
Chapter 3

Column Generation Approach for the
Location-Routing Problem

Introduction

In this chapter we present an alternative model for the LRP described in the previous one. The
variables in this model are associated with feasible routes rooted at each of the potential sites. The
number of such variables suggests the use of Column Generation (CG), which has been previously
applied to different VRPs (Desrochers, Desrosiers, and Solomon 1992; Dror 1994; Desrosiers, Dumas,
Solomon, and Soumis 1995). In our case, the convexification of the master problem is obtained via
Lagrangian relaxation. A similar approach was used in Dı́az (2001) and Dı́az and Fernández (2002)
for the SSCPLP.

The pricing problem that has to be solved in our CG approach to identify new columns is rather
involved. It consists of finding tours starting and ending at the same plant, with associated negative
cost and that do not violate the capacity constraint of the plant. We show that, in fact, it can
be seen either as an ESPPRC (Gueguen, Dejax, Dror, Feillet, and Gendreau 2000) or as a Knapsack
Constraint Profitable Tour Problem (KCPTP) (Gensch 1978; Göthe-Lundgren, Maffioli, and Värbrand
1995), that is a special case of the TSP with profits (Feillet, Dejax, and Gendreau 2001), depending on
whether we use or not the auxiliary network presented in the previous chapter. In our case, we have
regarded it as an ESPPRC, which was proven to be NP-hard in the strong sense, in Dror (1994). In
this chapter, we present a simple heuristic that allows us to avoid the exact solution of the ESPPRC
in many occasions. When this is not possible, the code proposed by Gueguen, Dejax, Dror, Feillet,
and Gendreau is used.

The structure of this chapter is as follows: In Section 3.1 we present the proposed model. In
Section 3.2 we derive the subproblems to solve within the CG scheme; the master problem and the
pricing subproblem. We also discuss how we actually generate the new columns and we outline the
algorithm presented in Gueguen, Dejax, Dror, Feillet, and Gendreau (2000) for the ESPPRC. Then,
we present the structure of the whole algorithm in Section 3.3. We conclude this chapter with some
computational experiences and final comments in Sections 3.4 and 3.5, respectively.

35

Column Generation

3.1 Formulation

We recall the notation used in previous sections:

I set of potential plant locations

J set of customers

bi capacity of plant i, i ∈ I

fi fixed costs for opening plant i, i ∈ I

dj demand of customer j, j ∈ J

crs arc costs, for r, s ∈ I ∪ J , not both in I.

For each potential plant location i ∈ I we define Ki as the index set of all routes leaving plant i,
and satisfying a total demand that does not exceed the capacity bi. Let k ∈ Ki be the index of such
a route. Given a customer j, column coefficient ak

j takes the value 1 if route k visits plant j and 0
otherwise.

If, for a route k ∈ Ki, we denote

Jk = {j | ak
j = 1},

the cost associated with route k can be expressed as

pk = fi + TSP
(
{i} ∪ Jk

)
, (3.1)

where TSP (S) is the optimal value of the TSP defined on nodes in S for S ⊆ I ∪ J .

Using this notation, the LRP can be stated as:

(LRP) minimize
∑

i∈I

∑

k∈Ki

pkzk (3.2)

subj. to
∑

k∈Ki

zk 6 1 i ∈ I (3.3)

∑

i∈I

∑

k∈Ki

ak
j zk = 1 j ∈ J (3.4)

zk ∈ {0, 1} i ∈ I, k ∈ Ki (3.5)

Constraints (3.3) forbid solutions where more than one route is selected for a fixed plant location,
while constraints (3.4) ensure that each customer is visited by exactly one of the selected routes. These
constraints can be seen as assignment constraints or partitioning cosntraints.

If we relax the assignment constraints in a Lagrangian fashion we obtain:

36

Formulation

LRPL(u) =
∑

j∈J

uj + minimize
∑

i∈I

∑

k∈Ki


pk −

∑

j∈J

uja
k
j


 zk (3.6)

subj. to
∑

k∈Ki

zk 6 1 i ∈ I (3.3)

zk ∈ {0, 1} i ∈ I, k ∈ Ki (3.5)

And the Lagrangian dual:

(LRPLD) maximize LRPL(u)
subj. to uj ∈ R j ∈ J

Given a vector u, LRPL(u) is separable in the set of plants, and each subproblem can be easily
solved as follows.

For each potential plant location i ∈ I, let

dci(u) = min
k∈Ki



pk −

∑

j∈J

uja
k
j



 (3.7)

and k(i, u) such that

dci(u) = pk(i,u) −
∑

j∈J

uja
k(i,u)
j , (3.8)

the optimal solution to LRPL(u) is given by:

z∗k =

{
1 if k = k(i, u) and dci(u) 6 0
0 otherwise.

, k ∈ Ki, i ∈ I.

The linear relaxation LRPL(u) can be reinforced by adding the following constraint:

∑

i∈I

bi

∑

k∈Ki

zk > D, (3.9)

where D is the aggregated demand, or a lower bound on the total capacity of the optimal set of plants.
This constraint forces the set of open plants to have enough capacity as to service the aggregated
demand. This is not guaranteed otherwise since the constraints that ensure that there is enough
overall capacity are the assignment constrants that have been relaxed.

If constraint (3.9) is added to LRPR(u), its solution reduces to computing dci(u) for each i ∈ I,
and then solving the knapsack problem:

37

Column Generation

KP (u) = minimize
∑

i∈I

dci(u)si

subj. to
∑

i∈I

bisi > D

si ∈ {0, 1} i ∈ I,

to decide the set of plants to open. Their associated routes will be then given by the respective
values of k(i, u).

3.2 The Pricing Problem

As described in Section 3.1, each column in LRP corresponds to a feasible route for one of the
potential plants; the elements in the column determine which customers are serviced by the route,
and its cost is the cost for opening the plant, plus the cost of the an optimal route visiting that set of
customers.

Given a dual vector u, the price in LRPLD of a column zk (k ∈ Ki) is given by

p̃k = pk −
∑

j∈J

uja
k
j . (3.10)

Finding columns that have negative price for a given plant is equivalent to finding tours rooted in
the plant, such that the capacity constraint is satisfied and the sum of the multipliers associated with
each of the visited customers is higher than the cost of opening the plant plus the route cost. The
problem of finding the feasible route with smallest price is known as the KCPTP.

Alternatively, we can consider the auxiliary graph Gi = (Vi, Ai), where Vi = J ∪ {i, i′}, and

Ai = {(i, j)| j ∈ J} ∪ {(j1, j2)| j1, j2 ∈ J ; j1 6= j2} ∪ {(j, i′)| j ∈ J},

with the following cost function defined on the set of arcs:

ĉe =

{
ce if e = (j, i′), j ∈ J

ce − uj if e = (s, j), s ∈ I ∪ J, J ∈ J.

Note that Gi(Vi, Ai) is the subgraph of the graph G presented in Chapter 2, defined by the plant
i and the set of customers (see Figure 2.1). Using the equivalency between tours and paths in Gi

explained in the previous chapter, we can represent any valid column by an ii′–path in Gi. The cost of
this path coincides with the price of the column. So, the KCPTP problem stated above is equivalent to
finding an elementary shortest ii′–path in Gi that satisfies the capacity constraint on plant i. This is
known as the ESPPRC, already studied in the literature, also within the context of column generation
for VRPs. In this work we have chosen this second approach.

As menctioned above, the ESPPRC is NP-hard. So, its exact resolution requires a considerable
computational effort, in general. However, since any valid column with negative price is a candidate
to improve the current solution of LRPLD, regardless of being or not the optimal solution to the
ESPPRC, a heuristic method can be used instead of an exact algorithm. Our proposal is to initially

38

The Pricing

try to solve the pricing problem with a heuristic that looks for columns (associated with each potential
plant location) that price properly. Alternatively, the heuristic can prove that no such column exists
for any plant location. We proceed as follows:

With each customer j we associate the profit

vj = uj − cj ,

where cj is the distance from customer j to its closest point, either another customer or a potential
plant location. Then, we try to find the set of customers with the highest total profit that satisfies
the capacity constraint, by solving the following knapsack problem:

KPi(u) = max
∑

j∈J

vjwj

∑

j∈J

djwj 6 bi

wj ∈ {0, 1} j ∈ J

Proposition 3.2.1. If KPi(u) 6 fi, then no column with negative price can be found for plant
location i.

Proof.

This proposition follows from the fact that fi −KPi(u) is a lower bound on the smallest price of
a valid column associated with plant location i:

Let k ∈ Ki, and Jk its associated set of customers. Then, by equations 3.1 and 3.10,

p̃k = fi + TSP
(
Jk ∪ {i}

)
−

∑

j∈Jk

uj

Now, since all the distances are positive,

TSP
(
Jk ∪ {i}

)
>

∑

j∈Jk

cj ,

and we obtain
p̃k > fi +

∑

j∈Jk

cj −
∑

j∈Jk

uj .

Grouping the two last terms we can deduce:

p̃k > fi −
∑

j∈Ji

(uj − cj) > fi −KPi(u)

Proposition 3.2.2. If KPi(u) > fi, let w∗ be an optimal solution with this value and

Ji = {j ∈ j |w∗j = 1} and pk′ = fi + TSP
(
Ji ∪ {i}

)
−

∑

j∈Ji

uj .

Then, the column with entries ak′
j = w∗j , is valid for plant location i and has price pk′ .

39

Column Generation

Proof. This result follows from equation (3.10).

Note that the price of this new column is likely to be small, since the path goes through customers
with high profit.

Only when the heuristic fails, the algorithm by Gueguen et al. is applied. We try to avoid using
this algorithm since it is quite time consuming, specially in problems where the capacity constraint
is not tight. This algorithm is a multiple labelling approach, where feasible labels are only fathomed
when dominated. Labels include the cost of partial solutions, the consumed resource and the already
visited customers. Cycling is avoided by considering each customer as a resource whose capacity is 1.

3.3 Algorithm Structure

The structure of the proposed approach is presented in Algorithm 3.1. It consists of successively
solving the Lagrangian dual LRPLD restricted to the columns at hand, using subgradient optimization,
and, once the optimal multipliers have been identified, seeking new columns with negative price with
respect to those multipliers. The algorithm terminates when no such column exists.

Algorithm 3.1 LRP CG
Let z̄ be an initial solution and O(z̄) its set of open plants
Initialize Ki, i ∈ O(z̄) with the column associated with the customers assigned to plant i
in z̄. a

Set ub to the value of z̄.
StopCriterion ← false
while (not StopCriterion) do

Solve LRPLD(K,ub) −→ u∗, z(u∗), lb.
if (z(u∗) defines a feasible solution and lb < ub) then

ub ← lb
z̄ ← z(u∗)

end if
new ← Column Generate(u∗)
if (new = true) then

Update K
else

StopCriterion ← true
end if

end while
lb is a lower bound for the LRP.
if (ub = lb) then

z̄ is the optimal solution.
end if
aThe optimal route through these customers must be found to assign the column the appropriate cost.

In Algorithm 3.1 calls are made to two other algorithms; Solve LRPLD(K,ub) and Column Generate(u∗).
Solve LRPLD applies subgradient optimization to solve the Lagrangian Dual LRPLD restricted to the

40

Computational Results

columns in K, as outlined in Algorithm 3.2. Observe that

δj = 1−
∑

i∈I

∑

k∈Ki

zka
k
j , j ∈ J,

gives an element of the subgradient of LRPL(u).

On the other hand, Column Generate (Algorithm 3.3) either finds columns with negative price
with respect to the current dual multipliers or proves that all columns have non negative price.

Algorithm 3.2 Solve LRPLD(K, ub)
Initialization: u ← u0, StopCriterion ← false
while (not StopCriterion) do

Compute dci(u) and k(i, u) for each i ∈ I as defined in (3.7)-(3.8).
Solve kp(u) −→ z, LRPL(u)
Compute the subgradient −→ δ
if (||δ|| 6 ε or ||LRPL(u)− ub|| 6 ε) then

StopCriterion ← true
end if
if (not StopCriterion) then

Update u
end if

end while
return (u, z, LRPL(u))

This process for solving the pricing problem is sketched in Algorithm 3.3. We use ESPPRC solve(i, u)
to denote calls to the exact algorithm to solve the problem for plant i, with dual variable values u.

3.4 Computational Results

We applied the proposed algorithm to the smallest problems of the test set presented in the
former chapter, i.e., to those in the group S1, that have 5 plants and 10 customers. At each run, the
program was interrupted if it had not terminated after 2 hours of CPU time. The obtained results are
presented in Table 3.1. In the initialization step, the solution obtained with the Tabu Search proposed
in Chapter 2 is used.

All computations have been carried out on a SUN Ultra-10/333 workstation, SPECint95 14.1. The
code used to solve the different KPs has been taken from Martello and Toth (1990), while we have
used the algorithm presented in Toth and Carpaneto (1995) for the ATSP.

The first column of the table indicates de name of the instance. In the next two columns we find
the values of the upper and the lower bounds obtained with Algorithm 3.1. CPU times (in seconds)
are shown in the fourth column, while the fifth column contains the number of iterations performed.
The last two columns refer to the number of times that the exact algorithm for the ESPPRC had
to be used. Column 6 depicts the number of iterations where the heuristic did not provide suitable
information, and column 7 gives the actual number of calls to ESPPRC solve. Note that the number
of calls to the exact solver for the ESPPRC can vary from one iteration to another, because it is called
for each plant until a column with negative price is found or all the plants have been checked.

Even for the small size considered, there were some instances where the algorithm could not finish
within the limit of 2 hours of CPU time. In those instances, the program was stalled in one of the calls

41

Column Generation

Algorithm 3.3 Column Generate(u)
Initialization: ColFound ← false; bestcols ← (0, . . . , 0)

for (i ∈ I) do
Solve KPi(u) −→ Ji

if (KPi(u) 6 fi) then
{No improving column exists for this plant}
bestcols[i] ←∞

else
Solve TSP

(
Ji ∪ {i}

)
to find pk′

bestcols[i] ← pk′

if (pk′ < 0) then
{Column with negative price}
ColFound ← true

end if
end if

end for

{All plants checked; resort to ESPPRC solve if necessary}
for (i ∈ I) do

if ((not ColFound) and (bestcols[i] < ∞)) then
ColFound ← ESPPRC solve(i, u)

end if
end for

return ColFound

to ESPPRC solve. For the other instances, however, the results obtained are very encouraging, since
the gap between the upper and the lower bound is always 0, and the computational times are small.
Unfortunately, for the instances where a call to ESPPRC solve does not terminate in a reasonable
amount of time, it is not possible to validate the bound at hand. So, in those cases, the algorithm
cannot provide any lower bound for the LRP.

3.5 Conclusions

In this chapter we propose a CG scheme to find lower bounds for the deterministic LRP under
consideration in this work. As it is the case in most applications of CG to VRPs, the backbone of the
algorithm is the resolution of the pricing problem, that in our case can be seen either as a PCTSP or
as an ESPPRC. In our approach we have interpreted it as an ESPPRC, and we have designed a simple
heuristic to avoid solving it in the majority of the cases. However, its exact resolution is required in
some occasions to validate the bound obtained with the algorithm. In those cases, we have used the
code presented in Gueguen, Dejax, Dror, Feillet, and Gendreau (2000). Even if it is an implementation
of a recent algorithm for the ESPPRC and it is quite efficient in general, in some cases it has failed to
provide us with the requested solutions within reasonable amounts of time, because of the looseness
of the capacity constraints.

Due to the good quality of the bounds obtained when the algorithm succeeds to terminate within
the pre-specified time limit, we consider that the improvement of the existing exact algorithms for the

42

Conclusions

Table 3.1: Results of Column Generation for Problems in Group S1

PROB. CG UPPER TIME iter e iter e calls

1S1a 1159.17 1159.17 58.24 4 2 8
2S1a 1296.78 1296.78 234.99 5 5 18
3S1a 1139.71 1139.71 74.38 2 2 7
4S1a 1174.93 1174.93 118.70 5 5 14
5S1a 1119.94 1119.94 112.81 4 4 13
1S1b 1159.17 1159.17 82.77 5 2 8
2S1b
3S1b 1139.71 1139.71 188.75 5 5 17
4S1b 1174.93 1174.93 82.59 3 3 10
5S1b 1333.08 1333.08 38.20 2 1 5
1S1c 2208.80 2208.80 21.46 16 3 3
2S1c 2165.50 2165.50 68.39 13 4 8
3S1c
4S1c 1974.18 1974.18 30.04 15 2 7
1S1d 2381.21 2381.21 15.23 13 1 1
2S1d
3S1s 1199.30 1199.30 7.14 24 1 5
4S1d
5S1d 2306.77 2306.77 35.36 21 4 4
1S1e 3433.68 3433.69 74.04 25 14 26
2S1e
3S1e 2987.49 2987.49 19.04 16 4 11
4S1e 3197.78 3197.78 4.00 10 1 1
5S1e

ESPPRC or the development of new ones, specialized in problems with loose capacities, constitute a
promising future research venue.

The work presented in this chapter suggests two direct extensions. On the one hand, an exact
algorithm for the LRP can be obtained by including this approach in a branch and price scheme and,
in the other hand, the generalization of this approach to the case with multiple vehicles is straight
forward.

43

