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Abstract / Resum

0.1 Abstract

This thesis describes the application of Next Generation Sequencing, espe-
cially RNA sequencing, on the investigation of the pathogenic yeast Candida
parapsilosis. Pathogenic yeasts of the Candida clade are one of the most com-
mon hospital derived infections, often with a fatal outcome. We applied
modern tools in RNA sequencing based transcriptomics to investigate the
unknown, noncoding part of the yeasts transcriptome. The investigation led
to a potential noncoding RNA with an important impact on the ability of the
yeast to tolerate physiological temperatures and therefore colonize humans.
Additionally, using modern transcriptomics, we developed a pipeline that
classifies and quantifies allelic expression regulation with limited parental
information. The pipeline is specifically designed for the analysis of non-
model species. Lastly, in the scope of the thesis, conclusions on the pathogen
responses of a human cell line were analyzed and described to evaluate its
potential as model system.
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0.2 Resum

Aquesta tesi descriu l’aplicació de Next Generation Sequencing, concreta-
ment en seqüenciació de RNA, en la investigació del llevat patogen Candida
parapsilosis. Els llevats patògens del clade Candida són els que causen les
infeccions més comunes en hospitals, amb un resultat potencialment fatal.
Aplicant eines basades en transcriptòmica de RNA no codificant per inves-
tigar la part desconeguda d’aquests llevats, hem descobert una seqüencia
de RNA no codificant amb un impacte important en la capacitat del llevat
per tolerar temperatures fisiològiques i per tant colonitzar els éssers hu-
mans. A més, utilitzant la transcriptòmica, hem desenvolupat un progra-
mari que classifica i quantifica la regulació de l’expressió al.lèlica i la infor-
mació parental limitada. Aquest programari està dissenyat especficament
per l’anàlisi d’espècies no-models. Finalment, també es van analitzar les res-
postes dels patògens en una lı́nia cel.lular humana i es va avaluar el seu
potencial com a sistema model.



Preface

This thesis describes the application of modern methods investigating
pathogenic yeasts. Projects described cover various aspects of the applica-
tion of RNA sequencing based transcriptomics, predominantly in the inves-
tigation of the pathogenic yeast Candida parapsilosis. We investigated novel
features of the yeasts cellular mechanisms, developed a new tool for data
processing and analyzed the behavior of yeast compared to other pathogens
in a human cell line. We hope that the work presented will give insight to
more hidden cellular features of the pathogen, enable novel approaches for
the study of its transcriptome and improve experimental setup for future
analysis.

• Chapter 1 contains the introduction to the thesis material. It covers
pathogenicity of yeasts, RNA sequencing technology, and basic con-
cepts of the applied statistics.

• Chapter 2 describes the first major project of the thesis. It concerns the
investigation of noncoding RNA in the yeast C. parapsilosis.

• Chapter 3 covers a more methodological aspect of the thesis. It
describes a developed software approach to the investigation of Allelic
Expression in populations of cells.

• Chapter 4 describes a project investigating the effect of various
pathogens on the human cell line THP-1.

• Chapter 5 discusses the findings of the projects described in the thesis.

vii





Contents

Acknowledgments iii

Abstract v

0.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

0.2 Resum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Preface vii

Contents x

1 Introduction 1

1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Biology of pathogenic Fungi . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Candida the yeast . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Clinical importance . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Mechanisms of Pathogenicity . . . . . . . . . . . . . . . 11

1.2.4 Current treatments . . . . . . . . . . . . . . . . . . . . . 14

1.2.5 Model organisms in Candida research . . . . . . . . . . 15

1.2.6 ImResFun network and collaborations . . . . . . . . . . 17

1.3 Extending Biology . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Noncoding Features in Yeast . . . . . . . . . . . . . . . 18

1.3.2 Allele Specific Expression . . . . . . . . . . . . . . . . . 20

1.4 RNAseq based Transcriptomics . . . . . . . . . . . . . . . . . . 21

1.5 RNAseq analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



x CONTENTS

1.5.3 Developments since 2013 . . . . . . . . . . . . . . . . . 29

1.6 Introduction to statistical approaches used in this thesis . . . . 30

1.6.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . 31

1.6.2 Frequentist to Bayesian . . . . . . . . . . . . . . . . . . 34

2 Long noncoding RNAs modulate virulence in the opportunistic
yeast pathogen Candida parapsilosis 37

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Online Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 ASEbyBayes a high precision software for the detection and
quantification of allelic-specific expression from RNAseq data for
nonmodel organisms 67

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Methodology and Benchmark . . . . . . . . . . . . . . . . . . . 74

4 Investigating cancer derived Monocytes THP-1 capabilities in
pathogen research via comparative transcriptomics 79

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 General discussion 91

6 Conclusions 101

References 103



1 Introduction

1.1 General

Biology has developed into a field of quantification. The last few years have
seen an incredible increase in the resolution of biological data due to the
development of high-throughput technologies such as Next Generation Se-
quencing (NGS). Yet, like other new technologies, new analytical capabilities
bring about new challenges. The recent quantity of data, provided by tech-
nologies like NGS, puts into question existing beliefs and creates the need
for new approaches to make full use of new observations. Conclusions in
Biology have always been gained by empirical research, through observa-
tion of changes in phenotypes or patterns. Those observations are a macro-
scopic measurement of the underlying complex system, which was never
completely visible to observers. Such systems present a large degree of ho-
mogeneity, as a consequence of scale. An organism of one species will look
easily distinguishable from an organism from another. A disease will strike
patients within a risk group more likely than others. So the undelying com-
plex systems become simpler if observed from a sufficiently large distance.
But in reality, some patients, even among the highest risk group are unaf-
fected, while seemingly arbitrarily chosen individuals succumb to vulnera-
bilities. Many issues in biology have found their answers in the macroscopic
analysis. As, for example, sanitation and antibiotics have removed most dis-
eases from modern society. we are now capable to find the minute details
of the underlying complexity. In order to improve upon those earlier ap-
proaches. Now it is upon us to find solutions not just for the macroscopic all,
but for the individual everything.

The twenty first century has seen an unprecedented speed of technological
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advances. An important technical advance in biology, related to the
work presented here, was the introduction of sequencing technologies.
Sequencing refers to the decoding of the DNA sequence, the exact ordering
of nucleotides in a DNA molecule. In the beginning sequencing was very
limited in scope and was commonly applied only to individual genes.
The sequencing field moved into the spotlight of the wider public with
the Human Genome Project (Hood and Rowen, 2013), but consisted of
several steps of technological advancement. The technology that started the
trend was developed by Frederick Sanger et alii, described in 1977 (Sanger
et al., 1977). The first commercial development was produced by Applied
biosystems, enabling standardized procedures for biology. The twenty first
century saw several leaps in development. Solexa released its first sequencer
in 2006. The company was bought by Illumina in 2007. The new high
throughput approach of this system allowed Illumina to establish itself at
the basis of most NGS analysis. As compared to Sanger sequencing which,
e.g on a commercial 96 capillary instrument produced 6 Mega bases per day
(Kircher and Kelso, 2010), the Illumina system gave researchers the ability to
sequence 1 giga bases in a single run. Nowadays, sequencing throughputs
in the tera-base range are common. This represents an increase by a factor of
1000 in only 10 years.
The field of Bioinformatics is not old by any measure. The need to
combine biology with the power of informatics is relatively new, at least
in the current scale. Considering storage necessities, NGS combined is
the largest data producer worldwide, with an annual need for storage
increase between 2 and 40 Exabytes predicted by 2025 (Stephens et al.,
2015). Raw data generation volume is only overshadowed by astronomy. An
online database tool, OmicsMaps [omicsmaps.com] traces the distribution
of individual sequencing machines worldwide, although due to the rapid
speed of development, even an online community gets outdated quickly. A
paper from 2015 listed 2,500 sequencing machines (Stephens et al., 2015) on
omicsmaps. There are currently 7,389 total sequencing machines listed in
this database, distributed in 1,027 sequencing centres. With the amount of
sequencers predicted to increase sharply over the coming decades. Unlike
other large producers of data, biological information is very heterogeneous
(Stephens et al., 2015). Derived from biological systems, the data is
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inherently noisy and lacks the reproducibility observed for example in
physics. Individual sequences are obtained from groups of organisms under
potentially heterogeneous conditions and data is also created by different
researchers, introducing varying levels of human error. Computers had
to be used early on to handle the amount of data obtained even from
earlier sequencing approaches such as Sanger sequencing. The originally
sporadic necessity has developed into a field of its own (Hagen, 2000).
Originally, many bioinformatics algorithms were borrowed from other fields
such as sociology, physics or economics. Over the last few years dedicated
approaches yielded algorithms better suited to handle large scale data, and
the analytical approaches have become more standardized. The increase
of computational speed was predicted by Moore’s law (Muir et al., 2016).
This law states that the number of transistors in a dense integrated circuit
double roughly every year (Stephens et al., 2015). This advance has seen its
limitations over the last years due to lack of space and cooling capabilities for
additional transistors. Alternative methods, such as multi core processing
take the place of denser transistor assembly, yet with limited increases.
Slowing down the advance of computational power. An important problem
in bioinformatics is that the speed at which new data is generated has
outpaced the increase in computational speed. As a result there is a pressing
need to develop new algorithms that are able to analyze larger amounts
of data with relatively smaller computational resources. And even as the
algorithms handle the increase of data, the simple need to store the data
becomes a burden on many projects. Predictions estimate the need for
storage of data to increase between 2 and 40 Exabytes per year by 2025. Data
storage and curation has become a challenge by itself, and will likely be a
major concern in the coming future. In addition a gap of knowledge has
appeared, and the shortage of experienced data analysts cause problems in
many advanced research projects (Sboner et al., 2011).

1.2 Biology of pathogenic Fungi

Human fungal pathogens are add odds with classical definitions of
pathogenicity in that, for them, the immunological status of the host is a cen-
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tral determinant of the outcome of infection (Casadevall and Pirofski, 1999).
Over the last decades, medicine and sanitation have made great advances
in the treatment and prevention of most human diseases. Human lifespan
is increasing, and medical care cures most types of even the deadliest dis-
eases. But with the increase in care, new niches have been formed that allow
new opportunistic pathogens to take over. For example in the treatment of
cancer, in which actively dividing cells have to be depleted, immune cells
are often targeted leading to a weakening of the immune system and, in
turn, paving the way for the onset of life threatening infections. Similarly,
in diseases like Acquired Immune Deficiency Syndrome (AIDS), or during
the treatment of autoimmune diseases similar conditions are created. In im-
munocompromised patients, opportunistic pathogenic yeasts are becoming
a cause of growing medical concern. Often harmless commensals in most
humans, these opportunistic pathogens can cause life threatening infections
that are difficult to diagnose on time and hard to treat. Amongst those oppor-
tunists are a variety of species from genera such as Aspergillus, Cryptococcus
as well as several species of Candida. Candida albicans, C. glabrata or C. parap-
silosis, which belong to a phylogenetically diverse clade, Saccharomycetaceae,
that also includes Saccharomyces cerevisiae (Gabaldon et al., 2016). The molec-
ular basis of the infection mechanisms in the different species remain poorly
understood, and it is as yet unknown to what extent the host-pathogen in-
teractions for the different species differ or resemble each other. Recent de-
velopments in high-throughput sequencing techniques enable studying the
transcriptional behavior of host and pathogen simultaneously and with un-
precedented resolution.

1.2.1 Candida the yeast

Yeasts are unicellular fungi. Like all fungi they are eukaryotes, and therefore
larger and more complex than prokaryotic organisms, with whom they
compete for resources. A suggested review by (Stajich et al., 2009) goes
into more details. Yeasts have remarkable cellular properties, that helped
them adapt to an almost prokaryotic lifestyle. They have short generation
times, withstand wide ranges of temperatures and are able to survive on very
simple nourishment. Among yeasts, the clade most closely associated to
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humans are the saccharomycotina. Saccharomycotina, although considered
one clade, encompass species as distant as humans and fish (Dujon et al.,
2004). Saccharomyces cerevisiae is one of the best studied model organisms in
biology. It is commonly used in a variety of biotechnological processes such
as food processing and others. Yet, given the right conditions, S. cerevisiae
can be pathogenic, causing potentially life threatening systemic infections
(Murphy and Kavanagh, 1999). Most notably in immunosuppressed
individuals. Many other species of saccharomycotina have evolved this
ability to cause infections in humans in various ways. Their commensal
pathogenic behaviour extends their range of environment to mammalian
hosts. Most interactions of saccharomycotina and mammals appear to be
commensal, meaning not to the detriment of either the host or the yeast.
Human-associated yeasts populate mostly mucosal surfaces, intestines and
genital tracts. But the variability of yeasts enabled the individual species
to adapt to their mammalian hosts in different ways. Some species, like
Candida albicans, have adapted to a life of almost obligatory commensalism.
Tolerating the human body temperature and avoiding the activation of a
defensive immune system, while integrating into the microbiome. However,
this commensal balance is not perfectly stable. In a weakened host, C.
albicans may switch its morphology and cellular behavior to an invasive one.
This species has adapted a series of mechanisms to counter human defenses
and that can be harmful in a weakened hosts. Potentially killing a weakened
host in a matter of days.

There are around 200 species of Candida described, around 20 of which
are considered pathogenic. Candida are often diploid with some notable
exceptions (Gabaldon et al., 2016). They contain a genome of only about
12 to 14 million base pairs. Up to 75 % of their genome is considered
to be protein coding. They also share an altered genetic code, in which
the CUG codon is translated as leucine as opposed to serine (Santos MA,
1995). Introns are not common, with only about 10 % of the genes showing
multiple exons. There are 499 existing intron annotations on 6,218 genes
in the C. albicans SC5314 strain. Candida and other yeasts have evolved
mechanisms to increase genetic variability. They maintain a very fluid
genome, which shows high variability across related species. Several strains
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are hybrids offsprings of related species (Pryszcz et al., 2015). Individual
strains in this diverse clade have developed mechanisms to generate more
genetic diversity via diverse types of sexual cycles. Mating is based
around two mating types, a and alpha, that are encoded in the Mating
Type Locus (MTL). Candida species were originally defined as species that
can form pseudohyphae or true hyphae but lacked any form of sexual
reproduction (Reedy et al., 2009). Observations in the early 2000s have
changed this definition, with discoveries that e.g C. lusitaniae has a defined
sexual cycle presumed to include meiosis based on its ability to produce
spores (Reedy et al., 2009). The mechanisms in other species were less
clear, C. albicans for example, presents orthologs for most genes necessary for
sexual reproduction compared to S. cerevisiae, yet has never been observed
undergoing mating. Recent studies discovered a parasexual reproduction
cycle in C. albicans, and potentially C. dubliniensis. This cycle involves
mating, recombination, and genome reduction but with no recognized
meiosis. In C. albicans parasexual mating requires a shift in morphology,
only opaque colonies are known to mate (Bennett, 2015).Other species, like
C. parapsilosis have most likely entirely lost the ability to mate (Sai et al.,
2011). In this species, only MTLa/a is present and the MTLa1 gene is a
pseudogene, which suggests that the MTL locus might be degenerating. C.
Parapsilosis has two closely related yeasts, C. metapsilosis and C. orthopsilosis.
In C. orthopsilosis, but not C. metapsilosis there is a mixture of mating types,
orthologous to C. albicans, suggesting the presence of an extant sexual cycle
(Sai et al., 2011). This dynamic between closely related species exemplifies
the fluidity of the candida genome. A more extensive review on mating
in human fungal pathogens can be found at (Ene et al., 2014). Candida
albicans is the best studied and most pathogenic of all Candida species. The
current state of C. albicans genome annotation comprises 4,422 predicted
ORFs ( 71.12% ) 1,644 verified ORFs, (26.44%) and 152 dubious ORFs (2.44%)
(Arnaud et al., 2005). This species has evolved to become an obligatory
human commensal, and is found in the human intestinal track of 30% to
70% of the population (Hoffmann et al., 2013). The species studied in most
projects described here is C. parapsilosis, which shows a comparable genome
structure, protein count and gene density. Candida species colonize a variety
of environments. Unlike C. albicans, C. parapsilosis for example is not an
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obligatory commensal, but occurs naturally in soil or marine samples, yet
also colonizes mammalian hosts. The ability of different candida species to
colonize various environments such as soil or non human hosts is still being
investigated. Recently C. dubliniensis for example was originally considered
to be restricted to the human microbiome (Sullivan et al., 2005), but has
since been found colonizing the seabird tick Ixodes uriae (Nunn et al., 2007).
Environmental occurrence of different potentially pathogenic species may
be a consideration in connection to global warming fostering additional
temperature adaptations in otherwise environmental strains, potentially
increasing their pathogenicity.

The distribution of Candida strains varies by country or region, and can
change drastically in different hospital environments (e.g (Singh and Parija,
2012)). The usually most common species is C. albicans, followed by either
C. glabrata in northern europe and the U.S and C. parapsilosis in e.g Spain
or Brazil (Guinea, 2014). Across hospitals the distribution varies again,
with individual institutions maintaining their respective prevalent strains.
This is an important problem in the treatment of Candida species. C.
dubliniensis is more resistant to fluconazole for example, while C. parapsilosis
is more susceptible. Knowledge of potential presence of certain strains could
influence modes of preventive treatment.

There are mixed reports on the effect of Candida on the healthy human
body. The presence of different Candida species can be used as clinical
markers in dosage of cholesterol medications like statins, that affect the
fungal counterpart ergosterol (Wikhe et al., 2007). Little is known about the
interactions between Candida species and the healthy human microbiome,
but due to its widespread presence and the lack of active removal by healthy
hosts, it seems that Candida albicans is not an unwelcome parasite. However,
Candida cause occasional problems even in healthy hosts. The most prevalent
clinical condition is vulvovaginalcandidiasis (VVC), with more than 10
million cases annually (Linhares et al., 2001). Up to 90% of sporadic,
uncomplicated cases of VVC are caused by the species C. albicans, followed
by 5% to 11% C. glabrata and between 4 and 8 % C. Parapsilosis (Nyirjesy
et al., 2005) and are treated with single-azole medication. Historically,
species identification has been omitted, due to the relative susceptibility of
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all treated strains to the admitted antifungals. An important observation
was that the amount of candida cells were not correlated to the occurrence
of clinical symptoms (Linhares et al., 2001), unlike pathogenic bacteria or
viruses, quantity does not cause an infection.

Healthy Candida commensalism, even if not proven to be beneficial, is
benign. Potential danger to patients occurs when the yeast senses a
physiological change in the human host. A number of criteria seem to have
an effect on Candida behavior. An infection caused by Candida is termed
candidiasis or candidosis (Sardi et al., 2013). Those infections may present a
variety of clinical symptoms (Sardi et al., 2013). An important consideration
when studying candidemia is that the most common way of transmission
for candidiasis is endogenous. This occurs when species that constitute the
microbiota of various anatomical sites under conditions of host weakness
may behave as opportunistic pathogens (Colombo and Guimarães, 2003).
The most important trigger condition for endogenous candidiasis in humans
is acute neutropenia, and a depletion of T- helper cells. If Candida senses
an immunological weakness, its behavior shifts drastically within a few
hours. In cultures, this can be observed by a morphological shift visible
in plated colonies, called white - opaque switching. Candida cells grown
on rich medium form white colonies. This macroscopic shift is a result of
morphological changes, C. albicans is able to grow as ovoid budding yeasts,
pseudohyphae or true hyphae (Berman and Sudbery, 2002). Additionally
it has the ability to form chlamydospores of unknown function (Citiulo
et al., 2009). The observed dimorphism is an important feature in biofilm
formation and mating (Lohse and Johnson, 2010), (Lockhart et al., 2002). C.
albicans maintains the white state during infectious behaviour, e.g at 37◦C,
but requires the opaque state to undergo mating (Lohse and Johnson, 2010).
It has more recently been discovered, that the opaque state is stable at 37◦C
under anaerobic conditions (Dumitru et al., 2007). Shifting from opaque
to white is characterized by changes in morphology, but especially in the
formation of hyphae by the C. albicans cells. Only C. dubliniensis is capable
of the same white opaque switching. C. dubliniensis has even been reported
to be able to mate with C. albicans (Pujol et al., 2004). Hyphae start their
development with the formation of spitzenkorper. Those spitzenkorper are
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being elongated, extending the cell shape, and show, in C. albicans a unique
expression profile compared to pseudohyphae (Crampin, 2005). Hyphae
maintain a rigid cell wall and extend the physical range of the fungus.
But they also act as invasion organs. Candida ingested by macrophages
use hyphae to cross the membrane of the immune cells and break free,
destroying the immune cells in the process. Hyphae are also used to
transgress human epithelial cell layers, permeating into the bloodstream.
Another important feature, that is widespread also among C. albicans sister
species is the ability for form biofilms. This is especially important in the
hospital environment. Biofilm formation has been shown to be triggered
by pheromone secretion of fungi (Hawser and Douglas, 1994; Chandra et al.,
2001). They are more resistant to stresses and limit the efficiency of drugs due
to lower accessibility of individual cells. Biofilms are hard to combat and can
establish themselves on clinical devices such as catheters. Once established
they can provide a constant source of new fungal cells entering the host.

1.2.2 Clinical importance

Candida species are the 4th most common source of nosocomial (hospital-
derived) infections. Candidiasis shows a prevalence of up to 60 per
100.000 hospital admissions (Wisplinghoff et al., 2004) (Brown et al., 2014).
Systemic infections have a mortality rate of more than 40% for systemic
candidiasis (Amorim-Vaz et al., 2015; Falagas et al., 2006). Medical research
has improved patient care drastically over the last decades. With more
patients surviving an immunocompromised state for extended periods of
time, Candida have found a new niche.

As discussed above, pathogenic yeast are opportunistic pathogens, making
pre-existing conditions such as immunosuppression an obligatory condition
for their pathogenicity. Different species of Candida have different preferred
host spectra. E.g C. parapsilosis is prevalent in neonates (Chow et al.,
2012), while C. glabrata is more common among the elderly. (Fidel et al.,
1999) Candida can cause life threatening systemic infections. Infections are
most common among immunosuppressed individuals, patients with acute
renal malfunctions, cancer or transplant recipients, as well as AIDS patients
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in advanced stages. Added to this is that the most common antifungal
treatments have serious side effects, and detection and classification of the
right Candida species is slow, and require special equipment. Specialized
diagnostic centers use mass spectrometry to rapidly detect the species, and
recent developments point to a potential use of this technology in detecting
antifungal resistant strains (Saracli et al., 2015).

The human intestinal tract potentially provides rich media for the yeasts to
grow, assuming it can adapt to the adverse conditions like body temperature
and the complex microbiome (Netea et al., 2015). 37◦ C are suboptimal
growth conditions for most species of fungi. In recent studies, up to 60%
of healthy humans are positively tested for Candida species (Hoffmann
et al., 2013). Pathogenic behaviour requires an additional adaptation to
environments within the bloodstream or other organs. Certain environments
in humans, like the bloodstream show a tightly constrained limitation of
some nutrients or elements, like iron, which is an important component
of various biologically important enzymes. Iron fulfills similar functions
in yeasts, and the host can reduce its availability using iron-chelating
proteins in order to limit its accessibility to yeasts (Knight et al., 2005).
Specific species, that manage to adapt to the environmental conditions face
a complex immune system that will be activated by a variety of molecular
patterns. For the most part the yeasts do not seem to damage the host,
and the immune system has adapted to accept their presence under such
circumstances. The immune response triggered by the pathogen is complex,
and out of scope for this introduction. Reviews and detailed descriptions
are available (Brown et al., 2014; Gow et al., 2011) To adapt to this set
of responses, fungal cells posess several virulence mechanisms. Such
mechanisms can be quite distinct within the clade, and will be discussed
for some specific Candida species in the following section.
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1.2.3 Mechanisms of Pathogenicity

Candida parapsilosis

Most work presented here pertains to a related species to Candida albicans, C.
parapsilosis. Originally thought to be a single species, it was recently split into
three distinct species, Candida parapsilosis sensu stricto, C. orthopsilosis and C.
metapsilosis. C. parapsilosis and its close relatives differ in some fundamental
mechanisms of survival and in many ways in their approach towards the
human host. They are considered to be less prevalent in infecting humans
than C. albicans. The potential pathogenicity is highest for C. parapsilosis,
followed by C. orthopsilosis and the relatively weak pathogen C. metapsilosis
with percentage of relative incidences of 90, 8 and 2 % respectively observed
in VVC (Lockhart et al., 2008; Bonfietti et al., 2012). All three species have
a global distribution and can exist both as commensals within the human
microbiome, and as environmentals isolated from a variety of niches such
as the hands of healthcare workers (Sabino et al., 2015) but also ranging
from oceanic to arboreal. Considering clinical isolates, C. orthopsilosis and
C. metapsilosis show a very low prevalence ( 1 %) in most bloodstream isolate
collections surveyed. Additionally they tend to respond well to antifungal
drugs (Falagas et al., 2010).

Clinical importance in C. parapsilosis derives at least partly from its shift
in host spectrum compared to C. albicans. This species shows higher
prevalence in neonates (Neu et al., 2009; Roilides et al., 2004). Another
major factors of C. parapsilosis pathogenicity are its increased tendency to
adhere to plastics, like catheters in hospitals (Branchini et al., 1994), and its
ability to form biofilms, as it shows a high prevalence of forming biofilms
on plastic surfaces comparable to that of C. albicans (Kuhn et al., 2002).
Candida albicans hyphae formation is an obvious morphological switch, and
is the most easily observable difference to C. parapsilosis. C. parapsilosis is
not capable of forming true hyphae, a trait considered important for C.
albicans’s pathogenesis. It has been shown that C. parapsilosis only forms
pseudohyphae (Berman and Sudbery, 2002). However it still manages to
be, albeit to a lesser degree, pathogenic. Pseudohyphae resemble elongated,
ellipsoid yeast cells. They remain attached to one another at the constricted
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septation site and grow in a branching pattern that is thought to facilitate
foraging for nutrients away from the parental cell and colony. True hyphal
cells on the other hand, are long and highly polarized, with parallel sides
and no obvious constrictions between cells. The effect of pseudohyphae on
C. parapsilosis pathogenicity has been the focus of recent research. Given the
lack of hyphae formation, other mechanisms have to retain C. parapsilosis
potential as a pathogen. Under investigation are pathways concerning the
production of prostaglandins (Grózer et al., 2015), biofilm formation (Singh
and Parija, 2012) and C. parapsilosis interaction with macrophages (Tóth et al.,
2014).

Another important consideration is the lack of even a parasexual life cycle,
as in other Candida species (Bennett, 2015). In C. albicans morphology and
reproduction are linked. Only the opaque morphologies is able to undergo
the reproductive cycle (Dumitru et al., 2007). So a lack of morphological
switching and parasexual cycle may not be independent occurrences.

Studies on the distribution of candidemia showed an increase in C.
parapsilosis cases over the years. In clinical observations in Spain and
Brazil, C. Parapsilosis has overtaken C. glabrata in overall numbers of infected
patients (Guinea, 2014). Predisposition of an infection with C. parapsilosis is
dependant on the environment, with most clinically relevant cases observed
in hospitals, with stationary patients. In some hospitals C. parapsilosis
infections even outranks Candida albicans (Singh and Parija, 2012).

Our knowledge of C. parapsilosis, even though a relatively common human
commensal or pathogen, is far from complete. Although recent years
have seen increases in coverage of genomic studies and new investigations
into behavior of pathogenicity, many underlying mechanisms remain to be
studied.

Candida albicans

Candida albicans is the most intensely studied Candida species. It is also the
most prevalent. Up to 50-60 % of a healthy human population carry this
species in their normal microbiome (Hoffmann et al., 2013). Candida albicans
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causes most of the systemic Candida infections, up to 90% of (Hoffmann
et al., 2013) Genital / Vulvovaginal Candidiasis (VVC) and around 50% of
systemic candidiasis (Nur, 2014). It has a variety of mechanisms directly
associated to its pathogenic potential. The most intensely studied is the
above mentioned switching of morphology. This shift in morphology is one
of the core mechanisms of pathogenicity, together with its pseudo sexual
cycle.

Recent discoveries have broadened our understanding of Candida pathogen-
esis. A recent study published by a collaborator from the same network
shows the existence of a Candida lysin, a peptide toxin secreted by C. albi-
cans. The lysin is the product of a KEX2 digestion of the ECE1 protein, and
seems to be an essential factor for mucosal invasion (Moyes et al., 2016). This
added a new layer to an already complex network of interactions.

Overall, antifungal resistance is a less important consideration of Candida
albicans. Known isolates seem to adapt slowly to the available drugs. Current
isolates are susceptible to a range of antifungals such as fluconazole and
Amphotericin B, mechanisms for their functionality are mentioned below.

Candida glabrata

Candida glabrata is evolutionarily distant from other Candida species. It
differs greatly from Candida albicans in its mechanisms of pathogenicity, such
as hyphae formation and peptide secretion, but does form biofilms and
pseudohyphae (Kaur et al., 2005). Compared to other Candida, C. glabrata is
much more readily adapting to antifungals, and is innately resistant to azole
based antifungals. This resistance seems to be mediated by overexpression
of several ABC transporters (Miyazaki et al., 1998). C. glabratas recent
increase in prevalence as a human pathogen is likely linked to its drug
resistance. The preemptive administration of azole antifungals creates a
niche in patients. Multiple antifungal resistances in C. glabrata, especially
in absence of the development of new antifungals are becoming a major
threat. Evolutionarily, C. glabrata is more closely related to S. cerevisiae,
which can also be pathogenic (Murphy and Kavanagh, 1999). C. glabrata
was assumed to show a non dimorphic blastoconidia morphology and has



14 Introduction

a haploid genome. Yet recent studies show morphological switches for
C. glabrata with several distinct phenotypes observed (Lachke et al., 2000,
2002). Additional remarkable traits of Candida glabrata include its short
generation time, compared to other fungi. It is capable of overgrowing
the immune system. The generation time, under the right conditions can
be as low as 1.02 hours at 37◦C (Roetzer et al., 2011). C. glabrata is not an
obligatory commensal. It can be found environmental, but is often associated
to different body sites, forming part of the human microbiome.

Other Candida species

The candida clade comprises around 200 species. Definitions of the clade
have changed with the advances of genomic sequencing. The earlier
morphological definitions did not describe the true variability of the clade.
Only around 15 candida species are of clinical importance (Turner and
Butler, 2014). Apart from the ones mentioned previously, only C. dubliniensis,
Lodderomyces elongisporus and C. tropicalis compose a mentionable portion of
clinical isolates.

1.2.4 Current treatments

The treatment of Candida infections relies heavily in risk group assessment.
Candida, as a commensal is widely spread, but as a pathogen, targets only
a limited range of potential patients. Immunosuppressed patients often
receive preventive medication in order to halt infective progression. Such
preemptive treatment is necessary, since detection of an infection is often
slow, and infections may lead to acute septic shock (Delaloye and Calandra,
2014), with mortality rates around 30 - 60% (Delaloye and Calandra, 2014;
Hirano et al., 2015). Preemptive treatment is an important factor for
development of antifungal resistances, especially in C. glabrata.

A few antifungal drugs are available to treat systemic candidiasis. As in
antibiotics available for prokaryotes, antifungals target essential but distinct
cellular mechanisms in yeasts. An important consideration is that yeasts
are eukaryotic organisms, as are their hosts so the potentially targetable
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mechanisms are significantly more limited as compared to antibiotics for
prokaryotes. The drugs should avoid target mechanisms that are closely
related to their counterparts in humans. Thus, primary targets of antifungal
drugs are ergosterol metabolic pathways, which are absent from human
cells. Antifungal drugs have a variety of adverse side effects, particularly
considering that they commonly administered to already weakened patients.
The most important antifungals are Fluconazole / Azoles and Amphotericin
B and echinocandins, such as caspofungin. Amphotericin B induces
potassium permeability, thereby destabilizing the cell wall. There is a
documented effect on cholesterol containing cell walls (e.g in humans), but
at exposure to much higher concentration (e.g (Bolard et al., 1991)).

Fluconazole acts on a different path of ergosterol maintenance inside a
fungal cell, like other azoles, it interrupts the conversion of lanosterol to
ergosterol via binding to fungal cytochrome P-45. This disrupts the fungal
membranes (Zervos and Meunier, 1993; Pasko et al., 1990).

Echinocandins, such as caspofungin, are large lipopeptide that inhibit
the synthesis of -(1,3)-glucan. They are effective against Aspergillus and
Candidas, but in clinical concentrations not usable against Cryptococcus. C.
parapsilosis also shows an increased Minimum Inhibitory Concentration
towards echinocandins (Denning, 2003).

1.2.5 Model organisms in Candida research

The gold standard of animal models used in Candida pathogenesis research
is the mouse, both transgenic and wild type (LePage and Conlon, 2007; Yano
and Fidel, Jr., 2011; Conti et al., 2014). Most models have been established for
C. albicans, but are also used in the analysis of C. parapsilosis and C. glabrata.
An important consideration amongst various Candida species is their host
distribution. While all of the above mentioned yeasts colonize humans,
neither C. albicans nor C. parapsilosis colonize mice under normal conditions.
This is an important consideration in the analysis of experimental data from
mouse models. Since mice are not a real host for the species, their response
and management of fungal burden may differ significantly from humans.
Mice have to be severely immunocompromised to maintain a systemic
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infection (Jacobsen, 2014). Fungal burden in humans is carried by the spleen,
while in mice the burden is shifted towards the kidneys (described e.g in
(Szilagyi et al., 2012)). A very different environment. Yet mice are the default
model for studies in fungal burden. Several considerations complicate
interspecies comparative analysis. Intravenous injection of C. albicans is
lethal, with the cause of death attributed to fungal sepsis (Conti et al., 2014),
but e.g C. parapsilosis is not fatal, even in heavily immunosuppressed mice.
Mouse experiments are costly, logistically challenging, time-consuming
and ethically delicate. Over recent years, another animal model has
gained attention in the field. Galleria mellonella has been established as
an invertebrate substitute host for different Candida infection models. (e.g
(Jacobsen, 2014; Cotter et al., 2000)). G. mellonella, also known as honeycomb
moth, is a fast growing insect. Its usage reduces the time and cost of
studies in pathogenicity, as well as presenting fewer ethical considerations.
Its larvae are used as infection models for yeasts and other pathogens like
Cryptococcus spp (Jacobsen, 2014). This moth is considered a good substitute
for mammalian host, with its innate immune system considered closely
resembling that of vertebrates. The most prominent problems with this
model are the lack of an acquired immunity system, which is missing in
all insects, and the difference in optimal temperature. One benefit of G.
mellonella is its temperature resistance, models are established at 30◦ C and
37◦ Celsius (Fuchs et al., 2010), yet its optimal growth temperature is 30◦C.
Although the overlap of observed virulence phenotypes between mouse
and Galleria models has been reported to be as low as 25%, G. mellonella
can be used as a valid model e.g for screening mutants with important
defects in host infection (Amorim-Vaz et al., 2015). Both G. mellonella
and mouse models were used during the analysis of phenotypes of long
noncoding RNAs in the project in chapter 2. Due to the ease of handling
and experimental setup, the G. mellonella model was used widely on all
five deletion mutants. This provided an initial insight into the potential
impact of the deleted transcripts. Only one of our potential noncoding RNA
phenotypes was further analyzed in a mouse model. Important distinctions
between the models from the perspective of produced data comes from
organ resolution. G. mellonella gives a single mortality response while the
mouse model provides more nuanced organ specific responses.
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Another important model is the use of human cell lines. The application
of cell lines as a reproduction of a complex process like infection is difficult
due to the mixture of cell types affected during infection. Most cell lines
used are secondary cell lines meaning cancer derived. This potentially
influences the accuracy of their response, due to abnormal behaviour of
cancer cells. Most common cell types include epidermal cells to simulate
mucosal surfaces, as well as Immune cells to simulate systemic infections.
We describe an investigation of one commonly used cell lines THP-1
comparing its behaviour in response to various pathogens, viral, prokaryotic
and eukaryotic in Chapter 4. An important distinction of single cell lines is
the relative ease of transcriptomics investigation, with the drawback of an
unnatural environment.

1.2.6 ImResFun network and collaborations

The projects described here have been made in the context of a Marie Curie
International Training Network (ITN). This network, called ImResFun, com-
bined ten academic and three private institutions across Europe to address
a common research theme. The project aimed at a combined investigation
of host-pathogen interactions in Candida pathogenesis. Several projects were
initiated with collaborators from within this network. The CRG, was the
only academic partner with a computational focus. Complemented with
the commercial CLC bio, by now Qiagen Bioinformatics. Most partners in
the network are experimental research groups, and the individual members
experimental scientists. All partners are leading experts in their respective
fields that have driven the progress in the field of Candida research. The
range of research thematics was quite broad. But the overall focus followed
the pattern of a deep investigation of the complex pathogenic systems of
Candida species. With groups working on a variety of fields. Amongst the
intitiated projects were the establishment of mixed tissue models to simulate
human mucosal surfaces during the Candida infection, the discovery of Can-
dida lysin, and others. The CRGs research focus in the course of the network
was in part advisory, providing consultancy on experimental and analytical
designs as well as carrying out analysis in collaboration with the network.
The other, and more extensive, part concerned the deepening of our under-
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standing of cellular features in Candida yeasts. Extending existing annota-
tions into noncoding genome features. Additionally, projects were initiated
to increase our insight using modern transcriptomics data, and to contribute
to methodological improvements into those complex analysis.

1.3 Extending Biology

1.3.1 Noncoding Features in Yeast

The analysis of genomic features has improved in parallel to the develop-
ment of of new methods and technologies. With the advance of genomics,
and the closer investigation of the C-value enigma (Gregory, 2007) novel tran-
scriptional behaviour was proposed. The amount of protein-coding genes
in Humans was not considered by some as sufficient to allow their com-
plexity. This forced researchers to reevaluate expectations, that translated
genes account for all cellular diversity. Early experiments in cellular expres-
sion using tiling microarrays and sequencing established that protein coding
regions were only a part of the expressed and regulated transcriptome. Non-
coding functional RNA is still a subject of debate in the field of biology. A
series of experiments done on hybridization of cDNA via genomic arrays
(e.g (Bertone et al., 2004)) or library sequencing (Okazaki et al., 2002) (Carn-
inci et al., 2006) have provided a comprehensive transcriptional landscape
within mammalian cells. Recently the ENCODE project provided a more
comprehensive effort in surveying transcription in human HeLa cells (EN-
CODEProjectConsortium, 2007) (HumanGenomeProjectConsortium, 2012)
(Derrien et al., 2012) (Djebali S, 2012). ENCODE provided proof of perva-
sive transcription in the human cell. It seems that biological systems are
complex, and in flux, and classical axioms, such as the necessity for all func-
tional elements in a cell to be converted to amino acids have been revisited
in the light of new data. A variety of features are currently attributed to such
expressed noncoding transcripts, from chromatin regulation and genetic im-
printing to protein expression regulation (Wilusz et al., 2009) (Schmitz et al.,
2016). Comparable with the early stages of protein coding gene analysis, the
study of noncoding RNA is only starting to get an insight into previously
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hidden features of cellular organization. Yet the true criteria that define a
functional noncoding transcript are still unclear. Crude cutoffs are currently
in place, to distinguish types of noncoding RNAs. A length cutoff of 200
nt is used to distinguish lncRNAs from short noncoding RNAs like the 21
to 35 nt microRNAs, Piwi-interacting RNAs (piRNAs), and small-interfering
RNAs (siRNAs) like RasiRNAs (e.g. in a review by (Carmi, 2006)). Even
the definition of long noncoding RNA has become heterogeneous, several
types of long noncoding RNAs have been described. Antisense transcripts,
pseudogenes, or long intergenic noncoding RNAs (Wilusz et al., 2009).

In humans many cellular functions of long noncoding RNAs were studied in
cancer sets, and are therefore attributed to related clinical processes. The best
studied examples involve chromatin modification, X chromosome silencing
Xist (Pontier and Gribnau, 2011), as well as cellular proliferation HOTAIR /
MALAT1 (Cai et al., 2014; Gutschner et al., 2013).

The project described in chapter 2 is concerned with the analysis of long
noncoding RNA in the above mentioned species of C. parapsilosis. Little
is known about noncoding RNA in yeast species. The most intensely
studied species, Saccharomyces cerevisiae has several annotated pseudogenes,
antisense transcripts, etc. and currently 17 annotated long noncoding RNAs
(Cherry et al., 2012). Two lncRNAs have some functional annotation,
with the most deeply studied transcript showing activity in gametogenesis
(Yamashita et al., 2016) and involvement in the function of the GAL10
cluster (Houseley et al., 2008). Although a few annotations exist in C.
albicans, based on tiling arrays (Sellam et al., 2010) no lncRNAs were so
far functionally investigated for either C. albicans or C. parapsilosis. A
recent publication on noncoding RNAs focuses on the annotation of short
nucleolar RNAs (Donovan et al., 2016). An important consideration when
analyzing lncRNAs in yeast is the very different genomics structure. Yeast
genomes are very dense, with up to 75% of their sequence being protein
coding. Alternative splicing events are also very rare, with only 1 in 10
genes containing intronic regions. So ultimately, conclusions gained from
noncoding RNAs in humans may only have limited similarities in yeasts
and vice versa. Chapter 2, deals with the analysis of long noncoding RNA in
yeasts.
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1.3.2 Allele Specific Expression

As with noncoding features mentioned previously, NGS usage in transcrip-
tomics has revealed several features of genomic regulation at the transcript
level. There is, at least in Mammals, an interplay between long noncoding
RNA and Allele Specific Expression (ASE). The noncoding RNAs Xist and its
antagonizer TSIX regulate the inactivation of the second X chromosomes in
females (McHugh et al., 2015) (Pontier and Gribnau, 2011). The availability
of the sequence information for sequenced transcript, enabled the quantifi-
cation of Allele Specific Expression (ASE), that is the finding that different
alleles of a given locus can be expressed at different levels and even regu-
lated differently.

ASE can potentially occur on any locus of a polyploid organism. Yet is
only detectable if the transcribed sequences differ between the two alleles.
Differential Expression of individual alleles has shown to be present in a
variety of conditions, most notably in embryonic development (Szabo and
Mann, 1995; Szabo et al., 2002; Springer and Stupar, 2007) or diseases e.g of
the heart muscle (Sigurdsson et al., 2016). The most common analytically
relevant difference between alleles are Single nucleotide Polymorphisms
(SNP). In some yeast species, sexual and pseudosexual life cycles are
intoducing haplotype diversity within a genome. Additionally hybrid
species, resulting from crosses between two distinct parental species, can
be found. The overall divergence retains the haploid SNPs of the parentals
on single Alleles, leaving sets of biallelic SNPs. Considering protein coding
genes, those SNPs can be either sense or missense concerning the amino
acid sequence. In certain cases those missense SNPs may result in functional
implications of ASE, but in any case both sense and missense SNPs can be
used to quantify the extent of ASE. So far, software implementations for the
detection and quantification of ASE in nonmodel species, i.e with a missing
phased reference genome, are lacking. There have been some statistical
frameworks proposed, albeit these are targeting error distributions following
single cell transcriptomics (Jiang et al., 2017; Sigurdsson et al., 2016), or
analysis in species with phasing knowledge of reference SNP distribution.
The project described in Chapter 3 deals with the analysis of Allele Specific
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Expression from populations of the hybrid yeast C. orthospsilosis. To enable
the accurate quantification and classification of the expression data, we
implemented a more robust quantification software. Based on the SNP
wise analysis of gene expression, the implementation follows a simple
bayesian inference model, using existing information derived from the SNP
expression to evaluate the genes overall Allele specificity.

1.4 RNAseq based Transcriptomics

All projects presented here feature the use of RNA sequencing technology
(RNAseq). In order to fully understand the impact of the technical
possibilities and limitations, the mechanisms of sequencing need to be
understood. Most sequencing approaches in modern transcriptomics rely
on the machines and protocols developed by Illumina. Other approaches
are available, but are currently less widely used. Ion-torrent for example
produces RNA sequencing reads, but is less widely available, and was not
used in any of the projects presented. PacBio is not commonly used for
transcriptomics, due to its higher price, low throughput, and the relative
small gain of information on the additional read length compared to the
short but more cost efficiency of Illumina reads. Therefore, the introduction
to these methods is omitted here. More modern methods like the upcoming
oxford nanopore, or the Qiagen developed GeneReader as well as Thermo
Fischers IonTorrent are not currently in wide use, and will also not be
covered in detail.

Sanger sequencing and microarray-based transcriptomics

The basis of modern sequencing technology was developed by Sanger in
two publications (Sanger and Coulson, 1975) (Sanger et al., 1977), and
commercialized in the 1970s by Applied Biosystems. Based on the use of
Polymerase Chain Reactions (PCR), it used a primer to target the elongation
of a specific region. And like in any PCR, elongation is carried out via
the introduction of nucleotides in vitro. To decipher the gene sequence,
nucleotides with a fluorochrome labeling were introduced to a certain
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ratio of the unlabeled nucleotides. Introduction of a labeled nucleotide
terminated the elongation, and produced fragments of certain length with
a terminal fluorochrome dideoxy terminator. Length measurement was
carried out via capillary gel electrophoresis. Given different chromatic labels
for the individual nucleotides G,A,T and C, the terminal nucleotides for
any given position can be deciphered by measuring the intensity of the
chromatic label at any given position, and positioned due to the length of
the transcript. Sanger sequencing was the dominant sequencing technology
until the beginning of the 21st century, and due to improvements that lead to
automation, is still is in use today (commercially e.g as GATC sequencing).
It was used for the qualitative expressed sequence tag (EST) discovery.
Applications in quantitative transcriptomics were limited due to the very
low coverage. sequencing was used to decode the gene sequence and
combined with other methods for quantification. Microarrays were used
to complement the known genomic sequences with an expression profile
(Lockhart et al., 1996), (Bumgarner, 2013).

Microarrays were developed at the end of the 20th century. They use
an affinity based labelling for nucleotide sequences and return a signal of
intensity corresponding to the quantity of observed transcript. A problem
with Microarrays is that the sequence analyzed has to be known beforehand,
and most approaches rely on commercial versions containing e.g annotated
genes in an organism (e.g (Malone and Oliver, 2011)). Gene independant
transcriptomics was carried out via tiling arrays, analyzing the whole
genome sequence in small overlapping windows. With microarrays, the
intensity of expression is an almost arbitrary quantity. In theory, microarrays
can be arbitrarily precise in their quantification, relative to a marker by
extending the exposure time. Precision is limited by the detector, measuring
the intensities of response and only up to a certain limit of biological
binding site capability as well as cross hybridization. Comparisons of
accuracy compared to RNA sequencing are not favourable (e.g (Zhao
et al., 2014). Problems with microarrays were contrasted by the advance
of sequencing technologies. The dependence of microarrays on known
sequences is a limiting factor in exploratory analysis. This comes to bear
especially if the investigation is based on more distantly related species, or
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contains important single nucleotide polymorphisms. Additionally, since
only intensity is measured, sequence diversity and expression rate were
unified measurements without the ability to distinguish them. Any change
to the sequence may reduce binding potential and therefore luminescence of
the whole transcript. While RNA sequencing will give exact feedback on the
changed nucleotides.

Next Generation Sequencing

An important distinction between classical genomic and transcriptomics
sequencing is the experimental setup. Genomic sequencing was primarily
used for de novo analysis of novel genomes. Transcriptomics is more
closely related with re-sequencing approaches used later e.g to detect cancer
driving singular mutations. In re-sequencing as with most transcriptomics,
the reference sequence of the genome is known, reducing the need for
long reads. This paved the way for the usage of short read sequencing,
that were developed into transcriptomics sequencing based on sequencing
complementary DNAs (cDNAs) of expressed transcripts. Illumina short
read sequencing soon become the leading technology.

The trend towards quantitative sequencing began in the early 21st century.
Three main approaches were developed to improve the original sanger
sequencing. Reducing costs and improving speed, efficiency and output
quality were the primary targets of the development. The first, in 2004 was
pyrosequencing, developed as 454 by Roche. A demonstration summary
can be found by Harrington and colleagues (Harrington et al., 2013). The
commercialization by Roche was discontinued in 2013.

ABI SOLiD (Sequencing by Oligonucleotide Ligation and Detection) se-
quences became available commercially in 2006, introducing the concept of
quantifiable sequencing. SOLiD sequencing was carried out by a bead clone
strategy. Inducing many polymerisations of a single sequence on a bead
increased concentration. The technology no longer relied on the dideoxy
terminator approach, but introduced a ligase based detection assay. The
application of SOLiD sequencing has regressed in recent years as the field
has been taken over by Illumina. The first solexa sequencer was released
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in 2006 and the company was bought by Illumina in 2007. This release has
been followed up by rapid advancements in the technology and protocols.
Originally reproducing genome sequencing, protocols for the first RNA se-
quencing were released in 2009. Currently, Illumina is the market leader in
the transcriptomics field, with no real alternatives available. The illumina
TrueSeq protocols, currently at TrueSeq 3 is the most used RNA sequenc-
ing protocol. This produces both a large standardization over the field, as
well as a limit in methodological flexibility. The functional basis or RNA se-
quencing is the reverse translation of mRNA into cDNA. Technically, RNA
sequencing with Illumina is carried out over the whole expressed regions of
the genome. To limit the data, a common selection step is applied, remov-
ing all transcripts that do not carry a poly-A tail. Poly A tails are attached
eukaryotic cells to processed mRNA (Sarkar, 1997), but not to ribosomal and
other potentially noncoding RNA. For prokaryotes, where poly adenylation
occurs less consistently, alternative rRNA depletion procedures do exist.

The Illumina/Solexa sequencers are characterized by: solid-phase ampli-
fication and a cyclic reversible termination (CRT) process, also termed
sequencing-by-synthesis (SBS) technology. The sequencer can generate hun-
dreds of millions of relatively short (36 — 100bp) read sequences per run.
Modern sequencing libraries generate reads up to 250 bp in length, (2x 125
bp) in the high throughput HISeq (e.g TruSeq SBS V3), and up to 2x 300 bp
in modern MISeq protocols (MiSeq Reagent Kit v3).

Common errors in NGS data

Common errors in NGS data are derived from the two aspects listed above,
namely. Technical errors from the side of the machines, and experimental
/ biological errors from the library preparations or cultivations. RNA
sequencing via Illumina sequencers is based on PCR amplification of
transcripts. This introduces the sequence composition error. GC rich
sequences will be transcribed to a lesser extend than GC poor regions.
The same error occurs in Illumina genome sequencing, and is countered
there, especially in de novo sequencing by introducing other sequencing
technologies like PacBio, that contain a random error rate to fill the gaps
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created by Illumina. The problem persists in transcriptomics, making
gene comparisons less reliable by introducing the gene sequence as a
source of variation in coverage. Problematic analysis are usually avoided
by comparing identical genes. But earlier normalization approaches like
Fragments (Reads) Per Kilobase of transcript per Million mapped reads
(FPKM / RPKM) ignored this error source, to the detriment of their accuracy.
Two main methods for normalization have been established, abundance
and non-abundance based estimations. Notable non-abundance methods
are TPM, RC, UQ, Med, TMM, DESeq, Q, RPKM, and ERPKM. Abundance
based methods include Sailfish (Patro et al., 2013) and RSEM (Li and Dewey,
2011). A more comprehensive comparative analysis can be found by Li
et al. (Li et al., 2015). Additional methods based on mass spectrometry
derived linear correction used in this thesis include VST (Variance Stabilizing
Transformation). Other technical errors are also well documented. For
example 5 ends of read sequences carry lower quality values due to lower
amplification and measurement accuracy. Errors in the library preparation
kits are also documented. Combining advanced machines with complex
chemistry provides error sources from the side of the machines. Several
software suites are available to validate quality (FastQC), and remove
the error as far as possible (e.g Trimmomatic (Bolger et al., 2014)). The
current market, due to a lack of alternatives to Illumina does not allow
for an accurate benchmarking. Another documented error concerns the
Indel (Insertion/Deletion) sequencing mismatch in short read sequencing,
misaligning sequencing due to a lack of reference accuracy. The combination
of PCR and technical errors leads to high variability of coverage between
adjacent loci, even if no transcription changes are expected. This variability
ultimately has an impact on the overall coverage of genes, making the
comparison of expressions of different genes less reliable than intragenic
analysis such as differential expression.

1.5 RNAseq analysis

RNAseq Data analysis consists of a three step process: i) Preprocessing,
which cleans the data, and ensures quality; ii) Processing, which essentially
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turns the raw data of several giga-bytes into simple tables; and iii) Post-
pocessing, which includes downstream analyses that produce meaningful
results.

1.5.1 Preprocessing

Most projects described in this thesis concern the application of Next
Generation Sequencing. More specifically, RNA sequencing. Data obtained
from RNA sequencing is obtained as raw reads in fastq file format. This
format contains the individual reads of a length determined by the library
protocol, and the quality score for each base determined by the sequencing
machine. The quality is given in a PHRED score, most commonly PHRED
33 format. In this format, ASCII characters, starting at ASCII character 33
(the symbol ’!’), are used to encode the sequencers fluorescence detection
into a quality score for the most likely base. The score translates to a
probability of incorrect base call. A first step in handling this combined
data is to filter the reads by their quality score. Quality scores in Illumina
reads are not homogeneously distributed. A common observation is that
read quality drastically decreases in the 5 direction of the reads. Quality
is commonly assessed by the visualization software FastQC. After initial
quality assessment, reads can be trimmed. Trimming here refers to the
cutting off of low quality regions. In transcriptomics, the quantity of
reads mapping to any region is important, little additional information is
gained from longer reads. So theoretically reads over a length of 12 bp
can be considered sufficiently specific. The reads are assessed by a sliding
window approach, testing read quality in those windows, and removing
areas below a certain quality threshold. The software solution chosen for the
pipelines used in he work described here is trimmomatic v0.32 (Bolger et al.,
2014), other options are available. Modern library preparations include the
addition of specific adapters that can easily be removed from the reads, since
their sequence is predefined by the sequencing protocol. This step is less
critical for alignment based transcriptomics, but is generally recommended.
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1.5.2 Processing

After successful trimming, the subsequent step in the quantitative analysis
of expression is the association of each read to every single read to a region
on the genome. Since all reads are cDNA derived from the mRNA inside
cells, hypothetically all reads should have been derived from those cells. A
usual step here, before the quantification of the reads, is a mapping step
against the genomes of known potential contaminations. Especially when
analyzing mammalian tissues, contaminant species like those of the genus
Mycoplasma can be detected. Most work in my projects was carried out on
yeasts, which themselves grow very rapidly, and do not commonly suffer
from contaminations. Several different software solutions are available to
map reads to their respective genome regions. The currently preferred
tool is called STAR (Dobin et al., 2013, 2016). A few years ago, the most
commonly used toolkit was the tuxedo suit, consisting of the short read
mapper bowtie2, the splice junction mapper tophat2 (Kim et al., 2013) and
several downstream analysis toolkits, cufflinks and cuffdiff (Trapnell et al.,
2011), as well as cummerbund and others. For most projects described
here, tophat2 and bowtie2 were used for mapping the reads to the genome.
The mapping step associates each read to an area on the genome. After
each read is mapped, quantification of areas of expression can follow. The
core assumption in the analysis of RNA sequencing is that the amount of
reads detected by the sequencer is proportional to the amount of mRNA
that was produced by the cell. Additionally, the amount of mRNA is
a result of the activity of the gene, and a general assumption is that
expression correlates to the amount of protein for the given gene. The
most common step is the counting of the reads overlapping each region
of the genome. Several software solutions are available to estimate the
coverage of annotated transcripts, depending on the complexity of the
observed organism, different solutions are implemented. The one used
most commonly, also in the thesis described here, is htseq-count. Htseq
is a python package that deals with the quantification of read counts
overlapping any region. The output of this analysis is the quantification
of counts per transcript. An alternative approach to quantification is the
estimation of all cellular transcripts. To accomplish this, the solution
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implemented here follows the cufflinks transcriptome annotation approach.
Given a reference genome, the transcriptome is aligned against the genome.
Regions of sufficient expression with consistent coverage are returned as
novel transcripts. This approach was used as a basis for the pipeline to detect
long noncoding RNAs in Candida parapsilosis (see Chapter 2).

Postprocessing

Depending on the interest at hand, several approaches can follow. The
most common direction is the quantification of expression and the analysis
of what is called differentially expressed genes. Differential expression
here refers to the detection of genes that have been actively, and more
importantly, measurably changed in their level of expression. Due to the
application of hypothesis testing, Differentially expressed transcripts are
considered significantly active in expression. This activity is commonly
related to the biological function of the transcript. Assessing differential
expression is carried out via the comparison of gene expression over the
whole transcriptome, the sum of all individual transcripts. The approach
used most commonly in the described projects is the one implemented by
DESeq2 (Love et al., 2014). The behavior of individual transcripts is modeled
according to a negative binomial distribution. Variance of expression can
be estimated by the analysis of expression over replicates. Knowing the
variance for the individual genes, and the range of expression, a significance
test for outliers against the expected distribution can be performed. This
hypothesis test results in what is called a p-value. Using p- values has
become a very common approach in biology.

The value tells for each transcript the likelihood that it does not behave
differently from the null hypothesis. In other words, the likelihood of it
being un-regulated (I.e not changing significantly the level of expression).
P - values are probabilities given on a scale from 0 to 1, approaching but
never reaching either. Due to convention, a probability of less than 5 %,
or p = 0.05 is considered sufficient to make the claim, that a biologically
meaningful occurrence was observed. Application of p-values in large scale
analysis like transcriptomics leads to an important flaw in probabilistic.
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Accepting 5 % of test results to be falsely returned as positive for the
null hypothesis has little impact on individual measurements. But if all
genes are assessed in a series of analysis, 5 % of false positives will result
in large numbers of false positives. Yeasts of the saccharomycotina clade
contain approximately 6000 genes, a 5% error results in approximately
300 false positive or active genes. To counter this trend, multiple testing
corrections are carried out. DESeq2 (Love et al., 2014) uses approaches
in multiplicity correction described above, which increases the p-value,
based on the amount of repeated tests in the hypothesis scope. After the
detection of actively regulated genes, the most common step involves the
association of genes to their most likely function. This is most commonly
done by associating genes to Gene Onthology (GO) terms. Several levels of
certainty exist towards the gene association. In Candida species other than
C. albicans, most genes are associated by sequence similarity to orthologs in
either C. albicans or S. cerevisiae. Gene motif detections can be carried out
to improve the accuracy of such computational predictions. Gene motifs
contain conserved regions with known activities. Several motif databases
exist for comparison. Yet the true function of those genes is not undisputed.
Especially considering the evolutionary distance of those organisms, and
their respective environments. Overall, GO terms can be used to estimate
the biological meaning of an analysis, given sufficient numbers of associated
genes are involved. In the most common approach, the active genes are
tested for enrichment of certain functionalities against the background of all
genes in the organism.

1.5.3 Developments since 2013

The advance of transcriptomics from the background of NGS is a recent
development. Being introduced less than a decade ago, the analytical
pipelines are not static, and massive changes have occurred even in the
time span of this thesis. The pipeline described above was used from the
early approaches in 2013 onwards, in order to preserve reproducibility. Yet
the field has advanced and other methods should be mentioned. Most
improvements have been implemented in the step of short read and splice
junction mapping. Bowtie2 and Tophat2 are being replaced by more
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advanced mappers, implemented in STAR (Dobin et al., 2016) aligner and
HISAT2 (Kim et al., 2015). HISAT2 is based on the bowtie mapper and
officially recommended by the Tophat2 developers as a more efficient tool.
Differential expression analysis has not changed substantially in the last
years. The same models are still being used. But other downstream
analysis have to be considered more carefully. Some server solutions for
GO enrichment analysis for example are being used even though they are
outdated, leading to potentially misleading analysis (Wadi et al., 2016).
Novel approaches are starting to appear, with the improved knowledge
of cellular behavior, bayesian models, especially bayesian networks for
transcriptomics data analysis are being implemented in approaches for
transcriptome assembly and quantification (Kharchenko et al., 2014; Maretty
et al., 2014)

1.6 Introduction to statistical approaches used in this thesis

Ultimately, the advances of measurement technologies lead to the introduc-
tion of the so called -omics techniques. An -omics technology refers to the
analysis of a specific feature in the entire organism, or rather the collective
analysis of an entire group of features. The core concepts of most work pre-
sented here are i) genomics; the study of all genes, ii) transcriptomics; the
study of transcription and iii) proteomics; the study of cellular translation.
Over the last years additional -omics techniques such as infectomics, interac-
tomics, metabolomics and others have been introduced. An important point
of the large scale observational concepts is the change in analysis compared
to classical biology.

Mathematics and applied statistics are not fields that were widely used in
classical biology. A famous article by E. O. Wilson written in his book Letters
to a Young Scientist stated that [in biology] you dont need mathematics to
do science. A concept that does not apply to modern -omics methods. Not
only do modern quantitative methods require mathematical models to be
used effectively, they often need large quantities of individual analyses.
More recently Markowetz (Markowetz, 2017) argued that all biology has
become computational biology. He argues that mathematical modeling, and
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experimental design have long infiltrated biological approaches. Analyzing
collectives of individual analyses is only possible with correctly applied
statistics. Additionally, new problems arise if approaches from classical
biology, like hypothesis testing are applied on larger scales.

In this section, a quick overview is provided concerning the approaches used
in the subsequent Chapters. A special focus is given to statistical applications
used in RNA sequencing data. Additionally, an introduction to the concept
of bayesian analysis is described, referencing the project in Chapter 4.

1.6.1 Basic Concepts

Hypothesis testing

Hypothesis testing is the backbone of most comparative biological analysis.
It is the primary tool in empirical research for detecting differences amongst
groups of measurements. However, empirical research and therefore
hypothesis testing have their limits. Since an empirical approach to research
cannot eliminate uncertainty completely, it merely helps with the estimation
of uncertainty (Banerjee Chitnis et al., 2011). The first step in hypothesis
testing is the formulation of the competing hypothesis, followed by the
estimation of correctness of empirical observation with data. Two types of
errors derive from the empirical data under the expectations of hypothesis.
Type I errors (alpha values) refer the the conclusion of a false positive, a false
acceptance of the hypothesis. The claim commonly made is that group A
differs from group B, and we are 95% certain that this is true. Type II errors
( or Beta values) gives the complementary error for a false negative. The
important consideration for biology is that hypothesis testing does not result
in a clear yes or no answer, but merely the estimation of error for choosing
one of the proposed hypothesis. In modern biology statistics has been
standardized between experimental approaches, generating terminology
that is followed by applied scientists without much consideration. Standard
hypothesis tests return what is referred to as p- values, or the likelihood of
committing a type I error. This applies most commonly to the rejection of
the zero or null hypothesis, as the most common null hypothesis claims that
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the two groups of measurements are identical. Rejection of this hypothesis
is termed a significant difference. The commonly expected p-value in
biology is 0.05, a 5% chance of false positives, in clinical experiments
alpha may be set to 0.01 or below that e.g for drug discovery. The most
common implementation is the t-test, a simple comparison of two normal
distributions. Effects on multiple dependent groups is commonly tested via
ANOVAs, ANalysis Of VAriances.

Multiple testing concepts and FDR

As described above, the most common implementation in biology accepts a
hypothesis if the evidence against it allows for less than 5% uncertainty.In
many biological experiments, multiple tests are carried out to analyze e.g
individual genes for their significance. Three independent observations
under the same 5% constraint have a combined probability of 14.2%.

(1− (1− α)n)

Meaning that with a 14% probability under the above constraints, at least
one of the hypothesis was falsely accepted as true. Transcriptomics analyzes
several thousand genes in a cell, with the expected rate of false positives
around 5% of genes, potentially leading to a misleading analysis due to
multiple testing. Several approaches have been proposed to counteract those
false discoveries. The most common approaches deal with an adjustment
to the p- value based on the amount of observations. Depending on the
necessity of the analysis an approach that will sacrifice true positives for the
sake of removing more false positives, or vice versa can be applied (Noble,
2010) (Aickin and Gensler, 1996). Complex statistical methodologies will
have a general implementation of those approaches, and return an False
Discovery Rate FDR (an alias to the Benjamini Hochberg correction) or p-
adjust in DESeq2 (Love et al., 2014) instead of a simple p-value.
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Correlation analysis

Correlation is a measure of similarity amongst samples behavior. The more
identical two samples behavior according to an underlying expectation,
the higher their correlation. Correlation analysis can be used to make
predictions on underlying mechanisms by removing noise. There are two
main approaches to compute correlation coefficients, the Pearson’s product
moment correlation coefficient, (Pearson coefficient) and the Spearman’s
rank correlation coefficient. A review on usage in a clinical setting was
pubslished (Mukaka, 2012). Pearson correlations are commonly denoted
as r for sample statistics. Pearson correlation coefficients assume a linear
correlation between the samples. This is the method used for a project
described in chapter 2 in associating gene function. In our approach we
paired a pearson correlation function with a weighted clustering approach.
The concept behind that analysis follows the idea that gene expression is
co-regulated between genes of similar function.

Noise and how to deal with it

In order to obtain meaningful information from raw data in empirical
research, it is not only important to find the right questions and hypothesis.
It is also essential to understand effects that affect the measurement without
providing information to the experiment. The term noise here refers to the
unspecified errors that was detected by the measurements. In biological
measurements, those errors derive from both the biological and the technical
background. In complex analysis like RNA sequencing, noise affects
individual bases, genes and the whole sequencing run in different ways.
Several approaches have been proposed to deal with the noise in such
analysis. The most common way of limiting noise, in transcriptomics, is
normalization. By actively removing a known impact on the data variance it
is possible to enable cleaner analysis pathways. The most commonly applied
normalizations in RNA sequencing are Reads/Fragments Per Kilobase per
Million Mapped Reads, RPKM / FPKM, proposed by Mortazavi, et al
(Mortazavi et al., 2008). This normalization method has since fallen out of
favour. The approach ignores some common high impact error sources,
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and treats genes as a homogeneous block. As mentioned in a previous
section, PCR based sequencing approaches have non random errors on their
sequence, and do not normally show a homogeneous coverage. Current
analytical pipelines suggest the more gene independent normalization of
Transcripts Per Million TPM. A simpler normalization that ignores gene
length. TPM is avoiding the length assumption from FPKM, and therefore
the misleading assumption of sequence. A more complex normalization
can be applied if more static underlying effects of several RNA sequencing
runs have to be removed. E.g, as described in the chapters 2 and 4,
samples were derived from different laboratories and combined into one
analysis via a weighted clustering of expression. In order to remove effects
derived from such data batches linear fitting algorithms are applied. In
our case we opted for Variance stabilizing transformation as a methodology
to stabilize variability of counts for genes on multiple sequencing batches.
The method was described for RNA sequencing data by (Love et al., 2014).
The original application derived from normalizing Mass spectrometry data,
peaks, according to a linear graph to remove a baseline of noise. The original
application of lowering a baseline to standardize output by keeping peaks
stable was applicable to the RNA sequencing batch noise correction. The
main benefit of this method is that it stabilizes the variance of batches of
data for the downstream analysis without removing the individual genes
expression ratios. Another way is followed by software suits for Differential
Expression analysis, that use the noise to compute the expression variance
expected for downstream classification.

1.6.2 Frequentist to Bayesian

Frequentist and Bayesian are two trains of thought in statistics. The one
most commonly used in biology is Frequentist. It has the benefit of requiring
simpler models which are easier to design and are consistent in their
application. The simplicity of model comes at the cost of harder to interpret
results. The most widely used of all biological applications of statistics
is the Students t test. This test is based around defining observations
into the shape of a normal distribution. A set of different observations,
modeled in the same distribution can be tested to be different from the other
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distribution. The test is called t-test, after the Student-t distribution and
is applied very liberally on various biological processes. Results of such
a hypothesis test is a p-value, already mentioned above, p values are not
that easy to handle, and their meaning and implication are not grasped by
the community at large. This leads to many misunderstandings in modern
biology. Bayesian approaches, unlike frequentist rely on the existence of
pre-existing knowledge, called priors. The underlying assumption is that
any observation has to be evaluated in the context of its surrounding. Of
course, this analysis can ever only be as good as the assumptions, or priors,
available. It made therefore sense for modern biology to rely on frequentism,
due to the limited assumptions required. As our knowledge of the systems
we attempt to describe grows, bayesian analytics produce a more reliable
analysis. In our approach described in Chapter 3, we implemented a
bayesian approach for classification of Allele Specific Expression.
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Long noncoding RNAs modulate virulence in the
opportunistic yeast pathogen Candida parapsilosis

2.1 Abstract

The role of long, non-coding RNAs (lncRNAs) in fungi remains poorly
understood. Most studies provide catalogs of predicted lncRNAs, which
remain functionally uncharacterized. In this project, we combined tran-
scriptomics and computational predictions to discover lncRNAs likely in-
volved in virulence in the human opportunistic pathogen Candida parapsilo-
sis. We used a combinatorial approach for the analysis of RNA-protein co-
expression and predicted physical interactions to prioritize five lncRNAs for
gene disruption and phenotipic characterization. All mutants exhibited var-
ious phenotypes, including mild to severe impairments of virulence. One
of the selected potential lncRNAs was found to be sensitive to physiological
temperature and oxidative stress, modulate genes involved in cell-wall per-
meability regulation and its deletion altered virulence in insect and mouse
models. We identified the functional center that likely emerged from within
an open reading frame, and which structure and function is preserved in the
complementary strand. Our findings provide new insights into the origins
and mechanisms of functional lncRNAs in yeasts.

2.2 Introduction

Candida parapsilosis, is an opportunistic human pathogen that ranks as
the third most common source of systemic candidiasis worldwide, being
responsible for roughly one third of neonatal Candida infections (Singh
and Parija, 2012) (Pammi et al., 2013). This and other Candida species
can be normal components of the human microbiome but, under specific
circumstances, they can switch from commensal to pathogenic behavior, a
process which involves changes in several cellular properties. Rapid shifts
in morphology and physiology require complex networks of regulation,
enabling individual cells to adapt to changing conditions. Under these
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circumstances, regulation through RNAs may represent an advantage
over protein-based systems, as RNAs can exert a function shortly after
transcription. However, whether lncRNAs may play a role in human
commensalism or virulence in Candida species is as yet unknown. The
presence of lncRNAs has previously been reported in several other fungal
species, most notably in the model yeast Saccharomyces cerevisiae (Yamashita
et al., 2016). A recent study in this species attributes lncRNAs functions
in mediating mating-type control of gametogenesis (Werven et al., 2013).
Another study (Houseley et al., 2008) investigated the involvement of a
non-coding, anti-sense transcript in the regulation of the GAL1-10 cluster.
Only a few non-model fungal species have been investigated for their
noncoding genome so far. These include the ascomycete Trichophyton rubrum
(Liu et al., 2013) or the basidomycete pathogen Cryptococcus neoformans,
where abundant lncRNAs have been predicted (Janbon et al., 2014). The
presence of lncRNAs in several opportunistic Candida pathogens have also
been examined. In a recent paper, Linde et al. (Linde et al., 2015)
focused on the non-coding transcriptome potential of Candida glabrata, and
Sellam et al. (Sellam et al., 2010) used tiling arrays and polymerase
occupancy to produce an atlas of potentially pathogenicity associated
noncoding RNAs (ncRNAs) in C. albicans. However, no downstream
validation of the predicted functionality was performed. The original C.
parapsilosis genome annotation did not include non-coding RNAs, although
the possible presence of noncoding transcripts was mentioned in the last
annotation update (Guida et al., 2011). More recently, Donovan et al.
(Donovan et al., 2016) investigated ncRNAs in C. parapsilosis. However,
this study focused on small nuclear RNAs (snoRNAs) and no downstream
experiment tested the predicted functionalities. Thus lncRNAs in pathogenic
fungi remain poorly investigated, with most studies being limited to large
scale computational predictions based on transcriptomics data. Although
some of them purport a possible role of lncRNAs in pathogenesis, we
still lack concrete validated evidence. To accelerate the identification of
functional lncRNAs potentially involved in pathogenesis we implemented
a pipeline combining state-of-the art computational methods for lncRNA
prediction from transcriptomic data and functional inference from RNA-
protein coexpression and physical interaction networks. This, together with
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information from a transcriptomics study of C. parapsilosis co-incubated with
human THP1 monocites, provided a set of prioritized lncRNA candidates
predicted to be involved in pathogenicity related processes. We constructed
deletion mutants of five selected candidates, which were tested for an array
of phenotypes. All tested candidates revealed altered phenotypes, ranging
from impairment of virulence, sensitivity to copper and cadmium ions,
to growth defects at 30◦C. This underscores the validity and efficiency of
our predictive and prioritizing approach, and suggests that our predicted
catalog comprises several other putatively functional lncRNAs. One of the
selected transcripts (MAD) was found to modulate temperature resistance
and pathogenicity. We identified the functional center of MAD, which
likely emerged from within an open reading frame (ORF) encoded in the
opposite strand, and which secondary structure is conserved in forward and
reverse orientation. Our findings provide new insights into the origins and
mechanisms of functional lncRNAs in yeasts. To our knowledge this is the
first study reporting experimental validation of lncRNAs related to virulence
in a human fungal pathogen.

2.3 Results and Discussion

Predicted lncRNAs and their conservation, expression and structural
characteristics

In a previous study we used RNAseq to monitor transcription of C.
parapsilosis upon exposure to human undifferentiated THP1 monocytes
(Tóth et al., 2017). This and other publicly available C. parapsilosis RNAseq
datasets (a total of 106, See Supplementary Table S1), were used to
produce a catalog of putative lncRNAs. For this, we used a state-of-the-
art computational pipeline (see Online Methods) that i) predicts transcripts
based on alignment of RNAseq reads to a genome reference and ii) infers the
coding potential of predicted transcripts. To provide a base for comparison
of our pipeline with other studies and benchmark it in a better studied
organism, we applied our prediction pipeline to 166 RNAseq datasets
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available for the model yeast Saccharomyces cerevisiae (See Supplementary
Table S1). In total, 1097 ± 743 and 656 ± 406 lncRNAs were found
in individual datasets of S. cerevisiae and C. parapsilosis, respectively (See
Supplementary Table S1). This represents a low number, compared to the
amount predicted by recent studies in multicellular eukaryotes e.g: (Iyer
et al., 2015; Mallory and Shkumatava, 2016; Ariel et al., 2015). The relatively
low amount can be justified given the relative lower number of physiological
states, and the much denser genome of yeasts, compared to metazoans
and plants. Predicted transcripts present across more than half of the
available conditions were selected, resulting in 320 and 274 transcripts for C.
parapsilosis, and S. cerevisiae, respectively. This subset was ranked according
to predictive scores as well as occurrence over different replicates (see Online
Methods), the upper quintile of this ranked list was selected for further
study. This resulted in a subset of 64 lncRNAs in C. parapsilosis and 55
lncRNAs in S. cerevisiae (Supplementary Table S2). At the time of our study,
12 lncRNAs are annotated in S. cerevisiae, according to the Saccharomyces
Genome Database (Cherry et al., 2012). Four of these (ICR1, PWR1 and
RUF22, SCR1) were predicted in several of the S. cerevisiae datasets, of which
SCR1 is found in the upper quintile subset as it was more consistently
expressed across different conditions.
To assess whether our predictions were potentially derived from noisy
transcription resulting from expression of nearby genes, we compared the
patterns of expression of predicted lncRNAs to those of flanking protein
coding genes. Our results (Supplementary table S3) show that the expression
of predicted lncRNAs is not correlated with that of flanking protein
coding genes, suggesting they are independently regulated. Indeed, the
expression of our dataset of lncRNAs was less correlated to the expression
of flanking genes than protein coding genes. Next, we investigated
patterns in secondary structure, finding sequence stretches predicted to
significantly more structured than a reshuffled sequence background (See
Online Methods). Our results show that, similar to observations in humans
(Yang and Zhang, 2015) yeast lncRNAs are less structured than coding
mRNAs, but more so than intergenic regions. Finally, we assessed the
level of sequence conservation by performing BLAST searches against the
complete genomes of 14 different Saccharomycotina species (See Figure 2.1;
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See Online Methods). We found that predicted fungal lncRNAs have overall
low levels of sequence conservation, which are lower than those found
in protein coding genes, but still higher than those of intergenic regions.
The observed patterns of sequence conservation are comparable to those
reported for lncRNAs in higher eukaryotes (Johnsson et al., 2014; Nitsche
and Stadler, 2017), where some areas of the lncRNAs are well conserved,
with interspersed nonconserved regions.

Figure 2.1: Figure showing the detailed analysis of lncRNAs. A.) shows
the BLAST based analysis of sequence conservation, revealing a relatively low
conservation score overall. B.) is a visualization of the pipeline used for localized
secondary structure formation potential. It uses a sliding window approach to
subset the sequence. Windows are tested against a randomized background
seuqence and corrected for multiple testing. C & D show the relative amount of
secondary structure compared to intergenic regions and protein coding genes.
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Functional inference from networks of co-expression and predicted
RNA-protein interactions

To assess potential functional roles of the predicted lncRNAs, we built
transcriptional regulatory networks, including coding and noncoding
transcripts, based on a weighted gene coexpression network approach
((Langfelder and Horvath, 2008), see Online Methods). The analysis resulted
in two independent networks, one for S. cerevisiae and one for C. parapsilo-
sis. We considered coexpression alone to be an insufficient criteria for the
selection of lncRNAs for functional characterization in C. parapsilosis. The
respective network was too dense to drive specific functional associations
due to the limited amount of available distinct experimental conditions for
the species (12). This resulted in a dense network with an average of 538 con-
nections per lncRNA gene, as compared to three connections in the S. cere-
visiae network (Supplementary File S2). Given the difficulty of gene deletions
in C. parapsilosis, a diploid, asexual organism, we were interested in narrow-
ing down our predictions to more specific ones. To do so, we filtered our
predicted interactions with a layer of orthogonal information, by keeping
only connections where physical RNA-protein interactions were predicted
by CatRAPID ((Agostini et al., 2013), see Online Methods). This filtering
step shifts the focus towards protein binding RNA, at the cost of limiting
the prediction of other possible functionalities such as microRNA sponges
(Liang et al., 2015), or lncRNA mRNA interactions (Jalali et al., 2013). Nev-
ertheless, by focusing specifically on protein-RNA interactions that are both
coexpressed and have high binding potential, we expect to remove a sub-
stantial amount of false positives from the overly dense networks. This step
narrowed the focus to 17 lncRNAs from the original C. parapsilosis subset
(Figure 2.2). Due to the status of C. parapsilosis as a nonmodel organism, its
dense genome, and lack of evaluation for many possible genes, the presence
of overlapping ORFs in the lncRNA sequences was considered, albeit it was
not a criterion for exclusion. Using a functional enrichment approach we as-
sociated the transcripts to their most likely biological role (See Online Meth-
ods). The range of predicted functionalities included some features of special
interest for the purpose of identifying pathogenicity related lncRNAs. Most
notably adhesion or pseudohyphal growth. Five candidates were manually
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selected for experimental validation, based on their predicted association
with proteins involved in traits related to pathogenicity, and their expression
in THP1 exposed cells. This included a lncRNA predicted to interact with
genes enriched in transport (LNCRNA1), a lncRNA predicted to be involved
in translation (LNCRNA2); a highly connected lncRNA with predicted reg-
ulatory and transport functions (LNCRNA3); one (LNCRNA4) predicted to
interact with proteins whose orthologs in C. albicans regulate cell morphol-
ogy and pathogenicity (IRS4 and SEC2)( (Bishop et al., 2010; Badrane et al.,
2005); and, finally, a transcript associated to transport (LNCRNA5 ).

Figure 2.2: Weighted Gene Coexpression Network Analysis. A.) Shows the
results of a WGCNA for C. parapsilosis. Background colors represent the
enriched GO terms. The plot shows, in red circles, transcripts that were deleted
and acreened. Additionally, uninvestigated transcripts are shown in green
squares. Yellow represents expressed annotated genes. B) visualization of the
WGCNA modules. Individual points represent expressed transcripts and their
module association ( color ).

Deletion of selected lncRNA genes show diverse phenotypes

Following protocols established by Holland et al. (Holland et al., 2014), we
created deletion mutants for the five lncRNAs described above (see Online
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Methods). The resulting mutant strains and the wild type (wt) were then
subjected to a battery of conditions, many of which are implicitly testing for
the ability to survive and prosper in the human host (Figure 2.4). Notably, all
five deletion mutants showed some degree of reduced virulence when tested
in a galleria model of infection ((Németh et al., 2013), Figure 2.4). In addition,
three of the mutants showed visible phenotypic changes under specific
stress conditions, often in a temperature dependent manner (Figure 2.3).
The lncrna3 ∆/∆ strain showed multiple phenotypes, including reduced
growth in the presence of hydrogenperoxide and diverse cellwall stressors
(congo red, caffeine, calcofluor white) at both tested temperatures (30◦C
and 37◦C), with defects being more prominent at 37◦C. Additional growth
defects under various stresses (acidic pH, copper, iron depletion) were only
observed at 37◦C. Finally, lncrna3∆/∆ strain showed reduced sensitivity
to cadmium ions at both temperatures. The lncrna5∆/∆ strain showed
resistance to the cellwall stress induced by congo red in a concentration
dependent manner, but only at 30◦C. Finally, lncrna4∆/∆ showed a
range of interesting phenotypes: sensitivity to copper and cadmium ions,
strongly reduced virulence in the Galleria infection model, and, importantly,
the inability to grow on YPD agar at 37◦C in the absence of additional
stresses. Intriguingly the growth defect at 37◦C disappeared when combined
with osmotic stress, suggesting that response to this stress complements
some putative functions of the deleted loci. Furthermore, this mutant
showed increased sensitivity to several typical antifungal drugs, including
the polyene drug Amphotericin B, as well as all tested echinocandins:
Anidulafungin, Caspofungin and Micafungin. Interestingly, however, the
sensitivity to one important antifungal drug, fluoconazole, was reduced
in lncrna4∆/∆. This range of sensitivities of lncrna4∆/∆ suggests major
changes in cell wall properties and high sensitivity to various stresses. The
inability to grow at 37◦C degrees is expected to be relevant for pathogenic
or even commensal behavior in the human host. We named this transcript
MAD (Mdr1 AbD1 associated ), and we will use this name hereafter.
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Figure 2.3: Figure showing the observed phenotypes on deletion mutants.
In the plots A,C and D, colors correspond to relative growth to wild type. 1
refers to equal growth, lower values represent reduced growth. Figure B shows
antibiotics resistance, Values correspond to relative MIC (Minimum Inhibitory
Concentration) relative to wild type (1 = equal). A.) Combined phenotypes to
various stressors. INFECT refers to galleria mortality, details in phenotype plot
of Figure 2.4. B.) Antibiotics resistance in MIC relative to wild type. C & D)
phenotypes observed at the different temperatures.
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Figure 2.4: Pathogenicity Phenotypes. A.) Galleria mellonella infection study of
all deletion mutants (4 mutants in dublicates + transcript 3, without replicate)
compared to uninfected and PBS control. Lines represent the individual deletion
mutants for the transcripts 1 to 5. CLIB RI represents to the wild type (mutant
before deletion). B) Mouse results for the deletion mutant of transcript 4 (MAD)
compared to the wild type (CLIB RI). CFUs (on log scale) were tested on day 2
and 5. Significance according to a t-statistic are shown in asterisks. C.) Growth
curve of Transcript 4 (MAD) as CpLNCRNA1 deletion mutant against the wild
type (CLIB RI). Growth in YPD medium at 37◦C slows only after several hours.

MAD functional domain structure and function are
strand-independent

Given the interesting phenotypes shown by the MAD knock out we chose
this predicted lncRNA for further characterization. The analysis of sequence
conservation and structure shows two areas of increased local secondary
structure folding potential, one of which overlaps with a relatively highly
conserved 200bp long region (Figure 2.5). A feature of initial concern
was the presence of a putative open reading frame in the opposite strand
where the lncRNA is encoded, which covers around 36 % of the MAD
transcript and overlaps with the above mentioned conserved stretch. This
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ORF is predicted to encode a transcription factor containing a basic Leucine
Zipper domain, orthologous to C. albicans MET28. A comparison of
synonymous and nonsynonymous mutations between C. parapsilosis and C.
orthopsilosis MET28 loci suggests the protein coding capacity is constrained
(see Online Methods). However, this comparison also reveals that a putative
shared structure of the transcript is also constrained and maintained by
compensatory mutations (p-value 0.01 based on structure conservation
index from RNAz (Gruber et al., 2008). In C. albicans, MET28 has been
found to be upregulated during mating (Zhao et al., 2005), while in S.
cerevisiae it is known to mediate activation of sulfur metabolism genes (Kuras
et al., 1996, 1997)). These potential functions, and the range of phenotypes
for the null mutant described in S. cerevisiae are not related with those
observed here for lncrna4∆/∆ (hereafter MAD∆/∆). The RNAseq datasets
used to predict MAD are not strand specific, precluding us to differentiate
expression from each of the two DNA strands. However, expression analysis
over the range of conditions available shows no significant changes in
the expression levels of the ORF region compared to the whole transcript.
That is, in the available conditions the region covering the ORF seems to
be not expressed independently from the rest of the region covering the
MAD transcript. We tested strandedness in CLIB WT exposed to THP-1
phagocytes by using qPCR (See Online Methods), which showed roughly
ten-fold (9.83 ± 2.3 : 1) higher expression of the MAD bearing strand as
compared to the ORF strand (see Supplementary Table S1). An investigation
into potential functional centers overlapping the ORF is documented in the
Online methods. We nevertheless designed an experiment to specifically
test whether the absence of the lncRNA or the encoded protein were
responsible for the mutant phenotypes (37◦C). For this we tested the effect
of reintroducing, in the knock out background, i) the native ORF sequence
under a promoter in forward direction, ii) the same sequence under a
promoter in reverse direction (i.e. the strand of the MAD transcript) and,
iii) a modified ORF with a frameshift mutation in forward direction (see
Online Methods). All three introductions rescued the temperature sensitive
phenotype, indicating that transcripts from the forward, frameshift and
even the reverse strand of this region are able to complement the function
but that, importantly, the functional complementation seems to be largely
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independent of the ORF translation (Figure 2.6). Closer analyses revealed
that identical structures can be formed in forward or reverse strands by the
genomic region comprising the previously described functional center (see
Figure 2.5). To our knowledge, this ability to fulfill the same function by
transcripts encoded by complementary strands has not been reported for a
functional lncRNA. As we will discuss below this observation may be related
to the evolutionary origin of MAD. However, in the above experiments
we could not fully exclude the possibility that an alternative start codon
produced a truncated, functional protein. We thus integrated another
construct which included a stop codon after the last possible methionine
residue (see Online methods, Figure 2.6(B)). This construct was not able to
restore growth at 37◦C in the MAD∆/∆ background, although the finding
that this construct expressed the transcript only at 30% of the wt expression
of MAD, made this result also not conclusive. We thus must remain cautious
about a possible dual role of this locus in the observed phenotype.

Figure 2.5: Functional center evaluation. A.) The figure shows the triplot of
overlapping significant regions for MAD. The sequence is displayed from left
to right, covering 1986 nucleotides. The Secondary structure was analyzed
according to the pipeline described above. BLAST results were analyzed
according to the approach discusses in the methods. B.) Visualization of the
three approaches, with a potential inferrence of the functional center. C.)
Predicted secondary structures for the forward and reverse strand for the region
highlighted in B according to Beagle web server
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Figure 2.6: Reintegration results. A.) Shows the various results of ORF, Frame
Shift and Reverse Complement reintegration. All transcripts complement the
phenotype compared to the empty vector (bottom row). B.) Shows the results of
the second stop codon reintegration. 30◦C shows normal growth, while at 37◦C
deletion mutants show at least a partial rescue compared to the empty vector.

Deletion of MAD alters expression patterns upon growth at 37 degrees

To gain further insights into the potential role of MAD in physiological
temperature tolerance, we performed strand-specific RNAseq experiments
with the MAD mutant and wt strains grown at 30 and 37◦C (see Online
Methods). Our results show that both strains grow similarly during the
first 8h of exposure to 37◦C, after which a retention of growth in the
MAD knock out sets in (supplementary table 3). To obtain homogeneous
cultures, we took samples after 15 hours of growth at 30 and 37 degrees
for RNA extraction (see Online methods). Reassuringly, in the wt strain
the expression of the strand coding for the ORF was negligible at both
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temperatures, and roughly three orders of magnitude smaller than the
MAD strand, further supporting a functional role for the lncRNA in this
condition. We first compared, in each of the genetic backgrounds, genes
significantly up- or -down regulated at 37◦C degrees as compared to growth
at 30◦C. This has the potential to inform how the two strains react to
different temperatures. In the wt strain 77 genes altered their expression
between the two temperatures (basecount > 100 & log2fold of < |1.5
|). This number was severely reduced to 47, of which 11 are unique
to the deletion mutant MAD∆/∆. This suggests an impaired regulatory
activity. The list of differentially regulated genes (see Supplementary list 2)
reveals the presence of several genes related to mitosis (APC1), ion binding
(SUT1), transcription regulation (SSN8) or external membrane processes
and transmembrane transport (YOR1, MDR1). Of note, during exposure
to 37◦C MDR1 is downregulated in wt, a plasmamembrane transporter
responsible for effective removal of fluconazole from the cytoplasm in
C.albicans (Lamping et al., 2007). This regulation was lost in the MAD
knock out, which is in line with the observation of reduced sensitivity
to fluoconazole as compared to the wt strain. Although there was no
difference found in the expression of MDR1 at 30◦C between the two strains,
our observation suggest a MAD dependent MDR1 regulation that might
take place upon fluconazole exposure. Comparing the wt and MAD∆/∆

gowing at 30◦C on YPD, only 7 genes are differentially regulated. The most
interesting one is CPAR2 808130 (ABD1 in C. albicans and S. cerevisiae), a gene
with orthologs involved mRNA maturation, mRNA capping and a cellular
response to drug that co-localizes with the DNA-directed RNA polymerase
II holoenzyme (Pol II). ABD1 is an essential protein in S.cerevisiae, (Schroeder
et al., 2004), and considered gene-specific RNA pol II transcription factor
(Schroeder et al., 2004), especially since other pol II activating genes were
differentially expressed in the above comparison (SSN8). We next compared,
for each tested temperature, the genes that had significantly different
expression in each of the backgrounds. This directly measured the effect
in overall transcription of the MAD deletion. Considering the above cutoff
criteria (basecount > 100 & log2fold of < |1.5 |) there was only one gene,
CPAR2 106960 showing altered expression that was downregulated at 37◦C
in MAD∆/∆ compared to wt. This suggests that the presence or absence of
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MAD has a very minor impact on cell growth at 30 degrees. In contrast,
growth at 37 degrees shows 11 differentially expressed genes. Among
them there are a few well studied ORFs, including MDR1 the Multi Drug
Resistance gene 1 (Lamping et al., 2007), the product of SLS1 is involved
in aerobic respiration and CPAR2 807070, the ortholog of C. albicans SSN8
that is a conserved component of the eukaryotic transcriptional machinery
and provides a connection between regulatory elements and the RNA
polymerase II. ((Bryan et al., 2002), (Lindsay et al., 2014), (Boube et al., 2002).

MAD deletion alters virulence patterns in a mouse model

To assess the potential significance of the observed defects in virulence
towards a mammalian host, we set out to test the effects of the MAD mutant
on virulence in a murine model of candidiasis (see Online methods). We
measured colony forming units (cfu) after two and five days of bloodstream
infection, in liver, spleen, kidney and brain tissue (Figure 2.4). We observed
that temperature sensitivity is not lethal in vivo and that, similarly to the
effect of osmotic stress, physiological conditions in some tissues may even
allow growth. As compared to the wt strain, MAD∆/∆ infections resulted
in similar loads in the brain and liver, and, surprisingly, a higher load in
spleen. In contrast, a severe depletion was observed in kidney, which is the
organ most affected in Candida bloodstream infections in this murine model
(Hebecker et al., 2016). Altogether, these results indicate a function of MAD
in pathways that modulate virulence and survival in the host.

2.4 Conclusion

We implemented an efficient workflow to accelerate the discovery of
lncRNAs implicated in pathogenesis, as illustrated by the finding that
all selected potential lncRNAs genes produce a phenotype when deleted.
comparable study of deletion mutants by Holland et al. found only 37% of
deletion mutants show phenotypes affecting virulence directly or indirectly
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(Holland et al., 2014). Therefore, the co-expression based pipeline shows
potential for the analysis for other cellular features, such as genes. Based
on the interesting phenotypes shown, we have focused on one of the tested
candidates (MAD). Deletion of MAD results in sensitivity to copper and
cadmium ions, strongly reduced virulence in the Galleria infection model,
and the inability to grow on YPD agar at 37◦C. Although the presence of
an overlapping ORF in the opposite strand of MAD was of initial concern,
our experiments suggest that the phenotypic complementation obtained by
reintroducing this genomic region is likely independent of the translation
of the ORF. In addition, the finding that the most conserved and structured
region of MAD is predicted to form similar structures when transcribed from
the two complementary strands, and the fact that both transcripts are able to
complement the phenotype of the knock out in a manner independent of the
translation may not be unrelated. We hypothesize a plausible evolutionary
scenario for the origin of MAD, in which this lncRNA originated from co-
option of a protein-coding transcript. In such scenario a regulatory function
through RNA-protein interactions may have emerged as a secondary role
of a transcript of a functional MET28 gene in C. parapsilosis. Provided the
resulting transcript could be folded in a similar secondary structure, anti-
sense expression of the MET28 locus would have ensured the presence of
the regulatory function, independently of the transcription and translation
of MET28, thus avoiding potential deleterious effects of the expression of
this transcription factor. Further extension of the anti-sense transcript may
have served to optimize the alternative function. We hypothesize that such
a scenario may have also played a role in the origin of other lncRNAs in
other eukaryotic species, implicating that many lncRNAs start their lives as
moonlight functions of bonafide mRNAs. This would explain observations
of abundant anti-sense lncRNAs that overlap with protein-coding genes.
An alternative potential explanation involves a role of MAD in regulation
of chromatin modeling. It has been shown in drosophila (Wilusz et al.,
2009) that noncoding RNAs like Kcnq1 (Smilinich et al., 1999) can play a
role in chromatin structure. In this case, transcription of the antisense
transcript may be useful for generating access to dense chromatin regions.
Admittedly, we cannot fully exclude a possible role of the ORF sitting in
the opposite strand in the observed phenotypes. Given that the predicted
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functional center of MAD overlaps with the ORF, and the structure can be
formed in RNA transcribed in either sense, it is challenging to disentangle
the contribution of each molecule. However, considering the much higher
expression of the MAD strand in the analyzed conditions, and the fact that
the knock out phenotype is complemented by constructs with a frameshift
mutations, and under the control of promotors driving the expression in the
sense of the lncRNA, makes us support an important role for the lncRNA,
albeit perhaps not exclusively.

2.5 Online Methods

Data

We downloaded 166 RNAseq data sets from 13 different experiments S.
cerevisiae and 48 RNAseq runs from 1 experiment (Guida et al., 2011) for
C. parapsilosis from SRA (Leinonen et al., 2011), encompassing 19 different
conditions see Supplementary Table 1 for details. Supplemented with 58
RNAseq runs from 3 experiments produced by our group for C.parapsilosis.
Reference genomes and annotation files for S. cerevisiae, S. paradoxus, C.
parapsilosis, C. metapsilosis, C. orthopsilosis, C. glabrata and C. albicans were
obtained from SGD Saccharomyces cerevisiae, S.pastorianus, S. paradoxus, S.
mikatae, S. kudriavzevii, S. uvarum, S. bayanus, S. castellii, Lachancea kluyveri,
from SGD (Dwight et al., 2004) and C. glabrata, Lodderomyces elongisporus, C.
albicans, C. dubliniensis, C. parapsilosis and C. orthopsilosis. from CGD (Arnaud
et al., 2005).

Transcriptome Assembly

For initial data preprocessing we used Fastqc 0.10.1 (Andrews S., 2010) for
quality assessment and Trimmomatic v0.32 (Bolger et al., 2014) conditions:
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 for discard-
ing low quality regions and reads. Samples with more than 15% of discarded



56
Long noncoding RNAs modulate virulence in the opportunistic yeast pathogen

Candida parapsilosis

reads were dismissed from the analysis. The Tuxedo suit was used on Illu-
mina datasets exclusively. Strain specific genome reference sequences were
available, and were used for a Reference assisted assembly, in None of the
cases, de novo assemblies were necessary. For the reference-assisted assem-
blies, individual samples were assembled with tophat 2.01.13 (Kim et al.,
2013) with default settings, and mapped with the bowtie 2.2.4 (Langmead
and Salzberg, 2013) short read mapper Cufflinks 2.2.1 (Trapnell et al., 2011)
against the respective reference sequence. Subsequently, cuffmerge was used
to merge the individual samples for transcriptome prediction. Using mostly
paired end data, replicates were merged, using cuffmerge, to contain a total
of about 20 to 30 million reads. Increasing the read amount further did not
increase the quality of the assembled transcriptome.

Prediction of lncRNAs

LncRNA prediction was done computationally on the assembled Transcrip-
tomes. In a first step, Coding Potential Calculator CPC, (Kong et al., 2007)
with default parameters was used to predict lncRNAs de novo. CPC uses a
support vector machine aided blastx approach against an existing protein
database, in our case Uniprot Ref90 (UniProtConsortium, 2015), to select
transcripts that are not similar to existing proteins, and show limited open
reading frames. This approach provided reproducible predictions across the
available transcriptome assemblies. In a second step, Coding Potential As-
sessment Tool CPAT (Wang et al., 2013) with default parameters was used to
predict lncRNAs from codon usage frequencies. Based on a learned regres-
sion model, this program provides a linguistics based alternative to CPC,
with vastly increased speed. CPAT can accurately predict coding potential
on the patterns of usage of hexameric sequence occurrence. To predict se-
quences, a training set of coding and of noncoding RNAs has to be pro-
vided. Due to a lack of noncoding prior information, sequences from in-
tergenic regions situated more than 1000 nucleotides away from genes, were
used as priors for non-coding. The most notable difference between the two
methods lays in the existing requirements, and the computational expense.
CPAT requires more prior information in the form of existing non coding re-



Online Methods 57

gions. While CPC is very resource intensive due to the use of massive BLAST
searches. The outcome of both prediction tools overlapped significantly. 92.3
± 5.7 % of CPC predictions could be validated with CPAT predictions. Only
sequences predicted individually by both approaches were kept as possible
targets.

Differential expression

After mapping with Tophat2 (Kim et al., 2013), DESeq2 (Love et al., 2014) was
used to calculate differential expression of the whole transcriptome. After
calculating the log2 transformed changes against reference base conditions,
we used Pearson correlation coefficients to compare expression patterns over
the different conditions. To enable a better comparison between different
experiments in regard of technical error sources, a normalisation via variance
stabilizing transformation, implemented in the DESeq2 (Love et al., 2014;
Anders et al., 2010) package was carried out for downstream analyses.

Sequence conservation between closely related species

We performed a similar approach as the one described by Ulitsky (Ulitsky
et al., 2012). This approach basically uses Blast comparisons to investigate
sequence conservation of the predicted subsets of lncRNAs over several
species within the saccharomycotina clade, namely Saccharomyces cerevisiae,
S. pastorianus, S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. bayanus, S.
castellii, Lachancea kluyveri, C. glabrata, Lodderomyces elongisporus, C. albicans,
C. dubliniensis, C. parapsilosis and C. orthopsilosis. Our analysis focused on the
sequence comparison of the whole lncRNAs as well as fragmented lncRNAs
of 100bp against the available transcriptomes. An e value of 10e-5 was
considered significant. For comparison, we tested sets of randomly selected
intergenic regions and annotated protein coding genes, normalized over the
length of the region to blast score per kilobase.
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Secondary structure analysis

We predicted the propensity to form secondary structure using RNAfold
2.1.9 (Gruber et al., 2008). In a first attempt, the secondary structure of
whole lncRNAs was tested. To obtain a background model, the individual
sequences were randomized and individual predictions were carried out on
50 different randomizations. The 50 randomized predictions were used to
define a randomized background population of structures, and an upper
tail test of population mean was carried out, applying a cutoff of p 0.05
for significance. Since lncRNAs function is sometimes postulated to be
mediated by local secondary structure formation, such as specific binding
sites, we developed a simple pipeline, testing for secondary structures in
sequence sliding windows of up to 50bp in length. The pipeline, described
in the Online Methods, tests the increased likelihood of secondary structure
formation of a given sequence over a randomized one. We applied a
variation of a pipeline designed by Yang and colleagues (Yang and Zhang,
2015). Yang et al. Used a combination of window prediciton via RNAfold
(Zhao et al., 2005) and PARS experiments to compute the sequence wise
relative structure folding potential, in terms of an abstract score. Yet even by
using PARS data, were unable to give a per nucleotide binding probability.
No PARS data is yet available on any of our predicted regions, so in our case
as well, no additional value could be gained on a per nucleotide prediction.
Instead the re-translation from windows to nucleotides would introduce
additional noise into our prediction. We decided instead to work with the
more abstract whole-window predictions, and comparing them directly to a
randomized background model. Choosing a window size of 50 nucleotide
masks all but the shortest secondary structures. Yet it increases reliability of
the prediction, and shifting the 50 nucleotide window by each nucleotide
results in a 1 nucleotide resolution of relative probability of secondary
structure involvement. The same method, an upper tail test of population
mean against 50 nucleotide windows of 50 randomized sequences of the
same lncRNA was applied. A cutoff of an (adjusted via Bonferroni Holm)
p < 0.05 was considered significant. To correct against multiplicity, the
Bonferroni-holm method was applied (Aickin and Gensler, 1996). The
pipeline was run against our predicted long noncoding RNAs, as well as 50
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annotated protein coding regions, and randomly selected intergenic regions,
longer than 200 bp and more than 200 bp from upstream and downstream
protein coding genes.

Functional assessment

We used weighted gene correlation network analysis (WGCNA), as imple-
mented in the R package WGCNA (Langfelder and Horvath, 2008), to create
a network of correlating gene expressions from our available RNAseq data.
To correct against inter-sample variance, variance stabilizing transformation,
described in the DESEq package (Anders et al., 2010) was applied to the raw
counts of our data over all available conditions. WGCNA requires the in-
put of a chosen soft-threshold power. For our experimental data, a Power of
12 provided an acceptable clustering into 10 modules. After the creation of
the initial networks, in the case of C. parapsilosis, additional masking had to
be applied, to remove incidental network connections resulting from a small
sample size. For this, we used the catRAPID software (Agostini et al., 2013).
CatRAPID omics calculates the interaction propensities of a RNA against the
proteome. It returns Discriminative Power (DP) ranging from 0% (unpre-
dictability) to 100% (predictability), the recommended threshold to assume
interaction is 75%. Since our work was focused on non-model organisms,
we increased the threshold for our samples to significantly higher levels of
90%. The resulting RNA-protein interaction predictions were used as a mask
for the WGCNA, removing all interactions that were not predicted indepen-
dently by both methods. This resulted in a much smaller subset of interac-
tions. Due to the increased sample size on S. cerevisiae this step became un-
necessary. Network analysis and display were performed using Cytoscape
3.1.1 (Shannon et al., 2015). The obtained networks were analyzed for GO
enrichment of both functional and localization within the cell using the Can-
dida Genome Database toolset [CGD (Arnaud et al., 2005)]. For Candida para-
psilosis, the functional information was used to select interesting targets for
a knock out study.
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Functional center investigation

To evaluate the potential functional center of MAD, we used a BLAST
based approach to investigate its conservation, as shown by Ulitzky et al.
(Ulitsky et al., 2012). Conservation was estimated against the reference
genomes of saccharomycotina listed in the Online methods. We found
an area in the transcript, overlapping the Open Reading Frame to be
significantly conserved (Blast cutoff e-5). Results are shown in Figure 2.5.
Subsequently, we investigated the secondary structure formation potential,
using the pipeline described above (details in the Online Methods). Several
windows of increased secondary structure were found, displayed in Figure
[Functional Center]. Using the webserver WebBeagle (Mattei et al., 2015),
we compared the secondary structure by windows of 200 nucleotides. The
window of 1100 to 1300 bases showed a significant similarity between its
forward and reverse strand (Z value 3.74). Lastly, we compared the overlap
with the predictions for binding potential by CatRapid. (Agostini et al.,
2013). Two binding sites were identified by CatRapid, shown in Figure
[Functional Center]. We conclude, that due to the conservation score, the
local secondary structure folding potential and the predicted protein binding
sites, the functional center of MAD1 is most likely located between base 1100
and 1300.

ORF Expression evaluation

MAD overlaps an open reading frame, that shows homology to MET28 in
C. albicans. To evaluate the importance of the ORF, we first investigated
the expression of the sense (ORF) and antisense (MAD). Transcription
analysis via qPCR and strand specific sequencing showed respectively that
a ratio of 90.4 ± 1.7 % (qPCR a ratio of (9.81 ± 2.3) : 1 ) and 99.6 ±
0.11 % (RNASeq inferred from count data) of transcription occurred on
the antisense strand. We consider RNAseq to be the more quantitatively
accurate method. Although the expression of the Antisense strand actively
increases at exposure of 30◦C (∆ expression around 26%), the sense strands
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expression remains below the detection limit, with less than 10 reads
mapped against the full ORF.

Reintegration results

To investigate the importance of the ORF, we introduced three variations of
the fragments back into the deletion mutant. We reintegrated the transcript
in individually in forward (MAD), reverse (ORF) and with a frameshift in
the initial start codon into the NEUT5 locus [see Online Methods]. Results
are shown in figure 2.6. The results are not clear cut. Our analysis show
that both the forward and reverse strand of the ORF complement the
function. This is in line with our observation that transcripts of both strands
form a significantly similar secondary structure. Reintegration of the ORF
with a frame shift mutation in the initial methionin also complemented
the phenotype. An important consideration is whether the frameshift
introduced into the first Methionin leaves a further potential starting point
to be translated downstream in the transcript. This would potentially leave
the transcript to be translated from a subsequent methionin and produce a
functional transcript. To analyze this, we introduced a nonsense mutation
into a position within the transcript. Details in figure 2.6). This phenotype
did not complement the function, it reduced growth under 30◦C compared to
the deletion mutant. The analysis of the ORF expression shows that the new
integration is only expressed to 30% of the other complementing transcripts.
A re-integrand of the full ORF in equal conditions complemented the
phenotype in some cases.

Growth conditions

Strains for transformation and phenotypic characterization were grown in
YPD (0.5% (m/V) yeast extract, 1% (m/V) peptone, 1% (m/V) glucose) liq-
uid media supplemented with 100 unit/ml penicillin-streptomycin antibi-
otics at 30◦C with vigorous shaking. For phenotypic screening cultures were
synchronized. Hetero- and homozygous deletion mutants were selected on
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selective dropout solid media containing 0.19% (m/V) yeast nitrogen base,
2% (m/V) glucose, 2% (m/V) agar with 100 unit/ml penicillin-streptomycin,
supplemented with L-Leucine to a final concentration of 0.5 mg/ml for het-
erozygotes. For dominant selection, nourseothricin was applied at a final
concentration of 100µg/ml in YPD media (described above) supplemented
with 2% (m/V) agarose.

RNA extraction

RNA was extracted by using Thermofisher RiboPureTM RNA purification
kit according to the manufacturers instructions. When RNA was extracted
from yeasts exposed to phagocytes, the cells were collected, suspended in
ice-cold nuclease free distilled water and forced through a 29G syringe five
times. The homogenate was washed with ice-cold nuclease free distilled
water and the yeast pellet was used for RNA extraction. RNA integrity was
checked with AgilentTM 2200 TapeStationTM Instrument.

Mutant generation

Deletion mutants were created with the double auxotrophy complementa-
tion combined with fusion PCR method adopted for C.parapsilosis by Hol-
land et al. (Holland et al., 2014).Using first the HIS1 then the LEU2 cassette.
Two independent homozygous mutants were generated for both loci (except
CpLNCRNA3). Heterozyogus mutants were checked only by colony PCR,
homozygous mutants were verified with PCR and Southern blot by using
DIG labeled probes specific for HIS1 and LEU2 markers (detailed in (Gácser
et al., 2007; Holland et al., 2014)). Genomic DNA was digested with BamHI
(∆∆lncrna1-4) and PvuII (∆∆lncrna5).Reintegrant mutants were generated
by using InvitrogenTM GatewayTM system. pDEST-TDH3-URA3-RPS1-
GTW was a kind gift from Professor Christophe dEnfert (Chauvel et al.,
2012). URA3 selection marker was replaced to NAT (nourseothricin acetyl-
transferase) that was amplified from (PLASMID) with restriction sites SpeI
and SacI. pDEST-TDH3-URA3-RPS1-GTW was digested with SpeI and SacI
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to remove URA3, purified and ligated with SpeI and SacI digested NAT
marker to create pDEST-TDH3-NAT-RPS1-GTW. An intergenic region, Cp-
NEUT5L (named after the ortholog of C. albicans NEUT5L) was chosen to
target (Gerami-Nejad et al., 2013). A 758 bp region was amplified in two
fragments to artificially introduce a StuI site in the middle with fusion PCR
similar to that of Chauvel et al. introduced in the RPS1 region (Gerami-
Nejad et al., 2013). The fragment was supplemented with flanking MluI
and SpeI sites. The pDEST-TDH3-NAT-RPS1-GTW and the CpNEUT5L fu-
sion product were digested with MluI and SpeI, gelpurified and ligated
together to create pDEST-TDH3-NAT-CpNEUT5L-GTW. Fragments for BP
cloning were amplified from CLIB WT gDNA by using Thermo ScientificTM
PhusionTM Hot Start II High-Fidelity DNA polymerase, and were purified
with PEG8000-MgCl2 method. GatewayTM cloning process was performed
according to the manufacturers instructions. For BP cloning pDONR221,
for LR cloning pDEST-TDH3-NAT-CpNEUT5L-GTW plasmids were used.
pDONR and pDEST plasmids were propagated in Escherichia coli DB3.1,
pENTRY and pEXPRESSION vectors were transformed into E. coli 2T1. Rein-
tegrant mutants were screened by colony PCR (CPAR2 702260 FOR ReTi
and Colony check REV), and Southern-blot, see above. Genomic DNA was
digested, with EcoRI, CpNEUT5L Downdown DIG labeled probe was used
for hybridisation.

Antibiotics resistance

We tested minimum inhibitory concentrations for three common types of
antifungals: polyenes (Amphotericin B), echinocandins (Anidulafungin,
Caspofungin, Micafungin) and azoles (Fluconazole, Itraconazole, Posacona-
zole, Voriconazole). Experiments were performed in 96 well plates in three
parallels. Antibiotics were diluted in a two fold serial dilutions with RPMI-
MOPS media in a final volume of 100 µl. 100 µl yeast suspensions in RPMI-
MOPS containing 2000 cells were added to the wells, and incubated at 30◦C
for 24 and 48 hours. Plates were observed, and the lowest antibiotic concen-
trations with no noticable yeast growth (MIC) were documented.
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Phenotypic analysis

Synchronised cultures were washed twice (2400 xg, 3 minutes) and resus-
pended in 1x sterile PBS then counted with Burker-chamber. Dilution series
were prepared at 104, 103, 102, 101 cells/5µl concentrations. Suspensions
were pinned onto agar plates representing different stress circumstances or
growth conditions (Supplementary). Plates were incubated at both 30 and
37 ◦C degrees (YPD only plates were at 20, 25 and 40) and scanned after 2
days. Under specific circumstances incubation time was extended to even 13
days. Every experiment was repeated at least twice. Besides homozygous
and heterozygous mutants CpRI and CpL2 strains were applied as controls.

Growth curve

Synchronised cultures grown in YPD were harvested and counted as
described above. 106 cells (suspended in YPD) were inoculated in 5 ml
preheated (37◦C) YPD supplemented with 100u/µl penicillin-streptomicin
and shaken at 37◦C. 100 µl were taken from the suspensions hourly (from 0
to 12 hour) and 3 hourly from (12 to 24 hour), diluted, plated onto YPD plates
in triplicates and incubated for two days at 30◦C. Colonies were counted and
CFU/100 µl was calculated. The MAD growth curve is displayed in Figure
2.4 (C).

Strandedness

Forward and reverse cDNA primers specific for lncRNA4 transcript and
a qRT-PCR primer pair were designed (see primer list). CDNA synthesis
was carried out by using ThermofisherTM RevertAidTM First Strand
cDNA Synthesis Kit according to the manufacturers instructions for cDNA
synthesis with region specific primers. As a template RNA of C. parapsilosis
CLIB WT isolated from phagocyte interaction was used. For both forward
and reverse cDNA primers three reactions were set up individually,



Online Methods 65

two cDNA synthesis reactions containing either RNA (500 ng/reaction)
or genomic DNA (0.5 ng/reaction) and one PCR with RNA template.
Additionally one more PCR control with genomic DNA was applied with
both the cDNA forward and reverse primers. QRT-PCR was performed
with ThermofisherTM MaximaTM SYBR Green qPCR Kit in triplicates.
One µl of each of the above mentioned reaction products was used as a
template, and RNA (25 ng/reaction) and genomic DNA (0.5 ng/reaction)
were included as controls. Melting curve analysis was performed to verify
amplicon uniformity. For relative strand preference the average Ct values
of RNA+cDNA FOR and RNA+cDNA REV cDNA synthesis reactions were
compared.

Synonymous and nonsynonymous SNPs

occurrence of synonymous and nonsynonymous SNPs was observed be-
tween the Sequence of MAD1 and the blast hit in the closest related species
of Candida orthopsilosis. Translation from codons to amino-acid was carried
out using Biopython. The Chi square test for independence of observations
was carried out in the built in R function. A p value of < 0.05 was used for
significance. We validated the observations using codeML from the PAML 4
software suit (Yang, 2007).
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ASEbyBayes a high precision software for the detec-
tion and quantification of allelic-specific expression
from RNAseq data for nonmodel organisms

3.1 Abstract

Motivation: In diploid organisms, two alleles of a given gene can be
transcribed. Differences in expression between alleles are common, and
can vary across conditions or tissues, which may have physiological
consequences if the transcripts are not identical. Thus, there is a need to
properly assess Allele Specific Expression (ASE). Although several pipelines
do exist for quantifying ASE from RNA sequencing data, most rely on a
phased reference genome. This hampers analyses of non-model organisms,
strains, or cell lines without an available phased reference. Results: Here we
present ASEbyBayes, an open source software for ASE analysis from RNA
sequencing data in the absence of a phased reference genome. ASEbyBayes
uses a two step procedure, in which single nucleotide polymorphisms
(SNPs) are first called on an un-phased reference genome and then replaced
by undetermined nucleotides (Ns) to remove bias in a second mapping
step. Then coverage of expression, conservation over replicates, and SNPs
impact on the amino acid sequence are factored in a bayesian approach for
Allele Specific Expression analysis. ASEbyBayes is provided as a stand alone
executable, enabling robust and reproducible analyses.

3.2 Introduction

Diploid organisms carry two distinct versions (alleles) of each autosomal
locus, which can be transcribed at different levels. Differences in the level
of expression between alleles may vary across tissues or conditions and
have important physiological implications. This situation can be extended
to polyploid organisms or duplicated regions of the genome, or even to the
analysis of mixed cultures, where more than two alleles can coexist. The
quantification of allele-specific expression relies on the ability to distinguish
the transcript from each of the alleles. Although traditional analyses have
relayed in the use of allele-specific primers or micro-arrays, nowadays most
of the studies are based on high-throughput RNA sequencing (RNAseq).
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Allele Specific Expression analysis often relies on single cell transcriptomics
(Jiang et al., 2017; Sigurdsson et al., 2016). Established approaches use
GATKs ASEReadCounter (Castel et al., 2015). Alternatively, ad hoc methods,
such as binomial exact tests are in use (Bell et al., 2013). RNAseq data
contains a vast amount of information, which is increasing as technological
developments improve quality and quantity of individual reads. This
enables more advanced analytical methods. Most existing methods for ASE
rely on the availability of a phased reference genome, i.e. in which the
sequences of the two allelic variants are known. This limits the application
to organisms or cell lines where a phased reference genome is available. To
circumvent this limitation, we developed ASEbyBayes, a bayesian approach
that exploits information in RNAseq reads to derive ASE in the absence
of a phased reference genome. Using a controlled simulation, we show
that ASEbyBayes is superior to the commonly used GATK pipeline. Unlike
available software solutions for single cell transcriptomics (Jiang et al., 2017;
Sigurdsson et al., 2016), ASEbyBayes is more robust towards contaminations
from subpopulations, and population derived errors in coverage.

3.3 Methods

A unique capability of ASEbyBayes is its ability to work in the absence
of a phased reference genome. To reduce mapping based errors for the
quantification, a two step work-flow is used. In a first step, ASEbyBayes
performs SNP detection using a standard BAM file as an input. These
SNPs are then replaced with unspecified nucleotides (Ns) in a new reference
sequence. In a second step, reads are mapped again, this time against
the modified reference. This procedure reduces possible errors derived
from the bias in mapping the individual alleles. That is, in a non-
phased reference reads from the alternative allele will be mapped less
efficiently, resulting in a significant mapping bias that can reach up to 10-
15% (Degner et al., 2009). In a subsequent phase ASEbyBayes uses an
approach comparable to other downstream RNAseq data analysis such as
the assessment of differential expression between genes by DESeq2 (Love
et al., 2014), where distributions of read counts are modeled and then used
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to find outliers (i.e. differentially expressed genes). In our approach, the
expression of the individual alleles are first transformed into ratios. Then,
both depth of coverage and ratio of allele expression are used to generate
expected distributions. Priors are estimated from the overall mapped data
over replicates, using a beta distribution, the conjugate distribution to
the Negative Binomial used by DESeq and others. The expected ratio of
unbiased expression for hypothetical bi-allelic SNPs in a diploid organism is
0.5. Differentially expressed alleles should significantly diverge from this
ratio. Analyzing SNPs individually, compared to whole genes, gives us
the ability to perform an ASE analysis on a one base resolution. Each bi-
allelic SNP expression is assessed independently on whether it significantly
diverges from the expected distributions. For each gene or exon, a new
distribution is fitted for the SNPs that diverged significantly providing
an estimate of the expression ratio for each of the alleles of the gene.
ASEbyBayes exploits information derived from independent replicates by
processing all replicates in the same run and using SNPs existence over
replicates as an important criterion for distinguishing noisy from low-level
expression. The analytical suit of ASEbyBayes is built around the htsjdk
of the broad institute (http://samtools.github.io/htsjdk/ ). The result of
an ASEbyBayes analysis is the list of observed SNPs in a Variance Caller
Format (vcf) file. Additionally, a list of genes with their association of allelic
expression and the respective evidence is returned in the form of a tsv file.
We benchmarked our software against the most commonly used pipeline:
GATK (McKenna et al., 2010), which contains SNP callers that are originally
designed for DNA sequencing data, but are commonly used in RNAseq data
analysis as well. We used the GATK ASEReadCounter tool to evaluate Allele
Specific Expression. We used FluxSimulator (Griebel et al., 2012) to generate
RNA sequencing data based on the references of the Saccharomyces cerevisiae
chromosome 4 for a subset of 100 genes of a length between 600 and 4500
nucleotides. We generated a second reference sequence with 20 SNPs per
gene in order to simulate the second allele of a diploid organism. To maintain
biological impact into the simulation we estimated the ratio of synonymous
versus nonsynonymous SNPs according to the published Ka/Ks ratio of
0.11, as observed in genes between Saccharomyces cerevisiae and Saccharomyces
mikatae (Kellis et al., 2003). The sequencing data obtained from the
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two references was combined in fixed ratios to simulate Allele Specific
Expression. We used a read length of 50bp. Details on the Benchmark data,
and a generator script can be found on the github repository. The source
code, and the compiled software as well as the simulated data are available
on the github page : https://github.com/Gabaldonlab/ASEbyBayes. Our
approach showed a more robust, and significantly improved precision
compared to the GATK based pipeline (See Figure 3.1). When simulating
continuous allelic expression over the whole sequence (i.e. all genes
show equal differential allelic expression), both the GATK pipeline and
ASEbyBayes show high precision (99.8 ± 2.0 % ASEbyBayes, 99.5 ± 4.6%
GATK/ASEReadCounter). However, in more realistic settings, were only a
small fraction of genes showed ASE, the precision of GATK was 78 ± 5.0%
while ASEbyBayes showed a much higher precision of 92.2 ± 5.1 %. Thus,
our analysis suggests, that the HMM based classification of GATK tends
to call False Positives in high variance environments (e.g from expression
changes), while the prior based classification is more stable. False Positives
are especially important in the analysis of Allele Specific Expression,
since falsely called SNPs, e.g from sequencing errors, once called are
indistinguishable from Allele Specific Expression. Such errors are common
in population transcriptomics, and can falsely lead to wrong claims of Allele
specific Expression. https://github.com/Gabaldonlab/ASEbyBayes.

3.4 Conclusion

We have developed a new software solution to quantify allele-specific
expression at nucleotide resolution. We benchmarked SNP calling against
the GATK Haplotypecaller and Unified Genotyper. The precision of
ASEbyBayes was considerably higher, due to the overestimation of SNPs in
areas of low coverage by the GATK approaches. These false positives would
potentially skew the downstream analysis towards false conclusions.
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Figure 3.1: Benchmark. Figure showing the Benchmark of ASEbyBayes against
the GATK pipeline. Simulated RNAseq data was produced showing only Allele
Specific Expression in single genes. 4 independent genes are shown. The left
side contains a 1% divergence against the reference, the right side shows a 5%
divergence. Notably, there is no linear correlation of the GATK error against
extend of divergence.
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3.5 Methodology and Benchmark

Methodology

The methodology followed in ASEbyBayes was modeled after the GATK
(McKenna et al., 2010) approach for SNP calling, but improved classifica-
tion for the more complex noise background of nonmodel population tran-
scriptomics. The software takes several BAM files of biological replicates
of already mapped input RNAsequencig data. SNP calling is performed
internally by the software, in order to preserve the information necessary
to estimate noise in the subsequent analysis. The SNP calling is based on
the htsjdk Locuswalker, and modeled according to the samtools mpileup (Li
et al., 2009) approach of evaluating coverage for non-reference nucleotides
[see source code // BAMHandler]. SNP coverage is considered as a ra-
tio between the respective alleles. The respective likelyhood distribution is
modeled according to a Beta distribution i) (Raiffa and Schlaifer, 1961), the
conjugate distribution to the negative binomial, used e.g by DESeq2 (Love
et al., 2014) to model RNA sequencing reads. The beta function with corre-
sponding likelihood function is used to generate the posterior density. We
relied on conjugate distributions in the analysis to avoid the varying impact
of the analytical integration problem posed by the application of Bayes law
(Fink, 1997)

B(p, q) = ((p−1)!∗(q−1)!)
(p+q−1)!

i) Beta distribution

pdf(x) = (x(p−1)∗(1−x)(q−1))
B(p,q)

ii) Probability Density Function for Beta distribution

To estimate the variance of Noise expression, replicates are compared. Low
coverage non-synonymous SNPs not reproduced in replicates are considered
the baseline for noise following the above described distribution, and
are used to estimate the prior for the subsequent noise hypothesis. If
no replicates are given, a threshold is introduced to limit the impact of
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false positives however. It is not recommended to use the application
without replicates. Probability density function of SNPs as described in
ii) are considered for subsequent classification. Notably, for the Noise
classification, an additional weight for synonymity corresponding to the
inverse likelyhood of natural occurace is considered. This corresponds to the
assumptions that real SNPs are more likely to be synonymous due to a lack
of purifying selection. In the next step, a new reference FASTA containing
all non-noise SNPs masked (replaced with ’N’) is returned. At this point,
a remapping of the raw data is recommended to improve quantification,
and remove a bias resulting from similarity of one allele to the un-phased
reference. After remapping, the SNPs called in the first step are quantified.
Priors assuming an equal allelic expression are generated as base priors. The
pool of hypothesis is extended by central limit until no further hypothesis
are needed to explain the data. Alpha beta values are adjusted according
to the respective hypothesis and the total expression of the gene. Since
the posterior distribution derived from a conjugate prior belongs to the
same distribution, the probability density function of each SNP is equally
generated according to ii). Ultimately, the analysis targets the expression
of whole genes. An important consideration for the conclusions on whole
gene expression by individual SNPs is the heterogeneity of SNPs origins on
genes. Several SNPs on a single gene may derive from different sources.
Potential origins considered are allelic expression or subpopulations as
well as sequencing errors. Contamination of the RNA sequencing data
by subpopulations is analyzed by comparing outliers of individual SNPs
against the majority hypothesis on genes over the whole sample. The
probability of each SNP to correspond to either active or passive Allelic
expression is estimated by evaluating its probability for each function
considering the cumulative probabilities for all hypothesis according to
Bayes theorem. Genes are classified according to their majority function, the
hypothesis containing the highest cumulative probability density. Potential
contamination SNPs are noted. Subsequent steps of development will
make use of the contamination marked data, to infer the likelihood of
contamination. Additionally, frameworks for the analysis of polyploidy are
being developed.



76
ASEbyBayes a high precision software for the detection and quantification of

allelic-specific expression from RNAseq data for nonmodel organisms

Benchmark

GATK is the leading platform for genome analysis. Its creators de-
scribed its usage in variance calling from RNAseq in the following tuto-
rial : http://gatkforums.broadinstitute.org/gatk/discussion/3891/calling-
variants-in-rnaseq. We decided to use the GATK toolkits HaplotypeCaller
and ASEReadCounter as benchmark software. Tophat2 (Kim et al., 2013) was
used for mapping, since it is capable of introducing read groups required
by GATK. We applied Flux Simulator (Griebel et al., 2012) to simulate RNA
sequencing reads. The simulations were based on Saccharomyces cerevisiae
chromosome 1, using only the first 100 genes. References for heterogeneity
were generated at 0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0 % (mutations
against the reference). We generated various degrees of coverage, 20, 60 100,
150, 250 and 500.000 reads for the samples. Homogeneous Allelic expres-
sion was introduced by combining ratios of various degrees of heterogene-
ity. Both softwares behaved nearly identically precise. We therefore did not
plot the results. Due to the lack of replicates used, in following the GATK
pipeline, ASEbyBayes estimates fewer SNPs than GATK, but maintains a
low rate of false positives. FluxSimulator does not allow the introduction
of varying expression. We therefore introduced variation by only introduc-
ing SNPs into specific genes. References were generated, in which on of
five simulated genes YAL048C, YAL053W, YAL058W, YAL064W, YAL067C
were mutated to 5% of their sequence. Similar to above, coverages were
generated. In these datasets, GATK performed substantially less stable than
ASEbyBayes. As mentioned above, the most likely explanation is the lack
of training data for GATKs Hidden Markov Model (HMM). ASEbyBayes is
more cautious on SNP calling due to its priors, GATK seems to overestimate
SNP density. GATK recommends a downstream application, MAMBA, to
evaluate Genewise expression. After contacting the authors without a re-
sponse, we found the application to be no longer in active development,
and requiring unspecified formats for processing, the downstream analysis
software was therefore omitted. The observed ratio of False positives pre-
dicted by GATK establishes varying amounts of uncertainty. The amount
of misclassification for potential Allele Specific Expression depends on the
Thresholds used. The given precision of 78 ± 5% suggests that up to 22 of



Methodology and Benchmark 77

100 SNPs are misclassified, potentially expanding the predicted amount of
Allelic Expression. In our benchmark, due to the random distribution of
False positives by GATK, 2 to 6 genes were estimated to contain Allele Spe-
cific Expression, while only one gene contained true SNPs, resulting in a rate
of false discovery of up to 6:1 by GATK. ASEbyBayes found low amounts
(1-3 SNPs) outside the mutated genes, and due to the Bayesian inertia, did
not predict false positive genes. Notably, the produced data oversimplifies
the complexity of real samples. Additionally, following the GATK approach
we used both softwares without replicates, which is not recommended for
ASEbyBayes. Additionally, no remapping was performed to generate out-
put similar to GATK. Due to the design of ASEbyBayes, it is expected that
its SNP calling and quantification quality improves if replicates are provided
and re-mapping is performed.
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Investigating cancer derived Monocytes THP-1 ca-
pabilities in biomedical research via comparative
transcriptomics

4.1 Abstract

Undifferentiated human monocytes encounter various pathogens while
present in the bloodstream. They are considered a primary responder and
regulator for human immune reactions. As such, experiments investigating
responses to pathogens are often reliant on Monocyte cell cultures. For re-
producibility reasons, immortalized cell lines are used. One of the most im-
portant cell lines used to model pathogen interactions is THP-1, which has
been used in a variety of high throughput transcriptomics experiments. Yet
as a cancer derived cell line it may no longer maintain its orignial function-
ality in detecting and responding to pathogens. Using available large scale
transcriptomics datasets, we investigate the comparative response of THP-1
to a variety of human pathogens; viruses, bacteria, protozoa and fungi. Our
approach focuses on the behavior of THP1 in its response to the different
pathogens. Our aim is to provide comparative insights into the cell lines
behavior and capabilities to potentially improve future experimental design.

4.2 Introduction

Undifferentiated human monocytes reside in the bloodstream for up to
three days before differentiating and moving into tissue. During this
time, they are a primary responder to any invasive pathogen entering the
bloodstream. Due to their primary role in coordinating host responses,
they have been suggested as targets for immune augmentations strategies
e.g during fungal infections (Segal, 2007). Most experiments investigating
bloodstream infections to pathogens rely on the use of immortalized cell
lines to reliably and reproducibly model potential interactions between
humans and pathogens e.g (Leland and Ginocchio, 2007). A potential
downside of such cell lines, usually derived from cancer lines, is that they
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are established after human cells have already mutated to a very unnatural
cell state (Kaur and Dufour, 2012).

A common cell line used to study the behavior of Monocytes is the leukemia
derived cell line THP-1 (Tsuchiya et al., 1980). This cell line has been used to
study a variety of pathogens using RNA sequencing based transcriptomics.
Experiments using THP-1 interaction models involve interactions with
viruses, Ebola and Marburgvirus (Martinez et al., 2013), Zika (Hanners et al.,
2016) and bacteria such as Coxiella burnetii (Millar et al., 2015), mycobacteria
spp. (Reyes et al., 1999; Zakharova et al., 2010) as well as the protist leishmania
mexicana (Millar et al., 2015). In a recent study, Toth et al. (Toth2017)
Investigated the response of the pathogenic yeast Candida parapsilosis to THP-
1. Additionally, data for interactions to the chemicals ethanol and calcitriol is
available, as well as a compound called Tissue-type Plasminogen Activator
(TPA), which causes differentiation to macrophages (Barendsen et al., 2008).
To our knowledge, no direct investigation into the comparative response
behavior of the cell line THP-1 has been carried out so far. In this study we
hope to provide insights into the behavior of THP-1 if exposed to different
human pathogens, and evaluate its ability to develop specific responses. To
address how THP1 cells respond to the different stimuli, we investigated
transcriptional profiles via RNA sequencing for the human THP1 cell line
after exposure to the above mentioned pathogens and chemicals. To
reduce analytical bias from the individual experiments, our analysis began
with raw RNA sequencing data available at the NCBI Sequence Read
Archive for the individual projects. A common, standardized pipeline
was applied to carry out the data processing. We focused the subsequent
analysis on the inter-project response for the individual pathogens. In
order to overcome the very different experimental setups, we relied on
more global approaches for tanscriptomic analysis. An important focus
was the ability of the cancer derived THP-1 cell lines general response
to distinguish the individual pathogens. Specific responses have been
investigated in the individual experiments, yet such a variety of pathogens
is expected to trigger substantially different overall response pathways.
We investigated the impact of the individual pathogens via dimensionality
reduction based clustering, and comparative GO enrichment. Both on large
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scale to compare the overall behavior of the cells, and on the two available
time course analysis to investigate the more minute temporal dynamic of
transcription shifting. The available time course analysis comprise the
bacterium and intracellular pathogen Mycobacterium abscessus and the yeast
Candida parapsilosis. The mycobacteria species consist of a range of bacteria
best studied for causing tuberculosis. They are documented to be fast
growing and potentially multidrug resistant. The M. abscessus complex is
also resistant to disinfectants and, therefore, can cause postsurgical and
postprocedural infections (Lee et al., 2015). Candida species cause common
nosochomial infections (Casadevall and Pirofski, 1999). As yeast, their
mechanisms of pathogenicity differs significantly from that of bacteria. The
yeast potentially inducing a much weaker response, testing the limits of
THP-1 transcriptome adaptation.

4.3 Material and Methods

RNA sequencing data processing

RNA sequencing data was obtained in its raw .sra format from the Sequence
read archive (Leinonen et al., 2011), with the exception of the data for C.
parapsilosis, which was provided by the authors of Toth et al. (Tóth et al.,
2017), the full list of sequence runs can be found in the supplementary table
1. A shell script to initiate the full download can be found at the github
repository https://github.com/Gabaldonlab/THP1data . After extraction
using the sratoolkit. Trimming, for quality pre-processing, of the reads was
performed via Trimmomatic v0.32 (Bolger et al., 2014). We mapped the
reads using the STAR (Dobin et al., 2013) mapper against the hg38 human
reference genome. Human genomic data hg38 v 81., both the reference and
annotation files were obtained from UCSC (Ucsc and Browser, 2003). Reads
were counted using the htseq package (Anders et al., 2015). For the analysis
only annotated exons were considered. An overview of samples considered
is presented in Table 4.1.
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Pathogen Sample count Time course Quality control Archive
Mycobacterium bovis 14 No failed ERR5604
Mycobacterium abscessus 19 Yes pass SRR23160
Zika 2 No pass SRR51901
Ebola 2 No failed SRR16602
Marburgvirus 2 No failed SRR16367
Leishmania mexicana 4 No pass SRR1562
Coxiella burnetii 4 No pass SRR1562
Candida parapsilosis 16 Yes pass from author
Staphylococcus aureus 9 No failed ERR50285
Non Pathogen 5 No pass SRR16365

Table 4.1: Table of RNA seq runs processed in the analysis. Lists numbers
of samples, pass of the mentioned quality check and accession number their
archive location.

Data processing

Read count normalization was performed via transcript per million TPM
normalization. R libraries were used to investigate the Principal Com-
ponents underlying the data variability. The R built in prcomp mod-
ule and the library FactoMineR (Le et al., 2008) were used to compute
the PCA and cluster estimation respectively. Tree based hierarchical clus-
tering was carried out using the python scipy library. Gene enrich-
ment was analyzed via python scripts available on the projects github
https://github.com/Gabaldonlab/THP1data , generating a background
model of variance. The enrichment compared to the full human background
was carried out using the GOrilla tool (Eden et al., 2009)

Visualization

Visualization was performed via the R module ggbiplot, based on the
ggplot2 library, as well as the FactoMineR and superheat plotting function
for the respective R scripts. Visualization in python was produce via
matplotlib.
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Enrichment analysis

Expression enrichment for unregulated genes was computed for each gene
on the variance over the non pathogen derived conditions, uninfected cells
and separately against the chemicals ethanol and calcitriol. Outliers were
tested against a normal distribution using student t-test. The method
described by Benjamini & Hochberg (Benjamini1995) was used to correct
for multiple testing and evaluate false discovery rate (FDR), in order to
correct the resulting p-values. Adjusted p-values of < 0.05 were considered
significant and analyzed by GOrilla against a total background.

4.4 Results and Discussion

As shown in Figure 1 the Principal Component Analysis showed a clear and
distinct response to the individual conditions. This can be considered an
important sign that the THP1 cell line has retained its potential for detection
of the individual pathogens in initiating individual responses. In a PCA,
the abstract underlying effects are quantified and shown on components or
axes, with relative strength per axis denoted in percent of variance explained.
Individual principal components can show multidimensional response
factors. Dimensions are visualized in Figure 4.1. Due to the complexity
of analysis, the first four dimensions were considered to explain sufficient
variance, collectively accounting for 36.5% of the observed variance. Similar
responses were observed between the intracellular bacterial pathogens
Coxiella burnetii and Mycobacterium abscessus, derived from experiments
performed by indpendent groups [supplementary table 2], suggesting that
the first components are not influenced by the sequencing but directly
by the THP-1 response, the profile of the two strains diverges in the
third component showing more nuanced differences in response of THP-1
between the two pathogens.
Overall four distinct response clusters can be observed. With separation
of clusters occurring for virus to yeast in the first component, and a
distinction of bacteria over the second and third. The intracellular M.
abscessus and the yeast C. parapsilosis are the most robust groups due to
a larger sample size of 19 and 16 runs respectively, and replicates over
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a time course of infection assay. Factorial analysis to investigate time
point responses was therefore limited to those two species. To gain a
more detailed view on the minute behavior we investigated the response
to the two larger time course analysis. Data was produced for rough
and smooth morphologies during exposure times of 1, 4 and 24 hours.
Although the analysis shows a clear separation (see Figure 4.2), the primary
component derives from the effect between the replicates. The response to C.
parapsilosis was less homogeneous, most likely due to the lack of replicates
and the overall lower pathogenicity of Candida as compared to Mycobacteria.
In the next step, we quantified overall transcriptional responses against
background noise models visualized in Figure 4.3. Two Noise models
were designed. In the first, (background) we used the average counts
per gene in uninfected samples, to evaluate the expression compared to
an uninfected baseline. For the second model (stressors) we evaluated
the average gene count for samples treated with TPA, ethanol and the
Vitamin D metabolite calcitriol to evaluate basic stress responses. Individual
genes were tested for upregulation only against the model genes, returning
a value of significance per gene and pathogen. This methods ignores
experimental design in order to generalize the various experiments. Figure
3 shows the overlap between the background and stressor comparison.
In total, 9302 genes were activated in any pathogen response compared
to both backgrounds, with 1318 genes overlapping between the noise
models. 6780 and 1204 were unique to the background and stressors model,
respectively. This indicates an active response by THP-1, and its ability to
distinguish uninfected surroundings to chemical stimuli.The cells show a
clear distinction between the responses to the individual pathogens. Yet,
the THP-1 response to C. parapsilosis shows no significant difference to the
background model, but does present a distinction to the stressors model.
C. parapsilosis, as a pathogenic yeast, is often commensal e.g (Gabaldon
et al., 2016), and seemingly does not provoke a general strong transcriptomic
response in a naturally commensal host. Interestingly, compared to the
stressor background, only the M. abscessus cells show a classified defense
response. According to GO terms, the response is antiviral [Supplementary
table2]. An antiviral response to M. abscessus is partially expected, due to
the related pathogens M. tuberculosis ability to trigger Interferon (Prabhakar
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et al., 2003), and Interferon production in general T-cell reponses (Belardelli
and Gresser, 2010). L. mexicana shows the strongest overall response. With
3861 more genes activated than in the background, and a response of 694
unique genes to the L. mexicana stress compared to the stressor background.
GO enrichment using GOrilla visualized in table 1 shows unique responses
for the pathogens. Most notably, the most enriched GO term for Zika is
GO:0030900, pertaining to anatomical structure and forebrain development.
This is in line with Zikas clinical symptoms, such as microcephalus as
described in this review (Paixo et al., 2016). Enrichment for leishmania
showed active genes involved in iron transport, an observation in line
with Huynh et aliis (Huynh et al., 2006) discovery of iron transporters
being essential for parasitic reproduction. Active Iron transportation could
therefore be an expected host response.

4.5 Conclusion

Our analysis suggests that the THP-1 cell line is capable of distinguishing
various cellular stresses, and provide individual responses to various
chemicals and pathogens. It accurately portraits gene enrichment for
e.g Zika clinical symptoms. The large scale transcriptomic response
is uniquely different for each analyzed experiment, and the cells show
similar responses to the intracellular pathogens e.g Coxiella burnetii and
Mycobacterium abscessus. Yet, the experimental resolution is less pronounced
in more detailed experiments. Time course analysis using THP-1 showed a
stronger variation between technical replicates than the actual experimental
course. A recent study by Schurch et al (Schurch et al., 2016) estimates
the number of true positives in RNA sequencing with 3 replicates to be
between 20 and 40%. Using the first components as indicators of variance,
we estimate that at least 12% of the total variance are attributed to technical
variation. By using general probabiliy, we can estimate the true positives for
triplicates to be between 13.6 and 27.26% using THP-1 cells ( according to
(1− (1− α)n)). Therefore, especially for the investigation of pathogens with
an expected mild response, additional replicates are strongly recommended.
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Figure 4.1: Principal component analysis for all genes, normalized to TPM.
Due to the relative low variation per component the first four dimensions
are displayed in two 2dimensional plots. Components are displayed in two
plots PC1 and 2 in plot A1 and PC3 and 4 in A2. In A1, a cluster separation
between the different pathogens and stressors can be observed on the first
component. Two clusters comprised of the timeline experiments on M. abscessus
and C.parapsilosis are visible along the first axis. A2 seperates viruses more
clearly from the protist, as well as the intracellular bacteria Coxiella bruneii and
M. abscessus.
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Figure 4.2: PCA of the time course analysis for the infividual sets of M. abscessus
(above) and C. parapsilosis (below). Both studies show variance between
technical replicates to be responsible for their first component, suggesting a lack
of regulation by the THP-1 cells, or rather a lack of designated response. While
M. abscessus shows a distinguishable variability over the time course, clustering
on C. parapsilosis does not separate the individual conditions.
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Figure 4.3: (A) Barplot visualizing the quantification of response against the
two background models. Unique responses in yellow and dark green are
only observed against the specific background. Overlap in light green shows
responses similar between stress and uninfected cells. (B) shows a heatmap of
individual genes actively regulated in the 5 species against the stress response.
Notably, Coxiella burnetii shows no significantly enriched genes against the
stressor subset.



5 General discussion

As mentioned in the introduction, bioinformatics is a young field. The
applications and approaches are still actively developing. We are only
beginning to explore the true potential of the new technologies and their
capabilities. All the projects described above rely in some way on the
analysis of RNA sequencing data. Different projects capture different aspects
of potential analysis pathways. RNA sequencing is most commonly used to
evaluate intracellular behaviour in cells under stress conditions. So most
analysis carried out via RNA seq to some extent resemble the projects
described above concerning the interaction analysis of THP1 - Candida
parapsilosis or the analysis of Allelic expression. Due to the engagement in the
form of a Marie Curie Intensive Training Network, many collaborations in
the analysis and evaluation of RNA sequencing data were established. Using
the pipeline described above standardized the projects of the consortium.
The core projects described concern deeper investigation into the capabilities
of RNA sequencing. Three independent approaches are elaborated in
the three respective chapters. The most extensive project deals with the
downstream analysis of transcriptomics. Investigating long noncoding
RNAs from RNA sequencing is an established approach in higher mammals,
but not in nonmodel species. Additionally, we inferred functionality using
advanced clustering methods. In the other projects we looked both at
the analysis for complex interaction models via RNA sequencing, and the
establishment of more complex analytical pipelines.

Modern transcriptomics is a powerful methodology, resulting in vast
amounts of information, but analysis of anything but the most basic setups
can be difficult. Especially interaction transcriptomics, e.g between pathogen
and host, still pose real difficulties in data analysis. The problems derive
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from noisy populations and heterogeneous responses as well as secondary
effects on expression caused by unmeasured agents. Such secondary effects
are especially pronounced in more complex model organisms.

The projects described above also commonly investigate the behaviour of
pathogenic yeast. Due to the alternative concept of Candida pathogenesis
compared to other pathogens, the analysis of Candida human infection
models is a complex undertaking. Many individual responses of the
yeasts form a combined invasive response. Although our setup included
time courses to capture shifts in responses, the obtained noise levels were
initially discouraging. The problems of time course analysis derives from
the nature of infections. Infections are not a binary process that either
does or does not occur. In fact, they occur transiently over a time frame,
with gradually shifting responses by each participant. Our approach to
investigate undifferentiated Macrophages shows an active response that
diverges from the ones observed in C. albicans.

The project used relatively early RNA sequencing data, with protocols
designed before 2013. Older protocols were more noisy in general and
less consistent in coverage than current RNA sequencing. Additionally,
the analysis was performed on populations of data. Alternative Methods,
such as SAGE (Vilain et al., 2003) can already be used to analyze single cell
transcriptomics. While RNA sequencing gives a good estimate of overall
expression, investigating the responses of single cells is a very recent, and
not yet widely used approach. For modern RNA sequencing a minimum
quantity of RNA is required, Illumina sequencing requires 1-10µg. The
amount is lower for PCR based approaches like Illumina. This can be
achieved in human cells, but not yet in Candida species.

In order to overcome this challenge, we carefully adapted the pipeline to
accommodate the noise. We increased the expected activation threshold for
the transcripts, and added an additional differential expression estimator.
We generalized the analysis to rely more on the gene set enrichment, a
measurement more general than Differential Gene Expression (Conesa et al.,
2016). The stability of enrichment analysis comes from the concept, that
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random noise measured will act equally strong on any gene, and will
therefore introduce noise without activating whole pathways. Analyzing
the data via Gene Ontology enrichment focuses the analysis entirely on
pathways, and therefore direction. Finally, we managed to generalize
the response to a degree allowing us to establish a comparable analysis
between C. parapsilosis and a more general band of other common human
pathogens on the same human cell line. The inverse project, the description
of the human response, formed the background of the analysis presented in
Chapter 4.

Since Next Generation Sequencing approaches were only developed in the
last decade, their range of applications is not yet fully explored. Apart
from the more common Differential Expression analysis we investigated
the analysis of Allele Specific Expression. To overcome the lack of reliable
software solutions for our specific interest, we had to establish our own
approach. The results of this project so far are mostly methodological.
Available software suits target single cell transcriptomics, with a very
different error model compared to yeast population. Implementing Allele
Specific Expression analysis on non model organisms required an adaption
to common approaches. Previous studies relied either on a combination
of approaches from different software suits, or the implementation of ad-
hoc testing. The result of these projects are combined in the software
ASEbyBayes. The open source project allows a standardized way of
analyzing RNA sequencing data for Allele Specific Expression. Clear
priority was given to the analysis of nonmodel organisms, such as yeasts.
Allele Specific Expression is a field in which sufficient quantified data is
available to implement a classification approach that can draw upon more
general knowledge. An important point is our attempt to remove mapping
errors by encouraging a remapping step. With increasing quality of the
newest versions of Illumina sequencing this method will become even more
robust, since more and more noise is removed from the data before analysis
by the sequencing itself. An important note on the Software is that its
sequencing error estimation is based on the Illumina short read sequencing
error distribution. For upcoming short and long read sequencers, additional
evaluation is necessary. There are several ways for extending the project.
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The first and foremost is the biological application of the pipeline. The
initial question of the project concerned the investigation of expression in
a C. orthopsilosis strain that is a known hybrid, as described by (Pryszcz
et al., 2015), yet for which only one parental strain is known. The two
parentals diverge about 5 percent at the nucleotide level. We initiated a
primary analysis on unpublished data. C. orthopsilosis is closely related
to C. parapsilosis, but shows a parasexual cycle. C. parapsilosis shows few
heterozygous reads due to its lack of mating. Recent studies suggest that
this hybridization in yeasts is a common occurrence, potentially increasing
the target applications for the tool. One of the mayor implementations will
be the introduction of the statistical framework for alloploidy. Alloploidy is
defined as variable chromosome number. Given sufficient coverage, SNPs
carried on one or two out of multiple alleles can be analyzed directly. An
estimation of ploidy, and possibly variable effects can be analyzed. This
analysis will require a shift in experimental design and statistical analysis,
but is within the capabilities of the tool, given sufficient coverage. The main
limiting factor for accuracy in the analysis is the lack of coverage over some
regions. As the law of large numbers dictates that given sufficiently high
coverage allele wise expression of SNPs should diverge towards its true
ratios.

Another important step in the analysis of modern RNA sequencing data is its
usage in investigating new cellular mechanisms. The recent interest in non-
coding RNA research and increased availability for RNA sequencing data
enable new paths of investigation. In the project described in Chapter 2,
we investigated noncoding RNA in the species C. parapsilosis. Based on lit-
tle available knowledge of noncoding RNA in other yeast species, it was
necessary to adapt pipelines build from mammalian transcriptomics. By uti-
lizing RNA sequencing data, and combining it with more advanced predic-
tive modeling approaches we generated a subset of predicted functional long
noncoding RNAs. Several features of the analysis provided interesting find-
ings. The original number of long noncoding RNAs in the range of 300 –
600 seemed quite low, compared with higher eukaryotes. Yet the relatively
low level detected may stem from the very dense genome found in yeast.
Where higher eukaryotes may contain sufficient intergenic regions to en-
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code their functional noncoding RNAs, yeasts may need to double down on
existing genes. Our functional predictions were an application of methods
developed for the study of microarrays. Using weighted gene co-expression
analysis of variance stabilized data proved quite successful. Our association
of noncoding features to functionality is accurate, given the expected vari-
ation due to the limited sample size and lack of annotation data. Due to
the limited amount of available conditions, the resulting predictions for Can-
dida parapsilosis produced an overly dense network. But nonetheless served
as predictors to the later phenotype studies. Especially after the filtering
through the interaction prediction of a fundamentally different methodol-
ogy via the interaction predictions of CatRapid. By selecting the transcripts
that not only co-express but are also predicted to directly bind to protein
coding genes we hoped to reduce the number of false positives. Although
the additional filter limits the potential functions of our noncoding RNAs. In
our case, our predictions were removed for potential long noncoding RNAs
in other potential functions. Evaluating those functionalities will be one of
the further downstream analysis of this project. Notable is the remarkably
high rate of observable phenotypes in the deletion mutants. With 4 of 5
knock outs actively showing a mild change in phenotypes and a weakening
in pathogenicity in galleria models. And 3 out of 5 a measurable responses
in the phenotype screening. This exceeds the amount of functional pheno-
types observed by previous approaches in related yeasts e.g by Holland et
al. (Holland et al., 2014). In order to focus our investigation we had to limit
proceedings to one transcript. Transcript 4, called MAD1, showed the most
interesting phenotype. Our analysis strongly suggests that the transcript is
antisense transcribed in its function as a temperature response regulator and
in the handling of Cadmium based ionic stress. This regulation may not be
the only function of the transcribed locus. The reintegration of the open read-
ing frame did show a different phenotype than the frame shifted transcript
reintegration. Analysis of the secondary structure formation potential shows
that the forward and reverse strand fold into a significantly similar structure.
A common assumption of long noncoding RNAs is that their function de-
rives from their secondary structure. This could be a potential explanation,
since both strands fold in the same way, they may be capable of performing
the same function. With the protein coding addition being an additional step
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in regulation, but not a necessity. Ultimately, the phenotype studies showed
that the transcripts reintegration of the only the ORF in forward, reverse and
frameshift all restored the phenotype. The expression profile showed an ex-
tended transcription beyond the boundaries of the ORF. The re-integrated
ORF was additionally put under a different, and much stronger promoter
than the transcript would have been in a natural environment, especially
given the 99.6 to 0.4 % transcription of the antisense compared to the ORF.
Overall, a function for the protein coding region cannot be ruled out. The
potential translated protein could convey a significant part of the function
resulting in the phenotype. Disproving the function of a potential protein is
challenging. Since approaches such as Mass spectrometry can only be used
to prove proteins, not disprove them. And few approaches reliably enable
the breakage of the secondary structure, especially since it shows on both the
sense and antisense transcript.

Ultimately, the interesting phenotype of the transcript, whether protein cod-
ing or not, points to a possible regulatory function. This was unexpected
from a transcript of a dysfunctional mating type locus. It was early on impli-
cated to play a role in the pathogenicity of C. parapsilosis. Resistance to phys-
iological temperature is a mayor adaptation for any yeast as a mammalian
pathogen. The studies on model organisms, and transcriptomics analysis
revealed certain insights into the functionality. We can estimate which path-
ways are actually affected by MAD1 / MADCaT. The precise mechanisms
are still unknown, and will have to be researched in subsequent projects.

C. albicans can regulate 400 of its genes to introduce a morphological shift as a
response to external stimuli. Discussed in the introduction as white-opaque
switching. It has been argued that this shift is epigenetic, due to a lack
of genomic changes. The states are propagated through positive feedback
loops involving WOT1. C. albicans performs a switch from opaque to white
colonies at 37◦C. C. parapsilosis is not known to switch its morphology. One
of the most remarkable features of the temperature sensitivity in the MAD1
deletion mutant is its shift towards sensitivity over time. The cultures
behave like wild type for up to 10 hours in YPD, after which their growth
slows. The changes observed in the mouse model hint to an altered cell-wall
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composition that change cellular affinities. This alteration might be a result
of failing epigenetic regulatory mechanism that would otherwise enable
adaptation. The slowed growth could be a hint to a mechanism similar to
white-opaque switching in C. parapsilosis. This mechanism may have so far
been undetected because the morphological feature changes are insufficient
for detection by classical observations. The current state of investigation
into C. Parapsilosis does not yet allow for epigenetic analysis. A potential
next step in this investigation would be Chromatin ImmunoPrecipitation
sequencing (ChIP seq), to investigate chromatin changes derived from
absence of the transcript.

The project initially began with the simple detection of long noncoding
RNAs. But the observed transcripts, the confirmation of the phenotypes,
and the recent advances in transcriptomics have opened up several new
and interesting research pathways. The most promising downstream
analysis involve the two other transcripts that show measurable phenotypes.
Downstream validation for the individual transcripts will be extensive and
consist of several independent projects.

LncRNA 3 shows the strongest phenotype of all the tested long noncoding
RNAs. Overall the observed changes in function surpass long noncoding
RNA 4. The deletion mutants show a number of sensitivities to a variety
of stresses. Cell stress sensitivity is increased to an unstable in its absence.
This provides some difficulty in reproducibility. Only one diploid deletion
mutant was successfully created so far. For all other transcripts, two
deletion mutants were created simultaneously. The strong phenotype hints
at an important role for this noncoding RNA, but compared to the other
transcripts, its noncoding RNA potential is more questionable, since it
overlaps with a more robust protein coding gene. The partial overlap can be
fixed, and the true effect of the noncoding RNA estimated by reintroducing
that protein in full, and subtracting the effect from the observed phenotype.

The relatively weak phenotype made transcript 5 less attractive than for
initial downstream analysis. But one major advantage is the lack of overlap
with an longer ORF, or structural similarity to known domains. This long
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noncoding RNA would be easier to prove as a proper noncoding transcript.
Although the possibility of it being a carrier for translated peptides can not
be ruled out either. Further study has to be undertaken in order to analyze
this transcripts as a potential initial functional noncoding RNA, with a less
interesting phenotype.

The CRISPR/Cas system has only recently been established for the Candida
system (Vyas et al., 2015). For our analysis an older, and more work intensive
approach was applied. With the introduction of Crispr/Cas, new deletion
mutants can be created more easily, and the subsequent analysis can be done
more rapidly. Five deletion mutants were created from the 17 predictions
of functional long noncoding RNAs. The 17 functional ones were a subset
of 64 conserved noncoding RNAs. With the demonstrated rate of observed
phenotypes, the remaining transcripts provide interesting targets on their
own. With the ground work established by the first five candidates, more
functionalities can be investigated. Our production of the additional strand
specific data will improve classifications even more. Initial analysis of the
strand specific data showed large amounts of antisense transcription. Yet
any claim in this direction would have to be validated extensively. Our
predictions in Saccharomyces cerevisiae have also been very encouraging.
Little is known about the involvement of long noncoding RNAs in baker’s
yeast. At the time of this writing only 12 long noncoding RNAs were
annotated. Our initial predictions were backed up by more data than the
predictions in C. parapsilosis. Of the studied long noncoding RNAs in S.
cerevisiae, only two have experimentally validated functional association.
One of them was predicted in our reduced dataset of 55. Two further non-
coding transcripts [noncoding RNAs] were observed in several individual
transcriptome assemblies, but did not meet the conservation threshold. The
GO association of the transcripts in the analysis was broad, and is not yet
sufficient to classify the precise functions. Since only one of the transcripts in
the 55 available has a proven function, the stochasticity of the analysis would
not allow a validation of the pipeline. There are Haploid strains of cerevisiae
available, making deletion mutants more straightforward. Additionally,
the pipeline can be used to extensively predict more features in different
species. Given sufficient amount of new RNA sequencing data. The project
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has many more pathways to explore from its current state. Only one of
the transcripts has been studied in more detail. MAD1 / MADCaT and
its impact on the yeast were unexpected, and the scope of the analysis
expanded as the project went on. Amongst several interesting traits, the
impact on temperature sensitivity is likely to be the most important one.
Our estimation of the functionality concerns the composition of the cell
wall, with regulatory elements involved in cell wall composition and efflux
pump regulation. The cell wall composition changes the interaction of
the yeast with its surroundings. This potentially important discovery has
to be explored in greater detail, in order to investigate the transcript as
a potential drug target. Apart from the clinical impact, the mechanisms
by themselves are intriguing, and not yet completely clear. An interesting
feature is the seeming ability of the yeast to switch from a coding reverse
strand to a noncoding forward strand under different conditions. Overall
the amount of phenotypes observed was surprisingly high. Other knockout
studies, even with guided RNA sequencing led us to initially expect no
phenotypes. Ultimately, we observed four out of five observable phenotypes
our long noncoding annotation pipeline. The project carries much potential
for downstream evaluations on a variety of ways. Apart from additional
deletion mutants, the implemented pipelines can help the detection and
evaluation of noncoding features in other organisms.





6 Conclusions
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• A new pipeline for the exploratory detection and annotation of
noncoding RNA in nonmodel species of yeast has been developed.
We applied the detection to the pathogenic yeast Candida parapsilosis
and Saccharomyces cerevisiae validating transcripts by deletion and
phenotype screening, with a high rate of success in phenotype studies.

• Potential noncoding transcripts in the pathogenic yeast Candida para-
psilosis were investigated. We concluded that sequence conservation
and secondary structure formation broadly behave like noncoding
transcripts in higher eukaryotes, and the expression profile suggests
functionality.

• Certain noncoding transcribed RNAs might be an important mediator
for temperature resistance in the yeast candida parapsilosis. One of the
investigated transcripts (MAD) is predicted to form similar secondary
structures in forward and reverse strand. Its function, potentially in
combination with an ORF on the reverse strand, enables the yeast to
withstand physiological temperatures. This makes the transcript a
potentially important factor in the yeasts virulence.

• By developing a specific software solution, we improved the accuracy
of the analysis of Allele specific expression in nonmodel species lacking
a phased genome. Our approach increases the precision of analysis in
heterogeneous populations.

• The cancer derived cell line THP-1 is capable of detecting and
responding differently to various pathogens. Its specific transcription
profiles can inform on specific defense strategies towards distinct
pathogens.

• Although THP-1 can be used to investigate the impact of pathogens,
time course analysis do not seem to introduce a uniform response
in this context, and may therefore require a more sophisticated
experimental setup.
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