
Appendix C

Multivariable regression for the
synchrotron losses fit

As seen in Chapter 3, the transparency factor parameter�� in an inhomogeneous
plasma torus only depends explicitly on the dimensionless parameterpa andR. The
geometrical dimensionless parametersA and� participate in the calculation of the
ray path length, in the plasma surface integration, and in theR (�) calculation (see
Eq. (3.58)), also affecting implicitly to the plasma self-absorption. As for the central
density and magnetic field (gathered inside the parameterpa), central temperature,
and shape of profiles, they take part in the calculation of theabsorption coefficients.
Consequently, a priori we cannot suggest neither simple relationships between fitting
variables nor direct dependences of�� with such variables.

C.1 The best monomial fit

First, we propose a monomial model with the fitting variablesTe0 , pa0 , �, �n,�T , �T as ��
fit = C��T xTe0 pxpa0 �x� (C�n + �n)x�n (C�T + �T )x�T �x�TT (C.1)

in order to fit the numerical results from the complete computation of synchrotron
losses in toroidal plasmas with an aspect ratioA = 3. In this case, we have the
following p = 9 parameters to be estimated:C��, xT , xp, x�, x�n , x�T , x�T , C�n
andC�T 1.

Note that this model is intrinsically linear in the above parameters by transfor-

1The fit parameters are those resulting from the regression whilst the fitting variables are the
physical plasma parameters which act as the input regression data.
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mation of the variables. Indeed, taking natural logarithmsof both sides we obtainln��
fit = lnC�� + xTTe0 + xppa0 + x�� + x�n (C�n + �n)+ x�T (C�T + �T ) + x�T �T , (C.2)

where the fit parameters are adjusted to achieve a minimum in the least-squares merit
functionF , which gives the name to this regression method. Defining theresidual"i
as the difference between the transformed value of the complete numerical calcula-
tion of the transparence factor��

numi for thei set of data and the values predicted by
the logarithmic regression model for the same set of data,F is the sum of squares of
residuals for the entire dataset withA = 3. Forndata set of data points,F = nXi=1 "2i = ndataXi=1 �ln��

numi � ln��
fiti�2

i.e.,F = ndataXi=1 ln2 ��
numiexp[lnC��+xTTe0+xppa0+x��+x�n(C�n+�n)+x�T (C�T +�T )+x�T �T ℄ . (C.3)

Note that minimizing the least-square function is a maximumlikelihood estima-
tion of the fit parameters whenever the errors of the completecomputation of the
factor�� are independent and normally distributed with a constant standard devi-
ation. Let us check now the latter condition. The computation of the factor��i is
performed numerically with a requested relative error oferel;i = 2 � 10�2 for the
entire dataset withA = 3. The standard deviation�num;i of such a computation is
derived fromerel;i by means of�numi / ����i � ��

numi�� = erel;i ��
numi ,

where��i is the true result of Eq. (3.59). Transforming variables in logarithms, we
obtain a constant transformed standard deviation of the complete numerical calcula-
tion of the factor�� for any seti of data points,�num(log)i / ��ln��i � ln��

numi�� = ln (1 + erel;i)
Therefore, the errors of the numerical calculation of�� are normally distributed

and the least-squared method for fitting the logarithmic monomial model is fully
justified.

Considering the entire dataset withA = 3, Eq. (C.2) can be expressed in matrix
notation as follows [Dra81]: Y = X b+ "
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with Y =266664 ln��
num1� � �ln��
numi� � �ln��

numndata

377775 , b=2666666664
lnC��xTxpx�x�nx�Tx�T

3777777775 ,

X=266664 1 Te0;1 pa0;1 �1 C�n + �n1 C�T + �T1 �T1� � � � � � � � � � � � � � � � � � � � �1 Te0;i pa0;i �i C�n + �ni C�T + �Ti �Ti� � � � � � � � � � � � � � � � � � � � �1 Te0;ndata
pa0;ndata

�ndata
C�n + �nndata

C�T + �Tndata
�Tndata

377775 ,

and" is the vector of residuals.
The minimization of the merit functionF to lnC�� and exponent parameters�F� lnC�� = 0,

�F�xT = 0,
�F�xp = 0,

�F�x� = 0,�F�x�n = 0,
�F�x�T = 0,

�F�x�T = 0
can be also written as b=(X 0X)�1X 0Y
with a variance estimated byV (b) = (X 0X)�1 �2num(log).

The rest of parameters (C�n andC�T ) are derived from the minimization of the
residual"i mean square, which is defined ass2" = Pndatai=1 ("i � ")2ndata� 7 .

As a property of the regression residuals, it is found that" = 0. Hence, it can
also be written thats2" = F= (ndata� p� 2). The residual root mean square, which
is denoted as root mean square error (RMSE), is then

RMSE=r Fndata� 7
and it provides an estimate of the variance about the regression based onndata� 7
degrees of freedom. The RMSE can be expressed on a percentagebasis, since in the
merit functionF , in Eq. (C.3), the factor��

numi is normalized to��
fiti .
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Table C.1: Fit parameters minimizing the merit functionF of the multidimensional
least-squares method using a power law model, with the corresponding� confidence
region.

Parameter best fitting� �lnC� �5:540� 0:023xT 1:445� 0:004xp �0:477� 0:003x� 0:794� 0:006x�n �0:426� 0:020x�T �0:329� 0:003x�T 0:454� 0:004C�n 1:50� 0:05C�T 0:10� 0:05
C.1.1 Results and examination of residuals

Applying the multidimensional linear method described above usingndata =2475 set of plasma parameters and computations of the factor��, we obtain the
fit parameters presented in Table C.1 with a poor RMSE equal to27%.

Fig. 3.24 compares the distribution of residuals with a normal distribution of
standard deviation� = RMSE. On the ordinate of this graph, we have the number
of residualsn"i whose values are within the interval"i ��H=2 normalized both to
the box width�H and to the total number of datandata. We see that the distribution
of residuals do not resemble to a normal distribution. Moreover, Fig. C.2 shows that
there are cross-dependencies between fitting variables that are not taken into account
in Eq. (C.1). We therefore conclude that such a monomial regression model is not
adequate to explain the factor plasma transparency factor��.

The analysis of residuals show also that the variables introducing the largest
uncertainty in this model are the temperature peaking coefficients�T , �T . This
means that the dependence of such coefficients on synchrotron losses is not well
described by the monomial form.

C.2 Addition of interaction terms to the regression
model

We suggest a method for isolating the variables which interacts in their effect
on the response��. This approach consists of analysing the dependence of each
plasma variable (Te0 ,pa,�,�n,�T , �T ) on each exponent fit parameter (xT , xp, x�,x�n , x�T , x�T ), using the monomial model (Eq. (C.1)).
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Figure C.1: Distribution of regression residuals represented by red boxes, and the
normal distributionN (0;RMSE) represented by the black curve.

For one value of a given plasma variable (e.g.�T = 0), the best exponent pa-
rameters are found (e.g.xt = 1:44) by applying the multidimensional linear method
to the part of the dataset corresponding to such a variable value. Next this process
is repeated four times for other values of the same variable (e.g. �T = 0:3, 0:9,2:7, 8), obtaining a set of parameters for each exponent, and the root mean square
for each setsxj is calculated. The schematic results of this approach performed for
every plasma variable are shown in Table C.2, where

p
means a strong dependence

(sxj > 0:1), X means a substantial dependence (5 � 10�2 < sxj < 0:1), v means
a marginal dependence (1� 10�3 < sxj < 5� 10�2), and� means no dependence
observed (sxj < 1� 10�3).
Table C.2: Schematic variance of the exponent parameters with the plasma fitting
variables (� means not applicable).Te0 pa0 � �n �T �Txt � X � v p �xp X � � v � �x� � � � � � �x�n v v � � p vx�T v � � X � px�T X � � X p �

From Table C.2 the following main relationships are suggested: temperature
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Figure C.2: Residuals"i = ln ���
numi=��

fiti� plotted in time order�.
peaking coefficients�T , �T are strongly interdependent and the temperature and
opacity factorTe0 , pa0 , as well as the�n, �T peaking coefficients, interact recipro-
cally on��. This confirms the results obtained in the analysis of residuals of��
modelled with a simple monomial model.

C.2.1 The multidimensional weighted least-squares method

A no longer intrinsically linear model is considered in order to include interac-
tions between variables and therefore to obtain a more convenient fitting goodness.
Here, the variables are not transformed, and the standard deviation�num;i of the com-
plete computation of��

num;i will be different for every set of data2,�num;i / erel;i��
num;i.

Consequently, the maximum likelihood estimate of the fit parameters is obtained
by minimizing the merit functionF (the sum of squares of residuals for the entire
dataset withA = 3) weighted with its numerical standard deviation:F = ndataXi=1 ���

num;i � ��
fit;i�num;i �2 / ndataXi=1 �1� ��

fit;i��
num;i�2

.

Let us notice that, in this case, minimizing the merit function is equivalent to
minimizing the sum of squares of the relative difference between the predicted value��

fit;i and the numerical one��
num;i.

2The numerical deviations
����i � ��

numi�� are assumed to be uncorrelated.
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For a regression model withp fit parameters, the residual mean square is ex-
pressed as s2" = Pndatai=1 "2indata� p = Fndata� p ,

where the residuals"i to be examined are"i = �1� ��
fit;i��

num;i� .

The RMSE indicator is the root ofs2" (RMSE= pF= (ndata� p)) and it is cur-
rently expressed on a percentage basis.

C.2.2 Selection of the regression model

Using Table C.2 and the multidimensional weighted least-squares method de-
scribed above, an exhaustive analysis for selecting the best regression model for��,
including cross-dependences between fitting variables, has been carried out. In Ta-
ble C.3 we illustrate the increase of the regression qualitywhen including new terms.
Note that although many other forms of dependence have been tested, we only show
those which make to improve the regression quality:

Cross-dependence between�T , �T��
fit = C��T xTe0 pxpa0 �x� (C�n + �n)x�n �C�� + C�T�x�TT + �x�TT �

(C.4)��
fit = C��T xTe0 pxpa0 �x� (C�n + �n)x�n� (C�T + �T )x�T �x�TT (C�1�T + �T )x�� (C.5)��

fit = C��T xTe0 pxpa0 �x� (C�n + �n)x�n� (C�T + �T )x�T �x�1T ��x�2T + C�1�T + C���x�� (C.6)

Cross-dependence between�n,�T (and�T )��
fit = C��T xTe0 pxpa0 �x� [(C�n + �n)x�n + C�3�T + C��T + C�2 ℄x�� (C�T + �T )x�T �x�1T ��x�2T + C�1�T + C���x�� (C.7)��

fit = C��T xTe0 pxpa0 �x� (�n + C�2�T + C�n)x�n� (C�T + �T )x�T �x�1T ��x�2T + C�1�T + C���x�� (C.8)
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Cross-dependence betweenTe0, pa0��
fit = C�� (CT + Te0)xT pxpa0 �x� (�n + C�2�T + C�n)x�n� (C�T + �T )x�T �x�1T ��x�2T + C�1�T + C���x�� (C.9)��

fit = C�� (CT + Te0)xT �CpT + pxpa0 + CpTe0�xpT �x� (�n + C�2�T + C�n)x�n� (C�T + �T )x�T �x�1T �C�� + C�1�T + �x�2T �x�� (C.10)��
fit = C�� (CT + Te0)xT �pxpa0 + CpTe0�xpT �x� (�n + C�2�T + C�n)x�n� (C�T + �T )x�T �x�1T ��x�2T + C�1�T + C���x�� (C.11)

Cross-dependence betweenpa0,�n��
fit = C�� (CT + Te0)xT �pxpa0 + CpTe0�xpT �x�� �Cp2pxp2a0 + �n + Cp��xp� (�n + C�2�T + C�n)x�n� (C�T + �T )x�T �x�1T ��x�2T + C�1�T + C���x�� (C.12)

Table C.3: Goodness of several models taking into account the main cross-
dependences between the fitting variables, wherep is the number of parameters.

Model p RMSE(%)
Eq. (C.1) 9 28.7
Eq. (C.4) 10 17.9
Eq. (C.5) 11 14.3
Eq. (C.6) 13 13.4
Eq. (C.7) 17 11.1
Eq. (C.8) 14 10.9
Eq. (C.9) 15 7.9
Eq. (C.10) 18 5.8
Eq. (C.11) 17 5.8
Eq. (C.12) 21 5.5
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In Table C.3 we observe a substantial improvement of the regression quality
when including the cross-dependence between�n, �T (from RMSE' 29% to 13%.
The cross-dependences between�n, �T and betweenTe0, pa0 reduce the RMSE
up to 5.8%. Finally, the RMSE is slightly reduced by 0.3% whenincluding the
cross-dependence betweenpa0 , �n, but at the expense of increasing by 4 the number
of the model parameters. On account of these elements, Eq. (C.11) has been pro-
posed as the regression model for fitting synchrotron losses. It takes into account
the cross-dependences between�T and�T , �n and�T , Te0 andpa0 , with a number
of parametersp = 16.

In Table C.4 we show the resulting parameters minimizing themerit functionF for the selected model. Note that in this non-linear case, the confidence region
for each parameter(��) is estimated by linearizing Eq. (C.11), as discussed in
Ref. [Dra81].

Table C.4: Fit parameters minimizing the merit functionF of the multidimensional
weighted least-squares method using Eq. (C.11), with the corresponding� confi-
dence region.

Parameter best fitting� �C�� 6:86� 10�5 � 3� 10�6xT 2:61� 0:04CT 16:0� 0:38xpT �1:51� 0:08xp 0:41� 0:02Cp 0:12� 0:02x� 0:79� 0:04x�n �0:79� 0:06C�2 3:87� 0:27C�n 1:46� 0:17x�T 1:36� 0:05C�T 1:98� 0:15x�1 2:14� 0:04x�� �1:33� 0:03x�2 1:53� 0:02C�1 1:87� 0:07C�� �0:16� 0:01
The distribution of residuals and the final form of the fit are presented in Chap-

ter 3.
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