. There are some problems and issues that still need to
be solved and improved. For example, the quality of service in those system
can hardly be guaranteed since the computational resources are not stable in
the system and it is very difficult to predict how many there will be in the
near future. For this reason, not all the parallel applications fit properly into
this kind of networks. That does not mean that not all applications can be
executed on P2P computing system, but there are a group of them whose
natural features are less appropriate for such kind of system. To round up, the
optimal applications to run on a P2P computing system are those in which
the computational requirements are so huge that it will be tremendously slow
and expensive to run on a supercomputing. In fact, since several years ago,
there are some applications with these characteristics running on this kind of
system. For example, SETI@home [Pau02] is a scientific experiment that uses
Internet-connected computers in the Search for Extraterrestrial Intelligence

1.3 Peer-to-Peer Computing 21

(SETI). Everyone can participate by running a free program that downloads
and analyzes radio telescope data. Another famous example is distributed.net
[dis], which takes advantage of idle computational resources from millions of
desktop machines to decipher encryption codes.

1.2.4 Summary

Among all of these kinds of P2P networks, obviously the computing oriented
ones are the focus of interest of this thesis. Regarding the degrees of structure
and decentralization, we deal with both structured and unstructured platforms,
and we apply our models to hybrid topologies. Specifically, we focus on those
networks composed of a variable number of interconnected super-peers that act
as the front-end of the forming nodes. At the same time, those nodes can be
clusters, local-area networks or simply isolated workstations connected to In-
ternet. This choice guarantees the interoperability between different groups of
distributed environments on Internet. Scalability is another important feature
that this choice provides because the whole system load is split and managed
by the super-peer, so we avoid collapsing the network with too much traffic.
Moreover, the super-peers will have the most important responsibilities such
as starting, controlling and managing the system.

1.3 Peer-to-Peer Computing

P2P computing systems harness CPU idle cycles from thousands of comput-
ers connected through Internet and aggregate their computational resources
to execute huge and massively-parallel distributed applications that cannot be
executed by standard supercomputing centers due to their costs and long exe-
cution times. P2P computing can potentially provide access to a huge volume
of cheap computer resources, but still has to deal with important challenges
related to peer cooperation and trust, efficient use of resources, security, fault-
tolerance and availability to widen its deployment.

In the literature, many formal definitions of the P2P computing concept
can be found, so we cannot hope for a single well-fitting one. However, two of

22 Introduction

the most complete and academically accepted are introduced below:

"Peer-to-peer computing has been envisaged to solve computing scenarios
which require spatial distribution of computation, spatial distribution of con-
tent, real-time collaboration, ad-hoc networking4, scalability or fault-tolerance
at reduced costs. P2P systems provide higher storage and access capacity via
distribution of resources across peers, improved reliability due to the availability
of multiple peer machines and distributed security achieved by distributing par-
tial secrets across peers. Unlike the client-server computing paradigm, where
all the computation cycles and data are to be had from a single source, in P2P
the participating peers contribute with CPU cycles and storage space."

"A P2P computing network is characterized by direct connections using vir-
tual namespaces, it describes a set of computing nodes that treat each other as
equals (peers) and supply processing power, content or applications to other
nodes in a distributed manner, with no presumptions about a hierarchy of con-
trol."

P2P computing architectures allow for decentralized application design,
moving from centralized server models to a distributed model where each peer,
independently of software and hardware platforms, can benefit and profit from
being connected to millions of other peers. In such architectures, clients and
servers have a lateral relationship rather than the traditional vertical relation-
ship, giving the whole peer group tremendous processing power and storage
space.

It is worth mentioning that P2P computing is still evolving and much needs
to be done to overcome complex issues. Some of these issues are security, net-
work bandwidth, fault tolerance, node searching algorithms, p2p application
design and development, network architecture designing and so on. Among
these, in this thesis we deal with the development of incentive policies and
scheduling mechanisms and algorithms.

4Ad-hoc networking is defined as a system that enables communication to take place
without any preexisting infrastructure in place, except for the communicating computers.
These computers form an ad-hoc network. This network and associated computers take
care of communication, naming and security. P2P systems can be used on top of an ad-hoc
communication infrastructure.

1.3 Peer-to-Peer Computing 23

1.3.1 Incentive Mechanisms

One of the most critical aspects in the design of P2P systems is the devel-
opment of incentive techniques to enforce cooperation and resource sharing
among participants. These systems enable massive resource and information
pooling at low cost per participant and at scales that are difficult to achieve
with traditional client-server systems, while local autonomy and network ef-
fects provide resilience to failures and attacks. However, one distinguishing
characteristic of P2P systems compared with more traditional client-server de-
signs is the widespread cooperation between participants by sharing resources
and information. As all the benefits of these systems are deeply rooted in coop-
eration, they are inherently vulnerable to large-scale non-cooperative behavior.
It is therefore necessary for the system to be designed so that participants gen-
erally cooperate. The mechanisms that are embedded in the system for this
purpose are called incentive mechanisms.

Cooperation is highly appreciated because P2P network users tend to ex-
ploit the greatest amount of resources they can obtain, offering minimum re-
sources in return. This behavior undermines the goal of P2P of spreading
resources and imposes the concept of free-riding. Free-riding leads to the
need for social and economic mechanisms to balance resource usage and ef-
forts in P2P systems. Experience with peer-to-peer systems shows that in the
absence of incentives for donation, a large proportion of the peers only con-
sume the resources of the system. Free-riding leads to the need for social and
economic mechanisms to balance resource usage and efforts in P2P systems.

Incentive aspects in P2P networks have been in the enhancement and de-
velopment loop since the emergence of this class of systems. Theoretically,
and to fully utilize the resources of a P2P network, the system architect must
have a precise understanding of the payoff of each individual user joining the
network in order to construct an appropriate incentive mechanism [ACM04].
However in practice, the architect is unable to have a clear vision of every
user’s requirements. Even if this were possible, it is difficult to implement the
incentives that would actually work. The difference between what researchers
design, and how users actually react to the proposed incentives depends on
many factors.

24 Introduction

• First, users in a P2P network perceive the proposed incentives in different
ways depending on their own utility functions5.

• In second place, most of the proposed incentive mechanisms do not adapt
to changes in user behavior.

• Thirdly, there is no extensive and reliable measurement study that would
help P2P network designers evaluate the real performance of their in-
centive mechanisms with the expected performance. Most of the mea-
surement studies completed on existing P2P networks demonstrate the
success or the failure of such systems with no analysis or explanation on
why these systems succeeded or failed.

When researchers designate a P2P system as successful, they usually relate
the success to the system’s public acceptance and approval without providing
detailed evidence supporting the evaluation. That is, there is no proof that
these systems are successful because they have strong incentive mechanisms,
robust against security attacks, or some other explanations. Moreover, some
of these systems have not been thoroughly tested against security attacks for
different reasons.

• First, there is only a vague understanding of what strategies the attackers
may possibly follow.

• Second, users might not attempt to subvert the incentive mechanism be-
cause they already obtain a satisfactory level of performance even though
the incentive mechanism of the P2P system is vulnerable to attack.

In general, a failure of a P2P system is related to the lack of incentive
acceptance among users, who disregard the system if they sense that it does
not provide them with satisfactory payoffs. With no cooperation among peers,
the network will reach a point where it will be difficult to obtain resources.
Incentive policies try to persuade peers to share their resources. What makes
the incentive problem particularly difficult is the unique set of challenges that
P2P systems pose [ZH08]:

5The utility function expresses utility as a function of consumption as opposed to the
provided shared (files, CPU, Memory, etc.).

1.3 Peer-to-Peer Computing 25

• Large populations. P2P computing networks are designed to allocate
millions and millions of users. Obviously, managing that number of peers
is far from being a trivial matter.

• High turnover. Managing so many users at the same time implies
that the network has to deal with many unpredictable connections and
disconnections.

• Asymmetry of interest. Not all the users in the system have the
same needs or objectives. Figure 1.7 shows an example of asymmetry of
interest, where the peer A wants service from B, B wants service from C
and C wants service from A.

Figure 1.7: An example of asymmetry of interest.

• Cheating/colluders and malicious. Peers can be selfish colluders or
cheaters, when they try to fool the system to gain unfair advantages over
other peers, or malicious, when their purpose is to subvert the system or
disturb other users.

• Zero-cost identities. Creating an account in this kind of network
usually have no cost for the users and most of them switch identities in
order, for example, to clean some previous bad behavior.

To deal with these challenges, a typical incentive system relies on a control
mechanism that analyses the trustworthiness of the participating peers and
combats selfish, dishonest and malicious peer behavior. In the literature, one
can found different kinds of incentive mechanism. Overall they can be classi-
fied into two categories: Trust-based incentive mechanisms and Trade-based
incentive mechanisms [OKRK03]:

26 Introduction

1. Trust-based incentive mechanisms. Those mechanisms are proposed
to establish trust among peers in P2P systems [HKC09, RY07]. In a
trust-based system, each entity’s behavior is used to predict how it will
behave in the future. Trust is a straightforward incentive for cooperation,
in which the agent simply executes the requested action if it trusts the
principal entity. The agent may either share the same goals with the
principal, or it may believe in increasing the cooperativeness of other
entities. In the trust-inference mechanisms, the information about users’
behavior can be propagated throughout the system [LS08, ZHC08]. At
the same time, two categories of trust-based incentive mechanisms can
be identified:

• The collective pattern. A collective is a set of entities sharing
the same goals with mutual trust. The agent in a collective does not
need any remuneration, as its incentive for collaboration stems from
being a member of the group. A peer is therefore allowed to fail
to cooperate with the rest of the network for some reason. Agents
however have to ensure that the principal entities are members of
the same collectives. The mutual trust requirement makes collec-
tives inherently not well-scalable. A real-life example of a collective
may be a family, or a small group of families. Trust between the
members of the family is unconditional, while individuals who may
be unable to offer goods or services (e.g. due to illness) are still able
to obtain goods or services from the other members of the group
without facing any sort of exclusion or punishment.

• The community pattern (Reputation-based). A community
is a group of peers whose cooperation is based on the reputation
earned by acting as agents. The principal entity remunerates the
agent by increasing its local reputation according to the estimated
value of the services offered or actions taken. As the reputation of
an agent is mainly remembered by the principal entities it cooper-
ated with, communities with stable or localized transaction patterns
are expected to function better [OKRK03]. Various reputation-

1.3 Peer-to-Peer Computing 27

management schemes whose goal is to disseminate local reputations
throughout the community are being designed and used in P2P net-
works. As a result, entities will have access to the global reputation
of other entities, which can be used to further reduce the degree of
selfish or lavish behavior in the network. The dissemination of local
reputation, however, requires careful design in order to avoid ma-
licious behavior. The reputation-based community pattern is one
of the predominant ones in P2P and ad-hoc networks. A real-life
example of a community may be a group of people (e.g. in villages)
who interchange goods as gifts.

2. Trade-based incentive mechanisms. In trade-based incentive pat-
terns, agents are explicitly remunerated by the manager. The remuner-
ation is in turn an action carried out by the manager on behalf of the
agent. It can be either immediate after the agent’s action, or deferred
(like a promise).

• Immediate remuneration patterns. Immediate remuneration is
usually implemented in terms of “Barter Trade” as a direct exchange
of actions. A prompt action is carried out by the manager entity as
a return. The two actions are therefore coupled, and trust is not re-
ally required (the two entities may even remain anonymous). This
approach scales better than other schemes where the two actions
are temporarily uncoupled. The roles of the two participating enti-
ties are inherently symmetric, as the one entity will only act as an
agent if it is interested in an action carried out by the other entity.
In practice, “reference actions” that are required by all entities are
very often exchanged in order for a specific action to be executed in
return. Typical examples of such reference actions in P2P networks
are packet forwarding. Real-life examples of immediate remunera-
tion mechanisms may be the use of reference goods (such as salt,
flour etc) in older trading communities, or the exchange of goods
for other goods.

• Deferred remuneration patterns. In general (and in real-life

28 Introduction

as well) it is infeasible to couple two cooperation actions, as the
agent entity may often not require an immediate action in return.
Deferred or bond-based incentive patterns use the notion of a “bond”
or “promise” by the principal entity to the agent that will carry out
an action in return in the future. Those mechanisms are also known
as credit-based systems and, together with the reputation-based
ones, are the most commonly used in the P2P networks.

Tacking into account this taxonomy, the incentive mechanism presented in
this thesis can be catalogued into the “Deferred remuneration patterns” group.
Specifically, we propose a credit-based mechanism where the users are rewarded
with credits when sharing their resources with others. For this reason, the
remuneration is deferred in time since the users do not obtain directly any
action in return, but only credits. We have chosen this system because is as
scalable as the reputation ones but it is easier to implement policies to avoid
malicious behavior.

1.3.2 Scheduling Policies

Scheduling policies (disciplines) are implicitly used everywhere where a re-
source needs to be allocated. Whenever a number of people want a service at
the same time, a scheduling policy determines when each person receives the
service. This happens almost everywhere we venture in our daily lives. From
restaurants and supermarkets, to banks and amusement parks, we queue for
service in a variety of ways. In many convenience stores there is a single cash
register where people queue to be served in a First-Come-First-Served (FCFS)
order. In large supermarkets, there are many checkouts, and some are dedi-
cated exclusively to serving customers with a limited number of items. On the
other hand, in restaurants everyone receives a little bit of service all the time,
which can be approximately modeled as Processor-Sharing (PS). Beyond these
everyday examples, we also see a variety of policies used in modern computer
systems. Applications such as web servers, routers, operating systems, super-
computers, databases, and disks are all under a constant barrage of requests
and need to determine how best to allocate resources to users.

1.3 Peer-to-Peer Computing 29

In P2P computing, tasks are assigned to heterogeneous computing re-
sources. In the simplest case, all tasks are independent from each other and
can be scheduled to execute in any order. This kind of parallel application
is referred to in the literature as bag-of-tasks (BoT) applications [CPC+03].
In other cases, a work flow can specify restrictions on the order in which the
tasks need to be executed. Only the BoT applications are considered in this
thesis. Despite their simplicity, BoT applications are used in a variety of
scenarios, including data mining, massive searches (such as key breaking), pa-
rameter sweeps, simulations, fractal calculations, computational biology, and
computer imaging. Assuming applications to be BoT simplifies the require-
ments in several important ways. In particular, fast execution of applications
can be delivered without demanding any QoS guarantees. It also makes it
easier to provide a secure environment, since network access is not necessary
during the execution of a foreign task. Moreover, some popular projects, such
as SETI@home [Pau02] and MyGrid [CFA+04], utilize Grid and P2P comput-
ing to schedule such compute-intensive applications to the available resources.

Efficient use of computing resources to minimize the execution time requires
a scheduling mechanism that can appropriately determine the assignment of
tasks. However, since communication over a wide area network and schedul-
ing for many computing resources require long processing time, centralized
scheduling methods may cause load concentration and a single point of failure
[BCF+08]. Solving this issue can be said to be one of the most important
challenges for the research community in the P2P computing field, one special
case of distributed environment.

Task scheduling in a P2P computing system is a two-step process. In the
first step the peer selection decision is made and in the second, the assigned
peer decides the order in which the tasks are to be executed. Since the second
step is similar to scheduling in non-distributed computing, it is not of interest
for this thesis. Only the first step is considered for the rest of this study. More
formally, scheduling in a P2P computing system is a problem of mapping a set
of tasks (t1, t2, t3, . . . , tm) to a set of peers (p1, p2, p3, . . . , pn) as is shown
in Figure 1.8.

Among others, the main goals of a scheduling policy can include:

30 Introduction

Peer 1
Peer 2

Superpeer

Peer n

Peer 3

tn
.
t3
t2

t1

t1

Figure 1.8: Task mapping.

• Reduced application completion times.

• Better resource utilization.

• Reduced hardware costs.

Given the characteristics of the P2P computing system, task scheduling for
unreliable peers becomes a challenging issue. Available peers at scheduling time
may not remain available for the length of the assigned task completion times
and a task may have to be moved to other peers during execution. Without
proper attention to task scheduling in the P2P computing environment, the
application completion may not even be possible. Some of the characteristics
of task scheduling in this kind of networks are:

• Scheduler Organization: there are many ways that a scheduler itself
can operate in such distributed environments. Some possible options
include dedicated peers devoted to scheduler execution, collections of
related schedulers each with unique goals, and decentralized schedulers
which may execute on every peer and communicate with others to make
scheduling decisions.

1.3 Peer-to-Peer Computing 31

• Scheduling Policy: depending on the information available for schedul-
ing, policies may compute schedules at the start of the application
(static) with no revisions, improve statically computed schedules with
information that becomes available at run-time (hybrid) or only com-
pute schedules at run-time (dynamic).

• State Estimation: the unreliable nature of peers and dynamic schedul-
ing policies require methods for environment state estimation (run-time
information) to make mapping decisions. These methods can be either
predictive or non-predictive.

• Rescheduling Approaches: improvements to computed schedules are
generally desirable due to continuous changes of peer states, and so ap-
proaches can be employed to initiate rescheduling. Some of the possible
options include periodic or event-driven rescheduling.

• Task Dependencies: given the application’s nature, tasks may de-
pend (for data or coordination) on each other for execution. Therefore,
scheduling policies need to account for these dependencies to avoid dead-
locks and provide optimized schedules.

• Scheduling Overhead: time and memory consumptions for comput-
ing and executing schedules add to the overall overhead of application
execution.

• Fault Resilience: unreliable peers require scheduling policies to con-
sider peer failure while making scheduling decisions. For example, when
selecting a peer for task execution, a dynamic scheduling policy needs to
ensure that the target peer is still available. Furthermore, a policy may
also be able to reschedule a task in case of peer failure.

• Ease of Implementation: this includes scheduling policies that can be
easily implemented without requiring too much overhead.

• Adaptability for Application Nature: once a P2P computing envi-
ronment is setup, it maybe required to serve as an execution platform

32 Introduction

for more than one application. Due to the diverse type and size of appli-
cations, the ability of a scheduling policy to adapt to every application
can further improve overall peer utilization.

• Centralized/distributed: In a centralized scheduling environment, a
central machine (node) acts as a resource manager to schedule jobs to
all the surrounding nodes that are part of the environment. In this
scenario, jobs are first submitted to the central scheduler, which then
dispatches the jobs to the appropriate nodes. Those jobs that cannot
be started on a node are normally stored in a central job queue for a
later start. Instead, distributed scheduling involves multiple localized
schedulers, which interact with each other in order to dispatch jobs to
the participating nodes. Distributed scheduling overcomes scalability
problems, which are incurred in the centralized paradigm; in addition
it can offer better fault tolerance and reliability. However, the lack of a
global scheduler, which has all the necessary information on the available
resource, usually leads to sub-optimal scheduling decisions.

Scheduling in distributed computing is a well-studied area which has re-
sulted in a diverse set of scheduling policies for various paradigms of distributed
computing, including Clusters, Grid, Cloud computing and so on. However,
task scheduling for P2P computing environments is an open issue and requires
more research.

1.4 Motivation

With the fast development of high-speed networks and powerful but low cost
computational resources, P2P computing has emerged as an attractive dis-
tributed computing paradigm. P2P computing uses Internet to connect thou-
sands or even millions of users into a single huge virtual computer area based
on the sharing of computational resources [FI03]. By using computational
resources scattered throughout Internet, P2P computing is able to deliver a
computation power two orders of magnitude higher than the most powerful su-
percomputer [And07]. So, taking both its high performance and the sharing of

1.4 Motivation 33

resources into account, we can assert that P2P computing represents a real and
low cost supercomputing alternative for some kinds of parallel application6.

P2P architectures take advantage of the under utilization of personal com-
puters, integrating them into a platform based on the sharing of computational
resources between geographically distributed equals. The participation of their
component nodes (or peers7) is voluntary. Although cooperation is the key to
the success of a peer-to-peer system, it is difficult to cultivate without an effec-
tive incentive mechanism. In fact, many P2P systems lack such a mechanism
and consequently suffer from free riding [gnu]. Free-riders consume resources
donated by other peers while not donating any of their own. Experience with
peer-to-peer systems shows that in the absence of incentives to donate, a large
proportion of the peers only consume the resources of the system [ABCM04].
Free-riding is a concern because it decreases the utility of the shared resources
in the system, potentially to the point of system collapse.

The main aim of P2P computing networks is to aggregate the computa-
tional power of heterogeneous, geographically distributed and dynamic compu-
tational resources. These resources are usually administrated in a collaborative
way by different entities and owned by various domains. Therefore, these sys-
tems have to deal with a high degree of resource volatility, which makes it
difficult to exploit them efficiently. For these reasons, effective scheduling is
of fundamental importance in P2P computing networks. However, due to the
unique characteristics described above, scheduling in this kind of environment
is particularly challenging. On one hand, some users in a typical P2P com-
puting environment, also called peers, have computational applications, also
called jobs, to execute, but they may lack computational resources for them.
These peers are known as resource consumers. On the other hand, some other
peers, known as resource providers, have relatively underused resources. It
is highly desirable for consumers to schedule jobs across those resources, but
the scheduling is significantly complicated by the distributed ownership of the

6Parallel applications, also called parallel jobs, are composed of a number of concurrently
executing processes (called tasks), which collectively perform a certain computation. A rigid
parallel job has a fixed number of tasks (referred to as the job’s size) which does not change
during execution [Fei97]. To execute such a parallel job, the job’s tasks are mapped to a set
of processors using a one-to-one mapping.

7A peer is defined as an entity with capabilities similar to other entities in the system.

34 Introduction

computational resources. Consumers and providers are independent from each
other, each having their own needs and objectives.

Over recent years, some researchers have been trying to solve this kind of
problem by using economic methods. For example, [SPF03] and [BAGS02]
started to tackle the problem by applying economic methods to Grid comput-
ing. Despite this, the related research is still in its beginnings and extensive
research efforts are still required in this field. Obviously, P2P computing net-
works differ greatly from human society, where these economic models are
often used. In fact, scheduling based on economic models for P2P computing
is still a highly challenging problem.

1.5 Objectives

From the beginning of this thesis, the idea was to achieve two main objectives.
The first was to design an incentive mechanism to motivate users to partici-
pate actively with the purpose of the network. The second was the design of a
cooperative scheduling method for a large peer-to-peer computing system. Al-
though these could be considered as two main research lines, both are closely
interconnected to each other. This is because both mechanisms share some
system information and are implemented and developed by the same agent in
the network. Furthermore, decisions taken by one of them will usually have
an influence over the other, and vice versa.

More specifically, this work proposes scheduling and incentive techniques
to enforce cooperation and sharing among peers, but guaranteeing the efficient
utilization of system resources. This distributed and cooperative scheduling
mechanism also improves scalability for large-scale P2P computing.

1.5.1 Objectives of the incentive policies

A credit-based scheme to enforce collaboration in P2P computing systems
based on the reinvestment of resource payments has been designed. Our ap-
proach differs from others in the sense that we distribute credits non-uniformly
among peers based on their contribution to the system. The incentive mech-

1.5 Objectives 35

anism is based on the reverse Vickrey auction strategy and it implements a
non-negative credit function supported by a historic term to differentiate be-
tween newcomers and old collaborative peers. The main objectives of our
incentive mechanism are the followings:

1. Enforce collaboration. Cooperation and collaboration are two crucial
aspects in this kind of networks. Actually, the definition of P2P says that
all peers in the system have to be servers and clients at the same time.
If peers are not open to contribute on whatever the system needs from
them, the overall network is condemned to fail. These system needs can
be managing requests, organize other peers, report information, etc.

2. Incentive resource sharing. Another important aspect that deter-
mines the success of the system is the amount of resources shared by
each user. Obviously, the more resources shared by them, the better the
performance the system will have. For this reason, it is so important to
encourage the users to share as many resources as possible by rewarding
them for their contributions.

3. Discourage free-riders. As commented above, these users are a real
problem for P2P computing networks, since they only want to use re-
sources but without sharing anything. Logically, these users have a very
negative effect on the system performance, so it is important to detect
them as soon as possible and try to penalize them by giving them the
lowest possible QoS.

4. Avoid cheating. Unfortunately, the free-rider behavior is not the only
malicious and selfish behavior that can be found in a P2P computing
network. The incentive mechanism presented in this thesis takes into
account the most common kinds of cheating and tries to protect the
system from them.

5. User behavior. Like in real live, not all the users in a P2P computing
system behave the same and it is almost impossible to know how everyone
will act once they have joined the network. Despite this, in the process
of designing the incentive mechanism, some general behavior has to be

36 Introduction

defined in order to predict how it will act depending on what the users
do. For this reason, we defined different user behavior in this project in
order to evaluate how the incentive mechanism responds to them.

6. Increase system throughput. In the end, all the objectives explained
above are aimed at increasing the system throughput and performance
given the same external conditions, i.e., number of peers, system work-
load, user behavior, etc. The incentive mechanism presented in this
thesis has been provided with a set of features that can be set up by the
system administrator in order to adjust the system to changes in external
conditions.

1.5.2 Objectives of the scheduling policies

A two-level scheduling mechanism for distribute parallel applications in a peer-
to-peer computing system has been designed. The goal of the two-level design
is to limit the number of messages required to solve the overall scheduling. In
this way, the cost, i.e. message exchanging, of mapping the tasks is signifi-
cantly reduced, avoiding the saturation of the system network due to message
flooding. More detailed objectives are listed below.

1. Efficient management of the dynamic resources. It must be said
that the resources shared in this kind of network have a specially feature
that makes them very different from the static resources of the popular
file-sharing networks: their dynamism. When someone is sharing a file on
a P2P network, this file will have always the same features from the start
to the end. In contrast, when someone shares the Memory or CPU of a
personal computer, the computing capacity available will vary according
to the user activity. In conclusion, dynamism is an important feature of
this kind of resource that has to be taken into account in the scheduling
mechanism.

2. To avoid message flooding. In order to achieve the previous objec-
tive, it is necessary to update the information needed by the scheduling

1.6 Overview 37

mechanism very frequently. Taking into account that there can be mil-
lions of users on those networks, keeping all these information up to date
can be a real problem and can lead the system to a saturation point. For
this reason, we propose a distributed scheduling mechanism composed of
two levels that avoids the message-flooding problem.

3. Load balancing. Balancing the load in a P2P computing system is
important to avoid collapsing a few parts of it. If load-balancing policies
are not properly applied, all the load in a high heterogeneous system like
the P2P always tends to be assigned to the most powerful nodes. This
may transform the P2P computing system into a client-server or a few
sets of client-server systems, with all the problems that this entails in
terms of bottlenecks and single points of failures.

4. To avoid wasting idle resources. Another particular feature of P2P
computing networks is their inability to store the resources shared on
them. As happens with other resources, like the electricity or some
natural resources, if they are not used at the moment, they are wasted.
For this reason, the scheduling mechanism has to be much more flexible
when the system is heavily underused.

1.6 Overview

This section briefly describes the chapters in this thesis.

• Chapter 1: Introduction. This chapter explains what the thesis topic
is about, identifying the research questions and showing how they will be
answered. First, some important concepts are introduced to provide the
readers with some background. Secondly, the general P2P paradigm is
briefly described and some classifications of these networks are explained.
Third, the P2P computing concept is introduced before dealing with
the problems of scheduling and incentives. After doing so, the main
objectives of this thesis are mentioned, the chapter finishing with a quick
overview of the following chapters.

38 Introduction

• Chapter 2: Related Work. This chapter reviews work in various
areas related to the material covered in this thesis, some of which is
cited in other chapters. The chapter explains the main features and
functionalities of some P2P computing networks but is mainly focused on
two aspects of these systems: the scheduling mechanisms and incentive
policies.

• Chapter 3: DISIM. This chapter presents a new Distributed Incen-
tive and Scheduling Integrated Mechanism (DISIM). This is the main
chapter in the thesis since it introduces its main contributions, namely
the scheduling mechanism and the policies to encourage the peers to
participate actively with the system’s purpose.

• Chapter 4: Experimental Results. This chapter deals with the
analysis of the data obtained from the measurements performed through
simulation tests of the scheduling mechanism and its incentive policies
described in Chapter 3. Moreover, the behavior of users from a P2P
computing network is modeled in order to achieve more realistic results
in the experimentation.

• Chapter 5: Conclusions and Future Work. This chapter reviews
key points. The objectives and results of the entire research thesis are
summarized, special emphasis being placed on the scientific contribu-
tions that have been introduced in this research work. At the end, some
prospective points for the future work of this research are provided. Fur-
thermore, the main publications obtained during the development pro-
cess of this thesis are also enumerated.

Chapter 2

Related Work

2.1 Introduction

Recently, there has been a great impetus to P2P computing. Despite this, the
term P2P is not new. In one of its simplest forms, it refers to communication
among peers. For example, in telephony, users talk to each other directly
once the connection is established. The concept of P2P computing is also not
new. Many earlier distributed systems, such as UUCP [Now78] and switched
networks [Tan81], followed a similar model.

In this chapter, the main works of the scientific community related to the
incentive policies and scheduling mechanisms are collected and analyzed. Sec-
tion 2.2 provides an overview of the incentive techniques most commonly used
in some popular computing networks. Section 2.3 does the same but for the
most widely used resource management and scheduling policies.

Section 2.4 studies the most important P2P computing systems in depth
with special emphasis on their incentive and scheduling mechanisms. Further-
more, this section highlights their main strengths and weaknesses and how
they inspired us in the development of the mechanism proposed in this thesis.

39

40 Related Work

2.2 Incentive policies

The incentive mechanisms for P2P Computing systems have grown in inter-
est recently. These techniques encourage trustworthy behavior and maximize
social welfare. However, they are vulnerable to collusion and rely heavily
on the users’ history. To further efficiency, researchers extended the social
mechanisms into economic ones, by applying game theory and monetary-based
schemes, and into trust ones, by applying reputation-based schemes.

Next, the main popular incentive policies are briefly explained and cata-
loged into three main groups (Figure 2.1): game theory, pricing and reputation.

Figure 2.1: Incentive policies.

2.2.1 Game Theory

A considerable amount of research has focused on the exploitation of economic
theories through a game-theoretical approach to analyze formally how selfish
behavior affects the performances of P2P networks. Game theory models com-
petitions as games and tries to work out the best strategies for the game players
mathematically. The P2P systems consist of multiple nodes, each of which may
carry out an infinite number of transactions. In any transaction, a node can

2.2 Incentive policies 41

choose from a finite number of actions. The incentive problem is usually mod-
eled using Game Theory to study the problems of whitewashing (nodes that
change their identities to clean their history) and collusion. Most of the exist-
ing game theoretical analyses assume that all the nodes are rational, that is,
they always try to maximize their utility and minimize the expense. Therefore,
P2P systems can be represented as n-person repeated non-cooperative games
that allow mixed strategies. According to Nash Folk Theorem [Osb04], in such
strategic games, there is always at least one Mixed Strategy Nash Equilibrium
(MSNE). The Nash Equilibrium is a strategy profile that consists of a strategy
for every player who cannot increase its utility by choosing another strategy,
given the strategies by the others. Applied to P2P systems, the equilibrium
level (see Figure 2.2) is the point that optimizes the sharing capabilities and
reduces free-riding behavior [Cou06, MCJI06, vdSMR08].

Extensive game theoretical analyses have been conducted to prove that
incentive mechanisms can influence the nodes in the P2P systems to be more
cooperative and hence to increase social welfare. However, these analytical
models usually rely on some assumptions that simplify the systems, failing to
estimate the real characteristics precisely. For example, although the rational
nodes are mostly in the P2P systems, both the altruistic nodes and pure free

Figure 2.2: Equilibrium in game theory based incentive models.

42 Related Work

riders can also be observed. In addition, the super-peers in the hybrid P2P
systems take more responsibilities than the rest and thus their utility function
is different from that of the others. The influence of such assumptions on the
stability and reliability of the Nash equilibrium needs to be further evaluated.
Despite this, the models can still produce useful indications of node behaviors
[ZAM10].

2.2.2 Pricing

On the other hand, pricing has proved to be another effective means to incen-
tive sharing and control computer networks. It helps in obtaining benefits for
the network operators and providing incentives for users to cooperate [LLW09].
The pricing-schemes [GPM01, YGm03, pay] follow the principle that nodes pay
the resource providers for the resources they consume with either real money
or virtual tokens/credits. This kind of scheme can work effectively in a service-
oriented environment as the service providers are rewarded with either money
or virtual currency and free-riding behavior cannot obtain any profit from the
nodes. Different generations can be found inside the pricing-schemes group:

• Flat Rate [Cou06, GPM01]: One likely payment model for peer to peer
systems is some kind of flat rate membership fee per time period, for
example as a way of recovering royalty costs or the overhead involved in
running servers. This kind of approach is specially used in commercial
applications of peer-to-peer networking but they have some important
drawbacks that makes them inappropriate for the systems under study
in this thesis. For example, the fact that flat fees are unrelated to agents’
behavior implies that they still give rise to the problem of free-riding.

• Token-based: In such systems, a customer first has to check the service
at the market before being allowed to buy tokens from the broker. Then,
it can use the tokens to purchase the service on the market. The sys-
tem then provides the customer with the service and finally redeems the
tokens from the broker. The main limitation of the token-based micro-
payment system is that every transaction will generate a new token (see
Figure 2.3). The broker has to keep a record of all the tokens, which, in

2.2 Incentive policies 43

Figure 2.3: Transactions in Token-based Incentive Systems.

turn, leads to a scalability problem. PPal [YGm03] is an example of a
system of this kind.

• Account-based: The second generation micropayment systems are
account-based, in which every customer has an account with the bro-
ker and authorizes the broker to transfer money from their accounts. To
purchase a service, a customer first checks the service on the market,
before it informs the broker of its interests, as shown in Figure 2.4. The
system then supplies the customer with the service. After checking the
quality of the service, the customer confirms with the broker that he is
willing to pay. The broker then takes the money from the customer’s
account. PayPal [pay] is probably the most popular example of such a
mechanism.

A rarely used kind of incentive mechanism, but still present in the literature,
is the fixed-contribution scheme. In such systems, a node has to contribute a
fixed amount of resources before being allowed to participate in the network.
This scheme normally requires a centralized entity to monitor the quality of
contributions made by the nodes. However, it is not suitable for a majority of
decentralized P2P networks. Direct Connect [dir] is a typical example of such
schemes. It requires each node to contribute a minimum number of files and

44 Related Work

Figure 2.4: Transactions in Account-based Incentive Systems.

make a minimum upload bandwidth available.

2.2.3 Reputation

Going to the reputation-based schemes, Andrade [ABCM07] presents an in-
centive mechanism called the Network of Favors to assemble a large grid (Our-
Grid P2P System[CBA+06]), which makes it in the interest of each partic-
ipating peer to contribute their spare resources. Besides, H-Trust [ZL08] is
a group-trust management system inspired by the H-index aggregation tech-
nique. It offers a robust personalized reputation evaluation mechanism for
both individual and group trusts with minimal communication and computa-
tion overheads for Peer-to-Peer computing systems. In a similar way, Pow-
erTrust [RY07] is also a reputation system focused on P2P computing. In
[MKP08], a distributed mechanism is presented which promotes fairness and
inhibits free-riding through a shared-history reputation mechanism designed
for use in dynamic Peer-to-Peer systems.

Finally, in [ZZM07], Zhang et al. define a mechanism in which each node
is associated with two parameters: money and reputation. Peers exchange
money for services and increase their reputations by doing so. Similarly to
other schemes, they classify peers into three different types: honest, selfish,
and malicious. There is a central authority that settles disputes between peers
when one believes it has overpaid or not received enough service. Despite this,

2.2 Incentive policies 45

this centralization scheme becomes one of the main drawbacks of the system
since it limits its scalability. In another interesting work [PWL09], Ponce et
al. define a credit system that is used to keep track of the interaction between
peers. They introduce two new properties to consider: transferring credit
and proximity. Transferring credit will promote proximity routing by allowing
paths to be taken that were inaccessible before (because of debt).

2.2.4 Incentive Policies and Methods Comparison

Table 2.1 shows a comparison of the most relevant features of the main In-
centive schemes (grey rows in the table). Moreover we have also analyzed the
characteristics of one relevant policy for each method.

As we can see in the first row on the table 2.1, the main problem with most
existing monetary/payment schemes (booth token-based or account-based) is
the heavy load on the trusted, centralized broker. A broker is required to
handle accounts, distribute and cash coins, provide security (such as double-
spending detection), etc. Although payments need not be on-line, the broker
must eventually take some action for every transaction; as a result, broker
load is always O(n) in the number of transactions. Brokers therefore present
a scalability and performance bottleneck for any system using these payment
schemes.

We analyzed three pricing schemes PPay [YGm03], SHARE [CNA+04] and
TIM [ZLH07]. PPay [YGm03] is a token-based micropayment scheme that
addresses the dual problem of improving performance while maintaining secu-
rity, defining an internal transferable and self-managed currency called coins.
SHARE [CNA+04] allocates resources using a centralized combinatorial auc-
tion. Solving the NP-complete combinatorial auction problem provides an opti-
mally efficient allocation. TIM (Trust-Incentive service Management) [ZLH07]
is a hybrid pricing-reputation scheme. It provides a price strategy based on
resource supply and demand plus a weighted voting scheme to secure the P2P
system.

All payment policies, as PPAY, SHARE and TIM, can be adapted inde-
pendently of the structure or non-structure of the P2P system. Moreover, all

46 Related Work

use money (virtual or real) as the main incentive to reinforce cooperation, that
can be applied on either a local or global scope. To ensure the effectiveness
of incentive mechanism, both PPAY and SHARE reinforce collaboration using
authenticated identities that require a non-scalable and centralized certifica-
tion/authentication authority. TIM avoids this requirement using a reputation
mechanism to decline the joining request from malicious peers. QoS can be
easily supported in such policies by adjusting the final resource price depend-
ing on the required QoS level. The main drawback of these policies, in addition
to the poor scalability due to the centralized management, is the full penal-
ization of free-riding behavior. PPAY and TIM support partially free-riders
punishment and SHARE not at all.

The next scheme analyzed is the fixed contribution based incentive mecha-
nisms, which also cannot effectively prevent free-riders in P2P systems. How-
ever, its principle can be incorporated into the real-time reciprocity-based
scheme. This is when a node is consuming resources, it is required to make a
minimum amount of resources available to either the resource provider or the
whole community.

Taking reputation systems into consideration, most are impractical due
to overhead introduced by calculating the peers’ reputation. However, this
scheme has great potential for preventing free-riding effectively, and the com-
plexity of the mechanisms can be reduced if fewer peers are contacted. Another
important consideration is that the metrics for trust value calculation should
be context-aware and behavior-sensitive. Moreover, most of the reputation
networks use user-specified pseudonyms, that is not resilient to the whitewash
and sybil attacks. On the other hand, the service exchange ring-based incen-
tive mechanisms can meet most of the requirements. However, the feasibility
of this scheme largely depends on the search mechanisms of the underlying
P2P networks.

PowerTrust [RY07] proposes a Look-ahead Random Walk algorithm in
which all the nodes calculate the trust values based on their neighbors. A
DHT is applied to assign every node a trust value manager, which collects all
the ratings about this node and submits these ratings to the trust manager.
This feature hinders the adaptation of PowerTrust to P2P systems without

2.2 Incentive policies 47

a DHT-based search engine. PowerTrust significantly reduces the calculation
complexity and the data redundancy problem associated with trust calculation
and storing, improving the scalability. Feldman et al. [MCJI06] proposes a
Reciprocative decision function, and introduces the notion of generosity. Gen-
erosity measures the benefit an entity has provided relative to the benefit it
has consumed. Obviously, a peer is willing to cooperate with the collaborators
who are more generous than itself, providing a barrier to free-riders. How-
ever, the management of reputation information is critical in such systems to
provide a secure incentive mechanism.

Direct or Real-Time reputation systems, like BitTorrent [Coh03], use Tit-
for-Tat as a method for resource allocation, where a user’s upload rate dictates
his download rate. This approach requires that both users share the resource at
the same moment or manage historic information in order to detect free-riders
and reward contributors.

Ta
bl
e
2.
1:

C
om

pa
ri
so
n
of

in
ce
nt
iv
e
m
ec
ha

ni
sm

s
an

d
po

lic
ie
s
fo
r
P
2P

sy
st
em

s.

T
B

:
T
ok

en
-b

as
ed

;A
B

:
A

cc
ou

nt
-b

as
ed

;C
M

:
C

om
m

od
it
y

M
ar

ke
t;

A
C

:
A

uc
ti

on
-b

as
ed

;I
N

D
:
In

di
re

ct
;D

IR
:
D

ir
ec

t;
G

T
:
G

am
e

T
he

or
y.

2.3 Scheduling policies 49

2.3 Scheduling policies

Scheduling policies have always been the focus of interest of many researchers
in the distributed computing field. Over the last few years, the appearance of
many popular systems for harvesting idle cycles from ordinary users, such as
the BOINC project [And04], has raised many new and interesting challenges on
this field. Those systems are oriented to CPU-intensive workpile applications
and require donors of cycles to manually coordinate through a centralized web
site. More general cycle-sharing systems, such as Condor [LMM88], provide
automatic scheduling but require a centralized matchmaking service and are
limited to members of participating institutions. To deal with these problems,
in [LZZ+04], the authors present a scheduling infrastructure that supports
automatic scheduling for different classes of parallel applications in an open
environment. They claim that, depending on the application’s features, the
scheduling needs are clearly distinct. Given this, they organize P2P cycle-
sharing applications into four classes: those which consume huge amounts
of compute, those that require the results within a specified deadline, those
with loose coordination among subtasks and those with minimal computational
needs but which placement throughout the Internet.

In [BCF+08], the authors compare the performance of centralized and de-
centralized strategies for scheduling bag-of-tasks applications in desktop grids
and conclude that, for large-scale platforms, a centralized scheduler with global
coordination may be unrealistic. In Tycoon [LRA+05], a distributed market-
based resource allocation system is measured. The job scheduling and resource
allocation in Tycoon is based on a decentralized auction mechanism. Every
peer runs its own auction independently for its local resources, without coordi-
nation. This feature can lead to too many scheduling messages being generated
in the system for good allocation. The Shirako [ICG+06] system presents an-
other mechanism for on-demand leasing of shared networked resources based
on brokers that implement the resource selection. However, the system does
not define how the different brokers are coordinated with each other. In the
OurGrid P2P system [ABCM07], the load management protocol is based on
complete broadcast messaging, flooding the system network with an uncon-

50 Related Work

trollable number of messages.

Furthermore, in [NJAB08] the authors investigate the trade-off between two
different techniques for mapping the parallel tasks onto the computational re-
sources: bin-packing schedulers and replicated schedulers. The first approach
requires complete and accurate information about the applications and the
network environment. The second approach does not use any information but,
instead, applies the principle of task replication to achieve good performance.
Each of these approaches has its drawbacks; attaining accurate and complete
information about resources and applications is not always possible in a peer-
to-peer environment, while the redundancy of replication schedulers means an
extra consumption of resources. Taking all of this into account, they propose
scheduling heuristics that use any available information to perform efficient
scheduling of BoT applications. Their results show that judicious use of what-
ever information is available leads to a reduction in resource consumption,
without compromising the application’s performance. Despite this, they do
not consider information about the network, which can be a strong disadvan-
tage if the scheduler has to deal with data-intensive applications.

The mechanism proposed in this thesis is designed to work on an open
environment where any peer can, at the same time, share its resources and
submit applications to the system. Moreover, according to [BCF+08], we also
believe that a centralized scheduler with global coordination may be unrealis-
tic. Unlike other approaches that may collapse the system with a huge number
of messages ([LRA+05] and [ABCM07]), or authors that simply do not explain
how the coordination with brokers is implemented ([ICG+06]), the scheduling
mechanism proposed in this work achieves near-global assignment of tasks us-
ing only local information. Furthermore, in contrast to [NJAB08], different
kinds of parallel job have been taken into account during the design process.
That allows the network administrator to adapt the system to work properly
with very different kinds of parallel jobs with the aim of ensuring efficient
performance.

2.4 P2P computing platforms 51

2.4 P2P computing platforms

In this section, some popular peer-to-peer systems of the literature are ex-
plained in detail. Their schedulers and incentive mechanisms are the most
similar to the ones proposed in this thesis, so there is an special emphasis in
detail their operation.

2.4.1 Tycoon

The purpose of Tycoon [LRA+05] is to allocate compute resources, like CPU
cycles, memory, network bandwidth, etc. to users economically and efficiently.
In other words, the resources are allocated to the users who value them the
most. To give users an incentive to truthfully reveal how much they value
these resources, users use a limited budget of credits to bid for resources. The
form of a bid is (h; r; b; t), where h is the host to bid on, r is the resource
type, b is the number of credits to bid, and t is the time interval over which
to bid. This bid says, "I’d like as much of r on h as possible for t seconds of
usage, for which I’m willing to pay b". This is a continuous bid in that it is in
effect until cancelled or the user runs out of money.

The user submits this bid to the auctioneer that runs on host h. This auc-
tioneer calculates bri/tri for each bid i and resource r and allocates its resources
in proportion to the bids. This is a "best-effort" allocation in that the alloca-
tion may change as other bids change, applications start and stop, etc. Credits
are not spent at the time of the bid; the user must utilize the resource to burn
the credits. Note that the auctioneers are completely independent and do not
share information. As a result, if a user requires resources on two separate
hosts, it is his responsibility to send bids to those two markets. Also, markets
for two different resources on the same host are separated.

This service model has two advantages. First, the continuous bid allows
user agents to express more sophisticated preferences because they can place
different bids in different markets. Specific auctioneers can differentiate them-
selves in a wide variety of ways. For example, an auctioneer can increase the
amount of a resource (e.g. more CPU cycles), better quality-of-service (e.g.,
a guaranteed minimum number of CPU cycles), a favorable network location,

52 Related Work

etc. A user agent can compose bids to satisfy user preferences whenever it
sees fit. Secondly, since the auctioneers push responsibility for expressing so-
phisticated bids onto user agents, the core infrastructure can remain efficient,
scalable, secure, and reliable. The efficiency and scalability are a result of us-
ing only local information to manage local resources and operating over very
simple bids. The security and reliability are a result of independence between
different auctioneers.

2.4.1.1 Architecture

Figure 2.5: Overview of how the Tycoon components interact.

• Service Location Service: Auctioneers use this service to advertise
resources, and agents use it to locate resources (steps 1 and 2 in Figure
2.5). The prototype uses a simple centralized server, which allows it to
be robust against many forms of hardware and software failures.

• Bank: The bank maintains account balances for all users and providers.
Its main task is to transfer funds from a client’s account to a provider’s
account (step 3 in Figure 2.5). The assumption is that the bank has a
well-known public key and that the bank has the public keys of all the
users. These are the same requirements for any user to securely use a
host with or without a market-based resource allocation system.

• Auctioneer: Auctioneers serve four main purposes: management of lo-
cal resources, collection of bids, allocation of resources to users according
to their bids and advertisement of the availability of local resources.

2.4 P2P computing platforms 53

• Agent: The role of a tycoon agent is to interpret a user’s preferences,
examine the state of the system, make bids appropriately, and verify that
the resources have been provided. The agent is involved in steps 2, 3, 4,
and 6 of Figure 2.5.

• Funding Policy: Funding policy determines how users obtain funds.
Two possibilities are open and closed loop-funding policies. In an open
loop funding policy, users are funded at some regular rate. In a closed-
loop (or peer-to-peer) funding policy, users themselves bring resources to
the system when they join. They receive an initial allotment of funds,
but they do not receive funding grants after joining. Instead, they must
earn funds by enticing other users to pay for their resources.

Summarizing
The Tycoon system applies market-based principles, in particular an auction
mechanism, for resource management. On one hand, the auctions are com-
pletely independent without any centralized control, since every resource owner
in the system coordinates its own auction for local resources. On the other
hand, the Tycoon system provides a centralized Service Location Service (SLS)
for super-schedulers to index resource auctioneers’ information. By doing so,
Tycoon manages the shared resources efficiently, but at the expense of the
scalability of the system.
Another weak point of the network can be found on its funding policy. As said
before, the users are rewarded at the moment of joining the system with some
initial funds. That policy can encourage users to behave selfishly by joining
the system only to spend the initial funds. After that, they may reconnect
again with a new identity just to take advantage of that.
Moreover, the bank mechanism proposed in Tycoon is a very interesting so-
lution for managing all the users’ accounts but it has some deficiencies, like
scalability problems or the vulnerability of the bank. Despite this, we believe
that a centralized bank-like entity is a good solution since it allows security
policies to be applied to fight against cheating and malicious peers.

54 Related Work

2.4.2 Shirako

Shirako’s leasing architecture derives from the SHARP framework for secure
resource peering and distributed resource allocation [FCC+03]. The partic-
ipants in the leasing protocols are long-lived software entities (actors) that
interact over a network to manage resources.

• Each guest has an associated service manager that monitors application
demands and resource status, and negotiates to acquire leases for the
mix of resources needed to host the guest. Each service manager requests
and maintains leases on behalf of one or more guests, driven by its own
knowledge of application behavior and demand.

• An authority controls resource allocation at each resource provider site or
domain, and is responsible for enforcing isolation among multiple guests
hosted on the resources under its control.

• Brokers (agents) maintain inventories of resources offered by sites, and
match requests with their resource supply. A site may maintain its own
broker to keep control of its resources, or delegate partial, temporary
control to third-party brokers that aggregate resource inventories from
multiple sites.

These actors may represent different trust domains and identities, and may
enter into various trust relationships or contracts with other actors.

Shirako is a toolkit for constructing service managers, brokers, and author-
ities, based on a common, extensible leasing core. A key design principle is
to factor out any dependencies on resources, applications, or resource man-
agement policies from the core. This decoupling serves several goals. First,
the resource model should be sufficiently general for other resources such as
bandwidth-provisioned network paths, network storage objects, or sensors.
Second, shirako should support development of guest applications that adapt
to changing conditions. Finally, shirako should also make it easy to deploy
a range of approaches and policies for resource allocation in the brokers and
sites.

2.4 P2P computing platforms 55

Note that Shirako has no globally trusted core; rather, one contribution
of the architecture is a clear factoring of powers and responsibilities across a
dynamic collection of participating actors, and across pluggable policy modules
and resource drivers within the actor implementations.

2.4.2.1 Architecture

Figure 2.6 summarizes the protocol interactions and extension points for the
leasing system. An application-specific service manager uses the lease API to
request resources from a broker. The broker issues a ticket for a resource type,
quantity, and site location that matches the request. The service manager
requests a lease from the owning site authority, which selects the resource
units, configures them (setup), and returns a lease to the service manager.
The arriving lease triggers a join event for each resource unit joining the guest;
the join handler installs the new resources in the application. Plug-in modules
include the broker provisioning policy, the authority assignment policy, and
the setup and join event handlers.

Figure 2.6: Shirako Architecture.

• Resource Leases. The resources leased to a guest may span multiple
sites and may include a diversity of resource types in differing quantities.
Each lease binds a set of resource units from a site (a resource set) to
a guest for some time interval (term). In the current implementation,
each lease represents a number of units of resources of a single type. For
example, a lease could represent a reservation for a block of machines
with specified processor and memory attributes (clock speed etc.), or

56 Related Work

a storage partition represented by attributes such as capacity, spindle
count, seek time, and transfer speed.

• Brokers. Figure 2.6 depicts a broker’s role as an intermediary to arbi-
trate resource requests. The broker approves a request for resources by
issuing a ticket that is redeemable for a lease from some authority, sub-
ject to certain checks by the authority. The ticket specifies the resource
type and number of units granted, and the interval over which the ticket
is valid (the term). Sites issue tickets to the brokers for their resources;
the broker arbitration policy may subdivide any valid ticket held by the
broker.

Summarizing
Shirako is a system for on-demand leasing of shared networked resources across
clusters. Shirako’s design goals include: autonomous providers, who may offer
resources to the system on a temporary basis but retain final control over these;
adaptive guest applications that lease resources from the providers according
to changing demand; pluggable resource types, allowing participants to include
various types of resources, such as network links, storage and computing; bro-
kers that provide guest applications with an interface to acquire resources from
resource providers; and allocation policies at guest applications, brokers and
providers, which define the manner resources are allocated in the system.
The leasing abstraction provided by Shirako is a useful basis for coordinating
resource sharing for systems that create distributed virtual execution environ-
ments of networked virtual machines. However, the complexity of its design
and the rigidity of its agents (brokers) make it more appropriate for Cloud
architectures than for P2P computing ones. Furthermore, it is not clear how
the different brokers in the system interact with each other. Despite this, it
has some interesting ideas that inspired the design of our scheduler. For ex-
ample, the way the resources are allocated in shirako encouraged us to divide
the system into small areas controlled by a manager.

2.4 P2P computing platforms 57

2.4.3 OurGrid

OurGrid [ACBR03] is an opensource grid middleware based on a peer-to-peer
architecture. It is mainly developed at the Federal University of Campina
Grande (Brazil), which also runs an OurGrid instance named "OurGrid", in
production since December 2004. Anyone can freely and easily join it to gain
access to a large amount of computational power and run parallel applications.
This computational power is provided by the idle resources of all the partic-
ipants, and is shared in a way that ensures that those who contribute more,
receive more when they so need. Currently, the platform can be used to run
any application whose tasks (i.e., parts that run on a single machine) do not
communicate among themselves during execution, like most simulations, data
mining and searching.

OurGrid is an open, free-to-join, cooperative grid in which labs donate their
idle computational resources in exchange for accessing other labs’ idle resources
when needed. It uses a peer-to-peer technology that makes it in each lab’s best
interest to collaborate with the system by donating its idle resources. OurGrid
leverages from the fact that people do not use their computers all the time.
Even when actively using computers as research tools, researchers alternate
between job execution (when they demand computational power) and result
analysis (when their computational resources go mostly idle).

For OurGrid to be useful, it must be fast, simple, scalable, and secure.
These were the four major goals that guided the design of OurGrid. Achiev-
ing these goals was a very challenging task. In order to simplify the problem
somewhat, at least for now, the developers reduce OurGrid’s scope to support-
ing Bag-of-Tasks (BoT) applications. As stated above, BoT applications are
parallel applications whose tasks are independent.

2.4.3.1 Architecture

Figure 2.7 shows the main components of OurGrid and how they interact
between themselves.

• OurGrid Broker. The OurGrid Broker (originally called MyGrid) is
the scheduling component of the OurGrid solution. A machine running

58 Related Work

Figure 2.7: Ourgrid Architecture.

the Broker is called the home machine, which is the central point of
a grid. During the processing of jobs, it acts as the grid coordinator,
scheduling the execution of tasks and doing all the necessary data trans-
fer to and from grid machines. Due to its central role, grid configuration
and management, as well as job specification, is done on the home ma-
chine. For these reasons, users will likely use their desktop as the home
machine for their grid. This approach decentralizes access to the grid
allowing multiple users, each using their own installation of the Broker,
to do concurrent processing. The Broker is OurGrid’s user front end. It
provides all the necessary support to describe, execute, and monitor jobs.
Job processing is done by machines running OurGrid Workers. During
the execution of a job, the Broker gets Workers on-demand from its as-
sociated Peer. It is the Broker’s role to schedule the tasks to run on the
Workers and to deploy and retrieve all data to/from Workers before and
after the execution of tasks.

• Peers. An OurGrid Peer runs on a machine called the peer machine.
The main role of a Peer is to organize and provide worker machines that
belong to the same administrative domain. From the user’s perspective,

2.4 P2P computing platforms 59

a Peer is a Worker provider, i.e., a network service that dynamically pro-
vides Workers for task execution. From an administrative point of view,
a Peer determines how and which machines can be used as workers. In
Figure 2.7, there is one Peer for each administrative domain. This archi-
tecture allows different site administrators to enforce their own policies
regarding the use of their Workers.

• Workers. The OurGrid Worker component runs on each machine that
will be available for task execution. The Worker provides necessary ac-
cess functionality to the home machine. It also provides some basic
support for instrumentation and fault handling. Furthermore, combined
with the OurGrid Peer, it allows for the use of machines in private net-
works. In practice, any computer connected to the Internet can be used
as a worker machine, even if it lies in a different administrative domain or
behind a firewall. In Figure 2.7, administrative domains, possibly using
their own intranets, are illustrated as rectangles containing Workers.

2.4.3.2 Network of Favours

To encourage resource contribution to the network, OurGrid uses a resource
allocation mechanism called Network of Favours. The Network of Favours is
an autonomous reputation scheme that rewards Peers that contribute more.
This way, there is an incentive for each Peer to contribute as much as possible
to the system.

In this mechanism, when a participant A is doing a favor to participant B
when A allows B to use its resources. The philosophy of the Network of Favours
is that every participant does favors to other participants expecting the favors
to be reciprocated. When a user has many requests to deal with, it prioritizes
those who have done favors to it in the past. The more favors a participant
does, the more it expects to be rewarded. The participants locally account
their favors and cannot profit from them in another way than expecting other
participants to do them some favors . Detailed experiments have demonstrated
the scalability of the network of favors [ABCM07], showing that the larger the
network becomes, the more fairly the mechanism performs.

60 Related Work

Summarizing
OurGrid is a peer-to-peer computing architecture that implements a very con-
sistent mechanism for managing the relations between the peers inside the net-
work. This mechanism, called Network of Favors prioritizes the peers with high
reputation, thus it motivates sharing. From the scalability point of view, the
main advantage of OurGrid is that there is no need to store global reputation.
The reputation of neighbors is maintained in each peer and a communicating
overhead is avoided.
This scheme is focused on solving free-riding, although it limits the accuracy
of job scheduling. This is because the reputation of a peer is not propagated
through the system, so a master peer will only have objective information
if a peer has collaborated with it before. Thus, scheduling success depends
on the collaboration of the peers after the mapping of tasks. If the target
peers cooperate with each other, their respective reputation will increase, so
performance will be good. However, if the target peers do not cooperate, job
performance will not be guaranteed.
Since the OurGrid was born, the authors have published many interesting
works related to its incentive and scheduling mechanisms. All these work
inspired us in many aspects on the design process of our proposal. Between
others, we can highlight the choice of a non-negative credit system that protects
the networks against malicious behavior, known as identity-changing cheating.
This kind of behavior is quite common on P2P networks and happens when
a user creates a new account in order to clean some previous bad behavior.
However, there are some others typical kinds of cheating that are not taken
into account in OurGrid and which are important enough to be considered in
our proposal.

2.4 P2P computing platforms 61

2.4.4 CompuP2P

CompuP2P [GSS06] uses a peer-to-peer architecture for creating markets to
trade computing resources, such as CPU cycles, disk space, etc. CompuP2P
creates different markets for different amounts of a computing resource, re-
ferred to as a commodity. Nodes that are responsible for running different
commodity markets are termed “market owners” (MOs). MOs are dynami-
cally re-assigned as nodes leave and join the network. A MO does the job of
a matchmaker between sellers and buyers, and maintains information about
the sellers. This information can include such things as available compute
power and/or disk space, operating system type and version, platform type,
price requirement, etc. Upon receiving a request from a client, the MO returns
the information about the seller that best meets the client’s requirements. A
Chord-based protocol is used for market creation and lookup, and with a high
probability of both sellers and buyers of a commodity converging on the same
market, i.e., both sellers and buyers contact the same MO that is responsible
for running the market for that commodity. It must be noted that a single
physical node can be a MO for various commodities.

CompuP2P is designed to take users’ selfishness into account, and uses
ideas from game theory and microeconomics to price computing resources.
CompuP2P allow users to define their policies regarding what, when, how,
and by whom their resources can be used. Moreover, it allows users to specify
their task requirements while accessing the system resources.

2.4.4.1 Architecture

CompuP2P presents a three-layer architecture.

• Computing Resources layer. This layer refer to various distributed
resources, such as compute power, disk space, files, etc., that exist in any
large Internet-scale system. These resources belong to different nodes
that are part of the underlying P2P network. In CompuP2P, nodes
joining the system are organized in a Chord ring [SMK+01].

• Resource Trading layer. The functionality of this layer can be further
divided into three sub-layers. The market lookup protocol for ensuring

62 Related Work

that sellers and buyers looking to trade a commodity converge on the
same market. The resource pricing protocol for ensuring that both sellers
and MOs are suitably compensated for the service they provide to clients.
And the dynamic market creation protocol, used for selecting nodes that
act as MOs for specific commodities.

• Service layer. The service layer accepts service requests from a user.
A service can be a computation task or a data storage request. A com-
putation task is submitted by a user in the form of an XML task file.
The task file is parsed and appropriate computing nodes in the network
that can execute the associated sub-tasks are determined. The service
layer allows a user to specify their task requirements while accessing the
system resources. Moreover, a user interested in backing up the local
data can also request the service layer to search for appropriate storage
nodes in the network. The data is usually replicated at multiple remote
nodes and is stored in either plain-text or encrypted format.

2.4.4.2 Resource Trading

This layer is responsible for creating and managing markets. Each node based
on its current and past load estimates the average number of resources that
would remain idle in future. Suppose a node determines that it has C cycles/sec
available for the next T time units (where T a long enough time period) that
it can provide or make available to others for processing.

Since different nodes have different amounts of compute power to sell and
purchase, it is necessary to create suitable markets to permit buyers and sellers
to come together and trade the amount of compute power they require.

The term commodity represents a range of idle CPU cycles/sec values.
Each market deals in only one type of commodity (i.e., homogeneous markets).
A single physical node may be responsible, i.e., be a market owner (MO), for
more than one market.

Figure 2.8 depicts how nodes with different values of idle compute power
C join different markets.

2.4 P2P computing platforms 63

Figure 2.8: Creation of markets for CPU cycles in CompuP2P.

2.4.4.3 Pricing

Pricing is non-trivial when there are either multiple sellers from a buyer’s point
of view or when a buyer is trying to minimize its cost of processing (again
assuming multiple sellers). Utilizing the model that a transaction involving
the trading of compute power can be modeled as a one-shot game and using
the results from game theory and microeconomics (the classical Prisoner’s
dilemma problem [Osb04] and Bertrand oligopoly [Bay05], respectively), it
can be concluded that long-term collusion among compute power sellers (and
MO) is unlikely to occur. In the one-shot Prisoner’s dilemma game, non-
cooperation is the only unique Nash equilibrium strategy for the players. In
fact, the model of Bertrand oligopoly suggests that sellers (irrespective of their
number) would not be able to charge more than their marginal costs for selling
their resources (see [Osb04] for a game-theoretic derivation of this result). In
the Bertrand oligopoly the sellers’ strategy is to set "prices" (as opposed to
"outputs" in the Cournot oligopoly), and is thus more reasonable to assume
in the context of CompuP2P. In CompuP2P, all the sellers in a market sell
the same amount of a computing resource. As a consequence, in CompuP2P,
irrespective of how many there are in a market, sellers set prices equal to
their marginal costs only. Among other things, the marginal cost of providing
a computing resource can include listing price, bandwidth cost for message

64 Related Work

exchange, etc., and is represented by MCi for a node, i.

Since the best pricing strategy for sellers is to charge equal to their marginal
costs, it results in zero profits for them. Therefore, sellers would not be mo-
tivated to sell their compute power unless some other incentive mechanisms
were devised for them. To solve this problem, CompuP2P use the technique
employed in the Vickrey auction ([Nis99, Vic61]). When a seller when joins
a market, it provides the MO with its marginal cost information. A buyer,
looking to minimize its cost, selects the seller with the least marginal cost, but
the amount it has to pay to the seller is equal to the second lowest marginal
cost value listed on the market. This selection scheme is called the reverse
Vickrey auction. The above strategy provides non-zero profit to the selected
seller and ensures that sellers state their correct marginal costs to the MO (see
[Vic61] for the truth-eliciting property of the Vickrey auction). The strategy is
also inherently secure because even if sellers learn about the posted marginal
costs, they cannot take undue advantage of that information to post a lower
marginal cost than their actual values.

2.4 P2P computing platforms 65

Summarizing
CompuP2P is an architecture for sharing computing resources in peer-to-peer
networks. It creates dynamic markets of network-accessible mutable resources
in a completely distributed, scalable, and fault-tolerant manner. CompuP2P
uses ideas from game theory [Osb04] and microeconomics to devise incentive-
based schemes.
Thanks to the Chord-based structure, CompuP2P can boast of a better scal-
ability than many other P2P computing alternatives. Otherwise, it has some
important deficiencies, like not taking free-riders into account or omitting some
kinds of cheating which are very common on P2P computing networks. Be-
sides this, the main problem of the system is trying to manage the dynamic
resources shared in the network as static resources. This happens when the
markets are created and the nodes are classified depending on their compu-
tational resources. By doing so, everyone will be allocated to a group that
will be the same until a task is assigned to them. The problem appears if
the user changes the workload of the machine, which is as easy as opening an
application or starting to reproduce a multimedia file. If that happens, the
node will be allocated to the wrong market and the system may be expecting
it to supply something out of reach.
Otherwise, it has inspired us in some aspects, like the use of the reverse Vick-
rey auction as the pricing strategy. This strategy protects the system against
malicious behavior by users while ensures a profit for the peers sharing their
resources, thus encouraging sharing. Another strong point of the system that
helped us in the designing of our mechanism is the methodology used to re-
ward the market owners, entities that are quite similar to the manager peers
that we have in our mechanism. This methodology defines a payment policy
that encourage the market owners to manage the shared resources efficiently,
rewarding them for always choosing the best worker for each task execution.

66 Related Work

2.4.5 CoDiP2P

CoDiP2P [CBR+08] is a decentralized mechanism for distributing computation
and resource management that takes into account the system heterogeneity
by using the P2P paradigm. The design of CoDiP2P is focused on hiding
system complexity from the programmers and users. The hierarchical topology
in managing and maintaining the system-growing capacity favors the good
scalability of the system. Fault-tolerance has also been considered by providing
self-organization of peers and avoiding centralized components. The system is
able to manage its resources efficiently, independently of their heterogeneity,
geographical dispersion and volatility.

2.4.5.1 Architecture

Figure 2.9 shows the CoDiP2P architecture. In this example, the tree has
three levels and is made up of four areas. The peers that make up the system
have two roles, as workers and managers, and are grouped together by areas.
The architecture of CoDiP2P is a tree of areas. In each CoDiP2P area there is
only one Manager and N Workers, where N depends on the network properties,
bandwidth and latency. The main goal of the manager is to manage peers in
the same area and schedule jobs to be executed over the workers. At the same
time, these workers can also submit jobs to their corresponding manager.

The properties of CoDiP2P are the following: scalability to ensure that
the system supports the massive entry of peers; distributed management to
harness the computing resources offered by the nodes making up the system;
fault tolerance to prevent the high possibility of a peer failure and replace it
by ensuring the stability, robustness and performance of the global system;
self-organization is the way that each peer can be a manager or a worker dy-
namically according to the needs of the system; heterogeneous resource man-
agement to manage the scheduling and load balancing of tasks among the
peers efficiently, independently of their heterogeneity, geographical dispersion
and volatility.

The main features of CoDiP2P involved in resource management are the
followings: balanced peer insertion of new peers; scheduling of multitasking

2.4 P2P computing platforms 67

Job

OUTPUT SCHEDULING

W1
W2

W3

W4

W5

Execution

Job

Job Job

INSERTION MAINTENANCE

T

M4

Job

Job

LEVEL 1

LEVEL 2

M1

M3

A1

M2

A3

W8

LEVEL 3

M4

W4

A4

W5W2W1 W3

A2

W7W6 W9

Figure 2.9: CoDiP2P, a tree-like architecture.

jobs; maintenance which keeps the system updated in periods of T seconds
and peer output, also used to re-balance the tree when a peer leaves the sys-
tem. The insertion and output cost is θ(logSize(Ai)

(N)), where Size(Ai) is the
area capacity and N is the number of peers in the system. The cost of the
maintenance algorithm is hardly worse, θ(Size(Ai)). These low costs justify
the choice of a tree-like architecture.

68 Related Work

Summarizing
CoDiP2P is a decentralized mechanism for distributing computation and re-
source management which takes the system heterogeneity into account by us-
ing the P2P paradigm. The design of CoDiP2P is focused on hiding system
complexity from the programmers and users. The hierarchical topology in
managing and maintaining the system-growing capacity favors the good scal-
ability of the system. Fault-tolerance has also been considered by including
self-organization of peers and avoiding centralized components. The system is
able to manage its resources efficiently, independently of their heterogeneity,
geographical dispersion and volatility.
CoDiP2P has been developed by our group over during the last few years.
Providing this system with an efficient scheduling mechanism and an effective
incentive mechanism was one of the main motivations for this thesis. For
this reason, although technically it may not be catalogued as related work, it
has been included in this chapter because this architecture is the basis of the
present project.
However, it must be stated that the incentive and scheduling mechanism pre-
sented in this thesis are not exclusively for this architecture. It can be deployed
on many other P2P computing systems, provided they fulfill certain require-
ments. Those requirements are explained in section 3.2, before detailing the
proposed mechanism.

2.4.6 Summary of Architectures

Table 2.2 summarizes the analyzed P2P architectures. The summary is focused
on the characteristics of scheduling and incentives policies. Also, the main
features of the integrated incentive and scheduling mechanism proposed in
this thesis, incorporated in the CoDiP2P architecture are detailed.

Our incentive policy is based on credits (virtual money) and an account-
based scheme to enforce peer collaboration. With regards to the analyzed
architectures, our proposal/policy suggests a differentiated distributed incen-
tive method capable of discouraging free-riding and preventing the threats of
cheating through whitewashing and dumping.

2.4 P2P computing platforms 69

Table 2.2: Comparison of Distributed P2P architectures.

The proposed scheduling algorithm stands for its hierarchical and dis-
tributed nature based on several levels of scheduling (peer, group of peers
and global). The scheduler and resource allocation are both auction-based,
taking their decisions according to the law of supply and demand of resources.
The resource price construction is founded on the marginal cost defined by
the peer and it uses the reverse Vickery auction method to match supply and
demand requests. Other important feature of our algorithm is its scalability.
It is designed to restrict the number of messages required to schedule a job.
This feature avoids flooding the overlay network with messages and guarantees
the scalability of the whole system.

Chapter 3

DISIM

3.1 Introduction

This chapter introduces a new distributed and cooperative two-level mech-
anism for scheduling jobs and incentivizing the users in a P2P computing
network. This model improves scalability for large-scale P2P computing with
super-peer topologies. In order to guarantee this scalability, the proposed
mechanism takes a two-level P2P architecture into consideration. The high-
level is composed of a set of super-peers interconnected by means of an overlay.
Each super-peer is responsible for a group of peers. Together, all these groups
compose the lower level of the system. At the same time, each of these groups
is made up of a different number of peers. Peers are the smallest autonomous
unit and own the computational resources shared in the system, mainly CPU,
Memory and Storage.

At the low-level, the traditional problem of mapping a group of tasks into
a set of well-known computational resources is dealt with. At this level, long-
established algorithms from the literature could be employed in order to achieve
an efficient scheduling. Despite this, we propose a new credit-based mecha-
nism to enforce collaboration inside the system. The allocation of job tasks,
performed by a super-peer is based on the reverse Vickrey auction, thereby
achieving the optimum allocation of resources since it has complete informa-
tion about the overall area. Moreover, this strategy also protects the system
against dumping cheating.

71

72 DISIM

Due to scalability issues involved in maintaining the global information,
this mechanism is integrated into another one that works at a higher level,
where the super-peers are connected to each other. With the aim of reducing
the information requirements, a method that manages the most important
system resource information is defined. It provides a value that reports about
the computing capacity controlled by each super-peer.

Section 3.2 explains the main features of the overall P2P computing frame-
work that was taken into account when designing the mechanism. Section 3.3
explains how the credits are used and introduces their main properties and
benefits. Section 3.4 explains how the mechanism manages the low-level of
the network, that is, how each super-peer controls the events generated within
its own group of peers. In Section 3.5, the upper-level scheduling and incen-
tive mechanism, jointly with its components and their operating details, is
described.

3.2 P2P Computing Framework

As explained in Section 1.2, not all P2P networks are equally structured. There
are many different kinds of overlays with very different properties and features.
This section details the P2P network overlay that has been taken into account
for the proposed incentive and scheduling mechanism. Although the mecha-
nism is not designed for only one kind of network structure, the overlay must
have some specific features in order to be deployed. For this reason, this sec-
tion introduces and explains these features with the aim of identifying the kind
of networks that can work properly with our proposals. First, the overall ar-
chitecture is explained before detailing how the scheduling scheme is adapted
to the structure presented. Finally, the incentive polices are introduced by
describing the operation of the proposed credit-based mechanism.

3.2.1 Architecture

The system is made up of several associations of peers grouped together in
an area. Figure 3.1 shows an example of a possible grouping of peers. These

3.2 P2P Computing Framework 73

Figure 3.1: Example of an area with eight peers.

groups of peers are made up of one super-peer and n additional peers, where
n depends on the network properties, bandwidth and latency. Basically, the
system defines three kinds of roles that can be assumed by peers, Workers
(W), Managers (M) and Masters (MS). Workers are those peers who provide
their resources to execute tasks. Since several workers are grouped together, it
is necessary for one of them to take the responsibility of managing the group.
This entity is called the manager and is responsible for controlling the system
and scheduling jobs. A master is a peer that has submitted a job to the system
and monitors its execution to completion. When a peer, whether a manager
or a worker, launches a job into the system, it will also become a master, while
simultaneously maintaining its previous role.

Figure 3.1 also shows the application model taken into account in such sys-
tem. The master peer starts the job main task, which splits the computational
work into several independent tasks. Those tasks are submitted together to
the manager, which is responsible for distributing them among the workers of
the system. Finally, the job main task will also collect the results from the
completed tasks and generate the final outcome. Note that the communica-
tion requirements in this process only include sending the program and the
necessary data to execute such tasks and receiving the partial results from the
workers. The ratio between those communications and the required execution
time of each task will define the granularity of the job.

The system can have multiple areas interconnected through the managers
by means of an overlay, making up the upper level. Figure 3.2 shows how the

74 DISIM

W...W

M

1 n

W...W

M

1 n1

W...W

M

1 n

W...W

M

1 n
W...W

M

1 n

W...W

M

1 n

M

1 n

W...W

M

1
W...W

M

1 n

2

3

4

n5

6

7

8

9

2

1

4

7

3
5

8

6

9
MS

W...W

Figure 3.2: Example of system overlay where K=2.

managers are interconnect to each other. Most popular structured P2P over-
lays have this architecture (CAN, Chord, Kademlia, Pastry, Tapestry, Viceroy,
Bruijn, etc.) [EAH05]. The common characteristic of these overlays is that
each node has a fixed number of K neighbors (links), where K << N, with
N being the number of peers in the system. Our system is even designed
for environments where each peer can have different K values. All the poli-
cies proposed in this thesis are independent of the number of areas and the
interconnection overlay.

The main goals of this kind of system architecture are the following:

• Scalability. Ensures that the system supports the massive entry of peers.

• Distributed management. Harnesses the computing resources offered by
the nodes making up the system.

• Robustness. Deals with the high possibility of a peer failure and replace
it without affecting the working of the global system.

• Self-organization. Allows peers to change their role dynamically accord-
ing to the system needs.

• Heterogeneous resource management. In order to perform efficiently the
scheduling and load balancing of tasks among peers.

3.2 P2P Computing Framework 75

3.2.2 Scheduling

In the upper level, managers deal with more scheduling information, although
less accurate. At this point, each manager has a distributed scheduler for as-
signing computing tasks among areas. Thus, global scheduling involving all
computing resources is achieved by collaborations among distributed sched-
ulers on individual areas. Due to this two-level topology, we divide our mech-
anism into two parts: the Global Mechanism (GM) and the Local Mechanism
(LM). The former is responsible for propagating the task through the overall
system, always trying to allocate more tasks to the “best” super-peers, and the
latter defines how the tasks are assigned to the peers inside each area.

To improve scalability, the amount of resource information used by the GM
is limited to the knowledge of adjacent areas. We assume that information for
doing local assignments is not very large and the manager has accurate infor-
mation about the power capacity and occupancy of the area’s peers. Further-
more, as an area is usually small in size, the LM can know the state of all peer
resources and perform a near-optimal task assignment. The area scheduling
policy is based on the reverse Vickrey auction strategy to avoid peers offer-
ing resources at a price lower than their real cost (dumping cheating). The
LM is performed by each manager within its own scope, normally a local area
network.

3.2.3 Operation

Referring to the incentive policies, our incentive scheme is based on credits and
uses an account-based system to manage the transactions between users. The
mechanism is located in each super-peer, which coordinates its own group of
peers and has direct information about its neighboring super-peers. Figure 3.3
shows how the mechanism works when a user requests computational resources.
In step 1, a user, called master throughout this process, can be seen submitting
a job to be executed to the system. In step 2, the manager of the area will
have to decide, according to the user’s information, if the job can be launched
or not. If the request is accepted, the manager will take into account its
neighboring super-peers to see if it is better to delegate some tasks of the job

76 DISIM

P2P
COMPUTING

SYSTEM

Job Credits Area

Job Credits

Master Manager

P2P
COMPUTING

SYSTEM

1 2

Credits

asksT

Manager

P2P
COMPUTING

SYSTEM

3

Credits

Credits

Credits

Credits

askT

askT askT
askT

orkerW

orkerW orkerW

orkerW

Figure 3.3: Operation of the credit-based mechanism.

to them. Finally, step 3 shows how a manager assigns the tasks directly to its
workers inside an area. Obviously, throughout this process, workers sharing
their resources are rewarded with credits from the master. Figure 3.3 also
shows how the manager is responsible for such transactions.

3.3 Management of Credits

This section explains how the credits are managed by the system, detailing
the main features of the proposed credit-based mechanism and highlighting its
most important advantages. Credits are used for accounting the consumption
and cession of resources. As can be seen in Figure 3.4a, when a peer submits
a job, it pays some credits for its execution. In the same way, when a peer
executes a task, it is rewarded with credits as shown in Figure 3.4b. The credit
system is the main instrument used by the incentive policy.

The system only imposes one restriction on these dealings: credits cannot
be negative. If credits are not limited to zero, peers would be tempted to
reconnect to the system with a new identify in order to be treated as new
users. This action is known in the literature as ID-Changing cheating. There
are two different reasons why a peer may be interested in having a new identity
in the network:

• If the system implements a mechanism that rewards newcomer peers to
encourage them to participate in the network, one may be tempted to

3.3 Management of Credits 77

Job

P2P COMPUTING
SYSTEM

Credits

eerP

(a) Peer submitting a job.

P2P COMPUTING
SYSTEM

ask

Credits

eerP

T

(b) Peer accepting a task.

Figure 3.4: Credit transaction.

join the system just to spend the initial credits given by the managers
and reconnect again (with a new ID) once all these credits have been
exhausted.

• If the system has a mechanism that allows users to have negative credits
and penalizes them, e.g., with lower priorities in the job queue, a peer
could use this kind of cheating to bypass this limitation.

For the same reason, the users have no credits when joining the network.
Despite this, if the system is idle and there are no jobs in the manager’s
queue, a peer with no credits will still be allowed to submit an application.
However, it must be said that under normal circumstances (the system being
used by peers), newcomers will have to share their resources to earn some
credits before being able to launch a job. Under this scenario, the system will
create more credits dynamically depending on the network expansion. Next,
how the system works at startup is explained:

• At system startup, none of the users have credits. As all the users
have the same conditions, the job queue has a FCFS (First-Come, First-
Served) scheduling policy. Thus, the first user to launch a job will be
allowed to do it for free, but the workers executing the tasks of this job
will be rewarded anyway with the corresponding credits.

• When the first worker finishes executing a task, it will be rewarded with

78 DISIM

a number of credits. From this point on, the jobs launched by this
worker (with credits) will be prioritized over others when competing for
computational resources. Thus, the job scheduling policy will become a
priority-based queue. In the absence of jobs with priority, jobs will be
selected on a FCFS basis. Note that jobs from peers without credits will
only be executed when the system is idle.

• If a peer launches a job without enough credits to pay the “bill”, the
request will be only accepted if there are no competing peers with more
credits asking for resources at that moment. If this happens, it will
pay with all its credits (leaving its account to zero) but the workers will
receive the total number of credits they are entitled to. Note that during
this process, some credits will be created by the system itself. This way,
the amount of credit grows dynamically with the system and nothing
happens if a peer runs out of credits.

Finally, although it is outwith the main scope of this thesis, we would like
to give some ideas about how the credits could be underwritten to prevent
malicious behavior by users, e.g., creating more credits. One can find many
works in the literature about distributed authentication systems designed for
P2P networks. For example, in [WZK05], the authors describe an authentica-
tion protocol for Peer-to-Peer systems that provides the operating peer with
anonymity from other peers and any external users, except the managers.
Additionally, the system identifies peers’ actions when cooperating with the
super-peer. This can serve to control malicious peers trying to violate the
rules of the P2P application. In a similar but more recent work ([TT07]),
the authors presented a model for data authentication in peer-to-peer storage
networks, where data items are stored, queried and authenticated in a totally
decentralized way. By extending fundamental cryptographic techniques to dis-
tributed environments, they ensure an efficient verification of membership and
update operations over dynamic data sets and eliminate the threat of replay
attacks. In the proposed mechanism, all the peers are involved in the account-
ing and authentication tasks that allow the incentive and scheduling policies to
be implemented securely and confidently. For this purpose, any of the two pro-

3.4 Local Mechanism 79

tocols explained above could be used to prevent malicious behavior by users,
in other words, to minimize the risk of cheating. Moreover, this last protocol
can also be used to solve another common problem of P2P computing systems:
the persistence of the data such as that referring to the accounting and the
reputation of the users. Note that if some data is stored only in a peer, which
if disconnected, will cause that information to be lost. For this reason, it is
necessary to use a scheme to store the data in a distributed and replicated
way, such as the one presented in [TT07].

3.4 Local Mechanism

This Section is contained in the following paper:

J. Rius, F. Cores and F. Solsona, “Incentive Mechanism for Scheduling Jobs in
a Peer-to-Peer Computing System”, Submitted to the Journal of Simulation
Modelling Practice and Theory, 2011.

3.5 Global Mechanism

This Section is contained in the following paper:

J. Rius, F. Cores and F. Solsona, “Cooperative Scheduling Mechanism for
Large-Scale Peer-to-Peer Computing Systems” Submitted to the Journal of
Parallel and Distributed Computing. Special Issue: NovelArch for HPC, 2011.

Chapter 4

Experimental Results

4.1 Introduction

This chapter presents the experimentation conducted to demonstrate the fea-
sibility and good performance of the proposed incentive and scheduling mech-
anism. The results are presented and extensively analyzed in Sections 4.3, 4.4
and ??.

Section 4.2 proposes a model to represent the behavior of the users in
a P2P computing network. It specifically defines two kinds of peers, free-
riders and collaboratives, and studies the probabilities of moving from one
state to another. It must be taken into account that, in order to evaluate
(through simulation tests) a mechanism like the one proposed in this thesis,
it is necessary to define and model the behavior of peers. Furthermore, this
behavior must be as real as possible in order to make our proposals applicable.

4.2 User Behavior

Before evaluating the incentive mechanism proposed in this thesis, the user
behavior of peer-to-peer networks was studied. Although there are many works
in the literature aimed at modeling the behavior of users in different P2P
systems, most of them focus on file sharing.

Studies in [SR06, HWS07] have shown that user behavior is largely invari-

81

82 Experimental Results

ant across P2P systems. User behavioral patterns are in constant transition,
although the broad characteristics are comparable in different systems. Hence,
it is pointed out that some of them are very close to observed behavior, e.g.,
Weibull distributions, and others reflect worst-case or utopian scenarios, e.g.,
exponential or uniform distributions.

In [AAF+08], the authors studied P2P user behavior in a simulation envi-
ronment and concluded that the Weibull and Pareto distributions represented
realistic behavior for the quantity of resources shared by a peer in the system.
Both distributions assumed that a large number of peers share a small num-
ber of computational resources while only a few share large amounts of them.
They also concluded that the Poisson distribution represents a hypothetical
utopian scenario where every peer shares a significant number of resources.
Furthermore, the presence of a large number of free-riders has been confirmed
by extensive measurement studies [BCC+06, ZSR06, FHKM04]. While the
Weibull and Pareto cases represent realistic behavior (i.e., a large number of
free-riders), the Uniform case is used as a base for comparison, and the Pois-
son case represents a scenario where every peer shares a constant number of
resources.

In [SR06], Stutzbach showed how session lengths are fitted by Weibull or
Log-normal distributions, but not by the exponential or Pareto models. While
most sessions in a P2P system are short (minutes), some sessions are very long
(days or weeks). This differs from exponential distributions, which exhibit
values closer together in length, and heavy-tailed distributions, which have
more pronounced extremes (years).

This section presents a model used to represent the user dynamic behavior
based on two kinds of peer, collaborative and free-riders, and their changing
probabilities. Just as a reminder, free-riders are those peers that do not collab-
orate with the system at all. Free-riders launch their own tasks for execution
but do not execute foreign ones. Collaborative peers are those that share some
of their computational resources.

Figure 4.1 shows the peer state diagram. The labels in the arcs represent
the changing probability between states. Thus, a collaborative peer can be-
come a free-rider with a probability of ρ if the system allows it and a free-rider

4.2 User Behavior 83

can also become a collaborative peer with a σ probability if it is properly
encouraged.

σ

ρ

free−rider collaborative

Figure 4.1: Peer state diagram.

One of the main challenge of an incentive mechanism is to encourage free-
riders to become collaborative, but without forgetting the encouragement of
collaborative peers to stay so as long as possible. Previous works modeled
the amount of resources shared or session lengths, but state changing was not
studied. For this reason, a previous work to the experimental study consisted
in modeling the state changes, that is, defining new probability functions for
both ρ and σ. These parameters were derived via careful sensitivity analysis
until a representation was found that reflects observed user behavior (in [SR06,
HWS07]) within the limitations of a simulation environment. In the following
sections the methodology used to define these probabilities is described.

4.2.1 Collaborative to free-rider

The probability that a collaborative peer becomes a free-rider depends on
the collaborative ratio (ColRatio) expressed in equation 4.1. This ratio gives
the relationship between the work performed for the requesting peer and the
foreign ones performed by the requesting peer. LaunchedTasks is the number
of tasks launched by the peer for execution and RejectTasks the discarded
ones. ExecutedTasks are the tasks accepted and executed by the peer and
submitted by other peers.

ColRatio =
LaunchedTasks−RejectTasks

ExecutedTasks
(4.1)

The probability distribution ρ behaves exponentially with the form
ΥColRatio (ρ = ΥColRatio), where Υ is a constant in the range [0..1]. Fig-

84 Experimental Results

ure 4.2 shows different ρ probability distributions, defined as Fρ(ColRatio) =

1−ΥColRatio.

Figure 4.2: Probability distribution of stopping collaborating (Fρ(ColRatio) =
1−ΥColRatio).

Summing up, the ColRatio indicates the profit that the peer is obtaining
from the system. Thus, the higher the ColRatio, the lower the probability of
ceasing to collaborate since it means that the peer is being compensated for
its kind behavior by the system with a good QoS.

4.2.2 Free-rider to collaborative

In this case, the probability that a free-rider peer becomes collaborative de-
pends on the free-rider ratio (FreeRatio) expressed in equation 4.2. This ratio
is the percentage of rejected jobs per peer (i.e. peer penalization).

FreeRatio =
RejectTasks

LaunchedTasks
(4.2)

The σ probability has a polynomial behavior with the form FreeRatioφ, where
φ is a constant in the range (0..∞). Fig. 4.3 shows different σ probability
distributions Fσ(FreeRatio) = FreeRatioφ.

To sum up, if the system detects that the peer is a free-rider and rejects

4.3 Global Mechanism Evaluation 85

Figure 4.3: Probability distribution of starting to collaborate
(Fσ(FreeRatio) = FreeRatioφ).

almost all its requests (in this case the FreeRatio will have a high value) the
probability of the peer changing its behavior will increase. This is quite obvious
since the main aim of a free-rider peer is to benefit from the network and, if
that does not come about, it only has two options: start collaborating in order
to increase the QoS it receives or leave the system for good.

4.3 Global Mechanism Evaluation

This Section is contained in the following paper:

J. Rius, F. Cores and F. Solsona, “Cooperative Scheduling Mechanism for
Large-Scale Peer-to-Peer Computing Systems” Submitted to the Journal of
Parallel and Distributed Computing. Special Issue: NovelArch for HPC, 2011.

4.4 Local Mechanism Evaluation

This Section is contained in the following paper:

86 Experimental Results

J. Rius, F. Cores and F. Solsona, “Incentive Mechanism for Scheduling Jobs in
a Peer-to-Peer Computing System”, Submitted to the Journal of Simulation
Modelling Practice and Theory, 2011.

Chapter 5

Conclusions and Future Work

This chapter describes the conclusions reached in the development of this work,
together with the main contributions and publications. It also explains the
main open lines that should be developed in the near future.

5.1 Conclusions

Despite the continuous increase in computer power, the computational require-
ments of many applications have increased even more. In addition, improve-
ments in the connectivity features of computer systems have motivated the
growth of a set of applications operating under a new distributed computing
paradigm. This paradigm is called Peer-to-Peer (P2P) computing and is the
field of interest of this thesis. P2P computing architectures take advantage
of the underutilization of computers, integrating them into a virtual network
for resource sharing and allowing the use of the idle resources of thousands
of computers connected via the Internet. For this reason, it can be claimed
that P2P computing is an emerging low-cost alternative to the expensive su-
percomputer since it provides access in a very scalable way to millions of idle
CPU cycles from all over the world.

Despite this, P2P computing systems are far from perfect. Due to their
short life, they still need to be improved in many aspects. However, there
has been an increase in the number of the publications in this field over recent
years. Many researchers are trying to improve those networks in different ways.

87

88 Conclusions and Future Work

As P2P systems involve the participation of the nodes of a network without
central administration, the following particularities have to be considered: a
rapid network reconfiguration, since nodes can connect and disconnect from it
in a continuous, fast and arbitrary way; a dynamic allocation of services and
resources; self-organization, where each node regulates its level of participation
in the network; and a highly dynamic and heterogeneous environment.

Before developing DISIM, we were working on a project for a first prototype
of a P2P computing system. This system is introduced in Section 2.4.5 under
the name of CoDiP2P but it was named CompP2P in its origins. It can be said
that such a P2P paradigm was the starting point for this and other theses. For
this reason, we deem it appropriate to cite the following publications obtained
with this work.

[BRG+07] I. Barri, J. Rius, I. Goiri, D. Castella, Fernando Cores, Francesc Sol-
sona. CompP2P: A P2P Computing System. CEDI - XVIII Jornadas de
Paralalelismo, 2007

[CRB+08] D. Castella , J. Rius, I. Barri, A. Guim, M. Orobitg, H. Blanco and F.
Gine. CoDiP2P: a Distributed Computing Architecture Oriented to P2P
Environments. XIX Jornadas de Paralelismo, 2008.

[CBR+08] D. Castella, I. Barri, J. Rius, F. Solsona, F. Gine and F. Guirado.
CoDiP2P: a Peer-to-Peer Architecture for Sharing Computing Resources.
International Symposium on Distributed Computing and Artificial Intel-
ligence (DCAI 2008), Advances in Soft Computing (Springer), volume 50,
pages 293-303, 2008.

[CRB+09] D. Castella , J. Rius, I. Barri, F. Gine and F. Solsona. CoDiP2P: a New
P2P Architecture for Distributed Computing. Conference on Parallel,
Distributed and Network-based Processing (PDP 2009), pages 323-329,
2009.

One of the most critical aspects of P2P computing which needs to be exten-
sively improved is the development of incentive policies to increase the partici-
pation of the users. In such systems, all the resources are provided voluntarily

5.1 Conclusions 89

by the users, so cooperation is a key point to success. Another important as-
pect of P2P computing systems is the mapping of tasks to the computational
resources. The high dynamism and heterogeneity of such resources makes the
scheduling process a really complex issue.

In this thesis, an incentive and scheduling mechanism is presented that can
be used in many different kinds of shared computing networks provided they
can be sub-grouped into areas controlled by a super-peer. We defined a two
level overlay in order to guarantee the scalability of the system. Moreover,
the decision to put both actions together (incentivizing and scheduling) in the
same mechanism is based on the aim of minimizing the information to be sent
inside the system in order to avoid its collapse. Most of the users’ information
may be necessary to perform both actions so, under this scenario, the fewer the
messages exchanged between users, the better the performance of the proposed
mechanisms will be.

Among all the possible options -game theory, reputation-based, token-
based, etc.- we decided to implement a credit-based incentive scheme with a
non-negative credit function (to prevent ID-changing cheating) and with a his-
toric term used to differentiate newcomers from old collaborative peers. This
decision was taken because a credit-based mechanism ensures the scalability of
the system and allows the implementation of policies to avoid malicious behav-
ior. The main objective of this mechanism is to motivate users to participate
actively in the system, protect it against selfish and malicious behavior and
discourage free-riding peers.

However, with a credit-based mechanism, some entities, over time, may be-
come large credit hoarders. These entities can be peers rewarded for performing
some functionalities in the system or simple peers sharing their resources with-
out spending anything since they have no computational needs. One of our
main contributions is to propose a reinvestment policy for credits. This policy,
called Weighted, has been proven to increase peer cooperation enormously.

From the scheduling point of view, we propose a two level mechanism
composed of the low-level scheduler, which operates in an area space and the
high-level scheduler, which manages inter-area information in scheduling tasks.
Area scheduling processes are performed by their managers by using the reverse

90 Conclusions and Future Work

Vickrey Auction strategy, achieving a near-optimal task assignment at this
level. In the inter-area level, managers exchange computational information
with their neighbors. Based on that information, each manager is responsible
for deciding how many tasks to allocate to its own area and how many will be
better allocated to its neighboring ones.

Before evaluating our proposal, we modeled the behavior of two different
users, free-riders and collaborative and we studied the probabilities of moving
from one role to another. This behavior must be as real as possible in order
to achieve applicability of our proposals. After that, this was implemented in
a simulator in order to evaluate the system performance according to the user
behavior. We showed that our proposed incentive mechanism is tolerant of
user behavior changes and and reduces the number of free-riders significantly.
This contribution leads to the following publications:

[RCS09b] J. Rius, F. Cores and F. Solsona. A Reinvestment Mechanism for Incen-
tive Collaborators and Discouraging Free Riding in Peer-to-Peer Com-
puting. International Conference on Computational and Mathematical
Methods in Science and Engineering (CMMSE 09), pages 905-906, 2009.

[RCS09a] J. Rius, F. Cores and F. Solsona. A New Credit-Based Incentive Mech-
anism for P2P Scheduling with User Modeling. The First International
Conference on Advances in P2P Systems (AP2PS 2009), pages 85-91,
2009.

After modeling user behavior, the low-level mechanism was implemented
in a simulator to evaluate the proposed algorithms. An extensive battery
of interesting results comparing the proposed reinvestment policies was ob-
tained. Simulation results show that our proposed incentive mechanism out-
performs alternative approaches, maximizing system throughput and limiting
free-riding, and is also tolerant of changes in user behavior. The results were
compared with a basic credit-market mechanism with a uniform investing. The
proposed Weighted incentive policy can improve the system performance by
an average of up to 50%, depending on the system features (free-riders, total
amount of credits in the system, etc.). All these results have proved to be
statistically significant and a mathematical model was provided in order to

5.1 Conclusions 91

formalize our scheme. These results were presented with the following publi-
cation:

[RBCS10] J. Rius, I. Barri, F. Cores and F. Solsona. A Formal Credit-Based In-
centive Model for Sharing Computer Resources. Euro-Par 2010 - Parallel
Processing, 16th International Euro-Par Conference, Proceedings, Part
I, pages 497-509, 2010.

At the high level, the performance of the proposed mechanism was evalu-
ated by simulating a large-scale P2P computing system. The results showed
that our proposed architecture can achieve appropriate scheduling irrespective
of the number of peers, while it demonstrates a high scalability. Distributed
scheduling with limited resource information can perform a near-optimal cen-
tralized scheduling. Furthermore, the mechanism was tested with very different
kinds of parallel jobs and it was concluded that, thanks to the three criteria
system for weighting the areas, it can always manage the shared resources ef-
ficiently. These results were submitted to the following journal and are being
reviewed:

Submitted J. Rius, F. Cores and F. Solsona. Cooperative Scheduling Mechanism for
Large-Scale Peer-to-Peer Computing Systems. Journal of Parallel and
Distributed Computing. Special Issue: NovelArch for HPC, 2011.

To sum up, we proposed a new decentralized incentive and scheduling mech-
anism for distributing computation and resource management that takes the
system heterogeneity into account by using the P2P paradigm. Our architec-
ture implements a global credit-based incentive scheme for many P2P comput-
ing overlays. It allows the efficient scheduling of different kinds of multitasking
distributed applications. The scheduler manages updated information from the
system, and can thus take the resource mutability into account. Moreover, the
mechanism is also designed to encourage users to be collaborative peers, i.e.,
sharing as many resources as possible, while protecting the system against ma-
licious and selfish behavior. The overall work was recently submitted to the
following journal:

92 Conclusions and Future Work

Submitted J. Rius, F. Cores and F. Solsona. Incentive Mechanism for Scheduling
Jobs in a Peer-to-Peer Computing System. Simulation Modelling Prac-
tice and Theory, 2011.

5.2 Future Work

At this point, we can say that this thesis has covered all the objectives. From
a research perspective, based on the extensive experience gained during its
development, this thesis has also opened a large number of challenges to be
tackled.

1. Provide the system with QoS. It is well known that the Quality
of Service (QoS) is a potential weakness of peer-to-peer computing net-
works. It is also true that the use of efficient techniques to encourage
peer collaboration increases quality of service throughout the system.
Otherwise, the main aim of the incentive mechanisms is to increase the
participation of peers and discourage some bad behavior by the users,
like selfish (free-riders) or malicious (cheating), rather than ensuring QoS.
However, QoS is really appreciated by users in any kind of system. Going
into the literature, one will realize than one of the most accepted meth-
ods for ensuring QoS in this kind of network is based on the replication
of tasks or some basic information to increase the performance of the
system. For this reason, we believe that providing the mechanism with
a task replication method would be a challenging project.

2. Churn rate. This issue has not explicitly been analyzed since the real
impact of the churn rate on the mechanism strongly depends on how the
network prevents this. As pointed out in the manuscript, our mechanism
is designed to work on many kinds of network provided they can be
sub-grouped into areas controlled by a manager. So, the impact on the
scheduling algorithm will vary depending on how the network responds to
churn. However, some improvements could be made in the mechanism
to minimize this impact. For example, introducing a new entity that
keeps a copy of the information state of the managers could prevent the

5.2 Future Work 93

system from losing important information if a manager is unexpectedly
disconnected.

3. Trustworthy of the results. The trustworthiness of participating
peers is one of the main weaknesses of P2P computing networks. In
the work presented, we take the reputation of the users into account
based on their previous contributions to the system. Despite this, no
one can guarantee that a very well reputed peer starts to fake its results
at any given time. Thus, any contribution in this field would be very
welcome.

4. Credit underwriting. This issue can be considered as one of the most
important weakness of the P2P networks in general. How credits are
underwritten is a real problem in such systems. In other words, what is
to stop a self-interested worker or master node from simply creating more
credits and lying about how many it really has? In our proposal, we are
thinking about a kind of authentication system were each user has an ID
with an associated account. This system should prevent the users from
increasing their credits while ensuring anonymity of the operating peer
from other peers and any external users while keeping all its personal
data safe. Despite this proposal, more work is still required in this field
and another security mechanism should be developed.

5. New reinvestment policies. This thesis has proved the importance
of good management of the credit system. An appropriate reinvestment
policy can improve the system utilization significantly. This is because
some entities may become huge credit hoarders, but their computational
needs are really low, so they spend much less than they earn. For this
reason, new reinvestment polices should be developed in order to increase
the system performance even more.

6. Nash equilibrium. Another interesting work could be the study of the
stability and robustness of the system. In order to achieve that formally,
the Nash equilibrium strategy of the overall system should be found, i.e.,
the point where every user cannot increase its utility by choosing another

94 Conclusions and Future Work

strategy, given the strategies of the others. Once found, it will provide
the mechanism with a notorious credibility due to the high acceptance
of the Nash equilibrium strategy.

7. Mathematical model. As stated in Section ??, we really believe on
the potential of the proposed mathematical model. However, in order
to take the most of it, it is necessary to introduce user dynamism and
to model user behavior. This would open a new and extensive range of
possibilities for testing the proposed policies and methods formally.

Bibliography

[AAF+08] V. Aggarwal, O. Akonjang, A. Feldmann, R. Tashev, and
S. Mohr. Reflecting p2p user behaviour models in a simulation
environment. 16th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, 2008.

[ABCM04] Nazareno Andrade, Francisco Brasileiro, Walfredo Cirne, and Mi-
randa Mowbray. Discouraging Free Riding in a Peer-to-Peer
CPU-sharing Grid. In 13th IEEE Symposium on High Perfor-
mance Distributed Computing (HPDC’04), pages 129–137, 2004.

[ABCM07] N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray. Automatic
grid assembly by promoting collaboration in peer-to-peer grids.
Journal of Parallel and Distributed Computing, 2007.

[ACBR03] Nazareno Andrade, Walfredo Cirne, Francisco Brasileiro, and
Paulo Roisenberg. Ourgrid: An approach to easily assemble grids
with equitable resource sharing. 2003.

[ACM04] Panayotis Antoniadis, Costas Courcoubetis, and Robin Mason.
Comparing economic incentives in peer-to-peer networks. Com-
put. Netw., 46:133–146, September 2004.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David A.
Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above
the Clouds: A Berkeley View of Cloud Computing. Number
UCB/EECS-2009-28. EECS Department, University of Califor-
nia, Berkeley, Feb 2009.

95

96 BIBLIOGRAPHY

[AH00] E. Adar and B. A. Huberman. Free Riding on Gnutella. Technical
report, Xerox PARC, August 2000.

[And04] David P. Anderson. Boinc: A system for public-resource com-
puting and storage. In Proceedings of the 5th IEEE/ACM Inter-
national Workshop on Grid Computing, GRID ’04, pages 4–10,
Washington, DC, USA, 2004. IEEE Computer Society.

[And07] David P. Anderson. Volunteer computing: Planting the flag. In
Proceedings of PCGrid 2007, workshop held at the IPDPS con-
ference, 2007.

[are] Ares galaxy. http://sourceforge.net/projects/aresgalaxy/.

[BAGS02] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz
Stockinger. Economic models for resource management and
scheduling in grid computing. pages 1507–1542. Wiley Press,
2002.

[Bay05] M. Baye. Managerial Economics & Business Strategy + Data
Disk. McGraw-Hill, 2005.

[BCC+06] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates,
and A. Zhang. Improving traffic locality in bittorrent via biased
neighbor selection. IEEE ICDCS, 2006.

[BCF+08] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and
Y. Robert. Centralized versus distributed schedulers for bag-of-
tasks applications. IEEE Trans. on Par. and Dist. Syst., 19:698–
709, 2008.

[BGDG+10] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giu-
liani, Hermann De Meer, Minh Q. Dang, and Kostas Pentik-
ousis. Energy-Efficient Cloud Computing. The Computer Jour-
nal, 53(7):1045–1051, September 2010.

[bit] Bittorrent. http://www.bittorrent.com/.

BIBLIOGRAPHY 97

[BRG+07] I. Barri, J. Rius, I. Goiri, D. Castella, F. Cores, and F. Solsona.
Compp2p: A p2p computing system. 2007.

[CBA+06] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade,
R. Novaes, and M. Mowbray. Labs of the world, unite!!! Journal
of Grid Computing, 2006.

[CBR+08] D. Castella, I. Barri, J. Rius, F. Gine, F. Solsona, and F. Guirado.
Codip2p: A peer-to-peer architecture for sharing computing re-
sources. 50:293–303, 2008.

[CFA+04] Lauro Beltrão Costa, Loreno Feitosa, Eliane Araújo, Gustavo
Mendes, Roberta Coelho, Walfredo Cirne, and Daniel Fireman.
Mygrid: A complete solution for running bag-of-tasks applica-
tions. In In Proc. of the SBRC 2004 – Salao de Ferramentas
(22nd Brazilian Symposium on Computer Networks – III Special
Tools Session, 2004.

[Che97] Ramnath Chellappa. Intermediaries in cloud-computing: A new
computing paradigm. INFORMS, 1997.

[CNA+04] Brent N. Chun, Chaki Ng, Jeannie Albrecht, David C. Parkes,
and Amin Vahdat. Computational resource exchanges for dis-
tributed resource allocation. Technical report, 2004.

[Coh03] Bram Cohen. Incentives build robustness in bittorrent. In Pro-
ceedings of the 1st Workshop on Economics of Peer-to-Peer Sys-
tems, 2003.

[Cou06] R. Courcoubetis, C.; Weber. Incentives for large peer-to-peer
systems. IEEE Journal on Selected Areas in Communications,
24(5):1034 – 1050, 2006.

[CPC+03] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro,
J. Sauve, F. Silva, C. Osthoff, and C. Silveira. Running bag-of-
tasks applications on computational grids: The mygrid approach.

98 BIBLIOGRAPHY

Proceedings of ICCP 03 - International Conference on Parallel
Processing (2003), 2003.

[CRB+08] D. Castella, J. Rius, I. Barri, A. Guim, M. Orobitg, H. Blanco,
and F. Gine. Codip2p: a distributed computing architecture ori-
ented to p2p environments. 2008.

[CRB+09] D. Castella, J. Rius, I. Barri, F. Gine, and F. Solsona. Codip2p:
a new P2P architecture for distributed computing. 2009.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.
Hong. Freenet: A distributed anonymous information storage and
retrieval system. In International Workshop on Designing Privacy
Enhancing Technologies: Desing Issues in Anonymity and Unob-
servability, pages 46–66. Springer-Verlag New York, Inc., 2001.

[DCKM04] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris.
Vivaldi: A decentralized network coordinate system. In Proceed-
ings of the ACM SIGCOMM ’04 Conference, Portland, Oregon,
August 2004.

[Dev02] IBM Developers. Charming python: Simpy simplifies complex
models. In Simulate Discrete Simultaneous Events for Fun and
Profit. 2002.

[dir] Dc++. http://dcplusplus.sourceforge.net/.

[dis] Distributed.net. http://www.distributed.net/.

[DKC05] Jean Dollimore, Tim Kindberg, and George Coulouris. Dis-
tributed Systems: Concepts and Design (4th Edition) (Interna-
tional Computer Science Series). Addison Wesley, May 2005.

[EAH05] S. El-Ansary and S. Haridi. An overview of structured overlay
networks. In Theo. and Alg. Aspects of Sensor, Ad Hoc Wireless
and P2P Net. 2005.

[edo] edonkey2000. http://www.eDonkey2000.com/.

BIBLIOGRAPHY 99

[emu] emule. http://www.emule-project.net/home/.

[EZ01] T. S. Eugene and H. Zhang. Predicting internet network distance
with coordinates-based approaches. 2001.

[FCC+03] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin
Vahdat. Sharp: An architecture for secure resource peering. In
In Proceedings of the 19th ACM Symposium on Operating System
Principles, pages 133–148, 2003.

[Fei97] Dror G. Feitelson. Job scheduling in multiprogrammed parallel
systems, 1997.

[FHKM04] F. Fessant, S. Handurukande, A. Kermarrec, and L. Massoulie.
Clustering in p2p file sharing workloads. IPTPS, 2004.

[FI03] Ian Foster and Adriana Iamnitchi. On death, taxes, and the con-
vergence of peer-to-peer and grid computing. In 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03), pages 118–128,
2003.

[Fos05] Ian T. Foster. Globus Toolkit Version 4: Software for Service-
Oriented Systems. In Hai Jin, Daniel A. Reed, and Wenbin Jiang,
editors, NPC, volume 3779 of Lecture Notes in Computer Science,
pages 2–13. Springer, 2005.

[gnu] Gnutella2. http://g2.trillinux.org/.

[GPM01] Mironov I. Golle P., Leyton-Brown K. and Lillibridge M. In-
centives for sharing in peer-to-peer networks. Lecture Notes in
Computer Science, 2232:75–87, 2001.

[Gro09] Groove Virtual Office Website. http://www.groove.net/, January
2009.

[GSS06] R. Gupta, V. Sekhri, and A.K. Somani. Compup2p: An architec-
ture for internet computing using peer-to-peer networks. IEEE
Trans. Parallel Distrib. Syst., 2006.

100 BIBLIOGRAPHY

[HKC09] Zage D. Hoffman K. and Nita-Rotaru C. A survey of attack
and defense techniques for reputation systems. ACM Computing
Surveys, 41(4):31 pages, 2009.

[HWS07] K. Ho, J. Wu, and J. Sum. On the session lifetime distribution
of gnutella. International Journal of Parallel, Emergent and Dis-
tributed Systems, 2007.

[ICG+06] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K.G.
Yocum. Sharing networked resources with brokered leases. In
ATEC ’06, 2006.

[IEE91] IEEE standard computer dictionary : a compilation of IEEE
standard computer glossaries. IEEE Computer Society Press,
New York, NY, USA, January 1991.

[JMF09] Shantenu Jha, Andre Merzky, and Geoffrey Fox. Using clouds
to provide grids with higher levels of abstraction and explicit
support for usage modes. Concurr. Comput. : Pract. Exper.,
21:1087–1108, June 2009.

[KC04] S. H. Kwok and K. Y. Chan. An enhanced gnutella p2p proto-
col: A search perspective. Advanced Information Networking and
Applications, International Conference on, 1:599, 2004.

[KF98] Carl Kesselman and Ian Foster. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers,
November 1998.

[KHvM97] Wolfgang Kreutzer, Jane Hopkins, and Marcel van Mierlo.
Simjava—a framework for modeling queueing networks in java.
pages 483–488, 1997.

[LLW09] Oksana Loginova, Haibin Lu, and X. Henry Wang. Incentive
schemes in peer-to-peer networks. The B.E. Journal of Theoret-
ical Economics, 9(1), 2009.

BIBLIOGRAPHY 101

[LMM88] M. Litzkow, M.Livny, and M.W. Mutka. Condor - a hunter of
idle workstations. Eighth International Conference on Distributed
Computing Systems (1998), 1988.

[LRA+05] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. Huberman. Ty-
coon: An implementation of a distributed, market-based resource
allocation system. Multiagent Grid Systems, 1(3):169–182, 2005.

[LS08] Zhengqiang Liang and Weisong Shi. Analysis of ratings on trust
inference in open environments. Perform. Eval., 65(2):99–128,
2008.

[LZZ+04] Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and Shanyu
Zhao. Cluster computing on the fly: P2p scheduling of idle cycles
in the internet. Proceedings of the IEEE Fourth International
Conference on Peer-to-Peer Systems (2004), 2004.

[MCJI06] Feldman M., Papadimitriou C., Chuang J., and Stoica I. Free-
riding and whitewashing in peer-to-peer systems. IEEE Journal
on Selected Areas in Communications, 24(5):1010 – 1019, 2006.

[MKL+03] Dejan Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja,
Jim Pruyne, Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-
to-peer computing. HPL-2002-57 (2003), 2003.

[MKP08] Peter Merz, Florian Kolter, and Matthias Priebe. Free-riding pre-
vention in super-peer desktop grids. In ICCGI ’08: Proceedings
of the 2008 The Third International Multi-Conference on Com-
puting in the Global Information Technology (iccgi 2008), pages
297–302, Washington, DC, USA, 2008. IEEE Computer Society.

[nap06] Napster. http://www.napster.com/, 2006.

[Nis99] Noam Nisan. Algorithms for selfish agents: Mechanism design for
distributed computation. In In Proceedings of the 16th Annual
Symposium on Theoretical Aspects of Computer Science, pages
1–15. Springer, 1999.

102 BIBLIOGRAPHY

[NJAB08] Nelson Nóbrega-Júnior, Leonardo Assis, and Francisco Brasileiro.
Scheduling cpu-intensive grid applications using partial informa-
tion. In ICPP ’08: Proceedings of the 2008 37th International
Conference on Parallel Processing, pages 262–269, Washington,
DC, USA, 2008. IEEE Computer Society.

[Now78] D. Nowitz. Uucp implementation description. UNIX Program-
mer’s Manual, Bell Laboratories (1978), 1978.

[OKRK03] Philipp Obreiter, Birgitta König-Ries, and Michael Klein. Stim-
ulating cooperative behavior of autonomous devices – an anal-
ysis of requirements and existing approaches. In IN SECOND
INTERNATIONAL WORKSHOP ON WIRELESS INFORMA-
TION SYSTEMS (WIS2003, pages 71–82, 2003.

[Osb04] Martin J. Osborne. An introduction to game theory. Oxford Univ.
Press, New York, NY [u.a.], 2004.

[Pau02] Pragyansmita Paul. Seti @ home project and its website. Cross-
roads, 8:3–5, April 2002.

[pay] Paypal. https://www.paypal.com/.

[PWL09] V. Ponce, J. Wu, and X. Li. Improve peer cooperation using social
networks. Int. J. Parallel Emerg. Distrib. Syst., 24(3):189–204,
2009.

[RBCS10] Josep Rius, Ignasi Barri, Fernando Cores, and Francesc Solsona.
A formal credit-based incentive model for sharing computer re-
sources. In Euro-Par 2010 - Parallel Processing, 16th Interna-
tional Euro-Par Conference, 2010, Proceedings, Part I, pages
497–509, 2010.

[RCS09a] J. Rius, F. Cores, and F. Solsona. A new credit-based incentive
mechanism for p2p scheduling with user modeling. pages 85–91,
2009.

BIBLIOGRAPHY 103

[RCS09b] J. Rius, F. Cores, and F. Solsona. A reinvestment mechanism
for incentive collaborators and discouraging free riding in peer-
to-peer computing. pages 905–906, 2009.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. A scalable content-addressable network. SIG-
COMM Comput. Commun. Rev., 31:161–172, August 2001.

[RY07] A. Rahbar and O. Yang. Powertrust: A robust and scalable
reputation system for trusted p2p computing. IEEE Trans. on
Par. and Dist. Syst., 18(4):460–473, 2007.

[sky] Skype. http://www.skype.com/intl/es/home/.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. SIGCOMM Comput. Commun.
Rev., 31:149–160, August 2001.

[SPF03] Shashank Shetty, Pradeep Padala, and Michael P Frank. A sur-
vey of marketbased approaches to distributed computing (cise
tr03013. Technical report, 2003.

[SR06] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-
to-peer networks. In IMC 06: Proceedings of the 6th ACM SIG-
COMM conference on Internet measurement, pages 189–202, New
York, NY, USA, 2006. ACM.

[Tan81] A. S. Tanenbaum. Computer networks. Prentice-Hall Interna-
tional (1981), 1981.

[TT07] Roberto Tamassia and Nikos Triandopoulos. Efficient content
authentication in peer-to-peer networks. In Proceedings of the 5th
international conference on Applied Cryptography and Network
Security, ACNS ’07, pages 354–372, Berlin, Heidelberg, 2007.

104 BIBLIOGRAPHY

[vdSMR08] Turaga D.S. van der Schaar M. and Sood R. Stochastic optimiza-
tion for content sharing in p2p systems. IEEE Transactions on
Multimedia, 10(1):132–144, 2008.

[Vic61] W. Vickrey. Counterspeculation, Auctions and Competitive
Sealed Tenders. Journal of Finance, pages 8–37, 1961.

[WZK05] Adam Wierzbicki, Aneta Zwierko, and Zbigniew Kotulski. Au-
thentication with controlled anonymity in p2p systems. In Pro-
ceedings of the Sixth International Conference on Parallel and
Distributed Computing Applications and Technologies, PDCAT
’05, pages 871–875, Washington, DC, USA, 2005.

[YGm03] Beverly Yang and Hector Garcia-molina. Ppay: Micropayments
for peer-to-peer systems. pages 300–310. ACM Press, 2003.

[ZAM10] Kan Zhang, Nick Antonopoulos, and Zaigham Mahmood. A tax-
onomy of incentive mechanisms in peer-to-peer systems: Design
requirements and classification. International Journal on Ad-
vances in Networks and Services, 2010.

[ZF] Niklas Zennstrom and Janus Friis. Kazaa.
http://www.kazaa.com/.

[ZH08] Manaf Zghaibeh and Fotios C. Harmantzis. A lottery-based pric-
ing scheme for peer-to-peer networks. Telecommunication Sys-
tems, 37(4):217–230, 2008.

[ZHC08] R. Zhou, K. Hwang, and M. Cai. Gossiptrust for fast reputation
aggregation in peer-to-peer networks. IEEE Trans. on Know. and
Data Eng., 20:1282–1295, 2008.

[ZKJ01] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph.
Tapestry: An infrastructure for fault-tolerant wide-area location
and routing. Technical Report UCB/CSD-01-1141, EECS De-
partment, University of California, Berkeley, Apr 2001.

BIBLIOGRAPHY 105

[ZL08] H. Zhao and X. Li. H-trust: A robust and lightweight group
reputation system for peer-to-peer desktop grid. In The 28th Int.
Conference on Distrib. Comp. Syst. Workshops, pages 235–240,
Washington, DC, USA, 2008. IEEE Computer Society.

[ZLH07] Y. Zhang, L. Lin, and J. Huai. Balancing trust and incentive
in peer-to-peer collaborative system. International Journal of
Network Security, 2007.

[ZSR06] S. Zhao, D. Stutzbach, and R. Rejaie. Characterizing files in the
modern gnutella network. MMCN, 2006.

[ZZM07] Chen S. Zhang Z. and Yoon M. March: A distributed incen-
tive scheme for peer-to-peer networks. In Proceedings of IEEE
INFOCOM’07, 2007.

	PORTADA TESIS.pdf
	tesi.pdf

