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Part I

THESIS





1. INTRODUCTION

“Extraction of the Stone of Fools”
painted by Jheronimus Bosch in XV th century

1.1 Nuclear Medicine

The golden inscription shown in the picture which is difficult for a modern reader to
decipher, runs: “Meester snijt de keye ras / Myne name is lubbert das” (Master, cut the
stone out quickly. My name is Lubbert Das). In the Middle Ages the expression “he has



4 1. Introduction

a stone in the head” was used to mean that someone was crazy. So Lubbert wanted to
be cured of his folly as soon as possible. What the surgeon was removing from the head,
however, is clearly not “the stone of folly” but a flower, like the one lying on the table.
Bax [5] tried to explain the connection between the stone and the flower by referring to
identify the flower as a tulip which has the connotation of stupidity. There are a number
of other striking elements in the work too: the inverted funnel on the head of the surgeon,
the book on the woman’s head, the jug hanging from the surgeon’s belt, and the clogs
beneath the chair. If these objects had a symbolic meaning at the time, it unfortunately
eludes us so many centuries later.

Certainly, the diagnostic tools available nowadays provide us a different concept about
the basis and causes of neurological illnesses. The use of radiolabelled compounds for
scintigraphic detection of metabolic functions or diseases has achieved worldwide recogni-
tion in medicine and biology. The study of properties of organs and tissues is performed
by successful labelling of compounds of biological interest which has led to a new scientific
field: the Nuclear Medicine.

The main elements found in biomolecules are essentially Carbon, Hydrogen, Oxygen
and Nitrogen. Although obtaining of radionuclides of these elements by means of a cy-
clotron was achieved in the 1960s, their short half-life (minutes) and the high energy of
their emitted gammas was too much of a difficult challenge for the technology of the
time. Therefore, the PET technique did not become available in clinical routines until
the 1990’s.

Meanwhile, inorganic elements which allowed the in-vivo study of biological pathways
were obtained by advanced radiochemical methods. The availability of the radionuclide
99mTc and the development of the gamma camera by Anger [2] led to the rapid develop-
ment of Single Photon Emission Tomography (SPECT). This technique has been a major
field in Nuclear Medicine since the 1970’s [12]. 99mTc offers three main advantages: a
sufficiently long half-life (6 hours), a wide range of complex molecules to which it can be
linked and it has a simple decay scheme (solely a low energy photon with an energy of 140
keV). Furthermore, other 99mTc-labelled compounds such as the inorganic radionuclides
131I, 67Ga, 201Tl, 133Xe, 123I have been used since the SPECT technique [53]. The use of
these inorganic elements has originated different scientific disciplines of interest.

Important clinical diagnostic applications of the SPECT imaging technique are cardiol-
ogy, oncology and neurology. In these fields SPECT is able to non-invasively visualize and
analyze different organs and tissues functions or properties. For example, organ perfusion
(i.e. 99mTc-HMPAO for brain perfusion), metabolic function (i.e. 123I-fatty acids have
been used to successfully study beta-oxidation of myocardial cells), receptor/transporter
density evaluation (i.e. targeting the dopamine presynaptic transporter with 123I-FP-CIT)
and drug delivery among others.
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1.2 Neurotransmission brain SPECT imaging

Many forms of brain diseases are associated with problems in the neurotransmission sys-
tems. One approach to the assessment of such systems is the use of SPECT brain imaging.
Neurotransmission SPECT has become an important tool in neuroimaging and is today
regarded as a useful method in both clinical [80, 68] and basic research [1]. There are two
important reasons for this:

1. It has so far not been possible to view neurotransmitters in vivo by other means
than PET or SPECT imaging techniques.

2. SPECT is a widely accessible and cost-efficient technique.

Despite controversy about whether or not SPECT imaging of dopamine uptake sites
can replace PET imaging in neurological disorders [81], some authors support the view
that, at least in clinical settings, SPECT imaging can replace PET imaging for the presy-
naptic dopaminergic function in Parkinson’s disease (PD) [33].

Parkinson’s disease (PD) is a progressive disabling neurodegenerative disorder ob-
served in 1% of the population older than 55 years, the mean age at which the disease is
first diagnosed [86]. PD consists of a syndrome including tremor, rigidity and postural
abnormalities. One of the principal anatomopathologic characteristics of PD is the pro-
gressive loss of pigmented melanistic neurons, particularly loss of dopaminergic neurons
in the substantia nigra pars compacta [41].

The dopaminergic system is one of the neurotransmission systems which may be stud-
ied by SPECT techniques. The presynaptic dopaminergic function is associated with the
dopamine transporter (DAT). The DAT is responsible for re-uptake of dopamine from the
synaptic cleft and it has been shown to be a sensitive indicator of nigrostriatal dopamine
function. Dysfunctions of the presynaptic dopaminergic system are involved in PD and,
as a consequence, DAT imaging is a useful tool to confirm or exclude PD [80]. A number
of cocaine analog SPECT agents, which bind to DAT sites, have been developed [80].
These analogues include 123I agents, such as the recently available FP-CIT [59] or 99mTc
agents such as TRODAT [42].

In the past two decades, the strategy of symptomatic treatments has been improved
and deep stimulation surgery has become an effective alternative for motor fluctuations
and dyskinesia due to medical treatment. The issue for our new century will be the de-
velopment of neuroprotective therapeutics aimed at slowing or stopping the degenerative
process. This aim stresses the need for very early diagnosis of PD [69].
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1.3 SPECT Quantification

Although visual inspection is often sufficient to assess DAT imaging, quantification might
improve the diagnostic accuracy of SPECT studies of the dopaminergic system [26, 70].
In particular, quantification of DAT SPECT studies in PD could help us to diagnose this
disease in the early pre-clinical stages. One of the main research topics in SPECT is to
achieve early diagnosis, indeed preclinical diagnosis in neurodegenerative illnesses. In this
field detailed analysis of shapes and values of the region of interest (ROIs) of the image
is important, thus quantification is needed. Quantification also allows a follow-up of the
progression of disease and to assess the effects of potential neuroprotective treatment
strategies.

Quantification is affected by the degradation of the image introduced by statistical
noise, attenuation, collimator/detector response and scattering effects. Some of these
degradations may be corrected by using iterative reconstruction algorithms, which thus
enable a more reliable quantification.

Iterative reconstruction algorithms like maximum-likelihood expectation-maximization
(ML-EM) [77] are attractive because they enable to account for Poisson distributions as
statistical noise in the projection data. The ordered subsets expectation maximization
algorithm (OS-EM) was proposed by Hudson et al. [39] as an improved algorithm from
ML-EM.

OS-EM algorithm has led to a significant reduction in computing time with the re-
sult that iterative reconstruction algorithms are starting to be employed for attenuation
correction in clinical practice. Moreover, present-day iterative algorithms include this
correction using attenuation maps obtained from transmission scans.

However, other degradations may be corrected during the reconstruction step. Itera-
tive algorithms also permit modelling of the projection process, allowing for correction of
spatially variant collimator response and the photon crosstalk effect between transaxial
slices (along the tomographic axis). Thus, our work will focus on the modelling of the
collimator/detector response for the fan-beam collimator on multi-head systems which
offers a good trade-off between resolution and noise. Moreover, a full 3D reconstruction
with OS-EM algorithms will be developed instead of the 2D slice-by-slice reconstruction.

Finally, scattering has recognized to be one of the most significant degradation effects
in SPECT quantification [24]. Nowadays this subject is an intensive field of research
in SPECT techniques. There are different methods for scatter correction [16] and some
empirical approaches based on experimental data have been used. Nevertheless, Monte
Carlo techniques appear to be the most reliable way to include this correction.

Once all the degrading effects were corrected, the absolute quantification could be
achieved, thus providing new significant information to clinical diagnosis. The quantifica-
tion results should be evaluated in order to test their reliability and accuracy. To this end,
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Monte Carlo simulations with virtual phantoms will be employed. The theoretical values
of the phantoms will be compared with those values obtained from the quantification
algorithms.

1.4 Objectives

The aim of this thesis is to achieve quantification of both absolute activity values and
relative values of the reconstructed SPECT images. In order to achieve this goal, we have
set the following objectives:

1. The study of an optimized Monte Carlo simulator for SPECT studies.

2. The modelling of the collimator/detector responses using Monte Carlo techniques.
The resulting analytical functions which model the PSFs could be incorporated in
the Monte Carlo simulator in order to accelerate the simulation.

3. The development of a full 3D reconstruction algorithm.

4. The development of a scattering correction method using Monte Carlo simulation
and full 3D reconstruction algorithms.

5. The accuracy evaluation of absolute and relative quantitative results in the corrected
images.

It is important to note that the application of the developed tools and methods on
brain SPECT imaging, and specifically to neurotransmission studies presented in this
thesis, is an application of the results and the accuracy obtained, but is not a restriction
on other SPECT studies.

1.5 Contents of this thesis

Once we have introduced the aim of this thesis in Chapter 1, the contents are organized
as follows. Chapter 2 describes the methodology of SPECT techniques. The Monte
Carlo simulator is presented in detail in Chapter 3. Chapter 4 describes the PSFs of low
energy photons using the Monte Carlo code PENELOPE for different collimator/detector
configurations: both parallel and fan beam. In Chapter 5 the PSFs of high energy 123I
photons are analyzed using another version using the PENELOPE Monte Carlo code,
which includes the effect of secondary particles. The modelled PSF functions are used
in the Monte Carlo simulator in order to accelerate the simulation process in Chapter
6. Finally, we present a new full 3D iterative reconstruction algorithm with a Monte
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Carlo-based scatter correction in Chapter 7. The assessment of the quantification of the
reconstructed images is performed with a 3D volume evaluation of the regions of interest
in neurotransmission SPECT studies. The thesis ends in Chapter 8 with a discussion of
the proposed methods and some concluding remarks.



2. SPECT IMAGING

“The Anatomy Lesson of Doctor Nicolaes Tulp”
painted by Rembrandt van Rihn in 1632

“Definition of Autopsy (Auto/opsis): a seeing with one’s own eyes”
Webster’s Dictionary

2.1 Methodology used in SPECT

The SPECT technique may be split into two different steps. The first step is the process
of measure, which consists of acquiring projections of emitted photons from a distribution
source of unknown activity. The second step is the reconstruction of this projection
data set in order to estimate the unknown activity distribution by compilation of the
reconstructed images.

During the detection process several physical effects degrade the direct geometric pro-
jection of the emitted photons from the distribution source. Accordingly, it is very difficult
to obtain high quality, quantitative accurate SPECT images without taking into account
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such corrections. In this Chapter we present a detailed description of each effect and the
means of using corrections in reconstruction.

2.2 The measure: SPECT gamma camera

A SPECT scanner uses a gamma camera to detect the photons emitted from the radio-
pharmaceutical distribution in the patient or the object. A modern gamma camera (see
Figure 2.2) consists of several detector heads which contain a collimator and a detector.
Each detector head is shielded by a lead layer in order to prevent the measure of back-
ground radiation from outside the field of view of the camera. The detector consists of a
large-area with a thin (a few millimeters thick) NaI(Tl) crystal which converts the photon
energy into a light beam. This light is then optically guided through the photomultiplier
(PMT) system which converts the light into an electrical signal. Electronic circuits posi-
tion the signal and accept or reject the detected event depending on its amplitude. Finally,
the projection data set consists of a distribution of detected events in each detector head.

Fig. 2.1: The two-headed gamma camera available at the Nuclear Medicine department in the
Hospital Cĺınic of Barcelona.

The SPECT study consists of a set of projections acquired at discrete angles about the
patient. Most SPECT systems consist of one or more detector heads which are mounted
on a frame in such a way that they can rotate about the patient. The distribution
source of the projections is obtained by compilation of the reconstructed images. In
order to reconstruct the final images, the acquisition of planar gamma camera images
at a sufficient number of angles around the patient is needed. Because of the large field
of view of these scintillation cameras (typically 25×50 cm), a significant portion of the
patient can be examined in one scan. The scintillation detectors used in this way were
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incapable of determining the direction of the incoming photons by themselves (this is the
main difference with PET techniques —where the direction is determined by the Line Of
Response (LOR) of the spatial coordinates of the annihilation photon impact—). This is
the reason why SPECT system cameras are always provided with a collimator, similar to
that of a photographic camera with a lens.

A collimator is usually a slab of lead with several tens of thousands of holes covering
the entire detector surface. These holes are typically a few centimeters long and a few
millimeters in diameter. Since few photons are able to go through the lead, mainly the
photons that traverse the holes are detected. The elongated geometry of the holes ensures
that the direction of the detected photons is well determined. This information is essential
in order to reconstruct the distribution of the radiopharmaceutical. Unfortunately, this
directional information is achieved at great cost, namely a tremendous loss of sensitivity
(number of detected photons). The typical sensitivity of a gamma camera is ∼ 10−4,
meaning that 1 out of 10,000 emitted photons will actually traverse the collimator and be
detected. Accordingly, collimation is the main reason why counting statistics in SPECT
images are poor.

The scintillation detector is currently the main technique for gamma radiation detec-
tion in Nuclear Medicine imaging. It is based on the emission of visible or near-visible light
from scintillation crystals when energy is absorbed from ionizing radiation. This emis-
sion of light is a result of inelastic collisions between secondary electrons and other atomic
electrons. The photo-multiplier (PM) tubes amplify the light and convert it into electrical
pulses. A property of many inorganic scintillators is that light emission is proportional
to the energy deposited in the material. This allows measurement of the detected photon
energy.

A typical value of the energy resolution of scintillation detectors used in modern
gamma cameras is about 10% for low energy windows (100-200 keV) [67]. This means one
can discriminate only to a limited extent by applying a photo-peak window, between un-
scattered photons (primary photons) and photons which have scattered and have thereby
lost energy. In order to collect a large fraction of primary photons, the width of this
window has to be set normally 15-20% of the photo-peak energy. As a consequence, a sig-
nificant part of the photons detected in the photo-peak window have undergone scattering,
thus causing a blurring spot which spoils the final image.

2.2.1 Image degrading effects in SPECT

The detection of photons in SPECT is seriously affected by collisions within the patient or
object (photon attenuation and scattering), and the inevitable inaccuracy of the collimator
(collimator blurring). The images are also severely degraded because of noise, partly due
to the collimation reduction of accepted photons. Accordingly, it is very difficult to obtain
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Fig. 2.2: Schematic view of the acquisition of a projection using a gamma camera. The scatter
interactions within the patient are represented by ∗. Photon 1 and 2 are directly
detected, although photon 2 entered under a slight angle from the collimator hole axis,
causing blurring of the projection. Photon 3 is rejected by the collimator. Photon 4 is
detected after scattering. Photons 5 are not detected due to scatter and photoelectric
interactions within the body which cause the attenuation effect.

high quality, quantitatively accurate SPECT images without taking into account such
corrections. As we will show in the following subsections, each factor is a well-understood
physical phenomenon, and therefore corrections can be included in the reconstruction
algorithm for each of these image degrading effects.

Attenuation

The interaction of photons in the patient or the attenuation media diverts the photon
path to the detector (see photon 2 in Figure 2.2). This causes attenuation of photon flux
directed towards the detector and it decreases the signal.

The interactions of photons with matter are described mainly by four processes: photo-
electric absorption, Compton scattering, coherent scattering (Rayleigh) and pair produc-
tion. Each process will occur with a probability which strongly depends on parameters
such as photon energy and the object attenuation map. The total probability for the oc-
currence of any of the processes is therefore the sum of the cross-sections of the different
effects. Figure 2.3 shows the cross-sections of the aforementioned interactions and the
total cross-section. From Figure 2.3 it is clear that for photons with an energy of 50-1000
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keV, the most probable interaction process is Compton scattering. In heavier materials
such as the collimator lead and at at low energies (below 100 keV), photo-electric absorp-
tion also becomes significant. Pair production is a typical effect used in PET radiotracers
where two annihilation photons are generated. However, below 1022 keV this effect does
not appear. Hence, Compton scattering and photo-electric absorption are the relevant
effects to be modelled for an accurate description of photon interaction in SPECT. How-
ever, coherent scattering may also contribute to blur the image due to its high probability
at low angles of scatter (near 0o) and high energies [45].

Fig. 2.3: Differential cross-sections for the photo-electric effect, Compton scattering, coherent
scattering and pair production and total cross-section for water as a function of photon
energy.

Attenuation is mainly the result of Compton scattering (and some photo-electric in-
teraction) and depends on the total length of the tissue which has to be traversed, the
type of material and the photon energy. The attenuation of a narrow beam of photons
passing through a non-homogeneous medium of thickness d is given by:

ψ = ψ0 exp(−
∫ d

0

µ(r)dr) (2.1)

where ψ is the photon flux after attenuation, ψ0 is the incident photon flux and µ is
the linear attenuation coefficient (the total sum of all possible differential cross-sections).
For water, the linear attenuation coefficient µ is approximately 0.152 cm−1 for 140 keV
gamma rays [54].
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Collimation blurring

As shown in Figure 2.6 the image of a point source in air through a collimator/detector
system is a spot, a 3D distribution called the Point Spread Function (PSF). The PSF
does not depend on the object attenuation map but varies with the collimator/detector
configuration and the photon energy.

The PSF is described by two variables: Firstly, the sensitivity S, which is defined
as the number of photons detected per emitted photon. It is calculated as the ratio
between the sum of counts under the PSF volume and the number of photons emitted
by the source. The other variable, resolution, equals the Full Width at Half Maximum
(FWHM) of the image corresponding to a point source. The FWHM may be modelled
for low energy photon PSFs as a Gaussian function which contains two contributions: the
collimator resolution and the intrinsic resolution of the detector as described in equation
(2.2).

FWHM =
√

FWHMc + FWHMi (2.2)

The intrinsic resolution of the detector may be described by means of a Gaussian
distribution with a full width at half maximum (FWHM) that is proportional to the
square root of the deposited energy [47].

Because the collimator holes are not infinitely narrow and their septa walls may be
crossed by certain photons (the probability of crossing the septa wall is larger for higher
photon energies), the photons that traverse the collimator will not all come from a direc-
tion that is exactly aligned with the holes. This leads to a substantial loss of resolution in
the gamma-camera images and in the reconstructions. A collimator design with a higher
width or septa wall (distance between holes) would decrease the collimator blurring but
would also greatly reduce the sensitivity of the collimator. It can be shown that a twofold
increase of the collimator resolution, would decrease the sensitivity by a factor of about
4. Therefore, a compromise has to be found between collimator resolution and sensitivity.
Since the collimator resolution depends on the distance between the source and the cam-
era, it is important to position the camera as close as possible to the patient or to use a
focused collimator such as the fan beam type collimator. Accurate mathematical descrip-
tions of collimator blurring can be found in [56, 83, 32] by modelling different collimator
PSFs.

Each clinical study has different requirements: field of view (FOV), radiopharmaceu-
tical tracer, organ or tissue to be imaged and associated dose. Thus, the best collimation
methodology differs for each type of study. Therefore, several types of collimators have
been developed to achieve an adequate compromise between spatial resolution and sen-
sitivity. As shown in Figure 2.5, collimators are classified depending on the geometrical
design of the hole array.
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Fig. 2.4: PSF response for a parallel collimator. Same sensitivity and different resolution at
different heights for a parallel collimator.

Fig. 2.5: Different collimator configurations used in SPECT imaging. Above there is the parallel
collimator and below the convergent type: fan beam collimator and pin hole collimator.
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Another design variable for collimators is the energy of the collimated photons. For
cardiac imaging with low energy (99mTc, 201Tl, ...) tracers, the usual collimators are
Low Energy All-Purpose (LEAP). In brain SPECT imaging image resolution is a major
objective, thus Low-Energy High Resolution (LEHR) collimators are used. Finally for
medium- or high-energy rays (131I,...) Medium Energy (ME) is the best choice.

In general, the most widely used collimator for SPECT studies is the parallel collima-
tor. However, convergent fan-beam collimators are designed in order to focus the holes
through a focal line. This design provides greater sensitivity and a wider area of detection.
These advantages are especially indicated in order to improve SPECT brain imaging.

In this thesis we present a characterization of parallel and fan beam collimator PSFs
at different energies by using Monte Carlo simulations. Furthermore, PSF responses
were calculated for different source locations in order to model a PSF function for the
reconstruction algorithms and the Monte Carlo simulator.

Scattering

An important image degrading effect in SPECT is the fact that photons which have
suffered scattering processes enter the collimator/detector system. Scatter results in the
detection of “incorrect” photons and is also the cause of the attenuation effect. These
effects are shown in Figure 2.2.

A photon can penetrate matter without interaction or it can be absorbed and/or it
can scatter and thereby lose a certain amount of energy. If a photon is scattered and then
detected in the photo-peak (with a detectable energy window), this may lead to detection
at a detector position which suggests an incorrect emission point (e.g. photon 4 in Figure
2.2). This causes severe degradation of the contrast and quantitative accuracy of the
reconstructed image if scatter events are not corrected.

Compton scattering is an interaction between a photon and an atomic electron. Since
the energy of the incoming photon is very high compared with the binding energy of the
electron, the interaction can be interpreted as a collision between the photon and a free
electron. The photon is scattered by an angle θ relative to its incident direction and loses
energy which is then transferred to the electron. The scattered photon energy E ′

γ is given
by the Compton formula:

E ′
γ =

Eγ

1 + Eγ(1−cos θ)

mec2

(2.3)

where Eγ is the incident photon energy and mec
2 is the rest energy of the electron.

From the last equation it is evident that the maximum amount of energy is transferred
to the electron when the photon is backscattered (θ = π) and that little energy is lost
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by the photon when θ ∼ 0. A comprehensive description of Compton scattering is given
by [73]. For Nuclear Medicine applications, the angular distribution can be described by
the Klein-Nishina approximation, which relates the differential cross-section dσ

dΩ
, or scatter

probability, with the scatter angle θ.

Statistical Noise

The detection of photons in Nuclear Medicine is a Poisson process. The low detection
probability ∼ 10−4 and the huge number of emitted photons from the radiotracer implies
that measures of the projections also include Poisson noise. As an example, a 2 mCi
injection of 99mTc-HMPAO for 30 minutes of acquisition emits 13.32× 1010 photons. The
probability of detection is about ∼ 10−4 due to the isotropic source emission, the finite
number of detectors and the collimation phenomena. Therefore, 13.32 × 106 accepted
photons will be split between about 2 million bin detectors (120 projections of 128× 128
leads to 2 × 106 detector bins). Thus the detected photon number per bin is about 6
counts. The statistical result in the bin is 6±

√
6 = 6± 2.5 which provides an indication

of statistical noise phenomena in Nuclear Medicine.

Since the variance of Poisson noise in the detector bin A is proportional to the mean
of counts NA of that particular projection bin, the acquisition of a high number of counts
will increase the signal-to-noise ratio (SNR). The SNR is defined as the ratio between the
noise (defined as the square root of the variance) over the mean:

SNR =

√

V ar(NA)

NA

=

√
NA

NA

=
1√
NA

(2.4)

However, for several reasons the number of counts is small. Basically the detected
counts are proportional to:

1. The length of scan. Decreasing the duration of the scan decreases patient discomfort
and the possibility of patient movement. Usual data acquisition lasts longer than
30 minutes and the number of patients per day is a variable related directly with
the cost of the hospital service.

2. The radiation dose injected to the patient. Radioactive isotopes are administered
in sufficiently low doses so as not to affect the physiological process under study.
Decreasing the radiation dose, likewise decreases number of counts, but also reduces
costs and increases patient safety. The cost/benefit ratio has to be balanced.

3. The size of the detector bin. The detector is subdivided in pixels. Different configu-
rations of pixel arrays are possible, usually 64×64 is the standard, whereas 128×128
is used for high resolution imaging demands (e.g. brain imaging). A larger pixel
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would acquire a greater number of counts NA, but this would mean poor resolution
in the final image. Thus, a balance between resolution and SNR is also needed.

4. The number of camera heads. The gamma camera uses different rotating camera
heads which detect radiation simultaneously. The greater the number of detector
heads used, then the greater the number of counts it gets for the same scanning time.
The limit of the number of heads obviously depends on geometry, and nowadays the
maximum is three heads placed at 120o to each other.

The quality of a SPECT image is minimized to the point technically available (“As
Low As Reasonable Achievable”). However, a low signal-to-noise ratio is inherent to a
SPECT image and thus noise is a major cause of image degradation.

Other image degrading effects

Other instrumentation-related processes influencing the quality of SPECT images are non-
linearities and non-uniformities of the detector and inaccuracy of the center of rotation
of the detector. Correction methods for these effects exist. Therefore, their influence is
relatively small compared with noise, collimator blurring effects, attenuation and photon
scattering. Finally, image quality can be significantly affected by biological factors such
as tracer kinetics and target specificity, and by patient and/or organ movement during
image acquisition.

2.3 Reconstruction: SPECT algorithms

In the previous section 2.2 the gamma camera was described as the tool used in Nuclear
Medicine to measure the signal. However in Nuclear Medicine scans the final result is not
the projection data set but the reconstructed image. Therefore the image is obtained by
using mathematical algorithms which process and reconstruct the projection data set on
a computer.

The purpose of tomographic reconstruction is to obtain cross-sections of an object
from projections of that object. In 1917 Radon showed the reconstruction of a 2D ob-
ject from its 1D projections using an infinite number of directions [24]. Two different
approaches are commonly used for SPECT reconstruction. Until recently, Filtered Back
Projection (FBP) was the universal method because of its simplicity and speed. As soon
as advanced computers appeared, a more accurate technique was implemented: iterative
reconstruction. The latter technique permits modelling of all image degrading factors
although it requires a much longer computational effort. The acceleration that has been
achieved by designing fast codes and using advanced hardware has brought them within
the range of clinical application over the last decade.
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2.3.1 Iterative Reconstruction

In iterative algorithms, estimated projection data are generated by means of a forward
projector using an initial estimate of the activity distribution (image). These calculated
projections are compared with the measured projections. On the basis of this comparison,
one can obtain a better estimate of the image using an update step. This process of
forward projection, comparison and updating can be iterated until an acceptable image
is obtained. The model of forward projection is represented by the transition matrix
which is used in the iterative algorithm. The more accurately this transition matrix is
modelled, the better the agreement will be between the estimated images and the real
activity distribution.

SPECT projection data are severely affected by Poisson noise, which implies that low
pixel count values give a less accurate prediction of the time-average photon flux received
in the pixel. A possible way to model the Poisson nature of the measures is to treat the
data as stochastic variables and not as exact measures; noise-free projections are taken as
the mean of the Poisson distributions. Calculating the maximum likelihood estimate of
the emission distribution that generated the measured projections takes into account the
Poisson nature of the projections. Without making any a priori assumptions about the
activity distribution, the statistically most likely emission distribution can be calculated
using the Maximum Likelihood-Expectation Maximization (ML-EM) algorithm [77, 49].
The ML-EM algorithm updates all image elements si of the estimated image at iteration
k + 1 according to:

sk+1
i =

sk
i

∑

j tij

∑

j

tijpj
∑

l tljs
k
l

(2.5)

where sk
i represents the k-th image estimate, T = [tij] represents the transition matrix,

P = [pj] represents the measured data, and
∑

i tijs
k
i is the projection bin j after forward

projection of the k-th image estimate.

This algorithm has the following important properties:

1. The algorithm increases the likelihood that the image estimate will generate the
measured data until an absolute maximum during each iteration. However, as the
number of iterations increases it also will enhance the noise level of the reconstructed
data. A balance between accuracy and variance has to be made.

2. Image elements in each iteration are constrained to remain positive; The algorithm
takes into account the Poisson nature of the noise in the projection data. These
features of the ML-EM algorithm lead to images which are not noisy as, for example,
images reconstructed using FBP.
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3. A drawback of ML-EM is that reconstruction is extremely slow, especially when
accurate transition matrices are used. In order to render ML-EM fast enough to be
used within a clinical setting, the scheme is often accelerated, for example, using
block iterative methods such as the Ordered Subsets Expectation Maximization (OS-
EM) algorithm of Hudson and Larkin [39]. OS-EM involves grouping projection
data into an ordered sequence of subsets. The EM algorithm is then applied to
each subset, and the result is used as the starting estimate for processing the next
estimate. It has been shown that OS-EM can reach acceleration factors that are
close to the number of subsets used [39, 44], while achieving an image quality that
is similar to standard ML-EM.

2.3.2 Calculation of the transition matrix

The transition matrix describes the forward projection and re-projection used in iterative
SPECT reconstruction. In order to generate an accurate transition matrix one requires
an accurate method for calculating photon transport in SPECT.

Tij is a matrix whose elements are the probabilities that a photon originating in the
source element si is observed in detector projection bin pj. Given a source distribution
si, the solution of the photon transport equations through a detailed media (attenuation
map, collimator/detector configuration, boundary conditions, ...) yields the projection
data (pj). The reconstruction algorithm solves the inverse problem: given the projection
data pj, find the source distribution si.

Tij si = pj (2.6)

Since the linear system will typically be overrestricted (more equations than unknowns)
and it will often be inconsistent due to instrumental and statistical errors in the projection
data (noise), a minimum variance solution is sought using the MLE-EM algorithm.

Despite the fact that physical effects occur both within and across transaxial planes,
most iterative methods that have been used to date treat each transaxial plane indepen-
dently (2D) due to computational considerations. One would expect, however, improved
image quality from the more accurate three-dimensional (3D) reconstruction methods
—those that model in-plane and cross-plane effects— compared with 2D methods [35].
In Chapter 7 a new application of the 3D physical model for iterative reconstruction in
SPECT and the corresponding validation using Monte Carlo techniques is presented.

Modelling photon transport in SPECT (i.e. scatter, attenuation and collimator blur-
ring) for its use in iterative reconstruction is often considered to be challenging, since the
calculation method must be accurate for acceptable quality of the image reconstruction
and at the same time efficient and fast if it is to be used in clinical practice. In Chapter
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6 a new variance reduction technique for SimSET code is used in order to accelerate the
simulator.

Attenuation modelling

Attenuation is an elementary effect which has to be modelled. Its mathematical descrip-
tion is simple enough to be described using only two variables, as has been mentioned in
section 2.2.1: the photon path length d through the attenuating object from the voxel
source si to the projection bin pj, and the type of material and density the photon travels
through. Attenuation factors are computed for each pixel at each detector angle as the
line attenuation integral between the voxel and the detector pixel along the projection
ray of an ideal detector.

The estimate of the density distribution of the patient (µ map or attenuation image)
can be precisely represented by a transmission CT map or by a Magnetic Resonance
Image (MRI). Acquisition of a transmission CT image has become a common part of
the total SPECT acquisition protocol. Other arguments for acquisition of a transmission
CT image are improved anatomical localization of activity (e.g. in tumors and infectious
foci), registration with other imaging modes and dose calculations. A straightforward
way of acquiring a transmission CT (TCT) image would be to carry out a separate scan
of the patient on an X-ray CT scanner. However, this is an expensive option and it
requires accurate registration of the CT and SPECT images, which is nontrivial in many
cases. Great effort has been made in developing ECT systems that simultaneously acquire
transmission CT data with the emission data (ECT-TCT scanning). The simultaneous
acquisition of these scans immediately solves the registration problem, and makes accurate
attenuation correction possible.

PSF modelling

Correction of collimator/detector response may be carried out by modelling the spatially
variant resolution and sensitivity functions. These Point Spread Functions (PSF) were
defined in section 5.6 and may be included in the transition matrix by determining the
contribution of a point source in the voxel source si to the projection bin pj as shown in
Figure 2.6.

The PSF model may be obtained by experimental procedures or by Monte Carlo sim-
ulation. Experimental studies sometimes involve the use of complex acquisitions (activity
calibration, accurate location, etc.) for each collimator/detector configuration. The use
of Monte Carlo simulations provide accuracy and flexibility for whatever geometry or
photon energy and is a feasible tool in order to design new collimator configurations.

The modelling of PSF for different collimators and energies is presented in this thesis
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Fig. 2.6: The contribution of a point source in the voxel source si to the projection bin pj

without and with PSF.

for low- and high-energy photons in Chapters 4 and 5. Although deterministic modelling
of PSF is accurate enough at low-energy ranges, it cannot be used at high-energies. In
this case, only Monte Carlo techniques or experimental studies allow correct modelling of
PSF functions.

Scatter modelling

There are different methods for scatter correction in reconstruction algorithms [16]. Nowa-
days, this subject is an intensive field of research in SPECT techniques. The stochastic
behaviour of scattering processes make modelling difficult. Some empirical approaches
based on experimental data are used, but Monte Carlo techniques appear to be the most
reliable way to include this correction.

One type of empirical methods is the Triple Energy Window (TEW) method [60,
40]. This method consists of estimating scatter photons in each projection bin from the
detected photons in two additional energy windows W sc

1 ,W sc
2 4 keV each which are located

at either sides of the central window. The counts of the central window (primaries pprim
j )

are then corrected by the lateral windows:

pprim
j = pj − (τ p1

j − ςp2
j) (2.7)

However, due to the small size of the windows used in this technique, noise can be
substantially increased in the scatter corrected data and accurate results are not always
obtained. As an advantage, TEW does not require accurate calibration and it does not
need a transmission scan.
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A second type of empirical method, which includes the acquisition of data of a
transmission scan (TCT-ECT), is the Transmission Dependent Convolution Substraction
(TDCS) technique [55, 57]. The scattering effect is estimated deterministically by first
convolving the observed photopeak projection data pj, with a radial mono-exponential
scatter function SC in order to provide an initial estimation of scatter p′j:

p′j = pj ⊗ SC(r) = pj ⊗ ζ exp−ςr (2.8)

This estimate of the scattering is then corrected with scatter fraction values k(x, y) at
each pixel given by the emission projections from the transmission projections as follows:

k(x, y) = 1 − 1

A − Bt(x, y)
β
2

(2.9)

where t(x, y) is the transmission factor at the detector bin position (pixel (x, y)) and
A, B and β are geometrically dependent constants. The corrected data pprim

j are then
given by the difference of the projection and the estimated scatter fraction pixel by pixel:

pprim
j (x, y) = pj(x, y) − k(x, y)p′j(x, y) (2.10)

However this method assumes an “a-priori” hypothesis about the radial mono-exponential
function which implies an empirical but not general approach. Thus, the method which
can readily handle media with non-uniform density and large angle scatters is the Monte
Carlo (MC) simulation. Different means of scatter correction can be implemented using
MC tools:

1. The Inverse Monte Carlo (IMOC) method computes the entire transition ma-
trix Tij. MC provides solutions to the photon transport equation for SPECT detec-
tion from a unit source activity si = 1 in each reconstruction source voxel [28, 29].
In the photon transport equation scatter is included as well as attenuation and
collimator blurring is accounted for by modelling PSF functions and attenuation
factors. The inputs are physical characteristics of the acquisition apparatus such as
the energy window setting, the system energy and the spatial resolution, the radius
of rotation and the attenuation map of the body and its contours. Due to pho-
ton cross-talk between slices, caused by collimator blurring and scattering, full 3D
SPECT reconstruction (instead of slice-by- slice (2D) reconstruction) is required for
optimal image quality [9]. Unfortunately, hundreds of Giga-bytes, and up to several
Tera-bytes of memory are required to store the complete non-sparse transition ma-
trix when the full 3D MC matrix approach is used including all of the corrections. It
can take several days to generate the full matrix on a state-of-the-art workstation.
In addition, the procedure has to be repeated for each patient.
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2. The Slab Derived Scatter Estimation (SDSE) first calculates and stores the
scatter responses of point sources behind slabs for a range of thicknesses, and then
tunes these responses to various object shapes with uniform density [8, 31]. A table
occupying only a few megabytes of memory is sufficient to represent this scatter
model for full 3D reconstruction [9]. A full 3D reconstruction of a 99mTc cardiac
study based on SDSE can be performed in only a few minutes on a state-of-the-art
single processor workstation. A disadvantage of SDSE compared with the matrices
generated by IMOC techniques is that it only includes first order Compton scatter-
ing and the photoelectric effect, so it neglects multiple-order Compton scattering,
coherent scatter and high-energy scatter effects. The Utrecht Monte Carlo System
(UMCS) [21] calculates scatter responses using a three-dimensional source emission-
distribution (activity image), a mass density distribution (attenuation image) and
the geometry and characteristics of the SPECT system. These scatter responses
are used in the probability density functions (PDFs) describing the physics of the
photon transport, including emission, scatter and detection processes.

3. The Scatter Monte Carlo Feedback Correction (SMFC) is a new method
developed in this thesis and presented in Chapter 7. SMFC estimates an initial activ-
ity distribution (activity image) by reconstructing the experimental projection using
P3D-OSEM with a deterministic transition matrix which only includes attenuation
and collimator blurring. Afterwards estimated scatter distributions are generated
by means of a Monte Carlo simulation as forward projector. The input data for
the simulation are the reconstructed activity distribution (activity image), the at-
tenuation map (attenuation image) and the constant geometry and characteristics
of the SPECT system. The Monte Carlo simulation of forward projection includes
all image degrading effects, that is, the attenuation modelling, collimator blurring,
scattering and noise equivalent counting on the projections. The transition matrix
used in the iterative algorithm should only include attenuation and collimator blur-
ring modelling because the scattering effect is corrected on the projections. The
more accurately the Monte Carlo simulation is performed, the better the agreement
between the estimated activity images and the real activity distribution.

A drawback of MC simulation is that it can take several days to calculate accurate,
almost noise-free data. This was the reason to focus the research described in this the-
sis on the development of acceleration methods for MC simulation in SPECT imaging.
Furthermore, MC techniques need new hardware implementation infrastructures such as
PC clusters or new, powerful workstations in order to make clinical image reconstruction
feasible.
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2.3.3 Analysis of reconstruction algorithms: Phantom studies

As shown in section 2.3.2, the transition matrix includes several correction factors for dif-
ferent degrading effects on the projection acquisition. Moreover, the choice of the number
of iterations is important when using iterative algorithms. Thus, the performance of an
iterative reconstruction algorithm has to be tested by using “gold standard” references.

The gold standard must be a phantom with an a-priori known activity and atten-
uation map. Phantoms “emit” photons which are detected. The projected data set
is reconstructed by using the algorithm under study. Finally, both reconstruction and
phantom objects are compared using quantification procedures.

There are two kinds of phantoms: experimental and virtual phantoms. The for-
mer are human organs or tissues made with equivalent attenuating materials and shapes.
However, these phantoms are highly complex, expensive and they are not flexible enough
in order to change object parameters (geometric dimensions, activity distributions, sta-
tistical noise on the projections, etc.). Virtual phantoms are described by means of an
“electronic” attenuation and activity map. These maps include a discrete voxelization
of the organs and tissues obtained by CT or MRI techniques. Virtual phantoms “emit”
photons by simulating them using Monte Carlo techniques (See Chapter 3). The Monte
Carlo simulation reproduces all the physical interactions involved in photon flight from
the object through the detector: the SPECT measure.
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3. MONTE CARLO IN NUCLEAR MEDICINE

“Definition of Radiograph: a photographic image produced by the transmission of
x-rays”

Webster’s Dictionary

3.1 Monte Carlo in Nuclear Medicine

In Chapter 2 a summary of image degrading corrections was presented. Most of these
corrections involve the use of Monte Carlo techniques:

1. The modelling of the PSF for the collimator/detector response correction.

2. The scattering correction on the projection data set.

3. The use of virtual phantoms simulators in order to test the accuracy of the recon-
struction algorithms.

The Monte Carlo technique is a mathematical solution for a wide range of applications
with different conditions and objectives to be fulfilled. For instance, in Nuclear Medicine
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the modelling of the PSF will include a very accurate physical description of particle
interactions in the collimator/detector system (both photons and x-rays) and a complex
geometry. On the other hand, the virtual phantom simulator will perform a simplified
physical description of particle interactions in the human body in order to speed up results.
Therefore, we will choose different Monte Carlo codes depending on each application.

In this Section we present the different available Monte Carlo codes and their main
features. We present the reasons for using PENELOPE as the Monte Carlo simulator
for PSF modelling. The choice for the virtual phantom simulator is accompanied with
the correspondent analysis of its results. Some modifications were implemented in this
MC, the SimSET code. In order to understand the changes implemented in the original
SimSET code, a revision of Monte Carlo basis is presented in Appendix A.

3.1.1 Definition of Monte Carlo

“The Monte Carlo method is a numerical solution to a problem that models objects
interacting with other objects or their environment based upon simple object-object or
object-environment relationships1. It represents an attempt to model nature through
direct simulation of the essential dynamics of the system in question. In this sense the
Monte Carlo method is essentially simple in its approach. It searches for a solution of a
macroscopic system through simulation of its microscopic interactions” [11].

A solution is determined by random sampling of the relationships, or the microscopic
interactions, until the result converges. Thus, the mechanics of executing a solution
involves repetitive action or calculation. To the extent that many microscopic interactions
can be modelled mathematically, the repetitive solution can be executed on a computer.
However, while the Monte Carlo method predates the computer, in most cases computers
make the determination of a solution much faster.

The products of both basic and applied science are dependent on the trinity of measure-
ment, theory and Monte Carlo simulation. Monte Carlo is often seen as a “competitor”
to other methods of macroscopic calculation, which we will call deterministic and/or an-
alytic methods. The practice of science should decide whether it is sufficiently accurate
to go through the deterministic approach or use the Monte Carlo method. Monte Carlo
techniques become advantageous as the complexity of a problem increases. In Nuclear
Medicine the deterministic approach was initially used to model the attenuation and PSF
corrections. However, the scattering model has not been modelled accurately enough by
deterministic methods. Thus, the Monte Carlo method presents a case-by-case approach
using the particle interaction theory to provide guidance to the process of discovery.

1 This presupposes that all uses of the Monte Carlo method are for the purposes of understanding
physical phenomena. There are other uses of the Monte Carlo method for purely mathematical reasons,
such as the determination of multi-dimensional integrals.
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There are many examples of the use of the Monte Carlo method that can be drawn
from social science, traffic flow, population growth, finance markets, genetics, quantum
chemistry, radiation sciences, radiotherapy, and radiation dosimetry. Our focus on Monte
Carlo methods will concentrate on the simulation of particles being transported in human
bodies and tissues. As the scope of our work is restricted to SPECT studies in Nuclear
Medicine most of our simulations include only photon transport. Electron transport is
only needed when working with high-energy rays above 300 keV (see Chapter 5).

3.1.2 Monte Carlo history

The usual first reference to the method of Monte Carlo is that of Comte de Buffon [20]
who proposed a Monte Carlo-like method to evaluate the probability of tossing a needle
onto a ruled sheet. This reference goes back to 1777, well before the existence of automatic
calculating machines. Later, Laplace [50] suggested that this procedure could be employed
to determine the value of π, albeit slowly. Several other historical uses of the Monte Carlo
method predating computers are cited by Kalos and Whitlock [43].

Monte Carlo (MC) simulation using computers was first used during the World War II
Manhattan project to designate a class of numerical methods based on the use of random
numbers. Von Neumann and Ulam named it Monte Carlo simulation because of the
similarity between statistical simulation and games of chance. Of course, one of the most
well-known center for gambling is the Monte Carlo casino [87].

3.1.3 Monte Carlo basis

Fundamental to understanding the operation of a Monte Carlo process and interpreting
the results of Monte Carlo calculations, is some understanding of:

1. Elementary probability theory

2. “Pseudo” random number generators

3. Statistical theory and error estimation

Elementary probability theory

Monte Carlo (MC) simulation can be described as a statistical simulation method based
on random sampling of probability density functions (PDF ). A PDF is a measure2 of

2 “Tallying” is Monte Carlo jargon for “measuring” something, as one would do in an experiment.
There are many similarities between the handling of measured and tallied data, except that the tallies in
Monte Carlo simulation can be unambiguous, not obfuscated by extraneous physical detail. Monte Carlo
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the likelihood of observing x. Such a PDF (x) can, for example, describe the photon path
length x up to the next interaction with matter. Sampling a PDF (x), normalized by
integration over its definition range [a, b], can be performed by constructing a cumulated
probability density function (CPDF (x)):

CPDF (x) =

∫ x

0

PDF (ζ)dζ (3.1)

A random variable ξ can be sampled by substituting a random number in the range of
[0, 1) for CPDF (x) and solve the equation for x. If PDF (x) is analytically integrable,x
can be sampled in a straightforward manner. Often the PDF (x) is too complex to
allow analytic integration, as in the case of the Klein-Nishina formula which describes
the probability of Compton scattering over angle θ. In such cases the CPDF (x) can be
described numerically.

“Pseudo” random number generators

The “pseudo” random number generator (RNG) is the “soul” of a Monte Carlo simula-
tion. It is what generates the pseudo-random nature of Monte Carlo simulations thereby
imitating the true stochastic or random nature of particle interactions. Consequently,
much mathematical study has been devoted to RNG’s [48].

Linear congruential random number generators (LCRNG) are used for most computer
architectures which support 32-bit 2’s-complement integer arithmetic3. The following
equation describes a linear congruential random number generator (LCRNG) suitable for
machines that employ 2’s-complement integer arithmetic:

Xn+1 = mod(aXn + c, 232) (3.2)

This LCRNG generates a 32-bit string of random bits Xn+1 from another representa-
tion one step earlier in the cycle, Xn. In this equation a is a “magic” multiplier and c is
an odd number. Although there are guidelines to determine a good multiplier, optimum

analysis also allows a deeper study into the statistical nature of the tally, something that experiments
are often not able to fulfil.

3 In 32-bit 2’s-complement integer arithmetic architecture:
00000000000000000000000000000000 = 0
00000000000000000000000000000001 = 1
00000000000000000000000000000010 = 2...
01111111111111111111111111111111 = 231 − 1 = 2147483647
10000000000000000000000000000000 = −231 = −2147483648
10000000000000000000000000000001 = −231 + 1 = −2147483647
10000000000000000000000000000010 = −231 + 2 = −2147483646...
11111111111111111111111111111111 = −1
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ones are determined experimentally. Particularly good examples are a = 663608941 and
a = 69069. The latter has been suggested by Donald Knuth [48] as the “best” 32-bit
multiplier. When c is an odd number, the cycle length of the of the LCRNG is 232 (about
4 billion, in effect, creating every integer in the realm of possibility and an artifactually
uniform random number when converted to floating point numbers. When c is set to
zero, the LCRNG becomes what is known as a multiplicative congruential random num-
ber generator (MCRNG) with a cycle of 230 (about 1 billion) but with faster execution,
saving a fetch and an integer addition.

Statistical theory and error estimation

Statistical Mathematics Theory [66],[71] indicates that if:

1. The number of emitted photons is large Nc > 10 —usually Nuclear Medicine iso-
topes emit million of photons per second—.

2. The detection probability of a point source in air is lower than µ(A) < 0.05 —
detection probabilities on a single head SPECT camera are typically µ(A) < 10−4—.

the photon distribution in the detector bin A is a Poisson Distribution. A special case
of a Poisson Distribution appears when the number of detected counts λ > K is large
enough to transform the Poisson distribution into a Gaussian distribution with mean and
variance equal to λ. Some authors [71] situate this minimum threshold value at K = 5
(See Appendix A).

In fact, most of the applications and theories used in the field of Nuclear
Medicine are based on considering Gaussian distributions at each detector bin.
Such an assumption may be taken when the following conditions are accomplished:

1. The detection of an event is independent of the others

2. There is a huge number of emitted photons (decays) from the source radioisotope

3. The probability of detection is very small

4. The product of the number of emitted photons Nc and the probability of detection
(µ(A)) —which is the number of counts at every detector bin NA— is higher than
the threshold, i.e. λ > K

If these conditions are fulfilled, statistical techniques could be used in the fields of
Nuclear Medicine:
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1. Monte Carlo simulation produces Gaussian distributions of the projection data set.
If the number of counts at each voxel ensures a Gaussian distribution, Monte Carlo
simulations of the virtual phantom projections may be obtained directly with the
correct noise estimate.

2. The models for PSFs are obtained with experimental or simulated projection data
of a point source. These models are based upon high counting statistics at each bin.

3. Statistical Parametrical Mapping —SPM— analysis of reconstructed images based
upon tStudent tests

Thus, the basic tool to be used in this thesis has been introduced: Monte Carlo
simulation techniques.

3.2 Monte Carlo codes for particle transport

Many MC programmes are in use in the field of Nuclear Medicine or nuclear particle trans-
port as is shown in Table 3.1. These include general purpose codes such as EGS4 [58],
PENELOPE [74] or MCNP [13] among others. Some of them can simulate not only pho-
ton transport in detail, but also electron or neutron transport. Since these programmes
are often designed to allow the study of a large range of photon transport problems, they
are often complex to use. The generality of the programs may be a direct cause of com-
putational inefficiency. Furthermore, existing codes such as MCNP or PENELOPE often
do not allow other Variance Reduction Techniques (VRT) to be included or acceleration
methods designed for a specific SPECT imaging situation, although they describe the
underlying physics more accurately. This is the reason for the development of specific
Nuclear Medicine codes such as SimSET [37], SIMIND [52] or UMCS [21] among others.

The first task of this work was to look for the most significant Monte Carlo codes.
Afterwards, a comparison between those which are more reliable for the different applica-
tions was carried out. Table 3.1 shows the comparison of the most relevant characteristics
of each code.

3.2.1 PENELOPE code

PSF modelling will be performed with a very accurate modelling of the underlying physics
of particle interactions with matter, especially at high energies. Furthermore, the colli-
mator/detector configuration requires a detailed, complex geometry description. These
features may be supplied by a general-purpose code.

The PENELOPE code was chosen due to its great accuracy, wide range of ener-
gies and fast simulation transport including secondary particles (x-rays, electrons, etc.)
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Codes SPECT PET Coll. Elec. Language Origin

EGS no no no yes Mortran

ITS no no no yes Fortran Los Alamos

PENELOPE no no user yes Fortran Barcelona

MCNP no no user yes Fortran Los Alamos

SimSET yes yes yes no C++ Seattle

MCMATV yes no yes no Fortran Chapel Hill

SIMIND yes no yes no Fortran90 Lund

SIMSPECT yes no yes yes C MIT

PETSIM no yes yes no Fortran Montreal

Tab. 3.1: Monte Carlo codes used in nuclear imaging. The first four are general purpose codes,
whereas the latter five are specific Nuclear Medicine codes. Each column specifies
its availability for SPECT or PET simulation, collimator/detector PSF modelling,
electron simulation and the language code and place where it was developed.

through the collimator/detector system. The interaction models allow the simulation of
photon/electron transport in the energy range from 100 eV to 1 GeV [73]. A detailed
description of its components and features can also be found in previous publications
[76, 74, 4].

Moreover, PENELOPE includes a set of geometry routines, named PENGEOM, ca-
pable of handling any object formed by homogeneous bodies limited by quadric surfaces
(such as planes, cylinders, spheres, etc). In this code system, the user is responsible
for writing a simple steering main program, from where some of the PENELOPE and
PENGEOM subroutines are called to perform the tracking of the particles simulated in
whatever geometry. In our case, the complexity associated with the description of the
fan beam collimator geometry prevented us from using PENGEOM in the standard way.
Instead, we introduced a new solution presented 4 and 5 for low- and high-energy photons
respectively.

3.2.2 SimSET code

The simulation of virtual phantoms or the correction of the scattering in the projections
needs a fast Monte Carlo code without an excessively detailed underlying physical descrip-
tion. Moreover, the SPECT geometry consists of a complex tomograph cylinder with
a user-defined number of detector head positions at different angles, radius-of-rotation
(ROR), field of view (FOV), energy window, pixel binning, etc. The MC code will in-
clude all these detailed specifications of the SPECT technique.

The Simulation System for Emission Tomographs (SimSET) [36] was the software
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application chosen to overcome these problems and to provide a fast photon transport
simulation in both SPECT and PET. Other reasons for this choice were the availability
and the modular structure of the source code, the well-known language of the code (C++)
and the reliability of the program on different computer platforms (Linux, Unix, Windows,
etc.). Furthermore, the possibility to both contact and collaborate with the group which
developed the program was taken into account.

SimSET was developed at the Imaging Research Laboratory at the University of Wash-
ington (Seattle, USA) for public distribution to Nuclear Medicine research centers. The
purpose of the SimSET package is to simulate the transport of photons generated from a
volumetric distribution of an isotope through an independent heterogeneous attenuating
medium (human body, experimental phantoms, camera headers, etc.). In the final step
the photons are collimated, detected and binned for obtaining the corresponding projec-
tions (sinograms). The experienced user may modify some of the modules incorporating
some improvements in the code. In this thesis the Collimator Module which performs
the collimation process was modified because in the original SimSET version only the
geometrical component of the PSF was modelled (See Chapter 6). A new probability
density function which includes scatter within the collimator and septal penetration was
further developed using Monte Carlo techniques.

As input for the calculations, SimSET requires a digital representation of the activity
distribution (activity or source map) and mass density distribution (attenuation or TCT
map) of the patient. The Activity Object defines the spatial distribution of isotope
concentration from which photons will be generated. The Attenuation Object defines the
spatial distribution of attenuation material through which photons will travel. Although
these two items provide different information for the simulation, they share a common
geometric/parametric definition. Both items are needed to describe the Object as is shown
in Figure B.2.

SimSET can use the most common virtual phantom files such as the striatal, Zubal
or Hoffman brain phantom. Appendix B provides a detailed introduction to the package
along with a road map to the documentation and files [38] required to use the SimSET
package.

3.3 Adaptation of SimSET as a virtual phantom simulator

A lot of trouble was found in interpreting the SimSET results. After the initial stage
in Seattle, the SimSET developers presented SimSET as an engineering software tool for
designing hardware parts of the gamma camera. They focused on obtaining scattering
rations, energy responses, efficiencies, etc. for different isotopes and camera designs using
both SPECT and PET techniques. Their research did not produce the improvement or
assessment of the reconstruction algorithms.
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Fig. 3.1: Photon History Generator diagram. The rounded rectangles at the top represent the
various parameters that are required as input to the PHG, while the rectangles at the
bottom represent the PHG outputs.

(A) (B) (C)

Fig. 3.2: Striatal phantom for neuroreceptor SPECT studies. The experimental phantom is
shown in -A- and is used for validation trials. The virtual phantom with its corre-
sponding attenuation -B- and activity -C- maps for a certain slice are also shown.
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SimSET was thus not initially adapted as a virtual phantom simulator. The Monte
Carlo virtual phantom simulator must control not only the mean but also the variance
—the statistical noise— of projections. The level of counts of the study is a key point in
the analysis of the results. The original SimSET code could simulate projections of most
virtual phantoms but it did not reproduce the level of counts and the statistical noise of
a “real” SPECT acquisition. Therefore, an analysis in detail of the SimSET code and the
resulting statistics was needed.

This analysis is presented by comparing the design basis of SimSET and an “Analogue
Monte Carlo” simulation. For a better understanding, we only include relevant results
but in Appendix A the basis of each simulation is developed in more detail.

3.3.1 Interpretation of the SimSET mean

The Analogue Monte Carlo method

Monte Carlo methods are designed to find the parameters of a distribution that is governed
by stochastic variables. It is important to note that the process of detection is stochastic
because of its quantum nature. A parameter estimated by Monte Carlo methods is an
estimate. Monte Carlo methods find a value for the estimate by working with a sample
set of random variables in a certain sample size.

In a Nuclear Medicine Monte Carlo application, Ω is the set of available bin detectors
locations of the gamma camera, the probability distribution µ is governed by the physics
of photon transport through the media (object and collimator/detector system), and
Nc is the total number of emitted photons (decays of the radioisotope) in the body of
the patient. Therefore, the Analogue Monte Carlo method applied to Nuclear Medicine
estimates the parameters of the distribution (basically mean and variance) of counts, NA,
at bin A for a certain bin detector.

However, this underlying distribution is unknown, thus we have to perform a simula-
tion. We execute a loop i = 1; 2; 3...; Nh over Nh Monte Carlo histories and accumulate
the tally of score of χA. The final tally is an estimate of the mean of detected events in
A:

E(χ̄A) =

∑h=Nh

h=0 χA(h)

Nh

(3.3)

The question which now arises is: How good is our estimate E(χ̄A) for χ̄A is? And,
which is the error of this estimate? Fortunately, if the probability density function is a
properly defined with the corresponding variance and Nh is large enough, the Central
Limit Theorem indicates that the variance of the tally is 1/Nh times that of a single
tally. And what is more, the different estimated values themselves will tend to be normally
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distributed (centered at x̄ and with a Gaussian width σ√
Nh

) even if the random variable

itself is not normally distributed (See Appendix A).

Note that this makes no assumptions about the shape of the probability distribution
µ, but that its second moment exists. Irrespective of the shape of µ, the estimate of
its mean will be normally (Gaussian) distributed and the width of the distribution will
narrow with the increase of the sampling size. This is truly one of the most remarkable
results in mathematics! This fact is really important because it allows us to calculate the
result as follows:

1. Calculate the mean value of χA(h):

E(χ̄A) =

∑h=Nh

h=0 χA(h)

Nh

(3.4)

2. Estimate the variance of the E(χ̄A) using the Central Limit Theorem:

Var(χ̄A) =
1

Nh

{E(χA) − (E(χA))2} =
1

Nh

Var(χA) (3.5)

3. Report the final result as:

χA = E(χ̄A) ±
√

Var(χ̄A) (3.6)

Thus, the deviation in our estimate is related to the deviation of the parent distri-
bution, and it decreases with the square root of the number of histories, Nh. This is
a fundamental result of classical Monte Carlo methods. Note that the first term of the
equation is the variance reduction due to the Central Limit Theory, and the second term
is the so-called intrinsic variance which is a random value depending on the simulation
problem (geometry configuration, photon tracking, etc.).

Nevertheless the biggest problem with Monte Carlo techniques is the extremely slow
convergence of the estimate. The estimate error is inversely proportional to the square of
the size of the observation set (Nh). In other words, the algorithm has a convergence of
O( 1√

Nh
). Thus, the quadrupled number of histories to sort only halves the error (i.e. at

much more CPU time the variance can be reduced). Much of the research in Monte Carlo
methods has been aimed at increasing the convergence of the estimator by decreasing its
intrinsic variance Var(χA) and getting better results from fewer samples. The intrinsic
variance is constant (randomly constant) but could be changed on the basis of Monte
Carlo knowledge : Variance Reduction Techniques (VRT) (See Appendix A).
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SimSET Monte Carlo

The sampling of each history is defined in SimSET as in the Analogue Monte Carlo
method, but with a difference in the initial weight. This will change the statistical results
of SimSET in comparison with a standard Monte Carlo code. Whereas in the latter all the
results are given per particle emitted, in the former the results are absolute counts.
Then in SimSET a variable proportional of the activity is defined and is the number of
decays at each voxel Nck and the total decayed particles in the object, Nc:

Nc =
k=K
∑

k=1

Ak∆Vk∆t =
k=K
∑

k=1

Nck (3.7)

where:

1. ∆t is the scan time for the SPECT acquisition4

2. All the voxels defined in the input of PHG have a certain volume represented by
∆Vk

3. Finally Nck is the number of decays at each voxel, obtained in µCi

cm3 cm
3s5

The new sorting nk then decays at each voxel K of the object volume and is defined
according to this new decay map. The decays are sorted voxel by voxel in a sequential
order as described in [37]:

nk = Nh

Nck

Nc
(3.8)

The initial weight differs from that of Analogue Monte Carlo simulation. In SimSET,
the result —the number of counts received at a certain detector A— depends on the
particular conditions of the scan (length of scan, activity map and object volume) whereas
standard Monte Carlo simulation delivers a general result —the detected events per unit
particle— which can be easily related to the conditions of the scan. So the initial weight
in SimSET is set to:

4 In the original SimSET code this variable was called length of scan and was defined constant for all
the simulations. However we introduced changes to the original code in order to transform length of scan

into a defined user variable in order to control the mean level of total counts in the projection data
set. This is done in SimSET code at routine SubObj.c in function SubObjCalcTimeBinDecay (calculus
on nk for each voxel) and the weight is set on SubObjDecayWeightSlice

5 The activity in each voxel is supposed constant during the length of the scan. This assumption may
be taken for isotopes such as 99mTc or 123I whose half-life periods are larger than the length of the scan.
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w0 =
Nc

Nh

(3.9)

Once the Nh histories have been sorted with the density probability function pk and
the tracking has set a weight w(h) for each, the magnitude estimated by SimSET is
directly the number of events received at detector A, i.e. the mean value of the event
w0(h)w(h)χA(h):

ESimSET(χ̄A) =

h=Nh
∑

h=1

χA(h)w0(h)w(h) =

∑h=Nh

h=1 χA(h)Nc w(h)

Nh

(3.10)

From equations (3.10) and (A.26) it is clear that the relation between SimSET’s mean
estimator and the standard Monte Carlo’s estimator is:

E(χ̄A) =
ESimSET (χ̄A)

Nc
(3.11)

Similarly the variance estimator relation between the SimSET and the Analogue Monte
Carlo simulation can be studied, giving:

VarMC(χ̄A) =
VarSimSET (χ̄A)

Nc2
(3.12)

If we ask the question “how many particles NA have reached the bin detector A after
Nc particles have decayed from the source ”? we obtain different answers depending on
the type of simulation. From the Standard Monte Carlo point of view:

NA = Nc E(χ̄A) (3.13)

And applying the relation between both:

NA = Nc E(χ̄A) = Nc
ESimSET (χ̄A)

Nc
= ESimSET (χ̄A) (3.14)

So the mean estimator given by SimSET is directly the number of “real
counts” in detector bin A. Nevertheless, at this point there were some important
questions which had not been described in the SimSET manuals:

1. Which is the detected counts distribution at each bin detector given by SimSET?

The bin detector distribution coming out from a Monte Carlo simulation follows
a Gaussian distribution if the number of counts at each bin is greater than λ =
5 because of the Central Limit Theorem and the characteristics of the detection
probability density function —(See Appendix A)—.
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2. How could a simulated sinogram be equivalent to an experimental acquisition of a
SPECT study with the same mean and variance?

3.3.2 Interpretation of the SimSET variance

There are two possible answers to the last question:

1. Simulating a study with a huge number of histories Nh such that:

lim
Nh→∞

Var(χ̄A) = lim
Nh→∞

1

Nh

Var(χA) = 0 (3.15)

Then the mean would be estimated without error [25]. In order to reproduce the
same variance as the experimental acquisition, the Poisson distribution would be
sorted at each detector bin based upon the known exact mean. The problem of this
solution is the burdensome computer effort in terms of CPU time in order to reach
the desired number of histories.

2. Developing a new stopping criteria for SimSET simulations. There is a point in each
simulation when the variance and the mean estimator are equal to the real ones.

A new Stopping Criteria for SimSET

In this thesis a new stopping criteria for SimSET simulations in order to get “real” variance
on the distribution of counts fixed by the user is presented. The different conditions which
SimSET simulation has to fulfil in order to obtain a certain number of particles NA at
bin detector A after Nc particles have decayed from the source are:

1. The user should fix the correct length of scan time ∆t1 in the simulation at a
certain value in order to obtain the desired number of detected events6 NA1 . The
mean estimator is linear with ∆t, so it is possible to perform an initial simulation
(∅) in order to obtain the slope of the linear regression:

∆t1 = ∆t∅
NA1

∑h=Nh

h=1 w0∅(h)w∅(h)
(3.16)

6 In Nuclear Medicine studies the quality of the image is associated with its low variance, that is the
number of counts NA1

.
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2. With the new ∆t1 a new simulation (1) may be performed and NA1 is reached
as the estimated mean. The variance VarSimSET (N̄A1) obtained in the simulation
could be used in order to get the linear regression factor between the variance of
the simulation and Nh. Once the simulation is performed, the correct number of
histories Nh2 may be adjusted because the final variance of the simulation is known,
and it is equal to the desired number of counts NA1 .

Nh2 = Nh1

NA1
∑h=Nh

h=1 w01(h)2w1(h)2
(3.17)

3. The result of simulation (2) gives a counter distribution with equal mean and vari-
ance, so a ”real” nuclear medicine study will be obtained.

NA1 =

h=Nh
∑

h=1

w02(h)w2(h) (3.18)

VarSimSET (N̄A) = NA1 =

h=Nh
∑

h=1

w2(h)2 (3.19)

The only condition is to have a sufficiently high-count of the distribution Ni > 5 in
all the detector bins i for the distributions to be Gaussian —See Appendix A—.

Demonstration 1 for SimSET stopping criteria

If both images (real and simulated) have to be the same at each bin we need to obtain the
same mean and if both images have the same noise, they will present the same variance.
The variance Var(NA) —of a Poisson distribution— then has to be equal to the mean:

Var(NA) ' NA = Nc2 VarMC(χ̄A) = VarSimSET (χ̄A) (3.20)

Demonstration 2 for SimSET stopping criteria

Another way to demonstrate that the estimators of the mean and the variance have to
reach the same value in SimSET simulations is by comparison of the signal-to-noise ratio
SNR parameter between both images. The SNR parameter is defined for any random
variable or distribution X as:

SNR(X) =
σ(X)

X̄
(3.21)
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For a real image with a stochastic distribution of NA counts in a detector bin A, with
the same assumptions as were made in the last section about the Poisson distribution of
real noise, the SNR parameter is set to:

SNRreal(NA) =

√
NA

NA

=
1√
NA

(3.22)

The same parameter can be calculated for a simulated SimSET image:

SNRSimSET (NA) =

√

∑h=Nh

h=1 w2
0w(h)2

∑h=Nh

h=1 w0(h)w(h)
(3.23)

Moreover, the mean equals the number of counts in bin A:

NA =

h=Nh
∑

h=1

w0(h)w(h) (3.24)

Substituting the last equation in the SNR for a simulated image (3.23), it yields:

SNRSimSET (NA) =

√

∑h=Nh

h=1 w2
0w(h)2

NA

(3.25)

Comparing both parameters and setting them equal, we obtain:

SNRSimSET = SNRreal (3.26)

√

∑h=Nh

h=1 w2
0w(h)2

NA

=
1√
NA

(3.27)

√

√

√

√

h=Nh
∑

h=1

w2
0w(h)2 =

√

NA (3.28)

It is important to note that there is a unique solution for the last equation as the
simulation variance is a continous, monotonic decreasing function of Nh:

h=Nh
∑

h=1

w2
0w(h)2 = NA (3.29)
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VarSimSET (χ̄A) = NA (3.30)

3.4 Validation of the modified SimSET code

In order to compare two different outputs, (i.e. an experimental image projection and a
simulated image) it is common to use the t−Student test. This test assumes two-normal
distributions at each bin detector and it compares both testing the null hypothesis. The
compared results between experimental and simulated projections of a geometric phantom
were presented by Cot et al. [17].

3.4.1 Null hypothesis

The null hypothesis asserts the coincidence of two samples. The trial is based on the “dif-
ference distribution” and the analysis of its statistics. This new distribution is supposed
to be zero or null. The t − Student test is a tool used to compare images in Nuclear
Medicine. The ”difference distribution” is then referred to as the difference bin to bin
(xA) between images:

xA − yA = 0 (3.31)

Once the “difference distribution” is defined, some samples of this distribution (e.g.
the available images) are compared with the null image, i.e. the image with µ = 0 and
σ = 0. This comparison is calculated based on the statistical parameters of the different
images:

tS =
(x̄A − ȳA) − 0

Var(xA + yA)
=

(x̄A − ȳA) − 0

Var(xA) + Var(yA)
(3.32)

This test assumes normal behaviour of the two images to be compared. This condition
is ensured by selecting those bins with a statistical size superior to a selected threshold
(λ ≥ 5, see Appendix A). It is clear that the lower the threshold, the bigger the sample
becomes, and so the results are based on a large number of statistics. The results of the
t−Student test indicate the error when the null hypothesis is rejected. If the ”difference
distribution” does not fulfil a normal distribution (based on its confidence interval below
t = 1, 2, 3 × σ) then the probability of error is precisely this confidence interval.

In Nuclear Medicine applications the reference images are the experimental projec-
tions, whereas the image to be tested is the simulated image. Both are supposed to
belong to the same distribution and the null hypothesis is applied. For those “difference
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distributions” whose confidence intervals are below 2 σ are close to 95%, there is only a
5% error when rejecting the null hypothesis.

3.4.2 Material and Methods

The aim of this work was to validate the SimSET capacity to generate SPECT studies. In
order to validate the modified SimSET simulator, the experimental projections acquired
in the Nuclear Medicine Department of the Hospital Cĺınic were compared with those
projections obtained by Monte Carlo simulation in the same conditions. It was decided
to use a geometrical phantom to be imaged. Both image outputs, the experimental and
the simulated ones should be compared using the t-Student test.

Experimental acquisitions

The real studies were obtained with a cylindrical lucite phantom built at the Laboratory
of Biophysics and Bioengineering. It contained six 10-cm-high cylinders of 5, 4, 3, 2, 1.5
and 1 cm in diameter. They were placed describing a hexagonal shape —See Figure 7.1—.

(A) (B) (C)

Fig. 3.3: Experimental phantom geometry -A- with its correspondent attenuation -B- and ac-
tivity -C- maps

The cylindrical phantom was inserted in a 20-cm-diameter cylindrical tank filled with
water and 99mTc. The projections were obtained in an ELSCINT SP4 gamma camera with
a parallel high resolution collimator. The radius of rotation was 17 cm and the detector
heads covered 360o in 60 projections of 64 × 64 bins. The size of each bin detector (or
pixel) was 0.4717× 0.4717 cm2. The statistical level of the study was 1.85× 106 detected
counts.
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SimSET simulations

The Monte Carlo simulation was performed using the attenuation and activity maps
of the object cylinder shown in Figure 7.1. The rectangular grid used was binned in
256 × 256 bins of 0.1179 cm

bin
and 18 slices 0.4717 cm in height. The activity value was

made homogeneous for the active volume at 10−4 µCi

cm3 of 99mTc photons at 140 keV.

The length of scan user-variable was set to 4.872 seconds in order to get the same
level of counts than in the experimental acquisition. With this length of scan and activity
map, the total number of decays from the object was 2.37× 1010 during the whole study.
The target cylinder was fitted with a collimator/detector system with a radius of rotation
of 17 cm and a transaxial distance (normal to z-axis or tomograph axis) of 64 bins each
of width 0.4717 cm. 60 angles around the object were simulated. The FWHM resolution
energy of the NaI was set equal to the experimental value, that is 10% centered at 140
keV.

In order to get the same variance as the mean estimator, 3×108 histories representing
2.37 × 1010 decays were tracked, that is each history had an initial weight of w0 = 79
“real photons decayed”. After tracking, collimating and detecting these decays, the sum
of the overall counters in the system reached 1.85× 106 weights. Thus, the same number
of experimentally detected counts. The computer time for the simulation on a Pentium
III with 2 800MHz processors in monoprocessor mode was 9.7 hours using all the variance
reduction techniques available.

3.4.3 Results

Comparison of the results are divided into two levels:

1. Quantitative: t−Student test on image projections: In the first level the projections
were compared with each other using a statistical comparison based on obtaining a
t − value at each detector bin A of the system based on the following:

tA =
NASimSET

− NAexp
∑h=Nh

h=1 w(A)2 + NAexp

(3.33)

A statistical distribution of t-values was obtained. Following the t-test conditions,
if the null hypothesis was not to be rejected, then both distributions had to present
t − values distributed as normal variables:

Those results are presented in Table 3.3 and 3.4.

Both t-Student values at different thresholds (NA) present similar distributions.
Thus, the projection data set follows a Gaussian distribution at this level of counts.
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Parameter Distribution

Number of bins tA ≤ 1 68.27%

Number of bins tA ≤ 2 95.45%

Number of bins tA ≤ 3 99.73%

Tab. 3.2: T-Student values for the normal distribution z(0,1)

Parameter Results Distribution

Number of detector bins 3840

Number of valid bins 2702

Number of bins tA ≤ 1 1708 63.21%

Number of bins tA ≤ 2 2467 91.30%

Number of bins tA ≤ 3 2702 98.59%

Tab. 3.3: T-Student ttest30 (NA ≥ 30) on results of the modified SimSET.

The differences could be justified by the non-simulated phenomena of the efficiency
of the crystal depending the photon energy and the noise effect.

2. Qualitative: the experimental and simulated sinogram projections may be compared
in Figure 3.4.

As is shown in Figure 3.5 the variance obtained in the simulation using the stopping
criteria was equal to the number of counts of the study. These results were compared
with the estimated variance of SimSET using the variance estimator (QF).

3.4.4 Discussion

The results, both quantitative and qualitative, demonstrate the feasibility of SimSET as
a virtual phantom simulator for SPECT studies. The application of SimSET in other

Parameter Results Distribution

Number of detector bins 3840

Number of valid bins 2896

Number of bins tA ≤ 1 1770 62.50%

Number of bins tA ≤ 2 2640 90.62%

Number of bins tA ≤ 3 2858 98.37%

Tab. 3.4: T-Student ttest5 (NA ≥ 5) on results of the modified SimSET.
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Fig. 3.4: From left to right: Experimental and simulated sinograms with their corresponding
image of difference
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Fig. 3.5: The simulated squared sum of weights (estimated variance) is represented by the line
with vertical crosses. The mean number of detected counts is shown by the line with
squares. The dashed line represents the associated variance to a “real count” simulation
calculated by SimSET using the QF factor and the number of accepted photons (see
Appendix A). All the lines intersect at the same point: the level of detected counts of
the study according to our stopping criteria.
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Nuclear Medicine studies with other virtual phantom simulators such as the Hoffmann
brain phantom [61, 63] or new models of cardiac phantoms [15, 75] has proved to be
fesible. The modified SimSET has been revealed as a qualified tool for the optimization
of reconstruction algorithms and the analysis of the wide range of parameters that have
to be adjusted in clinical trials.

Including variance techniques allows a speed-up factor of 7 compared with the Ana-
logue Monte Carlo simulation. In Chapter 6 a new variance reduction technique for the
SimSET code is used in order to accelerate the simulation.



4. MC STUDY OF THE PSF FOR LEHR

COLLIMATORS

“Definition of Diagnostic (diagnōstik) : A compound administered for the diagnosis
(Diagnostōs : equivalent to be distinguished) of an abnormal condition of the body or

mind. That when excreted and analyzed indicates a specific pathology.”
Webster’s Dictionary

4.1 Introduction

Accurate modelling of the PSF is needed to perform iterative reconstruction and SPECT
quantification. There are different approaches to modelling of this kind. Metz [56] and
Tsui [83] models, based only on the geometric component of the point spread function
(PSF), analytically determine the intersections between the aperture functions of round
holes using the Fourier transform in the frequency domain. However, Frey et al. [32]
improved in an easy way the modelling of the PSF using geometric approaches of the
density probability per unit of area. These models determine the intersections between the
aperture functions of round holes using analytical formulae in the real domain. All those
models have the following limitation: only take into account the geometric component of
the PSF.

Other studies model the septal penetration component by means of numerical ray
tracing techniques [64], [6] in order to obtain a unique expression to describe the whole
PSF without any Monte Carlo nor integral method beside. This method is limited also by
only taking into account the geometric component of the PSF. An extended description
of each model is presented in Chapter 6.
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However, a global study including coherent (Rayleigh) and incoherent (Compton) scat-
tering is not feasible with deterministic methods described above. A complete character-
ization of the collimator response requires the use of Monte Carlo simulation techniques,
thus enabling the incorporation of all the PSF components for any source energy. It has
been shown that Monte Carlo calculations simulate radial PSFs and energy spectra for
parallel collimators in reasonable computation time [52], [84], [22]. The aim of the work
presented in this section is to extend previous studies by analyzing the geometric, septal
penetration, coherent and incoherent scatter components as a function of source position
for a fan beam collimator with a detailed hexagonal hole array. The modelling of the
collimator hole is important since the sensitivity of the system may differ due to changes
in its shape [84].

De Vries et. al demonstrated that scatter component can be particularly important
when the photon energy is increased [84]. This effect happens when imaging low or
medium energy isotope in the presence of high energy contaminant photons which can be
detected in the desired energy window after scattering. The next chapter analyzes the
influence of the photon energy in the PSF functions.

4.2 Materials and Methods

4.2.1 Description of the simulation program

Simulation of photon transport was carried out by using the Monte Carlo code PENE-
LOPE [76] [72] [3], which includes a set of geometry routines capable of handling any
object formed by homogeneous bodies limited by quadric surfaces (such as planes, cylin-
ders, spheres, etc.). The user is required to write a simple main steering program, which,
among other things, keeps score of the quantities of interest—See Appendix C—.

PENELOPE performs Monte Carlo simulation of electron-photon showers in arbitrary
materials. The adopted scattering models, which give a reliable description of radiation
transport in the energy range from about 1 keV up to 1 GeV, combine numerical total
cross sections with simple analytical differential cross sections for the different interaction
mechanisms. Coherent scattering of photons is described using the classical Thompson
differential cross section (DCS) and an analytical atomic form factor. Incoherent scat-
tering is described by means of a DCS calculated from the relativistic impulse approxi-
mation, thus accounting for electron binding effects and Doppler broadening, which are
non-negligible at the low photon energies encountered in our application. Cross sections
for photoelectric absorption, on the other hand, are interpolated from a table generated
by the XCOM program [10] and estimated to be accurate to within a few percent for
energies above 1 keV. Although PENELOPE includes the simulation of pair production
and secondary radiation (x-rays from vacancies in the K-shell and Auger electrons), these
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interactions can be neglected for the energy window considered in our application (126 to
156 keV for 99mTc imaging).

To prevent the geometry routines from carrying all the holes each time a photon travels
through the collimator, an approach that would have represented an excessively large
amount of data, the description of the geometry was split into two steps. First, during
the initialization, all the centers and elongations for each hole were stored in a look-up
table which took into account all the characteristic parameters such as the focal length,
collimator thickness, etc. This table remained unchanged during all the simulation. Each
hole center was calculated using the recurrence relation defined by:

Xn = Xn−1 +
∆R0

cos(ψn−1)
(4.1)

cos(ψn−1) =
F

√

F 2 + X2
n−1

(4.2)

where Xn is the position of the center of the n-th hole on the fan beam axis (x-axis),
∆R0 is the distance between two hole centers at the origin (X0 = 0) in the fan beam
direction, and 1

cos(ψn−1)
is the elongation factor depending on the angle ψn−1, between the

axis of the (n-1)-th hole and the central axis. As the point source moved away from the
central axis, the elongation factor increases and the effective values of hole radius and the
septa rose by 20%.

Once the two basic rows were defined with all the Xn centers, the whole collimator
was filled with a set of holes obtained by a constant translation along the y-axis. The
hole pattern was validated by measuring the position of the holes with a ruler. Calculated
and experimental hole locations showed good agreement not only near the z-axis but also
away from it.

The first elongation factor was set to 1
cos(ψ0)

= 1 and the x-coordinates to X0 = 0 and
X1 = ∆R0. The parameter ∆R0 depends on the hole shape and is measured with a ruler
on the front plane collimator. This program allow the inclusion of different hole shapes
which affects widely the sensibility and the final resolution:

1. Hexagonal shaped hole

2. Round shaped hole

3. Squared shaped hole

4. Others defined by the user

After setting up the look-up table, the second step consisted of tracking each photon
through a local hole array around the impact point. Each time a photon reached the front
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Fig. 4.1: Hole net at the front plane collimator

plane of the collimator, a set of N holes centered at the closest position to the impact
point was defined using the information stored in the look-up table.

We included a study with different hole array sizes around each impact point, that
is, with different values of N . The CPU time increases non linearly with N since more
time is spent to track the particle through the hole surfaces. Thus, this study compared
the results obtained with arrays consisting of 19, 39 and 83 holes in order to evaluate the
minimum CPU time required to get correct results for different point sources. Figure 4.2
shows a hole array including 19 elements centered on the fan beam axis.

Each photon was emitted within a solid angle Ω smaller than 4π in order to save
computation time. Simulation results were corrected afterwards to account for this fact
by including a weight factor for each photon. Ω was selected by a geometric approach
[65] using two times (safety factor = 2.0) XM , the maximum distance reached by photons
passing through collimator—for a more detailed description see Appendix C—. In this
way, all the ignored holes had a negligible contribution to the studied quantities and the
simulated results reach an error below 3% in worst case with a simulation time of few
hours.

The simulation code controlled all the photon state variables such as energy, position,
direction, weight, type of interaction, number of crossed septa, hole number and material
at each particle track. The main program managed all this information in order to keep
score of the quantities of interest for each study.

Each photon reaching the detector layer was flagged according to its past interactions
as follows:
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Fig. 4.2: Final size for the hole array used as for the simulation tracking inside the collimator

1. 1 for geometric photons (no interaction suffered and no septa crossed)

2. 2 for septal penetration (no interaction, one or more septa crossed)

3. 3 for photons that have undergone a coherent interaction at some point

4. 4 for photons that have undergone an incoherent interaction

This classification allowed us to differentiate contributions to the final image from the
different components.

The detector layer was just a geometric plane defined at a distance B from the back-
plane collimator. Thus the model used in this work only simulates the collimator effects
and does not include the detector effects.

This simulation tool also allows us to explore the properties of different geometries and
hole shape designs for parallel or fan beam collimators. We studied square hole shapes
by modifying the parameter ∆R0 in order to show the influence of the hole shape on the
collimator sensitivity.

4.2.2 Experimental measurements

To validate the Monte Carlo calculation, sensitivity values obtained from simulated PSFs
for a fan beam collimator were compared with those obtained from experimental PSFs.
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To this end, a cavity (1.5 mm in diameter and 4.5 mL in volume) inside a thin piece of
Lucite was filled with 15 MBq of 99mTc. This point source was placed at different heights
(z equal to 5, 10, 15, 20, 25 and 30 cm) on the central axis and also displaced from the
z-axis (x equal to 2, 4, 8, 12 and 16 cm). Images were acquired with a double-headed
Helix (Elscint, Haifa) camera with a fan beam collimator.

In the case of an hexagonal hole geometry, (see Figure 4.1), the fan beam had a
measured focal length F of 35.5 cm [65], a distance between hole centers (∆R0) equal to
0.2846 cm in the fan beam axis, a septal thickness s of 0.02 cm and a collimator width
(L) of 4 cm. In the simulation study the detector layer was situated at a distance B of
0.8 cm. from the collimator back plane.

As shown in Figure 4.3 a Lucite holder was built in order to place the point source at
different locations along the z-axis and separated from it.

Fig. 4.3: Lucite holder for the different locations of the point source

4.3 Results

A comparison of sensitivity S for different hole array sizes Ni is presented in table 4.3.
The sensitivity values were obtained as the number of photons reaching the detector per
emitted photon. The PSF was taken at different heights along the central z-axis with a
different number of holes (N1, N2 and N3) around each impact point.

The maximum difference in sensitivity was reached at z = 30 cm and its value was
lower than 0.5% which is of the same order as the statistical uncertainty of the Monte Carlo
simulations presented in this study. The computational time needed for each simulation
was TN1 = 4.7 h, TN2 = 9.9 h and TN3 = 46.1 h. The ratio between the biggest and the
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z (cm) 5 10 15 20 25 30

N1 = 19 8.13 9.75 12.15 16.07 23.79 45.17
N2 = 39 8.13 9.76 12.13 16.08 23.76 45.24
N3 = 83 8.13 9.82 12.19 16.09 23.89 45.42

Tab. 4.1: Sensitivity values ×10−5 at different heights along the central z-axis with different
array sizes

smallest array was about 10. Given the large time difference combined with the negligible
change in sensitivity, we chose to perform our study with the minimum number of holes
N1 = 19.

Figure 7.6 shows the total PSF obtained from the Monte Carlo simulation with the
source at z = 10 cm.

Fig. 4.4: Total PSF image at z=15 cm

In this Figure the geometric component is shown to be the predominant factor. The
discrete collimator hole structure is clearly visible because the detector blurring effect has
not been simulated. Other components such as septal penetration, Compton and Rayleigh
scattering have a slight effect in the whole image.

Sensitivity results along z-axis heights are presented in table 4.3. The values of the first
row S indicate the absolute probabilities of detecting a photon per particle emitted. The
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second row SMC/SMC5 corresponds to the relative simulated sensitivities with respect
to the sensitivity when the source is located at z = 5 cm. The third row Sexp/Sexp5 shows
the relative experimental sensitivities.

z (cm) 5 10 15 20 25 30

S (x10−5) 8.13 9.75 12.15 16.07 23.79 45.17
SMC/SMC5 1.00 1.20 1.49 1.98 2.92 5.56
Sexp/Sexp5 1.00 1.21 1.51 1.99 2.88 5.32

Tab. 4.2: Sensitivity values and ratios at different heights

Figure 4.5 shows the four PSF components. The images were obtained taking into
account the flags assigned to the photons when they reached the detector surface, as
described above. Each image is normalized to its maximum.

Fig. 4.5: Simulated geometric (top left), septal penetration (top right), coherent scatter (bottom
left) and incoherent scatter (bottom right) PSF components for a point source located
at (x,y,z) = (0,0,10) cm

The contribution of each component to the total PSF is presented in table 4.3.

These results show that for 99mTc imaging the major contribution to the fan beam PSF
is the geometric component, which represents approximately 95.1% of total PSF. Septal
penetration is the second major contributor, with a 3.7%, and Rayleigh photons are the
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z (cm) 5 10 15 20 25 30

Geometric 95.3 95.0 95.1 95.1 95.2 95.2
Septal penet. 3.5 3.9 3.7 3.7 3.7 3.6
Coher. Scatt 1.1 1.1 1.0 1.1 1.1 1.1
Incoh. Scatt 0.1 0.1 0.1 0.1 0.1 0.1

Tab. 4.3: Contribution of each component to the PSF in%

third component, with a contribution of 1.1%. The incoherent scattering component is
almost negligible, with an average contribution of 0.1%.

This characterization study was performed also off the z-axis. The corresponding
results are presented in table 4.3. The values in the first row presents the absolute
probabilities of detecting a photon per particle emitted. The second row values SMC/SMC

correspond to the simulated sensitivities with respect to those obtained when the source
is located at the same height on the z-axis. The third row Sexp/Sexp5 shows the relative
experimental sensitivities in the same terms. The source point locations are represented
in the form (X,Z) locations.

x,z (cm) (16,5) (16,10) (12,15) (8,20) (4,25) (2,30)
S (x10−5) 6.40 7.00 9.07 12.65 19.73 39.89
SMC/SMC5 0.78 0.70 0.71 0.79 0.84 0.93
Sexp/Sexp5 0.79 0.72 0.75 0.79 0.83 0.88

Tab. 4.4: Sensitivity values for the off-axis PSF

Table 4.3 presents the same results as table 4.3 for the off-axis case.

x,z (cm) (16,5) (16,10) (12,15) (8,20) (4,25) (2,30)

Geometric 95.8 95.6 95.6 95.4 95.2 95.3
Sep. penet. 3.1 3.3 3.3 3.5 3.6 3.5
Coh. Scatt. 1.0 1.0 1.0 1.0 1.1 1.1
Incoh. Scatt. 0.1 0.1 0.1 0.1 0.1 0.1

Tab. 4.5: Contributions of each component of the off-axis PSF in%

To provide further elements of validation, the PSF was convolved with the intrinsic
response of the detector and the resulting blurred PSF was collapsed and compared with
PSF obtained experimentally. Table 4.3 presents a comparison of the FWHMs (Full
Width at Half Maximum) obtained in this way.
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z (cm) 5 10 15 20 25 30

FWHMMC 0.56 0.85 1.36 2.18 3.83 8.33
FWHMEXP. 0.58 0.89 1.37 2.21 3.71 8.06

Relative error (%) 3 5 1 1 3 3

Tab. 4.6: Experimental and simulated FWHM incm

Also, Table 4.3 shows the analogous results for the FWTM (Full Width at Tenth
Maximum). As in the former case, the agreement is excellent.

z (cm) 5 10 15 20 25 30

FWTMMC 1.04 1.50 2.30 3.68 6.44 14.54
FWTMEXP. 1.11 1.55 2.21 3.76 6.41 14.82

Relative error (%) 6 3 4 2 0 2

Tab. 4.7: Experimental and simulated FWTM incm

In Figure 4.6, the simulated geometrical PSF convolved with the intrinsic response of
the detector GPSF is fitted to a Gaussian. The corresponding correlation coefficient is
0.998, thus justifying the use of Gaussian functions in collimator modelling studies.

Finally, sensitivity differences between hexagonal and square shaped hole collimators
are presented in table 4.3. Two different types of squares were simulated. First type,
(Square 1), it was assumed the same septa thickness and same open area per hole as in
the hexagonal case. Second type, (Square 2), the hole area and lead content per unit
detector area were assumed to be equal than those corresponding to the hexagonal hole
collimator.

z (cm) 5 10 15 20 25 30
Hexagon 8.13 9.75 12.15 16.07 23.79 45.17
Square 1 8.49 9.92 12.31 16.22 24.10 46.47
Square 2 8.51 10.19 12.64 16.73 24.79 47.40

Tab. 4.8: Sensitivity values for different hole shapes (x10−5)

4.4 Discussion

Results of relative sensitivity from table I4.3 indicate that Monte Carlo values closely
match those obtained from the experimental measurements with differences less than 2%
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Fig. 4.6: The simulated GPSF (dots) and a Gaussian function (solid line)

in the range from z=5 to 25 cm. Differences up to 5% were found at the highest source
location (z=30cm), caused by the fact that when the source is placed near the focal line,
small displacements around the exact position result in strong fluctuations in fan beam
sensitivity. The sensitivity results off the z-axis present a maximum difference of 5.4%.

Tables 4.3 and 4.3 show that for 99mTc imaging with a fan beam collimator, the
largest contribution to the sensitivity is due to the geometric component. This result
is in accordance with that obtained by De Vries et al. [84] with a parallel collimator.
Septal penetration is the second most important contribution, its effect being equivalent
to an enlargement of the size of the collimator holes. Coherent scattering represents
the main scattering effect. Incoherent scattering does not appreciably contribute to the
PSF. Since, for 99mTc imaging, a large fraction of photons crossing the collimator do not
change their previous direction (the sum of the geometric and septal penetration terms
yields 98.9% in our case), collimator scattering corrections are expected to play a minor
role in reconstruction algorithms.

The change in sensitivity on the z-axis including its four components corresponds with
the results obtained by only using the geometric PSF component [51]. We can explain
this behavior based on the results presented in table4.3 and 4.3, where the geometrical
component is kept almost constant around 95% over the whole fan beam collimator field
of view. The sensitivity pattern away from the z-axis matches the law of the square of
the cosine of the aperture angle well.

Finally table4.3 shows that some hole shapes give rise to sensitivities that are 4.5%
higher than those found for the hexagonal case.
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Ongoing work on the transport inside the detector system and the study of the PSF
extensions for different point source locations will be published elsewhere. With this
simulation tool, it is also possible to compare parallel and fan beam collimators for other
isotope energies and geometry designs.



5. MC SIMULATION FOR HIGH ENERGY

GAMMA-RAY PSF

The diagnosis of Parkinson using a neurotransmission SPECT study. Normal —left—
and pathological —right— situations.

5.1 Introduction

For relatively low energies, modelling of the PSF can be accomplished by only taking
into account the geometric component [32, 65], that is, by transporting photons as if
these particles were absorbed whenever they reach the collimator septa. The geometric
component can be determined by means of deterministic models [56, 83, 32] or by having
recourse to numerical ray tracing techniques [6, 62]. A different approach consists of using
Monte Carlo simulation to describe radiation transport in full, a method that enables
the evaluation of the relative importance of the geometric component as compared with
other effects, namely, septal penetration, coherent (Rayleigh) scattering and incoherent
(Compton) scattering [84, 18]. As will be seen later, the non-geometric effects turn out to
be non-negligible at relatively high energies, such as those encountered when using certain
radioisotopes.

The radionuclides most commonly used in neurotransmission SPECT studies are 99mTc
and 123I, with different ligands. In particular, 123I is a gamma emitter whose photon
spectrum is dominated by a line at 159 keV with a yield (relative to the other gammas) of
96.5% [85]. The energies, in keV, and relative yields (in parenthesis) of the other emission
lines are as follows: 248 (0.08%), 281 (0.09%), 346 (0.15%), 440 (0.50%), 505 (0.37%),
529 (1.62%), 538 (0.44%), 624 (0.10%) and 783 (0.07%). Only those rays with a yield
larger than 0.06% are considered here.
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In this chapter we study the effect produced in the image by photons from 123I with
energies equal to 248 keV and above and how this effect, which we shall call high-energy
contamination (the collimator design and the main detection window are usually arranged
so as to detect the more numerous 159 keV gammas), depends on the collimator config-
uration. Two configurations are considered namely, the fan beam and the parallel. The
ultimate goal is to provide relevant information that contributes to the future development
of an accurate scattering correction algorithm for neurotransmission SPECT studies.

The rest of this chapter is organized as follows. In section 5.2, we introduce the
methodology employed to simulate the detection system. Sections 5.3 and 5.4 are devoted
to presenting simulation and experimental results respectively, the latter as a means of
validation of the simulation tool employed in this work. Finally, in section 5.5 some
conclusions are drawn.

5.2 Monte Carlo simulation

The simulation of the radiation transport process was carried out by using the Monte
Carlo code PENELOPE [73, 76]. The PENELOPE package includes a set of geometry
routines (PENGEOM) which is capable of handling any object formed by homogeneous
bodies limited by quadric surfaces (such as planes, cylinders, spheres, etc.). In this code
system, the user is responsible for writing a simple steering main program from where
some of the PENELOPE and PENGEOM subroutines are called to perform the tracking
of the particles that are simulated.

In our case, the complexity associated with the description of the collimator geometry
prevented us from using PENGEOM in the standard way. In a previous work [18], in
which we presented a study of the modelling of the PSF response to 99mTc, we relied on a
trick that essentially consisted of defining only the portion of the hole structure forming
the collimator that is closest to the photon location as it travels across the material
system. The size of this substructure, which we shall call a reduced hole array (RHA),
was set so as to ensure that the probability for a photon to leave it before being absorbed
is negligible and it was centred close to the point where the photon initially entered the
collimator geometry. In this previous study, a RHA with 19 holes (see figure 5.1) was
sufficient due to the small photon mean free path (MFP) relative to the septa thickness.
This method reduced the amount of geometry-related computing burden to a fraction of
what would be necessary if the whole collimator had been described in full.

Unfortunately, this approach is not completely adequate in the current case, since
the high-energy photons of 123I have relatively large MFPs and, hence, a non-negligible
probability of leaving the initial RHA. Indeed, at 159 keV the photon MFP in lead (Pb)
is 0.05 cm whereas at 529 keV it is 0.58 cm. To overcome this difficulty, a “mobile” RHA
was employed. The idea here is that each 19-hole-array structure is replaced on-the-fly by
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Fig. 5.1: Geometric configuration of the reduced hole array (RHA) used in the simulations of
the different collimators.

a new one whenever the photon crosses its outermost limiting surface. The newly created
array, whose central hole is selected among all the collimator holes by finding the closest
to the photon position, substitutes the old array in the computer memory. This approach
proved to be more convenient than defining a larger “static” RHA because it requires
shorter simulation times and less computer memory.

Another issue refers to the optimal user-defined simulation parameters, and most
importantly, to the selected absorption energies—called Eabs in PENELOPE. When the
particle kinetic energy falls below Eabs (which can be different for photons and electrons),
its simulation is discontinued and the energy is assumed to be deposited locally. Higher
values of Eabs imply faster simulations, but they also reduce the accuracy with which the
transport process is described. In order to achieve a convenient trade off between speed
and accuracy, a set of preliminary simulations with variable Eabs values were performed
and the corresponding photon detection probabilities calculated. The conclusion was that
an absorption energy of 100 keV provides a nearly optimal compromise.

The detector was modelled as a 0.95 cm (∼3/8”) NaI crystal covered upstream by an
0.12 cm-thick aluminium layer, which forms the protective casing, and downstream by a
6.6 cm-thick layer of Pyrex with a reduced density of 2.23 g/cm3. This latter element,
whose thickness has been set following the model based on the work of De Vries et al.
[84], introduces a certain contribution from backscattered photons. The energy resolution
was described by means of a Gaussian distribution with a full width at half maximum
(FWHM) of 11% at 159 keV and was assumed to be proportional to the square root of
the deposited energy.
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After a photon history1 is generated, the amount of energy actually deposited in
the crystal is determined by sampling a Gaussian probability distribution centred at
the nominally deposited energy (i.e. the energy calculated by PENELOPE). A detection
event, represented by the addition of a unit to the corresponding counter, is scored when
this “convolved” energy falls inside the detection window, which in our simulations was
set from 143 to 175 keV. Furthermore, each count must be assigned to a spatial bin
lying on a plane parallel to the crystal surface in order to form a 2D image. For this
purpose, the nominal co-ordinate (say x) of a detection event is calculated as the weighted
average of the co-ordinates (each of the xi’s) corresponding to the i-th energy deposition
event occurring during the particle history. The weight of the i-th co-ordinate value
is the energy deposited in that event. Similarly to the deposited energy case, the x
co-ordinate actually assigned to a detection event is obtained by sampling a Gaussian
distribution centred at the nominal value that comes out of the averaging process. The
FWHM of this Gaussian was experimentally determined to be 0.40 cm by using a narrow
pencil beam impinging perpendicularly on the crystal surface. Notice that this process of
spatial blurring takes into account the intrinsic spatial resolution of the compound crystal-
photomultipliers system only approximately, since a certain contribution from scattering
inside the crystal is unavoidably embedded in the measurement. The validity of this
approximation is verified a posteriori by noticing that the global spatial FWHM of the
PSF (i.e. that arising from the transport through the collimator and produced by an
isotropically emitting source) is much larger than the intrinsic component alone.

Two collimator configurations were considered. The first was a parallel collimator with
a field of view of 50×25 cm2. The holes, hexagonal in shape, had a radius equal to 0.0866
cm, a septal thickness of 0.02 cm and a length of 4 cm. The second configuration was a fan
beam collimator with dimensions equal to those of the parallel case and a focal distance of
35.5 cm. The hole radii and their separation at mid-plane of the collimator were also the
same as in the parallel case. Hereafter, we shall consider a co-ordinate system in which
the z axis is perpendicular to the collimator front plane and intersects the focal line. The
center of co-ordinates lies on the same collimator plane (see figure 5.2). In this co-ordinate
system, both the separation between neighbouring holes and their radii change along the
x axis, but not along the y axis. For details on how this variation is modelled, the reader
is referred to [18].

Two quantities, which we have termed absolute and partial sensitivities, are evaluated
for the different configurations. The absolute sensitivity, A(E), is defined as the probabil-
ity of scoring a count in the energy window (143 to 175 keV) when a photon of energy E is
emitted isotropically from the source location. The partial sensitivity, Si, corresponding

1 We shall refer to the “history” of a primary particle to denote the simulation of this particle and of
all the secondaries it generates.
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z

y 

x

F

Fig. 5.2: Diagram showing the position of the co-ordinate axis with respect to the collimator
surface (x-y plane). In this plot, F represents the focal line. The FOV subtended by
the collimator seen from a point lying under F is shown as a triangle.

to the i-th gamma line of 123I (with energy Ei) is defined as

Si ≡ A(Ei) Yi (5.1)

where Yi stands for the relative yield of the considered line. The sum of the Yi’s considered
here adds up to 99.91%. Si represents the probability that a photon emitted from the 123I
source has an energy Ei and produces a count in the energy window of the detector. The
sum of all Si’s, which shall be denoted SI, is interpreted as the probability of obtaining a
count when a photon is emitted from the source, in other words, the detection efficiency.
Obviously, both A and S depend on the source location.

5.3 Simulation results

In figure 5.3 the absolute sensitivities A of a parallel and a fan beam collimators are
shown as functions of the photon energy for three different heights z centred on the
central axis. In both cases, A increases almost linearly with energy between 250 and 540
keV, approximately. The steep increase of the sensitivity explains the fact that, although
the 159 keV line of 123I is almost 25 times more intense than the combination of all the
more energetic lines, the contribution to the PSF of the latter is not negligible, as will be
seen below.



66 5. MC simulation for high energy gamma-ray PSF

� ��� ��� ��� ���

���	
��
����

�

��

���

���

���

���

�
��
��
��
�
��
�
�

�
�
�
�
�

������

�����

������

� ��� ��� ��� ���

���	
��
����

�

��

���

���

���

���

�
��
��
��
�
��
�
�

�
�
�
�
�

������

�����

������

Fig. 5.3: Absolute sensitivity of a point source for the 123I energies considered in this work and
for three different z values on the central axis (in cm). Left– and right–hand figures
display the fan beam and parallel collimator cases, respectively. Symbols have been
joined by straight lines for visual aid.

The change in the sign of the partial derivative of A with respect to z at different
energies for the fan beam collimator is an interesting feature that deserves some analysis.
Notice that A is an increasing function of z below approximately 200 keV but it decreases
above this value. This behaviour can be explained by considering the relative contribution
to the PSF of the photons that have interacted in the collimator. This information
is displayed in figure 5.4, where each count that contributes to the PSF is classified
according to the type of the last interaction suffered by the considered photon, i.e. it is
either a geometrical (no interaction and no septa crossing), a septal (no interaction and
at least one septa crossing), a Rayleigh or a Compton event (last interaction).

In the energy range where the geometrical component predominates, that is, around
159 keV, A is expected to increase with respect to z (up to the focal line) since the solid
angle covered by the portion of the detector “optically seen” from the source through
the holes increases rapidly as its position approaches the focal line. For higher energies,
on the other hand, the main contribution comes from septal penetration and Compton
scattered photons. In this case, one expects the sensitivity to be mainly determined by the
solid angle with which the whole collimator is seen from the source. Since this solid angle
decreases with z, so does S. These effects explain, as anticipated, the trends observed in
figure 5.3.
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Fig. 5.4: Different contributions to the PSF of the fan beam collimator as a function of the
energy of the primary photons. In all cases, the photon source was located at z = 15
cm. Straight lines have been used to join the symbols for visual aid.

Figure 5.5 shows the variation of the partial sensitivity with source height for the
two collimators considered. The partial sensitivity S159 corresponding to the 159 keV
rays is displayed separately from the sum of all the others. If we consider the former
as representative of the “signal” and the latter as the “noise” in the image, this figure
indicates that the signal-to-noise ratio is better for the fan beam collimator, even quite
far away from its focal line—located at 35.5 cm.

The fraction of partial sensitivity (i.e. the ratio Si/SI) corresponding to each line in
the iodine spectrum is displayed in table 5.1. This ratio represents the probability that a
count in the PSF has been produced by a photon of initial energy Ei and it is therefore
a clear indicator of the amount of “contamination” from high-energy rays.

Figure 5.6 presents an excerpt of this data in a graphical, and more suggestive, form.
Only the most relevant gamma energies have been selected. Notice that the high-energy
contribution is considerably lower for the fan beam collimator.

For the sake of completeness, we have also studied the variation of the sensitivity for
emission points located off-axis. The results are shown in figure 5.7.

5.4 Experimental validation

In order to validate our simulation results, PSFs produced by 511 keV annihilation photons
were obtained experimentally. This energy is close to that of the second most intense line
of 123I (529 keV), hence the interest of this study. A sample of 18F-FDG (0.92 MBq)
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Fig. 5.5: Partial sensitivity as a function of source height for a fan beam (left) and a parallel
(right) collimator. The sensitivity of the 159 keV line is marked ‘S’ (for ‘signal’) and
the combined sensitivities of all the rest is marked ‘N’ (for ‘noise’). Symbols have been
joined by straight lines for visual aid.
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Fig. 5.6: Same data as in table 5.1. Here, the abscissas are the source height z on the central
axis and the values corresponding to different energies are depicted as solid bands of
alternating colours. Left– and right–graphs are fan beam and parallel collimators,
respectively.
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Energy Yi Si/SI (%)
(keV) (%) (z = 5 cm) (z = 15 cm) (z = 25 cm)

fan paral fan paral fan paral

159 96.50 58.8 51.4 75.8 63.3 89.3 72.7
248 0.08 0.0 0.0 0.0 0.0 0.0 0.0
346 0.15 0.6 0.9 0.4 0.8 0.3 0.7
440 0.50 5.0 6.6 3.1 5.1 1.5 3.8
505 0.37 4.7 5.8 2.8 4.3 1.3 3.2
529 1.62 22.0 25.6 12.3 19.1 5.7 14.1
538 0.44 6.2 7.1 3.3 5.2 1.6 3.9
624 0.10 1.6 1.5 0.9 1.2 0.4 0.9
783 0.07 1.3 1.1 0.7 0.9 0.2 0.7

TOTAL 99.91 100 100 100 100 100 100

SI(10−5) 12.58 12.96 14.94 10.77 22.95 9.16

Tab. 5.1: Sensitivities of each of the 123I lines considered in this work at different heights z.
Left– and right–hand columns correspond to the fan beam and parallel collimator
cases, respectively. The absolute uncertainty of Si/SI is below 5%.

was dissolved in 10 µL of water, producing a droplet with a diameter of 2.7 mm which,
in our simulations, was modelled as a point source. The source was placed, by means
of a Lucite holder, at various positions (0, 0, z) with z equal to 5, 10, 15, 20 and 25
cm. The projections were acquired with a double-headed Helix camera (Elscint, Haifa)
equipped with the fan beam collimator described above. Excellent agreement is found
between experimental data and simulation results, as shown in figure 5.8. Notice also the
importance of simulating the transport of secondary particles. Further calculations have
provided evidence that secondary photons are responsible for the observed differences,
i.e. secondary electrons do not play a significant role at the energies studied here, as one
would expect from their short range in dense media.

In figure 5.9 the profiles obtained by summing up the counts of the PSF along either
the x or the y axis are presented. Simulation and experimental results are in very good
agreement and show that both profiles extend beyond the collimator boundaries, i.e. the
high-energy PSF is extended over the whole FOV. This spread gives a rough idea of the
difficulties associated with the development of efficient techniques to correct the PSF from
contaminant high-energy rays.
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Fig. 5.7: Absolute sensitivity of 529 keV photons at different x positions and z = 15 cm for a
fan beam collimator. The solid line is a fit performed with a second order polynomial.
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Fig. 5.8: Absolute sensitivity for 511 keV photons as a function of the distance source-collimator
(z). Simulation and experimental data are the dots and the dashed line, respectively.
The absolute sensitivities obtained by neglecting the transport of secondary particles
are shown as triangles.
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Fig. 5.9: PSF profile produced by 511 keV photons from a point source at z = 15 cm. Symbols
represent simulated results and solid lines the experimental data. The curves labelled
x and y were obtained by summing up the counts along the corresponding axis. The
simulated y-profile has been normalized to the largest experimental data. The same
scaling factor has also been applied to the x-profile.
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5.5 Discussion

For low-energy rays, the predominant component of the PSF is determined by the ge-
ometric pattern of the holes in the collimator. These PSFs were discussed by [56, 83]
for parallel collimators. For the fan beam model, various approaches have been adopted
by different authors (see e.g. [51, 83, 32, 30, 34, 65]). The decrease of the absorption
cross section and the increase of the Compton cross section for increasing photon ener-
gies causes the geometrical component to become less relevant compared with that of
septal penetration and scattering when higher energy gamma rays come into play. The
results presented in figure 5.4 reveal that septal penetration and Compton scattering take
over the geometric part above approximately 200 keV. As pointed out by Dobbeleir and
co-workers [23] as a conclusion of their experimental work, this implies that, in general,
medium-energy collimators are the best choice for 123I studies. However, in the particu-
lar case of brain SPECT imaging, a high spatial resolution is sought in order to permit
accurate quantification and, therefore, Low-Energy High Resolution (LEHR) collimators
are preferable.

This work has analyzed the sensitivities corresponding to two different LEHR, namely,
a parallel and a fan beam collimators, showing that the former is more prone to “con-
tamination” from high-energy rays than the latter. The probability that a detected event
corresponds to a photon with an initial energy of 159 keV is larger for the fan beam
collimator (59% to 89%) compared with the parallel collimator (51% to 72%), depend-
ing on the source-detector distance (see table 5.1). These differences may become even
more relevant when scattering in the object (i.e. the patient) is also taken into account,
because the higher absorption suffered by low-energy photons will produce noisier images
than those obtained in this study. In this case, the increase in the number of “signal”
detection events may be critical. In conclusion, according to the present analysis, the use
of a fan beam collimator for brain SPECT imaging with 123I is highly recommended.

We have also shown that the PSF obtained considering only the high-energy compo-
nent of the 123I spectrum extends over the whole FOV and has a non-Gaussian shape, a
fact that renders its modelling a difficult task. As a consequence, any correction method
for high-energy ray phenomena should take into account the particular collimator-detector
configuration it is intended to be applied to. Work to model the contribution to the PSF
of the high-energy effects described here is in progress and will be presented elsewhere.



6. THE MODELLING OF THE POINT SPREAD

FUNCTION

Experimental vs. Virtual phantoms.
Acquired vs. Monte Carlo simulated projections.

“Which is the difference between virtual and reality?”

6.1 Introduction

Modelling of the Point Spread Function (PSF) is required for both reconstruction algo-
rithms and virtual phantom Monte Carlo simulators. On the one hand, iterative recon-
struction algorithms require PSF modelling in order to correct the collimator/detector
blurring effect in the reconstructed images. Reconstruction algorithms include the spa-
tially dependant collimator/detector response by using PSF models. These functions
are used in the calculus of the transition matrix determining the contribution of a point
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source in the voxel source si to the projection bin pj. On the other hand, the Monte
Carlo simulators in SPECT need a PSF function in order to accelerate the tracking pro-
cess through the collimator/detector system. The Monte Carlo simulation in SPECT
is a slowly convergent process. As was described in Chapters 4 and 5, detailed simula-
tion of the photon transport across the collimator/detector system using Monte Carlo
techniques demands a huge computational effort. The common way to accelerate the
simulation is to use a probability density function (PDF) which describes the response of
the collimator/detector system. These PDFs are based on the modelling of the PSF.

PSF modelling is achieved by the following steps:

1. Individual characterization of the collimator/detector response at different source
coordinates by fitting the results with known functions (Gaussian, Exponential,
Linear, etc.)

2. PSF functions may be parameterized by two variables: the sensitivity η, which is
defined as the number of photons detected per emitted photon and the resolution
which equals the Full Width at Half Maximum (FWHM) of the image corresponding
to a point source. The parameterization of these functions depends on the source
coordinates and the source energy. The collimator/detector configuration is the final
step.

Nevertheless, there are different approaches to modelling PSF. The direct way to
obtain the PSF modelling is to measure the responses of each collimator/detector con-
figuration experimentally. However, the experimental set up is limited to the particular
configuration available at the hospital or research center. Thus this method is not use-
ful for designing “a-priori” collimators [34] or for studying the PSF response depending
on the energy of the isotope. Theoretical or non-empirical approaches are useful when
modelling the “a-priori” PSF.

The “a-priori” or theoretical modelling of the PSF has been developed since the be-
ginning of the SPECT technique. The initial derivation and basis for the Geometrical
component of the Point Spread Function (PSFG) was proposed by Metz et al. [56] in
1980. Afterwards, it was extended to convergent (cone and fan beam) collimators by
Tsui et al. [83] in 1990. Both theories used the frequency domain in order to model the
PSFG but the complexity of the functions obtained did not allow their implementation
in the PSF model. In 1998, Frey et al. [32] proposed a new PSFG in the real domain.
Moreover, Frey’s model included the fan beam collimator geometry and took into account
the enlargement of the holes due to the focalized geometry. However this model did not
use the discrete nature of the hole array or the exact hole shape.

Another mathematical model proposed by Formiconi et al. [30] considered a discrete
analysis for parallel and fan beam collimators, although the model did not take into
account the elongation factor for the septa walls between the fan beam axis holes.
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These reasons have led us to develop our own PSF models [65],[18] for parallel and fan
beam collimators —see Figure 6.1— including detailed hexagonal holes and changes in
the elongation of the hole as well as in the center-to-center hole distance. Both numerical
ray tracing techniques (Pareto et al. [65]) and Monte Carlo simulation (Cot et al. [18])
provided sufficient information to build the new parallel and fan beam PSFG and PSFT

for low-energy photons. As described in Chapters 4 and 5, the Total Point Spread Function
(PSFT ) characterization needs Monte Carlo simulations to include all radiation-matter
interactions. This procedure is more general than using ray-tracing or optical models
which can only reproduce the geometrical component of the PSF, the PSFG.

Fig. 6.1: Figure a shows the fan beam geometry used to model PSFT . For each photon emitted
at point S —see Figure b— there is a non-zero probability of being detected at point
I in the back collimator plane —image plane—. This probability density function is
based on the PSFT .

Thus, the aim of this chapter is:

1. To summarize and to compare the different theoretical models for PSF characteri-
zation at low energies1.

2. To use the most accurate Probability Density Function for parallel and fan beam
collimator/detectors 2 in the Monte Carlo simulator.

3. To design and use a new Variance Reduction Technique in the SimSET code using
our PSFT .

1 For high-energy photons, the Geometric component of the PSF (PSFG) is not sufficient and only
Total PSFT PSF modelling obtained by Monte Carlo characterization is useful

2 This work was restricted to MC simulations of low-energy photons. The PDF for high energy photons
to pass the collimator/detector systemis under development using the PSFT results of Chapter 5
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6.2 Metz and Tsui PSFG models

This section summarizes the theoretical basis of PSFG functions proposed by Metz [56]
and Tsui [83]. Although it includes the basic ideas for the development of PSFG, the
model includes a convolution of integrals in the frequency domain —for a detailed de-
scription, see Appendix D— which are not feasible methods in common applications.

Fig. 6.2: A pair of tapered holes which are located in a parallel collimator. Geometry includes
the overlapped area between the aperture functions described in Section D.1.1.

Consider a point source S located at a distance r0 from the z-axis. The vector ~r0

determines the position of the orthogonal projection of the source onto the image plane.
The source height from the front plane is Z. In order to obtain the PSFG on the image
plane, the projections of the point source through the front and back collimator planes
are needed. Each aperture function depends on the vector ~r which represents the image
point I seen by the source. As described above, the aperture function equals 1 when the
source is seen from the image plane through the front plane. Otherwise, its value is set
to 0. Similarly, another aperture function is defined for the back collimator plane. The
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geometric transfer function models the intersection between both aperture functions on
the image plane shown in Figure 6.2.

Let us define the fluency of photons ψ as the number of photons crossing a certain
surface (detector) per unit time. In order to calculate the photon fluency, the sensitivity
or efficiency η will also be defined as the number of photons reaching the detector plane
per photon emitted. It is then obvious that:

ψ = η A(t) (6.1)

where A(t) is the activity of the photon emitter source3 with dimension [T−1]. Thus,
the aim of PSFG modelling is to obtain the efficiency η(S) for a point activity source S
for different collimator configurations.

The efficiency η at each point ~r is proportional to the integral over all the intersected
aperture functions and over the whole front plane collimator. This integral has
dimensions of surface [L2] because it is the sum over all the intersected areas:

η(~r′i, ~η, ~ε) ∝
∫ ∫

af (~η − ~r′i)ab(~ε − ~r′i)d
2~r′i (6.2)

In terms of the known variables ~r and ~r0; (6.2) can be written as:

η(~r, ~r0) ∝
∫ ∫

ab(~r, ~r′i, ~r0)af (~r, ~r′i, ~r0)d
2~r′i (6.3)

The proportional constant k is the inverse square of the distance and the dot scalar
product of the photon flux vector ~IS and the normal unit vector ~n:

k =
~IS ∗ ~n

| ~IS|
1

4π| ~IS|2
=

(x0 − xI , y0 − yI , L + B + Z)(0, 0, 1)

4π| ~IS|3
(6.4)

k =
(L + B + Z)

4π(|~r0 − ~r|2 + (L + B + Z)2)
3
2

(6.5)

Another formulation for the k factor includes the radiation intensity law which includes
the inverse square distance (R = | ~IS| between point source S and image point I) and the
scalar product between the photon direction and the normal plane vector, cos(θ):

k =
cos(θ)

4πR2
(6.6)

3 In this Chapter all the point sources emit isotropically
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The sensitivity or efficiency η is equal to:

η(~r, ~r0) =
(L + B + Z)

∫ ∫

ab(~r, ~r′i, ~r0)af (~r, ~r′i, ~r0)d
2~r′i

4π(|~r0 − ~r|2 + (L + B + Z)2)
3
2

(6.7)

The efficiency may be interpreted as the integral of the probability density function
for a point source to reach the detector:

η(~r, ~r0) =

∫

∆A

P (A)dA (6.8)

where P (A) is the probability density function per unit of area A. The number of
counts in the detector bin NA is directly the number of emitted photons (decays) Nc of
the source multiplied by the integral of the density probability function over the detector
area ∆A, i.e. the sensitivity of the detector bin ηA:

NA = Nc ηA(~r, ~r0) = Nc
(L + B + Z)

∫

∆A

∫

∆A
ab(~r, ~r′i, ~r0)af (~r, ~r′i, ~r0)d

2~r′i

4π(|~r0 − ~r|2 + (L + B + Z)2)
3
2

(6.9)

The main problem of the frequency domain theory is the computation of the aperture
functions at each source position. This model does not include the discrete nature of the
hole array because the holes are considered as “mean open surfaces” seen from a source
S. The result of the integral is equivalent to the average of the overlap of the aperture
functions in the front plane collimator. The integral over all the front plane surface d2~r′i
when the hole aperture is moved for a fixed point source is equivalent to averaging the
response spot over the image plane produced by point sources moving in a local plane
d2~r0. Thus, an average PSF for the whole collimator field of view is obtained.

The method to obtain the aperture functions is presented in the Appendix D.

6.3 Frey’s PSFG model

Frey et al. [32] obtained the Geometrical component PSFG. The average of the overlap
of the area (mentioned in the last section 6.2) over the whole front plane collimator was
replaced by a more detailed geometrical approach. The significant result was to obtain
a PSFG —for parallel and convergent collimators— in terms of a density probability
function defined in the real domain:

P (~r; ~r0; A) =
Overlapped Area

Collimator Cell Unit Area
=

2 arccos(‖~r0‖
2R

) − 2‖~r0‖
2R

√

1 − ‖~r0‖2

4R2

2
√

3(R + S)2
(6.10)
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where R is the hole radius, S is the septa wall and ‖~r0‖ is the modulus of the vector
projected by the source onto the image plane.

The probability density is defined as an overlapped area —see Figure 6.2— per unit
area: the hole unit cell area of the collimator. However in [32] there is no explanation
nor demonstration of how the real domain function is obtained from the previous work
of Tsui et al. [83]. In Appendix D the demonstration to develop this analytical model is
described.

6.3.1 Hypothesis assumed in Frey’s model

A summary of all the hypotheses assumed during the demonstration of the PSFG (see
Appendix D) are shown below:

1. The holes are considered to be circles instead of hexagons.

2. The image plane is considered as a virtual plane below the backplane collimator. The
final image is performed inside the crystal layer. Modelling of the protective casing of
aluminium, the NaI crystal itself and other backscattering layers (photomultipliers,
...) could only be simulated by Monte Carlo techniques [84], [19]

3. The probability density function is calculated in a discrete way. The basic discrete
element is the hole unit cell area which is not infinitesimal, so the error in resolution
is related to these dimensions.

4. Projection of the overlapped area consists of the junction of two ellipses, not circles.
However, as P (A)dA is finally the ratio between areas, both areas are affected by
the same elongation factor so this effect may be compensated

6.3.2 Sensitivity condition

A basic condition for all the probability density functions (PDFs) is the conservation
under variable changes (see Appendix D). That is, the total sensitivity of a point source
emitter S is maintained constant over the whole field of view (APSF ) for any model.

In the Metz model the global efficiency is:

η(S) = k

∫

~r′i∈ APSF

∫

~r′i∈ APSF

ab(~r, ~r′i, ~r0)af (~r, ~r′i, ~r0)d
2~r′i (6.11)

And this result is equal to the Frey model:
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η(S) =
∑

γr∈ APSF

P (~r; ~r0; A)dA (6.12)

The former model integrates the average aperture functions for any vector representing
the hole center on the APSF area. The latter model solves the integral by means of Monte
Carlo techniques, that is, it sorts each photon impact point γr over the APSF area and it
assigns the corresponding probability density function to pass through the collimator.

However, other probability density functions may be used by using Monte Carlo tech-
niques. This is the basis for improved PSF modelling including not only the geometric
component but also the total PSFT . Characterization of these functions is presented in
the next section.

6.4 Pareto PSFG model and Monte Carlo PSFT validation

The ray-tracing method consists of determining the integral over the aperture functions
by sampling “optical-rays”. The transport of these rays only includes the geometrical
approach without considering septal penetration, Rayleigh or Compton scattering. This
is the reason for calling them “optical” methods.

Each detector bin is a discrete image plane. This plane is divided into N pixels of area
∆ as shown in Figure ??. Each pixel is sampled from its center to the source location
through the collimator. The sampling covers all the detector surface and accumulates the
“detected” number of optical rays (A(~r, ~r0, Z +L+B)). In Appendix D there is a detailed
description of the ray-tracing method employed. The pixel area resolution ∆ determines
the accuracy of the sensitivity estimate η which is:

η =
∑

~ri∈∆i

cos(θi)

4πR2
i

A(~r, ~r0, Z + L + B) ∆ (6.13)

Ri is the distance between the point source and each image point of the whole front
plane collimator and the scalar product between each photon ray and the normal plane
vector is cos(θi). If the last formula is rewritten using the same variables as the previous
models of Frey and Tsui we obtain:

η(~r, ~r0) =
(L + B + Z)

4π(|~r0 − ~r|2 + (L + B + Z)2)
3
2

A(~r, ~r0, Z + L + B) ∆ (6.14)

Our Monte Carlo simulated results obtained for low-energy photons [18] (see Chapter
4), proved that the geometric component (PSFG) constitutes 95% approximately of the
total PSF (PSFT ) for both parallel and fan beam collimators without considering the
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crystal detector4. Moreover, the main contribution of the septal penetration and scatter
occurs in the same area as the geometric image with the result that the contribution of
the tails to the total PSF is less than 1%. This is a key point in order to model the PSFT

for low energy photons. As reconstruction algorithms only work with relative values and
the PSFG always contributes the same percentage to the PSFT , we will induce a model
for the PSFT using the numerical models obtained for the PSFG. Moreover, a validation
on resolution and sensitivity performed in the collimator only by Monte Carlo techniques
provides sufficient validation for the numerical PSF model.

The PSFT model may be split into the following parts:

1. For low-energy photons the geometric component PSFG constitutes approximately
95% of the total PSFT for both parallel and fan beam collimators. Modelling of the
PSFT may be carried out based on this geometric component.

2. The PSFG can be fitted using a Gaussian distribution which can be modelled by
its standard deviation (resolution) and its amplitude (sensitivity)

3. The sensitivity of a fan beam collimator system can be modelled as [51, 30]:

Fig. 6.3: On the left, sensitivity is plotted as a function of the z-coordinate (left) and of the x-
coordinate (right) for a source point located on the z-axis. The solid lines correspond
to the fitted function. Values are relative to the value obtained for a point source
located at P (0; 0; 5) in cm.

η(ZS , cos θ) = K
F + L

F −ZS
cos2 θ (6.15)

4 The PSFT model presented here may be directly used for reconstruction algorithms, whereas it
only models the collimator step as a probability density function for Monte Carlo simulators. When a
simulation is performed the PSFT model is followed by a Monte Carlo simulation of each photon inside
the detector crystal
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4. Resolution is parameterized by the standard deviation which is modelled on the
y-fan beam axis by,

σy(ZS , cos θ) =
a(ZS + L + B)(2F + L)

√

L2(F −ZS)2 − R2(L + 2ZS)

1

cos θ
(6.16)

and sigma on the parallel z-axis (which is similar to a parallel axis),

σz(ZS , cos θ) =
2aR(ZS + L + B)

L
(6.17)

5. The parallel case is just the case of the fan beam collimator by considering limF→∞

K is the efficiency factor which is determined by Monte Carlo simulations or exper-
imental acquisition in order to obtain the real value because it depends on the intrinsic
detector efficiency and it includes the other PSFT components a part from the geometri-
cal component. For reconstruction algorithms this value may be relative. F is the focal
distance, L is the collimator length and ZS is the height of the point source. The angle θ
is the source aperture angle defined as the angle between the z-axis and the straight line
passing through the point source and through the point in the focal line with the same
y-coordinate as the point source. Angular dependence was studied to obtain the appli-
cability conditions of each function, and cos(θ)2 showed the best agreement according to
[51] instead of cos(θ) [30]. Notice that this method allows changes in the elongation of
the hole to be included as well as in the center-to-center hole distance as a characteristic
modelling for fan beam collimators.

The results of the ray-tracing method [65] for obtaining the geometric PSF in cast fan
beam collimators with hexagonal holes have been presented in a complementary thesis
[61]. These results were validated by experimental acquisitions and by Monte Carlo
simulations with the same collimator/detector configuration (see Chapter 4).

6.5 Acceleration of SimSET

As indicated in the introduction, modelling of the PSF may be used as a Probability
Density Function in the Monte Carlo simulator in order to avoid detailed tracking inside
the complex collimator geometry. In this Section 6.5 a new PDF for SimSET based on
our PSF modelling is described. The simulation CPU time obtained with the modified
SimSET code presents a higher speed-up factor.
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Fig. 6.4: Profiles in fan beam direction obtained from collapsed simulated (solid line) and
experimental PSFs (symbols) for source points located on (a) z axis at P (0; 0; 50)
(circles), P (0; 0; 150) (triangles), P (0; 0; 250) (squares) and (b) outside z axis at P
(-160; 0; 50) (circles), P (-120; 0; 150) (triangles), P (-40; 0; 250) (squares) from right
to left, respectively. A value of 1 has been assigned to the maximum of each profile in
the two graphs.
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6.5.1 SimSET original Probability Density Function

The Collimator Module originally used in SimSET [36] received photons from the PHG
module and it tracked them through the collimator being modelled. The PDF used was
based on the PSFG from Frey model [32] described in Section 6.3 with the corresponding
hypotheses. Parallel, fan, and cone beam collimator configurations were included in the
model.

In Monte Carlo simulations, the collimator transfer function has to be used in terms of
the probability density of the photon passing with a defined location and direction. When
tracking photons inside the object, each photon has an initial weight w0 (see Chapter 3).
Afterwards, a weight w is assigned to the photon according to the interactions suffered in
the object. The weighted photon wi = w0w has a defined origin point, direction cosines
and track-length. Thus, the Frey model is suitable for describing the PDF per unit area
P (A)dA of a photon passing through a certain area of the collimator with a known relative
position and direction.

The collimator/detector head rotates around the object in each SPECT study. There-
fore, a photon travelling in a defined direction will have a determined probability Pcollimator(Θ)
to hit the collimator at that angle position Θ of the camera head. This probability is in-
versely proportional to the number of views Nview (see chapter 3), as the length of each
projection Tprojection is constant over the length of scan Tscan:

Tprojection =
Tscan

Nview

(6.18)

Thus, when the photon hits the collimator with a certain direction Θ, the probability
of the collimator being in such position is equal to:

Pcollimator(Θ) =
Tprojection

Tscan

=
1

Nview

(6.19)

Use of the Frey probability model in SimSET follows the sequence :

1. The initial photon is sorted with its direction and initial weight5 w0 from the point
source S

W = w0 (6.20)

2. The photon is tracked through the object and the corresponding weight w is calcu-
lated:

5 W is the final or cumulative weight of the photon at the end of tracking
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W = w0 w (6.21)

3. The probabilities of passing through all the possible collimator views Θi are com-
puted using a collimator PDF. This operation is performed for each photon leaving
the object and each probability P (~r; ~r0; Ai) is determined for all the bin detectors
Ai located in each collimator angle Θi. Therefore, the final weight Wi is calculated
as:

Wi = w0 w P (~r; ~r0; Ai) (6.22)

4. The probability of interacting with each view Θi of the detector system —Pcollimator(Θi)—
is determined and included in the global weight:

Wi = w0 w P (~r; ~r0; Ai)dAi Pcollimator(Θi) (6.23)

5. A specific angle for detection is selected from the possibilities by a random process:

{R}R=1..Nview
(6.24)

and the original SimSET code only bins a single detector position for each photon.
The final weight of the accepted photon in the weight image is:

WR =
w0 w P (~r; ~r0; AR)dAR

Nview

(6.25)

This procedure loses computational efficiency because many of the possible detector
angles Θi are discarded. The SimSET author thought the azimuthal angle dimension
would be over sampled relative to any other dimension. This idea relies on the
characterization of the PDF per unit area instead of per unit solid angle

6.5.2 A new Probability Density Function

The new PDF will not over-sample the angle dimension because it depends on the photon
direction and it is defined per unit solid angle. We do not need to sort the Θ magnitude
because the PDF maintains an isotropic approach in the range of neighborouring collima-
tor angles6. The new PDF will improve the accuracy of the model and it will accelerate
the process of detection by using all the views available to each photon. Two acceleration
factors will be introduced in the new model in order to decrease the sum of square weights:

6 We assume an isotropic probability on the exit direction when a photon scatters. We base this
assumption on the low number of available collimator positions for that photon direction.
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1. It allows us to select the most probable collimator Θ angle position or view without
the need to discard it in the random process

2. The detected photon can be accumulated simultaneously at different collimator
heads at different angles Θi. All the probable collimator views are included in the
result and the photon is split into many weights in different collimator views and
bins. Table 6.5.2 shows the number of views available for a certain photon with this
new model using common collimator configurations:

Variable Case1 Case 2 Case 3

R(cm) 20 10 10
Number of Projections 60 60 120

∆x (cm) 2.1 1.1 0.525
σi (cm) 0.17 0.17 0.17
σz (cm) 0.22 to 0.55 0.22 to 0.55 0.22 to 0.55
σy (cm) 0.25 to 3.7 0.25 to 3.7 0.25 to 3.7

Noviews (Parallel) 1 1 3
Noviews (Fan beam) 2 3 4

Tab. 6.1: The number of views available for a certain photon direction with the new PDF. R is
the radius of rotation of the collimator/detector heads, the number of projections is
Nview, ∆x is the pixel detector size, σi is the intrinsic detector resolution and σy and
σz are the fan beam and parallel axis resolutions respectively

The new PDF used in SimSET uses the following procedure:

1. The sensitivity of a fan beam collimator system is obtained as:

η(ZS , cos θ) = K
F + L

F −ZS
cos2 θ (6.26)

2. The resolution is a Gaussian distribution modelled by its standard deviation:

σy =
a(ZS + L + B)(2F + L)

√

L2(F −ZS)2 − R2(L + 2ZS)

1

cos θ
(6.27)

and its sigma on the z-axis of the fan beam (which is similar to a parallel),

σz =
2aR(ZS + L + B)

L
(6.28)
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3. The Gaussian PDF of the source S is centered at the impact point IFS (juncture
of the line between S -point source emission- and F -focal point closest to S in the
focal line- and the backplane collimator), as shown in the Figure below. The center
of the new reference system is (Xbin,Ybin).
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4. Once the Gaussian point spread function is calculated for a certain angle position Θ
of the collimator, the volume intersected under the Gaussian over the bin detector
area hit by the photon at Iγ is calculated:

κ =
η(ZS , cos θ)

2.0πσzσy

(6.29)

∫

z

PSF (y, z)dz =

∫ +∆z
2

−∆z
2

exp
−

((Zγ−z)−ZIFS
)2

2σ2
z dz (6.30)

∫

y

PSF (y, z)dy =

∫ +
∆y
2

−∆y
2

exp
−

((Yγ−y)−YIFS
)2

2σ2
y dy (6.31)

∆Ω =
∆z∆y

4π| ~SIγ|2
cos(θ) =

∆z∆yXS

4π| ~SIγ|3
(6.32)
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where the new density probability function is:

P (~r; ~r0; Ωi)dΩi =
κ

∫

y

∫

z
PSF (y, z)dydz

∆Ω
(6.33)

The bin detector area ∆z∆y is a user-defined variable. The smaller the area, the
better the accuracy of the probability density function estimate. This new PDF
adjusts the photon weight at each Θ angle.

5. Finally the probability of interacting with each view of the detector system Pcollimator(Θ)
is calculated independently because it has been normalized per unit solid angle:

Wi = w0 w P (~r; ~r0; Ωi)dΩi Pcollimator(Θ) (6.34)

6. This procedure ensures that a single photon history may contribute to different
collimator bins situated at different Θi angles in the simulation. A new variance
reduction technique has been used in SimSET. More photon histories are binned as
detected events with a reduced weight value at each angle

6.6 Results

6.6.1 Comparison between Frey PSFG and our PSFT models

The comparison between the two models used in SimSET is shown in Figure 6.5. The
simulations were performed using the SimSET code, with the PSFG of Frey’s model and
the new PDF based on our PSFT

7 The comparison was done using point sources in air
with the following characteristics:

1. The PSFs compared are those obtained for different 140 keV point sources located
on the central axis of a fan beam collimator with a focal length of 35.5 cm, hole
length of 4.0 cm, hole septa of 0.02 cm

2. The hole radii used in the Frey model (Rh = 0.07875cm) correspond to round holes
with an equivalent area to hexagonal holes used in our model (Rh = 0.0866cm)

3. Both models include the crystal effect, that is, the reduction of sensitivity due to
the attenuation of photons through the detector material. In the PSFG model, the
MC simulation of the detector was performed. In the second model, experimental
sensitivity acquisition without the collimator was carried out in order to determine

7 The SimSET modules changed in the new accelerated SimSET were UncCollimator.c, Collimator.c,
PhgParams.c, PhgParams.h and EmisList.c.
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the absolute efficiency of the sodium iodide detector (ηNaI = 67.5%). This efficiency
was taken into account in the PSFT model in order to compare the results. The
numerical ray tracing method was also affected by the crystal efficiency.

4. The PSFT model considers a normalization constant of the PSF at z = 5 cm. This
value corresponds to 8.1277×10−5, that is, the sensitivity of the fan beam collimator
without the crystal effect.

The results of different PSF simulated for point sources located on the central axis are
shown in Figure 6.5.
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Fig. 6.5: The different sensitivity values are represented. Experimental (circles), ray tracing
(squares), the PSFG Frey model (crosses) and the PSFT model (solid line).

The results show good agreement for central axis positions. However, some differences
appear at off-axis locations. In this part of the FOV, the model of Frey et al. presents
some differences due to the limitations of the geometrical hypotheses assumed. Table
6.6.1 shows these divergences compared with the experimental values.

6.6.2 Comparison between the original and the accelerated SimSET

A neuroreceptor study was simulated in order to validate the new PSFT . Both PSFs
models were employed in the simulation: the original PSFG used in the Standard SimSET
(phg) and our new PSFT model for the PDF used in the accelerated SimSET (phgcot).

Three different Variance Reduction Techniques were used : Analogue Monte Carlo,
Importance Sampling at 90o and Importance Sampling at 5o. Three different noise levels
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(5,16) (10,16) (15,12) (20,8) (25,4) (30,2)
Experiment 5.09E-05 5.54E-05 6.92E-05 1.03E-04 1.58E-04 3.21E-04

Ray tracing PSFG model 4.98E-05 5.50E-05 7.14E-05 9.95E-05 1.64E-04 3.15E-04
Relative difference -2% -1% 3% -3% 4% -2%
Frey’s PSFG model 4.49E-05 4.75E-05 6.32E-05 8.90E-05 1.51E-04 2.91E-04
Relative difference -13% -16% -9% -15% -4% -10%

PSFT model 5.02E-05 5.52E-05 7.06E-05 9.82E-05 1.61E-04 3.08E-04
Relative difference -1% 0% 2% -4% 2% -4%

Tab. 6.2: Comparison of different PSF results between the PSFG and PSFT used in SimSET.
Source positions are described as (x, y).

were simulated with a number of counts equal to 1, 3 and 5 million counts. The number
of histories and the length of the scan (42.9 s, 128.7 s and 214.4 s) were adjusted in order
to obtain

∑

w =
∑

w2 (i.e. real noise).

Table 6.3 indicates that the new accelerated SimSET PDF allows a speed-up factor
of 2 with respect to the original SimSET and a factor of 7 with respect to the Analogue
MC. The Quality Factor (QF) obtained with the new PDF under the same conditions is
smaller. The reason is that the higher number of accepted photons with a minor weight
value, and thus have a smaller square weight. The higher amount of accepted photons
enables the number of counts with a “real” level of noise in a shorter CPU time to be
reached.

As the number of projections increases (i.e. 120 instead of 60), the speed-up factor
also increases as described in Table 6.6.

Another interesting result obtained refers to the small difference in sensitivity results
between PSFT and PSFG as shown in Figure 6.7. This difference may be explained by
the small divergences of the two models in PSF sensitivities at off-axis source positions in
the fan beam collimator. When both PSFs are used the initial differences are converted
in relative divergences up to 5% in the sum of weights, showing the importance of correct
PSF modelling.

Thus, for simulations of neuroreceptor studies, the PSFT model should be used with
the VRT corresponding to Importance Sampling a 5o.
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Fig. 6.6: The computation CPU time taken by each simulation type: Analogue MC (squares),
PSFG Frey model (triangles) and PSFT model (Crosses). The CPU time is propor-
tional to the number of weights obtained.
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Fig. 6.7: The sum of weights obtained with the same length of scan and number of histories
using the PSFG Frey model (triangles and solid line) and PSFT model (circles and
dashed line)
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Analogue MC Importance Sampling 5o

PSFG Frey PSFT PSFG Frey PSFT
∑

w = 1 Million
CPU Time (h) 1.71 0.79 0.48 0.25

Accepted photons 1.51e6 2.65e6 2.09e6 3.81e6
∑

w 9.81e5 9.24e5 9.82e5 9.27e5
∑

w2 9.78e5 9.78e5 1.00e6 9.45e5
QF 0.65 0.33 0.458 0.239

∑

w = 3 Million
CPU Time (h) 5.25 24.06 1.48 0.71

Accepted photons 4.61e6 8.09e6 6.50e6 11.2e6
∑

w 2.99e6 2.82e6 2.99e6 2.82e6
∑

w2 2.98e6 2.98e6 3.01e6 3.02e6
QF 0.65 0.33 0.458 0.235

∑

w = 5 Million
CPU Time (h) 8.82 3.84 2.46 1.20

Accepted photons 7.69e6 13.48e6 10.89e6 18.90e6
∑

w 5.00e6 4.71e6 5.00e6 4.72e6
∑

w2 5.00e6 5.00e6 5.01e6 5.00e6
QF 0.65 0.33 0.458 0.236

Tab. 6.3: Comparison of different parameters between the PSFG and PSFT used in SimSET.



7. ABSOLUTE QUANTIFICATION IN SPECT

“The knowledge of our mind evolutes with the aid of computers”

7.1 Introduction

Following advances in molecular imaging, neurotransmission SPECT has become an im-
portant field in neuroimaging and is today regarded as a useful method in both clinical
[80, 68] and basic research [1]. The dopamine transporter (DAT) has been shown to be
a sensitive indicator of nigrostriatal dopamine function. Dysfunctions of the presynap-
tic dopaminergic system are involved in Parkinson Disease (PD) and, as a consequence,
DAT imaging is a useful tool to confirm or exclude PD [80]. A number of cocaine analog
SPECT agents, which bind to DAT sites, have been developed. These analogues include
123I agents, such as the recently, available FP-CIT, and 99mTc agents such as TRODAT.

Although visual inspection is often sufficient to assess DAT imaging, quantification
could improve the diagnosis accuracy of SPECT studies of the dopaminergic system. The
quantification is focused on obtaining the striatal/background uptake ratio (See Figure
7.3). Quantitative accuracy in SPECT is impaired by a number of factors including
noise, attenuation, scatter and collimator/detector response. All these factors degrade
sensitivity and resolution of SPECT images as described in Chapter 2. Correction for
these effects has been a research topic in nuclear medicine for the past two decades.

We analyzed the contribution of each correction in the quantification results for neuro-
transmission SPECT studies by using 2D reconstruction [63]. These results revealed that
the different degrading effects affect the quantification results significantly. In particular,
the scattering effect in the object and in the collimator/detector system is important. Nev-
ertheless, collimator/detector scattering has to be taken into account when high-energy
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rays like those of 123I agents are imaged1. Thus, the scattering models should focus on
scatter interactions in the object for brain neurotransmission studies like those performed
with 99mTc–TRODAT [18]. The different strategies employed to make the burdensome
scatter correction techniques computationally feasible are described.

The aim of the present study was the assessment of the absolute and relative quan-
tification results for neurotransmision SPECT studies using an improved reconstruction
algorithm including scatter correction. Furthermore, we designed the Scattering Monte
Carlo Feedback Correction (SMFC) method as a computationally efficient full 3D re-
construction architecture with a Monte Carlo-based scatter estimation. This algorithm
included a full 3D reconstruction, instead of a 2D reconstruction, with correction of at-
tenuation, scatter and spatially variant fan beam collimator response in 99mTc-TRODAT
studies.

7.2 Material and Methods

7.2.1 Full 3D reconstruction algorithm

In order to include the photon crosstalk effect between transaxial slices (along the tomo-
graphic axis), the full 3D tree-dimensional reconstruction is required. In contrast to 2D
(slice-by-slice) reconstruction, full 3D uses a large matrix which enables photons that are
detected in out-of-slice projection pixels to be taken into account. This further improves
the accuracy of the reconstructions, albeit at the cost of a relatively high computational
burden. In addition to providing improved quantitative accuracy, full 3D iterative recon-
struction with accurate PSF modelling in both axes of the detector head may result in
significant improvement of quantification results compared with 2D reconstruction [88, 82].

The goal of the new P3D-OSEM was to use a new 3D physical model for iterative
reconstruction in SPECT and to validate it by using Monte Carlo techniques. We based
our P3D-OSEM reconstruction algorithm using iterative methods. The P3D-OSEM was
an upgraded version of the 2D algorithm presented by Falcon [27] which was based on the
iterative Ordered Subsets Expectation Maximization (OS-EM) algorithm of Hudson and
Larkin [39].

In the P3D-OSEM algorithm, each factor is a well understood physical phenomenon,
and therefore corrections are included for each of the image degrading effects (See Ap-
pendix E for a detailed description). The factors are calculated separately and multiplied
afterwards. The result is stored using compact design techniques thus avoiding the in-
crease of matrix size [14]. The standard 3D transition matrix dimension equals the number

1 As explained in Chapter 5, the collimator/detector scattering depends on the energy of the radio-
tracer. Correction for the collimator/detector scattering contamination is not presented in this thesis but
it is under development.



7.2. Material and Methods 95

of voxels multiplied by the number of detector angles and by the number of projection
bins containing non-zero values of the response model. To avoid surpassing the maxi-
mum RAM memory available, the total transition matrix is split in as many submatrices
(P3D-OSEM) as the number of ordered subsets.

Each P3D-OSEM submatrix includes all the object contributions to each subset of
projections. At each iteration step, the corresponding submatrix is loaded, the subset of
projections is reconstructed and finally it is unloaded. Although reading the submatrix
at each subset is time-consuming, this strategy is a trade-off between RAM memory
capacities and processing times. The amount of memory is reduced linearly with the
number of subsets.

7.2.2 Scatter Monte Carlo-based correction

The scatter effect in the final image is about 15% to 40% of the total image, thus it has to
be corrected in order to obtain quantification results. Nowadays this subject is an inten-
sive field of research in SPECT techniques [57, 16]. Scattering phenomena in the object
and in the collimator/detector system affects the quantification results in neurotransmis-
sion SPECT studies significantly [63]. The scattering in the collimator produced by low
energy photons of 99mTc-TRODAT agents may be neglected [18]. Thus, the scattering
models should focus on scatter interactions in the object for 99mTc-TRODAT brain neu-
rotransmission studies. There are different approaches to the modelling of scattering but
its stochastic behavior difficult its modelling (See Appendix E for a detailed description).

Monte Carlo simulation (MC) is the most general method for detailed modelling of
scattering although it implies long computation times. We modelled the scattering effect
by simulating the reconstructed image of the full P3D-OSEM algorithm with the SimSET
(see Chapter 6) virtual phantom Monte Carlo simulator. The reconstructed image is the
input object for the modified SimSET forward projector in order to estimate the scattering
distribution. The stochastic photon transport simulation ensures the completeness of
all the interaction and detection effects during the photon tracking from emission to
detection. The MC simulation is a useful tool in order to determine the fraction of
scattered events at each detector bin both in the object and the collimator/detector
system.

7.2.3 Absolute Quantification in SPECT: the SMFC method

The Scatter Monte Carlo Feedback Correction (SMFC) is a method that we have devel-
oped which combines the P3D-OSEM reconstruction algorithm with Monte Carlo scat-
tering correction. The SMFC also enabales an absolute activity value at each voxel of the
image to be determined using a normalization procedure in the full 3D reconstruction.
The absolute volumetric activities in each voxel of the object were obtained in µCi

cm3 units.
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The scattering is corrected from the original projections. This operation may be re-
peated in the so-called feedback process. The process of forward projection, comparison
and updating can be iterated until an acceptable image is obtained. The Monte Carlo
simulation of forward projection includes all the image degrading effect, that is, the mod-
elling of attenuation, collimator blurring, scattering and noise equivalent counting on the
projections. The scattering estimate in the projection data is compared with theoretical
values and the accuracy assessment of the quantitative image parameters such as recov-
ery ratio, mean values and signal-to-noise ratio were compared with the 2D reconstructed
image without scattering correction.

7.2.4 Validation of the SMFC method

The method was tested using simulated projections of the striatal virtual phantom. The
simulations considered a gamma-camera with a fan beam collimator. The reconstructed
image was evaluated by using a 3D volume evaluation procedure instead of the 2D slice-
by-slice evaluation.

(A) (B) (C)

Fig. 7.1: Striatal virtual phantom for neuroreceptor SPECT studies. The experimental phan-
tom is shown in -A- whereas the virtual phantom with its corresponding attenuation
-B- and activity -C- maps for a central slice.

The SimSET Monte Carlo code simulated the non-pathologic conditions of a neuro-
transmission study: a ratio between specific uptake (basal ganglia) to non-specific uptake
(occipital region) equal to 70/10 as shown in Figures 7.3 and 7.2. Primary and scattered
low energy photons were collected separately, and 3,5 Mc were obtained over 120 projec-
tions with 128 bins (bin size=0.4424cm). Twelve slices (0.5 cm in width) containing the
basal ganglia were reconstructed. Reconstruction was performed using the P3D-OSEM al-
gorithm with 15 subsets2 with compensation for attenuation and and distance-dependent
collimator response PSFT .

2 The total transition matrix was split into 15 submatrices (P3D-OSEM) of 0.25 Gb in order to use
the minimum RAM memory available, i.e. 2Gb.
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Fig. 7.2: Activity map corresponding to the striatal virtual phantom. The virtual phantom
consists of 8 slices activated with 70 µCi/cm3 of 140 keV photons (white ganglia) and
10 µCi/cm3 on the background (non-specific region in grey).

An analysis of results depending on the number of iterations (n from 1 to 32) of the
reconstruction process is presented. Five projection sets for low energy photons (140 keV)
were simulated by using the SimSET Monte Carlo code. The quantification of the striatal
to non-specific uptake ratio was carried out by using a 3D evaluation. Each volume of
interest (see Figure 7.3 was analyzed including the slices above and below the slice of
interest (see Figure 7.5).

7.3 Results

7.3.1 P3D-OSEM reconstructed images

The P3D-OSEM reconstruction results may be compared with the corresponding recovery
ratios3 (RR) of 2D reconstruction algorithms and 3D slice-by-slice evaluation. Table 7.1
shows the different recovery ratios depending on the corrections useed in the reconstruc-
tion algorithm:

The different reconstructed images with the evolutive reconstruction algorithms are
shown in Figure 7.4:

3 The recovery ratio is defined as the ratio between the specific and the non-specific uptake values at
each region of interest compared with the theoretical value. Thus, the theoretical recovery value of this
neurotransmission study is 7.
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Fig. 7.3: Regions of interest (ROI) corresponding to the striatal virtual phantom. The virtual
phantom consists of 8 slices containing the basal ganglia. The basal ganglia include
the left caudate Cleft (blue), the left putamen Pleft (red), the right caudate Cright

(orange) and the right putamen Pright (yellow ). The background (non-specific region)
corresponding to the occipital region is in grey.

Recovery ratios RRCleft RRPleft RRCright RRPright

3D att PSF prim+scat 91% 89% 89% 89%
2D att PSF prim+scat 77% 80% 76% 80%
2D att nPSF prim+scat 70% 73% 69% 72%
2D natt nPSF prim+scat 62% 68% 60% 65%

2D FBP prim+scat 61% 65% 61% 63%

Tab. 7.1: Different recovery ratios corresponding to primary and low energy scattered photons
depending on the reconstruction algorithm. The corrections considered were attenu-
ation (att) and PSF. The reconstruction algorithms 2D and Filtered Backprojection
(FBP) were evaluated in a 2D slice-by-slice procedure whereas 3D algorithms included
a 3D evaluation. Both 2D and 3D algorithms used 32 iterations.
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Fig. 7.4: From left to right: the theoretical activity image, a 2D reconstructed image without
corrections, a 2D image with attenuation correction, 2D image with attenuation and
PSF corrections and 3D image with attenuation and PSF corrections.

The reconstructed images using the P3D-OSEM algorithm at the 4th iteration are
shown in Figure 7.5.

7.3.2 The MC scattering estimate

The scattering distribution estimate is shown in Figure 7.6. The total number of detected
photons which have been scattered is represented for different number of iterations dur-
ing the reconstruction step. Thus, different reconstructed images (at different level of
iterations) were the corresponding inputs for each simulations.

The t-test comparison between original scattering image and the estimated scattering
image obtained depending the number of iterations of the reconstructed image is shown
in Table 7.3.2:

No iterations 1 4 16 32

≤ 1σ 63,70% 63,04% 62,65% 63,34%
≤ 2σ 98,59% 98,37% 98,37% 98,49%
≤ 3σ 99,65% 99,71% 99,73% 99,71%

Simulation results showed good agreement between the original scattering distribution
and the estimated by this method as Figure 7.7 shows.

The proposed methodology is expected to be useful for obtaining highly accurate
scattering distributions in SPECT projections within lower computation times.

The images shown in Figure 7.8 correspond to the differences between the scattering
corrected and uncorrected 3D reconstructions:

The full 3D reconstruction with Monte Carlo-based scattering correction of the virtual
phantom (SMFC method) is shown in Figure 7.9.
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Fig. 7.5: 3D reconstructed image corresponding to the striatal virtual phantom. The recon-
structed image corresponds to the 4th iteration of the P3D-OSEM algorithm.
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Fig. 7.6: Original number of scattering counts (squares) obtained from initial simulation of
Alderson numerical phantom are compared with the the estimated number of scattering
counts after simulating the reconstructed image (crosses).
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Fig. 7.7: Comparison between real noise projections —left— and estimated noise free projec-
tions —right—.
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Fig. 7.8: From left to right: the theoretical activity image, the full 3D reconstructed image
with corrections of attenuation and PSF, the full 3D image with attenuation, PSF and
scattering correction using the SMFC method.

Fig. 7.9: 3D reconstructed image after scattering correction. The SMFC was applied to the
whole striatal virtual phantom. The reconstructed image corresponds to the 4th iter-
ation of the P3D–OSEM algorithm.



7.3. Results 103

Recovery ratios RRCleft RRPleft RRCright RRPright

3D att PSF scat correction 97% 95% 95% 95%
3D att PSF prim+scat 90% 89% 89% 89%
2D att PSF prim+scat 77% 80% 76% 80%
2D att nPSF prim+scat 70% 73% 69% 72%
2D natt nPSF prim+scat 62% 68% 60% 65%

2D FBP prim+scat 61% 65% 61% 63%

Tab. 7.2: Different recovery ratios corresponding to primary and low energy scattered pho-
tons depending on the reconstruction algorithm. The corrections considered were
attenuation (att) and PSF. All the reconstruction algorithms were evaluated in a 3D
evaluation. Both 2D and 3D algorithms used 32 iterations.

Region of Interest (ROI) Theoretical SMFC

Cleft 70 69.0
Pleft 70 66.4
Cright 70 68.7
Pright 70 66.5

Background 10 9.9

Tab. 7.3: Absolute activity values of reconstructed images with the SMFC method. The cor-
rections considered were attenuation (att), PSF and scattering. The reconstruction
used 32 iterations.

7.3.3 Absolute quantitative values

The quantitative results may be compared not only with the corresponding RRi′s values
with previous reconstruction algorithms but also with original absolute activity values at
each voxel. On one hand, table 7.3 shows the different recovery ratios depending on the
corrections used in the reconstruction algorithm:

On the other hand, absolute activity values corresponding to the different regions of
interest (ROI’s) are compared with theoretical values from the original activity virtual
phantom:

Finally, the recovery ratios (RRi’s) for the left caudate are compared using the primary
photons only, the primary and scattered photons together (experimental projections) and
the corrected values for the SMFC method applied on primary and scattered photons
together. These results are shown in Figure 7.10:

We stopped the iteration n = 32 due to the increase of noise in the reconstructed
image and the slow convergence to better quantitative results.
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Fig. 7.10: Different recovery ratios of the theoretical values considering: primary photons only
(dashed line with crosses), primary and scattered photons (line with circles) and all
the photons using the SMFC method (continous line). These values correspond to
the left caudate RRCleft.
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7.3.4 Discussion

A 3D physical model for iterative reconstruction has been applied to a 99mTc SPECT neu-
rotransmission study using a virtual phantom. The P3D-OSEM reconstruction provides
a sharper image quality and improved accuracy in quantitative results.

The 3D SMFC model has been designed to be computationally fast with practical
memory requirements. Several important features of the model have enabled this goal.
Firstly, the scattering effect is corrected a part from the reconstruction algorithm without
substantially increasing the noise. The scattering correction is handled using Monte Carlo
techniques. Secondly, the size of the transition matrix is optimized by using a minimum
element array threshold for the collimator blurring model. In this way, the number of array
elements is reduced and also the RAM memory is decreased. Thirdly, at each iteration
step only a part of the transition matrix is used corresponding to the ordered subset
projection. Finally, absolute quantitative values on the reconstructed image are obtained
using a normalization procedure. The reconstructed voxel values may be expressed as
volumetric activity values ( µCi

cm3 ) at each voxel of the object image. Therefore, absolute
quantification is achieved.
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8. SUMMARY AND CONCLUSIONS

“The relationship between humans and computers, that’s the question.”

The following results and concluding remarks are pointed out:

1. Monte Carlo simulations are the “gold standard” for testing reconstruction algo-
rithms in Nuclear Medicine. We analyzed the available Monte Carlo codes and we
chose SimSET as a virtual phantom simulator. A new stopping criteria in Sim-
SET was established in order to reduce the simulation time. The modified SimSET
version was validated as a virtual phantom simulator which reproduces realistic
projection data sets in SPECT studies.

2. The 3D spatially variant collimator/detector response was obtained by Monte Carlo
simulation including the geometric, septal penetration, coherent and incoherent scat-
tering PSF components. The PENELOPE code was chosen as the PSF response
simulator due to its great accuracy, wide range of energies and fast simulation trans-
port including secondary particles through the collimator/detector system. A char-
acterization of the PSF response for low-energy photons was performed for fan beam
and parallel collimator configurations. A focus was made on the fan beam configu-
ration, which is the optimal collimator for brain SPECT imaging.
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3. The PSF responses for high-energy photons such those emitted by 123I were obtained.
Our results showed that the contribution of high-energy rays to the final image is
greater in parallel collimators (49% to 28%) compared with fan beam collimators
(41% to 11%). These results suggest that scattering in the collimator/detector
system has to be taken into account for 123I SPECT studies. The main features and
variables to model such effects were described.

4. A new variance reduction method for SimSET Monte Carlo simulation was devel-
oped and assessed. We included our PSFT model as a new PDF of the photon
passing through the collimator/detector system per unit solid angle instead of the
PDF per unit area based on the original SimSET code. This method provided a
reduction of the simulation time greater than 2.

5. A Monte Carlo-based scattering correction method was developed. The estimated
scattered photon distribution on the projections showed a good agreement with the-
oretical values. The use of the modified SimSET simulator accelerated the forward
projection process although the computational burden is still a challenge for this
technique. The use of advanced hardware architectures such as PC clusters may
overcome this problem.

6. The significance of correcting degradations in reconstruction algorithms to improve
quantification accuracy of brain SPECT studies was assessed. Our findings indicated
that the 3D spatially variant collimator/detector response, the scattering effect and
the high-energy ray contamination play a significant role in the quantification of
both absolute and relative values on different structures such as the basal ganglia
in neurotransmission studies.

7. Accurate 3D PSF modelling on both axes of the detector head results in a signif-
icant improvement of quantification results using full 3D iterative reconstruction
(9%-13%) instead of 2D slice-by-slice reconstruction. The P3D-OSEM iterative
algorithm was designed to be computationally fast with practical memory require-
ments. Firstly, the scattering effect was corrected a part from the reconstruction
algorithm without substantially increasing the noise using Monte Carlo techniques
but improving the quantification results (6%-7%). Secondly, the size of the tran-
sition matrix was optimized by using a minimum element array threshold for the
collimator blurring model. In this way, the number of array elements was reduced
and also the RAM memory was decreased. Thirdly, at each iteration step only a
part of the transition matrix corresponding to the ordered subset projection was
employed.

8. Full 3D reconstruction simultaneously applied with Monte Carlo-based scattering
correction and the 3D evaluation procedure is a major upgrade technique in order to
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obtain valuable, absolute quantitative estimates of the reconstructed images. This
new procedure provided an improvement of 15%-20% respect to 2D slice-by-slice
reconstruction without scatter correction.

9. The full 3D reconstruction method including all the corrections and a normalization
procedure not only improves quantitative ratios of the image, but also supplies ab-
solute values of volumetric activities in each voxel of the reconstructed image. The
absolute reconstructed values were 95% of the theoretical values, whereas the the-
oretical correction limit (only primary photons calculated by Monte Carlo) yielded
97%. Thus, absolute quantification in brain SPECT imaging was achieved.
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APPENDIX





A. FUNDAMENTALS OF THE MONTE CARLO

TECHNIQUES

A.1 Mathematical definitions

A.1.1 Variable Definitions

Consider a measurable space (H,Ω), where H is a set and Ω is a non-empty collection of
subsets of H closed under complementarity and countable unions; the elements of Ω are
measurable and independent.

A probability measure on H is a function µ that assigns to every element A of Ω a
non-negative probability or measure µ(A) with the properties:

i) µ(H) = 1 (A.1)

ii) µ(Ω1

⋃

Ω2

⋃

... Ωk) =
k

∑

i=1

µ(Ωi) (A.2)

because Ω1,Ω2,... are disjoint measurable subsets of H

If these magnitudes are translated to the field of Nuclear Medicine, H will be the space
of all the possible detector locations. If all the space is covered by an infinite number of
detectors, each decay history will be measured. The sum of probabilities for each particle
to be detected, µ(H), would be equal to 1. However, Ω is only the subset of detector
positions covered by the detector heads, and the detection probability µ(Ω) << 1.

The points of H are thought of as the individual outcomes of the process described
by µ; an event is a bin detector point A of Ω (i.e. a measurable subset of the set of all
possible outcomes), and µ(A) is just the probability that the event described by A will
occur.

The real-valued function X on H is defined as the detector function which assigns a
real value from a subset of events h related to the acceptable outcome of that particular
detector. Then X is a random variable with the property that for any real number K,
the set of points h in H is such that X(h) < K is measurable.
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Integration with respect to µ must be defined. For suitable random variables X, the
expectation or mean E(X) and the variance Var(X) are defined as:

E(X) =

∫

X(h)dµ(h) =

∫

X(h)
dµ(h)

dh
dh (A.3)

Var(X) = E(X2) − E(X)2 =

∫

X2(h)dµ(h) − (

∫

X(h)dµ(h))2 (A.4)

where dµ(h)
dh

is the Probability Density Function (PDF) associated with the probability
function µ(h).

A.1.2 Binomial Detector

The Binomial Detector is a certain type of function X: the characteristic function χΩ. It
has two possible values:

χA(A) = 1 (A.5)

if the photon reaches the bin A, and:

χA(H − A) = 0 (A.6)

if the photon does not reach bin A. It is straightforward to verify that χA, the
characteristic function of the bin detector A, is a random variable. In a measurable
subset Ω of H (with non-zero measure), called the set of acceptable outcomes, the binomial
detector of bin A fulfils the following properties:

E(χA) = µ(A) (A.7)

Var(χA) = µ(A) − µ(A)2 (A.8)

A new variable NA may be defined as the number of acceptable outcomes for a certain
bin detector A after Nc emitted photons from the source. This variable is simply:

NA = Nc χA (A.9)

Using statistical rules, the mean and the variance may be defined for this new variable
NA:
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E(NA) = Nc E(χA) = Nc µ(A) (A.10)

Var(NA) = Nc2 µ(A)(1 − µ(A)) (A.11)

NA could be considered as a binomial distribution because its characteristic function
has only two values (whether it is detected or not). The binomial distribution is a well-
known distribution in subjects of Statistical Mathematics [66]:

P (NA = r) =
Nc!

r!(Nc − r)!
µ(A)r(1 − µ(A))Nc−r (A.12)

where the detector bin A measures r particles after Nc emitted photons.

In Nuclear Medicine applications, the detector set describes a target cylinder that only
covers a sample of the total solid angle sphere. In addition, collimation of photons reduces
the detected counts. Therefore, the probability over all the detectors for achieving one
decay is really small µ(Ω) << 1.

A.1.3 Poisson Distributions

The detection probability for low energy photons of a point source in air for usual acqui-
sition is very low, µ(A) < 10−4, on a single head SPECT camera. However the number
of emitted photons Nc is very large. Under these conditions the Statistical Mathematics
theory [66],[71] indicates that if these two conditions are satisfied:

1. If Nc > 10

2. If µ(A) < 0.05

then the Poisson distribution appears as the limit of the binomial distribution:

lim
Nc→∞

P (NA = r) =
Nc!

r!(Nc − r)!
(

λ

Nc
)r(1 − (

λ

Nc
))Nc−r (A.13)

lim
Nc→∞

P (NA = r) =
λr

r!
lim

Nc→∞

Nc(Nc − 1)...(Nc − r + 1)

(1 − λ
Nc

)rNcr
(1 − λ

Nc
)Nc (A.14)

by using both limits simultaneously:
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lim
Nc→∞

Nc(Nc − 1)...(Nc − r + 1)

(1 − λ
Nc

)rNcr
' Ncr

(1 − 0)rNcr
= 1 (A.15)

lim
Nc→∞

(1 − λ

Nc
)Nc = e−λ (A.16)

and finally the well-known Poisson probability function arises:

lim
Nc→∞

P (NA = r) =
λr

r!
1 exp−λ (A.17)

Another important parameter is the constant mean λ of the distribution:

E(NA) = Ncµ(A) = λ ≥ 0.5 (A.18)

In the Poisson distribution the variance equals to:

Var(NA) =
r=Nc
∑

r=0

(r − λ)2λr

r!
exp−λ = λ (A.19)

The main property of the Poisson Distribution is that mean and variance
have the same value:

Var(NA) = E(NA) = Nc µ(A) = NA = λ (A.20)

A.1.4 Gaussian Distributions

A special case of the Poisson Distribution appears when the probability of detection is
small µ(A) << 1, but the number of events Nc is sufficiently large. In this case the
number of detected counts λ > K is large enough to convert the Poisson distribution to
a Gaussian distribution with mean and variance equal to λ.

Some authors [71] situate this minimum threshold value at K = 9, while others situate
it between K = 5 and K = 30 [36]. In Figure A.1 several Poisson distributions are shown
with different λs showing convergence to the Gaussian distribution.

The χ2 parameter between both distributions at λ = 5 was χ2 = 0.0254 with 29 degrees
of freedom. The significance of this test was close to 100%. Moreover, the correlation
coefficient between both distributions was 98.6%.

In fact, most of the applications and theories used in Nuclear Medicine
field are based on considering Gaussian distributions at each detector bin. Such
assumption may be taken when the following conditions are accomplished:
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Fig. A.2: Poisson and Gaussian distribution at the same mean value λ = 5.
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1. The detection of an event is independent to the others

2. There is a huge number of emitted photons (decays) from the source radioisotope

3. The probability of detection is very small

4. The product of the number of emitted photons Nc and the probability of detection
(µ(A)) –i.e. the counts at every detector bin NA— is higher than the Poisson-to-
Gaussian threshold, that is λ > K.

A.2 The Analogue Monte Carlo method

In Monte Carlo applications on Nuclear Medicine, the magnitude of interest is just the
number of events received at a given detector A. However it is also necessary to sort an
initial map of activity representing the source volume problem distributed in K voxels. In
order to simulate this source volume, an initial sampling algorithm determines the initial
location of the histories. The spatial probability density of the initial points of emission
for each history must be proportional to the activity map.

Let us first introduce a way of achieving the estimators by a simple sorting of photons
in a Standard Monte Carlo code. The sampling of each χA(h) history is defined by:

pk(h) =
Ak

A
(A.21)

Where the activity map is represented by a volume activity Ak in µCi/cm3 at each
voxel k. If there are K voxels in the simulation then the activity map is:

{Ak}k=1..K (A.22)

A =
k=K
∑

k=1

Ak (A.23)

Thus, nk decays are sorted at each voxel K of the object volume according the activity
map. The decays are sorted voxel by voxel in a sequential order:

nk = Nh

Ak

A
(A.24)

with an initial weight:

w0 = 1 (A.25)
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The Analogue Monte Carlo samples the detection probability function µ with no vari-
ance reduction technique. Once the Nh histories have been sorted with the density prob-
ability function pk, they are tracked and a weight w(h) is obtained at each detector bin
A. The final tally is an estimate of the mean of detected events at each detector bin A.
The magnitude estimated by Monte Carlo simulation is the number of events received at
the detector bin A per particle simulated, that is:

E(χ̄A) =

∑h=Nh

h=0 χA(h)w(h)

Nh

(A.26)

With the variance:

Var(χ̄A) =

∑h=Nh

h=0 w(h)2

N2
h

(A.27)

By the Central Limit Theorem the variance of the tally is 1/Nh times that of the
variance of a single tally, and what is more, the different estimated values themselves
will tend to be normally distributed even if the random variable itself is not normally
distributed. This fact is really important because it implies that the mean of the estimates
is the same as the mean of the random variable. Thus the estimates themselves lead to a
value for the mean.

Var(χ̄A) =
1

Nh

{
∑h=Nh

h=0 χA(h)2

Nh

− (

∑h=Nh

h=0 χA(h)

Nh

)2} (A.28)

Equation (A.28) may be simplified:

Var(χ̄A) =
1

Nh

{E(χA) − (E(χA))2} =
1

Nh

Var(χA) (A.29)

So the deviation in our estimate is related to the deviation of the parent distribution,
and it decreases with the square root of the number of histories Nh. This is a fundamental
result of classical Monte Carlo.

A.2.1 The Central Limit Theorem

If the results of an experiment are caused by a large group of independent events, each of
which is individually irrelevant with respect to the group, it is expected that the results
fit the normal distribution.

If NA0,NA1,...,, NAn are independent, random variables with mean µi and variance σ2
i

and each one fits a probability density distribution —not necessarily the same— a new
variable Y can be defined:
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Y =
i=n
∑

i=0

NAi (A.30)

If n grows, the z variable defined as:

z =
Y − ∑i=Nd

i=0 µi

(
∑i=Nd

i=0 σ2
i )

1
2

(A.31)

tends to the normal distribution N(0,1).

As a lemma, a new variable “mean of random variables” may be defined as:

Y

n
=

∑i=n
i=0 NAi

n
(A.32)

which also fits a normal distribution (n is a constant value) with variance:

Var(
Y

n
) =

1

n2

i=n
∑

i=0

σ2
i =

nσ2
i

n2
=

σ2
i

n
(A.33)

In this lemma all random variables belong to the same distribution, with the same variance
σ2

i . This is the case of Monte Carlo simulations where a unique magnitude is estimated
by sampling a unique PDF with random numbers.

Nevertheless, the biggest problem facing Monte Carlo techniques is the extremely slow
convergence of the estimate. The estimate error is inversely proportional to the square
of the size of the observation set (n). In other words, the algorithm has a convergence
O( 1√

n
). Thus, to halve the error, the number of histories that have to be sorted has to be

quadrupled (i.e. with a greater CPU time the variance can be reduced).

Much of the research in Monte Carlo methods has been directed towards increasing
the convergence of the estimator by decreasing its intrinsic variance σ2

i and getting better
results from fewer samples. The intrinsic variance is constant (randomly constant), but
could be changed using Monte Carlo knowledge : Variance Reduction Techniques
(VRT).

A.3 Variance reduction techniques. Theory and Basis

There are two approaches to improve the Monte Carlo estimate. Those that do not require
any a priori information about the distribution: blind Monte Carlo techniques:

1. Crude Monte Carlo
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2. Rejection Monte Carlo

3. Weighted Monte Carlo

4. Quasi Monte Carlo

and those which use some knowledge of the distribution sampled: informed Monte
Carlo techniques:

1. Stratified Sampling

2. Importance Sampling

3. Control variates

Let us describe the most important Variance Reduction Technique used in Nuclear
Medicine applications, namely Importance Sampling.

A.3.1 Importance Sampling

Importance Sampling is a powerful general method for reducing the variance in many
Monte Carlo calculations. The idea is that some regions of the probability density function
(the “detection function”) contribute more to the final estimate (detected “counts”) than
other regions. These are typically places where the function has a large value, or fluctuates
both significantly and quickly. These regions have “more importance” than others, and
the goal will be to sample these regions more densely to get a better estimate of what
is happening. The compensation for non-uniform sampling is included so that the final
estimate is unbiased.

Now suppose that ν is another measure, also defined on (H, Ω), with the property
that ν is concentrated on the set of acceptable outcomes for the subset of detectors Ω.
Provided that the three conditions are covered on every subset of Ω:

1. ν(Ω) ≥ 0

2.
∫

Ω
dν(h)

dh
dh = 1

3. On every subset of Ω with positive µ measure, the ν measure is also positive and
there is essentially a unique function w(h) = µ(h)

ν(h)

4. For any real number a, the set of points h in Ω such that w(h) < a is measurable
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The new distribution probability function w(h) allows the following estimates to be
found:

w(h) =
dµ(h)

dν(h)
(A.34)

E(χΩ) =

∫

Ω

χ(h)w(h)
ν(h)

dh
d(h) (A.35)

If µ(Ω) is small, it follows that w(Ω) will also be small:

E(χΩ) =

∫

Ω

χ(h)dµ(h) = µ(Ω) (A.36)

since its mean value with respect to the new function w(h) is just:

E(χΩ) =

∫

Ω

χ(h)w(h)d(h)

∫

Ω

ν(h)

dh
d(h) = w(Ω) (A.37)

because
∫

Ω
dν(h)

dh
dh = 1 as ν(h) is concentrated on the set of acceptable outcomes from Ω.

E(χΩ) = µ(Ω) = w(Ω) << 1 (A.38)

This new probability density function will also follow a Gaussian distribution and
Monte Carlo techniques can be applied. The simulation will now be changed using a
different sorting procedure. Compensation of this non-uniform distribution on the set
of histories affects each history by a weight factor w in order to obtain the same esti-
mates. We must now tally χA(h)w(h)/Nh for each history produced by the new simulation
method. The mean and the variance of the new estimate will be:

E(χ̄A) =

∑h=Nh

h=0 χA(h)w(h)

Nh

(A.39)

Var(χ̄A) =
1

Nh

{
∑h=Nh

h=0 χA(h)2w(h)2

Nh

− (

∑h=Nh

h=0 χA(h)w(h)

Nh

)2} (A.40)

In this case it is not possible to substitute the variance in terms of the mean value,
and a new sum must be tallied (a new variable in the simulation) in order to accumulate
the

∑

w(h)2.

As shown in equations A.37 and A.38 the estimates of the two random variables X
and Y = wX are the same :
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Eµ(X̄) =

∫

A

χ(h)dµ(h) = µ(A) = w(A) =

∫

A

w(h)dν(h) = Eν(Ȳ ) (A.41)

That is, Y (sampled by the new distribution probability ν) gives an unbiased estimate
of the probability of the event X occurring according to the underlying physics represented
by the probability measure µ.

However the variances are very different:

Varµ(X̄) =
1

Nh

{E(X̄) − (E(X̄))2} =
1

Nh

(µ(A) − µ(A)2) ' µ(A)

Nh

(A.42)

Varν(Ȳ ) = Eν(Ȳ
2) − Eν(Ȳ )2 =

∫

A

w2(h)dν(h) − (

∫

A

w(h)dν(h))2 (A.43)

and in particular,

Varν(Ȳ ) ≤
∫

A

w2(h)dν(h) (A.44)

On the other hand, using the Cauchy-Schwartz inequality we obtain,

Eν(Ȳ )2 = (

∫

A

w(h)dν(h) )2 ≤
∫

A

1dν(h)

∫

A

w2(h)dν(h) (A.45)

Eν(Ȳ )2 ≤ ν(A)

∫

A

w2(h)dν(h) (A.46)

Now, if we combine the last two equations (A.45) and (A.46), we have that:

(1 − ν(A))

∫

A

w2(h)dν(h) ≤ Varν(Ȳ ) ≤
∫

A

w2(h)dν(h) (A.47)

and since ν(A) is small, we obtain:

Varν(Ȳ ) '
∫

A

w2(h)dν(h) = w(A)2 (A.48)

The comparison of both variances with the known unbiased mean value w(h) = µ(h)
yields:
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Varµ(X̄) =
µ(A)

Nh

6= w(A)2

Nh

= Varν(Ȳ ) (A.49)

when both w(h) = µ(h)
ν(h)

distribution functions µ(h) and ν(h) are small. As it is shown
in last equation one of the main goals of the reduction variance techniques is
to maintain all the events weight w(h) < 1 using the adequate distribution
function ν(h).

A.4 Interpretation of the SimSET results

In this section we study the reliability, accuracy and interpretation of SimSET results.
Two different kinds of simulations may be performed with SimSET:

1. Analogue Monte Carlo simulations: No variance reduction technique is included

2. Importance Sampling in Monte Carlo simulations: Weights are introduced to bal-
ance different distribution sampling functions

If an analogue simulation is performed, after Nh histories have been sorted, the mean
and the variance estimator can be written as:

E(χ̄A) =

∑h=Nh

h=0 χA(h)

Nh

=
M

Nh

(A.50)

Var( ¯χA) ' 1

Nh

{
∑h=Nh

h=0 χA(h)2

Nh

} =
M

N2
h

(A.51)

where M is the number of detected events. For the variance, the Cauchy-Schwartz
inequalities can be applied and the expression becomes simplified.

On the other hand, we can use variance reduction techniques, where a different prob-
ability density function is used to sample the different histories. This new PDF can be
chosen such that the new number of detected events, M ′, is larger than M (for the same
number of simulated histories). Furthermore, the mean estimate has to be the same as
that obtained in (A.50), in other words:

E(χ̄A) = E(χ̄′
A) (A.52)

M

Nh

=

∑h=M ′

h=0 w(h)

Nh

(A.53)
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M =
h=M ′
∑

h=0

w(h) (A.54)

However, the variance estimator:

Var(χ̄′
A) ' 1

Nh

{
∑h=Nh

h=0 χ′
A(h)2w(h)2

Nh

} =

∑h=M ′

h=0 w(h)2

N2
h

(A.55)

should be reduced as much as possible. Haynor and the SimSET developement group
[37] rewrote the variance estimator in the form:

Var(χ̄′
A) =

(
∑h=M′

h=0 w(h))2

M M ′

(
∑h=M′

h=0 w(h))2

M M ′

∑h=M ′

h=0 w(h)2

N2
h

=
M

N2
h

{M ′ ∑h=M ′

h=0 w(h)2

(
∑h=M ′

h=0 w(h))2
}(

∑h=M ′

h=0 w(h))2

M M ′

(A.56)

In SimSET there is a statistical variable called the Quality Factor, QF , related to
the reduction in variance caused by the non-homogenous balance distribution of weights
which is defined as:

0 ≤ QF =
(
∑h=M ′

h=1 w(h))2

M ′ ∑h=M ′

h=1 w(h)2
≤ 1 (A.57)

where the Cauchy-Schwartz inequality [79] is used as before, it can be shown that
QF ≤ 1. Substituting both formulas (A.57) and (A.54) in the expressions obtained for
the variance, Var(χ′

A), yields:

Var(χ̄′
A) =

M

N2
h

{ 1

QF
} 1

M M ′M
2 =

M2

M ′ N2
h

{ 1

QF
} (A.58)

Thus, the ratio between the analogue Monte Carlo variance and the variance obtained
by variance reduction techniques, is given by:

VarVRT

VarAnalogue MC

=
Var(χ̄′

A)

Var(χ̄A)
=

M2

M ′ N2
h

{ 1
QF

}
M
N2

h

=
M

M ′ QF
(A.59)

Analysis of the last equation (A.59) indicates that SimSET is designed such that:

1. There is an increase in the number of detected events M ′ (in comparison with the
analogue simulation M) using alternative probability density functions (so that the
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ratio M
M ′ is decreased). Some of the Variance Reduction Techniques (VRT) used by

SimSET are: Interaction Forcing, Detection Forcing, Forced Non-Absorption which
allow photons to be tracked to regions of interest (e.g. critical zone, acceptance
angle,...), enabling their detection.

2. An uniform map of weights is obtained. This way, QF ⇀ 1 and a better variance
reduction is reached. The upper limit for QF is obtained when all weights are
equal to 1, that is, when the Analogue Monte Carlo is used. However in the VRT
case, the techniques used are Russian Roulette (killing of photons whose weight
undergoes a lower limit) and Splitting Particles (splitting photons whose weight is
above an upper limit). The Weight Window is the control variable to avoid a great
dispersion in the weight distribution (i.e. non-optimal distribution weight would
reach 4 magnitude orders —from 0.01 to 100— whereas an optimal one would be
set between 2 magnitude orders —from 0.1 to 10— depending on the case.

3. All the weights —artificial tracks or interactions— are adjusted with their real
equivalent from underlying physics processes which have to be reproduced certainly
at each step

However, what is more important for interpreting the statistical results is that: if both
SimSET simulations (Analogue and VRT) have to yield the same mean (unbiased result)
and the same variance (real statistical noise), then the following must be fulfilled:

E(χ̄A) = M =
h=M ′
∑

h=0

w(h) = E(χ̄′
A) (A.60)

VarV RT = VarAnalogueMC = M = M ′ QF (A.61)

However, the initial version of SimSET had no control of the mean number of counts
or over the variance associated with a “real” or analogue equivalent simulation.

A.5 Adding or combining Monte Carlo simulations

Sometimes in order to obtain a first approach to the solution of a detailed problem,
it is common to make a short simulation and obtain a preliminary projection image.
Afterwards, when the statistics have been revised, the real noise in the image can be
found with another longer simulation. The two images, A and B, can be added thus
obtaining another mean and variance. Firstly, each image can be defined by its mean and
variance:
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E(χA) =

∑h=Ni

h=0 wi(h)

Ni

(A.62)

Var(χA) '
∑h=Ni

h=0 wi(h)2

N2
i

(A.63)

The new mean for the combined images is :

E(χ̄A) =
N1 E1(χA) + N2 E2(χA)

N1 + N2

(A.64)

That is, in the final form using (A.62) is set to:

E(χ̄A) =

∑h=N1

h=0 w1(h) +
∑h=N2

h=0 w2(h)

N1 + N2

(A.65)

In order to calculate the new variance for the combined image, we use the statistical
result of each:

Var(E(χ̄A)) = Var(
N1 E1(χA) + N2 E2(χA)

N1 + N2

) (A.66)

Var(E(χ̄A)) =
1

(N1 + N2)2
(N2

1 Var1(χA) + N2
2 Var2(χB)) (A.67)

Substituting the variance of each image (A.63) and (A.67) we obtain an expression for
the variance of the combined image:

Var(E(χ̄A)) =

∑h=N1

h=0 w1(h)2 +
∑h=N2

h=0 w2(h)2

(N1 + N2)2
(A.68)

A.5.1 Adding or combining SimSET simulations

In the case of SimSET simulations a similar result can be obtained by taking into account
the differences in the definitions for the mean and the variance:

E(χA) =

h=Ni
∑

h=0

wi(h) (A.69)

Var(χA) '
h=Ni
∑

h=0

wi(h)2 (A.70)
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The mean for the combined images is equal to:

E(χ̄A) =
N1 E1(χA) + N2 E2(χB)

N1 + N2

(A.71)

Using the statistical results of each simulation we obtain:

E(χ̄A) =
N1

∑h=N1

h=0 w1(h) + N2

∑h=N2

h=0 w2(h)

N1 + N2

(A.72)

In order to calculate the new variance for the combined image, using the statistical
results for each one of the images we have to compute:

Var(E(χ̄A)) = Var1(
N1 E1(χA) + N2 E2(χA)

N1 + N2

) (A.73)

Var(E(χ̄A)) =
1

(N1 + N2)2
(N2

1 Var1(χA) + N2
2 Var2(χA)) (A.74)

Var(E(χ̄A)) =
N2

1

∑h=N1

h=0 w1(h)2 + N2
2

∑h=N2

h=0 w2(h)2

(N1 + N2)2
(A.75)



B. DESCRIPTION OF THE SIMSET PACKAGE

B.1 Input data

The next section provides an introduction to the package along with a road map to the
documentation and files [38] required to use the SimSET package. The flow chart of the
SimSET package is presented in Figure B.1.

Fig. B.1: SimSET overview flow chart

The most relevant modules in SimSET are:

1. Makeindexfile : Data input interface (including attenuation and activity image out-
put)

2. Phg : Tracking of photons through heterogenous media

3. UncCollimator : Collimation of the photons n Detector : Detection of collimated
photons
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4. Bin : Binning of detected photons ordered in histograms defined by the user

5. Ttest : T-Student test between different sinograms and projections

The core program of SimSET is the Photon History Generator —PHG—. PHG
contains the physics and commands governing the transport of photons through different
materials. In order to define which materials the media of transport is composed of and
where the source origin of each photon, the user has to introduce the Attenuation and
Activity Distribution.

The Activity Object defines the spatial distribution of isotope concentration from
which photons will be generated. The Attenuation Object defines the spatial distribu-
tion of the attenuation bodies where photons will travel through. Although these two
items contain different information for the simulation, they share a common geomet-
ric/parametric definition. Both items are needed to describe the Object as is shown in
Figures B.2 and B.1.

Fig. B.2: Photon History Generator diagram.The rounded rectangles at the top represent the
various parameters that are required as input to the PHG, while the rectangles at the
bottom represent the outputs of PHG

The Object (see Figure B.3) is defined in Cartesian coordinates as a three-dimensional
grid of solid rectangular voxels. Each voxel contains an index for activity concentra-
tion and an index for attenuation values. Non-zero attenuation and activity values are
restricted to the Object Cylinder, the largest right circular cylinder subtended by the
three-dimensional grid. Photons are tracked to the Object Cylinder —any attenuation
specified outside this cylinder is ignored—. No decays are simulated in voxels which are
entirely outside the object cylinder.

The SimSET Object Editor module is makeindexfile, a stand-alone program which
provides numerous options for setting the index values for both activity and attenuation.
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Fig. B.3: The object is defined inside the object cylinder represented in black line. This cylinder
is inserted in a Cartesian three-dimensional grid of solid rectangular voxels with a user-
defined value for activity and attenuation parameters

The Object Editor can use pre-existing files to initialize the object voxels on a slice-by-slice
basis. This allows the simulations based on digital phantoms such as those introduced by
Alderson, Hoffman and Zubal.

(A) (B) (C)

Fig. B.4: Alderson phantom for neuroreceptor SPECT studies. The experimental phantom is
shown in —A— used for validation trials and the virtual phantom with its correspond-
ing attenuation —B— and activity —C— maps for a certain slice.

B.1.1 Attenuation map

The Attenuation Table is initialized from a text file which contains an entry for each
supported tissue type. The program contains a translation table between the integer and
the material. Each material is described by a table of computed values for narrow-beam
attenuation in cm−1 and relative probability of Compton scattering (Compton cross-
section/total cross-section). The Attenuation table is ordered in steps of 1 keV from 50
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keV up to 1000 keV.

The table can be generated automatically and may be modified to add new materials
not currently supported. The tissue types and materials which are the most relevant in
Nuclear Medicine studies are included in SimSET as described in Table B.1.

Tissue number Name

0 air

1 water

2 blood

3 bone

4 brain

5 brain stem

6 calcium

7 cerebellum

8 cerebrum

9 cerebrospinal fluid

10 fat

11 heart

12 lung inflated

13 muscle

14 skin

15 lead

16 aluminum

17 lucite

18 tungsten

19 polystyrene

20 sodium iodide

21 perfect absorber

Tab. B.1: Tissue types defined in SimSET as default. It is also possible to

include user-defined materials

B.1.2 Activity map

The activity table file contains the original radiotracer volumetric distribution. It is
represented by 1 byte values at each voxel of the object. This is a list of 256 activity
values in units of µCi

cm3 .

Absolute Quantification will try to achieve the original absolute values in the re-
constructed image.
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B.1.3 Simulation Options

The PHG uses numerous data files to perform a simulation. The creation of these input
files is automated whenever possible. All of the data files necessary for performing a
simulation are described in a Main Parameter File. The parameter file is a text file
divided into four sections:

1. The first section specifies run-time options:

1.1. simulated stratification: Controls the use of stratified sampling which is a variance
reduction technique, consisting of sorting the initial direction of photons based upon
a productivity table which sums up the most probable ”detected” directions.

1.2. simulated forced detection: Controls the use of forced detection, another variance
reduction technique based on forcing the scattered angle after a Compton interaction
in order ”to pass” through the collimator.

1.3. forced non absorption: If TRUE, photons are not absorbed as a result of interaction;
instead, their weights are reduced proportionally by the probability that the inter-
action would result in Compton scattering. If FALSE, the probability of interaction
is compared against a pseudo-random number to determine if the event will result
in absorption or Compton scattering. Setting this option to TRUE will make more
efficient use of each photon simulated.

1.4. acceptance angle (0-90 degrees): Only photons which strike the target cylinder with
a direction vector whose angle with respect to the z-axis falls between [90−α, 90+α]
are considered for detection. α is the acceptance angle —See Figure B.5—.

Fig. B.5: The acceptance angle is defined over the normal of the collimator. This normal is
perpendicular to the z-axis, that is the tomograph axis where the object is placed.

1.5. photon energy : Initial photon energy (51 - 1000 keV).
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1.6. minimum energy : Any photon whose energy falls below the minimum energy is
considered to be absorbed. Photons are forced to Compton scatter until their energy
drops below minimum energy and then they are discarded.

1.7. Nh: The number of histories to be simulated.

1.8. weight window ratio: The ratio which triggers weight-windowing in Forced Detec-
tion. It is used as a parameter in reduction variance techniques such as Russian
Roulette and Splitting [e.g. weight window ratio = 3 would cause all photons whose
estimated detection weight is less than 1/3 their target weight to undergo Russian
roulette; a weight greater than 3 times the target weight would undergo photon
splitting]. NOTE: Weight windowing is only performed when the weight window
ratio is not equal to 1, the simulated forced detection option is true, and the in-
put productivity table is not empty (i.e., the productivity table was computed in a
previous run).

1.9. point source voxels :If set to TRUE this option causes all decays within a voxel to
occur at the voxel center. Hence, a point source may be simulated by specifying
activity in only one voxel and setting this flag to true.

1.10. random seed : This is the seed value for the random number generator. It can
be any valid four-byte integer value. If it is zero, the generator is seeded from the
system clock.

2. The second section specifies the overall geometry of the activity/attenuation object

3. The third section specifies the geometry of the target cylinder. This is the cylinder
described by the collimator/detector planar system after rotation of 360o centered
on the tomograph axis about the object.

4. The fourth section provides the path-names to the various output files

B.2 Tracking

An important part of the SimSET package is the PHG. It contains modules for photon
generation, tracking and interaction in voxelized heterogeneous objects. It is similar in
principle to other Monte Carlo-based simulation software, such as SIMIND [52], EGS [58]
and MCNP [13]. The main differences from emission tomography applications are related
to ease-of-use flexibility, optimization and efficiency to perform simulations in Nuclear
Medicine fields.

Each photon is tracked from its starting location to the surface of the Object Cylinder.
From there, the photon is projected to a bounding cylinder referred to as the Target
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Cylinder. The radius and axial extent of the Target Cylinder are user-specified; they will
usually be determined by the radius and axial dimensions of the detection/collimation
system to be simulated. The space between the Object Cylinder and Target Cylinder is
modelled as a vacuum. All photons that reach the Target Cylinder within a user-specified
axial Acceptance Angle will be included in the Photon History List. The ”Tracking
Photons” flow chart includes a ”Collimate Photon” and ”Detect Photon” step as Figure
B.6 shows.

Interaction tables and angular distribution data tables were generated using photon
interaction data from the EPDL database and human tissue composition data from the
ICRP Reference Manual. The interaction tables which include linear attenuation coeffi-
cients and data to calculate relative probabilities of photoelectric absorption, Compton
scattering and coherent scattering were extended to cover the complete range of 1 keV to
1000 keV.

It should be pointed out that the forced detection algorithm, one of the importance
sampling techniques previously incorporated into SimSET to increase its efficiency, is
not compatible with the current use of coherent scatter. This is essentially due to the
strongly forward-peaked angular distributions associated with coherent scattering, which
result in an unacceptably large variation in the detected photon weights. However other
importance sampling techniques used by SimSET (e.g. importance sampling, etc.) are
compatible with coherent scattering, which do not imply an impact on the simulation
speed.

B.3 Collimator Modules

The SPECT Collimator Module performs the collimation process of those photons which
hit the target cylinder, that is those that reach the collimator surface. Tracking photons
through the collimator can occur automatically during execution of the PHG, or as a
post-processing step operating on the photon history list. There are three types of hole
geometries supported by the collimator module, parallel (conventional), fan beam, and
cone beam.

In SimSET, the probability of crossing the collimator and being detected is based
on the geometric model developed by Frey et al. [32]. Steven Vannoy and Dave Lewis
have adapted the PSF functions in the SimSET collimator module. For each photon that
reaches the face of the collimator, the probability of passing through it without interaction
is computed. The photons which would pass through the collimator whole are accepted
and their weight is adjusted according to the probability density function. There is no
modelling of scattering within the collimator nor septal penetration because the photon
is supposed to pass only through the collimator opening using geometrical criteria. Thus,
this model does not use any Monte Carlos tracking simulation in the collimator.
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Fig. B.6: The control flow for tracking photons is described for both SPECT and PET simula-
tions in SimSET.
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Fig. B.7: Transaxial view of a fan beam collimator

B.4 Detector Modules

The Detector module receives photons directly from the Collimator module. This module
tracks photons by Monte Carlo techniques inside the specified detector and it records
the deposited energy for each photon. The different interaction locations in the crystal
are used to compute the centroid point of the detected event. Gaussian energy blurring
may be applied due to the finite energy resolution of the crystal used as a detector. The
user has to specify the energy resolution of the crystal and the detection window energy
applied for each different isotope and study.

The “flat detector” mode provides a full simulation (including scatter, absorption, and
penetration) of photon interactions in the detector head. The detector is modelled as lay-
ered rectangular parallelepiped (see figure B.8). The Flat Detector can be rotated around
any angular range with a fixed radius or rotation and the user may specify the number
of tomographic views. The radial and axial position of the detector is predetermined by
the collimator module.

Flat (SPECT) and dual head coincidence (PET) detector models are currently sup-
ported, together with a “simple” model in which only the Gaussian energy blurring is
performed. Photomultiplier tubes and electronic devices that are connected may be rep-
resented by an additional layer as will be discussed in Chapter 5.
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Fig. B.8: The flat detector modelling is the standard one used in SPECT gamma cameras.
It allows the user to specify the thickness of each material, energy resolution of the
crystal and window energy defined by the camera electronics

B.5 Output data

B.5.1 The binning of output data

For PHG the history list —the list of output photons of the simulation— only contains
information of photons which reach the Target Cylinder within the acceptance parameters
of the simulation. The collimator and detector module are both capable of creating a post-
simulation (by Monte Carlo methods or using analytical deterministic functions) in order
to create another history list output. The formats are the same, and the stand-alone
binning module treats all of them equally.

The binning module will create a multi-dimensional histogram (sinogram) from a list
of photons, giving the number, weight, and the sum of weight squared for each photon
in each detector pixel (bin). These sinograms are stored in arrays of counts, weights and
square weights as they are the simulated projections.

The binning step is defined by the user and it is another input file in the simulation.The
following list of parameters describes the available binning options:

1. scatter(s): splits the projection in primaries (unscattered) and scattered depending
on the number of scatter interactions (max scatter - min scatter +1 )

2. Z Axis : bins the projection according to their z-axis position in the detector head

3. Transaxial Distance: bins the projection according to their y-axis position in the
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detector head

4. Azimuthal Angle: Binning by azimuthal angle is specified in terms of the range of
tomograph angles within the acceptable range which is (0 − 2π) for SPECT

5. Energy : Binning by energy is specified in terms of the range of acceptable energies
and the number of bins within this range. It represents the detector energy window.

B.5.2 Statistical Results

Apart from the image projections onto the tomograph detectors, SimSET also presents a
statistical summary with the most relevant results from the simulation.

Statistic variable Description Form

Started photons Number of histories Nh

Started primary Number flagged primary

Started weight Number of initial weights
∑h=Nh

h=0 w0

Low energy photons Photons below Emin

Split photons Photon weight exceed window

Roulette attempts Killed by Russian Roulette

Det.photons Photons at front collimator

Det.primary weight Weights of primaries
∑h=Nh

h=0 wp

Det.primary w.squared Squared Weights of primaries
∑h=Nh

h=0 w2
p

Det.scatter weight Weights of scattered
∑h=Nh

h=0 ws

Det.scatter w.squared Squared Weights of scattered
∑h=Nh

h=0 w2
s

Det.photon energy histogram Histogram by energy

Det.photon weight scatters Histogram by noscatters

Quality Factor Measure variance reduction QF
Real time Simulation time TCPU

Tab. B.2: Statistical results given by a SimSET simulation
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C. DESCRIPTION OF THE CODE FOR PSF

MODELLING

C.1 Manual of the simulation program

The code implemented in order to simulate the PSF at different point sources locations
and different collimator geometry was written in FORTRAN 771. The code is based on
PENELOPE code using the following routines linked with the main code:

1. spect.f : FORTRAN code used to initialize, track, score and save all the photons
simulated. This code calls all the routines below. The geometry is initialized each
time a photon is sorted. At the impact point, a new hole net is located.

2. col3malla4.f : FORTRAN code used to define the look-up table of all the hole
centers. The output file with all the hole center positions (x1,x2,y1,y2,e1,e2) is de-
fcol.out. It also creates a net of holes using the surfaces defined in PENELOPE
geometry. The output files describes each body (hole) with its 6 surfaces (for hexag-
onal shape) described by 4 indexes, in quadric format, that is:

AXx + AY y + AZz + A0 = 0 (C.1)

A part from quadric indexes it is also included a side pointer index which decides
the orientation of body location over or under the surface using the normal vector
of the plane as the positive direction. A part from the holes it is also defined the
collimator body, outside the holes, with a L depth. Finally the detector body is
everything else under a planar surface at L + B from the front-plane collimator.

The material of each body is defined in spect.mat using the program material of
penelope in generating this file. All the information about the material is written
on the screen when executing the compiled program.

3. penelope.f : FORTRAN code defining the main PENELOPE routines for simulating
the photon through the object. This routine call to the complete set of subroutines

1 Its compilation used g77 from the GNU project under Linux or UNIX operating systems
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defining the physics of different interaction, the track-length step, the variance re-
duction techniques, etc.

4. peng2.f : FORTRAN code used as major PENELOPE routine for defining the geom-
etry of the simulation. It has changed from pengeom2.f (original file in PENELOPE
package) the number of PARAMETER (NS=250,NB=125,NX=500) in order to en-
able the number of surfaces needed. PENELOPE has two parameter to be changed,
in the file pengeom.f (the geometry file that manages all the looking up for the
boundaries and surfaces) , NS=number of surfaces and NX=number of crossing
boundaries,if it reaches more than a certain number of surfaces. The new files are
peng2.f, peng5.f, etc.

5. time2.f : FORTRAN code defining the major PENELOPE routines for describing
the lack of time of the simulation

Finally, all these files are compiled and linked in the executable program spect.x2. In
order to execute the program, the following files are needed as input information:

1. collimator.sim : It describes the following parameters in cm.

1.1. L = Collimator thickness (i.e. 4 cm)

1.2. B = Image plane situation under the collimator backplane (i.e. 0.8 cm)

1.3. F = Focal height of the focus line in a fan beam (i.e. 35.5 cm). In the parallel
collimator it tends to inf

1.4. Collimator height = Height of the collimator surface (i.e. 25 cm)

1.5. Collimator width = Width of the collimator surface (i.e. 50 cm)

1.6. Apothema x = Apothema in x-direction of the hexagonal hole (i.e. 0.075 cm)

1.7. Apothema y = Apothema in y-direction of the hexagonal hole (i.e. 0.075 cm)

1.8. Septa thickness = Width of the septa wall between holes (i.e. 0.02 cm). Note this
septa grows with distance to z-axis with the elongation factor

2. font.sim : It describes the point source location in (X0, Y0, Z0)

3. spect.mat : It describes all the materials ordered in a list. This order defines the
number of each material referenced in sup.geo

2 g77 spect.f peng2.f penelope.f col3 malla4.f time2.f -o spect.x
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Once the program is executed two different kinds of files are written:

1. Geometry output file:

1.1. def col.out : it contains all the information about the center positions on the look-up
table

1.2. sup.geo : it describes all the bodies and surfaces used in the object geometry

2. Simulation results:

2.1. energy.out : energy spectra of the detected photons

2.2. stat.out : statistical results of the detected photons ordered by different components.
In this file there is the efficiency result of the point source

2.3. g.out, ps.out, r.out, s.out and t.out : image files with the geometrical, septal pene-
tration, rayleigh (coherent scatter) and Compton (incoherent scatter) components
of the PSF. With these files is possible to get the spatial sigma parameters

2.4. g2.out, ps2.out, r2.out, s2.out and t2.out : image error of the PSF results with its
corresponding variances

C.2 Description of the fan beam specific geometry

To prevent the geometry routines from carrying all the holes each time a photon travels
through the collimator, an approach that would have represented an excessively large
amount of data, the description of the geometry was split into two steps. First, during
the initialization, all the centers and elongations for each hole were stored in a look-up
table which took into account all the characteristic parameters such as the focal length,
collimator thickness, etc. This table remained unchanged during all the simulation. Each
hole center was calculated using the recurrence relation defined by:

Xn = Xn−1 +
∆R0

cos(ψn−1)
(C.2)

cos(ψn−1) =
F

√

F 2 + X2
n−1

(C.3)

where Xn is the position of the center of the n-th hole on the fan beam axis (x-axis),
∆R0 is the distance between two hole centers at the origin (X0 = 0) in the fan beam
direction, and 1

cos(ψn−1)
is the elongation factor depending on the angle ψn−1, between the
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axis of the (n-1)-th hole and the central axis. ∆R0 was fixed to 0.1643 cm along the x-axis
whereas W = 0.075 and s = 0.02 cm. As the point source moved away from the central
axis, the elongation factor increases and the effective values of hole radius and the septa
rose by 20%.

A difficult case of sorting photons arises in the fan beam collimator when the source
is away from the center of the collimator. in this case, the main program calculate:

1. The hole center Xn which center passes through the line defined by the source point
S = (X0, Y0, Z0) and the focal line F

Xn = X0
F

F − Z0

(C.4)

2. Once it has been found Xn, the program calculates its left- and right-borders XM ,
that is, the maximum distance reached by photons passing through collimator at
both sides of Xn [65]:

XMright
= Xn + XM − X0 (C.5)

XMleft
= Xn − XM − X0 (C.6)

3. With these two points XMright
and XMleft

, the program calculates the maximum and
minimum aperture angles:

cos(αmin) =
Z0

√

Z2
0 + X2

Mright

(C.7)

cos(αmax) =
Z0

√

Z2
0 + X2

Mleft

(C.8)

4. And as the program uses a Monte Carlo technique in order to simulate the transport,
the final emission angle (in polar coordinates (α, ϕ))is sorted using a random number
generator ξ ∈ [0, 1]:

cos(α) = −cos(αmax) + (cos(αmax) − cos(αmin))ξ (C.9)

ϕ = 2πξ (C.10)
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5. So the final director cosines (u, v, w) of the particle are :

u = sin(α)cos(ϕ) (C.11)

v = sin(α)sin(ϕ) (C.12)

w = cos(α) (C.13)

6. And the weight factor W of the photon in order to correct the isotropic emission
over the 4π emission field is:

W =
cos(αmax) − cos(αmin)

2
(C.14)

In order to simulate the experimental measurements the program received as input
parameters:

1. The distance between hole centers in the x-axis of the fan-beam. This value was
measured with a ruler on the front collimator plane and was set constant during all
the simulations.

∆R0 = 2 (0.1643)cm = 0.2846cm (C.15)

2. Also, it was measured the parameter ∆Ry0 on the y-axis:

∆Ry0 = 0.17cm (C.16)

Both factors were constant over all the collimator array but affected by the elonga-
tion factor as presented in the above section

3. The radius circle ”circumscribing” the hexagonal hole has an initial value of:

Rx = Ry = 0.0866cm (C.17)

but as the center hole is away from the z-axis, the radius in x-coordinates is elongated
while the radius in y-coordinates remains fixed:

Rxn =
Rx

cosψn−1

(C.18)
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The program uses the apothema variable for hexagonal hole shape instead of the
radius variable3.

Wx = Wy = Rx cos(30◦) = 0.075cm (C.19)

C.3 Equivalent results with different hole shape

The geometry model implemented in the PENELOPE’s simulation reproduces the exact
location of each hole on the fan beam collimator, with its exact shape. The program
can manage different hole shapes. This feature is critical in the characterization of the
collimator. However, other programs such as SimSET or Simind cannot simulate some
specific shapes. An equivalence between different hole shape characteristics in order to
obtain an equivalent result is presented:

C.3.1 Round holes

Referring at the hole shape, the program calculates similar PSF results considering equiv-
alent areas for different hole shapes. In the case of round holes, the equivalent area to the
hexagonal one is:

Areahex = 12
bh

2
= 12

R
2
R cos(30◦)

2
(C.20)

Arearound = πR̂2 (C.21)

Areahex = Arearound (C.22)

R̂ =

√

3
√

3R2

2π
(C.23)

Thus, the simulation results are equivalent when the hole radii R = 0.866 is used for
the hexagonal hole, and the R̂ = 0.07875 for the round hole4.

3 Some authors [65] refer W as the radius variable
4 The round hole is implemented in the standard SimSET simulations using the PSFG Frey model
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C.3.2 Square hole

This hole shape is used in the simulation code SIMIND created by Ljungberg et al. [52]
and the approximation of the collimator modelled by square holes was developed by De
Vries et al. [84]. De Vries indicate: “Since the values for the hole size, septal thickness and
collimator thickness specified for the simulated collimator were the same as those of the
collimator used in the experiments, the collimators have the same total lead content per
unit area of detector surface. Therefore, we expected the radially averaged penetration
and collimator scatter components to be independent of hole shape even though the
penetration components exhibit a hole shape dependence in a two-dimensional image”.
The equivalent radii for the square hole approximation is:

Areahex = 12
R
2
R cos(30◦)

2
=

3
√

3

2
R2 (C.24)

where R is the radius of the circumference that circumscribe the hexagon. If it is
defined a square whith side L5, thus:

Areasquare = L2 (C.25)

As similar to round holes, the assumption of equivalent areas is determined by:

Areahex = Areasquare (C.26)

That lasts to:

L =

√

3
√

3

2
R2 (C.27)

This relation may be expressed in terms of the hexagonal apothem, W :

R =
W

cos(30◦)
(C.28)

it vanishes to:

L =

√

2
√

3W (C.29)

The hole array configuration of the collimator using square holes is defined by the
distances between neighbor holes which is:

5 The distance from the center to the border is L
2
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∆R0 = L + S (C.30)

∆Y0 = L + S (C.31)



D. THE PSFG MODELS AND THE PDF

VARIABLE CHANGE

D.1 The PSFG models

D.1.1 Metz and Tsui model for PSFG

As shown in Figure 6.2, a pair of tapered holes which are located in a perfectly opaque slab
of thickness L are considered. The hole axis is focused on the focal line at a distance F
from the front plane collimator1. The distance between the collimator backplane and the
image plane inside the scintillation crystal is represented by B2. The aperture function
value equals 1 if the position vector ~η − ~r′ falls inside the aperture hole and 0 otherwise.
Let af (~η− ~r′) and ab(~ε− ~r′′) be the aperture functions of the collimator holes at the front

and back planes of the collimator, respectively, and let ~r′i represent the position of the
center of the i-th hole aperture at the front plane. ~η is the vector which moves freely on
the front plane and ~ε moves freely in the black plane of the collimator.

First the straight line joining S (the source point) and I (the image point inside the
overlapped circles) is defined in order to obtain the projected image point of the source
as shown in figure D.1:

S ≡ (x0, y0, L + B + Z) (D.1)

I ≡ (xI , yI , 0) (D.2)

The impact point of the emitted photon onto the front collimator plane is:

x = xI + t(x0 − xI) (D.3)

1 This model is developed for fan beam (convergent collimators) and parallel collimators. The parallel
case is just a detailed case of the convergent collimator by considering limF→∞

2 This is a virtual distance. It represents the “virtual” plane where the image is formed. It depends
on the crystal width and is user-defined
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Fig. D.1: A pair of tapered holes which are located in a fan beam collimator. The geometry
including all the details is described in Section D.1.1.
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y = yI + t(y0 − yI) (D.4)

z = t(L + B + Z) (D.5)

The front collimator plane is placed at a height of L + B along the z-axis, i.e.:

z = L + B (D.6)

The intersection parameter t is set to:

t =
L + B

L + B + Z
(D.7)

and the intersection point on the front collimator plane is:

x = (xI

Z

L + B + Z
, x0

L + B

L + B + Z
) (D.8)

y = (yI

Z

L + B + Z
, y0

L + B

L + B + Z
) (D.9)

z = L + B (D.10)

The last expression allows the vector ~η to be written on the front plane collimator
in terms of the variables ~r′i (i-th hole position on the front plane) and ~r0 (the source
projection on the image plane):

af (~η − ~r′i) = af (~r, ~r′i, ~r0) = af (
Z

L + B + Z
r +

L + B

L + B + Z
~r0 − ~r′i) (D.11)

Similarly the same expression may be deduced for the back collimator in terms of the
front collimator aperture. A triangular relation between vectors ~η and ~ε reads:

~η

F
=

~ε

F + L
(D.12)

ab(~ε − ~r′i) = ab(~r, ~r′i, ~r0) = af (
F

L + F

Z

L + B + Z
~r +

F

L + F

B

L + B + Z
~r0 − ~r′i) (D.13)
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A variable change using the new variables ~σ and ~rt defined as:

~σ = ~ri −
L

(Z + L + B)~r
− L + B

(Z + L + B)~r0

(D.14)

~rt =
L

(F + L)(Z + L + B)
((F − Z)~r − (F + L + B)~r0) (D.15)

and the sensitivity definition is set to:

η(~rt) = k

∫ ∫

af (−~σ)af (~rt − ~σ)d2~σ (D.16)

After this change of variables, the sensitivity may be transformed in the Fourier space:

η(~rt) = k

∫ ∫

af (−~σ)af (~rt − ~σ)d2~σ (D.17)

η(~µ) = F(η(~rt)) (D.18)

In the general case, the new variable is substituted:

η(~µ) =
k√
2π

∫ ∫

e−i~rt~µd2~rt

∫ ∫

af (−~σ)af (~rt − ~σ)d2~σ (D.19)

~ν = ~rt − ~σ (D.20)

d2~ν = d2~rt (D.21)

η(~µ) =
k√
2π

∫ ∫

af (−~σ)d2~σ

∫ ∫

af (~ν)e−i~µ(~ν+~σ)d2~ν (D.22)

and another substitution:

~κ = −~σ (D.23)

d2~κ = d2~σ (D.24)

Then the Fourier transform of the integral is the product of conjugate Fourier trans-
form functions:
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η(~µ) =
k√
2π

∫ ∫

e+i~µ~κaf (~κ)d2~κ

∫ ∫

af (~ν)e−i~µ~νd2~ν (D.25)

η(~µ) = k
√

2πA∗
f (~µ)Af (~µ) (D.26)

η(~µ) = k
√

2π|Af (~µ)|2 (D.27)

Parallel case

In the case of the parallel collimator configuration, the focal line height F tends to infinity:

lim
F→∞

~rt =
L

(Z + L + B)
(~r − ~r0) (D.28)

This means that there is an invariant probability of detection along the collimator plane
if the distance between S and I is kept constant ~r− ~r0 = K0. However , this phenomenon
does not occur in fan or cone beam collimators because the efficiency η depends on ~r0 and
not only on the distance vector. The response function is non stationary over the image
plane.

Point source S on z-axis

For the particular case ~r0 = 0 when the point source is located on the z-axis, the µ
variable:

η(~µ) =
k√
2π

∫ ∫

e−i~r~µd2~r

∫ ∫

af (−~σ)af (~rt − ~σ)d2~σ (D.29)

~ν = ~rt − ~σ = G~r − ~σ (D.30)

where the factor G is defined as:

G =
L(F − Z)

(F + L)(Z + L + B)
(D.31)

and if a new change of variables is introduced:

d2~ν = G2 d2~r (D.32)
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η(~µ) =
k

G2
√

2π

∫ ∫

af (−~σ)d2~σ

∫ ∫

af (~ν)e−i~µ~ν+~σ
G d2~ν (D.33)

~κ = −~σ (D.34)

d2~κ = d2~σ (D.35)

and then the Fourier transform of the integral is the product of conjugate Fourier
transform functions:

η(~µ) =
k

G2
√

2π

∫ ∫

e+i~µ ~κ
G af (~κ)d2~κ

∫ ∫

af (~ν)e−i~µ ~ν
G d2~ν (D.36)

η(~µ) = k

√
2π

G2
A∗

f (
~µ

G
)Af (

~µ

G
) (D.37)

η(~µ) = k

√
2π

G2
|Af (

~µ

G
)|2 (D.38)

Example of a solution using the Metz model

In the last section the means to calculate the fluency for a point source over a collimator in
the frequency domain was explained. In this section this result is applied to an example.
Consider a collimator radius R:

af (~η − ~r′i) = af (−~σ) = 1 if |~η − ~r′i| < R (D.39)

af (~η − ~r′i) = af (−~σ) = 0 else (D.40)

first, we perform the transformation:

Af (~µ) =
1√
2π

∫ ∫

e+i~σ~µaf (−~σ)d2~σ (D.41)

Af (~µ) =
1√
2π

∫ R

−R

d~σx

∫

√
R2−~σ2

x

−
√

R2−~σ2
x

e+i(~σx~µx+~σy~µy) 1 d~σy (D.42)

For this particular case, the convolution becomes the area of the overlapped circles
with radii R.
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Af (~µ) =
1√
2π

∫ R

−R

e+i(~σx~µx) 2 cos(~µy

√

R2 − ~σ2
x)

~µy

√

R2 − ~σ2
x

d~σx (D.43)

A function in the frequency domain (µ) is the result with a non trivial solution. This
function will subsequently have to be transformed into the real domain using the two-
dimensional Fourier function only by numerical methods in order to get the final solution.

η(~r;~r0) = F−1(Ψ(~µ)) = k
√

2πF−1(|Af (~µ)|2) (D.44)

It is clear that these type of models are not operative in practice because of their
complex structures and their simplifying assumptions.

D.1.2 Frey model for the analytical PSFG

The density probability function of being detected is defined as:

P (~r; ~r0; A) =
Overlapped Area

Collimator Cell Unit Area
(D.45)

The probability density function per unit area is calculated using the ratio between
two areas: the overlapped area —between the aperture functions on the front and back
collimator plane, see Figure D.1— and the unit area —geometric cell area, see Figure
D.2—. The collimator cell unit area is the minimum cell used to build the collimator
array structure.

Fig. D.2: The hexagon describes the geometric unit cell of the collimator in Frey model

The geometric cell used in Frey’s model presents some differences in comparison with
the experimental collimator geometry:

1. The model considers round holes instead of the real hexagonal holes used in most
collimators
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2. This model uses a septal thickness equal to half of the septa wall —distance between
two apertures— 2Sth = Swall. This definition is not used in the bibliography3

The collimator cell unit area is calculated as:

Collimator Cell Unit Area = 2
(2R + 2Sth) cos(30o)(2R + 2Sth)

2
= 2

√
3(R + Sth)

2

(D.46)

then, using the approximation (R + S)2 ' (R + Sth)
2, we obtain:

Collimator Cell Unit Area = 2
√

3(R + S)2 (D.47)

How do Frey et al. analytically determine the overlapped area between the
two circles in a real-domain formula for a known photon direction and for a
certain hole?

The solution is simple but ingenious: using the analytical expression of the area
included in the segment defined by the arc of a circle [79] defined in equation
(D.48):

Half Overlapped Area =
1

2
R2(θ − sin(θ)) (D.48)

This area —represented in Figure D.3— is half of the overlapped area between two
circles of the same radius:

Fig. D.3: The dark area represents half of the overlapped area between two circles

This area can be calculated (in (D.49)) once the direction of the photon and the
geometry of the collimator are determined as Figure D.4 shows.

3 Nevertheless, in SimSET simulations the user may enter the standard septa thickness as in most
collimators R À S, so (R + S)2 ' (R + Sth)2.
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Fig. D.4: The non-overlapped distance is shown as a function of the angle of the photon and
the characteristics of the hole
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Non overlapped length = L tan(α) (D.49)

where α is the direction of the photon with respect to the z-axis. Thus, the overlapped
length will be the rest of the circle diameter:

Overlapped length = 2R − L tan(α) (D.50)

Therefore, we can calculate the overlapped area4 using (D.48) and the parameters
shown in Figure D.5:

cos(
θ

2
) =

R − Half Overlapped Length

R
=

R − 2R−L tan(α)
2

R
=

L tan(α)

2R
(D.51)

Fig. D.5: The dark area represents half of the overlapped area between two circles. The pa-
rameters used in the Frey model are illustrated.

θ = 2arcos(
L tan(α)

2R
) (D.52)

sin(θ) = 2 sin(
θ

2
) cos(

θ

2
) = 2 cos(

θ

2
)

√

1 − (cos(
θ

2
))2 (D.53)

Then, the overlapped area will be twice the half overlapped area calculated with the
analytical formula:

Overlapped Area = 2
1

2
R2(θ − sin(θ)) (D.54)

4 The tg(α) = 2R
L

value limits the maximum “acceptance angle” of a parallel collimator. When the
cos(θ) equals 1 and θ = 0.
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Overlapped Area = R2(2arcos(
L tan(α)

2R
) − 2

L tan(α)

2R

√

1 − (
L tan(α)

2R
)2 (D.55)

If we change the variables ‖~r0‖ = L tg(α), the overlapped area for a certain photon
direction remains:

Overlapped Area = 2arccos(
‖~r0‖
2R

) − 2
‖~r0‖
2R

√

1 − ‖~r0‖2

4R2
(D.56)

and using the expressions in (D.56) and (D.47), the density probability function of
Frey’s model becomes the formula that was presented at the beginning of this section
((D.45)):

P (~r; ~r0; A) =
Overlapped Area

Collimator Cell Unit Area
=

2 arccos(‖~r0‖
2R

) − 2‖~r0‖
2R

√

1 − ‖~r0‖2

4R2

2
√

3(R + S)2
(D.57)

For convergent beam collimators an extension of the previous density probability func-
tion is presented. In the case of the fan beam collimator we have to introduce the elon-
gation factor defined as:

γ(~r
′

) =
1

cos(ϑ)
=

√

(F + L + B)2 + |~r′ |2
(F + L + B)

(D.58)

where ϑ is the angle between each pin used to build the fan beam collimator holes and

the normal to the front plane collimator. The vector ~r′ , which is the position of each hole
center, is obtained with the elongation factor and the variable ~r0:

~r0

γ(~r′)
(D.59)

In the fan beam collimator the radius and septa thickness of the border collimator
hole is 20% larger than the central hole.

D.1.3 Pareto model for PSFG

Fluency of photons at point I = (~r, 0) = P (x, y,−L − B) on the image plane for a given
point source located at S = (~r0, L + B + Z) = P (x0, y0, z0) was defined in the expression
obtained in Section 6.2.
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Fig. D.6: with the parameters needed in our PSFT model.

The ray-tracing technique consists of defining a new “aperture hole function” A(~r, ~r0, Z+
L+B) = 1. If the optical ray reaches any bin or pixel detector, the aperture function has
the value 1. Otherwise, it is 0.

A(~r, ~r0, Z + L + B) =

∫ ∫

ab(~r, ~r′i, ~r0)af (~r, ~r′i, ~r0)d
2~r′i (D.60)

Each detector bin is a discrete image plane. This plane is divided into N pixels
with area ∆. Each pixel is sampled from its center to the source location through the
collimator. The sampling covers all the detector surface and accumulates the “detected”
number of optical rays (A(~r, ~r0, Z + L + B)). The pixel area resolution ∆ determines the
accuracy of the sensitivity estimate η which is:

η(~r, ~r0) =
(L + B + Z)

4π(|~r0 − ~r|2 + (L + B + Z)2)
3
2

A(~r, ~r0, Z + L + B) ∆ (D.61)

Fig. D.7: A detailed part of the collimator where optical rays are sampled along the discrete
pixel areas ∆

In other words, the expression is:



D.2. The Probability Density Function change in Monte Carlo 161

η =
∑

~ri∈∆i

cos(θi)

4πR2
i

A(~r, ~r0, Z + L + B) ∆ (D.62)

Where Ri is the distance between the point source and each image point of the whole
front plane collimator and the dot product between each photon ray and the normal plane
vector results in cos(θi).

D.2 The Probability Density Function change in Monte Carlo

This section shows an important operation in Monte Carlo techniques: the PDF variable
change in order to reduce the variance of the simulation. A detailed example for simulating
photons in a reduced range of angles is described5.

In a Monte Carlo simulation, the emission angle of the photons is not isotropic. The
photon directions should be oversampled in a certain range close to the 0o direction.
Thus, this implies that the ”real-photon” history associated with the track of a particular
photon must be reflected in the weight of the photon because it is not sorted isotropically.
This deviation is maintained including a new weight W which relates to the ratio between
the “real-probability” of the photon (pr) and the new probability (p

′

w) assigned in order
to accelerate the simulation with photons exiting with a certain Ω solid angle, that is:

pr = wp
′

w (D.63)

The w factor is the Monte Carlo weight in order to assign a ”real” value to each history
using variance reduction techniques as was explained in chapter 3. The probability density
function has to be normalized in the whole domain:

∫

Ω

p(Ω)dΩ = 1 (D.64)

p(Ω) =
1

∫

4π
dΩ

=
1

4π
(D.65)

Similarly, if the emission is isotropic, we can describe the same equation ((D.64)) with
the variables ϕ, ϑ:

∫

Ω

p(Ω)dΩ =

∫

ϕ

p(ϕ)dϕ

∫

cos(ϑ)

p(cos(ϑ))d cos(ϑ) = 1 (D.66)

5 This change of PDF was applied in the PSFT Monte Carlo code
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As each variable has to be normalized,

∫

ϕ

p(ϕ)dϕ = 1 (D.67)

p(ϕ) =
1

∫ 2π

0
dϕ

=
1

2π
(D.68)

and similarly:

∫

cos(ϑ)

p(cos(ϑ))d cos(ϑ) = 1 (D.69)

p(cos(ϑ)) =
1

∫ 1

−1
d cos(ϑ)

=
1

2
(D.70)

If we restrict the isotropic decay in a certain range of angles to the ϑ variable (from
αmin to αmax) :

pw =
1

∫ 2π

0
dϕ

1
∫ cos(αmax)

cos(αmin)
d cos(ϑ)

=
1

2π

1

cos(αmax) − cos(αmin)
(D.71)

Thus, applying equation (D.63) the final value for the weight W is:

W =
1
4π

1
2π

1
(cos(αmax)−cos(αmin))

=
cos(αmax) − cos(αmin)

2
(D.72)

Another case of interest is the calculation of the new PDF based on the relationship
between the two variables. In this Monte Carlo simulation, the emission angle of the
photons is not isotropic. The photon directions should be oversampled in a certain range
close to the 0o direction. In this Monte Carlo simulation, in order to improve the sensitivity
near the ϑ = 0 a typical change for the probability density function is,

ϑ = cos(ϑ) (D.73)

The equation to be maintained is:

p′(cos(ϑ))d cos(ϑ) = p′(ϑ)dϑ (D.74)

Thus:



D.2. The Probability Density Function change in Monte Carlo 163

p′(cos(ϑ)) = | dϑ

d cos(ϑ)
|p′(ϑ) (D.75)

It is simply calculated that:

| dϑ

d cos(ϑ)
| =

1

sin(ϑ)
(D.76)

p′(cos(ϑ)) =
1

sin(ϑ)

1

π
(D.77)

This new density probability function should be normalized:

p(ϑ) =
1

∫ π

0
ϑ

=
1

π
(D.78)

∫ 1

−1

p′(cos(ϑ))d cos(ϑ) = 1 (D.79)

1

π

∫ 1

−1

1

sin(ϑ)
d cos(ϑ) (D.80)

by changing the variable |dcos(ϑ)| = sin(ϑ)dϑ, the integration limits change to:

1

π

∫ π
2

−π
2

1

sin(ϑ)
sin(ϑ)dϑ = 1 (D.81)

The weight using (D.63) associated with the new probability density function is:

p′(cos(ϑ)) =
1

sin(ϑ)
p(ϑ) (D.82)

Then,

wp
′

w = pr (D.83)

The real probability for isotropic emission is:

pr = p(cos(ϑ)) =
1

2
(D.84)

and the new probability density function which is not isotropic:
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pw = p′(cos(ϑ)) =
1

sin(ϑ)

1

π
(D.85)

Then:

W =
pr

p′

w

=
π

2sin(ϑ)
(D.86)



E. THE P3D-OSEM ALGORITHM AND

SCATTERING CORRECTION METHODS

E.1 Full 3D Reconstruction Algorithm: P3D–OSEM

E.1.1 Iterative Reconstruction algorithms

The aim of tomographic reconstruction is to obtain cross-sections of an object from projec-
tions of that object. Two different approaches are commonly used for SPECT reconstruc-
tion. Until recently, Filtered Back Projection (FBP) was the universal method because
of its simplicity and speed. As soon as computations burden were speeded with advanced
computers, a more accurate technique was used: Iterative reconstruction algorithms.

In iterative algorithms, using an initial estimate of the activity distribution (image
s0

i ), estimated projection data are generated by means of a forward projector (
∑

l tljs
0
l ).

These calculated projections are compared with the measured projections (pj). On the
basis of this comparison, one can obtain a better estimate of the image using an update
step (s1

i ). This process of forward projection, comparison and updating can be iterated
n times until an acceptable image is obtained (sn

i ). The model of forward projection is
represented by the transition matrix (tij) which is used in the iterative algorithm. The
more accurate this transition matrix is modelled, the better the agreement will be between
the estimated images and the real activity distribution.

Iterative reconstruction algorithms based on maximum-likelihood expectation-maximization
methods (MLE-EM) [77, 49] are attractive because they place non-negativity constraints
on the reconstructions, they have attractive noise properties and they enable Poisson
noise to be accounted for in the projection data. The ML-EM algorithm updates all
image elements si of the estimated image at iteration k + 1 according to:

sk+1
i =

sk
i

∑

j tij

∑

j

tijpj
∑

l tljs
k
l

(E.1)

where sk
i represents the unknown and the input data are the transition matrix (T =

[tij]) and the measured projection set (P = [pj]). Furthermore, realistic models that in-
clude effects of camera blurring and attenuation can be incorporated into the transition
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matrix during reconstruction. The elements of a matrix column represents the probabili-
ties of photons emitted from a single voxel to be detected in each pixel of the projection
image. This part of the matrix closely represents an attenuated point spread function
(PSF). The exact matrix (or a complete set of attenuated PSFs) depends on acquisition
parameters, the gamma camera system, and the density distribution of the patient.

E.1.2 The OS-EM algorithm

In order to render ML-EM fast enough to be used in a clinical setting, the scheme is often
accelerated, for example using block iterative methods such as the Ordered Subsets Ex-
pectation Maximization (OS-EM) algorithm of Hudson and Larkin [39]. OS-EM involves
grouping projection data into an ordered sequence of Ω subsets:

pj = p1
⋃

p2 · · ·
⋃

pΩ (E.2)

The EM algorithm is then applied to each subset1 ω taking into account the results
of ω − 1 at the same iteration number k:

s
k(ω)
i =

s
k(ω−1)
i
∑

j tij

∑

j

tijp
ω−1
j

∑

l tljs
k(ω−1)
l

(E.3)

and the result is used as the starting estimate for processing the next image estimate
sk+1

i .

Ordering of subsets should be established in such a way that each subset ω includes
the most independent information possible. It has been shown that OS-EM can reach
acceleration factors that are close to the number of subsets Ω used [39, 44], while achieving
image quality that is similar to standard ML-EM.

E.1.3 Description of P3D-OSEM

Despite the fact that physical effects occur both within and across transaxial planes,
most iterative methods used to date treat each transaxial plane independently due to
computational considerations. One would expect, however, improved image quality from
the more accurate three-dimensional (3D) reconstruction methods —those that model
in-plane and cross-plane effects— compared with 2D methods [35].

We based our P3D-OSEM reconstruction algorithm on using OS-EM iterative algo-
rithms. The P3D-OSEM was an upgraded version of the 2D algorithm presented by

1 The image values are initialized with the mean value of the projection data set s0

i = p̄j
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Falcon [27]. In the P3D–OSEM algorithm each factor is a well-understood physical phe-
nomenon, and therefore corrections are included for each of the image degrading effects.
The transition matrix includes full 3D PSF and attenuation factors:

1. The correction of collimator blurring by using accurate models of spatially-dependent
camera blurring during iterative reconstruction improves signal-to-noise ratio (SNR)
and resolution [46, 82, 88]. The PSF factor consists of determining the contribution
of each voxel of the object to each bin detector or projection pixel. This factor
corresponds to the integral of the full 3D PSF in the projection pixel. The 3D
PSF function is the PSFT model (see Chapter 6) for both parallel and fan beam
collimators.

The tails of the Gaussian PSFT beyond 3σ from the center were truncated to zero in
order to reduce the size of the transition matrix. A minimum weight value min(tij)
of 0.0003 was chosen2 and all the matrix elements tij ≤ min(tij) below this threshold
were discarded in order to avoid an excessive amount of small weights. The total PSF
volume over the whole FOV was normalized depending on the source-to-collimator
distance and the aperture angle from the central ray.

2. The attenuation factor was calculated by ray tracing following the proposal of Siddon
et al. [78]. The attenuation factor included the fraction of transported photons from
the center of each voxel in the image to the center of each pixel of the projection.
The track-length of the ray in each voxel was determined by the intersection between
the parametric equation of the ray and the equations which define each plane. The
parametric values were sorted to determine the order of the crossed voxels. The
distances were calculated by simple substraction of the consecutive parametric values
because an unitary vector was used in order to define the ray equation.

Both factors were calculated separately and multiplied afterwards. The result is stored
using compact design techniques, thus avoiding the increase of matrix size [14]. The
standard 3D transition matrix dimension equals the number of voxels multiplied by the
number of detector angles and by the number of projection bins containing non-zero
values of the response model. Its elements have a four-byte, floating-point format. A
common 128×128 activity object of 12 slices projected onto 128 bins located at 120
angles represents a “standard” transition matrix size of 5 Gb. To avoid surpassing the
maximum RAM memory available3, the total transition matrix is split into the same
number of (P3D-OSEM) submatrices as the number of ordered subsets.

2 This parameter is an user-defined variable which has to be calculated previously. The value has
to be determined between the maximum and minimum weight of the transition matrix. It depends on
geometrical data and collimator/detector configurations of each SPECT study.

3 The maximum RAM memory available depends obviously on the computer size. Our different com-
puters had a RAM memory size between 0.5 and 2 Gigabytes
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Each P3D-OSEM submatrix includes all the object contributions to each projection
subset. The attenuation and detector response factors are pre-computed in each sub-
matrix. At each iteration step, the corresponding submatrix is loaded, the subset of
projections is reconstructed and finally it is unloaded. In this way the transition matrix is
reduced and it only includes information related to the projection angles included in each
subset. Although reading the submatrix at each subset is time-consuming, this strategy is
a trade-off between RAM memory capacities and processing times. Once the iteration is
performed all the submatrix have been used. The amount of memory is reduced linearly
with the number of subsets.

E.2 Scattering correction methods

There are different methods for scattering correction in reconstruction algorithms. The
scatter effect in the final image is about 15% to 40% of the total image, thus it has to
be corrected in order to obtain quantification results. Nowadays this subject is an inten-
sive field of research in SPECT techniques [57, 16]. Scattering phenomena in the object
and in the collimator/detector system significantly affects the quantification results in
neurotransmission SPECT studies [63]. Scattering in the collimator produced by low
energy photons of 99mTc-TRODAT agents may be neglected [18]. Thus, the scattering
models should focus on scatter interactions in the object for 99mTc-TRODAT brain neu-
rotransmission studies. There are different approaches to the modelling of scatter but its
stochastic behaviour difficult its modelling.

Monte Carlo simulation (MC) is the most general method for detailed modelling of
scatter although it implies long computation times. We modelled the scattering effect by
simulating the reconstructed image of the full P3D-OSEM algorithm with the modified
SimSET (see Chapter 6) stochastic virtual phantom MC simulator. The modified SimSET
accelerated the simulation step.

E.2.1 Analytical correction methods

Nowadays Monte Carlo simulation (MC) is the most general method for detailed scatter-
ing modelling. The problem associated with Monte Carlo-based statistical SPECT recon-
struction approaches is the prohibitively long computation times and excessive computer
memory requirements [7]. However, at present hardware architectures such as clusters
and multiprocessor computers are available. They allow Monte Carlo simulations to be
parallelized in order to speed-up the process.

In order to simplify and accelerate the scatter degradation, deterministic models were
derived from empirical data such as Dual window, Triple Energy Window, TDCS, etc.
Among the different deterministic models, there are:
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Triple Energy Window (TEW)

At present, a much-used scatter correction method is the deterministic Triple Energy
Window (TEW) method which includes acquisition data in triple-energy windows of the
gamma camera [60, 40]. This method consists of estimating scatter photons in each
projection bin from the detected photons in two additional energy windows W sc

1 ,W sc
2

each 4 keV on either side of the central window. The counts of the central window are
then corrected by the lateral windows.

psc
j = pj − (τ p1

j − υp2
j) (E.4)

However, due to the small size of the windows used in this technique, noise can be
substantially increased in the corrected scatter data and accurate results are not always
obtained. As an advantage, TEW neither requires careful instrument-dependent calibra-
tion nor need a transmission scan.

Transmission Dependent Convolution Substraction (TDCS)

A second class of methods, which includes acquisition data of a transmission scan (TCT-
ECT), is the Transmission Dependent Convolution Substraction (TDCS) technique [55,
57]. The scatter is estimated deterministically by first convolving the observed photopeak
projection data pj, with a radially symmetric mono-exponential scatter function, SC, to
reduce variation of scatter with depth and provide an initial estimation of scatter psc

j :

psc
j = pj ⊗ SC(r) = pj ⊗ ζ exp−κr (E.5)

Pixel-by-pixel scatter fraction values k(x, y) were estimated for emission projections
from the transmission projections as follows:

k(x, y) = 1 − 1

A − Bt(x, y)
β
2

(E.6)

where t(x, y) is the transmission factor at detector bin position (pixel (x, y)) and A,
B and β are constants. The corrected scatter data p′j are then given by the difference of
the projection and the estimated scatter fraction pixel by pixel:

p′j(x, y) = pj(x, y) − k(x, y)psc
j (x, y) (E.7)
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E.2.2 Monte Carlo methods

Monte Carlo methods can readily handle media of non-uniform density and large-angle
scattering. To make the —notoriously slow— MC simulation feasible for scatter correction
in SPECT, acceleration methods using variance reduction techniques (VRTs) are often
applied [37]. The most common VRTs are forced detection (FD) to increase photon yield
on the detector and importance sampling (IS) to sort photon directions at locations where
it is more probable to count the particle. VRTs that have been proposed more recently
include photon tracking combined with Convolved Point Spread Functions (CPSF) which
allow a two-fold extra acceleration. These methods have been found to be accurate for
scatter simulations in the photo-peak window and they are presented in this thesis. When
a combination of these VRTs is used, MC becomes computational feasible for full 3D
scatter correction in routine clinical iterative image reconstruction.

Different methods of scatter correction can be applied using MC tools:

1. The Inverse Monte Carlo (IMOC) method computes the entire transition matrix Tij.
MC provides solutions to the photon transport equation for SPECT detection from a
unit source activity si = 1 in each reconstruction source voxel [28, 29]. In the photon
transport equation, scatter is included as well as attenuation and collimator blurring
by modelling PSF functions and attenuation factors. The inputs are the physical
characteristics of the acquisition apparatus such as energy window setting, system
energy and spatial resolution, radius of rotation and an attenuation map of the
body and its contours. Due to photon cross-talk between slices, caused by collimator
blurring and scattering, full 3D SPECT reconstruction (instead of slice-by-slice (2D)
reconstruction) is required for optimal image quality [9]. Unfortunately, hundreds
of Giga-bytes up or even several Tera-bytes of memory are required to store the
complete non-sparse transition matrix when the full 3D MC matrix approach is
used, and it can take several months to generate the full matrix on a state-of-the-
art workstation. In addition, the procedure has to be repeated for each patient.

2. Slab Derived Scatter Estimation (SDSE) first calculates and stores the scatter re-
sponses in tables of point sources behind slabs for a range of thicknesses, and then
tunes these responses to various object shapes with uniform density [8, 31]. A table
occupying only a few megabytes of memory is sufficient to represent this scatter
model for full 3D reconstruction [9]. A full 3D reconstruction of a 99mTc cardiac
study based on SDSE can be performed in only a few minutes on a state-of-the-
art single processor workstation. A disadvantage of SDSE compared with matrices
generated by IMOC techniques is that it only includes the first-order Compton scat-
tering and the photoelectric effect, so it neglects multiple-order Compton scattering,
coherent scatter and high-energy scatter contamination (i.e. in 123I for example).
The scatter responses are calculated by specific Monte Carlo techniques such as the
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Utrecht Monte Carlo System (UMCS) [21] which uses a three-dimensional source
emission-distribution (activity image), a mass density distribution (attenuation im-
age) and the geometry and characteristics of the SPECT system. These scatter re-
sponses are used in the probability density functions (PDFs) describing the physics
of photon transport, including emission, scatter and detection processes.

3. The scatter estimate through an accelerated Monte Carlo virtual phantom simula-
tor. Some authors have developed fast Monte Carlo simulations with precalculated
scatter responses [7] in order to accelerate the simulation of projections. A combined
3D reconstruction with a fast MC simulator is used. Following this strategy this
work presents a combined MC-3D full reconstruction algorithm with an accelerated
MC simulator which obtains a scatter estimate model.
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F. GLOSSARY

∑

w Sum of Weights
∑

w2 Sum of Squared Weights
1D one-dimensional
2D two-dimensional
3D three-dimensional
ART Algebraic Reconstruction Techniques
CFOM Computation Figure of Merit
CT Computed Tomography
FBP Filtered Back Projection
FD Forced Detection
FOM Figures Of Merit
FOV Field of View
FWHM Full Width at Half Maximum
FWTM Full Width at Tenth Maximum
IS Importance Sampling
LEGP Low Energy General Purpose (collimator)
Lucite geometric cylinder (phantom)
MBq Megabecquerel = 27.03 µCi
MC Monte Carlo
MCAT Mathematical Cardiac Antromorphic Thorax (phantom)
MLE-OSEMMaximum Likelihood Estimator Ordered Subsets
MRI Magnetic Ressonance Imaging
NaI sodium iodine (crystal)
Nh Number of Histories
PDF Probability Distribution Function
PET Positron Emission Tomography
PHG Photon History Generator
PSF Point Source Function
Pb Lead
Pixel bin detector image element
QF Quality Factor
ROI Region of Interest
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SMFC Scatter Monte carlo Feedback Correction
SNR Signal to Noise Ratio
SPECT Single Photon Emission Computed Tomography
SimSET Simulation System for Emission Tomography
VRT Variance Reduction Technique
Voxel object source element
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BIBLIOGRAFIA
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[18] A. Cot, J. Sempau, D. Pareto, S. Bullich, J. Pav́ıa, F. Calviño, and

D. Ros, Evaluation of the Geometric, Scatter, and Septal Penetration Compo-
nents in Fan-Beam Collimators Using Monte Carlo Simulation, Trans. Nuc. Sci.,
49 (2002), pp. 12 – 16.

[19] , Quantification of contamination by high-energy gamma rays in 123I brain
SPECT imaging using Monte Carlo simulation, Phys. Med. Biol., (submitted)
(2003).
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