
 

STUDY OF THE METEOROLOGICAL MECHANISMS 

CONTROLLING LEVELS AND TRANSPORT PROCESSES 

OF AIRBORNE POLLEN IN THE ATMOSPHERE 

 

 

Ph.D. Thesis 

Husam Tareq Majeed 

Departament de Física 

Universitat Politècnica de Catalunya 

 

 

 

Thesis submitted to obtain the qualification of Doctor from the  

Universitat Politècnica de Catalunya 

Computational and Applied Physics 

 

Barcelona, July 2018 

 

 

 

Supervisors:  Marta Alarcón Jordán 

Cristina Periago Oliver  

 



 

 

 

 

 



Abstract 
_______________________________________________________________________________________ 

 

 
I 

Abstract 

Aerobiology is the science that focuses on the study of the airborne living organisms (bacteria, 

fungal spores, pollen, small insects, etc.). Aerobiology includes a number of specialties such as 

aerosol physics, biometeorology, respiratory physiology, and many others. The influence of 

meteorology, climate and climate change on ecosystems has been largely recognized in the 

literature in the recent years. Some effects of climate variability on plant phenology include shifts in 

the timing of the pollination seasons or an increase of the pollen production of different plants. 

Moreover, atmospheric pollen can be considered a very sensitive indicator of climate variability. In 

this sense, aerobiological databases provide useful information for understanding the trends 

induced by climate change. 

The present study explores the role of meteorological and climatological variability in the pollen 

dynamics. The main standardized airborne pollen parameters (Annual Pollen Integral (APIn), Start, 

End and Length of the main pollen season) of 22 taxa collected by the Xarxa Aerobiològica de 

Catalunya (XAC) at 6 localities in Catalonia (Barcelona (BCN), Bellaterra (BTU), Girona (GIC), 

Lleida (LLE), Manresa (MAN) and Tarragona (TAU)) during the 18-year period from 1994 to 2011, 

have been considered. 

Correlations between precipitation, insolation and temperature and the main pollen parameters 

have been investigated. Considering that the main pollen season of most of the taxa in Catalonia 

lasts from spring to summer or autumn, correlations between the pollen parameters and winter 

(from December to March) values of meteorological variables were also calculated. The results 

obtained report the synchronism registered in the variations of pollen concentration with 

precipitation (negative), insolation (positive) and temperature (positive). Temperature was the 

meteorological variable that showed a greater influence in the pollen production and the timing of 

the pollen season, being insolation the least one. The Start of the Main Pollen Season was the 

pollen parameter more correlated with the meteorological variables, especially with winter 

temperatures. 

The influence of the climate variability associated with Northern Hemisphere teleconnection 

patterns (North Atlantic Oscillation, Arctic Oscillation and Western Mediterranean Oscillation) over 

the main pollen parameters has been also investigated. For most of the taxa, positive phases of 

the 3 climatic indices were related to a decrease in the APIn and an advance and enlargement of 

the main pollen season. Furthermore, negative phases of the climatic indices were linked to higher 

pollen production via an increase in rainfall. A clear relationship between climatic indices and the 

End of the main pollen season was not observed. 

In order to study the effect of local winds, 12 pollen types with sources are situated near the 

aerobiological stations were considered. It was found that a positive correlation, thus an increase 
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of pollen concentration, exists when the wind blows towards the station from the direction of the 

source location, and negative correlation, meaning dispersion and cleaning processes, results 

when the wind blows in a direction from the station towards the source of pollen or coming from the 

sea. This study could also be useful not only to identify and locate airborne pollen sources but to 

detect changes in the geographical distribution of vegetation near the sampling stations. The 

cleaning and dispersion effect over the pollen concentrations has been observed on the coastal 

stations (BCN, BTU and TAU) mainly due to the wind induced by the sea breeze effect (SW and 

SE) and on the inland stations (LLE and MAN) when westerly frontal synoptic situations are 

produced. 

Two forecasting models were used to predict the Start of the main pollen season. Taking into 

account that temperature is one of the primary factors affecting blossoming, the first method 

consists on the cumulative sum of the daily average temperatures from a statistically determined 

initial date and above a thermal threshold. The second method consists on a multiple regression 

using rainfall and temperatures. These two models were tested by computing the discrepancy 

between the predicted and the observed values by means of different quantitative metrics 

commonly used to test the behaviour of models. The Root Mean Square Error (RMSE) ranged 

from 0.7 days for Pistacia in Manresa by the multiple regression model, up to 10 days for other 

taxa and stations. Platanus was the taxon showing the best results for all the stations. 

Long-range atmospheric transport of pollen over Catalonia has been also investigated. A source-

receptor model has been applied to the study of the source areas of pollen that arrive to the 

northeast of the Iberian Peninsula transported by the wind. Specifically, this work presents the 

results of applying the model to estimate the source areas of 6 pollen taxa that, not being very 

abundant in the territory, episodically present high values and hence are susceptible to come from 

distant sources: Ambrosia, Betula, Corylus, Fagus, Fraxinus, and Olea. Apart from the great 

scientific interest that lies in the modelling of the source areas to understand the life cycles of the 

species, the use of these models can be useful to biologists, allergists, and environmental quality 

managers in the study and treatment of problems such as respiratory allergies. 
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Resum 

L'aerobiologia és la ciència que estudia els organismes vius aerovagants (bacteris, espores, 

pol·len, petits insectes, etc.). L'aerobiologia inclou una sèrie d'especialitats com ara la física 

d'aerosols, la biometeorologia, la fisiologia respiratòria i molts d’altres. La influència de la 

meteorologia, el clima i el canvi climàtic en els ecosistemes ha estat àmpliament reconeguda en la 

literatura en els últims anys. Alguns efectes de la variabilitat climàtica en la fenologia vegetal 

inclouen canvis en els períodes de pol·linització o un augment de la producció de pol·len de 

diferents plantes. A més, el pol·len atmosfèric pot considerar-se un indicador molt sensible de la 

variabilitat climàtica. En aquest sentit, les bases de dades aerobiològiques proporcionen 

informació útil per comprendre les tendències induïdes pel canvi climàtic. 

El present estudi explora el paper de la variabilitat climàtica i meteorològica en la dinàmica del 

pol·len. El principals paràmetres de pol·len (Annual Pollen Integral (APIn), i l’inici, el final i la 

durada del període de pol·linització) per a 22 tàxons recollits per la Xarxa Aerobiològica de 

Catalunya (XAC) a 6 estacions de Catalunya (Barcelona (BCN), Bellaterra (BTU), Girona (GIC), 

Lleida (LLE), Manresa (MAN) i Tarragona (TAU) durant els anys 1994 – 2011, han estat l’objecte 

de l’estudi. 

S'ha investigat la correlació entre precipitació, insolació i temperatura i els principals paràmetres 

de pol·len. Considerant que el període de pol·linització de la majoria dels tàxons a Catalunya 

comença a la primavera i s’estén fins a l’estiu o la tardor, també es van calcular les correlacions 

entre els paràmetres de pol·len i els valors hivernals (de desembre a març) de les variables 

meteorològiques. Els resultats obtinguts mostren el sincronisme registrat entre la concentració de 

pol·len i la precipitació (negativa), la insolació (positiva) i la temperatura (positiva). La temperatura 

va ser la variable meteorològica que va mostrar una major influència en la dinàmica del pol·len, 

sent la més baixa la insolació. L’inici del període de pol·linització va ser el paràmetre més 

correlacionat amb les variables meteorològiques, especialment amb les temperatures hivernals. 

També s'ha investigat la influència de la variabilitat climàtica associada als principals modes de 

circulació de l'Hemisferi Nord (Oscil·lació de l'Atlàntic Nord, oscil·lació Àrtica i oscil·lació de la 

Mediterrània Occidental) sobre els principals paràmetres de pol·len. Per a la majoria dels tàxons, 

les fases positives dels 3 índexs climàtics es van relacionar amb una disminució de l'APIn i una 

anticipació i extensió del període de pol·linització. A més, les fases negatives dels índexs climàtics 

es van associar a una major producció de pol·len a causa de l'augment de la pluja. No es va 

observar una clara relació entre els índexs climàtics i el final del període de pol·linització. 

Per estudiar l'efecte dels vents locals, es van considerar 12 tipus de pol·len amb fonts situades a 

prop de les estacions. Es va trobar que hi ha una correlació positiva, es a dir un augment de la 

concentració de pol·len, quan el vent bufa cap a l’estació des de la localització de la font, i una 
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correlació negativa, es a dir processos de dispersió i neteja, resultat del vent que bufa de l’estació 

cap a la font del pol·len o venint del mar. Aquest estudi també podria ser útil no només per 

identificar i localitzar fonts de pol·len, sinó per detectar canvis en els usos del sòl a prop de les 

estacions de mostreig. L'efecte de neteja i dispersió de les concentracions de pol·len s'ha observat 

a les estacions costaneres (BCN, BTU i TAU), principalment a causa del vent induït per l'efecte de 

la brisa marina i sobre les estacions interiors (LLE i MAN) quan es produeixen situacions 

sinòptiques frontals de l’oest. 

Dos models de pronòstic s’han utilitzat per predir l'inici del període de pol·linització. Tenint en 

compte que la temperatura és el factor primari que afecta la floració, el primer mètode consisteix 

en la suma acumulada de la temperatura mitjana diària des de una data inicial calculada 

estadísticament i per sobre d’un llindar tèrmic. El segon mètode consisteix en una regressió 

múltiple amb precipitacions i temperatures. Aquests dos models es van provar calculant la 

discrepància entre els valors previstos i els observats mitjançant diferents mètriques quantitatives 

que s'utilitzen habitualment per provar el comportament dels models. L'error quadràtic mitjà va 

oscil·lar entre els 0,7 dies per a Pistacia a Manresa, fins a 10 dies per a altres tàxons i estacions. 

Platanus va ser el taxó que va mostrar els millors resultats per a totes les estacions. 

També s'ha investigat el transport atmosfèric de pol·len de gran abast a Catalunya. El model de 

font-receptor es va aplicar per estimar les àrees d'origen de 6 tàxons que no són molt abundants 

al territori, però presenten episodis puntuals de concentracions elevades i, per tant, són 

susceptibles de procedir de fonts llunyanes: Ambrosia, Betula, Corylus, Fagus, Fraxinus i Olea. A 

part del gran interès científic que resideix en la modelització de les àrees d'origen, l'ús d'aquests 

models pot ser útil per a biòlegs, al·lergòlegs i responsables de qualitat ambiental en l'estudi i 

tractament de problemes com les al·lèrgies respiratòries. 
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1.1. Introduction 

Aerobiology is the branch of biology that studies the transportation of biological particles 

through the air. Biological particles are present in the atmosphere in form of pollen grains, 

fungal spores, bacteria, viruses and fragments of plants, fungi and animals. Matthias-Maser et 

al. (2000) suggested that the proportion by volume of the total airborne particulate matter made 

up by biological material in remote continental, populated continental and remote maritime 

environments is respectively 28%, 22% and 10%. 

Pollen has a very important role to trigger allergic respiratory diseases. Human health is directly 

affected by the presence of high concentrations of pollen in the atmosphere (Traidl-Hoffmann et 

al., 2003), which varies according to climate, geography and vegetation. Data on the presence 

and prevalence of allergenic airborne pollens obtained from both aerobiological studies and 

allergological investigations allow the design of pollen calendars with the approximate flowering 

period of the plants in the sampling area. Europe is a geographically complex continent with a 

widely diverse climate and a wide spectrum of vegetation. Forecasting of how much pollen will 

be produced in a given season and when it will become available for release into the 

atmosphere is of crucial importance. The environmental drivers controlling the dynamics of 

pollen season must be known to implement pollen production and transport in the simulation 

models (Duhl et al. 2013). The amount of pollen collected at a sampling station is dependent, 

first, on the amount of emission sources in the surrounding regions and, second, on the 

weather, that affects the strength and timing of the emissions as well as the atmospheric 

transport (Zhang et al. 2013). Different techniques have been used in the modelling of airborne 

pollen: regression analyses (Stach et al., 2008a), multivariate statistical methods (Makra et al. 

2006), Lagrangian modelling (Kuparinen et al., 2007; Izquierdo et al. 2015b), Large Eddy 

simulation (Chamecki et al., 2009), mesoscale and long-range transport models (Pasken and 

Pietrowicz, 2005; Siljamo et al., 2008; Sofiev et al., 2006; Belmonte et al., 2008). 

Climate changes, both when they occur for a short period of time or when they are long-lasting 

or permanent lead to changes in the patterns of the climatic elements such as temperature, 

precipitation, and wind. This can affect the phenology and the concentration of pollen in the 

atmosphere over a specific location (Cowie, 2007). Phenological data are simple to record, and 

the scientific community has pointed out the value of historical, phenological databases for the 

climate change research. A meta-analysis, comprising different species in European countries, 

has shown that the response of spring phenology to temperature is unquestionable (Menzel et 

al. 2006). Changes in phenology depend on the season when they take place, and also on 
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climatic trends (Gordo and Sanz 2005). In general, it has been demonstrated that greater 

phenological changes are recorded in those events that occur earlier in the year, from early 

spring to summer. However, for phenological events that occur in autumn, it is more difficult to 

define a pattern since greater interannual oscillations occur (Menzel et al. 2006; Gordo and 

Sanz 2005). 

In Europe, an increase of annual mean temperature in the last 30 years has been associated 

with an advance of the start of the growing season and an increase of its duration; although the 

end of the growing season has shown a lower variability in all regions of Europe (Chmielewski 

and Rötzer 2001). Studies at regional scale have shown that the rate of change is higher in 

Western Europe and Scandinavia and that different phenological rhythm and trends occur in the 

Eastern part of Europe (Ahas et al. 2002; Chmielewski and Rötzer 2001). Most of the long-term 

phenological studies have been focused on Northern Europe, while comparatively few have 

addressed the Mediterranean region (Peñuelas et al. 2002; Gordo and Sanz 2005). For 

instance, it is important to consider that in the Mediterranean region other variables related to 

changes in rainfall and water availability are also important (Peñuelas et al. 2004). However, 

Gordo and Sanz (2005) suggested that the relationship between water availability and different 

phenological phases is difficult to quantify. Furthermore, at the regional level in Europe, it is 

important to consider the role of NAO in governing the temporal variability of the lower 

atmosphere, and thus phenological dates in Europe (Scheifinger et al. 2002; Chmielewski and 

Rötzer 2001). The NAO is the dominant mode controlling climate over Europe (especially in 

winter and spring). It is characterized by the longitudinal oscillation of atmospheric mass 

between the two dominant pressure systems over the North Atlantic sector, namely the Azores 

high and the Icelandic low (Hurrell 1995). Its positive state (the high-pressure difference 

between the Azores high and the Icelandic low) is connected with the increased zonal flow and 

causes northern Europe to experience wet and mild winters, while over southwestern Europe, 

winters are anomalously dry (Xoplaki et al. 2004 ). The NAO accounts for a significant amount 

of the interannual variation in temperatures in the North Atlantic (Menzel et al. 2006; Post and 

Stenseth 1999). Plant phenology in this region is therefore influenced by year-to-year variations 

in the NAO (D’Odorico et al. 2002; Stenseth et al. 2002). The maximum influence of the NAO on 

phenological dates is found on early phases and decreases with an increasing year-day 

(Scheifinger et al. 2002). The influence of the NAO is also reduced with increasing distance 

from the Atlantic coast (Scheifinger et al. 2002; Ahas et al. 2002; Menzel et al. 2006). Climate 

change may also influence the behaviour of the NAO. This may enhance or mask climate 

change on a regional level, which may lead to regionally very different implications of climate 

change on plant phenology. In this context, the influence of the NAO on phenological trends 

should be mentioned. A recent example is the change of the NAO from predominantly negative 

to positive states around 1990. This change advanced many phenological dates leading to 
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pronounced trends. Hence recent trends in phenological time series should be interpreted along 

with changes in the NAO. 

One indirect consequence of the airborne pollen transport is the appearance of allergic 

reactions in humans when the pollen is inhaled and its proteins are released, thereby forming 

antigens to which the immune system reacts, provoking allergic symptoms (Palacios el al., 

2000). The climate changes affect the symptoms of allergy in two opposite significant ways, 

which are unexpected yet. The first effect, global warming, may boost the length and severity of 

the pollen season. In contrast, this increase of the Earth’s temperature can produce a decline of 

the symptoms of asthma and rhinitis D’Amato et al., (2015). 

The study of pollen grains and spores in the atmosphere helps to predict when the flowering of 

plants will take place, both those that produce allergenic pollen and those that are important for 

the agriculture, thus allowing measures to be taken in advance (Spieksma & Nikels, 1998; 

Frenguelli et al., 1992). One of the most important aspects of aerobiological studies is to explore 

forecasting models that help to predict the date of the beginning of the pollination season. The 

forecast of the beginning has a particular importance because this information is very useful for 

accurate use of medicine for allergies and for the planning of the patient’s activities. In the last 

decades, there have been many studies on aerobiology that have focused on the pollen 

seasons, especially on allergenic pollen. This leads to a line of research involving the effect of 

meteorological factors at the start of the pollination period of anemophilous plants (Frenguelli et 

al., 1991).  

Different aerobiological studies, based on long historical databases, have shown earlier pollen 

seasons during recent years as a result of temperature increase, most of them related to spring 

flowering trees (Garcia-Mozo et al. 2006; Galán et al. 2005; Emberlin et al. 2007; Damialis et al. 

2007; Frei and Gassner 2008; Bonofiglio et al. 2009; Orlandi et al. 2009). The greatest 

advances observed in earlier rather than later spring pollen seasons are probably due to the 

high dependency on temperature of early spring tree species, such as hazel, alder and birch. 

During transport by wind, pollen grains are influenced by several factors, including prevailing 

climatic conditions. Small apertures in the exine offer the best protection against desiccating 

climatic conditions. The atmospheric pathway is the fastest and the simplest way for biological 

agents to spread over terrestrial ecosystems. Many organisms can significantly increase the 

efficiency of their movements by taking advantage of air currents (Isard et al. 2005). Biota that is 

present in the atmosphere ranges in size from very small (viruses, bacteria, pollen, and spores) 

to quite large (seeds, aphids, butterflies and moths, songbirds, and waterfowl) (Westbrook and 

Isard 1999). The link between these biological systems and the atmosphere is the key to 

understanding the population dynamics of and diseases spread by aerobiota. Biologically-

relevant dispersion of bioaerosols affects the structure of ecosystems, since pollen is 
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responsible for gene flow (Ellstrand 1992; Ennos 1994; Burczyck et al. 2004; Belmonte et al. 

2008), and it contributes in determining the spatial distribution of plant species (Smouse et al. 

2001; Schmidt-Lebuhn et al. 2007; Belmonte et al. 2008).  

 

1.2. Pollen observations and modelling 

Pollen is a biological structure functioning as a container, in which is housed male gametophyte 

generation of the angiosperms and gymnosperms (D’Amato et al. 2007). Such a container is an 

evolutionary adaptation for life out of water because it protects male gametes from adverse 

atmospheric influence while transferring from anthers (male) to stigma (female) by various 

means: wind, water, insects, etc.; this process is known as pollination. 

Aerobiologists played a key role in the understanding of the relationship between allergic 

diseases and pollen, especially through the standardization of the procedure for the assessment 

of pollen concentration in the atmosphere. The pollen concentration has been used for over 50 

years for the assessment of allergen exposure both in clinical practice and clinical experimental 

studies. The method, proposed by Hirst (1952) is based on the identification and count with a 

microscope of pollen and spores collected with a volumetric trap and provide the standard for 

the national networks which are currently covering most of the European continent. This method 

allows a comprehensive evaluation of airborne particles with a wide spectrum of applications; 

longer time-series are now available, which can be used for pollen calendars and for research 

purposes. In this regard 20–25 years long datasets provide an extraordinary tool for climate 

change studies, showing both changes in the past decades and providing the basis for 

modelization of future scenarios (Cecchi et al. 2010). 

The importance of particular pollen grain from the allergological point of view depends both on 

pollen allergological potency and pollen abundance in the atmosphere. According to these two 

prerequisites, 12 pollen types originating from anemophilous plants are of particular 

allergological interest: ragweed (Ambrosia), alder (Alnus), mugwort (Artemisia), birch (Betula), 

goosefoots (Chenopodiaceae), hazel (Corylus), cypresses including yews (Cupressaceae), olive 

(Olea), plane tree (Platanus), grass (Poaceae), oak (Quercus) and wall pellitory, including 

stinging nettle (Urticaceae). 

 

1.2.1. Pollen records: Aerobiological Network of Catalonia 

Airborne pollen data were recorded by the Aerobiological Network of Catalonia (XAC) at six 

stations located in Barcelona (BCN) and Bellaterra (BTU) over an 18-year period from 1994 to 



1. General Introduction 
_____________________________________________________________________________________ 

 

 
7 

2011, and in Girona (GIC), Lleida (LLE), Manresa (MAN) and Tarragona (TAU) over a 16-year 

period from 1996 to 2011 (Figure 1.1). 

The six aerobiological stations are located in three different environments: 

 Barcelona (large city) and Tarragona (medium sized city) are on the coast and have the 

highest population. 

 Lleida and Manresa (medium sized cities) are on the continental rural plain with a 

pronounced thermal amplitude and notable dry summer period. 

 Bellaterra (University campus, semi-urbanized area) and Girona (medium sized city) are 

located inland with semi-humid and intermediate climatic conditions. 

 
 
Figure 1.1: Area under study and sampling stations of the Aerobiological Network of Catalonia (XAC). 

 

Samples were obtained daily from Hirst samplers, (Hirst, 1952), the standardized method in 

European aerobiological networks, and analysed following the standardized Spanish and 

European method (Galán et al., 2007; Galán et al., 2014). The Annual Pollen Integral (APIn, 

sum of the mean daily pollen concentrations in a year for the pollen season) has been used as 

the measure of the pollen, and obtained for 22 pollen taxa considered of high interest due to the 

abundance, landscape importance and/or allergenic significance (Table 1.1): Alnus, Ambrosia, 

Artemisia, Betula, Castanea, Chenopodiaceae/Amaranthaceae, Corylus, Cupressaceae, Fagus, 

Fraxinus, Olea, Pinus, Pistacia, Plantago, Platanus, Poaceae, Polygonaceae, Total Quercus, 

Quercus deciduous type (which includes Q. canariensis Willd., Q. faginea, Lamk., Q. humilis 

Mill., Q. petraea (Matt.) Liebl., Q. pyrenaica Willd., Q. robur L. and exceptionally the evergreen 

species Q. suber L.), Quercus evergreen type (which includes Q. ilex L. and Q. coccifera L.), 

Ulmus and Urticaceae (de Bolòs & Vigo, 2005). 
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Table 1.1: Pollen taxa under study. 
 

Pollen taxa 
Plant type Plant biogeography Plant use 

T B H BA ES SM M Cm S R C O 

Alnus T    ES    S   (O) 

Ambrosia   H    M  S R   

Artemisia   H     Cm S R   

Betula T   BA ES    S   O 

Castanea T     SM   S   (O) 

Chenop./Amar.   H     Cm S R   

Corylus  B   ES    S  C  

Cupressaceae T B   ES  M  S  C O 

Fagus T    ES    S   (O) 

Fraxinus T    ES SM   S   O 

Olea T      M  S  C O 

Pinus T   BA ES SM M  S  C O 

Pistacia  B     M  S    

Plantago   H     Cm S R   

Platanus T     SM M  S  C O 

Poaceae   H     Cm S  C (O) 

Polygonaceae   H     CM S    

Quercus Total T B   ES SM M  S   O 

Quercus deciduous t. T    ES SM M  S   O 

Quercus evergreen t. T B     M  S   O 

Ulmus T    ES    S   O 

Urticaceae   H     Cm S R   

 

T - tree 
B - bush 
H - herb 

BA - Boreo Alpine region 
ES - Euro-Siberian region 
SM - Sub-Mediterranean province 
M - Mediterranean region 
Cm – Cosmopolitan (all regions) 

S - Silvestre or wild (not urban) 
R - Ruderal 
C – Cultivated (agriculture 
&forestry) 
O - Ornamental 
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1.2.2. Airborne pollen parameters 

The pollen parameters included in this study are: Annual Pollen Integral (APIn, sum of the 

mean daily pollen concentrations in a year), the dates of Start and End of the Main Pollen 

Season and the Length (number of days between the Start and the End). The Main Pollen 

Season (MPS) has been established as the period beginning the date (Start) in which the sum 

of the daily mean pollen concentrations reaches 2.5% of the annual sum and ending the date 

(End) in which the sum reaches 97.5% (Andersen, 1991). 

The 22 pollen taxa considered in this paper are the most abundant in the sampling stations of 

Catalonia and accounted for 83-94% of Total Pollen recorded (Table 1.2). The 22 taxa have 

different roles in the environments. Most of them (15) are trees/shrubs and the rest (7: 

Ambrosia, Artemisia, Chenop./Amar., Plantago, Poaceae, Polygonaceae and Urticaeae) are 

herbs. They are taxa especially important in the natural landscape (Alnus, Artemisia, Betula, 

Castanea, Corylus, Fagus, Fraxinus, Pinus, Pistacia, Poaceae, Quercus and Ulmus) and or in 

the urban areas, due to the use as ornamental plants (Betula, Cupressaceae, Fraxinus, Olea, 

Platanus, Ulmus) and their capacity to leave in ruderal areas (Chenop./Amar., Polygonaceae, 

Urticaeae). 

As shown, Cupressaceae, Total Quercus, Platanus, Pinus and Quercus evergreen type are the 

main contributors to the pollen spectra. Here they are cited in decreasing order of importance 

taking into consideration the mean APIn for Catalonia, but at each locality they are also situated 

in the positions 1 to 5 in order of importance, with the only exception of Platanus that in Girona, 

Lleida and Tarragona is located between positions 6 and 8. Cupressaceae and Platanus are 

planted as ornamental trees in urban and urbanized areas, and this is the main cause of their 

abundance in the airborne spectra. Quercus (evergreen and deciduous type) and Pinus are the 

main trees in the Catalan landscapes; moreover sometimes they are also planted in the cities 

as ornamental. Regarding pollen taxa from herbaceous plants, the main contributors are from 

the Urticaceae family, containing ruderal plants usually abundant in urban and urbanized areas, 

the Poaceae family, present everywhere although specially abundant in grasslands and open 

landscapes, and Plantago, a genus of plants abundant in grasslands. Also important to be cited 

is the Amaranthaceae family (here cited as Chenopodiaceae/Amaranthaceae pollen type), 

composed by ruderal plants and plants from dry and salty environments included littoral 

landscapes. 

Girona is the locality showing the highest APIn, followed by Manresa, Barcelona, Bellaterra, 

Tarragona and Lleida. This means that the localities with higher precipitation (Table 1.3) show 

higher pollen concentrations and those continental meteorological conditions (Lleida) 

contributes to lower pollen concentrations. 
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Table 1.2: Mean values of Annual Pollen Integral (APIn) for each individual pollen taxon and for Total 
Pollen (expressed in pollen day m

-3
) collected at the 6 sampling stations for the period 1994-2011 or 

1996-2011. See also in the last column the mean values for Catalonia. 
 

 
Barcelona 

BCN 
Bellaterra 

BTU 
Girona 

GIC 
Lleida 
LLE 

Manresa 
MAN 

Tarragona 
TAU 

Catalonia 

Alnus 159 149 703 517 154 85 295 

Ambrosia 8 11 8 5 5 3 7 

Artemisia 145 166 85 378 182 227 197 

Betula 196 183 302 72 141 131 171 

Castanea 252 165 551 70 102 179 220 

Chenop./Amar. 530 483 426 4133 958 590 1187 

Corylus 227 224 531 103 204 982 379 

Cupressaceae 6889 6592 6750 8160 7981 9015 7565 

Fagus 18 19 74 19 18 14 27 

Fraxinus 281 272 1779 266 404 352 559 

Olea 1234 1088 869 2153 2375 3081 1800 

Pinus 4783 8067 6864 2614 6797 4142 5545 

Pistacia  73 120 65 77 181 116 105 

Plantago 392 979 703 982 3774 516 1224 

Platanus 15915 4108 5186 1710 5367 1337 5604 

Poaceae 1119 1496 2096 2304 2389 1233 1773 

Polygonaceae 78 77 131 136 73 79 96 

Quercus Total 4911 7208 15618 3665 5065 3961 6738 

Quercus deciduous t. 1007 2247 5528 749 1228 633 1899 

Quercus evergreen t. 3904 4961 10090 2916 3837 3328 4839 

Ulmus 128 268 108 67 309 284 194 

Urticaceae 2889 2173 3193 1050 3282 3401 2665 

Other taxa 2520 5936 9465 3457 3794 3146 4718 

Total Pollen 42747 39784 55498 31938 43555 32874 41066 

 

 

1.3. Climate of Catalonia 

The climate in Catalonia is governed by processes linked to mid-latitude circulation patterns, but 

also by phenomena with subtropical characteristics. Its climatic diversity is strongly influenced 

by the Mediterranean Sea and the orography. The Pyrenees, all along the North border 

between France and Catalonia, act as a barrier in many parts of the country against the 

northern and northwestern flows. At the same time, the effects of the Mediterranean 

perturbations are limited to the coast line and have less effect than expected inland because 

they are reduced by the Littoral and Pre-littoral chains than run parallel to the coast from north 
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to south in Catalonia. Also, the Iberian Peninsula lessens the intensity of rainfall generated by 

westerlies that arrive from the Atlantic reaching the Spanish Mediterranean littoral. 

Consequently, only northwestern Catalonia remains significantly affected by Atlantic 

perturbations. 

The Littoral (where BCN and TAU are) and Pre-littoral areas (with BTU and GIC) are governed 

mainly by Mediterranean advection, where the effect of frontal passages coming from the 

Atlantic is less significant. The central basin (with LLE and MAN) is protected against the 

Mediterranean advection by the Littoral and Pre-littoral chains and also against northern 

outbreaks by the Pyrenees. Furthermore, fronts coming from the Atlantic are weakened by their 

trajectory across the Iberian Peninsula. Table 1.3 shows geographical and climatic information 

about the 6 localities of Catalonia included in this study. 

 
Table 1.3: Information about 6 monitoring sites during the period considered in the study, including 
geographical location (altitude, latitude and longitude), and climatic characteristics (mean annual 
temperature and total annual rainfall) during the years included in the study (1994-2011). 
 

 Geographical characteristics Climatic characteristics 

Station 
Altitude 
(m.a.s.l) 

Latitude Longitude 
Mean annual 

temperature (ºC) 
Total annual 

precipitation (mm) 

Barcelona 93 41º 24' N 02º 11' E 15.8 602 

Bellaterra 245 41º 33' N 02º 07' E 15.6 562 

Girona 98 41º 59' N 02º 60' E 16.1 702 

Lleida 202 41º 37' N 00º 37' E 14.7 319 

Manresa 291 41º 44 'N 01º 50' E 14.9 597 

Tarragona 44 41º 07' N 01º 15' E 16.4 551 

 

The total annual precipitation over the 6 stations is 3333 mm although spatial distribution of the 

rainfall varies from each station. The lowest value is registered in Lleida (319 mm) and the 

highest value is registered in Girona (702 mm). Figures 1.2 show monthly values of precipitation 

and maximum, mean and minimum temperatures averaged for all the years included in the 

study for the six stations. The rainfall displays a clear picture of the Mediterranean climate 

pattern for all the stations: the maximum precipitation occurs in autumn and the minimum in 

summer. In Barcelona, Bellaterra, Girona, and Manresa the wettest month is October, and for 

Lleida and Tarragona, the wettest month is September. July is the driest month for all the 

stations except for Girona that is June.  
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Figures 1.2: Monthly values of precipitation and maximum, mean and minimum temperatures averaged 
for all the years included in the study (1994-2011) for the stations of BCN, BTU, GIC, LLE, MAN and 
TAU. 
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1.4. Objectives and outline 

 

Chapter 2: Influence of meteorological variables on airborne pollen levels. 

In this chapter, we aim to investigate the influence of meteorology on the airborne pollen 

dynamics through correlation analysis between precipitation, insolation and temperature and the 

main pollen parameters characterizing the pollination season for 22 taxa collected at 6 localities 

in Catalonia during the 18-year period 1994-2011. The pollen parameters included in this study 

are: Annual Pollen Integral (APIn, sum of the mean daily pollen concentrations in a year), 

Monthly Pollen Integral (MPIn, sum of the mean daily pollen concentrations in a month), the 

dates of Start and End of the Main Pollen Season (MPS) and the Length (number of days 

between the Start and the End). Spearman’s rank correlation coefficient will be applied to 

measure the relationship between pollen data (APIn, MPIn, Start, End and Length of the MPS) 

and the meteorological variables. Considering that the MPS of most of the taxa in Catalonia 

lasts from spring to summer or autumn, correlations between the pollen parameters and winter 

(from December to March) values of meteorological variables will be calculated. Correlations 

between MPIn and monthly values of the meteorological variables will be also calculated. 

 

Chapter 3: Influence of the wind on the daily airborne pollen concentrations. 

The aim of this chapter is to analyse the influence of wind speed and wind direction on the daily 

airborne pollen concentrations for 12 pollen taxa recorded at 6 aerobiological stations in 

Catalonia during the 11 years-period 2004-2014. We will focus on those pollen types which 

sources are situated near the station and have a major representation in the atmosphere. The 

wind direction will be divided into 8 sectors: north (N), northeast (NE), east (E), southeast (SE), 

south (S), southwest (SW), west (W) and northwest (NW). For each sector, the correlation 

between the daily pollen concentration and the daily mean wind speed will be computed using 

Spearman's rank correlation coefficient. We will limit our study to days without precipitation 

during the Main Pollen Season of each taxon. 

 

Chapter 4: Influence of atmospheric teleconnection patterns on airborne pollen levels. 

In this chapter, we aim to investigate the correlation between the atmospheric teleconnection 

patterns and the main standardized airborne pollen parameters of 22 taxa collected at 6 

localities in Catalonia during the 18 years-period 1994-2011, in order to determine the effect of 

climate variability on their pollen dynamics. Climate indices reduce complex space and time 

variability of the atmospheric teleconnections patterns and gathering different climatic variables 
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into simple measures. The most influence climatic indices in the western Mediterranean region 

are the North Atlantic Oscillation (NAO), the Western Mediterranean Oscillation (WeMO) and 

the Arctic Oscillation (AO). The pollen parameters included in this study are also the Annual 

Pollen Integral (APIn), the dates of Start and End, and the Length of the Main Pollen Season 

(MPS). Spearman’s rank correlation coefficient will be applied to measure the relationship 

between pollen data (APIn, Start, End and Length of the MPS) and the climate indices. 

 

Chapter 5: Forecasting the Start of the Main Pollen Season. 

The goal of this chapter is to develop a model to forecast the Start of the Main Pollen Season 

(SPS) using a statistical approach based on meteorological data. Here we will apply and 

explore two different methods: the first method is based on the sum of daily mean temperatures 

and the second is based on a multiple regression analysis with maximum and minimum 

temperatures and precipitation. In order to measure the quality of the models and also their 

predictability power, root mean squared error (RMSE) will be computed. An analysis of the 

systematic and random part of the RMSE will be also implemented, in order to identify the 

sources of the error. The forecast of the SPS has a particular importance because this 

information is very useful for accurate use of medicine for allergies and for the planning of the 

patient’s activities.  

 

Chapter 6: Long-range transport. 

This chapter presents the results of the use of the source-receptor model applied to the study of 

the source areas of pollen that arrive to the northeast of the Iberian Peninsula transported by 

the wind. Specifically, this work presents the results of applying the model to estimate the 

source areas of 6 pollen taxa that are susceptible to reach Catalonia from distant regions: 

Ambrosia, Betula, Corylus, Fagus, Fraxinus, and Olea. Apart from the great scientific interest 

that lies in the modelling of the source areas to understand the life cycles of the species, the 

use of these models can be useful to biologists, allergists, and environmental quality managers 

in the study and treatment of problems such as respiratory allergies.  
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2.1. Introduction 

Many studies have been conducted to examine pollen of different species and its relationship 

with meteorological variables. In these studies maximum, minimum and mean temperature, 

relative humidity, precipitation, wind speed, wind direction, sea level pressure, sunshine hours 

and dew point temperature were correlated with daily pollen concentrations (e.g. Galán et al., 

2000; Stefanic et al., 2005; Weryszko-Chmielewska et al., 2006). Temperature was the most 

important factor in the timing of flowering in winter- and spring-blooming temperate tree species, 

while in species that bloom during other times photoperiod is also an important determinant of 

flowering time (Frenguelli and Bricchi, 1998; García-Mozo et al., 2002). Flowering in temperate 

grass species was generally determined by both photoperiod and temperature, although in 

Mediterranean grasses, the photoperiod requirement is low (Heide, 1994). The magnitude of 

pollen produced in a given season is mainly a function of precipitation in some tree and grass 

species, and of both temperature and precipitation in others (Recio et al., 2010; García-Mozo et 

al., 2006). Haroon and Rasul (2008) studied the meteorological factors affecting pollen 

concentration in Islamabad (Pakistan) and concluded that meteorological variables affect pollen 

concentration in the atmosphere in two moments: production and dispersion. 

Some authors predicted onset and duration of the Ambrosia pollen season in Lyon (France) by 

applying statistical approaches based on meteorological data (Laaidi et al., 2003). Grinn-Gofron 

and Bosiacka (2015) determined the functional relationships between composition of 

atmospheric bioaerosols and meteorological factors using canonical correspondence analysis. 

Piotrowska and Kubik-Komar (2012) investigated the pattern of the birch atmospheric pollen 

seasons in Lublin (Poland) in the period 2001–2010. Their statistical analysis showed that 

minimum temperature of February and March and total rainfall in June in the year preceding 

pollen release had the greatest effect on the birch atmospheric pollen season and that low 

temperatures in February promoted the occurrence of high pollen concentrations. Piotrowska-

Weryszko (2013) reported on the effect of the meteorological factors on the Alnus pollen season 

in Lublin (Poland). Stach et al. (2008a) emphasised how important is the weather during the few 

weeks or months preceding pollination for grass pollen production in Poznan (Poland). Zhang et 

al. (2013) designed a pollen production model for California taking into account that for tree and 

grass species that typically flower between March-June, temperature is the main driver 

controlling the timing of pollen release, while precipitation (and temperature, for some species) 

controls the magnitude of pollen produced. Galan et al. (2000) found that the most important 
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meteorological parameter influencing Urticaceae pollen concentration in spring in Southern 

Spain was temperature, while rain did not appear to be significant. 

In this chapter, we aim to investigate the influence of meteorology on the airborne pollen 

dynamics through correlation analysis between precipitation, insolation and temperature and the 

main pollen parameters characterizing the pollination season for 22 taxa collected at 6 localities 

in Catalonia during the 18-year period 1994-2011. 

 

2.2. Data and Methodology 

 

2.2.1. Pollen records 

Airborne pollen data were recorded by the Aerobiological Network of Catalonia (XAC) at six 

stations located in Barcelona (BCN), Bellaterra (BTU), Girona (GIC), Lleida (LLE), Manresa 

(MAN) and Tarragona (TAU). 22 pollen taxa were considered: Alnus, Ambrosia, Artemisia, 

Betula, Castanea, Chenopodiaceae/Amaranthaceae, Corylus, Cupressaceae, Fagus, Fraxinus, 

Olea, Pinus, Pistacia, Plantago, Platanus, Poaceae, Polygonaceae, Total Quercus, Quercus 

deciduous type, Quercus evergreen type, Ulmus and Urticaceae. 

The pollen parameters included in this study were: Annual Pollen Integral (APIn, sum of the 

mean daily pollen concentrations in a year), Monthly Pollen Integral (MPIn, sum of the mean 

daily pollen concentrations in a month), the dates of Start and End of the Main Pollen Season 

and the Length (number of days between the Start and the End). The Main Pollen Season 

(MPS) has been established as the period beginning the date (Start) in which the sum of the 

daily mean pollen concentrations reaches 2.5% of the annual sum until the date (End) in which 

the sum reaches 97.5% (Andersen, 1991). 

 

2.2.2. Meteorological data 

Meteorological data were provided by the Servei Meteorològic de Catalunya (SMC). Daily 

values of precipitation (PRE), insolation (INS), maximum temperature (Tmax) and minimum 

temperature (Tmin) were recorded at the closest meteorological stations to airborne sampling 

sites (all of them are 5-15 km away). From Tmax and Tmin, the mean daily temperature (Tmid) 

was computed. Some missing data reduced quite a bit our database: years 1999, 2008 and 

2009 in LLE for precipitation; year 1997 in BCN, 1996 in BTU and 1999 in LLE for temperature; 

years 2000 and 2001 in GIC for temperature and precipitation and year 2004 in GIC for 

insolation. 
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2.2.3. Statistical methods 

Spearman’s rank correlation coefficient was applied to measure the relationship between pollen 

data (APIn, MPIn, Start, End and Length of the MPS) and the meteorological variables (PRE, 

INS, Tmax, Tmin and Tmid). Considering that the MPS of most of the taxa in Catalonia lasts 

from spring to summer or autumn, correlations between the pollen parameters and winter (from 

December to March) values of meteorological variables were calculated. Correlations between 

MPIn and monthly values of the meteorological variables were also calculated. 

The Spearman correlation was used because it is considered more robust and resistant to 

outlying data than the conventional Pearson correlation coefficient (Wilks, 2011; Fernandez-

Llamazares et al. 2012). Two levels of significance were considered: p<0.01 and p<0.05. 

 

2.3. Results and Discussion 

 

2.3.1. MPIn and monthly values of the meteorological variables 

Correlations between Monthly Pollen Integral (MPIn, sum of the mean daily pollen 

concentrations in a month) and monthly values of the meteorological variables were calculated 

in order to explore the immediate effect of meteorological variables on the pollen concentrations 

(Table 2.1). Besides the 22 individual pollen taxa, we also considered the Total Pollen 

concentration. Then, the number of total correlations is 22 pollen taxa + total pollen = 23 x 6 

locations = 138. 

Only negative significant correlations between MPIn and monthly PRE (total amount of 

precipitation during a month) were obtained and represent 13% of the cases (18/138). This 

result could be explained as a washing out effect of the airborne pollen by precipitation. Several 

authors have published about the direct negative effect that precipitation has on the amount of 

pollen collected during the pollination season (Frei 1998; Jato et al. 2002a; De la Guardia et al. 

2003; Peternel et al. 2004; Green et al. 2004; Janati et al. 2004; Khwarahm et al., 2014; De 

Linares et al. 2017; Vélez Pereira 2017). Recio et al. (2010) gives also an explanation to this 

negative correlation, expressing that the content of water in the soil facilitates the vegetative 

growth better than the flowering. The negative association of pollen concentrations and 

precipitation could also be explained by the phenological pattern of the plants flowering out of 

the rainy season. The pollen taxon most affected by PRE is Poaceae, with negative significant 

correlations in BTU, GIC and TAU, possibly due to the long pollination period what gives more 

opportunities to coincide with rains. This is in concordance with the bibliography, as seven of 
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the ten papers above cited refer to Poaceae pollen. The locality giving a higher number of 

significant results MPIn/PRE is GIC. This location is the one showing highest annual 

precipitations (Table 1.3) but also the highest amount of total pollen during the year (Table 1.2). 

This is not contradictory because the pollen production in GIC is very high for some taxa 

(Castanea, Alnus, Betula, Fraxinus, and Quercus) that are very abundant in the region. On the 

other hand, the effect of the washout by precipitation, as we see in our results, has an 

immediate effect reducing the monthly pollen levels in GIC. 

The significant correlations between MPIn and monthly INS (sum of daily sunshine hours during 

a month) represented 11% of the total correlations (15/138) and were mostly positive (13/15). 

This result confirms that pollen production and release are enhanced by sunlight, and that this 

effect is relatively immediate because it affects the pollen production in the forthcoming days. 

Only Castanea in BCN and MAN presented negative correlations, while in GIC (where 

Castanea APIn is the highest of all the stations) the correlation was positive. 

On the other hand, 7 of the 22 taxa showed no correlation with either, PRE or INS: Ambrosia, 

Betula, Fagus, Pistacia, Total Quercus, Quercus evergreen type and Urticaceae. The pollen 

concentrations of Ambrosia, Fagus and Pistacia, with short pollination periods, are usually low 

in the atmosphere of Catalonia  and, in the case of the two first taxa and Betula their presence 

have been related to long range transport episodes (Fernández-Llamazares et al. 2012; 

Belmonte et al. 2008; Izquierdo et al. 2015b). Regarding Total Quercus, Quercus evergreen 

type and Urticaceae, the lack of correlations could be due to the non-synchronous occurrence 

of their long pollination period and the seasonal variations of meteorological variables. Pinus is 

the pollen type most influenced by INS (BTU, GIC and LLE), followed by Chenop./Amar., Olea 

and Plantago (BTU and LLE). BTU and LLE are the localities giving a higher number of 

significant correlations MPIn/INS. There is a lack of bibliography relating airborne pollen 

concentration and INS. Again, Poaceae is the pollen type more studied. The authors Kizilpinar 

et al. (2011) and Khwarahm et al. (2014) show a strong positive correlation of grass pollen with 

INS. 

The significant correlations between MPIn and monthly values of Tmax, Tmin and Tmid are 

always positive, except for Chenop./Amar. in TAU, possibly because autumn, when 

temperatures are decreasing, is the period of the year with highest pollen concentration of this 

taxon in TAU. The significant correlations with Tmax represent 25% of total correlations 

(34/138), 11% of total for Tmin (15/138) and 23% for Tmid (30/138). Alnus, Ambrosia, 

Artemisia, Castanea and Ulmus showed no correlation with temperature. Temperature is, 

together with precipitation, one of the common parameters studied and it is cited to show a 

positive correlation with pollination intensity (Teranishi et al. 2000, Zisca & Caufield 2000, 
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Rasmussen 2002, Ribeiro et al. 2003, Peternel et al. 2004, Green et al. 2004, Ziello et al. 2012, 

Fernandez-Llamazares et al 2014, Khwarahm et al. 2014, Janati et al. 2017). 

 

2.3.2. APIn and winter values of meteorological variables 

Considering that the pollination season of most of the taxa in Catalonia occur between spring 

and summer or autumn, correlations between APIn and winter (from December to March) 

values of meteorological variables were calculated (Table 2.2). Here, we have also considered 

the Total Pollen concentration. Then, the number of total correlations is 22 pollen taxa + total 

pollen = 23 x 6 locations = 138. 

APIn and winter PRE correlated always positively and represented 16% of the total possible 

correlations (22/138). This means that high (low) amounts of winter PRE induced high (low) 

pollination in the following spring to autumn. Half of the taxa showed no correlation in any of the 

stations (Alnus, Ambrosia, Betula, Castanea, Corylus, Fagus, Pistacia, Poaceae, 

Polygonaceae, Ulmus and Urticaceae). Here it is necessary to take into account that the 

precipitation regime of the previous year may also influence the pollen production in the 

following year of some trees, e.g. Betula (Stach et al. 2008b, Nielsen et al. 2010). Another 

argument is that woody and herbaceous species respond differently to precipitation, trees being 

more related to conditions prior to flowering and herbaceous plants responding more 

immediately to the precipitation events (Cariñanos et al. 2004, Galán et al. 2016). In our study, 

this argument is the explanation for trees and shrubs pollinating during winter and very early 

spring (Alnus, Ulmus, Cupressaceae and Corylus) and herbaceous plants with a long-lasting 

pollination (Urticaceae, Poaceae, Plantago, and Chenop./Amar.) giving very few, if any, 

correlations. Spring flowering trees (Pinus, Platanus, Quercus, and Olea) correlate with winter 

PRE while those pollinating in summer (Castanea) doesn’t. A different explanation for the lack 

of correlations is for plants that are scarce in the territory (Betula and Fagus) and arrive mainly 

through long-range transport (Belmonte et al. 2008, Izquierdo et al. 2017). In this study, they 

have shown only 1 correlation. Quercus decidous type was the taxon which presented positive 

correlations with winter PRE in a greater number of stations (BTU, GIC and MAN), as well as 

Total Pollen (BCN, BTU, MAN). On the other hand, BCN was the station in which a greater 

number of taxa presented positive correlations (Cupressaceae, Olea, Pinus, Plantago, Total 

Quercus, Q. evergreen type and Total Pollen) with winter precipitation, followed by BTU (Olea, 

Pinus, Total Quercus, Q. deciduous type, Q. evergreen type and Total Pollen). García Mozo et 

al. (2006) also found that PRE during the month prior to the Quercus pollination period makes 

the greatest contribution to pollen production. On the contrary, Fernández-Martínez et al. (2012) 

found that the amount of PRE and its temporal distribution barely influenced airborne pollen 

production. 
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The significant correlations between APIn and winter INS are positive or negative depending on 

the taxa and the sampling station, but represent only 8% (11/138) of the total possible 

correlations. Only 10 of the 22 taxa show some significant correlation, mostly negative (9/11). 

Only Platanus in GIC and Total Quercus in TAU were positive. It can be because Platanus and 

deciduous Quercus pollen type pollinate by the end of winter - beginning of spring and more 

sunny winters can contribute to better pollinations. The negative correlations could be explained 

by the fact that the pollen production is favoured by winter precipitation, as we saw previously, 

and rainy winters probably lead to fewer hours of sunshine, together with the fact that most of 

the taxa pollinate from spring on, far from the effect of winter INS. There is a second possible 

explanation for that and it is that, in the recent years, end of winter coincides with a notable 

increase of temperatures and plants become exhausted before. MAN is the locality showing a 

higher number of correlations, all negative, 6 for winter INS (Chenop./Amar., Plantago, 

Poaceae, Polygonaceae, Total Quercus and Q. deciduous type). The coincidence between the 

stabilization of the INS values once winter is over with the beginning of the pollination of these 

taxa can be the explanation for this negative relationship. 

The significant correlations between APIn and winter temperatures were mostly negative. 

Regarding Tmax, they represented 14% (19/138) and were negative in all cases, while positive 

and negative correlations were obtained for Tmin (7% in total, 9/138; being 4% negative) and 

Tmid (8% in total, 11/138; being 7% negative). The positive correlations corresponded to 

Artemisia in LLE, Platanus, in BCN, and Poaceae and Ulmus in BTU. As LLE is the locality with 

the highest Artemisia APIn and BCN the one with the highest Platanus APIn, these results could 

be representative, showing that the higher the minimum winter temperature the higher the 

pollen production in the year. In the case of Artemisia, López et al (2017) have found that, 

although the pollination takes place from summer to autumn, it is more intense when winters are 

warmer. Other interesting results are obtained for TAU and the taxon Corylus, and for TAU and 

MAN for Cupressaceae and Fraxinus, all negative with, at least, winter Tmin. In the case of 

Corylus and Cupressaceae TAU is the site presenting highest APIn and pollination occurs 

mostly during winter, thus meaning that low temperatures favour the pollination. Fraxinus results 

need deeper consideration. It is difficult to stablish a general interpretation of the relationship 

between APIn and temperature because of the variability of results obtained (Jato et al. 2004). 

Summarising, APIn was specially influenced by winter precipitation and winter maximum 

temperature. The positive correlations between APIn and winter precipitation indicate the 

positive effect of precipitation during the winter months before the flowering period on the 

annual pollen production for most of the taxa. This result agree with those obtained by Izquierdo 

et al., (2015a) reporting the negative correlation between Seasonal Pollen Integral and Northern 

Hemisphere teleconnection patterns (NAO, AO and WeMO indices) and the positive effect of 
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precipitation on the annual pollen during the negative phase of the three climatic indices. In 

accordance with this study, we have obtained a link between higher rainfall in winter and 

increased pollen production for the following taxa: Artemisia, Chenop./Amar., Cupressaceae, 

Fraxinus, Olea, Pinus, Plantago, Platanus, Quercus, Quercus deciduous type, Quercus 

evergreen type, as well as for Total Pollen. 

Beside the correlations with winter values of meteorological variables, the correlation between 

APIn and annual values of precipitation, insolation and temperatures were also calculated. 

These results are summarised in Tables A2.1, A2.2 and A2.3 included as appendix material at 

the end of this chapter  

Regarding the correlations between APIn and annual PRE (Table A2.1) only 2% (3/138) were 

significant. This lack of correlation could be explained by the opposite effect of the precipitation 

in the pollen concentrations by wash out depending on the time when the rainfall occurs. 

In the same way, the significant correlations between APIn and annual INS (Table A2.2) are 

positive or negative depending on the taxa and the sampling station, and represent only 9% 

(12/138) of the total. These significant correlations are half positive (6/12) and half negative 

(6/12)  

The significant correlations between APIn and annual temperatures (Table A2.3) represented a 

very low percentage of the total correlations: only 2/138 for Tmax, 6/138 for Tmin and 5/138 for 

Tmid. Besides, these correlations were positive or negative depending on the taxa and the 

sampling station, not being observed a clear predominance of any sign. 

 

2.3.3. Influence of meteorological variables in the Start, End and Length 

of the Main Pollen Season 

The influence of precipitation, insolation and temperature in the timing of the pollination season 

was evaluated by analysing the dates of Start and End of the Main Pollen Season (MPS) and 

the Length (number of days between the Start and the End). The significant correlations 

between phenology (Start, End and Length of the MPS) and Precipitation (PRE), Insolation 

(INS) and Maximum (Tmax), Minimum (Tmin) and Mean (Tmid) Temperatures for each taxon 

are shown in Table 2.3 (Start), Table 2.4 (End) and Table 2.5 (Length). The number of total 

correlations is 22 pollen taxa x 6 locations = 132. 

Beside the correlations with winter values of meteorological variables, the correlation between 

phenology and annual values of precipitation, insolation and temperatures were also calculated. 

These results are also summarised in Tables A2.1, A2.2 and A2.3. 
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2.3.3.1. Precipitation 

Precipitation has a little influence on the main parameters that characterise the MPS. Regarding 

the sign of the correlations, they are positive or negative depending on the taxon and the 

sampling station. 

Significant correlations between Start and winter precipitation accounted around 8% of total 

correlations (11/132). Positive correlations were obtained for Artemisia, Chenop./Amar., 

Cupressaceae, Olea, Plantago, Platanus, Poaceae and Polygonaceae while negative 

correlations were obtained for Alnus, Ambrosia and Quercus deciduous (Table 2.3). 

Fewer significant correlations were obtained with End, around 6% of total correlations (8/132). 

Significant correlations were negative for Olea, Pistacia, Poaceae, Quercus and Quercus 

evergreen type while positive correlations were obtained for Artemisia and Ulmus (Table 2.4). 

Significant correlations between Length and winter precipitation accounted 14% of total 

correlations (19/132). Correlations were negative for Alnus, Artemisia, Chenop./Amar., Olea, 

Pinus, Pistacia, Platanus, Poaceae, Quercus, Quercus deciduous type, Quercus evergreen type 

and Urticaceae, and positive for Fagus, Plantago and Ulmus (Table 2.5). 

The winter PRE gave a highest number of positive correlations with Start (8) and the highest 

number of negative correlations with Length (16). This is consistent with the results already 

indicated in this paper for PRE as a washing out agent. With regard to Start, our result are also 

in accordance with Vélez-Pereira (2017) who found that precipitation in the same day had a 

relevant effect in eliminating the low concentration levels of Urticaeae, Poaceae and 

Chenop./Amar. pollen. 

Significant correlations with annual values of PRE (Table A2.1) accounted around 2% (3/132) of 

total for the Start, 6% (6/132) for the End and 7% (3/132) for the Length. Furthermore, not a 

clear predominance of any sign has been observed. 

 

2.3.3.2. Insolation 

Evenly with precipitation, the significant correlations with winter values of insolation were 

positive or negative depending on the taxa and the sampling station, but represented only 4-7% 

(5-9/132). Significant correlations between Start, End and Length of the MPS and winter INS 

for each taxon in each station can be found in Table 2.3, Table 2.4 and Table 2.5. 

Significant correlations with annual values of INS (Table A2.2) represent only 2-5% (3-6/132). 

Thereby, we can conclude that insolation has little effect over the timing of the pollen season. 
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2.3.3.3. Temperatures 

Significant correlations between the Start of the MPS and winter temperatures represented 

20% (79/396) and were mostly negative (74/79), meaning that high (low) winter temperatures in 

Catalonia coincide with earlier (later) pollination. Only Ambrosia in LLE, Castanea in GIC and 

Fagus in BCN showed positive correlation. According to Piotrowska and Kubik-Komar (2012), in 

temperate climate regions, air temperature recorded at the end of winter and early spring has 

the greatest effect on the Start of the MPS. Other studies have established that temperature is 

the main factor controlling the start of the MPS (Frei, 1998; Laaidi, 2001; Root et al. 2003; 

Fernández-Martínez et al. 2012). The different behaviour of the Start for Ambrosia and Fagus 

with temperatures could be explained since these taxa are scarce in Catalonia and long-range 

transport from other regions could mask correlations. Different studies of transport episodes of 

Ambrosia (Belmonte et al., 2000; Fernández-Llamazares et al., 2012) and Fagus (Belmonte et 

al., 2008) from Central Europe to Catalonia have been documented. On the other hand, 

Ambrosia and Castanea are usually airborne in summer and thus easily not affected by winter 

temperatures. Significant correlations between the Start of the MPS and winter values of 

Maximum (Tmax), Minimum (Tmin) and Mean (Tmid) Temperatures for each taxon in each 

station can be found in the Table 2.3. Regarding annual temperatures (Table A2.3), significant 

correlations represented only 4% (17/396) and were also mostly negative (16/17). 

Significant correlations between the End of the MPS and winter values of Maximum (Tmax), 

Minimum (Tmin) and Mean (Tmid) temperatures represented only 4 % (14/396) meaning that 

winter temperatures have little influence on the End of the MPS. Significant correlations 

between the End of the MPS and winter values of Maximum (Tmax), Minimum (Tmin) and Mean 

(Tmid) Temperatures for each taxon in each station can be found in the Table 2.4. In contrast, 

significant correlations with annual temperatures (Table A2.3) represented 12% (48/396) being 

mostly negatives (36/48). These results conclude that the End of the MPS is mainly influenced 

by annual temperatures: high (low) temperatures during the year delay (advance) the end of the 

pollen season. 

Significant correlations between the Length of the MPS and winter values of Maximum (Tmax), 

Minimum (Tmin) and Mean (Tmid) temperatures represented 11% (45/396) and were mainly 

positive (39/45), meaning that high (low) winter temperatures in Catalonia enlarge (shorten) the 

pollination season. Negative correlations corresponded to Fagus (4) and Artemisia (2). This 

result can be explained by the combined effect of the negative correlation between Start and 

winter temperature and the no correlation between End and winter temperature: high winter 

temperatures advance the Start but not affect the End, thus an enlargement of the MPS is 

expected. Significant correlations between the Length of the MPS and winter values of 

Maximum (Tmax), Minimum (Tmin) and Mean (Tmid) Temperatures for each taxon in each 
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station can be found in the Table 2.5. Regarding annual temperatures, significant correlations 

represented only 4% (17/396) and were also mostly positive (13/17). 

 

2.4. Conclusions 

In this chapter, a correlation analysis between precipitation, insolation and temperature and the 

main airborne pollen parameters (MPIn. APIn and Start, End and Length of the MPS) of 22 taxa 

collected at 6 aerobiological stations in Catalonia (NE Spain) have been performed in order to 

determine the effect of meteorological variability on their dynamics. 

A summary of the main results about the correlations with winter values of meteorological 

variables are showed in Table 2.6. Regarding the pollen type, Olea and Pinus show a higher 

number of significant correlations (30), followed by Platanus (27), Quercus deciduous type (23), 

Plantago (22) and Total Quercus (22). On the other hand, Ambrosia is the only pollen type that 

shows no correlation between meteorological variables and the amounts of pollen (APIn and 

MPIn) while Castanea and Corylus are the taxa presenting the least number of correlations 

(only 2) between the parameters that characterise the MPS and the meteorological variables. 

The pollen parameter with the highest number of significant correlations with the meteorological 

variables was MPIn (104), followed by Start (95), Length (73), APIn (67) and End (28). 

Temperature was the meteorological variable that showed a major influence in the pollen 

production and in the timing of the MPS. Maximum (104) and mean (94) temperature presented 

the greatest number of significant correlations, followed by precipitation (74), minimum 

temperature (50) and insolation (45). 

A clear positive correlation has been detected between the pollen production and the winter 

precipitation for most of the pollen taxa included in this study. In addition, the MPS seems to 

advance its Start and extend its Length in years with warm winters. Nevertheless, the End of the 

MPS does not seem clearly influenced by winter weather, but annual temperatures, especially 

minimum and mean values, explain an advance or delay of the End of the MPS. 

Results show that airborne pollen levels and its dynamics are influenced by meteorological 

conditions. Improving knowledge about the influence of meteorology on the pollen dynamics is 

essential to improve modelling and obtain better forecast of the start and the severity of the 

pollen season. Most of the results obtained in this study corroborate results shown by other 

researchers; although, there are some limitations due to the time resolution of the data (monthly 

and yearly) used in our work. Therefore, more research is needed for better comprehend the 

interaction between meteorology and airborne pollen levels and its dynamics. For a future 

research, the results regarding correlations between temperature and pollen concentrations 
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may improve by splitting the annual period in two sections, one since the beginning of the 

pollination until the peak date and the other from this moment to the end of the pollination. This 

will be the case for most taxa pollinating between spring and summer. 
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Table 2.1: Significant correlations between Monthly Pollen Integral (MPIn) and monthly values of Precipitation (PRE), Insolation (INS) and Maximum (Tmax), 
Minimum (Tmin) and Mean (Tmid) Temperatures. (P: Positive, N: Negative, significance level of 0.05)  (P: Positive, N: Negative, significance level of 0.01) 
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Alnus     N                          

Ambrosia                               

Artemisia  N                             

Betula             P    P        P    P  

Castanea   N    N  P  N                    

Chenop./Amar.   N     P  P     P      P P  N   P   N 

Corylus N  N           P   P     P    P   P  

Cupressaceae   N                         P  P 

Fagus             P P    P  P     P P   P  

Fraxinus  N              P  P    P P     P  P 

Olea N       P  P       P    P     P P P P  

Pinus  N N     P P P    P  P       P   P     

Pistacia                  P          P  P 

Plantago        P  P      P      P P     P   

Platanus   N            P   P P        P    

Poaceae  N N   N  P      P            P  P   

Polygonaceae   N           P  P               

Total Quercus              P  P  P             

Q. deciduous t.         P      P P  P            P 

Q. evergreen t.              P  P  P   P      P    

Ulmus      N                         

Urticaceae              P  P      P    P  P   

Total Pollen   N       P    P P P      P    P  P   

        5P 3P 5P   2P 9P 4P 9P 3P 7P 1P 1P 3P 6P 3P  2P 7P 4P 8P 4P 4P 

 2N 4N 9N  1N 2N 1N    1N             1N      1N 

 18N 13P / 2N 34P 14P / 1N 29P / 1N 



 

 

3
1

 

 
Table 2.2: Significant correlations between Annual Pollen Integral (APIn) and winter (from December to March) values of Precipitation (PRE), Insolation (INS) and Maximum 
(Tmax), Minimum (Tmin) and Mean (Tmid) Temperatures. (P: Positive, N: Negative, significance level of 0.05)  (P: Positive, N: Negative, significance level of 0.01) 
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Alnus                  N             

Ambrosia                               

Artemisia    P P                 P      P   

Betula          N                     

Castanea                               

Chenop./Amar.     P      N                    

Corylus                        N       

Cupressaceae P           N      N   N  N N      N 

Fagus             N    N N       N     N 

Fraxinus      P           N N      N     N N 

Olea P P               N              

Pinus P P             N                

Pistacia                               

Plantago P          N                    

Platanus    P  P   P        N  P      P      

Poaceae           N      N         P     

Polygonaceae           N                    

Total Quercus P P         N P   N  N          N    

Q. deciduous t.  P P  P      N  N  N  N        N      

Q. evergreen t. P P               N              

Ulmus                    P    N      N 

Urticaceae         N                      

Total Pollen P P   P            N N             

 7P 6P 1P 2P 4P 2P   1P   1P       1P 1P  1P   1P 1P  1P   

         1N 1N 6N 1N 2N  3N  9N 5N   1N  1N 4N 2N  1N  1N 4N 

 22P 2P / 9N 19N 3P / 6N 3P / 8N 
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Table 2.3: Significant correlations between the Start of the Main Pollen Season and winter (from December to March) values of Precipitation (PRE), Insolation (INS) and 
Maximum (Tmax), Minimum (Tmin) and Mean (Tmid) Temperatures. (P: Positive, N: Negative, significance level of 0.05)  (P: Positive, N: Negative, significance level of 0.01) 
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Alnus    N          N  N      N  N  N  N   

Ambrosia     N     N      P            P   

Artemisia     P    N               N         

Betula                N      N      N   

Castanea                     P      P    

Chenop./Amar.     P          N            N    

Corylus                      N      N   

Cupressaceae   P                            

Fagus                         P      

Fraxinus                N      N      N   

Olea P            N N     N      N N     

Pinus             N N  N N  N      N N   N  

Pistacia             N N   N  N    N  N N   N  

Plantago P         P   N    N  N      N    N  

Platanus P            N N   N  N      N N   N  

Poaceae P                N            N  

Polygonaceae P            N      N      N      

Total Quercus             N N  N         N N     

Q. deciduous t.      N       N N     N      N N     

Q. evergreen t.       N       N  N N         N     

Ulmus       N                        

Urticaceae              N  N N         N   N  

 5P  1P  2P     1P      1P     1P    1P  1P 1P   

    1N 1N 1N 2N  1N 1N   8N 9N 1N 7N 7N  7N   5N 1N 1N 8N 9N 1N 4N 6N  

 8P / 3N 1P / 4N 1P / 32N 1P / 14N 3P / 28N 
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Table 2.4: Significant correlations between the End of the Main Pollen Season and winter (from December to March) values of Precipitation (PRE), Insolation (INS) and 
Maximum (Tmax), Minimum (Tmin) and Mean (Tmid) Temperatures. (P: Positive, N: Negative, significance level of 0.05)  (P: Positive, N: Negative, significance level of 0.01) 
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Alnus                               

Ambrosia                     P      P    

Artemisia P     P                         

Betula                               

Castanea                               

Chenop./Amar.         N                      

Corylus                               

Cupressaceae                      P      P   

Fagus                               

Fraxinus                          N     

Olea  N              P               

Pinus            P             N      

Pistacia    N   N         N               

Plantago         N       P            P   

Platanus          N      N               

Poaceae    N   P                        

Polygonaceae                P            P   

Total Quercus  N                             

Q. deciduous t.                               

Q. evergreen t.  N                  N           

Ulmus   P                            

Urticaceae                               

 1P  1P   1P 1P     1P    3P     1P 1P     1P 3P   

  3N  2N   1N  2N 1N      2N    1N     1N 1N     

 3P / 5N 2P / 4N 3P / 2N 2P /1N 4P / 2N 
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Table 2.5: Significant correlations between the Length of the Main Pollen Season and winter (from December to March) values of Precipitation (PRE), Insolation (INS) and 
Maximum (Tmax), Minimum (Tmin) and Mean (Tmid) Temperatures. (P: Positive, N: Negative, significance level of 0.05)  (P: Positive, N: Negative, significance level of 0.01) 
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Alnus    N        N                P   

Ambrosia                               

Artemisia     N     P            N      N   

Betula                               

Castanea                               

Chenop./Amar.     N      P    P      P      P    

Corylus                               

Cupressaceae                P      P         

Fagus     P      N P N    N       N N      

Fraxinus                               

Olea N N         P  P P   P  P      P P   P  

Pinus  N           P P   P  P      P P   P  

Pistacia    N*                 P      P    

Plantago    P     N   N                P   

Platanus N N            P   P         P   P  

Poaceae N               P               

Polygonaceae                P      P      P   

Total Quercus  N        P    P  P          P  P   

Q. deciduous t. N N              P          P     

Q. evergreen t. N N              P               

Ulmus P                   P           

Urticaceae N                              

 1P   1P 1P     2P 2P 1P 2P 4P 1P 6P 3P  2P 1P 2P 2P   2P 5P 2P 4P 3P  

 6N 6N  2N 2N    1N  1N 2N 1N    1N     1N  1N 1N   1N   

 3P / 16N 5P / 4N 16 P / 2N 7P / 2N 16P / 2N 
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Table 2.6: Number of significant correlations for each taxon, depending on pollen parameters and meteorological variables 
 

  APIn MPIn Start End Length PRE INS T max T min T mid TOTAL 

Olea 3 9 6 2 10 7 3 8 3 9 30 

Pinus 3 9 8 2 8 5 4 10 3 8 30 

Platanus 6 5 8 2 6 6 2 9 3 7 27 

Q. deciduous t. 8 5 6 0 4 6 2 9 1 5 23 

Plantago 2 6 7 3 4 3 7 4 3 5 22 

Total Quercus 7 3 5 1 6 4 3 10 0 5 22 

Chenop./Amar. 2 9 3 1 5 4 5 3 4 4 20 

Fagus 5 7 1 0 7 1 2 8 2 7 20 

Q. evergreen t. 3 5 5 2 3 5 1 8 2 2 18 

Fraxinus 6 7 3 1 0 2 0 5 4 6 17 

Pistacia 0 3 8 3 3 2 1 5 3 6 17 

Poaceae 3 7 3 2 2 6 3 4 0 4 17 

Cupressaceae 7 3 1 2 2 3 1 2 5 4 15 

Artemisia 4 1 3 2 4 7 2 0 3 2 14 

Polygonaceae 1 3 4 2 3 2 1 5 2 3 13 

Alnus 1 1 7 0 3 3 1 3 2 3 12 

Urticaceae 1 5 5 0 1 1 1 5 1 4 12 

Corylus 1 7 2 0 0 2 0 2 3 3 10 

Betula 1 4 3 0 0 0 1 3 1 3 8 

Ulmus 3 1 1 1 2 3 1 0 3 1 8 

Ambrosia 0 0 4 2 0 1 1 1 1 2 6 

Castanea 0 4 2 0 0 1 3 0 1 1 6 

 

67 104 95 28 73 74 45 104 50 94 367 
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Table A2.1: Number of significant correlations (p < 0.05) between pollen parameters (APIn, Start, End and Length of the pollination season) versus winter (W) and annual (A) 
amounts of Precipitation (P: positive, N negative) 
 

 

BCN BTU GIC LLE MAN TAU Total 
Total Sum 

 P N P N P N P N P N P N P N 

P
re

c
ip

it
a
ti

o
n

 

APIn 
W 7 - 6 - 1 - 2 - 4 - 2 - 22 - 22 

25 

89 

A - - - - - 1 - - 2 - - - 2 1 3 

Start 
W 5 - - - 1 - - 1 2 1 - 1 8 3 11 

21 
A 3 - 1 1 - 1 - 3 1 - - - 5 5 10 

End 
W 1 - - 3 1 - - 2 - - 1 - 3 5 8 

15 
A - 1 - 1 1 1 3 - - - - - 4 3 7 

Length 
W 1 6 - 6 - - 1 2 1 2 - - 3 16 19 

28 
A - 1 - 3 - 1 1 - 1 2 - - 2 7 9 

 
17 8 7 14 4 4 4 11 11 5 3 1 49 40 

 
25 21 8 15 16 4 89 

 
 
Table A2.2: Number of significant correlations (p < 0.05) between pollen parameters (APIn, Start, End and Length of the pollination season) versus winter (W) and annual (A) 
values of Insolation (P: positive, N negative) 
 

 BCN BTU GIC LLE MAN TAU Total 
Total Sum  

P N P N P N P N P N P N P N 

In
s

o
la

ti
o

n
 

APIn 
W - - - - 1 1 - 1 - 6 1 1 2 9 11 

23 

55 

A - - 1 1 1 - 4 1 - 3 - 1 6 6 12 

Start 
W - 2 - - - 1 1 1 - - - - 1 4 5 

8 
A - - - 1 1 - - - - - - 1 1 2 3 

End 
W 1 1 - - - 2 - 1 - - 1 - 2 4 6 

12 
A 1 - - 2 1 1 1 - - - - - 3 3 6 

Length 
W - - - - - 1 2 - 2 1 1 2 5 4 9 

12 
A - - 1 1 1 - - - - - - - 2 1 3 

 
2 3 2 5 5 6 8 4 2 10 3 5 22 33 

 
5 7 11 12 12 8 55 
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Table A2.3: Number of significant correlations (p < 0.05) between pollen parameters (APIn, Start, End and Length of the pollination season) versus winter (W) and annual (A) 
values of Maximum, Minimum and Mean Temperature (P: positive, N negative) 
 

 
BCN BTU GIC LLE MAN TAU Total 

Total Sum  
P N P N P N P N P N P N P N 

M
a

x
im

u
m

 

T
e

m
p

e
ra

tu
re

 

APIn 
W - 2 - - - 3 - - - 9 - 5 - 19 19 

21 

102 

A - - - - - 1 1 - - - - - 1 1 2 

Start 
W - 8 - 9 - 1 1 7 - 7 - - 1 32 33 

41 
A - 1 - 2 - - - 4 - 1 - - - 8 8 

End 
W - - - - - - 3 2 - - - - 3 2 5 

16 
A - - - 4 1 - - 2 - 4 - - 1 10 11 

Length 
W 2 1 4 - 1 - 6 - 3 1 - - 16 2 18 

24 
A 1 - - - 2 - 3 - - 1 - - 5 1 6 

M
in

im
u

m
 

T
e

m
p

e
ra

tu
re

 

APIn 
W 1 - 1 - - 1 1 - - 1 - 4 3 6 9 

15 

68 

A - - 3 - - - 1 - 1 - - 1 5 1 6 

Start 
W - 7 - - 1 - - 5 - 1 - 1 1 14 15 

19 
A - 1 - 1 1 - - 1 - - - - 1 3 4 

End 
W - - - 1 1 - 1 - - - - - 2 1 3 

21 
A - 3 - 3 4 - 1 5 - 2 - - 5 13 18 

Length 
W 2 - 1 - 2 - 2 1 - - - 1 7 2 9 

13 
A - 1 - - 2 - - 1 - - - - 2 2 4 

M
e

a
n

 

T
e

m
p

e
ra

tu
re

 

APIn 
W 1 2 1 - - 1 1 - - 1 - 4 3 8 11 

16 

102 

A - - - - - 2 1 - - - 1 1 2 3 5 

Start 
W 1 8 - 9 1 1 1 4 - 6 - - 3 28 31 

36 
A - 1 - 1 - - - 3 - - - - - 5 5 

End 
W - 1 - 1 1 - 3 - - - - - 4 2 6 

25 
A - - - 4 5 - 1 5 - 4 - - 6 13 19 

Length 
W 2 1 5 - 2 - 4 1 3 - - - 16 2 18 

25 
A 2 - - - 3 - 1 1 - - - - 6 1 7 

 
12 37 15 35 27 10 31 42 7 38 1 17 92 180 

 
49 50 37 73 45 18 272 
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3.1. Introduction 

Most of the plants depend for pollination on insects or other animal visitors such as 

hummingbirds and bats. However, many plants rely on other agents for pollination. Among 

these agents, the most important one is, by far, wind. The clouds of pollen blowing like yellow 

smoke from pines and other conifers are a familiar sight in early summer. Other wind-pollinated 

plants include many of the commonest forest trees of temperate climate, almost all the grasses, 

sedges, and rushes. Wind pollination has the obvious advantage of being independent of the 

possibly erratic occurrence and capricious behaviour of insects and is effective when insects 

are scarce or absent (Proctor et al., 1996). 

Several works indicated that the wind is capable of transporting pollen grains over long 

distances (Gregory et al., 1978; Bourgeois et al., 1985). While its importance in dispersing the 

pollen of anemophilous plants is clearly recognized, separating its influence from that of other 

meteorological variables is more complicated (Emberlin and Norris-Hill, 2018). Wind speed is 

recognized as being one of the most important factors in some cases (Ljunkuist et al., 1977; 

McDonald et al., 1979). The effect of wind direction is well known in coastal areas, where pollen 

concentrations increase when the wind is coming from the interior and decline when it blows 

from the sea (McDonald et al., 1977&1980; González Minero el al., 1993). 

Several works describe the effect of the wind in the airborne pollen levels. Riera et al. (2002) 

established a mathematical relationship between allergenic pollen in the air and clinical cases of 

pollinosis (hay fever) in humans and evaluated the immediate effect of wind and rain on such 

cases. Altintas al. (2004) reported the relationship between pollen concentrations and weather 

variables in the Eastern Mediterranean coast of Turkey. Damialis et al. (2005) examined the 

effect of the wind vector analysed into its three components (direction, speed, and persistence), 

on the circulation of pollen from different plant taxa prominent in the Thessaloniki area. Houta et 

al. (2008) conducted field experiments to study the diurnal cycle of corn pollen emission and its 

relation to local meteorological conditions, including temperature, relative humidity, solar 

radiation, mean wind speed, and turbulence quantities. 

Latorre and Belmonte (2011) carried out a preliminary study to compare Poaceae pollen data at 

six locations in Catalonia (Spain) over a 6-year period (1996 – 2001) and to determine possible 

differences in pollen productivity. They concluded that year-to-year Poaceae pollen index 

variability in Lleida and Manresa is higher than in Girona, Tarragona, and Bellaterra, while in 

Barcelona this index shows the lowest variability. 
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Maya-Manzano et al. (2017) generated maps of the main land cover in influence areas of 10 km 

in radius surrounding pollen traps and analysed the atmospheric content of most abundant 14 

pollen types in relation to the predominant wind directions measured in three localities of SW of 

Iberian Peninsula, for a four year period. By comparing the pollen content with the prevailing 

winds and land cover, they found that the atmospheric pollen concentration is related to some 

source areas and that some pollen types come from local sources but other pollen types are 

mostly coming from far distances. Recio et al., (2018) analysed airborne Quercus pollen 

released during last 25 years in the southwest Mediterranean. They established the correlation 

of this type of pollen with meteorological variables. They concluded that the increase of 

temperature and atmospheric aridity is the probable cause or the observed increasing trend in 

spring Quercus pollen in the west Mediterranean area. Kubik-Komar et al. (2018) analysed 

Fraxinus pollen seasons and developed a forecast model based on meteorological factors. 

Bruffaerts et al. (2018) assessed statistical correlations between pollen concentration and 

meteorological conditions using long-term daily data sets of 11 pollen types observed in 

Brussels between 1982 and 2015. They found that the rates of change in annual pollen cycles 

were associated with the rates of change in the annual cycles of several meteorological 

parameters. 

Despite the complexity of the interactions among different scales, we can distinguish between 

local transport (within a horizontal distance of a few hundred kilometres) and long-range 

transport. The first one occurs in the boundary layer under the prevailing influence of local 

winds, such as breezes and topographic features. Long-range transport occurs in the free 

troposphere and is managed by global circulation patterns and synoptic scale systems. 

The aim of this chapter is to analyse and study the influence of local transport (wind speed and 

wind direction) on the daily airborne pollen concentration for 12 pollen taxa recorded at 6 

aerobiological stations in Catalonia during the 11 years-period 2004-2014.  
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3.2. Data and Methodology 

3.2.1. Pollen data 

We have focused on those pollen types which sources are situated near the station (local 

transport) and have a major representation in the atmosphere (Table 3.1). The mean values of 

the Main Pollen Season (MPS) for the 12 pollen types at the six sampling stations during the 

years included in the study (2004-2014) are shown in Table 3.2. 

 
Table 3.1: Pollen taxa under study. 
 

Taxa 
Plant type Plant biogeography Plant use 

T B H BA ES SM M Cm S R C O 

Artemisia   H     Cm S R   

Chenop./Amar.   H     Cm S R   

Corylus  B   ES    S  C  

Cupressaceae T B   ES  M  S  C O 

Olea T      M  S  C O 

Pinus T   BA ES SM M  S  C O 

Pistacia  B     M  S    

Plantago   H     Cm S R   

Platanus T     SM M  S  C O 

Poaceae   H     Cm S  C O 

Quercus Total T B   ES SM M  S   O 

Urticaceae   H     Cm S R   

 

T - tree 
B - bush 
H - herb 

BA - Boreo Alpine region 
ES - Euro-Siberian region 
SM - Sub-Mediterranean province 
M - Mediterranean region 
Cm – Cosmopolitan (all regions) 

S - Silvestre or wild (not urban) 
R - Ruderal 
C – Cultivated (agriculture &forestry) 
O - Ornamental 

 

Table 3.2: Dates of Start and End of the MPS for 12 pollen taxa. 

 

Station 
 

Taxa 

Barcelona 
(BCN) 

Bellaterra 
(BTU) 

Girona 
(GIC) 

Lleida 
(LLE) 

Manresa 
(MAN) 

Tarragona 
(TAU) 

Start End Start End Start End Start End Start End Start End 

Artemisia 24-4 29-11 26-6 22-11 26-3 15-11 21-6 1-12 1-4 1-12 16-4 5-12 

Chenop./Amar. 31-3 26-10 17-4 23-10 24-4 23-10 5-5 2-10 25-4 26-10 4-4 5-11 

Corylus 18-1 11-5 18-1 10-4 18-1 26-3 24-1 22-4 18-1 30-3 14-1 9-5 

Cupressaceae 19-1 12-11 26-1 2-11 18-1 17-9 3-2 28-8 28-1 25-10 25-1 17-10 

Olea 5-5 1-7 9-5 22-6 9-5 27-6 11-5 24-6 16-5 16-6 10-5 22-6 

Pinus 15-3 3-7 17-3 19-6 13-3 3-7 26-3 29-6 21-3 26-6 11-3 24-6 

Pistacia 1-4 21-5 29-3 13-5 28-3 9-5 27-3 23-5 4-4 11-5 25-3 10-5 

Plantago 8-4 16-9 19-4 25-8 22-4 1-9 18-4 2-9 3-5 14-8 3-4 26-8 

Platanus 23-3 4-6 19-3 20-4 19-3 20-4 21-3 28-4 26-3 24-4 17-3 28-4 

Poaceae 30-3 4-10 1-4 18-9 11-4 1-9 31-3 29-9 3-4 16-9 25-3 14-10 

Quercus Total 14-4 23-7 5-4 9-6 15-4 15-6 17-4 13-6 14-4 11-6 12-4 16-6 

Urticaceae 10-2 9-11 3-3 20-10 4-3 11-10 10-3 1-11 10-3 4-11 29-1 30-11 
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The MPS has been established as the period beginning on the date when the sum of the daily 

mean pollen concentrations reaches 2.5% of the annual sum (Start) and ending on the date 

when the sum reaches 97.5% (End). 

For a particular taxon, the Start and the End of the MPS are different at each station depending 

on the geographic and climatic characteristics. 

Figures 3.1 show the location of the spore trap (indicated by the green star symbol) and the 

distribution of the vegetation around each of the six stations: Barcelona (BCN), Bellaterra 

(BTU), Girona (GIC), Lleida (LLE), Manresa (MAN) and Tarragona (TAU). 

 

3.2.2. Wind data 

The daily wind data used in this study is based on the wind values for speed and direction 

recorded by the Spanish Agency of Meteorology (AEMET). However, in Barcelona, wind data 

was available for 2004-2014; data in Bellaterra and Lleida only for the period 2006-2014; and in 

Girona, Manresa and Tarragona for 2008-2014. 

 

3.2.3. Statistical methods 

In order to analyse the effect of the wind, the wind direction was divided into 8 sectors: north 

(N), northeast (NE), east (E), southeast (SE), south (S), southwest (SW), west (W) and 

northwest (NW). For each sector, the correlation between the daily pollen concentration and the 

daily mean wind speed was computed using Spearman's rank correlation coefficient. We limited 

our study to days without precipitation during the MPS of each taxon. Table 3.3 gives the 

number of days without precipitation at each station. 

 
Table 3.3: Number of days without precipitation. 

 

Station Days without precipitation % of total 

Barcelona 2438 77% 

Bellaterra 1683 75% 

Girona 1176 71% 

Lleida 1383 69% 

Manresa 1462 74% 

Tarragona 1219 73% 
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Figures 3.1: Location of the spore trap (indicated by the green star symbol) and the distribution of the 
vegetation around each of the stations: BCN, BTU and GIC. 

  



3. Influence of the wind on the daily airborne pollen concentrations 
_____________________________________________________________________________________ 
 

 
46 

 

 
 

 
 

 
 
Figures 3.1 (cont): Location of the spore trap (indicated by the green star symbol) and the distribution of 
the vegetation around each of the stations: LLE, MAN and TAU. 
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3.3. Prevailing winds 

In order to visualize wind patterns at the aerobiological stations, Figures 3.2 show the frequency 

distribution of wind speed and the corresponding wind rose diagrams for each station. 

The wind rose diagram shows the frequency and speed of wind blowing from each sector. The 

length of each spoke indicates the frequency of wind coming from a particular sector. The 

colour bands show wind speed ranges. 

Barcelona is the windiest site among the six stations. Winds above 3 m/s represent almost 45% 

of the total. Nevertheless, the prevailing wind comes from SW sector and represents almost 

30% of the total. No strong wind comes from E and SE sector. 

In Bellaterra, winds between 0 and 1.5 m/s represent almost 60% of the total. The prevailing 

winds come from the SE, S, SW and W sectors and represent 85% of the total. However, this 

station has low wind speeds (not exceed 3 m/s), maybe due to its situation behind the Littoral 

chain. 

In Girona, most of the winds come from the S sector and represent 55% of the total. 

Nevertheless, wind speeds lower than 2 m/s represents 90% of the total, maybe due to its 

situation between the Pre-Littoral and the Littoral chains. 

Lleida is characterized by light winds (70% of winds have speeds less than 1 m/s) and mostly 

blow from the SW and W directions. Winds coming from SW and W sectors represent 50% of 

the total, but only winds coming from the W sector exceed 3 m/s speed. 

In Manresa, more than 75% of winds have speeds less than 1 m/s. The prevailing winds come 

from the SE and S sectors (50%) but the wind speed does not exceed 2 m/s. This station is 

protected against the Mediterranean advection by the Littoral and Pre-littoral chains and against 

northern outbreaks by the Pyrenees. 

In Tarragona, the wind may reach more than 3 m/s particularly winds from the NW and W 

sectors. In this station, the wind does not show a clear prevailing direction because the city is 

wide open to the sea. 
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(a) Barcelona  

  

 

(b) Bellaterra 

  

 

(c) Girona 

  

 
Figures 3.2: Frequency distribution of wind speed (m/s) and wind rose diagrams for 
a) Barcelona (2004-2014), b) Bellaterra (2006-2013), c) Girona (2008-2014) 
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(d) Lleida 

  

 

(e) Manresa 

  

 

(f) Tarragona 

 
 

 
Figures 3.2 (cont): Frequency distribution of wind speed (m/s) and wind rose diagrams for 
d) Lleida (2006-2014), e) Manresa (2008-2014) and f) Tarragona (2008-2014). 



3. Influence of the wind on the daily airborne pollen concentrations 
_____________________________________________________________________________________ 
 

 
50 

 

3.4. Correlations between pollen and wind 

The Spearman’s correlation coefficient between daily pollen concentration and daily wind speed 

blowing from 8 different directions (sectors) has been calculated. Significant correlations at the 

six sampling stations for each sector and for all the taxa are shown in Tables 3.4. 

 

3.4.1. BCN station 

In Barcelona, all the significant correlations for winds coming from SW, W and NW sectors are 

positive except for Urticaceae, which correlation is negative for NW winds. Otherwise, all the 

significant correlations for SE and S sectors are negative but involve only 4 of 12 taxa 

(Artemisia, Olea, Platanus and Quercus). Finally, no correlations have been found for N, NE 

and E sectors neither for Corylus, Pistacia and Poaceace (Table 3.4a). 

Results show that concentrations of some taxa (Artemisia, Olea, Platanus and Quercus) have a 

negative correlation with the wind blowing from S and SE sectors. These negative correlations 

exist because southerly winds come from the sea towards the city of Barcelona (coastal city) 

and disperse and clean the pollen away from the city. Positive correlations have also been 

found between westerly winds (SW, W and NW) and some taxa (Chenop./Amar., 

Cupressaceae, Olea, Pinus, Plantago, Platanus and Quercus) originated in the west region 

(green spaces) of the city. In addition, the wind blowing from this region is characteristic of this 

area, it is an intense wind and maybe it can transport the pollen. So we can conclude that this 

wind direction is largely responsible for changes in the concentration. Only Urticaceae is 

affected negatively by the NW winds, maybe because this source of pollen is situated in the 

immediate proximity of the sampler, so the wind coming from the west region dilutes and carries 

off the pollen amassed in the zone. This explanation has also been stated by Muñoz et al 

(2000b) and Molina et al. (2001). 

 

3.4.2. BTU station 

In Bellaterra, 6 of the 12 taxa have only negative correlations with E, SE, S and SW winds and 3 

of 12 have only positive relationships with E, SE, SW, and W directions. Cupressaceae and 

Pinus have both positive and negative correlations depending on the sector. No correlations 

have been found for winds coming from NE, N and NW sectors (Table 3.4b). 

For Bellaterra, the results indicated that a southerly wind (SE, S and SW) negatively affects the 

pollen concentration of Artemisia, Chenop./Amar., Cupressaceae, Olea, Pinus, Pistacia, 
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Plantago, and Platanus, a similar case as in Barcelona. This is because this city is located close 

to Barcelona and is affected by the wind coming from the sea. On the other hand, the pollen 

concentration of Poaceae has a positive correlation with SE wind because this taxon is the 

coastal vegetation and large sources of this taxon exist surrounding the city where the trap is 

located. Also, the results for Pinus and Urticaceae indicate a positive correlation with W and SW 

winds, respectively; and the concentration of Quercus is also positively correlated with E winds. 

This is because the areas located in these directions with respect to the city are covered with 

types of vegetation that are considered a source of this kind of taxa. Finally, Cupressaceae also 

shows a positive correlation when the wind comes from the W despite this plant is not present in 

the area. The explanation can be that the strong westerly winds coming from the area of Lleida 

carry this type of taxa. 

 

3.4.3. GIC station 

In Girona, the significant correlations for winds coming from the NE sector are always positive 

but involve only 3 of the 12 taxa (Cupressaceae, Pistacia and Urticaceae). Regarding the 

negative significant correlations, only 3 of 12 (Artemisia, Chenop./Amar. and Corylus) have 

negative correlation with E, S and SW directions. Finally, no correlations have been for N, SE, 

W and NW sectors neither for the rest of the taxa (Table 3.4c). 

In Girona, the correlation between pollen concentration and the wind was relatively low for some 

taxa due to the geographical location of the city. It was found that winds blowing from E, S, and 

SW negatively affect some taxa (Artemisia, Chenop./Amar., and Corylus). This is because this 

location has almost no green areas in the south. In contrast, the concentration of the 

Cupressaceae and Pistacia was positively correlated with NE winds. This is expected, because 

green areas and forests can be found surrounding the city (except in the south, as was 

mentioned above). Finally, Urticaceae also shows a positive correlation with NE winds because 

sources of this species can be found at the north-east of the trap. 

 

3.4.4. LLE station 

In Lleida, only Corylus and Quercus have no correlation with any of the 8 wind directions. The 

rest of the taxa exhibit either positive or negative correlations or both, not being observed a 

clear pattern (Table 3.4d). 

In Lleida, a positive correlation exists between NW wind and the concentration of Artemisia; this 

is explained by the fact that vast sources of this kind of taxa exist at the northwest of the city. In 

addition, wind speeds from this direction are higher than those blowing from other directions. 
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The results also showed a negative correlation of the concentration of the same taxa with winds 

blowing from N, NE, SE, and S directions; this could be attributed to a cleaning and dispersion 

effect over the pollen in the station. For Cupressaceae, Olea, Pinus, and Poaceae, their 

concentrations are positively correlated with north, east and south directions; because these 

regions are characterized by high concentrations of these taxa from these directions (see Fig. 

3.1). The negative correlation of the Platanus and Urticaceae, with W and SW winds is a result 

of the speedy wind from this sector carrying the pollen away from the trap. Urticaceae also has 

a positive correlation for SE winds because this type of vegetation is found in this area. Finally, 

Pistacia and Plantago, give positive correlations for winds coming from the NE and the SW-W, 

despite these plants are not present in the area, which suggests that they are carried by wind 

from other areas. 

 

3.4.5. MAN station 

In Manresa, 3 of the 12 taxa (Plantago, Poaceae, and Quercus) show no correlation with any of 

the wind sectors. Chenop./Amar. has a positive correlation in the W direction and Urticaceae 

has negative correlations in the SE, SW, and W directions. The other 7 taxa have positive 

correlations, except for Corylus, which also has a negative correlation in the E direction. Finally, 

no correlations have been found from the N and NE wind directions (Table 3.4e). 

Most of the correlations between pollen concentration and wind are negative due to the 

geographical location of this town and the shortage of pollen sources at the south of the town. 

Exceptions are the pollen of Urticaceae, which has a positive correlation with SE, SW and W 

winds, and Chenop./Amar with a positive correlation with W winds. This can be explained by the 

fact that sources of these taxa are located close or around the trap and the weak wind results in 

high concentrations of this kind of pollen. Finally, Corylus taxa are also positively correlated with 

E winds and this may be due to the existence of forests and vegetation areas at the east of the 

city. 

 

3.4.6. TAU station 

In Tarragona, Olea, Pistacia, and Platanus have no correlation with any of the wind sectors. 

Corylus, Cupressaceae, and Pinus have only negative correlations and Chenop./Amar., 

Plantago, Poaceae, and Quercus have only positive correlations with winds mainly coming from 

SW, W, and NW sectors. Finally, Artemisia and Urticaceae have both positive and negative 

correlations. No correlations have been found for the NE sector (Table 3.4f). 
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In Tarragona, the wind can blow from most directions due to the coastal location of this city. The 

results illustrate that the positive correlations of the pollen are with W and NW winds for 

Chenop./Amar., Poaceae, Quercus and Urticaceae. This is a result of the existence of 

vegetation cover in these locations, which provides local sources of the pollen. It must also be 

noted that Poaceae and Urticaceae pollen have positive correlations with S and E winds. This is 

because these types of taxa exist near and around the trap. This same conclusion can be found 

in Maya-Manzano et al. 2017. Urticaceae shows a negative correlation with N wind, probably 

because no sources can be found in this direction. On the other hand, Artemisia and 

Chenop./Amar. show some positive correlations despite no sources are located around the 

area; these are carried by intense winds coming from inland, W and NW. Plantago has also a 

positive correlation with SW winds, but no sources can be found near the trap. Finally Corylus 

and Cupressaceae show negative correlations with winds coming from the sea (E, S and SW), 

which we know have a dispersion effect. 

 

3.5. Discussion 

Results show high variability in the correlation coefficient and this variation depends on the type 

of the pollen taxa and the location of the sampling station. 

The number of the significant correlations between daily pollen concentration and daily wind 

speed for each wind sector in each sampling station are summarized in Table 3.5. Tarragona 

and Lleida were the stations with the highest number of significant correlations (23 and 22 

respectively) followed by Bellaterra (18), Manresa (17), and Barcelona (13), while Girona was 

the station with the lowest number of significant correlation (7). 

The number of significant correlations for each taxon and each sector are summarized in Table 

3.6. It can be observed that Artemisia is the taxon with the highest number of correlations (18% 

of the total) and these correlations were mainly negative. On the other hand, Pistacia and 

Quercus are the taxa with the lowest number of correlations (4% of the total). The results also 

show that southerly winds present the highest number of correlations (20% of the total) and 

these correlations are manly negative. The northerly winds have the least number of 

correlations (2% of the total). Finally, it can be highlighted that Poaceae is the only taxon that 

shows all positive correlations with the winds coming from any direction. 

Radar charts were employed to investigate the effect of wind speed and direction on daily pollen 

concentrations. Figures 3.3 show the radar charts for some selected cases in which the 

concentration is well-correlated with the wind speed. These correlations are interpreted as 

follows: 
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a) Artemisia in Tarragona. 

The correlation is significantly positive for W and NW sectors, where the stronger winds 

come from, meaning that the contribution of pollen comes from a localized source in the W-

NW of the city and inland of Catalonia (possibly from LLE station). At the same time, 

significant negative correlations with the winds blowing from SE and SW sectors have been 

found. This result could be interpreted as a cleaning and dispersion effect over the pollen 

recorded in the station possibly due to winds coming from the sea. 

b) Chenop./Amar. in Tarragona. 

The significant positive correlations for Chenop./Amar. in Tarragona are very similar to the 

case (a) for Artemisia. This correlation is a result of strong winds from W-NW, so the 

contribution of pollen comes from a localized source in the W-NW of the city and inland of 

Catalonia (possibly from LLE station). 

c) Cupressaceae in Manresa. 

The correlations are negative for winds blowing from SE-S-SW sectors. These winds 

contribute to a cleaning and dispersing effect of the Cupressaceae pollen over the station. 

Following the radar charts, a positive correlation with wind coming from NW sector should 

be obtained. This fact could be explained because NW winds in Manresa are not 

predominant and represent only a 5% of the total. 

d) Cupressaceae in Bellaterra. 

The SE, S and SW winds, coming from the sea, dilute the concentration of Cupressaceae 

pollen over Bellaterra, thus resulting in a negative correlation. In contrast, W winds result in 

a positive correlation. These correlations, both negative and positive, could be explained by 

the contribution of pollen from a localized source in the west of Bellaterra (possibly from LLE 

station)  

e) Platanus in Lleida. 

The negative correlation between Platanus pollen concentrations and wind speed from the 

W sector can be interpreted as a cleaning and dispersion effect of the pollen over the station 

due to strong winds coming from the W sector often associated with frontal situations. 

 

The results obtained here are similar to those found by many researchers (Solomon, 1988; 

Keynan et al., 1991; Rantio-Lehtimäki et al., 1994; Campbell et al., 1999; Silva et al., 2000; 

Adams-Groom et al., 2002; Damialis et al., 2005; Williams et al., 2007; Rojo et al., 2015). When 

the wind is blowing towards the city from the direction of the source location, the correlation is 
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positive while negative correlation results from the wind blowing from the opposite direction or 

coming from the sea. Therefore, positive correlations increase the pollen concentration in the 

station and negative correlations indicate cleaning and dispersion processes of the pollen 

concentration. 
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Tables 3.4: Significant correlations between daily pollen concentration and daily wind speed. 
(Green = positive, Orange = negative) 
 

(a) Barcelona 

Sector 
Taxa 

N NE E SE S SW W NW 

Artemisia     -0,192*    

Chenop./Amar.      0,094*   

Corylus         

Cupressaceae        0,117* 

Olea    -0,630**    0,456** 

Pinus       0,154* 0,285* 

Pistacia         

Plantago        0,337** 

Platanus     -0,345*   0,342** 

Poaceae         

Quercus Total    -0,509**    0,420** 

Urticaceae        -0,233** 

 

(b) Bellaterra 

Sector 
Taxa 

N NE E SE S SW W NW 

Artemisia    -0,332** -0,384** -0,204**   

Chenop./Amar.   -0,607*      

Corylus         

Cupressaceae    -0,209** -0,321** -0,138* 0,246**  

Olea    -0,200* -0,245*    

Pinus     -0,232**  0,273*  

Pistacia     -0,293*    

Plantago     -0,188**    

Platanus    -0,941**     

Poaceae    0,171**     

Quercus Total   0,899*      

Urticaceae      0,140*   

 

(c) Girona 

Sector 
Taxa 

N NE E SE S SW W NW 

Artemisia   -0,388*  -0,085*    

Chenop./Amar.      -0,345*   

Corylus     -0,261**    

Cupressaceae  0,235*       

Olea         

Pinus         

Pistacia  0,473*       

Plantago         

Platanus         

Poaceae         

Quercus Total         

Urticaceae  0,232**       
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Tables 3.4 (cont): Significant correlations between daily pollen concentration and daily wind speed. 
(Green = positive, Orange = negative) 
 

(d) Lleida 

Sector 
Taxa 

N NE E SE S SW W NW 

Artemisia -0,372** -0,194*  -0,477** -0,343**   0,391* 

Chenop./Amar.     -0,229*    

Corylus         

Cupressaceae  0,203** 0,308**    0,168**  

Olea    0,448*    0,727* 

Pinus   0,246*      

Pistacia  0,392*       

Plantago      0,158** 0,381**  

Platanus       -0,367*  

Poaceae    0,313*  0,136**  0,460** 

Quercus Total         

Urticaceae    0,345**  -0,183** -0,238**  

 

(e) Manresa 

Sector 
Taxa 

N NE E SE S SW W NW 

Artemisia    -0,167** -0,163**   -0,339* 

Chenop./Amar.       0,265*  

Corylus   0,477*  -0,355* -0,360   

Cupressaceae    -0,188** -0,435** -0,165*   

Olea      -0,751**   

Pinus     -0,225*    

Pistacia        -0,664* 

Plantago         

Platanus     -0,464*    

Poaceae         

Quercus Total         

Urticaceae    0,277**  0,294** 0,274**  

 

(f) Tarragona 

Sector 
Taxa 

N NE E SE S SW W NW 

Artemisia    -0,212*  -0,223** 0,219** 0,244** 

Chenop./Amar.       0,364** 0,411** 

Corylus   -0,413*  -0,273*    

Cupressaceae     -0,215** -0,182**   

Olea         

Pinus       -0,246*  

Pistacia         

Plantago      0,169*   

Platanus         

Poaceae   0,224*  0,198** 0,288** 0,465** 0,385** 

Quercus Total        0,649** 

Urticaceae -0,250*  0,189*   0,168** 0,207** 0,211** 
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Table 3.5: Significant correlations between daily pollen concentration and daily wind speed for all the taxa 
for each sector in each sampling station. 
 

Station 
Sector 

Barcelona Bellaterra Girona Lleida Manresa Tarragona 

Correlation P N P N P N P N P N P N P N Total 

N - - - - - - - 1 - - - 1 - 2 2 

NE - - - - 3 - 2 1 - - - - 5 1 6 

E - - 1 1 - 1 2 - 1 - 2 1 6 3 9 

SE - 2 1 4 - - 3 1 1 2 - 1 5 10 15 

S - 2 - 6 - 2 - 2 - 5 1 2 1 19 20 

SW 1 - 1 2 - 1 2 1 1 3 3 2 8 9 17 

W 1 - 2 - - - 2 2 2 - 4 1 11 3 14 

NW 6 1 - - - - 3 - - 2 5 - 14 3 17 

Total 
8 5 5 13 3 4 14 8 5 12 15 8 50 50 100 

13 18 7 22 17 23 

 

 
Table 3.6: Significant correlations between daily pollen concentration and daily wind speed for all the 
stations for each taxon and each sector. 
 

Sector 
Taxa 

N NE E SE S SW W NW  

Correlation P N P N P N P N P N P N P N P N P N Total 

Artemisia - 1 - 1 - 1 - 4 - 5 - 2 1 - 2 1 3 15 18 

Chenop./Amar. - - - - - 1 - - - 1 1 1 2 - 1 - 4 3 7 

Corylus - - - - 1 1 - - - 3 - 1 - - - - 1 5 6 

Cupressaceae - - 2 - 1 - - 2 - 3 - 3 2 - 1 - 6 8 14 

Olea - - - - - - 1 2 - 1 - 1 - - 2 - 3 4 7 

Pinus - - - - 1 - - - - 2 - - 2 1 1 - 4 3 7 

Pistacia - - 2 - - - - - - 1 - - - - - 1 2 2 4 

Plantago - - - - - - - - - 1 2 - 1 - 1 - 4 1 5 

Platanus - - - - - - - 1 - 2 - - - 1 1 - 1 4 5 

Poaceae - - - - 1 - 2 - 1 - 2 - 1 - 2 - 9 - 9 

Quercus Total - - - - 1 - - 1 - - - - - - 2 - 3 1 4 

Urticaceae - 1 1 - 1 - 2 - - - 3 1 2 1 1 1 10 4 14 

Total 
- 2 5 1 6 3 5 10 1 19 8 9 11 3 14 3 50 50 100 

2 6 9 15 20 17 14 17 
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a) Artemisia (Tarragona) 

 
b) Chenop./Amar. (Tarragona) 

 
Wind speed (m/s) 

 

 
Concentration (pollen/m3) 

 

 
Wind speed (m/s) 

 

 
Concentration (pollen/m3) 

 

 

c) Cupressaceae (Manresa) 
 

d) Cupressaceae (Bellaterra) 

 
Wind speed (m/s) 

 

 
Concentration (pollen/m3) 

 

 
Wind speed (m/s) 

 

 
Concentration (pollen/m3) 

 

 
e) Platanus (Lleida)  

 
Wind speed (m/s) 

 

 
Concentration (pollen/m3) 

   

 
Figures 3.3: Radar charts of mean daily wind speed (m/s) and mean daily pollen concentration 
(pollen/m

3
) for:  a) Artemisia (Tarragona), b) Chenop./Amar (Tarragona), 

c) Cupressaceae (Manresa), d) Cupressaceae (Bellaterra) and e) Platanus (Lleida) 
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3.6. Conclusions 

It is well known that the wind plays a major role in transporting and dispersing pollen in the 

atmosphere (Mandrioli, 1990; Gioulekas et al. 2004; Dehghanpour et al., 2014). Wind speed 

and direction have to be taken into account to explain the airborne pollen concentrations 

recorded in the sampling stations. It is accepted that the major part of the pollen trapped comes 

from local sources, although some taxa not representative of regional vegetation are also 

recorded arriving due to long-range transport mechanism. 

This work has investigated the effect of wind on pollen distribution in Catalonia. For this 

purpose, daily wind and daily pollen concentration data recorded at six stations in Catalonia 

during 2004-2014 period, have been analysed. We have focused on 12 pollen types which 

sources are situated near the station and have a major representation in the atmosphere. 

A positive correlation exists when the wind blows towards the station from the direction of the 

source location, and negative correlation results when the wind blows in a direction from the 

station towards the source of pollen or coming from the sea. Therefore, positive correlations 

mean an increase the pollen concentration in the station and negative correlations indicate 

dispersing and cleaning processes of the pollen concentration. Many works have found similar 

results (Silva et al. 2000; Williams et al. 2007; Recio et al., 2018). 

The cleaning and dispersion effect over the pollen concentrations has been observed on the 

coastal stations (BCN, BTU and TAU) mainly due to the wind induced by the sea breeze effect 

(SW and SE) and on the inland stations (LLE and MAN) when westerly frontal synoptic 

situations are produced. 

Poaceae pollen grains are an important cause of allergies and this plant are ubiquitously 

present in Catalonia and 296 species have been identified (de Bolòs & Vigo, 2005). The 

sources of this type of pollen are distributed near and around the trap in almost all directions as 

it shown on the maps (Figures 3.1), explaining why the correlations were only positive in all 

directions.  

This study could also be useful not only to identify and locate airborne pollen sources but to 

detect changes in in the geographical distribution of vegetation near the sampling stations. 
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4.1. Introduction 

The influence of climate and climatic changes on ecosystems has been often recognized in the 

literature in the recent years (Walther 2010). It is apparent that large-scale climate variability 

affects ecosystems not only through a single weather variable, but rather through a blend of 

weather features (Stenseth & Mysterud 2005). Climate change may result in an increase in the 

frequency of extreme events which are more relevant in the phenology of the ecosystems than 

fluctuations in the mean climate (Stenseth et al. 2002, 2003). Climate indices reducing complex 

space and time variability and gathering different climatic variables into simple measures have 

been shown to be of great use in the field of ecology. 

One of the more interesting climate indices for the correlation with ecological processes in the 

Northern Hemisphere is the North Atlantic Oscillation (NAO) index (Barnston & Livezey 

1987), the major driving force of the climate system of the Northern Hemisphere (Hurrell 1995) 

quantifying the interannual variability in the atmospheric circulation of the northern Atlantic 

region. The NAO index (NAOi) is based on the sea level pressure difference between the sub-

polar low-pressure centre over Iceland and the subtropical high-pressure centre over the Azores 

(Gomes 2001, Stenseth et al. 2002). Many studies have discussed over the databases of the 

different meteorological stations (Punta Delgada, Lisbon, Gibraltar, Reykjavik, Akureyri, 

Stykkisholmur, among others) that could be used to measure this difference of pressure (Hurrell 

1995, Jones et al. 1997, Osborn 2006). For the purposes of this study, the NAOi is defined as 

the difference between the normalized pressure anomaly at Gibraltar (Iberian Peninsula) and 

Reykjavik (southwestern Iceland). 

According to Hurrell (1995), the NAO is the main large-scale pattern that influences the 

variability of the Euro-Mediterranean climate. The NAO regulates the cyclone trajectories and 

cyclogenesis in the Mediterranean area which influences its climatic variability (Bolle 2003). 

This phenomenon is particularly important in the western Mediterranean region, which is 

strongly affected by the NAO atmospheric dipole (Von Storch et al. 1993). Thus, a positive NAO 

phase results into a positive level pressure anomaly over the Mediterranean Basin, which, in 

turn, corresponds to a northward deflection trajectory followed by Atlantic cyclones and to a 

lesser cyclogenesis in the Basin (Hurrell et al. 2003). In other terms, a positive NAO phase 

corresponds to a lower cyclone frequency in the area, a smaller cloud cover and, therefore, a 

greater insolation. So, taking into account that the surface temperature in the Mediterranean 

area relies much on the insolation (Muñoz-Díaz & Rodrigo 2003) and that temperature has been 

identified as the most important factor affecting the start date of pollen seasons in temperate 
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ecosystems (Emberlin et al. 1993, Van Vliet et al. 2002, Galán et al. 2005), the hypothesis of an 

advance in the pollen seasons of different taxa, correlated with the NAOi, can be inferred. In 

contrast, the NAO negative mode produces high-pressure blocking in the NE Atlantic with more 

meridional circulation and wetter conditions in the western Mediterranean (Figure 4.1). 

Some effects of climate variability on plant phenology include advances on some parameters 

such as the deployment of the new leaves or the flowering (Menzel et al. 2006), shifts in the 

timing of the pollen seasons (Jäger et al. 1996, Emberlin et al. 2007) or an increase of the 

pollen production of different plants (Teranishi et al. 2000, Ziello et al. 2012). According to Clot 

(2003), atmospheric pollen can be considered a very sensitive indicator of climate variability. 

That is the reason why many recent studies are addressing this issue from an aerobiological 

perspective. D’Odorico et al. (2002) were able to find relationships between some phases of the 

NAO and different parameters of the pollen season. Later, Avolio et al. (2008) found that the 

climatic interannual variability due to the NAO was unequivocally tied to the olive pollen 

seasons in Central Italy. More recently, a study by Smith et al. (2009) showed the importance of 

considering large-scale patterns of climate variability like the NAO for the prediction of the start 

and magnitude of the grass pollen seasons across Europe. 

On the other hand, the western Mediterranean is under the Western Mediterranean 

Oscillation (WeMO) domain. This recently defined secondary oscillation form in the Western 

Mediterranean basin (Martín-Vide & López-Bustins 2006) accounts for the eastern Iberian 

Peninsula regions that are weakly or not related to the NAO pattern. The WeMO index (WeMOi) 

is defined using the dipole San Fernando (Cadiz, Spain) - Padua (Italy). The positive mode 

corresponds to high pressures over the Azores and SW Iberian Peninsula and low pressures in 

the Liguria Gulf. In the positive phase rainfall is more abundant in the Cantabrian peninsular 

coast and lower in the Mediterranean one, being fluxes over Catalonia mostly from the north 

(France and Northern Iberian Peninsula). Its negative mode is produced when an anticyclone is 

situated in central Europe and the north of Italy and low pressures in the SW Iberian Peninsula. 

In this negative phase fluxes over Catalonia are predominantly from the Mediterranean Sea and 

northern Africa and wetter conditions occur over the eastern coast of the Iberian Peninsula and 

the Ebro basin (Figure 4.2). 

There is another natural mode of variability that greatly affects Europe and the Mediterranean 

area, the Arctic Oscillation (AO), which represents the state of atmospheric circulation over 

the Arctic (López-Bustins et al. 2008). The AO index (AOi) is defined as the first principal 

component time-series of the mean sea-level pressure field over the Northern Hemisphere, 

north of 20º (Stenseth et al. 2003). Despite there is a high correlation between AO and NAO, 

the basic physical mechanisms are different (Zhou et al. 2001). While NAO refers to a local 

mechanism associated to a physical dipole affecting the North Atlantic, the AO has a zonal 
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structure reflecting the variations of the circumpolar flow (Ambaum et al. 2001). In its positive 

mode, lower-than-normal pressures over the polar region are registered, driving Atlantic storms 

northward, thereby wetter weather over northern Europe and drier conditions to the 

Mediterranean regions (Figure 4.3). 

As a summary, the positive phases of the NAO, WeMO and AO indices suppose sunnier and 

drier conditions in Catalonia than their negative phases that coincide with wetter and rainier 

conditions. 

The most recent studies on the subject have focused on the spatial variability of the pollination 

seasons in relation with the NAO index (Stach et al. 2008a,b, Smith et al. 2009, Dalla Marta et 

al. 2011), but, for instance, there are no studies to assess the influence of the NAO over the 

different taxa representative of the surrounding vegetation. No studies have been done relating 

airborne pollen data with WeMO and AO indices. 

In this chapter, we aim to investigate the correlation between the NAO, WeMO and AO indices 

and the main standardized airborne pollen parameters (Annual Pollen Integral, Start, End and 

Length of the main pollen season) of 22 taxa collected at 6 localities in Catalonia (NE Spain) 

during the 18 years-period 1994-2011, in order to determine the effect of climate variability on 

their pollen dynamics. 

 

4.2. Data and Methodology 

 

4.2.1. Pollen records 

Airborne pollen data were recorded by the Aerobiological Network of Catalonia (XAC) at six 

stations located in Barcelona (BCN), Bellaterra (BTU), Girona (GIC), Lleida (LLE), Manresa 

(MAN) and Tarragona (TAU). The Annual Pollen Integral (APIn, sum of the mean daily pollen 

concentrations in a year for the main pollen season) has been used as the measure of the 

pollen, and obtained for 22 pollen taxa: Alnus, Ambrosia, Artemisia, Betula, Castanea, 

Chenopodiaceae/Amaranthaceae, Corylus, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, 

Pistacia, Plantago, Platanus, Poaceae, Polygonaceae, total Quercus, Quercus deciduous type, 

Quercus evergreen type, Ulmus and Urticaceae. 

The pollen parameters studied here were: Annual Pollen Integral (APIn), the dates of Start and 

End of the main pollen season and the Length (number of days between the Start and the 

End). Besides, the Main Pollen Season (MPS) has been established as the period between the 

date (Start) in which the sum of the daily mean pollen concentrations reaches 2.5% of the 
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annual sum and the date (End) in which the sum reaches 97.5% (Andersen 1991, Torben 

1991). 

 

4.2.2. Climatic indices 

The NAOi (1), the WeMOi (2) and the AOi (3) were correlated with APIn and Start, End and Length 

of the MPS. Considering that the climatic indices show their most relevant dynamics during the 

cold months, both, the annual and the winter (December to March) indices were used. Besides, 

the correlations between APIn and summer NAO (SNAO, July and August) were also 

computed. Though less robust and extensive than counterpart, the SNAO is nonetheless a 

prominent feature of summer atmospheric variability in the North Atlantic/European sector, 

which significantly affects precipitation in the Mediterranean area (Bladé et al. 2012). 

 

4.2.3. Statistical methods 

Standardized values of the variables were used in the pollen data and the climatic indices. 

Spearman’s rank correlation coefficient was applied to measure the relationship between pollen 

data (API, MPI, Start, End and Length of the pollination season) and the climatic indices. The 

Spearman correlation was used because it is considered more robust and resistant to outlying 

data than the conventional Pearson correlation coefficient (Wilks, 2011; Fernandez-Llamazares 

et al. 2012). 

 

 

 

 

 

(1) Hurrell, James & National Center for Atmospheric Research Staff 

(https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-

based) 

(2) Group of Climatology, University of Barcelona (http://www.ub.edu/gc/2016/06/08/wemo/) 

(3) NOAA, National Weather Service, Climate Prediction Center 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml) 
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Figure 4.1: Positive and negative phases of NAO. 
 
 

 
 

Figure 4.2: Positive and negative phases of WeMO. 
 
 

 
 

Figure 4.3: Positive and negative phases of AO. 
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4.3. Results. 

 

4.3.1. Climatic indices. 

In the 18-year period analysed here, NAOi and AOi showed a high positive Spearman bivariate 

correlation in both, their annual (0.794, p<0.001) and winter (0.796, p<0.001) dynamics, and a 

weaker but still significant (0.507, p<0.05) between the NAOi annual and the AOi winter. 

Regarding WeMOi, the winter index showed a positive correlation (0.645, p<0.001) with the 

NAOi winter but a weak and non-significant positive correlation between their annual values. No 

correlation was found between WeMOi and AOi (Table 4.1). 

Figure 4.4 shows the decadal trends of climatic indices. Annual and winter trends of NAOi, AOi 

and WeMOi were negative during 1994-2011 period, but only the declining trend of annual 

WeMOi was significant (R2=0.504, p=0.001). 

 
 
Table 4.1: Spearman’s rho between the climatic indices in their winter (w) and annual (a) dynamics. 
(
*
p<0.05;

**
p<0.001) 

 

 
NAOi (w) NAOi (a) WeMOi (w) WeMOi (a) AOi (w) AOi (a) 

NAOi 
(w) 

rho 
p 
n 

1.000 
- 

18 

0.562
* 

0.015 
18 

0.645
** 

0.004 
18 

0.354 
0.150 

18 

0.796
** 

0.000 
18 

0.410 
0.091 

18 

NAOi 
(a) 

rho 
p 
n 

0.562
* 

0.015 
18 

1.000 
- 

18 

0.253 
0.311 

18 

0.051 
0.842 

18 

0.507
* 

0.032 
18 

0.794
** 

0.000 
18 

WeMOi 
(w) 

rho 
p 
n 

0.645
** 

0.004 
18 

0.253 
0.311 

18 

1.000 
- 

18 

0.408 
0.093 

18 

0.422 
0.081 

18 

0.199 
0.428 

18 

WeMOi 
(a) 

rho 
p 
n 

0.354 
0.150 

18 

0.051 
0.842 

18 

0.408 
0.093 

18 

1.000 
- 

18 

0.152 
0.548 

18 

-0.102 
0.687 

18 

AOi 
(w) 

rho 
p 
n 

0.796
** 

0.000 
18 

0.507
* 

0.032 
18 

0.422 
0.081 

18 

0.152 
0.548 

18 

1.000 
- 

18 

0.406 
0.095 

18 

AOi 
(a) 

rho 
p 
n 

0.410 
0.091 

18 

0.794
** 

0.000 
18 

0.199 
0.428 

18 

-0.102 
0.687 

18 

0.406 
0.095 

18 

1.000 
- 

18 
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Figure 4.4: Winter and annual trends of a) North Atlantic Oscillation (NAO), b) Arctic Oscillation (AO) and 
c) Western Mediterranean Oscillation (WeMO) indices for 1994-2011 period. 
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4.3.2. APIn and Climatic Indices. 

Results of Spearman correlations between APIn and the three climatic indices, which are 

detailed thereafter, correspond to significant correlations in at least one of the monitoring 

stations (Table 4.2). Artemisia, Cupressaceae, Fraxinus, Olea, Pinus, Plantago, total Quercus, 

Q. deciduous type, Q. evergreen type, Ulmus and total pollen were inversely correlated with the 

climatic indices, while Castanea, Chenop./Amar., Corylus and Pistacia were positively 

correlated. Platanus, Poaceae and Urticaceae showed both negative and positive correlations. 

Corylus with 8 positive correlations was the pollen taxon with the highest number of 

correlations, as well as the most sensitive taxon to the annual NAOi variability, although the 

71% of the significant correlations between APIn and climatic indices were negative. 

All the taxa presented significant correlations at least with one of the indices in at least one of 

the stations, except Alnus, Ambrosia, Betula, Fagus and Polygonaceae that did not present any. 

Bellaterra was the station with more correlations (19), followed by Barcelona (13), Lleida (10) 

and Manresa (8), while Tarragona and Girona were the stations with fewer correlations (4). 

Regarding the influence of summer NAO index (SNAOi) on APIn, negative correlations were 

observed for: Ambrosia, Chenop./Amar., Fraxinus, Olea, Pinus, Platanus, total Quercus, Q. 

evergreen type, Ulmus and Urticaceae (Table 4.3). SNAOi was only positively correlated with 

APIn of Ambrosia in Girona, and no correlations were found for the rest of pollen taxa. 

In general, annual pollen integral (APIn) recorded at the six sampling stations correlated better 

with WeMOi (a total of 34 significant correlations) than with NAOi (17) and AOi (7) (Table 4.4). 

 

4.3.3. Start, End and Length of the MPS and Climatic Indices. 

The influence of the NAO, WeMO and AO indices in the dates in which the pollination occurs 

was evaluated. The greatest number of significant correlations was obtained for WeMOi (76), 

followed by NAOi (43) and AOi (36) (Table 4.4). 

The pollen season parameter with the highest number of correlations was Start (62) followed by 

Length (49) and End (44) (Table 4.5). 

Different behaviour between stations was found, showing more significant correlations in 

Bellaterra (a total of 42 significant correlations), followed by Lleida (32) and Barcelona (24), and 

being Girona the one which showed the slightest influence (16) (Tables 4.6, 4.7, 4.8). 

Spearman correlations between the Start of the MPS and the climatic indices were mainly 

negative, which accounted for 87% of total correlations (Table 4.6). Negative correlations were 
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obtained for Alnus, Ambrosia, Artemisia, Cupressaceae, Olea, Pinus, Pistacia, Plantago, 

Platanus, total Quercus, Q. deciduous type, Q. evergreen type, Ulmus and Urticaceae. Platanus 

was the taxon with more significant correlations (11), followed by Cupressaceae (7), Pistacia 

and Urticaceae (6). However Platanus was more sensitive to winter AOi variability, while 

Cupressaceae and Pistacia were to winter NAOi and annual WeMOi, respectively.  Positive 

significant correlations were obtained between Betula, Castanea and Fagus vs. winter NAOi, 

and Castanea and Fagus vs. annual WeMOi. Corylus and Polygonaceae showed both negative 

and positive correlations. Meanwhile there were no significant correlations with Chenop./Amar., 

Fraxinus and Poaceae.  

Fewer significant correlations were obtained with the End of the MPS (Table 4.7). The number 

of positive and negative correlations was balanced, however negative accounted for 55% of 

total correlations. Spearman correlations were negative for Alnus, Artemisia, Betula, Corylus, 

Pistacia, Platanus, Ulmus and Urticaceae, and positive for Ambrosia, Castanea, Olea, Pinus, 

Polygonaceae, total Quercus, Q. deciduous type and Q. evergreen type. Some taxa showed 

positive and negative significant correlations depending on the station (Chenop./Amar., Fagus, 

Plantago and Poaceae). Olea was the taxon with more significant correlations (4), being the half 

of them with winter WeMOi. No significant correlations were found for Cupressaceae and 

Fraxinus.   

Spearman correlations between Length of the MPS and the climatic indices (Table 4.8) were 

mostly positive, which represented 71% of total correlations. Correlations were positive for 

Artemisia, Cupressaceae, Olea, Pinus, Pistacia, Poaceae, Polygonaceae, total Quercus, Q. 

deciduous type and Q. evergreen type and Urticaceae. Negative significant correlations were 

obtained for Alnus, Betula, Corylus, Fraxinus, Plantago and Ulmus. In the case of Fagus and 

Platanus, positive and negative correlations were obtained, depending on the station. The taxon 

that exhibit major influence in the Length of the MPS was Olea (7). Ambrosia, Castanea and 

Chenop./Amar.did not show significant correlations. 

 

4.3.4. Influence of the Climatic Indices in the Pollen Dynamics. 

Summarizing, the influence of atmospheric teleconnection patterns on pollen dynamics in 

Catalonia showed: 

(1) A clear predominance of negative correlations between APIn and Start with the climatic 

indices for most pollen taxa, with the exception of positive correlations between APIn of 

Corylus vs. annual NAO and AO indices, and Start of Castanea and Fraxinus vs. annual 

WeMOi and winter AOi, respectively. These results suggested an increase of pollen levels 
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and a delay of the MPS for most pollen taxa during the negative phases of climatic indices in 

Catalonia. 

(2) An enlargement of the MPS due to a delay in the End of the MPS of Fagus and Ulmus has 

been also expected during the negative phase of NAO and AO.  

(3) A delay in the End of the MPS of Chenop./Amar. during the negative phase of NAO and AO 

has been observed, but in this case the Length of the MPS didn’t show variations.  

(4) Conversely, results pointed out an enlargement of the MPS of Artemisia, Cupressaceae, 

Pinus and Quercus deciduous type during the positive phase of NAO and WeMO.  

(5) Finally, the lack of correlation between pollen season parameters of Alnus, Ambrosia and 

Urticaceae vs. climatic indices suggested that their pollen dynamics in Catalonia were not 

affected by these teleconnection patterns. 

 

4.4. Discussion 

The individual rhythms of plant pollination and phenological phenomena are modified by the 

effects of atmospheric conditions (Bringfelt 1982, Emberlin et al. 1993). Changes in phenology 

(seasonal activity driven by environmental factors) from year to year may be a sensitive and 

easily observable indicator of changes in the biosphere (Menzel & Fabian, 1999, Jochner & 

Menzel 2015). Climate variability associated with teleconnection patterns may affect the 

ecological processes as the breeding phenology of the plants. Over the Iberian Peninsula there 

is strong evidence that positive (negative) values of winter NAO induce low (high) vegetation 

activity in the following spring and summer. This feature was mainly associated with the impact 

of NAO on winter precipitation, together with the strong dependence of spring and summer 

Normalised Difference Vegetation Index (NDVI) on water availability during the previous winter 

(Gouveia et al. 2008). Most of the studies of the Northern Hemisphere teleconnection patterns 

focus on the winter months, when the atmosphere is most active dynamically and perturbations 

grow to their largest amplitudes (Hurrell & Deser 2010). In the Mediterranean region, during 

winter, a strong correlation exists between the regional precipitation patterns and upper-air 

large-scale circulation anomalies (Quadrelli et al. 2001, Goodess & Jones 2002). However, 

during high SNAO summers, when strong anticyclonic conditions and suppressed precipitations 

prevail over the UK, the Mediterranean regions are anomalously wet (Bladé et al. 2012).  

In this context, the primary aim of this study was to investigate the possible effect of the NAO, 

WeMO and AO on the pollen production and timing of the MPS of wind-pollinated plants in 

Catalonia (NW Mediterranean area). First, correlations between the three climatic indices for the 

1994-2011 period were performed. As expected (Thompson & Wallace 2000, Wallace 2000), 
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high positive correlations between NAOi and AOi for both annual and winter data were 

observed. The positive correlation obtained between the winter NAOi and WeMOi is consistent 

with the 50-year period 1950-2000 analyzed by Martín-Vide & López-Bustins (2006), in which 

winter WeMOi and NAOi correlated positively, although non-significantly (Pearson +0.122, p-

value 0.399). In contrast, non-significant correlation was found between WeMOi and AOi, 

whereas Martín-Vide & López-Bustins (2006) found a negative correlation for the 50-year period 

(Pearson -0.386, p-value 0.005).  

Annual airborne pollen levels correlated better with WeMOi than with NAOi and AOi. Negative 

correlations between APIn and climatic indices accounted for 71%, which indicated the positive 

effect of precipitation on the annual pollen production for most of the taxa during the negative 

phase of indices. According with this study, an increase of pollen production of Artemisia, 

Cupressaceae, Fraxinus, Olea, Pinus, Plantago, total Quercus, Q. deciduous type, Q. 

evergreen type, Ulmus and total pollen linked to an increase of winter rainfall is expected in 

Catalonia during the negative phase of winter climatic indices. Annual indices were also 

negatively correlated with these pollen taxa, excepting Artemisia and Pinus. The Quercus pollen 

behavior in NE Iberian Peninsula was according with patterns observed in Denmark, where 

February precipitation showed a positive influence on Quercus and Corylus pollen 

accumulation, but the effect was negative for Betula and Tilia (Nielsen et al. 2010). However, 

biological responses to climate changes could vary depending on the location of the plant, 

therefore different responses could be observed for the same species in different areas. This 

could explain the differences between Corylus and Betula pollen dynamics in Catalonia and 

Denmark. On the other hand, it is necessary to take into account that the precipitation regime of 

the previous year may also influence the success of flowers development and pollen production 

in the flowering year of some trees, e.g. Betula (Stach et al. 2008b, Nielsen et al. 2010). This 

could explain the lack of correlation between the APIn of Alnus, Betula and Fagus and the 

climatic indices of the same year. In addition, pollen transported from distant regions could 

mask the correlations between APIn and climatic indices, since long range transport pollen 

episodes of Ambrosia (Belmonte et al. 2000, Fernández-Llamazares et al. 2012), Corylus 

(Belmonte et al. 2008a) and Fagus (Belmonte et al. 2008a, 2008b) have been documented in 

Catalonia. 

Precipitation during the flowering season can have a direct negative effect on pollen release 

and dispersion; daily pollen concentrations in the atmosphere show a clear negative relationship 

to precipitation (Sommer & Rasmussen 2008). Precipitation washes out pollen from the 

atmosphere, so that both its intensity and annual distribution can be related to the duration and 

intensity of the pollen season (Jato et al. 2002b). Corylus pollinates in winter, consequently 

positive correlations between APIn of Corylus and the three climatic indices have been 
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interpreted as a washing-out effect. Negative correlations between SNAOi and APIn of 

Ambrosia, Chenop./Amar., Fraxinus, Olea, Pinus, Platanus, total Quercus, Q. evergreentype, 

Ulmus and Urticaceae have been also related with this process. Nevertheless, the increase of 

APIn of Castanea and Chenop./Amar., with pollen seasons in summer and spring-summer 

respectively, may be associated with greater insolation during the positive phase of WeMO. 

Conversely, the relationship between APIn of Platanus, Poaceae and Urticaceae and climatic 

indices were not clear, with both positive and negative correlations observed. Despite Poaceae 

APIn was negatively correlated with winter NAO in Córdoba (southern Spain) (Smith et al. 

2009), in Catalonia this was only negatively correlated with annual AOi and positively with 

annual WeMOi. 

Positive correlations between the Length of the MPS and climatic indices obtained for Artemisia, 

Cupressaceae, Olea, Pinus, Pistacia, Poaceae, Polygonaceae, total Quercus, Q. deciduous 

type and Q. evergreen type and Urticaceae observed in Catalonia (71%) are linked to an 

enlargement of the MPS for these taxa in years with positive phase of the climatic indices, that 

is, in drier and with higher insolation years. However, the relationship between the End of the 

MPS season and climatic indices did not show a clear pattern for most pollen taxa. The number 

of positive (45%) and negative (55%) correlations were balanced, and the sign of correlation 

varied depending on the pollen taxa. In addition, End was the pollen season parameter less 

correlated with teleconnection patterns, despite the fact that 44 correlations were obtained and 

15 of them were with annual WeMOi. End date of Cupressaceae and Fraxinus were not 

correlated with climatic indices. In contrast, negative correlations between End date of 

Cupressaceae and NAO in March and February-March periods in central Italy were found, 

which could mostly be ascribed to the relationship between winter NAO and winter air 

temperature (Dalla Marta et al. 2011). 

Results suggest that the most influence of the Northern Hemisphere teleconnection patterns 

occurs in the spring flowering taxa (i.e. Olea, Pinus, Plantago, Quercus) but the cases in 

summer (Artemisia) and winter (i.e. Cupressaceae, Fraxinus, Ulmus) are not negligible. 

NAO and AO were in a positive trend for much of the 1970s and 1980s with historic peaks in the 

early 1990s, and it has been suggested that they contributed significantly to the global warming 

signal (Hurrell 1995, Cohen & Barlow 2005). Despite NAO and AO trends along the period 

1984-2011 were slightly negative (Fig. 2), our results showed that when positive phases of 

these indices occurred a decrease of APIn and an advance and enlargement of the MPS were 

observed. These observations agree with previous studies that showed an increase in the 

length of the active growing season of terrestrial plants in the northern part of the Northern 

Hemisphere (Myneni et al. 1997), and particularly in Europe (Menzel & Fabian 1999), as a 

result of warming during winter-spring in the last decades, possibly related with positive NAO 
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index values. Besides, there is an evident signal of advancing leaf unfolding, flowering and 

fruiting in wild plants all across Europe in almost 80% of the records (Menzel et al. 2006). It is 

quite obvious that changes in the pollination may affect the prevalence and severity of allergic 

diseases, but what are the ecological effects? Changes in severity and timing of the MPS could 

have direct effects e.g. on timing and quantity of fruit production, but it could also alter indirectly 

other ecological processes. Responses by individual species to climate change are connected 

through interactions with other species at the same or adjacent trophic level (Walther 2010). For 

instance, some evidences indicate that warmer spring weather in Europe has disrupted the 

synchrony between caterpillars Operophtera brumata and oak budburst (Visser & Holleman 

2001), leading to a mismatch between the peak in insect availability and the peak demands of 

insectivorous birds nestlings (Visser et al. 2006). Therefore, the timing of change in different 

taxonomic groups is not always synchronous and may have huge ecological consequences, 

despite that some communities are already undergoing re-assembly (Both et al. 2005). 

WeMO showed a negative phase throughout the nineteenth century and a positive one in the 

twentieth century up to late 1960. Besides, opposite phases of similar periodicities during the 

second half of the twentieth century between AO and WeMO have been observed, which seem 

to show an increase of modulation of the Mediterranean pattern by the Arctic one in the last 

decades (Martín-Vide & López-Bustins 2006). Negative correlation between annual WeMO and 

AO indices was also observed during the period 1994-2011, however it was non-significant, and 

a decreasing trend was detected for WeMO during our study period, being significant for the 

annual timeframe. Considering that WeMOi was the climatic index better correlated with pollen 

parameters, more research is needed to confirm the sense of the trend of WeMOi in the future, 

as it could be used as an indicator to predict the pollen production, timing and length of the MPS 

in the Western Mediterranean Basin. 

 

4.5. Conclusions 

Results showed that pollen production and timing (start and length) of the MPS can be partly 

explained as an effect of Northern Hemisphere teleconnection patterns, suggesting the 

possibility of predicting the onset and severity of pollination through their atmospheric modes. 

Generally an increase of pollen production for most of pollen taxa studied linked to an increase 

of rainfall was detected in Catalonia during the negative phase of climatic indices. Besides, a 

tendency to advance and extend the MPS in years in which the indices have high positive 

values, which are characterized by less rainfall and higher insolation and temperature in 

Western Mediterranean Basin, was also observed. However, the relationship between the End 

of the MPS and climatic indices didn’t show a clear pattern for mostly of pollen taxa. Finally, 
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negative correlations between SNAOi and APIn of Ambrosia, Chenop./Amar., Fraxinus, Olea, 

Pinus, Platanus, total Quercus, Q. evergreen type, Ulmus and Urticaceae has been interpreted 

as a washing-out effect.  

This information about the timing and magnitude of the MPS are valuable data for the 

prevention and treatment of allergic diseases. According with the persistent duration of NAO 

and AO in its positive phase since 1970, although showing a slightly declining trend over the 

last two decades, a decrease of APIn accompanied by an advance and enlargement of the 

MPS is expected in the Western Mediterranean Basin. Furthermore, WeMO variability plays a 

key role in production and timing of the MPS in the Iberian Peninsula. The sense of the trend of 

WeMOi needs to be confirmed to identify what are its effects on ecosystems and public health. 

Intensifying efforts to understand the dependencies and strengths of the linkages between the 

different Northern Hemisphere teleconnection patterns and the ecological processes taking into 

account the complexity of ecosystems would also be advisable. 
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Table 4.2: Significant correlations between APIn vs. winter (from December to March) and annual climatic indices at the 6 sampling stations. 
Only species that have significant correlations (p<0.05) are listed. 
w: winter (DJFM) / a: annual    N: negative correlation / P: positive correlation   *p<0.05 / **p<0.01 
 
 

APIn 

BCN BTU GIC LLE MAN TAU 

NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO 

w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a N P Total 

Artemisia   N*  
  

  N*  
  

    
  

    
  

  N*  
  

    
  

3  3 

Castanea     
  

   P* 
  

    
  

    
  

    
  

    
  

 1 1 

Chenop./Amar.    P* 
  

P*    
  

    
  

    
  

    
  

    
  

 2 2 

Corylus     
  

 P* P*  P* 
 

    
 

P*  P*   P* 
 

 P*   
  

 P*   
  

 8 8 

Cupressaceae   N*  
  

    
  

    
  

   N** 
  

    
  

    
  

2  2 

Fraxinus     
  

    
  

    
  

    N* N*    N* 
  

   N** 
  

4  4 

Olea N*    
  

N*    
  

    
  

N* N**   
  

   N** 
  

    
  

5  5 

Pinus N*  N**  
  

    
  

    
  

    
  

    
  

    
  

2  2 

Pistacia     
  

P*    
  

    
  

    
  

    
  

    
  

 1 1 

Plantago   N**  
  

    
  

    
  

    
  

   N* 
  

    
  

2  2 

Platanus    P** 
  

 P*  N* 
  

   N** 
 

P*   N*  
  

   N** 
  

    
  

4 3 7 

Poaceae     
  

   P* 
  

    
  

    
 

N*     
  

    
  

1 1 2 

Quercus N*  N*    N*  N*                            4  4 

Q. deciduous t. N*      N*                    N*    N*  N*    5  5 

Q. evergreen t.   N*  
  

  N* N* 
  

    
  

    
  

    
  

    
  

3  3 

Ulmus     
  

   N* 
  

    
  

    
  

   N** 
  

    
  

2  2 

Urticaceae    P* 
  

    
  

   N** 
  

    
  

    
  

    
  

1 1 2 

Total Pollen         N* N*            N*               3  3 

N 4  6    3  4 4      2   1 1 1 2 1 2   2 5   1  1 1   71%   41 

P    3   2 2 1 2 1       2  1   1   1      1       29% 17 

Total 4 0 6 3 0 0 5 2 5 6 1 0 0 0 0 2 0 2 1 2 1 2 2 2 0 1 2 5 0 0 1 1 1 1 0 0 41 17 58 

 13 19 4 10 8 4  
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Table 4.3. Significant Spearman correlations between APIn vs. SNAOi at the 6 sampling stations and 
mean of Catalonia. Only species that have significant correlations (p<0.05) are listed. 
*
p<0.05  /  

**
p<0.01 

 

 
BCN BTU GIC LLE MAN TAU Catalonia 

Ambrosia -0.47* 
 

0.70** 
   

 

Chenop./Amar. 
   

-0.67** 
  

-0.51* 

Fraxinus 
     

-0.59*  

Olea 
      

-0.50* 

Pinus 
     

-0.55* -0.47* 

Platanus 
 

-0.65** -0.53* 
 

-0.64** 
 

 

Quercus 
 

-0.60** 
    

 

Q. evergreen t. 
 

-0.59** 
   

-0.55* -0.49* 

Ulmus 
 

-0.48* 
  

-0.59* 
 

 

Urticaceae -0.47* 
     

 

 
 
Table 4.4: Number of significant Spearman correlations (p<0.05) between pollen parameters (APIn, 
Start, End and Length) vs. winter (w) and annual (a) climatic indices at the 6 sampling stations. 
(N: negative correlation, P: positive correlation) 
 

Climatic 
index 

Pollen 
parameters 

w/a N P Total 

NAOi 

APIn 
w 9 2 11 

17 

60 

a 1 5 6 

Start 
w 7 3 10 

21 

43 

a 11 0 11 

End 
w 1 2 3 

10 
a 7 0 7 

Length 
w 2 4 6 

12 
a 3 3 6 

WeMOi 

APIn 
w 14 1 15 

34 

110 

a 14 5 19 

Start 
w 3 0 3 

23 

76 

a 16 4 20 

End 
w 2 5 7 

23 
a 4 12 16 

Length 
w 3 7 10 

30 
a 2 18 20 

AOi 

APIn 
w 1 2 3 

7 

43 

a 2 2 4 

Start 
w 9 1 10 

18 

36 

a 8 0 8 

End 
w 5 0 5 

11 
a 5 1 6 

Length 
w 1 1 2 

7 
a 3 2 5 
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Table 4.5: Number of significant Spearman correlations (p<0.05) between Start, End and Length vs. 
winter (from December to March) and annual climatic indices at the 6 sampling stations. 
N: negative correlation  /  P: positive correlation  
 

 
Start End Length 

N P Total N P Total N P Total 

Alnus 1 
 

1 3 
 

3 2 
 

2 

Ambrosia 1 
 

1 
 

1 1 
  

0 

Artemisia 5 
 

5 1 
 

1 
 

2 2 

Betula 
 

1 1 1 
 

1 2 
 

2 

Castanea 
 

3 3 
 

1 1 
  

0 

Chenop./Amar. 
  

0 3 2 5 
  

0 

Corylus 2 1 3 1 
 

1 1 
 

1 

Cupressaceae 7 
 

7 
  

0 
 

1 1 

Fagus 
 

2 2 2 1 3 4 1 5 

Fraxinus 
  

0 
  

0 1 
 

1 

Olea 2 
 

2 
 

4 4 
 

7 7 

Pinus 5 
 

5 
 

1 1 
 

5 5 

Pistacia 6 
 

6 2 
 

2 
 

1 1 

Plantago 1 
 

1 2 1 3 2 
 

2 

Platanus 11 
 

11 2 
 

2 1 5 6 

Poaceae 
  

0 2 1 3 
 

1 1 

Polygonaceae 2 1 3 
 

2 2 
 

2 2 

Quercus 1 
 

1 
 

3 3 
 

2 2 

Q. deciduous t. 1 
 

1 
 

1 1 
 

2 2 

Q. evergreen t. 1 
 

1 
 

2 2 
 

4 4 

Ulmus 2 
 

2 3 
 

3 1 
 

1 

Urticaceae 6 
 

6 2 
 

2 
 

2 2 

Total 54 8 62 24 20 44 14 35 49 

% 87% 13% 100% 55% 45% 100% 29% 71% 100% 

 
 
 
 
 



 

 

8
0

 

 
 
Table 4.6: Significant correlations between the START of the MPS vs. winter (from December to March) and annual climatic indices at the 6 sampling stations. 
Only species that have significant correlations (p<0.05) are listed. 
w: winter (DJFM)  /  a: annual    N: negative correlation  /  P: positive correlation   *p<0.05  /  **p<0.01 
 

START 

BCN BTU GIC LLE MAN TAU 

NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO 

w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a N P Total 

Alnus 
                     

N* 
  

            1  1 

Ambrosia 
                   

N* 
    

            1  1 

Artemisia 
             

N* 
  

N* 
       

 N*      N**   N*  5  5 

Betula 
                        

      P*       1 1 

Castanea 
            

P* 
           

   P*      P*    3 3 

Corylus 
             

N* 
   

N* 
      

   P*         2 1 3 

Cupressaceae 
 

N* 
     

N** 
     

N* 
   

N* 
      

      N** N*   N*  7  7 

Fagus 
               

P* 
        

P*             2 2 

Olea 
                       

N*            N* 2  2 

Pinus 
   

N* 
  

N* 
  

N* 
           

N** 
  

   N*         5  5 

Pistacia 
   

N* 
     

N* 
        

N* 
   

N** 
 

   N*      N*   6  6 

Plantago 
     

N** 
                  

            1  1 

Platanus N* 
  

N* N* 
 

N* 
  

N* N* 
     

N** 
 

N* 
   

N** 
 

   N**       N*  11  11 

Polygonaceae N* 
 

N* 
                     

    P*        2 1 3 

Quercus 
                 

N* 
      

            1  1 

Q. deciduous t. 
   

N* 
                    

            1  1 

Q. evergreen t. 
         

N* 
              

            1  1 

Ulmus 
                     

N** 
  

       N*     2  2 

Urticaceae 
 

N* 
   

N** 
  

N* 
        

N* 
   

N** 
  

        N*    6  6 

N 2 2 1 4 1 2 2 1 1 4 1   3   2 4 2 1  4 2 1  1  3   1 3 1 1 3 1 87%  54 

P             1   1         1   2 1  1   1    13% 8 

Total 2 2 1 4 1 2 2 1 1 4 1  1 3  1 2 4 2 1  4 2 1 1 1  5 1  2 3 1 2 3 1 54 8 62 

 12 9 11 10 8 12  
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Table 4.7: Significant correlations between the END of the MPS vs. winter (from December to March) and annual climatic indices at the 6 sampling stations. 
Only species that have significant correlations (p<0.05) are listed. 
w: winter (DJFM)  /  a: annual    N: negative correlation  /  P: positive correlation   *p<0.05  /  **p<0.01 
 

END 

BCN BTU GIC LLE MAN TAU 

NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO 

w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a N P Total 

Alnus 
   

N* 
     

N* 
             

N* 
            

3  3 

Ambrosia 
                 

P*       
      

       1 1 

Artemisia 
                  

      
      

    N*  1  1 

Betula 
          

N* 
                         

1  1 

Castanea 
                    

P* 
               

 1 1 

Chenop./Amar. 
     

N* 
   

P* 
     

P* 
         

N* 
        

N* 
 

3 2 5 

Corylus 
                     

N* 
              

1  1 

Fagus 
     

N* 
  

P** 
       

N** 
                   

2 1 3 

Olea 
      

P** 
 

P* P** 
                 

P** 
        

 4 4 

Pinus 
                     

P** 
              

 1 1 

Pistacia 
           

N* 
                 

N* 
      

2  2 

Plantago 
                

N* 
          

P* 
    

N* 
   

2 1 3 

Platanus 
       

N* 
                       

N** 
    

2  2 

Poaceae 
       

N* 
                   

P* 
      

N* 
 

2 1 3 

Polygonaceae 
         

P* 
           

P** 
              

 2 2 

Quercus 
      

P** 
 

P* 
            

P* 
              

 3 3 

Q. deciduous t. 
                     

P** 
              

 1 1 

Q. evergreen t. 
        

P* 
            

P** 
              

 2 2 

Ulmus 
       

N* N* 
                

N* 
          

3  3 

Urticaceae 
             

N* 
    

N* 
                 

2  2 

N    1  2  3 1 1 1 1  1   2  1   1  1  2    1  1 1  3  55%  24 

P       2  4 3      1  1   1 5      3          45% 20 

Total 0 0 0 1 0 2 2 3 5 4 1 1 0 1 0 1 2 1 1 0 1 6 0 1 0 2 0 3 0 1 0 1 1 0 3 0 24 20 44 

 3 16 5 9 6 5  

 
  



 

 

8
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Table 4.8: Significant correlations between the LENGTH of the MPS vs. winter (from December to March) and annual climatic indices at the 6 sampling stations. 
Only species that have significant correlations (p<0.05) are listed. 
w: winter (DJFM)  /  a: annual    N: negative correlation  /  P: positive correlation   *p<0.05  /  **p<0.01 
 

LENGTH 

BCN BTU GIC LLE MAN TAU 

NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO NAO WeMO AO 

w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a w a N P Total 

Alnus 
   

N* 
                   

N* 
            

2  2 

Artemisia 
                         

P* 
     

P** 
    

 2 2 

Betula 
      

N* 
 

N* 
                           

2  2 

Corylus 
                     

N* 
              

1  1 

Cupressaceae 
                     

P* 
              

 1 1 

Fagus N* N* 
   

N* 
                      

N** 
   

P* 
   

4 1 5 

Fraxinus 
                    

N* 
               

1  1 

Olea 
   

P* 
  

P** 
 

P* P** 
         

P* 
   

P* 
   

P** 
        

 7 7 

Pinus 
   

P* 
  

P* 
  

P** 
           

P** 
     

P** 
        

 5 5 

Pistacia 
                    

P* 
               

 1 1 

Plantago 
       

N* 
                        

N* 
   

2  2 

Platanus 
      

P* 
 

P** P** P* 
                

P* 
   

N* 
    

1 5 6 

Poaceae 
                           

P** 
        

 1 1 

Polygonaceae 
         

P* 
           

P* 
              

 2 2 

Quercus 
         

P* 
           

P* 
              

 2 2 

Q. deciduous t. 
  

P* 
                  

P* 
              

 2 2 

Q. evergreen t. 
      

P** 
 

P* P* 
           

P* 
              

 4 4 

Ulmus 
                       

N** 
            

1  1 

Urticaceae 
  

P* 
  

P** 
                              

 2 2 

N 1 1  1  1 1 1 1            1 1  2     1   1 1    29%  14 

P   2 2  1 4  3 6 1         1 1 6  1  1  4    1 1     71% 35 

Total 1 1 2 3 0 2 5 1 4 6 1 0 0 0 0 0 0 0 0 1 2 7 0 3 0 1 0 4 1 0 0 2 2 0 0 0 14 35 49 

 9 17 0 13 6 4  
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5.1. Introduction 

Pollen monitoring and forecasting is well developed in many European countries. Pollen 

concentrations are greatly influenced by meteorological conditions before flowering occurs. 

Sunshine and temperature conditions, also called primary factors, influence the growth and 

development of vegetal species, and control the pollen production. At the time of blossoming, 

secondary meteorological factors (sunshine, rainfall, relative humidity) determined the opening 

of anthers and the release of pollen grains. Finally, tertiary factors (mostly wind) cause the 

grains to be scattered in the atmosphere (Laaidi et al., 1997). 

Various methods have been developed for defining the variables which influence on the Start of 

the main Pollen Season (SPS) and it has been found that usually it depends on the weather and 

especially temperature and rainfall in a certain period before the season (Frenguelli et al., 1989; 

Spieksma et al., 1989b). Several studies based on different methods for forecasting the SPS 

have been published around the world. Emberlin et al. (1999) explained that mean 

temperatures and precipitation are the main controlling factors for the start of the grass pollen 

season. Recent works in Spain evaluated the presence of pollen types and their proportions in 

the atmosphere of relevant urban areas for different regions in Salamanca (Rodríguez-de la 

Cruz et al., 2010). Alcazar et al. (2011) analysed pollen season trends from 1992 to 2010 in 

Andalusia and constructed models to forecast the start of the season. Carsia-Mozo et al. (2014) 

used a statistical approach to analyse olive long-term pollen season trends in Southern Spain. 

Their results indicated that long-term pollen concentrations make it possible not only to chart 

pollen season trends, but also to track changing patterns in flowering phenology. Jato et al. 

(2015) charted airborne Quercus pollen concentrations over 20 years in the region of Galicia 

(NW Spain) to detect possible influences of climate change on pollen season. Ocana-Peinado 

et al. (2016) used regression models to forecast Cupressaceae pollen concentration in the city 

of Granada (SE of Spain) based on climatic variables. 

Temperature has been widely accepted as the most important factor affecting processes that 

lead to the flowering of Olea (Orlandi et al., 2005). Numerous authors have reported on the 

significant relationship between the SPS of Olea and the temperature recorded during months 

prior to the flowering period, such as Perez-Lopez et al., 2008; Tommaso et al., 2008; Galan, et 

al., 2001; Fornaciari et al., 1998; Alba &Guardia, 1998 and Gonzalez Minero & Candau 1996. In 

all these studies, temperature during February was the best variable to predict the SPS of Olea. 
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5.2. Forecasting Methods 

Aeropalynology is a useful tool to predict the Start of the main Pollen Season (SPS) of plants 

producing allergenic pollen (Spieksma & Nikels, 1998; Frenguelli et al., 1992). One of the most 

important aspects of aerobiological studies is to explore forecasting models that helps us to 

institute the date of the SPS. The forecast of the SPS has a particular importance because this 

information is very useful for accurate use of medicine for allergies and for the planning of the 

patient’s activities. Several studies (Frenguelli et al., 1989, Emberlin et al., 1997, 2002; Alba & 

Díaz de la Guardia, 1998; Chuine, 2000; Fornaciari et al., 2000, 2005; Laaidi, 2001; Galán et 

al., 2001a, Galán et al., 2001b, 2005; Rodríguez-Rajo et al., 2003; Orlandi et al., 2004, 2005; 

Hoxha, 2007; Ribeiro et al., 2007; García-Mozo et al., 2008) have been published based on 

different methods for forecasting the SPS. Here we have applied and explored two different 

methods: the first method is based on the sum of mean temperatures and the second is based 

on a multiple regression analysis with maximum and minimum temperatures and precipitation. 

 

5.2.1. Summing Temperatures 

Temperature is the primary factor influencing the growth and development of plants and pollen 

production. The rate of phenological development of plant species increase linearly as a 

function of air temperature and they are assumed to be insignificant when the air temperature is 

below a threshold (Laaidi, 2001). Taking into account this behaviour, the method of summing 

temperatures consists of a cumulative sum of the daily mean temperature from an initial date, 

above a thermal threshold and until the observed SPS. Different initial dates were tested in 

order to determine the best one for starting the calculation. These dates ranged from 01–

January to 31–May in steps of 10 days. Different thermal thresholds, ranged from 0ºC to 9ºC in 

steps of 1ºC, were tested. For each combination of initial date and thermal threshold, we 

calculated the sum of the daily mean temperature from the initial date and above the thermal 

threshold until the observed SPP. This sum was calculated for each year included in the 

forecasting method. Then, we calculated the mean (M) and the standard deviation (STD) of 

these sums of temperatures for all the years. The best initial date and the more appropriate 

threshold were those that minimized the ratio STD/M (coefficient of variation). This method was 

used in a previous work by Laaidi et al. (2003). 

 

5.2.2. Multiple Regression Analysis 

Regression analysis is a statistical process for estimating the relationships between variables, 

when the focus is on the relationship between a dependent variable and one or more 

independent variables (Pallant, 2001). Multiple regression analysis has been used to investigate 

https://en.wikipedia.org/wiki/Dependent_variable
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the relationship between meteorological variables and the SPS (dependent variable). The 

selection of such meteorological variables was chosen after consulting other studies from 

different authors. In the forecasting of the SPS, the meteorological data included in the analysis 

were daily maximum temperature  (𝑇𝑚𝑎𝑥), daily minimum temperature  (𝑇𝑚𝑖𝑛) and daily rainfall 

 (𝑅). First, daily meteorological data from 01–January until the SPS was grouped in 10-day 

periods. Temperatures were averaged for each period while total amount of rainfall was 

quantified. These 10-day grouped meteorological data were used as independent variables in 

the multiple regression analysis. Forward stepwise regression has been chosen as selection 

method. This method starts with no variables in the model and tests the addition of each 

variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the 

most statistically significant improvement of the fit, and repeating this process until none 

improves the model to a statistically significant extent. 

 

5.2.3. Model Evaluation 

In order to measure the quality of the models and also their predictability power, root mean 

squared error (𝑅𝑀𝑆𝐸) has been computed. The 𝑅𝑀𝑆𝐸 is a frequently used measure of the 

differences between forecasted values predicted by a model (𝑆𝑃𝑆𝐹) and the values actually 

observed (𝑆𝑃𝑆𝑂). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂)2

𝑁

𝑖=1

 

Therefore, smaller errors imply that better is the model and the capability to predict future 

values. Following Appel et al. (2007), the model performance was evaluated using systematic 

and unsystematic root mean square errors,  𝑅𝑀𝑆𝐸𝑠 (1) and  𝑅𝑀𝑆𝐸𝑢 (2), in order to evaluate the 

intrinsic error in the model (systematic) and the random error (unsystematic). 

The  𝑅𝑀𝑆𝐸𝑠 and  𝑅𝑀𝑆𝐸𝑢 are defined as: 

𝑅𝑀𝑆𝐸𝑠 = √
1

𝑁
∑ (𝑆𝑃𝑆 − 𝑆𝑃𝑆𝑂)2𝑁

𝑖=1    (1) 

𝑅𝑀𝑆𝐸𝑢 = √
1

𝑁
∑ (𝑆𝑃𝑆 − 𝑆𝑃𝑆𝐹)2𝑁

𝑖=1    (2) 

𝑆𝑃𝑆 = 𝑎 + 𝑏 · 𝑆𝑃𝑆𝑂     (3) 

𝑅𝑀𝑆𝐸 = √(𝑅𝑀𝑆𝐸𝑢)2 + (𝑅𝑀𝑆𝐸𝑠)2   (4) 
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Where 𝑆𝑃𝑆𝐹 and 𝑆𝑃𝑆𝑂 are forecasted and observed values, 𝑎 and 𝑏 are the least-squares 

regression coefficients derived from the linear regression between 𝑆𝑃𝑆𝐹 and 𝑆𝑃𝑆𝑂, and 𝑁 is the 

total number of forecasted/observed pairs. 

The  𝑅𝑀𝑆𝐸𝑢 and  𝑅𝑀𝑆𝐸𝑠 help to identify the sources of the errors. The  𝑅𝑀𝑆𝐸𝑠 represents the 

portion of the error that is attributable to systematic model errors and the  𝑅𝑀𝑆𝐸𝑢 represents 

random errors in the model or model inputs that are less easily addressed. For a good model, 

the unsystematic portion of the error ( 𝑅𝑀𝑆𝐸𝑢 ) must be much larger than the systematic portion, 

whereas a high  𝑅𝑀𝑆𝐸𝑠  value indicates a poor model. 

 

5.3. Pollen data and Main Pollen Season 

Airborne pollen data were recorded by the Aerobiological Network of Catalonia (XAC) at six 

stations located in Barcelona (BCN), Bellaterra (BTU), Girona (GIC), Lleida (LLE), Manresa 

(MAN) and Tarragona (TAU). Here we have focused on 6 of the 22 pollen taxa (Olea, Pinus, 

Pistacia, Plantago, Platanus and Quercus deciduous type) in order to forecast the Start of the 

main Pollen Season (SPS). We have chosen these pollen taxa because they have a well-

defined pollination season. 

In order to understand the different timing behaviour of the pollen taxa, Figure 5.1 shows the 

daily pollen concentrations for two different taxa, Olea and Urticaceae, in the station of 

Tarragona during 2012. 

 

 
 
Figure 5.1 Daily pollen concentrations for two different taxa, Olea and Urticaceae, in the station of 
Tarragona during 2012. 
 

0

5

10

15

20

25

30

35

40

45

50

0

100

200

300

400

500

600

700

800

900

1000

1-
1

14
-1

27
-1 9-
2

22
-2 6-
3

19
-3 1-
4

14
-4

27
-4

10
-5

23
-5 5-
6

18
-6 1-
7

14
-7

27
-7 9-
8

22
-8 4-
9

17
-9

30
-9

13
-1

0

26
-1

0

8-
11

21
-1

1

4-
12

17
-1

2

30
-1

2

C
o

n
ce

n
tr

at
io

n
 (

p
o

lle
n

/m
3
) 

C
o

n
ce

n
tr

at
io

n
 (

p
o

lle
n

/m
3
) 

day 
Olea Urticaceae



5. Forecasting the Start of the Main Pollen Season 
_____________________________________________________________________________________ 

 

 
89 

In Table 5.1 we can see that Urticaceae pollinates almost throughout the year, but Olea have a 

main pollen season starting on the 10th of May and lasting only for 35 days. So, we will forecast 

the SPS for some taxa like Olea 

 
Table 5.1: Main Pollen Season for Olea and Urticaceae in the station of Tarragona in 2012. 

 

Pollen parameters Olea Urticaceae 

APIn (pollen*day/m
3
) 4428 1824 

Start (2,5%) 131 (11-May) 19 (19-Jan) 

End (97,5%) 166 (16-June) 352 (17-Dec) 

Length (days) 35 333 

 

Meteorological data were provided by the Servei Meteorològic de Catalunya (SMC). Daily 

values of precipitation, maximum and minimum temperature were recorded at the closest 

meteorological stations to airborne sampling sites (all of them are 5-15 km away). Forecasting 

methods were implemented for years 2001, 2005-2011 (8 years). Years 2002, 2003 and 2004 

were excluded of the analysis because there were missing data for many days. Furthermore, 

many daily rainfall records in Lleida during the pollination season were missing; therefore, we 

have not considered this station in the multiple regression method. 

The SPS for each year in each station are showed in Tables 5.2. The mean value and the 

standard deviation of the SPS for each taxon were calculated for all the stations during the 

years included in the study and the result is given in Table 5.3. 

As it can be seen in Table 5.3, the spatial variability of the SPS for a given taxon ranges from 9 

days for Platanus to 27 days for Plantago, while the temporal variability for a given taxon at a 

given location range from 7 days for Plantago in TAU to 20 days for Pinus in GIC. 
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Tables 5.2: Start of the Main Pollen Season. 
 
 

(a) Olea 
Station 
 

Year 

BCN BTU GIC LLE MAN TAU 

Day Date Day Date Day Date Day Date Day Date Day Date 

2001 105 14-4 104 13-4 105 14-4 114 23-4 109 18-4 107 16-4 

2005 129 8-5 129 8-5 129 8-5 130 9-5 131 10-5 131 10-5 

2006 124 3-5 128 7-5 129 8-5 129 8-5 129 8-5 128 7-5 

2007 129 8-5 129 8-5 130 9-5 129 8-5 141 20-5 128 7-5 

2008 115 24-4 123 2-5 117 26-4 124 3-5 134 13-5 125 4-5 

2009 130 9-5 132 11-5 134 13-5 136 15-5 136 15-5 131 10-5 

2010 131 10-5 143 22-5 144 23-5 144 23-5 147 26-5 144 23-5 

2011 124 3-5 124 3-5 126 5-5 129 8-5 134 13-5 126 5-5 

 
 

(b) Pinus 
Station 

 
Year 

BCN BTU GIC LLE MAN TAU 

Day Date Day Date Day Date Day Date Day Date Day Date 

2001 45 14-2 55 24-2 39 8-2 69 9-3 64 4-3 45 14-2 

2005 85 25-3 91 31-3 92 1-4 96 5-4 94 3-4 85 25-3 

2006 79 19-3 83 23-3 82 22-3 94 3-4 87 27-3 74 14-3 

2007 63 3-3 68 8-3 62 2-3 90 30-3 71 11-3 63 3-3 

2008 59 28-2 69 9-3 61 1-3 86 26-3 74 14-3 60 29-2 

2009 68 8-3 73 13-3 70 10-3 76 16-3 74 14-3 67 7-3 

2010 83 23-3 87 27-3 89 29-3 95 4-4 95 4-4 85 25-3 

2011 71 11-3 77 17-3 66 6-3 79 19-3 78 18-3 66 6-3 

 
 

(c) Pistacia 
Station 
 

Year 

BCN BTU GIC LLE MAN TAU 

Day Date Day Date Day Date Day Date Day Date Day Date 

2001 75 15-3 77 17-3 77 17-3 78 18-3 75 15-3 70 10-3 

2005 102 11-4 105 14-4 106 15-4 111 20-4 109 18-4 103 12-4 

2006 87 27-3 85 25-3 92 1-4 96 5-4 91 31-3 88 28-3 

2007 76 16-3 76 16-3 76 16-3 73 13-3 83 23-3 76 16-3 

2008 75 15-3 88 28-3 74 14-3 73 13-3 89 29-3 73 13-3 

2009 83 23-3 94 3-4 88 28-3 86 26-3 95 4-4 85 25-3 

2010 97 6-4 98 7-4 102 11-4 107 16-4 108 17-4 92 1-4 

2011 85 25-3 90 30-3 91 31-3 91 31-3 93 2-4 85 25-3 

 
 

(d) Plantago 
Station 

 
Year 

BCN BTU GIC LLE MAN TAU 

Day Date Day Date Day Date Day Date Day Date Day Date 

2001 82 22-3 89 29-3 94 3-4 92 1-4 97 6-4 81 21-3 

2005 101 10-4 107 16-4 113 22-4 120 29-4 112 21-4 98 7-4 

2006 91 31-3 97 6-4 98 7-4 102 11-4 111 20-4 94 3-4 

2007 91 31-3 110 19-4 113 22-4 115 24-4 115 24-4 92 1-4 

2008 93 2-4 109 18-4 115 24-4 119 28-4 123 2-5 85 25-3 

2009 104 13-4 108 17-4 112 21-4 95 4-4 113 22-4 91 31-3 

2010 108 17-4 114 23-4 116 25-4 115 24-4 136 15-5 100 9-4 

2011 94 3-4 101 10-4 105 14-4 98 7-4 124 3-5 93 2-4 
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(e) Platanus 

Station 
 

Year 

BCN BTU GIC LLE MAN TAU 

Day Date Day Date Day Date Day Date Day Date Day Date 

2001 67 7-3 68 8-3 79 19-3 75 15-3 73 13-3 67 7-3 

2005 89 29-3 91 31-3 95 4-4 93 2-4 95 4-4 88 28-3 

2006 80 20-3 84 24-3 84 24-3 84 24-3 87 27-3 79 19-3 

2007 69 9-3 70 10-3 72 12-3 74 14-3 79 19-3 67 7-3 

2008 66 6-3 72 12-3 74 14-3 74 14-3 80 20-3 70 10-3 

2009 73 13-3 75 15-3 73 13-3 78 18-3 81 21-3 74 14-3 

2010 84 24-3 88 28-3 87 27-3 91 31-3 95 4-4 86 26-3 

2011 79 19-3 79 19-3 77 17-3 84 24-3 87 27-3 75 15-3 

 
 

(f) Quercus deciduous type 

Station 
 

Year 

BCN BTU GIC LLE MAN TAU 

Day Date Day Date Day Date Day Date Day Date Day Date 

2001 80 20-3 76 16-3 80 20-3 78 18-3 79 19-3 80 20-3 

2005 105 14-4 104 13-4 112 21-4 103 12-4 104 13-4 102 11-4 

2006 100 9-4 94 3-4 102 11-4 97 6-4 95 4-4 95 4-4 

2007 97 6-4 88 28-3 103 12-4 106 15-4 97 6-4 103 12-4 

2008 80 20-3 86 26-3 93 2-4 79 19-3 91 31-3 90 30-3 

2009 93 2-4 92 1-4 97 6-4 95 4-4 95 4-4 88 28-3 

2010 100 9-4 99 8-4 109 18-4 101 10-4 105 14-4 100 9-4 

2011 95 4-4 90 30-3 99 8-4 96 5-4 96 5-4 96 5-4 

 
 
 
 
Table 5.3: Mean value and standard deviation of the SPS of 6 pollen taxa during the years included in the 
study in the six sampling stations. 
 

 
Olea Pinus Pistacia Plantago Platanus 

Quercus 
deciduous type 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

BCN 122 (1-5) 10 69 (9-3) 15 86 (26-3) 11 97 (6-4) 9 76 (16-3) 9 92 (1-4) 10 

BTU 126 (5-5) 13 75 (15-3) 13 92 (1-4) 10 105 (14-4) 9 79 (19-3) 9 91 (31-3) 10 

GIC 126 (5-5) 14 70 (10-3) 20 90 (30-3) 13 109 (18-4) 8 81 (21-3) 9 98 (7-4) 12 

LLE 130 (9-5) 10 84 (24-3) 11 91 (31-3) 15 107 (16-4) 13 83 (23-3) 8 92 (1-4) 11 

MAN 132 (11-5) 13 80 (20-3) 12 95 (4-4) 13 118 (27-4) 13 85 (25-3) 9 110 (19-4) 14 

TAU 127 (6-5) 12 68 (8-3) 15 85 (25-3) 12 91 (31-3) 7 77 (17-3) 8 93 (2-4) 8 
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5.4. Results 

 

5.4.1. Summing Temperatures 

Different initial dates were tested in order to determine the best one for starting the calculation. 

These dates ranged from 01–January to 31–May in steps of 10 days. Different thermal 

thresholds, ranged from 0ºC to 9ºC in steps of 1ºC, were tested. For each combination of initial 

date and thermal threshold, we calculated the sum of the daily mean temperature from the initial 

date and above the thermal threshold until the observed SPP. This sum was calculated for each 

year included in the forecasting method. Then, we calculated the mean (M) and the standard 

deviation (STD) of these sums of temperatures for all the years. The best initial date and the 

more appropriate threshold were those that minimized the ratio STD/M (coefficient of variation). 

Years 2001, 2005 and 2009-2011 (6 years) have been included in the calculation of the 

parameters of the model while 2013 has been used as control year to test the method. 

Tables 5.4 show the initial date, the thermal threshold and the sum of daily mean temperature 

obtained for each station. From the parameters shown in Tables 5.4, forecasted values (𝑆𝑃𝑆𝐹) 

are calculated for each year. Figures 5.2 show the linear regression between forecasted (𝑆𝑃𝑆𝐹) 

and observed (𝑆𝑃𝑆𝑂) values for the years included in the model. For each regression the 𝑅𝑀𝑆𝐸 

value are also included in the figures. The method was tested for forecasting the SPS of each 

taxon in the year 2013 (not include in the model data) and the results are shown in Tables 5.5. 
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Table 5.4a: Parameters obtained to forecast the SPS of Olea. 
 

Olea 

Station 
Initial date 
for the sum 

Thermal 
threshold (ºC) 

Sum of daily mean 
temperature (ºC) 

BCN 01-Feb 7 977 

BTU 01-Feb 3 1076 

GIC 01-Feb 6 1052 

LLE 01-Feb 2 972 

MAN 01-Feb 2 1124 

TAU 01-Feb 3 1136 

 

  

  

  
 
Figure 5.2a: Linear regression between forecast and observed SPS values of Olea. 
 
Table 5.5a: Accuracy of the model predicting the SPS of Olea for the year 2013. 
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Station 
𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 131 128 +5 
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Table 5.4b: Parameters obtained to forecast the SPS of Pinus. 
 

Pinus 

Station 
Initial date 
for the sum 

Thermal 
threshold (ºC) 

Sum of daily mean 
temperature (ºC) 

BCN 21-Jan 8 285 

BTU 01-Jan 4 619 

GIC 01-Jan 7 473 

LLE 01-Jan 2 561 

MAN 01-Jan 2 577 

TAU 01-Jan 6 551 

 

  

  

  
 
Figure 5.2b: Linear regression between forecast and observed SPS values of Pinus. 
 
Table 5.5b: Accuracy of the model predicting the SPS of Pinus for the year 2013. 
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BCN 73 67 +6 
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Table 5.4c: Parameters obtained to forecast the SPS of Pistacia. 
 

Pistacia 

Station 
Initial date 
for the sum 

Thermal 
threshold (ºC) 

Sum of daily mean 
temperature (ºC) 

BCN 01-Jan 0 706 

BTU 01-Jan 0 832 

GIC 01-Jan 0 807 

LLE 01-Jan 5 617 

MAN 01-Jan 2 753 

TAU 01-Jan 6 747 

 

  

  

  
 
Figure 5.2c: Linear regression between forecast and observed SPS values of Pistacia. 
 
Table 5.5c: Accuracy of the model predicting the SPS of Pistacia for the year 2013. 
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Station 
𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 87 88 -1 

BTU 90 91 -1 

GIC 103 91 +12 

LLE 91 84 +7 

MAN 106 102 +4 

TAU 80 73 +7 
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Table 5.4d: Parameters obtained to forecast the SPS of Plantago. 
 

Plantago 

Station 
Initial date 
for the sum 

Thermal 
threshold (ºC) 

Sum of daily mean 
temperature (ºC) 

BCN 01-Jan 0 899 

BTU 01-Jan 0 1008 

GIC 31-Jan 0 831 

LLE 01-Jan 2 881 

MAN 01-Jan 0 1083 

TAU 21-Jan 0 696 

 

  

  

  
 
Figure 5.2d: Linear regression between forecast and observed SPS values of Plantago. 
 
Table 5.5d: Accuracy of the model predicting the SPS of Plantago for the year 2013. 
 

Plantago 

Station 
𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 103 103 0 

BTU 106 102 +4 

GIC 120 112 +8 

LLE 107 103 +4 

MAN 131 122 +9 

TAU 91 93 -2 
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Table 5.4e: Parameters obtained to forecast the SPS of Platanus. 
 

Platanus 

Station 
Initial date 
for the sum 

Thermal 
threshold (ºC) 

Sum of daily mean 
temperature (ºC) 

BCN 21-Jan 5 459 

BTU 01-Jan 0 676 

GIC 11-Jan 5 600 

LLE 01-Jan 2 567 

MAN 01-Jan 0 648 

TAU 01-Jan 0 682 

 

  

  

  
 
Figure 5.2e: Linear regression between forecast and observed SPS values of Platanus. 
 
Table 5.5e: Accuracy of the model predicting the SPS of Platanus for the year 2013. 
 

Platanus 

Station 
𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 82 82 0 

BTU 81 84 -3 

GIC 99 84 +15 

LLE 84 87 -3 

MAN 98 92 +6 

TAU 77 75 +2 
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Table 5.4f: Parameters obtained to forecast the SPS of Quercus deciduous type. 
 

Quercus deciduous type 

Station 
Initial date 
for the sum 

Thermal 
threshold (ºC) 

Sum of daily mean 
temperature (ºC) 

BCN 21-Jan 6 635 

BTU 01-Jan 2 822 

GIC 01-Jan 5 889 

LLE 01-Jan 4 662 

MAN 21-Jan 2 758 

TAU 01-Jan 2 714 

 

  

  

  
 
Figure 5.2f: Linear regression between forecast and observed SPS values of Quercus deciduous type. 
 
Table 5.5f: Accuracy of the model predicting the SPS of Quercus deciduous type for the year 2013. 
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BCN 102 100 +2 
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GIC 117 108 +9 
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TAU 92 102 -10 
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5.4.2. Correlations and Multiple Regressions. 

In order to find more accurate forecast models, it is important to understand and investigate the 

relationship between SPS (dependent variable) and meteorological factors (independent 

variables) that have a great influence on the pollination season in the area under study. 

The meteorological data considered in the analysis were daily maximum temperature  (𝑇𝑚𝑎𝑥), 

daily minimum temperature  (𝑇𝑚𝑖𝑛) and daily rainfall  (𝑅). Daily meteorological data from 01–

January until the observed SPS was grouped in 10-day periods. Temperatures were averaged 

for each period while total amount of rainfall was quantified. These 10-day grouped 

meteorological data were considered as independent variables in the analysis of correlations 

and multiple regressions. 

Spearman’s rank correlation coefficient was applied to measure the relationship between the 

SPS of Olea, Pinus, Pistacia, Plantago, Platanus and Quercus deciduous type, and the 

independent meteorological variables (Tables 5.6). Years 2001 and 2005-2011 (8 years) have 

been included in the calculation of correlations and multiple regressions, while 2013 has been 

used as control year to test the method. Furthermore, many daily rainfall records in Lleida 

during the pollination season were missing; therefore, we have not considered this station in this 

forecasting method. 

A multiple regression analysis was developed to determine which meteorological variables have 

the most significant effect on the SPS of each taxon. Tables 5.7 show the equations to forecast 

the SPS for each station. 

From the equations shown in Tables 5.7, forecasted values (𝑆𝑃𝑆𝐹) are calculated for each year. 

Figures 5.3 show the linear regression between forecasted (𝑆𝑃𝑆𝐹) and observed (𝑆𝑃𝑆𝑂) values 

for the years included in the model. For each regression the 𝑅𝑀𝑆𝐸 value are also included in 

the figures. The method was tested for forecasting the SPS of each taxon in the year 2013 (not 

include in the model data) and the results are shown in Tables 5.8. 
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Table 5.6a: Spearman’s rank correlation coefficient between the SPS of Olea and meteorological 
variables. Taking into account that the pollinations season of Olea starts in the beginning of May, daily 
meteorological data have been grouped from 01–February (day 32). 
(*) Correlation is significant at the 0.05 level. (**) correlation is significant at the 0.01 level. 
 

Olea 

Independent variables BCN BTU GIC MAN TAU 

Maximum temperature for days 32-41 (1-10 February) -,807* -,922** -,780* -,301 -,970** 

Minimum temperature for days 32-41 -,819* ,000 ,012 ,395 ,048 

Rainfall for days 32-41 ,790* ,722** ,560 ,675 ,771* 

Maximum temperature for days 42-51 (11-20 February) -,374 -,371 -,371 -,337 -,578 

Minimum temperature for days 42-51 -,648 -,479 -,383 ,299 -,615 

Rainfall for days 42-51 ,145 ,024 -,012 ,299 -,133 

Maximum temperature for days 52-61 (21 Feb-2 March) ,120 -,036 ,275 ,587 -,229 

Minimum temperature for days 52-61 ,079 ,000 ,168 ,659 -,229 

Rainfall for days 52-61 -,337 -,108 -,347 -,072 -,602 

Maximum temperature for days 62-71 (3-12 March) -,542 -,611 -,503 -,455 -,711* 

Minimum temperature for days 62-71 -,494 -,596 -,240 -,228 -,566 

Rainfall for days 62-71 ,048 ,252 -,192 ,443 ,091 

Maximum temperature for days 72-81 (13-22 March) -,193 -,263 ,012 -,084 -,651 

Minimum temperature for days 72-81 -,277 -,700 -,755* -,838** -,704 

Rainfall for days 72-81 ,048 ,060 -,054 ,338 ,036 

Maximum temperature for days 81-90 (23 March- 1 April) -,530 -,359 -,323 -,814* -,445 

Minimum temperature for days 81-90 -,265 ,349 ,359 -,108 ,241 

Rainfall for days 81-90 ,206 ,252 -,299 ,587 ,313 

Maximum temperature for days 91-100 (2-11 April) -,771* -,743* -,755* -,443 -,687* 

Minimum temperature for days 91-100 -,699* -,180 -,252 -,419 -,807* 

Rainfall for days 91-100 ,709* ,709* ,719* ,822* ,446 

Maximum temperature for days 101-110 (12-21 April) -,181 -,371 -,422 -,145 -,470 

Minimum temperature for days 101-110 ,467 ,446 -,355 ,611 ,390 

Rainfall for days 101-110 ,285 ,313 ,023 ,515 ,164 

 
 
Table 5.7a: Equations to forecast the SPS of Olea and R_Square values. 
 

Station SPS of Olea R_Square 

BCN 160.66 − 7.19 𝑇𝑚𝑖𝑛1𝐹𝑒𝑏 + 0.14 𝑅2𝐴𝑝𝑟 0.919 

BTU 227.29 − 6.83 𝑇𝑚𝑎𝑥1𝐹𝑒𝑏 0.809 

GIC 213.63 − 5.66 𝑇𝑚𝑎𝑥1𝐹𝑒𝑏 0.718 

MAN 152.81 − 4.56 𝑇𝑚𝑖𝑛13𝑀𝑎𝑟  0.582 

TAU 244.43 − 7.78 𝑇𝑚𝑎𝑥1𝐹𝑒𝑏 0.720 
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Figure 5.3a: Linear regression between forecast and observed SPS values of Olea. 
 
 
Table 5.8a: Accuracy of the model predicting the SPS of Olea for the year 2013. 
 

Olea 

Station 
𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 131 128 +3 

BTU 133 128 +5 

GIC 137 133 +4 

MAN 145 137 +8 

TAU 126 118 +8 

 
 

  

Y=0.938x+0.69 
RMSE=2.3 days 

100

110

120

130

140

150

100 110 120 130 140 150

S
P

S
F

 

SPSO 

BCN 

Y=0.819+22.86 
RMSE=4.5 days 

100

110

120

130

140

150

100 110 120 130 140 150

S
P

S
F

 

SPSO 

BTU 

Y=0.712X+36.35 
RMSE=5.7 days 

100

110

120

130

140

150

100 110 120 130 140 150

S
P

S
F

 

SPSO 

GIC 

Y=0.590x+54.91 
RMSE=6.0 days 

100

110

120

130

140

150

100 110 120 130 140 150

S
P

S
F

 

SPSO 

MAN 

Y=0.727+34.97 
RMSE=4.9 days 

100

110

120

130

140

150

100 110 120 130 140 150

S
P

S
F

 

SPSO 

TAU 



5. Forecasting the Start of the Main Pollen Season 
_____________________________________________________________________________________ 
 

 
102 

 
Table 5.6b: Spearman’s rank correlation coefficient between the SPS of Pinus and meteorological 
variables. 
(*) Correlation is significant at the 0.05 level. (**) Correlation is significant at the 0.01 level. 
 

Pinus 

Independent variables BCN BTU GIC MAN TAU 

Maximum temperature for days 1-10 (1-10 January) -,333 -,500 -,524 -,386 -,695 

Minimum temperature for days 1-10  -,619 -,575 -,929** -,467 -,422 

Rainfall for days 1-10 ,122 ,216 -,024 ,356 ,455 

Maximum temperature for days 11-20 (11-20 January) -,143 -,238 -,383 -,096 -,431 

Minimum temperature for days 11-20 -,619 -,476 -,571 -,181 -,731* 

Rainfall for days 11-20 ,293 -,325 -,342 -,123 -,132 

Maximum temperature for days 21-30 (21-30 January) -,786* -,667 -,667 -,647 -,407 

Minimum temperature for days 21-30 -,714* -,429 -,190 -,395 -,491 

Rainfall for days 21-30 ,390 ,048 -,072 ,223 -,030 

Maximum temperature for days 31-40 (31 January-9 February) -,667 -,862** -,838** -,707 -,916** 

Minimum temperature for days 31-40 -,881** -,814* -,419 -,599 -,252 

Rainfall for days 31-40 ,347 ,347 ,571 ,331 ,611 

Maximum temperature for days 41-50 (10-19 February) -,286 -,551 -,433 -,759* -,404 

Minimum temperature for days 41-50 -,571 -,431 -,466 -,669 -,464 

Rainfall for days 41-50 -,167 -,262 ,026 -,192 -,120 

Maximum temperature for days 51-60 (20 February- 1 March) -,322 -,757* -,355 -,479 -,455 

Minimum temperature for days 51-60 -,344 -,310 -,366 -,335 -,433 

Rainfall for days 51-60 -,122 ,455 ,031 ,241 ,133 

Maximum temperature for days 61-70 (2-11 March) -,455 -,420 -,331 -,886** -,433 

Minimum temperature for days 61-70 -,333 -,360 -,310 -,886** -,322 

Rainfall for days 61-70 ,044 ,022 ,035 -,060 ,055 

Maximum temperature for days 71-80 (12-21 March) -,181 -,371 -,422 -,145 -,470 

Minimum temperature for days 71-80 ,467 ,446 -,355 ,611 ,390 

Rainfall for days 71-80 ,285 ,313 ,023 ,515 ,164 

Maximum temperature for days 81-90 (22 -31 March) -,299 -,595 -,452 -,454 -,421 

Minimum temperature for days 81-90 -,412 -,410 -,411 -,411 -,422 

Rainfall for days 81-90  ,021 ,011 ,022 ,022 ,011 

 
 
Table 5.7b: Equations to forecast the SPS of Pinus and R_Square values. 
 

Station SPS of Pinus R_square 

BCN 130.66 − 11.15 𝑇𝑚𝑖𝑛31𝐽𝑎𝑛 0.799 

BTU 160.15 − 4.93 𝑇𝑚𝑎𝑥31𝐽𝑎𝑛 − 4.98 𝑇𝑚𝑖𝑛31𝐽𝑎𝑛 0.924 

GIC 98.25 − 9.87 𝑇𝑚𝑖𝑛1𝐽𝑎𝑛 0.760 

MAN 119.82 − 2.55 𝑇𝑚𝑎𝑥2𝑀𝑎𝑟  0.788 

TAU 205.85 − 9.28 𝑇𝑚𝑎𝑥31𝐽𝑎𝑛 0.752 
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Figure 5.3b: Linear regression between forecast and observed SPS values of Pinus. 
 
 
Table 5.8b: Accuracy of the model predicting the SPS of Pinus for the year 2013. 
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𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 69 67 +2 

BTU 75 78 -3 

GIC 78 72 +6 

MAN 88 78 +10 

TAU 66 73 -7 
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Table 5.6c: Spearman’s rank correlation coefficient between the SPS of Pistacia and meteorological 
variables. 
(*) Correlation is significant at the 0.05 level. (**) Correlation is significant at the 0.01 level. 
 

Pistacia 

Independent variables BCN BTU GIC MAN TAU 

Maximum temperature for days 1-10 (1-10 January) -,299 -,595 -,452 -,443 -,623 

Minimum temperature for days 1-10 -,599 -,455 -,786* -,381 -,404 

Rainfall for days 1-10 ,074 ,132 -,095 ,171 ,358 

Maximum temperature for days 11-20 (11-20 January) -,180 -,262 -,575 -,071 -,347 

Minimum temperature for days 11-20 -,611 -,524 -,524 -,467 -,731* 

Rainfall for days 11-20 ,245 -,361 -,220 -,317 -,180 

Maximum temperature for days 21-30 (21-30 January) -,802* -,286 -,762* -,452 -,503 

Minimum temperature for days 21-30 -,731* -,143 -,071 -,214 -,599 

Rainfall for days 21-30 ,393 -,381 ,156 -,108 -,006 

Maximum temperature for days 31-40 (31 January-9 February) -,635 -,690 -,659 -,500 -,767** 

Minimum temperature for days 31-40 -,862** -,571 -,563 -,405 -,359 

Rainfall for days 31-40 ,307 ,635 ,262 ,634 ,551 

Maximum temperature for days 41-50 (10-19 February) -,228 -,790* -,429 -,850** -,343 

Minimum temperature for days 41-50 -,695 -,695 -,262 -,599 -,599 

Rainfall for days 41-50 -,180 -,357 -,335 -,429 -,240 

Maximum temperature for days 51-60 (20 February- 1 March) -,527 -,405 -,667 -,429 -,443 

Minimum temperature for days 51-60 -,515 -,286 -,643 -,381 -,503 

Rainfall for days 51-60 ,289 ,108 -,310 -,036 -,359 

Maximum temperature for days 61-70 (2-11 March) -,719* -,929** -,714* -,946** -,878** 

Minimum temperature for days 61-70 -,790* -,857** -,710* -,833* -,671 

Rainfall for days 61-70 ,263 ,190 ,286 ,024 -,012 

Maximum temperature for days 71-80 (12-21 March) -,790* -,452 -,735* -,357 -,422 

Minimum temperature for days 71-80 ,168 -,286 ,095 -,310 -,411 

Rainfall for days 71-80 ,715* ,252 ,464 -,024 ,012 

Maximum temperature for days 81-90 (22 -31 March) -,299 -,595 -,452 -,421 -,454 

Minimum temperature for days 81-90 -,412 -,410 -,411 -,422 -,411 

Rainfall for days 81-90 ,021 ,011 ,022 ,011 ,022 

 
 
Table 5.7c: Equations to forecast the SPS of Pistacia and R_Square values. 
 

Station SPS of Pistacia R_Square 

BCN 129.80 − 8.12 𝑇𝑚𝑖𝑛31𝐽𝑎𝑛 0.744 

BTU 132.40 − 2.70 𝑇𝑚𝑎𝑥2𝑀𝑎𝑟  0.878 

GIC 145.72 − 5.43 𝑇𝑚𝑖𝑛1𝐽𝑎𝑛 − 2.22 𝑇𝑚𝑎𝑥12𝑀𝑎𝑟  0.967 

MAN 132.32 − 2.33 𝑇𝑚𝑎𝑥2𝑀𝑎𝑟 − 1.33 𝑇𝑚𝑖𝑛2𝑀𝑎𝑟  0.968 

TAU 128.83 − 2.74 𝑇𝑚𝑎𝑥2𝑀𝑎𝑟  0.676 
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Figure 5.3c: Linear regression between forecast and observed SPS values of Pistacia. 
 
 
Table 5.8c: Accuracy of the model predicting the SPS of Pistacia for the year 2013. 
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Station 
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(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 85 88 -3 

BTU 95 91 -4 

GIC 97 91 +6 

MAN 108 102 +6 

TAU 83 73 +10 
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Table 5.6d: Spearman’s rank correlation coefficient between the SPS of Plantago and meteorological 
variables. 
(*) Correlation is significant at the 0.05 level. (**) Correlation is significant at the 0.01 level. 
 

Plantago 

Independent variables BCN BTU GIC MAN TAU 

Maximum temperature for days 1-10 (1-10 January) -,659 -,238 -,216 -,048 -,548 

Minimum temperature for days 1-10 -,755* -,204 -,275 ,000 -,228 

Rainfall for days 1-10 from ,626 -,036 ,275 ,098 ,277 

Maximum temperature for days 11-20 (11-20 January) -,407 ,167 -,012 ,595 -,310 

Minimum temperature for days 11-20 -,647 ,548 -,252 ,299 -,500 

Rainfall for days 11-20 ,430 -,084 ,000 -,146 ,024 

Maximum temperature for days 21-30 (21-30 January) -,287 ,214 ,108 -,024 -,595 

Minimum temperature for days 21-30 -,311 -,024 -,323 -,143 -,667 

Rainfall for days 21-30 ,086 -,143 -,765* ,132 ,240 

Maximum temperature for days 31-40 (31 January-9 February) -,934** -,548 -,627 -,048 -,814* 

Minimum temperature for days 31-40 -,886** -,119 -,223 -,048 -,429 

Rainfall for days 31-40 ,873** ,731* ,695 ,342 ,381 

Maximum temperature for days 41-50 (10-19 February) -,790* -,491 -,539 -,455 -,287 

Minimum temperature for days 41-50 -,814** -,180 -,527 -,299 -,476 

Rainfall for days 41-50 -,048 ,357 ,175 ,357 ,095 

Maximum temperature for days 51-60 (20 February-1 March) -,048 ,595 ,563 ,571 -,214 

Minimum temperature for days 51-60 ,060 ,690 ,551 ,690 -,286 

Rainfall for days 51-60 -,157 ,024 -,180 ,240 -,119 

Maximum temperature for days 61-70 (2-11 March) -,886** -,429 -,479 -,575* -,667 

Minimum temperature for days 61-70 -,623 -,167 -,431 -,711* -,643 

Rainfall for days 61-70 ,419 -,167 ,443 ,214 ,096 

Maximum temperature for  days 71-80 (12-21 March) -,407 -,119 ,024 -,548 -,976** 

Minimum temperature for days 71-80 -,252 -,826* -,826* -,286 -,619 

Rainfall for days 71-80 ,024 ,024 -,371 ,415 ,419 

Maximum temperature for days 81-90 (22-31 March) -,659 -,833* -,599 -,448 -,327 

Minimum temperature for days 81-90 -,311 -,347 ,108 -,095 -,321 

Rainfall for days 81-90 ,011 ,548 ,204 ,400 ,021 

 
 
Table 5.7d: Equations to forecast the SPS of Plantago and R_Square values. 
 

Station SPS of Plantago R_Square 

BCN 160.37 − 5.27 𝑇𝑚𝑎𝑥31𝐽𝑎𝑛 0.892 

BTU 149.91 − 1.71 𝑇𝑚𝑎𝑥22𝑀𝑎𝑟 − 2.60 𝑇𝑚𝑖𝑛12𝑀𝑎𝑟  0.936 

GIC 127.40 − 3.86 𝑇𝑚𝑖𝑛12𝑀𝑎𝑟  0.758 

MAN 127.28 − 3.28 𝑇𝑚𝑖𝑛2𝑀𝑎𝑟  0.537 

TAU 147.57 − 3.18 𝑇𝑚𝑎𝑥12𝑀𝑎𝑟  0.864 
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Figure 5.3d: Linear regression between forecast and observed SPS values of Plantago. 
 
 
Table 5.8d: Accuracy of the model predicting the SPS of Plantago for the year 2013. 
 

Plantago 

Station 
𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 99 103 -4 

BTU 110 102 +8 

GIC 115 112 +3 

MAN 125 122 +3 

TAU 91 93 -2 

 
 

  

Y=0.886x+11.22 

RMSE=2.1 days 
80

90

100

110

80 90 100 110

S
P

S
F

 

SPSO 

BCN 

Y=0.936x+6.79 

RMSE=1.9 days 
80

90

100

110

120

80 90 100 110 120

S
P

S
F

 

SPSO 

BTU 

Y=0.776x+24.04 

RMSE=3.7 days 
90

100

110

120

90 100 110 120

S
P

S
F

 

SPSO 

GIC 

Y=0.539x+53.82 

RMSE=7.5 days 
90

100

110

120

130

140

90 100 110 120 130 140

S
P

S
F

 

SPSO 

MAN 

Y=0.856x+13.27 

RMSE=2.2 days 
80

90

100

110

80 90 100 110

S
P

S
F

 

SPSO 

TAU 



5. Forecasting the Start of the Main Pollen Season 
_____________________________________________________________________________________ 
 

 
108 

 
Table 5.6e: Spearman’s rank correlation coefficient between the SPS of Platanus and meteorological 
variables. 
(*) Correlation is significant at the 0.05 level. (**) Correlation is significant at the 0.01 level. 
 

Platanus 

Independent variables BCN BTU GIC MAN TAU 

Maximum temperature for days 1-10 (1-10 January) -,262 -,500 -,262 -,327 -,647 

Minimum temperature for days 1-10 -,571 -,575 -,429 -,446 -,343 

Rainfall for days 1-10 ,024 ,216 ,143 ,235 ,412 

Maximum temperature for days 11-20 (11-20 January) -,214 -,238 -,707 -,048 -,419 

Minimum temperature for days 11-20 -,595 -,476 -,238 -,315 -,647 

Rainfall for days 11-20 ,195 -,325 ,122 -,247 -,084 

Maximum temperature for days 21-30 (21-30 January) -,810** -,667 -,476 -,675 -,455 

Minimum temperature for days 21-30 -,738* -,429 ,167 -,434 -,575 

Rainfall for days 21-30 ,390 ,048 ,036 ,176 ,060 

Maximum temperature for days 31-40 (31 January-9 February) -,595 -,762* -,515 -,639 -,729* 

Minimum temperature for days 31-40 -,833* -,714* -,635 -,615 -,431 

Rainfall for days 31-40 ,263 ,347 ,024 ,358 ,407 

Maximum temperature for days 41-50 (10-19 February) -,167 -,551 -,357 -,764* -,482 

Minimum  temperature for days 41-50 -,595 -,431 -,119 -,673 -,647 

Rainfall for days 41-50 -,190 -,262 -,407 -,277 -,275 

Maximum temperature for days 51-60 (20 February- 1 March) -,571 -,500 -,714* -,494 -,515 

Minimum temperature for days 51-60 -,571 -,429 -,571 -,386 -,563 

Rainfall for days 51-60 ,275 ,263 -,095 ,085 -,335 

Maximum temperature for days 61-70 (2-11 March) -,810* -,833* -,595 -,927** -,826* 

Minimum temperature for days 61-70 -,619 -,976** -,714* -,904** -,826* 

Rainfall for days 61-70 ,503 ,643 ,643 -,120 ,506 

Maximum temperature fordays 71-80 (12-21 March) -,690 -,411 -,455 -,411 -,433 

Minimum temperature for days 71-80 -,571 -,400 -,408 -,433 -,422 

Rainfall for days 71-80 ,000 ,012 ,003 ,002 ,022 

Maximum temperature for days 81-90 (22 -31 March) -,422 -,344 -,366 -,455 -,388 

Minimum temperature for days 81-90 -,322 -,411 -,322 -,433 -,422 

Rainfall for days 81-90 ,023 ,036 ,074 ,052 ,123 

 
 
Table 5.7e: Equations to forecast the SPS of Platanus and R_Square values. 
 

Station SPS of Platanus R_Square 

BCN 112.26 − 3.37 𝑇𝑚𝑎𝑥21𝐽𝑎𝑛 0.699 

BTU 89.19 − 2.81 𝑇𝑚𝑖𝑛2𝑀𝑎𝑟  0.884 

GIC 111.66 − 1.98 𝑇𝑚𝑎𝑥20𝐹𝑒𝑏 0.653 

MAN 120.12 − 2.32 𝑇𝑚𝑎𝑥2𝑀𝑎𝑟  0.854 

TAU 107.21 − 1.90 𝑇𝑚𝑎𝑥2𝑀𝑎𝑟  0.739 
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Figure 5.3e: Linear regression between forecast and observed SPS values of Platanus. 
 
 
Table 5.8e: Accuracy of the model predicting the SPS of Platanus for the year 2013. 
 

Platanus 

Station 
𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 77 82 -5 

BTU 78 84 -6 

GIC 81 84 -3 

MAN 91 92 -1 

TAU 75 75 0 
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Table 5.6f: Spearman’s rank correlation coefficient between the SPS of Quercus deciduous type and 
meteorological variables. 
(*) Correlation is significant at the 0.05 level. (**) Correlation is significant at the 0.01 level. 
 

Quercus deciduous type 

Independent variables BCN BTU GIC MAN TAU 

Maximum temperature for days 1-10 (1-10 January) -,048 -,524 -,119 -,084 ,143 

Minimum temperature for days 1-10 -,021 -,755* -,690 -,635 -,108 

Rainfall for days 1-10 -,148 ,204 -,333 -,061 -,325 

Maximum temperature for days 11-20 (11-20 January) ,036 -,262 -,120 ,299 ,357 

Minimum temperature for days 11-20 -,434 -,476 -,357 -,127 -,167 

Rainfall for days 11-20 ,111 -,313 -,537 -,454 -,095 

Maximum temperature for days 21-30 (21-30 January) -,747* -,619 -,667 -,515 -,524 

Minimum temperature for days 21-30 -,771* -,333 -,381 -,371 -,690 

Rainfall for days 21-30 ,395 -,024 -,287 ,169 ,036 

Maximum temperature for days 31-40 (31 January-9 February) -,530 -,881** -,587 -,599 -,551 

Minimum temperature for days 31-40 -,663 -,524 -,299 -,252 -,381 

Rainfall for days 31-40 ,170 ,491 ,405 ,417 ,333 

Maximum temperature for days 41-50 (10-19 February) ,048 -,443 -,190 -,476 ,120 

Minimum temperature for days 41 -,422 -,299 -,119 -,386 ,048 

Rainfall for days 41-50 -,096 -,286 -,036 ,060 ,310 

Maximum temperature for days 51-60 (20 February-1 March) -,422 -,524 -,143 -,084 ,262 

Minimum temperature for days 51-60 -,446 -,476 -,190 -,072 ,214 

Rainfall for days 51-60 ,267 ,168 -,071 -,060 ,238 

Maximum temperature for days 61-70 (2-11 March) -,446 -,762* -,476 -,741* -,214 

Minimum temperature for days 61-70 -,711* -,905** -,786* -,659 -,524 

Rainfall for days 61-70 ,048 ,381 ,214 ,204 -,012 

Maximum temperature for days 71-80 (12-21 Mar) -,627 -,667 -,371 -,587 -,548 

Minimum  temperature for days 71-80 -,711* -,012 -,717* -,719* -,762* 

Rainfall for days 71-80 -,072 ,287 -,119 ,344 -,024 

Maximum temperature for days 81-90 (22-31 Mar) -,422 -,344 -,366 -,455 -,388 

Minimum temperature for days 81-90 -,322 -,411 -,322 -,433 -,422 

Rainfall for days 81-90 ,023 ,036 ,074 ,052 ,123 

 
 
Table 5.7f: Equations to forecast the SPS of Quercus deciduous type R_Square values. 
 

Station SPS of Quercus deciduous type R_Square 

BCN 107.85 − 3.49 𝑇𝑚𝑖𝑛21𝐽𝑎𝑛 0.777 

BTU 126.59 − 1.89 𝑇𝑚𝑖𝑛2𝑀𝑎𝑟 − 1.91 𝑇𝑚𝑎𝑥31𝐽𝑎𝑛 0.978 

GIC 108.52 − 2.28 𝑇𝑚𝑖𝑛2𝑀𝑎𝑟  0.719 

MAN 127.05 − 2.08 𝑇𝑚𝑎𝑥2𝑀𝑎𝑟  0.641 

TAU 110.56 − 2.61 𝑇𝑚𝑖𝑛12𝑀𝑎𝑟  0.424 
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Figure 5.3f: Linear regression between forecast and observed SPS values of Quercus deciduous type. 
 
 
Table 5.8f: Accuracy of the model predicting the SPS of Quercus deciduous type for the year 2013. 
 

Quercus deciduous type 

Station 
𝑆𝑃𝑆𝐹 
(day) 

𝑆𝑃𝑆𝑂 
(day) 

𝑆𝑃𝑆𝐹 − 𝑆𝑃𝑆𝑂 
(days) 

BCN 94 100 -6 

BTU 86 96 -10 

GIC 95 108 -13 

MAN 94 104 -10 

TAU 99 102 -3 

 

  

Y=0.591x+38. 60 

RMSE=5.7 days 
70

80

90

100

110

120

70 80 90 100 110 120

S
P

S
F

 

SPSO 

BCN 

Y=0.971x+2.69 

RMSE=1.2 days 
70

80

90

100

110

120

70 80 90 100 110 120

S
P

S
F

 

SPSO 

BTU 

Y=0.718x+27.95 

RMSE=4.9 days 
70

80

90

100

110

120

70 80 90 100 110 120

S
P

S
F

 

SPSO 

GIC 

Y=0.639x+34.54 

RMSE=4.5 days 
70

80

90

100

110

120

70 80 90 100 110 120

S
P

S
F

 

SPSO 

MAN 

Y=0.427x+54.04 

RMSE=5.6 day 
70

80

90

100

110

120

70 80 90 100 110 120

S
P

S
F

 

SPSO 

TAU 



5. Forecasting the Start of the Main Pollen Season 
_____________________________________________________________________________________ 
 

 
112 

 

5.5. Discussion 

The meteorological data used in the current study were daily temperature (maximum and 

minimum) and daily rainfall obtained from the Meteorological Service of Catalonia at 6 

meteorological stations. Although different criteria are used for defining the Start of the main 

Pollen Season (SPS), here we have considered the SPS when 2.5% of the cumulative annual 

catch has been reached and the end of the main pollen season when 97.5% has been reached. 

This method has been used by many authors (e.g., Pathirane 1975; Lejoly-Gabriel 1978). 

Taking into account that temperatures before the pollination season have a great influence in 

the SPS, Tables 5.9 show the average maximum, minimum and mean temperatures for three 

months, January, February and March, and the SPS for each station during the years included 

in the study. The lowest average mean temperature recorded in 2005 can explain the late SPS 

for all the taxa in all the stations, except for Olea and Plantago. For these two taxa, the late SPS 

occurred in 2010, because they are dependent on the maximum temperature, and the 

maximum temperature during 2010 was lower than that recorded during the other years in the 6 

stations. On the other hand, the highest average mean temperature recorded in 2001 can 

explain the earlier SPS for all the taxa in all the stations. These results, which are consistent 

with the results obtained by other researchers (Zulima González-Parrado et al., 2014) had 

shown that there is a negative correlation between temperature and the SPS of the pollen taxa 

included in this study. In other words, relatively high temperatures lead to earlier SPS, while 

relatively low temperatures delay the SPS. 

In order to have a quick look about the different climatology in the 6 stations, Table 5.10 shows 

averaged values of maximum, minimum and mean temperature for the three months before the 

pollination season (January, February and March) for all the years included in the study. BCN 

and TAU are relatively warmer than the other cities. These two stations are located in urban 

areas on the coast and have the same phytoclimate (Allué, 1990). On the other hand, LLE and 

MAN recorded the lowest mean temperatures. 

The two methods have been tested in the control year, 2013. Table 5.11 shows mean values of 

maximum, minimum and mean temperatures and total rainfall for three months before the 

pollination season (January, February, and March) for 2013. Table 5.12 shows mean values of 

maximum, minimum and mean temperatures (ºC) and total rainfall (mm) averaged for the three 

months before the pollination season (January, February, and March) for 2013. 

The forecasting models have been tested computing the discrepancy between the predicted 

and the observed values by means of the root mean square error (RMSE). Table 5.13 and 
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Table 5.14 show the RMSE, and systematic and random errors in the forecasting of SPS using 

the method of Summing Temperatures and the method of Multiple Regression, respectively. 

 

5.5.1. The method of Summing Temperatures 

Olea is the taxon that needs to accumulate more temperature, which agree with the fact that 

Olea is the taxon that pollinates later, on the first half of May. The initial date for the sum is the 

first of February for all the stations. The differences in the thermal threshold could be attributed 

to bio-geographical characteristics; a lower altitude of Barcelona, Girona and Tarragona, 

resulted in a higher threshold temperature (Črepinšek et al., 2006). The sum of daily mean 

temperature had less interregional variation. The lower sum temperature obtained in BCN is 

due to early flowering of Olea. Aguilera et al. (2014) pointed out that for the olive trees showing 

the rapid floral development, the lower heat requirements are due to better adaptation to 

warmer regions. The threshold temperatures obtained in this work do not differ too many from 

those provided in previous studies (Galán et al., 2005; Martins et al., 2012; Orlandi et al., 2006; 

Achmakh et al., 2015). The threshold temperatures for the olive tree reported by these authors 

ranged between 5°C and 12.5°C, values a little bit high than those obtained here. This fact can 

be considered to depend mainly on the methodology used to statistically evaluate the best 

threshold temperatures. 

Pinus is the taxon that needs to accumulate less temperature, due to the SPP for Pinus is in the 

middle of March, the taxon that pollinates earlier. The initial date of the sum is the first of 

January, except in BCN where that date is delayed until the 21st of January. It should be also 

notice that the accumulated temperature in BCN is much lower than in the other stations, and 

present the highest value of the thermal threshold among all the stations. It is difficult to 

compare the predictive ability of our method to those of other researchers, because there are 

very few studies dealing with conifer pollination specifically. Regarding the accuracy of the 

model tested with the year 2013 (Table 5.5b) the forecasted SPS in GIC differs from the 

observed one in 22 days. This is the worst forecasted value of all but it is consistent with the 

highest value of the standard deviations of the SPS for Pinus in GIC (Table 5.3). 

Regarding the RMSE (Table 5.13), the best forecasts have been obtained for Platanus in all the 

stations except at GIC. For this taxon the systematic errors are lower than for the other taxa. 

This result is consistent with the fact that the standard deviations of the SPS of Platanus are the 

lowest in all the stations (Table 5.3). 
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5.5.2. The method of Multiple Regression 

The preliminary work of the multiple regression method included the correlation analysis 

between the SPS (dependent variable) and meteorological factors (independent variables) that 

have a great influence on the pollination season of Olea, Pinus, Pistacia, Plantago, Platanus 

and Quercus deciduous type (Tables 5.6). This analysis showed that the temperature on days 

that precede the pollination process influences on the timing of these taxa. This reinforces the 

results found by many researchers that the increase in temperature in the spring does influence 

the heading times of flowers and the SPS (Emberlin et al., 1993 a, 1999). For all the taxa and all 

the stations the correlations are negative with temperature and positive with rainfall; meaning 

that if the temperature is higher, the main pollen season starts earlier and the opposite, if the 

temperature gets lower, the main pollen season tends to start later. On the other hand, a 

positive significant correlation with the rainfall means that if rainfall is bounteous in the months 

before the pollination period the main pollen season will be later.  

After the correlation, the multiple regression analysis has been used to forecast the SPS of 

Olea, Pinus, Pistacia Plantago, Platanus and Quercus deciduous type. The method gives an 

equation that allows calculating the forecast value of the SPS and its associated errors 

(Valencia-Barrera et al., 2002). Regarding these equations (Tables 5.7), only the SPS of Olea in 

BCN has to be calculated considering the rainfall in the beginning of April, just one month 

before the SPS. For Pistacia, Plantago, Platanus, and Quercus deciduous type, the best 

variable to forecast the SPS was the temperature during the first half of March, except in BCN 

where the best variable was the temperature during January and February. For Olea and Pinus, 

the best variable was the temperature during the first half of February, except in MAN where the 

best variable was the temperature in March, like for the other taxa. 

The R_Square values in the multiple regression models range from 0.424 for Quercus 

deciduous type in TAR to 0.978 for Quercus deciduous type in BTU (Tables 5.7). This value 

helps to understand how much of the dependent variable is explained by the model. 

 

5.5.3. The RMSE and the comparison between the two methods. 

In order to compare the differences between the two methods, the models were evaluated using 

systematic and unsystematic root mean square errors, in order to assess the intrinsic error of 

the model and the random one. The results show a highly variable depending on the pollen taxa 

and the sampling station (Table 5.13 and Table 5.14). 

Regarding to the RMSE associated at the method of Summing Temperatures (Table 5.13) the 

intrinsic error of the model is higher than the random error for Olea, Pinus and Pistacia, while for 

Platanus and Quercus deciduous type the intrinsic errors are lower than the random ones. 
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The RMSE obtained with the method of Multiple Regression (Table 5.14) are in general lower 

than those obtained with the method of Summing Temperatures. The RMSE of the forecasted 

value of SPS for Pinus in GIC and Plantago in MAN are the highest of all. The high value of the 

RMSE for Plantago in MAN is in concordance with the low value of R_square: 0.537 (Table 

5.7d), while the R_square value for Pinus in GIC (0.788) is not as low as we would expect 

(Table 5.7c). Conversely, the RMSE for Quercus deciduous type in BTU is the lowest of all, 

being the systematic part of the error lower than the random one, and the R_square value 

(0.978) the highest of all (Table 5.7d) 

 

5.6. Conclusions 

This research proves that it is possible to construct successfully models to forecast the Start of 

the Main Pollen Season for Olea, Pinus, Pistacia, Plantago, Platanus and Quercus deciduous 

type. 

The method of Summing Temperatures will have to sum daily mean temperature from the initial 

date, above the thermal threshold. When approaching the necessary sum and taking into 

account the temperatures expected and predicted by the meteorological service, the method will 

allow informing physicians and allergologists a few days before the arrival of the first pollen 

grains. 

Regarding the method of Multiple Regression, the coefficients in the equations are always 

negative for the temperatures, meaning that an increase in temperature leads to an earlier SPS. 

Moreover, rainfall does not seem to have a great influence on the SPS, as it was seen in 

Chapter 2. 

The errors in the forecasting methods could be also due to the difference between the 

temperature measured at the meteorological stations and that to which the plant is actually 

submitted.  

Finally, it can be concluded that the research has made a notable contribution predicting the 

Start of the Main Pollen Seasons for some taxa in Catalonia. These methodologies could be 

improved extending the database over the years, adding the new yearly pollen and 

meteorological data. 
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Tables 5.9: Maximum, minimum and mean temperatures averaged for three months before the 
pollination season (January, February, and March) and the SPS of 6 pollen taxa for the years included in 
the study. 
 
 

 

BCN 

Maximum 
temperature 

Minimum 
temperature 

Mean 
temperature 

Olea Pinus Pistacia Plantago Platanus 
Quercus 

dec t. 

2001 16,5 8,6 12,6 105 45 75 82 67 80 

2005 12,7 4,7 8,7 129 85 102 101 89 105 

2006 13,8 5,9 9,9 124 79 87 91 80 100 

2007 17,0 7,3 12,2 129 63 76 91 69 97 

2008 14,7 5,4 10,0 115 59 75 93 66 80 

2009 13,6 6,1 9,9 130 68 83 104 73 93 

2010 12,0 5,1 8,6 131 83 97 108 84 100 

2011 14,0 6,6 10,3 124 71 85 94 79 95 

 
 

 

BTU 

Maximum 
temperature 

Minimum 
temperature 

Mean 
temperature 

Olea Pinus Pistacia Plantago Platanus 
Quercus 

dec t. 

2001 17,2 5,0 11,0 104 55 77 89 68 76 

2005 14,0 1,2 7,6 129 91 105 107 91 104 

2006 14,9 3,5 9,0 128 83 85 97 84 94 

2007 16,0 4,1 10,0 129 68 76 110 70 88 

2008 16,1 4,1 10,0 123 69 88 109 72 86 

2009 14,9 3,9 9,4 132 73 94 108 75 92 

2010 13,2 3,0 8,1 143 87 98 114 88 99 

2011 15,0 3,4 9,2 124 77 90 101 79 90 

 
 

 

GIC 

Maximum 
temperature 

Minimum 
temperature 

Mean 
temperature 

Olea Pinus Pistacia Plantago Platanus 
Quercus 

dec t. 

2001 17,7 5,8 11,8 105 55 77 89 68 76 

2005 16,5 -1,6 7,5 129 91 105 107 91 104 

2006 15,5 4,3 9,9 129 83 85 97 84 94 

2007 16,3 4,6 10,5 130 68 76 110 70 88 

2008 16,4 3,8 10,0 117 69 88 109 72 86 

2009 15,2 2,9 9,0 134 73 94 108 75 92 

2010 13,3 2,9 8,1 144 87 98 114 88 99 

2011 15,1 1,6 8,3 126 77 90 101 79 90 
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Tables 5.9 (cont): Maximum, minimum and mean temperatures averaged for three months before the 
pollination season (January, February, and March) and the SPS of 6 pollen taxa for the years included in 
the study. 
 
 

 

LLE 

Maximum 
temperature 

Minimum 
temperature 

Mean 
temperature 

Olea Pinus Pistacia Plantago Platanus 
Quercus 

dec t. 

2001 16.1 3.0 9,5 114 69 73 92 74 78 

2005 12.2 0.0 6,0 130 96 111 120 93 106 

2006 13.0 2.2 7,5 129 94 96 102 84 97 

2007 14.2 2.1 8,1 129 90 73 115 74 103 

2008 15.2 3.0 9,0 124 86 78 119 74 79 

2009 14.1 2.3 8,2 136 76 86 95 78 95 

2010 13.1 2.1 7,6 144 95 107 115 91 101 

2011 14.0 1.1 7,6 129 79 91 98 84 96 

 
 

 

MAN 

Maximum 
temperature 

Minimum 
temperature 

Mean 
temperature 

Olea Pinus Pistacia Plantago Platanus 
Quercus 

dec t. 

2001 15,5 3,8 9,7 109 64 75 97 73 79 

2005 12,9 -0,7 6,1 131 95 109 112 95 105 

2006 13,2 2,1 7,7 129 87 91 111 87 95 

2007 15,1 2,8 9,0 141 71 83 115 79 97 

2008 15,2 2,9 9,0 134 74 89 123 80 91 

2009 13,7 3.0 8,3 136 74 95 113 81 95 

2010 12,2 2,2 7,7 147 94 108 136 95 104 

2011 14,4 2,1 8,3 134 78 93 124 87 96 

 
 

 

TAU 

Maximum 
temperature 

Minimum 
temperature 

Mean 
temperature 

Olea Pinus Pistacia Plantago Platanus 
Quercus 

dec t. 

2001 17.0 6,1 11,6 107 45 70 81 67 80 

2005 14,2 2,4 8,3 131 85 103 98 88 102 

2006 14,7 4,7 9,7 128 74 88 94 79 95 

2007 17,1 5,3 11,2 128 63 76 92 67 103 

2008 16,9 5,4 11,2 125 60 73 85 70 90 

2009 15.0 4,3 9,7 131 67 85 91 74 88 

2010 13,3 3,8 8,6 144 85 92 100 86 100 

2011 15,4 4.0 9,7 126 66 85 93 75 96 
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Table 5.10: Mean values of maximum, minimum and mean temperature (ºC) for the three months 
before the pollination season (January, February and March) in 6 stations for all the years included in 
the study. 
 

 

January February March Average 

T.max T.min T.mean T.max T.min T.mean T.max T.min T.mean T.max T.min T.mean 

BCN 11,4 5,3 8,4 12,6 5,5 9,0 18,9 7,9 13,4 14,3 6,2 10,2 

BTU 13,6 2,6 8,1 14,7 2,9 8,8 17,7 5,3 11,5 15,3 3,6 9,4 

GIC 14,0 2,2 8,1 13,3 2,7 8,0 17,6 5,2 11,4 15,0 3,4 9,2 

LLE 9,9 0,6 5,5 13,7 0,8 7,3 18,4 4,5 11,5 14,0 2,1 8,0 

MAN 11,0 1,0 6,0 13,4 1,5 7,5 17,7 4,5 11,1 14,0 2,0 8,0 

TAU 14,0 3,2 8,6 14,9 3,8 9,4 18,0 5,4 11,7 15,6 4,1 10,0 

 

 
Table 5.11: Mean values of maximum, minimum and mean temperatures and total rainfall for three 
months before the pollination season (January, February, and March) for the control year 2013. 
 

 
January February March 

T.max T.min T.mean Rain T.max T.min T.mean Rain T.max T.min T.mean Rain 

BCN 13,2 5,0 9,1 34 12,2 4,0 8,1 25 18,0 8,2 13,0 143 

BTU 13,0 3,1 8,0 22 12,0 2,1 7,0 28 16,1 8,1 12,1 111 

GIC 14,1 -1,0 6,7 13 13,4 0,0 6,7 37 14,1 4,2 9,2 28 

LLE 10,4 0,0 5,0 36 13,3 1,2 7,3 29 16,1 4,3 10,2 74 

MAN 10,0 -1,1 4,5 33 11,0 -1,1 5,0 14 14,0 4,0 9,0 120 

TAU 15,1 3,0 9,0 16 13,2 4,3 8,2 51 17,1 7,1 12,0 100 

 

 

Table 5.12: Mean values of maximum, minimum and mean temperatures (ºC) and total rainfall (mm) 
averaged for the three months before the pollination season (January, February, and March) in 6 stations 
for the control year 2013. 
 

 
Average 

T.max T.min T.mean Rain 

BCN 14,5 5,7 9,8 202 

BTU 13,7 4,4 9,3 161 

GIC 13,9 1,0 7,5 78 

LLE 13,2 1,8 7,5 139 

MAN 11,7 0,7 6,2 187 

TAU 15,1 4,8 10,0 167 

 

 



 

 

1
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Table 5.13: Root mean squared error (RMSE) and systematic and random errors in the forecasting of SPS using the method of Summing Temperatures. 
 

 

Summing Temperatures 

Olea Pinus Pistacia Plantago Platanus Quercus deciduous type 

RMSE System Random RMSE System Random RMSE System Random RMSE System Random RMSE System Random RMSE System Random 

BCN 5,29 3,81 3,67 3,72 2,09 3,07 7,92 7,27 3,13 2,80 1,52 2,33 1,96 2,11 3,18 2,45 1,65 1,81 

BTU 6,49 5,62 3,25 4,65 3,05 3,51 3,42 2,14 2,66 6,30 2,33 5,85 2,20 1,57 1,54 3,06 1,95 2,35 

GIC 6,72 6,50 1,70 6,98 5,02 4,84 5,08 3,67 3,52 4,24 2,31 3,56 7,55 3,68 6,60 3,34 1,91 2,74 

LLE 9,81 9,27 3,19 6,63 4,99 4,37 5,92 4,97 3,21 5,49 4,05 3,72 2,61 1,51 2,13 3,76 2,73 2,59 

MAN 7,51 6,14 4,13 4,73 3,47 3,21 4,80 3,90 2,79 6,07 4,74 3,79 3,67 1,52 3,35 4,43 2,10 3,91 

TAU 5,60 5,98 2,35 5,21 3,47 3,88 3,14 2,03 2,39 2,24 1,68 1,47 3,14 1,86 2,53 2,86 1,62 2,35 

 

 

 
Table 5.14: Root mean squared error (RMSE) and systematic and random errors in the forecasting of SPS using the method of Multiple Regression. 
 

 

Multiple Regression 

Olea Pinus Pistacia Plantago Platanus Quercus deciduous type 

RMSE System Random RMSE System Random RMSE System Random RMSE System Random RMSE System Random RMSE System Random 

BCN 2,30 0,53 2,24 5,65 2,54 5,05 4,81 2,43 4,15 2,12 0,94 1,90 3,69 1,67 3,28 5,67 3,23 4,67 

BTU 4,52 1,85 4,12 3,05 1,04 2,87 3,23 1,11 3,03 1,94 0,50 1,88 2,72 0,98 2,53 1,20 0,24 1,18 

GIC 5,69 3,11 4,76 7,95 3,90 6,93 2,18 0,67 2,08 3,74 1,75 3,31 3,16 2,19 2,28 4,93 2,63 4,17 

MAN 5,96 4,30 4,13 4,84 2,25 4,29 2,02 0,71 1,89 7,45 4,96 5,56 2,80 1,15 2,55 4,52 2,74 3,60 

TAU 4,93 2,61 4,18 5,91 3,42 4,55 6,14 3,56 5,00 2,21 2,21 0,85 3,86 1,96 3,32 5,58 4,21 3,65 
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6.1. Introduction 

The residence time of substances that, by natural or anthropogenic causes, are introduced into the 

atmosphere can be very variable, but it is generally long enough (more than one day) for them to 

be transported away from sources of emission and settle thousands of km away over land and/or 

oceans. Despite the complexity of the interactions among different scales, to make it simpler, we 

can distinguish between local transport (in which a significant portion of the substance will settle 

near the source, for example within a horizontal distance of a few hundred kilometres) and long-

range transport (LRT, thousands of km). The first one occurs in the boundary layer under the 

prevailing influence of local circulations, such as breezes and topographic features. LRT occurs in 

the free troposphere and is managed by global circulation patterns and synoptic scale systems. 

Airborne pollen is a biological material that is liable to be transported long distances and whose 

areas of origin could be interesting to explore. 

The size of pollen grains varies from 5 to 200 microns in diameter (Nilsson and Praglowski, 1992) 

and is, therefore, about 5 to 50 times higher (in linear dimensions) than the particle size of the 

conventional atmospheric aerosol. However, in despite the much larger size, the grains of many 

pollen types (anemophile pollen) have a similar behaviour in its atmospheric dispersion than the 

anthropogenic PM10 (particulate matter with diameter less than 10 μm). This similarity is due to 

the aerodynamic shape and low density of pollen, which drastically reduces its gravitational 

deposition and makes it more susceptible to the atmospheric transport (Sofiev et al., 2006). The 

LRT of pollen is essentially episodic, which means that an inverse mode treatment can be applied, 

that is, from the sampling site backwards in time, to define the possible source regions responsible 

for each episode, or through the application of source-receptor models to delimit the most probable 

source areas for each given pollen type. Recently, some authors have used back-trajectories and 

transport models to explain the movement of the pollen at a large scale (Belmonte et al., 2000, 

2008a, 2008b; Izquierdo et al., 2015b; Sofiev et al., 2006; Skjoth et al., 2007; Siljamo et al., 2008; 

García Mozo et al. 2017).  

Source-receptor models allow the establishment of relationships between a receptor point 

(sampling point) and the probable source areas (regions of emission) through the association of 

concentration values at the receptor point with the corresponding atmospheric back-trajectories, 

and, together with other techniques, to interpret transport phenomena on a synoptic scale. These 

models are generally used in air pollution studies to determine the areas of origin of mineral dust 

(Bonasoni et al., 2004), ozone (Seibert et al., 1994), acidifying components (Stohl, 1996) and other 

pollutants (Charron et al., 1998) measured at a sampling point, and thus be able to target actions 
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to reduce emissions. However, few studies have applied these models to describe the source 

areas of biological organisms that may be injected at high altitudes (>1000 m) and be transported 

to long distances (Chapman et al., 2002; Kellogg and Griffin, 2006) by the same mechanisms that 

move gases and chemical particles. However, it is possible to treat the behaviour in the 

atmosphere of biological material with the same methods as those used with chemical compounds. 

On the other hand, birch (Betula) pollen is one of the important causes of respiratory allergy in 

Northern and Central Europe. In Catalonia, the allergy to birch is not frequent, with the exception of 

the northern mountain areas, but it is occurring and the intensity of the derived health problems 

can be increased by LRT outbreaks. Birch trees are abundant in Central, North and East of 

Europe, but are scarce in the Mediterranean territories, especially in Spain were they only grow in 

the northern regions under certain environmental conditions of height. The airborne birch pollen 

patterns in Catalonia show abrupt high concentrations in areas with usually low local influence 

(Izquierdo et al., 2017). 

In previous works, France and Central Europe have been established as potential source areas of 

Betula pollen that arrives to NE Iberian Peninsula (IP). Moreover, the effect of the orographic 

barrier of the Pyrenees has also been evaluated in the Betula pollen LRT (Izquierdo et al., 2017). 

But up to now, the differentiated potential contribution of the two main sources, Pyrenees and 

Central Europe, to the LRT over Catalonia has not been evaluated. The use of modelling is a good 

tool to study and understand the atmospheric mechanisms that cause Betula pollen peaks. To this 

end, we have studied the provenance of the air masses leading to main pollen peaks produced 

simultaneously in, at least 4 of the 6 monitoring stations considered. For the dates of the peaks, 

the individual back-trajectories have been computed to characterize the direction of the flow 

associated to the peaks. 

This chapter presents the results of the use of the source-receptor model of Seibert et al. (1994) 

applied to the study of the source areas of pollen that arrive to the Northeast of the IP transported 

by the wind. Specifically, this work presents the results of applying the model to estimate the 

source areas of six pollen taxa that are susceptible to reach Catalonia from distant regions: 

Ambrosia, Betula, Corylus, Fagus, Fraxinus, and Olea. Apart from the great scientific interest that 

lies in the modelling of the source areas to understand the life cycles of the species, the use of 

these models has utility to botanists, allergists, and environmental quality managers in the study 

and treatment of problems such as respiratory allergies. 

The main objective of the second part of this chapter is to differentiate the Betula pollen transport 

from Pyrenees and from Central Europe. It will be done by means of: i) to isolate the simultaneous 

peaks, based on the 95th percentile, produced in at least 4 of the 6 aerobiological stations; ii) to 

determine the provenance region of the associated air-masses based on the back-trajectories; iii) 

to classify the peaks in two groups depending on its simultaneity with peaks in the Vielha Pyrenees 
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Station; iv) to quantify the potential contribution of the regional pollen transport from Pyrenees and 

the LRT from France and Central Europe to the total Betula pollen collected at the Catalan 

stations. 

 

6.2. Data and Methodology 

6.2.1. Pollen data 

We have focused on those pollen types that are not abundant in the territory but present an 

episodically behaviour with high punctual values of concentration: Ambrosia, Betula, Corylus, 

Fagus, Fraxinus and Olea. The geographical distribution of these taxa corresponds predominantly 

to Central and Northern Europe, with the exception of Olea, abundant in southern IP and Northern 

Africa.  

Betula trees are abundant in central, Northern and Eastern Europe, but are scarce in the 

Mediterranean territories, especially in Spain, where the northern regions constitute the southern 

border of the distribution area (de Bolòs and Vigo, 2005). Betula airborne pollen has been selected 

here to study its LRT over Catalonia because its episodic outbreaks introduce large amounts of 

highly allergenic pollen during the birch pollen season in Northern Europe and Pyrenees. Betula 

pollen is distributed by wind and impacts human health by causing seasonal hay fever, pollen-

related asthma, and other allergic diseases, being one of the most important causes of respiratory 

allergy in North and Central Europe (Emberlin et al., 1993, 1997). 

Ambrosia (ragweed) is another of the taxa chosen to understand the airborne pollen pattern and 

provenance, in order to contribute to a better management of it and prevent the expansion of a 

possible new bioinvader that can also become a health problem due to its highly allergenic pollen. 

The Annual Pollen Integral appear to be clearly influenced by the pollen concentrations in the peak 

dates, and these are linked to LRT from regions where Ambrosia is widely widespread, such as 

eastern France, Northern Italy and Hungary and Serbia. The episodes of pollen transport are 

increasing in number in the recent years. Although airborne Ambrosia pollen type is not showing 

any clear increasing trend, local populations of the plant could be having an influence on the pollen 

records, since the genus is clearly expanding in the territory at considerably high spread rates. 

Ambrosia populations have to be surveyed both for public health reasons and as a new bioinvader 

(Fernández-Llamazares et al., 2012). 

Corylus is a genus of bushes sometimes considered small trees from the Betulaceae family 

represented in the study area by the only species C. avellana. They are plants growing in fresh 

deciduous forests with wet soil conditions, up to 1900 masl (de Bolòs & Vigo, 2005; Rocha Afonso, 

1990). They are appreciated by their fruits (the hazelnuts) and this makes them to be cultivated. In 
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Catalonia, hazels are abundantly grown in the province of Tarragona and with a lesser extent in 

the vicinity of the city of Girona. Corylus pollen is one of the 12 most important aeroallergens in 

Europe, where the genus is represented by three species. The genus is abundant in Europe, and 

pollen concentrations considerably high are found in Central Europe, especially in the Alpine 

region in France, Switzerland and Austria (Skojth et al 2013). Cor a 1, the major allergen from 

Corylus is cross reactive with Bet v 1, from Betula (de Weger et al, 2013). 

Fagus is a tree that is widespread in Central Europe but much more local in Catalonia and the IP, 

where it requires rainfall above 1000 mm year-1 (Terradas, 1984) and it is found in cool and humid 

valleys and slopes, usually between 500 (exceptionally 300) and 2000 m above sea level (de Bolòs 

and Vigo, 2005). However, the simultaneous presence of Fagus pollen (although often 

sporadically) has been observed at several of the aerobiological stations studied in Catalonia. The 

aim of this work is to locate the regions of origin of the pollen of this tree, typically Pyrenees, 

France and Central European, reaching the aerobiological stations in Catalonia. 

Fraxinus is a genus of trees from the Oleaceae family represented in the study area by two 

species: F. angustifolia and F. excelsior. They are plants growing in deciduous forests with wet soil 

conditions and/or close to rivers and banksides, the first one in the lowlands, up to 1000 masl, and 

the second one in heights up to 1800 m a.s.l. (de Bolòs and Vigo, 2005, Andrés, 2012). In some 

occasions, they are used in the cities as ornamental plants (Belmonte J, personal communication). 

In central Europe the genus is very abundant and pollen concentrations are considerably high (de 

Weger et al, 2013). Fraxinus pollen is allergenic, and its major allergen is a homolog of the Olea 

major allergen (de Weger et al, 2013). 

Olea is one of the most abundant airborne pollen types in southern Europe and one of the most 

important causes of respiratory allergies in the Mediterranean areas. The olive tree is extensively 

cultivated in the Mediterranean Basin for the collection of its fruit and conversion into oil. Previous 

works describe African intrusion episodes as potential contributors to Olea pollen levels in two 

different cities of southern Spain (García-Mozo et al., 2017) in spite of its high local presence. 

Izquierdo et al. 2011 detected Olea pollen in the atmosphere of Tenerife (Canary Islands) coming 

from South Spain. 

 

6.2.2. Source-receptor model 

The identification of the probable sources of atmospheric pollutants is very frequently resolved with 

the use of Trajectory Statistical analysis Methods (TSMs). Several studies (Wotawa and Kröger, 

1999; Stohl, 1996; Begum et al. 2005; Schefinger and Kaiser, 2007) have concluded that TSMs 

are computationally fast procedures that deliver first hints on potential source areas. Between 

TSMs, involving air pollution data, the Seibert’s methodology based on concentration fields 
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(Seibert et al. 1994) is one of the most used in the transport interpretation of inert air pollutants. For 

example, Apadula et al. (2003) used these approaches to the localization of source and sinks of 

carbon dioxide in high mountain areas in Europe; Hoh and Hites (2004) to pesticides in USA; 

Salvador et al. (2004) to the PM10 in Spain, and Xie and Berkowitz (2007) to hydrocarbons in 

Texas. 

Between TSMs, source-receptor methodologies (SRM) are one of the most used. SRM are 

statistical approximations that combine concentration data from a sampling site with the 

coordinates of the points crossed by the atmospheric trajectories that arrive to the sampling site. 

This procedure makes it possible to establish connections between the receptor point and possible 

source areas. To do this, the 12-hourly (00 and 12 UTC) back-trajectories for a given altitude 

during the period corresponding to the sampling time must be calculated previously. Back-

trajectories are then associated to a concentration value of the element of interest in the receptor 

site. To the domain of integration of the trajectories, has been superimposed a grid on which a set 

of cells with spatial resolution 1º x 1º latitude and longitude is defined. There are different 

methodologies to determine the probable source areas. In this work the method of Seibert (Seibert 

et al., 1994), has been used, which calculates a logarithmic average concentration for each cell on 

the basis of the residence time of the trajectories in the different cells: 

𝑙𝑜𝑔𝐶𝑖,𝑗 =
∑ 𝑛𝑖𝑗𝑙𝑙𝑜𝑔𝐶𝑙𝑙

∑ 𝑛𝑖𝑗𝑙𝑙

 

where 𝐶𝑖,𝑗 is the concentration in the cell (𝑖, 𝑗), 𝑙 is the index of the trajectory, 𝐶𝑙 is the 

concentration in the receiving site corresponding to the trajectory 𝑙 and 𝑛𝑖𝑗𝑙 is the number of time 

steps of the 𝑙 trajectory in the cell (𝑖, 𝑗). 

In this work two trajectories by day (00 and 12 UTC) have been calculated using a time step of 60 

minutes, with the model HYSPLIT - 4 (Hybrid Single-Particle Lagrangian Integrated Trajectory 

Model; Draxler, 2011) of NOAA (National Oceanic and Atmospheric Administration) at 1500 meters 

above sea level (m a.s.l.) from the GDAS meteorological data of the U.S. National Climate Data 

Center. The altitude of 1500 m, which roughly corresponds to the standard pressure level of 850 

hPa, has been selected because it is the most representative in the lower troposphere, as it is at 

the border between the surface winds regime and those of the free troposphere. To minimize the 

uncertainty of the trajectories a smoothing method has been applied, so that the value of each cell 

has been replaced by the average value between the cell and the eight surrounding cells. Finally, a 

filter to exclude cells with less than 30 trajectory segments (time steps) has been applied. The 

concentration map obtained reflects the contribution of each cell to the concentration in the 

receiving point. The sampled periods in which the model has been applied are long enough to be 

statistically representative. 
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Average relative horizontal position errors for three-dimensional trajectories were estimated to be 

less than 20% for travel times longer than 24 h in the free troposphere. Upper bounds for average 

absolute horizontal and vertical errors after 120 h travel time were 400 km and 1,300 m, 

respectively (Stohl and Seibert, 1998). 

The source-receptor model has been applied to the pollen data record of the aerobiological 

stations of Barcelona (BCN), Bellaterra (BTU) and Lleida (LLE) during the 10-year period 2005 - 

2015 using the Main Pollination Season (MPS) of each taxon. As has been already defined in 

previous chapters, the MPS corresponds to the period which begins on the date (Start) when the 

sum of the mean daily pollen concentrations reaches 2.5% of the Annual Pollen Integral (APIn or 

annual sum) and ends (End) on the date when the sum reaches 97.5%. As the period of the MPS 

varies slightly from one to another year, a mean value for the Start and End has been used here 

for each taxon. 

 

6.2.3. Betula simultaneous peaks 

Daily Betula pollen concentrations recorded at the 6 Catalan stations: Barcelona (BCN), Bellaterra 

(BTU), Girona (GIC), Lleida (LLE), Manresa (MAN) and Tarragona (TAU) during the birch flowering 

season for the 10-year period 2005-2014 has been featured in this study. On the other hand, daily 

pollen concentrations recorded at the Vielha (VIE) aerobiological station (in the Pyrenees, 42°42′N 

0°47′E, 980 m a.s.l. and oriented to the north; see Figure 6.1) during the same period have also 

been used. The data of VIE have been used to characterize the transport of Betula pollen that 

arrives to the Catalan stations, and to try to quantify the potential contribution of the Betula pollen 

transported from the Pyrenees and from central and Northern Europe to the Catalan stations. 

A threshold value is used to select Betula pollen peaks: daily pollen concentrations higher than 95th 

percentile of each year. The hypothesis that we propose here is that differences between pollen 

dynamics in VIE and the other six stations could be related to different atmospheric transport 

patterns. Therefore, Betula pollen simultaneous peaks were sorted into two groups in order to 

identify the different atmospheric transport patterns: (1) simultaneous pollen peaks at the six 

sampling stations and non-simultaneous with VIE peaks; (2) simultaneous pollen peaks observed 

at the six stations and simultaneous with a VIE peak. 

Four back-trajectories (18, 12, 06, 00 UTC) 48-h length at 1500 m a.s.l. by day, have been 

computed for each day of the simultaneous peaks. The trajectories have been computed arriving 

GIC, the aerobiological station which presents the highest values of Betula. We have considered 

that the peaks are simultaneous when are registered, at least, in 4 of the 6 aerobiological stations. 

Absence of precipitation (daily precipitation less than 1 mm) in the days of the peaks has been 

previously checked. The peaks have been then categorised as simultaneous and non-
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simultaneous with VIE. Based on this we have made a first estimation of the amounts that annually 

contribute the Pyrenees region (regional transport) and France and central Europe (LRT) to the 

Betula pollen collected in Catalonia. The discussion is completed analysing if the date of the 

maximum annual VIE pollen value is previous, coincident, or subsequent to each one of the pollen 

peaks. 

 

Figure 6.1: Location of the 6 aerobiological stations and Vielha 

 

 

6.3. Results and discussion 

 

6.3.1. Source-receptor model 

The application of the source-receptor model to the 10-year period 2005-2014 showed that the 

probable source regions for the pollen arrivals of Betula, Fraxinus and Fagus to the Catalan 

stations are located in central and southern France, and the Pyrenees (Figures 6.2). These regions 

are covered by extensive forests of these three species. For Betula pollen, no important 

differences are found between the three stations, being BCN and BTU more similar between them, 

due to their proximity. For Fraxinus, the similarities are maintained between BCN and BTU, while 

LLE do not show any relevant source-region. A previous study (Belmonte et al., 2008b) for a very 

important episode with high values of Fagus during the period from 15 to 19 May 2004, showed 

that, both for the back-trajectories and the pollen hourly data, the Fagus pollen came from Central 

Europe in all the stations studied in Catalonia (the stations analysed in this episode were BCN, 

BTU, LLE, TAU, MAN, GIR and Vielha). This fact demonstrated the existence of extra-regional 

influence in the dynamics of the pollen sampled in Catalonia. 

Vielha 



6. Long-range transport 
_______________________________________________________________________________________ 
 

 
130 

The source regions for Ambrosia seem to be in the IP (Figures 6.2). This is not in accordance with 

a previous study from Fenández-Llamazares et al. (2012) who analysed the provenance of 64 

peaks corresponding to the period 1997-2009 by computing back-trajectories and the application of 

a SRM. They obtained predominantly north eastern (41%) and northern (36%) provenance, from 

the Lyon region, in France, and Hungary-Serbia. This disagreement could be due to the more 

recent dates of the period analysed in our work and the fact that Ambrosia is highly widespread in 

each of the mentioned regions and could be that its geographical distribution region has moved to 

more southern areas. Another argument to take into account is the low values registered in the 

Catalan stations in our analysed period. The highest value is 4.9 pollen/m3, registered in the LLE 

station. 

Regarding the pollen of Olea, the source regions for BCN and BTU are different from those 

obtained for LLE, in which the southern areas appear more prominent. Olive crops are mainly 

located in southern Spain and Northern Africa. In Catalonia, there is also a local influence, but due 

to the proximity, its transport from southern Spain and Northern Africa is probably the main 

responsible of the detected peaks. 

As we pointed out in Chapter 4, Corylus is one of the taxa that showed to be influenced in its long-

range and regional transport by the atmospheric modes of the Northern Hemisphere 

teleconnection patterns. However, must be taken into account that among the six taxa we selected 

in this chapter, Corylus is the one in which its tree has a greater presence close to the sampling 

stations. The SRM locates the major sources in France for BCN, Northwestern France for BTU and 

eastern Pyrenees, North and West of the IP and South and Center of France for LLE, although 

always the regional and local sources are also present. This result is in agreement with the 

increase in LRT of Corylus and Fagus from western and central Europe, detected in Chapter 4, 

during the negative phase of annual NAO and AO. In the same way, agrees with the transport from 

Mediterranean regions of Corylus and Fagus and the regional transport of Corylus from western IP, 

linked to the positive phases of NAO, AO and WeMO. 

 

6.3.2. Betula simultaneous peaks 

The number of simultaneous peaks at the Catalan stations (concentrations >95th percentile in at 

least 4 of the stations) obtained in the 10-year period is 28. The corresponding dates are shown in 

Table 6.1, in which it is also described the regions crossed by the back-trajectories, as well as the 

simultaneity or not with a peak in the VIE station. In Table 6.1 are grouped the episodes coincident 

with a peak in VIE (SV) and those non coincident (NV). Back trajectories show that in all the cases 

the main flow is from the north (Figures 6.3 and 6.4). When the provenance region is Pyrenees, an 
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estimate of the residence time of the back-trajectories in the region has been done based on the 

number of 6-h time steps over Pyrenees.  

In 13 of the 28 cases there is simultaneity with the VIE station (SV). In general, with two 

exceptions, the back-trajectories show that when there is SV, the residence time of the back-

trajectories in the Pyrenees region is high, and it corresponds to slow flow with long travel along 

the Pyrenees region, from west to east. When we analyse the date of the most important annual 

peak in VIE, that we attribute to the local flowering, we observe that in 10 of the 13 cases there 

was coincidence with the local VIE flowering (last column, Table 6.1). In these 10 detected cases, 

the back-trajectories showed a long residence time (between 12 and 48 hours) in Pyrenees region. 

The other three cases corresponded to peaks in which, for one of them, the pollination VIE peak 

was previous, and two for which the pollination VIE peak was later. 

In reference to the 15 cases of non-simultaneity with VIE (NV), in none of them there was any 

coincidence with the pollination peak in the VIE station. In 10 of the cases the pollination in VIE 

was previous to the dates of the peak and in 5 of the cases it was later. In these 5 cases in which 

the pollination in Pyrenees was produced later, the back trajectories showed a quick passage 

through the Pyrenees, with the exception of 12/04/2014 in which the back-trajectories came from 

Pyrenees but also from the North of the IP. Therefore, it could be considered that in these 5 cases, 

the Betula accounted in the Catalan stations corresponded to LRT from France and Central 

Europe. In the 10 cases in which the pollination in Pyrenees was previous to the peaks, the back-

trajectories show a residence time in Pyrenees shorter than in the cases of simultaneity with VIE, 

between 0 and 18 hours (with 2 exceptions), thus with a lower Pyrenees load in the air-masses. 

Thereupon, in these 10 cases, the main transport can be also considered from France and central 

Europe, but probably with some mixture of pollen coming from Pyrenees. 

For the above, we consider those episodes having simultaneity with VIE (SV) as regional transport 

from Pyrenees and those being non-simultaneous with VIE as long-range transport (LRT) form. 

Table 6.2 shows the pollen concentrations (pollen/m3) corresponding to the peaks for each station. 

Because the criterion was simultaneity in at least four of the six stations, the asterisk indicates 

those values lower than the 95th percentile. The sum of the amounts, separately for VS and NV, 

has been done for each station in the 10-year period and the percentage related to the total 

amounts are also specified. From this, it follows that the station that received the largest amount of 

Betula coming from distant sources (sum of amounts of SV and NV) is TAU with 52%, followed by 

BCN (44%) and BTU (40%) and the one that received the least amount is LLE (30%). This is 

consistent with the fact that TAU, BCN and BTU are the stations with the lowest local Betula 

contribution due to the lower presence of the tree in their territory. On the other hand, the 

difference between the percentage contribution of the regional transport (SV) and LRT (NV) in 

these stations is the highest (20% for TAU, 15% for BTU  and 13% for BCN), being higher NV, 
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indicating this that the LRT from European sources have a major influence. On the contrary, LLE 

and GIC showed the lowest differences probably because they are the closest stations to the 

Pyrenees. It is also remarkable to note that LLE is the only station in which the Pyrenees influence 

was greater than the LRT.  

Our results represent that, for the total period and the six stations, near 40% of the collected pollen 

corresponded to foreign transport. From this, about 15% corresponded to regional transport from 

Pyrenees and 25 % to LRT, mainly from France and Central Europe. 

On the other hand, if we consider the contribution of the complete outbreaks to the pollen collected 

in the aerobiological stations, the episodes of foreign transport should contemplate also the pollen 

of the 24 hours before and after the peak dates. Then, considering these amounts, the contribution 

of the LRT outbreaks represents 58% of the total pollen collected at the Catalan stations in the 10-

year period. From this percentage, 38% corresponds to NV and attributed to transport from France 

and Central Europe, and 20% to SV attributed to regional transport from Pyrenees. 
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Table 6.1: Dates of the simultaneous peaks in, at least, 4 of the stations. The column Provenance describes 
the regions crossed by the back trajectories and the estimated residence time in Pyrenees. There is also 
indicated if there was simultaneity with a pollen peak in VIE and if the pollination in VIE was previous, 
coincident or later to the dates of the simultaneous peaks. 
 
 

Date Provenance (back-traj) 
VIE 

simultaneity 
VIE 

pollination 

13/04/2005 Pyrenees (12 h), Central France, Germany  no later 

26/04/2006 Pyrenees (24 h), S and SW France no previous 

27/04/2006 Pyrenees (6 h), Central and W France, Atlantic no previous 

15/04/2007 Italy; Greece, Med no later 

18/04/2007 E and SE France no later 

19/04/2007 Pyrenees (12 h), Central and N France no later 

02/05/2009 E France, Switzerland, Germany no previous 

05/05/2009 N France, England no previous 

27/04/2011 Pyrenees (6 h), Central France, Central and N Germany no previous 

12/05/2012 Pyrenees (18 h), S France, Central IP no previous 

13/05/2012 Pyrenees (18 h), S and SW France, IP, Portugal no previous 

14/05/2012 Pyrenees (18 h), S SW and Central France no previous 

06/05/2013 Pyrenees (18 h), S SW and Central France no previous 

12/04/2014 Pyrenees (24 h), S France, N IP no later 

18/04/2014 Pyrenees (42 h), S and Central France, Germany no previous 

 

Date Provenance (back-traj) 
VIE 

simultaneity 

VIE 
pollination 

18/04/2005 Pyrenees (12 h), Cantabria, Galicia, S France yes later 

22/04/2005 Pyrenees (24 h) , Cantabria, Galicia yes later 

25/04/2008 Pyrenees (18 h), S and SW France, Atlantic yes coincident 

26/04/2008 Pyrenees (18 h), S, SW and W France, Atlantic yes coincident 

27/04/2008 Pyrenees (48 h), Med yes coincident 

24/04/2009 Pyrenees (48 h), S and W France) yes coincident 

26/04/2010 Pyrenees (36 h), S and SW France, Atlantic yes coincident 

27/04/2010 Pyrenees (12 h), S and SW France, Atlantic yes coincident 

28/04/2010 Pyrenees (18 h), Central France yes coincident 

29/04/2010 Pyrenees (36 h), S and Central France yes coincident 

09/04/2011 Pyrenees (36 h), S and SW  France yes coincident 

24/04/2013 Med, N Italy yes previous 

16/04/2014 Atlantic from Greenland yes coincident 
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Table 6.2: Daily concentrations (pollen/m

3
) at the six stations corresponding to the simultaneous peaks (in 

asterisk, the values less than the 95
th
 percentile). The total amounts and the percentage with respect to the 

total sum for the 10-year period are also indicated. Blanks are missing data. 
 
 

VIE non-simultaneity BCN BTU LLE GIC MAN TAU 

13/04/2005 39,2 17,5 11,2 99,4 15,4 27,3 

26/04/2006 60,9 34,3 20,3 20,3 52,5 39,9 

27/04/2006 23,1 41,3 7 20,3 32,9 44,1 

15/04/2007 19,6 74,2 0* 109,9 81,2 53,2 

18/04/2007 42,7 16,8 3,5 38,5 1,4* 79,8 

19/04/2007 165,2 77,7 8,4 93,1 1,4* 158,2 

02/05/2009 17,5 9,1 2,8 23,8 6,3* 26,6 

05/05/2009 18,9 9,1 0,7* 6,3* 12,6 22,4 

27/04/2011 6,3* 4,2 2,8 1,4* 3,5 5,6 

12/05/2012 12,6 14,7 0,7* 9,1 4,9 0* 

13/05/2012 5,6 4,2 3,5 
 

4,9 4,2 

14/05/2012 10,5 2,1* 3,5 2,1* 4,9 7 

06/05/2013 11,2 11,9 9,8 48,3 9,1* 
 

12/04/2014 54,6 39,2 3,5 81,2 4,9* 31,5 

18/04/2014 10,5 21,7 8,4 55,3 25,2 2,8* 

Total 498,4 378 86,1 609,01 261,1 502,61 

Percentage (%) 28,4 27,6 13,5 19,2 24,8 36,1 

 

VIE simultaneity BCN BTU LLE GIC MAN TAU 

18/04/2005 10,5 3,5 0,7* 9,8 0* 2,8* 

22/04/2005 22,4 9,8 0* 23,8 9,8 0* 

25/04/2008 8,4 9,8 0* 37,1 3,5 2,1 

26/04/2008 11,9 21 0* 33,6 11,2 7 

27/04/2008 7,7 4,9 0* 10,5* 6,3 4,2 

24/04/2009 65,1 41,3 7 32,2 12,6 64,4 

26/04/2010 14 4,9* 4,9* 41,3 10,5 13,3 

27/04/2010 34,3 14,7 16,8 80,5 18,2 39,9 

28/04/2010 25,2 14 42 63,7 30,1 30,1 

29/04/2010 21 6,3 14,7 22,4 11,2 24,5 

09/04/2011 9,8 24,5 4,2 14,7 0* 0,7* 

24/04/2013 25,9 3,5* 9,8 19,6* 21,7 9,1 

16/04/2014 12,6 14,7* 6,3 48,3* 17,5 16,8 

Total 268,8 172,9 106,4 437,5 152,6 214,9 

Percentage (%) 15,4 12,6 16,9 13,8 14,4 15,6 
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6.4. Conclusions 

A source-receptor model has been applied to determine the potential source regions of six pollen 

types that, not being very abundant in the territory, episodically present high values and hence are 

susceptible to come from distant sources: Ambrosia, Betula, Corylus, Fagus, Fraxinus, and Olea. 

Using meteorological and aerobiological data obtained for a period of 10 years for tree stations 

(BCN, BTU and LLE), and taking into account forests distribution, the study points as probable 

source regions for the pollen arrivals of Betula, Fraxinus and Fagus central and southern France, 

and the Pyrenees. The source regions for Ambrosia seem to be in the IP, which would mean that 

probably its geographical distribution has moved to more southern areas due to the highly 

widespread character of this taxon. The results for Corylus show that there is a great local 

influence. The source regions for Olea are situated in southern IP and Northern Africa, although 

this result is only clear for LLE. 

The atmospheric transport for Betula pollen has been studied in order to assess the contribution 

due to arrivals from distant sources. Further, to differentiate between the arrivals of foreign regional 

pollen from that coming from France and Central Europe, the provenance of the air masses 

leading to pollen peaks of have been also analysed. For the dates of the peaks, the individual 

back-trajectories have been computed to characterize the direction of the flow associated to the 

peaks. A classification in two groups depending on its simultaneity with peaks in the Vielha 

Pyrenees Station has been made. This has allowed quantifying the potential contribution of the 

regional pollen transport from Pyrenees and the LRT from France and Central Europe to the total 

Betula pollen collected at the Catalan stations. For the total period and the six stations, near 40% 

of the collected pollen corresponded to foreign transport. From this, about 15% corresponded to 

regional transport from Pyrenees and 25 % to LRT, mainly from France and Central Europe. 

Considering the contribution of the complete outbreaks and not only the peak days, these 

contributions arise to 58%, with a 38% corresponding to transport from France and Central Europe, 

and 20% to regional transport from Pyrenees. 
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Figures 6.2: Source regions. Concentration fields for Ambrosia, Betula and Corylus. 
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Figures 6.2 (cont): Source regions. Concentration fields for Fagus, Fraxinus and Olea 
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Figures 6.3: 48-h back-trajectories beginning at 18, 12, 06 and 00 (1500 m height) for the dates of the peaks 
non-simultaneous with a VIE peak 
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Figures 6.3 (cont): 48-h back-trajectories beginning at 18, 12, 06 and 00 (1500 m height) for the dates of 
the peaks non-simultaneous with a VIE peak 
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Figures 6.4: 48-h back-trajectories beginning at 18, 12, 06 and 00 (1500 m height) for the dates of the peaks 
simultaneous with a VIE peak 
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Figures 6.4 (cont): 48-h back-trajectories beginning at 18, 12, 06 and 00 (1500 m height) for the dates of 
the peaks simultaneous with a VIE peak 
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The attempt of the presented research project was to investigate the influence of meteorological 

variables and climate variability on the airborne pollen levels in Catalonia. The forecast of the Start of 

the Main Pollen Season and the analysis of the Long-range transport of pollen were also considered. 

Airborne pollen series recorded by the Aerobiological Network of Catalonia (XAC) at six stations in 

Catalonia for 22 pollen taxa during two decades (1994-2014) were used for this research. 

Each chapter separately constitutes a specific study with its own entity, although all of them are 

focused as a contribution to a more general study that is the one that gives title to this thesis: 

 

STUDY OF THE METEOROLOGICAL MECHANISMS CONTROLLING LEVELS 

AND TRANSPORT PROCESSES OF AIRBORNE POLLEN IN THE ATMOSPHERE 

 

In Chapter 2 and Chapter 4 we have focussed in the influence of climatology on the airborne pollen 

levels through the analysis of the impact of meteorological variables (mainly precipitation and 

temperatures) and climatic indices at monthly, seasonal and annual level. 

Climate variability associated with the Northern Hemisphere Teleconnection patterns (North 

Atlantic Oscillation, Arctic Oscillation and Western Mediterranean Oscillation) affects both annual 

pollen production and the timing of the Main Pollen Season (MPS). 

Generally an increase of pollen production for most of pollen taxa studied linked to an increase 

of precipitation was detected in Catalonia during the negative phase of climatic indices. 

Temperature was the most influencing meteorological variable on pollen production and on the 

timing of the MPS. Warm winters seem to advance the Start of the MPS and extend its Length 

while the End of the MPS is not influenced by winter weather. Conversely, changes in annual 

temperatures, especially minimum and mean values explained the advances or delays of the 

End of the MPS. For most of the studied pollen taxa, positive phases of the three climatic indices 

were related to an advance and enlargement of the MPS. 

The observed correlations suggest the possibility of predicting the onset and severity of 

pollination season through the atmospheric modes of the climatic indices. 
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In Chapter 3 we have focussed in the influence of the wind (speed and direction) on the pollen 

concentrations of 12 pollen taxa which sources are situated near the station (local transport) and have 

a major representation in the atmosphere. Here we have excluded those of them arriving at Catalonia 

due to a long-range transport mechanism (we will focus on them in Chapter 6). 

Positive correlations between wind and pollen concentration were observed when the wind 

blows towards the station from the direction of the source location, and negative correlation 

resulted when the wind blows in a direction from the city towards the source of pollen or coming 

from the sea. The cleaning and dispersion effect over the pollen concentrations has been 

observed over the coastal stations (BCN, BTU and TAU) mainly due to the wind induced by the 

sea breeze effect (SW and SE) and over the inland stations (LLE and MAN) when westerly 

frontal synoptic situations are presented. 

This study could also be useful not only to identify and locate airborne pollen sources but to 

detect changes in the geographical distribution of vegetation near the sampling stations. 

 

Taking into account that temperature and precipitation are the main variables controlling the Start of 

the main Pollen Season (SPS) in Chapter 5 we have explored two methods to forecast the SPS for 6 

pollen taxa having a well-defined pollination season in Catalonia. 

Two traditional forecasting models were used to predict the SPS. The first is based in the 

cumulated sum of mean daily temperatures (Summing Temperatures) and the second is based 

on a Multiple Regression analysis with maximum and minimum temperatures and precipitation. 

The root mean square error (RMSE) has been used to measure the quality of the models and 

also their predictability power. Results showed a high variability which depends on the pollen 

taxa and the sampling station. The RMSE ranged from 0.7 days for Pistacia in Manresa by the 

Multiple Regression model, up to 10 days for other taxa and stations. Platanus was the taxon 

showing the best results for all the stations. The RMSE obtained with the method of Multiple 

Regression were in general lower than those obtained with the method of Summing 

Temperatures. 

Taking into account the interannual variability of temperature and precipitation, these statistical 

methodologies could be improved extending the database to more recent years, adding the new 

pollen and meteorological data. 
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Finally, in Chapter 6 we present the results of applying the source-receptor model to estimate the 

source areas of 6 pollen taxa that are not abundant in the territory but susceptible to reach Catalonia 

transported by the wind from distant regions (long-range transport) presenting episodically high 

punctual values of concentration. 

Source regions for the pollen arrivals of Betula, Fraxinus and Fagus to the Catalan stations are 

located in central and southern France, and the Pyrenees, while Ambrosia and Olea peaks of 

pollen concentrations comes from the Iberian Peninsula. The results for Corylus show that there 

is a great local influence. 

Apart from the great scientific interest that lies in the modelling of the source areas to 

understand the life cycles of the species, the use of these models has utility to botanists, 

allergists, and environmental quality managers in the study and treatment of problems such as 

respiratory allergies. 

 

As a general conclusion, results showed that airborne pollen levels and its dynamics were influenced 

by meteorological conditions. Improving knowledge about the influence of meteorology on the pollen 

dynamics is essential to improve modelling and obtain better forecast of the start and the severity of 

the pollen season. Most of the results obtained in this study corroborate results shown by other 

researchers; although, there are some limitations due to the time resolution of the data (monthly and 

yearly) used in our work. Therefore, more research is needed for better comprehend the interaction 

between meteorology and airborne pollen levels and its dynamics. For a future research, the results 

regarding correlations between temperature and pollen concentrations may improve by splitting the 

annual period in two sections, one since the beginning of the pollination until the peak date and the 

other from this moment to the end of the pollination. This will be the case for most taxa pollinating 

between spring and summer. Regarding the results about regional and long-range transport, a natural 

continuation of this work will consist in the use of daily pollen counts for specific episodes and the 

application of a nested model at high resolution, such as the Weather Research Forecast mesoscale 

model (WRF). This would allow tracing the paths followed by the air masses with more precision and a 

better determination of the source regions. 
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