Appendix C

Multivariable regression for the
synchrotron losses fit

As seen in Chapter 3, the transparency factor parandéteran inhomogeneous
plasma torus only depends explicitly on the dimensionlesampetep, andR. The
geometrical dimensionless parametdrandx participate in the calculation of the
ray path length, in the plasma surface integration, andemtfy) calculation (see
Eq. (3.58)), also affecting implicitly to the plasma selfsarption. As for the central
density and magnetic field (gathered inside the paramegjecentral temperature,
and shape of profiles, they take part in the calculation oatisorption coefficients.
Consequently, a priori we cannot suggest neither simpd¢iogiships between fitting
variables nor direct dependencesisfwith such variables.

C.1 The best monomial fit

First, we propose a monomial model with the fitting varialdles pq,, x, an,
ar, Br as

O = Cop T p=r 1% (Cpy + )™ (Coy + ar)T BT (C.1)

in order to fit the numerical results from the complete corapah of synchrotron
losses in toroidal plasmas with an aspect ratio= 3. In this case, we have the
following p = 9 parameters to be estimate@s-, xr, T, Tx, Ta,, Tar Taps Can,
andC,,.1.

Note that this model is intrinsically linear in the above graeters by transfor-

The fit parameters are those resulting from the regressidlstvthe fitting variables are the
physical plasma parameters which act as the input regredaia.
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C. Multivariable regression for the synchrotron losses fit

mation of the variables. Indeed, taking natural logaritloiisoth sides we obtain

In®f = InCo + 27T, + TpPay + Tuk + Za, (Ca, + o)
+ 2oy (Cop + ar) + 5, 87, (C.2)

where the fit parameters are adjusted to achieve a minimume ile&st-squares merit
function F', which gives the name to this regression method. Definingasidualk;

as the difference between the transformed value of the cgimpumerical calcula-
tion of the transparence factdy, ., for the: set of data and the values predicted by
the logarithmic regression model for the same set of daia,the sum of squares of
residuals for the entire dataset with= 3. Fornga, Set of data points,

Ndata

F=Y"e=Y (n®, —ndj )’
i=1

=1

ie.,

Ndata
B um
F=Y"In T i (C.3)
i=1

In Cq,* +ZL‘TT50 +£L’ppa0 +IKK/+ICX77_ (Can +an)+maT (CQT +05T)+IBT BT} '

Note that minimizing the least-square function is a maxintikelihood estima-
tion of the fit parameters whenever the errors of the commleteputation of the
factor ®* are independent and normally distributed with a constamdztrd devi-
ation. Let us check now the latter condition. The computatibthe factor®; is
performed numerically with a requested relative erroegf, = 2 x 1072 for the
entire dataset witth = 3. The standard deviatiom,,m; of such a computation is
derived fromee; by means of

) * _ *
Onum; &X ‘(I)*z - (bnumi‘ - 6I’e|,i (anmi;

where®+; is the true result of Eq. (3.59). Transforming variablesoigdrithms, we
obtain a constant transformed standard deviation of theptetemanumerical calcula-
tion of the factord* for any seti of data points,

Tnum(log); X ‘ln@i —In @;umi‘ =In (1 + ere;)

Therefore, the errors of the numerical calculatioofare normally distributed
and the least-squared method for fitting the logarithmic omeial model is fully
justified.

Considering the entire dataset with= 3, Eq. (C.2) can be expressed in matrix
notation as follows [Dra81]:

Y=Xb+e
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with _ -
InCs-
In (I);uml Ir
. z,
Y= | Wm@yn |, b=| 2, |,

.. T,
ln (b:;um”data IaT

L Tor

1 Teo,l pao,l R1 Can + Qp,y C’OtT + ar, 6T1
X= 1 T,

€o,i Pay,; K Can + Qip,; CaT + ar; 6Ti )
1 Teos"data paos"data l{ndala Ca” + an”data CO‘T + aT”data BT”data
ande is the vector of residuals.

The minimization of the merit functiof' to In C'y- and exponent parameters

oOF oF oF oF
e _— = _— = O’ e O’
O0ln Cyp- 0, oxr 0 0z, 0z,
oF oF oF
Or,, 0. OTap 0 Oxg, 0

can be also written as
b=(X'X)' XY
with a variance estimated by
-1
V(b) = (X'X) 0r21um(10g)-

The rest of parameterg’, andC,,.) are derived from the minimization of the
residuak; mean square, which is defined as

2 Z?iafa(fz - 5)2

S _—
€
Ndata— 1

As a property of the regression residuals, it is found that 0. Hence, it can
also be written that? = F'/ (ngaa— p — 2). The residual root mean square, which
is denoted as root mean square error (RMSE), is then

F

RMSE =
Ndata— 1

and it provides an estimate of the variance about the regrebased Omgaa — 7
degrees of freedom. The RMSE can be expressed on a percéakiggesince in the
merit functionF’, in Eq. (C.3), the facto®y,., is normalized tobg .
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C. Multivariable regression for the synchrotron losses fit

Table C.1: Fit parameters minimizing the merit functibrof the multidimensional
least-squares method using a power law model, with the gporelingr confidence
region.

Parameter best fitting + o

InCy | —5.540 & 0.023
o7 1.445 £ 0.004
x,, —0.477 + 0.003
. 0.794 + 0.006
Tar, —0.426 + 0.020
Tay —0.329 + 0.003

z5, | 0.454 % 0.004
Co, | 1.50£0.05
Cop | 0.10%0.05

C.1.1 Results and examination of residuals

Applying the multidimensional linear method described \&asingnga, =
2475 set of plasma parameters and computations of the fagtpiwe obtain the
fit parameters presented in Table C.1 with a poor RMSE equai%o

Fig. 3.24 compares the distribution of residuals with a radrdistribution of
standard deviation = RMSE. On the ordinate of this graph, we have the number
of residualsi., whose values are within the interval+ A H/2 normalized both to
the box widthA H and to the total number of datg.. We see that the distribution
of residuals do not resemble to a normal distribution. MeeggFig. C.2 shows that
there are cross-dependencies between fitting variablearthaot taken into account
in Eqg. (C.1). We therefore conclude that such a monomiakessgon model is not
adequate to explain the factor plasma transparency féctor

The analysis of residuals show also that the variablesdatimg the largest
uncertainty in this model are the temperature peaking @oeffisar, Sr. This
means that the dependence of such coefficients on synahrosees is not well
described by the monomial form.

C.2 Addition of interaction terms to the regression

model
We suggest a method for isolating the variables which ictsran their effect
on the responsé@*. This approach consists of analysing the dependence of each

plasma variablel,, p,, ~, o, Br, ar) On each exponent fit parameter ( z,, x,,
Ta,» Tags Ta,), USING the monomial model (Eq. (C.1)).
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Figure C.1: Distribution of regression residuals représgy red boxes, and the
normal distributionV (0, RMSE) represented by the black curve.

For one value of a given plasma variable (eog: = 0), the best exponent pa-
rameters are found (e.g; = 1.44) by applying the multidimensional linear method
to the part of the dataset corresponding to such a varialilie vélext this process
is repeated four times for other values of the same variabtg @ = 0.3, 0.9,
2.7, 8), obtaining a set of parameters for each exponent, and ttemean square
for each set,; is calculated. The schematic results of this approach peed for
every plasma variable are shown in Table C.2, whgraeans a strong dependence
(s, > 0.1), v means a substantial dependentex (107> < s,, < 0.1), -~ means
a marginal dependence & 1073 < Sg; < 9 X 10-2), and— means no dependence
observed{,, <1 x 107°).

Table C.2: Schematic variance of the exponent parametéinstiae plasma fitting
variables ¢ means not applicable).

Teo Pay K Oy ar BT
r | x |V | =] |V |-
T, |V |k | =]« |- |-
T | — | — | x| — |— | —
Ta, |~ | | — | * NS
Top | | — | = |V | x |V
Tpr v - — |V \/ *

From Table C.2 the following main relationships are suggpkstemperature
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Figure C.2: Residuals = In (®},,, /®;;.) plotted in time order.

peaking coefficientsv;, S are strongly interdependent and the temperature and
opacity factorl,, p.,, as well as they,, a; peaking coefficients, interact recipro-
cally on ®*. This confirms the results obtained in the analysis of redslaf ®*
modelled with a simple monomial model.

C.2.1 The multidimensional weighted least-squares method

A no longer intrinsically linear model is considered in ardie include interac-
tions between variables and therefore to obtain a more coenefitting goodness.
Here, the variables are not transformed, and the standeiaide o,,m; of the com-
plete computation ob? . will be different for every set of data

num,;
*
Onumi X €rel s q)num,z"

Consequently, the maximum likelihood estimate of the figpasters is obtained
by minimizing the merit function’” (the sum of squares of residuals for the entire
dataset withA = 3) weighted with its numerical standard deviation:

o numz (I)flt )i = q);‘it 7 2
F- z( m )ocz(l—q)*’)-

Onum;i im1 numy

Let us notice that, in this case, minimizing the merit fuantis equivalent to
minimizing the sum of squares of the relative differenceneen the predicted value

®f ; and the numerical onéy,,,..

*The numerical deviationg*; — &, | are assumed to be uncorrelated.
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For a regression model with fit parameters, the residual mean square is ex-

pressed as
$2 = Z?iafagz? _ F
‘ Ndata— P Ndata— P

where the residuals to be examined are

L (1 P > |
(I)num,z‘

The RMSE indicator is the root of (RMSE= \/F/ (ngata— p)) and it is cur-
rently expressed on a percentage basis.

C.2.2 Selection of the regression model

Using Table C.2 and the multidimensional weighted leasiases method de-
scribed above, an exhaustive analysis for selecting thedégession model fob*,
including cross-dependences between fitting variablesplan carried out. In Ta-
ble C.3 we illustrate the increase of the regression gualitgn including new terms.
Note that although many other forms of dependence have bstadf we only show
those which make to improve the regression quality:

Cross-dependence betweettr, Br

Dy = Ca T2 it 57 (Coy + an)"™ (Cop + Capdf™ +577)  (CA)

(b%ki[ — C(I)*Tg(;T pig KIK (Can + an)man
X (Cag + ar)™T BT (Coyar + Br)™° (C.5)

Oy = Co- T PP K" (Cq, + ay)*en
X (Cop + ar)™ B (877 + Coyar + Cag) ™ (C.6)

Cross-dependence betweedt,,, ar (and Br)

Oy = Co-ToT pg? 67 [(Ca, + )™ + Coyor + CaBr + Co,]™
X (Coy + ar)™ 877 (B + Cayar + Cag) ™’ (C.7)

Oy = Co-ToT pi? £ (o + Coyor + Cy, )"
X (Cay + ar)™r B (877 + Cayar + Cap) ™ (C.8)
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Cross-dependence betweéh,,, pa,

O = Co- (C1 + T)"" D37 k£ (an + Coyar + Cq, )™
X (Coy + ar)™T B (877 + Coyar + Cog) ™’ (C.9)

O = Cos (Cr + Toy)"™ (Cpr + P22 + CpTeO)W K% (0 + Couyar + Cy, )n
X (Cay + )™ 517 (Cog + Cayorr + 5772) " (C.10)

®f = Cor (Cr + Ty)"™™ (P22 + CpTy) ™" £ (i + Cayar + Ca, )™
X (Cag + ar)™ B (877 + Cayar + Cag) ™™’ (C.11)

Cross-dependence betweep,,,, o,

®p = Cp- (Cr + Toy)™ (p22 + CToy) ™" K™
X (Cpupiz* + o + Cpa) ™ (o + Cayar + Ca, )™
X (Cap + )™ B (B7” + Coyar + Cog) ™ (C.12)

Table C.3: Goodness of several models taking into accoumtntlain cross-
dependences between the fitting variables, wheie the number of parameters.

Model | p | RMSE (%)
Eq.(C.1) | 9 28.7
Eq.(C4) | 10| 17.9
Eq.(C5) | 11| 143
Eq.(C6) | 13| 13.4
Eq. (C.7) | 17 111
Eq.(C.8) | 14| 1009
Eq. (C.9) | 15 7.9
Eq. (C.10)| 18 5.8
Eq. (C.11)| 17 5.8
Eq. (C.12)] 21 55
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In Table C.3 we observe a substantial improvement of theessgpn quality
when including the cross-dependence betwegrir (from RMSE~ 29% to 13%.
The cross-dependences between o and betweert,, p,, reduce the RMSE
up to 5.8%. Finally, the RMSE is slightly reduced by 0.3% wheciuding the
cross-dependence betweep, «,, but at the expense of increasing by 4 the number
of the model parameters. On account of these elements, Effl)(6as been pro-
posed as the regression model for fitting synchrotron loskdakes into account
the cross-dependences betwegnand 5y, «,, anday, 7., andp,,, with a number
of parameterg = 16.

In Table C.4 we show the resulting parameters minimizingrtiezit function
F for the selected model. Note that in this non-linear case ctinfidence region
for each parametef+o) is estimated by linearizing Eq. (C.11), as discussed in
Ref. [Dra81].

Table C.4: Fit parameters minimizing the merit functibrof the multidimensional
weighted least-squares method using Eq. (C.11), with theespondings confi-
dence region.

Parameter best fitting + o
Cop~ 6.86 x 10 ° 4+ 3 x 10°°
Tr 2.61 +0.04
Cr 16.0 + 0.38
Tpr —1.51+£0.08
Zp 0.41 4+ 0.02
Cp 0.12 4+ 0.02
Ty 0.79 £0.04
Ta, —0.79 £ 0.06
Ca, 3.87+0.27
Ca, 1.46 +£0.17
Ty 1.36 + 0.05
Coy 1.98 £0.15

25, | 2.14+0.04
Tag | —1.33£0.03
Ts, | 1.53 % 0.02
Co, | 1.87£0.07
Cos | —0.16 + 0.01

The distribution of residuals and the final form of the fit aregented in Chap-
ter 3.
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