UNIVERSITAT POLITÈCNICA DE CATALUNYA

ESTUDIO DEL COMPORTAMIENTO DE REACTORES DISCONTINUOS Y SEMICONTINUOS: MODELIZACIÓN Y COMPROBACIÓN EXPERIMENTAL

Autor: M. Dolors Grau Vilalta Director: Lluis Puigjaner Corbella

Septiembre de 1999

Agradecimientos

Querría expresar mi reconocimiento y agradecimiento a todas aquellas personas que, con su soporte y colaboración, han contribuido a la realización de esta tesis:

En primer lugar, mi sincero agradecimiento al Dr. Lluis Puigjaner Corbella, director de esta tesis, por su constante ayuda y orientación durante el tiempo que ha durado este trabajo, así como por su capacidad de abrir caminos ante los distintos avances.

Un recuerdo especial al malogrado Dr. Francesc Travé por haberme enseñado el camino a seguir.

Un agradecimiento especial a José M^a, por la paciencia mostrada conmigo y sin cuya ayuda habría sido difícil acabar este trabajo.

Mi gratitud a Imma, Laura, Teresa, Sandra, Marta y Silvia cuya colaboración ha sido indispensable.

Al mismo tiempo recordar la ayuda recibida por Raimon en la elaboración de documentos y por Xavier en la elaboración de dibujos y figuras.

Agradecer a mi compañera de despacho Anna la paciencia mostrada durante estos años.

También agradecer al personal de secretaria Irene, Fransina i Llúcia la ayuda recibida en la tramitación de la documentación y su predisposición en todo momento.

No puedo olvidar el constante apoyo recibido por mis padres y mi hermana Laia que me han animado continuamente a seguir, y por supuesto la paciencia que han tenido Jaume y Sara.

Por último, expresar mi agradecimiento a todas aquellas personas no mencionadas y que de una u otra forma han colaborado en la elaboración de este trabajo.

Índice general

Αį	gradecimientos	i
Ín	dice general	iii
Ín	dice de tablas	viii
ĺn	dice de figuras	X
1.	Introducción	1
	1.1. Modelización y simulación dinámica	1
	1.2. El reactor discontinuo y semicontinuo, aspectos diferenciales	4
	1.2.1. Reactor discontinuo	6
	1.2.2. Reactor semicontinuo	7
	1.2.3. Estequiometría y cinética	9
	1.2.4. Transferencia de calor	9
	1.2.5. Automatización y control	11
	1.2.6. Seguridad	13
	1.3. Objetivos	15
2.	Modelización matemática de un reactor discontinuo y semicontinuo	17
	2.1. Balances de Materia	18
	2.2. Balance de Energía de la masa reaccionante	19
	2.2.1. Funcionamiento con transmisión de calor	19
	2.2.2. Determinación de los coeficientes de transmisión de calor	20
	2.2.2.1. Determinación del coeficiente de transmisión de calor	
	medio-reaccionante- pared	21
	2.2.2.2. Determinación del coeficiente de transmisión de calor	
	fluido de la camisa-pared	22
	2.2.3. Funcionamiento adiabático	23
	2.3. Balance de Energía de la pared del reactor	23
	2.4. Balance de Energía del fluido de la camisa	24
	2.4.1. Según distintos modelos	25
	2.4.1.1. Modelo de mezcla perfecta	25

2.4.1.2. Modelo de división de la camisa en zonas	25
2.4.1.3. Modelo de división de la camisa y la pared en zonas	26
2.4.1.4. Modelo de flujo de pistón	27
2.4.2. Según distintos fluidos en la camisa	28
2.4.2.1. Vapor / agua fría	28
2.4.2.2. Agua caliente / agua fría	29
2.4.2.3. Fluido único con tanque de mezcla externo	30
2.4.2.4. Incorporación de baños termostáticos	31
2.4.2.5. Incorporación de retardos	32
2.4.3. Según distintos sistemas de control	33
2.4.3.1. Control Todo/Nada (On/Off)	33
2.4.3.2. Control PID	34
2.5. Nomenclatura	36
	41
3. Método experimental	41
3.1. Dispositivo experimental	41
3.1.1. El reactor y sus accesorios	42
3.1.1.1. El cuerpo del reactor	42
3.1.1.2. El agitador	44
3.1.1.3. Dispositivos de alimentación de reactivos (bomba y	
medidor de flujo)	45
3.1.1.4. Baños termostáticos	47
3.1.2. Dispositivos intermedios: Instrumentación	53
3.1.2.1. Sondas de temperatura	53
3.1.2.2. Sonda de pH	53
3.1.2.3. Sonda de conductividad	54
3.1.2.4. Sonda de potencial redox	54
3.1.2.5. Válvulas de control	54
3.1.3. Sistemas de adaptación de la señal	56
3.1.3.1. Módulo químico	56
3.1.3.2. Módulo universal	58
3.1.3.3. Amplificador de potencia	59
3.2. Metodología utilizada	63
3 2.1 Preparación de disoluciones	63

3.2.2. Determinación de las con	ncentraciones a partir de medidas de pH
3.2.2.1. Modo de opera	ción discontinuo
3.2.2.2. Modo de opera	ción semicontinuo
3.2.3. Determinación de las co	ncentraciones a partir de medidas de
temperatura	
3.2.3.1. Funcionamient	o adiabático
3.2.3.2. Funcionamient	o con transmisión de calor
3.2.4. Determinación de parám	etros cinéticos
3.2.4.1. Método isotérn	nico
3.2.4.2. Método adiabá	tico
3.3. Soporte informático	
3.3.1. Software de la planta PH	YWE
3.3.2. Representación gráfica o	le los resultados
3.3.3. Desarrollo de programas	de simulación
3.3.4. Simulador ISIM	
3.3.5. MATLAB	
3.3.5.1. Simulación me	diante SIMULINK
3.3.5.2. Optimización r	nediante Algoritmos Genéticos
3.3.6. Métodos de integración	numérica de las ecuaciones del modelo
3.4. Nomenclatura	·
·	// 1 1 1 1 1 1 C
	emáticos con datos de la bibliografía
	primer orden
	1 6 4 1
	zela perfecta en la camisa -
	niento con agua caliente / agua fría
	sión de la camisa en zonas -
	niento con agua caliente / agua fría
	sión de la camisa y la pared en
	enfriamiento con agua caliente/agua fría
	zcla perfecta en la camisa -
calentamiento / enfrian	niento con vapor / agua fría

	4.1.2.5. Modelo de división de la camisa en zonas-
	calentamiento/enfriamiento con vapor/agua fría mediante
	tanque de mezcla exterior
4.1.3.	Conclusiones
2. Sistem	nas experimentales
4.2.1.	Ensayos térmicos preliminares sin reacción química
	4.2.1.1. Calentamiento de agua sin control
	4.2.1.2. Calentamiento / enfriamiento de agua con control
	todo / nada
4.2.2.	Ensayos con una reacción poco exotérmica: Saponificación del
acetat	o de etilo
	4.2.2.1. Determinación de la ecuación de Arrhenius
	(método isotérmico)
	4.2.2.2. Reacción en un reactor discontinuo bajo distintas
	condiciones de operación
	4.2.2.3. Reacción en un reactor semicontinuo bajo distintas
	condiciones de operación
	4.2.2.4. Comparación del funcionamiento discontinuo
	y semicontinuo
4.2.3.	Ensayos con una reacción muy exotérmica: Oxidación del
tiosul	fato de sodio con peróxido de hidrógeno
	4.2.3.1. Estudios en un reactor discontinuo adiabático
	4.2.3.2. Determinación de la ecuación de Arrhenius (método
	adiabático)
	4.2.3.3. Estudios en un reactor discontinuo con transmisión de
	calor
	4.2.3.4. Estudios en un reactor semicontinuo con transmisión
	de calor
	4.2.3.5. Comparación del funcionamiento discontinuo y
	semicontinuo
4.2.4.	Reacción de oxidación del tiosulfato de sodio con peróxido de
hidróg	geno en funcionamiento semicontinuo
	4.2.4.1. Influencia de la velocidad de adición

4.2.4.2. Influencia de la concentración inicial de reactivos	155
4.2.4.3. Influencia de la temperatura inicial de reacción	158
4.2.4.4. Influencia de la temperatura de adición del reactivo	
en continuo	161
4.2.4.5. Influencia de la velocidad de agitación	163
4.2.4.6. Control de la reacción mediante el fluido de la camisa	164
4.2.4.7. Control de la reacción mediante la adición	
programada del peróxido de hidrógeno	168
4.2.4.8. Determinación de la combinación idónea de flujos	
de adición	176
4.2.5. Conclusiones	181
4.3. Validación de los modelos matemáticos con datos experimentales	182
4.3.1. Experimentos sin reacción	182
4.3.2. Experimentos con la reacción de saponificación del acetato de etilo	188
4.3.2.1. Modo de operación discontinuo	188
4.3.2.2. Modo de operación semicontinuo	191
4.3.3. Experimentos con la reacción de oxidación del tiosulfato de	
sodio con peróxido de hidrógeno	196
4.3.3.1. Modo de operación discontinuo	196
4.3.3.2. Modo de operación semicontinuo	199
4.3.3. Optimización de la adición del peróxido de hidrógeno	214
4.3.4. Comparación de los distintos sistemas de simulación utilizados	225
5. Conclusiones	227
6. Nomenclatura	233
7. Referencias	237
Anexo	245

Índice de Tablas

2.1.	Coeficientes de la ecuación (2.16) para distintos sistemas de agitación	21
2.2.	Estado de apertura de las válvulas	36
3.1.	Apertura de las válvulas según las operaciones	55
3.2.	Apartados de un programa en lenguaje FORTRAN	76
4.1.	Influencia de la temperatura de consigna	94
4.2.	Caudal que circula por la camisa para distintas potencias de la bomba	108
4.3.	Condiciones de operación de los experimentos isotérmicos	113
4.4.	Determinación de la constante de velocidad	114
4.5.	Comparación con diferentes estudios cinéticos	115
4.6.	Comparación entre la temperatura final experimental y teórica	130
4.7.	Experimentos realizados en el reactor discontinuo adiabático	131
4.8.	Entalpía de reacción según distintos autores	133
4.9.	Conversión alcanzada para cada experimento en el momento de velocidad	1
	máxima	135
4.10.	Temperatura y concentraciones de los Experimentos 23 y 24	138
4.11.	Valores de la ecuación de Arrhenius para los $Experimentos$ de tipo B	139
4.12.	Comparación con diferentes estudios cinéticos	140
4.13.	Comparación entre los Experimentos 25 y 26	144
4.14.	Calibración de la bomba de adición de reactivo	150
4.15.	Condiciones de operación de los Experimentos 29 a 35	151
4.16.	Condiciones de operación de los Experimentos 36 a 38	155
4.17.	Comparación entre los Experimentos 29 a 31 y 36 a 38	158
4.18.	Condiciones de operación de los Experimentos 39 a 42	158
4.19.	Comparación de los incrementos de temperatura partiendo de distintas	
	temperaturas iniciales	160
4.20.	Condiciones de operación de los Experimentos 43 a 45	161
4.21.	Condiciones de operación de los experimentos con distinta velocidad de	
	agitación	163
4.22.	Condiciones de operación de los Experimentos 48 y 49	164
4.23.	Condiciones de operación de los Experimentos 50 y 51	165
4.24.	Condiciones de operación de los Experimentos 52 a 57	168

4.25.	Condiciones de operación de los Experimentos 59 a 61	171
4.26.	Condiciones del Experimento 62	173
4.27.	Combinación de flujos de adición para los Experimentos 63 y 64	173
4.28.	Combinación de flujos de adición para el Experimento 65	174
4.29.	Condiciones de operación de los Experimentos 66 a 68	176
4.30.	Condiciones de operación de los Experimentos 69 a 72	179
4.31.	Resultados para los Experimentos 69 a 72	179
4.32.	Parámetros del controlador y resultados para cada simulación	209
4.33.	Valores de la función de transferencia para la simulación de los	
	Experimentos 29, 31 y 34	214
4.34.	Condiciones de operación para las simulaciones MATLAB 1 a	
	MATLAB 4	216
4.35.	Condiciones de operación para las simulaciones MATLAB 5 y	
	MATLAB 6	216
4.36.	Condiciones de operación para las simulaciones MATLAB 7 y	
	MATLAB 8	217
4.37.	Simulaciones MATLAB 9 a MATLAB 12	222

Índice de Figuras

1.1.	Diagrama de flujo de información para la construcción de un modelo	
	y su validación	3
1.2.	Distintas formas de operación de un reactor químico	5
1.3.	Comparación de la productividad entre un proceso discontinuo,	
	semicontinuo y continuo	8
1.4.	Perfil de temperaturas del reactor y la camisa para un reactor discontinuo	
	convencional	10
2.1.	Reactor discontinuo y semicontinuo	17
2.2.	Esquema de las paredes del reactor	22
2.3.	Flujo de calor a través de la pared del reactor, entre la masa reaccionante	
	y el fluido de la camisa	24
2.4.	Modelo de división de la camisa en zonas	26
2.5.	Esquema del sistema de calent./enfriam. alternativo de la camisa	30
2.6.	Esquema del sistema de calent./enfriam. con fluido único en la camisa	31
2.7.	Esquema del reactor y baños termostáticos completo	32
2.8.	Esquema del baño termostático	32
2.9.	Diagrama de bloques de un sistema de control con retroalimentación	33
2.10.	Operación de las válvulas de control	35
3.1.	Esquema de la planta piloto	41
3.2.	Planta piloto PHYWE	43
3.3.	Dimensiones del reactor	44
3.4.	Bomba con medidor de flujo	45
3.5.	Parte anterior del cuadro de mando principal del termostato	51
3.6.	Posición de las válvulas en la planta piloto	55
3.7.	Módulo químico y unidad básica COMEX	57
3.8.	Módulo Universal y unidad básica COMEX	59
3.9.	Amplificador de potencia	60
3.10.	Procedimiento del Algoritmo Genético	80
3.11.	Esquema de funcionamiento del AG para el caso de estudio	82
4.1.	Perfil de concentraciones para una reacción irreversible de primer orden	88
4.2.	Perfil de temperaturas para una reacción irreversible de primer orden	89

4.3.	Perfil de concentraciones utilizando un controlador P	92
4.4.	Perfil de temperaturas utilizando un controlador P	94
4.5.	Perfil de temperaturas utilizando un controlador PID	95
4.6.	Comparación de temperaturas	95
4.7.	Comparación de flujo de agua fría	95
4.8.	Perfil de temperaturas utilizando un controlador P	96
4.9.	Perfil de temperaturas utilizando un controlador PID	97
4.10.	Comparación de temperaturas	97
4.11.	Perfil de temperaturas utilizando un controlador P	98
4.12.	Comparación de temperaturas según la zona de la camisa	99
4.13.	Comparación de la temperatura en el interior del reactor para los	
	tres modelos	99
4.14.	Perfil de concentraciones según modelo de Luyben	101
4.15.	Perfil de temperaturas según modelo de Luyben	102
4.16.	Comparación entre los programas propios y el programa de Luyben	103
4.17.	Perfil de concentraciones utilizando un controlador P	104
4.18.	Perfil de temperaturas utilizando un controlador P	105
4.19.	Perfil de temperaturas utilizando un controlador PID	105
4.20.	Comparación para los dos tipos de control (A) y (B), y entre los	
	distintos métodos de calefacción usados (C) y (D)	106
4.21.	Perfil de temperaturas para el calentamiento de agua sin control	109
4.22.	Perfil de temperaturas para el calentamiento de agua con control	111
4.23.	Perfil de la evolución de la conductividad de la reacción a diferentes	
	temperaturas	114
4.24.	Representación de la ecuación (4.3)	115
4.25.	Perfiles de temperatura y concentración para los Experimentos 8 y 9	118
4.26.	Evolución del caudal con el voltaje en sentido ascendente y descendente	119
4.27.	Perfil de T y conversión para el Exper. 10 (A) y(B), y comparación	
	de los Exper. 11 y 12 (C) y(D)	122
4.28.	Perfiles de temperatura, concentración y velocidad para el Exper. 11	123
4.29.	Perfiles de temperatura, concentración y velocidad para el Exper. 12	125
4.30.	Comparación entre los Experimentos 8 y 11	127
4.31.	Perfil de temperaturas para la mezcla de agua a distintas temperaturas	129
4.32.	Perfil de temperaturas para los experimentos adiabáticos del tipo A	132

4.33.	Perfil de temperaturas para los experimentos adiabáticos del tipo B	132
4.34.	Perfiles de concentración, conversión y temperatura para los	
	Experimentos 21 y 22	134
4.35.	Perfiles de concentración, conversión y temperatura para los	
	Experimentos 23 y 24	136
4.36.	Perfil de velocidad y conversión para los cuatro experimentos de tipo B	137
4.37.	Evolución de la conversión para los experimentos de tipo A	138
4.38.	Evolución de la conversión para los experimentos de tipo B	139
4.39.	Representación de la temperatura y su derivada para los cuatro	
	experimentos de tipo B	141
4.40.	Perfil de temperaturas y potencial para los Experimentos 25 y 26	143
4.41.	Perfil de temperaturas y potencial para los Experimentos 27 y 28	146
4.42.	Perfil de temperatura y potencial para el Experimento 27	145
4.43.	Comparación de los perfiles de temperatura para los Exp. 25 y 27	148
4.44.	Comparación de los perfiles de potencial para los Exp. 25 y 27	149
4.45.	Calibración de la bomba	150
4.46a.	Perfil de temperaturas y flujo para los Experimentos 29 a 32	152
4.46b.	Perfil de temperaturas y flujo para los Experimentos 33 a 35	153
4.47.	Perfil de temperaturas comparativo de los Experimentos 29 a 35	154
4.48.	Perfil de flujo comparativo de los Experimentos 29 a 35	154
4.49.	Perfil de temperaturas y flujo para los Experimentos 36 a 38	156
4.50.	Comparación entre experimentos con distinta concentración inicial	
	y distinto flujo de adición	157
4.51.	Perfil de temperaturas y flujo para los Experimentos 39 a 42	159
4.52.	Comparación de experimentos llevados a cabo a distintas temperaturas	
	iniciales y con dos flujos de adición diferentes	160
4.53.	Influencia de la temperatura de adición del peróxido	162
4.54.	Perfil de temperatura para tres experimentos con distintas velocidades de	
	agitación	163
4.55.	Comparación de perfiles de temperatura según la temperatura del fluido	
	de la camisa	165
4.56.	Comparación de perfiles de temperatura según distintos sistemas de	
	refrigeración	166
4.57.	Perfil de temperaturas para los Experimentos 52 a 57	167

4.58.	Perfil de temperaturas para el Experimento 58	170
4.59.	Flujo de adición para el Experimento 58	170
4.60.	Perfiles de temperatura y flujo para los Experimentos 59 a 62	172
4.61.	Perfiles de temperatura y flujo para los Experimentos 63 a 65	175
4.62.	Perfiles de temperatura y flujo para los Experimentos 66 a 68	177
4.63.	Perfiles de temperatura y flujo para los Experimentos 69 a 72	180
4.64.	Comparación del perfil de temperatura experimental y simulado (Exp.1)	183
4.65.	Simulación del Experimento 2	185
4.66.	Perfil de temperaturas simulado (Exp. 2)	186
4.67.	Comparación del perfil de temperaturas experimental y simulado (Exp.2)	187
4.68.	Simulación del Experimento 8	190
4.69.	Simulación del Experimento 11	193
4.70.	Comprobación del ajuste de los modelos matemáticos para los	
	Experimentos 1,2, 8 y 11	194
4.71.	Comprobación del ajuste entre las concentraciones experimental y	
	simulada para el Experimento 11	195
4.72.	Perfil de temperaturas experimental y simulado de los Exper. 21 a 24	197
4.73.	Comprobación del ajuste entre la temperatura simulada y experimental	
	para los Experimentos 21 a 24	198
4.74.	Perfil de concentraciones experimental y simulado (FORTRAN)	200
4.75.	Perfil de concentraciones experimental y simulado	201
4.76.	Perfil de velocidad y conversión experimentales y simulados	202
4.77.	Simulación de los Experimentos 29, 31 y 34	204
4.78.	Simulación de los Experimentos 29, 31 y 34 incorporando el baño	
	termostático y retardos	205
4.79.	Simulación mediante ISIM del Experimento 29	207
4.80.	Simulación mediante ISIM del Experimento 31	208
4.81.	Simulación mediante ISIM del Experimento 34	210
4.82.	Simulación mediante ISIM de control PID y PI	212
4.83.	Simulación mediante MATLAB de los Experimentos 29, 31 y 34	213
4.84.	Simulación de los Experimentos 66 a 68	215
4.85.	Promedios de la función objetivo respecto a las generaciones (peso=15)	219
4.86.	Promedios obtenidos según distintos pesos	220
4.87.	Formato de archivo * txt	221

4	•	T7.
Indice	de	Figuras

4.88.	Formato de archivo *.tx2	223
4.89.	Simulación de los Experimentos 69 a 72	224