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1. INTRODUCTION

It is a curious historical fact that modern quantum mechanics
began with two quite different mathematical formulations:
the differential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two apparently dissimilar
approaches, were proved to be mathematically equivalent.
[...] a third formulation of non-relativistic quantum theory
[...] was suggested by some of Dirac’s remarks concerning
the relation of classical action to quantum mechanics. A
probability amplitude is associated with an entire motion of a
particle as a function of time, rather than simply with a
position of the particle at a particular time.

This formulation is mathematically equivalent to the more
usual formulations. There are, therefore, no fundamentally
new results. However, there is a pleasure in recognizing old
things from a new point of view.

(R. P. Feynman, Rev. Mod. Phys., 367, 20, 1948)

Two score and fourteen years ago Richard Phillip Feynman devised a
new formulation of quantum mechanics. At that time this formula-
tion was conceived more as a pleasant intellectual exercise than as a
truly practical new stream in quantum theory. Nevertheless, the cir-
cumstances were bound to change in a short time. Soon, as computers
hove in sight, Feynman’s ideas became applicable and a whole new field
of knowledge within Physics was developed.

A few years after the publication of the original Feynman’s paper, he
wrote a book entitled “Quantum Mechanics and Path Integrals” (Feyn-
man and Hibbs, 1965a) in which the whole theory was bounded together
and made clear. A traditional way of introducing the postulates of quan-
tum mechanics is by means of the following theoretical experiment: sup-
pose we have an incandescent filament emitting thermal electrons in all
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directions. In front of the emitter there is wall with two holes, and be-
hind the wall, a receiver. One may wonder from which of the two holes
has a given electron come through. That is, which path has the electron
followed. In the traditional approach to quantum mechanics the prob-
ability amplitude of finding the electron at a given position is obtained
by solving a wave equation, which is the Schroedinger equation. The
new approach begins postulating the path integral. In order to obtain
the probability amplitude of finding the electron at a given position one
must sum up the probability of the electron going from the emitter to
the receiver over all possible paths. Path integrals give account of that
task.

The mathematical expression of a path integral is an exponential of
i/h times the classical action between two points. For, the path inte-
gral formulation of quantum mechanics states the relation between a
quantum mechanical system and its classical counterpart through the
classical action. In other words, it is possible to seize quantum mechan-
ical information through a product of classical actions.

Even though we started our disquisition mentioning quantum me-
chanics, this is not our main motivation. We shall not work on quantum
mechanics through path integrals, neither analytically nor numerically.
In lieu, we shall work on quantum statistical mechanics using a tech-
nique named path integral Monte Carlo (PIMC). It is possible to formu-
late quantum statistical mechanics in terms of path integrals, using the
inverse temperature, (3, instead of i/h, as Feynman (1998) has demon-
strated. Through the following lines we shall give a brief introduction
to quantum statistical mechanics and recall history.

A key ingredient of statistical mechanics is the density matrix. An
essential property of the density matrix is that the convolution of two
density matrices at a given temperature T' yields a new density matrix at
temperature 7'/2. Departing from a density matrix at a given high tem-
perature and applying the previous property many times, it is possible
to study systems at lower temperatures. At high temperatures, where
the classical regime applies, is possible to neglect commutator algebra.

The form of the low temperature density matrix in terms of a product
of high temperature density matrices is formally the same as a path
integral. The only difference is that a path integral has no temperature,



instead there is an imaginary time factor.

In the late forties quantum and statistical mechanics were reformu-
lated in terms of path integrals. Later, during the eighties, Chandler and
Wolynes (1981) introduced the isomorphism between a classical polymer
ring and a quantum atom the way it is currently used in simulations.
Their paper definitely settled a stream opened some years before by
Fosdick and Jordan (1965) with the first path integral Monte Carlo cal-
culation.

PIMC is devised to simulate the behaviour of systems at finite tem-
perature which manifest quantum effects. In particular, it is used for
simulating quantum liquids, albeit it is also applied to other fields such
as dense matter in neutron stars (Filinov et al., 2001), and electronic
structure (Bohm et al., 2002), to name just a few. The isomorphism
introduced by Chandler and Wolynes states a mapping between a quan-
tum atom and a classical ring polymer. In plain words, each atom is
represented by a necklace formed by beads. Each bead is connected to
its neighbours by a couple of springs. The interaction between different
necklaces i.e. atoms, is given by the potential of the simulated system.

Using properties of the density matrix it is possible to extract phys-
ical information from a system. However, it is impossible to do so an-
alytically provided the large number of integrals to perform and their
dimensionality. In 1953 a remarkable paper written by Metropolis et al.
(1953) appeared. It opened up new paths in calculation with random
numbers. The Metropolis algorithm is a method for sampling any known
probability distribution. Since the Metropolis algorithm deals with ran-
dom numbers it is classified as a Monte Carlo technique.

Now, it is convenient to define path integral Monte Carlo as a method
that uses the isomorphism between a quantum atom and a classical
polymer ring in order to calculate physical properties of quantum liquids
at finite temperature, by means of Monte Carlo techniques. This is not
the most general definition of PIMC, but for the purposes of this thesis
it is perhaps the most useful.

Up until now we have described how to represent quantum atoms in
a simulation—in terms of path integrals—and how to make that simu-
lation evolve—by means of Monte Carlo methods. The easiest way to
evolve the simulation is using a bead per bead sampling. A bead of a
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given atom is chosen at random and a random displacement from its ini-
tial position is proposed. Using a probabilistic law, given by the choice of
action, the movement is accepted or rejected. Sufficiently large iteration
of this process will drive the system to its equilibrium state, in which
that probability distribution is effectively sampled. After reaching equi-
librium, state properties of the system (such as energy, one-body density
matrix, or the radial distribution function) can be estimated with further
iteration. Note that in this process there is no time variable involved,
thus dynamical properties are not accessible.

Any PIMC code encompasses three main parts: action, sampling
and properties. The classical action, that is, the one that has only
classical terms, is usually called primitive action. However, there are
more elaborated actions. Li—Broughton’s formulation is an expansion in
%2, thus including first-order quantum contributions (Li and Broughton,
1987). Another approach is to determine the exact action for two atoms
and then to construct a many—body action from that starting point.
This idea was first proposed by Barker (1979) and then fully developed
by Pollock and Ceperley (1984)

A naive sampling—the way beads are moved—has been explained al-
ready. Nevertheless, there are other ways of moving beads, such as stag-
ing (Sprik et al., 1985) or bisection (Ceperley, 1995a) methods. These
methods perform smart collective displacements of beads, and better
benchmarks are found.

Energy is one of the most demanding properties that can be esti-
mated from a PIMC simulation. The thermodynamic estimator of the
energy is obtained using the partition function. Since that estimator
yields a large variance, the virial estimator—derived using the virial
theorem—was proposed (Herman et al., 1982). It is important to be
aware that energy estimators are cunningly interwoven into the action,
hence coding a given energy estimator depends on the action chosen.
Nevertheless, energy is just one physical property. There are many oth-
ers also reachable with PIMC, and different methods for each property.

In spite of how complex coding an efficient PIMC program from
the description of the problem given so far may seem, we have only
addressed quantum liquids at finite temperature from a single point of
view. In order to show a more comprehensive perspective of simulations



of quantum liquids, we shall briefly describe other approaches.

We have already mentioned that dynamical properties are unreach-
able through PIMC simulations. Notwithstanding, this problem has
been partially surmounted using the centroid theory (Voth, 1996). The
centroid approximation is semi—classical, that is, it is well defined within
the classical limit approximation. However, it has not been demon-
strated that it holds for 7" — 0. It assumes the geometric centre of the
polymer ring to be the centre of mass of the atom. Once the atom is
reduced to a point-like particle, classical dynamics can be performed,
assuming that this point evolves via an effective potential.

Monte Carlo techniques are not the only solution for a path integral
problem; Newton laws may carry out the same job, yielding the path
integral molecular dynamics (PIMD) method (Tuckerman et al., 1993).
However, there is a caveat: in real systems with a reasonable amount
of atoms PIMD becomes useless due to extremely large CPU times.
Nevertheless, this problem can be surmounted connecting each bead to
a thermostat (Nose-Hoover chain).

There are even more ways to tackle a PIMC problem. For instance,
using terms of a Fourier expansion instead of beads yields the Fourier
path integral Monte Carlo method (FPIMC) (Freeman and Doll, 1984).
FPIMC represents an improvement on the primitive action, however
sampling methods and energy estimators used within FPIMC are the
simplest ones, since this kind of algorithms for Fourier space are more
difficult. Furthermore, bead exchanges, due to bosonic effects, have not
been tried in a FPIMC code (Chakravarty et al., 1998).

The list of different methods and their noteworthy aspects, as well
as their unvirtuous attributes, is almost endless and could left us bewil-
dered.

An immediate conclusion from this abridged view of PIMC and re-
lated issues is that there are many ways to solve a given problem. For any
particular aspect of a path integral simulation there are normally several
methods that can be used. However, there are few comparisons available
amongst them. Furthermore, some of the available literature regarding
methods and algorithms lacks of clarity. Most of the codes available
within the scientific community are straight forward approaches that
use primitive actions along with a bead per bead sampling. It is worth
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mentioning the code developed by David M. Ceperley. Nowadays it is
highly optimised and amply equipped with add—ons.

The main goal of this thesis was to code a PIMC program. At the
moment we have built a library of PIMC codes. Throughout this coding
process we have tested and compared many of the methods available.
As a result, the codes are optimised for our purposes. We have given
detailed algorithms and have told the inside story of the codes. We have
also developed new approaches to the energy estimation and the momen-
tum distribution problems (Brualla et al., 2002). For the testing process
we have used mainly the harmonic oscillator—as a toy model— and lig-
uid Ne and *He as real systems. Besides reproducing already known
results, there is also a part of the thesis that deals with new results
not previously exposed in literature. Up until now the departure from
the classical regime of liquid helium and neon has not been fully stud-
ied from the momentum distribution point of view. Taking advantage
of a new algorithm we have developed for momentum distributions—
the trail method—we coped with that problem. Finally, we have faced
the neon solid-liquid transition studying the behaviour of the energy in
terms of the density at a given temperature. Special attention has de-
served the possible discontinuity of the kinetic energy at the transition.
This point has been studied by other authors, both experimentally and
theoretically, in neon, helium, and hydrogen without arriving to a clear
conclusion.

In deciding the order of presenting the work done during these years,
we faced the dilemma of whether making a historical exposition, follow-
ing a chronological order of our research of methods and results, or on
the other hand, grouping the information in areas of knowledge. We
opted for the latter choice, since, from our point of view, it provides a
stepwise and more pedagogical approach to PIMC techniques. There-
fore, this thesis has been divided in the following way: chapter 2 provides
the fundamentals of path integrals, from the quantum mechanical scope,
and an introduction to the key features of the density matrix. Towards
the end of the chapter we bridge the gap between quantum and statis-
tical mechanics, laying the ground for the path integral Monte Carlo
formulation.

From chapter 3 to 5 we introduce the theoretical aspects of PIMC.



Chapter 3 is devoted to the action; we study several actions applied
to the one-dimensional harmonic oscillator, and to real systems. In
chapter 4 we introduce several sampling methods. PIMC theoretical
chapters finish with the one devoted to averaged properties that can
be estimated through simulations. It is mainly devoted to the energy
and to the momentum distribution. For the former property we keep
the same order established for the harmonic oscillator and real systems
while studying the action. For the latter we introduce the theoretical
aspects of the trail method, as well as, those belonging to the other two
currently used approaches to the momentum distribution. Throughout
these chapters we shall give useful formulae for coding as well as hints for
programming. All of them will be enhanced throughout the appendixes,
where lengthy derivations, some codes, and programming tips may be
found.

As part of the new results provided by our research, we have made
extensive use of the Richardson extrapolation within PIMC. As far as we
know, this kind of extrapolation has not been applied to this field. Chap-
ter 6 introduces the theoretical aspects of the Richardson extrapolation,
its applications to PIMC results, and a small code for implementing a
recursive extrapolation.

Chapter 7 shows the outcomes of the tests we have performed on
several systems. We have chosen systems with well known properties, in
order to have useful comparisons with the literature. We shall test the
accuracy of our codes, as well as, benchmarks of some of the different
methods exposed up to that point.

Finally, we shall apply the codes we have developed during the thesis,
on problems that represent current open streams of research, hence pro-
viding new data to the scientific literature. We have chosen two different
problems, briefly sketched above. Chapter 8 deals with the momentum
distributions of liquid helium and neon, and chapter 9 is a study of the
solid-liquid phase transition of neon at 35 K. Chapter 10 is devoted to
conclusions and possible new lines of research.

We hope to give a clear view of PIMC methods along with easy to
code recipes that would provide future researchers with appropriate tools
for studying quantum liquids at finite temperature in the Boltzmann
regime.
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2. FUNDAMENTALS

We aim to develop throughout this chapter the fundamental ideas neces-
sary for the path integral Monte Carlo method. In order to do so neatly
we shall first give the physical conditions of the problems we would like
to solve once we have our PIMC code. We shall simulate three dimen-
sional liquids within a box. The size of the box, as well as the number
of particles and the temperature, will be fixed. Thus we work in the
canonical ensemble. Furthermore, we will simulate quantum fluids at a
low finite temperature but not superfluids. In the range of temperatures
chosen, exchanges can be disregarded and the systems can be considered
Boltzmann quantum liquids.

In this chapter we shall first present the path integral formalism.
Then we shall briefly introduce the thermal density matrix along with
some of its properties. Finally, we shall show the parallelism between
path integrals and density matrices.

2.1 Path integrals

Parallel to Schrodinger’s formulation of quantum mechanics there is an-
other formalism which departs from the principle of least action and
arrives to the same conclusions but from a different scope. That for-
mulation was firstly introduced by Feynman (1948) with the name of
path integral. For the sake of simplicity we shall develop the theory in
one dimension. Nevertheless, the extension to three dimensions can be
easily done.

2.1.1 Classical action

Let us study a particle travelling in a one dimensional space. It departs
from point z1 at time ¢; and arrives to point zy at time t5. The path
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actually described by the particle Z(t), out of all the possible paths is
obtained minimising a quantity S given by
to
S = dt L(x(t), z(t);t) (2.1)
t1
S is the classical action and L is the Lagrangian of the system. For a
particle of mass m in a potential V' (z), the Lagrangian is

m

L= Ea'c(t)Q — V(z(t);t) (2.2)
In classical mechanics only the extreme path contributes to the proba-
bility amplitude of finding the particle at a given position. The neigh-
bouring paths are necessary just to determine, by means of variational
calculus, the path actually followed by the particle.

2.1.2 The path integral

In quantum mechanics, on the other hand, not just the extreme path
contributes to the probability amplitude, but all the possible paths.
They all contribute to the total amplitude, every path being weighted
with a different phase, given by the action.

The previous statements could be summarised in the following man-
ner. The probability P(2,1) of a particle to go from the point 1 at time
t1 to a point x5 at a time to is P(2,1) = |K(2,1)|?, where the amplitude

K@ D= Y () (2.3)

over all
possible
paths

is given in terms of the contribution ¢[z(t)] from each path, being

ola(o)] = Aexp { £50(0)] | (2.4)

where A is a normalisation constant and the action is that of the corre-
sponding classical system.

Equation (2.3) is a Riemann integral going to the continuum. Thus,
we might slice ¢[z(¢)] up into many intervals. The more slices we perform
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the closest is the approximation to the exact value of the integral. Each
slice will be of width 7. Now, taking the limit where 7 — 0 in (2.3) we

get
K(2,1) = lim - / /exp< ])djl : dw;{—l, (2.5)

where M is the number of slices of length 7, that is, 7 = |z;41 — |, and
_ (2mihr\1/2
A= (27)

in case of using the Lagrangian given in equation (2.2).
Expression (2.5) is the definition of the sum over all paths. We could
express that in a more suitable way as

K(2,1) = /12 exp (%5[2, 1])73;3@), (2.6)

which is indeed the Feynman’s path integral formula. Dx(t) is the prod-
uct of the M — 1 differentials. We do not pretend a rigorous formulation
of the path integral formalism. At a first glance it could seem clumsy to
define an integral over all possible paths; this is a high order of infinity
and it is not unfeigning to realise that the integral is bounded. Howbeit,
what we intend is to give an intuitive idea of the path integral formu-
lation of quantum mechanics, since our main interest is to do quantum
statistical mechanics.

Inasmuch as our goal is to produce an algorithm to be run in a com-
puter, we are interested in the translation of path integral formulse from
continuum space into discretised space. It is possible to discretise equa-
tion (2.1) taking M slices of size 7, yielding the following summation:

_ TZ ( (W)2 _ V(xj)) . (2.7)

That approximation to the action is good to second order, as long as
we use V(%) instead of V(z;). Equation (2.7) is the discretised
action we shall use when coding the PIMC algorithm.

2.1.3 From path integrals to Schrédinger equation

As we said before, the path integral theory is a formulation of quantum
mechanics parallel to the well known Schrédinger formulation. There-
fore, it is possible to depart from path integrals and retrieve the Schrodinger
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equation. That is exactly what we are about to do. Moreover, we will
demonstrate the normalisation constant appearing in (2.5).
Using the propagator,

P(x2,l2) = /OO K (2, to; 1, t1)Y (21, 1) day, (2.8)

we get the wave function 1 at time to. It is possible to calculate the
time £9 as a small increment 7 of ¢1. If we do so, we obtain

Y(xg,t +7) = / — €xp <Ti£ <M»xi>>¢(l‘ibt) dx;
oo A h T
(2.9)
where A is the normalisation constant to be determined, and £ =

mi?/2 — V(x,t). Notice that & has been discretised using the small
increment 7. Substitution of the Lagrangian in the integral yields

santrn) = [ 3 {ew[tm =l

< O{oexp {—%TV(xi,t)} } W@, ) dzs 1. (2.10)

We wish to evaluate that integral for small changes in (x; —x;_1). Thus,
we substitute x;_1 = ; + 1 in equation (2.10) taking n small enough in
preparation for a series expansion:

statrm) = [ e [ exp [ E Vi) e+

2hT h
(2.11)
Now we expand equation (2.11) in power series to first order in 7
9] > 1 imn? iT
Y(zi,t + 1)+ Taw(xi,t +7)= I exp [ 27:77_ ] [1 - %V(xi,t)] X

0 1 0?2
X [¢($i,t+7) + 7783: Y(zit+71) + 502ww(xi,t+7)] dn. (2.12)

(2

If in (2.12) we compare left and right hand sides at the same order in T,
we find the following relations: at order zero

1 [ imn?
1 /_Oo exp [ T ] dn =1, (2.13)
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which yields the normalisation constant

A= <2”ih7> : . (2.14)

m
And at first order we find

aw - hr 0%
%ZHLT wi h - 2im Ox2’

This holds true to order 7 only if w satisfies

hoy RO

which is the Schrodinger equation.

(2.15)

2.1.4 Exact solution of the free particle problem

The strength of PIMC roots in the fact that low temperature proper-
ties can be calculated performing products of high temperature density
matrices. Although, at the moment, we are just working with quantum
path integrals in Feynman’s sense, that is, at zero temperature, we can
still see how the product of classical actions yields the quantum result.
In order to do so, we shall calculate the propagator of a quantum free
particle by means of path integrals, which is fully analytical.

The classical path of a free particle from (xg,0) to (x,t) is given
by #(t) = zo + L(zn — 20) and the classical action is

T . 2 o 2
501:/ @(M) g = ™ (@ —20)” (2.17)
0 2 T 2 T

On the other hand, in the path integral sense, we wish to evaluate

TN ,l’ T m 9
K(xp,xo;1) = dx(t) exp w5t dt (2.18)
xQ 0

) m (M+1)/2
- ]\/}inoo (27‘(‘1717’) x

M

X /Dm exp —21 (zjp1— )% | (2.19)
T
7=0
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with 7 = t/(M + 1), Dx = dx; ---dxpr and zpr41 = x9. The normal-
isation constant appearing in round parentheses has been justified in
section (§ 2.1.3). This is again a Fresnel integral, producing

m im (zp — 20)?
K(xp,z057) =4/ Sy &P (ﬁ?%) (2.20)

Notice that the phase in (2.20) is the classical action from (2.17) times
a factor i/h. This is exactly what we expected from theory. We have
seen in this example how the quantum propagator is given in terms of
a product of classical actions. For the free particle the quantum me-
chanical result of the amplitude in terms of the classical action is exact.
This is not generally true in other cases since V' (z) is not zero. When
we integrate the Lagrangian, in order to get the action, what we are in-
tegrating indeed is the kinetic energy operator plus the potential energy
operator—due to the Baker-Campbell-Hausdorff (2.36) formula and the
linearity of the integral. For standard Hamiltonians—those with the ki-
netic term equal to p?/2m—the result of the kinetic part of the action is
always the same. In fact we shall see when studying sampling methods,
that some methods take advantage of that fact and solve analytically the
kinetic part and the remaining part of the action i.e. the potential term,
is the only one sampled by means of the Metropolis algorithm. For, it is
obvious that problems arise when doing [ V'(z,t)dt. Even in stationary
potentials, those with no explicit time dependence V (z,t) = V(z), there
are problems, since there is an implicit dependence of z(¢) on time. A
first approximation is to neglect the dependence of position on time,
which yields

/ V(@) dt = 7V (). (2.21)
0

2.2 Density matrix

We have already mentioned that we shall develop our codes in the canon-
ical ensemble. Therefore, all the theory from quantum statistical me-
chanics shown in this section will be outlined within that ensemble.
In the canonical ensemble a state is defined by the fixed quantities N
(number of particles), V' (volume) and 7' (temperature), and the vari-
able quantity F (total energy). When we speak of number of particles
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we refer to number of atoms, that is in the PIMC language, number of
polymer rings or necklaces.

The probability that a system, chosen at random from the ensem-
ble, has an energy E; is given by the Boltzmann statistics exp(—8E;),
where § = 1/kT with k the Boltzmann’s constant. We must not forget
that we are going to work in the Boltzmann quantum regime, that is,
at a temperature sufficiently low for quantum effects to arise, but not
low enough to incur in indistinguishability effects. Thus, Boltzmann
statistics suffices.

Our ensemble is characterised by the Hamiltonian operator H whose
eigenfunctions are ¢; and the eigenvalues are F;. In the position—space
representation, the density matrix is defined as

p(R,R';8) =< Rle PH|R' > Z@ )i (R)e PF, (2.22)
where R = ry,...,ry. The occupation probability of a given state i is
e—Ei/ksT

The expectation value of an operator O in discretised space is

<0>=2Z"1) " <4i|0l¢; > e PP, (2.23)

with

Z =Y e (2.24)
7

the partition function.
In continuum space, summations in equations (2.23) and (2.24) be-
come integrals as

<O>=7"" /deR’p(R, R;B) < R|O|R >, (2.25)

- / dRp(R, R; §). (2.26)

2.2.1 Properties of the density matrix

The following exact property of the density matrix is the basis of the
PIMC method. As a matter of fact that property shows the reason
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why PIMC—a method from quantum statistical mechanics—is formally
identical to the path integral development in quantum mechanics.

The convolution of two density matrices is a density matrix at a
lower temperature. In order to derive this property, we depart from the
definition of the density matrix,

p(Rl,Rg;ﬁ) =< R1|€_6H‘R3 > . (2.27)

We also know that 8 = (31 + (2. Substitution of this into the definition
of the density matrix leads to

p(Rl,Rg;ﬁ) =< R1|€_ﬁ1H€_ﬁ2H|R3 > . (2.28)
Using the identity operator on the right hand side of (2.28) yields

p(R1, Ry: fh + Ba) = / dRop(Ry, Ro; 1)p(Ro, Ry Ba), (2.29)

which is the product property of the density matrix.
The product property can be applied iteratively many times. In
order to do so we shall define first the time step 7 as:

T=8/M = e PH = (e_TH)M. (2.30)
Now, taking the product M times,

p(R07RM;ﬁ) = //dedRQdRM_l X
p(Ro, Ri; 7)p(Ry, Ro;7) -+ - p(Rar—1, Rar; 712.31)

This result is exact for any M > 1. M is the number of time slices, that
is, in our polymer language, is the number of beads of a given atom.
Since = 1/T (from now on we shall work in reduced units, where the
Boltzmann constant equals to 1) then the density matrices at the right
hand side of equation (2.31) are at a higher temperature (MT'),than
p(Ro, Rar; ). For, p(Ro, R1;7), p(R1, R2;7), ..., p(Rap—1, Rar; 7), should
they are at a sufficiently high temperature, they can be considered as
classical density matrices. Thereof the parallelism with the path integral
formulation of quantum mechanics, where quantum results are obtained
via a product of classical actions.

The density matrix is non—negative for all values of its arguments
(R, R’ and 3), as long as we are dealing with Boltzmannons or Bosons.
Thus, it can be interpreted as a probability distribution and sampled.
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2.2.2 The Trotter formula

Let us assume we are dealing with a standard Hamiltonian of the form

»

H(z,p,t) =T(p,t) +V(2) = ;

+ V() (2.32)

with V(z) sufficiently smooth and lower bounded. The time displace-
ment operator is given by

e—TH/rL — e—T(T'i‘V)/h‘ (233)
with H, T and V operators. According to the Baker—-Campbell-Hausdorff

formula, equation (2.33) can be factorised as

¢ TTHV)/h _ o=rV/h =TT /Ry =r?C/R? (2.34)

where the operator C is

7 T (1 1
=—\V.T|— =\ = Tl — = T\.,T 2.
¢ =37 (wwry - ) + (239
Therefore to second order in 7
e—T(T—i-V)/FL ~ e—TT/he—TV/FL' (236)

In accordance to equation (2.36) we can approximate the exact den-
sity matrix in H to the product of density matrices of 7" and V. Nev-
ertheless, it is not guaranteed a priori that repeated application of this
process does not lead to a biased result due to cumulative errors. In
order to be sure of the exactness of our results we recall the Trotter

formula:

efﬁ(T*FV) — ]\/}lm [e*TTefTV]M . (237)

The derivation of the Trotter formula is too technical and out of the
scope of this thesis (Trotter, 1958). Nevertheless, there are several con-
ditions that the functions involved in that formula must satisfy in order
to yield valid results. Although we are using the Trotter formula for
the operators T' and V, it holds for any two pair of operators, provided
the operators are lower bounded. We do not have to worry, since the
potentials we shall use are bounded from below. The Trotter formula
also requires that the three operators T', V, and T + V be self-adjoint.
Nevertheless the Hamiltonians we use for helium and neon also satisfy
this condition.
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2.2.3 The relation between path integrals and the density matrix

In the introduction we talked about the language around PIMC meth-

ods. We said that sometimes the beads are referred as particles in

imaginary time. Now we are going to show the relationship between
temperature and time in the path integral sense.

In aid of clarity we shall study a single particle in one dimension

whose Hamiltonian in space representation is

N

H=_——+V(R 2.38

2m OR? +V(R). (2:38)

In order to make evident the relationship between temperature and time
we first derive equation (2.22), therefore we have

8 /. /
yielding the Bloch equation
9 , n? 02 ,
SEHRRE D) = (=5 VIR ) o(R RSB (240

On the other hand we have the Schrédinger equation for a wave
function v (z,t), which is:

2 2
ih%¢(x,t) - <—2h—% +V(x )) b(x,t). (2.41)

We also know that the time evolution of the wave function ¢ (z,t) is
obtained by means of the propagator given by equation (2.8), that is

P(z,t) = /da:/K(:E,x/;t)¢(a:',O). (2.42)
The propagator satisfies the Schrodinger equation
2 92
ih%K(m,x';t) = ( ;% +V(z )> K(z,2'5t), (2.43)

along with the boundary condition

K(z,2';0) = §(z — o). (2.44)
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If we take t = —iBh and R = =z, then the equivalence between
equations (2.40) and (2.41) is evident. In other words, the density matrix
is the propagator for evolution in imaginary time. In fact:

p(R,R; 3) = K (z,2'; —ifh). (2.45)

Expression (2.45) is a formal equivalence, instead of an equation. Nev-
ertheless, it is useful for observing the connection between quantum
mechanics and quantum statistical mechanics.

2.2.4 The harmonic oscillator—semper fidelis

The harmonic oscillator is a simple model that we shall use in order to
test our algorithms. It is very useful since the energy, and the density
matrix, can be calculated analytically. Later on, we shall compare our
results of the energy from the PIMC code with the exact result obtained
here.

The Hamiltonian of the linear harmonic oscillator is given by

. B2 92 1
and the trace is /2)8m
o0 _ N e— w
e e = (2.47)

which is indeed the partition function. From the definition of the mean
energy in terms of the trace we know that

(H) = —%1n2<xe—ﬂﬁ|x>. (2.48)

Therefore, after some algebra. we finally get the expression for the mean
energy of the linear harmonic oscillator

(H) = %hw coth <%ﬁhw> . (2.49)

In chapter § 7 we shall compare it with the mean energy estimated
by means of PIMC.
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3. ACTION

There are three main ingredients in any PIMC code: action, sampling,
and properties. Along this chapter we shall study the action. We shall
not directly deal with the quantum many body problem stated above,
instead, we shall start with a very well known model problem: the quan-
tum harmonic oscillator. It will give us the opportunity to test different
approaches to the action in a PIMC code, and learn how to implement
the algorithms in a computer. Therefore, this chapter is divided in two
main sections, the first one devoted to the actions for a one dimensional
harmonic oscillator, and the second one related to actions of three di-
mensional real systems.

During the study of the action in the harmonic oscillator we shall
test as much as five different actions: the primitive action, three slight
improvements over the primitive action, and finally the Li-Broughton
action. We shall realise that only the Li-Broughton action represents a
real improvement over the primitive, while the other actions studied do
not provide substantial betterment.

In order to sample the probability distributions required in a PIMC
algorithm we shall use the Metropolis method. The Metropolis method
(Metropolis et al., 1953) generates points that are serially correlated.
Long correlation times, together with the many degrees of freedom
(around 20,000 spatial variables in any real system simulation), yield
noisy results when dealing with quantum fluids. Thus, we shall only
derive the primitive and the Li-—Broughton action (Li and Broughton,
1987) for the real systems, since we will show in chapter 7 that the lit-
tle improvements observed in the three variants of the primitive in the
harmonic oscillator, will not be perceptible in the real system.

In aid of clarity, in this chapter we shall just derive the formulse
related to the actions. We shall leave for the following chapters the
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algorithms, as well as, the results obtained with the actions found. In
the chapter dedicated to the results we will validate the choice of actions
taken for studying real systems.

3.1 (General considerations

Prior to finding the different actions for both the harmonic oscillator
and three dimensional real systems we shall derive some results that
will provide us with useful formulae, as well as a deeper physical insight.
For the sake of clarity, and without loss of generality, we shall derive
these results for a single particle in a stationary potential.

3.1.1 The primitive action

We have seen in § 2.2.1 how a large number of time slices M implies a
path made up of high temperature density matrices. Taking this into
account we might approximate the partition function

Z = /dazl'--dxM (3.1)
p(x1, 225 B/M)p(x2,73; B/M) - - - p(wp1-1, 2015 B/ M) p(2 01, 215 B/ M)

X

for a large number of beads M. In such case we might approximate
V(z) = 0 and, therefore, the Bloch equation (2.40) becomes

h? o2 ,

(z,2';8) = %wp(%f ;3). (3.2)

0

a"
Considering (3.2) as a diffusion equation, where (3 plays the role of time
and /2 /2m is the diffusion coefficient. All of the elements of the density
matrix p(x,2’; 8) are positive-defined and it behaves as a probability
density, thus it can be sampled. Returning to the diffusion equation
analogy, p(x,z'; 3) comports as the probability of finding the diffusing
particles at position z provided at 3 = 0 they were all concentrated at
x = 2’. We shall return to that interpretation of finding all the particles
concentrated in one point when discussing the polymer isomorphism.
The solution to the diffusion equation is a Gaussian that spreads with
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time. Thus, the solution to (3.2) is

1/2
z, 2" 3) = L) ex [—ﬂ x—a 2] . 3.3
o) = (somz) o |5 -a?]. )

So far the result found is exact. We can still go a little bit further
and consider a constant potential V. In that case the solution is still
exact and given by

1/2
p(xjx';m:(%’”w> - [—2;2@—%)2—5@. (3.4

Notice that as x and z’ get apart from each other, and with 3 small,
the first term of the integral dominates over V. So, we might consider,
even in the case of a potential of the form V'(x), the potential constant
when the particle propagates from z to 2’. The approximation for small
B (large M) results in:

/ p
(z — ') - MV(:U) . (3.5)

mM >1/2 [ mM
p

p(a:,x’;ﬂ/M) ~ (27Tﬁh2 _257'12

The term in the exponential is the primitive approximation to the action.
We have considered only a one dimensional particle; however, this result
is easily extendable to three dimensions, and we shall do so in the section
devoted to real systems, § 3.3.

3.1.2 The polymer isomorphism

We are now in the position to discuss the polymer isomorphism (Chan-
dler and Wolynes, 1981) presented in the introduction (§1). From equa-
tions (3.1) and (3.5) we infer that the approximate partition function
is

mM M/2
7 ~ Zy= (2 dzy---d 3.6
M <27rﬁh2> /‘KE1 o (3.6)

X ex —ﬁi [ﬂ(x -z )2+iV(:1: )]
g a=1 2ﬁ2h2 ot “ M “ .
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Fig. 3.1: Intuitive picture of the polymer isomorphism

The previous approximation is exact in the case of an infinite number
of beads (Feynman, 1948), (Trotter, 1958), that is,

Z = lim Zy. (3.7)

—0Q0

The argument of the exponential is made up of two terms, where
the kinetic part is fully separated from the potential part. The kinetic
part, which is the spring term, derives from the kinetic energy operator
in the Hamiltonian. This form of an interacting potential term plus
a spring term, is the same that has been used for modelling polymers
Binder (1994). An intuitive picture of the polymer isomorphism can be
seen in figure 3.1.2. The coils represent the kinetic term of the action
(Tas1 — To)?, while the beads represent the number of high T density
matrices.

3.1.3 The polymer isomorphism seen from the scope of temperature

There are two principal advantages of the polymer isomorphism in PIMC.
Firstly, from the numerical calculation point of view: there are many
numerical techniques developed within the reference frame of polymer



3.1. General considerations 25

physics that can be applied to quantum liquids through the isomor-
phism. Secondly, it help us to visualise quantum systems. Perhaps most
of the troubles people face when dealing for the first time with quantum
mechanics come from the fact that we live in a classical world, and the
quantum reality goes against our intuition. In that moment it becomes
imperative to develop a new kind of intuition. Nevertheless, it is not easy
to do so, since every learning process has to be deeply rooted in a previ-
ous known experience, and there is no evident connection between the
quantum and the classical world. Path integrals, along with the poly-
mer isomorphism can help to bridge that gap, and offer the opportunity
to make a mental mapping of the quantum reality throughout classical
mechanics. The trick is to represent one quantum atom by means of
a necklace of many classical particles (Fig. 3.1.2). When the atom is
at high temperature, the corresponding classical necklace shrinks and
becomes a collection of many classical particles one upon each other. In
that situation we may say that the atom is localised and distinguishable,
and behaves as a classical particle. As the temperature descends, the
polymer ring begins to swell occupying a volume of the position space.
In that case, the atom begins to delocalise (Fig. 3.2). It is no further
possible to give account of a precise position of the atom, instead, there
is a a density probability of finding the atom in the space. The atom is
delocalised, but still distinguishable, since the polymer ring is well de-
fined, and cannot be confused with another neighbouring necklace. We
say that we are dealing with Boltzmannons. The picture on the cover is
a snapshot of the positions of the beads taken during a *He simulation
at 5 K. There are 8 beads per atom. From that picture it can be seen
how each polymer ring occupies a region of the space.

Now, in order to go to the farthest consequences of the isomorphism,
let us assume we are dealing with a collection of *He atoms, and let us
also assume we are going through the lambda transition, that is, we go
into the superfluidity regime. Superfluidity can be translated into the
classical polymer language in the following terms: there is a probability
of bead exchanging between atoms. That probability is very low above
the lambda transition, but is not negligible below it. Therefore, below
the lambda transition temperature the atoms begin to exchange beads
and the result is that some chains become entangled. Now, the entan-
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High T Low T

Fig. 3.2: Behaviour of the polymer ring as the temperature descends

gled chains are no longer distinguishable since they have “melted” their
constituting beads with beads from other atoms.

The polymer rings and their relation with temperature can be put in
a formal way. The easiest analytical case to consider is the free particle.
Let us define the root mean square radius of gyration A as

M
1
A2 = (3 (Ara)?), (3.8)
a=1
being
Axy = 2o — T, (3.9)
and u
_ 1

Obviously, Z is the centre of mass of the polymer ring. With the def-
inition we have given of A we are giving account of the length of the
polymer ring, therefore, a larger value of A implies a more spread out
polymer.
In the limit of M — oo, and for the free particle case, equation (3.8)
becomes (Gillan, 1990):
A2 — gh? T A2



3.1. General considerations 27

with A the thermal wavelength. In the classical limit (high temperatures,
large mass or h — 0) the value of A goes to zero, meaning that the
necklace shrinks and all the beads of an atom occupy the same position.
In the quantum regime, the necklace spreads out becoming infinity at
T =0, as we would expect.

In the presence of a potential the spreading is limited by the potential
itself. At a given temperature and for a given mass, the limiting factor
is the potential, this has a very useful practical consequence. A polymer
ring within a real system simulation experiences two opposing forces.
From one hand, the beads within an atom want to approach each other,
since there are coils connecting them but, on the other hand, there
is an inter—atomic potential attracting beads from different atoms and
spreading the necklaces. The thermal equilibrium is reached when the
mean value of these two forces balances. However, should the number
of beads per atom were not sufficiently high, the polymer would not
spread as much as required for the given conditions of mass, temperature
and potential. The results obtained in that situation would be biased
towards the classical limit. But, if we put a sufficient amount of beads—
time slices—the polymer would not spread out more than necessary for
the given conditions, since there is a potential that limits the length of
the necklace. Increasing the number of beads once the sufficient amount
has been found would not lead to better results.

In equation (3.7) we said that the exact partition function is reached
using an infinite number of beads. For, our results will be exact, provided
that a sufficient number of beads is taken, and we only have to worry
about the statistical error.

From a physical point of view, a sufficient number of beads is roughly
reached when the root mean squared length of the springs is smaller than
the relevant length scale of the external potential (Gillan, 1990). This
translates into the following relation:

h?
M> % (3.12)

with M the number of beads, and ¢ the length scale of the potential. To
a first order, we can say that the number of beads required is inversely
proportional to the temperature.
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3.2 The harmonic oscillator

In section § 2.2.4 we gave the analytic result for the energy of a quantum
harmonic oscillator. In order to test our codes we shall first construct
a simple algorithm for estimating the energy of the quantum harmonic
oscillator and compare it with the analytic result. For, we need to find
the action of a one dimensional harmonic oscillator. We shall first find
the primitive approximation to the action, and later several analytic
improvements to that result. We intend to compare the behaviour of
these different actions in section § 7.1.

The Hamiltonian we shall use through out this section is that one
given by equation (2.46).

3.2.1 High—order correction to the Irotter expansion

The partition function in the primitive approximation is

p(l’o,l‘M,ﬁ) = /dxl"'dl‘M_l(Zlﬂ')\T)_?’M/Q

_ - [(anrl —$a)2
X exp Z — e +7V(za)| |, (3.13)

a=1

with A = h?/2m. Since we are simulating polymer rings, a cyclic condi-
tion is assumed, meaning that 1 = z7411. The mass of the particle is
m. This approximation is accurate to order (3/M)? (Raedt and Raedt,
1983), (Fye, 1986). Nevertheless, should we take a sufficiently large
number of slices, in theory infinite, the results obtained would be exact
(Gillan, 1990). However we might wonder about the effects of analyti-
cally improving the action in order to place less reliance upon the sam-
pling. In other words, we hope to reduce the number of beads required
by including more terms of the expansion of the partition function.

In preparation for giving this high—order correction to the Trotter ex-
pansion we shall give a rearrangement of the Baker—-Campbell-Hausdorff
formula. The derivation presented here follows closely the one given by
Li and Broughton (1987). There is, however, a similar derivation of a
fourth-order propagator by Takahashi and Imada (1984), albeit they
only produce results for the harmonic oscillator.
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A given bead of the polymer ring feels the interaction of the external
field (in our present case the harmonic oscillator potential) and also
the harmonic potential produced by the springs connecting the bead
to its neighbours. These two adding potentials can be included in a
single effective potential whose representation is associated with all the
interactions the bead experiences. Translating this into a more formal
language:

M
1
Veg(z1,..., 2 %252 Z Tatl — Ta)? + i > Viwa).  (3.14)

a=1

As a consequence of the path integral formulation, the partition function,
Z = exp(—FH), for a one dimensional particle can be expressed, in terms
of the effective potential as

M2
/dwl ~dx (27rh252> exp[—Veg(z1, ..., xp)].  (3.15)

Alongside, given A and B any pair of operators, the Baker—-Campbell—
Hausdorff formula can be expressed as

exp[—7(A + B)] = g4(A, B; 7) + O(7°), (3.16)
with the usual definition 7 = /M, and where

g4(A,B,T) — €7TA/267TB/2677—30/24677—3/267714/2, (317)

being C' an operator defined as
C =|[[B,A],A+2B]. (3.18)

A correct expansion to order (3/M)?* obtained using the previous ex-
pressions is

Z = Tr[ga(A, B, 3/M)M. (3.19)

However, equation (3.19) is not very useful for programming purposes
(Li and Broughton, 1987), (Raedt and Raedt, 1983).
Equation (3.17) can be expressed equivalently either as

94(14’ B, 7_) — 6—730/246—TA/2€—TB€—7-A/26—7-4[A+B,C’]/48’ (320)
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or as

gu(A, B, 1) = e—TA/2e—TBe—TA/26—73C/24€—T4[A+B,C]/48_ (3.21)

Substitution of equations (3.20) and (3.21) into (3.19) yield two equiv-
alent expressions for the partition function

94(11) — eiTB/QefTAﬂe*TSC/MeiTA/QefTB/2€T4[A+B’C]/48; (3-22)
and
Qf) = ¢ TB/2=TA[2o-0C/24~TA[2—7B/2,—TA+BCI/48 (3 93)

Since (3.22) and (3.23) are partition functions, an average of them is
also a partition function, therefore a new approximation valid to fourth
order is

g8 = e TB/2e"TA/2e=T°C/2 =T A[2,-TB/2 (3.24)

Comparing (3.24) to (3.17) we notice that they are the same equation
with the operators A and B exchanged. Now we let A=T and B=V
in (3.17), and A = V and B = T in equation (3.24). Making a new
linear combination of two partition functions we obtain

2 1
g8’ = @ Vin)+ g0 (V. Ts7) (3.25)
e~ TT/2o—TV/2,—T3C" /24 ,—7V/2 —TT/2
where )
h
C' =[V,T],V] = E(VV)Q. (3.26)

Substitution of (3.26) into (3.17) gives a useful expression for the new
effective potential in terms of the potential defined in (3.14)

ﬂ2h2 M )
Wp(@n, . on) = Veii(y, o an) + 5 D 0aV ()], (3.27)

which is the Li—Broughton effective one—dimensional potential for a
single—particle, and

627’12 M )
Y > 106V (o)), (3.28)
1

a=
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is the so—called Li—Broughton correction to the primitive approximation
to the single particle one dimensional potential. It is straight forward to
convert (3.28) into computer language. However, the partial derivative
in (3.28) becomes a gradient for the three dimensional. Also and addi-
tional index, labelling atoms, appears when dealing with real systems,
in which more than one particle is involved. Therefore, some algebra
has to be performed in order to get a codable expression. This job is
carried out in detail in the Appendix A.

3.2.2 Li—Broughton correction applied to the harmonic oscillator

For the sake of completeness we shall give the derivation of Li-Broughton’s
effective potential for the harmonic oscillator. We shall be using the har-
monic potential

V= %mwaQ. (3.29)
Substitution of (3.29) into (3.27) yields
M
ViBu = h252 Z Totl — Z: 24M3 mu)4 az_:l z2.
(3.30)

Using the appropriate units in order to have i = 1, which is the value
we shall use in our simulation, and substituting for the definition of 7
we get

1m 1 M 1
V4 _ E r ] 2 2
LB 272Ma 1( atl o) 2 <1

> Z 22 (3.31)
which is the Li-Broughton potential for the harmonic oscillator. Notice
that this is exactly the same potential that would be obtained using the
primitive approximation (3.14), but for a corrective term, which is called
the Li-Broughton correction.

A similar derivation to ours, with comparisons between the harmonic
and anharmonic oscillators can be found in a paper from Burghardt
et al. (1998). Even though they use the high order corrections provided
by Takahashi and Imada (1984) and Li and Broughton (1987), they
do not claim they are fourth order. Cao and Berne (1993) have also
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performed simulations involving the Li—Broughton correction applied to
the harmonic oscillator when studying electron solvation in polarizable
fluids.

3.2.3 A slight improvement of the potential

It was suggested by Feynman (Feynman and Hibbs, 1965b) (Feynman,
1998) that integrating the potential over a straight line would result in
better approximations to the action. Replacing the potential V (z4) in
(3.14) or (3.27) for

V(xa) + V(wa—l)

2

gives in fact a second—order in the primitive approximation to the action,
which otherwise cannot be achieved. It could also provide a betterment

to use instead
174 <M> ) (3.33)

(3.32)

2

3.2.4 Variational improvement over the classical action

In §3.2.3 we integrated along a straight line. An improvement over that
first approach is to deviate from the classical path. This idea combined
with the variation theorem allowed Feynman to give an improved for-
mula for the potential (Feynman and Hibbs, 1965b).

From the Gibbs—Delbriick—Moliere minimum principle it can be de-
rived the following relationship

E< Bo+~ (S—So), (3.34)
B

where [, is the inverse of the temperature per bead. Making use of
variational calculus leads to a expression for the potential, which is

[6m m — z)?
Vr(y) = GW;;Z}’ /dz V(z) exp [— Gkah# . (3.35)

Equation (3.35) is indeed the given potential smeared out by a Gaussian.
Since this potential have been found using (3.34) we got an upper bound
for the potential energy. Furthermore, the variational principle gives us
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the better choice we could find for the single bead energy. That means
we are performing the path integral just for one bead i.e., not using the
Trotter formula. Thus, temperatures appearing in (3.35) and (3.34) are
indeed By = MG and Ty, = MT.

3.2.5 Variational theorem applied to the harmonic oscillator

Application of (3.35) to V(z) = mw?2?/2 leads us to an integral of the

kind
00 1 dnfl
/ e Pr 2T g0 2”—1p\/gdq”—1 <qeq2/p) ) (3.36)

— 00

Applying (3.36) to the harmonic potential yields

mw? h?
Vin(e) = —— <x2 + 12]\fm> : (3.37)

where Vg stands for Feynman harmonic potential.

3.2.6 Li-Broughton correction to Feynman’s variational principle
applied to the harmonic oscillator

Up until now we have derived the primitive approximation to the action,
the Li-Broughton correction, and Feynman’s variational improvement.
Li—Broughton’s correction and Feynman’s variational approach are in-
dependent improvements to the action, therefore they can be applied
successively. That is exactly what we are going to do in this and the next
section. In this section (§3.2.6) we are going to apply the Li-Broughton
correction to the action obtained using Feynman’s variational principle
in the harmonic oscillator, that is, to equation (3.37). In the next section
(§3.2.8) we shall use Feynman’s principle upon a Li-Broughton action
for the harmonic oscillator, that is, upon equation (3.30).

We have seen so far that Feynman’s variational principle when ap-
plied to the harmonic potential gives a new constant term w?h23 /24M.
That term is added to the classical harmonic potential i.e., is just a cor-
rection in temperature. On the other hand, Li—Broughton’s work pro-
poses a correction in z2, that is, to deal with a different parabola—not
just a shift in the y axis—which gives better accountant of the quantum
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nature of the problem. When a classical particle reaches a potential
barrier only ‘feels’ the potential once it has hit it. Otherwise, quantum
particles ‘feel’ the effects of potential barriers before arriving to them.

Now we are going to see what happens if a Li-Broughton correction
scheme is applied to a Feynman variational theorem in the case of the
harmonic oscillator. Our starting point is (3.37). We substitute it in
(3.27) in order to get

Vipru = (3.38)

muw> - ﬁ2h2w2 x2 N CUQTLQB'
2 12M 24M

3.2.7 Feynman’s variational principle applied to the Li—Broughton
correction of the harmonic oscillator

We are obviously trying to explore all the possible combinations amongst
the primitive action, Li-Broughton’s correction and Feynman’s varia-
tional principle. The last possible choice is to apply Feynman’s vari-
ational principle to an already Li—Broughton corrected potential. The
result obtained is:

mw2 mw4h252 ) wQﬁQﬁ w? h2,32
1 .
2 24012 >x S ( HESTIY] ) (3.39)

Notice that in the high temperature limit i.e., 3 — 0 the harmonic
classical potential V is retrieved, as expected. We see how Feynman
variational theorem always improves the accuracy with a higher order
in temperature. Since Vi gy has a 3% dependence, the application of the
variational theorem yields a $3 order.

VFLBH = <

3.2.8 Feynman and Li—Broughton corrections applied to the
anharmonic oscillator

Now we are going to play the same game we did before, but applied to the
anharmonic oscillator. Since the procedure for finding each potential and
potential energy estimator is the same we shall only give the formulze.
The behaviour of the results we obtained using the anharmonic oscillator
in our simulations was the same we observed for the harmonic case.
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2 4
_omw® o Admwt
VA——2 1 (3.40)
Vin = D (g 10 (3.41)
mom T U T um '

Amet [ R28 1\ 12mM )2
e b 34— "a?) —6
16 \6Mm h23

mw2 0.)252712
= 1 42
VLBA 5 ( + 12M2> (3.42)
N Amw? ) W3R\, NPmwph?
4 3M2 24aM2 ¥

3.3 Going towards real systems

So far we have derived several actions for one dimensional systems, in
particular, the free particle, the harmonic oscillator and the anharmonic
oscillator. In forthcoming chapters the corresponding energy estimators
for these actions will be derived, also tests will be carried out. However,
we might say in advance that only the primitive and the Li—-Broughton
action will be worth to use in real systems simulations. In the light
of this conclusion we shall derive these two both actions including a
three dimensional space and several atoms within the simulation box.
Remember that up until now we have only dealt with a single particle—
constituted by many beads—within a one dimensional potential. From
now on we shall be using Greek indexes for labelling beads and Latin
indexes for labelling atoms, e.g. r;, would be the three dimensional
position vector representing the a—th bead of the i—th atom.
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3.3.1 Primitive approximation to the action in the many particle
problem

Equation (3.14) is the primitive approximation to the action for a single
one—dimensional particle. That equation becomes

1 1 ¥ 1 &
B 2
Ve = 2T a§:1(ra+1 —ro)” + i 3:1 V(ra), (3.43)

for the case of a single three-dimensional particle. If we are dealing
with more than one atom, then (3.43) has to be averaged out with the
number of atoms, yielding

- - = . S )
Veff = N2 NM Z Z(rza—i-l I‘m) + NM ;az:l V(rza)a (3-44)

i=1 a=1

where N is the number of atoms.

3.3.2 Li-Broughton’s correction applied to the many particle problem

We have already found the correction for the one dimensional single
particle case, which is given by (3.27). That expression can be translated
into a three dimensional formula as

11 & 1 < M2 1§
Vig = D2 ;(ra+l_ra) 7 Zv(raﬂ‘ﬁﬁ(; [VaV(ra)l™

a=1
(3.45)
Equation (3.45) is a three dimensional formula and yet for a single par-
ticle.

When dealing with a many particle problem the squared gradient of
the potential that appears in the Li-Broughton correction to the kinetic
part of the energy must be treated with care due to the chain rule.
Here, the potential is not an external potential ad hoc as in the case of
the harmonic oscillator. The potential experimented by a given bead is
produced by the force (the gradient of the potential) exerted over that
bead by all the other beads that coexist in the same given imaginary
time step. In this section we will give Li-Broughton’s expression for the
action Then we shall give an explicit expression for the squared gradient
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of the potential that is suitable for programming. The derivation, for
a given potential, is not complicated but rather lengthy, thus in this
section we shall only give the results that are going to be used when
programming and we address the reader to the Appendix A for the full
derivation.

Li and Broughton showed that the commutator

C'=[V,T],V] = (VI -TV)V-V(VT -TV)  (3.46)
= —(TV)V —V(VT) +2VTV,

gives the right correction to fourth order of the action. Making use of
(3.46) and knowing that the quantum kinetic and potential operators
are

1LY
T:—%MZZV?M (3.47)

=1 a=1
and
1 M
V= MZZV(MQ—WQD (3.48)
a=1i<j

respectively. The number of atoms is given by N. Therefore, the ex-
pression for the Li-Broughton correction to the effective potential is

2 g2 N M
Vip = am M3 Z Fio  Fiq. (3.49)

i=1 a=1

The ‘forces’ F;, are defined as

Ffy = > ViV (|ria = rkal)
o
_ dV (’TiOl - rka’) (Tia - Tka)a (350)
ki d(‘rioa_rka‘) ‘Tioa_rka‘ 7

where a refers to the coordinate index i.e., x,y, 2.

Li and Broughton (1987) claim that their propagator is accurate
to fourth order. The results of our numerical experiments with the
harmonic oscillator agree with that, however, the numerical results we
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obtained with real systems show only a fourth—order behaviour in some
restricted regime. We will discuss about this in more detail in the chapter
devoted to testing.

3.3.3 Addendum

Shortly before submitting this thesis we realised, thanks to a private
communication with Siu A. Chin, about the existence of a recently pub-
lished paper (Jang et al., 2001) that shows a different expression for
a fourth—order propagator. The results showed therein are based on a
publication did some years before by Chin (1997). In the light of these
references it seems that the propagator proposed by Li and Broughton
(1987) is not fully fourth-order, which would be in agreement with some
of our numerical results for real systems.
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The concept of sampling was introduced at the very beginning of the
thesis saying that it was an essential ingredient of any path integral
code. In addition, we pointed out that sampling was the way beads
were moved. Now, we are in the position to discuss sampling in a more
formal way and to explain the problems arisen and the solutions given.

In classical liquid simulations atoms are depicted by point—like par-
ticles within a box. The time evolution of these particles is obtained
by iteratively applying Newton’s laws and solving all the interactions.
When this process is repeated many times the system reaches thermal
equilibrium. In a quantum liquid simulation the picture is similar, being
an important difference the way atoms are described. Due to the poly-
mer isomorphism atoms are represented by necklaces made up of beads,
and each bead is connected to its neighbours by a couple of kinetic
springs. Thus, instead of representing an atom with a single point—like
particle, it is represented by a collection of interacting point—like parti-
cles. It is intuitive to think that this gathering of necklaces should also
be moved in order to reach thermal equilibrium. The sampling method
is the way the beads within the necklaces are displaced.

A more formal perspective is to think of the density matrix as a
probability distribution that should be sampled following the distribu-
tion given by the action. Therefore, we must perform a large number
of multidimensional integrations and stochastic methods are the only
useful choice for this task. The distribution is different from that of a
classical liquid, since the points on the path are connected with kinetic
springs. This causes a very slow convergence due to the long correla-
tion times and, therefore, the traditional methods used with classical
liquids become useless. However, the classical polymer isomorphism can
be exploited and some simulation techniques used in that field can be
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employed.

In this chapter we shall study three main sampling methods. The
first one is a simple approach to sampling, the bead per bead method.
It is very easy to code and it will provide us with useful concepts for
developing better sampling methods. We will observe, however, that
bead per bead sampling is doomed to fail. If the atoms are made up of
more than sixteen beads it may become very slow and convergence can
hardly be reached. For going lower in temperature we need to provide
a better sampling method, one that is able to sample longer chains. A
way to overcome the strong correlation amongst beads is to propose
collective movements. There are several sampling schemes that make
thorough use of that idea: staging, bisection and multigrid. We are
going to study the first two of them.

Staging (Sprik et al., 1985) will be the second sampling method we
shall study. It is based on smart collective movements. We performed
few tests on it, being the benchmarks obtained similar to those of bi-
section. Since both methods are very similar, this is what we would
expect

The last method—bisection (Ceperley and Pollock, 1992)—is similar
to staging in the sense of being a smart collective displacement scheme,
that means that several beads are independently displaced at a time.
It also shares with staging the capability of exactly sampling the free
particle density matrix, and using the Metropolis algorithm just for sam-
pling the potential interaction. This is going to be our method of choice.
There is a negligible bias in the bisection method, that in all cases falls
within the statistical error. Notwithstanding, we shall present a small
variant to the standard bisection method that we have developed.

4.1 Bead per bead sampling

Bead per bead sampling is the easiest way to sample a probability dis-
tribution. The algorithm is very simple: first the action of the whole
system is calculated. Then a random displacement around the actual
position of a bead is performed. After the random displacement the
action of the new configuration space is calculated and compared via
the Metropolis algorithm (Metropolis et al., 1953) to the old action. If
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the displacement is accepted the positions in configuration space are
updated; if not the positions remain equal to the beginning of the algo-
rithm. Accepted and rejected moves contribute to thermal averages in
the same way. Once in a while all the centre of masses of the polymer
rings are displaced with and acceptance also guided by the Metropolis
algorithm. That is, movements of chains as a whole—without chang-
ing their inner structure—are proposed and accepted or rejected using
Metropolis. Repetition of this process will eventually drive the system
to equilibrium. The sampling equilibrium reached can be understood
in the sense of a microscopic equilibrium of probability, known as the
detailed balance condition.

In every sampling process there are several concepts we should bear
in mind. There are many references that provide a formal presentation of
the subject (Kalos M. H. and Whitlock P. A., 1986), (Binder, 1979), and
there are also ones that give easy approaches to the subject along with
codes and algorithms (Frenkel and Smit, 1996), (Gould and Tobochnik,
1996). Thus, we shall only sketch those ideas of stochastic processes
directly related to PIMC within the frame of bead per bead sampling.

The Metropolis algorithm is a method for solving the inverse prob-
lem in a Markov chain. Knowing the probabilities of each state, the
Metropolis algorithm, asymptotically builds up the transition probabil-
ities between different states. To construct a Markov chain the configu-
ration space of a system has to be changed according to a transition rule,
which is indeed a probability distribution. Let us define P(s — s’) as a
probability distribution to go from state s to state s’. Repeated appli-
cation of this transition rule will generate a random walk. A transition
is ergodic if it is possible to access any given state in a finite number of
states. For a full discussion on this subject see Krauth (1998)

Let us define the probability distribution

_exp[=2al, Sol
m(s) = = 1=, (4.1)

with Z the partition function that normalises 7(s) and S, the action of
the a—th link. Detailed balance can be put in a formal way as

m(s)P(s — §') =m(s)P(s' — s). (4.2)
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To satisfy detailed balance is a sufficient condition for an ergodic sys-
tem in order to guarantee that the probability distribution m(s) will be
sampled in a finite number of steps.

According to the generalised Metropolis criterion the transition prob-
ability can be split as

P(s—s)=T(s— s)A(s — ) (4.3)

into a a priori sampling distribution T'(s — s’) and an acceptance prob-
ability A(s — §’). In the original Metropolis algorithm, T'(s — ') =
T(s" — s), however T(s — s’) might have other definitions. The trial
moves are accepted or rejected according to

T(s" — s)m(s)

T(s— s)m(s) ]|’ (44)

A(s — §') = min |1,
which is the Metropolis method. Equation (4.4) verifies detailed balance,
therefore, convergence is guaranteed.

The bead per bead sampling method satisfies all these conditions,
and hence, is essentially correct. However, we have to remember that in
order for the primitive approximation to be valid, one has to start with
a classical density matrix, that is, a high temperature density matrix. If
we want to decrease in temperature, down to the regime where quantum
effects arise, a large number of density matrices has to be convoluted.
This means more than sixteen beads in our polymer rings. With these
conditions this kind of sampling becomes slow and convergence requires
large CPU times. In fact, it has been proved that autocorrelation times
diverge quadratically with the number of beads (Janke and Sauer, 1997),
(Nightingale, 1999). That is the reason why other sampling schemes have
been proposed.

4.2 Staging

Due to the severe slowing down of a bead per bead sampling a better
sampling method is required. There are several methods that surmount
critical slowing down. Some of them come from numerical differential
equation theories like the W—cycle in multigrid techniques (Goodman
and Sokal, 1986). Janke and Sauer (1993) have tested it in several
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academic models Janke and Sauer (1996), and they claim to reduce
critical slowing down to a constant. However, our tests yielded a linear
dependence with the number of beads.

Another sampling method uses terms of a Fourier expansion instead
of beads. In this way paths become smoother, and also critical slow-
ing down is reduced. A comparison between discrete space PIMC and
Fourier space PIMC can be found in (Chakravarty et al., 1998).

Other methods propose smart collective movements of beads, such
as staging or bisection. In this section we shall focus on staging. It
will serve us for introducing some ideas common to bisection which will
become our method of choice. We have tried V—cycle and the W—cycle,
as well as Fourier and staging in our preliminary tests with the har-
monic oscillator, and overall bisection turn out to be a better choice.
Nevertheless the equations and algorithms presented here will be useful
for anyone interested in coding a staging sampling since we shall give
formulee that are straight forward to code.

For a large number of beads the kinetic term in the action dominates
over the potential term, thus, the main cause of slowing down comes out
from the inter—bead interaction. If we could remove the springs coupling
the beads, slowing down would not be a problem. The main issue of
staging, as well as bisection, is to separate the kinetic and potential
parts of the action and to include the kinetic part within the sampling.
Should not exist a potential interaction, that is, were we sampling the
free particle density matrix, the acceptance would be one hundred per
cent and there were no need of a Metropolis algorithm. Furthermore, the
staging method proposes a collective smart displacement of the beads.
It takes a segment of the polymer ring and moves it in a way that beads
within the segment can be considered independent and not coupled. This
is achieved redefining the position coordinate and the mass of the beads
in terms of new positions and masses denoted by starred variables. For
the sake of clarity we shall develop the theory only for a single atom,
thus all the indexes appearing are bead labels. In this section we shall
use Latin indexes for labelling beads.

The staging method is a sampling strategy that takes advantage from
the fact that the kinetic part of the action may be exactly sampled. The
same strategy used for the primitive approximation is employed, and the



44 4. Sampling

kinetic part of the action is separated from the potential one. Random
numbers are generated with the kinetic probability distribution function
and then the Metropolis criteria is only applied to the potential part,
since the kinetic part has been sampled exactly.

4.2.1 The staging variables

Let us consider a segment, of length j, of the polymer chain. That is,
the number of beads within the segment is going to be j, which is the
only free adjustable parameter regarding to sampling

o po(@iz1, i3 T) po(@is Tit15T) - -+ PO(Tin (1) Titj5 T) PO(Tikjs Tipjr13T)

j—1
(4.5)
We are going to work out the terms inside the braces. The following
identity can be stated

po(Tis Tit15T) - -+ Po(Tig (j—1) Titjs T) = po(Tis Tij; JT) X
[po(wi, i 15 7) po(Tit1, Tigys; (J — 1)7)] o
po(Ti, Tiyjs; jT)
Po(Tit1, Tito; T)po(Tiv2, Titj; (J — 2)7')] “ ..
po(Tit1, Tivg; (5 — 1)7)
P0(Tit(j=2)s Tig (j—1)5 T)PO(Tig (j—1)s Titj; T)}
Po(Tit(j—2)s Titj; 2T)

(4.6)

Now we can split each one of the terms in square brackets in an easy
form. Let us take a generic one

Po(Titk, Tigkt1;7)P0(Tiv ki1, Tivg; (J — (K +1)7) (@7)
Po(Titks Tiyys (J — k)T)

exp [_m(xiﬂwﬂ - $i+j)2} exp [—2;;1—27(%% - $i+k+l)2}

)

m , )2
exp —m(fcwrk — Titj) ]

where i, j are fixed indexes and k =0, ..., (j —2). The arguments of the
exponentials in (4.7) can be expanded and sorted in the following way
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The three parenthesis (A, B, and C) can be rearranged and yield the
definition of the new position variables

A=—1, (4.8)
Tivj ok —(k+1) _
B =t i ~ % = Titk+1 (4.9)
J
C = 2 1 2 ] B (k + 1) 2
j B (k + 1) %2

2£Bi+k$i+jW = —Tiggt1- (4.10)
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Using the definitions (4.9) and (4.10) it is possible to rewrite the argu-
ments of the exponentials in (4.7) as

j —k 2 * *2
j—(k+1) [—kaH t 2%ith 41T k1~ Tipht1
j—k
= T g D) Wik - Tipk1)”. (4.11)

Once the new staging positions are defined we define a k mass by

my, = m <%> . (4.12)

Each one of the square brackets in the action is written as
mg 2
exp [_ﬁ ($i+k+1 - 95?+k+1) ] ) (4.13)

where the staging coordinates are given by

Tiyj + vipn(j — (B +1))

Titkt1 = - : (4.14)
In a similar fashion the prefactor of each term yields
1/2 1/2
() (sgemy) &
2mhAT 2nh? (j—(k+1))7 mg
- < 4 > . @)
2wh*T

(%)m

Putting all together one arrives to the following identity

P0(Tis Tig13T) - -+ po(Tigjm1, Tigjs T) =

( m )1/2eX [_ m (2 — 2 ~)2}><
orh?jr P oh%jr ’ i

Jj—2 My 1/2 my
I (55) " o |- —afop?| . (010)

2 2
o 2wheT 2Rt

From the term inside the product of (4.16) we see the usefulness of
the staging method. With the new staging variables we have obtained a
system of uncoupled springs, and therefore, they are independent. This
allows us to perform collective uncorrelated movements of beads.
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4.2.2 The algorithm

Let us think now the way in which an efficient sampling of this “free”
density matrix can be carried out. First, note that we can fix the first
and last point of the chain i.e., the coordinates z; and x;4; do not
change. The movements correspond to the 7 — 1 beads in between. The
sampling has to be performed in an iterative scheme since, as the index

k increases, all the * depend on the precedent .

1) k=0.
0 o1
. Tt —1)
Tig1 = j
, . h2r
Tip1 = Tipq + 1 o
2) k=1
7—1
mp = m-—-—
1 =9
. Tkt —2)
Liyo = -1
, . h2r
Tipg = Tipo + 1) e
j—1) k=j—2 1
mi—2 = m§
X Titj + Tiyj o
Tigj-1= = o
h2r

/ X
Tigjo1 = Tigj1+tM My’
e

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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where 7 is a normally distributed random number.
As it corresponds to an exact sampling of the kinetic action, the
Metropolis criteria has to be applied only on the interaction part.

4.3 Bisection

In this section we shall explain the bisection algorithm. We are going to
give a general explanation of the method. For the sake of clarity we shall
give the formulas for a particular case of bisection. A code written in
FORTRAN 77 that performs a general bisection is included in Appendix
B. The purpose of the code is both, to illustrate the ideas exposed in
the general algorithm explanation given below. There are also parts
of the following algorithms that make use of FORTRAN instructions. It
can be helpful for understanding the structure of the bisection code, a
basic PIMC algorithm we have included in Appendix E. That appendix
also contains some tricks that might be useful for coding and running a
PIMC simulation.

The bisection algorithm proposes a faster approach to the sampling
problem (Ceperley, 1995b), (Chakravarty et al., 1998). It only calcu-
lates the full action for movements that are very likely to be accepted.
Movements that will not lead to an update of positions are rejected in
early steps of the algorithm with an approximate action, much simpler
to compute than the real one. Moreover, only the potential part of the
action enters in the Metropolis acceptance-rejection scheme, since the
kinetic part has an analytic solution which is the solution to the free
particle density matrix given in equation (3.5). It is based on the Lévy
construction (Lévy, 1939), an algorithm for building a Brownian bridge.

4.3.1 Lévy construction

It is the algorithm on which is based the bisection method. Its scope is
to sample a free particle path. In the Lévy construction of a Brownian
bridge one starts with to fixed end points, Ry and Rg. The middle point
between Ry and Rg, namely Rg/s, is sampled exactly via

Ro+Rg G
s = ——2 ey, (4.26)
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being 1 a normally distributed random vector, with mean zero and unit
variance, and A = h?/2m.

This choice exactly samples the free particle density matrix, so there
are no rejections. Applying this algorithm recursively, the next two
intervals to bisect are (0,3/2) and (3/2,3), yielding the points Rpg/4
and Rgg/y. The algorithm continues until the difference between the
intervals is 7.

4.3.2 Multilevel Metropolis

The multilevel Metropolis method is a general algorithm that can be
used for sampling any distribution function having the convolution prop-
erties of the exponential operators. Since the bisection algorithm is a
kind of multilevel Metropolis, we shall explain the latter and demon-
strate that the algorithm asymptotically converges to the distribution
function sampled.

Let us recall the definition of the probability distribution given in
(4.1). We shall partition the configuration s in [ levels as s = (sq, s1, .. ., s1).
The coordinates belonging to sg are to remain fixed, while those of s1 will
be sampled in the first level, and so on, until sampling the s; coordinates
in the [-th level. Thus the action can be partitioned as

l
w(s) = [ mr(s0, 51, - sk)- (4.27)
k=0

Therefore, at any given level k the sampling probability, Tj(s)) can only
depend on sg, s1, ..., 8k1,5],...,S,_;, but neither on s, ..., s;, nor on
8441+ 5. The primed coordinates indicate new trial positions.
Provided we have reached level k, the probability to go forward is
given by
Ag(s') = min {1, M}
Ty (s))mr(s)

This acceptance probability satisfies detailed balance in the following
way

(4.28)

71 (8) Tk (83,) A (s") = T () T (s) Ak (5)- (4.29)
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A trial displacement is accepted only if it is accepted throughout
all the levels, therefore the total probability of accepting a given trial
displacement is given by the product of the acceptance probabilities at
each level

l
P(s — s') = [ [ Tu(s) Ax(s"). (4.30)
k=1

Since the algorithm satisfies detailed balance, it will asymptotically
sample the distribution function desired, independently of T} and 7.

What we have not explained while deriving multilevel Metropolis is
how to partition the levels, and the way the displacements are proposed,
since this is a general algorithm. For the bisection method, this task is
carried out by the Lévy construction. The bisection algorithm, which
combines both techniques, is explained in the following section.

So far we have demonstrated that in general the multilevel Metropo-
lis, and particularly bisection, asymptotically samples the required dis-
tribution function. However, we have not shown that the Lévy construc-
tion exactly samples the free particle density matrix. In order to do so
we shall use a demonstration we already did for the staging algorithm.
We observed in equation (4.16) that with the proposed staging coordi-
nates the free particle density matrix can be sampled exactly. We also
notice that bisection is equivalent in the finest level to staging since for
j = 2 equation (4.19) becomes

, X2+ X h2r
= — 4.31
x 5 +m\ o (4.31)

which is indeed the Lévy construction (4.26). Therefore, the Lévy con-
struction also samples the free particle density matrix exactly.

4.3.3 'The bisection algorithm

Bisection roughly consists in taking up a segment of a polymer chain
(Ceperley and Pollock, 1992). The extremes of the segment are not to
be moved. Then the bead in the middle of the extremes is assumed to be
directly connected, with kinetic springs, to the extremes. In other words,
it is assumed that there are no more beads, in the segment, other than
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the extremes and the middle one. A trial displacement for the middle
bead is proposed. This is a coarse move that is Metropolis tested. If
rejected the algorithm goes back to the beginning again. If accepted the
middle bead goes to its new position, and two new segments are formed:
the first bead of the original segment along with the middle bead, as well
as the middle bead with the last one. Now, two new trial displacements
for the new middle beads of the two new segments is proposed. The two
displacements must be accepted together, otherwise they are rejected.
The algorithm is applied recursively until we have moved all the beads
in the segment (except the first and the last one which are fixed) or until
a given proposed movement is rejected in which case we restore all the
old positions, even those positions that have been accepted in previous
steps, and we go over the whole algorithm again. On the other hand, if
all the proposed displacements until the finest level are accepted, they
are accepted as a whole. The number of steps in which this algorithm
goes through from the coarsest to the finest move is called the level of
the bisection method.

The coarsest level

We can illustrate the algorithm with a particular example (Chakravarty
et al., 1998). Let us suppose we are moving a polymer ring with more
than nine beads, and we have decided to use a bisection sampling of
level three (I = 3). The number of beads contained in the polymer chain
segment for [ = 3 is Mj, = 23 + 1, but since the extremes will remain
unmoved only 7 beads are to be displaced. First we choose a bead of
the polymer ring at random. That is going to be one of the extremes of
the polymer chain segment, namely r (Fig. 4.1, Line 1).

Now, we must go from the coarsest to the finest level. We will start at
level | = 3 and then go downwards until we reach [ = 1. We must choose
the middle bead, in this case r4. The distance between two contiguous
beads is given by 7. For [ = 3 we assume to have a reduced chain, that
is, we take one every other four beads (for a bisection of any given level [,
we should take one every 2!~! beads). Notice that the distance between
ro and 74 is 47, as well as the distance between r4 and rg (Fig. 4.1, Line
2).

We propose a trial move of the middle bead, from r4 to ) (Fig. 4.1,
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Line 3). The displacement of 74 is proposed using

1
r) = 5(1'0 +r3) + NV4AAT, (4.32)

where 1) is a three dimensional normally distributed random vector with
zero mean and unit variance, and A\ = h?/2m. Within a real code (4.32)
cannot be used in that raw form due to periodic boundary conditions.
In order to take them into account the movement is proposed in the
following way

'opa = T4 —To
rsg = Tg—TIy (433)

ro4 <= To4 — L % ANINT(I‘OA/L)
rqg <«— I'48 — L ANINT(I‘4’8/L) (434)

with ANINT(A) a function that returns the nearest integer number to A.
L is the side of the simulation box which goes from —L/2 to L/2. If
the side would expand from 0 to L the function ANINT(A) could not be
used that way. Notice that r is a three dimensional vector thus every
equation really means three equations, one for every space direction.
Then we define

4

1‘074 = 1‘4—1‘074

4

ryg = T4+Tyg (4.35)

and finally the new trial position is given by

1
r), = 5(1‘374 + rig) + nVA4IT. (4.36)

The proposed displacement exactly samples the kinetic part of the
action at 2/717, therefore we should only evaluate the change in the
potential part of the action. Of course, we will calculate the change in
the action using a time step of 47.
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6A4r = A(rd; A7) — A(r®; 47). (4.37)

Then the proposed movement is Metropolis tested by comparing

Ayr = min[l, exp(—9d A4, )] (4.38)

with a uniformly distributed random number in [0, 1]. If the movement is
accepted the algorithm proceeds to the next level. If not, the trial posi-
tion is rejected, the original position of r4 is restored, and the algorithm
moves forward to the next atom, in order to go all over again.

The key point is that the middle bead (in our example 74) has been
displaced a large distance from its original position, since we have not
used the exact action with imaginary time 7, but an action with a time
step 47. Therefore, we are not sampling at the required low temperature,
but at a temperature four times higher. For, our approximate polymer
ring is much freer to move and to explore broader regions of configuration
space.

Medium levels

Let us suppose the coarsest level has been accepted (in our example
[ = 3), so we are able to move forward to a finer level (in the example
to I = 2). The proposed movements, for the particular example we are
developing (Fig. 4.1, Line 4), are

1
ry, = §(ro +1)) + V2T

1
rg = 5(rﬁl +rg) + V2T (4.39)

Of course, due to periodic boundary conditions the equations (4.39) can
not be applied directly and the same procedure used for (4.32) must be
followed. Acceptance is based on

Ay = min[l, exp(—9d A + 6 A4 )]. (4.40)

Notice we are sampling now at a temperature 27, which yields an
approximate action to the real temperature. At a first glance we might
think that at a temperature 27 the acceptance probability is lower than
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Fig. 4.1: Graphical explanation of bisection algorithm
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at a temperature 47. However, within bisection this is not true, since
the Brownian bridge we are building between r¢ and 7} (and another
between 1) and rg) is prone to be accepted since 77 has been placed in
a favourable position.

Also notice that the Metropolis criteria used in (4.40) takes only into
account the change in action produced by the displacements of the two
beads moved; therefore, the contribution to the action of the previous
levels is discarded.

As before, if this level is accepted we will go to the next level. Should
not, we return to the very beginning of the algorithm, that is, we restore
all the movements performed in this level—and all previous levels—with
their original positions.

The finest level

Finally, in level one we evaluate the exact action, using the time step
7 and not an approximate one with a directly proportional imaginary
time step (2/7!7). Now, all the beads that have not been moved are
displaced, except the beginning (r¢), and the end (rg) of the polymer
segment (Fig. 4.1, Line 5). The proposed displacements are

o= o) v
ry = %(ré—kr@#—nx/ﬁ
ry = %(rﬁl—i—rg)#—n\/ﬁ
v, = %(rg+r8)+nx/ﬁ. (4.41)

Level one is accepted based on

A; =min[l, exp(—0A, + 0Az;)]. (4.42)

Only if level one is accepted the old path is definitively restored with
the new one. If it is rejected the algorithm goes to the beginning and
all the unprimed positions are kept.
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After discounting the approximate actions used in all but the finest
level, equations (4.40) and (4.42), we sample indeed the exact action,

that is
( 675A4T> (efaAgT 66A4T) (eféAT 66A2T> = ¢ 04, (4.43)

Estimation of thermal averages is only done when a movement, in
any level, is rejected, or when the finest level is accepted. There is
no calculation of thermal averages while accepting intermediate levels.
For this reason we are sampling the exact action. We have only used
the approximate actions for constructing the path, but the real test
is done with the real action. The advantage of this algorithm is that
the major part of the computational effort is done in the finest level
(more movements of beads and more actions to be calculated) which
is the level with more chances of being accepted. On the other hand,
in the coarsest level the chances to accept the movement are very low,
but the computational effort is very small (only one bead moved and
one action calculated). Nevertheless, if the movement is accepted it
represents a big jump into a favourable region and, therefore, the chances
that subsequent moves are accepted increase.

In order to make clearer the algorithm described above, we have
appended a general level bisection code. One can construct a bisection
code for a given level, which is easier than a general level one. However,
a general level code is much more succinct, flexible, and elegant. The
code, along with its explanation, can be found in Appendix B.

4.3.4 Useful remarks

When using the traditional sampling, there is a free parameter that can
be adjusted in order to control the acceptance. This parameter bounds
the length of the displacement proposed using a random number. In
fact, we use this method when proposing centre of mass displacements.
However, there is no such free parameter in a bisection algorithm. The
only parameter that can be adjusted is the level, and is an integer num-
ber. Furthermore, the maximum level that can be chosen is conditioned
by the number of beads used in a given simulation. For instance, were
we performing a simulation using chains of sixteen beads, the maximum
level allowed would be three. Someone may wonder if a free parame-
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ter like I, that gives such a little freedom, delivers sufficient flexibility
and power. The answer is yes. A level three bisection yields roughly a
twenty per cent global acceptance, which is far below the fifty per cent
usually expected in any sampling. However, the movements accepted
are considerably larger than that ones that would be obtained with a
free parameter. Moreover, the computational effort spent on all the
movements wasted is very small.

One may also wonder if using the higher possible level for the given
polymer length chosen is a good idea. We quote the following excerpt
from (Ceperley and Pollock, 1992): “Running at even larger levels [more
than [ = 3] produces results which converge much more quickly even
though the acceptance ratios are quite small.” Despite the previously
ascertained phrase, the tests we have carried out show that level three is
the more advisable. Furthermore, Ceperley’s collaborators assure that
for any chain length above eight beads they only use level three in their
calculations (Gordillo, private communication).

Bisection is useful if one wants to simulate closed polymer rings,
that is those which comply the closeness condition 21 = xpr41. If one
has to sample an open polymer ring, bisection is not suitable due to
technical problems. This follows from the fact that for the last 2! beads
of the chain there are no sufficient beads right hand in order to bisect the
segment properly. A possible case in which one would desire open chains
are single particle density matrices calculations (all but one polymer are
closed).

4.3.5 Unbiased bisection

The action calculated in all the levels, but the finest one, is an ap-
proximate action. It is a legitimate concern to wonder whether using
approximate actions for setting up a movement would lead to a bias.
Well, as a matter of fact, this is not the case, because of the action
used for finally accepting the movement is the exact one for the singled—
out temperature. Therefore, if we would have erroneously accepted a
movement in a coarser level—due to the fact we were not using the
appropriate action—it would be rejected in a finer, or the finest, level.
Hence, there are no unacceptable movements that can get through the
whole algorithm. Remember that a rejection at any level implies to go
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back to the very beginning and to restore the old positions again.

However, there is a more profound and subtle bias within bisection.
It comes not from the accepted movements, but from the rejected move-
ments. Let us suppose we propose a very awkward movement. In most
cases it would be rejected by a coarse action, as well as by the finest one.
Notwithstanding, it is not impossible to happen that a coarser action
rejects that displacement and a more refined one would accept it. But,
as soon as a proposed displacement is rejected the algorithm goes to the
beginning, reestablishing all positions, and never giving the chance to
the finest action to really Metropolis—test the proposed change in action.

Although the previous explanation is not found anywhere in litera-
ture, there is a paper (Ceperley and Pollock, 1992) that gives some hint
of the bias, stating that “as the density matrices approach the exact
density matrix and as the size of the move approaches the total sys-
tem size, m, approaches a probability distribution”, with 75 the action
used for level k. The true meaning is that 7, even at the finest level,
asymptotically approaches the action for that temperature, but the lost
opportunities of would—be—-accepted levels keep it apart from the exact
value.

In light of this, we coded a modified bisection algorithm, that went
through the whole process, even though a proposed movement in a
coarser level was rejected, in order to check if at the end could be ac-
cepted. Of course, this algorithm is by no means an optimal approach
from the CPU time point of view; however, we wanted to check the va-
lidity of the results yielded by bisection. The result was that the bias
was so small that it was always within error bars, even for very long
runs. We will show these results in a forthcoming chapter devoted to
testing the methods.
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The theory and algorithms developed hitherto allow us to write down a
PIMC code. We learned how to simulate a quantum liquid at a finite
temperature, which means that we can make a discrete representation of
a real quantum system and we also know how to evolve that representa-
tion in order to reach equilibrium. Now we need to know what is going
on inside the liquid, which properties does it have, and how it behaves.
All in all, this is a goal of a simulation, to grasp information without
going into a laboratory.

Each section of this chapter is devoted to a physical property. The
properties that our codes include are: energy, momentum distribution,
single particle density matrix, radial distribution function, and the struc-
ture factor. The sections within the chapter are divided in the following
way: Section §5.1 is devoted to the energy. The different energy estima-
tors are deeply rooted in the action, therefore, for every action tested
we shall derive the energy estimators. The single—particle density ma-
trix will be treated in §5.2. The momentum distribution, as well as the
Compton profile, are obtained from the single—particle density matrix.
They are also studied in §5.2. Section §5.3 is devoted to the radial dis-
tribution function. Finally, the structure factor is studied in section
85.4.

5.1 Energy

Undiscerning choices of energy estimators can mar this struggle for effi-
cient codes. The choice of energy estimator can affect largely the vari-
ance, and despite of an optimal sampling method and an improved ac-
tion, CPU times may become extremely long.

In our pursue for an optimal energy estimator we have tried the ther-
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modynamic and the virial energy estimators, along with all the possible
combinations with the different actions tested.

Due to the dependence of the energy estimators on the action, we
shall follow the same order of Chapter 3. Thus, we shall start with
the harmonic oscillator and then we will move onto energy estimators
derived for real systems.

5.1.1 Thermodynamic estimator and primitive action

In preparation for deriving the thermodynamic estimator we start from
the definition of the average energy

nZ 1 E, e BEn
Oz 1 o 2 Ene T (5.1)

<E>=
oz ¢ S e BB

where E,, are the eigenvalues of the Hamiltonian.
Acting (5.1) upon

M Im (To — To1)?
a— La-—-1
a=1
and also using
0 1 0
98 = Mo (53)

it is possible to write up the thermodynamic estimator of the energy
for the primitive approximation to the action in the case of a one—
dimensional single—particle as

M m M €T €T 2 1 M
E>=— _ o Pa-l — N V(z, 5.4
< >2ﬂ2mwg( . )+M;;@x (5.4)

where < FE > is the energy per atom. Observe that, in the case of
M = 1, equation (5.4) returns the classical value of the energy. The
exact quantum value of the energy is obtained when M — oo.

Let us inspect the form of (5.4). The last term clearly yields the
potential energy. The first term is the classical value of the kinetic
energy (if the formula were derived in three dimensions the term would
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be 3M/23) times the number of beads. The second term is a negative
correction to the first term. Therefore, it is not possible to separate the
kinetic energy in a classical term plus a quantum correction. This is the
main reason for the large variance associated with the thermodynamic
energy estimator. This is not the case for the virial energy estimator
that we will consider afterwards.

For completeness we introduce the thermodynamic energy estimator
for a single—particle for any dimensionality

DM mM | 1 /&
< E >= W — W <Z(I’a+1 — I'a)2> + M <O; V(I‘a)> y (55)

a=1

with D the number of dimensions.

5.1.2 Thermodynamic estimator and Li—Broughton action

In the same way we found the thermodynamic energy estimator for the
primitive action, it is possible to do the same for the Li-Broughton
action.

We start with the partition function of a three-dimensional system,

given by )
3M/2
Z:<m§> e BVett (5.6)
2mh°p

where Vg is the effective potential and M the number of beads of the
polymer chain. We have not written the M integrals that appear in
the partition function explicitly since we will derive (5.6) and due to
the linearity of the integral operator the derivatives can go inside of the
integral symbol.

107
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However, from Section §3.3.2 we know that Li-Broughton’s effective
potential is given by

M
1
Ve = 2h2522 ol — M;V(ra)
M
3°n° 2
+ m;(vav(ra)) ) (5.8)
therefore, the derivative is
M
3Veff W2+ pr? 2

hQﬁSZ Tatl — + o Z(vavua)) . (5.9)

Using the previous equations, the thermodynamic estimator of the en-
ergy for a Li-Broughton corrected potential yields, in the single—particle
three—dimensional case

M
_3M mM )
< Eig> = % — W <az:1(ra+1 - ra) >

M 272
+ % <Z {V(ra) + wa—zm [VQV(ra)]2}> . (5.10)

a=1

Close inspection of (5.10) shows that it is the same expression than
(5.5) but for a corrective factor.

5.1.3 Thermodynamic estimator of a Li-Broughton corrected
harmonic oscillator potential

An immediate application of the Li-Broughton correction (3.27) is to
find a better potential for estimating the energy of the harmonic oscil-
lator

mw> 52h2w2 )
ViBn = —5— <1 + o )x : (5.11)
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In order to derive the energy estimator for the Vipp potential we
shall use expression (5.10) substituting V' by the harmonic potential
Vit = mw?2?/2. Notice that the same result might be achieved using
equation (5.14) that will be derived below and inserting Vipy as the
potential V. The energy estimator for the Li—Broughton correction of
the harmonic oscillator is

2 252 2\ M
(Evpn) = <7;]\“} <1+ ﬂﬁﬁ )Zxa2>. (5.12)
=1

a=

5.1.4 Thermodynamic estimator of a harmonic potential variationally
improved

In section §3.2.5 we found the action for the harmonic oscillator potential
using Feynman’s variational principle, now we shall find the thermody-
namic energy estimator for that action. We know that

gy~ Loz
M or

(5.13)

Using (5.13) upon (3.37) we derive the thermodynamic energy estimator
for the Feynman harmonic potential Vryg. First we obtain

a=1
1 [& M OV (xq,T)
T {C;V(xa,T)JrT;iaT } (5.14)

Now we insert Feynman’s harmonic potential in the previous equation,
and we obtain the desired estimator for the potential contribution

1 M mw? 9 w3r
= — — N 1
(Eru) = 7 > 5 e ) + T3 (5.15)

a=1
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5.1.5 Thermodynamic estimator of the Li-Broughton correction
applied to Feynman'’s variational principle for the harmonic
oscillator

Obviously, what we are doing is following the same path we did when
studying the action, that is explore all the possible combinations between
Li-Broughton’s correction and Feynman’s variational principle. When
we did that we did not state any formula for the energy, and this is
precisely what we are doing now.

Using (3.38) we obtain

2 2.2 \ [ 1,2 M 2552
(ErprH) = <mw (1 + L) Zxﬁ L2 T (5.16)
—1

2M 4 12

a=

5.1.6 Thermodynamic estimator of the Feynman’s variational
principle applied to the Li-Broughton correction for the
harmonic oscillator

The last combination to be done is finding the thermodynamic estimator
obtained by application of Feynman’s variational principle upon a Li-
Broughton corrected harmonic potential. In order to do that we use

(3.39)
2 25232\ M
(ErLBH) = <7§—;\d/j <1 + wéjif )lea2>

w2h2ﬁ w2h2ﬁ2
12 <1+ 16M >

(5.17)

The same process done in this, and sections above, can be easily
repeated for the anharmonic oscillator.

5.1.7 Thermodynamic estimator of the energy for real systems

So far, we have derived the thermodynamic estimator of the energy for
single—particle systems, and we have applied it to several actions. That
process has been useful in preparation for the study of the harmonic
oscillator. However, our ultimate goal is the study of real systems where
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many atoms are involved. From now on we shall deal with this kind of
systems and, therefore, our formulae will include labels for atoms (up to
N atoms), and for beads (up to M beads).

At a first glance, inclusion of more than one atom, just implies aver-
aging out the energy by the number of atoms. This is true only if there
are no gradients involved in the energy estimator, which is the case of
the thermodynamic estimator along with a primitive action. Notwith-
standing, should there appear gradients, due to a Li-Broughton action
or a virial estimator, some algebra must be performed.

Nevertheless, at this point, we shall only introduce the thermody-
namic energy estimator for a primitive action. We already noticed that
the thermodynamic estimator for a primitive action is made up by three
terms, the last one being the potential energy, and the other two take
account of the kinetic energy. Since the potential energy part is straight
forward we just give the thermodynamic kinetic energy estimator for a
primitive action (Barker, 1979), which yields

3M 1 Mm Lo o
K" = 55 N2ﬂh222\ — ot (5.18)
=1 =1

The superscript T stands for thermodynamic.

5.1.8 Li—Broughton’s correction to the kinetic energy for a
Lennard—-Jones potential

In our simulations of real systems we do not use Lennard—Jones poten-
tials, however, for the testing process this kind of potentials are useful
for comparison purposes. Therefore, we introduce the derivation of the
Li-Broughton correction to the Lennard—Jones potential.

We already know that Li-Broughton’s correction to the total energy

2 N M 1
2
— 1
(37) L2 e gy (19
=1 a=1
where M is the number of beads, N the number of atoms, and

is given by

N

U(ria) = Y _u(|tia — Tjal).- (5.20)
Ji
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Now we apply the gradient operator on both sides of the previous equa-
tion
N
ViaU(Tia) = > Viatt ([Tia — Tjal) - (5.21)
JF
Substitution of the Lennard—Jones potential u(r) = €[(o/r)'? — (o /r)%]
in (5.21) yields

9 1 12
Viatt ([tia —Tja|) = eo'? ( >
’ria

Brm — rja’

) 1 6
_ 6
€0 Bron <|I'm — rja|> . (5.22)

Finally, inserting (5.22) in (5.19) gives the Li-Broughton correction to
the kinetic energy for the Lennard—Jones potential

U 12 o 672
X |-12 <) +6 <> . (5.23)
Tia — Tjal Tia — Tjal

5.1.9 The virial estimator

Even though the results of the tests performed with the thermodynamic
energy estimator have not been shown yet, we must say that there is a
large variance in the results obtained with it, which increases with M.
Close inspection show that most of the variance accounts for the kinetic
energy, while the potential energy contributes roughly with 10% of the
total variance. In the light of these conclusions Herman et al. (1982)
proposed a new energy estimator. They were looking for an estimator
that would depend only on the potential energy and its derivatives.
The virial theorem applied to path integrals was the response. The
virial theorem states that the kinetic energy is proportional to the scalar
product of position and the gradient of the potential, therefore, the total
energy in one dimension becomes

oV (z)
oxr

E=V(z)+ %x (5.24)
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Equation (5.24) yields the virial estimator of the kinetic energy

2NM Z Z r (5.25)

i=1 a=1

Adding a constant boundary term to (5.25) reduces the variance and
keeps it constant with the number of beads. If the term added is the
centre of mass of the polymer ring we obtain the centroid virial estimator
(Herman et al., 1982), (Glaesemann and Fried, 2002). However, same
accuracy is obtained using any given bead of the polymer ring as the
boundary term. The virial estimator in the form of (5.25) is seldom
used, and the common practice is to name as virial estimator of the
kinetic energy the following equation:

oV (r¢
KV = QNMZZ r}) % (5.26)

i=1 a=1

Notice that the kinetic energy is now obtained as the classical energy
of the system, plus a corrective term. This is particularly useful when
performing simulations. Let us suppose we start a simulation from a
classical configuration, that is, with all the polymer rings collapsed, that
has been thermalised classically. If we estimate the energy prior to any
PIMC step using the virial estimator (5.26) we would obtain the classical
value of the energy for that system, i.e., 3/2T, since the contribution of
the corrective term will be zero ( the value of (rf‘ —rM ) equals zero since
all the chains are collapsed). As the simulation goes on, and the polymer
rings begin to swell until they reach their characteristic length, the result
of the kinetic energy will become closer to the expected quantum value.
Moreover, the term 3/27T appearing in (5.26) helps also in reducing the
variance since it is a large value, compared to the other term in the same
equation, with zero variance because of it is a constant.

The situation is not the same if the thermodynamic estimator were
used. If all the polymer rings start from a collapsed situation and the
kinetic energy is estimated using equation (5.18), the result would be the
classical energy times the number of beads used. For a typical simulation
temperature this would be as much as a hundred times the classical value
of the energy. Obviously, the starting value of the energy is farther from
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the expected value in the case of the thermodynamic estimator, than in
the case of the virial estimator.

Furthermore, once the polymer rings have reached their characteris-
tic length for the temperature simulated, the thermodynamic estimator
still yields larger variances than the virial estimator.

The scalar product in (5.26) can be rewritten as

3 ol
>33 (s -y S 620

a=1i=1 a=1

where a labels each one of the three Cartesian coordinates. On the other
hand, we already know that the potential in a many particle system is
calculated between equally labelled beads of different atoms, therefore,
the potential appearing in (5.27) represents indeed

N
= V(rf). (5.28)
j=1

And now applying the chain rule to the potential we obtain

N ov(r Y ovV(re) o

Z e ’LJ Z 8m T)W (5.29)

with

rij = 23: (- r;.v)a (5.30)

=1
a?:?)a 2 (7“1-27;3) _ (7;%) _ (5.31)

Substitution in the expression for the virial estimator yields

N M 3 —7r o
S PICE z< ”> LTI
i=la=1 a

j=1 ij

which is the virial estimator of the kinetic energy for a primitive action
written in a more suitable form for coding.
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5.1.10 Virial and thermodynamic estimators using a Li-Broughton
action

Equations (5.18) and (5.32) give the thermodynamic and virial estima-
tors of the kinetic energy for a primitive action, in the form that will be
used for coding, respectively.

The same job we did for the primitive action is going to be carried
out for the Li-Broughton action, that is we are going to give the thermo-
dynamic and virial estimators for that action. However, the derivation
of suitable forms for coding is more elaborated, therefore, we just give
the useful formulae and in Appendix D the full derivation is presented.

Let us start from the expression with Li-Broughton’s for the virial
estimator of the energy

E = —T NlM <ZZ{ (Tia) 8h2’§;2[vm‘/(rm)] }>

i=1 a=1

N M 2
+ ﬁ <; ;(rm ~Ry) - Via {V(rm) + QIT%[VMV(I.M)]Q}> |
(5.33)

with R,; the i—th atom centre of mass. The first term on the right
hand side amounts the classical kinetic energy. The second term is the
potential energy, while the third one is the quantum correction to the
kinetic energy. The previous equation might be expanded into

3 1 L
E = §T+WZZV(I‘W)

i=1 a=1

1 h2
’L o=

, N
+ SNIT Z Z(rm —R;) - ViV (ria)

i=1 a=1
L S R VilTaV () (53
N 48mM3 k16 'l Za (103 ™ .

=1 a=1
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From the previous study of the action, equation (3.49), we know
that Zfil Zoj\le[vm‘/(rm)]Q can be translated into a scalar product of

forces, given by
N M

52712
Py i > Fia-Fia, (5.35)
=1 a=1

where Fj, is defined in equation (3.50). This is a useful expression for
the kinetic energy for programming purposes when dealing with three
dimensional many particle systems.

We also have shown an alternative way of representing the fourth
term of (5.34) which is more suitable for coding purposes. Thus, the
only term that needs a special treatment is the fifth one. Let us define

the tensors

8o rhriga\ dV(riy) | ThTija 2V (v
T(Z)b :Z [( a o T_]TJ > V(r]) +T]T] V(r]) (536)

’ i ey Jri? ) d|ryl rij|? dlrij]?
and qV
Py = 3 B ), (5.37)
o Tik d|ry]

Provided with those definitions, the thermodynamic estimator of the
kinetic energy with the Li-Broughton action can be written as (Weht
et al., 1998)

SMT  mMT?2 &
<K%B> = oN — 2712 E E rza+1 rza
=1 a=1
h2
BTN A (5-38)

and the potential energy

M
<VBs = ﬁZZV(r?j)

a=1 i<j

h2
—_ F,. Fia. .
> 5
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Therefore the total thermodynamic energy estimator using a Li-Broughton
action is:

) M
<EBs - SéWT_?Z;;[T erza—H rie) +ﬁZZV(r?j)

i=1 a=1 a=1i<j

h2
t SPTEN Z > Fio-Fia. (5.40)

On the other hand, the virial estimator of the total energy using the
Li—Broughton action is:

3 1 N M
<ELB> = T+ —= ?a—R?F', a
5 = T g YD - B
1 M
+ NMZZV( ) M3T2 NZZFW Fia
a=1i<j i=1 a=1

h a a . b R
T BN §Z< ~ R)T(i. )} Fli,0)a.

(5.41)

It is easily seen how equations (5.40) and (5.41) become the thermo-
dynamic and the virial energy estimators for a primitive action, respec-
tively, if only the first three terms of each equations are kept.

5.1.11 Tail corrections to the potential energy

The code we have constructed simulates the quantum liquid inside a
three—dimensional box of length L. Periodic boundary conditions have
been implemented (Frenkel and Smit, 1996). Provided that, potential
interaction ranging farther away from L/2 are neglected. In addition,
interactions closer than L/2 use the nearest periodic image to be calcu-
lated.

Due to the neglected interactions there is a systematic error in the
potential energy, since the potential is not rigorously zero for r» > L/2.
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However, that error can be estimated, provided the radial distribution
function (g(r)) becomes approximately 1 for any r > L/2. Once the
error is estimated, it can be added to the result of the potential energy
in order to get a tail corrected result.

The tail correction to the potential energy is

= ]‘\/7 - %p/drg(r)V(r), (5.42)

with p the density. Once the radial distribution function gets to L/2,
then g(r) should be approximately 1, therefore,

1 [ 1 o
<< v >> =—p drV(r) = p47r/ r2drV (r). (5.43)
N Jr 20 Jipe 2 L2

Only the attractive part is taken into account when integrating (5.43),
which in a Lennard-Jones potential amounts o/r%. Substitution and
integration yields,

N 3L3

This result is only valid if a Lennard—Jones potential is used.

Also notice that equation (5.43) yields bounded results only if the po-
tential part decays more rapidly than »~3, otherwise the tail corrections
cannot be calculated that way.

The values of the potential energy reported in our tables for real
systems simulations have that correction included.

Vv 64
<< >> = ——molep. (5.44)
T

5.2 Momentum distribution

The momentum distribution is an observable of major importance. Ex-
perimental momentum distribution measurements are done via neutron
scattering. In order to extract results the impulse approximation is as-
sumed. In the impulse approximation the interaction of an atom with its
neighbours is neglected, and the atom is supposed to recoil freely. How-
ever, this is not rigorously true, and the resulting curves are broadened,
hiding important fine details (Sears, 1969), (Woods and Sears, 1977),
(Sosnick et al., 1989).
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The importance of the momentum distribution spans beyond super-
fluidity. In classical theory it is given by a Maxwellian with width equal
to kg7, but in quantum mechanics it is no longer so. When lowering
temperature, quantum effects appear well before the lambda transition,
and a single classical Maxwellian does not adjust anymore to the momen-
tum distribution. Therefore, the momentum distribution gives account
of the departure from the classical regime (Brualla et al., 2002). Fur-
thermore, the value of the atomic kinetic energy can be inferred from the
momentum distribution, allowing cross—checking with the kinetic energy
estimators.

It is, so, of vital importance accurate measurements of the momen-
tum distribution, and due to the large experimental errors inherent to
neutron scattering, cross—checking with simulations acquires even more
relevance.

In this section we show how to calculate the momentum distribution,
and related quantities, such as the single—particle density matrix, or the
Compton profile, from the PIMC point of view. Up until now there
were in literature two different methods available for calculating the
momentum distribution. Due to the importance of the momentum dis-
tribution, we created a novel method for its calculation, that surmounts
some liabilities present in existing methods. A detailed description of
our algorithm, the trail method, is given herein.

5.2.1 'The single—particle density matrix

Our PIMC algorithm is performed in position space. However, in quan-
tum mechanics positions and momenta have an equal status since they
are conjugate variables. The density matrix in momentum space is

pp.0':8) =D da(p)e g (p), (5.45)

with ¢q (p) the eigenfunctions of the Hamiltonian in momentum space.
The Fourier transform of these eigenfunctions are the eigenfunctions in
position space,

balp) = ﬁ / dzeP Mg, (x). (5.46)
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It is possible to find out the momentum distribution calculating the
single—particle density matrix, and then, Fourier transform it in order
to get the momentum distribution.

We define the single—particle density matrix by

n(r) =21 /drldrg <o-drp <ryp,ro,...,rplexp(—fH)|ri+r,ro, ..., rp >,

(5.47)
being Z the partition function. From (5.47) we notice that the off—
diagonal part of the density matrix is required. Remember that in en-
ergy estimations we needed the trace, that is, only diagonal terms of
the density matrix, but the situation here is different. In the polymer
isomorphism language off-diagonal terms imply open chains.

Open chain algorithm

A direct interpretation of equation (5.47) is to perform a simulation with
N — 1 closed polymers rings and 1 open. In order to do so, we choose
atom ¢ = 1 as the one to keep open and we introduce an additional
variable r/ ;. During the simulation r} is moved and Metropolis tested
in the same way as the other beads. At each Monte Carlo step the
distance r;; — rf; is added to a histogram. The final histogram of
occurrences of r11 — r} is proportional to n(r;; —rf ).

That straightforward approach presents, notwithstanding, several
drawbacks. Since one ring remains open throughout the whole simu-
lation, diagonal properties cannot be calculated during the same run.
Furthermore, it is not very efficient; only one distance out of the 3N M
path variables contributes to the single particle density matrix. More-
over, the end-to-end distance spends more time at large distances than
at small ones, which means that the value of n(r) at small r is undersam-
pled. However, this sampling problem can be solved using importance
sampling (Ceperley and Pollock, 1992).

The histogram obtained is proportional to the single—particle density
matrix, with a normalisation externally imposed.

There is one more caveat about this approach: it does not only im-
plies a specific simulation but also a specific code, since one path vari-
able, the open chain, receives a different treatment respect to the others.
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McMillan method

Another approach is similar to the McMillan method used at zero tem-
perature. A simulation with all closed polymers is occasionally stopped
and each bead displaced, making a path momentarily open. The single—
particle density matrix n(r) is the average ratio of the displaced to the
undisplaced density matrix. In this way, an estimator for the single—
particle density matrix is

_ 2
n(riq,ry,) = <exp [M —~U(Ry « 11, R2) + U(Rl,Rg)] >,

40T
(5.48)
where U is the potential part of the action and R; represents all the
coordinates of the beads belonging to atom 1.

A specific simulation is no longer necessary, and the normalisation is
obtained by the same simulation, however, this method is only suitable
for nearly classical systems and for r smaller than the thermal wave-
length.

Trail method

The trail method (Brualla et al., 2002) surmounts the problems of pre-
vious approaches. It is inspired in the McMillan method and, therefore,
it gives the right normalisation. It does not require neither a specific
simulation, nor a specific code. Contrariwise to McMillan’s recipe, our
method efficiently samples the whole range of r without any importance
sampling.

We are not to procrastinate anymore the introduction of the new
algorithm. When a path is momentarily open, all but one bead, that
remains fixed at one end of the polymer, are moved. The movement
proposed is a proportional displacement of the form

azy

/
Fa = Yot 3

(5.49)

where ~ is a three-dimensional vector given by

2\ 1
o 7(6—5), (5.50)
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and 4 is a 3-D uniformly distributed random vector. The factor (2X/T)/?
is the mean thermal wavelength. We have found that with yu = 3, the
one—body density matrix is efficiently sampled.

Notice that the displacement of a given bead is proportional to its
relative position to the fixed end of the chain.

An asset of the trail method is its simplicity yet its mightiness. It
yields right results with smaller variance than the other methods, and
also with lower CPU time. In addition it is very easy to code. In order to
clarify the algorithm and to make it available to anyone desiring to use
it, we have included a commented FORTRAN 77 subroutine in Appendix

C.

5.2.2 Momentum distribution

The momentum distribution is defined as the Fourier transform of the
single—particle density matrix,

1 )
n(k) = @ /dr exp(—ik - r)n(r). (5.51)

The momentum distribution is normalised as [ d®kn(k) = 1. The kinetic
energy K is given by the first moment of the momentum distribution

K=2 /d3kk2n(k) = —32n(r) (5.52)

2 \Y

r=0

In the classical limit the distance between neighbouring beads is
much less than the inter—atom spacing. To a first approximation, quan-
tum effects affect only the width of the classical single—particle density
matrix (and equivalently the momentum distribution) keeping its shape,
but changing its width. That is, the momentum distribution remains
Maxwellian, but with an effective temperature that gives approximate
account of the departure of the kinetic energy from its classical value
3T/2.

The classical momentum distribution is given by

na(k) = ﬁCexp (—%kz‘) : (5.53)
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with T the temperature. Since the momentum distribution must be
normalised to one, the normalisation constant C' takes the value

8p(mA)3/
We know that the zero moment of the momentum distribution must
be 1
4A#/Ook2x A2 ) dk =1 (5.55)
e )y " UPUT - '
with A the normalisation constant and \ = A2 /2m. Integration gives
8p(m )%/

The second moment of the momentum distribution is the kinetic energy

D A
K=A k* —Z k%) dk. .
27T2p/0 exp< T ) (5.57)

The classical momentum distribution is given by

ng(k) = Aexp <—%k2> (5.58)

with 7' the temperature. A first approximation to the quantum result
is to substitute the T" by an effective temperature.

The Fourier anti-transformation of the classical momentum distri-
bution yields the single particle density matrix.

A T
ng(r) = 4\/5/)773/2? exp <—ﬁr2> . (5.59)

5.2.3 Compton profile

Within the framework of information exchange with experimentalists,
the Compton profile becomes relevant, being the observable measured
in neutron scattering experiments.

At sufficiently high momentum transfer, the impulse approximation
holds because the neutron scatters from a single atom. Assuming that,
the scattering function is given by
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Jia(Y) = %SIA(q,w), (5.60)

with

y=" (w - q—2> . (5.61)

q 2m

Provided that, we can define the Compton profile in terms of the mo-
mentum distribution as (Mazzanti et al., 1996),

Jia(Y) = ﬁ /|: k(). (5.62)

In a PIMC simulation, the calculation of the Compton profile is done
once the code has finished its run. From the simulation we obtain the
single—particle density matrix, from that the momentum distribution,
and then integrating in order to get the Compton profile.

5.3 Radial distribution function

The radial distribution function is proportional to the probability of
finding two particles separated a distance r. A formal definition is,

9(r) = 350 D de e, (5.6
i it

where N is the number of atoms and the indexes %, j run over atoms.

In the practice the delta function is translated into a binning and
a histogram is generated with the distances falling within the binning.
Notice there is no bead label. What we do is to choose always the
same bead, for example, bead 1 of all the polymer chains, and then we
calculate g(r) as if we were dealing with a classical liquid where every
atom is represented by just one point—particle.

More statistics can be obtained using all the beads instead of just one
bead per particle. The error bars of the g(r) are very small compared
to those of the energy for the same number of iterations.



5.4. Structure factor 79

5.4 Structure factor

The structure factor is another important distribution function. It will
serve us for deciding whether we are simulating a liquid or a solid. This
is of key importance in solid—liquid phase transitions, as we shall notice
in a forthcoming chapter §9.

It can be defined in terms of the pair distribution function as

S(k) = 1+ pFh(r), (5.64)

with Fh(k) the Fourier transform of the total correlation function h(r) =
g(r) — 1. In an homogeneous system the angular part of (5.64) can be
carried out exactly, and then,

osin kr
r

S(k) =1+ 4mp /000 7(9(7”) — 1)dr. (5.65)

From equation (5.65) is possible to calculate the structure factor out
of the g(r). Notwithstanding, this approach poses a problem: the pair
distribution function is accurate for a short range of r due to finite
size effects of the simulation box. Thus, its Fourier transform will be
accurate only for large k. For short & the results obtained using (5.65) are
unaccurated since for distances greater than L/2 we have approximated
g(r) to one.

A second approach, useful mainly for small values of k&, is to estimate
the structure factor within the simulation using a subroutine coded for
that purpose. In order to do so, we use the microscopic definition of the
structure factor

S(k) = <Z ek Z e kT > : (5.66)

with discretised k values according to the usual rule

2m
k = f(nx,ny,nz). (5.67)
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6. THE RICHARDSON EXTRAPOLATION

How many beads are required is perhaps the first question one wonders
just before starting a PIMC simulation. There are theoretical consid-
erations about the number of beads, stating that both of the following
requirements have to be fulfilled (Gillan, 1990). First, the root mean
squared length of the springs must be smaller than the relevant length
scale of the external potential. This translates into the following rela-
tion: )

mo

with M the number of beads, and o the length scale of the potential.
Second, 7 must be much smaller than the typical vibration period of the
molecule.

Though valid, these criteria just say that the number of beads must
be larger than some quantities.

A more practical answer to the initial question is that M must be
large enough so that increasing it further makes no significant changes
to the calculated averages. The meaning of ‘significant’ depends on the
degree of accuracy we require. Proceeding that way implies a large
number of simulations, and once the plateau has been reached, where
the changes of averages fall within error bars, one has to repeat some
more simulations with even larger values of M.

This approach poses one substantial problem. If the temperature
we are simulating is low enough that we are close to the limit of our
computing capabilities, then the extra simulations required to ensure
we have arrived to the plateau are not feasible. In a situation like this
the Richardson extrapolation comes in very handy.

Should the simulated temperature be high enough, allowing us to
perform the extra simulations required in order to make certain the re-
sults, the Richardson extrapolation saves us from doing so, and therefore
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the overall time spent in a given problem reduces significantly.

The simplest way to use the Richardson extrapolation consists in do-
ing a simulation with a given number of beads M and another with 2M.
Provided with the energy figures for those two choices of beads we find
the extrapolated result for 4M. Then we perform the simulation with
4M beads and we compare the simulated value of the energy with the
extrapolated one. Should they coincide within error bars, we terminate
the simulation process and we assume that the right number of beads
is 4M. If the simulated and extrapolated values of the energy are not
compatible the algorithm keeps iterating until agreement is reached.

We have also developed a more elaborated way of applying the
Richardson extrapolation that clearer the moment when convergence
has been reached. A further advantage of the Richardson extrapolation
is the self-consistency data check it provides.

Richardson extrapolation can be used along with the trapezoidal
integration rule. That combination is known as Romberg integration
(Guardiola et al., 1995). It has also been used for solving ordinary differ-
ential equations, yielding the Bulirsch—Stoer method (Press et al., 1999).
However, as far as we know, there are no applications of the Richardson
extrapolation to quantum Monte Carlo problems in literature.

In this chapter we shall present a simple derivation of the Richard-
son extrapolation and we also shall give a program for calculating it
using the more refined process cited above. We shall also briefly discuss
the possibility of implementing the Richardson extrapolation inside the
PIMC code itself, and the problems entailed with it. Its usefulness will
be seen in the chapter devoted method testing.

The strength of the Richardson extrapolation has been overlooked
many times. It is a powerful method, as shown in the words of Press
et al. (1999) “Richardson extrapolation is a method for turning straw
into gold! (Lead into gold for alchemist readers.)” Notwithstanding that
sentence, it must be said this is absolutely true only if we are dealing with
error—free numbers. In the presence of the typical error bars associated
with PIMC results, the strength of the Richardson extrapolation can be
diminished.
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6.1 Theoretical considerations

There is a general derivation of the Richardson extrapolation to a fourth
order accuracy available in the book of Guardiola et al. (1995). That
reference shows that the Richardson extrapolation obtained using two
values of the energy, given by two simulations (one using M beads and
the other one using 2M beads) is:

Bp = —2M M 6.2
- (6.2

where E, is the asymptotic value of the energy.
Iterating the procedure described in (Guardiola et al., 1995) we found
the Richardson extrapolation using three points

64E4) — 20E E
B — 4AM = 2M + BM (6.3)

In the previous formulz it has been used the fact that the next
simulation always doubles the number of beads. This fact simplifies the
algebra involved and the final expression obtained. However, it is not
always feasible to double in number of beads, due to the CPU time
required, yet it is possible to keep increasing the number of beads. We
shall present an analogous derivation to the Richardson extrapolation
formula, more adapted to our circumstances.

We shall find the extrapolation to infinity for a fourth order correc-
tion knowing two values of the energy for any number of beads. The
derivation for a second order is completely analogous. We define F; and
E» as the energies found using M1 and My beads respectively.

It is possible to define Fq and Es as

(07

FE,=FEy+ 6.4
and
Ey=FEy+ — (6 5)
2 0 A [517 .

where « is any real number. It is possible to find « in terms of the
energies and the number of beads as:

1 1
FEy — B = —— — ). 6.6
2= B “<M§ Mé) (6.6)
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FEy — F4
a=T 71 (6.7)
TR

With My > M; and taking into account (6.6) and (6.7)

1
Ey = Ey—a—
0 2 O[Mél
MF ME T2
(Bx— B) M}
= [y—
(L _ L) MMy
My M
(B2 — Ey) <M1)4
By + — 6.8
() h
Therefore, the extrapolation to infinity is
(My/Ms)*

It is also desirable to know the extrapolated value not to infinity but
to a given number of beads, in order to perform a simulation for that
number of beads and then to compare. The Richardson extrapolation to
a number of beads M of two given energies Fq and Fs calculated using
M and M5 beads, and assuming a second order behaviour is given by

(6.10)

Ey = Eyn, + (Ea, — Ear) {M} .

1 — (My/Mz)?
Depending on the action we shall be using, primitive or Li-Broughton,
we shall apply either the second order or the fourth order extrapolation.

6.2 Caveat

We have already mentioned that extrapolated numbers should have
small error bars, otherwise we would be extrapolating errors. This rep-
resents a capital problem, since accurate numbers are difficult to obtain
with PIMC simulations. Simulations of ‘He at 5 K could require a
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month, or so, of a Pentium 800 MHz processor, in order to obtain two
significant decimal figures.

So far we have given the formulse for the Richardson extrapolation
to infinity, without further discussion about the meaning of ‘infinity’.
The energy of a system depends on the number of beads in a quadratic
form once we are getting close to the number of beads required for the
simulated temperature. Therefore, the Richardson extrapolation will
yield accurate results to infinity once the quadratic behaviour has been
set up. Extrapolations performed in regions with lower number of beads
will approach to the ‘exact’ result, but they will not be the right answer.

The overall dependence of the energy on the number of beads, in
the full range from 1 to M beads, is more similar to a straight line than
to a parabola, for the primitive approximation. Therefore, using results
obtained with a number of beads much lower than the required ones
would induce us to errors in the extrapolation. Those numbers convey
little information about the quantum properties of the system. Since
the common practice is to double the number of beads in every new
simulation, the values of the energy are more separated for low M in
a plot of E as a function of 1/M, thus, the shape and the slope of the
extrapolation curve is mainly determined by them.

6.3 Recursive extrapolation

Using equation (6.10) we have coded an algorithm that extrapolates
the values found in previous extrapolations in an iterative way. The
advantage of doing so, is that one can easily realise which is the sufficient
number of beads. The results of the code are presented in a matrix. The
first column contains the values of the energy (or any other averaged
quantity). The second column has the extrapolations obtained with
(6.10). The third column has the extrapolations of the extrapolated
values of the second column, and so on. Convergence is reached once we
find a row with all the numbers compatible.

The code, written in Mathematica, also gives a matrix with the
associated error to each position of the extrapolation matrix. The errors
matrix is obtained with error propagation theory applied to (6.10).

(* Richardson Matrix with errors %)
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(* 1im = number of points, i.e. simulations

(x x = potential behaviour of the extrapolation.
(x x = 1/4.
(x x = 1/16.

quadratic = primitive action
quartic 1i broughton action

(* Total energy Helium 5K with errors.

(* Primitive action. Virial est.

Clear[lim,x,y,adjust,q,qerr];

lim = 8;

x = N[1/4.0,5];

q = Table[0,{i,1,1lim},{j,1,1lim}];

gerr = Table[0,{i,1,1im},{j,1,lim}];

qll1,1]]1=-35.48;

ql[2,1]1]1=-21.94;

ql[3,111=-12.92;

ql[4,1]1]1=-8.250;

ql[5,1]1]1=-5.16;

qll6,1]1]=-3.33;

qll7,11]1=-2.47;

qll8,11]1=-2.2;

gerr[[1,1]1]=0.04;

gerr[[2,1]11=0.04;

gerr[[3,1]1]=0.02;

gerr[[4,1]1]1=0.007;

qerr[[5,1]11=0.01;

qgerr[[6,1]1]1=0.02;

qerr[[7,1]11=0.03;

gerr[[8,1]1]1=0.1;

Do[

Do[

ql[n,m]]1=N[(q[[n,m-1]]-x" (m-1)
qlln-1,m-111)/(1-x"(m-1)),5],

{m,2,n}

1,

{n,2,1lim}

1
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Do [

Dol

gerr[[n,m]]=

N[Sqrt[gerr[[n,m-1]1]1"2 + x~(2m-2)*
gerr[[n-1,m-1]1"2]/(1-x"(m-1)),5],

{m,2,n}

1,

{n,2,lim}

1;

Print [MatrixForm[q]]

Print [MatrixForm[qgerr]]

In order to give the complete example, we reproduce the output of the
code used upon a set of simulations of He at 5 K. Matrix element (1, 1)
has the value of the energy for 1 bead. We double the number of beads
until reaching 128 beads. The matrices shown are the extrapolation
matrix and the error matrix respectively.

-35.48 0 0 0 0 0 0 0
-21.94-17.427 O 0 0 0 0 0
-12.92 -9.9133 -9.4124 O 0 0 0 0
-8.25 -6.6933 -6.4787 -6.4321 O 0 0 0
-5.16 -4.13 -3.9591 -3.9191 -3.9093 O 0 0
-3.33 -2.72 -2.626 -2.6048 -2.5997 -2.5984 O 0

-2.47 -2.1833 -2.1476 -2.14 -2.1381 -2.1377 -2.1376 O
-2.2 -2.11 -2.1051 -2.1044 -2.1043 -2.1043 -2.1043 -2.1043

0.04 O 0 0 0 0 0 0
0.04 0.05498 0 0 0 0 0 0
0.02 0.02981 0.03201 O 0 0 0 0
0.007 0.01147 0.01240 0.01260 O 0 0 0
0.01 0.01354 0.01446 0.01469 0.01474 O 0 0
0.02 0.02687 0.02868 0.02914 0.02925 0.02928 O 0
0.03 0.04055 0.04329 0.04398 0.04415 0.04420 0.04421 O
0.1 0.13371 0.14265 0.14491 0.14548 0.14562 0.14566 0.14567

We notice that 128 beads are required for reaching convergence. The
value of the total energy with 128 beads is -2.2(1) K. However, if the
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Richardson extrapolation is used the same result is obtained with a
fraction of the computational effort. The extrapolated energy obtained
using simulations up to 64 beads is -2.14(5)K, which is compatible with
the value found with a 128 beads running. The simulation performed
with 128 beads took more time than all the other simulations together,
and the variance is an order of magnitude larger.

6.4 Internal Richardson extrapolation

Another approach we have tried to the Richardson extrapolation, was
to implement an extrapolation inside the code. That means, while the
code is running we perform extrapolations using reweighted values of
the energy. For example, when we run a simulation with eight beads we
estimate the energy for that polymer length at every Monte Carlo step.
The internal Richardson extrapolation routine we have coded estimates
the value of the energy for the four beads polymer chain taking one every
two beads of the eight-beads chain and reweighting. And then does the
same again in order to estimate the value of the energy for a chain made
up of two beads. In that way when we are performing a simulation with
M beads, we can have two rough estimates of the energy of the same
system using M /2 and M /4 beads.

We coded that routine with the hope of reducing the total CPU time
invested in a system, since the reweighted values require much less com-
putational effort than real simulations. However, the reweighted results
are significantly noisier than their PIMC—-estimated counterparts. This
level of noise introduced into the Richardson extrapolation becomes it
completely useless for giving an accurate result when the algorithm is
run in the asymptotic zone. Results on the internal Richardson extrap-
olation will be shown in § 7.1.3.
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In this chapter we shall give the results obtained with the different meth-
ods showed so far. We shall see comparisons between primitive and Li—
Broughton actions, as well as results derived from some of the different
samplings explained so far. We shall also present comparative results
related to different momentum distribution methods.

Following the same stream developed in the chapters 3 and 5, we
shall give the results for the harmonic oscillator first, and then results
on real systems. Most of the tests performed on real systems have been
done on “He at 5 K and Ne at 25 K and 35 K.

For either, the harmonic oscillator, as well as the real systems, we
present results of the Richardson extrapolation.

7.1 Harmonic oscillator

7.1.1 Actions

In chapter 3 we derived several actions. We found the expressions ap-
plied to the harmonic oscillator for the primitive approximation (3.14),
the Li-Broughton correction (3.31), the variational theorem applied to
the primitive approximation (3.37), and finally the variational improve-
ment applied on a Li-Broughton action (3.39).

We shall first test how these various effective potentials behave in a
PIMC code for estimating the energy of the quantum harmonic oscilla-
tor. This model problem will help us to choose which of those potentials
are the best candidates for a real problem.

All the simulations of the harmonic oscillator have been performed
at a temperature of 7" = 0.2 K, which is sufficiently low for appearing
quantum effects. From (2.49) we calculate the energy using w = h =
kg = A = 1. The exact value of the energy at that temperature is



90 7. Testing the methods
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Fig. 7.1: Estimation of the harmonic oscillator energy at T' = 0.2 K, using
different actions, as a function of the number of beads. Exact value
of the energy (0.50678 K) dashed line.

0.50678 K.

In order to test the convergence of the different actions studied we
measure the total average energy of the quantum harmonic oscillator.
We have only used the thermodynamic energy estimator for these tests.
The results shown in table 7.1.1 have been obtained running all the
simulations an equal amount of CPU time. This choice about the CPU
time has been done in order to observe the behaviour, for a given action,
of the error bars as a function of the number of beads, as well as to
compare the variance, for a given number of beads, amongst different
actions. Figure 7.1 shows a plot of the results given in table 7.1.1.

We observe that the variance of all the actions tested behaves simi-
larly with the number of beads. Therefore, the variance is not an issue
when choosing an action.
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M Vi Vil Vi  VrLBH
1 [0.19(1) 0.61(1) 0.33(1) 0.23(1)
o [ 0.32(1) 0.53(1) 0.44(1) 0.36(1)
4] 043(2) 0.53(2) 0.50(1) 0.48(1)
8 | 048(2) 0.53(2) 0.50(1) 0.50(1)
16 | 0.50(2) 0.53(2) 0.51(1) 0.51(2)
25 | 0.50(3) 0.52(3) 0.50(2) 0.51(3)

Tab. 7.1: Comparison of different actions for the harmonic oscillator. Average
value of the energy (thermodynamic estimator) at 7' = 0.2 K as a
function of the number of beads M.

We stated, when explaining the Feynman variational theorem, that
it gives an upper bound for the value of the energy. We see that fact
reflected in figure 7.1. Feynman’s estimator converges quicker to the
vicinity of the exact value than the other estimators, however this rapid
convergence rate drastically slows down when the number of beads is
increased. The variational theorem guarantees the most accurate value
for a single bead evaluation, that is, not taking into account the Trotter
formula. Raedt and Raedt (1983) proved that the primitive approx-
imation is accurate to the 32 order. The variational theorem adds a
(—dependent term, therefore, for a number of integrals greater than one
i.e. M > 1, Feynman’s correction slows down the convergence of the
Trotter formula.

In the light of these facts we decided not to use any action involving
the variational theorem. Now, we focus our attention on the primitive
approximation to the action and the Li—Broughton correction. Table 7.2
shows the average values of the energy of the harmonic oscillator as a
function of the number of beads, for both, the primitive approximation
and the Li-Broughton actions. We let every simulation run until five
significant figures for the energy were obtained. The outcomes obtained
are in agreement with those from Li and Broughton (1987).

At a first glance we notice that for obtaining the analytical value of
the energy with the primitive approximation, 512 beads are required. Li-
Broughton’s action achieves the same value with just 32 beads. Figure
7.2 is a plot of the data presented in table 7.2 along with two fits. The
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Epr Erp
0.18519 0.32666
0.30755 0.44702
0.43162 0.50053
0.48424 0.50630
0.50085 0.50675
0.50528 0.50678
64 | 0.50641 0.50678
128 | 0.50669 0.50678
256 | 0.50676 0.50678
512 | 0.50678 0.50678

Tab. 7.2: Energy of the harmonic oscillator as a function of the number of
beads for the primitive and Li—Broughton actions

inset in the upper right corner is a zoom of the region near the plateau.

Once the number of beads employed is sufficient to capture the
quantum effects of the problem, the primitive approximation behaves
quadratically with the inverse of the number beads, as we expected.
The same happens with the Li—Broughton correction to the action:
it goes as a fourth power of 1/M, as we also expected. The data
obtained with the primitive approximation fits to the parabola E =
0.5061(6) — 1.20(3)(1/M)? excluding the values yielded with one and
two beads. The values of the energy got using a Li-Broughton action fit
to the curve E = 0.5064(4) —0.95(2)(1/M)* once the result for one bead
has been shredded. In both cases the difference between the independent
term and the analytical value is less than 0.2%.

7.1.2 Richardson extrapolation in the harmonic oscillator

In § 6.1 we introduced the second—order two-point Richardson extrap-
olation formula (6.2) assuming that the number of beads Ma used for
the second simulation doubles the number of beads of the first one Mj.
Based on an equivalent assumption , that is M3 = 2Ms = 4M;, we
also introduced (6.3) which is the second-order three—point Richardson
extrapolation formula. Later on, we derived the general fourth—order
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Fig. 7.2: Comparison between primitive and Li-Broughton actions in the har-
monic oscillator at T'= 0.2 K
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EPR R2(02) R3(02) ELB R2(04)
0.18519 0.32666
0.30755 0.34834 0.44702  0.45504

0.43162 0.47298 0.48129 0.50053 0.50410
0.48424 0.50178 0.50370 0.50630 0.50668
0.50085 0.50639 0.50670 0.50675 0.50678
0.50528 0.50676 0.50678 0.50678 0.50678
64 | 0.50641 0.50678 0.50678 0.50678 0.50678
128 | 0.50669 0.50678 0.50678 0.50678 0.50678
256 | 0.50676 0.50678 0.50678 0.50678 0.50678
512 | 0.50678 0.50678 0.50678 0.50678 0.50678

Tab. 7.3: Richardson extrapolation applied to the harmonic oscillator using
primitive and Li—-Broughton actions

two—point Richardson extrapolation formula (6.9). For this case we can
also use the condition 2M9 = 4M; and obtain

. 16E2M — EM

E
o 15

(7.1)

We shall refer to (6.2), (6.3), and (7.1) as Re(O?), R3(0?), and Ry(0?)
respectively.

Using the formulee cited above on table 7.2 we have calculated table
7.3. Just performing three simulations with 4, 8 and 16 beads, along
with a Li-Broughton action, and lately applying (7.1) we match the
analytical result. Considering that a primitive action by itself requires
512 beads to yield the same precision, these upshots are astonishing.
However we must remember that most of the strength of the Richardson
extrapolation is rooted in the fact that the numbers involved have a
high degree of accuracy. We shall see when dealing with real problems
that five significant figures of accuracy are not possible to obtain using
primitive or Li-Broughton actions. In such cases the strength of the
Richardson extrapolation might become seriously handicapped.
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M Epr  R4(0?)

8 | 0.484(1) 0.50(4)
12 | 0.496(1) 0.50(4)
24 | 0.504(1) 0.51(6)
32 | 0.505(1) 0.48(6)
48 | 0.506(1) 0.51(6)
96 | 0.507(1) 0.52(5)
128 | 0.507(1) 0.46(6)

Tab. 7.4: Internal Richardson extrapolation

7.1.3 Internal Richardson extrapolation

Based on the code explained in § 6.4 we have calculated table 7.4, which
shows the values of the energy as a function of M for the harmonic oscil-
lator at T'= 0.2 K. Epg stands the primitive approximation outcomes,
while R%(O?) holds for the internal three—point Richardson extrapola-
tion.

In 7.3 we plot the data of table 7.4. There are no error bars for the
energies estimated with the primitive action since the errors fall within
the symbol size.

Since we were aware that the key point of the Richardson extrapo-
lation was to employ numbers with a low level of noise, we wanted to
observe the influence of the reweighted results on the extrapolation. In
order to do so we let each simulation on table 7.4 run until three sig-
nificant figures in the energy were obtained. Notice that the values of
RL(O?) begin to fluctuate at 32 beads, just when the primitive action
has reached the expected exact result for the required precision.

The denouement indicates us not to use an internal Richardson ex-
trapolation. However, the Richardson extrapolation by itself proves to
be very useful as shown in table 7.3.

7.2 Real systems

Real strengths and weaknesses have to be observed in real systems, which
all in all, are our ultimate goal.
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We shall begin studying near—classical systems, where quantum ef-
fects do not have a large influence. As we gain confidence on the codes,
we shall lower the temperature and move onto systems which show a
clear quantum behaviour. Nevertheless, we work in all cases in condi-
tions where Bosonisation is not necessary.

We have chosen to group the information of this section on the the-
oretical bodies we have been using so far, that is: sampling, action,
Richardson extrapolation, radial distribution function, and momentum
distribution. We did that, rather than grouping the information in terms
of physical systems (helium, neon), since, at the moment, we are more
interested in the behaviour of the codes rather than discovering new
physics. As long as it has been possible, we have simulated systems
with well known physical characteristics, from both, the experimental,
as well as the simulationist’s point of view.

We have studied *He and Ne at several temperatures and densities.
In order to obtain results that can be compared with the available lit-
erature, we have used the Lennard-Jones potentials of Ne and *He, and
also the Aziz and Slaman (1989), and the Aziz et al. (1997) potentials.

In the following bulleted lists we summarise the physical conditions
and key features of every system studied. We shall give a code name to
every system, in that way citing that reference will avoid to keep men-
tioning every single aspect of the simulation. If any simulation condition
deviates from the lists below, it will be indicated. The lists also indicate
the value of the tail correction. These corrections are already included
in all the tables of this chapter.

Liquid neon at 35 K
Code name: Ne35

Temperature: 35.209 K

Density: 3.346x1072A—3

Number of atoms: 64

Potential: Lennard-Jones: o = 2.789 A, ¢ = 36.814 K

Tail correction: —20.313 K



98

7. Testing the methods

Reported experimental results: The kinetic energy at T' = 35.3+0.4
K and at the same density of the simulation, measured via neutron
scattering, was reported to be 66.4 £+ 3.3 K (Peek et al., 1992).

Liquid neon at 25 K
Code name: Ne25

Temperature: 25.8 K

Density: 3.63x1072A—3

Number of atoms: 108

Potential: Aziz HFD-B Ne-Ne (Aziz and Slaman, 1989)
Tail correction: —9.610 K

Reported experimental results: We found two reported values of
the kinetic energy for the temperature and density specified, one
from Glyde et al. (1995) yielding 52.9 &+ 2.5 K, and the other by
D. A. Peek et al. (1992), who gives a compatible value of 52.8 £3.7
K. However, there is an earlier result by Sears that yields 48.8 K
for the same system.

Liquid helium at 5 K

Code name: He5LJ for the Lennard—Jones potential and He5A
for the Aziz potential

Temperature: 5 K

Density: 2.1858x10"2A~3

Number of atoms: 64

Potential: Lennard-Jones: o = 2.556 A, e = 10.21651 K
Potential: Aziz HFD-B(HE) (Aziz II) (Aziz et al., 1997)

Tail correction Lennard—Jones potential: —1.4253 K
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M % Kt Er
1 | -187.34(5) 528135 -134.53(5)
2 | -184.91(6) 57.43(6) -127.48(6)
4 | -183.77(6) 60.2(2) -123.6(2)
8 |-183.49(5) 60.5(5) -123.0(5)

Tab. 7.5: Ne35. Primitive action, bead per bead sampling, thermodynamic
energy estimator

e Tail correction Aziz potential: —1.3094 K

o Tuil correction Aziz potential (108 atoms): —0.7683 K

7.2.1 Sampling

We shall focus our attention on comparing the bead per bead sampling
against bisection. We first studied the system Ne3b using a primitive
action, a bead per bead sampling, and a thermodynamic energy estima-
tor. All the simulations have the same number of iterations. The results
are shown in table 7.5.

We observe that, within error bars, the asymptotic value has been
reached using just 8 beads. As we have already announced, we also
observe that the variance grows with the number of beads, in contrast
with the variance of the potential energy.

In table 7.6 we study the same system, but instead of using a bead
per bead sampling, we used bisection. The minimum number of beads
required for a bisection code is eight, enabling us to use a level two of
bisection algorithm.

Outcomes from table 7.6 are compatible with those obtained on table
7.5, therefore, the results obtained using either bisection or bead per
bead sampling are equivalent, as it has to be. We have chosen Ne at
35 K for this study since with just 8 beads the asymptotic value of the
energy has been reached, therefore, any change in the value of the energy,
or its variance, when increasing the number of beads further than 8, will
reflect the influence of the simulation tools we have chosen, and not any
change of the physics of the system.
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M 1 It % Kt Er
8 2 6 |-1832(2) 60.4(3) -122.8(5)
16 2 6 |-183.8(3) 59.5(9) -124(1)
16 3 6 |-183.6(3) 61.1(7) -122.5(7)
32 2 10 | -183.7(2)  61(4)  -122(1)
32 3 10 | -183.2(3) 60.2(5) -123.2(6)
32 4 10 | -183.6(4) 59.6(9) -124(1)

Tab. 7.6: Ne35. Primitive action, bisection sampling, thermodynamic estima-
tor

In table 7.6 we also present a dependence study of the estimated
energy on the bisection level. The column entitled M indicates the
number of beads used, and the column headed by [ refers to the level of
the bisection algorithm used. Column ‘It’ indicates the number of blocks
the code has iterated; all blocks had the same number of Monte Carlo
steps for all simulations. For 8 beads the only possible choice, excluding
the trivial one, was [ = 2. The variances of the total energy obtained
with an eight bead polymer ring for either the bead per bead or the
bisection sampling are the same, however the bisection code lasted 1/10
of the CPU time spent on the bead per bead sampling

When 16 beads are employed we can either choose between 2 or 3
levels. Since the number of iterations for the simulations performed with
8 and 16 beads is the same, it is obvious that simulations with 16 beads
have a larger variance than the simulation using 8 beads. However, the
differences in the variance of the kinetic energy between the results of
[ =2and [ = 3 at 16 beads, can only account for the choice of the level,
since all the other conditions are the same. For this case it is better to
use a [ = 3 sampling than any other choice.

Our results for the 16 beads simulation of Ne35 can be compared
with those published by Singer and Smith (1988). They studied the same
system using a primitive action and 16 beads also. The results showed
in their publication is V' = —183(2) K, K = 60.74 K, and F = 123(3)
K, which are in full agreement with our results for the same number of
beads (table 7.2.1).

We continued oversampling the system, increasing the number of
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M 1 It % Kt Er

8 2 10|-183.9(2) 60.7(3) -123.2(4)
16 2 10 | -183.4(2) 59.4(8) -124.0(9)
16 3 10 |-183.4(2) 61.2(5) -122.2(6)
32 2 10 | -183.6(2) 59(2)  -124(2)
32 3 10 |-183.4(2) 60.8(6) -122.6(7)
32 4 10 | -183.4(2) 60.9(8) -123.0(9)

Tab. 7.7: Ne35. Primitive action, unbiased bisection sampling, thermodynamic
estimator

beads to 32. In order to keep the variance within reasonable boundaries
we almost doubled the simulation time. In spite of that, the variance
increased, as we expected. With 32 beads, 2, 3, and 4 levels can be
used. The lowest value of the variance was still obtained, in the 32
beads sample, for [ = 3. The variance obtained with [ = 2 was an order
of magnitude larger than the one given by a level three bisection.

In § 4.3.5 we discussed about a small bias of the bisection algorithm.
We coded a bisection algorithm that avoided the bias, at the price of
much longer CPU time, and we did study the the Ne35 system again,
producing the results shown in table 7.2.1.

The figures shown in that table are compatible with those ones of
table 7.6. All the simulations had ten blocks of data, however the CPU
time spent for each block was larger on an unbiased bisection than the
regular bisection. We also performed a study of the dependence of the
variance on the level chosen, arriving to the same conclusion: whenever
is possible, the best choice is a [ = 3 bisection.

In order to be sure of the equivalence between a bead per bead
sampling, and a bisection code, we simulated another system. Outcomes
for neon at 25 K are shown on Table 7.8. There are two rows in that
table that give account for the results obtained with 4 beads. The first
row is the result obtained using a bead per bead sampling, and the
second one using bisection. The results for the thermodynamic and the
virial estimators of the energy are compatible within error bars. The
CPU time devoted to bisection was 1/10 of the time spent on the bead
per bead simulation. The improvement on sampling speed of bisection
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over bead per bead, grows with the length of the segment of polymer
ring bisected.

7.2.2 Action

The comparisons carried out between the primitive approximation and
the Li-Broughton action applied to the harmonic oscillator, showed a
clear improvement of the latter respect to the former. We observed that
in order to obtain five significant figures in the energy, the primitive
action required 512 beads, instead of just 32, which was the case of the
Li—Broughton correction. In the light of these numbers we thought it was
possible to lower the temperature, and to get into regimes unreachable
for the primitive action. The primitive action requires about 128 beads
to simulate ‘He at 5 K. Our current sampling methods do not allow
us to simulate more than 128 beads and 108 atoms efficiently. In a
situation like that, we are bound to a better action should we require
even lower temperatures. If the behaviour we observed in the harmonic
oscillator would have been unaltered, the results obtained with 128 beads
and a primitive action, can be reproduced with just 16 beads along
with a Li-Broughton correction. This would allow us to keep decreasing
the temperature. However, as we shall notice through the following
studies, Li-Broughton’s performance becomes seriously handicapped in
the presence of a real system.

The comparative study between the primitive approximation and
the Li-Broughton action has been done in terms of temperature. We
have studied neon at 25 K and then helium at 5 K. Table 7.8 shows
the values of the energy for the system Ne25. The column entitled ‘Spl’
indicates the sampling method, being ‘bb’ a bead per bead sampling and
‘be’ bisection. At the moment we shall focus on the Ev column, which
states the values of the total energy for the virial estimator. Later on,
in § 7.2.3 we shall return to this table and make a comparative analysis
between the thermodynamic and virial energy estimators.

The same structure of table is kept in table 7.9. It shows the results
of the simulations performed on neon at 25 K, but this time using a
Li—Broughton action instead of a primitive approximation. Once again,
we shall focus on column FEy.

We observe from table 7.8 that the asymptotic value of the total
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M Spl |4 KT KV ET EV

1 bb | -213.4(2) 38.7000 38.7000 -174.7(1) -174.7(1)
2 bb | -210.2(2) 44.3(2) 44.46(3) -165.8(3) -165.9(2)
4 Dbb | -208.6(3) 47.6(2) 47.7(1) -161.0(4) -160.9(3)
4 be | -208.3(2) 47.6(2) 47.76(5) -160.7(3) -160.5(2)
8 bc | -207.3(2) 48.8(3) 49.07(7) -158.5(4) -158.2(2)
16 be | -207.6(4) 49.8(5) 49.5(1) -157.8(6) -158.1(4)
32 be |-207.2(4)  49(2)  49.6(1)  -157(2) -157.5(4)
64 bb | -207.1(3) 50.2(5) 50.0(1) -156.9(6) -157.2(3)

Tab. 7.8: Ne25. Primitive action, thermodynamic and virial estimators

M Spl Vo Kt Er Ev
1 be | -222.3(2) 56.0446 -166.2(2) -166.2(2)
2 be | -212.9(2) 55.4(2) -157.4(2) -157.2(2)
4 be |-209.3(3) 51.9(2) -157.3(4) -157.1(3)
8 be | -207.8(2) 50.3(3) -157.4(3) -157.4(3)
16 be | -207.7(5) 50(1)  -157(1)  -157.7(6)
64 be | -207.0(5) 50(4)  -157(4) -157.3(5)

Tab. 7.9: Ne25. Li-Broughton action, thermodynamic and virial estimators
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M 1 4 Kt Er Ry M

1 1]-42.51(5) 7.6624 -34.84(5)

2 1]-31.95(8) 9.87(2) -22.08(7) -17.8(1) -18.89(8)
4 11]-24.60(4) 11.61(2) -12.99(3) -9.96(5) -10.72(5)
8 2(-2236(3) 13.92(5) -8.44(6) -6.92(9) -7.3(1)
16 3 |-21.26(3) 16.03(6) -5.23(7) -4.1(1)  -4.4(1)
32 3]-20.77(3)  17.4(1)  -3.3(2)  -2.7(3) -2.8(3)
64 3 |-20.56(4) 17.6(3) -2.9(4) -2.8(6) -2.8(6)

Tab. 7.10: HebLJ. Primitive action, bisection sampling, thermodynamic esti-
mator

energy is —157.2(3) K. That figure is obtained using 64 beads. However,
using just 2 beads with a Li-Broughton action we retrieve the same
value. Further increase of the number of beads keeps yielding compatible
figures of the asymptotic energy, confirming that the result obtained
with 64 beads and a primitive action is the asymptotic one indeed. Our
kinetic energy data is compatible with those reported by D. A. Peek
et al. (1992).

Albeit Li-Broughton’s results action are very encouraging so far, we
must not be fooled by them. Now we shall stress the system up to 5 K.

Firstly, we study “He at 5 K using a Lennard-Jones potential. Sim-
ulations performed with the primitive approximation yielded table 7.10.
The asymptotic value of the total energy is —2.9(4) K, and it is given
by 64 bead polymer rings. We shall confirm this result based upon
the Richardson extrapolation in § 7.2.4. All the simulations related to
helium have been performed using 64 atoms, unless otherwise indicated.

Table 7.11 summarises the results obtained for the same system us-
ing a Li-Broughton action instead. The improvement given by the Li-
Broughton action is not as astonishing as it was for a higher temperature.
The number of beads required to retrieve the same asymptotic value is
32, instead of 64.

In order to confirm our data validity, we compare it with that ob-
tained by Singer and Smith (1988) and Ceperley and Pollock (1986) in
table 7.12. The results belonging to the row ‘LB’ have been calculated
by Singer and Smith (1988) using a Li-Broughton action. On the other
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M 1 Vr Kr Er Ry
4 1| -24.99(2) 16.18(2) -8.81(1)
8 2]-23.109(5) 17.96(2) -5.15(2) -4.90(3)
16 3 |-21.881(5) 18.52(3) -3.36(3) -3.22(4)
32 3| -21.12(2) 18.4(1) -2.7(1) -2.7(2)
Tab. 7.11: He5LJ. Li-Broughton action, bisection sampling, thermodynamic
estimator
M Mth \% Ky K AK E
30 LB -21.4(4) 211.3 18.6 1.175  -2.76(4)
40 CP | -20.89(2) 18.9(3) -2.1(3)
80 CP | -20.69(3) 18.1(6) -2.6(6)

Tab. 7.12: Singer and Smith (1988) and Ceperley and Pollock (1986) results.
Lennard—Jones potential. T' = 5.108255 K

hand, figures appearing in the rows ‘CP’ have been estimated by Ceper-
ley and Pollock (1986) using the pair action. The asymptotic results
reported by both groups of authors are compatible with ours.

For studying a more realistic system we repeated the simulations on
helium at 5 K now using an Aziz potential (Aziz et al., 1997).

For assuring the validity of the results obtained using 64 atoms, we
have performed a simulation of the system He5A using 108 atoms instead
of 64. The estimated value of the energy for 8 beads and a Li-Broughton
correction is —0.47(8), which is compatible with the one given for the
same number of beads in table 7.13.

The asymptotic value of the energy for the system HebA is reached
with 128 beads using a primitive action, and with 32 beads with Li-
Broughton correction, as it is shown in table 7.13. Even though Li-
Broughton requires a lower number of beads than the primitive ap-
proximation, the way Li—-Broughton reaches the asymptotic value is not
monotonous. This situation poses several problems. First of all, an os-
cillating approximation to the asymptotic value forces us to carry out
further simulations once the asymptotic value has been reached in order
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M Erp Epp

2 | -10.36(3)

4 | -471(3)

8 | -0.49(3) -9.31(7)
16 | -1.414)  -5.7(2)
32 | -24(2)  -4.9(3)
64 | -27(9)  -3.1(7)
128 22.5(4)

Tab. 7.13: He5A. Primitive and Li-Broughton actions. Total energy given by
the thermodynamic estimator

to ensure it is not a coincidence produced by one oscillation. Another
problem derived from the oscillating behaviour is that the Richardson
extrapolation becomes useless.

We observed that the Li-Broughton correction showed this oscilla-
tory behaviour when hard core potentials are combined with low tem-
peratures. However the oscillations are around the asymptotic value,
and for any given number of beads the deviation from it is smaller than
the deviation from the asymptotic value observed with the primitive
approximation. Furthermore, the asymptotic energy is obtained using
a significantly lower number of beads with the Li-Broughton correc-
tion, instead of the primitive approximation. From table 7.13 we notice
that the total energy for the HebA system is —2.4(2) K. That figure
is achieved using 32 beads with a Li-Broughton action. The primitive
approximation requires 128 beads in order to yield an equivalent result.

Even though the Li-Broughton action had a fourth order behaviour
for the harmonic oscillator, we did not observe the same behaviour for
real systems at temperatures lower than 15 K. Notwithstanding there is
an interesting regime of temperatures, above 15 K, where quantum ef-
fects are not negligible, and where the Li—-Broughton correction provides
a significant betterment over the primitive approximation. To be more
precise, we found that with just 2 beads and a Li—-Broughton action, we
matched the results obtained with the primitive approximation and 64
beads, in the case of neon at 25 K (Fig. 7.4). We shall discuss about
that in § 7.2.4.
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There are authors that give a different expression for the fourth order
expansion (Jang et al., 2001). The implementation of this expansion
perhaps would surmount some of the problems of the Li—Broughton
correction at very low temperatures, however we have not done that
since the cited paper has been recently published.

7.2.3 Energy estimators

Table 7.8 shows a comparison between the energy yielded by the thermo-
dynamic estimator and the virial estimator. All the simulations shown
in this table have the same number of Monte Carlo steps. The vari-
ance of the kinetic energy given by the virial estimator, K+, is about an
order of magnitude lower than the error given by the thermodynamic
estimator of the kinetic energy K.

As the number of beads increases the error of the thermodynamic
estimator becomes larger, mainly due to the kinetic energy. On the other
hand, the error due to the potential energy keeps constant.

Using the virial estimator instead of the thermodynamic represents
a significant lowering of the CPU times devoted to energy averaging,
once the system has been thermalised, for the reason given on § 5.1.9.
Since the variance of the thermodynamic estimator is systematically
larger than the one of the virial estimator, even very long runs with the
thermodynamic estimator would yield a larger variance. Albeit the mean
value of the energy would be closer to the exact value as the number of
Monte Carlo steps becomes larger.

7.2.4 Richardson extrapolation

The strength of the Richardson extrapolation is deeply rooted on the
quality of the numbers involved and the existence of a power law. We
have observed that the behaviour of the primitive approximation is
quadratic and the Li-Broughton correction is quartic, at least for the
harmonic oscillator.

We shall study the usefulness of the Richardson extrapolation in
terms of the temperature and the action. We start with liquid neon
at 25 K. The values for the total energy obtained with the primitive
approximation given in table 7.8, along with the results for the same
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system using a Li-Broughton correction given in table 7.9, are plotted
in figure 7.4. The values of the plot do not encompass the tail correction
to the potential energy for that system, however, this fact does not affect
the quality of the extrapolations or the fits, since it is just a global shift
in the energy axis.

The filled symbols of 7.4 are results obtained with the primitive
approximation, while the clear symbols represent energies obtained with
the Li-Broughton correction. The circles are the estimated values of the
energy obtained with the code, and the triangles are the results in the
diagonal of the the Richardson extrapolation matrix explained in § 6.3.
The dashed line is a quadratic fit of the energy values obtained with
the primitive approximation and the solid line is a quartic fit of Li-
Broughton’s energies. The inset is a detail of the asymptotic region.

Regarding the primitive approximation, we observe that the Richard-
son extrapolation systematically improves the energy towards the asymp-
totic value. With just 32 beads and a primitive approximation the right
energy is obtained. Since Li—-Broughton already gave the asymptotic re-
sult with just 2 beads, the Richardson extrapolation little can do. Both
fits were performed with the data that belongs to the asymptotic re-
gion. For the primitive action that means discarding the energies below
4 beads, and for Li-Broughton below 2 beads.

A more demanding system is “He at 5 K. In figure 7.5 we plotted
the total energy Er, given by the thermodynamic estimator, found on
table 7.10. The energies plotted do not include the tail correction.

The Richardson extrapolation yields the right result with 32 beads.
The asymptotic energy is reached with 64 beads. The energy fits to a
parabola only for simulations with more than 8 beads. We did not show
extrapolation values of Li—Broughton’s energies since they do not have
a fourth order behaviour at this low temperature.

Table 7.10 also includes the explicit values of two different Richard-
son extrapolations. Column R¥ is the second—order two—point extrapo-
lation to a finite value of beads, given by equation (6.10). On the other
hand, column Rt has the data of the second—order two—point Richard-
son extrapolation to infinity, given by (6.2). At the end both methods
converge to the same value, however, the results obtained with (6.10)
reach the expected value a little bit faster.
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Fig. 7.4: Ne25. Total energy of neon using primitive and Li-Broughton action.

Rpp and Rpp diagonals of the Richardson extrapolation matrices.
Virial energy estimator.
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Fig. 7.6: Ne25. Pair distribution function. Primitive action. Behaviour of g(r)
in terms of the number of beads

7.2.5 Radial distribution function

For the radial distribution function just a few Monte Carlo steps once
the system has been thermalised suffice to yield an accurate result of
the g(r). We do not include error bars in our g(r) plots since the error
is smaller than the line width.

Rather than discussing about the problems related to the calculation
of the radial distribution function, that essentially do not exist, we will
show the differences between a classical and a quantum g(r).

Figure 7.6 shows plots of the pair distribution functions obtained
with simulations of neon at 25 K using different number of beads, and a
primitive action. The plots range from 1 bead, the classical simulation,
up to 32 beads. For more than 4 beads all the plots are the same,
in agreement with the results obtained for the energy dependence on
the number of beads for that system. The main difference between a
classical and a quantum g¢(r) is observed at the first peak.

An equivalent figure is given by figure 7.7, being the action chosen the
only difference. However, since for that figure we used a Li—Broughton
action, the plot of the g(r) related to 1 bead does not longer represents
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Fig. 7.7: Ne25. Pair distribution function. Li-Broughton action. Behaviour of
g(r) in terms of the number of beads

a classical pair distribution function. The Li-Broughton action always
encompasses quantum corrections. In order to observe the differences
between a classical pair distribution action and a first order quantum
correction we plotted together the g(r) for 1 bead using a primitive
approximation and a Li-Broughton action in figure 7.8.

The pair distribution functions obtained with either action for asymp-
totic values of beads coincide. We showed § 7.2.2 that 8 beads was suffi-
cient for both actions to yield the right asymptotic energy. In agreement
with that, the pair distribution functions calculated using 8 beads for
both actions, are the same.

The quantum effects are more explicit in helium at 5 K. For that
system 32 beads are required in order to achieve the asymptotic value
when a Li—Broughton action is used. This is also in agreement with the
behaviour of the energy. The differences between a simulation with 1
bead and 32 beads are more dramatical. From figure 7.10 it is possible
to infer that a classical study of *He at 5 K would yield a solid, instead
of a liquid, as it is shown by the plot of the g(r) using 32 beads. The
quantum effects are also visible at the beginning of the pair distribution
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Fig. 7.8: Ne25. Pair distribution functions using 1 bead. Primitive and Li-
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Fig. 7.9: Ne25. Pair distribution functions using 8 beads. Primitive and Li-
Broughton actions
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Fig. 7.10: Pair distribution function for different number of beads. Li-
Broughton action. Helium 5 K. Lennard—Jones potential.

function. The slope of the first peak of the g(r) is almost infinity and
the function becomes different from zero just past one o. This is the
behaviour of a classical solid very compressed. On the hand, the g(r)
associated to 32 beads has a gentler slope and becomes different from
zero at 0.8c0. It is also possible to observe from that figure the delocal-
isation effects appearing while going from the classical to the quantum
regime, expressed in a lower height of the first peak for the quantum
g(r), in comparison to the classical one. Also the first peak position
of the quantum g¢(r) is slightly shifted to the right, with respect to the
classical plot. Both aspects point out to a major delocalisation in the
quantum regime, as it could be expected. In fact, the quantum kinetic
energy is significantly larger than the classical estimate 3/2T.

7.2.6 Momentum distribution

We shall not study in depth the behaviour of the momentum distribution
in terms of the temperature at this moment. Chapter 8 is wholly devoted
to that task.

Instead, we shall see the differences between the trail method, and
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Fig. 7.11: Ne35. Single particle density matrix. Comparison of the three dif-
ferent methods

the other two methods available. Figure 7.11 shows a plot of the single
particle density matrix calculated using the trail method, McMillan, and
the open chain method. McMillan’s and trail’s results were calculated
during the same simulation. For the open chain we ran an equivalent
simulation, including the open polymer, at the same time. We did stop
both simulations once the function yielded by the trail method had con-
verged. The plots from the other two methods were still far away from
the right function. If we would let the open chain method to grab more
statistics, it would arrive to the same result we are giving with the trail
method. The same does not happen with McMillan; it will only yield
the right behaviour for small . The differences between the method we
propose and the other methods are remarkable.

The full strength of the trail method, and the righteousness of the
functions given will be demonstrated in chapter 8.

The Fourier transform of the single particle density matrix obtained
with the trail method, yields the momentum distribution. It is depicted
in figure 7.12.

In the same way we did for the radial distribution function, we
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Fig. 7.12: Ne35. Momentum distribution obtained with the trail method

wanted to observe the inclusion of quantum effects as we increased the
number of beads, and lowered the temperature. The first system stud-
ied was neon at 25 K. Figure 7.13 shows the plots of the momentum
distributions for different number of beads. In a first approximation,
quantum effects do not change the classical Gaussian behaviour of the
momentum distribution, but its width. That is, a near classical momen-
tum distribution is a Gaussian with a width associated to a effective
temperature, as it has been explained in § 5.2.2.

In a plot with squared abscissas and a logarithmic scale on the n(k),
a Gaussian must be a straight line. Figure 7.14 shows that plot. We
observe that the tail of the result obtained with 4 beads is the only part
that deviates from a Gaussian. As we showed before, more than 2 beads
are required to capture nature of the system when using a Li-Broughton
action. In momentum space, large k imply small r, and it is precisely at
small r where the first quantum effects can be seen. We also observed
that in the plot of g(r) for helium at 5 K, where the quantum behaviour
was more evident at small r.

More quantum effects can be seen using helium at 5 K. Figure
7.15 shows the plots of different simulations performed using the Li—
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Fig. 7.15: He5LJ. Momentum distributions for different number of beads using
Li—Broughton action

Broughton action on a range of beads. In agreement with the results
previously exposed for the energy, we observe that 32 beads are required
to reach asymptotic behaviour. We also notice that the fluctuation in-
duced by the oscillatory behaviour of the Li—Broughton correction is
reflected on the plots associated to 4 and 8 beads.

Figure 7.16 shows that the deviation from a Gaussian is much more
accentuated at this low temperature. The momentum distribution for
4He at 5 K cannot be fitted neither to a single Gaussian, nor to a couple
of them.
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Fig. 7.16: HebLJ. How the momentum distribution deviates from a Gaussian
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8. MOMENTUM DISTRIBUTION OF QUANTUM LIQUIDS
AT FINITE TEMPERATURE

We present results of a path integral Monte Carlo (PIMC) calculation of
the momentum distribution of Ne and normal *He at low temperatures.
In the range of temperatures analysed, exchanges can be disregarded and
both systems are considered Boltzmann quantum liquids. Their quan-
tum character is well reflected in their momentum distributions which
show clear departures from the classical limit. The PIMC momentum
distributions are sampled using a new and more efficient method that
generalises the standard McMillan approach. Kinetic energies of both
systems, as a function of temperature and at a fixed density, are also
reported.

8.1 Introduction

The momentum distribution of liquids at low temperatures, where quan-
tum effects are still relevant, is a challenging problem of fundamental
interest (Silver and Sokol, 1989), (Glyde, 1994). It provides essential
information on the correlations present in the system, which do not
show up explicitly in other quantities. In the past years, accurate deep
inelastic neutron—scattering experiments in the quantum regime have al-
lowed the study of several aspects of the momentum distributions n(k).
However, a clean extraction of n(k) is not possible since instrumental
broadening smoothes out fine details of the dynamic structure function.
Moreover, if the momentum transfer is not high enough for the impulse
approximation to be valid it is necessary to take into account final state
effects (Mazzanti et al., 1996). In spite of those problems, it is possible
to extract with a reasonable accuracy the kinetic energy from the re-
sponse at high momentum transfer. That experimental measure usually
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relies on the assumption of a Gaussian form for n(k), a feature that only
a theoretical microscopic analysis can really verify.

In the present chapter, new (Gillan, 1990) PIMC results on the mo-
mentum distributions of Ne and normal *He as a function of temperature
(T') are presented. At low 7T, and in the Boltzmann quantum regime,
we have studied the relevance of quantum effects in both n(k) and the
single—particle kinetic energies. Special emphasis is made in the de-
parture of n(k) from the Gaussian shape usually assumed in neutron
scattering analysis.

The momentum distribution is the Fourier transform of the single—
particle density matrix

n(r) = Z_l/drldrg...drN p(r1,ra, ..., rN;T + 1,10, ... TN F) .
(8.1)

In terms of the polymer isomorphism, the calculation of n(r) corresponds
to a simulation in which one of the chains is open, beginning at r; and
ending at ri + r. For the simulations performed in this study, we have
used the trail method introduced in § 5.2.1.

8.2 Results

The kinetic energies and momentum distributions of liquid Ne and nor-
mal liquid *He have been studied by means of the PIMC method. At
a fixed density pne = 0.0363 A=3, the properties of Ne have been cal-
culated at temperatures 25.8, 35, 45, and 55 K using as interatomic
potential the accurate model of Aziz and Slaman (1989). In the case
of *He, the fixed density is pge = 0.0218 A=3 and the temperatures
analyzed are 10, 15, and 20 K. The interatomic potential for *He is
the HFD-B(HE) Aziz potential (Aziz et al., 1997) which has proved its
high accuracy in microscopic calculations of the equation of state at zero
temperature (Boronat and Casulleras, 1994).

PIMC results for the total and kinetic energies of both systems are
reported in Table 8.2. In each case, a number of beads large enough to
remove discretisation errors has been used. In both systems, and inside
the range of temperatures analyzed, the kinetic energy decreases linearly
with the temperature. However, as expected due to the low temperature
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T(K) K(K) EK) K-KaK) (K- Ka)/Ka(%)

Ne 55 90.16(3) -94.6(2) 77 14.0
45 75.85(2) -116.4(2) 8.3 18.4

35  61.76(2) -138.1(2) 9.3 26.6

25.8  50.0(1) -157.2(3) 11.3 43.8

THe 20 39.24(2) 18.60(3) 9.2 6.0
15 32.61(6) 11.41(7) 10.1 67.3

10 25.80(6) 4.01(7) 10.8 108.0

Tab. 8.1: Kinetic (K) and total (E) energies of Ne and “He as a function of the
temperature. The densities are 0.0363 and 0.0218 A~2 for Ne and
4He, respectively. K, is the classical value for the kinetic energy.

of both liquids, the value of the slope does not coincide with the classical
value 1.5. For Ne the slope is 1.38 and for “He is still slightly smaller,
1.34. In Table 1 we report the differences between the kinetic energies
and the classical predictions, both in absolute and relative values. The
difference increases when the temperature goes down, but even Ne at
T = 55 K shows a non—negligible correction. On the other hand, the
presented results for *He are in an overall agreement with the PIMC and
experimental results of Ceperley et al. (1996). The reported result for
Ne at T' = 25.8 K compares well with the experimental determination
of Azuah et al. (1997) (K®P' = 52.9 + 2.5 K).

The PIMC momentum distributions of Ne and *He are shown in Fig.
8.1 as a function of the temperature. All of them are normalized in the
form

ﬁ /dk n(k) = 1. (8.2)

Both systems behave in a similar way when the temperature increases:
n(k) becomes broader due to the increase in the population of higher
k states. The shape of the momentum distributions reported in Fig.
8.1 shows a Gaussian resemblance. However, it is not possible to fit the
PIMC data with a single normalized Gaussian, even in the more classical
case of Ne at 55 K.

In Fig. 8.2, the PIMC n(k) is compared with the Gaussian momen-
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Fig. 8.1: PIMC momentum distributions for Ne (left) and *He (right) as a
function of temperature.
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Fig. 8.2: Comparison between the PIMC n(k) (solid line), classical n(k) (dotted
line), and classical n¢ (k) with effective temperature (dashed line).
Left, Ne at 25.8 K; right, *He at 10 K.
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tum distribution

7T)\ 3/2 )\k2
ncl<k>=8p(?> e (8.3)

at the lowest temperatures of the present analysis: Ne at 25.8 K and *He
at 10 K. As expected, the differences between n(k) and n. (k) are im-
portant, specially in the case of “He due to both the lower temperature
and its higher quantum nature implied by its smaller mass. For small
quantum effects, the increase of the kinetic energy respect to the classical
value can be expressed in terms of an effective temperature Tys > T such
that 3T¢/2 = Kpmme. In Fig. 8.2, results for this corrected Gaussian
model are also shown. As one can see the resulting momentum distribu-
tions reproduce much better the PIMC data than n(k) but there are
still significant differences which are again more pronounced for *He.

In order to see how the deviation from a Gaussian of the PIMC
results are more pronounced in the 10 K regime of “He than in the case
of Ne at 25 K we plotted the same results of Fig. 8.2 in a semi-log
scale with the abscissee squared (Fig. 8.3). In such a scale, a Gaussian
becomes a straight line. We notice how most of the deviation comes
from the tail, as we expected.

In the impulse approximation, the Compton profile can be derived
from the momentum distribution § 5.2.3. In figure 8.4 we compare the
Compton profiles of Ne (45 K) and *He (10 K) obtained with the simu-
lation with those that are obtained classically using (Celli et al., 1998)

2
J(y) = (2702) V2 exp <—%‘2> : (8.4)

with o the length parameter of the Lennard—Jones potential.
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Fig. 8.3: Comparison between the PIMC n(k), classical n(k), and classical
ne (k) with effective temperature in semi-log scale. Left, Ne at 25.8
K; right, *He at 10 K.
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Fig. 8.4: Compton profiles. Left: Ne at 45 K. Right: *He at 10 K. In both
plots solid lines refer to PIMC results, and plot of Eq. (8.4) in dashed
lines.



9. SOLID-LIQUID PHASE TRANSITION OF NEON AT 35 K

While thermodynamic properties of solid or liquid neon are well known
(Peek et al., 1992), (D. A. Peek et al., 1992), the behaviour of some
properties, such as the energy or the density, during the solid-liquid
phase transition present some uncertainties (Crawford, 1977). For ex-
ample, experimental data for the phase diagram, which determines solid
and liquid boundaries, present sizeable differences (Fugate and Swenson,
1973), (Lippold, 1969).

Taking advantage of the codes we have developed, we shall study
the solid-liquid phase transition of neon along the 35 K isotherm, going
from a solid up to a liquid density. The temperature regime chosen is
perfectly suitable for our simulation capabilities.

An important feature of PIMC, useful for this kind of problems,
is its ability to choose the right phase, solid or liquid, for the given
thermodynamic conditions. In other words, we set the density and the
temperature of a simulation and we start with a solid configuration; if
the thermodynamic conditions are those of a liquid, after a few steps the
solid structure has been lost; on the other hand, should the conditions
be those of a solid, no matter how many iterations we perform, the
system remains solid. There are no spurious or non—physical functions
or parameters that have to be introduced ad hoc in order to drive the
system to the right phase. This is not the case with other simulation
techniques, such as diffusion Monte Carlo, where the phase is imposed
by the importance sampling (Guardiola, 1998), (Boronat, 2002).

In our work we assumed the atoms obey Boltzmann (distinguishable
particle) statistics. Therefore, bead exchanges, due to Bose statistics,
have not to be considered. The temperature chosen is high enough so
that Bose or Fermi statistics corrections are small, although the system
is strongly quantum mechanical (Pollock and Ceperley, 1984). There
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exists a large range of temperatures where the system can only be accu-
rately described with the inclusion of quantum effects, yet the influence
of particle’s statistics plays a minor role (Runge and Chester, 1988).
Furthermore, in the solid phase, the influence of statistics is almost neg-
ligible for all temperatures.

9.1 Simulation conditions

All the simulations have been performed at 35 K. Each simulation has
been done at a different molar volume, ranging from 13 cm?/mole,
which is clearly solid for that temperature, up to 17.5 cm?®/mole, cor-
responding to a liquid. Those molar volumes are, in terms of density,
4.633x1072A 3 and 3.442x1072A 3, respectively. We have used the
Aziz HFD-B Ne-Ne pair potential (Aziz and Slaman, 1989). The char-
acteristic length unit has been taken from the Lennard—Jones potential
given by (B.3). Since neon solidifies as a fcc crystal, all the simula-
tions have departed from a fcc solid configuration of 108 atoms, with no
Gaussian movements around sites.

We showed in § 7.2.1 that 16 beads per polymer ring, at 35 K and 18
cm? /mole, were enough to accurately simulate neon using the primitive
approximation to the action. Therefore, since the conditions of these
simulations were similar to those ones, we used throughout all the run-
nings of this chapter that number of beads. Nevertheless, we performed
test runs, in the solid, and in the liquid phase, using 32 beads. The
values of the potential, kinetic and total energies obtained are shown in
table 9.1. All the energies per particle are expressed in Kelvin. They
are compatible with those shown, for the same molar volume, on table
9.2, that has been done using 16 beads. Furthermore, the plots of the
structure factor, the radial distribution function, and the momentum
distribution, done using 32 beads, have no significant differences with
their 16 beads counterparts. From now on, all the results shown will
correspond to 16 beads simulations.

The primitive approximation has been the action chosen. Regarding
to sampling, we have used a [ = 3 bisection algorithm. The energies
have been calculated using the virial estimator. Since we are interested
in distinguishing a solid from a liquid, the structure factor S(k) is of great
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V (cm? /mole) 14 K E
14.50 237.0(4) 63.74(6) -174.2(5)
16.25 1203.4(3)  62.50(6) -140.9(3)

Tab. 9.1: Potential (V'), kinetic (K) and total (F) energies of neon at 35 K as a
function of the molar volume. Simulations performed using 32 beads

importance. The theory related to that function is explained on § 5.4.
Calculation of the structure from integration of the radial distribution
function is prone to error, since 108 atoms are not enough for capturing
the long range behaviour of g(r). Therefore, we coded a subroutine
that performs the calculation of S(k) during the running, using the
positions of the particles and the vertices of a hypercube. The plots of
the structure factor shown are the result of that subroutine.

9.2 Results

A single average run takes around fifteen days of Pentium 800 MHz CPU
time. The simulations that took most of the time were those close to
the phase transition, averaging out a month of CPU time each one.

The energies estimated are shown on table 9.2. The tail correction to
the potential energy using 108 atoms and the Aziz HFD-B Ne—Ne pair
potential is -9.610 K and has been added to all the potential energies
shown in tables and plots within this chapter.

In order to compare our results with previous literature, we found
that D. A. Peek et al. (1992) gives a kinetic energy per particle of 60
K for liquid neon at 35 K and 17.4 cm®/mole. Linear interpolation of
our results yield 60.88(6) K for that molar volume. We have not found
any other bibliographic source giving results that could be compared
with ours. However, since we have used the same code for simulations
of neon at 25.8 K, and for that more demanding temperature the values
estimated proved to be compatible with others found in literature, we
are quite confident of the figures we are reporting.

Through the phase transition we found a discontinuity of 1.4 K in
the kinetic energy. It amounts to 2% of the kinetic energy after the
solid-liquid transition. The existence of the discontinuity can be clearly
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V (cm?/mole) v K E
13.00 957.5(2)  68.10(3) -189.4(2)
13.25 -255.3(3)  67.08(3) -188.3(3)
13.50 952.8(2)  66.23(2) -186.5(2)
13.75 249.5(3)  65.45(4) -184.0(3)
14.00 246.2(2) 64.76(3) -181.5(2)
14.25 242.0(2)  64.24(2) -177.7(2)
14.50 238.3(2)  63.67(3) -174.7(2)
14.75 933.7(4)  63.31(6) -170.4(6)
15.00 216.7(3)  64.67(4) -152.0(3)
15.25 214.2(2)  64.15(3) -150.0(2)
15.50 211.4(3)  63.71(3) -147.7(3)
15.75 200.0(2) 63.23(2) -145.8(2)
16.00 206.2(1)  62.84(2) -143.4(2)
16.25 203.5(1)  62.49(2) -141.0(1)
16.75 1198.29(8) 61.81(2) -136.5(1)
17.00 195.7(2)  61.53(3)  -134.2(2)
17.50 -190.69(7)  60.99(2) -129.70(7)

Tab. 9.2: Potential (V), kinetic (K) and total (E) energies of neon at 35 K as
a function of the molar volume. Upper part of the table corresponds
to the solid state, lower part to the liquid phase
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Fig. 9.1: Kinetic energy discontinuity in the solid—liquid phase transition of
neon

observed since the error bars of the kinetic energy are less than 0.1% of
the estimated values.

Figures 9.1, 9.2, and 9.3 show the plots of the kinetic, potential and
total energies, respectively, as a function of the molar volume. The
errors are smaller than symbols size. Discontinuities are also observed
in the potential, and hence the total energies.

Similar discontinuities have been observed by Ceperley (1995a) and
Celli et al. (1998) for *He.

In order to be sure of the phase transition nature of the discontinuity,
we plotted the structure factor of the systems simulated just before
(14.75 cm?/mole) and after transition (15.00 cm®/mole) on figure 9.4.
The vertical dashed lines are the positions of the crystal fcc lattice for
108 atoms and 14.75 cm®/mole. The open circles are the S(k) at 14.75
cm? /mole. The peaks of that function are placed exactly on the positions
occupied by the crystal, indicating that the solid structure has been
preserved. On the other hand, the plot of the S(k) at 15.00 cm?/mole
has the shape of a liquid, and the solid structure has been lost. Notice
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Fig. 9.3: Total energy discontinuity in the solid—liquid phase transition of neon
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that these plots are represented with different scales, being the peak
of the liquid much more lower than the one of the solid, as we would
expect.

Even though the radial distribution function of these two systems are
similar, the presence of a third small peak between the two main peaks
of the solid g(r) can be perceived (Fig. 9.5). Nevertheless, the definitive
proof that characterises the solid and the liquid phase is provided by the
structure factor, as it has been seen.

Our results indicate that the solid-liquid phase transition of neon
at 35 K occurs between 14.75 c¢cm?/mole and 15.00 cm®/mole molar
volume. In terms of densities this is between 4.0834x1072A=3 and
4.0153x1072A=3. We have pinpointed that band in the phase diagram
given by Crawford (1977), and shown on figure 9.6. Our results are
in agreement with the upper curve of the phase diagram measured by
Lippold (1969). The lower curve are results from Fugate and Swenson
(1973). The discrepancies between these two curves are a proof of the
difficulties entailed with this kind of experiments, and also indicate the
necessity of more experiments and simulations.
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Fig. 9.4: Structure factor of neon at 14.75 cm?®/mole (open circles, scale on
left-hand side) and 15.00 cm?/mole (solid circles, scale on right—hand
side). Vertical dashed lines: positions of the structure factor peaks
for a fcc crystal of 108 atoms and molar volume 14.75 ¢cm?/mole
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Fig. 9.5: Radial distribution function of neon at 14.75 cm?/mole (solid line),
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Fig. 9.6: Phase diagram for neon. Reproduced from Crawford (1977). Upper
curve: solid-liquid transition by Lippold (1969). Lower curve: Fugate
and Swenson (1973). Cross hair: point in the phase diagram estimated
with our PIMC simulations



136 9. Solid-liquid phase transition of neon at 35 K




10. CONCLUSIONS

Throughout the many pages we have written so far, some partial con-
clusions have been already given. Notwithstanding, we summarise them
from a global perspective, as well as pointing out where this ongoing
project should drive us in future research.

The research we have performed can be divided into two major areas.
One is concerned with the methods and the theory of PIMC simulations,
which has involved coding and testing; and the other is the application
of the tools developed onto current research of quantum liquids at finite
temperature. Provided these two dissimilar fields, we shall address our
closing remarks keeping them in mind.

The action has been our first issue of study. Using the harmonic
oscillator we discarded several combinations of variational improved ac-
tions, ending up with two actions to be tested. Li—Broughton’s cor-
rection proves to be extremely useful whenever it is used in the right
regime. For liquid neon at a density of 3.63x1072A~3, the adequate
regime are the temperatures above 15 K or so. In this favourable regime
it produces accurate results with an astonishing low number of beads.
However, for lower temperatures, where quantum effects are more no-
ticeable, Li-Broughton’s action converges in a non monotonously way,
yet with a lower number of beads than the primitive approximation.

Future research might be to code another kind of asymptotic expan-
sion, like the one cited in § 3.3.3. However, it is our belief that these
kind of expansions would never allow us to go into systems where par-
ticle exchanges are significant. Pollock and Ceperley have performed
studies on Bosonic systems using their pair action formulation. We are
inclined towards this approach.

Regarding sampling, we are very satisfied with the behaviour of bi-
section. Even though we did not carry out a full study of staging, we
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might infer from the theory upon which it is based that its performance
must be similar bisection. Bisection represents a major improvement on
a bead per bead sampling, and at the moment we shall content with
that.

Another asset is the virial estimator of the energy. Its variance has
been even an order of magnitude lower than the one of the thermody-
namic estimator. This fact can be translated into lower CPU times.

The trail method is part of the techniques we have developed. It gives
accurate results for the whole range of r when calculating the single
particle density matrix without the necessity of performing a specific
simulation for that property. Furthermore, it yields the results faster
than the open chain and the McMillan methods.

We have also introduced the Richardson extrapolation for PIMC re-
sults. Up until now, authors have not made use of this extrapolation.
Richardson extrapolation is useful in three different ways. First, it indi-
cates when a sufficient number of beads has been reached. This feature
avoids the necessity of performing simulations with higher number of
beads, which are time consuming, and many times not possible due to
computing limitations. Second, it allows to give an estimate, with a
reasonable degree of accuracy, of the energy of systems that are a little
beyond the computing capabilities reached with the chosen action. Fi-
nally, it serves as a check of data self-consistency, and to verify that the
action is behaving to the order theoretically expected.

Our future research on the methods area will be directed towards
accessing lower temperatures. For doing so, we will have to find an
action suitable for that task. Furthermore, we need to include bead
exchanges within the code. However, with the tools developed so far,
we are able to study interesting and challenging systems, as we have
demonstrated in the two preceding chapters.

The consistency of our codes has been satisfactorily tested with the
momentum distribution helium and neon study, as well as with the solid—
liquid neon phase transition.

In the former case we reproduced already known results, and we ob-
served the departure from the classical regime descending down to 10
K. Low temperature single—particle properties of liquid Ne and normal
liquid “He have been studied using the PIMC method. The quantum



139

character of the PIMC simulations allows an accurate calculation of
properties like the kinetic energy or the momentum distribution. These
quantities are specially sensitive to the quantum nature of the system.
In the range of temperatures analyzed here the kinetic energies of both
liquids increase linearly with the temperature but with a slope smaller
than the classical value. Momentum distributions do not have the clas-
sical Gaussian shape and the differences with a Gaussian become larger
when the temperature decreases. The definition of Gaussian distribu-
tions with an effective temperature reduces significantly the differences
between the classical predictions and the PIMC results. Nevertheless,
the agreement with the exact results is not very satisfactory, mainly in
the case of *He, pointing again to the non-Gaussian character of n(k).

In the latter, our results were in agreement with previous experi-
ments, and we have seen that PIMC simulations nicely yield the right
phase of a system. We have depicted a point of the phase diagram of
neon. That point falls within the curve given by Lippold (1969).

No doubt our forthcoming research will also encompass further stud-
ies of phase transitions in the regime that is currently accessible to our
codes. Even though significant CPU time is required for completing the
phase diagram curve of neon, we think this challenging problem is worth
the effort.
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A. APPENDIX

Derivation of the three dimensional, many particle expression for
Li—Broughton’s correction

In §3.3.2 we just gave the useful results of Li—Broughton’s correction
for real systems. That result, in the present form, does not appear in
literature, instead the correction in terms of the gradient is found. The
expression with the gradient is useless in terms of computer coding. In
the light of these facts it is helpful to give the full derivation of the
formulee here presented.

We shall start with equation (3.26) expanding the commutators therein

C'=[V,T],V] = (VI -TV)V-V(VT-TV) (A1)
= —(TV)V —=V(VT)+2VTV.

It has been demonstrated that (A.1) gives the right correction to fourth
order of the action Raedt and Raedt (1983). Therefore, finding the form
of (A.1) will give us the additive term to the primitive action required
for the correction.

In preparation for solving (A.1) we need to know the form of the
kinetic and potential energy operators, which are

hg 1 N M )

and

1 M
V= MZZV(]TM—T]-QD. (A.3)

a=1i<j
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The products TV and TVV in (A.1) yield

1LY 1
TV = <_%MZZV%‘I> MZV(‘TW _Tja‘) ) (A4)

i=1 a=1 i<j

and

B2 1 el
v - (g3 (45)

X %ZV(TW —Tja) <%ZV(7’W —Tka)>
J k

Substitution of the previous results into (A.1) give us

, 2A N 2
c' = —WZV‘WQ_Tja|zzviazv|”a_rka|

i<j a=1i=1 i<k
A M N
+ 37 | 222 Vi 2o Viria = rial | 3 Viria = il
a=1i=1 i<j i<k
A M N
+ e Z Vria — 7’]‘04| (Z V|Tia — Tkal Z Z V?a> ,(A.6)
i<j i<k a=1i=1

where A = h%/2m as usual.
Before proceeding let us recall some results from the theory of dis-
tributions. Let 1) be a support function, then
YV = V(YVe) - ViVe
= —V(VYe) + Vo (A7)

The first terms of each line of (A.7) go to zero as they are divergences
of support functions that are to be integrated. Therefore,

»V? = V. (A.8)

Similarly,

YV =V (vg) — (Vih)g, (A.9)
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which leads to

?JJV = —Vi/) (A.lO)

Using (A.8) and (A.10) in (A.6) we get

' = ;;thaza rja|zzv ZV’T‘ZQ Tka’

1<j a=1i=1 i<k
\ M N
+ M3 Zvia Z Viria = rjal E VTia = Tkal
a=1 =1 i<j i<k

A M N
+ W Z sza (Z V|Tw¢ Tja| Z V|Tza Tkoz|

a=1i=1 i<j i<k

- vaa Tga|ZZV ZV|Tm—rka|

i<j a=1i=1 i<k
+ )‘ (Z Z ZV‘Tm - Tja) ZV|7‘M — rka|
a=1 i=1 i<j i<k
A M N
T TZZV Zv‘rla rja‘ ZV|TZQ Tka|
a=11i=1 i<j i<k
+ M3 Zv|rza T]a’ZZV ZV‘TZOC Tka‘
1<y a=1i=1 i<k
A M N
RVE [2 Z Z VZZCV (Z Viria = rjal Z Viria — Tka
a=1i=1 i<j i<k

_ ZV‘TMX _TJO(‘ZZV ZV|TZQ _rka|

1<j a=1 i=1 i<k

_ M3ZV\M wlZZv S Vlria = rral- (A1)

1<j a=1i=1 i<k




144 A. Appendix

Finally, we have

\ M N N
Cl = _mz Zviazv|ria_rja| <Z vlazv|rla_rka|>
a=1

i=1 i<j =1 1<k
(A.12)
3
The new term goes as e~ 5rViTLV]
Thus Li-Broughton’s corrections yields
h2 o N M
MiB=—— Fi.  F; A.13
LB 2%m M3 IZ; az::l 1o’ i ( )
with
F, = ) VLV (Iria = Thal)
ki
— dV (’riOl - Tka’) (Tia - Tka)a’ (A14)

ki d(|rio¢ - Tkoz|) ‘Tioz - chx|

where a refers to the spatial coordinate index i.e., z,¥, z.
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Bisection code

We include here a full FORTRAN 77 code that performs a general bisection
algorithm of level [. Moreover, the code is presented in a form that can
be easily converted into a complete PIMC code. Since bisection exactly
samples the kinetic part of the action, it becomes very entangled with
the action itself. Therefore, we also explicitly include the code for a
primitive approximation to the action. We have chosen not to use in
this code the Li—Broughton action in order to focus the reader in the
bisection algorithm.

The subroutines with an empty parameter line are listed within the
code just to indicate where to put them. The interested reader should
write these subroutines explicitly.

As general notation rule, all the names or variables appearing within
the text will be typeset in verbatim when they are referring to names
or variables in the code. There are several general considerations that
must be taken into account in order to use this code directly:

e This code is intended for simulating liquids or solids within a cubic
box with periodic boundary conditions. The length of the box is L
(L) and the space coordinates are defined from —L/2 to L/2 (L2).
The size of the box is calculated inside of the code in terms of the
density required (rhor) and the typical length of the system given
in terms of o (sgnm).

e The calculations are carried out in reduced units,
kgT
T+ =222 (B.1)

€

p* = pa’, (B.2)
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where kg = 1.381 x 10723 J/K, and o and ¢ are given by the
Lennard—Jones potential

(@) s

In the case of neon ¢ = 5.084 x 10722 J and o = 2.789 x 10719 m.
For “He € = 10.21651 K and ¢ = 2.556 x 10710 m.

e The physical parameters defining the system are all given in SI
units. They are: temperature (Tr), Lennard—Jones’ o (sgm), den-
sity p (rhor), and the atomic weight of the element in uma (atw_uma).
In the code given below these values are set for neon at 25.8 K.

e Vector p(k,j,i) contains k-th Cartesian coordinate of the j—th
bead belonging to the i—atom. The maximum number of atoms
allowed in the simulation is dimensioned by nax, and the maximum
number of beads is dimensioned by nbx. The number of atoms used
in the simulation is given by na, and the number of beads per atom
used is given by nb.

e A full pass throughout the whole code is defined as a Monte Carlo
step. The number of Monte Carlo steps desired is given by nsp.
The number of blocks of Monte Carlo steps is given by nbl.

e The desired level of bisection is set with the variable nlv. The
level that at any given moment is being carried out is indicated by
lev.

e The function POT(r) is the potential, and the parameter r is the
distance between equally labelled beads of different atoms.

e The following subroutines are not explicitly written, however, they
are expected to perform the following tasks:

— PREPARESIMQ): to initialise the simulation. The most impor-
tant thing to be done is to fill in the vector p(k,j,1).

— MOVECM(Q): in order to guarantee a speedy convergence all
the atoms must be moved as a whole every once in a while.
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The movement of every atom is proposed displacing all its
constituting beads the same distance, in that way inter—bead
distance within a polymer ring are preserved. This centre
of mass movement is performed using a standard Metropolis
algorithm. A jump parameter that yields roughly a fifty per
cent acceptance of centre of mass movements must be given
at the beginning of the simulation.

PROPERTIES(): inside this subroutine should be placed all
the subroutines that calculate properties, such as the energy
or the single particle density matrix.

AVERAGES (): the values calculated with PROPERTIES() must
be averaged out using the number of times the code has
passed through PROPERTIES().

EMPTYCOUNTERS () : the values calculated using PROPERTIES ()
will be stored in variables and arrays that must be equaled
to zero after averaging with AVERAGES() in order not to ac-
cumulate the same value many times.

INITCOUNTERS(): just assign zero to all variables.

ranl(idum): this is the random number generator given in
Numerical Recipes Press et al. (1999).
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IMPLICIT REAL*8(a-h,o-z)
REAL*8 L,L2,Lv,Kn,Ko
PARAMETER (hbar_eVs
PARAMETER (slite_ms
PARAMETER (uma_eV
PARAMETER (kB_JK
PARAMETER (K_eV = 8.617385d4-5)
PARAMETER (nax=270,nbx=128)
DIMENSION p(3,nbx,nax)

DIMENSION pnew(3,0:257)

PARAMETER (naux3 = nbx * 3)

299792458.40)

DIMENSION k(0:256),Uprt(10),irvec(10)
DIMENSION pn(3,0:257),po(3,0:257),AV(10,2)

DIMENSION ranv(naux3)

6.582122020d-16)

931.4943228d6)
1.3806503d-23)

PARAMETER (PI25 = 3.14159265358979323846264338327950d0)

CALL INITCOUNTERS()

na = 108

nb = 32 Initialising
2:; - ‘;’88 tau is the
nlv =3 time step.
idum = 747

sgm = 2.789d-10

atw_uma= 20.1796d0

rhor = 3.63d28

Tr = 25.8d0

rlamda = (hbar_eVs * hbar_eVs * slite_ms * slite_ms)/

& (2.d0 * uma_eV * atw_uma * K_eV * sgm * sgm)

L = ((DBLE(na) / rhor)#**(1.d0/3.d0)) / sgm

L2 =L *x 0.5d0

Lv =1.d0 / L

tauv = DBLE(nb) * Tr

tau =1.d0 / tauv

pi = PI25 + SIN(PI25)

pi2 = 2.d0 * pi

nrg = 2 ** nlv

Utot = 0.d0

ipass =0

CALL PREPARESIM()

DO ibl = 1, nbl
CALL EMPTYCOUNTERS ()
DO isp = 1, nsp
CALL MOVECM()

DO i =1, na

kO = INT((rani(idum) * nb) + 1.d0)
IF (k0 .EQ. (nb + 1)) k0O = nb
k(0) = kO

k(nrg) = k0 + nrg

IF (k(nrg) .GT. nb) k(nrg) = k(nrg) - nb

variables.
imaginary

Iterations over blocks,
Monte Carlo steps, and
atoms. Atoms are sam-
pled sequentially.

Beads are

chosen at

random preserving cyclic
properties of the polymer

ring.
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DO lev = nlv, 1, -1
lrg = 2 ** lev
lrg2 = 2 *x* (lev - 1)
nin = 2 **x (nlv - lev)

lac=0
ifrg = 1

alpha = SQRT( DBLE( 2 ** (lev - 1) ) * rlamda * tau )

lran = 3 * nin
IF ( MOD(1lran,2) .EQ. 1 ) lran = lran + 1

DO iran =

1, lran, 2

rl = rani(idum)

r2 = rani(idum)

abm = SQRT(-2.d0 * LOG(r1))
bbm = pi2 * r2

ranv(iran) = abm * COS(bbm)
ranv(iran+1) = abm * SIN(bbm)

END DO
iran = 1
DO lin = 1, nin
IF (ifrg .EQ. 1) THEN
lac = lac + 1lrg2
ifrg = 0
ELSE
lac = lac + 1lrg
END IF
k(lac) = kO + lac

IF (k(lac) .GT. nb) k(lac)

xnext =
ynext =
znext =

xprev =
yprev =
zprev =

xnext =
ynext =
znext =

Xprev =
yprev =
zprev =

pxnext
pynext
pznext

pxprev

pyprev
pzprev

k(lac) - nb

p(1,k(lac+lrg2),i) - p(1,k(lac),i)
p(2,k(lac+lrg2),i) - p(2,k(lac),i)
p(3,k(lac+lrg2),i) - p(3,k(lac),i)

p(1,k(lac),i) - p(1,k(lac-1lrg2),i)
p(2,k(lac),i) - p(2,k(lac-1rg2),i)
p(3,k(lac),i) - p(3,k(lac-1rg2),i)

xnext - L * ANINT(xnext * Lv)

ynext - L * ANINT(ynext * Lv)
znext - L * ANINT(znext * Lv)
xprev - L * ANINT(xprev * Lv)
yprev - L * ANINT(yprev * Lv)
zprev - L * ANINT(zprev * Lv)

p(1,k(lac),i) + xnext
p(2,k(lac),i) + ynext
p(3,k(lac),i) + znext

p(1,k(lac),i) - xprev
p(2,k(lac),i) - yprev
p(3,k(lac),i) - zprev

Preparing auxiliary level
variables. lev stands for
current level.

Box—Muller generator of
normal distributed num-
bers for exactly sampling
the kinetic part of the ac-
tion.

Mapping between
(ro,...,re) and  the
chain segment obtained
starting with the bead
k0.

Application of the gen-
eralised version of equa-
tions (4.33) and (4.34).
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pn(1l,

iran
pn(2,

iran

pn(3,
iran

pn(1,
pn(2,
pn(3,

po(1,
po(2,
po(3,
END DO

lac) =
+
= iran
lac) =
+
= iran
lac) =
+
= iran

lac) =
lac) =
lac) =

lac) =
lac) =
lac) =

0.5d0 * (pxnext + pxprev)
ranv(iran) * alpha

+ 1

0.5d0 * (pynext + pyprev)
ranv(iran) * alpha

+ 1

0.5d0 * (pznext + pzprev)

ranv(iran) * alpha Application of the gen-
*1 eralised version of equa-
pn(1,lac) - L * ANINT(pn(1,lac) * Lv) tions (4.36) and (4.35).

pn(2,lac) - L * ANINT(pn(2,lac) * Lv)
pn(3,lac) - L * ANINT(pn(3,lac) * Lv)

p(1,k(lac),i)
p(2,k(lac),i)
p(3,k(lac),i)

END DO 1lin = 1

IF (lev .NE. nlv) THEN
namvdold = 2 ** (nlv - lev) - 1

lac=0
DO ja = 1, namvdold
lac = lac + (2 * lrg2)

pnew(1,lac)
pnew(2,lac)
pnew(3,lac)

(1, k(e 1) Saving old positions in
p(2,k(lac),1i) case all the levels are not
p(3,k(lac),i) completed.

p(1,k(lac),i) = po(l,lac)
p(2,k(lac),i) = po(2,lac)
p(3,k(lac),i) = po(3,lac)
END DO

END IF

namvd = 2 *x (nlv - lev + 1) - 1

AVov =

DO ia =

0.d0

lac=0

DO ja = 1, namvd
lac = lac + 1lrg2

1, na-1

Calculating the potential

j = k(lac) part of the action using
D0 iaa=iati,na the original (old) posi-
CALL DISTANCE(ia,j,iaa,L,Lv,r,p) .
IF (r .LE. L2) AVov = AVov + POT(r) tions
END DO
END DO
END DO

AV(lev,1) = DBLE( 2 ** (lev-1) ) * tau * AVov
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IF (lev .NE. nlv) THEN
lac=0
DO ja = 1, namvdold
lac = lac + (2 * 1lrg2)

p(1,k(lac),i) = pnew(1,lac)
pnew(2,lac)
pnew(3,lac)

p(2,k(lac),i)
p(3,k(lac),i)
END DO
END IF

lac=0
ifrg = 1
DO lin = 1, nin
IF (ifrg .EQ. 1) THEN
lac = lac + 1lrg2

ifrg = 0
ELSE
lac = lac + 1lrg
END IF
p(1,k(lac),i) = pn(1,lac)
p(2,k(lac),i) = pn(2,lac)
p(3,k(lac),i) = pn(3,lac)
END DO
AVnv = 0.d40
DO ia = 1, na-1
lac=0

DO ja = 1, namvd
lac = lac + 1lrg2
j = k(lac)
DO iaa=ia+1,na

CALL DISTANCE(ia,j,iaa,L,Lv,r,p)
AVnv + POT(r)

IF (r .LE. L2) AVnv =
END DO
END DO
END DO

AV(lev,2) = DBLE( 2 ** (lev-1) ) * tau * AVnv

ipass = ipass + 1

Uprt(lev) = AV(lev,2) - AV(lev,1)

icrtlev =1
IF (lev .EQ. nlv) THEN
nact = nlv
ELSE
nact = lev + 1
END IF
DO ilev = lev, nact
IF (icrtlev .EQ. 1) THEN
icrtlev = 0
Utot = -Uprt(ilev)
ELSE
Utot = Utot + Uprt(ilev)
END IF
END DO

Preparing positions for
new action

Calculating the new ac-
tion

Discounting actions from
levels above current level
using generalised version
of equation (4.40)
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IF (Utot .GE. 0.d0) THEN
CONTINUE
ELSE

IF (rani(idum) .LT. EXP(Utot)) THEN

CONTINUE
ELSE
irvec(lev) = irvec(lev) + 1
lac=0
DO ja = 1, namvd
lac = lac + 1lrg2
p(1,k(lac),i) = po(l,lac)
p(2,k(lac),i) = po(2,lac)
p(3,k(lac),1i) po(3,1lac)
END DO
GOTO 100
END IF
END IF

END DO !

100 Utot = 0.d0
END DO !

CALL PROPERTIES()
END DO !

CALL WRITERESULTS()
END DO !

CALL AVERAGES()
STOP
END

SUBROUTINE DISTANCE(i,j,ia,L,Lv,r,p)
IMPLICIT REAL#8(a-h,o-z)

REAL*8 L,Lv

PARAMETER (nax=270,nbx=128)
DIMENSION p(3,nbx,nax)

x =p,j,1) - p(1,j,ia)
p(2,j,1) - p(2,j,ia)
z = p(3,j,1) - p(3,j,ia)

~
1

x = x - L * ANINT(x * Lv)
y =y - L * ANINT(y * Lv)
z =z - L *x ANINT(z * Lv)

r = SQRT(x*x + y*y + zxz)

RETURN
END

END DO LEVEL

END DO ATOMS

END DO MCS

END DO BLOCK

Metropolis

Ending algorithm and
calculating thermal prop-
erties

Distance between two
equally labelled beads of
different atoms
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Trail code

The following subroutine calculates the single—particle density matrix
within a PIMC simulation using the trail method we introduced in §5.2.1.
This subroutine is completely portable provided the conventions given
in Appendix B are fulfilled.

The random number generator chosen is ranl supplied with the book
Numerical Recipes in FORTRAN (Press et al., 1999).

The subroutine DISTANCE, also given herein, calculates the distance
between equally labelled beads of different atoms. This is the distance
required for the potential part of the action.

In opposition to the bisection method, where only the potential part
of the action was required, for estimating the single—particle density
matrix is necessary to calculate the kinetic part of the action, as if it
were a bead per bead sampling. The subroutine DISTANCEK calculates
the distance between two beads within the same polymer ring. With
that distance it is possible to calculate the kinetic part of the action.

The last portion of code averages the data obtained and normalises
the histogram. It has to be included in the main part of the code where
these tasks are carried out. This is the reason why is located outside
the main subroutine
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SUBROUTINE TRAIL

& (idum,rlamda,Tr,tau,twl,na,nb,L,L2,L2SQ,Lv,
& ahist,mhist,delr,p,rlv2,TV)

IMPLICIT REAL*8 (a-h,o0-z)

REAL*8 L2,L,Lv,L2SQ

PARAMETER (nax=270,nbx=128)

DIMENSION p(3,nbx,nax),psave(3,nbx)
PARAMETER (mdbinx = 256)

PARAMETER (iaux = nbx * 3)

DIMENSION mhist(0:mdbinx), ahist(0:mdbinx)
DATA psave/iaux*0.d0/

SAVE
ndgr = 200
ngrdcr = 0

delr = L / DBLE( 2 * ndgr )

rlamda = (hbar_eVs * hbar_eVs * slite_ms * slite_ms)/
& (2.d0 * uma_eV * atw_uma * K_eV * sgm * sgm)

twl = SQRT( 2.d0 * rlamda / Tr )

DO iter = 1, na

imd = INT(rani(idum) * na)
jmd = INT(ranl(idum) * nb)
IF (imd .EQ. (na + 1)) imd
IF (jmd .EQ. (nb + 1)) jmd

+

1
1
na
nb

o+

xran = ((3.d0 * twl * ranl(idum)) - (twl * 1.5d0))
yran = ((3.d0 * twl * rani(idum)) - (twl * 1.5d0))
zran = ((3.d0 * twl * rani(idum)) - (twl * 1.5d0))

AVov = 0.d0
jcur = jmd
DO jaux = nb+1, 1, -1
DO ia = 1, na
IF (ia .NE. imd) THEN
CALL DISTANCE(ia,jcur,imd,L,Lv,r,p)
IF (r .LE. L2) AVov = AVov + POT(r)
END IF
END DO
jecur = jcur - 1
IF (jcur .EQ. 0) jcur = nb
END DO
AVo = tau * AVov

AKo = 0.4d0

jcur = jmd

DO jaux = nb, 1, -1
jp = jecur - 1
IF (jp .EQ. 0) jp = nb
CALL DISTANCEK(imd, jcur,jp,L,Lv,rsq,p)
IF (rsq .LE. L2SQ) AKo = AKo + rsq
jecur = jcur - 1
IF (jcur .EQ. 0) jcur = nb

END DO

AKo = Tr * AKo * DBLE(nb) / (4.d0 * rlamda)

Initialisation. The vari-
able twl stands for the
thermal-wavelength.

Calculation of the three—
dimensional random vec-
tor

Calculation of the poten-
tial part of the action
prior proposing the trail
displacement. The func-
tion POT(r) is the po-
tential, that must be in-
cluded within the code.

Calculation of the kinetic
part of the action before
moving the beads of the
open chain.
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jeur = jmd
DO jaux = nb+1, 1, -1
IF (jaux .EQ. 1) THEN
p(1,nb+1,imd) = psave(l,jmd)
p(2,nb+1,imd) = psave(2,jmd)
p(3,nb+1,imd) = psave(3,jmd)
ELSE
psave(l,jcur) = p(1,jcur,imd)
psave(2,jcur) = p(2,jcur,imd)
psave(3,jcur) = p(3,jcur,imd)
p(1,jcur,imd) = p(1,jcur,imd)

& + DBLE(jaux-1) * xran / DBLE(nb)
p(2,jcur,imd) = p(2,jcur,imd)

& + DBLE(jaux-1) * yran / DBLE(nb)
p(3,jcur,imd) = p(3,jcur,imd)

& + DBLE(jaux-1) * zran / DBLE(nb)

CALL TOBOX(imd, jcur,L,Lv,p)
jeur = jcur - 1
IF (jcur .EQ. O) jcur = nb
END IF
END DO

AKn = 0.d0
jcur = jmd
DO jaux = nb, 1, -1
jp = jeur - 1
IF (jp .EQ. 0) jp = nb
IF (jaux .EQ. 1) jp =mnb + 1
CALL DISTANCEK(imd,jcur,jp,L,Lv,rsq,p)
IF (rsq .LE. L2SQ) AKn = AKn + rsq
jcur = jcur - 1
IF (jcur .EQ. 0) jcur = nb
END DO
AKn = Tr * AKn * DBLE(nb) / (4.d0 * rlamda)

AVnv = 0.40
jcur = jmd
DO jaux = nb+1, 1, -1
IF (jaux.EQ.1) THEN
xo = psave(l,jmd)
yo = psave(2,jmd)
zo = psave(3,jmd)
xf = p(1,jmd,imd)
yf = p(2,jmd,ind)
zf = p(3,jmd,imd)
p(1,jmd,imd) = psave(1,jmd)
p(2,jmd,imd) = psave(2,jmd)
p(3,jmd,imd) = psave(3,jmd)
jecur = jmd
END IF

The trail displacement
is proposed. Periodic
boundary conditions are
taken into account with
the subroutine TOBOX

The kinetic part of the
action associated with
the displaced open chain
is calculated.

Preparing variables for
the potential part of the
action.
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DO ia = 1, na
IF (ia .NE. imd) THEN
CALL DISTANCE(ia, jcur,imd,L,Lv,r,p)
IF (r .LE. L2) AVnv = AVnv + POT(rlv2,TV,r)
END IF
END DO
jeur = jcur - 1
IF (jcur .EQ. 0) jcur = nb
END DO
AVn = tau * AVnv
A1 = EXP(-AKn + AKo - AVn + AVo)

x11 = xo - xf

y1l = yo - yf

z11 = zo - zf

x11 = x11 - L * ANINT(x11 * Lv)

y11 = y11 - L * ANINT(y1l * Lv)

z11 = z11 - L * ANINT(z11l * Lv)

r = SQRT(x11*x11 + ylixyll + z11*z11)

IF (r.LE.L2) THEN

mdbin = INT(r / delr) + 1

IF (mdbin .LE. mdbinx) THEN
ahist(mdbin) = ahist(mdbin) + Al
mhist(mdbin) = mhist(mdbin) + 1

END IF

END IF

jcur = jmd-1

DO jaux = nb, 1, -1
IF (jcur .EQ. 0) jcur = nb
p(1,jcur,imd) = psave(d,jcur)
p(2,jcur,imd) = psave(2,jcur)
p(3,jcur,imd) = psave(3,jcur)
jecur = jcur - 1

END DO

p(1,nb+1,ind) = 0.d0
p(2,nb+1,imd) = 0.d0
p(3,nb+1,imd) = 0.d0
END DO
RETURN

END

Calculation of the new
potential part of the ac-
tion, as well as the
change in the action.

Calculation of the end—
to—end distance.

Histograms of distances
and occurrences

Old positions are re-
stored in order to con-
tinue with an all-closed
polymers simulation.
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SUBROUTINE DISTANCE(i,j,ia,L,Lv,r,p)
IMPLICIT REAL*8(a-h,o0-z)

REAL*8 L,Lv

PARAMETER (nax=270,nbx=128)
DIMENSION p(3,nbx,nax)

x = p(1,j,1) - p(1,j,ia)
y = p(2,j,1i) - p(2,j,ia)
z = p(3,j,1) - p(3,j,ia)

x =x - L % ANINT(x * Lv)
=y - L * ANINT(y * Lv)
z = z - L * ANINT(z * Lv)

<
|

r = SQRT(x*x + y*y + z*z)

RETURN
END

SUBROUTINE DISTANCEK(i,j,jm,L,Lv,rsq,p)
IMPLICIT REAL*8(a-h,o0-z)

REAL*8 L,Lv

PARAMETER (nax=270,nbx=128)

DIMENSION p(3,nbx,nax)

x = p(1,jm,i) - p(1,j,1)
y = p(2,jm,i) - p(2,j,1)
z = p(3,jm,i) - p(3,j,1)

* ANINT(x * Lv)
ANINT(y * Lv)
ANINT(z * Lv)

<
]

N < M
|
[

* *

rsq = X*Xx + yxy + z*z

RETURN
END

SUBROUTINE TOBOX(i,j,L,Lv,p)
IMPLICIT REAL*8(a-h,o0-z)
PARAMETER (nax=270,nbx=128)
DIMENSION p(3,nbx,nax)
REAL*8 L,Lv

p(1,j,i) = p(1,j,i) - L * ANINT(p(1,j,i) * Lv)
p(2,j,1) = p(2,j,i) - L * ANINT(p(2,j,i) * Lv)
p(3,j,1i) = p(3,j,i) - L * ANINT(p(3,j,i) * Lv)

RETURN
END

Distance between two
equally labelled beads of
different atoms

Squared distance be-
tween two neighbouring
beads of the same atom

Keeps periodic boundary
conditions
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ccc TO BE INCLUDED IN THE MAIN CODE FOR AVERAGING PROPERTIES ccc

OPEN(63,FILE="prm.md",STATUS="unknown" ,ACCESS="append")
rdist = 0.5d0 * delr
DO mdbin = 0, mdbinx
IF (mhist(mdbin) .EQ. 0) THEN
rmd (mdbin) = 0.d0
ELSE
rmd (mdbin) = ahist(mdbin) / DBLE(mhist(mdbin))
END IF
WRITE(63,72) rdist,rmd(mdbin)
idbg2 = idbg2 + 1

72 FORMAT(F14.4,F14.4)
rdist = rdist + delr
END DO

CLOSE(63)

The file prm.md stores
the single—particle den-
sity matrix for different
configurations of the po-
sition space sampled in
each block.
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Virial and thermodynamic energy estimators for the
Li—Broughton action

A full derivation of the the thermodynamic and virial estimators of the
energy for a Li—Broughton action is herein presented. Even though it
is nothing else than an application of derivation rules, it is a little bit
tricky. Furthermore, it serves as an example of how to work with similar
problems that normally appear when dealing with squared gradients
within codes.

Li-Broughton’s virial estimator of the energy yields (Li and Broughton,
1987)

N M 2122
B o= dre L <Z 3 {vum) + %[W(WPD

M

N M 2 42

Z Z(ria —R;) - Via {V(ria) + %[viav(ria)]2}> :
(D.1)

with R; the i—th atom centre of mass. The previous equation might be
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expanded into

E = ng+ ﬁZZV(rm)

1 FLZﬁQ N M
+ =SS (e — R Vil ViV ()] (D.2)
=1

where the first term of the right hand side of the equation amounts the
classical kinetic energy. The second one is the potential energy. The Li—
Broughton correction to the kinetic energy is given by the third term.
The fourth term represents the virial estimator of the kinetic energy,
and finally, the fifth term gives the Li—Broughton correction to the virial
estimator.

From previous work we know that YN  S™M (v, V(r;4)]? can be
translated into a scalar product of forces, given by

3212 N M
K= W—ngZFm Fia (D.3)
=1 a=1

where Fj, is defined in equation (3.50). We also have shown an alterna-
tive representation of the fourth term of (D.2) which is more suitable for
coding purposes. Thus, the only term that needs a special treatment is
the fifth one. In the following lines we shall rearrange it in a way more
suitable for coding.

We start with the fifth term and we expand it in an explicit form.
In doing so, we shall find useful expressions for representing the other
terms in (D.2)

Equations (D.4) and (D.5) present useful results relative to deriva-
tives of Cartesian coordinates operators that will be in the forthcoming
derivation of the fifth term of (D.1). The Cartesian coordinate indexes
are given by a, b, c.
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The derivative 0y of the first term of the product yields

IV (ri;) ) 2\ OV (ry))
U ij _ iJ
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Provided with the previous results, we derive the fifth term in the
following way

dr;
V?V ;i ] ri), D.6
2 Wjdwm Zwmﬁﬂ(>

N M
MY il —ROVE-A VI V()| VI _V(ew)| (D7)

i o« i ki
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3|
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In order to continue with equation (D.8) some previous calculations are
required

[ avey)\ ekl - rha v
vij| dlrij] Ik dfr;|

b

ry Tiy d?V(rij)

|%WM&%P

_ Oab U dV (rij)
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(D.9)

Now using (D.9) we shall express (D.8) as

QZ ?jr% dv(rij) + r’?_]r% d? V rz] Z zk dV I‘Zk
‘r”| ‘rij|3 d|rij’ ‘r1]|2 d’rlj|2 ‘rzk| d|rzk

J#i
(D.10)

Let us define the following useful tensors for coding

b b riia iy b riia d2V (v:
T(’I,)Z = Z [( 5& . TZJT] > dV(r'L]) + Tl]r] d V(rZ]) (D].].)

o\l el ) el eyl dleyf?

. Tiky AV (rij)
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(4)p k%:l ST ( )
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Therefore,
4 3 g 0 Vi | D e V)| ¢ = 2T6)5F (i)
drf — |r;;| Olri;| ik | Olrig " “ "
J#i k#i
(D.13)
Finally,
N M
DD (e = ROVE-A VI Vi) | | Vi)Y Vire)| =
i« VED k#i
2A Z Z(rﬁa — ROT ()0 F (i) (D.14)

Thus, the thermodynamic estimator of the kinetic energy with the
Li—Broughton action can be written as

N M

3SMT  mMT?
KPR > = S8 G 2 2 (tien i)’
i=1 a=1
—_ Fio F; D.15
+ 24M3T2mN Z;azl T (D-15)

and the potential energy

M
1
LB _ o
<Vim > = WZZV(I'U)
a=1 i<j
h2 N M
t 3Ty 2 2 Fia Fiae (D16)
i=1 a=1

Therefore the total thermodynamic energy estimator using a Li-Broughton
action is:

SMT — mMT? S X -
<E¥B> = ON 92N ZZ (Tia+1 = Tia) +szv(r?j)
i=1 a=1 a=11i<j
+ 8M3T2mNZZFW' . (D.17)

i=1 a=1



164 D. Appendix

On the other hand, the virial estimator of the total energy using the

Li-Broughton action is:

3 1 X
<ELB > = ST+ Sirv SN, — ROF(i,a)q

i=1 a=1

1 M
t ONM Z:: ; 8M3T2mN Z Z Fia - Fia

i=1 a=1

b .
+ 24M3NmT2ZZ T, ), F(i,a)q.

i=1 a=1

(D.18)

It is easily seen how equations (D.17) and (D.18) become the thermo-
dynamic and the virial energy estimators for a primitive action, respec-
tively, if only the first three terms of each equations are kept, yielding

9 N M

3SMT mMT
PA
< ET > = N — SRZN 51 O? 1 rza+1 rza

1 M
+ N7 SN v,

a=1i<j

and

3 1 N M
PA _ .
<EV > = §T+m;;(Tga—R?)F(Z,O¢)a

1 M
+ WZZV I'a

a=11i<j

where the superscript PA means primitive approximation.

(D.19)

(D.20)
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Tricks of the trade

Seasoned simulationists surely will find this appendix plenty of already
known information. Notwithstanding, anyone not fully endowed with
PIMC simulations could still apply some of the hints here presented.

Many of the tricks about PIMC coding and the simulations involved
have already been said throughout the thesis. However, there are still
some tricks, we have not said yet, that have proved to be useful for us.

Whenever in this section we refer to something related to a particular
choice of coding we did it in the light of the conventions set up in the
preambles of Appendix B.

Basic PIMC algorithm

Throughout the thesis we have explained how to code a PIMC program,
from the very simple approach of a primitive action along with a bead
per bead sampling, until more elaborated recipes that include smart
collective displacements of beads and an improved action. We have also
included in Appendix B a full bisection code, that with some effort can
be converted in an operational program. However, we have not given
anywhere the algorithm of the simple recipe. Perhaps, most readers are
already acquainted with a simple PIMC code, however, it can be useful
for a person just coding his/her first PIMC program, and it helps to
illustrate the ideas exposed so far.

The algorithm is written in a mixture of FORTRAN and pseudo—code.
All the subroutines called herein have to be programmed. This algorithm
is by no means an optimised approach to PIMC, yet it works and helps
to ease the approximation to programming.
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IMPLICIT NONE

CALL INITIALISE

c Initialise the system with a classical simulation
c

DO i =1, iter

¢ iter=number of Monte Carlo steps

c
CALL MOVECM
¢ Move centre of mass of all atoms.
DO iatom = 1, natom

¢ natom = number of atoms of the system
CALL PICKBEAD
Choose a bead at random, namely ibead.
CALL SAFEBEAD
Store the position of ibead (x0,y0,z0) in
a secure array.
CALL POTENTIAL(VO)
Calculates the potential part of the action of the
system and returns its value in VO
AVO = tau * VO

c
CALL KINETIC(KO)
Calculates squared distance between neighbouring
beads of iatom. Returns its value in KO
AKO =T * M * KO / (4. * lambda)
where T = temperature, M = number of beads
AO = AVO + AKO

c

CALL MOVEBEAD
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Make a random displacement of ibead from its original
position x0,y0,z0 to x1,yl,z1. Use periodic boundary
conditions.

o o o o0

CALL POTENTIAL(V1)

AVl = tau * V1

CALL KINETIC(K1)

AK1 = T * M * K1 / (4. * lambda)

AD = A1 - AO

IF (-AD .GE. 0.d0) THEN
CONTINUE
ELSE
IF (RAN1(IDUM) .LT. EXP(-AD)) THEN
CONTINUE
ELSE
CALL RESTORE
Restore the old x0,y0,z0 positions with the
secure array.
END IF
END IF
CALL PROPERTIES
Calculate properties of the system

O

END DO
END DO
STOP
END

Initialising the simulation

In order to start the simulation the program sets N atoms inside a
box. The size of the box depends on the desired density, since the
number of atoms is a parameter given by the user. Then a set of classical
movements is carried out, that is, every atom is considered as a point
particle (just one bead per atom) and the code performs a classical
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simulation at the requested temperature. That classical process stops
once it has reached equilibrium. Since classical movements are much
faster than quantum ones, it is far more efficient to reach quantum
equilibrium starting from a configuration that is in classical thermal
equilibrium than starting from another type of configuration, such as a
random distribution of polymer rings.

Before beginning with the PIMC code itself we must set up the initial
positions of all beads. We put all the beads belonging to a given atom
in the same position occupied by the classical atom obtained in the
previous step. That is, the initial length of each polymer ring is zero,
which means that the initial kinetic energy exactly amounts to 3/2kT.

We tried sometimes to distribute the beads of a given atom randomly
over a sphere centered on the classical atom with a radius equal to a
certain fraction of the thermal wavelength. That process did not result
in better efficiencies. Neighbouring beads are strongly correlated via the
kinetic springs, and giving for granted a random distribution of beads
that has not been Metropolis tested only leads to a delay in reaching
equilibrium. Other distributions of beads around the position obtained
with the classical simulation, lead to the same delay.

CPU time scheduling

All in all, to reach thermal equilibrium is not the time consuming part
of the simulation. Most of the CPU time is spent in reducing the vari-
ance of the energy estimators. All other quantities are obtained with a
reasonable accuracy in a fraction of the time spent for the energy.

Provided that, if is advisable to distribute the CPU time of a simu-
lation in the following way:

1. Carry out a classical simulation, at the desired temperature, un-
til reaches equilibrium. At this moment you should have 3 x N
variables, with IV the number of atoms. Once this step has been
accomplished make as many copies of each classical atom as beads
are required per atom, yielding a figure of 3+ N x M variables, with
M the number of beads per atom. This simulation should last a
negligible fraction of the whole CPU time that will be spent.
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2. Perform a PIMC simulation that does not estimate any quantity.
Its only goal is to equilibrate the positions of the polymer rings.
This step should take about 15% of the total simulation time.

3. Continue the PIMC simulation started above estimating all the
required quantities but the energy. Employ 15% of the time doing
S0.

4. Keep going with the simulation, but now your code should be
only estimating the energy with the virial estimator. This step
consumes the remaining 70% of the CPU time. Nevertheless, in
the meantime, you will be studying the results obtained in the
third step. If you calculated the momentum distribution and the
pair distribution function, you will have a good estimation of the
kinetic and the potential energy that can be compared with the
results obtained in this step.

The timings given above should be taken as a thumb rule, and your
final choice will depend mainly on the accuracy desired.

The question of how long does it take a PIMC simulation is more dif-
ficult to answer. It depends on many parameters, such as, the computer
you are using, the temperature you are simulating, which is inversely
proportional to the number of beads, or how optimised is your code.
Our simulations lasted from one day to a couple of months.

For example, if you want to be confident with the first decimal figure
of the energy of Ne at 25 K, a couple of days will suffice using a Pentium
800 MHz processor. However, if you want to be confident with the
second decimal the simulation time will stretch out to almost a month.

Moving the centre of mass

Once the algorithm has passed over all the atoms moving either a single
bead of them, in a bead per bead sampling, or a segment of polymer
ring using bisection or staging, the centre of mass of every atom must
be moved. That is, every polymer ring must be displaced using the
Metropolis test keeping the inter—bead distances inside the atom unal-
tered. This step assures a fast convergence of the algorithm. A PIMC
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algorithm that does not includes a movement of the centre of mass is
doomed to fail.

In preparation for moving the centre of mass, the potential contri-
bution to the action of the whole system is calculated. Then, all the
beads of a given atom are displaced preserving the distances amongst
the beads of that atom, using

rieV = TOld + (2(5x,y,z - 1)ACMﬂ (El)

X, ¥,Z X,¥,Z

with d,,, three uniformly random distributed numbers and Acy a pa-
rameter that is adjusted prior the simulation starts in order to get around
a fifty percent acceptance of the centre of mass proposed displacements.
Periodic boundary conditions must be applied to the new proposed po-
sitions.

The new potential contribution to the action is calculated. The
proposed movement of all beads of all atoms is accepted or rejected as a
whole depending on a Metropolis scheme. Notice that only the potential
contribution to the action amounts for the Metropolis decision, since
there is no change in the kinetic contribution because of the inter—bead
distances have not changed. For that reason the energy estimator is not
calculated at this step, since it would yield a biased result because of
the always repetitive contribution of the kinetic energy estimator.

Should you be using a bead per bead sampling, use a different pa-
rameter for the displacement of each bead. The differences between the
parameter related to bead displacements and the one in charge of the
centre of mass are about an order of magnitude.

Optimising the action

It is a common practice in any PIMC program not to calculate the whole
action due to all the interactions in every single step. Instead, what is
normally done is to do this whole calculation just once. After that, it is
only required to calculate the changes introduced in the action due to the
accepted displacements. However, when writing a code for the first time,
it is advisable to calculate the whole action in every single step during
the debugging process. Once you are confident with your code, optimise
it calculating only the changes in action as it has been described above.
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Check that you still get exactly the same results provided the same
initial conditions and the same seed for the random number generator
is used.

Another way to obtain better benchmarks is to create a table of
potentials for any given distance within the simulation box. We found
an improvement of 10% of CPU time when using the table of an Aziz
Ne-Ne (Aziz and Slaman, 1989). The same improvement was found for
the Aziz *He potential (Aziz et al., 1997). When using tables it has
been a common practice to interpolate between the points of the table
in order to improve accuracy. However, we found that using tables of
100,000 or more there is no necessity of an interpolation. Nowadays,
desktop computers with 256 MB of RAM can store these huge arrays,
and easily manage them (due to improved memory buses). The CPU
time employed in a simulation will not significantly change due to a
table that size, and on the other hand you shall avoid time consuming
interpolations and you shall get better accuracy.

Periodic boundary conditions

Periodic boundary conditions have to be taken with extreme care in a
PIMC code. In a classical simulation when an atom leaves one side of
the box, enters into it on the opposite side (Allen and Tildesley, 1997).
Here the situation is more complicated. An atom is represented by
a chain, therefore, in order to say that the atom has exited the box,
the whole polymer ring has to be outside of the box. If you apply
periodic boundary conditions to beads in the same way as if they were
atoms in a classical simulation, you will end up with a piece of the
polymer ring in one side and the complementing piece in the opposite
one. Equations (4.33) to (4.36) are the ones to be used in order to apply
periodic boundary conditions in a bisection sampling rightly.

A symptom of an error in the periodic boundary conditions is to
obtain a sequence of plausible energies, that fit the results we are ex-
pecting, and once in a while an extremely large value of the energy, that
immediately goes down to the normal level. This burst of the energy is
the result of evaluating the kinetic energy (ri, — (riat1)? between two
neighbouring beads when one has exited the box and has been send to
the opposite side. The figure obtained is of the order of L?, with L the
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size of the simulation box.

FORTRAN oriented tips

Knowing some insights of FORTRAN can help to improve the benchmarks.
FORTRAN accesses any array going by columns, contrary to the normal
human way of reading arrays by rows. If one forces the code to read the
array row by row, instead of column by column, the running will become
slower. The computer would load a whole column for just reading an
element of it, then will load the next column and will just read another
element, and so on. We have observed that forcing the computer to
do so delayed our timings in about 15%. Of course, the delay will be
proportional to the size of the arrays involved in the simulation.

The size of the compiled executable had no noticeable influence on
the CPU times registered. Therefore, we recommend to use arrays as
large as necessary. Our codes were written in FORTRAN 77 which only
has fixed array sizes. Since the compiler knows beforehand the size of
every array it manages them in an optimal way to fit them into mem-
ory. For this reason we discourage the use of allocatable arrays available
in FORTRAN 90 and FORTRAN 95, unless for memory reasons they are
unavoidable. Allocatable arrays are dynamical arrays that change their
size during the simulation freeing memory space when it is not required.
They are the only solution when memory problems are an issue, how-
ever, they do not give the compiler the opportunity to assign them the
optimal position within memory before running. PIMC simulations are
extremely CPU demanding, but their requirements of memory are more
than sufficiently coped with current computers.
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