

ADVERTIMENT. L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

TESIS DOCTORAL

Factores de riesgo ocupacionales en el desarrollo de cáncer de próstata en el estudio MultiCaso-Control-Spain (MCC-Spain)

José Manuel Ruiz Domínguez 2018

Departament de Cirurgia i Ciències Morfològiques Programa Doctoral Universitat Autònoma de Barcelona

Factores de riesgo ocupacionales en el desarrollo de cáncer de próstata en el estudio MultiCaso-Control-Spain (MCC-Spain)

Tesis doctoral presentada por José Manuel Ruiz Domínguez para optar al título de Doctor por la Universitat Autònoma de Barcelona. Trabajo realizado bajo la dirección de los Dres. Gemma Castaño Vinyals, Antoni Gelabert i Mas y Luis Ibarz Servio

José Manuel Ruiz Domínguez

Candidato

Dra. Gemma Castaño Vinyals Dr. Antoni Gelabert i Mas

Dr. Antoni Gelabert i Mas

Tutor de la tesis

Dr. Luis Ibarz Servio

Directora y directores de la tesis

AGRADECIMIENTOS

Quiero expresar mi más profundo agradecimiento para todas aquellas personas que han participado directa o indirectamente en la elaboración de esta tesis:

A la Dra. Gemma Castaño Vinyals, mi directora de tesis, por tu paciencia y comprensión, por tantas veces que habré interrumpido tus tareas diarias en el CREAL (ahora ISGlobal)... Sin embargo, siempre has estado a atenta para resolver todas mis dudas y lo has hecho con comprensión y amabilidad. Espero que tras este trabajo sólo sea el inicio de algo más importante en el futuro.

A la Dra. Anna Espinosa, porque sin tu ayuda esto hubiera sido imposible de poder llevar esto a cabo.

A Estela Carrasco, por ser la primera persona que conocí que participaba en el estudio de MCC-Spain y que me abrió las puertas del CREAL.

Al Dr. Gelabert i Mas, mi director y tutor de tesis, por sus oportunos consejos, sus conversaciones ilustradoras sobre cómo se debería componer la tesis, la ilusión por la investigación, su apoyo y su tiempo.

Al Dr. Luis Ibarz Servio, mi director de tesis, maestro durante mi etapa de residencia y de adjunto. Nunca le estaré suficientemente agradecido por todas las oportunidades que me ha brindado.

A mi familia, porque han trabajado muchísimo para que pudiera alcanzar mi gran vocación desde que era un niño, ser médico. Me han enseñado los valores más importantes para la vida: esfuerzo, tesón y humildad. Espero conseguir devolverles todo lo que me han dado algún día.

A Lorena y Willy, por todo el amor, paciencia, comprensión, felicidad y apoyo que me dais en mi día a día. Estoy seguro de que todo va a salir bien.

LISTADO DE ACRÓNIMOS

As: Arsénico

BRCA1: Gen del Breast Cancer Type, 17q21

BRCA2: Gen del Breast Cancer Type 2, 13q12

CaP: Cáncer de Próstata

Cd: Cadmio

CIBERESP: Centro de Investigación Biomédica en Red Epidemiología y Salud Pública

CNO94: Clasificación Nacional de Ocupaciones de 1994

FFQ: Cuestionario de Frecuencia Alimentaria (Food Frequency Questionnaire)

FINJEM: Matriz de empleo-exposición finlandesa

GWAS: Estudios de asociación genómica (*Genome Wide Association Studies*)

IARC: Agencia Internacional de Investigación sobre el Cáncer (*International Agency for Research on Cancer*)

ICD-10: Clasificación Internacional de Enfermedades, 10^a Revisión (*International Classification Disease 10th Revision*)

ICGC: Consorcio Internacional del Genoma del Cáncer (*International Cancer Genome Consortium*)

IGF-1: Factor de crecimiento similar a la insulina-1

IGF-BP: Proteína de unión al factor de crecimiento similar a la insulina

IMC: índice de masa corporal

JEM: Matrices de empleo-exposición (*Job exposure matrix*)

MatEmEsp: Matriz de empleo-exposición española

MCC-Spain: Estudio MultiCaso-Control-España

OR: Odds ratio

PAH: Hidrocarburos aromáticos policíclicos (*Polycyclic aromatic hydrocarbons*)

PIN: Neoplasia intraepitelial prostática

PSA: Antígeno Prostático Específico (*Prostate Specific Antigen*)

RR: Riesgo Relativo

SD: Desviación estándar

SEER: Supervivencia, Epidemiología y Resultados Finales, en inglés *Surveillance, Epidemiology* and End Results del National Cancer Institute de Estados Unidos

SMR: Ratio de Mortalidad Estandarizada

SNP: Polimorfismos de Nucleótido Simple (*Single Nucleotide Polymorphisms*)

Vit D: Vitamina D

ÍNDICE

INTRODUCCIÓN	8
1.1 Epidemiología del cáncer de próstata en España	8
1.2 Factores de riesgo asociados al cáncer de próstata	10
1.2.1 Edad	10
1.2.2 Etnia	10
1.2.3 Factores genéticos y familiares	11
1.2.4 Factores inflamatorios e infecciosos	12
1.2.5 Andrógenos	12
1.2.6 Factor de crecimiento insulínico (Insulin-Like Growth Factor-IGF)	13
1.2.7 Vitamina D	13
1.2.8 Obesidad y síndrome metabólico	14
1.2.9 Otros factores de riesgo.	14
1.3 Factores de riesgo ocupacionales y exposición a tóxicos	16
1.3.1 Agricultores y granjeros	16
1.3.2 Industria del caucho	18
1.3.3 Cáncer de próstata y exposición a metales inorgánicos	20
1.4 Matrices de empleo-exposición: FINJEM y MatEmEsp	22
1.5 Estudio MCC-Spain	25
1.5.1 Metodología del estudio MCC-Spain	25
JUSTIFICACIÓN	29
HIPÓTESIS	30
OBJETIVOS	31
4.1 Objetivo general	31
4.2 Objetivos específicos	31

MATERIAL Y MÉTODOS	32
5.1 Análisis estadístico	33
RESULTADOS	35
6.1 Resultados descriptivos clínicos y patológicos sobre el cáncer de próstata en el e Spain	
6.2 Resultados de la exposición ocupacional	44
6.3 Resultados de la exposición a agentes ocupacionales	52
DISCUSIÓN	74
7.1 El cáncer de próstata en el marco del estudio MCC-Spain	74
7.2 El cáncer de próstata y exposición ocupacional	78
7.3 El cáncer de próstata y exposición a agentes ocupacionales	81
7.4 Agentes ocupacionales y clasificación Gleason del cáncer de próstata	84
CONCLUSIONES	85
BIBLIOGRAFÍA	87
ANEXO 1	97
ANEXO 2	101

INTRODUCCIÓN

1.1 Epidemiología del cáncer de próstata en España

El cáncer de próstata (CaP) en España tiene una incidencia estandarizada por edad de 96 casos por 100.000 personas y una mortalidad estandarizada por edad de 19,3 casos por 100.000 personas, según los datos recogidos por la *International Agency for Research on Cancer* (IARC) en 2012 (1). En las Figuras 1 y 2 se presentan las tasas de incidencia y mortalidad de diferentes tumores, en España y Europa.

El CaP es el cáncer con mayor incidencia en nuestro país, por delante del cáncer de pulmón y del cáncer colorrectal. Sin embargo, en la tasa de mortalidad estandarizada por edad ocupa el tercer puesto, por detrás del cáncer de pulmón y el colorrectal. Las tasas de incidencia y mortalidad en España son muy similares a las tasas de observadas globales en Europa (1).

La incidencia del CaP en España se ha visto incrementada por el aumento en la esperanza de vida de los individuos, la determinación en sangre periférica del Antígeno Prostático Específico (*Prostate Specific Antigen*, PSA, en sus siglas anglosajonas), la mejora en los métodos diagnósticos de imagen (ecografía prostática transrectal, resonancia magnética nuclear) y los nuevos esquemas para la realización de la biopsia prostática. Estos nuevos métodos diagnósticos se han relacionado con un incremento de la incidencia del cáncer y probablemente también un sobrediagnóstico y sobretratamiento de la enfermedad (2).

En las últimas décadas, la forma de presentación clínica del CaP se ha modificado drásticamente: se diagnostica cada vez con mayor frecuencia en varones más jóvenes, asintomáticos, en fase organoconfinada, con bajo volumen tumoral y de menor grado histológico (3). A su vez, también se ha podido observar una mejora en la supervivencia al tratarse de tumores con un mejor pronóstico (4).

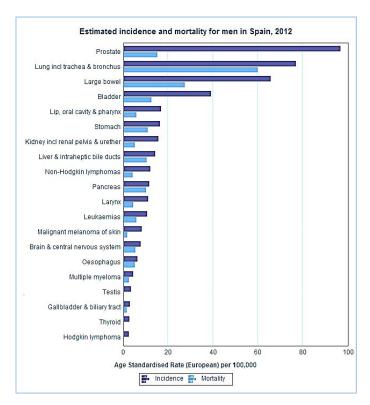
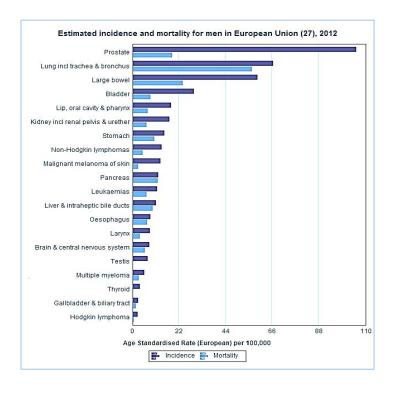



Figura 1. Tasas de incidencia y mortalidad estandarizadas por edad en España según localizaciones tumorales. Extraído de la Agencia Internacional de Investigación sobre el Cáncer (IARC), 2012

Figura 2. Tasas de incidencia y mortalidad estandarizadas por edad en Europa según localizaciones tumorales. Extraído de la Agencia Internacional de Investigación sobre el Cáncer (IARC), 2012

1.2 Factores de riesgo asociados al cáncer de próstata

La etiología del CaP o los agentes que favorecen su aparición son poco conocidos. El CaP se considera como producto de un proceso multifactorial entre edad, etnia, factores genéticos, historia familiar, exposiciones medioambientales y estilo de vida.

1.2.1 Edad

La edad es uno de los factores de riesgo más importantes para el desarrollo del CaP. El CaP raramente se diagnostica en hombres con edad menor a los 50 años y su prevalencia aumenta conforme la edad avanza (5).

Según los datos publicados por la *Surveillance, Epidemiology and End Results* (SEER) del *National Cancer Institute* de Estados Unidos, la incidencia de CaP aumenta a partir de los 60 años (6). No obstante, Pignot et al detectaron un 5% de CaP incidentales en varones menores de 50 años en su serie de 2.424 pacientes sometidos a cistoprostatectomía radical por cáncer vesical infiltrante (7). Igualmente, en un artículo publicado por Li et al, también detectaron un incremento en la incidencia de CaP entre varones con edades por debajo de los 50 años (8).

La edad es un factor de riesgo para el desarrollo de un CaP clínicamente detectable ya que con la edad aparecen las primeras proliferaciones acinares atípicas y la neoplasia intraepitelial prostática (PIN), lesiones reconocidas como precursoras del CaP. La transformación de un PIN a un CaP puede tardar de promedio unos tres años (9).

1.2.2 Etnia

La incidencia de CaP entre varones afroamericanos es notablemente mayor comparado con otros grupos étnicos como los caucásicos, los hispanos o los asiáticos. En el grupo afroamericano, la incidencia estandarizada por edad para CaP es de 255,5 por 100.000 personas, incidencia mayor que en varones caucásicos (161,6 por 100.000 personas); hispanos (140,8 por 100.000 personas) y asiáticos-americanos (96,5 por 100.000 personas); según los datos publicados por la *American Cancer Society* (10). Asimismo, se puede observar una mortalidad 2,4 veces mayor entre los individuos afroamericanos comparado con los individuos de raza caucásica.

La disparidad racial del CaP entre la raza afroamericana y la raza caucásica se puede observar en cuanto a la forma de presentación del cáncer, su tratamiento, su supervivencia y la calidad de vida. Estas diferencias pueden estar relacionadas no sólo por factores biológicos sino también por factores socio-económicos o culturales (11)(12)(13).

1.2.3 Factores genéticos y familiares

Los primeros documentos que reportan la asociación de CaP en individuos con familiares de primer grado afectos de la misma enfermedad datan de la segunda mitad del siglo XX (14). Estas observaciones se han confirmado a posteriori en estudios tipo caso-control (15) y en individuos gemelos monocigotos (16)(17). Los resultados del meta-análisis publicado por Zeeger et al (2003) demuestran que el riesgo relativo (RR) para padecer un CaP se incrementa según el número de miembros familiares afectos, su grado de parentesco y la edad en el momento del diagnóstico (18).

El CaP se ha clasificado en esporádico, familiar y hereditario. Los casos esporádicos suceden en individuos sin historia familiar de la enfermedad. El CaP familiar se define como el CaP en un varón con más de un familiar afecto. El CaP hereditario es un subgrupo del CaP familiar que característicamente 1) afecta a más de 3 miembros de la familia 2) se presenta en 3 generaciones sucesivas o como mínimo hay 2 individuos afectos diagnosticados de CaP con edad por debajo de los 55 años.

Existen estudios que han relacionado el CaP familiar con el cáncer de mama. Los genes relacionados con el cáncer de mama *Breast Cancer Type* 1 (*BRCA1*,17q21) y *Breast Cancer Type* 2 (*BRCA2*, 13q12) se han relacionado también con el CaP. En el caso del gen *BRCA2* se ha podido observar un incremento del riesgo para padecer CaP en los portadores de esta mutación (19) y que el CaP pueda tener características más agresivas (20).

Los estudios de asociación genética también han podido identificar genes candidatos que incrementarían el riesgo a padecer un CaP (Tabla 1).

Tabla 1. Genes candidatos asoaciados al CaP

Localización	Gen	Referencias bibliográficas			
Cromosómica					
1q23-25	HPC1 region/RNaseL	Carpten et al (21)			
1q42.2-43	PCAP	Berthon et al (22)			
1p36	CAPB	Gibbs et al (23)			
17p	HPC2 region/ELAC2	Tavtigian et al (24)			
8p22-23	MSR1	Xu, et al (25)			

HPC: gen del cáncer de próstata hereditario (hereditary prostate cance gen); PCAP: gen putativo para la predisposición a cáncer de próstata (putative predisposing for prostate cancer gen); MSR:gen receptor basurero de macrófagos (macrophage scavenger receptor gen)

Más recientemente, los estudios de asociación genómica (*Genome Wide Association Studies o* GWAS, en sus siglas anglosajonas) han permitido identificar alelos genéticos que se podrían correlacionar con el CaP. En estos estudios se puede estimar la frecuencia de aparición de determinados alelos o variantes genéticas denominados *Polimorfismos de Nucleótido Simple* (*Single Nucleotide Polymorphisms* en su notación anglosajona o SNP *en sus siglas*) en pacientes con la enfermedad y se compara con la frecuencia de aparición de estas variantes en pacientes sanos. De esta manera, se han podido identificar SNP en diferentes regiones de los cromosomas 8q24 y 17q así como en los cromosomas 3,6,7,10,11,19 y X que podrían estar relacionados con el CaP (26)(27)(28).

1.2.4 Factores inflamatorios e infecciosos

La inflamación e infección crónicas provocan un estado de hiperproliferación celular para sustituir el tejido dañado que puede contribuir en el desarrollo del cáncer, tal y como se puede observar en el cáncer de esófago, de colon, de estómago, de vejiga o de hígado. Existen estudios que afirman que los procesos infecciosos-inflamatorios prostáticos podrían tener cierta influencia en la carcinogénesis prostática (29). Un meta-análisis rebeló un riesgo más elevado de padecer CaP entre los individuos con historia previa de prostatitis o con antecedentes de sífilis y gonorrea (30). No obstante, los propios autores reconocen que no pueden descartar la existencia de sesgos en este resultado o que la relación pueda ser casual.

La infección por *Trichomonas vaginalis* también se ha propuesto como factor de riesgo para el CaP. En un estudio tipo caso-control, dentro del estudio *Health Professionals Follow-up Study*, se pudo observar que los pacientes seropositivos tenían un 43% más de riesgo de padecer CaP (31). En un artículo posterior, publicado por los mismos autores, en el marco del estudio *Prostate Cancer Prevention Trial* (32) no pudieron reproducir los mismos resultados. En el seno del estudio *Physician's Health Study*, la relación entre ser seropositivo a *T. vaginalis* y el riesgo de padecer CaP se estimó con una odds ratio (OR) de 1,23 (0,94-1,61) (33).

En 2006, se detectó el gammarretrovirus denominado *XMRV* en CaP de pacientes con antecedentes de CaP familiar. Teóricamente, el virus *XMRV* tendría un papel oncogénico al provocar una mutación homocigótica en el gen *RNaseL*, mutación considerada como factor de riesgo para padecer CaP (34). A posteriori, no se pudo confirmar dicha asociación (35).

1.2.5 Andrógenos

Los andrógenos son necesarios para el desarrollo normal de la glándula prostática y niveles altos de andrógenos se consideran factor de riesgo para el desarrollo de CaP.

La evidencia de que el desarrollo del CaP tiene un componente hormonal proviene de la observación histórica realizada por el Premio Nobel Charles B. Huggins al observar que la deprivación androgénica frenaba temporalmente el desarrollo del CaP (36).

De los resultados obtenidos del *Prostate Cancer Prevention Trial* (37) se concluía que el tratamiento durante 7 años con finasteride (inhibidor de la 5-alfa-reductasa, enzima que convierte la testosterona en dihidrotestosterona intraprostática) reducía la prevalencia de CaP en un 25%. Sin embargo, el subgrupo de tratados con finasteride, tenían una mayor incidencia de tumores prostáticos alto riesgo (Gleason \geq 7). Los autores proponían dos hipótesis para explicar estos datos:1) la deprivación de dihidrotestoterona intraprostática podría promocionar tumores de alto riesgo o 2) el finasteride podría inhibir selectivamente tumores de bajo grado.

El grupo *Endogenous Hormones and Prostate Cancer Collaborative Group* llevó a cabo un análisis sobre la relación entre andrógenos y riesgo de CaP a partir de 18 estudios prospectivos, con casi 3.900 casos y 6.500 controles incluidos. Las conclusiones de este estudio fueron que las concentraciones séricas de testosterona, testosterona libre, dihidrotestosterona, estradiol y estradiol libre no se asociaban con el riesgo de padecer CaP (38).

1.2.6 Factor de crecimiento insulínico (Insulin-Like Growth Factor-IGF)

El factor de crecimiento similar a la insulina (*IGF-1*) es una hormona peptídica que promueve el crecimiento en la infancia y la adolescencia. Tiene capacidad de promover la proliferación e inhibir la apoptosis en células prostáticas normales y tumorales *in vitro*. La proteína transportadora del factor de crecimiento similar a la insulina (*IGFBP-1*) se une con gran afinidad a *IGF-1* e inhibe la actividad de *IGF-1* al disminuir su forma libre o biodisponible. Los resultados de diferentes estudios epidemiológicos sugieren una asociación entre valores altos de *IGF-1* con riesgo de padecer CaP (39) o la presencia de valores altos de *IGF-1* y bajos de *IGFB-P* (40).

1.2.7 Vitamina D

Varios compuestos de la familia de los esteroles pertenecen a la familia de la vitamina D (Vit D). El más importante de estos esteroles es el *colecalciferol* o Vitamina D3. La mayor parte esta sustancia se forma en la piel como resultado de la irradiación ultravioleta solar del 7-*dehidrocolesterol*. Los compuestos de Vit D que se ingieren con la alimentación son idénticos al *colecalciferol* que se forma en nuestra piel. Con el paso por el metabolismo hepático, obtenemos la sustancia activa llamada 25-hidroxicolecalciferol y mediante el metabolismo renal se obtiene la 1,25-dihidroxicolecalciferol que es con diferencia la forma más activa de la Vit D.

La Vit D se considera actualmente como un agente que promueve la diferenciación celular y la apoptosis (41)(42), inhibe las metástasis (43) o evita la angiogénesis (44).

Existen estudios que manifiestan un incremento en las tasas de mortalidad en pacientes diagnosticados de CaP en invierno o en latitudes nórdicas dado que no se produce una adecuada síntesis de Vit D (45). Se ha podido observar en diferentes estudios una asociación entre niveles bajos de Vit D y un incremento de riesgo de CaP (45)(46) aunque, paradójicamente, también con niveles altos de Vit D (47)(48).

1.2.8 Obesidad y síndrome metabólico

La obesidad, considerada a través del índice de masa corporal o IMC, se ha relacionado con el CaP como factor de riesgo. En la cohorte del estudio *European Prospective Investigation into Cancer and Nutrition* (EPIC), con 141.896 pacientes incluidos, se pudo observar una asociación positiva entre CaP de alto grado y muerte por CaP en pacientes con mayor adiposidad (49), considerando mayor adiposidad como exceso de peso y aumento de la circunferencia de la cintura. No está claro cuál es el mecanismo exacto por el que se incrementa el riesgo de CaP agresivo en pacientes obesos, pero hay autores que lo asocian al incremento acumulativo de IGF-1 (50).

El síndrome metabólico, entidad clínica caracterizada por obesidad, hipertensión arterial, resistencia insulínica e hiperlipidemia, también se ha relacionado con el CaP. Morote et al concluyen que el síndrome metabólico está presente frecuentemente en pacientes con CaP y se asocia a tumores prostáticos de mayor agresividad (51).

1.2.9 Otros factores de riesgo

La <u>vasectomía</u> se ha relacionado con el riesgo de padecer CaP como se sugería a partir de los resultados obtenidos por Giovannucci et al (52) en el marco del estudio *Health Professionals Follow-up Study*. Estos resultados no se pudieron reproducir posteriormente en el estudio publicado por Cox et al (53). Sin embargo, Siddiqui et al detectan un incremento pequeño en el riesgo de padecer CaP de forma general (RR:1,10; CI 95%: 1,04 – 1,17), más riesgo de padecer un CaP de alto riesgo (Gleason total 8 - 10; RR:1,22; CI 95%: 1,03 – 1,45) y mayor riesgo de padecer un CaP letal (muerte o metástasis a distancia; RR:1,19; CI 95%: 1,00 – 1,43) (54).

El <u>hábito tabáquico</u> puede ser un factor de riesgo para CaP por generar alteraciones en el material genético, por ser una fuente de cadmio y/o por generar estrés oxidativo. Entre diferentes estudios de tipo caso-control y de cohortes, ninguno ha demostrado un clara relación entre CaP y hábito tabáquico de tipo dosis-respuesta (55).

Los estudios epidemiológicos basados en individuos inmigrantes y variaciones geográficas parecen mostrar que los <u>hábitos dietéticos</u> contribuyen al desarrollo del CaP (55). Las dietas con

alto contenido en grasas, sobretodo en ácidos grasos poliinsaturados, parecen las más relacionadas con el CaP. El consumo de <u>carnes rojas</u> está asociada para algunos autores con el desarrollo del CaP a través de varios mecanismos: por los métodos de cocción de la carne (sartén, barbacoa) a altas temperaturas que producen aminas heterocíclicas e hidrocarburos policíclicos aromáticos. Los compuestos de N-nitroso también se forman a partir de los conservantes añadidos a las carnes procesadas o por la vía del hierro *hem* que también acaba produciendo compuestos N-nitrosos. En un estudio prospectivo en el que se analizaron el consumo de diferentes tipos de carnes (rojas, blancas, procesadas) y diferentes tipos de cocción se concluyó que las carnes rojas, las carnes procesadas, las cocinadas en barbacoa y la producción de benzo[a]pirenos durante su cocción, se asociaban a mayor riesgo de CaP avanzado (56). Resultados similares se obtuvieron en el estudio elaborado por Punnen et al, que afirmaba que el consumo alto de carnes rojas y la preparación a la barbacoa se asociaba a mayor riesgo de CaP agresivo (57). Sin embargo, en un reciente metanálisis publicado por Bylsma et al, no hallaron resultados significativos entre el consumo de carne roja y CaP, ni por métodos de cocción ni por la relación con hidrocarburos aromáticos ni por hierro *hem* (58).

El consumo de <u>alcohol</u> no parece ejercer un efecto apreciable en la etiología del CaP (59)(60).

1.3 Factores de riesgo ocupacionales y exposición a tóxicos

Las actividades enzimáticas de la próstata se pueden ver alteradas por agentes químicos exógenos (61). Por ejemplo, mediante estudios experimentales en ratas, se ha podido observar que una exposición alta a cadmio puede inducir tumores prostáticos (62).

En las ocupaciones laborales, los trabajadores se pueden exponer a múltiples agentes exógenos y potencialmente carcinogénicos que podrían afectar a la glándula prostática. Concretamente, determinadas ocupaciones se han relacionado más con el CaP: agricultores y granjeros, trabajadores con alta exposición a metales inorgánicos, a plaguicidas, al cadmio, a hidrocarburos aromáticos policíclicos, a emisiones de motores diésel y los trabajadores de la industria del caucho (63).

Se han realizado numerosos estudios epidemiológicos que han intentado poner de manifiesto la relación entre ocupación laboral y CaP con resultados poco consistentes. Las principales limitaciones que presentan estos estudios epidemiológicos son que los factores de confusión no están bien controlados, que son estudios retrospectivos y que para algunas profesiones poseen un tamaño muestral pequeño, por ser de escasa frecuencia en la población general.

1.3.1 Agricultores y granjeros

Los agricultores y granjeros pueden desarrollar rutinariamente diferentes tipos de tareas: reparación de maquinaria agrícola, soldaduras, aplicación de pesticidas, herbicidas, pintura, trabajos de mantenimiento de maquinaria pesada, etc. Por tanto, agricultores y granjeros pueden estar expuestos a numerosas sustancias potencialmente nocivas como agentes químicos (pesticidas, disolventes, aceites, gasolina) o agentes biológicos (virus, hongos).

Los resultados obtenidos a partir de los diferentes meta-análisis publicados que analizan la asociación entre esta ocupación laboral y CaP son diversos: oscilan entre la no asociación con el CaP, una asociación con un riesgo relativo débil y la asociación positiva robusta con el CaP.

Blair et al, en 1992, en su meta-análisis encontraron un incremento de la incidencia de CaP entre trabajadores de la agricultura y granjeros (RR= 1,08) (64). Keller-Byrne et al, en 1997, también hallaron una asociación positiva, concluyendo que probablemente el origen de tal asociación sea por la exposición a agentes químicos que se usan en la agricultura y que son hormonalmente activos (65).

Por el contrario, en el meta-análisis publicado por Acquavella et al en 1998, no se observó una clara asociación entre esta ocupación y el CaP (66), aunque los mismos autores reconocen que

existe una marcada heterogeneidad entre los diferentes estudios analizados en cuanto al tipo de agricultura o ganadería practicada, por el área geográfica y por los períodos de tiempo analizados.

Ragin et al en 2013 concluyen en su meta-análisis, con 12 estudios epidemiológicos incluidos, que el CaP se detecta con mayor frecuencia entre trabajadores de la agricultura o granjeros (OR =3,83). Sin embargo, de su análisis es llamativo que la exposición a herbicidas tiene una asociación inversa con el CaP (OR = 0,68) y la exposición a fertilizantes no se asocia a mayor riesgo para CaP (67).

No todos los agentes a los que se exponen estos trabajadores son de riesgo para CaP. Los agricultores y granjeros también se exponen a altos niveles de luz solar, factor que está considerado como protector para CaP (68), al igual que la actividad física (69).

Como hemos comentado anteriormente, los factores que pueden contribuir a un incremento de riesgo para padecer CaP entre agricultores y granjeros son múltiples, aunque el factor de riesgo más probable parece ser la exposición a plaguicidas, ya sea mediante una exposición crónica o intermitente. Alavanja et al (70) publicaron en 2003 un estudio epidemiológico con un cohorte de más de 55.000 individuos que se dedicaban a la aplicación de plaguicidas. Se analizó la asociación entre CaP y la exposición a 45 tipos diferentes de plaguicidas. Se observó una razón de incidencia estandarizada de 1,14 (IC 95%: 1,05-1,24) para CaP. Aquellos individuos con una edad por encima de los 50 años y que aplicaban habitualmente metilbromida tenían una asociación mayor con CaP. El uso de determinados plaguicidas (clorpirifós, fonofos, cumafós, forato, permetrina y butilato) se asoció a mayor riesgo para CaP entre individuos con historia familiar de CaP, no entre los individuos con CaP esporádicos sin antecedentes familiares. Este resultado sugiere que pueden existir posibles interacciones gen-ambiente en el desarrollo del CaP.

Respecto a los pesticidas organofosforados, éstos parecen no tener un efecto hormonal directo que se pueda asociar a CaP, sin embargo, son capaces de inhibir los enzimas *CYP1A2* y *CYP3A4*, enzimas que catabolizan el estradiol y la testosterona a nivel hepático (71). Estos enzimas también se expresan a nivel prostático, según los estudios publicados en 2001 por Finnström et al (72). La hipótesis es que las alteraciones enzimáticas creadas por dichos agentes pueden desestabilizar el equilibrio esteroideo intraprostático que predispondría al desarrollo del CaP.

En conclusión, múltiples estudios epidemiológicos, revisiones sistemáticas y meta-análisis han intentado poner de relieve la relación entre el uso de plaguicidas y CaP, aunque con resultados inconsistentes entre los diferentes estudios. Existen revisiones a favor de dicha asociación (73)(74)(75) y por otro lado hay otras publicaciones que concluyen que no se puede establecer una relación causal directa entre exposición a plaguicidas y CaP (76)(77) o que incluso observan una relación inversa entre la exposición a estos agentes químicos y el CaP (67).

1.3.2 Industria del caucho

Durante la fabricación del caucho (*Figura 3*), debido al gran número de productos químicos que se usan y a la cantidad de materias primas que se manejan, se generan un gran número de sustancias en el ambiente laboral que son potencialmente tóxicas. En la fase de laminado, se producen vapores que provienen de los componentes que se están calentando. En la fase de ensamblaje y construcción se usan muy a menudo disolventes de los que se pueden inhalar sus vapores o tener contacto directamente a través de la piel del operador. En fases posteriores durante la fabricación, se vuelve a tener contacto con el polvo generado del caucho, con los vapores de la vulcanización y con otros disolventes. En la Tabla 2 se pueden ver algunos de los agentes químicos a los que están expuestos los trabajadores de la industria del caucho en las diferentes fases del proceso.

Figura 3. Proceso de manipulación del caucho. Monografías de la International Agency for Research on Cancer (IARC) sobre la Evaluación del riesgo carcinogénico de las sustancias químicas a humanos. La industria del caucho. Volumen 28. Lyon, 1982.

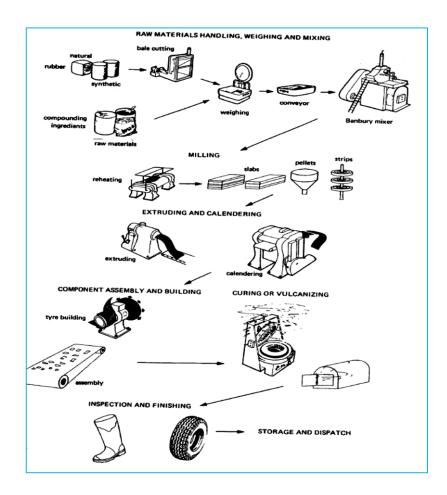


Tabla 2. Agentes ocupacionales a los que están expuestos los trabajadores de la industria del caucho

	Azufre elemental			
A gentes nove le vulcanización del couche	Sulfuros orgánico			
Agentes para la vulcanización del caucho	Peróxidos			
	Uretanos			
	Sulfenamidas			
	Tiazoles			
Aceleradores de la vulcanización	Guanidinas			
	Tiuram			
	Ditiocarbamatos			
	Ditiofosfonatos			
Activadores de la vulcanización	Óxido de Zinc			
retivadores de la valeninzación	Óxido de Magnesio			
	Ácido benzoico			
Inhibidores de la vulcanización	Ácido salicílico			
	N-nitrosodiofenilamina			
	Fenoles			
Antioxidantes	Fosfitos			
AmtioAidantes	Tioésteres			
	Aminas			
Antiozonizantes	Para-Fenilenediamina			

Los agentes químicos a los que se exponen más frecuentemente los trabajadores de la industria del caucho son: las N-nitrosaminas, los hidrocarburos aromáticos policíclicos (PAH), los disolventes y los ftalatos, a través de la inhalación respiratoria y el contacto dérmico (78).

Al inicio de la década de los 80, Goldsmith et al ya reportaron un exceso de riesgo para padecer CaP entre trabajadores de la industria del caucho, especialmente aquellos de individuos de raza negra (79). Sin embargo, los trabajos publicados posteriormente por Parkes et al en 1982 y Soraham et al en 1986 no evidenciaron asociación de riesgo con el cáncer (80)(81).

Bernardinelli et al en 1987 halló un incremento de mortalidad por CaP entre los trabajadores de la industria del caucho, estadísticamente significativa, en Italia (82). Igualmente, Weiland et al en 1996 también hallaron mayor mortalidad entre estos trabajadores en Alemania (83).

Kogevinas et al publicaron una revisión en 1998 (84), en la que se incluyeron 12 estudios de cohortes de nueve países, 7 estudios caso-control centrados en la industria del caucho, 48 estudios caso-control basados en la comunidad de 16 países y 23 estudios basados en datos administrativos (registros de defunción, registros de cáncer) y se observó que en sólo 5 estudios se reportaba un

riesgo aumentado para CaP (85)(86)(82)(87)(83). Más recientemente, Sathiakumar en 2005 observó una mayor mortalidad para CaP entre estos trabajadores respecto la población general, aunque no parecía tener relación con exposiciones ocupacionales acumulativas (88).

En conclusión, parece que no hay una relación clara entre CaP y la exposición laboral en la industria del caucho.

1.3.3 Cáncer de próstata y exposición a metales inorgánicos

Existen estudios que han reportado un mayor riesgo de CaP entre trabajadores con una mayor exposición a metales pesados en su área de trabajo. Aronson et al en 1996 (89) observaron que los trabajadores en el campo de la energía eléctrica, fabricantes de aviones, fabricantes de productos metálicos, trabajadores con estructuras metálicas y trabajadores del transporte ferroviario tenían mayor riesgo de CaP. Entre las posibles sustancias a las que están expuestos estos trabajadores destacan el polvo metálico, la combustión de combustibles líquidos, lubricantes y los PAH.

La exposición a metales inorgánicos como el arsénico, el cadmio y sus compuestos derivados (polvo de óxido de cadmio, humos o sales de cadmio) se han asociado al desarrollo del CaP, al habérseles observado cierto potencial carcinogénico (90).

1.3.3.1 Arsénico

El arsénico (As) es un elemento químico que pertenece al grupo de los metaloides, denominado así por compartir propiedades intermedias entre los metales y los no metales. Puede hallarse en la madera (como preservante), puede formar compuestos como el arseniuro de galio, usado como material semiconductor para circuitos; en aleaciones de plomo y también en insecticidas y herbicidas. La mayor exposición de As para el hombre es mediante la ingesta oral de aguas contaminadas y por inhalación en industrias de extracción de minerales, fundiciones de metal, preservación de la madera o en la industria electrónica (91).

La primera evidencia que existe de la relación entre CaP y As es a partir de la publicación de Chen et al (92) de 1988, de su estudio centrado en población taiwanesa altamente expuesta a As a través del agua. Se observó una relación significativa, de tipo dosis-respuesta entre concentraciones altas de As en el agua potable y mortalidad para cánceres de vejiga, próstata, riñón, piel, pulmón e hígado.

En modelos in vitro, se ha podido observar que la exposición de células epiteliales prostáticas al As puede inducir la trasformación maligna de estas células y les puede inducir a un estado de andrógeno-independencia, condición asociada a estados de CaP avanzado y de peor pronóstico (93).

1.3.3.2 Cadmio

El cadmio (Cd) es un metal con un amplio abanico de propiedades para su uso en la industria: proporciona resistencia a la corrosión, tiene gran ductilidad, gran conductibilidad y tiene un punto de fusión bajo. Los principales usos del Cd son la producción de baterías de níquel y Cd; y la producción de pigmentos, recubrimientos y planchados, entre otras aplicaciones (94).

La distribución del Cd es amplia. En la naturaleza se puede hallar en la corteza terrestre unido a otros elementos como el cobre, el plomo o el zinc. En el aire, se encuentra en la atmósfera proveniente de la emisión de fuentes naturales como los volcanes. De producción humana, proviene de la combustión de combustibles fósiles, de la producción de cemento especialmente.

La vía de entrada del Cd al organismo humano es principalmente respiratoria, aunque también se puede dar por ingestión oral accidental por el polvo de Cd que contamina las manos o los alimentos. Otra fuente de Cd es a través del consumo de cigarrillos de tabaco. La exposición laboral al Cd se produce durante la manufacturación de baterías, tareas de recuperación de Cd, producción de aleaciones de Cd, fundiciones de metales o la producción de vehículos (94).

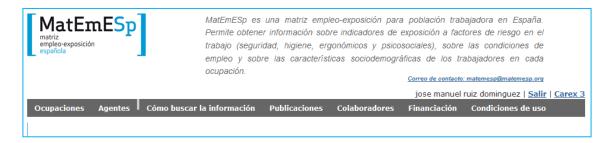
De forma experimental, se ha visto que el Cd induce en ratas la aparición de diversos tumores, como el CaP, aunque no está claro si sucede de la misma manera en humanos (95). Diversas publicaciones han analizado la relación entre CaP y Cd reportando un pequeño aumento del riesgo para CaP o un incremento en la mortalidad de aquellos individuos expuestos, aunque estadísticamente no significativo (96)(97)(98). En la revisión sistemática publicada por Verougstraete et al (99) en 2003 no se halló tal asociación. En la revisión de Shamoun et al (100) de 2005, de artículos publicados entre 1966 y 2002, no hallaron resultados suficientemente potentes como para implicar al Cd como factor de riesgo. Contrariamente, Vicenti et al en 2007 hallaron un incremento del riesgo para padecer CaP, cuanto mayores son las concentraciones de Cd detectadas en el organismo (101).

1.3.3.3 Otros elementos metálicos

De la revisión monográfica realizada por la IARC, se concluye que la exposición a otros elementos metálicos como el cromo y el níquel no tienen evidencia suficiente para asociarlos al CaP (94).

1.4 Matrices de empleo-exposición: FINJEM y MatEmEsp

Las primeras matrices de empleo-exposición (*job exposure matrices o* JEM, en sus siglas inglesas) computerizadas se introdujeron en 1970 y desde entonces se han usado para evaluar exposiciones ocupacionales en estudios epidemiológicos. Simplificando, una JEM es una tabla cruzada entre una <u>lista de ocupaciones</u> con una <u>lista de agentes</u> a los que se exponen los trabajadores que desempeñan una ocupación: cada celda de la JEM contiene información sobre a qué agentes estamos expuestos en una determinada ocupación. La JEM nos proporciona automáticamente información sobre las potenciales exposiciones ocupacionales que ha tenido un individuo si recogemos datos sobre las ocupaciones que ha desarrollado durante su vida laboral.


Las JEM nos aportan información sobre las exposiciones a diferentes factores de riesgo en el trabajo (seguridad, higiene, ergonomía y aspectos psicosociales), sobre las condiciones de empleo y sobre las características sociodemográficas de los trabajadores (actividad de la empresa, clase social, edad, estudios, país de origen, sexo) y por tanto, son de gran utilidad para estudios epidemiológicos ocupacionales. Entre sus principales ventajas está que se puede estudiar si la exposición a diversos agentes ocupacionales puede relacionarse con una determinada enfermedad, en vez de quedar el estudio subrogado a que una enfermedad esté relacionada con una determinada ocupación. Asimismo, para grandes estudios epidemiológicos, la aplicación de las JEM puede ser el único método factible para evaluar los posibles agentes nocivos a los que se exponen los trabajadores. Por otro lado, son fáciles de aplicar y suponen un coste económico más reducido para el estudio, comparado con la contratación de un grupo de expertos higienistas ocupacionales que evalúen todos los agentes que se asocian a una determinada actividad laboral. Aunque las JEM no proporcionan una evaluación "exacta" sobre las exposiciones de cada individuo, sí que resumen cuáles son las exposiciones estimadas para un grupo determinado de trabajadores.

La FINJEM, la JEM finlandesa (102), ha sido la matriz más ampliamente utilizada en diferentes estudios epidemiológicos ocupacionales de ámbito internacional y también nacional. Actualmente en España se ha desarrollado la JEM española denominada Matemesp (103). Consiste en una adaptación de la FINJEM e incluye también un rango amplio de agentes ocupacionales y condiciones (agentes químicos, físicos, agentes biológicos, factores de riesgo ergonómicos, factores de riesgo psicosociales, seguridad, condiciones de empleo, características demográficas). La información que contiene es de datos de ocupación y de exposición a agentes que fueron recogidos entre los años 1996 y 2005, en el contexto español.

El acceso a la matriz se puede realizar a través de Internet mediante un registro gratuito (http://matemesp.org/). Es una herramienta muy útil, de acceso gratuito y de fácil manejo para la investigación en el campo de la Salud para trabajadores en España (*Figura 4*).

En el Anexo 1 se muestran algunos detalles sobre cómo se usa MatEmEsp on-line.

Figura 4. Página principal de la matriz de empleo-exposición española MatEmEsp

En MatEmESp encontramos la información organizada por ocupaciones según la Clasificación Nacional de Ocupaciones de 1994 (CNO94) y por agentes, clasificados en seis categorías: factores sociodemográficos, condiciones de empleo, riesgos de seguridad, ergonómicos, psicosociales e higiénicos. Las estimaciones de exposición se encuentran en los cruces entre ocupaciones y agentes, lo que serían las celdas de la matriz. Los agentes químicos, físicos y biológicos incluidos en MatEmEsp son los mismos que se incluyen en FINJEM. La exposición estimada para cada agente por cada ocupación, la establecieron un grupo de expertos higienistas industriales. Los expertos aportaron a la matriz datos cuantitativos sobre la prevalencia de trabajadores expuestos a un agente (P) y nivel de exposición o intensidad (L) para cada agente y ocupación. La proporción de trabajadores expuestos a un determinado agente por cada ocupación se expresa mediante un porcentaje. Se considera que el trabajador está expuesto a un agente si como mínimo un 5% de los trabajadores en dicha ocupación lo están. El nivel de exposición de un agente se expresa como concentración media anual de exposición a un agente entre los trabajadores de una determinada ocupación, en sus unidades específicas de medida. En el caso de los agentes químicos, las unidades pueden ser en partes por millón (ppm) si son agentes volátiles o en miligramos/metro cúbico (mg/m³) si son partículas. Para los agentes físicos, hay diversas unidades: decibelios (dB) para ruido, proporción de horas de trabajo anuales a bajas temperaturas (frío) o a alta temperatura (calor), radiaciones ionizantes en milisievert (mSv). Para agentes microbiológicos se mide mediante unidades formadoras de colonias por metro cúbico (ufc/m³). El nivel de confianza de los expertos en sus evaluaciones se clasifican en bajo, moderado y alto. Además se documentan las fuentes usadas en el proceso de sus estimaciones y comentarios relevantes.

Como los propios autores de la FINJEM aconsejan, se usa el producto de P y L (P*L) para calcular el nivel medio de exposición acumulada anual entre los individuos expuestos a un determinado agente para realizar los análisis de tipo dosis-respuesta (104). No obstante, existen autores que

manifiestan que usando este producto se pueden incurrir en dos errores: 1) de clasificación, porque si la prevalencia es menor al 100%, al aplicar el producto vamos a considerar a todos los individuos como expuestos pese a no estar verdaderamente expuestos todos los casos; 2) de intensidad de exposición, dado que al multiplicar la concentración del agente por valores de P menores a 1 (recordemos que es un porcentaje y una prevalencia de 100% equivale a un valor de *P* igual a 1), "reduce" los niveles de intensidad de exposición y por tanto puede sesgar la relación dosis-respuesta (105).

De forma general, para cualquier JEM, entre las principales desventajas está que las exposiciones laborales a los diferentes agentes pueden variar de forma significativa entre individuos (incluso compartiendo el mismo tipo de trabajo), pueden variar entre diferentes países y entre diferentes períodos de tiempo. Igualmente para todas las JEM, se necesitan actualizaciones periódicas dado que las exposiciones ocupacionales a los diferentes agentes pueden ir cambiando con el tiempo, en ocasiones, de forma drástica: agentes que se prohíbe su uso a partir de un determinado año, exposición a nuevos agentes que previamente no se habían usado para una ocupación, etc.

1.5 Estudio MCC-Spain

El estudio MCC-Spain (**M**ulti**C**aso-**C**ontrol **Spain**) es un estudio multicaso-control, de base poblacional que se inició en 2007, en el seno del Consorcio para la Investigación Biomédica en Epidemiología y Salud Pública (CIBERESP) para evaluar la influencia de las exposiciones medioambientales y su interacción con factores genéticos para tumores frecuentes en España: próstata, colorrectal y cáncer de mama femenino cuya etiología aún sigue siendo en gran parte desconocida. El tumor gástrico también se incluyó por su peculiar variación geográfica en España, con áreas de mucho riesgo (ej. Castilla y León) y una quinta neoplasia, la leucemia linfática crónica, fue incluida de forma más tardía como resultado de la colaboración con el Consorcio Internacional de Genoma del Cáncer (ICGC). El MCC-Spain se inició con el objetivo de identificar nuevos factores de riesgo para ayudar a prevenir la aparición de estos tumores en el futuro.

Los objetivos específicos de la investigación se refieren a: a) exposiciones ambientales, incluyendo los contaminantes del agua potable, metales pesados y exposiciones a disruptores endocrinos; b) factores socioeconómicos y exposiciones ocupacionales incluyendo las disrupciones del ritmo circadiano secundarias a los trabajos por turnos; c) estilos de vida, nutrición, tabaquismo, obesidad, actividad física; d) antecedentes médicos, consumo de drogas específicas; e) factores hormonales, incluyendo las exposiciones en edades tempranas de la vida; f) agentes infecciosos y g) historia familiar del cáncer y variaciones genéticas.

1.5.1 Metodología del estudio MCC-Spain

1.5.1.1 Diseño

Se trata de un estudio multicaso-control, de base poblacional, que se llevó a cabo entre Septiembre del 2008 y Diciembre del 2013, en 12 provincias españolas (Asturias, Barcelona, Cantabria, Girona, Granada, Gipuzkoa, Huelva, León, Madrid, Murcia, Navarra y Valencia). El reclutamiento de casos y controles se realizó de forma simultánea: el personal entrenado para la realización del estudio se ponía en contacto con pacientes con un nuevo diagnóstico de los cánceres de interés anteriormente mencionados, procedente de los 23 hospitales colaboradores. Los controles eran invitados a participar mediante llamada telefónica y eran individuos seleccionados aleatoriamente mediante listados administrativos de centros de salud primaria localizados dentro del área de influencia de estos hospitales colaboradores. Los controles eran emparejados por sexo, edad y región, según los cánceres recogidos en cada hospital.

En total, el estudio reclutó 10.106 individuos. Todos los participantes tenían que tener una edad

comprendida entre los 20-85 años, debían residir en el área de influencia un mínimo de 6 meses antes del reclutamiento y ser capaces de responder el cuestionario epidemiológico.

Los casos candidatos eran identificados lo más pronto posible tras el diagnóstico de cáncer gracias a que se realizaban visitas periódicas a los departamentos colaboradores (Ginecología, Urología, Gastroenterología, Oncología, Cirugía General, Radioterapia y Anatomía patológica).

Los casos incluidos tenían un diagnóstico histológicamente confirmado para cáncer de próstata (International Classification Disease 10th Revision [ICD-10]: C61, D07.5), cáncer de mama (C50, D05.1, D05.7), colon o recto (C18, C19, C20, D01.0, D01.1, D01.2), estómago (C16, D00.2), tercio inferior de esófago (C15.5) o leucemia linfática crónica (C91.1) sin diagnóstico previo de la enfermedad diagnosticados durante el período de reclutamiento. Para los casos de leucemia linfática crónica, a parte de los casos incidentes, también se incluyeron casos prevalentes (diagnosticados hasta 3 años antes).

Los controles estaban emparejados con los casos por edad, sexo y región, asegurándose que por cada región, había como mínimo un control del mismo sexo y en un intervalo de edad de 5 años por cada caso. Por cada control que se necesitaba, se seleccionaban de forma aleatoria 5 potenciales participantes de edad similar, sexo y área de influencia hospitalaria de listados médicos. Si el contacto con la primera persona de la lista no era posible, después de cinco intentos en diferentes momentos del día o él o la paciente rechazaba la participación, se buscaba la siguiente persona de la lista.

1.5.1.2 Tasas de respuesta

Las tasas de respuesta fueron calculadas usando los individuos entrevistados en el numerador, y todos los sujetos incluyendo los rechazados en el denominador. Para los casos, las tasas de respuesta para el cáncer colorrectal fueron del 68%, 71% para el cáncer de mama femenino, 72% para la próstata, 57% para el tumor gástrico y 87% para la leucemia linfática crónica. En los controles, la media de participación fue del 57% y varió según las regiones. En un 22% de los controles, el contacto telefónico no fue posible debido a que el número telefónico era erróneo o no hubo respuesta a la llamada.

1.5.1.3 Cuestionarios, muestras biológicas, registros hospitalarios y medidas antropométricas

Los cuestionarios epidemiológicos fueron completados por personal entrenado en una entrevista cara a cara con los pacientes incluidos en el estudio (http://www.mccspain.org). La duración media de cada entrevista era de 70 minutos (rango 30-130 minutos). La información recogida fueron sobre datos sociodemográficos, historia residencial, exposiciones medioambientales durante la vida del individuo retrospectivamente, incluyendo el consumo y uso del agua (duchas, baños,

piscinas), historia ocupacional (incluyendo si habían tenido turnos de noche), medicaciones, hábitos (consumo de alcohol, actividad física, uso de productos cosméticos), baños de sol, hábitos de sueño, historia médica personal y familiar. Finalmente, el entrevistador evaluaba la calidad de la entrevista. En el caso de datos perdidos de alguna variable, cuestiones específicas u objetivos adicionales (por ejemplo preguntas sobre disrupciones del ritmo circadiano), se completaron mediante contacto telefónico.

Tras la entrevista se tomaban muestras biológicas y medidas antropométricas. El peso y la talla eran auto-referidas por el paciente. Los perímetros de la cintura y de la cadera se medían in situ tras la entrevista con una cinta métrica. A los individuos se les proporcionaba un cuestionario de frecuencia alimentaria (FFQ), validado para la población española (106) y modificado para incluir productos regionales. En este cuestionario se incluían 154 ítems referidos a diferentes comidas y evaluaba la dieta más frecuente durante el año anterior. Los tamaños de las porciones se especificaban por cada ítem y mediante fotografías se definían los grados de cocción de las comidas. Información sobre el consumo de vitaminas y/o suplementos minerales y cambios importantes en las dietas durante los pasados 5 años también fueron recogidos en los cuestionarios. Los FFQ los respondían por sí mismos los pacientes y posteriormente se remitían vía correo postal o se devolvían en los centros donde se realizaban las entrevistas; en ocasiones puntuales, se contestaban después de la entrevista cara a cara con el paciente.

Cuando era factible, se obtenían 27 mL de sangre periférica que eran repartidos en alícuotas en forma de sangre total, plasma, suero y células para la ulterior extracción del DNA. Si los pacientes rechazaban la toma de sangre periférica o no se podía obtener por cualquier otra razón, se tomaba como muestra saliva mediante un kit Oragene® DNA Self-Collection Kit (GENOTEK) y se conservaba a temperatura ambiente hasta la extracción del DNA. Se obtuvo muestra biológica en el 96% de los pacientes entrevistados (76% sangre, 24% saliva). También se recogieron otras muestras biológicas: uñas y pelo (79% y 84% respectivamente). En 4 centros (Madrid, Cantabria, Asturias y Huelva) también se recogieron muestras de orina (60 mL) que fueron alicuotadas y conservadas a -80°C.

La información clínica y patológica estándar básica sobre el diagnóstico y tratamiento de los tumores se recogía de las historias clínicas de los hospitales, usando un formato predefinido.

1.5.1.4 Exposiciones ocupacionales en el marco de MCC-Spain

Dentro del marco del estudio MCC-Spain, también se recogieron datos sobre las exposiciones laborales como posibles factores de riesgo para el desarrollo de diferentes tipos de cánceres. Para todas las ocupaciones que los sujetos realizaron por una duración superior a un año durante la vida, se recogieron datos específicos de cada ocupación. Además, se recogieron preguntas específicas

para algunas exposiciones como los plaguicidas (frecuencia, tipo de plaguicida), exposición a aguas, actividad física durante el trabajo, horarios, turnos de noche y exposición solar.

Las ocupaciones de los participantes fueron codificadas por dos expertos higienistas siguiendo la Clasificación Nacional de Ocupaciones de 1994 (CNO94). En la CNO94, las ocupaciones se clasifican en cinco niveles de agregación: 10 grandes grupos con códigos de un dígito, 19 grupos principales con códigos de una letra, 66 subgrupos principales con códigos de dos dígitos, 207 subgrupos con códigos de tres dígitos y 482 grupos primarios con códigos de cuatro dígitos (http://www.ine.es/inebmenu/mnu_clasifica.htm). A los datos sobre ocupación se aplicó a posteriori la JEM española, MatEmEsp para evaluar la exposición a determinados agentes potencialmente cancerígenos por cada ocupación según CNO94.

JUSTIFICACIÓN

En España, el CaP tiene una incidencia estandarizada por edad de 96,8 por 100.000 personas según los datos recogidos por la IARC en 2012 (1). Ocupa el primer puesto como cáncer de mayor incidencia en nuestro país, por delante del cáncer de pulmón y del colorrectal. La incidencia del CaP se ha visto incrementada en España por el aumento de la esperanza de vida de los individuos, la incorporación del PSA, los nuevos métodos de imagen y los esquemas de biopsia prostática.

La etiología o los factores de riesgo que favorecen la aparición del CaP son poco conocidos y se considera como producto de un proceso multifactorial entre edad, etnia, factores genéticos, historia familiar, exposiciones medioambientales y estilo de vida.

La ocupación laboral como factor de riesgo de CaP ha mostrado resultados inconsistentes entre los diferentes estudios publicados en la literatura médica, entre diferentes países. Clásicamente, las profesiones y los agentes ocupacionales que parecen relacionarse con mayor riesgo para CaP son: agricultores, granjeros, trabajadores altamente expuestos a metales inorgánicos, plaguicidas, Cd, PAH, emisiones de motores diésel y los trabajadores en la industria del caucho.

En España no se han realizado estudios epidemiológicos que analicen el riesgo de padecer CaP por la ocupación laboral o por la exposición a agentes ocupacionales. En el estudio MCC-Spain, se han recogido datos concretos de ocupación laboral con el objetivo de analizar si contribuyen como factores de riesgo para el desarrollo del CaP (exposición a agentes potencialmente cancerígenos como los plaguicidas, consumo y exposición a determinadas aguas, turnos de noche, la exposición solar). Nuestra hipótesis de trabajo es que la ocupación laboral o la exposición a determinados agentes ocupacionales pueden ser factores de riesgo para el desarrollo de CaP. En la presente tesis analizamos cuál es la relación existente entre estos factores y CaP, dentro del marco del estudio MCC-Spain.

HIPÓTESIS

Por todo lo anteriormente expuesto, la ocupación laboral y/o la exposición a determinados agentes laborales (físicos, químicos o biológicos) podrían ser factores de riesgo para el desarrollo de CaP. Nuestra hipótesis es que podremos demostrar cuál es la relación existente entre profesiones y agentes laborales con el CaP, analizando los datos que aporta el estudio MCC-Spain y aplicando la JEM española MatEmEsp, además de ratificar MatEmEsp como herramienta de gran utilidad para estudios epidemiológicos ocupacionales.

OBJETIVOS

4.1 Objetivo general

El objetivo general de la presente tesis es analizar si la ocupación laboral y/o la exposición a agentes ocupacionales (físicos, químicos y biológicos) incluidos en la JEM MatEmEsp se relacionan con el CaP, dentro del marco del estudio MCC-Spain.

4.2 Objetivos específicos

- Describir los resultados clínicos y patológicos de los casos de CaP en el marco del estudio MCC-Spain en el momento del diagnóstico, tanto de forma global como por regiones participantes, así como las características clínicas y patológicas de los casos de CaP esporádicos y familiares de primer grado incluidos en el estudio MCC-Spain. Describir los resultados anatomopatológicos de las piezas de prostatectomía radical.
- Estudiar la relación entre ocupaciones laborales y CaP, teniendo en cuenta la duración de la exposición.
- Comprobar si las ocupaciones clásicamente referenciadas en la literatura como de mayor riesgo para CaP, se confirman en el seno del estudio MCC-Spain.
- Estudiar la asociación entre exposición a agentes ocupacionales (físicos, químicos y biológicos) y CaP, teniendo en cuenta la intensidad de exposición.
- Estudiar si la exposición a agentes ocupacionales (físicos, químicos y biológicos) clásicamente referenciados en la literatura como de mayor riesgo para CaP, se confirman en el seno del estudio MCC-Spain.
- Comprobar si la exposición a agentes ocupacionales (físicos, químicos y biológicos) está asociada a CaP de mayor riesgo (valor de Gleason en la biopsia prostática >7) o de menor riesgo (valor de Gleason en la biopsia prostática ≤ 7).

MATERIAL Y MÉTODOS

En el estudio MCC-Spain, se incluyeron 1.112 casos de CaP y 1.388 controles procedentes de los hospitales participantes. Las regiones participantes en el reclutamiento de casos de CaP fueron: Asturias, Barcelona, Cantabria, Granada, Huelva, Madrid y Valencia. El período de reclutamiento fue desde Septiembre del 2008 hasta Diciembre del 2012. Como casos fueron considerados aquellos individuos con un diagnóstico reciente de CaP, confirmado histológicamente mediante biopsia prostática, resección transuretral o pieza de prostatectomía radical.

Los datos clínicos y patológicos sobre el diagnóstico y tratamiento del CaP se recogían de las historias médicas hospitalarias y de los servicios de anatomía patológica. Los datos clínicos recogidos fueron: región, edad al diagnóstico de CaP, valor de PSA en el diagnóstico de la enfermedad (en unidades de ng/mL, en plasma sanguíneo), tipo de muestra para confirmación histológica de CaP (por biopsia prostática, por resección transuretral, por pieza de prostatectomía radical), número de cilindros prostáticos obtenidos por cada lóbulo prostático, número de cilindros afectos y porcentaje de afectación (si se practicaba una biopsia prostática), estudios de imagen complementarios (ecografía transrectal, tomografía computerizada, gammagrafía ósea, resonancia magnética nuclear u otros), estadio clínico (según clasificación del TNM de 2009), clasificación de riesgo de D'Amico, datos histológicos del tumor prostático en la biopsia prostática: grado de Gleason primario, secundario y total, número de cilindros afectos, porcentaje de afectación de los cilindros; datos histológicos de la pieza de prostatectomía radical: grado de Gleason primario y secundario, márgenes quirúrgicos, volumen tumoral, hallazgos de la linfadenectomía, estadiaje patológico (según Clasificación pTNM del 2009), tratamiento recibido para el CaP (prostatectomía radical, radioterapia, hormonoterapia, crioterapia, ultrasonidos focalizados de alta intensidad -HIFU en sus siglas inglesas-, quimioterapia, vigilancia activa o conducta expectante). Mediante el cuestionario practicado, se recogieron también los casos que presentaban antecedentes familiares de CaP.

Los pacientes incluidos para el análisis de exposiciones laborales fueron 1.111 casos y 1.388 controles. En sólo 1 caso de CaP no disponemos de datos sobre su vida laboral. Se recogió el historial laboral de todos los entrevistados (casos y controles) durante la entrevista personal. Los datos recogidos para cada uno de los trabajos fue: edad de inicio y de fin del trabajo, cargo que ocupaba la persona y actividades o tareas que desarrollaba. Esta información fue la que utilizaron dos higienistas ocupacionales para la codificación de las ocupaciones según la clasificación CNO94: en un primer momento, los higienistas clasificaban los individuos de forma individual y posteriormente comparaban las codificaciones para alcanzar una correcta concordancia en sus

evaluaciones.

Para saber a qué agentes químicos, biológicos y físicos están expuestos los participantes en cada una de las ocupaciones, aplicamos MatEmEsp, la JEM española, apartado <u>HIGIENE</u>. Así podemos evaluar la prevalencia y nivel de intensidad de exposición a <u>plaguicidas</u> (2,4D, atrazina, captán, clorpirifós, dicuat, diurón, endosulfán, metomilo, piretrina, tiram), <u>polvos orgánicos</u> (de animales, de harina, cuero), <u>polvos inorgánicos</u> (amianto, fibras minerales artificiales), <u>metales</u> (arsénico, cadmio, cromo, níquel), <u>derivados petroquímicos</u> (gases de escape diésel, gases de escape gasolina, gasolina), <u>disolventes, detergentes y agentes físicos</u> (ruido, ruido de impacto, radiaciones ultravioleta, campos electromagnéticos, frío, calor), para cada ocupación según CNO94.

Los comités éticos de cada hospital participante revisaron y aprobaron los protocolos del estudio MCC-Spain. Todos los sujetos participantes fueron informados sobre el objetivo del estudio y firmaron un consentimiento informado antes de su participación.

5.1 Análisis estadístico

Se han realizado análisis descriptivos de los datos clínicos y anatomopatológicos de los pacientes con CaP.

En el apartado <u>"Resultados"</u> se exponen las tablas que describen <u>variables clínicas</u> (edad, PSA, estadio clínico, historia familiar, categorías de riesgo según clasificación D'Amico,), <u>histológicas</u> (tipo histológico, grado de Gleason en biopsia prostática y pieza de prostatectomía radical; estadío patológico, márgenes quirúrgicos, resultados de las linfadenectomías realizadas) y <u>tratamientos realizados</u> (prostatectomía radical, radioterapia electiva, hormonoterapia electiva, vigilancia activa o conducta expectante), tanto de forma global como por regiones participantes. Las variables categóricas se describen mediante frecuencia y porcentaje, las variables continuas se describen con la media, desviación estándar y rango.

Se han empleado los test estadísticos T-Student y ANOVA para variables continuas y el test Chi-Cuadrado para variables categóricas.

En el análisis ocupacional, el tiempo acumulado de exposición a una <u>ocupación</u> se ha calculado en años trabajados para cada CNO94. Se ha calculado la mediana de años trabajados para cada CNO94 de los controles. Posteriormente, se han clasificado a los participantes como "no **expuestos**" si no habían trabajado en dicha profesión, "baja exposición" si habían estado expuestos por debajo de la mediana de años que el conjunto de controles había trabajado para dicha ocupación y "alta exposición" si estaba por encima de la mediana. De igual manera, se calculó el tiempo acumulado para cada agente.

Para los <u>agentes</u>, se calculó la intensidad de la exposición a cada agente a partir de las variables: duración de exposición al agente (en años), nivel de intensidad de la exposición (L) y prevalencia de exposición al agente entre los trabajadores (P), de acuerdo con los valores indicados en la matriz MatEmEsp para cada CNO94. Se establecieron unos valores de intensidad de exposición para cada agente: aquellas profesiones en las que la prevalencia de exposición a un agente se consideraba por debajo del 5%, según MatEmEsp, se consideraron como participantes "no expuestos" a dicho agente. Se consideraba que un individuo estaba expuesto a un determinado agente con "baja exposición" si:1) la prevalencia de exposición al agente era superior al 5%, 2) el número de años expuesto a un agente era menor a la mediana de años calculada que se habían expuesto los controles para dicho agente y 3) el valor del producto de P multiplicado por L, según los datos proporcionados por MatEmEsp, estaba por debajo de la mediana del valor P*L por agente en una ocupación determinada en controles. Se consideraba "alta exposición" si: 1) la prevalencia de exposición al agente era superior al 5%, 2) el número de años expuesto a un agente era mayor a la mediana de años calculada que se habían expuesto los controles para dicho agente y 3) el valor del producto de P multiplicado por L, según los datos proporcionados por MatEmEsp, estaba por encima de la mediana del valor P*L por agente en una ocupación determinada en controles.

Para cada uno de los códigos CNO94 se estimó la asociación entre ocupación y CaP mediante regresión logística incondicional. De igual manera, se evaluó la asociación entre exposición a determinados agentes y CaP mediante regresión logística incondicional. Se evaluó la asociación entre las exposiciones y el grado de Gleason total en biopsia prostática mediante regresión logística multinomial.

Todos los análisis estadísticos fueron ajustados por edad, nivel educativo y región. Los análisis estadísticos para agentes en función de la intensidad de la exposición (no expuestos, baja exposición, alta exposición) se ajustaron por edad, nivel educativo, región, historia familiar y consumo de carne roja.

Los paquetes estadísticos empleados para los análisis estadísticos fueron *Stata versión 12.1 SE* y *SPSS versión 20*.

RESULTADOS

6.1 Resultados descriptivos clínicos y patológicos sobre el cáncer de próstata en el estudio MCC-Spain

El período de reclutamiento de los pacientes difería según el hospital, pero todos los casos están seleccionados en el período de tiempo determinado como elegible para cada hospital. Por regiones, en Barcelona se incluyeron 404 casos, en Madrid 315, en Cantabria 175, en Huelva 52, en Valencia 86, en Granada 64 y en Asturias 16 casos. En la Tabla 3 se presentan la edad media, el PSA y el grado de Gleason total por biopsia prostática; analizados de forma global y por regiones participantes.

Tabla 3. Tabla descriptiva global y por regiones: edad, valor de PSA y grado de Gleason total de los casos de CaP

Variables	Total	Barcelona	Madrid	Cantabria	Huelva	Valencia	Granada	Asturias
n	1112	404	315	175	52	86	64	16
Edad media (SD)	66 (7,4)	66,1 (7,2)	64,9 (7,3)	67 (7,8)	66 (7)	66 (7,4)	67,7 (7,6)	63 (5,2)
PSA (SD)	11,78	11,95	9,32	14,3	19,42	9,53	13,4	9,06
ng/mL	(29)	(30,2)	(9,9)	(52,4)	(21)	(10)	(15,7)	(4,4)
Gleason ≤6	501	174	160	53	22	45	38	9
n (%)	(45,1%)	(43,1%)	(50,8%)	(30,3%)	(42,3%)	(52,3%)	(59,4%)	(56,3%)
Gleason 7	436	163	115	94	15	27	16	6
n (%)	(39,2%)	(40,3%)	(36,5%)	(53,7%)	(28,8%)	(31,4%)	(25%)	(37,5%)
Gleason ≥8	155	67	32	23	14	11	7	1
n (%)	(13,9%)	(16,6%)	(10,2%)	(13,1%)	(27%)	(12,8%)	(11%)	(6,3%)
Casos perdidos	20	0	8	5	1	3	3	0

SD=desviación estándar; N=número de casos. Gleason: grado de Gleason de la biopsia prostática

La edad media y la desviación estándar (SD) fueron de 66 años (SD=7,4), con un rango entre los 42 y los 85 años de edad. En el 19% de los casos, los pacientes diagnosticados de CaP eran menores de 60 años. El 52% de los casos tenían una edad comprendida entre los 60-70 años, rango en el que se diagnostica con mayor frecuencia la enfermedad.

El 100% de los individuos incluidos en este estudio eran de raza caucásica.

El valor de PSA medio en el momento del diagnóstico fue de 11,78 ng/mL (SD= 29) con un rango que oscilaba entre 1,09 ng/mL y 695 ng/mL. El valor de PSA más frecuentemente hallado en nuestra muestra fue de 6 ng/mL. En 19 casos no se conocía el valor del PSA de debut, representando el 1,7% del total de la muestra. En un 3,2% de los casos (n=35), el valor de PSA en el momento del diagnóstico era inferior a 4 ng/mL; en 69,8% de los casos el valor de PSA estaba entre 4 y 10 ng/mL; y en un 19,3% de los casos entre 10 y 20 ng/mL. El PSA de debut era mayor de 20 ng/mL en un 7,7% de los individuos. En la Tabla 4 se detallan los patrones de Gleason total en la biopsia prostática y la pieza quirúrgica cuando el valor de PSA de debut era inferior a 4 ng/mL.

Tabla 4. Distribución del valor de Gleason total en biopsia prostática y en prostatectomía radical de los pacientes con CaP y valor de PSA menor a 4 ng/mL

Valor total de Gleason	Gleason total biopsia prostática (n casos, %) n= 35 casos	Gleason total pieza de prostatectomía (n casos, %) n= 29 casos
Gleason ≤6	21 (60%)	9 (31%)
Gleason 7	11 (31,4%)	7 (24,1%)
Gleason ≥8	2 (5,7%)	4 (13,7%)
Desconocido	1 (2,9%)	9 (31%)

Se observaron diferencias estadísticamente significativas en cuanto a la edad de diagnóstico (p=0,012) y en valor total de Gleason en la biopsia prostática (p<0,001) en los análisis comparativos entre regiones participantes. En Asturias y en Madrid la edad al diagnóstico fue menor que en el resto de regiones participantes, mientras que en Granada y Cantabria se diagnosticaba en edades por encima de la media global. Huelva es la región con un porcentaje mayor de biopsias prostáticas con resultado de grado total de Gleason \geq 8 en su serie, mientras que en Madrid, Valencia, Granada y Asturias tienen un mayor porcentaje de casos con valores de Gleason \leq 6, por encima de la media global. No se observaron diferencias estadísticamente significativas en los valores de PSA en el debut de la enfermedad (p=0,265) en los análisis comparativos entre regiones.

El diagnóstico histológico de CaP se realizó con mayor frecuencia mediante biopsia prostática (97,2%), mientras que en sólo en 5 casos (0,4%) el diagnóstico se obtuvo mediante resección transuretral prostática. La información sobre el método de diagnóstico no se conoce en un 2,4% de los casos.

El número medio de cilindros obtenidos en la biopsia prostática por cada lóbulo prostático fue de 5, con un rango que oscilaba entre 1 y 15 cilindros por lóbulo. Si el tumor prostático se detectaba en un solo lóbulo prostático, el valor de PSA medio de estos casos era inferior a 10 ng/mL. Si la afectación era para ambos lóbulos, el valor de PSA medio era de 14,5 ng/mL (p<0,05). El número medio de cilindros afectos en la biopsia prostática era de 3 cilindros sobre 10, cuando el rango de PSA estaba entre 4-20 ng/mL. La media de cilindros afectos se incrementaba a 6 sobre 10 si el valor de PSA estaba por encima de 20 ng/mL (p<0,01). No había diferencias estadísticamente significativas en cuanto al número de cilindros afectos si los valores de PSA eran menores a 10 ng/mL o si el valor de PSA estaba entre 10 y 20 ng/mL.

El tipo histológico de CaP detectado en nuestra muestra fue de adenocarcinoma infiltrante en el 100% de los casos.

Tabla 5. Valores de Gleason total en la biopsia prostática en el estudio MCC-Spain

Valor total de Gleason en biopsia prostática	Frecuencia (n)	Porcentaje (%)
Gleason 4	4	0,4
Gleason 5	18	1,6
Gleason 6	479	43,1
Gleason 7	436	39,2
Gleason 8	85	7,6
Gleason 9	68	6,1
Gleason 10	2	0,2
Perdidos	20	1,8
Total	1112	100

De acuerdo con el estadío clínico según la clasificación TNM del 2009, el 65% de los casos se presentaban en estadío clínico T1c (Tabla 6). La presencia de ganglios patológicos en el estudio de extensión se detectó en un 0,7% de los casos y la presencia de metástasis óseas en el 1,4% de la muestra. En 84 casos (representando el 7,5% de la muestra), no disponemos información sobre el estadiaje local.

Según la clasificación de riesgo de D'Amico, el 32,3% de los casos de CaP se consideraron de bajo riesgo, el 35,3% de riesgo intermedio y el 25% de alto riesgo. En un 7,4% de los casos (n=82)

no se pudo estratificar el riesgo por la falta de datos en el valor de PSA o en el estadio clínico o en el valor de Gleason total de la biopsia prostática.

Tabla 6. Estadío clínico de los casos de CaP en el estudio MCC-Spain

Estadío	Caso (N)	Porcentaje (%)
T1a	0	0%
T1b	4	0,4%
T1c	674	65,5%
T2a	115	11,2%
T2b	61	5,9%
T2c	112	10,9%
T3a	49	4,8%
T3b	11	1,1%
T4	2	0,2%
Desconocido T	84	
N_0	988	99,3%
N_1	7	0,7%
Desconocido N	117	
M_0	988	98,6%
M ₁	14	1,4%
Desconocido M	110	

Con la información recogida a partir de la entrevista epidemiológica, se detectaron 185 casos con antecedente familiar de primer grado de CaP. En la Tabla 7 se resumen las características clínicas y patológicas de los casos con antecedente familiar de primer grado afecto de CaP y los casos esporádicos (que no tienen ningún familiar afecto de CaP).

Los casos esporádicos tenían valores de PSA más altos en el momento del diagnóstico, tenían una edad mayor y la proporción de casos de alto riesgo (según la clasificación de riesgo de D'Amico) era mayor comparado con los casos con antecedente familiar de primer grado. En el análisis comparativo, se observaron diferencias significativas en las variables de edad, valor de PSA y

estratificación de riesgo en el momento del diagnóstico. Sin embargo, no se hallaron diferencias estadísticamente significativas en el grado de Gleason total de la biopsia (p=0,127) ni en el estadio clínico local, ganglionar ni metastásico.

Tabla 7. Características clínicas y patológicas de los casos de CaP con antecedente familiar de primer grado y los casos de CaP esporádicos

Variables	Historia familiar	Sin historia familiar	Volenn
variables	n=185	n=879	Valor p
PSA (ng/mL)			<0,05
Media	7,6	12,8	
SD	4,5	32,5	
Rango	2,81-46,48	1,09- 695	
Casos perdidos	3	16	
Edad (años)			0,01
Media	64	66	
SD	7	7	
Rango	42-83	46- 85	
Estadío clínico			0,185
1b	0 (0%)	4 (0,5%)	
1c	121 (72%)	521 (64%)	
2a	15 (8,9%)	94 (11,5%)	
2b	11 (6,5%)	48 (5,9%)	
2c	15 (8,9%)	92 (11,3%)	
3a	4 (2,4%)	44 (5,4%)	
3b	2 (1,2%)	9 (1,1%)	
4	0 (0%)	2 (0,2%)	
Casos perdidos	17	65	
cN			0,22
cN0	166 (100%)	778 (99,1%)	
cN1	0 (0%)	7 (0,9%)	
Casos perdidos	19	94	
сМ			0,61
сМ0	165 (98,8%)	779 (98,5%)	
cM1	2 (1,2%)	12 (1,5%)	
Casos perdidos	18	88	

Tabla 7 (continuación). Características clínicas y patológicas de los casos de CaP con antecedente familiar de primer grado y los casos de CaP esporádicos

Variables	Historia familiar	Sin historia familiar	Valor p
Variables	n=185	n=879	valor p
Clasificación Riesgo*			0,04
Bajo riesgo	70 (41,9%)	275 (33,6%)	
Riesgo intermedio	64 (38,3%)	309 (37,8%)	
Alto riesgo	33 (19,8%)	234 (28,6%)	
Casos perdidos	18	61	
Gleason (biopsia prostática)			0,127
Gleason 4	2 (1,1%)	2 (0,2%)	
Gleason 5	3 (1,6%)	15 (1,7%)	
Gleason 6	89 (48,9%)	369 (42%)	
Gleason 7	70 (38,5%)	348 (39,6%)	
Gleason 8	9 (4,9%)	69 (7,8%)	
Gleason 9	9 (4,9%)	58 (6,6%)	
Gleason 10	0 (0%)	2 (0,2%)	
Casos perdidos	3	16	

Clasificación Riesgo*=clasificación de riesgo del CaP según de D'Amico: Bajo riesgo = PSA < 10 ng/mL y Gleason <7 y estadio cT1-2a. Riesgo intermedio= PSA 10-20 o Gleason 7 o cT2b. Alto riesgo = PSA > 20 o Gleason > 7 o cT2c

En la Tabla 8 se muestran las características clínicas y patológicas de los casos, según el tipo de tratamiento de primera elección. El tratamiento de elección ofrecido con mayor frecuencia fue la prostatectomía radical, en 646 casos (58%). La radioterapia se ofreció como tratamiento de primera elección en 290 casos (26% de la muestra) y la hormonoterapia paliativa fue el primer tratamiento en 87 casos (7,8%). El régimen de vigilancia activa fue de elección en 36 casos y la conducta expectante en 6. En 47 casos no se conoce qué tratamiento se ofreció, por falta de información en la historia clínica. No hay casos documentados de pacientes que se sometieran a tratamiento con crioterapia, ultrasonidos de alta intensidad (HIFU) u otras terapias focales. En la Tabla 9 se describen los tratamientos ofrecidos desglosados por regiones.

Los pacientes sometidos a prostatectomía radical eran más jóvenes que los pacientes sometidos a radioterapia (63 años frente a 68 años). Asimismo, los valores de PSA y grado de Gleason en la biopsia prostática eran mayores en los casos tratados mediante radioterapia y hormonoterapia

paliativa que en los tratados mediante prostatectomía radical.

Tabla 8. Valores de PSA, edad y grado de Gleason total en biopsia prostática según los tratamientos ofrecidos

Variables	Prostatectomía radical n=646	Radioterapia n= 290	Hormonoterapia n= 87	Vigilancia activa n= 36	Conducta expectante n= 6
PSA (SD)	7,6 (3,8)	13 (13,6)	42 (96,7)	7,37 (2,8)	23,6 (24,4)
Edad (SD)	63 (6)	68 (6)	73 (8)	69 (7)	72 (9)
Gleason≤ 6	332 (51,4%)	109 (37,6%)	9 (10,3%)	27 (75%)	0 (0%)
Gleason 7	257 (39,8%)	120 (41,4%)	32 (36,8%)	7 (19,4%)	4 (66,7%)
Gleason≥ 8	44 (6,8%)	57 (19,6%)	45 (51,7%)	0 (0%)	2 (33,3%)
Casos perdidos	13 (2%)	4 (1,4%)	1 (1,1%)	2 (5,6%)	0

PSA: media de PSA (en ng/mL); SD=desviación estándar; Edad: edad media.

Tabla 9. Distribución de los tratamientos ofrecidos para el CaP por regiones

Tratamiento	Barcelona	Asturias	Madrid	Cantabria	Huelva	Valencia	Granada
Prostatectomía radical	260 (68,2%)	15 (94)	199 (66,5%)	66 (39,3%)	17 (33,3%)	44 (51,1%)	45 (70,3%)
Radioterapia	87 (22,8%)	1 (6%)	73 (24,4%)	66 (39,3%)	28 (55%)	22 (25,6%)	13 (20,3%)
Hormonoterapia	30 (7,9%)	0	18 (6%)	24 (14,3%)	5 (9,8%)	5 (5,8%)	5 (7,8%)
Vigilancia activa	3 (0,79%)	0	6 (2%)	11 (6,5%)	1 (1,9%)	15 (17,4%)	0
Conducta expectante	1 (0,26%)	0	3 (1%)	1 (0,6%)	0	0	1 (1,6%)

Las características anatomopatológicas de las piezas de prostatectomía radical están representadas en la Tabla 10. El 67% de los casos se trataban de cánceres organoconfinados, el grado de Gleason total de 7 en el 53,6% y con márgenes quirúrgicos negativos en el 66,6% de los casos. Se realizaron 262 linfadenectomías quirúrgicas y sólo en 3 casos fueron positivas para metástasis del cáncer. El valor de PSA medio en estos 3 casos fue de 18,86 (rango: 4,31-27,32 ng/mL), la edad media fue de 65 años y el valor de Gleason total en la biopsia prostática fue de 7 (en 2 casos) y 8 (en 1 caso).

Entre los pacientes sometidos a cirugía de prostatectomía, en el análisis comparativo entre pacientes menores de 65 años frente a mayor o igual a 65 años, no se observaron diferencias estadísticamente significativas ni en el estadio patológico (p=0,254) ni en el valor de Gleason total

de la pieza de prostatectomía (p=0,171) ni en afectación de márgenes quirúrgicos (p=0,4).

Tabla 10. Características anatomopatológicas de las piezas de prostatectomía radical en el estudio MCC-Spain

Grado de Gleason en la pieza quirúrgica	·
Sin tumor	4 (0,8%)
Gleason 4	1 (0,2%)
Gleason 5	7 (1,4%)
Gleason 6	168 (32,5%)
Gleason 7	277 (53,6%)
Gleason 8	33 (6,4%)
Gleason 9	26 (5%)
Gleason 10	1 (0,2%)
Casos perdidos	129
Estadío patológico	
pT0	4 (0,7%)
pT2a	0 (0%)
pT2b	43 (7%)
pT2c	366 (59,8%)
рТ3а	102 (16,7%)
pT3b	23 (3,8%)
pT4	74 (12,1%)
Casos perdidos	34
Linfadenectomía	
Sin linfadenectomía	384 (59,5%)
Linfadenectomía negativa	259 (40%)
Linfadenectomía positiva	3 (0,5%)
Márgenes quirúrgicos	
No afectos	395 (66,6%)
Afectos	198 (33,4%)
Casos perdidos	53

En la Tabla 11 se muestran los valores de Gleason total en la biopsia prostática y en la prostatectomía radical. En el análisis comparativo se pudo observar que existían diferencias significativas entre los valores de Gleason hallados en la biopsia prostática respecto a la pieza quirúrgica de prostatectomía. Se clasificaron un mayor porcentaje de tumores con Gleason \leq 7 en la biopsia prostática que posteriormente en la prostatectomía radical. El porcentaje de tumores con valor de Gleason \geq 7 en la biopsia prostática fue menor que en la prostatectomía radical.

Tabla 11.Tabla comparativa de los valores de Gleason total obtenidos por biopsia prostática y por pieza quirúrgica de prostatectomía radical

Valor de Gleason	Gleason por biopsia	Gleason por prostatectomía
No tumor	0	4
Gleason ≤7	589	453
Gleason >7	44	60
Gleason no conocido	13	129

6.2 Resultados de la exposición ocupacional

En la Tabla 12 se muestran las características principales de los casos de CaP y los controles del estudio MCC-Spain. Se incluyeron 1.111 casos y 1.388 controles. La edad media entre casos y controles fue similar: 66,4 años (SD= 8,5) para los controles y 66 años (SD= 7,3) para los casos.

Tabla 12. Tabla descriptiva de las características básicas de los participantes en el estudio MCC-Spain

Características	Controles n=1388	Casos n=1111	Valor p
Edad (SD)	66,4 (8.5)	66,1 (7,3)	0,358
Educación			0,001
Sin estudios primarios	244 (17,6)	261 (23,5)	
Estudios primarios	452 (32,6)	439 (39,5)	
Estudios secundarios	387 (27,9)	241 (21,7)	
Estudios universitarios	305 (22)	170 (15,3)	
Historia familiar de primer grado			0,001
Sin historia familiar de primer grado	1304 (93,9)	927 (83,4)	
Con historia familiar de primer grado	84 (6,1)	184 (16,6)	
Consumo de carne roja* (gramos/día)	33,7 (26)	36,3 (29,6)	0,031
Región			0,001
Barcelona	495 (35,7)	404 (36,4)	
Madrid	333 (24)	315 (28,4)	
Cantabria	175 (12,6)	175 (15,8)	
Valencia	78 (5,6)	86 (7,7)	
Granada	118 (8,5)	64 (5,8)	
Huelva	94 (6,8)	51 (4,6)	
Asturias	95 (6,8)	16 (1,4)	

Carne roja*: ternera, cordero, pato, cerdo.

El nivel educativo (entre niveles primarios, secundarios y universitarios) es más alto en los controles que en los casos (82,5% vs 76,5%), con diferencias estadísticamente significativas. La proporción de individuos con antecedentes familiares de CaP de primer grado fue mayor en los casos (n=184; 17%) que en los controles (n=84; 6%). El consumo de carne roja es mayor en los casos que en los controles, de forma estadísticamente significativa. La proporción de casos y controles es similar en regiones como Barcelona, Madrid y Cantabria (ratio control:caso de 1), donde mayor número de participantes fueron registrados. Debido al diseño del estudio MCC-Spain, donde se recogían controles comunes para todos los tumores, para regiones como Granada

y Huelva la ratio control:caso fue de 1,8 y en Asturias la ratio fue de 6.

Todos los participantes del estudio pertenecían a la raza caucásica.

Para evaluar la asociación entre ocupación (por CNO94) y CaP, se calcularon la OR entre sujetos alguna vez expuestos frente a nunca expuestos. Los resultados se muestran en la Tabla 13 de la siguiente manera: primero se presentan las OR de aquellas profesiones en las que se ha podido observar un exceso de riesgo para CaP estadísticamente significativo en nuestro estudio. A continuación, se presentan las OR de las profesiones que muestran un "menor riesgo" de CaP de forma estadísticamente significativa; y finalmente las OR de aquellas profesiones que se han relacionado con el CaP en estudios previos publicados en la literatura. Se analizaron sólo aquellas ocupaciones en las que la suma de casos y controles era mayor o igual a 15 participantes. En el Anexo 2 se muestran todos los resultados de OR del análisis alguna vez expuesto frente a nunca expuesto para todas las ocupaciones (por CNO94) en nuestro estudio. Los análisis fueron ajustados por edad, nivel educativo y región participante.

Las profesiones que presentaban mayor riesgo para CaP fueron revocadores, escayolistas y estuquistas (OR= 3,1); y peones agropecuarios (OR= 2,7), de forma estadísticamente significativa.

Las profesiones que presentaban menor riesgo para CaP de forma estadísticamente significativa, fueron militares de escala básica (OR= 0,5), escritores y periodistas (OR= 0,2), programadores informáticos (OR= 0,2), ebanistas (OR= 0,4) y directores de empresas de intermediación (OR= 0,4), aunque los resultados se basaron en un número pequeño de casos expuestos.

En las profesiones clásicamente relacionadas con el CaP según la literatura consultada (agricultores, granjeros, trabajadores expuestos a metales, a gases de motores diésel o trabajadores de la industria del caucho) no se observó un exceso de riesgo estadísticamente significativo. No obstante, el número total de sujetos expuestos (casos y controles) para algunas de estas profesiones podría resultar escaso.

Tabla 13. Resultados de los análisis alguna vez expuesto frente a nunca expuestos por ocupación (CNO94) y CaP

Ocupaciones con exceso de riesgo estadísticamente significativo					
CNO94 Descripción Controles Casos OR (95% CI) Valor p					
CNO7210	Revocadores, escayolistas y estuquistas	5 (0,4)	13 (1,2)	3,1 (1,1-9,2)	0,038
CNO9430	Peones agropecuarios	6 (0,4)	16 (1,4)	2,7 (1,0-7,2)	0,047

	Ocupaciones con menor riesgo estadísticamente significativo						
CNO94	Descripción	Controles (n=1388)	Casos (n=1111)	OR (95% CI)	Valor p		
CNO0030	Escala básica	81 (5,8)	35 (3,2)	0,5 (0,4-0,8)	0,003		
CNO1127	Dirección de departamento de operaciones en empresas de intermediación y servicios a otras empresas	26 (1,9)	6 (0,5)	0,4 (0,1-0,9)	0,024		
CNO2511	Escritores, periodistas y asimilados	14 (1,0)	2 (0,2)	0,2 (0,1-0,9)	0,038		
CNO3031	Programadores de aplicaciones informáticas y controladores de equipos informáticos	22 (1,6)	3 (0,3)	0,2 (0,1-0,6)	0,006		
CNO7920	Ebanistas y trabajadores asimilados	21 (1,5)	8 (0,7)	0,4 (0,2-1,0)	0,038		

anas t	B	Controles	Casos	OD (050) OF	
CNO94	Descripción	(n=1388)	(n=1111)	OR (95% CI)	Valor
CNO6011	Trabajadores cualificados por cuenta propia en actividades agrícolas, excepto en huertas, viveros y jardines	148 (10,7)	127 (11,4)	0,9 (0,7-1,1)	0,329
CNO6022	Trabajadores cualificados por cuenta ajena en huertas, viveros y jardines	6 (0,4)	10 (0,9)	1,9 (0,7-5,4)	0,215
CNO6111	Trabajadores cualificados por cuenta propia en actividades ganaderas, incluidas las de animales de compañía y animales domésticos de piel valiosa	73 (5,3)	88 (7,9)	1,3 (1,0-1,9)	0,098
CNO7310	Jefes de taller y encargados de moldeadores, soldadores, montadores de estructuras metálicas y afines	7 (0,5)	8 (0,7)	1,7 (0,6-5,0)	0,333
CNO7320	Jefes de taller de vehículos de motor	10 (0,7)	8 (0,7)	1,1 (0,4-2,7)	0,928
CNO7331	Jefes de taller de máquinas agrícolas e industriales	10 (0,7)	8 (0,7)	1,0 (0,4-2,8)	0,939
CNO7421	Mineros, canteros y asimilados	19 (1,4)	10 (0,9)	0,7 (0,3-1,6)	0,403
CNO7512	Soldadores y oxicortadores	53 (3,8)	50 (4,5)	1,1 (0,7-1,6)	0,790
CNO7513	Chapistas y caldereros	39 (2,8)	35 (3,2)	1,0 (0,6-1,6)	0,980
CNO7521	Herreros y forjadores	12 (0,9)	9 (0,8)	0,9 (0,4-2,2)	0,80
CNO7522	Trabajadores de la fabricación de herramientas, mecánicos y ajustadores, modelistas, matriceros y asimilados	17 (1,2)	19 (1,7)	1,3 (0,7-2,6)	0,443
CNO7524	Pulidores de metales y afiladores de herramientas	9 (0,6)	9 (0,8)	1,0 (0,4-2,5)	0,947
CNO7611	Mecánicos y ajustadores de vehículos de motor	61 (4,4)	46 (4,1)	0,9 (0,6-1,4)	0,699
CNO7613	Mecánicos y ajustadores de maquinaria agrícola e industrial	74 (5,3)	62 (5,6)	1,1 (0,8-1,5)	0,689
CNO7621	Mecánicos y reparadores de equipos eléctricos	30 (2,2)	30 (2,7)	1,3 (0,8-2,2)	0,340
CNO7622	Ajustadores y reparadores de equipos electrónicos	9 (0,6)	8 (0,7)	1,2 (0,5-3,2)	0,69

	Ocupaciones consideradas de alto riesgo en estudios previos								
CNO94	Descripción	Controles (n=1388)	Casos (n=1111)	OR (95% CI)	Valor p				
CNO7623	Instaladores y reparadores de equipos telefónicos y telegráficos	10 (0,7)	6 (0,5)	0,8 (0,3-2,2)	0,650				
CNO7713	Joyeros, orfebres y plateros	7 (0,5)	13 (1,2)	1,9 (0,8-4,9)	0,174				
CNO7721	Cajistas, monotipistas y asimilados	10 (0,7)	5 (0,5)	0,6 (0,2-1,9)	0,392				
CNO8121	Operadores en hornos de minerales y en hornos de primera fusión de metales	13 (0,9)	9 (0,8)	0,9 (0,4-2,2)	0,803				
CNO8122	Operadores en hornos de segunda fusión, máquinas de colar y moldear metales; operadores de trenes de laminación	21 (1,5)	25 (2,3)	1,6 (0,9-3,0)	0,127				
CNO8124	Operadores de máquinas trefiladoras y estiradoras de metales	11 (0,8)	6 (0,5)	0,6 (0,2-1,7)	0,334				
CNO8131	Operadores de hornos de vidriería y cerámica y de máquinas similares	10 (0,7)	11 (1,0)	1,0 (0,4-2,3)	0,924				
CNO8311	Operadores de máquinas-herramienta	85 (6,1)	72 (6,5)	1,0 (0,7-1,4)	0,907				
CNO8331	Operadores de máquinas para fabricar productos de caucho	9 (0,6)	9 (0,8)	1,0 (0,4-2,6)	0,977				
CNO8332	Operadores de máquinas para fabricar productos de materias plásticas	16 (1,2)	11 (1,0)	0,7 (0,3-1,6)	0,463				

Se ha analizado el riesgo de CaP según los años expuestos a una determinada ocupación. El punto de corte que nos permitió clasificar los individuos como de "baja exposición" o "alta exposición" dependía de si estaban por debajo o por encima de la mediana de años de exposición calculada en los controles para cada una de las ocupaciones por CNO94, respectivamente. Los resultados se exponen en la Tabla 14.

Tabla 14. Resultados de los análisis por años expuestos en cada ocupación (por CNO94) y CaP

	Ocupaciones con exceso de riesgo estadísticamente significativo								
CNO94	Descripción	Grado de exposición	Control (n=1388)	Casos (n=1111)	OR (95% CI)	Valor p			
CNO5130	Pelugueros, especialistas en	No expuestos	1380 (99,4)	1098 (98,8)					
	tratamiento de belleza y	Baja exposición	6 (0,4)	5 (0,5)	1,0 (0,3-3,6)	0,954			
	trabajadores asimilados	Alta exposición	2 (0,1)	8 (0,7)	6,2 (1,2-31,9)	0,030			
	Operadores en hornos de	No expuestos	1367 (98,5)	1086 (97,8)					
CNO8122	segunda fusión, máquinas de colar y moldear metales;	Baja exposición	8 (0,6)	15 (1,4)	2,5 (1,0-6,3)	0,048			
	operadores de trenes de laminación	Alta exposición	13 (0,9)	9 (0,8)	1,0 (0,4-2,4)	0,914			
		No expuestos	1318 (95,0)	1035 (93,3)					
CNO9602	Peones de la construcción de edificios	Baja exposición	28 (2,0)	47 (4,2)	1,7 (1,1-2,8)	0,031			
	33000	Alta exposición	42 (3,0)	27 (2,4)	0,6 (0,4-1,1)	0,087			

	Ocupaciones con riesgo menor estadísticamente significativo								
CNO94	Descripción	Grado de exposición	Control (n=1388)	Casos (n=1111)	OR (95% CI)	Valor p			
CNO0030		No expuestos	1307 (94,2)	1076 (96,8)					
	Escala básica	Baja exposición	45 (3,2)	18 (1,6)	0,5 (0,3-0,8)	0,009			
		Alta exposición	36 (2,6)	17 (1,5)	0,6 (0,3-1,1)	0,115			
	Programadores de aplicaciones	No expuestos	1366 (98,4)	1108 (99,7)					
CNO3031	informáticas y controladores de	Baja exposición	12 (0,9)	1 (0,1)	0,1 (0,0-0,8)	0,033			
	equipos informáticos	Alta exposición	10 (0,7)	2 (0,2)	0,3 (0,1-1,3)	0,096			
		No expuestos	1374 (99,0)	1101 (99,1)					
CNO7731	Trabajadores de la cerámica, alfareros y asimilados	Baja exposición	11 (0,8)	3 (0,3)	0,3 (0,1-0,9)	0,039			
	anaroroo y dominadoo	Alta exposición	3 (0,2)	7 (0,6)	2,2 (0,6-8,6)	0,263			

Ajuste básico por edad, región y nivel educativo

	Ocupaciones consideradas de alto riesgo en estudios previos									
CNO94	Descripción	Grado de exposición	Control (n=1388)	Casos (n=1111)	OR (95% CI)	Valor p				
	Trabajadores cualificados por	No expuestos	1240 (89,6)	984 (88,8)						
CNO6011	cuenta propia en actividades agrícolas, excepto en huertas,	Baja exposición	84 (6,1)	61 (5,5)	0,8 (0,5-1,1)	0,111				
	viveros y jardines	Alta exposición	60 (4,3)	63 (5,7)	1,1 (0,7-1,5)	0,778				
	Trabajadores cualificados por	No expuestos	1315 (95,1)	1023 (93,0)						
CNO6111	cuenta propia en actividades	Baja exposición	35 (2,5)	44 (4,0)	1,5 (0,9-2,4)	0,105				
	ganaderas	Alta exposición	33 (2,4)	33 (3,0)	1,0 (0,6-1,7)	0,966				
	Jefes de taller y encargados de	No expuestos	1381 (99,5)	1103 (99,3)						
CNO7310	moldeadores, soldadores, montadores de estructuras	Baja exposición	4 (0,3)	4 (0,4)	1,5 (0,3-6,3)	0,623				
	metálicas y afines	Alta exposición	3 (0,2)	4 (0,4)	2,0 (0,4-9,8)	0,375				
CNO7320		No expuestos	1378 (99,3)	1103 (99,3)						
	Jefes de taller de vehículos de motor	Baja exposición	4 (0,3)	5 (0,5)	2,1 (0,5-8,4)	0,306				
		Alta exposición	6 (0,4)	3 (0,3)	0,6 (0,1-2,2)	0,397				
		No expuestos	1378 (99,3)	1103 (99,3)						
CNO7331	Jefes de taller de máquinas agrícolas e industriales	Baja exposición	6 (0,4)	3 (0,3)	0,5 (0,1-2,2)	0,384				
		Alta exposición	4 (0,3)	5 (0,5)	2,2 (0,5-9,5)	0,287				
		No expuestos	1369 (98,6)	1101 (99,1)						
CNO7421	Mineros, canteros y asimilados	Baja exposición	11 (0,8)	4 (0,4)	0,4 (0,1-1,3)	0,139				
		Alta exposición	8 (0,6)	6 (0,5)	1,3 (0,4-4,0)	0,679				
		No expuestos	1335 (96,3)	1061 (95,5)						
CNO7512	Soldadores y oxicortadores	Baja exposición	25 (1,8)	27 (2,4)	1,2 (0,7-2,1)	0,510				
		Alta exposición	27 (1,9)	23 (2,1)	1,0 (0,5-1,7)	0,853				
		No expuestos	1349 (97,2)	1076 (96,8)						
CNO7513	Chapistas y caldereros	Baja exposición	22 (1,6)	15 (1,4)	0,8 (0,4-1,6)	0,491				
		Alta exposición	17 (1,2)	20 (1,8)	1,3 (0,6-2,5)	0,510				
		No expuestos	1376 (99,1)	1102 (99,2)						
CNO7521	Herreros y forjadores	Baja exposición	8 (0,6)	3 (0,3)	0,4 (0,1-1,6)	0,195				
	e hásico nor edad-región v nivel ed	Alta exposición	4 (0,3)	6 (0,5)	2,0 (0,5-7,6)	0,298				

CNO94 Descripción Grado de exposición Control Casos OR (95% CI) V									
011034		<u> </u>	(n=1388)	(n=1111)	O11 (3070 O1)	Valor p			
0110==00	Trabajadores de la fabricación de herramientas, mecánicos y	No expuestos	1371 (98,8)	1092 (98,3)	4 = (0 0 0 0)				
CNO7522	ajustadores, modelistas,	Baja exposición	9 (0,6)	10 (0,9)	1,5 (0,6-3,8)	0,409			
	matriceros y asimilados	Alta exposición	8 (0,6)	9 (0,8)	1,1 (0,4-3,0)	0,801			
	Pulidores de metales y	No expuestos	1379 (99,4)	1102 (99,2)					
CNO7524	afiladores de herramientas	Baja exposición	5 (0,4)	4 (0,4)	0,8 (0,2-3,2)	0,772			
		Alta exposición	4 (0,3)	5 (0,5)	1,1 (0,3-4,3)	0,849			
	Macánicas y signitadoros do	No expuestos	1327 (95,6)	1065 (95,9)					
CNO7611	Mecánicos y ajustadores de vehículos de motor	Baja exposición	37 (2,7)	19 (1,7)	0,6 (0,3-1,1)	0,072			
		Alta exposición	24 (1,7)	27 (2,4)	1,5 (0,8-2,7)	0,176			
		No expuestos	1314 (94,7)	1049 (94,4)					
CNO7613	Mecánicos y ajustadores de maquinaria agrícola e industrial	Baja exposición	35 (2,5)	33 (3,0)	1,3 (0,8-2,1)	0,369			
		Alta exposición	38 (2,7)	29 (2,6)	1,0 (0,6-1,6)	0,841			
		No expuestos	1358 (97,8)	1081 (97,3)					
CNO7621	Mecánicos y reparadores de equipos eléctricos	Baja exposición	18 (1,3)	12 (1,1)	0,9 (0,4-1,9)	0,757			
	oquipoo olootilooo	Alta exposición	12 (0,9)	18 (1,6)	1,9 (0,9-4,0)	0,102			
CNO7622 A		No expuestos	1379 (99,4)	1103 (99,4)					
	Ajustadores y reparadores de equipos electrónicos	Baja exposición	4 (0,3)	4 (0,4)	1,5 (0,4-6,0)	0,590			
	equipos electronicos	Alta exposición	5 (0,4)	3 (0,3)	0,8 (0,2-3,3)	0,744			
	Instaladores y reparadores de	No expuestos	1378 (99,3)	1105 (99,5)					
CNO7623	equipos telefónicos y telegráficos	Baja exposición	4 (0,3)	4 (0,4)	1,8 (0,4-7,7)	0,432			
		Alta exposición	6 (0,4)	2 (0,2)	0,3 (0,1-1,7)	0,188			
		No expuestos	1381 (99,5)	1098 (98,8)					
CNO7713	Joyeros, orfebres y plateros	Baja exposición	4 (0,3)	6 (0,5)	1,8 (0,5-6,5)	0,376			
		Alta exposición	3 (0,2)	7 (0,6)	2,1 (0,5-8,1)	0,297			
		No expuestos	1378 (99,3)	1106 (99,5)	· · · · · · · · · · · · · · · · · · ·				
CNO7721	Cajistas, monotipistas y	Baja exposición	6 (0,4)	2 (0,2)	0,4 (0,1-2,0)	0,274			
	asimilados	Alta exposición	4 (0,3)	3 (0,3)	1,0 (0,2-4,4)	0,955			
	On a readouse are however do	No expuestos	1375 (99,1)	1102 (99,3)	, , , ,				
CNO8121	Operadores en hornos de minerales y en hornos de	Baja exposición	7 (0,5)	4 (0,4)	0,7 (0,2-2,6)	0.635			
	primera fusión de metales	Alta exposición	6 (0,4)	4 (0,4)	0,9 (0,2-3,2)				
	0 1 1 1 1	No expuestos	1377 (99,2)	1105 (99,5)	. (, , , ,				
CNO8124	Operadores de máquinas trefiladoras y estiradoras de	Baja exposición	7 (0,5)	2 (0,2)	0,4 (0,1-1,8)	0,176 0,369 0,841 0,757 0,102 0,590 0,744 0,432 0,188 0,376 0,297 0,274 0,955 0,635 0,806 0,209 0,951 0,984 0,906			
	metales	Alta exposición	4 (0,3)	4 (0,4)	1,0 (0,2-3,9)				
		No expuestos	1378 (99,3)	1100 (99,0)	.,0 (0,2 0,0)	3,001			
CNO8131	Operadores de hornos de vidriería y cerámica y de	Baja exposición	5 (0,4)	6 (0,5)	1,0 (0,3-3,3)	0 984			
51100101	máquinas similares	Alta exposición	5 (0,4)	5 (0,5)	0,9 (0,3-3,3)				
		No expuestos	1303 (93,9)	1039 (93,5)	0,0 (0,0-0,0)	0,300			
011000144	Operadores de máquinas-	Baja exposición	50 (3,6)	34 (3,1)	0,9 (0,6-1,4)	0,672			
CNO8311				. 164 (.) []	u = 10 0-14)	0.07/			

	Ocupaciones co	onsideradas de alto riesç	jo en estudios	previos		
CNO94	Descripción	Grado de exposición	Control (n=1388)	Casos (n=1111)	OR (95% CI)	Valor p
		No expuestos	1379 (99,4)	1102 (99,2)		
CNO8331	Operadores de máquinas para fabricar productos de caucho	Baja exposición	5 (0,4)	4 (0,4)	0,9 (0,2-3,4)	0,872 0,905 0,353 0,935 0,268 0,083
	labilical productor do oddolio	Alta exposición	4 (0,3)	5 (0,5)	1,1 (0,3-4,1)	0,905
	Operadores de máquinas para	No expuestos	1372 (98,8)	1100 (99)		
CNO8332	fabricar productos de materias	Baja exposición	9 (0,6)	5 (0,5)	0,6 (0,2-1,8)	0,353
	plásticas	Alta exposición	7 (0,5)	6 (0,5)	1,0(0,3-2,9)	0,935
		No expuestos	1382 (99,6)	1095 (98,6)		
CNO9430	Peones agropecuarios	Baja exposición	4 (0,3)	8 (0,7)	2,0 (0,6-6,8)	0,268
		Alta exposición	2 (0,1)	8 (0,7)	4,3 (0,8-22,0)	0,083
		No expuestos	1383 (99.6)	1098 (98.8)		
CNO7210	Revocadores, escayolistas y estuguistas	Baja exposición	2 (0.1)	7 (0.6)	3.6 (0.7-17.6)	0,113
	Journal	Alta exposición	3 (0.2)	6 (0.5)	2.8 (0.6-12.2)	0,183

La profesión de peluquero o especialistas en tratamientos de belleza o asimilados, ejercida durante un período de tiempo superior a 15 años, mostró un riesgo 6 veces mayor de CaP comparado con los sujetos que nunca habían trabajado en esta profesión, aunque estos resultados se basaron en el análisis de 8 casos y 2 controles.

Los operadores en hornos de segunda fusión y los peones de la construcción mostraron resultados de exceso de riesgo para CaP cuando los individuos estaban expuestos durante un período menor o igual a 7 años, frente a nunca expuestos. Este exceso de riesgo estadísticamente significativo no se observó cuando fueron considerados aquellos individuos expuestos por un período mayor a 7 años.

De las ocupaciones clásicamente relacionadas con el CaP, no se observó una relación de riesgo estadísticamente significativa en los análisis por años expuestos. Las profesiones previamente citadas como de alto riesgo en los análisis *alguna vez expuestos* frente a *nunca expuestos* (revocadores, escayolistas, estuquistas y peones agropecuarios), no mostraron exceso de riesgo en los análisis por años de exposición.

En la Tabla 15 se resumen los resultados más significativos de riesgo para CaP.

Tabla 15. Tabla resumen de las ocupaciones con exceso de riesgo para CaP

	Control	Casos	OD (059/ CI)	_			
	(n=1388)	(n=1111)	OR (95% CI)	р			
Ch	NO5130 – Peluqueros,	especialistas en trat	amiento de belleza				
Baja exposición (<=15 años)	6 (0,4)	5 (0,5)	1,0 (0,3-3,6)	0,954			
Alta exposición (>15 años)	2 (0,1)	8 (0,7)	6,2 (1,2-31,9)	0,030			
CNO7210-Revocadores, escayolistas, estuquistas							
Nunca expuestos	1383 (99,6)	1098 (98,8)					
Expuestos	5 (0,4)	13 (1,2)	3,1 (1,1-9,2)	0,038			
CNO81	122 – Operadores en h	nornos de segunda fi	usión, moldear metales	3			
Baja exposición (<=7 años)	8 (0,6)	15 (1,4)	2,5 (1,0-6,3)	0,048			
Alta exposición (> 7 años)	13 (0,9)	9 (0,8)	1,0 (0,4-2,4)	0,914			
	CNO9430	- Peones agropecua	arios				
Nunca expuestos	1382 (99,6)	1095 (98,6)					
Expuestos	6 (0,4)	16 (1,4)	2,7 (1,0-7,2)	0,047			
	CNO9602 – Peone	es de la construcción	de edificios				
Baja exposición <=4 años)	28 (2,0)	47 (4,2)	1,7 (1,1-2,8)	0,031			
Alta exposición (>4 años)	42 (3,0)	27 (2,4)	0,6 (0,4-1,1)	0,087			

6.3 Resultados de la exposición a agentes ocupacionales

A continuación, se muestran los resultados entre exposición a agentes químicos, físicos y biológicos, considerados en la matriz MatEmEsp, y CaP. Los resultados se muestran por grupos de agentes: plaguicidas, polvos orgánicos e inorgánicos, metales, derivados petroquímicos, disolventes, detergentes y agentes físicos. En la categoría de "Expuesto" se consideran los sujetos alguna vez expuestos al agente durante su historia laboral. "No expuesto" se considera para sujetos nunca expuestos al agente durante su historia laboral. Los análisis estadísticos se han realizado por ajuste básico (edad, región y nivel educativo) y adicionalmente por consumo de carne roja e historia familiar.

En la Tabla 16 se muestran las OR de los análisis de *alguna vez expuestos* frente a *nunca expuestos* para plaguicidas.

Tabla 16. Exposición laboral por inhalación a plaguicidas y riesgo de CaP (herbicidas, insecticidas, fungicidas)

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
2,4 D	(70)	(///				
No expuesto	1205 (86,8)	931 (83,8)				
Expuesto	183 (13,2)	180 (16,2)	1,0 (0,8-1,3)	0,734	0,9 (0,7-1,2)	0,451
Atrazina						
No expuesto	1096 (79)	850 (76,5)				
Expuesto	292 (21)	261 (23,5)	0,9 (0,8-1,1)	0,528	0,9 (0,7-1,0)	0,178
Captán						
No expuesto	1083 (78)	830 (74,7)				
Expuesto	305 (22)	281 (25,3)	1,0 (0,8-1,2)	0,884	0,9 (0,7-1,1)	0,373
Clorpirifós						
No expuesto	1058 (76,2)	791 (71,2)				
Expuesto	330 (23,8)	320 (28,8)	1,1 (0,9-1,3)	0,448	1,0 (0,8-1,2)	0,901
Dicuat						
No expuesto	1096 (79)	850 (76,5)				
Expuesto	292 (21)	261 (23,5)	0,9 (0,8-1,1)	0,528	0,9 (0,7-1,1)	0,178

1) Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, por consumo de carne roja y por historia familiar

En los expuestos alguna vez a clorpirifós, metomilo y piretrina se mostró una asociación a CaP con valores de OR de 1,1 estadísticamente no significativa. Para la exposición al captán, endosulfán y 2,4-D observamos valores de OR de 1,0 sin ser estadísticamente significativos. En los análisis para otros plaguicidas las OR son menores a 1.

Tabla 16 (continuación). Exposición laboral por inhalación a plaguicidas y riesgo de CaP (herbicidas, insecticidas, fungicidas)

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Diurón						
No expuesto	1096 (79)	850 (76,5)				
Expuesto	292 (21)	261 (23,5)	0,9 (0,8-1,2)	0,528	0,9 (0,7-1,1)	0,178
Endosulfán						
No expuesto	1146 (82,6)	891 (80,2)				
Expuesto	242 (17,4)	220 (19,8)	1,0 (0,8-1,2)	0,783	0,9 (0,7-1,2)	0,472
Metomilo						
No expuesto	1181 (85,1)	906 (81,5)				
Expuesto	207 (14,9)	205 (18,5)	1,1 (0,9-1,4)	0,391	1,0 (0,8-1,4)	0,683
Piretrina						
No expuesto	1058 (76,2)	787 (70,8)				
Expuesto	330 (23,8)	324 (29,2)	1,1 (0,9-1,4)	0,346	1,0 (0,8-1,3)	0,757
Tiram						
No expuesto	1095 (78,9)	848 (76,3)				
Expuesto	293 (21,1)	263 (23,7)	0,9 (0,8-1,2)	0,554	0,9 (0,7-1,1)	0,197

¹⁾ Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, por consumo de carne roja y por historia familiar

En la Tabla 17 se muestran las OR de los análisis de *alguna vez expuestos* frente a *nunca expuestos* para polvos orgánicos e inorgánicos. Las exposiciones por inhalación a polvo de harina, polvo de cuero y amianto mostraron una OR mayor a 1, con ajuste básico, historia familiar y consumo de carne roja, pero no alcanzaron la significación estadística.

Tabla 17. Exposición laboral por inhalación de polvos orgánicos e inorgánicos y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p		
Polvo de animales								
No expuesto	1182 (85,2)	896 (80,6)						
Expuesto	206 (14,8)	215 (19,4)	1,2 (0,9-1,5)	0,213	1,0 (0,8-1,3)	0,975		
Bacterias de origen no humano								
No expuesto	1241 (89,4)	986 (88,7)						
Expuesto	147 (10,6)	125 (11,3)	0,9 (0,7-1,1)	0,299	0,8 (0,6-1,0)	0,068		
Polvo de harina								
No expuesto	1170 (84,3)	892 (80,3)						
Expuesto	218 (15,7)	219 (19,7)	1,2 (0,9-1,5)	0,173	1,1 (0,9-1,4)	0,330		
Polvo de cuero								
No expuesto	1368 (98,6)	1091 (98,2)						
Expuesto	20 (1,4)	20 (1,8)	1,1 (0,6-2,1)	0,757	1,4 (0,7-2,7)	0,372		

1) Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, por consumo de carne roja y por historia familiar

Tabla 17(continuación). Exposición laboral por inhalación de polvos orgánicos e inorgánicos y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Hongos						
No expuesto	1057 (76,2)	822 (74)				
Expuesto	331 (23,8)	289 (26)	0,9 (0,8-1,2)	0,578	0,9 (0,7-1,1)	0,315
Pulpa o polvo de pa	apel					
No expuesto	1371 (98,8)	1095 (98,6)				
Expuesto	17 (1,2)	16 (1,4)	1,0 (0,5 -2,0)	0,941	1,3 (0,6-2,8)	0,501
Polvo de plantas						
No expuesto	1075 (77,4)	804 (72,4)				
Expuesto	313 (22,6)	307 (27,6)	1,1 (0,9-1,4)	0,220	1,1 (0,9-1,4)	0,367
Polvo de madera						
No expuesto	933 (67,2)	670 (60,3)				
Expuesto	455 (32,8)	441 (39,7)	1,1 (0,9 -1,3)	0,302	1,0 (0,8-1,2)	0,959
Amianto						
No expuesto	1285 (92,6)	997 (89,7)				
Expuesto	103 (7,4)	114 (10,3)	1,2 (0,9-1,5)	0,323	1,2 (0,8-1,6)	0,321
Fibras minerales ar	tificiales					
No expuesto	1237 (89,1)	968 (87,1)				
Expuesto	151 (10,9)	143 (12,9)	1,0 (0,8-1,3)	0,765	1,0 (0,8 -1,4)	0,837
Otros polvos minera	ales					
No expuesto	1023 (73,7)	764 (68,8)				
Expuesto	365 (26,3)	347 (31,2)	1,1 (0,9 -1,3)	0,284	1,1 (0,8-1,3)	0,597
Polvo de cuarzo (síl	lice cristalina)					
No expuesto	939 (67,7)	661 (59,5)				
Expuesto	449 (32,3)	450 (40,5)	1,2 (1 -1,47)	0,044	1,1 (0,9 -1,3)	0,432
Polvo de polímeros	sintéticos					
No expuesto	1309 (94,3)	1043 (93,9)				
Expuesto	79 (5,7)	68 (6,1)	0,9 (0,6 -1,2)	0,493	1,0 (0,6-1,4)	0,831
Polvo textil						
No expuesto	1262 (90,9)	1013 (91,2)				
Expuesto	126 (9,1)	98 (8,8)	0,9 (0,7 -1,2)	0,614	1,0 (0,7 -1,4)	0,974

1) Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, por consumo de carne roja y por historia familiar

La exposición a polvo de cuarzo (sílice cristalina) presentó una OR superior a 1, estadísticamente significativa (p<0,05) con el ajuste básico, aunque esta asociación desaparece cuando se ajusta adicionalmente por carne roja e historia familiar. La exposición a otros polvos orgánicos e inorgánicos muestra una asociación débil a CaP, estadísticamente no significativa.

En la Tabla 18 se presentan los resultados de los análisis de *alguna vez expuestos* frente a *nunca expuestos* para la exposición por inhalación a metales. La exposición *alguna vez* a As presentó una asociación de riesgo con CaP (OR> 1), pero estadísticamente no significativa. En la exposición por inhalación al Cd no representó un incremento de riesgo para CaP. La inhalación de compuestos volátiles de azufre presentó una OR de 1,22 que casi alcanzó la significación estadística (p=0,055) con los ajustes básicos. En los análisis ajustados por historia familiar y consumo de carne roja no se observó una asociación de riesgo estadísticamente significativa. La exposición a otros metales no mostró incremento de riesgo para CaP de forma significativa.

Tabla 18. Exposición laboral por inhalación a metales y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Arsénico						
No expuesto	1364 (98,3)	1086 (97,7)				
Expuesto	24 (1,7)	25 (2,3)	1,4 (0,8 -2,5)	0,271	1,5 (0,8 -2,7)	0,255
Cadmio						
No expuesto	1285 (92,6)	1010 (90,9)				
Expuesto	103 (7,4)	101 (9,1)	1,1 (0,8-1,4)	0,713	1,1 (0,8-1,5)	0,785
Cromo						
No expuesto	999 (72)	763 (68,7)				
Expuesto	389 (28)	348 (31,3)	1,1 (0,9-1,3)	0,450	1,1 (0,9-1,3)	0,597
Hierro						
No expuesto	1025 (73,8)	782 (70,4)				
Expuesto	363 (26,2)	329 (29,6)	1,1 (0,9 -1,3)	0,366	1,1 (0,9 -1,3)	0,527
Plomo						
No expuesto	677 (48,8)	493 (44,4)				
Expuesto	711 (51,2)	618 (55,6)	1,0 (0,8 -1,2)	0,812	0,9 (0,8-1,2)	0,564
Níquel						
No expuesto	1012 (72,9)	770 (69,3)				
Expuesto	376 (27,1)	341 (30,7)	1,1 (0,9-1,3)	0,474	1,0 (0,8 -1,3)	0,729
Dióxido de azufre						
No expuesto	1253 (90,3)	991 (89,2)				
Expuesto	135 (9,7)	120 (10,8)	1,1 (0,8 -1,4)	0,690	1,0 (0,7 -1,3)	0,971
Compuestos volátile	s de azufre					
No expuesto	1074 (77,4)	793 (71,4)				
Expuesto	314 (22,6)	318 (28,6)	1,2 (1,00-1,5)	0,055	1,1 (0,9 -1,4)	0,410
Humos de soldadura						
No expuesto	1022 (73,6)	785 (70,7)				
Expuesto	366 (26,4)	326 (29,3)	1,1 (0,9-1,3)	0,475	1,0 (0,9-1,3)	0,776

¹⁾ Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, por consumo de carne roja y por historia familiar

Dentro de la categoría de derivados petroquímicos, disolventes y detergentes (Tabla 19), la exposición por inhalación a PAH mostró una OR mayor a 1, pero no fue estadísticamente significativa en nuestro estudio.

Tabla 19. Exposición laboral por inhalación a derivados petroquímicos, disolventes y detergentes y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Hidrocarburos alifá	ticos y alicíclicos					
No expuesto	1144 (82,4)	916 (82,4)				
Expuesto	244 (17,6)	195 (17,6)	0,9 (0,8-1,2)	0,533	1,0 (0,8-1,3)	0,961
Hidrocarburos aron	náticos					
No expuesto	1242 (89,5)	987 (88,8)				
Expuesto	146 (10,5)	124 (11,2)	0,9 (0,7-1,2)	0,526	1,0 (0,8-1,3)	0,950
Hidroclorados						
No expuesto	1328 (95,7)	1056 (95)				
Expuesto	60 (4,3)	55 (5)	0,9 (0,6-1,3)	0,668	1,0 (0,7-1,6)	0,856
Formaldehído						
No expuesto	1001 (72,1)	782 (70,4)				
Expuesto	387 (27,9)	329 (29,6)	1,0 (0,8-1,2)	0,898	1,0 (0,8-1,2)	0,859
Cloruro de metileno)					
No expuesto	1282 (92,4)	1018 (91,6)				
Expuesto	106 (7,6)	93 (8,4)	1,0 (0,7-1,3)	0,828	1,1 (0,8-1,6)	0,438
Otros disolventes d	orgánicos					
No expuesto	1267 (91,3)	1009 (90,8)				
Expuesto	121 (8,7)	102 (9,2)	1,0 (0,7-1,2)	0,543	1,0 (0,7-1,4)	0,956
Percloroetileno						
No expuesto	1367 (98,5)	1093 (98,4)				
Expuesto	21 (1,5)	18 (1,6)	1,0 (0,5 -2,0)	0,947	1,1 (0,5 -2,1)	0,829
Hidrocarburos aron	náticos policíclicos					
No expuesto	1083 (78)	847 (76,2)				
Expuesto	305 (22)	264 (23,8)	1,1 (0,9-1,3)	0,596	1,1 (0,8-1,3)	0,670
Tolueno						
No expuesto	1033 (74,4)	836 (75,2)				
Expuesto	355 (25,6)	275 (24,8)	0,9 (0,8-1,1)	0,413	0,9 (0,8-1,2)	0,580
Tricloroetileno						
No expuesto	1369 (98,6)	1095 (98,6)				
Expuesto	19 (1,4)	16 (1,4)	1 (0,5-2)	0,977	1,0 (0,5-2,1)	0,947

1) Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, por consumo de carne roja y por historia familiar

La exposición por inhalación a gases de escape diésel y gasolina no se asoció a riesgo de padecer CaP. La exposición por inhalación a humos asfálticos presentó una OR mayor a 1, si se analizaba con el ajuste básico. El valor de la OR disminuía cuando se realizaba el análisis ajustado también por consumo de carne roja e historia familiar. En ambos casos los resultados no fueron estadísticamente significativos. Para la exposición a otros agentes incluidos en esta categoría no se observó un incremento de riesgo estadísticamente significativo.

Tabla 19 (continuación). Exposición laboral por inhalación a derivados petroquímicos, disolventes, detergentes y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Humos asfálticos						
No expuesto	1353 (97,5)	1073 (96,6)				
Expuesto	35 (2,5)	38 (3,4)	1,2 (0,8 - 2)	0,409	1 (0,6-1,7)	0,940
Benzo(a)pireno						
No expuesto	1073 (77,3)	839 (75,5)				
Expuesto	315 (22,7)	272 (24,5)	1,1 (0,9-1,3)	0,573	1,0 (0,9-1,3)	0,715
Monóxido de carbo	ono					
No expuesto	867 (62,5)	663 (59,7)				
Expuesto	521 (37,5)	448 (40,3)	1,0 (0,8-1,2)	0,880	0,9 (0,8-1,1)	0,450
Nieblas de aceite						
No expuesto	1158 (83,4)	926 (83,3)				
Expuesto	230 (16,6)	185 (16,7)	0,9 (0,8-1,2)	0,537	0,9 (0,7-1,2)	0,498
Gases de escape d	diésel					
No expuesto	960 (69,2)	748 (67,3)				
Expuesto	428 (30,8)	363 (32,7)	1,0 (0,8-1,2)	0,636	0,9 (0,8 -1,1)	0,375
Gases de escape ç	gasolina					
No expuesto	1023 (73,7)	801 (72,1)				
Expuesto	365 (26,3)	310 (27,9)	0,9 (0,8 -1,1)	0,498	0,9 (0,7-1,1)	0,255
Gasolina						
No expuesto	1118 (80,5)	879 (79,1)				
Expuesto	270 (19,5)	232 (20,9)	1,0 (0,8-1,2)	0,764	0,9 (0,7-1,2)	0,454
Detergentes						
No expuesto	757 (54,5)	554 (49,9)				
Expuesto	631 (45,5)	557 (50,1)	1,0 (0,9 -1,2)	0,836	1,0 (0,8-1,2)	0,884
Isocianatos						
No expuesto	1344 (96,8)	1071 (96,4)				
Expuesto	44 (3,2)	40 (3,6)	1,0 (0,6-1,5)	0,935	1,3 (0,8-2,1)	0,284

¹⁾ Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, por consumo de carne roja y por historia familiar

En los análisis de exposición a diferentes agentes físicos (Tabla 20), la exposición a calor es el único agente que presentó una OR mayor a 1 consistente en los análisis ajustados por ajuste básico, por historia familiar y por consumo de carne roja. Sin embargo, los resultados no fueron estadísticamente significativos. No se observaron otras exposiciones a agentes físicos que fueran de riesgo para CaP.

Tabla 20. Exposición laboral a agentes físicos y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Frío	(75)	()				
No expuesto	415 (29,9)	273 (24,6)				
Expuesto	973 (70,1)	838 (75,4)	1,1 (0,9-1,4)	0,373	1,0 (0,8-1,3)	0,963
Calor						
No expuesto	536 (38,6)	338 (30,4)				
Expuesto	852 (61,4)	773 (69,6)	1,2 (1-1,5)	0,085	1,1 (0,9 -1,4)	0,385
Radiaciones ultrav	violeta					
No expuesto	717 (51,7)	499 (44,9)				
Expuesto	671 (48,3)	612 (55,1)	1,1 (1 -1,4)	0,172	1,0 (0,9-1,3)	0,784
Radiaciones ioniz	antes					
No expuesto	1333 (96)	1070 (96,3)				
Expuesto	55 (4)	41 (3,7)	1,0 (0,6 -1,5)	0,964	1,1 (0,7-1,7)	0,764
Campos electroma	agnéticos de baja fre	cuencia				
No expuesto	490 (35,3)	426 (38,3)				
Expuesto	898 (64,7)	685 (61,7)	0,9 (0,8-1,0)	0,134	0,9 (0,8-1,1)	0,330
Ultrasonidos de b	aja frecuencia					
No expuesto	1148 (82,7)	916 (82,4)				
Expuesto	240 (17,3)	195 (17,6)	1,0 (0,8-1,2)	0,874	1,0 (0,8-1,3)	0,921
Radiaciones de fro	ecuencia					
No expuesto	1351 (97,3)	1082 (97,4)				
Expuesto	37 (2,7)	29 (2,6)	1,0 (0,6-1,5)	0,721	1,0 (0,5 -1,7)	0,863
Ruido						
No expuesto	3 (,2)	7 (,6)				
Expuesto	1385 (99,8)	1104 (99,4)	0,4 (0,1-1,5)	0,171	0,4 (0,1-2)	0,235
Ruido de impacto						
No expuesto	1186 (85,4)	957 (86,1)				
Expuesto	202 (14,6)	154 (13,9)	0,9 (0,7-1,1)	0,162	0,8 (0,6-1,1)	0,136

¹⁾ Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, por consumo de carne roja y por historia familiar

Se realizaron análisis estadísticos teniendo en cuenta el nivel de intensidad de exposición al agente. Las tablas que se presentan a continuación muestran el riesgo asociado a CaP en función de la intensidad de la exposición al agente, en 3 categorías: no expuestos, exposición baja y exposición alta al agente. Se consideran como sujetos sin exposición o "**no expuestos**" a un determinado agente si la prevalencia de la exposición a dicho agente en una determinada ocupación se considera que está por debajo del 5%, según la información aportada por MatEmEsp. Se considera que un individuo está expuesto a un determinado agente en una categoría de "**Exposición baja**" si la prevalencia de exposición al agente es superior al 5%, el número de años expuesto al agente está por debajo de la mediana general de exposición en los controles y el valor del producto entre P*L (valores de P y L aportados por MatEmEsp) está por debajo de la mediana de exposición a dicho agente. Se considera "**Exposición alta**" si la duración de exposición a un agente está por encima de la mediana y además el producto P*L es igual o superior a la mediana de exposición.

En la Tabla 21 se presentan los resultados para plaguicidas, cuando el análisis es por intensidad de exposición.

Tabla 21. Exposición laboral a plaguicidas y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
2,4 D						
No expuesto	1205 (86,8)	931 (83,8)				
Exposición baja	84 (6,1)	80 (7,2)	1,0 (0,7-1,4)	0,984	0,8 (0,6 -1,2)	0,240
Exposición alta	99 (7,1)	100 (9)	1,1 (0,8-1,5)	0,637	1,00 (0,7-1,4)	0,990
Atrazina						
No expuesto	1096 (79)	850 (76,5)				
Exposición baja	292 (21)	261 (23,5)	0,9 (0,7-1,2)	0,514	0,9 (0,7-1,2)	0,426
Exposición alta	155 (11,2)	144 (13)	1 (0,7-1,2)	0,741	0,8 (0,6-1,1)	0,204
Captán						
No expuesto	1083 (78)	830 (74,7)				
Exposición baja	188 (13,5)	171 (15,4)	1,0 (0,8-1,3)	0,893	0,9 (0,7-1,2)	0,559
Exposición alta	117 (8,4)	110 (9,9)	1,0 (0,7-1,3)	0,930	0,9 (0,6-1,2)	0,394
Clorpirifós						
No expuesto	1058 (76,2)	791 (71,2)				
Exposición baja	188 (13,5)	181 (16,3)	1,1 (0,9-1,4)	0,465	1,1 (0,8-1,4)	0,639
Exposición alta	142 (10,2)	139 (12,5)	1,1 (0,8-1,4)	0,661	1,0 (0,7-1,3)	0,721
Dicuat						
No expuesto	1096 (79)	850 (76,5)				
Exposición baja	176 (12,7)	153 (13,8)	0,9 (0,7-1,2)	0,500	0,9 (0,7-1,1)	0,285
Exposición alta	116 (8,4)	108 (9,7)	1,0 (0,7-1,3)	0,800	0,8 (0,6-1,2)	0,307

1) Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, carne roja e historia familiar.

Se observó que una exposición considerada como de alta intensidad por inhalación a plaguicidas (2,4-D, atrazina, clorpirifós o captán) no implicaba un exceso de riesgo para CaP. Una alta exposición a metomilo mostró una OR de 1,2 en los análisis ajustados por ajuste básico, consumo de carne roja e historia familiar, pero resultó ser estadísticamente no significativa.

Tabla 21 (continuación). Exposición laboral a plaguicidas y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Diurón						
No expuesto	1096 (79)	850 (76,5)				
Exposición baja	176 (12,7)	153 (13,8)	0,9 (0,7-1,2)	0,500	0,9 (0,7-1,1)	0,285
Exposición alta	116 (8,4)	108 (9,7)	1 (0,7-1,3)	0,800	0,8 (0,6-1,2)	0,307
Endosulfán						
No expuesto	1146 (82,6)	891 (80,2)				
Exposición baja	111 (8)	98 (8,8)	1 (0,7-1,3)	0,747	0,9 (0,6-1,2)	0,493
Exposición alta	131 (9,4)	122 (11)	1 (0,7-1,3)	0,913	0,9 (0,7-1,3)	0,671
Metomilo						
No expuesto	1181 (85,1)	906 (81,5)				
Exposición baja	140 (10,1)	130 (11,7)	1,0 (0,8-1,4)	0,674	1,00 (0,7-1,3)	0,990
Exposición alta	67 (4,8)	75 (6,8)	1,2 (0,8-1,7)	0,325	1,2 (0,8-1,7)	0,444
Piretrina						
No expuesto	1058 (76,2)	787 (70,8)				
Exposición baja	213 (15,3)	210 (18,9)	1,1 (0,9-1,4)	0,342	1,1 (0,9-1,4)	0,465
Exposición alta	117 (8,4)	114 (10,3)	1,1 (0,8-1,4)	0,655	0,9 (0,7-1,3)	0,618
Tiram						
No expuesto	1095 (78,9)	848 (76,3)				
Exposición baja	177 (12,8)	155 (14)	0,9 (0,70-1,2)	0,531	0,9 (0,7-1,1)	0,317
Exposición alta	116 (8,4)	108 (9,7)	1 (0,70-1,3)	0,807	0,8 (0,6-1,2)	0,313

¹⁾ Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, carne roja e historia familiar.

En el grupo de exposición por inhalación a polvos orgánicos e inorgánicos (Tabla 22), una exposición de baja intensidad a bacterias de origen no humano se asoció a menor riesgo para CaP, de forma estadísticamente significativa. Dicha asociación no se observó en sujetos altamente expuestos a este agente. La exposición alta a polvo de cuero mostró una OR de 1,12 (por ajuste básico) y 1,4 (por ajuste básico, carne roja e historia familiar) pero fueron estadísticamente no significativas.

Tabla 22. Exposición laboral a polvos orgánicos e inorgánicos y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Hongos						
No expuesto	1057 (76,2)	822 (74)				
Exposición baja	225 (16,2)	199 (17,9)	1,0 (0,8-1,2)	0,766	0,9 (0,7-1,2)	0,529
Exposición alta	106 (7,6)	90 (8,1)	0,9 (0,7-1,2)	0,5	0,83 (0,6-1,2)	0,289
Polvo de harina						
No expuesto	1170 (84,3)	892 (80,3)				
Exposición baja	150 (10,8)	147 (13,2)	1,2 (0,9-1,6)	0,157	1,2 (0,9-1,6)	0,260
Exposición alta	68 (4,9)	72 (6,5)	1,1 (0,8-1,6)	0,651	1,0 (0,70-1,5)	0,882
Polvo de cuero						
No expuesto	1368 (98,6)	1091 (98,2)				
Exposición baja	13 (,9)	13 (1,2)	1,1 (0,5 - 2,4)	0,819	1,4 (0,6-3,3)	0,479
Exposición alta	7 (,5)	7 (,6)	1,12 (0,4-3,3)	0,830	1,4 (0,5-4,2)	0,579
Polvo de animale	es					
No expuesto	1182 (85,2)	896 (80,6)				
Exposición baja	131 (9,4)	148 (13,3)	1,3 (0,9-1,6)	0,105	1,1 (0,8-1,5)	0,554
Exposición alta	75 (5,4)	67 (6)	1,0 (0,7-1,4)	0,980	0,8 (0,6-1,3)	0,407
Bacterias de orig	gen no humano					
No expuesto	1241 (89,4)	986 (88,7)				
Exposición baja	65 (4,7)	41 (3,7)	0,6 (0,4-1,0)	0,036	0,5 (0,3-0,8)	0,002
Exposición alta	82 (5,9)	84 (7,6)	1,1 (0,8-1,5)	0,788	1,0 (0,7-1,4)	0,997
Pulpa o polvo de	papel					
No expuesto	1371 (98,8)	1095 (98,6)				
Exposición baja	10 (,7)	9 (,8)	1,00 (0,4-2,5)	0,998	1,4 (0,5-4,0)	0,545
Exposición alta	7 (,5)	7 (,6)	1,1 (0,4-3,1)	0,908	1,2 (0,4-3,8)	0,733
Polvo de plantas						
No expuesto	1075 (77,4)	804 (72,4)				
Exposición baja	202 (14,6)	196 (17,6)	1,1 (0,90-1,4)	0,270	1,2 (0,9-1,5)	0,274
Exposición alta	111 (8)	111 (10)	1,1 (0,83-1,51)	0,447	1,0 (0,7 -1,4)	0,892

¹⁾ Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, carne roja e historia familiar.

El amianto mostró una OR de riesgo para CaP estadísticamente significativa en exposiciones de baja intensidad por ajuste básico. No se observó una relación de riesgo cuando se analizó para exposiciones de alta intensidad ni cuando se ajustó el análisis por consumo de carne roja e historia familiar. El polvo de cuarzo mostró resultados significativos de riesgo para CaP sólo a exposiciones de baja intensidad en los análisis ajustados por edad, región y nivel educativo. No se observaron los mismos resultados en exposiciones de alta intensidad o en análisis ajustados por historia familiar o consumo de carne roja.

Tabla 23. Exposición laboral a polvos orgánicos e inorgánicos y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Polvo de madera	ı					
No expuesto	933 (67,2)	670 (60,3)				
Exposición baja	280 (20,2)	265 (23,9)	1,1 (0,9-1,4)	0,363	1,0 (0,8-1,2)	0,873
Exposición alta	175 (12,6)	176 (15,8)	1,1 (0,9-1,4)	0,452	1,0 (0,8-1,4)	0,896
Amianto						
No expuesto	1285 (92,6)	997 (89,7)				
Exposición baja	53 (3,8)	75 (6,8)	1,5 (1,-2,2)	0,028	1,4 (0,9-2,0)	0,134
Exposición alta	50 (3,6)	39 (3,5)	0,8 (0,5-1,2)	0,293	0,9 (0,6-1,5)	0,784
No expuesto	1237 (89,1)	968 (87,1)				
Fibras minerales	artificiales					
No expuestos	1237 (89%)	968 (87%)				
Exposición baja	102 (7,3)	111 (10)	1,2 (0,9-1,6)	0,256	1,0 (0,8-1,5)	0,695
Exposición alta	49 (3,5)	32 (2,9)	0,7 (0,5-1,2)	0,178	0,9 (0,5-1,6)	0,774
Otros minerales	artificiales					
No expuesto	1023 (73,7)	764 (68,8)				
Exposición baja	266 (19,2)	240 (21,6)	1,0 (0,9-1,3)	0,595	1,0 (0,8-1,3)	0,993
Exposición alta	99 (7,1)	107 (9,6)	1,3 (0,9-1,7)	0,154	1,2 (0,9-1,7)	0,253
Polvo de cuarzo	(sílice cristalina)					
No expuesto	939 (67,7)	661 (59,5)				
Exposición baja	320 (23,1)	334 (30,1)	1,3 (1,0-1,6)	0,018	1,1 (0,9-1,4)	0,258
Exposición alta	129 (9,3)	116 (10,4)	1,0 (0,8-1,4)	0,795	0,9 (0,7-1,3)	0,709
Polvo de políme	ros sintéticos					
No expuesto	1309 (94,3)	1043 (93,9)				
Exposición baja	53 (3,8)	42 (3,8)	0,8 (0,5-1,3)	0,353	0,8 (0,5-1,2)	0,275
Exposición alta	26 (1,9)	26 (2,3)	1,0 (0,6-1,8)	0,933	1,4 (0,8-2,6)	0,256
Polvo textil						
No expuesto	1262 (90,9)	1013 (91,2)				
Exposición baja	84 (6,1)	67 (6)	0,9 (0,7-1,3)	0,738	1,0 (0,7-1,5)	0,999
Exposición alta	42 (3)	31 (2,8)	0,9 (0,6-1,5)	0,667	0,98 (0,6-1,7)	0,955

1) Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, carne roja e historia familiar.

Las exposiciones de alta intensidad por inhalaciones de cromo, hierro, níquel, humos de soldadura y compuestos volátiles de azufre mostraron OR de riesgo, pero no fueron estadísticamente significativas. El Cd en exposiciones de alta intensidad mostró OR menores o iguales a 1 y por tanto, no se asoció como agente de riesgo para CaP.

Tabla 24. Exposición laboral a metales y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Arsénico						
No expuesto	1364 (98,3)	1086 (97,7)				
Exposición baja	17 (1,2)	20 (1,8)	1,7 (0,8-3,3)	0,150	1,6 (0,8-3,3)	0,197
Exposición alta	7 (,5)	5 (,5)	0,8 (0,3-2,7)	0,767	1,0 (0,3-3,6)	0,972
Cadmio						
No expuesto	1285 (92,6)	1010 (90,9)				
Exposición baja	75 (5,4)	78 (7)	1,1 (0,8-1,6)	0,567	1,0 (0,7-1,6)	0,714
Exposición alta	28 (2)	23 (2,1)	0,9 (0,5-1,7)	0,790	1,0 (0,5-1,8)	0,932
Cromo						
No expuesto	999 (72)	763 (68,7)				
Exposición baja	292 (21)	241 (21,7)	1,0 (0,8-1,2)	0,965	1,0 (0,8-1,2)	0,876
Exposición alta	97 (7)	107 (9,6)	1,3 (0,9-1,76)	0,104	1,3 (0,9-1,8)	0,145
Hierro						
No expuesto	1025 (73,8)	782 (70,4)				
Exposición baja	273 (19,7)	230 (20,7)	1,0 (0,8-1,3)	0,773	1,0 (0,8-1,3)	0,968
Exposición alta	90 (6,5)	99 (8,9)	1,3 (0,9-1,8)	0,135	1,3 (0,9-1,8)	0,141
Plomo						
No expuesto	677 (48,8)	493 (44,4)				
Exposición baja	473 (34,1)	391 (35,2)	1,0 (0,8-1,2)	0,591	0,9 (0,7-1,1)	0,369
Exposición alta	238 (17,1)	227 (20,4)	1,0 (0,8-1,3)	0,712	1,0 (0,8-1,3)	0,850
Níquel						
No expuesto	1012 (72,9)	770 (69,3)				
Exposición baja	279 (20,1)	239 (21,5)	1,0 (0,8-1,3)	0,844	1,0 (0,8-1,2)	0,869
Exposición alta	97 (7)	102 (9,2)	1,2 (0,9-1,7)	0,212	1,2 (0,9-1,7)	0,290
Dióxido de azufr	re					
No expuesto	1253 (90,3)	991 (89,2)				
Exposición baja	82 (5,9)	69 (6,2)	1,0 (0,7-1,4)	0,939	0,9 (0,6-1,3)	0,618
Exposición alta	53 (3,8)	51 (4,6)	1,1 (0,8-1,7)	0,574	1,1 (0,7-1,8)	0,579
Compuestos vol		(, ,	, , , ,		, , , , ,	
No expuesto	1074 (77,4)	793 (71,4)				
Exposición baja	210 (15,1)	217 (19,5)	1,2 (1 -1,6)	0,072	1,0 (0,9-1,4)	0,488
Exposición alta	104 (7,5)	101 (9,1)	1,2 (0,9-1,6)	0,276	1,1 (0,8-1,5)	0,552
Humos de solda		, , , , , , , , , , , , , , , , , , ,	, , , , , , ,		, , , , ,	
No expuesto	1022 (73,6)	785 (70,7)				
Exposición baja	285 (20,5)	246 (22,1)	1,0 (0,8-1,3)	0,878	1,0 (0,8-1,2)	0,821
Exposición alta	81 (5,8)	80 (7,2)	1,3 (0,9-1,8)	0,156	1,2 (0,9-1,8)	0,252

1) Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, carne roja e historia familiar

Las exposiciones de alta intensidad a hidroclorados e isocianatos casi alcanzaron la significación estadística para considerarse de riesgo para CaP. Las exposiciones a gases de escape diésel, gasolina, PAH y otros agentes derivados petroquímicos no alcanzaron una OR de riesgo estadísticamente significativa.

Tabla 25. Exposición laboral a derivados petroquímicos, disolventes y detergentes y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Hidrocarburos al	ifáticos y alicíclicos					
No expuesto	1144 (82,4)	916 (82,4)				
Exposición baja	175 (12,6)	150 (13,5)	1,0 (0,8-1,3)	0,733	1,0 (0,8-1,4)	0,659
Exposición alta	69 (5)	45 (4,1)	0,7 (0,5-1,0)	0,057	0,8 (0,5-1,3)	0,377
Hidrocarburos ar	romáticos					
No expuesto	1242 (89,5)	987 (88,8)				
Exposición baja	102 (7,3)	91 (8,2)	1,0 (0,7-1,3)	0,903	1,0 (0,7-1,4)	0,933
Exposición alta	44 (3,2)	33 (3)	0,8(0,5-1,2)	0,291	0,9 (0,6-1,5)	0,795
Hidroclorados						
No expuesto	1328 (95,7)	1056 (95)				
Exposición baja	40 (2,9)	32 (2,9)	0,8 (0,5-1,3)	0,286	0,7 (0,4-1,2)	0,238
Exposición alta	20 (1,4)	23 (2,1)	1,2 (0,7-2,3)	0,493	2,0 (1 -4)	0,055
Formaldehído						
No expuesto	1001 (72,1)	782 (70,4)				
Exposición baja	278 (20)	236 (21,2)	1,0 (0,8-1,3)	0,758	1,0 (0,8-1,3)	0,776
Exposición alta	109 (7,9)	93 (8,4)	1,0 (0,7-1,3)	0,790	1,0 (0,7-1,4)	0,902
Cloruro de metile	eno					
No expuesto	1282 (92,4)	1018 (91,6)				
Exposición baja	70 (5)	67 (6)	1,0 (0,7-1,5)	0,801	1,2 (0,8-1,7)	0,377
Exposición alta	36 (2,6)	26 (2,3)	0,8 (0,5-1,4)	0,429	1,0 (0,6-1,8)	0,919
Otros disolvente	s orgánicos					
No expuesto	1267 (91,3)	1009 (90,8)				
Exposición baja	88 (6,3)	75 (6,8)	0,9 (0,7-1,3)	0,676	1,0 (0,7-1,4)	0,833
Exposición alta	33 (2,4)	27 (2,4)	0,9 (0,5-1,5)	0,604	1,0 (0,6-1,9)	0,805
Percloroetileno						
No expuesto	1367 (98,5)	1093 (98,4)				
Exposición baja	13 (,9)	10 (,9)	1,0 (0,4-2,3)	0,981	1,0 (0,4-2,4)	0,983
Exposición alta	8 (,6)	8 (,7)	1,1 (0,4-2,9)	0,894	1,2 (0,4-3,4)	0,722
Hidrocarburos ar	romáticos policíclic	os				
No expuesto	1083 (78)	847 (76,2)				
Exposición baja	181 (13)	156 (14)	1,0 (0,8-1,3)	0,788	1,0 (0,8-1,4)	0,740
Exposición alta	124 (8,9)	108 (9,7)	1,1 (0,82-1,45)	0,563	1,1 (0,8-1,5)	0,747
Tolueno						
No expuesto	1033 (74,4)	836 (75,2)				
Exposición baja	221 (15,9)	171 (15,4)	0,9 (0,8-1,2)	0,676	1,0 (0,7-1,2)	0,695
Exposición alta	134 (9,7)	104 (9,4)	0,9 (0,66-1,16)	0,364	0,9 (0,7-1,3)	0,637

1) Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, carne roja e historia familiar

Tabla 25 (continuación). Exposición laboral a derivados petroquímicos, disolventes y detergentes y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Tricloroetileno	(**/	(**/				
No expuesto	1369 (98,6)	1095 (98,6)				
Exposición baja	9 (,6)	6 (,5)	0,8 (0,3-2,4)	0,720	0,6 (0,2-2,0)	0,441
Exposición alta	10 (,7)	10 (,9)	1,1 (0,5-2,8)	0,786	1,4 (0,6-3,7)	0,453
Humos asfálticos	S					
No expuesto	1353 (97,5)	1073 (96,6)				
Exposición baja	28 (2)	27 (2,4)	1,0 (0,6-1,8)	0,826	0,9 (0,5-1,7)	0,752
Exposición alta	7 (,5)	11 (1)	2,0 (0,7-5,4)	0,190	1,3 (0,4-3,8)	0,671
Benzo(a)pireno						
No expuesto	1073 (77,3)	839 (75,5)				
Exposición baja	249 (17,9)	205 (18,5)	1,0 (0,8-1,3)	0,774	1,0 (0,8-1,3)	0,814
Exposición alta	66 (4,8)	67 (6)	1,2 (0,8-1,7)	0,438	1,1 (0,7-1,6)	0,685
Monóxido de car	bono					
No expuesto	867 (62,5)	663 (59,7)				
Exposición baja	319 (23)	264 (23,8)	1,0 (0,8-1,2)	0,801	0,9 (0,7-1,2)	0,494
Exposición alta	202 (14,6)	184 (16,6)	1,0 (0,8-1,3)	0,956	0,9 (0,7-1,2)	0,606
Nieblas de aceite)					
No expuesto	1158 (83,4)	926 (83,3)				
Exposición baja	129 (9,3)	84 (7,6)	0,8 (0,6-1,0)	0,085	0,8 (0,5-1,0)	0,086
Exposición alta	101 (7,3)	101 (9,1)	1,14 (0,8-1,5)	0,403	1,1 (0,8-1,6)	0,480
Gases de escape	e diésel					
No expuesto	960 (69,2)	748 (67,3)				
Exposición baja	346 (24,9)	295 (26,6)	1,0 (0,8-1,2)	0,669	1,0 (0,8-1,2)	0,669
Exposición alta	82 (5,9)	68 (6,1)	1,0 (0,7-1,4)	0,773	0,7 (0,5-1,1)	0,135
Gases de escape	gasolina					
No expuesto	1023 (73,7)	801 (72,1)				
Exposición baja	216 (15,6)	188 (16,9)	1,0 (0,8-1,3)	0,961	1,0 (0,8-1,2)	0,742
Exposición alta	149 (10,7)	122 (11)	0,8 (0,6-1,1)	0,207	0,8 (0,6-1,0)	0,107
Gasolina						
No expuesto	1118 (80,5)	879 (79,1)				
Exposición baja	197 (14,2)	169 (15,2)	0,9 (0,7-1,2)	0,584	0,9 (0,7-1,1)	0,296
Exposición alta	73 (5,3)	63 (5,7)	1,0 (0,7-1,5)	0,750	1,0 (0,7-1,6)	0,806
Detergentes						
No expuesto	757 (54,5)	554 (49,9)				
Exposición baja	470 (33,9)	408 (36,7)	1,0 (0,9-1,2)	0,762	1,00 (0,8-1,2)	1,000
Exposición alta	161 (11,6)	149 (13,4)	1,0 (0,8-1,3)	0,927	0,9 (0,7-1,3)	0,698
Isocianatos						
No expuesto	1344 (96,8)	1071 (96,4)				
Exposición baja	29 (2,1)	24 (2,2)	0,9 (0,5-1,6)	0,717	1,0 (0,6-1,8)	0,956
Exposición alta	15 (1,1)	16 (1,4)	1,1 (0,6-2,3)	0,735	2,1 (0,9-5,0)	0,080

¹⁾ Ajuste básico (edad, región, nivel educativo). 2) Ajuste básico, carne roja e historia familiar.

En la categoría de exposición a agentes físicos, el ruido de impacto en exposiciones de baja intensidad se presenta asociado a menor riesgo para CaP, estadísticamente significativo (Tabla 26). No se observa el mismo resultado cuando las exposiciones son altas. No se observaron otras asociaciones de riesgo en el análisis para otros agentes físicos.

Tabla 26. Exposición laboral a agentes físicos y riesgo de CaP

Exposición	Control n=1388 n (%)	Casos n=1111 n (%)	OR (95%CI) ¹	Valor p	OR (95%CI) ²	Valor p
Frío						
No expuesto	415 (29,9)	273 (24,6)				
Exposición baja	707 (50,9)	558 (50,2)	1,0 (0,9-1,3)	0,633	1,0 (0,8-1,2)	0,791
Exposición alta	266 (19,2)	280 (25,2)	1,3 (1,0-1,7)	0,062	1,2 (0,9-1,6)	0,328
Calor						
No expuesto	536 (38,6)	338 (30,4)				
Exposición baja	599 (43,2)	519 (46,7)	1,2 (1,0-1,5)	0,099	1,1 (0,9-1,4)	0,449
Exposición alta	253 (18,2)	254 (22,9)	1,2 (0,9-1,6)	0,169	1,2 (0,9-1,6)	0,350
Radiaciones ultrav	violeta					
No expuesto	717 (51,7)	499 (44,9)				
Exposición baja	496 (35,7)	436 (39,2)	1,1 (0,9-1,4)	0,184	1,0 (0,8-1,3)	0,848
Exposición alta	175 (12,6)	176 (15,8)	1,1 (0,9-1,5)	0,401	1,0 (0,8-1,4)	0,730
Radiaciones ioniza	antes					
No expuesto	1333 (96)	1070 (96,3)				
Exposición baja	30 (2,2)	14 (1,3)	0,6 (0,3-1,2)	0,147	0,7 (0,4-1,4)	0,323
Exposición alta	25 (1,8)	27 (2,4)	1,4 (0,8-2,6)	0,209	1,5 (0,8-2,8)	0,189
Campos electroma	agnéticos de baja frec	uencia				
No expuesto	490 (35,3)	426 (38,3)				
Exposición baja	620 (44,7)	443 (39,9)	0,8 (0,7-1,0)	0,059	0,9 (0,7-1,1)	0,151
Exposición alta	278 (20)	242 (21,8)	1,0 (0,8-1,2)	0,777	1,0 (0,8-1,3)	0,881
Ultrasonidos de ba	aja frecuencia					
No expuesto	1148 (82,7)	916 (82,4)				
Exposición baja	174 (12,5)	139 (12,5)	1,0 (0,8-1,3)	0,893	1,0 (0,8-1,3)	0,966
Exposición alta	66 (4,8)	56 (5)	1,0 (0,7-1,4)	0,923	1,0 (0,6-1,5)	0,896
Radiaciones de fre	ecuencia					
No expuesto	1351 (97,3)	1082 (97,4)				
Exposición baja	17 (1,2)	18 (1,6)	1,3 (0,6-2,5)	0,494	1,2 (0,6-2,5)	0,664
Exposición alta	20 (1,4)	11 (1)	0,6 (0,3-1,3)	0,215	0,7 (0,3-1,7)	0,478
Ruido						
No expuesto	3 (,2)	7 (,6)				
Exposición baja	744 (53,6)	525 (47,3)	0,4 (0,1-1,4)	0,139	0,3 (0,1-1, 8)	0,195
Exposición alta	641 (46,2)	579 (52,1)	0,4 (0,1-1,7)	0,238	0,4 (0,1-2,4)	0,335
Ruido de impacto						
No expuesto	1186 (85,4)	957 (86,1)				
Exposición baja	157 (11,3)	109 (9,8)	0,8 (0,6-1,0)	0,043	0,7 (0,5-1,0)	0,036
Exposición alta	45 (3,2)	45 (4,1)	1,2 (0,8-1,8)	0,503	1,2 (0,7-1,9)	0,534

1) Ajuste básico (edad, centro, nivel educativo). 2) Ajuste básico, carne roja e historia familiar

Se analizó si podría existir relación entre la exposición a determinados agentes y la presencia de CaP de mayor o menor agresividad. Se clasificaron los casos de CaP según el valor de Gleason total de la biopsia **prostática** en dos categorías: Gleason ≤7 y Gleason >7. Consideramos que el valor del Gleason total en biopsia prostática es la variable aislada que mejor diferencia el CaP de riesgo bajo e intermedio del CaP de alto riesgo, en nuestro estudio.

La exposición a plaguicidas no mostró un aumento de riesgo para la aparición de CaP con valores de Gleason total desfavorables en la biopsia prostática (Tabla 27).

Tabla 27. Relación de riesgo entre la exposición de plaguicidas y aparición de Gleason <=7 y Gleason >7 en la biopsia prostática

Exposición	Control n=1388 n (%)	Gleason<=7 n=936 n (%)	Gleason>7 n=155 n (%)	RRR (95%CI) GI<=7 vs control	Valor p	RRR (95%CI) GI>7 vs control	Valor p
2,4 D							
No expuesto	1205 (56,9)	785 (37)	129 (6,1)				
Expuesto	183 (50,8)	151 (41,9)	26 (7,2)	1,1 (0,8-1,4)	0,560	0,8 (0,5-1,4)	0,493
Atrazina							
No expuesto	1096 (56,8)	718 (37,2)	115 (6)				
Expuesto	292 (53,1)	218 (39,6)	40 (7,3)	1,0 (0,8-1,2)	0,663	0,8 (0,6-1,3)	0,428
Captán							
No expuesto	1083 (57,1)	703 (37,1)	110 (5,8)				
Expuesto	305 (52,3)	233 (40)	45 (7,7)	1,0 (0,8-1,2)	0,934	1,0 (0,6-1,4)	0,843
Clorpirifós							
No expuesto	1058 (57,7)	671 (36,6)	104 (5,7)				
Expuesto	330 (51,1)	265 (41)	51 (7,9)	1,1 (0,9-1,3)	0,432	1,0 (0,7-1,5)	0,857
Dicuat							
No expuesto	1096 (56,8)	718 (37,2)	115 (6)				
Expuesto	292 (53,1)	218 (39,6)	40 (7,3)	1,0 (0,8-1,2)	0,663	0,8 (0,6-1,3)	0,428
Diurón							
No expuesto	1096 (56,8)	718 (37,2)	115 (6)				
Expuesto	292 (53,1)	218 (39,6)	40 (7,3)	1,0 (0,8-1,2)	0,663	0,8 (0,6-1,3)	0,428
Endosulfán							
No expuesto	1146 (56,7)	749 (37,1)	125 (6,2)				
Expuesto	242 (52,7)	187 (40,7)	30 (6,5)	1,0 (0,8-1,3)	0,894	0,7 (0,5-1,2)	0,184
Metomilo							
No expuesto	1181 (57,1)	767 (37,1)	121 (5,8)				
Expuesto	207 (50,5)	169 (41,2)	34 (8,3)	1,1 (0,9-1,4)	0,442	1,1 (0,7-1,7)	0,591
Piretrina							
No expuesto	1058 (57,8)	670 (36,6)	101 (5,5)				
Expuesto	330 (50,8)	266 (40,9)	54 (8,3)	1,1 (0,9-1,3)	0,412	1,1 (0,8-1,7)	0,487
Tiram							
No expuesto	1095 (56,9)	716 (37,2)	115 (6)				
Expuesto	293 (53)	220 (39,8)	40 (7,2)	1,0 (0,8-1,2)	0,704	0,8 (0,6-1,3)	0,412

La exposición por inhalación a polvos orgánicos e inorgánicos (Tabla 28) no implicó un mayor riesgo de presentar CaP con valores de Gleason superior a 7 en la biopsia prostática. Se observó un incremento de riesgo en la aparición de CaP con valor de Gleason \leq 7 en aquellos casos expuestos a polvo de cuarzo, de forma estadísticamente significativa.

Tabla 28. Relación de riesgo entre la exposición de polvos orgánicos e inorgánicos y aparición de Gleason <=7 y Gleason >7 en la biopsia prostática.

Exposición	Control n=1388 n (%)	Gleason<=7 n=936 n (%)	Gleason>7 n=155 n (%)	RRR (95%CI) GI<=7 vs control	Valor p	RRR (95%CI) GI>7 vs control	Valor p	
Polvo de harina	1							
No expuesto	1170 (57,2)	751 (36,7)	123 (6)					
Expuesto	218 (50,1)	185 (42,5)	32 (7,4)	1,2 (0,9-1,5)	0,141	1,1 (0,7-1,7)	0,746	
Polvo de cuero								
No expuesto	1368 (56,1)	917 (37,6)	154 (6,3)					
Expuesto	20 (50)	19 (47,5)	1 (2,5)	1,3 (0,7-2,5)	0,455	0,3 (0,0-2,5)	0,278	
Hongos								
No expuesto	1057 (56,7)	690 (37)	116 (6,2)					
Expuesto	331 (53,7)	246 (39,9)	39 (6,3)	1,0 (0,8-1,2)	0,919	0,7 (0,5-1,1)	0,124	
Pulpa o polvo d	le papel							
No expuesto	1371 (56,1)	922 (37,7)	153 (6,3)					
Expuesto	17 (51,5)	14 (42,4)	2 (6,1)	1,1 (0,5-2,2)	0,846	0,8 (0,2-3,6)	0,783	
Polvo de planta	s							
No expuesto	1075 (57,7)	678 (36,4)	110 (5,9)					
Expuesto	313 (50,8)	258 (41,9)	45 (7,3)	1,2 (0,9-1,4)	0,151	1,0 (0,7-1,4)	0,884	
Polvo de mader	ra							
No expuesto	933 (58,7)	562 (35,4)	94 (5,9)					
Expuesto	455 (51,1)	374 (42)	61 (6,9)	1,2 (0,9-1,4)	0,148	0,9 (0,6-1,3)	0,439	
Polvo de animales								
No expuesto	1182 (57,3)	759 (36,8)	121 (5,9)					
Expuesto	206 (49,4)	177 (42,4)	34 (8,2)	1,2 (0,9-1,5)	0,199	1,0 (0,7-1,6)	0,883	

La exposición al amianto no se asoció a un incremento de riesgo para la aparición de CaP Gleason mayor a 7.

Tabla 28 (continuación). Relación de riesgo entre la exposición de polvos orgánicos e inorgánicos y aparición de Gleason <=7 y Gleason >7 en la biopsia prostática.

Exposición	Control n=1388 n (%)	Gleason<=7 n=936 n (%)	Gleason>7 n=155 n (%)	RRR (95%CI) GI<=7 vs control	Valor p	RRR (95%CI) GI>7 vs control	Valor p
Bacterias de o	rigen no humano						
	-						
No expuesto	1241 (56,2)	830 (37,6)	139 (6,3)				
Expuesto	147 (54,6)	106 (39,4)	16 (5,9)	0,9 (0,7-1,2)	0,469	0,6 (0,4-1,1)	0,125
Amianto							
No expuesto	1285 (56,8)	841 (37,1)	138 (6,1)				
Expuesto	103 (47,9)	95 (44,2)	17 (7,9)	1,2 (0,9-1,6)	0,322	1,1 (0,6-1,9)	0,833
Fibras minerale	es artificiales						
No expuesto	1237 (56,6)	813 (37,2)	136 (6,2)				
Expuesto	151 (51,5)	123 (42)	19 (6,5)	1,1 (0,8-1,4)	0,528	0,8 (0,5-1,4)	0,481
Otros polvos m	ninerales						
No expuesto	1023 (57,7)	650 (36,7)	100 (5,6)				
Expuesto	365 (51,7)	286 (40,5)	55 (7,8)	1,1 (0,9-1,3)	0,394	1,2 (0,8-1,7)	0,393
Polvo de cuarz	o (sílice cristalin	a)					
No expuesto	939 (59,2)	556 (35,1)	90 (5,7)				
Expuesto	449 (50,2)	380 (42,5)	65 (7,3)	1,3 (1,0-1,5)	0,020	1,0 (0,7-1,5)	0,966
Polvo de polím	eros sintéticos						
No expuesto	1309 (56,1)	877 (37,6)	146 (6,3)				
Expuesto	79 (53,7)	59 (40,1)	9 (6,1)	0,9 (0,6-1,3)	0,691	0,7 (0,3-1,5)	0,381
Polvo textil							
No expuesto	1262 (56)	851 (37,7)	142 (6,3)				
Expuesto	126 (56,3)	85 (37,9)	13 (5,8)	1,0 (0,7-1,3)	0,828	0,8 (0,4-1,4)	0,423

En la exposición por inhalación a Cd o As, no se observó un mayor riesgo de CaP agresivo. (Tabla 29). Se pudo observar que la exposición a compuestos volátiles de azufre presentó un incremento del riesgo para neoplasias prostáticas con valor de Gleason menor o igual a 7, de forma estadísticamente significativa.

Tabla 29. Relación de riesgo entre la exposición de polvos orgánicos e inorgánicos y aparición de Gleason <=7 y Gleason >7 en la biopsia prostática.

Exposición	Control n=1388 n (%)	Gleason<=7 n=936 n (%)	Gleason>7 n=155 n (%)	RRR (95%CI) GI<=7 vs control	Valor p	RRR (95%CI) GI>7 vs control	Valor p
Arsénico							
No expuesto	1364 (56,1)	915 (37,7)	151 (6,2)				
Expuesto	24 (49)	21 (42,9)	4 (8,2)	1,4 (0,8-2,6)	0,280	1,4 (0,5-4,3)	0,515
Cadmio							
No expuesto	1285 (56,5)	854 (37,5)	136 (6)				
Expuesto	103 (50,5)	82 (40,2)	19 (9,3)	1,0 (0,7-1,4)	0,872	1,3 (0,8-2,3)	0,309
Cromo							
No expuesto	999 (57,2)	643 (36,8)	106 (6,1)				
Expuesto	389 (53,2)	293 (40,1)	49 (6,7)	1,1 (0,9-1,3)	0,431	1,0 (0,7-1,4)	0,960
Hierro							
No expuesto	1025 (57,2)	659 (36,8)	109 (6,1)				
Expuesto	363 (52,9)	277 (40,4)	46 (6,7)	1,1 (0,9-1,3)	0,360	1,0 (0,7-1,5)	0,973
Plomo							
No expuesto	677 (58,4)	419 (36,1)	64 (5,5)				
Expuesto	711 (53,9)	517 (39,2)	91 (6,9)	1,0 (0,8-1,2)	0,823	0,9 (0,6-1,4)	0,769
Níquel							
No expuesto	1012 (57,2)	651 (36,8)	105 (5,9)				
Expuesto	376 (52,9)	285 (40,1)	50 (7)	1,1 (0,9-1,3)	0,527	1,1 (0,7-1,5)	0,790
Dióxido de azu	fre						
No expuesto	1253 (56,3)	833 (37,4)	139 (6,2)				
Expuesto	135 (53,1)	103 (40,6)	16 (6,3)	1,1 (0,8-1,5)	0,502	0,8 (0,5-1,5)	0,556
Compuestos vo	olátiles de azufre	•					
No expuesto	1074 (58)	667 (36)	110 (5,9)				
Expuesto	314 (50)	269 (42,8)	45 (7,2)	1,3 (1,0-1,6)	0,020	0,9 (0,6-1,4)	0,660
Humos de sold	adura						
No expuesto	1022 (57)	662 (36,9)	109 (6,1)				
Expuesto	366 (53,4)	274 (39,9)	46 (6,7)	1,1 (0,9-1,3)	0,485	1,0 (0,7-1,5)	0,971

En el grupo de derivados petroquímicos, disolventes y detergentes (Tabla 30), la exposición a este tipo de agentes no incrementó el riesgo de aparición de CaP de alto riesgo o riesgo bajo-intermedio. La exposición a PAH, gases de escape diésel o gasolina presentan valores de RR igual o menores a 1 estadísticamente no significativos para CaP con Gleason en la biopsia prostática mayor o igual a 7.

Tabla 30. Relación de riesgo entre la exposición derivados petroquímicos, disolventes y detergentes con la aparición de Gleason <=7 y Gleason >7 en la biopsia prostática.

	Control	Gleason<=7	Gleason>7					
Exposición	n=1388 n (%)	n=936 n (%)	n=155 n (%)	RRR (95%CI) GI<=7 vs control	Valor p	RRR (95%CI) GI>7 vs control	Valor p	
Hidrocarburos alifáticos y alicíclicos								
No expuesto	1144 (56,1)	767 (37,6)	130 (6,4)					
Expuesto	244 (55,7)	169 (38,6)	25 (5,7)	1,0 (0,8-1,2)	0,811	0,8 (0,5-1,2)	0,287	
Hidrocarburos a	romáticos							
No expuesto	1242 (56,2)	829 (37,5)	138 (6,2)					
Expuesto	146 (54,1)	107 (39,6)	17 (6,3)	1,0 (0,7-1,3)	0,751	0,8 (0,5-1,4)	0,422	
Hidroclorados								
No expuesto	1328 (56,2)	888 (37,6)	148 (6,3)					
Expuesto	60 (52,2)	48 (41,7)	7 (6,1)	1,0 (0,7-1,5)	0,890	0,7 (0,3-1,7)	0,464	
Formaldehído								
No expuesto	1001 (56,6)	658 (37,2)	109 (6,2)					
Expuesto	387 (54,4)	278 (39,1)	46 (6,5)	1,0 (0,8-1,3)	0,789	0,9 (0,6-1,3)	0,604	
Cloruro de metil	eno							
No expuesto	1282 (56,2)	858 (37,6)	141 (6,2)					
Expuesto	106 (53,5)	78 (39,4)	14 (7,1)	1,0 (0,7-1,3)	0,877	0,9 (0,5-1,7)	0,825	
Otros disolvente	es orgánicos							
No expuesto	1267 (56,2)	849 (37,6)	140 (6,2)					
Expuesto	121 (54,3)	87 (39)	15 (6,7)	0,9 (0,7-1,3)	0,698	0,9 (0,5-1,5)	0,585	
Percloroetileno								
No expuesto	1367 (56)	923 (37,8)	151 (6,2)					
Expuesto	21 (55,3)	13 (34,2)	4 (10,5)	0,9 (0,4-1,8)	0,728	1,5 (0,5-4,5)	0,471	
Hidrocarburos a	romáticos policí	íclicos						
No expuesto	1083 (56,6)	713 (37,3)	117 (6,1)					
Expuesto	305 (53,9)	223 (39,4)	38 (6,7)	1,1 (0,9-1,3)	0,514	1,0 (0,7-1,5)	0,905	
Tolueno								
No expuesto	1033 (55,7)	702 (37,9)	118 (6,4)					
Expuesto	355 (56,7)	234 (37,4)	37 (5,9)	0,9 (0,8-1,1)	0,551	0,8 (0,6-1,2)	0,360	
Tricloroetileno								
No expuesto	1369 (56)	925 (37,8)	151 (6,2)					
Expuesto	19 (55,9)	11 (32,4)	4 (11,8)	0,8 (0,4-1,7)	0,589	1,6 (0,5-5)	0,385	

Tabla 30 (continuación). Relación de riesgo entre la exposición derivados petroquímicos, disolventes y detergentes con la aparición de Gleason <=7 y Gleason >7 en la biopsia prostática.

Exposición	Control n=1388 n (%)	Gleason<=7 n=936 n (%)	Gleason>7 n=155 n (%)	RRR (95%CI) GI<=7 vs control	Valor p	RRR (95%CI) GI>7 vs control	Valor p
Humos asfáltico	S						
No expuesto	1353 (56,2)	906 (37,6)	148 (6,1)				
Expuesto	35 (48,6)	30 (41,7)	7 (9,7)	1,2 (0,7-2,0)	0,542	1,4 (0,6-3,2)	0,480
Benzo(a)pireno							
No expuesto	1073 (56,6)	708 (37,4)	114 (6)				
Expuesto	315 (53,9)	228 (39)	41 (7)	1,1 (0,9-1,3)	0,557	1,0 (0,7-1,5)	0,840
Monóxido de car	rbono						
No expuesto	867 (57,2)	556 (36,7)	92 (6,1)				
Expuesto	521 (54)	380 (39,4)	63 (6,5)	1,0 (0,8-1,2)	0,901	0,9 (0,6-1,2)	0,450
Nieblas de aceite	•						
No expuesto	1158 (56)	786 (38)	123 (6)				
Expuesto	230 (55,8)	150 (36,4)	32 (7,8)	0,9 (0,7-1,1)	0,373	1,1 (0,7-1,7)	0,710
Gases de escape	e diésel						
No expuesto	960 (56,7)	630 (37,2)	102 (6)				
Expuesto	428 (54,4)	306 (38,9)	53 (6,7)	1,0 (0,8-1,2)	0,712	0,9 (0,6-1,3)	0,704
Gases escape ga	asolina						
No expuesto	1023 (56,6)	677 (37,4)	108 (6)				
Expuesto	365 (54,4)	259 (38,6)	47 (7)	0,9 (0,8-1,1)	0,453	1,0 (0,7-1,5)	0,979
Gasolina							
No expuesto	1118 (56,5)	739 (37,3)	123 (6,2)				
Expuesto	270 (54,1)	197 (39,5)	32 (6,4)	1,0 (0,8-1,2)	0,981	0,8 (0,5-1,3)	0,392
Detergentes							
No expuesto	757 (58,5)	462 (35,7)	76 (5,9)				
Expuesto	631 (53,3)	474 (40)	79 (6,7)	1,1 (0,9-1,3)	0,562	0,9 (0,6-1,3)	0,608
Isocianatos							
No expuesto	1344 (56,1)	900 (37,6)	151 (6,3)				
Expuesto	44 (52,4)	36 (42,9)	4 (4,8)	1,1 (0,7-1,7)	0,802	0,6 (0,2-1,8)	0,405

Modelo ajustado por edad, región, nivel educativo

En la categoría por exposición a agentes físicos (Tabla 31), se observó un RR de 1,3 estadísticamente significativo entre casos expuestos a "calor" y CaP Gleason ≤ 7 . La exposición a otros agentes físicos no mostró un incremento del RR para CaP Gleason ≤ 7 ó > a 7.

Tabla 31. Relación de riesgo entre la exposición a agentes físicos y la aparición de Gleason <=7 y Gleason >7 en la biopsia prostática

Exposición	Control n=1388 n (%)	Gleason<=7 n=936 n (%)	Gleason>7 n=155 n (%)	RRR (95%CI) GI<=7 vs control	Valor p	RRR (95%CI) GI>7 vs control	Valor p
Frío							
No expuesto	415 (61)	231 (34)	34 (5)				
Expuesto	973 (54,1)	705 (39,2)	121 (6,7)	1,1 (0,9-1,4)	0,303	1,0 (0,7-1,6)	0,838
Calor							
No expuesto	536 (62)	283 (32,8)	45 (5,2)				
Expuesto	852 (52,8)	653 (40,4)	110 (6,8)	1,3 (1,0-1,5)	0,038	1,0 (0,6-1,5)	0,905
Radiaciones ultr	avioleta						
No expuesto	717 (59,6)	418 (34,7)	69 (5,7)				
Expuesto	671 (52,6)	518 (40,6)	86 (6,7)	1,2 (1,0-1,4)	0,093	0,9 (0,7-1,4)	0,781
Radiaciones ion	izantes						
No expuesto	1333 (55,9)	904 (37,9)	146 (6,1)				
Expuesto	55 (57,3)	32 (33,3)	9 (9,4)	0,9 (0,6-1,4)	0,699	1,6 (0,7-3,3)	0,234
Campos electror	magnéticos de b	aja frecuencia					
No expuesto	490 (54)	357 (39,4)	60 (6,6)				
Expuesto	898 (57,1)	579 (36,8)	95 (6)	0,9 (0,7-1,1)	0,180	0,8 (0,6-1,2)	0,353
Ultrasonidos de	baja frecuencia						
No expuesto	1148 (56,1)	770 (37,7)	127 (6,2)				
Expuesto	240 (55,3)	166 (38,2)	28 (6,5)	1,0 (0,8-1,3)	0,963	0,9 (0,6-1,4)	0,683
Radiaciones de	frecuencia						
No expuesto	1351 (56)	910 (37,7)	153 (6,3)				
Expuesto	37 (56,9)	26 (40)	2 (3,1)	1,0 (0,6-1,6)	0,913	0,5 (0,1-2,0)	0,306
Ruido							
No expuesto	3 (30)	7 (70)	0 (0)				
Expuesto	1385 (56,1)	929 (37,6)	155 (6,3)	0,3 (0,1-1,3)	0,108		0,986
Ruido de impact	0						
No expuesto	1186 (55,8)	809 (38,1)	129 (6,1)				
Expuesto	202 (56,9)	127 (35,8)	26 (7,3)	0,8 (0,6-1,1)	0,129	1,0 (0,6-1,6)	0,969

Modelo ajustado por edad, región, nivel educativo

DISCUSIÓN

7.1 El cáncer de próstata en el marco del estudio MCC-Spain

En el estudio MCC-Spain, la media de edad en el diagnóstico de CaP es de 66 años, observándose diferencias significativas entre las diferentes regiones participantes. El valor de PSA más frecuente en el debut de la enfermedad es de 6 ng/mL. El adenocarcinoma infiltrante es el único tipo histológico hallado en muestras de biopsia prostática y de pieza quirúrgica de prostatectomía radical. En la mayoría de casos, el CaP se encuentra clínicamente organoconfinado y el valor total de Gleason en la biopsia prostática es de 6. Se han identificado casos familiares de CaP y éstos presentan unas características distintas respecto los casos esporádicos: el CaP se diagnostica en edades más tempranas, con valores de PSA más bajos habiendo mayor porcentaje de clasificados como de menor riesgo (clasificación de D'Amico). Sin embargo, no presentan diferencias ni el estadío clínico ni en el grado total de Gleason en la biopsia prostática. La prostatectomía radical fue el tratamiento de elección, frente a la radioterapia, la hormonoterapia, la vigilancia activa o la conducta expectante. No se han identificado casos tratados mediante terapia focal. La pieza quirúrgica de prostatectomía radical muestra con mayor frecuencia tumores organoconfinados, con un grado total de Gleason igual a 7, a diferencia de los resultados obtenidos en la biopsia prostática.

En el estudio MCC-Spain, se observa que la edad media para el diagnóstico de la enfermedad es de 66 años, con un 19% de casos diagnosticados en varones menores de 60 años. Estos resultados son similares a los observados en la literatura: el mayor volumen de casos diagnosticados se observa a partir de los 65 años, sin embargo en un 20% de la población el CaP se diagnostica entre los 50-60 años (107). Cózar et al (108) en un registro de casos de CaP recogidos en Andalucía, Cataluña y Madrid en 2010 observaron que la media de edad en el momento del diagnóstico era de 69 años y siendo solo el 14,6% menores de 60 años. Según los datos recogidos entre 2006 y 2010 de la Surveillance, Epidemiology and End Results (SEER) del National Cancer Institute (NCI) de Estados Unidos de América, la edad media en el momento del diagnóstico fue de 66 años (109). Igualmente, los 67 años es la edad media para el diagnóstico para CaP en el registro del estudio CaPSURE (110). Del análisis comparativo entre las regiones participantes, observamos que la edad media al diagnóstico es diferente entre comunidades: Madrid y Asturias son las regiones en las que se diagnostica el CaP entre 1 y 2 años antes que en el resto de regiones. Estas diferencias podrían ser casuales, ya que no existe un programa de detección precoz de CaP diferente entre

estas regiones. Aun así, sigue siendo el intervalo entre los 60 y los 70 años cuando se diagnostica más frecuentemente la enfermedad, para todas las comunidades participantes.

El valor medio de PSA en el momento del diagnóstico está por encima de 10 ng/mL (11,78), con un rango amplio que oscila entre 1,09 y 695 ng/mL, siendo el valor más frecuente 6 ng/mL. La región que presenta un valor medio de PSA más alto es Huelva (19,42 ng/mL) que según la clasificación de riesgo de D'Amico, corresponde a un tumor prostático de riesgo intermedio, casi de alto riesgo.

Según Thompson et al (2004), pacientes con niveles de PSA entre 3 y 4 ng/mL pueden presentar un CaP en un 27% de los casos y en un 6,7% el tumor tiene un valor de Gleason total mayor o igual a 7 (111). En el estudio MCC-Spain, los tumores diagnosticados con PSA por debajo de 4 ng/mL representan el 3% de la muestra: el valor de Gleason total en la biopsia prostática fue de 6 en un 60% de los casos, de 7 en un 30% de los casos y casi un 6% presentaron un valor de Gleason ≥8. En la pieza quirúrgica de prostatectomía radical de estos pacientes con PSA menor a 4 ng/mL, se repite el predominio del valor de Gleason 6 (31%), aunque hallamos tumores con Gleason 7 en un 24% y con Gleason ≥8 en un 13% de los casos. Estos resultados no son únicos del estudio MCC-Spain. Choi et al ya observaron tumores de alto riesgo en biopsias de próstata y en piezas de prostatectomía radical cuando el valor de PSA en el debut de la enfermedad estaba entre 3-4 ng/mL (112).

Basándonos en la clasificación de riesgo de D'Amico, hallamos que un 32% de los casos de CaP son de bajo riesgo, un 35% son de riesgo intermedio y un 25% son de riesgo alto. Estos resultados son diferentes a los aportados en el registro de Cózar et al (108): un 37% de los casos eran CaP de bajo riesgo, un 23% de riesgo intermedio y un 28% de alto riesgo. En el estudio CaPSURE también reportan una distribución diferente: el 47% de los casos son de bajo riesgo y el 24% son de alto riesgo (110). No obstante, los 3 estudios coinciden en que la suma de los casos de riesgo intermedio y alto riesgo, es decir los tumores que potencialmente comprometen la supervivencia del paciente diagnosticado de CaP, superan el 50%. Igualmente, coinciden en que el porcentaje de casos de alto riesgo en el momento del diagnóstico está alrededor de un 25%.

En nuestro estudio el 94% de los tumores son organoconfinados y la presencia de metástasis óseas en el debut de la enfermedad es del 1,4% de los casos. El grupo de Cózar et al (108) registran un 90% de casos organoconfinados y en los datos publicados por el SEER, para el período entre 2002 y 2011 (ser.cancer.gov/faststats), un 80,1% de organoconfinados. En ambos registros se detectaron un 4% de metástasis óseas en el momento del diagnóstico.

Está demostrado que el número de cilindros influye en la probabilidad de detección del CaP, el correcto estadiaje y mejor diagnóstico anatomopatológico (113) (114). La biopsia de próstata con

la toma de 6 cilindros en total ya no se considera adecuada para un buen diagnóstico de CaP y la toma de entre 10 y 12 cilindros incrementa la tasa de detecciones (115) (116). En nuestro estudio, globalmente, la media de cilindros obtenidos por lóbulo prostático fue de 5, es decir, 10 cilindros por cada biopsia prostática. Las biopsias de próstata incluyen 10 cilindros como mínimo en la mayoría de ocasiones, para todas las regiones.

Los varones con antecedentes familiares de primer grado (padres, hermanos) de CaP tienen el doble de riesgo de presentar la enfermedad (117) (18), aunque parece ser que el curso de la enfermedad es similar entre los casos esporádicos y los familiares (118). Una posible justificación de por qué existe una mayor incidencia de CaP o por qué se detectan a menor edad en los casos familiares es porque los familiares de los pacientes afectos pueden estar más concienciados con la enfermedad y solicitan iniciar los controles para la detección precoz con mayor antelación. De esta manera, se consigue detectar el CaP en fases más iniciales (119) (120). A partir del cuestionario MCC-Spain se han podido identificar pacientes con CaP con antecedentes familiares de primer grado para CaP. A partir de los resultados obtenidos en nuestro estudio alcanzamos conclusiones similares a las publicadas en la literatura: la detección del cáncer se realiza con niveles de PSA más bajos en los casos familiares que en los esporádicos (7,6 versus 12,6), a una edad menor (64 versus 66 años) y el porcentaje de tumores de bajo riesgo según clasificación de D' Amico es mayor (42% versus 33,6%). No obstante, no se han observado diferencias significativas en el estadío clínico, ni en el valor de Gleason de la biopsia prostática en el momento del diagnóstico.

La prostatectomía radical es el tratamiento de elección realizado con mayor frecuencia en nuestra muestra, por delante de la radioterapia electiva. Se ha podido observar que en pacientes de mayor edad y con un valor de Gleason más alto en la biopsia prostática se ofrece con más frecuencia tratamientos como radioterapia u hormonoterapia. Según se afirma en la Guías Clínicas de la Asociación Europea de Urología (121), la cirugía de prostatectomía radical es el tratamiento estándar con intención curativa más recomendado para los pacientes con un CaP de bajo riesgo o intermedio y con una expectativa de vida mayor de 10 años. Tanto la cirugía como la radioterapia ofrecen resultados similares en términos de supervivencia para el tratamiento del CaP, sobretodo en los casos de bajo riesgo (122) (123). No obstante la edad puede ser un factor determinante a la hora de elegir un tratamiento a igualdad de pronóstico para el CaP en la práctica clínica diaria (124). En nuestro estudio hemos podido observar que la edad no es un factor determinante para los resultados anatomopatológicos en la pieza quirúrgica de prostatectomía radical y no afecta al grado de Gleason total, al estadío patológico ni a los márgenes quirúrgicos.

En conclusión, los resultados obtenidos a partir del estudio MCC-Spain no difieren de forma notable de los obtenidos en registros nacionales o internacionales, con tamaños muestrales más grandes. Creemos que nuestro estudio describe de forma representativa cómo es la actualidad del

CaP. No obstante, nuestro estudio posee algunas limitaciones: 1) el escaso número de participantes incluidos en algunas de las regiones participantes, como por ejemplo Asturias, donde probablemente esta muestra no sea suficientemente representativa de la forma de presentación del CaP en esta región 2) al ser un estudio multicéntrico existe variabilidad entre observadores en datos clínicos y patológicos. A pesar de ello, hemos de tener en cuenta que el objetivo principal del estudio MCC-Spain no es la descripción clínica de casos o realizar un registro nacional exhaustivo de CaP sino el estudio de la posible relación entre exposiciones ambientales y el CaP.

7.2 El cáncer de próstata y exposición ocupacional

En el estudio MCC-Spain, la profesión con mayor riesgo para CaP, a mayor número de años expuesto, es la de peluquero o especialistas en tratamiento de belleza o asimilados, pero los resultados se obtuvieron con un número bajo de casos y controles. Las ocupaciones clásicamente relacionadas con el CaP como son los trabajadores en actividades agrícolas, trabajadores de la industria del caucho, del metal o expuestos a gases de motor diésel, no se han mostrado como profesiones de riesgo en nuestro estudio. Las profesiones con menor riesgo asociado a CaP son militares de escala básica, escritores, periodistas, programadores informáticos, ebanistas y los denominados directores de operaciones en empresas de intermediación.

Los factores de riesgo más reconocidos para el desarrollo del CaP son la edad, la historia familiar y la etnia. Según la IARC, existen una serie de agentes carcinogénicos que en humanos tienen una evidencia limitada como posibles factores de riesgo para el CaP: los esteroides anabolizantes, el consumo de carne roja, el As y sus compuestos inorgánicos, el Cd, la producción industrial de caucho, el malatión, las radiaciones gamma y el torio-232. Por tanto, no disponemos actualmente de ningún elemento carcinogénico que en humanos tenga suficiente evidencia científica como causante o factor de riesgo para el CaP. La exposición a algunos de estos agentes carcinogénicos se ha evaluado en el marco del estudio MCC-Spain: se han estudiado 103 profesiones codificadas mediante el sistema de CNO94 y los 62 agentes (químicos, físicos y biológicos) incluidos en MatEmEsp.

Para evitar errores de clasificación, la codificación de las ocupaciones según la clasificación CNO94, fue llevada a cabo por dos higienistas ocupacionales, que clasificaban los individuos de forma individual y posteriormente comparaban las codificaciones para alcanzar una correcta concordancia en sus evaluaciones. No obstante, las ocupaciones, los años trabajados en cada ocupación, los solapamientos laborales, etc. son reportados por el paciente y esto puede suponer un sesgo de información.

No están presentes en el estudio todas las ocupaciones que se contemplan en la matriz MatEmEsp, sólo aquellas profesiones que fueron reportadas por los sujetos entrevistados y que la suma entre casos y controles era igual a 15 participantes. Por lo tanto, no están evaluadas todas las profesiones como potenciales factores de riesgo para CaP. Por otro lado, algunas profesiones de riesgo descritas en la literatura, como por ejemplo los trabajadores de la industria del caucho, en nuestro estudio no alcanzan un tamaño muestral amplio.

En los análisis *alguna vez expuestos* versus *nunca expuestos*, si los sujetos han trabajado alguna vez durante su vida laboral en una determinada ocupación, sin tener en cuenta los años de duración de exposición a la ocupación, observamos que las profesiones de mayor riesgo para CaP son los peones agropecuarios (CNO9430) y los revocadores, escayolistas y estuquistas (CNO7210). Las profesiones con menor riesgo para CaP son los <u>militares de escala básica</u> (CNO0030), los denominados <u>directores de operaciones en empresas de intermediación</u> (CNO1127), <u>escritores y periodistas</u> (CNO2511), <u>informáticos</u> (CNO3031) y <u>ebanistas</u> (CNO7920). Estos resultados pueden ser plausibles por cómo estos trabajadores están expuestos a los diversos agentes ocupacionales. Según MatEmEsp, los peones agropecuarios están expuestos a múltiples plaguicidas, al polvo de cuarzo (sílice cristalina) y a compuestos volátiles de azufre; revocadores, escayolistas y estuquistas están expuestos también a agentes potencialmente carcinogénicos como el amianto o el polvo de cuarzo; mientras que las profesiones de menor riesgo observadas en nuestro estudio están expuestos a agentes como el ruido o campos electromagnéticos de baja frecuencia con una intensidad baja.

En los análisis teniendo en cuenta los años de exposición, peones de la construcción de edificios (CNO9602) y operadores en hornos de segunda fusión (CNO8122) presentan una OR de riesgo cuando los años de exposición a la profesión es menor o igual a 4 años y menor o igual a 7 años, respectivamente. A más años expuestos, no se observa una asociación de riesgo. Estas profesiones no muestran una relación tipo dosis-respuesta consistente con CaP, es decir, no se observa que a mayor número de años expuestos, mayor incremento del riesgo para padecer CaP. Las profesiones de militar de escala básica e informático siguen presentando también un riesgo menor consistente para CaP, si las exposiciones son de baja duración. Igualmente, trabajadores de la cerámica y alfareros también presentan menor riesgo de CaP si la duración de la exposición es baja.

La profesión de <u>peluquero o especialistas en tratamientos de belleza o asimilados</u> (CNO5130) presenta un exceso de riesgo para CaP, cuanto mayor es el número de años expuesto. Éste es el primer estudio que pone de manifiesto una posible relación entre esta profesión y el CaP. En la literatura consultada, la profesión de peluquero se ha vinculado con otros tipos de cánceres como los de vejiga, pulmón, laringe o hematológicos (125), pero no con el prostático. Este resultado necesitaría de la confirmación con nuevos estudios posteriores dado que esta relación la hemos podido observar con un escaso número de pacientes (2 controles y 8 casos).

En nuestro estudio, aquellas profesiones clásicamente relacionadas con el CaP en la literatura consultada (agricultura, trabajadores con metal o trabajadores en la industria del caucho o expuesto a emisiones de motores diésel) no han mostrado un mayor riesgo para padecer CaP. Los oficios relacionados con la agricultura y la ganadería han sido referenciados como profesiones de riesgo

para padecer CaP aunque han mostrado resultados inconsistentes entre los diferentes estudios publicados (64)(65)(66). Hemos analizado las profesiones dedicadas a la agricultura y ganadería: trabajadores cualificados en actividades agrícolas (127 casos y 148 controles), trabajadores cualificados en viveros, huertas y jardines (10 casos y 6 controles) y trabajadores cualificados en actividades ganaderas (88 casos y 73 controles). No se observa un incremento de riesgo para CaP, estadísticamente significativo. Sólo para los peones agropecuarios (CNO9430) hemos observado un aumento de riesgo, aunque como hemos comentado anteriormente, en los análisis realizados teniendo en cuenta el tiempo de exposición en años, no se observa una asociación de riesgo.

Según las monografías publicadas por la IARC, se concluye que existe una débil asociación entre la exposición a la industria del caucho y el CaP. Estas conclusiones se basan en estudios de metaanálisis (84) y en otro más reciente publicado por Zeegers et al (63) en 2004. En 2005 Sathiakumar et al (88) observaron en trabajadores de la industria del caucho norteamericanos (Texas, Kentucky, Louisiana) y canadienses (Ontario) una mayor mortalidad por CaP respecto la población general de estas zonas, aunque no parecía tener relación con exposiciones ocupacionales acumulativas a butadieno o estireno cuando se comparó con un estudio complementario. Estos resultados podrían deberse a factores de confusión no profesionales. Más recientemente, en 2009, Vöcht (126) relacionó la exposición acumulativa a aminas aromáticas en la industria del caucho con el riesgo de desarrollar CaP de forma estadísticamente significativa. Respecto a la industria del caucho, el único sector profesional con suficiente número de participantes para su análisis en nuestro estudio es el de operadores de máquinas para fabricar productos de caucho o plástico (CNO8331). El número de pacientes incluidos fueron 9 controles y 9 casos. No observamos un exceso de riesgo estadísticamente significativo (OR: 1,0; p=0,977). Existen otros dos códigos en MatEmEsp para la industria del caucho: CNO8230 (encargados de operadores que manipulan las máquinas para la fabricación del caucho o materiales plásticos) y CNO8414 (profesionales que ensamblan o montan componentes de caucho). Estos códigos no han alcanzado el número de participantes suficiente en nuestro estudio para poder realizar su análisis. La escasa representación de profesionales relacionados con la industria del caucho en nuestro estudio impide que se pueda evaluar correctamente el riesgo asociado a CaP.

7.3 El cáncer de próstata y exposición a agentes ocupacionales

En MCC-Spain, los <u>compuestos volátiles de azufre</u> y el <u>polvo de cuarzo</u> (sílice cristalina) son los únicos agentes ocupacionales que han mostrado un incremento de riesgo asociado a CaP en el análisis comparativo entre *alguna vez expuesto* frente a *nunca expuesto*. Este incremento de riesgo no se observa si los análisis se ajustan por consumo de carne roja e historia familiar. Las exposiciones de baja intensidad a <u>bacterias de origen no humano</u> o a <u>ruido de impacto</u> se asocian con menor riesgo de CaP. Las exposiciones a plaguicidas, As, Cd, derivados petroquímicos, disolventes, detergentes o a metales no incrementan el riesgo de padecer CaP.

Los pacientes expuestos a <u>plaguicidas</u> no tienen un riesgo mayor significativo de padecer CaP, ni en los análisis comparativos entre *alguna vez expuesto* versus *nunca expuesto*, ni en participantes que por su ocupación y/o tiempo de exposición han estado altamente expuestos a estos agentes. Los resultados obtenidos por Alavanja et al en 2003 (70), en el seno del *Agricultural Health Study Control*, mostraban que la exposición a atrazina, clorpirifós o captán no alcanzaba un incremento de riesgo estadísticamente significativo para CaP. En el mismo estudio, sí se observó una relación de riesgo con la exposición a clorpirifós entre los individuos con historia familiar de CaP estadísticamente significativa (OR de 1,65; p=0,04). Otro estudio publicado por Barry et al en 2011 (127), se pudo observar que la exposición a agentes pesticidas como el 2,4-D, captán, clorpirifós y atrazina tampoco producen un incremento de riesgo para CaP. Otras publicaciones tampoco han conseguido demostrar de forma consistente que la exposición a agentes como el clorpirifós o la atrazina puedan correlacionarse con el CaP (128) (129). En un artículo de revisión publicado por Mink et al (76) en 2008 en el que se incluyen 8 estudios de cohortes y 5 estudios tipo caso-control, se concluye que no hay una relación consistente entre la exposición a plaguicidas y CaP.

En nuestro estudio, la exposición al <u>Cd</u> por inhalación no está asociado a CaP, ni en los análisis de *expuestos alguna vez* frente a *nunca expuestos*, ni en los análisis comparativos por intensidad de exposición. El Cd está reconocido actualmente por la IARC como elemento potencialmente carcinogénico para CaP con una evidencia limitada. En modelos in vivo e in vitro experimentales, este metal parece tener capacidad carcinogénica (62) (130). Sin embargo, entre los estudios epidemiológicos existen discrepancias sobre el posible efecto del Cd y el CaP. Estudios epidemiológicos recientes hallan una asociación significativa con el CaP (131) (132) (133) (101) y también en otros estudios más antiguos (98) (134) (96) (135). No obstante, en el artículo de revisión realizado por Navarro et al (136) se concluye que el Cd es un elemento de riesgo más claramente asociado con el cáncer de pulmón que para el CaP. Sahmoun et al (100) concluyen en su meta-análisis que no existe una relación convincente entre Cd y CaP, pero argumentan que los

métodos usados para evaluar la exposición al Cd podrían ser imprecisos y recomiendan nuevos métodos de evaluación de la exposición al Cd, como por ejemplo, mediante la detección de este elemento en orina en lugar de muestras biológicas de uñas o pelo. En la revisión sistemática de Verougstraete et al (99) tampoco hallaron resultados que asociaran positivamente la exposición de Cd y CaP. De manera contraria, en un meta-análisis más reciente publicado por Ju-Kun et al (137) en 2016, sí que observa una relación de riesgo entre una exposición ocupacional alta al Cd y CaP. No obstante, las principales limitaciones de este meta-análisis radican en la heterogeneidad entre los diferentes estudios, posibles factores de confusión no ajustados entre los diferentes estudios, una inadecuada evaluación de la exposición al Cd y las diferencias entre estudios en cuanto a la definición básica de exposición a Cd.

El <u>As</u>, como elemento carcinogénico para el tumor de próstata también está reconocido por la IARC (138). Tanto en estudios in vitro (139) (140) como en estudios epidemiológicos, se pone de manifiesto que el As es un agente potencialmente carcinogénico (141) (142). La mayoría de estudios epidemiológicos que analizan la relación As-CaP se basan en individuos que se exponen al As a través de la ingesta oral de agua. En nuestro estudio hemos analizado la exposición al As ocupacional mediante inhalación, según los datos proporcionados por MatEmEsp. No se han encontrado resultados que asocien la inhalación de As con CaP ni en los análisis de *alguna vez expuesto* versus *nunca expuesto* ni considerando la intensidad de exposición acumulativa en años.

Los <u>compuestos volátiles de azufre</u> se asocian a mayor riesgo de CaP, de forma casi estadísticamente significativa, (OR: 1,2; IC 95% 1,0-1,5) cuando analizamos el riesgo entre participantes *alguna vez expuestos* versus *nunca expuestos*. Al ajustar estos resultados por consumo de carne roja e historia familiar, esta relación de riesgo desaparece. No obtenemos resultados de riesgo si realizamos los análisis por intensidad de exposición. Actualmente, no disponemos de evidencia en la literatura que analice la exposición de este agente asociado a CaP.

Respecto al grupo de <u>derivados petroquímicos, disolventes y detergentes</u>, no hemos observado ningún agente asociado a mayor riesgo de CaP. La exposición a PAH no representa un factor de riesgo significativo para CaP en nuestro estudio. Existen estudios que estudian la relación de los PAHs con el CaP: Boers et al (143) (2005) no hallan un incremento de riesgo significativo (RR=0,75; CI 95% 0,42-1,31) para los individuos expuestos a PAH y CaP. Rybicki et al (144) (2006) concluyen en su estudio tipo caso-control que un subgrupo de pacientes portadores de la variante genética del gen de la Glutation S-transferasa (GSTP1) Val (105) y expuestos a altos niveles de PAHs tienen un mayor riesgo para desarrollar CaP. Las emisiones de motores diésel o gasolina tampoco suponen un factor de riesgo en el seno de nuestro estudio. En 1998, Siedler et al (145) afirmaba que con la exposición en más de 25 dosis-año (variable obtenida entre la intensidad de exposición, probabilidad de exposición y duración en años) resultaba una OR igual a 3,7 (IC

95% 1,4-9,8) estadísticamente significativa. Este resultado se obtuvo con una muestra pequeña, de 17 casos y 6 controles expuestos. En una publicación más reciente (2005), de Boer et al (143) no reportaron tal asociación.

Los individuos expuestos alguna vez durante su vida laboral a la inhalación de <u>polvo de cuarzo</u> (<u>sílice cristalina</u>) tienen un riesgo más alto para presentar CaP, en el estudio MCC-Spain. Esta asociación pierde su consistencia al ajustar los resultados por consumo de carne roja e historia familiar casos y entre los casos altamente expuestos. Actualmente, no existe evidencia en la literatura de que el polvo de cuarzo esté vinculado a CaP. Para este agente, está mejor reconocida su vinculación con el cáncer de pulmón (104).

La exposición por inhalación al <u>amianto</u> se presenta como factor de riesgo significativo para CaP a exposiciones de intensidad baja, pero no es consistente la relación ni cuando se analizan los resultados ajustados por consumo de carne roja e historia familiar ni cuando se estima el riesgo en sujetos altamente expuestos. En la literatura médica consultada, Reid et al (146) en 2013 comunicaron en su artículo que la exposición al amianto durante la infancia podría ser factor de riesgo para muerte por CaP en la vida adulta. En nuestro estudio no es posible evaluar la exposición en la infancia, sólo podemos evaluar la exposición en la edad adulta a través de la ocupación.

La exposición a <u>bacterias de origen no humano</u> y el <u>ruido de impacto</u> se asocian a menor riesgo para CaP, en exposiciones de baja intensidad. Hasta el momento, no hay literatura disponible que ponga de manifiesto la relación de estos agentes con el CaP.

7.4 Agentes ocupacionales y clasificación Gleason del cáncer de próstata

En nuestro estudio se ha escogido el valor de Gleason total de la biopsia prostática como variable aislada que mejor se correlaciona con la agresividad del CaP. Hemos considerado un tumor de bajo o riesgo intermedio si el valor del Gleason es menor o igual a 7 y de alto riesgo si el valor de Gleason es superior a 7.

No encontramos que la exposición a los diferentes <u>plaguicidas</u> analizados incremente el riesgo de presentar un CaP de mayor riesgo. En la publicación de Koutros et al (147) se cita el malatión, el fonofos, el terbufos y el aldrin como los plaguicidas relacionados, de forma significativa, con tumores más agresivos de próstata. Sin embargo, no halla dicha asociación con la exposición a la atrazina ni al clorpirifós. La exposición a Agente Naranja, mezcla en una proporción de 1:1 de 2,4 diclorofenoxiacético (2,4 D en MatEmEsp) y de 2,4,5 triclorofenoxiacético, tampoco parece vinculada a la detección de CaP con valores de Gleason total más altos (148).

La exposición al <u>polvo de cuarzo</u> y los <u>compuestos volátiles de azufre</u> son agentes que ya hemos observado anteriormente muestran cierta relación con el CaP en nuestro estudio. Para ambos agentes, hemos hallado relación con CaP con Gleason menor o igual 7 y no con CaP de mayor agresividad. De igual manera el agente físico <u>calor</u>, también se presenta en nuestros resultados como agente vinculado a CaP con valores de Gleason total menor o igual a 7.

No existen muchos estudios que analicen una supuesta relación entre el resto de agentes ocupacionales que hemos considerado en nuestro estudio y la agresividad del CaP en función del valor de Gleason en la biopsia prostática. Se debe mencionar que el As, ingerido a través del agua potable a concentraciones más altas que las inhaladas, puede asociarse con mayor riesgo de CaP y de tumores con mayor agresividad (149). En nuestro caso, ningún otro agente de los analizados parece correlacionarse con el grado de Gleason total que observaremos en la biopsia prostática.

CONCLUSIONES

- En el estudio MCC-Spain, el CaP se detecta con mayor frecuencia entre los 60 y 70 años, con un valor de PSA igual a 6 ng/mL, clínicamente organoconfinado, tipo adenocarcinoma infiltrante y con un valor de Gleason total en biopsia prostática de 6. Existen diferencias significativas entre las regiones participantes en cuanto a la edad y el grado de Gleason total de la biopsia prostática en el momento del diagnóstico.
- El antecedente familiar de primer grado de CaP se asocia al diagnóstico en edades más tempranas y a valores de PSA más bajos, pero sin diferencias en el estadío clínico ni en el grado de Gleason de la biopsia prostática respecto a los casos esporádicos.
- Las características clínicas y patológicas de los casos de CaP incluidos en el estudio MCC-Spain son similares a las observadas a otros registros de CaP de ámbito nacional e internacional.
- Peones agropecuarios y escayolistas-revocadores-estuquistas presentan un aumento de riesgo para CaP. No es consistente la relación de riesgo cuando se realizan los análisis en función de la duración de la exposición en años.
- La ocupación de mayor riesgo para CaP es la de peluquero o especialista en tratamientos de belleza o asimilados (CNO5130), cuando la exposición es mayor a 15 años, pero esta conclusión se basa en un número pequeño de expuestos (8 casos y 2 controles).
- En operadores en hornos de segunda fusión y peones de la construcción de edificios se observa una relación de riesgo con CaP con exposición baja, pero no se observa una relación tipo dosis-respuesta.
- Las ocupaciones relacionadas con la agricultura, industria del caucho, exposición a metales o
 gases de motor diésel o gasolina no han mostrado una relación de riesgo con el CaP, salvo
 para los peones agropecuarios.
- Las profesiones que se han asociado a un menor riesgo para CaP son: militares de escala básica, directores de empresas de intermediación, escritores y periodistas, informáticos y ebanistas, en los análisis de *expuestos* frente a *nunca expuestos*. En los análisis por años de exposición, son los militares de escala básica, informáticos y trabajadores de la cerámica los que tienen menor riesgo asociado a CaP.
- No se ha podido demostrar un agente ocupacional suficientemente consistente para asociar su exposición con el CaP. Los compuestos volátiles de azufre y el polvo de cuarzo (sílice cristalina) son agentes que inicialmente se asocian a mayor riesgo para CaP, pero pierden consistencia tras ser ajustados por consumo de carne roja e historia familiar.

- Las exposiciones de baja intensidad a bacterias de origen no humano y a ruido de impacto se asocian a menor riesgo de CaP.
- La exposición a plaguicidas, cadmio, hidrocarburos aromáticos policíclicos, emisiones de motor diésel y metales no se relacionan con mayor riesgo a CaP, ni en los análisis de expuestos alguna vez frente a nunca expuestos ni por categorías de intensidad de exposición.
- La exposición a los diferentes agentes ocupacionales analizados no se relaciona con la aparición de CaP más agresivo (valor de Gleason total mayor a 7 en la biopsia prostática), en el momento del diagnóstico.
- La utilización de la JEM española denominada MatEmEsp ha mostrado su eficacia para conocer a qué agentes se exponen los trabajadores de las distintas profesiones y así analizar qué agentes ocupacionales se pueden relacionar con el CaP. Dicha plataforma se puede considerar una herramienta de gran utilidad para nuevas investigaciones en el ámbito de la Epidemiología y la Oncología urológica.

BIBLIOGRAFÍA

- 1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013; 49(6):1374-403.
- 2. Larrañaga N, Galceran J, Ardanaz E, Franch P, Navarro C, Sánchez MJ, et al. Prostate cancer incidence trends in Spain before and during the prostate-specific antigen era: impact on mortality. Ann Oncol. 2010; 21 Suppl 3: 83-89.
- 3. Luján Galán M, Páez Borda A, Chiva Robles V, Santonja Garriga C, Romero Cajigal I, Berenguer Sánchez A. [Epidemiological trends in prostate cancer over the last years]. Arch Esp Urol. 2004; 57(8):817-25.
- 4. Evans HS, Møller H. Recent trends in prostate cancer incidence and mortality in southeast England. Eur Urol. 2003; 43(4):337-41.
- 5. Bell KJL, Del Mar C, Wright G, Dickinson J, Glasziou P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer. 2015; 137(7):1749-57.
- 6. Howlader N, Noone A, Krapcho M, Garshell J. SEER Cancer Statistics Review, 1975-2012. Disponible en: http://seer.cancer.gov/csr/1975 2012/
- 7. Pignot G, Salomon L, Lebacle C, Neuzillet Y, Lunardi P, Rischmann P, et al. Prostate cancer incidence on cystoprostatectomy specimens is directly linked to age: results from a multicentre study. BJU Int. 2015; 115(1):87-93.
- Li J, Djenaba JA, Soman A, Rim SH, Master VA. Recent Trends in Prostate Cancer Incidence by Age, Cancer Stage, and Grade, the United States, 2001–2007. Prostate Cancer [Internet]. 2012 [citado 23 de enero de 2016]. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515924/
- 9. Lefkowitz GK, Taneja SS, Brown J, Melamed J, Lepor H. Followup interval prostate biopsy 3 years after diagnosis of high grade prostatic intraepithelial neoplasia is associated with high likelihood of prostate cancer, independent of change in prostate specific antigen levels. J Urol. 2002; 168(4 Pt 1):1415-8.
- Ries L, Melbert D, Krapcho M, Miller BA, Feuer EJ. SEER Cancer Statistics Review, 1975-2004, National Cancer Institute. [Internet]. Disponible en: http://seer.cancer.gov/csr//1975 2004/
- 11. Chornokur G, Dalton K, Borysova ME, Kumar NB. Disparities at presentation, diagnosis, treatment, and survival in African American men, affected by prostate cancer. The Prostate. 2011; 71(9):985-97.
- 12. Schwartz K, Powell IJ, Underwood W, George J, Yee C, Banerjee M. Interplay of race, socioeconomic status, and treatment on survival of patients with prostate cancer. Urology. 2009; 74(6):1296-302.
- 13. Farrell J, Petrovics G, McLeod DG, Srivastava S. Genetic and molecular differences in prostate carcinogenesis between African American and Caucasian American men. Int J Mol Sci. 2013;14(8):15510-31.

- 14. Woolf CM. An investigation of the familial aspects of carcinoma of the prostate. Cancer.1960; 13: 739-44.
- 15. Eeles RA, Dearnaley DP, Ardern-Jones A, Shearer RJ, Easton DF, Ford D, et al. Familial prostate cancer: the evidence and the Cancer Research Campaign/British Prostate Group (CRC/BPG) UK Familial Prostate Cancer Study. Br J Urol. 1997; 79 Suppl 1:8-14.
- 16. Ahlbom A, Lichtenstein P, Malmström H, Feychting M, Hemminki K, Pedersen NL. Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst. 1997; 89(4):287-93.
- 17. Grönberg H, Damber L, Damber JE. Studies of genetic factors in prostate cancer in a twin population. J Urol.1994; 152(5 Pt 1):1484-1487; discussion 1487-1489.
- 18. Zeegers MPA, Jellema A, Ostrer H. Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer. 2003; 97(8):1894-903.
- 19. Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst.1999; 91(15):1310-6.
- 20. Maier C, Herkommer K, Luedeke M, Rinckleb A, Schrader M, Vogel W. Subgroups of familial and aggressive prostate cancer with considerable frequencies of BRCA2 mutations. The Prostate. 2014; 74(14):1444-51.
- 21. Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet. 2002; 30(2):181-4.
- 22. Berthon P, Valeri A, Cohen-Akenine A, Drelon E, Paiss T, Wöhr G, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet. 1998;62(6):1416-24.
- 23. Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S, Goode EL, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet. 1999; 64(3):776-87.
- 24. Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet. 2001; 27(2):172-80.
- 25. Xu J, Zheng SL, Hawkins GA, Faith DA, Kelly B, Isaacs SD, et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22-23. Am J Hum Genet. 2001; 69(2):341-50.
- 26. Kote-Jarai Z, Easton DF, Stanford JL, Ostrander EA, Schleutker J, Ingles SA, et al. Multiple novel prostate cancer predisposition loci confirmed by an international study: the PRACTICAL Consortium. Cancer Epidemiol Biomark Prev. 2008; 17(8):2052-61.
- 27. Eeles RA, Kote-Jarai Z, Giles GG, Olama AAA, Guy M, Jugurnauth SK, et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet. 2008;40(3):316-21.
- 28. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 2008; 40(3):310-5.
- 29. Wagenlehner FME, Elkahwaji JE, Algaba F, Bjerklund-Johansen T, Naber KG, Hartung R, et al. The role of inflammation and infection in the pathogenesis of prostate carcinoma. BJU Int.2007; 100(4):733-7.

- 30. Dennis LK, Lynch CF, Torner JC. Epidemiologic association between prostatitis and prostate cancer. Urology. 2002; 60(1):78-83.
- 31. Sutcliffe S, Giovannucci E, Alderete JF, Chang T-H, Gaydos CA, Zenilman JM, et al. Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomark Prev. 2006; 15(5):939-45.
- 32. Sutcliffe S, Alderete JF, Till C, Goodman PJ, Hsing AW, Zenilman JM, et al. Trichomonosis and subsequent risk of prostate cancer in the Prostate Cancer Prevention Trial. Int J Cancer. 2009; 124(9):2082-7.
- 33. Stark JR, Judson G, Alderete JF, Mundodi V, Kucknoor AS, Giovannucci EL, et al. Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J Natl Cancer Inst. 2009; 101(20):1406-11.
- 34. Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, Klein EA, et al. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2006;2(3):e25.
- 35. Stieler K, Schindler S, Schlomm T, Hohn O, Bannert N, Simon R, et al. No detection of XMRV in blood samples and tissue sections from prostate cancer patients in Northern Europe. PloS One. 2011;6(10):e25592.
- 36. Huggins C. Effect or orchiectomy and irradiation on cancer of the prostate. Ann Surg. 1942; 115(6):1192-200.
- 37. Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, Ford LG, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003; 349(3):215-24.
- 38. Endogenous Hormones and Prostate Cancer Collaborative Group, Roddam AW, Allen NE, Appleby P, Key TJ. Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies. J Natl Cancer Inst. 2008; 100(3):170-83.
- 39. Roddam AW, Allen NE, Appleby P, Key TJ, Ferrucci L, Carter HB, et al. Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. Ann Intern Med. 2008; 149(7):461-71, W83-88.
- 40. Cao Y, Nimptsch K, Shui IM, Platz EA, Wu K, Pollak MN, et al. Prediagnostic plasma IGFBP-1, IGF-1 and risk of prostate cancer. Int J Cancer. 2015; 136(10):2418-26.
- 41. Moreno J, Krishnan AV, Peehl DM, Feldman D. Mechanisms of vitamin D-mediated growth inhibition in prostate cancer cells: inhibition of the prostaglandin pathway. Anticancer Res. 2006;26(4A):2525-30.
- 42. Moreno J, Krishnan AV, Feldman D. Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. J Steroid Biochem Mol Biol. 2005;97(1-2):31-6.
- 43. Bao B-Y, Yeh S-D, Lee Y-F. 1alpha,25-dihydroxyvitamin D3 inhibits prostate cancer cell invasion via modulation of selective proteases. Carcinogenesis. 2006; 27(1):32-42.
- 44. Bao B-Y, Yao J, Lee Y-F. 1alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis. 2006;27(9):1883-93.

- 45. Schwartz GG, Hanchette CL. UV, latitude, and spatial trends in prostate cancer mortality: all sunlight is not the same (United States). Cancer Causes Control. 2006;17(8):1091-101.
- 46. Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control. 2000; 11(9):847-52.
- 47. Tuohimaa P, Tenkanen L, Ahonen M, Lumme S, Jellum E, Hallmans G, et al. Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries. Int J Cancer. 2004; 108(1):104-8.
- 48. Xu Y, Shao X, Yao Y, Xu L, Chang L, Jiang Z, et al. Positive association between circulating 25-hydroxyvitamin D levels and prostate cancer risk: new findings from an updated meta-analysis. J Cancer Res Clin Oncol. 2014; 140(9):1465-77.
- 49. Perez-Cornago A, Appleby PN, Pischon T, Tsilidis KK, Tjønneland A, Olsen A, et al. Tall height and obesity are associated with an increased risk of aggressive prostate cancer: results from the EPIC cohort study. BMC Med. 2017; 15(1):115.
- 50. Travis RC, Appleby PN, Martin RM, Holly JMP, Albanes D, Black A, et al. A Meta-analysis of Individual Participant Data Reveals an Association between Circulating Levels of IGF-I and Prostate Cancer Risk. Cancer Res. 2016; 76(8):2288-300.
- 51. Morote J, Ropero J, Planas J, Bastarós JM, Delgado G, Placer J, et al. Metabolic syndrome increases the risk of aggressive prostate cancer detection. BJU Int. 2013; 111(7):1031-6.
- 52. Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. A prospective cohort study of vasectomy and prostate cancer in US men. JAMA. 1993; 269(7):873-7.
- 53. Cox B, Sneyd MJ, Paul C, Delahunt B, Skegg DCG. Vasectomy and risk of prostate cancer. JAMA. 2002;287(23):3110-5.
- 54. Siddiqui MM, Wilson KM, Epstein MM, Rider JR, Martin NE, Stampfer MJ, et al. Vasectomy and risk of aggressive prostate cancer: a 24-year follow-up study. J Clin Oncol. 2014; 32(27):3033-8.
- 55. Bostwick DG, Burke HB, Djakiew D, Euling S, Ho S, Landolph J, et al. Human prostate cancer risk factors. Cancer. 2004; 101(10 Suppl):2371-490.
- 56. Sinha R, Park Y, Graubard BI, Leitzmann MF, Hollenbeck A, Schatzkin A, et al. Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States. Am J Epidemiol. 2009;170(9):1165-77.
- 57. Punnen S, Hardin J, Cheng I, Klein EA, Witte JS. Impact of meat consumption, preparation, and mutagens on aggressive prostate cancer. PloS One. 2011;6(11):e27711.
- 58. Bylsma LC, Alexander DD. A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr J. 2015; 14:125.
- 59. Baglietto L, Severi G, English DR, Hopper JL, Giles GG. Alcohol consumption and prostate cancer risk: results from the Melbourne collaborative cohort study. Int J Cancer. 2006; 119(6):1501-4.

- 60. Rohrmann S, Linseisen J, Key TJ, Jensen MK, Overvad K, Johnsen NF, et al. Alcohol consumption and the risk for prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomark Prev. 2008; 17(5):1282-7.
- 61. Lee IP, Suzuki K. Induction of aryl hydrocarbon hydroxylase activity in the rat prostate glands by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Pharmacol Exp Ther. 1980; 215(3):601-5.
- 62. Waalkes MP, Rehm S, Perantoni AO, Coogan TP. Cadmium exposure in rats and tumours of the prostate. IARC Sci Publ. 1992;(118):391-400.
- 63. Zeegers MPA, Friesema IHM, Goldbohm RA, van den Brandt PA. A prospective study of occupation and prostate cancer risk. J Occup Environ Med. 2004; 46(3):271-9.
- 64. Blair A, Zahm SH, Pearce NE, Heineman EF, Fraumeni JF. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health. 1992; 18(4):209-15.
- 65. Keller-Byrne JE, Khuder SA, Schaub EA. Meta-analyses of prostate cancer and farming. Am J Ind Med. 1997; 31(5):580-6.
- 66. Acquavella J, Olsen G, Cole P, Ireland B, Kaneene J, Schuman S, et al. Cancer among farmers: a meta-analysis. Ann Epidemiol. 1998; 8(1):64-74.
- 67. Ragin C, Davis-Reyes B, Tadesse H, Daniels D, Bunker CH, Jackson M, et al. Farming, reported pesticide use, and prostate cancer. Am J Mens Health. 2013; 7(2):102-9.
- 68. Hanchette CL, Schwartz GG. Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer. 1992; 70(12):2861-9.
- 69. Thune I, Lund E. Physical activity and the risk of prostate and testicular cancer: a cohort study of 53,000 Norwegian men. Cancer Causes Control. 1994; 5(6):549-56.
- 70. Alavanja MCR, Samanic C, Dosemeci M, Lubin J, Tarone R, Lynch CF, et al. Use of agricultural pesticides and prostate cancer risk in the Agricultural Health Study cohort. Am J Epidemiol.; 157(9):800-14.
- 71. Usmani KA, Cho TM, Rose RL, Hodgson E. Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals. Drug Metab Dispos Biol Fate Chem. 2006; 34(9):1606-14.
- 72. Finnström N, Bjelfman C, Söderström TG, Smith G, Egevad L, Norlén BJ, et al. Detection of cytochrome P450 mRNA transcripts in prostate samples by RT-PCR. Eur J Clin Invest. 2001;31(10):880-6.
- 73. Van Maele-Fabry G, Willems JL. Occupation related pesticide exposure and cancer of the prostate: a meta-analysis. Occup Environ Med. 2003; 60(9):634-42.
- 74. Van Maele-Fabry G, Willems JL. Prostate cancer among pesticide applicators: a meta-analysis. Int Arch Occup Environ Health. 2004;77(8):559-70.
- 75. Van Maele-Fabry G, Libotte V, Willems J, Lison D. Review and meta-analysis of risk estimates for prostate cancer in pesticide manufacturing workers. Cancer Causes Control. 2006; 17(4):353-73.

- 76. Mink PJ, Adami H-O, Trichopoulos D, Britton NL, Mandel JS. Pesticides and prostate cancer: a review of epidemiologic studies with specific agricultural exposure information. Eur J Cancer Prev. 2008; 17(2):97-110.
- 77. Ndong J-R, Blanchet P, Multigner L. [Pesticides and prostate cancer: epidemiological data]. Bull Cancer (Paris). 2009; 96(2):171-80.
- 78. IARC 2012. Chemical agents and related occupations. Occupational Exposures in the Rubber-Manufacturing industry. IARC Monogr Eval Carcinog Risks Hum. 100F:541-559.
- 79. Goldsmith DF, Smith AH, McMichael AJ. A case-control study of prostate cancer within a cohort of rubber and tire workers. J Occup Med. 1980; 22(8):533-41.
- 80. Parkes HG, Veys CA, Waterhouse JA, Peters A. Cancer mortality in the British rubber industry. Br J Ind Med. 1982; 39(3):209-20.
- 81. Sorahan T, Parkes HG, Veys CA, Waterhouse JA. Cancer mortality in the British rubber industry: 1946-80. Br J Ind Med. 1986; 43(6):363-73.
- 82. Bernardinelli L, de Marco R, Tinelli C. Cancer mortality in an Italian rubber factory. Br J Ind Med. 1987; 44(3):187-91.
- 83. Weiland SK, Mundt KA, Keil U, Kraemer B, Birk T, Person M, et al. Cancer mortality among workers in the German rubber industry: 1981-91. Occup Environ Med. 1996; 53(5):289-98.
- 84. Kogevinas M, Sala M, Boffetta P, Kazerouni N, Kromhout H, Hoar-Zahm S. Cancer risk in the rubber industry: a review of the recent epidemiological evidence. Occup Environ Med. 1998; 55(1):1-12.
- 85. Norseth T, Andersen A, Giltvedt J. Cancer incidence in the rubber industry in Norway. Scand J Work Environ Health. 1983;9 Suppl 2:69-71.
- 86. Delzell E, Monson RR. Mortality among rubber workers: VIII. Industrial products workers. Am J Ind Med. 1984;6(4):273-9.
- 87. Solionova LG, Smulevich VB. Mortality and cancer incidence in a cohort of rubber workers in Moscow. Scand J Work Environ Health. 1993; 19(2):96-101.
- 88. Sathiakumar N, Graff J, Macaluso M, Maldonado G, Matthews R, Delzell E. An updated study of mortality among North American synthetic rubber industry workers. Occup Environ Med. 2005; 62(12):822-9.
- 89. Aronson KJ, Siemiatycki J, Dewar R, Gérin M. Occupational risk factors for prostate cancer: results from a case-control study in Montréal, Québec, Canada. Am J Epidemiol. 1996; 143(4):363-73.
- 90. Waalkes MP, Coogan TP, Barter RA. Toxicological principles of metal carcinogenesis with special emphasis on cadmium. Crit Rev Toxicol. 1992;22(3-4):175-201.
- 91. IARC.2004. Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum. 84:269-477.
- 92. Chen CJ, Kuo TL, Wu MM. Arsenic and cancers. Lancet. 1988;1(8582):414-5.

- 93. Benbrahim-Tallaa L, Waalkes MP. Inorganic arsenic and human prostate cancer. Environ Health Perspect. 2008; 116(2):158-64.
- 94. IARC 2012. Arsenic, metals, fibres and dusts. A review of human carcinogens.IARC Monogr Eval Carcinog Risks Hum. 100C
- 95. Waalkes MP. Cadmium carcinogenesis in review. J Inorg Biochem. 2000; 79(1-4):241-4.
- 96. Armstrong BG, Kazantzis G. Prostatic cancer and chronic respiratory and renal disease in British cadmium workers: a case control study. Br J Ind Med. 1985; 42(8):540-5.
- 97. Elghany NA, Schumacher MC, Slattery ML, West DW, Lee JS. Occupation, cadmium exposure, and prostate cancer. Epidemiol Camb Mass. 1990; 1(2):107-15.
- 98. Elinder CG, Kjellström T, Hogstedt C, Andersson K, Spång G. Cancer mortality of cadmium workers. Br J Ind Med. 1985; 42(10):651-5.
- 99. Verougstraete V, Lison D, Hotz P. Cadmium, lung and prostate cancer: a systematic review of recent epidemiological data. J Toxicol Environ Health B Crit Rev. 2003; 6(3):227-55.
- 100. Sahmoun AE, Case LD, Jackson SA, Schwartz GG. Cadmium and prostate cancer: a critical epidemiologic analysis. Cancer Invest. 2005;23(3):256-63.
- 101. Vinceti M, Venturelli M, Sighinolfi C, Trerotoli P, Bonvicini F, Ferrari A, et al. Case-control study of toenail cadmium and prostate cancer risk in Italy. Sci Total Environ. 2007; 373(1):77-81.
- 102. Kauppinen T, Toikkanen J, Pukkala E. From cross-tabulations to multipurpose exposure information systems: a new job-exposure matrix. Am J Ind Med. 1998; 33(4):409-17.
- 103. García AM, González-Galarzo MC, Kauppinen T, Delclos GL, Benavides FG. A job-exposure matrix for research and surveillance of occupational health and safety in Spanish workers: MatEmESp. Am J Ind Med. 2013; 56(10):1226-38.
- 104. Pukkala E, Guo J, Kyyrönen P, Lindbohm M-L, Sallmén M, Kauppinen T. National jobexposure matrix in analyses of census-based estimates of occupational cancer risk. Scand J Work Environ Health. 2005; 31(2):97-107.
- 105. Burstyn I, Lavoué J, Van Tongeren M. Aggregation of exposure level and probability into a single metric in job-exposure matrices creates bias. Ann Occup Hyg. 2012;56(9):1038-50.
- 106. García-Closas R, García-Closas M, Kogevinas M, Malats N, Silverman D, Serra C, et al. Food, nutrient and heterocyclic amine intake and the risk of bladder cancer. Eur J Cancer. 2007; 43(11):1731-40.
- 107. Carter HB, Piantadosi S, Isaacs JT. Clinical evidence for and implications of the multistep development of prostate cancer. J Urol. 1990;143(4):742-6.
- 108. Cózar JM, Miñana B, Gómez-Veiga F, Rodríguez-Antolín A, Villavicencio H, Cantalapiedra A, et al. [National prostate cancer registry 2010 in Spain]. Actas Urol Esp. 2013; 37(1):12-9.

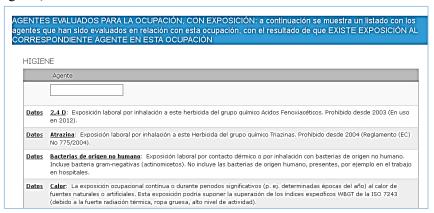
- 109. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2010, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site, April 2013.
- 110. Porten SP, Cooperberg MR, Konety BR, Carroll PR. The example of CaPSURE: lessons learned from a national disease registry. World J Urol. 2011; 29(3):265-71.
- 111. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004; 350(22):2239-46.
- 112. Choi S-K, Song C, Shim M, Min GE, Park J, Jeong IG, et al. Prevalence of high-grade or insignificant prostate cancer in Korean men with prostate-specific antigen levels of 3.0-4.0 ng/mL. Urology. 2015; 85(3):610-5.
- 113. Chen ME, Troncoso P, Johnston DA, Tang K, Babaian RJ. Optimization of prostate biopsy strategy using computer based analysis. J Urol. 1997; 158(6):2168-75.
- 114. Eskew LA, Bare RL, McCullough DL. Systematic 5 region prostate biopsy is superior to sextant method for diagnosing carcinoma of the prostate. J Urol. 1997; 157(1):199-202; discussion 202-203.
- 115. Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, et al. Prostate Testing for Cancer and Treatment (ProtecT) feasibility study. Health Technol Assess Winch Engl. 2003;7(14):1-88
- 116. Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol. 2006; 175(5):1605-12.
- 117. Bruner DW, Moore D, Parlanti A, Dorgan J, Engstrom P. Relative risk of prostate cancer for men with affected relatives: systematic review and meta-analysis. Int J Cancer. 2003; 107(5):797-803.
- 118. Bratt O, Damber J-E, Emanuelsson M, Grönberg H. Hereditary prostate cancer: clinical characteristics and survival. J Urol. 2002; 167(6):2423-6.
- 119. Johns LE, Houlston RS. A systematic review and meta-analysis of familial prostate cancer risk. BJU Int. 2003; 91(9):789-94.
- 120. McDowell ME, Occhipinti S, Gardiner RA, Chambers SK. Patterns of prostate-specific antigen (PSA) testing in Australian men: the influence of family history. BJU Int. 2012; 109 Suppl 3:64-70.
- 121. EAU Guidelines on prostate cancer 2016. Treatment: radical prostatectomy. Disponible en: http://www.uroweb.org
- 122. Consensus statement: the Management of Clinically Localized Prostate Cancer. National Institutes of Health Consensus Development Panel. NCI Monogr Publ Natl Cancer Inst. 1988;(7):3-6.

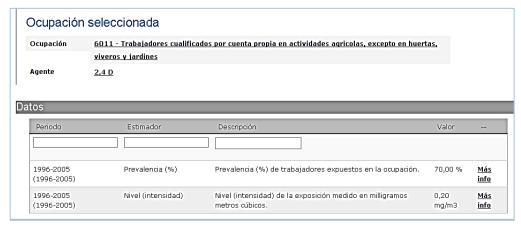
- 123. Scherr D, Swindle PW, Scardino PT, National Comprehensive Cancer Network. National Comprehensive Cancer Network guidelines for the management of prostate cancer. Urology. 2003; 61(2 Suppl 1):14-24.
- 124. Aizer AA, Yu JB, Colberg JW, McKeon AM, Decker RH, Peschel RE. Radical prostatectomy vs. intensity-modulated radiation therapy in the management of localized prostate adenocarcinoma. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2009; 93(2):185-91.
- 125. Takkouche B, Regueira-Méndez C, Montes-Martínez A. Risk of cancer among hairdressers and related workers: a meta-analysis. Int J Epidemiol. 2009;38(6):1512-31.
- 126. de Vocht F, Sobala W, Wilczynska U, Kromhout H, Szeszenia-Dabrowska N, Peplonska B. Cancer mortality and occupational exposure to aromatic amines and inhalable aerosols in rubber tire manufacturing in Poland. Cancer Epidemiol. 2009; 33(2):94-102.
- 127. Barry KH, Koutros S, Berndt SI, Andreotti G, Hoppin JA, Sandler DP, et al. Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk. Environ Health Perspect. 2011; 119(12):1726-32.
- 128. Lee WJ, Blair A, Hoppin JA, Lubin JH, Rusiecki JA, Sandler DP, et al. Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. J Natl Cancer Inst. 2004; 96(23):1781-9.
- 129. Rusiecki JA, De Roos A, Lee WJ, Dosemeci M, Lubin JH, Hoppin JA, et al. Cancer incidence among pesticide applicators exposed to atrazine in the Agricultural Health Study. J Natl Cancer Inst. 2004; 96(18):1375-82.
- 130. Coogan TP, Shiraishi N, Waalkes MP. Apparent quiescence of the metallothionein gene in the rat ventral prostate: association with cadmium-induced prostate tumors in rats. Environ Health Perspect. 1994; 102 Suppl 3:137-9.
- 131. Cheung MR, Kang J, Ouyang D, Yeung V. Association between urinary cadmium and all cause, all cancer and prostate cancer specific mortalities for men: an analysis of national health and nutrition examination survey (NHANES III) data. Asian Pac J Cancer Prev. 2014;15(1):483-8.
- 132. Julin B, Wolk A, Johansson J-E, Andersson S-O, Andrén O, Akesson A. Dietary cadmium exposure and prostate cancer incidence: a population-based prospective cohort study. Br J Cancer. 2012; 107(5):895-900.
- 133. Chen Y-C, Pu YS, Wu H-C, Wu TT, Lai MK, Yang CY, et al. Cadmium burden and the risk and phenotype of prostate cancer. BMC Cancer. 2009; 9: 429.
- 134. Kjellström T, Friberg L, Rahnster B. Mortality and cancer morbidity among cadmium-exposed workers. Environ Health Perspect. 1979; 28:199-204.
- 135. West DW, Slattery ML, Robison LM, French TK, Mahoney AW. Adult dietary intake and prostate cancer risk in Utah: a case-control study with special emphasis on aggressive tumors. Cancer Causes Control. 1991;2(2):85-94.
- 136. Navarro Silvera SA, Rohan TE. Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control. 2007; 18(1):7-27.

- 137. Ju-Kun S, Yuan D-B, Rao H-F, Chen T-F, Luan B-S, Xu X-M, et al. Association Between Cd Exposure and Risk of Prostate Cancer: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore). 2016; 95(6):e2708.
- 138. IARC 2004. Some drinking-water desinfectants and contaminants, including arsenic. IARC Monograph Eval Carcinog Risk Human.
- 139. Achanzar WE, Brambila EM, Diwan BA, Webber MM, Waalkes MP. Inorganic arsenite-induced malignant transformation of human prostate epithelial cells. J Natl Cancer Inst. 18 de 2002; 94(24):1888-91.
- 140. Benbrahim-Tallaa L, Webber MM, Waalkes MP. Acquisition of androgen independence by human prostate epithelial cells during arsenic-induced malignant transformation. Environ Health Perspect. 2005; 113(9):1134-9.
- 141. Chen CJ, Wang CJ. Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res. 1990; 50(17):5470-4.
- 142. Lewis DR, Southwick JW, Ouellet-Hellstrom R, Rench J, Calderon RL. Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect. 1999;107(5):359-65.
- 143. Boers D, Zeegers MPA, Swaen GM, Kant I, van den Brandt PA. The influence of occupational exposure to pesticides, polycyclic aromatic hydrocarbons, diesel exhaust, metal dust, metal fumes, and mineral oil on prostate cancer: a prospective cohort study. Occup Environ Med. 2005; 62(8):531-7.
- 144. Rybicki BA, Neslund-Dudas C, Nock NL, Schultz LR, Eklund L, Rosbolt J, et al. Prostate cancer risk from occupational exposure to polycyclic aromatic hydrocarbons interacting with the GSTP1 Ile105Val polymorphism. Cancer Detect Prev. 2006;30(5):412-22.
- 145. Seidler A, Heiskel H, Bickeböller R, Elsner G. Association between diesel exposure at work and prostate cancer. Scand J Work Environ Health. 1998; 24(6):486-94.
- 146. Reid A, Franklin P, Olsen N, Sleith J, Samuel L, Aboagye-Sarfo P, et al. All-cause mortality and cancer incidence among adults exposed to blue asbestos during childhood. Am J Ind Med. 2013; 56(2):133-45.
- 147. Koutros S, Beane Freeman LE, Lubin JH, Heltshe SL, Andreotti G, Barry KH, et al. Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study. Am J Epidemiol. 2013;177(1):59-74.
- 148. Giri VN, Cassidy AE, Beebe-Dimmer J, Ellis LR, Smith DC, Bock CH, et al. Association between Agent Orange and prostate cancer: a pilot case-control study. Urology. 2004; 63(4): 757-760; discussion 760-761.
- 149. Roh T, Lynch CF, Weyer P, Wang K, Kelly KM, Ludewig G. Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa. Environ Res. 2017;159: 338-43.

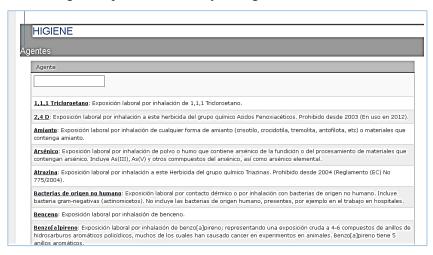
ANEXO 1

Esta es la página principal de entrada en MatEmEsp:

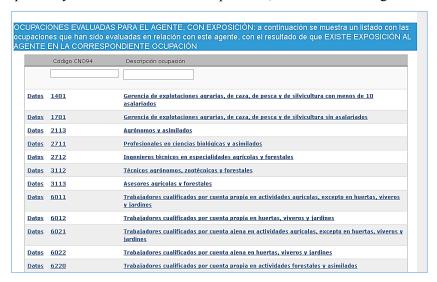

Tras seleccionar "Ocupaciones" se despliega esta pantalla:



Tras seleccionar el código CNO6011, por ejemplo, se despliega una descripción de las actividades realizadas por el individuo en esta ocupación. Si se selecciona el botón "Exposiciones" se detallan los agentes a los que está expuesto el individuo en dicha profesión.



En esta pantalla se observa de forma parcial todos los agentes a los que se exponen los individuos con una CNO6011. Para cada agente, la MatEmEsp nos proporciona los datos de prevalencia a la exposición (% de trabajadores expuestos) y nivel de intensidad de exposición (en las unidades propias del agente).



Si seleccionamos la opción "Agentes" se nos despliegan las diferentes opciones: Si escogemos "Higiene" se muestran agentes químicos, físicos y biológicos:

Si escogemos por ejemplo el 2,4 D nos saldrá una lista de ocupaciones en código CNO94 que están expuestos a este agente. Al seleccionar datos nos vuelve a proporcionar datos de proporción de trabajadores expuestos y nivel de intensidad de exposición, las unidades del agente.

Los datos de proporción y nivel de intensidad para cada CNO94 son fácilmente exportables a una Tabla Excel, con un click en "Exportar datos a Excel".

CNO-94	Ogumaniám	ia (%) Periodo: 1996-2005 Subperiod o: 1996- 2005	Subperiod o: 1996- 2005	
0010	Ocupación Escala superior	(%) 0.00	(mg/m3) 0.00	
0020	Escala media	0.00	0.00	
0030	Escala hásica	0.00	0.00	
1011	Poder ejecutivo	0.00		
1012	Poder legislativo	0.00	0.00	
1013	Consejo general del poder judicial	0.00	0.00	
1020	Personal directivo de las administraciones publicas	0.00	0.00	
1031	Alcaldías y concejalías de las capitales de provincia	0.00	0.00	
1032	Alcaldías y concejalías de otros ayuntamientos	0.00	0.00	
1041	Dirección de partidos políticos	0.00	0.00	
1042	Dirección de organizaciones empresariales, de sindicatos de trabajadore	0.00	0.00	
1043	Dirección de organizaciones humanitarias y otras organizaciones de inte	0.00	0.00	
1110	Dirección general y presidencia ejecutiva	0.00	0.00	
1121	Dirección de departamento de producción en explotaciones agrarias, de o	0.00	0.00	
1122	Dirección de departamento de producción en empresas industriales	0.00	0.00	
Datos	\oplus			

ANEXO 2

En estas tablas se exponen todas las ocupaciones analizadas en el estudio MCC-Spain, por análisis *alguna vez expuesto* frente a *nunca expuesto* y por duración de exposición (nunca expuesto, baja exposición y alta exposición).

CNO94	Descripción	Control (N=1388)	Caso (N=1111)	OR (95% CI)
CNO0030	Escala básica	81 (5.8)	35 (3.2)	0.5 (0.4-0.8)
CNO1110	Dirección general y presidencia ejecutiva	34 (2.4)	25 (2.3)	1.2 (0.7-2.1)
CNO1122	Dirección de departamento de producción en empresas industriales	14 (1.0)	7 (0.6)	0.8 (0.3-2.0)
CNO1127	Dirección de departamento de operaciones en empresas de intermediación y servicios a otras empresas	26 (1.9)	6 (0.5)	0.4 (0.1-0.9)
CNO1133	Dirección de departamentos de comercialización y ventas	24 (1.7)	16 (1.4)	1.2 (0.6-2.4)
CNO1320	Gerencia de empresas de restauración con menos de 10 asalariados	24 (1.7)	24 (2.2)	1.0 (0.6-1.9)
CNO1402	Gerencia de empresas industriales con menos de 10 asalariados	13 (0.9)	6 (0.5)	0.6 (0.2-1.5)
CNO1520	Gerencia de empresas de comercio al por menor sin asalariados	17 (1.2)	26 (2.3)	1.9 (1.0-3.5)
CNO2059	Otros ingenieros superiores (excepto agropecuarios)	10 (0.7)	6 (0.5)	1.0 (0.3-2.7)
CNO2121	Médicos	13 (0.9)	5 (0.5)	0.7 (0.2-1.9)
CNO2210	Profesores de universidades y otros centros de enseñanza superior	22 (1.6)	10 (0.9)	0.8 (0.4-1.8)
CNO2239	Otros diversos profesionales de la enseñanza	14 (1.0)	4 (0.4)	0.5 (0.2-1.5)
CNO2411	Profesionales en contabilidad	23 (1.7)	15 (1.4)	1.0 (0.5-2.0)
CNO2419	Otros profesionales en organización y administración de empresas	80 (5.8)	39 (3.5)	0.8 (0.5-1.2)
CNO2511	Escritores, periodistas y asimilados	14 (1.0)	2 (0.2)	0.2 (0.1-0.9)
CNO2530	Diversos profesionales de las administraciones públicas que no pueden ser clasificados en apartados anteriores	15 (1.1)	6 (0.5)	0.7 (0.3-1.8)
CNO2631	Analistas de aplicaciones y programadores informáticos de nivel medio	14 (1.0)	3 (0.3)	0.3 (0.1-1.1)
CNO2720	Enfermeros	13 (0.9)	7 (0.6)	0.9 (0.4-2.3)
CNO2811	Profesores de enseñanza primaria	25 (1.8)	11 (1.0)	0.9 (0.4-1.9)
CNO2950	Otros profesionales de las administraciones públicas que no pueden ser clasificados en apartados anteriores	12 (0.9)	8 (0.7)	1.0 (0.4-2.5)
CNO3010	Delineantes y diseñadores técnicos	37 (2.7)	20 (1.8)	1.0 (0.5-1.7)
CNO3021	Técnicos en ciencias físicas y químicas	12 (0.9)	6 (0.5)	0.8 (0.3-2.3)
CNO3024	Técnicos en electrónica y telecomunicaciones	7 (0.5)	10 (0.9)	2.2 (0.8-6.1)
CNO3029	Otros técnicos en ciencias físicas, químicas e ingenierías	10 (0.7)	5 (0.5)	0.7 (0.2-2.1)
CNO3031	Programadores de aplicaciones informáticas y controladores de equipos informáticos	22 (1.6)	3 (0.3)	0.2 (0.1-0.6)
CNO3041	Fotógrafos y operadores de equipos de grabación de imagen y sonido	9 (0.6)	11 (1.0)	1.5 (0.6-3.7)
CNO3073	Técnicos en el control de calidad	24 (1.7)	24 (2.2)	1.5 (0.8-2.7)
CNO3312	Agentes de seguros	13 (0.9)	6 (0.5)	0.6 (0.2-1.6)
CNO3320	Representantes de comercio y técnicos de venta	158 (11.4)	96 (8.6)	0.9 (0.7-1.2)

CNO94	Descripción	Control (N=1388)	Caso (N=1111)	OR (95% CI)
CNO3411	Secretarios administrativos y asimilados	22 (1.6)	15 (1.4)	0.9 (0.5-1.7)
CNO3541	Decoradores	11 (0.8)	5 (0.5)	0.7 (0.2-2.0)
CNO4011	Empleados de contabilidad y cálculo de nóminas y salarios	64 (4.6)	32 (2.9)	0.7 (0.4-1.0)
CNO4012	Empleados de oficina de servicios estadísticos, financieros y bancarios	38 (2.7)	20 (1.8)	0.7 (0.4-1.3)
CNO4021	Empleados de control de abastecimientos e inventario	9 (0.6)	6 (0.5)	1.0 (0.3-2.9)
CNO4023	Empleados de oficina de servicios de transportes	11 (0.8)	4 (0.4)	0.5 (0.2-1.5)
CNO4102	Empleados de servicios de correos (excepto empleados de ventanilla)	13 (0.9)	9 (0.8)	0.8 (0.3-1.9)
CNO4300	Auxiliares administrativos sin tareas de atención al público no clasificados anteriormente	145 (10.4)	97 (8.7)	1.0 (0.8-1.4)
CNO5010	Cocineros y otros preparadores de comidas	28 (2.0)	24 (2.2)	0.9 (0.5-1.6)
CNO5020	Camareros, bármanes y asimilados	86 (6.2)	85 (7.7)	1.1 (0.8-1.5)
CNO5030	Jefes de cocineros, de camareros y asimilados	12 (0.9)	12 (1.1)	1.0 (0.4-2.3)
CNO5130	Peluqueros, especialistas en tratamiento de belleza y trabajadores asimilados	8 (0.6)	13 (1.2)	2.2 (0.9-5.6)
CNO5320	Encargado de sección dentro de un comercio y asimilados	11 (0.8)	12 (1.1)	1.4 (0.6-3.4)
CNO5330	Dependientes y exhibidores en tiendas, almacenes, quioscos y mercados	124 (8.9)	94 (8.5)	1.0 (0.8-1.4)
CNO6011	Trabajadores cualificados por cuenta propia en actividades agrícolas, excepto en huertas, viveros y jardines	148 (10.7)	127 (11.4)	0.9 (0.7-1.1)
CNO6022	Trabajadores cualificados por cuenta ajena en huertas, viveros y jardines	6 (0.4)	10 (0.9)	1.9 (0.7-5.4)
CNO6111	Trabajadores cualificados por cuenta propia en actividades ganaderas, incluidas las de animales de compañía y animales domésticos de piel valiosa	73 (5.3)	88 (7.9)	1.3 (1.0-1.9)
CNO7010	Encargados y jefes de equipo en obras estructurales de la construcción	18 (1.3)	26 (2.3)	1.8 (1.0-3.4)
CNO7110	Albañiles y mamposteros	77 (5.5)	76 (6.8)	1.0 (0.7-1.4)
CNO7120	Trabajadores en hormigón armado, enfoscadores, ferrallistas y asimilados	15 (1.1)	20 (1.8)	1.3 (0.7-2.7)
CNO7130	Carpinteros (excepto carpinteros de estructuras metálicas)	40 (2.9)	41 (3.7)	1.2 (0.8-1.9)
CNO7210	Revocadores, escayolistas y estuquistas	5 (0.4)	13 (1.2)	3.1 (1.1-9.2)
CNO7220	Fontaneros e instaladores de tuberías	23 (1.7)	25 (2.3)	1.3 (0.7-2.4)
	Electricista de construcción y asimilados	42 (3.0)	39 (3.5)	1.1 (0.7-1.8)
CNO7240	Pintores, barnizadores, empapeladores y asimilados	35 (2.5)	28 (2.5)	0.8 (0.5-1.3)
CNO7310	Jefes de taller y encargados de moldeadores, soldadores, montadores de estructuras metálicas y afines	7 (0.5)	8 (0.7)	1.7 (0.6-5.0)
CNO7320	Jefes de taller de vehículos de motor	10 (0.7)	8 (0.7)	1.1 (0.4-2.7)
CNO7331	Jefes de taller de máquinas agrícolas e industriales	10 (0.7)	8 (0.7)	1.0 (0.4-2.8)
CNO7421	Mineros, canteros y asimilados	19 (1.4)	10 (0.9)	0.7 (0.3-1.6)
CNO7512	Soldadores y oxicortadores	53 (3.8)	50 (4.5)	1.1 (0.7-1.6)
CNO7513	Chapistas y caldereros	39 (2.8)	35 (3.2)	1.0 (0.6-1.6)
CNO7521	Herreros y forjadores	12 (0.9)	9 (0.8)	0.9 (0.4-2.2)
CNO7522	Trabajadores de la fabricación de herramientas, mecánicos y ajustadores, modelistas, matriceros y asimilados	17 (1.2)	19 (1.7)	1.3 (0.7-2.6)
CNO7524	Pulidores de metales y afiladores de herramientas	9 (0.6)	9 (0.8)	1.0 (0.4-2.5)
CNO7611	Mecánicos y ajustadores de vehículos de motor	61 (4.4)	46 (4.1)	0.9 (0.6-1.4)

CNO94	Descripción	Control (N=1388)	Caso (N=1111)	OR (95% CI)
CNO7613	Mecánicos y ajustadores de maquinaria agrícola e industrial	74 (5.3)	62 (5.6)	1.1 (0.8-1.5)
CNO7621	Mecánicos y reparadores de equipos eléctricos	30 (2.2)	30 (2.7)	1.3 (0.8-2.2)
CNO7622	Ajustadores y reparadores de equipos electrónicos	9 (0.6)	8 (0.7)	1.2 (0.5-3.2)
CNO7623	Instaladores y reparadores de equipos telefónicos y telegráficos	10 (0.7)	6 (0.5)	0.8 (0.3-2.2)
CNO7713	Joyeros, orfebres y plateros	7 (0.5)	13 (1.2)	1.9 (0.8-4.9)
CNO7721	Cajistas, monotipistas y asimilados	10 (0.7)	5 (0.5)	0.6 (0.2-1.9)
CNO7723	Grabadores de imprenta y trabajadores asimilados	21 (1.5)	11 (1.0)	0.6 (0.3-1.2)
CNO7731	Trabajadores de la cerámica, alfareros y asimilados	14 (1.0)	10 (0.9)	0.7 (0.3-1.5)
CNO7801	Matarifes y trabajadores de las industrias cárnicas y del pescado	20 (1.4)	21 (1.9)	1.0 (0.6-2.0)
CNO7802	Panaderos, pasteleros y confiteros	24 (1.7)	24 (2.2)	1.1 (0.6-1.9)
CNO7920	Ebanistas y trabajadores asimilados	21 (1.5)	8 (0.7)	0.4 (0.2-1.0)
CNO7933	Sastres, modistos y sombrereros	12 (0.9)	6 (0.5)	0.6 (0.2-1.5)
CNO7942	Zapateros y asimilados	9 (0.6)	9 (0.8)	1.1 (0.4-2.9)
CNO8121	Operadores en hornos de minerales y en hornos de primera fusión de metales	13 (0.9)	9 (0.8)	0.9 (0.4-2.2)
CNO8122	Operadores en hornos de segunda fusión, máquinas de colar y moldear metales; operadores de trenes de laminación	21 (1.5)	25 (2.3)	1.6 (0.9-3.0)
CNO8124	Operadores de máquinas trefiladoras y estiradoras de metales	11 (0.8)	6 (0.5)	0.6 (0.2-1.7)
CNO8131	Operadores de hornos de vidriería y cerámica y de máquinas similares	10 (0.7)	11 (1.0)	1.0 (0.4-2.3)
CNO8311	Operadores de máquinas-herramienta	85 (6.1)	72 (6.5)	1.0 (0.7-1.4)
CNO8331	Operadores de máquinas para fabricar productos de caucho	9 (0.6)	9 (0.8)	1.0 (0.4-2.6)
CNO8332	Operadores de máquinas para fabricar productos de materias plásticas	16 (1.2)	11 (1.0)	0.7 (0.3-1.6)
CNO8340	Operadores de máquinas para fabricar productos de madera	12 (0.9)	10 (0.9)	1.1 (0.5-2.7)
CNO8351	Operadores de máquinas para imprimir	16 (1.2)	10 (0.9)	0.7 (0.3-1.7)
CNO8411	Montadores de maquinaria mecánica	34 (2.4)	36 (3.2)	1.1 (0.7-1.9)
CNO8412	Montadores de maquinaria eléctrica	8 (0.6)	9 (0.8)	1.5 (0.6-3.9)
CNO8413	Montadores de equipos electrónicos	5 (0.4)	12 (1.1)	2.6 (0.9-7.6)
CNO8543	Operadores de carretillas elevadoras	9 (0.6)	6 (0.5)	0.6 (0.2-1.8)
CNO8610	Taxistas y conductores de automóviles y furgonetas	117 (8.4)	113 (10.2)	1.0 (0.8-1.3)
CNO8620	Conductores de autobuses	27 (1.9)	23 (2.1)	0.9 (0.5-1.6)
CNO8630	Conductores de camiones	86 (6.2)	82 (7.4)	1.1 (0.8-1.5)
CNO9121	Personal de limpieza de oficinas, hoteles (camareras de piso) y otros establecimientos similares	14 (1.0)	26 (2.3)	1.9 (1.0-3.7)
CNO9211	Conserjes de edificios	21 (1.5)	18 (1.6)	0.8 (0.4-1.6)
CNO9220	Vigilantes, guardianes y asimilados	27 (1.9)	19 (1.7)	0.7 (0.4-1.3)
CNO9320	Ordenanzas	56 (4.0)	37 (3.3)	0.8 (0.5-1.2)
CNO9410	Peones agrícolas	27 (1.9)	24 (2.2)	0.9 (0.5-1.7)
CNO9430	Peones agropecuarios	6 (0.4)	16 (1.4)	2.7 (1.0-7.2)
CNO9500	Peones de la minería	16 (1.2)	8 (0.7)	0.7 (0.3-1.7)
CNO9601	Peones de obras públicas y mantenimiento de carreteras, presas y construcciones similares	17 (1.2)	20 (1.8)	1.2 (0.6-2.3)
CNO9602	Peones de la construcción de edificios	70 (5.0)	76 (6.8)	1.1 (0.8-1.6)
CNO9700	Peones de industrias manufactureras	79 (5.7)	72 (6.5)	1.0 (0.7-1.4)
CNO9800	Peones del transporte y descargadores	79 (5.7)	53 (4.8)	0.7 (0.5-1.0)

CNO94	Descripción	Grado exposición	Control (N=1388)	Casos (N=1111)	OR (95% CI)
		no expuestos	1307 (94.2)	1076 (96.8)	
CNO0030	Escala básica	baja	45 (3.2)	18 (1.6)	0.5 (0.3-0.8)
		alta	36 (2.6)	17 (1.5)	0.6 (0.3-1.1)
	D: '/ 1	no expuestos	1354 (97.6)	1086 (97.7)	
CNO1110	Dirección general y presidencia ejecutiva	baja	22 (1.6)	9 (0.8)	0.7 (0.3-1.6)
	presidencia ejecutiva	alta	12 (0.9)	16 (1.4)	2.0 (0.9-4.3)
	Dirección de departamento de	no expuestos	1374 (99.0)	1104 (99.4)	
CNO1122	producción en empresas	baja	7 (0.5)	4 (0.4)	0.9 (0.3-3.3)
	industriales	alta	7 (0.5)	3 (0.3)	0.7 (0.2-2.6)
	Dirección de departamento de	no expuestos	1362 (98.1)	1105 (99.5)	
CNO1127	operaciones en empresas de intermediación y servicios a	baja	13 (0.9)	3 (0.3)	0.4 (0.1-1.3)
	otras empresas	alta	13 (0.9)	3 (0.3)	0.4 (0.1-1.3)
		no expuestos	1364 (98.3)	1095 (98.6)	
CNO1133	Dirección de departamentos de comercialización y ventas	baja	14 (1.0)	8 (0.7)	1.1 (0.5-2.8)
	comercianzación y ventas	alta	10 (0.7)	8 (0.7)	1.3 (0.5-3.5)
	Gerencia de empresas de	no expuestos	1364 (98.3)	1087 (97.8)	, , ,
CNO1320	restauración con menos de 10 asalariados	baja	9 (0.6)	15 (1.4)	1.8 (0.8-4.1)
		alta	15 (1.1)	9 (0.8)	0.6 (0.3-1.4)
	Gerencia de empresas industriales con menos de 10 asalariados	no expuestos	1375 (99.1)	1105 (99.5)	
CNO1402		baja	8 (0.6)	3 (0.3)	0.6 (0.1-2.1)
		alta	5 (0.4)	3 (0.3)	0.6 (0.1-2.5)
	Gerencia de empresas de	no expuestos	1371 (98.8)	1085 (97.7)	
CNO1520	comercio al por menor sin	baja	9 (0.6)	14 (1.3)	1.7 (0.7-4.0)
	asalariados	alta	8 (0.6)	12 (1.1)	2.0 (0.8-5.0)
		no expuestos	1378 (99.3)	1105 (99.5)	
CNO2059	Otros ingenieros superiores (excepto agropecuarios)	baja	5 (0.4)	3 (0.3)	1.0 (0.2-4.4)
	(excepto agropectarios)	alta	5 (0.4)	3 (0.3)	0.9 (0.2-3.9)
		no expuestos	1375 (99.1)	1106 (99.5)	
CNO2121	Médicos	baja	8 (0.6)	1 (0.1)	0.2 (0.0-1.8)
		alta	5 (0.4)	4 (0.4)	1.4 (0.4-5.4)
	Profesores de universidades y	no expuestos	1366 (98.4)	1101 (99.1)	
CNO2210	otros centros de enseñanza	baja	12 (0.9)	4 (0.4)	0.6 (0.2-1.8)
	superior	alta	10 (0.7)	6 (0.5)	1.2 (0.4-3.4)
	Otros diversesfi1.	no expuestos	1374 (99.0)	1107 (99.6)	
CNO2239	Otros diversos profesionales de la enseñanza	baja	7 (0.5)	2 (0.2)	0.6 (0.1-2.7)
	ia emocriariza	alta	7 (0.5)	2 (0.2)	0.4 (0.1-2.1)
		no expuestos	1365 (98.3)	1096 (98.6)	
CNO2411	Profesionales en contabilidad	baja	13 (0.9)	7 (0.6)	0.8 (0.3-2.1)
		alta	10 (0.7)	8 (0.7)	1.3 (0.5-3.3)

CNO94	Descripción	Grado exposición	Control (N=1388)	Casos (N=1111)	OR (95% CI)
	Otros profesionales en	no expuestos	1308 (94.2)	1072 (96.5)	
CNO2419	organización y administración	baja	41 (3.0)	20 (1.8)	0.8 (0.4-1.4)
	de empresas	alta	39 (2.8)	19 (1.7)	0.8 (0.5-1.5)
	Escritores, periodistas y	no expuestos	1374 (99.0)	1109 (99.8)	
CNO2511	asimilados	baja	7 (0.5)	1 (0.1)	0.2 (0.0-1.5)
		alta	7 (0.5)	1 (0.1)	0.2 (0.0-1.9)
	Diversos profesionales de las administraciones públicas que	no expuestos	1373 (98.9)	1105 (99.5)	
CNO2530	no pueden ser clasificados en	baja	8 (0.6)	3 (0.3)	0.6 (0.2-2.3)
	apartados anteriores	alta	7 (0.5)	3 (0.3)	0.8 (0.2-3.2)
	Analistas de aplicaciones y	no expuestos	1374 (99.0)	1108 (99.8)	
CNO2631	programadores informáticos de	baja	7 (0.5)	1 (0.1)	0.2 (0.0-1.8)
	nivel medio	alta	7 (0.5)	1 (0.1)	0.2 (0.0-1.5)
		no expuestos	1375 (99.1)	1104 (99.4)	
CNO2720	Enfermeros	baja	6 (0.4)	5 (0.5)	1.5 (0.4-5.1)
		alta	6 (0.4)	2 (0.2)	0.5 (0.1-2.5)
	Profesores de enseñanza	no expuestos	1363 (98.2)	1100 (99.0)	
CNO2811	primaria	baja	12 (0.9)	6 (0.5)	1.1 (0.4-2.9)
		alta	13 (0.9)	5 (0.5)	0.7 (0.3-2.2)
	Otros profesionales de las administraciones públicas que	no expuestos	1376 (99.1)	1103 (99.3)	
CNO2950	no pueden ser clasificados en	baja	6 (0.4)	4 (0.4)	1.0 (0.3-3.8)
	apartados anteriores	alta	6 (0.4)	4 (0.4)	1.0 (0.3-3.5)
	Delineantes y diseñadores técnicos	no expuestos	1351 (97.3)	1091 (98.2)	
CNO3010		baja	19 (1.4)	10 (0.9)	0.9 (0.4-2.0)
		alta	18 (1.3)	10 (0.9)	1.0 (0.5-2.3)
	Técnicos en ciencias físicas y	no expuestos	1376 (99.1)	1105 (99.5)	
CNO3021	químicas	baja	8 (0.6)	1 (0.1)	0.2 (0.0-1.9)
		alta	4 (0.3)	5 (0.5)	1.9 (0.5-7.5)
CNO2024	Técnicos en electrónica y	no expuestos	1381 (99.5)	1101 (99.1)	/
CNO3024	telecomunicaciones	baja	4 (0.3)	5 (0.5)	2.0 (0.5-7.9)
		alta	3 (0.2)	5 (0.5)	2.6 (0.6-11.0)
CNO3029	Otros técnicos en ciencias	no expuestos	1378 (99.3)	1106 (99.5)	0.6 (0.1.2.2)
CN03029	físicas, químicas e ingenierías	baja	7 (0.5)	3 (0.3)	0.6 (0.1-2.2)
	D 1 1 1' '	alta	3 (0.2)	2 (0.2)	1.0 (0.2-6.3)
CNO3031	Programadores de aplicaciones informáticas y controladores	no expuestos baja	1366 (98.4)	1108 (99.7)	0.1 (0.0-0.8)
C1(05051	de equipos informáticos	alta	12 (0.9) 10 (0.7)	1 (0.1) 2 (0.2)	0.1 (0.0-0.8)
	F-14 f-1	no expuestos	1379 (99.4)	1100 (99.0)	0.5 (0.1-1.5)
CNO3041	Fotógrafos y operadores de equipos de grabación de	baja	4 (0.3)	6 (0.5)	2.0 (0.6-7.2)
C1(05041	imagen y sonido	alta	5 (0.4)	5 (0.5)	1.1 (0.3-4.0)
		no expuestos	1364 (98.3)	1087 (97.8)	1.1 (0.5-7.0)
CNO3073	Técnicos en el control de	baja	14 (1.0)	12 (1.1)	1.4 (0.6-3.1)
	calidad	alta	9 (0.6)	12 (1.1)	1.7 (0.7-4.1)
		no expuestos	1375 (99.1)	1105 (99.5)	2., (0., 1.1)
CNO3312	Agentes de seguros	baja	7 (0.5)	3 (0.3)	0.6 (0.1-2.2)
	5	alta	6 (0.4)	3 (0.3)	0.7 (0.2-2.7)
L		uitu	U (U.T)	5 (0.5)	0.7 (0.2-2.7)

CNO94	Descripción	Grado exposición	Control (N=1388)	Casos (N=1111)	OR (95% CI)
	D	no expuestos	1230 (88.7)	1015 (91.5)	
CNO3320	Representantes de comercio y técnicos de venta -	baja	86 (6.2)	42 (3.8)	0.7 (0.5-1.0)
	toomeos de vend	alta	70 (5.1)	52 (4.7)	1.1 (0.7-1.6)
	Secretarios administrativos y	no expuestos	1366 (98.4)	1096 (98.6)	
CNO3411	asimilados	baja	11 (0.8)	10 (0.9)	1.2 (0.5-2.9)
		alta	11 (0.8)	5 (0.5)	0.6 (0.2-1.6)
		no expuestos	1377 (99.2)	1106 (99.5)	
CNO3541	Decoradores	baja	5 (0.4)	3 (0.3)	0.9 (0.2-4.0)
		alta	6 (0.4)	2 (0.2)	0.5 (0.1-2.5)
	Empleados de contabilidad y	no expuestos	1324 (95.4)	1079 (97.1)	
CNO4011	cálculo de nóminas y salarios	baja	33 (2.4)	17 (1.5)	0.7 (0.4-1.3)
		alta	31 (2.2)	15 (1.4)	0.6 (0.3-1.2)
	Empleados de oficina de	no expuestos	1350 (97.3)	1091 (98.2)	
CNO4012	servicios estadísticos,	baja	18 (1.3)	11 (1.0)	1.0 (0.4-2.1)
	financieros y bancarios	alta	20 (1.4)	9 (0.8)	0.6 (0.3-1.3)
	Empleados de control de	no expuestos	1379 (99.4)	1105 (99.5)	
CNO4021	abastecimientos e inventario	baja	4 (0.3)	4 (0.4)	1.7 (0.4-7.5)
		alta	5 (0.4)	2 (0.2)	0.5 (0.1-2.7)
	Empleados de oficina de	no expuestos	1377 (99.2)	1107 (99.6)	
CNO4023	O4023 Empleados de Oficina de servicios de transportes	baja	6 (0.4)	3 (0.3)	0.7 (0.2-2.6)
		alta	5 (0.4)	1 (0.1)	0.3 (0.0-2.3)
	Empleados de servicios de correos (excepto empleados de	no expuestos	1375 (99.1)	1102 (99.2)	
CNO4102		baja	6 (0.4)	5 (0.5)	1.0 (0.3-3.2)
	ventanilla)	alta	7 (0.5)	4 (0.4)	0.7 (0.2-2.3)
	Auxiliares administrativos sin	no expuestos	1243 (89.6)	1014 (91.3)	
CNO4300	tareas de atención al público no clasificados anteriormente	baja	70 (5.0)	51 (4.6)	1.2 (0.8-1.7)
	no clasificados anteriormente	alta	74 (5.3)	46 (4.1)	0.9 (0.6-1.4)
	Cocineros y otros preparadores	no expuestos	1360 (98.0)	1087 (97.8)	
CNO5010	de comidas	baja	12 (0.9)	15 (1.4)	1.4 (0.6-3.0)
		alta	16 (1.2)	9 (0.8)	0.6 (0.2-1.3)
	Camareros, bármanes y	no expuestos	1302 (93.8)	1026 (92.3)	
CNO5020	asimilados	baja	45 (3.2)	42 (3.8)	1.0 (0.7-1.6)
		alta	41 (3.0)	43 (3.9)	1.1 (0.7-1.7)
	Jefes de cocineros, de	no expuestos	1376 (99.1)	1099 (98.9)	
CNO5030	camareros y asimilados	baja	7 (0.5)	5 (0.5)	0.8 (0.2-2.5)
		alta	5 (0.4)	7 (0.6)	1.3 (0.4-4.2)
G210 = 1 = 1	Peluqueros, especialistas en	no expuestos	1380 (99.4)	1098 (98.8)	
CNO5130	tratamiento de belleza y trabajadores asimilados	baja	6 (0.4)	5 (0.5)	1.0 (0.3-3.6)
	iravajauvies asiiiliauvs	alta	2 (0.1)	8 (0.7)	6.2 (1.2-31.9)
G210	Encargado de sección dentro	no expuestos	1377 (99.2)	1099 (98.9)	
CNO5320	de un comercio y asimilados	baja	8 (0.6)	4 (0.4)	0.7 (0.2-2.5)
		alta	3 (0.2)	8 (0.7)	3.1 (0.8-12.0)
	Dependientes y exhibidores en	no expuestos	1264 (91.1)	1017 (91.6)	
CNO5330	tiendas, almacenes, quioscos y	baja	65 (4.7)	54 (4.9)	1.1 (0.7-1.6)
	mercados	alta	59 (4.3)	39 (3.5)	0.9 (0.6-1.4)

CNO94	Descripción	Grado exposición	Control (N=1388)	Casos (N=1111)	OR (95% CI)
	Trabajadores cualificados por	no expuestos	1240 (89.6)	984 (88.8)	,
CNO6011	cuenta propia en actividades agrícolas, excepto en huertas,	baja	84 (6.1)	61 (5.5)	0.8 (0.5-1.1)
	viveros y jardines	alta	60 (4.3)	63 (5.7)	1.1 (0.7-1.5)
		no expuestos	1315 (95.1)	1023 (93.0)	
CNO6111	ganaderas, incluidas las de animales de compañía y animales domésticos de piel	baja	35 (2.5)	44 (4.0)	1.5 (0.9-2.4)
	valiosa	alta	33 (2.4)	33 (3.0)	1.0 (0.6-1.7)
	Encargados y jefes de equipo	no expuestos	1370 (98.7)	1085 (97.7)	
CNO7010	en obras estructurales de la	baja	9 (0.6)	13 (1.2)	2.0 (0.9-4.9)
	construcción	alta	9 (0.6)	13 (1.2)	1.6 (0.7-4.0)
		no expuestos	1311 (94.6)	1035 (93.4)	
CNO7110	Albañiles y mamposteros	baja	39 (2.8)	37 (3.3)	0.9 (0.6-1.4)
		alta	36 (2.6)	36 (3.2)	1.0 (0.6-1.7)
	Trabajadores en hormigón	no expuestos	1373 (98.9)	1091 (98.3)	
CNO7120	armado, enfoscadores,	baja	6 (0.4)	11 (1.0)	2.0 (0.7-5.7)
	ferrallistas y asimilados	alta	9 (0.6)	8 (0.7)	0.8 (0.3-2.2)
	Carpinteros (excepto	no expuestos	1348 (97.1)	1070 (96.3)	
CNO7130	carpinteros de estructuras	baja	20 (1.4)	22 (2.0)	1.2 (0.6-2.2)
	metálicas)	alta	20 (1.4)	19 (1.7)	1.2 (0.6-2.4)
	Revocadores, escayolistas y estuquistas	no expuestos	1383 (99.6)	1098 (98.8)	
CNO7210		baja	2 (0.1)	7 (0.6)	3.6 (0.7-17.6)
		alta	3 (0.2)	6 (0.5)	2.8 (0.6-12.2)
	Fontanaros a instaladoras da	no expuestos	1365 (98.3)	1086 (97.7)	
CNO7220	Fontaneros e instaladores de tuberías	baja	12 (0.9)	12 (1.1)	1.1 (0.5-2.5)
		alta	11 (0.8)	13 (1.2)	1.6 (0.7-3.8)
	Electricista de construcción y	no expuestos	1346 (97.0)	1072 (96.5)	
CNO7230	asimilados	baja	25 (1.8)	16 (1.4)	0.8 (0.4-1.5)
		alta	17 (1.2)	23 (2.1)	1.6 (0.8-3.0)
	Pintores, barnizadores,	no expuestos	1353 (97.6)	1083 (97.7)	
CNO7240	empapeladores y asimilados	baja	18 (1.3)	12 (1.1)	0.6 (0.3-1.3)
		alta	15 (1.1)	14 (1.3)	1.0 (0.5-2.1)
	Jefes de taller y encargados de moldeadores, soldadores,	no expuestos	1381 (99.5)	1103 (99.3)	
CNO7310	montadores de estructuras	baja	4 (0.3)	4 (0.4)	1.5 (0.3-6.3)
	metálicas y afines	alta	3 (0.2)	4 (0.4)	2.0 (0.4-9.8)
	Infor de telles de cobiectes de	no expuestos	1378 (99.3)	1103 (99.3)	
CNO7320	Jefes de taller de vehículos de motor	baja	4 (0.3)	5 (0.5)	2.1 (0.5-8.4)
		alta	6 (0.4)	3 (0.3)	0.6 (0.1-2.2)
	Jefes de taller de máquinas	no expuestos	1378 (99.3)	1103 (99.3)	
CNO7331	agrícolas e industriales	baja	6 (0.4)	3 (0.3)	0.5 (0.1-2.2)
	agricolas e maasmates	alta	4 (0.3)	5 (0.5)	2.2 (0.5-9.5)
		no expuestos	1369 (98.6)	1101 (99.1)	
CNO7421	Mineros, canteros y asimilados	baja	11 (0.8)	4 (0.4)	0.4 (0.1-1.3)
		alta	8 (0.6)	6 (0.5)	1.3 (0.4-4.0)

CNO94	Descripción	Grado exposición	Control (N=1388)	Casos (N=1111)	OR (95% CI)
		no expuestos	1335 (96.3)	1061 (95.5)	,
CNO7512	Soldadores y oxicortadores	baja	25 (1.8)	27 (2.4)	1.2 (0.7-2.1)
		alta	27 (1.9)	23 (2.1)	1.0 (0.5-1.7)
		no expuestos	1349 (97.2)	1076 (96.8)	
CNO7513	Chapistas y caldereros	baja	22 (1.6)	15 (1.4)	0.8 (0.4-1.6)
		alta	17 (1.2)	20 (1.8)	1.3 (0.6-2.5)
		no expuestos	1376 (99.1)	1102 (99.2)	
CNO7521	Herreros y forjadores	baja	8 (0.6)	3 (0.3)	0.4 (0.1-1.6)
		alta	4 (0.3)	6 (0.5)	2.0 (0.5-7.6)
	Trabajadores de la fabricación	no expuestos	1371 (98.8)	1092 (98.3)	
CNO7522	de herramientas, mecánicos y ajustadores, modelistas,	baja	9 (0.6)	10 (0.9)	1.5 (0.6-3.8)
	matriceros y asimilados	alta	8 (0.6)	9 (0.8)	1.1 (0.4-3.0)
	-	no expuestos	1379 (99.4)	1102 (99.2)	
CNO7524	Pulidores de metales y afiladores de herramientas	baja	5 (0.4)	4 (0.4)	0.8 (0.2-3.2)
	amadores de nerramientas	alta	4 (0.3)	5 (0.5)	1.1 (0.3-4.3)
		no expuestos	1327 (95.6)	1065 (95.9)	
CNO7611	Mecánicos y ajustadores de	baja	37 (2.7)	19 (1.7)	0.6 (0.3-1.1)
	vehículos de motor	alta	24 (1.7)	27 (2.4)	1.5 (0.8-2.7)
	Mecánicos y ajustadores de	no expuestos	1314 (94.7)	1049 (94.4)	
CNO7613	maquinaria agrícola e industrial	baja	35 (2.5)	33 (3.0)	1.3 (0.8-2.1)
		alta	38 (2.7)	29 (2.6)	1.0 (0.6-1.6)
	Mecánicos y reparadores de equipos eléctricos	no expuestos	1358 (97.8)	1081 (97.3)	·
CNO7621		baja	18 (1.3)	12 (1.1)	0.9 (0.4-1.9)
		alta	12 (0.9)	18 (1.6)	1.9 (0.9-4.0)
	A: -4-1111-	no expuestos	1379 (99.4)	1103 (99.4)	
CNO7622	Ajustadores y reparadores de equipos electrónicos	baja	4 (0.3)	4 (0.4)	1.5 (0.4-6.0)
	equipos electromeos	alta	5 (0.4)	3 (0.3)	0.8 (0.2-3.3)
	Instaladores y reparadores de	no expuestos	1378 (99.3)	1105 (99.5)	
CNO7623	equipos telefónicos y	baja	4 (0.3)	4 (0.4)	1.8 (0.4-7.7)
	telegráficos	alta	6 (0.4)	2 (0.2)	0.3 (0.1-1.7)
		no expuestos	1381 (99.5)	1098 (98.8)	
CNO7713	Joyeros, orfebres y plateros	baja	4 (0.3)	6 (0.5)	1.8 (0.5-6.5)
		alta	3 (0.2)	7 (0.6)	2.1 (0.5-8.1)
	Cajistas, monotipistas y	no expuestos	1378 (99.3)	1106 (99.5)	
CNO7721	asimilados	baja	6 (0.4)	2 (0.2)	0.4 (0.1-2.0)
	***************************************	alta	4 (0.3)	3 (0.3)	1.0 (0.2-4.4)
	Grabadores de imprenta y	no expuestos	1367 (98.5)	1100 (99.0)	
CNO7723	trabajadores asimilados	baja	11 (0.8)	5 (0.5)	0.6 (0.2-1.7)
		alta	10 (0.7)	6 (0.5)	0.6 (0.2-1.6)
	Trobajadorea do la corómica	no expuestos	1374 (99.0)	1101 (99.1)	
CNO7731	Trabajadores de la cerámica, alfareros y asimilados	baja	11 (0.8)	3 (0.3)	0.3 (0.1-0.9)
	anarcios y asimilados	alta	3 (0.2)	7 (0.6)	2.2 (0.6-8.6)

CNO94	Descripción	Grado exposición	Control (N=1388)	Casos (N=1111)	OR (95% CI)
	Matarifes y trabajadores de las	no expuestos	1368 (98.6)	1090 (98.1)	
CNO7801	industrias cárnicas y del	baja	11 (0.8)	10 (0.9)	0.9 (0.4-2.0)
	pescado	alta	9 (0.6)	11 (1.0)	1.3 (0.5-3.2)
	D 1	no expuestos	1364 (98.3)	1087 (97.8)	
CNO7802	Panaderos, pasteleros y confiteros -	baja	13 (0.9)	12 (1.1)	1.0 (0.5-2.3)
	conneros	alta	11 (0.8)	12 (1.1)	1.1 (0.5-2.5)
		no expuestos	1367 (98.5)	1103 (99.3)	
CNO7920	Ebanistas y trabajadores asimilados	baja	12 (0.9)	4 (0.4)	0.4 (0.1-1.1)
	usimiludos	alta	9 (0.6)	4 (0.4)	0.5 (0.2-1.7)
		no expuestos	1376 (99.1)	1105 (99.5)	
CNO7933	Sastres, modistos y sombrereros	baja	7 (0.5)	2 (0.2)	0.3 (0.1-1.5)
	sombleteros	alta	5 (0.4)	4 (0.4)	0.9 (0.2-3.4)
		no expuestos	1379 (99.4)	1102 (99.2)	
CNO7942	Zapateros y asimilados	baja	5 (0.4)	6 (0.5)	1.5 (0.4-5.0)
		alta	4 (0.3)	3 (0.3)	0.8 (0.2-3.4)
	Operadores en hornos de	no expuestos	1375 (99.1)	1102 (99.3)	-
CNO8121	minerales y en hornos de	baja	7 (0.5)	4 (0.4)	0.7 (0.2-2.6)
	primera fusión de metales	alta	6 (0.4)	4 (0.4)	0.9 (0.2-3.2)
	Operadores en hornos de segunda fusión, máquinas de	no expuestos	1367 (98.5)	1086 (97.8)	
CNO8122	colar y moldear metales; operadores de trenes de laminación	baja	8 (0.6)	15 (1.4)	2.5 (1.0-6.3)
		alta	13 (0.9)	9 (0.8)	1.0 (0.4-2.4)
	Operadores de máquinas	no expuestos	1377 (99.2)	1105 (99.5)	,
CNO8124	trefiladoras y estiradoras de	baja	7 (0.5)	2 (0.2)	0.4 (0.1-1.8)
	metales	alta	4 (0.3)	4 (0.4)	1.0 (0.2-3.9)
	Operadores de hornos de	no expuestos	1378 (99.3)	1100 (99.0)	
CNO8131	vidriería y cerámica y de	baja	5 (0.4)	6 (0.5)	1.0 (0.3-3.3)
	máquinas similares	alta	5 (0.4)	5 (0.5)	0.9 (0.3-3.3)
		no expuestos	1303 (93.9)	1039 (93.5)	,
CNO8311	Operadores de máquinas- herramienta	baja	50 (3.6)	34 (3.1)	0.9 (0.6-1.4)
	пенаниена	alta	35 (2.5)	38 (3.4)	1.2 (0.7-1.9)
		no expuestos	1379 (99.4)	1102 (99.2)	-
CNO8331	Operadores de máquinas para fabricar productos de caucho	baja	5 (0.4)	4 (0.4)	0.9 (0.2-3.4)
	rabilear productos de caucilo	alta	4 (0.3)	5 (0.5)	1.1 (0.3-4.1)
	Operadores de máquinas para	no expuestos	1372 (98.8)	1100 (99.0)	
CNO8332	fabricar productos de materias	baja	9 (0.6)	5 (0.5)	0.6 (0.2-1.8)
	plásticas	alta	7 (0.5)	6 (0.5)	1.0 (0.3-2.9)
	0 1 1 1	no expuestos	1376 (99.1)	1101 (99.1)	. ,
CNO8340	Operadores de máquinas para fabricar productos de madera	baja	6 (0.4)	5 (0.5)	1.2 (0.4-4.3)
	raoricai productos de madera	alta	6 (0.4)	5 (0.5)	1.0 (0.3-3.5)
	0 1 1 1	no expuestos	1372 (98.8)	1101 (99.1)	
CNO8351	Operadores de máquinas para imprimir	baja	7 (0.5)	8 (0.7)	1.2 (0.4-3.4)
	шұнш	alta	9 (0.6)	2 (0.2)	0.3 (0.1-1.4)
		no expuestos	1354 (97.6)	1075 (96.8)	` /
CNO8411	Montadores de maquinaria	baja	18 (1.3)	17 (1.5)	1.0 (0.5-2.0)
	mecánica	alta	16 (1.2)	19 (1.7)	1.3 (0.7-2.6)
			- ()	. ()	(=. 9)

CNO94	Descripción	Grado exposición	Control (N=1388)	Casos (N=1111)	OR (95% CI)
CNO8412	Montadores de maquinaria eléctrica	no expuestos	1380 (99.4)	1102 (99.2)	,
		baja	3 (0.2)	6 (0.5)	2.6 (0.6-10.8)
		alta	5 (0.4)	3 (0.3)	0.8 (0.2-3.3)
CNO8413	Montadores de equipos electrónicos	no expuestos	1383 (99.6)	1099 (99.0)	
		baja	3 (0.2)	6 (0.5)	2.4 (0.6-9.7)
		alta	2 (0.1)	5 (0.5)	2.5 (0.5-12.8)
CNO8543	Operadores de carretillas elevadoras	no expuestos	1379 (99.4)	1105 (99.5)	
		baja	4 (0.3)	4 (0.4)	1.0 (0.3-4.2)
		alta	5 (0.4)	2 (0.2)	0.3 (0.1-1.8)
	Taxistas y conductores de automóviles y furgonetas	no expuestos	1271 (91.6)	998 (89.8)	
CNO8610		baja	53 (3.8)	63 (5.7)	1.3 (0.9-2.0)
		alta	63 (4.5)	50 (4.5)	0.8 (0.5-1.1)
	Conductores de autobuses	no expuestos	1361 (98.1)	1088 (97.9)	
CNO8620		baja	15 (1.1)	11 (1.0)	0.8 (0.3-1.7)
		alta	12 (0.9)	12 (1.1)	1.0 (0.4-2.3)
	Conductores de camiones	no expuestos	1302 (93.8)	1029 (92.7)	
CNO8630		baja	44 (3.2)	42 (3.8)	1.0 (0.7-1.6)
		alta	42 (3.0)	39 (3.5)	1.1 (0.7-1.7)
	Personal de limpieza de oficinas, hoteles (camareras de piso) y otros establecimientos similares	no expuestos	1374 (99.0)	1085 (97.7)	
CNO9121		baja	6 (0.4)	14 (1.3)	2.3 (0.9-6.1)
		alta	8 (0.6)	11 (1.0)	1.4 (0.6-3.6)
	Conserjes de edificios	no expuestos	1367 (98.5)	1093 (98.4)	
CNO9211		baja	12 (0.9)	9 (0.8)	0.8 (0.3-1.8)
		alta	9 (0.6)	9 (0.8)	0.9 (0.4-2.3)
	Vigilantes, guardianes y asimilados	no expuestos	1361 (98.1)	1092 (98.3)	
CNO9220		baja	13 (0.9)	10 (0.9)	0.8 (0.3-1.8)
		alta	13 (0.9)	9 (0.8)	0.7 (0.3-1.7)
	Ordenanzas	no expuestos	1332 (96.0)	1074 (96.7)	
CNO9320		baja	29 (2.1)	18 (1.6)	0.8 (0.5-1.5)
		alta	27 (1.9)	19 (1.7)	0.7 (0.4-1.3)
	Peones agrícolas	no expuestos	1361 (98.1)	1087 (97.9)	
CNO9410		baja	13 (0.9)	17 (1.5)	1.3 (0.6-2.7)
		alta	13 (0.9)	6 (0.5)	0.6 (0.2-1.6)
	Peones agropecuarios	no expuestos	1382 (99.6)	1095 (98.6)	
CNO9430		baja	4 (0.3)	8 (0.7)	2.0 (0.6-6.8)
		alta	2 (0.1)	8 (0.7)	4.3 (0.8-22.0)
CNO9500	Peones de la minería	no expuestos	1372 (98.8)	1103 (99.3)	
		baja	10 (0.7)	4 (0.4)	0.5 (0.2-1.8)
		alta	6 (0.4)	4 (0.4)	1.0 (0.3-4.0)
CNO9601	Peones de obras públicas y	no expuestos	1371 (98.8)	1091 (98.2)	
	mantenimiento de carreteras, presas y construcciones	baja	11 (0.8)	11 (1.0)	0.9 (0.4-2.2)
	similares	alta	6 (0.4)	9 (0.8)	1.7 (0.6-5.2)
CNO9602	Peones de la construcción de edificios	no expuestos	1318 (95.0)	1035 (93.3)	1., (0.0 5.2)
		baja	28 (2.0)	47 (4.2)	1.7 (1.1-2.8)
		alta	42 (3.0)	27 (2.4)	0.6 (0.4-1.1)
		alta	42 (3.0)	27 (2.4)	0.6 (0.4-1.1)

CNO94	Descripción	Grado exposición	Control (N=1388)	Casos (N=1111)	OR (95% CI)
CNO9700	Peones de industrias manufactureras	no expuestos	1309 (94.4)	1039 (93.5)	
		baja	43 (3.1)	39 (3.5)	1.0 (0.6-1.6)
		alta	35 (2.5)	33 (3.0)	1.0 (0.6-1.7)
CNO9800	Peones del transporte y descargadores	no expuestos	1309 (94.3)	1058 (95.4)	
		baja	41 (3.0)	26 (2.3)	0.6 (0.4-1.1)
		alta	38 (2.7)	25 (2.3)	0.7 (0.4-1.2)