
Chapter 7

Final Comments and Conclusions

Ars longa, vita brevis

7.1 Thesis contribution

The main contributions of this thesis are summarised next. At the analysis stage of the work a

set of issues have emerged:

� Although the implementation of the on-line optimisation technology appears to lead to sig-

nificant economical improvements, it has not the wide acceptance one may expect. This

fact is clearly verified observing the number of on-line optimisation applications as com-

pared to that of advanced process control.

� Industrial practitioners have pointed out concrete weak points, like the undesired steady

state wait, optimisation robustness and maintenance aspects. Nevertheless, academic re-

search has focused in particular points of the on-line optimisation loop without satisfactory

answers to those points.

� There has not been a change in the on-line optimisation strategy since the first implemen-

tation of the RTO technology.1

� There is a lack of systematic procedure for implementing the discrete decision involved in

the optimisation of continuous process with decaying performance.

Such observations have inspired a deep for review of the strategy conducted by an on-line opti-

misation system. It has been considered that the factors motivating an on-line decision making

problem comes from disturbances occurrence. The combined effect of both internal and external

1There have been several proposals for performing some functionalities simultaneously, as for instance data reconcil-
iation and parameter estimation. However, these topics have nothing to do with the operation optimisation strategy.
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disturbances leads to an (hypothetical) moving optimum. Furthermore, when internal distur-

bances are related to process degradation, a maintenance problems arise. Consequently, two

procedures have resulted at the synthesis stage to deal with such situations:

� Real Time Evolution (RTE) has been developed as an alternative to classical RTO systems

with the aim of tracking such moving optimum.

1. The RTE system produces a successive improvement of plant performance, making

the plant evolve continuously toward the objectives without performing formal opti-

misation (as explained, in that context, the concept of optimum is quite weak).

2. The procedure is based in main (external) disturbance measurements and a steady

state model.

3. Although RTE requires more time than RTO to reach optimum operating conditions,

it improves plant performance immediately after disturbances occur, thus resulting

in an overall faster and smoother system, which is able to deal even with continuous

changes.

4. The algorithms involved in RTE (improvement) are simpler and faster than those

used by RTO (optimisation); this allows the intensive use of the available rigorous

process model with little computational effort.

5. Since the solution for stocastics problems becomes substantially simplified, a way

for dealing with uncertainty have been also proposed (Robust RTE).

6. Results show that the RTE strategy appears less affected than RTO when using a poor

controller performance.

� Regarding internal disturbances and the associated discrete decisions involved in operation

shut down, a step forward towards the integration of classical mathematical formulations

for the maintenance planning of processes with decaying performance and on-line optimi-

sation have resulted, as an extention of the previous RTE strategy.

1. A way for the off-line calculation of a maintenance plan and a methodology for the

on-line implementation of such planed decisions in a co-ordinated way have been

developed.

2. A simple and general NLP formulation of the problem has been proposed, involving

general performance relationships and mass balances, which allows its use over a

wide range of applications. The variables involved have a clear physical meaning,

and the computation times required are indeed affordable. The solutions are easy to

implement, and even more, they can be further used for performing on-line optimi-

sation.

3. The proposed procedure for on-line optimisation is quite simple, robust and reduces

the effects of plant model mismatch and variability. It is based in the previously
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mentioned formulation, and an ulterior transformation of the problem to solve it on-

line, using a reduced space that only includes operating times as decision variables.

4. In order to properly evaluate the degradation status of the plant, the strategy uses

measurements about the system outputs rather than inputs. This RTE strategy has

proved to obtain good solutions by using properly the information coming from the

plant and answering simple questions on line, rather than performing successive for-

mal optimisation, which has been the commonly used strategy.

5. The on-line procedure seems to be especially worthwhile in cases with highly de-

creasing performance rates and where the off-line optimal solution is not strongly

dictated by the constraints.

It is important to note, that both approaches may be coordinately applied when both, external and

internal disturbances occur, as has been illustrated.

With purposes of validation of the proposed methodologies, well known benchmarks have

been used. Thus, although the obtained results are encouraging, a categoric generalisation is not

possible. Nevertheless, a careful qualitative analisys of the considered problems allows to extrap-

olate the main observations to other scenarios without significant loss of accuracy. Furthermore,

the strategies have proved very satisfactory results when applied to industrial problems. Not

only they are perfectly applicable, but also, they have shown again to have in favour many advan-

tages as compared to other approaches. It is also important to mention that the fact of validating

the approaches have proved to be a mean for increasing benefits and gaining better understanding

of the process, its associated trade-offs and greatly helping to proper bottleneck identification.

Since this thesis corresponds to the applied sciences research field some implementation

related issues have been considered.2Aspects about the way the process dynamics influence

the RTE design have been considered, with the aim of providing a method for a proper RTE

parameters tuning. Indeed, a way for on-line tuning has been also suggested (Adaptive RTE).

The influence of the control system quality has not been neglected and some insight has been

given from two points of view: the economical performance and the operational one. Finally,

modular software design aspects have been also tackled even for the simple prototypes used

during this thesis work, with the aim of setting some guidelines for industrial implementation.

2This aspect have been of major importance for a Spanish research project strongly linked to this thesis work:
REALISSTICO (CICYT, QUI-99-1091).
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Nomenclature

Acronyms

ARTE: Adaptative Real Time Evolution.

CAPE: Computer Aided Process Engineering.

CLRTO: Closed Loop Real Time Optimisation.

CO: Cape-Open.

COM: Component Object Model.

DAE: differential and algebraic equation.

DCS: Distributed Control System.

DDE: Dynamic Data Exchange.

DM: Data Manager.

DR: Data Reconciliation.

GED: Gross Error Detection.

GRG: Generalised Reduced Gradient.

GUI: Graphical User Interface.

LP: Linear Programming.

MILP: Mixed Integer-Linear Programming.

MINLP: Mixed Integer-Non-Linear Programming.

MPC: Model Predictive Control.

MU: Model Updating.

NLP: Non-Linear Programming.
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PE: Parameter Estimation.

PEDR: Parameter Estimation and Data Reconciliation.

PID: Proportional-Integer-Derivative controller.

PSS: Pseudo Steady State.

QP: Quadratic Programming.

RRTE: Robust Real Time Evolution.

RTE: Real Time Evolution.

RTO: Real Time Optimisation.

SFC: Sequential Function Charts.

SLP: Successive Linear Programming.

SPC: Statistical Process Control.

SQP: Successive Quadratic Programming.

SS: Steady State.

SSID: Steady State Identification.

VBA: Visual Basic for Applications.

Notation

A: evaporator heat exchange area.

Ap: section perpendicular to the flow.

a: parameter adjusted experimentally.

b: parameter adjusted experimentally.

C: cooling costs.

C f : filtration capacity.

Cm: maintenance cost.

c: parameter adjusted experimentally.

cq: economical weighting factor for cooling streams.

D
�
s � : disturbances in the Laplace domain.

166



7.1. Thesis contribution

dp: equivalent diameter of the particles in the filtration cake.

Fi: mass flow of i.

Fk[ � ]: non linear operator that denotes the set of differentials equations associated to the

state k.

Fbias
r : bias used in the reactor volume controller.

f : process model.

Fm: average feed rate during the whole cycle.

fp: friction factor.

f q: quality coefficient.

GP
�
s � : process transfer function.

GC
�
s � : controller transfer function.

GSP
�
s � : transfer function of the closed loop system with respect to the set-point.

GDC
�
s � : transfer function of the closed loop system with respect to the disturbance.

g: operational constraints.

H: heating costs.

h f : pressure drop associated to friction losses.

hq: economical weighting factor for heating streams.

INVNS: inverse of the normal standard cumulative distribution.

IOF : Instantaneous Objective Function.

IOF : mean value of the Instantaneous Objective Function frequency distribution.

k: auxiliary integer variable denoting discrete intervals.

k � � : kinetic coefficient for the reaction
� � .

kc
p: proportional effect parameter of a controller.

L: length of the cake (depth).

Lkk � : scalar boolean function which determines when a transition between the states k and

k � is triggered.

MOF : Mean Objective Function.
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MOF∞: MOF value when the time tends to infinity (for a sinusoidal disturbance).

M: mass.

MX : sugar mass.

N: a big integer number.

n: number of sub-cycles during the total cycle time.

OF : generic objective function.

P: price parameter.

p: given parameters (a disturbance belongs to this set).

P f : fractional production associated to a line.

P f � : fraction of product produced a line, corrected by a factor to include the non-

productive part.

Q � � : energy associated to the stream
� � .

q: rational number.

q f : quality index.

R: revenues obtained for selling the products.

RM: raw material costs.

Rep: Reynolds’ number for fluid flow through packed beds.

Rm: filtration medium resistance.

r: economic conversion factor.

rm: economical weighting factor for raw material streams.

rand: uniformly distributed random number.

Sk: discrete state k.

S f : split fraction.

S fE : extracted split fraction.

St : process settling time.

SP
�
s � : set-points in the Laplace domain.

s: system state variable.
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s: Laplace domain variable.

T : temperature.

T f : time fraction a given unit devoted to process with a given feed.

Tcycle: total cycle duration.

T sp
r : set-point for the reactor temperature.

T c
i : integral effect parameter.

Tkk � : set of possible transitions between the pair of states
�
k � k � � .

t: total processing time.

t0: reference time.

ts: operating time for a sub-cycle.

U : heat exchange coefficient.

V : filtered volume.

Ve: equivalent filtered volume for the filtration media.

V pv
r : reactor volume (process variable).

V sp
r : reactor volume (set-point).

w: weight coefficient for the pair quality-factor-product.

X : mass fraction.

x: free operational variable.

Y : conversion.

y: system output variable.

y
�
s � : system output in the Laplace domain.

Z: total profit.
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Sub indexes

c: cooling.

current: current value.

end: final value.

h: heating.

i: element in a set, commonly refers a material.

ini: initial value.

j: element in a set, commonly refers a unit.

k: element in a set, commonly refers an interval or a possible state.

lo: lower bound.

m: element in a set of a reduced space of feeds.

n: element in a set of a reduced space of units.

nom: nominal value.

opt: optimal value.

p: product.

r: reactor.

rm: raw material.

ss: steady state value.

up: upper bound.

T : total.

α: fixed parameter.

β: parameter updated on-line.

γ: economical parameter.

π: internal disturbance parameter.
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Greek Letters

α: specific cake resistance.

β: auxiliary coefficient to characterise an evaporation effect.

βL: ratio between the flows of streams Light and Feed.

γ: generic operational constraints.

∆T : temperature difference between steam and liquid.

∆P: pressure drop trough the filter.

∆t: total processing and maintenance time.

δx: maximum allowed change in decision variables at each RTE execution.

δt: time between RTE execution.

δta: value from which further improvement by decreasing δt values is not perceptible.

ε: void fraction.

θ: integration auxiliar variable.

θd : pure delay constant.

Φ: generic objective function dependant of the system trajectory.

ϕ: generic dynamic process model.

κ: quality parameter.

λ: latent heat of steam.

µ: fluid viscosity.

ξ: relative error in the nominal parameter value (to emulate plant-model mismatch).

ρ: fluid density.

σ: standard deviation for nominal parameter value (to emulate variability).

τl : first order time constant.

τm: time devoted to maintenance.

υs: superficial flow rate for the liquid flowing trough the filtration cake.

ω: feed concentration, expressed as the mass of solid per unit of volume filtered.
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Appendix A

Managing the Uncertainty

Introduction

As commented in section 1.4.2 (page 12), on-line optimisation systems have poor long-term

service factor due, at least partially, to inadequate optimisation robustness. Although most RTO

systems attempt to improve model accuracy through model updating, this is, update some of the

model’s parameters, these ones, as any information flowing into the loop, have associated some

degree of uncertainty. In section section 2.6 (page 34) it has been mentioned that the uncertainty

in on-line optimisation systems is associated mainly to measurements, model parameters and

changes in unmeasured variables that are assumed to a constant value.

A possible way of dealing with that uncertainty is to using a chance constrained approach.

Assuming that there is the following optimisation problem to solve (in the reduced space):

max IOF
�
x � p �

x
(A.1)

subject to:

g
�
x � p � �

0 (A.2)

where as usual, p represents the uncertain parameters and x includes the independent variables.

Equation A.2 represents the inequality constraints. Thus, when information about the probability

density function (pd f )1 for every parameter p is available, the stochastic version of the problem

can be stated as:

max E � IOF
�
x � p � �

x
(A.3)

subject to:
1To be realistic, when a parameter value is uncertain, the chance of having the pd f available is scarce. Nevertheless,

the solution obtained by a probabilistic approach is more conservative than the deterministic one, what may be desirable.
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∏ � g �
x � p ��� 0� �

π (A.4)

In other words, E � IOF � , the expected value of the objective function is maximised, while the

probability of constrains violation (Π) is keep lower than a given threshold value π (e.g. a 95 %

of confidence level).

The solution of such problem is usually cumbersome, because a proper approximation of

E � IOF � and Π commonly requires a Monte Carlo simulation using an important set of possible

scenarios (using the pd f for every p) at every intermediate solution proposed by the optimisation

algorithm. The number of scenarios is virtually infinity, but in practice a big number of them will

give satisfactory results. Even though, the problem often require a huge number of objective

function and constraints evaluations. Nevertheless, such concepts can be for extension applied

to RTE, with the great advantage that RTE only explores a few set of solution around the current

one, rather than solving the whole optimisation problem, being therefore less computationally

expensive than a stochastic RTO approach. Consequently, for every iteration of the “Robust

RTE” (RRTE) the problem is:

max IOF
�
xk � p �

xk � k
(A.5)

subject to:

fr � g �
xk � p ��� 0 � � π (A.6)

where k is an small integer number. Thus, for every possible solution xk, several possible sce-

narios are generated using the pd f of p. Then, the IOF and the associated constraints g are

evaluated, obtaining the associated relative frequency distributions for IOF and g. Therefore, it

is possible to evaluate the average value for IOF , IOF , and the relative frequency of the constraint

g violation, fr. It can be seen that the improvement algorithm is analogous to the introduced in

chapter 3. The difference is that for the Robust RTE case, every alternative solution point xk has

associated a number of scenarios rather than a single occurrence (see scheme in figure A.1).
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Figure A.1: Robust RTE
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Appendix B

Models Used for the Williams-Otto

Reactor

Kinetics

Let be:

R1 � Vr � k1
�
Tr � � Xa � Xb (B.1)

R2 � Vr � k2
�
Tr � � Xc � Xb (B.2)

R3 � Vr � k3
�
Tr � � Xp � Xc (B.3)

Mass balances

For the steady state:

Global:

Fa
�

Fb � Fr (B.4)

For A:

Fa � FrXa � R1 � 0 (B.5)

For B:

Fb � FrXb � R1 � R2 � 0 (B.6)

For C:

� FrXc � 2R1 � R2 � R3 � 0 (B.7)
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For E:

� FrXe � 2R2 � 0 (B.8)

For P:

� FrXp
�

R2 �
1
2

R3 � 0 (B.9)

For G:

� FrXg �
3
2

R3 � 0 (B.10)

During the transitions:

Global:

Fa
�

Fb � Fr �
d

�
Vr � ρ �
dt

� 0 (B.11)

For A:

Fa � Fr � Xa � R1 � Vr � ρ
dXa

dt
(B.12)

For B:

Fb � Fr � Xb � R1 � R2 � Vr � ρ
dXb

dt
(B.13)

For C:

� Fr � Xc � 2R1 � R2 � R3 � Vr � ρ
dXc

dt
(B.14)

For E:

� Fr � Xe � 2R1 � Vr � ρ
dXe

dt
(B.15)

For P:

� Fr � Xp
�

R2 �
1
2

R3 � Vr � ρ
dXp

dt
(B.16)

For G:

� FrXg �
3
2

R3 � Vr � ρ
dXg

dt
(B.17)

where:

ki: kinetic coefficient for reaction i (1/s), whose numerical values are given in section

3.3.1 (page 57).

Tr: reactor temperature (oC).

Fi: i mass flow (kg/s).

Xi: i mass fraction.

ρ: density of the fluid in the reactor (assumed constant at 1 kg/lt).
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Vr: reactor volume (assumed constant at 2105 lt).
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Appendix C

A Method for On-line Forecasting

of tsopt

Another way to look at the problem

The trivial way of perform a forecast of tsopt would be to track the difference between IOF

and MOF , obtaining its trend and then use the trend model to anticipate the time at which such

difference becomes equal to cero. The clear disadvantage of this approach relies in the non-

linearity of such trend (see figure 4.4 in page 78). However, from the equation 4.18 (78):

A1� � � �
IOF

�
tsopt � �

�
tsopt

� τm � �

A2� � � �� tsopt

0
IOF

�
θ � dθ � Cm � A1 � A2 � 0 (C.1)

and considering that initially IOF � MOF , the RHS (Right Hand Side) of this expression will

be positive for values of ts lower than tsopt . Using the available information at the moment k:

�
i � IOF

�
i � � MOF

�
i � � � i � 1 � � � k (C.2)

it is possible to obtain the difference between both terms (DOF):

A1
�
i � � A2

�
i � � DOF

�
i � � i � 1 � � � k (C.3)

The use of the A letter for designing the right hand terms is deliberated, because as it is

illustrated in Figures C.1 and C.2 their graphical interpretations are areas.

Then, DOF can be plotted against i. For most of the cases analysed of decreasing functions

(exponential, quadratic, etc.) this resulting trend plot does is linear. Hence, by using linear fit it

is possible to obtain:

DOF
�
i �
	 m

�
k � � i

�
b

�
k � (C.4)
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Figure C.1: A1 is the rectangular area contoured by the dot-dashed lines
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Figure C.2: A2 is the difference between the two areas contoured by the dot-dashed lines
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Figure C.3: On-line forecasting of tsopt value

where m and b are functions of k because they can be updated at every k. From that, tsopt means

DOF � 0 and hence:

iopt �
� b

�
k �

m
�
k � (C.5)

where iopt corresponds to the time period associated to tsopt . The basic strategy is shown in

the Figure C.3. This estimation becomes more accurate with time, and is very helpful for the

resource planning1.

1As a recommendation, when such relation is not linear, both terms (A1and A2) may be successively multiplied by�
ts � τm � until obtaining a linear fit with the desired degree of accuracy. Indeed, DOF can be seen as:

DOF
�
ts � � �

ts � τm � n � 	 IOF
�
ts � 
 MOF

�
ts � �

where n is equal to 1, which is just a way of weighting the differences between IOF and MOF observed in the nearer
times (those with higher ts value). The bigger the n value, the bigger the weighting factor, thus the initial high differences
are attenuated
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Appendix D

Alternative Formulation for the

Solution of the Industrial Case

Study II

Formulation (for the pre-evaporation section)

According to Jain and Grossmann (1998) a repetitive schedule for cleaning tasks for the pre-

evaporation section can be found and the length of this schedule is called as the “cycle time”,

and is denoted by a continuous variable Tcycle. This leads to a cyclic operation, which could be

convenient for practical reasons. The resulting MINLP problem, involves the parameters already

defined and the following variables:

Fj: Mass flow of juice fed to every evaporator j (kg/h).

L j: Variable used to linearize the mass balances constraints (kg).

N j: Integer variable, denoting the number of sub-cycles for the evaporator j during the

time cycle.

Tcycle: Cycle time (h).

t j: Total operation time of an evaporator (h).

ts j: Operation time for each sub-cycle (h).

X : Objective function, mean output sugar concentration (%)

The objective of this problem is to maximise the mean sugar concentration of the juice leaving

the pre-evaporation section that will lead to a higher concentration of the syrup. The following
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expression can be applied to compute the mean output sugar concentration and then used as the

objective function:

X �
∑p

j � 1 Fjt j

∑p
j � 1 X0

� 2a jTj A j
� ∆TjN j

λ jb jFjt j

� �
1

�
b j

t j
N j � 1

2
� 1 � (D.1)

where the operation time for each sub-cycle is given by:

ts j �
t j

N j
� j � 1 � � � p (D.2)

Mass balance: The total mass flow of fed juice (FT ) coming from the clarification section must

be processed in the evaporators, therefore:

FT Tcycle �

p

∑
j � 1

Fjt j (D.3)

In order to linearise the above constraint a new variable L j is used. If Flo j is the lower and

Fup j is the upper bound of feed to be processed then:

FT Tcycle �

p

∑
j � 1 � Flo j t j

�
L j � (D.4)

L j
� � Fup j � Flo j � t j � j � 1 � � � p (D.5)

Objective Function: After linearising the mass balance constraint, Fj is substituted in the ob-

jective function as follows:

X �
∑p

j � 1 � Flo j t j
�

L j �
∑p

j � 1 X0
� 2a jTj A j

� ∆TjN j

λ jb j � Flo j
t j 	 L j 


� �
1

�
b j

t j
N j � 1

2
� 1 � (D.6)

Processing and Cleaning time: The total time (operating and cleaning time) for evaporator j

is given by the following equations:

∆t j � N jτm j

�
t j � j � 1 � � � p (D.7)

∆t j
�

Tcycle � j � 1 � � � p (D.8)

Bounds:

tlo
�

ts j
�

tup � j � 1 � � � p (D.9)
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Table D.1: Pre-evaporation section solution using MP2
Decision Variables A B C D E

N j 1 1 1 1 1
Fj

�
% � FT � 26 � 53 23 � 20 23 � 20 26 � 53 23 � 20

t j
�
h � 56 � 67 58 � 67 58 � 67 56 � 67 58 � 68

Tcycle
�
h � 70 � 67

Z
�
% � 26 � 62

1
�

N j
�

Nup � j � 1 � � � p (D.10)

L j � 0 � j � 1 � � � p (D.11)

The MINLP problem (MP2) comprises then the objective function (equation D.6) and the last

five equations as linear constraints (equations D.7 to D.11).

Results

The solution to the problem given in the data of table 5.4 (page 121) is obtained by solving the

whole formulation MP2 using SBB (a NLP based branch and bound algorithm, Brooke et al.

(1998)), in the GAMS modelling environment.1 The best solution found is summarised in the

table D.1.

It is worth mentioning that besides that the formulation involves an additional variable (in

comparison with the proposed MP1 in chapter 5) and the presence of some integers, the optimum

found is starting point dependent, as is indicated by the histogram of figure D.1.

As already mentioned in chapter 4, the solution found depends directly on the upper bound in

Tcycle (as well of that of N). Such behaviour can be explained conceptually: the solution given in

table D.1 is totally equivalent to the set of solutions that have as decision variables values (Tcycle,

t j and N j) k times the given in such table, being k any positive integer. For intermediate values of

Tcycle, the solutions are always poorer because another entire cycle does not “fit” in the current

time horizon (i.e. figure D.2).

1It takes between 1 and 1.5 seconds to solve every problem in a AMD-K7 processor with 128 Mb RAM at 600 MHz,
and about 4 seconds in an spreadsheet environment using an implementation of GRG2.
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Figure D.1: Results obtained when solving MP2 from random starting points
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Figure D.2: Output sugar concentration when solving MP2 using Tcycle as a parameter
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Appendix E

About the Pseudo Steady State

Assumption in the Industrial Case

II

Balance dynamics

The dynamic behaviour of an evaporator such as that in section 5.3.2.1 (page 117), may be better

described by the following equations corresponding to a well mixed situation:

Solid mass balance:
d

�
MX �
dts

� FX0 � FPX (E.1)

Total mass balance:
dM
dts � F � FP � FV (E.2)

Assuming that that:

� The sensible heat can be neglected and,

� Perfect inventory control (typically there is a level controller)

FV 	 Q
λ �

aAT � ∆T
λ

X � 1
�

bts
�

β
X � 1

�
bts

(E.3)

dM
dts

� 0

from where the following differential expression of X can be obtained:
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Figure E.1: About the pseudo steady state (PSS) hypothesis

Table E.1: Consequences of PSS assumption on the optimisation results
Model tsopt (h) MOFopt(%) Difference in tsopt (%)

PSS 59.1 12.43 -
Dynamic RT � 15 h 60.0 12.38 1.51
Dynamic RT � 30 h 61.5 12.31 3.98
Dynamic RT � 60 h 64.5 12.17 8.74

dX
dts �

F
M

�
X � X0 � � β

X
�

1 � bts
(E.4)

with the initial condition:

X � ts � 0 � X0 (E.5)

The chart in figure E.1 shows the profiles obtained integrating numerically this equation and

the corresponding pseudo steady state behaviour for different values of the evaporator capacity,

expressed by its residence time, RT � M
F h.

After five hours in all cases, the pseudo steady state assumption acceptably represents the

evaporator behavior. However, table E.1 clearly illustrates the error produced in the determina-

tion of tsopt using such representation, using the pseudo steady state value as a reference.
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