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Abstract 

Pesticides are applied to agricultural fields to protect and control crops from pests, disease and 

undesired weeds, to increase crop productivity and reduce blemishes, and their global use is 

substantial. Life Cycle Assessment (LCA) is a standardized methodology that can be applied 

to assess the environmental performance of different product and systems. In LCA, significant 

advances associated with the evaluation of the agricultural use of pesticides have been made 

during the past few years, and several approaches have been developed for taking the impacts 

of pesticide use on human health and ecosystems into account. However, including toxicity-

related impacts for pesticide use in LCA is still associated with methodological limitations. 

Furthermore, considerations for assessing pesticides are currently affected by significant 

inconsistencies between the life cycle inventory analysis (LCI) and the impact assessment 

(LCIA) phases of LCA, and this poses as a practical challenge. This thesis, hence, aims to 

contribute, within the LCA framework, towards the improvement of consistent quantitative 

methodologies to assess emission fractions and ecosystem toxicity impacts of pesticide use.   

One of the main challenges in LCA for agriculture is modeling pesticide emission fractions for 

the inventory analysis; there are very different approaches and assumptions to provide emission 

estimates, leading to inconsistent and non-comparable results. This challenge is addressed by 

testing the influence of the inventory model choice on the environmental performance profiles 

of different cropping systems. Furthermore, a simplified estimation routine for pesticide 

emission fractions is proposed, allowing practitioners to include the agricultural field on the 

assessment. The delineation between pesticide emission inventory and impact assessment has 

shown to have considerable influence on the estimation of ecotoxicity impacts; in this regard, 

this study takes advantage of the latest recommendations for pesticide emission inventory and 

impact evaluation, to frame a suitable interface for LCI modeling and LCIA characterization 

avoiding possible temporal overlaps.  

Another methodological limitation associated with ecotoxicity impacts of pesticide use is how 

to account for inorganic fungicides in LCA studies involving agricultural systems. To address 

this, freshwater ecotoxicity impacts of copper-based fungicides were quantified and compared 

with the most common synthetic fungicides used against downy mildew on a practical case 

study. Soil ecotoxicity was characterized for specific soil chemistries and textures. To introduce 

spatial differentiation (critical aspect to describe the toxic effects of metal-based substances) in 
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the ecotoxicity assessment, 7 European water archetypes and more than 15000 soils in three 

different application scenarios were evaluated.  

To capture the complexity and variability of agricultural practices, while simplifying and 

facilitating the assessment for pesticide application, a series of archetype scenarios was 

established. These define specific combinations of pesticide target classes, crops and 

application methods, intended to estimate global emission fractions of pesticides in LCA. This 

task was conducted in the frame of the LCA pesticide consensus building effort. Finally, the 

consensual recommendations for simplification and aggregation across conditions are presented 

and illustrated with a practical example conducted as part of the present thesis.  

Results in this thesis demonstrate the importance of considering pesticide use for ecotoxicity 

assessment in agricultural production and represents a relevant step towards methodological 

advances in quantifying pesticide emission fractions and their related potential impacts on 

ecosystems within the LCA framework. Among important follow-up lines of research, future 

work should focus on the inclusion of pesticide metabolites in the assessment of toxic impacts, 

the development of characterization factors to account for soil ecotoxicity and the further 

inclusion of metal emissions from agricultural practices (e.g., application of pesticides, manure 

and chemical fertilizers) into LCA. 
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Resumen 

Los pesticidas son sustancias ampliamente utilizados en la agricultura para proteger y controlar 

los cultivos ante plagas, enfermedades y malas hierbas, y mejorar, por tanto, la productividad y 

reducir posibles pérdidas en las etapas de cultivo y almacenamiento. En los últimos años, la 

herramienta de evaluación ambiental, análisis de ciclo de vida (ACV) ha alcanzado avances 

significativos en cuanto a las estimaciones de impacto causadas por el uso de pesticidas en 

agricultura. Diversas metodologías se han desarrollado para cuantificar los impactos por el uso 

de pesticidas en la salud humana, así como en los ecosistemas. Sin embargo, existen todavía 

diversas limitaciones metodológicas e inconsistencias que dificultan una correcta estimación de 

sus impactos en ACV. 

La inclusión de los impactos de toxicidad de los pesticidas se ve gravemente afectada por 

importantes inconsistencias entre el análisis de inventario (ICV) y la evaluación de impactos 

(EICV), lo cual conlleva un reto en ACV para poder evaluar y comparar la aplicación de 

pesticidas con sistemas agrícolas. Es así como esta tesis busca contribuir, desde el marco del 

ACV, a la mejora de metodologías cuantitativas para evaluar fracciones de emisiones e 

impactos en la toxicidad de ecosistemas ocasionados por el uso de pesticidas. 

Uno de los principales retos en ACV de sistemas agrícolas, es la modelización de fracciones de 

emisión de pesticidas para el análisis de inventario. En general, existe una gran diversidad de 

enfoques y suposiciones para estimar dichas emisiones, las cuales suelen ser inconsistentes y 

difícilmente comparables entre sí. Este aspecto es abordado en el presente trabajo mediante la 

evaluación de la influencia del modelo de inventario seleccionado, en el desempeño ambiental 

de diferentes sistemas de cultivo. Además, se propone una estimación rutinaria simplificada de 

las fracciones de emisión de pesticidas, permitiendo la inclusión del campo de cultivo en el 

análisis. El delineamiento entre el inventario de emisiones de pesticidas y la evaluación de 

impactos han resultado tener una influencia considerable en la estimación de los impactos de 

ecotoxicidad. En este sentido, este estudio toma en cuenta las más recientes recomendaciones 

sobre inventarios de emisiones de pesticidas y evaluación de impactos, para enmarcar una 

interface apropiada para modelar el análisis de inventario, así como para caracterizar la 

evaluación de impactos evitando posibles superposiciones temporales. 
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Otra de las limitaciones metodológicas asociadas con impactos de ecotoxicidad provocados por 

el uso de pesticidas, es la inclusión de fungicidas inorgánicos, principalmente compuestos que 

incluyen metales dentro del ACV de sistemas agrícolas. Este problema es abordado con la 

cuantificación de impactos de ecotoxicidad en agua superficial producidos por el uso de 

fungicidas a base de cobre. Estos, a su vez, son comparados en un caso de estudio puntual, 

frente a los fungicidas sintéticos más comunes empleados contra mildiu. La ecotoxicidad del 

suelo fue caracterizada en relación a las características químicas y texturas de estos. Para 

incorporar diferenciación espacial (uno de los aspectos críticos para describir los efectos tóxicos 

de sustancias metálicas) en el análisis de ecotoxicidad, se evaluaron tres escenarios de 

aplicación en siete arquetipos de agua en Europa y considerando más de 15000 suelos. 

Dada la complejidad y variabilidad de los potenciales escenarios de aplicación de pesticidas y 

con el objetivo de simplificar y facilitar su evaluación, se han establecido una serie de 

escenarios arquetipos. Para ello, se definen combinaciones específicas de tipos de pesticidas, 

cultivos y métodos de aplicación de modo que sea posible estimar las fracciones de emisión de 

los componentes activos de los pesticidas a nivel global para el ACV. Esta tarea se desarrolla 

en el marco del esfuerzo internacional, del consenso para pesticidas. Finalmente, las 

recomendaciones consensuadas sobre la definición de escenarios se presentan por medio de un 

ejemplo práctico. 

Los resultados de esta tesis demuestran la importancia de considerar el uso de pesticidas en la 

evaluación de ecotoxicidad para producción agrícola. Además, representan una mejora 

significativa en cuanto a las metodologías para cuantificar fracciones de emisión de pesticidas, 

así como en la determinación de los impactos de éstos sobre distintos ecosistemas dentro del 

marco del ACV. Dentro de las líneas a continuar a partir de esta investigación, se puede 

considerar la inclusión de metabolitos de pesticidas en la evaluación de impactos de toxicidad. 

Igualmente, el desarrollo de factores de caracterización para considerar la ecotoxicidad en 

suelos, y una mejor evaluación de la emisión de metales provenientes de los insumos agrícolas 

(ej. Fertilizantes orgánicos e inorgánicos).   
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Resum 

Els pesticides són àmpliament utilitzats en l'agricultura per protegir i controlar els cultius front 

plagues, malalties i males herbes, i millorar, per tant la productivitat i reduir  pèrdues en les 

etapes de cultiu i emmagatzematge. En els últims anys, en les eines d'anàlisi de cicle de vida 

(ACV) s'han assolit avenços significatius pel que fa a l'avaluació de l'ús de pesticides en 

agricultura. S’han desenvolupat una gran varietat de metodologies per quantificar els impactes 

degut a l'ús de pesticides en la salut humana, així com en els ecosistemes circumdants. 

La inclusió de impactes de toxicitat degut a l’ús pesticides es troba normalment afectada per 

importants inconsistències entre l'anàlisi d'inventari (ICV) i l'avaluació d'impactes (EICV), 

comportant un repte en l’ACV per poder avaluar i comparar l'aplicació de pesticides. És així 

com aquesta tesi busca contribuir, des del marc de l'ACV, en el desenvolupament de 

metodologies quantitatives per avaluar fraccions d'emissions i impactes en la toxicitat 

d'ecosistemes ocasionats per l'ús de pesticides. 

Un dels principals reptes en l’ACV de sistemes agrícoles, és el modelatge de fraccions d'emissió 

de pesticides per a l'anàlisi de l’inventari. En general, existeixen varis enfocaments i suposicions 

per estimar les emissions, però solen ser poc consistents i difícilment comparables entre sí. 

s’aborda aquest tema en aquest estudi, tot avaluant la influència del model d'inventari 

seleccionat, en l'acompliment ambiental de diferents sistemes de cultiu. A més, es proposa una 

estimació rutinària simplificada per a les fraccions d'emissió de pesticides. Els límits entre 

l'inventari d'emissions de pesticides i l'avaluació d'impactes han resultat tenir una influència 

considerable en l'estimació dels impactes d’ecotoxicitat. En aquest sentit, aquest estudi 

contempla les recomanacions actuals d’inventaris d'emissions de pesticides i d’avaluació 

d'impactes, per poder emmarcar una interfície apropiada per modelar l'anàlisi d'inventari, i 

caracteritzar l'avaluació d'impactes evitant possibles superposicions temporals. 

Una altra limitació metodològica, en el marc des estudis d’ACV, associada als impactes 

d'ecotoxicitat provocats per l'ús de pesticides, es troba en l’avaluació  dels fungicides 

inorgànics. Aquest problema és abordat amb la quantificació d'impactes d’ecotoxicitat en aigua 

superficial produïts per l'ús de fungicides a base de coure. Aquests, a la vegada, són comparats 

en un cas d'estudi puntual, front els fungicides sintètics més comuns emprats contra el míldiu. 

L’ecotoxicitat dels sòls es va estudiar en relació a les característiques químiques i estructurals 
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(textures) d’aquests. Per incorporar la diferenciació espacial (un dels aspectes crítics per 

descriure els efectes tòxics de substàncies metàl·liques) en l'anàlisi d'ecotoxicitat, es van avaluar 

tres escenaris d'aplicació en set arquetips d'aigua a Europa considerant més de 15000 sòls. 

Donada la complexitat i variabilitat dels potencials escenaris d’aplicació de pesticides i amb 

l’objectiu de simplificar i facilitar llur avaluació s'han establert escenaris agrícoles típics. Per a 

això, es defineixen combinacions específiques de tipus de pesticides, cultius i mètodes 

d'aplicació de manera que sigui possible estimar les fraccions d'emissió dels components actius 

dels pesticides a nivell global per l'ACV. Aquesta tasca es va desenvolupar en el marc de l'esforç 

internacional de consens per pesticides. Finalment, les recomanacions consensuades sobre la 

definició d'escenaris es presenten per mitjà d'un exemple pràctic. 

Els resultats d'aquesta tesi demostren la importància de considerar l'ús de pesticides en 

l'avaluació de l’ecotoxicitat per a producció agrícola. A més, representen una millora 

significativa pel que fa a les metodologies per quantificar fraccions d'emissió de pesticides, així 

com en la determinació dels impactes d'aquests sobre diferents ecosistemes dins el marc de 

l'ACV. Dins de les línies a continuar a partir d'aquesta investigació, es pot considerar la inclusió 

de metabòlits de pesticides en l'avaluació d'impactes de toxicitat. Igualment, el 

desenvolupament de factors de caracterització per a considerar l'ecotoxicitat en sòls, i una 

millor avaluació de l’impacte dels metalls pesants existent en les entrades agrícoles (ex. 

Fertilitzants orgànics e inorgànics). 
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Preface 

This thesis was developed during the period from January 2015 to July 2018 in compliance 

with the PhD program in Environmental Sciences and Technology of the Universitat Autònoma 

de Barcelona (UAB). The work was carried out at the Institute of Agriculture and Food 

Research and Technology (IRTA). This dissertation addresses the agricultural use of pesticides 

in open-field crop production; it is a contribution to the development of methods to assess 

emissions and effects (i.e. toxicity) of pesticide active ingredients in ecosystems. In particular, 

for the quantification and characterization of pesticide emissions and impacts, and to improve 

new considerations for inorganic (i.e. metal-based) pesticides in the frame of life cycle 

assessment studies.    

Part of the research was conducted during a four-month stay, as a research assistant, in the 

Collaborative Project for Sustainable Organic Low-Input Dairying – SOLID (December 2015 

– March 2016) at the Department of Agroecology, Aarhus University, Viborg (Tjele), 

Denmark. During this period, the environmental performance of different cropping systems was 

assessed. More specifically the ecotoxicity evaluation of dairy and bio-refinery production, the 

development of new characterization factors for several pesticide active ingredients and testing 

the performance of different LCI methodologies. A second two-month stay (April - May 2016), 

as a guest PhD candidate, in the quantitative sustainability assessment (QSA) division, of the 

department of management and engineering, Technical University of Denmark – DTU was 

completed. During this period, the research activities were concentrated on the adaptation of 

fate system processes to the acid dissociation constant (pKa) into to the DynamiCROP model, 

and the role of metal-based pesticides in agricultural systems for their inclusion in LCA models. 

Results from the international period are summarized in first authored and collaborative papers, 

plus several deliverables and conference communications (below listed in this preface).   

This thesis is a synopsis of three research articles covering the major findings, which have been 

either published or accepted or are in preparation to be submitted in international peer-reviewed 

journals:  

• Peña, N., Antón, A., Kamilaris, A., Fantke, P., 2018. Modeling ecotoxicity impacts in 
vineyard production: Addressing spatial differentiation for copper fungicides. Sci. Total 
Environ. 616-617, 796–804. doi:10.1016/j.scitotenv.2017.10.243. 
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• Peña, N., Knudsen, M.T., Fantke, P., Anton, A., Hermansen, J.E. Freshwater ecotoxicity 
assessment of pesticide use in crop production: Testing the influence of modeling choices. 
Submitted on April 2018 to Journal of Cleaner Production.   

• Peña, N., Antón, A., Fantke, P. Towards a consensus to estimate global emission fractions 
of pesticides: Definition of application scenarios. Manuscript in preparation. 

In addition, the work included in the thesis was presented in several oral communications and 

posters in national and international conferences:  

• Peña, N and Antón, A. “A new approach for modeling inorganic pesticides: an adaptation 
of life cycle assessment tools to copper fungicides” 13th HCH & Pesticides Forum, 3-6 
November 2015, Zaragoza, Spain. Oral Presentation. 

• Antón, A. and Peña, N. “Impacte ambiental de la utilització de fungicides cúprics a la 
vinya” 3r Simposi de Producció Agrària Ecològica. Viticultura i Enologia ecològica, 25-
26 November 2015, Vilafranca del Penedès, Spain. Oral Presentation. 

• Peña, N. and Antón, A. “Is copper fungicide that bad?” 3rd International Symposium on 
Organic Greenhouse Horticulture, 11-14 April 2016, Izmir, Turkey. Oral Presentation.  

• Peña, N., Antón, A., Fantke, P. “A Consistent Framework for modeling Inorganic 
Pesticides: Adaptation of Life Cycle Inventory Models to Metal-Base Pesticides” 22nd 
SETAC Europe LCA Case Study Symposium. 20-22 September 2016 Montpellier, 
France. Oral Presentation. 

• Peña, N., Fantke, P., Antón, A. Modeling Potential Ecotoxicity Impacts due to Copper 
Fungicide Use in Vineyards. 10th International Conference on Life Cycle Assessment of 
Food - LCA Food 2016.  19-21 October 2016, Dublin, Ireland. Oral presentation. 

• Peña, N., Knudsen, M.T, Antón, A., Hermansen, J.E. “Development of Characterization 
Factors for Pesticides in Feed Production” 10th International Conference on Life Cycle 
Assessment of Food - LCA Food 2016. 19-21 October 2016, Dublin, Ireland. Oral 
presentation. 

• Peña, N., Antón, A., Dijkman. T, Grant, T., Fantke, P. “Marco consensuado para la 
inclusión de los pesticidas en los inventarios de ACV” III simposio Red Española ACV. 
04 November 2016. UPV-Valencia, Spain. Oral presentation. 

• Antón, A. and Peña, N. “Environmental Assessment of potential toxicity due to fungicide 
use in vineyards. Focus on copper compounds” 5th Conferencia Internacional de 
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November 2016, Vilafranca del Penedès, Spain. Oral Presentation. 
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Figure P.1 Structure of the dissertation within the LCA framework 

 
The introduction, background and context for this thesis are set up in Chapter 1, stating the 

problem associated to the current practice for ecotoxicity assessment of pesticide use in 

agricultural production and defining the needs and objectives of this research study.   
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Chapter 2 frames a suitable interface for pesticide emission inventory and impact 

characterization, and the related mass distribution of pesticides avoiding a temporal 

overlapping. In the same chapter, an estimation routine for pesticide emission fractions is 

proposed. Furthermore, the influence of pesticide use on the environmental impact profiles of 

the feed crops maize, grass, wheat, barley, rapeseed and peas, is evaluated testing the effects of 

the inventory model choice and the developments of the USEtox characterization method. 

Chapter 3 improves the considerations for modeling metal-based fungicides in LCA context. 

First, characterizing fungicide emissions fractions and freshwater ecotoxicity impacts to 

compare results of copper-based fungicides with the most common synthetic fungicides used. 

Second, introducing soil ecotoxicity characterization for copper-based fungicides. And finally, 

including geographic variability for copper-based fungicides used in European vineyards, with 

the truly dissolved metal fraction evaluated in seven European water archetypes and assessing 

the potential soil ecotoxicity impacts in different application scenarios for specific non-

calcareous vineyard soils.  

The key outcomes of the international effort carried out to reach agreement on recommended 

default agricultural pesticide emission fractions to environmental media are briefly presented 

in chapter 4. A set of typical agricultural scenarios (archetypes for pesticides, crops, application 

methods and mass fractions) are then defined. Part of the findings of this effort is summarized, 

and the results related to the definition of application scenarios are presented.   

Finally, overall conclusions of the present study along with recommendations for future 

research work are summarized in chapter 5. 
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1.1 Background and context for pesticides use  

A pesticide is any substance or mixture of substances intended for preventing, destroying, 

repelling, or mitigating any pest (European Commission, 2009). Agricultural pesticides or plant 

protection products (PPP) are then those chemicals that are used by farmers to prevent the 

effects of the pests on the growth and productivity of crops. The end-use products contain one 

or several active ingredients (AI) and formulants1. A wide variety of pesticides can be applied 

in agriculture and their characteristics depend on a range of factors: including the specific pest 

(e.g., fungicides, insecticides, molluscicides) and/or plant organism (e.g., herbicides, algaecides 

and plant growth regulators) of interest; the nature of the AI (synthetic2 or inorganic) and the 

mode of action (broad or narrow spectrum) among many others.  

Pesticides have become vital elements in modern agriculture as they provide many benefits, but 

their extensive and continuous applications also have several negative implications for the 

environment. Some of these implications include human exposure to crop residues (Fantke et 

al., 2012), potential impacts on non-target organisms (Felsot et al., 2010), a shift in dominating 

pest species and increasing pest resistance (Pimentel, 2005). Furthermore, climate change is 

also affecting agricultural production in many ways, increasing pest events, and intensifying 

the sensitivity of crops to stress and disease (Babut et al., 2013; Kattwinkel et al., 2011). These 

problems are likely to lead crop growers towards increased use of PPP, and consequently, 

potential risks of toxic impacts on humans and the ecosystems may further increase (Nesheim 

et al., 2015; Vernier et al., 2017). 

The worldwide consumption of pesticides is about 2 million tons per year. Europe and North 

America account for 70% of global consumption; from which, 48% are herbicides, 30% are 

insecticides, and 18% are fungicides (FAOSTAT, 2015). Nowadays, the European Commission 

                                                   

1 Active ingredient are any chemical, plant extract, pheromone or micro-organism (including viruses), that are the 
biologically active part in any pesticide, on the other hand the formulant is any substance or group of substances 
other than the active ingredient that is intentionally added to a pest control product to improve its physical 
characteristics (European Commission, 2017). 

2 The terms synthetic pesticides and synthetic fungicides in this thesis refer to pesticides that contain xenobiotic 
organic compounds as active ingredients that are prohibited in organic crop and livestock production (European 
Commission, 2008). 
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authorizes more than 500 AI, and around 380000 tons of pesticides are used each year in 

Europe, from which fungicides represent the most used AI in conventional and organic 

agriculture, with a total annual use in the EU28 of 163500 tons for 2015 (European 

Commission, 2009; Eurostat, 2016). Five countries account for nearly 72% of the total pesticide 

used in Europe for 2015, Spain alone accounts for 20%, followed by France (19%), Italy (16%), 

Germany (12%) and Poland (5.9%) (Eurostat, 2016).   

With regard to pesticide use, the EU adopted the directive (2009/128/EC) to promote the 

sustainable use of pesticides with the objective of reducing the risks and impacts on human 

health and the environment (European Commission, 2009). This initiative was part of the 

strategies of European environmental policy and goes in line with the commitment to reach the 

sustainable development goals by 2030. The European strategy for PPP acts in three areas, 

authorization, use and control of PPP as illustrated in Figure 1.1. At the national level, 

authorities adapt their laws; and develop the National Action Plans (NAP) with main targets 

and quantitative objectives to ensure the reduction strategy.  

 

Figure 1.1 European strategies for plant protection products, the pesticide package. Adapted 
from Rossi et al., (2012)    

In line with this regulation, in 2007 the European Commission set out the principles, aims and 

rules of organic farming (Council Regulation (EC) No. 834/2007). Organic production should 

respect natural systems and cycles. Biological and mechanical production processes and land-

related production should be used to achieve sustainability. Furthermore, the use of pesticides 

is restricted to inorganic pesticides and exceptionally, synthetic inputs may be permissible if 

there are no suitable alternatives.  
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Inorganic pesticides3 are mainly copper-based products, or in a minor extent, zinc and mercury 

compounds. On the other hand, zinc and copper are two of the most common heavy metals 

released from pesticides, accounting for at least ten of the total metals in agriculture. About 

80% of the copper contribution to the environment from agricultural systems is from fungicides 

with active substances derived from copper variants. In this sense, this thesis addresses 

inorganic pesticides taking as a starting point copper-based fungicides AI. 

Finally, aside from their beneficial effects on the crop growth and yield, the use of pesticides is 

a matter of continuous surveillance and concern, due to potential toxicity to humans and 

ecosystems (non-target organisms) during or after application (Damalas and Eleftherohorinos, 

2011; Fantke et al., 2012; Rozman, 2015; Swartjes, 2016). Pesticide application is considered 

one of the primary sources of diffuse pollution, meaning that pesticide AI can interact with the 

media and can be transported by several processes. These processes are governed by the 

chemical nature of the AIs, and the characteristics of the surrounding environment 

(Reichenberger et al., 2007). That is why the presence of an AI does not explain environmental 

impacts by itself, as for that also distribution and transformation in the environment (fate), 

contact with humans and ecosystems (exposure) and related potential toxicity (effects) in 

humans and organisms need to be considered and characterized (Hauschild and Huijbregts, 

2015; Rosenbaum et al. 2018).        

1.2 Life cycle approach for agricultural systems  

Life cycle assessment is a standardized tool to assess potential environmental impacts and 

resources used throughout a product life cycle, i.e., from raw material, through production and 

use stages, to waste management (Finnveden et al., 2009; ISO-14040, 2006). In contrast to 

monitoring assessments (e.g., risk assessment), LCA is not used to analyze risk or safety but 

instead supports to establish and inform environmental performance profiles aiming to identify 

the most environmentally sustainable ways of providing a product or service between different 

options.  

                                                   

3 Here after and throughout this thesis, the term inorganic pesticides are referred to all metal-based pesticides.  
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In LCA, environmental problems are associated with impact categories to determine the 

magnitude of potential impacts, by identifying and quantifying the materials and energy flows 

(including extraction, consumption and emissions) and therefore their potential environmental 

effects.  

LCA is a comparative methodology divided into four phases. The first phase defines the goal 

and scope of the study; this phase also defines the choice of the functional unit (FU), which 

must be precise and measurable. This is followed by the inventory analysis (LCI), were all 

inputs and outputs of the different process involved in the life cycle are listed and quantified 

for the FU. The third phase, the impact assessment (LCIA) is the stage where the inventoried 

results are converted into environmental impacts through characterization factors (CF), these 

impacts are determined eventually for three different areas of protection (Human health, 

ecosystems quality and resources). In this thesis, only impacts on ecosystems (impact category 

related to ecosystem quality) are considered (see Figure 1.2).  

 
Figure 1.2 Overall scheme of the LCIA framework, linking life cycle inventory output to 
impact assessment. Adapted from Fantke, (2015)     

Interpretation of quantitative and qualitative results is the last phase of an LCA; it allows 

identifying the potential “hot-spots” of the system under study, and drawn recommendations 
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from the outcomes. The interpretation is correspondingly a critical review of the data quality 

and the limitations of the analysis may also involve an iterative process within the four phases 

for revising the scope of the LCA. This technical framework has been established and 

standardized by ISO (ISO-14040, 2006; ISO-14044, 2006).  

LCA has proven to be an accurate, objective and transparent tool to quantify environmental 

impacts for several types of products and systems. Within the agricultural sector, many 

cropping systems (Chobtang et al., 2017; Dijkman et al., 2017; Torrellas et al., 2012) and 

agricultural products (Bartocci et al., 2017; Knudsen et al., 2010; Roy et al., 2009) have been 

analyzed using LCA framework. However, agriculture is one of the most challenging sectors 

to study in LCA, since environmental assessment in agriculture has the particularity that the 

activity has a multifunctional role and evolves in a complex system close to the environment, 

which is only partly understood (Notarnicola et al., 2017).     

Furthermore, assessing environmental impacts associated with agricultural production in LCA 

needs to account for unique elements inherent in these production systems. For instance, 

agricultural production has a strong reliance on natural resources (e.g., land, water, nutrients, 

soil, and biodiversity), is dependent on temporal and spatial conditions, the process and 

products are highly variable (site specific) and hence difficult to control (e.g., emissions), they 

are multi-functional systems with a non-linear relationship of the environmental processes. 

Consequently, there is a high risk for the assessment to be biased by the reduction of system 

boundaries, the scenario definition, the choice of the functional unit and the considered impact 

indicators. 

Hence environmental models and data need to be developed or adapted to agriculture, the FU 

and the boundary between the ecosphere (i.e. environmental system) and technosphere (i.e. the 

studied system) need to be clearly defined, and the databases and calculation procedures need 

to be efficient and representative.  

Up to now LCA studies in agriculture, have successfully dress the evaluation of the so-called 

global-impact categories (e.g., climate change) or indicators as carbon footprint; while the 

integration of relevant impact categories related to toxicity or biodiversity has received 

relatively little attention (Meier et al., 2015). The following elements of this work provide a 

better understanding of the methodology for ecotoxicity assessment in LCA of agricultural 

systems and introduce the developments of different methodologies to assess pesticides use.  
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1.3 Pesticide ecotoxicity assessment in LCA 

Pesticides are designed to have a strong and relatively particular toxic effect on targeted 

organisms. The biologically active part of a pesticide or the active ingredient (AI) is, in general, 

more active (i.e. more toxic) towards the target organisms, but it can still cause adverse effects 

on others. Therefore pesticides are likely to affect a broad range of organisms, whether these 

organisms are intended to be affected or not, and this may be explained by the different modes 

of action that an AI can have. However, the problem for ecotoxicity assessments is that these 

modes of action can often not be differentiated and need to be aggregated to be able to capture 

an effect on an entire ecosystem.   

Toxicity is not the only parameter determining potential ecotoxicity impacts; furthermore, they 

will depend on different driving factors (the quantity emitted, the mobility and persistence, the 

exposure paths and bioavailability). In addition, ecotoxicity is very different from other impact 

categories due to the number of relevant and potentially contributing elementary flows 

(Hauschild and Huijbregts, 2015).               

To calculate ecotoxicity impacts scores (IS) for pesticides the mass applied per FU is derived 

(from the dose and area treated) to then get the mass emitted (i.e. mass applied multiplied by 

the emission fraction for each compartment) in the LCI. Then, the obtained emitted mass per 

FU is multiplied by the impact per emitted mass (i.e. impact characterization in the LCIA) for 

every emission compartment. Thus to assess the potential ecotoxicity impacts caused by 

pesticide use in LCA studies requires an accurate estimation of the emission fractions in the 

inventory phase and a precise characterization in the impact assessment (Rosenbaum et al., 

2015).  

The current LCI practice to estimate emission fractions to different environmental 

compartments (e.g., air, water or soil) from the applied amount pesticide, several different (i.e. 

inconsistent) approaches and assumptions are currently used. For example, the use of standard 

emission factors (i.e. percentages) of the applied active ingredient emitted to air, soil or water 

(Audsley et al., 2003; Margni et al., 2002). In this line, the most adopted assumption is that 

100% of the applied pesticide is emitted to the agricultural soil (Nemecek and Kagi, 2007). 

Another example are the LCI databases like the “USDA LCA Digital Commons” where 

pesticides emissions are inventoried according to data on leaching and runoff or the US field 
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crop LCI database and the “EIQ calculator” that reports release of pesticides to soil and air 

according to the application method inventoried (Cooper et al., 2013; Eshenaur et al., 2015; 

NREL, 2016). A final example, is the dynamic model PestLCI 2.0 that estimates pesticide 

emissions to air, surface water, and groundwater, by modeling primary and secondary 

distribution processes following field application and employing a local fate modeling (Birkved 

and Hauschild, 2006; Dijkman et al., 2012). Choosing among these different approaches may 

have an essential influence on the results of the LCI, and consequently, in the LCIA, this is 

mainly relevant when different agricultural practices need to be addressed (Fantke et al., 

2012b).  

On the other hand, characterization modeling in LCIA must be done considering the impact 

pathway, that is, the environmental mechanism leading from the emission to impact. There are 

multiple impact pathways for pesticides depending on the impact category that is evaluated.  In 

the case of ecotoxicity, the impact pathway of pesticides consists of four main steps: fate, 

exposure, effects and severity modeling. LCIA assesses impacts at midpoint or endpoint level 

and relies on substance-specific CFs, that for toxicity denote the quantitative representation of 

potential environmental impact per unit emission of a substance (Rosenbaum et al., 2018). 

However, the potential of a substance to contribute to an impact in many cases depends on the 

environmental characteristics, which can vary spatially (Owsianiak et al., 2013). As mentioned 

before, spatial variability is observed for all non-global impact categories and is expected to be 

relevant for pesticide ecotoxicity, been especially true for inorganic pesticides (Potting and 

Hauschild, 2006).  

All current LCA characterization methods adopt environmental multimedia, multipath way 

models employing mechanistic cause-effect chains to account for the environmental fate, 

exposure and effects processes. However, they do not necessarily agree on how these processes 

need to be modeled, leading to differences in results of LCA studies related to the choice of 

LCIA method (Hauschild and Huijbregts, 2015). Nevertheless, these models consider processes 

of a pesticide in air, water and soil, and accurately differentiate between natural and agricultural 

soil.   

Freshwater ecotoxicity can be characterized with most of the available methods, such as the 

UNEP-SETAC scientific consensus model USEtox that is endorsed by the UNEP-SETAC Life 

Cycle Initiative (Rosenbaum et al., 2008; Westh et al., 2015). For ecotoxicity, USEtox only 
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accounts for impacts on freshwater ecosystems and currently does not provide CF for terrestrial 

ecotoxicity impacts on or off the agricultural field. Hence, this thesis will mainly adopt this 

methodology to assess freshwater ecotoxicity impacts.  

On the other hand, metal compounds are consistently assessed as very toxic substances in LCIA, 

and in general have a higher contribution to ecotoxicity than organic/synthetic compounds, even 

if the last ones are persistent and bioaccumulative (Gandhi et al., 2011; Huijbregts et al., 2000; 

Owsianiak, 2013). Characterization approaches for metals are typically based on models 

developed, either for risk assessment or for organic compounds, which miss several processes 

(i.e. speciation and its dependent of environmental media, natural occurrence and infinite 

persistence, and metal essentiality) of significant influence to environmental fate and exposure 

for metals. Attempts have been made by some authors to overcome these limitations, for 

example, Gandhi et al. (2010) have developed a method for calculating CF of cationic metals 

in freshwater ecosystems; Dong et al. (2014) further adapted this method to European 

conditions. For terrestrial ecotoxicity, Owsianiak et al. (2013) propose a spatially differentiated 

methodology to assess copper and nickel toxicity in soils. Although, for inorganic pesticides, 

there is still a lack of agreement on how to assess ecotoxicity-related impacts, and in 

consequence, these AI are currently not adequately characterized by any existing model 

(Hauschild and Huijbregts, 2015; Meier et al., 2015).  

1.4 Main challenges in the assessment of pesticide use in LCA  

Over the past years, a significant number of LCA studies on agricultural systems were 

conducted; however, inconsistencies in the assessment methodology push practitioners to 

discard the analysis of ecotoxicity impacts, losing valuable information when it comes to 

comparing different scenarios of agricultural practices. 

Pesticide ecotoxicity as currently modeled may lead to inconsistent results and wrong 

conclusions in few cases (e.g., comparing conventional and organic farming), mostly due to the 

lack of agreement and precise definitions on the modeling framework for this impact category 

(Notarnicola et al., 2017). Furthermore, the inclusion of ecotoxicity in LCA does not necessarily 

mean that the toxic effects of pesticide use are considered. For instance, some authors report 

pesticide emissions without the impact characterization (Benedetto, 2013). Others, evaluate 
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ecotoxicity impacts related to pesticide production but do not quantify the impacts from the 

application of PPP (2016; Point et al., 2012). This fact is more apparent when it comes to the 

evaluation of inorganic pesticides, approved for organic farming, as these are not as well 

understood and characterized as synthetic pesticides.  

Considerable methodological advances have been currently achieved, but existing LCI and 

LCIA methods do not sufficiently address or even ignore some mechanisms for pesticides. 

From which some of the most outstanding modeling issues still are: a) the delimitation between 

LCI and LCIA (temporally and physically); b) modeling emission fractions at LCI phase, and 

C) the need for spatially differentiated models in the LCIA, especially regarding inorganic 

pesticides (Nemecek et al., 2014a; Notarnicola et al., 2017; Rosenbaum et al., 2015).  

1.5 Central motivation and objectives 

Taking into account the main challenges and background described in the previous sections, 

this research focuses on the ecotoxicity assessment of pesticides active ingredients in the 

context of LCA. The main motivation for the methodological improvements are related to the 

aforementioned subjects and further encouraged by the following facts:  

• As a public claim: according to Eurobarometer (2012) in the report about the attitudes 

of European citizens towards the environment, the agricultural pollution by the use of 

pesticides is 6th (29%) on the ten principal concerns and for 33% of Spanish people is a 

problem of significant concern.  

• As a regional matter: In 2015, the countries in which the highest quantities of 

pesticides were sold were France, Spain, Italy, Germany and Poland, together making 

up 72 % of the EU's pesticide sales (Eurostat, 2017a). 

• As a response of the political concern: The EU pesticide package under the Regulation 

(EC) No 1107/2009 of the European Parliament, there is a firm commitment to increases 

environmental protection and contribute to adopting more sustainable agricultural 

production.  

• As a regional commitment: The European Parliament under the 7th environment action 

program sets the objective towards sustainable use of PPP. Furthermore, for the year 

2020, these products should not have a harmful or undesirable influence on the 

environment (EU, 2013).   
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• As the response of scientific concern: The European Food Safety Authority (EFSA) 

displays a data gap for exposure assessment of copper compounds from the agricultural 

use of fungicides (EFSA, 2013).  

Hence, this dissertation is focused on the evaluation of pesticides in open-field crop production; 

it is a contribution to the development of quantitative methodologies to assess emission 

fractions and toxicity impacts on ecosystems from pesticide use within an LCA framework. 

Furthermore, the main goal is to advance in the quantification and characterization of emission 

fractions and toxic impacts derived from the agricultural use of pesticides and improving new 

considerations for inorganic pesticides in the frame of LCA studies. To achieve this main 

objective, the following goals are addressed:   

• To contribute to the evaluation of the ecotoxicological burden on ecosystems from pesticide 

use in different crop production systems.  

• To evaluate the influence of different LCI modeling approaches to the assessment of 

environmental impact profiles of crops.    

• To include inorganic pesticides in ecotoxicity impact evaluation of agricultural systems. 

This comprises i) to characterize freshwater and soil ecotoxicity potentials for copper-based 

fungicides, and ii) to include spatial differentiation on the assessment of metal-based 

pesticides. 

• To define and propose a consistent set of agricultural scenarios to be able to determine 

emission estimates for inventory use in LCA studies in a global context.       

• To recommend lines of future research for furthering the scientific development and the 

practical applicability of the methodologies for LCA of agricultural systems 
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Abstract  

Pesticides help to control weeds, pests and diseases contributing, therefore, to food availability. 

However, pesticide fractions not reaching the intended target may have adverse effects on the 

environment and the field ecosystems. Modeling pesticide emissions and the alignment with 

characterizing associated impacts is currently one of the main challenges in Life Cycle 

Assessment (LCA) of agricultural systems. To address this challenge, this study takes 

advantage of the latest recommendations for pesticide emission inventory and impact 

assessment and frames a suitable interface for those LCA stages and the related mass 

distribution of pesticide avoiding a temporal overlapping. Here, freshwater ecotoxicity impacts 

in the production of feed crops (maize, grass, winter wheat, spring barley, rapeseed and peas) 

in Denmark are evaluated during a 3-year period, testing the effects of inventory modeling 

choice and recent updates of the characterization method (USEtox). Potential freshwater 

ecotoxicity impacts were calculated in two functional units to consider crop impact profiles and 

cultivation intensity. According to the results, ecotoxicity impacts decreased over the period, 

mainly because of the reduction of insecticide active ingredients (e.g., cypermethrine). Three 

different emission modeling choices were tested; they differ on the underlining assumptions 

and data requirements. The median results for the resulting emission fractions vary ~4 orders 

of magnitude for the different models. Main aspects influencing impact results are the interface 

between inventory estimates and impact assessment, and the consideration of inter-media 

processes, such as crop growth development and pesticide application method. Statistical 

differences were found in the impact results with 2 of emission model tested, thereby indicating 

the influence of modeling choices on ecotoxicity impact assessment.  

Keywords Pesticide emission factors - inventory modeling - ecotoxicity characterization -life 

cycle impact assessment (LCIA) - feed crops - agriculture  

  



Chapter 2 

 

20 

 

2.1 Introduction 

With the increased global demand for agricultural products for food, fiber and bioenergy, and 

the interrelated concerns on the environmental impact hereof, there is a need to have efficient 

tools to evaluate the environmental performance profiles of agricultural production, to facilitate 

a move towards more sustainable production systems. LCA is widely applied to quantify 

potential impacts of products and systems along with their entire life cycles. One of the main 

challenges in assessing the environmental performance of agricultural systems in LCA is 

modeling emissions from pesticide use and the subsequent coupling with the impact 

characterization model (van Zelm et al., 2014). Over the past years, a significant number of 

LCA studies on agricultural systems were conducted;  however, ecotoxicity impacts as currently 

modeled may lead to inconsistent results and wrong conclusions in few cases (e.g., comparing 

conventional vs organic farming), mostly due to the lack of agreement and precise definitions 

on the modeling framework for this impact category (Notarnicola et al., 2017).  

The development of the LCI analysis and subsequent LCIA (e.g., pesticide emission 

quantification and related characterization of ecotoxicity impacts) are the core phases of any 

LCA study. The robustness and reliability of the LCA results depend mainly on the quality and 

representativeness of the LCI and LCIA data and models selected. Different modeling options, 

hence, will affect the impact profiles of a study, and this is especially relevant for agricultural 

systems (Anton et al., 2014).  

Quantifying the chemical emissions to the environment in the LCI phase is typically based on 

generic assumptions, often based on standard emission factors (e.g., expressed in percentages 

of applied mass) or dynamic models based on specific application scenarios that describe the 

emission distribution of organic pesticides. The consensus effort on the delimitation between 

pesticide emission inventory and impact assessment for LCA already provides guidelines on 

what should be quantified in those LCA steps but explicitly exclude how to do it avoiding 

recommendations on specific models (Rosenbaum et al., 2015). The implications of choosing 

different emission models in the LCA of crop production have been discussed for some 

agricultural systems (Goglio et al., 2018; Schmidt Rivera et al., 2017; van Zelm et al., 2014). 

However, no studies are addressing the influence of the pesticide emission modeling approach, 
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nor the evaluation of recent developments in impact assessment methods to determine pesticide 

ecotoxicity impact profiles in different crop production systems.  

Thus, there is a need to test different choices on how to quantify pesticide emission fractions 

(i.e. different modeling approaches) and the recent developments on the recommended method 

for freshwater ecotoxicity characterization in the production of feed crops. 

The purpose of the present study is to contribute to the evaluation of the ecotoxicological burden 

on freshwater ecosystems from pesticide use in crop production using the pesticide use in 

Denmark (DK) as a case of study. It is focused on assessing the influence of pesticides on the 

environmental impact profiles of feed crops (maize, grass, wheat, barley, rapeseed and peas) 

during the period 2013-2015, testing the effects of the LCI choice and the developments of 

LCIA methodology.  

This study followed the LCA methodology to evaluate the potential ecotoxicity impacts on 

freshwater ecosystems from pesticide use in Denmark´s crop production. This bottom-up 

analysis focuses on the evaluation and influence of pesticide application on the environmental 

impact profiles of maize, winter wheat, grass, spring barley, rapeseed and peas during the period 

2013-2015, testing the effects of the choice of the emission modeling framework and the recent 

updates of the characterization method. For the later, we use the global consensus model 

USEtox (http://usetox.org).  

2.2 Definition of ecotoxicity impact scores 

The quantification of ecotoxicity impact scores for freshwater ecosystems includes 1) detailed LCI 

reporting on the pesticide AI, application methods, time and mass, location, agricultural practices and 

crop stage development; 2) quantified AI emission fractions for both on-field and off-field; and 3) 

measures to avoid double counting of multimedia transfers considered in the quantification of emission 

fractions and the impact assessment fate modeling (Rosenbaum et al., 2015). Accordingly, the freshwater 

ecotoxicity impact scores (IS) can be described as: 

ܵܫ = ∑ ௜,௫ܨܥ) ∙ ݉௜,௫)௜,௫          (2.1) 

Where CFi,x is the characterization factor for freshwater ecotoxicity [PAF m3 d kgୣ୫୧୲୲ୣୢିଵ ], and 

mi,x is the mass of AI x emitted to compartment i per area treated [kgୣ୫୧୲୲ୣୢ	ha-1]. Potential 

http://usetox.org).
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freshwater ecotoxicity impacts (IScrop_ha) [PAF m3 d ha-1] were determined in relation to 1 

hectare [ha] of crop in a given year t within 2013 and 2015 (cultivation intensity). Additionally, 

freshwater ecotoxicity impact profiles at country or regional level (IScrop) [PAF m3 d crop-1] 

from pesticide use were derived from the product of crop impact scores and the total crop area 

in a given year in DK.  

The interface between LCI and LCIA and related mass distribution for pesticide application in 

crop production are presented in Figure 2.1. This approach follows the proposed framework for 

pesticide inventory and impact assessment (Rosenbaum et al., 2015; van Zelm et al., 2014). 

 
Figure 2.1 Interface between LCI and LCIA for pesticide application in crop production. 

2.3 Pesticide emission inventory 

Pesticide application practices in DK for the selected crops were determined. Concrete active 

ingredients were used throughout the study, meaning, that the chemical that is the biologically 

active part of any pesticide was assessed (European Commission, 2017). The mass applied per 

AI was derived from the annual statistical report on pesticide use by crop in DK for 2013 (Ørum 

and Samsøe-Petersen, 2014), 2014 (Ørum and Hossy, 2015) and 2015 (Ørum and Holtze, 

2017); for further information see Supporting information for chapter 2 (SI_2-1). We addressed 

nearly 60 different AIs from four distinct target classes, herbicides (Hrb), plant growth 

regulators (Pgr), fungicides (Fun), and insecticides (Ins). Additionally, glyphosate (CAS-

RN107-83-6) use is not allocated to any specific crop cultivation, and it was assessed as the 

total agricultural use of the AI per 1 hectare [ha] in a given year, hereafter identified as (Gly_agri). 
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All AI identification (CAS registry numbers-RN and names), and class are reported in SI_2, 

Table S2-1. 

2.4 Pesticide emission quantification 

Crops are treated by foliar spray application (typically boom sprayers), and the reported DK 

statistics on pesticides were used for agricultural practices. The agricultural field is considered 

as part of the ecosphere and emissions to environmental media after spraying were modeled via 

initial distribution (primary processes like initial drift deposition) and secondary emission 

transfers (e.g., re-volatilization after deposition). The total emission fraction of an AI [kg kg-1] 

is quantified as the sum of the fractions emitted to air, freshwater and soil: 

௘݂௠ = ௠೐೘
௠ೌ೛೛

= ௘݂௠_௔௜௥ + ௘݂௠_௙௪ + ௘݂௠_௦௢௜௟.௔௚௥௜ + ௘݂௠_௦௢௜௟.௢௧௛௘௥     (2.2) 

Where fem is the fraction of the applied mass of pesticide that becomes an emission to the 

environment, mem the mass emitted, mapp the mass of pesticide applied, fem_air the fraction of 

applied mass that is emitted to air, fem_fw the fraction of applied mass that is emitted to 

freshwater, fem_soil.agri the fraction of applied mass that is emitted to on-field soil and fem_soil.other 

the emission fraction reaching off-field soil and other surfaces. 

Primary distribution 

The primary distribution processes between compartments occur during the initial minutes after 

pesticide application. These primary processes are emission by wind drift (fd_lost), pesticide 

deposition process and the fraction intercepted by the crop or weed. Since the fractions from 

initial distribution to environmental media should sum up to 100% of the applied mass, 

considering losses via degradation during the initial minutes negligible, the aggregated 

emission fractions will be equal to one (Fantke et al., 2011a; Juraske et al., 2007). Consequently, 

the crop/weed interception fraction (fint_crop) of an AI directly after the application s will be 

given by: 

୧݂୬୲_ୡ୰୭୮ = 1 − ൫ ௗ݂_௟௢௦௧ + ௗ݂௘௣_௦௢௜௟.௔௚௥௜൯         (2.3) 
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The fraction lost by wind drift fd_lost [kg kg-1], depends on the application method, i.e. the spray 

equipment and elevation, and wind speed. Based on models for conventional spray equipment 

on field crops and deposition curve parameters assuming GAP, the fd_lost was fixed to a value of 

0.1 (Gil et al., 2014; Gil and Sinfort, 2005; Gyldenkrne et al., 1999; van de Zande et al., 2007). 

The soil deposition fdep_soil.agri [kg kg-1], depends on crop-specific leaf area index (LAI), thereby 

also affecting fractions reaching soil surfaces of the treated field area (Fantke et al., 2011b).  

With an exponential model (Gyldenkærne et al., 2000; Juraske et al., 2007), based on crop 

growth stage and capture efficacy, the fraction reaching the soil surface is described as: 

ௗ݂௘௣_௦௢௜௟.௔௚௥௜ = ݁ି௞೛×௅஺ூ            (2.4) 

Where kp is the capture coefficient [-] and set to 0.55 for pesticide spray solutions prepared 

with adjuvants (Gyldenkrne et al., 1999). Pesticide target class and specific application time 

were used to define crop-specific growth stages in the selected crops. The LAI was derived for 

Pgr, Ins and Fun distinctly as a value dependent on the target class/crop growth 

stage/application time combination, (Fantke et al., 2011b; Itoiz et al., 2012; Olesen and Jensen, 

2013); for Hrb application on weeds the corresponding LAI of 0.5 is used. This value is based 

on the reported leaf cover factor for fallow lands (Panagos et al., 2015). Further details 

presented in SI_2, Table S2-2. 

Secondary distribution 

The subsequent secondary emission transfers include re-volatilization after deposition and off-

field emissions allocation. The volatilization from fractions deposited in the different 

compartments is derived from the default Tier 1 emission factors per AI from their vapor 

pressures (Webb et al., 2016) see Table S2-1 and S2-3 in SI_2-2. The emission factor emF was 

calculated for each AI (see, SI_2 Table S2-1), the inter-media transfer and the final emission 

factors are presented in SI_2-1 and SI_2-2. Finally, the water to soil area ratio for DK (0.016) 

was used to allocate the off-field emissions (i.e. drift fraction deposited in off-field surfaces) 

see SI_2, Table S2-2. This value is based on reported data of the Danish ministry of 

environment (Stockmarr and Thomsen, 2009). 
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2.5 Freshwater ecotoxicity characterization 

For assessing the ecotoxicity of pesticides on freshwater ecosystems, we followed the LCIA 

emission-to-damage framework that links emissions to impacts through environmental fate, 

exposure and effects (Jolliet et al., 2004). According to (Hauschild and Huijbregts, 2015; 

Rosenbaum et al., 2008) characterization factors CF for freshwater ecotoxicity of chemical 

emissions can be expressed as: 

CF௜,௫ = ௜→௙௪,௫ܨܨ × ௙௪,௫ܨܺ × ௙௪,௫ܨܧ 	       (2.5) 

Where FFifw,x is the fate factor in [d] describing the mass transport, distribution and 

degradation in the environment. The ecosystem exposure factor, XFfw,x, is defined as the 

bioavailable fraction of a chemical in freshwater; and an effect factor (EFfw,x) expressing the 

ecotoxicological effects in the exposed ecosystems integrated over the exposed water volume. 

CFs were estimated with USEtox 2.02 as characterization model, with the specific European 

landscape dataset (i.e. representing DK conditions) (Fantke et al., 2017; Westh et al., 2015). 

New CFs for 10 additional AIs, following the procedure in Fantke et al. (2017) were derived. 

A detailed description of the resulting CF and the data used can be found in SI2-3. Furthermore, 

the recent developments for the characterization model between USEtox versions 1.01 and 2.02 

were evaluated. 

2.6 Sensitivity analysis  

Two types of local sensitivity tests were conducted. First, a scenario sensitivity analysis was 

performed to test the effect of LCI modeling choices on the impact profile of the selected crops 

on the three-year period. Three scenarios were considered, the above-described scenario was 

selected as a reference case (BS) and two alternative scenarios (AS1-AS2) that represent 

different modeling approaches to quantify emissions from pesticide use.  The alternative 

scenario AS1 followed Margni et al. (2002), which represents a usually used pesticide emission 

modeling, and furthermore is one of the first approaches that account for pesticide emission 

distribution in different environmental media in LCA studies for agricultural systems. In this 

approach, the pesticide emissions are distributed in environmental media based on fixed share 

percentages. They assume that the fraction of AI emitted to the soil will be 85% of the total 
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application, 5% will stay on leaves and the remaining 10% is lost into the air across crops and 

pesticides. The second tested scenario AS2 represents fixed emission fractions dependent on 

the foliar spray application and drift distributions for field crops. This approach was chosen to 

represent a modeling framework where the initial distribution (i.e. application method and crop 

relation) is taken into account but also allowing the inclusion of field emissions in the 

assessment (Balsari et al., 2007; Felsot et al., 2010; Gil and Sinfort, 2005). Table 2.1 displays 

the emission fractions in the three scenarios considered. 

Table 2.1 Comparison of pesticide emission fractions fem calculated by the BS (reference 
scenario), AS1 (Margni et al. 2002) and AS2 (application method and crop relation). 

Emission 
scenarios 

Average fraction 
emitted [kg kg-1] 

Standard deviation 
on fractions 

BS    
fem_air 1.16x10-1 2.03x10-1 
fem_fw 1.60x10-3 0 
fem_soil.agri 3.75x10-1 3.11x10-1 
fem_soil.other 8.70x10-2 2.01x10-2 
AS1    
fem_air 1.00x10-1 0 
fem_fw 5.00x10-2 0 
fem_soil 8.50x10-1 0 
AS2    
fem_air 1.70x10-1 0 
fem_fw 1.00x10-2 0 
fem_soil 4.50x10-1 0 

2.7 Results and discussion 

2.7.1 Pesticides use in Danish crop production (2013-2015) 

The AI considered in the study covers 98.3% of the total pesticide applications in terms of mass 

applied for the selected crops: maize, winter wheat, grass, spring barley, rapeseed, peas and the 

agricultural use of glyphosate (Gly_agri). The total pesticide use was 3165 tons in 2013, 1438 

tons in 2014 and 2105 tons in 2015. The average pesticide application rates per crop vary 

between 2 and 3 orders of magnitude (SI_2, Table S2-6). Grass is the crop with the lowest 

application rates and pesticide use; together, fungicides and insecticides represent nearly 20% 

of the total use in grass-2013; additionally, in 2014-2015, there was no use of insecticides, and 
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fungicides use was reduced by less than 2.5%. Gly_agri sum up to 2722 tons in the 3 years and 

represents near 40% of the total use of pesticides in DK. Winter wheat (2672 tons) is the crop 

with higher pesticide use followed by spring barley (748 tons) (SI_2, Table S2-7). The most 

used pesticide target class is Hrb and prosulfocarb is the most used AI after Gly_agri within 

this target class.  

2.7.2 Ecotoxicity impact profiles of feed crops (2013-2015) 

The IScrop from pesticide use decreased over the three years (Figure 2.2). The reduction of the 

IScrop was more apparent in 2014 (59%) than in 2015 (33%) with respect to the base year (2013). 

Most of the decrease in the IScrop was due to the non-use of a single substance: cypermethrin. 

This insecticide was the major contributor to IScrop in 2013 across crops (e.g., 87% in maize, 

60% in spring barley and 47% in winter wheat) and was no longer used in 2014-2015 (see Table 

S2-8 in SI_2). Furthermore, the fact that maize and grass did not require the use of insecticides 

in 2015 also contributes to the reduction of IScrop, but it is essential to note that this may be the 

result of unfavorable climatic conditions for the emergence of pests, among many other 

different reasons.  

 

Figure 2.2 Freshwater ecotoxicity impact profiles for crop production (2013-2015), impact 
scores IScrop in [PAF m3 d crop-1]. *Glyphosate (CAS107-83-6) assessed as the total agricultural 
use in Denmark 
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As shown in figure 2.2, winter wheat-2013 (1.6x109 PAF m3 d crop-1), spring barley-2013 

(1.4x109 PAF m3 d crop-1) and rapeseed-2013 (3.3x108 PAF m3 d crop-1) present the higher 

IScrop. The larger IScrop in those crops is associated with the use of Ins (e.g., cypermethrin, 

pendimethalin and lambda-cyhalothrin) and Fun (e.g., pyraclostrobin, azoxystrobin and folpet), 

AIs with relatively high CF, and the more extensive cultivation practices (i.e. cultivated area). 

Consequently, substance prioritization by LCA impact assessment helps to identify potentially 

harmful AI for ecosystems and, with the restriction of their use or the implementation of more 

sustainable practices, significant changes in the impact profiles of the crops can be made more 

apparent (e.g., cypermethrin). 

 In this sense, if farmers choose to use pesticides AI causing lower impacts, the load on 

agricultural systems will decline, even if they continue to spray their fields as usual for pests 

and disease control. Moreover, linking this decision with integrated pest management (IPM) 

will further contribute to lowering the ecotoxicological burden on freshwater ecosystems from 

pesticide use. 

2.7.3 Pressure of pesticide impacts by hectare and class (2013-2015)  

When calculating the potential ecotoxicity impacts on freshwater ecosystems per 1 hectare of 

crop per year (IScrop_ha) [PAF m3 d ha-1] the cultivation intensity can be addressed, and thus, 

their interaction of agricultural systems and practices is more apparent. Different ranking and 

patterns than the presented in section 2.7.1 are found. Furthermore, the variations in pesticide 

use (almost 3 orders of magnitude) and impact scores for individual AIs (up to 9 orders of 

magnitude) are significant. Therefore, in the same year, the two indicators can move in different 

directions (Figure 2.3), meaning that pesticide use or application rates are not an adequate 

indicator of potential impacts (e.g., Gly_agri and rapeseed), since toxicity potentials might be 

higher for pesticides that are applied in lesser amounts (Fantke and Jolliet, 2016). 
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Figure 2.3 Comparison between use of pesticide active ingredient (USE_crop) [tones] and 
potential freshwater ecotoxicity impacts (IScrop_ha) [PAF m3 d ha-1] for 5 analyzed crops 2013 
and *Glyphosate (CAS107-83-6) assessed as the total agricultural use in Denmark in 
logarithmic scale 

In terms of cultivation intensity, peas appeared as the crop with the highest pressure by hectare 

cultivated in the entire period, with the maximum value (6440 PAF m3 d ha-1) in 2015. In 2013 

rapeseed, spring barley and winter wheat showed IScrop_ha between 64% and 54% lower than 

peas, in 2014 the difference for the same crops was among 70% and 85% lower and for 2015 

all crops showed IScrop_ha 80% lower than peas (see Figure 2.4).  

The IScrop_ha for the study varies up to 3.5 orders of magnitude, and the substances cypermethrin 

(Ins), aclonifen (Hrb), pendimethalin (Hrb) and lambda-cyhalothrin (Ins) present the most 

significant contribution to IScrop_ha, which his nearly 70% (see Table S2-9). 
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Figure 2.4 Pressure of pesticide impact scores by hectare of crop cultivated for Danish crop 
production (2013-2015), impact scores IScrop_ha in [PAF m3 d ha-1]. *Glyphosate (CAS107-83-
6) assessed as the total agricultural use in Denmark 

The large IScrop_ha for peas-2015, almost double than precedent years, is mainly explained by 

the bloated use of aclonifen (Hrb). This intensification of herbicide treatments in 2015 could be 

potentially associated with the emergence of weed infestation in pea’s productions fields. 

Moreover, the sharp increment on IScrop_ha in part is explained by the dose increment by hectare 

and the relatively high CF for direct emissions to surface water of aclonifen (SI_2, Table S2-

5), which is driven by a significant EF (1.3x10+4 PAF m3 kg-1). Furthermore, it is important to 

note that even if some substances have a high CF; their use could be justified at low doses, 

because of their agronomic importance and effectiveness of pest or disease control.  

The contribution by pesticide target class to freshwater IScrop_ha can be observed in Figure 2.5. 

Insecticides is the class that contributes in more significant proportion (56%) to impact scores, 

followed by herbicides (36.4%) and fungicides (7%); plant growth regulators were not included 

in Figure 2.5 as their contribution to IScrop_ha and IScrop_DK was lower than 1%. 
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Figure 2.5 Share of freshwater ecotoxicity impact scores IScrop_ha in [%] by pesticide class 
herbicides (Hrb), insecticides (Ins) and fungicides (Fun) taking as reference per crop IScrop_ha - 
2013 as the reference year. 

It is well known that pesticide treatments are a highly dynamic activity that varies year by year. 

Although, it could be more static for herbicides than for the other classes (i.e. insecticides and 

fungicides) that are more closely correlated with the specific climatic conditions on the area 

and year of study and thus also the emergence of any specific pest or disease. If these dynamics 

are to be considered in LCI and LCIA modeling choices, the relevant data (on, e.g., pesticide 

treatment and crop characteristics) have to be consistently reported (Fantke et al., 2016). As 

mentioned before IScrop_ha did not follow the same trends of pesticide use, likewise, IScrop_ha did 

not correlate with use by crop (R2=0.0006) or by AI. 
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Similar trends of crop impacts on freshwater ecosystems (unallocated values by hectare and 

year) are obtained by Nordborg et al. (2014) for the cultivation of maize, rapeseed and winter 

wheat for biofuel feedstock production; Parajuli et al. 2017 for grass, maize and winter wheat 

straw for bio-refinery, and Schmidt Rivera et al. 2017 for barley production in Italy and 

Denmark. The studies above mentioned use PestLCI (version 1 or 2) as inventory model and 

USEtox 1.01 as characterization method for the impact assessment. Therefore, using a fewer 

data demanding a simplified approach could lead to the same results for substance prioritization. 

Despite the similarities in the trends of IScrop_ha, when comparing the results with the absolute 

values of AI use per 1 ha in a given crop, the IScrop_ha are up to 2.2 orders of magnitude higher; 

considering the uncertainty range of the characterization method (between 1-2 orders of 

magnitude) this difference might be moderately significant, and more probably associated with 

the difference in the LCI and the emission modeling framework. 

2.8 Effects of modeling choices on ecotoxicity impact assessment  

2.8.1 Comparing the LCI modeling choices  

There are very different approaches and assumptions in order to provide emission estimates for 

quantifying lifecycle emission inventories of pesticides in any LCA study involving agricultural 

systems. The most simplified approaches are based on generic assumptions regarding varying 

percentages for pesticide application, the modeling framework of Margni et al., (2002) is used 

in several agricultural LCA studies. A different approach is the dynamic emission modeling 

used in PestLCI. This model estimates emissions to three environmental compartments: air, 

surface water and groundwater. It considers the agricultural field down to 1 m depth into the 

soil and up 100 m into the air as part of the technosphere, thus excluding emissions to soil on-

field and off-field (Birkved and Hauschild, 2006; Dijkman et al., 2012). The main differences 

between the methods are the underlining assumptions, the definition and alignment between 

LCI and LCIA and the data requirements for quantifying pesticides emissions. In this sense, 

modeling approaches that allowed the inclusion of agricultural soil in the assessment and that 

involve simplified assumptions for at least application methods were selected in order to test 

the effects on the impact scores from the emission model choice.  
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The selected methodologies are described in section 2.6, and the results of the three approaches 

(BS, AS1 and AS2) were compared between the five crops in the 3-year period. The median 

results for fem in the BS are 2.5 and 1.5 orders of magnitude lower than the emissions for the 

AS1 and AS2. When modeling fem_air the difference is smaller in comparison with the variations 

of fem_fw between the three scenarios. Consequently, the variations in the emission fractions lead 

to further changes in the estimated impact scores. 

Results for IScrop_ha in [PAF m3 d ha-1] with the BS and the AS1 and AS2 are summarized in 

Table 2.2. BS presented the lowest impact results across all crops and years; the highest impact 

results appear in AS1, whereas, AS2 showed higher impacts than BS but within 1 order of 

magnitude of difference. High variability in IScrop_ha results within BS and AS2 approaches 

were observed. 

Table 2.2 Comparison of scenarios to test different emission modeling approaches. Results for 
potential freshwater ecotoxicity impact scores IScrop_ha in [PAF m3 d ha-1] in the base scenario 
(BS) and alternative scenarios AS1 and AS2 

Crop BS AS1 AS2 
2013 2014 2015 2013 2014 2015 2013 2014 2015 

Maize 513 92 50 14370 2261 582 3041 475 138 
Grass 17 11 13 219 141 169 51 31 37 
Winter wheat 2210 434 551 58522 11790 14879 12410 2502 3154 
Spring Barley 2086 458 631 64214 12888 18305 13514 2701 3808 
Rape 1880 921 1394 56586 17682 33144 12244 4144 7267 
Peas 3454 2928 6440 110166 69469 120016 23547 14653 26057 

In addition, the Tukey test was conducted to determine statistical differences in the impact 

assessment of the three modeling approaches tested. The differences in results of BS and AS1 

are statistically significant. Meanwhile, the results for AS2 and BS were statistically similar.  

The delineation between pesticide emission inventory and the impact assessment has shown to 

have considerable influence on the estimation of ecotoxicity impacts of AI and the impact 

profiles of crop production (Rosenbaum et al., 2015; van Zelm et al., 2014). However, that 

alone is not the only explanatory reason for the lower IScrop_ha results. The consideration of 

inter-media processes, crop growth development and application method allow for a more 

accurate estimation of the real phenomena, which are also the aspects that usually have the 

highest influence on LCI and LCIA models (Dijkman et al., 2012; Fantke et al., 2012). 



Chapter 2 

 

34 

 

Furthermore, the consistency showed for trend results of others studies using PestLCI (a more 

sophisticated emission modeling approach) compared to the BS results are satisfactory (see 

section 2.7.3). Keeping in mind that such a model is much more data demanding and since 

IScrop_ha represent potential impacts rather than actual damages, the substance prioritization with 

a simplified method as the BS may serve as a first proxy in LCA studies when more detailed 

data are lacking. 

2.8.2 Variation from LCIA characterization method version  

The range of variation for the CF of all AI in the study with USEtox 2.02 was almost 9 orders 

of magnitude. FF and XF vary by near 2 orders of magnitude, while EF varies up to 7 orders of 

magnitude indicating substantial differences in pesticide-specific ecotoxicity potential. The 

variation in the CF for direct emissions to surface water, continental air or agricultural soil was 

near to 10 orders of magnitude, but CF for direct emissions to continental air and agricultural 

soil was lower than the CF for direct emissions to freshwater (3 and 2 orders of magnitude, 

respectively). From which, the importance of modeling the impacts of the dose applied, with a 

coherent coupling of the LCI to the LCIA model results (i.e. characterized results).   

Results for IScrop_ha in the base scenario (BS) and USEtox version 1.0 and 2.02 are summarized 

in Table 2.3. The more substantial differences in the impact results from both USEtox versions 

are the AI coverage, with version 1.01 covering fewer AI; thus, IScrop_ha characterized with v 

1.0 are lower in most of the cases due to AI coverage, as expected. Furthermore, significant 

improvements and scientific consensus have been achieved for the new features introduced in 

the USEtox version 2.02 among which substances and updated substance data and continent-

specific landscape parameters contribute to further improving the accuracy in the quantification 

of CFs. An example of this, are the results for Peas 2013 to 2015, were all IA were included in 

both USEtox versions, and IScrop_ha were within the same order of magnitude but between 3 to 

6 times larger.  
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Table 2.3 Comparison of scenarios to test developments of LCIA characterization method. 
Results for potential freshwater ecotoxicity impact scores IScrop_ha in [PAF m3 d ha-1] in the base 
scenario (BS) and USEtox version 1.0 and 2.02   

Crop BS - USEtox 1.0 BS - USEtox 2.02 
2013 2014 2015 2013 2014 2015 

Maize 246 63 146 513 92 50 
Grass 24 12 14 17 11 13 
Winter wheat 1349 445 1223 2210 434 551 
Spring Barley 758 267 390 2086 458 631 
Rape 776 563 702 1880 921 1394 
Peas 1483 1893 6080 3454 2928 6440 
Glyphosate Agri-use 24 12 17 14 6 8 

2.8.3 Results for the sensitivity analysis  

The results on the evaluation of ecotoxicity impact profiles in Danish crop production 

demonstrate that modeling freshwater ecotoxicity impacts with the BS and USEtox 2.0 allows 

to recognize trends of different pesticides treatments and burdens on freshwater ecosystems, 

thus accounting for interactions between different compartments and a defined clear interface 

between LCI and LCIA (Figure 2.1).  

The variations of the emission fractions to air, surface water and soil were 6 orders of 

magnitude. Given the input parameter sensitivity analysis presented in the Supplementary 

material SI2-5, the primary sources of uncertainty in the proposed emission modeling 

framework are identified as i) the application method and the drift fractions, and ii) the 

allocation for the off-field emission, specifically the water to soil ratio (as shown in figure 2.6). 

Although, the uncertainty range associated with pesticide emissions have not yet been 

quantified and is beyond the scope of the present study.  

The uncertainty of CFs (USEtox 2.02) due to emissions to air, freshwater and agricultural soil 

is 176, 18 and 103 GSD2 (Rosenbaum, 2016).  The major sources of uncertainty are substances 

half-lives and ecotoxicity EF (Henderson et al., 2011). Furthermore, in comparison with the FF 

and XF, the EF shows a substantial variation among the substances covered in this study, 

explaining a large part of the variations in the CFs for the AI after emissions to freshwater.  
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Figure 2.6 Sensitivity to model input parameters of BS. Variation for ecotoxicity impact scores 
(IScrop_ha) in [PAF m3 d ha-1] of Maize in 2013 (Mz-13). 

2.9 Conclusions 

LCI modeling options do affect the ecotoxicological burden on freshwater ecosystems from 

pesticide use, and directly affects substance prioritization in LCA studies. Furthermore, the 

updated CF with the continent-specific landscape parameters contributes to a broader 

assessment. In the case of scenario and sensitivity analysis, the main findings identified 

application method and allocation for the off-field emission, as the main descriptors for 

modeling emissions of pesticides. The use of the modeling framework presented in this study 

allows for delivering more robust results and accurate evaluation of ecotoxicity impacts.  

Finally, to provide consumers and policymakers with more reliable information on the 

environmental performances of agricultural systems, LCA studies need to include all relevant 

emission outputs; therefore, a final consensus needs to be reached with a specific emission 

model recommendation. 
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Supporting information for chapter 2 (SI_2) 

SI2-1 Pesticide active ingredients      

The mass applied of pesticide per AI was derived from the annual statistical report on pesticide 

use for each specific crop in Denmark for 2013 (Ørum and Samsøe-Petersen, 2014), 2014 

(Ørum and Hossy, 2015) and 2015 (Ørum and Holtze, 2017). All AI used for industrial 

applications and the pesticide class “Molluscicide” where excluded from the study.  

Table S2-1 lists AI in this study along with their CAS-RN, pesticide classification, vapor 

pressures [mPa] and the resulting Tier 1 emission factors (emF). The AI not characterized by 

USEtox version 2.02 where calculated for this study, these AI are marked in the table (†), and 

further descriptions on the data used for this procedure can be found in section S2-3. 

Table S2-1. Evaluated active ingredients, identification (CAS-RN), pesticide class, vapor 
pressures and Tier 1 emission factors per AI 

CAS-RN Active Ingredient Classa Vpb emF 
25057-89-0 Bentazon Hrb 1.70x10-1 0.15 
69377-81-7 Fluroxypyr Hrb 3.80x10-6 0.01 
173159-57-4 Foramsulfuron † Hrb 4.20x10-9 0.01 
104206-82-8 Mesotrion † Hrb 5.70x10-3 0.01 
40487-42-1 Pendimethalin Hrb 3.34x10+0 0.50 
133855-98-8 Epoxiconazol fun 1.00x10-2 0.01 
175013-18-0 Pyraclostrobin † fun 2.60x10-5 0.01 
52315-07-8 Cypermethrin Ins 6.78x10-3 0.01 
94-74-6 MCPA Hrb 4.00x10-1 0.15 
79277-27-3 Thifensulfuron-methyl Hrb 5.19x10-6 0.01 
60207-90-1 Propiconazol fun 5.60x10-2 0.05 
60-51-5 Dimethoat Ins 2.47x10-1 0.15 
94-75-7 2,4-D Hrb 9.00x10-3 0.01 
1689-84-5 Bromoxynil Hrb 1.20x10-1 0.15 
83164-33-4 Diflufenican Hrb 4.25x10-3 0.01 
1689-83-4 Ioxynil Hrb 2.04x10-3 0.01 
52888-80-9 Prosulfocarb Hrb 7.90x10-1 0.15 
105512-06-9 Clodinafop-propargyl Hrb 3.19x10-3 0.01 
71283-80-2 Fenoxaprop-P-Ethyl Hrb 5.30x10-4 0.01 
74223-64-6 Mesosulfuron-methyl Hrb 1.40x10-8 0.01 
141776-32-1 Sulfosulfuron Hrb 3.05x10-5 0.01 
101200-48-0 Tribenuron-methyl Hrb 5.30x10-5 0.01 
999-81-5 Chlormequat-chlorid Pgr 1.00x10-3 0.01 
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CAS-RN Active Ingredient Classa Vpb emF 
16672-87-0 Ethephon Pgr 1.00x10+0 0.15 
24307-26-4 Mepiquat-chlorid Pgr 1.00x10-5 0.01 
95266-40-3 Trinexapac-ethyl Pgr 2.16x10+0 0.50 
131860-33-8 Azoxystrobin fun 1.10x10-7 0.01 
188425-85-6 Boscalid † fun 7.20x10-4 0.01 
121552-61-2 Cyprodinil fun 5.10x10-1 0.15 
67306-00-7 Fenopiridin † fun 1.70x10+1 0.95 
125116-23-6 Metconazol † fun 2.10x10-5 0.01 
178928-70-6 Prothioconazol † fun 4.00x10-4 0.01 
107534-96-3 Tebuconazol fun 1.30x10-3 0.01 
67375-30-8 Alpha-cypermethrin Ins 3.80x10-4 0.01 
91465-08-6 Lambda-cyhalothrin Ins 2.00x10-4 0.01 
23103-98-2 Pirimicarb Ins 4.30x10-1 0.15 
102851-06-9 Tau-fluvalinat Ins 9.00x10-7 0.01 
1918-00-9 Dicamba Hrb 1.67x10+0 0.50 
82097-50-5 Triasulfuron Hrb 2.10x10-3 0.01 
81777-89-1 Clomazone Hrb 1.92x10+1 0.95 
1702-17-6 Clopyralid Hrb 1.36x10+0 0.50 
101205-02-1 Cycloxydim Hrb 1.10x10-2 0.05 
2764-72-9 Diquat Hrb 1.00x10-3 0.01 
1918-02-1 Picloram Hrb 8.00x10-5 0.01 
111479-05-1 Propaquizafop Hrb 4.39x10-7 0.01 
23950-58-5 Pronamide Hrb 5.80x10-2 0.05 
173584-44-6 Indoxacarb Ins 6.00x10-3 0.01 
123312-89-0 Pymetrozine Ins 4.20x10-3 0.01 
111988-49-9 Thiacloprid † Ins 3.00x10-7 0.01 
74070-46-5 Aclonifen Hrb 1.60x10-2 0.05 
1071-83-6 Glyphosphate Hrb 1.31x10-2 0.05 
133-07-6 Folpet fun 2.10x10-2 0.05 

a Target classes: herbicides (Hrb), fungicides (Fun), insecticides (Ins) and plant growth regulators (Pgr) 
b Vapor pressure (Vp) for AI in mPa at 25ºC  
c Tier 1 emission factors per AI (Webb et al., 2016).  
† AI with new CF    
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SI2-2 Pesticide emission quantification 

This section describes the equations and data used for the quantification of emissions of AI to 

air, surface water and soil for the different crops in the three-year period.  

Table S2-2. Transfer processes considered for pesticide emission quantification in both primary 
and secondary emission transfers    
  

Transfer processes   Formulation 
Fraction lost by wind drift ௗ݂_௟௢௦௧ = 0.1 
Deposition processes  
Soil deposition ௗ݂௘௣_௦௢௜௟ = ݁ି௞೛×௅஺ூ     
Leaf deposition  ௗ݂௘௣_௟௘௔௙ = 1− ݁ି௞೛×௅஺ூ     
Volatilization processes    
Volatilization from Leaf deposition  ௩݂௢௟←௟௘௔௙ = ݂݈ܽܽ݁_݌݂݁݀	 ∙  ܨ݉݁
Volatilization from fraction deposited on-field soil   ௩݂௢௟←௦௢௜௟.௔௚௥௜ = ݈݅݋ݏ_݌݂݁݀	 ∙  ܨ݉݁
Volatilization from fraction deposited on off-field soil ௩݂௢௟←௦௢௜௟.௢௧௛௘௥ = ݈݅݋ݏ_݌݂݁݀	 ∙  ܨ݉݁
Off-field emissions allocation  
fraction allocated to freshwater ௔݂௟௟_௙௪ = ݐݏ݋݈_݂݀	 	 ∙ ቀ

ݓݏ
ൗ݈݅݋ݏ ቁ 

fraction allocated to off-field soil 	 ௔݂௟௟_௦௢௜௟.௢௧௛௘௥ 	= ݐݏ݋݈_݂݀	 	− 	 ௘݂௠_௦௪  
Note: LAI [m2 m-2], leaf area index, Kp [-], substance capture coefficient. Indices dep, vol, emF, d_los denote 
processes deposition, volatilization, tier 1 emission factor, drift lost; sw, agri_soil denote compartments surface 
water, agricultural soil; and f stands for fraction. The term (sw soil-1) represents the water to soil ratio in 
Denmark.    
 
Table S2-3. Default Tier 1 emission factors (emF) per AI from their vapor pressures (Webb et 
al., 2016) 
 

Vapor pressure class  Vapor pressure (mPa) emF  
Very High Vp > 10 0.95 
High 1 < Vp < 10 0.50 
Average 0.1 < Vp < 1 0.15 
Low 0.01 < Vp < 0.1 0.05 
Very low Vp < 0.01 0.01 
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SI2-3 Characterization factors for pesticide AI   

CFs for some of the AI collected in the LCI (see Table S2-5) were not available in USEtox 

2.02. The new CFs were calculated following the recommendations of USEtox procedures 

(Fantke et al., 2017). The physicochemical and toxicological effect data were collected, adapted 

or derived from primary and secondary data sources (summarized in Table S2-3), imported into 

the organic substances database to finally be able to calculate the CF for the new imported 

substances.     

Table S2-4. Primary and secondary data sources for calculation of CFs with USEtox 2.02 
 

Parameter Symbol Unit 
Sources 

Primary Secondary 
Chemical abstract  CAS-RN - PPDB a ChemSpidee 
Target Class - - PPDB ChemSpider 
Molecular weight  MW G mol-1 PPDB ChemSpider 
Pesticide ChemClass pKa - TOXNET b EPI Suite 
Dissociation constant   
(pKa at 25oC) 

pKa.gain - TOXNET EPI Suite 
pKa.loss - TOXNET EPI Suite 

Octanol-water partition coefficient  KOW L L-1 PPDB EPI Suite 
KOW Log P PPDB EPI Suite 

Org. Carbon-water partition 
coefficient  

Koc L kg-1 QSAR (estimation)  EPI Suite 

Henry law coefficient (at 25˚C) KH25C Pa.m3.mol-1 PPDB EPI Suite 
Vapor pressure (at 25˚C) Pvap25 Pa PPDB EPI Suite 
Solubility - In water (at 25˚C) Sol25 Mg L-1 PPDB EPI Suite 
Partitioning coefficient between 
dissolved and organic carbon‡  

Kdoc L kg-1 Calculated - 

Degradation rate in air  kdegA s-1 EPI Suite c Calculated‡ 
Degradation rate in water  kdegW s-1 EPI Suite Calculated‡ 
Degradation rate in sediment  kdegSd s-1 EPI Suite Calculated‡ 
Degradation rate in soil  kdegSl s-1 EPI Suite Calculated‡ 
Generic (average) plant. diss kdissP s-1 Fantke et al., 2014 - 

Species-specific eco-toxicity data avlogEC50 Mg L-1 ECOTOX DB 
d/TOXNET - 

Bioaccumulation factor in fish BAFfish L kgfish-1 Experimental data EPI Suite 
a (Lewis et al., 2016), b (US National Library of medicine, 1993), c Estimation Program Interphase (EPI) Suite TM 
version 4.11 (US Environmental Protection Agency, 2012), d (EPA, 2016), e (Royal Society of Chemistry, 2015). 
‡ For specifications on how to calculate these parameters please refer to (Fantke et al., 2017).     

 
Characterization Factors estimated with USEtox 2.02, with the specific European landscape 

dataset, i.e. representing Denmark conditions, used for this study are summarized in Table S2-

5. The AI not included by USEtox version 2.02 and calculated for this study, are marked in the 

table (†).   
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Table S2-5. Characterization factors (CF) estimated by USEtox 2.02, with European landscape 
dataset for the evaluated active ingredients in the study 

CAS RN Active Ingredient 
CF USEtox 2.02 

airC fr.waterC agr.soilC nat.soilC 
25057-89-0 Bentazon 1.87x10+0 2.60x10+2 1.15x10+1 1.15x10+1 
69377-81-7 Fluroxypyr 9.80x10+1 4.25x10+3 4.29x10+2 4.29x10+2 
173159-57-4 Foramsulfuron † 1.95x10+1 5.85x10+2 1.61x10+1 1.62x10+1 
104206-82-8 Mesotrion † 1.94x10+1 1.13x10+3 3.95x10+1 3.95x10+1 
40487-42-1 Pendimethalin 1.77x10+3 7.63x10+5 2.04x10+3 2.04x10+3 
133855-98-8 Epoxiconazol 2.17x10+3 1.12x10+5 2.23x10+3 2.23x10+3 
175013-18-0 Pyraclostrobin † 1.51x10+3 4.98x10+5 7.31x10+0 7.31x10+0 
52315-07-8 Cypermethrin 4.51x10+5 1.43x10+8 2.62x10+4 2.62x10+4 
94-74-6 MCPA 3.95x10+1 2.12x10+3 8.01x10+1 7.98x10+1 
79277-27-3 Thifensulfuron-methyl 4.49x10+3 1.88x10+5 4.33x10+3 4.33x10+3 
60207-90-1 Propiconazol 2.41x10+2 3.36x10+4 4.18x10+2 4.18x10+2 
60-51-5 Dimethoat 1.18x10+2 2.01x10+4 8.01x10+2 8.01x10+2 
94-75-7 2,4-D 1.85x10+1 1.12x10+3 1.98x10+1 1.98x10+1 
1689-84-5 Bromoxynil 3.76x10+2 2.14x10+4 1.39x10+2 1.39x10+2 
83164-33-4 Diflufenican 4.63x10+1 4.02x10+3 3.31x10+1 3.31x10+1 
1689-83-4 Ioxynil 4.03x10+2 2.58x10+4 1.02x10+2 1.02x10+2 
52888-80-9 Prosulfocarb 1.64x10+2 4.39x10+4 8.96x10+0 8.96x10+0 
105512-06-9 Clodinafop-propargyl 2.51x10+2 6.15x10+4 3.96x10+0 3.96x10+0 
71283-80-2 Fenoxaprop-P-ethyl 3.23x10+2 9.44x10+4 4.78x10-1 4.78x10+1 
74223-64-6 Mesosulfuron-methyl 6.94x10+2 3.12x10+4 6.28x10+2 6.28x10+2 
141776-32-1 Sulfosulfuron 7.30x10+1 7.59x10+3 1.07x10+3 1.07x10+3 
101200-48-0 Tribenuron-methyl 2.21x10+1 9.92x10+2 1.85x10+1 1.85x10+1 
999-81-5 Chlormequat-chlorid 1.10x10+1 2.29x10+2 2.26x10+1 2.26x10+1 
16672-87-0 Ethephon 6.83x10+1 1.77x10+3 7.54x10+1 7.54x10+1 
24307-26-4 Mepiquat-chlorid 1.04x10+1 2.41x10+3 8.33x10-2 8.33x10-2 
95266-40-3 Trinexapac-ethyl 1.61x10+0 1.59x10+3 3.45x10+1 3.45x10+1 
131860-33-8 Azoxystrobin 9.75x10+3 1.13x10+3 1.42x10+4 1.42x10+4 
188425-85-6 Boscalid † 1.10x10+1 5.05x10+2 2.26x10-1 2.30x10-1 

121552-61-2 Cyprodinil 3.49x10+1 3.75x10+4 1.60x10+2 1.67x10+2 
67306-00-7 Fenopiridin † 1.28x10+1 6.98x10+4 2.91x10+2 2.91x10+2 
125116-23-6 Metconazol † 2.73x10+2 9.25x10+3 8.64x10+1 8.69x10+1 
178928-70-6 Prothioconazol † 2.16x10+0 7.83x10+2 1.54x10-1 1.50x10-1 
107534-96-3 Tebuconazol 1.01x10+3 1.02x10+5 6.16x10+2 6.17x10+2 
67375-30-8 Alpha-cypermethrin 3.31x10+5 1.10x10+8 1.02x10+4 1.02x10+4 
91465-08-6 Lambda-cyhalothrin 7.09x10+5 3.95x10+8 1.97x10+4 1.97x10+4 
23103-98-2 Pirimicarb 4.02x10+0 2.41x10+3 3.24x10+1 7.65x10+0 
102851-06-9 Tau-fluvalinat 5.27x10+3 3.23x10+6 1.51x10+1 1.5x10+1 
1918-00-9 Dicamba 3.82x10+1 2.45x10+4 1.98x10+1 1.98x10+1 
82097-50-5 Triasulfuron 1.05x10+3 4.15x10+4 1.44x10+3 1.44x10+3 
81777-89-1 Clomazone 9.03x10+1 1.02x10+4 2.09x10+2 2.09x10+2 
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CAS RN Active Ingredient 
CF USEtox 2.02 

airC fr.waterC agr.soilC nat.soilC 
1702-17-6 Clopyralid 4.05x10+1 1.33x10+3 3.71x10+1 3.71x10+1 
101205-02-1 Cycloxydim 6.02x10-1 4.12x10+2 2.95x10-1 2.95x10-1 
2764-72-9 Diquat 2.58x10+3 8.68x10+4 3.10x10+3 3.10x10+3 
1918-02-1 Picloram 2.55x10+2 4.66x10+3 3.15x10+2 3.15x10+2 
111479-05-1 Propaquizafop 2.64x10+3 2.03x10+3 9.94x10+2 9.94x10+2 
23950-58-5 Pronamide 1.05x10+2 6.30x10+3 2.20x10+2 2.20x10+2 
173584-44-6 Indoxacarb 1.33x10+3 3.99x10+5 6.46x10+1 6.46x10+1 
123312-89-0 Pymetrozine 5.66x10+1 1.05x10+3 1.83x10+2 1.34x10+2 
111988-49-9 Thiacloprid † 2.41x10+1 9.86x10+02 1.11x10+1 1.12x10+1 
74070-46-5 Aclonifen 8.07x10+3 1.00x10+6 4.95x10+3 4.95x10+3 
1071-83-6 Glyphosphate 5.63x10+0 3.61x10+2 5.08x10+1 5.07x10+1 
133-07-6 Folpet 9.67x10+3 1.65x10+6 2.71x10+3 2.71x10+3 

†CF calculated in the present study   
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SI2-4 Pesticide use and Potential ecotoxicity impact profiles of crop production 

In total 60 AI were considered and represent 98.8%, 96.7% and 99.4% of the total pesticide 

applications by the studied crops in 2013, 2014 and 2015 respectively.   

Table S2-6. Average pesticide applications rates per crop and the total agricultural use of 
Glyphosate in the period 2013-2015 
 

Crop/  Year 
Application rates [kgAI ha-1 year-1] 

2013 2014 2015 
Maize 2.06x10-1 2.00x10-1 2.11x10-1 
Grass 3.48x10-2 1.00x10-2 2.00x10-2 
Winter wheat 1.68x10+0 5.90x10-1 1.09x10+0 
Spring Barley 5.80x10-1 3.40x10-1 3.11x10-1 
Rape 8.10x10-1 7.62x10-1 6.85x10-1 
Peas 1.31x10+0 7.89x10-1 1.11x10+0 
Glyphosate Agri-use 6.04x10-1 2.65x10-1 3.70x10-1 

 
Table S2-7. Total pesticide used per crop and the total agricultural use of Glyphosate in the 
period 2013-2015 
 

Crop/  Year 
Total AI use [Ton] 

2013 2014 2015 
Maize 39.8 38.7 39.3 
Grass 9.1 3.8 3.7 
Winter wheat 1241.2 495.6 936.0 
Spring Barley 387.6 182.7 178.6 
Rape 142.0 125.7 131.5 
Peas 12.5 6.5 11.7 
Glyphosate Agri-use 1333 584 804 
Total 31.65 14.38 21.05 
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Table S2-8. Changes of active ingredient (AI) use by crop in the period 2013-2015.  
 

CROP AIs-IN2014 AIs-OUT2014 AIs-IN2015 AIs-
OUT2015 

Maize 
Bromoxynil Thifensulfuron-methyl Thifensulfuron-methyl Bromoxynil 
Lambda-
cyhalothrin Cypermethrin  Lambda-

cyhalothrin 

Grass 
 Fluroxypyr = = 
 Dimethoat   

Winter 
wheat 

Folpet Fenopiridin 
Thiophanate-methyl 

Bromoxynil 
 Cypermethrin Ioxynil 
   Cyprodinil 
   Metconazole 

Spring 
Barley 

Folpet Dicamba  Bromoxynil 
 Triasulfuron  Ioxynil 
 Fenopiridin  Cyprodinil 
 Cypermethrin   
 Dimethoate   

Rapeseed Mepiquat-chlorid Cypermethrin Thiophanate-methyl  

Peas = = = = 
 
  



Testing the influence of modelling choices 

 

45 

 

Table S2-9. Active ingredients with significant contribution to crop potential freshwater 
ecotoxicity impacts in 2013-2015. Impact scores IScrop_ha in [PAF m3 d ha-1] 
 

Crop  
2013 2014 2015 

Active 
Ingredient IScrop_ha Active 

Ingredient IScrop_ha Active 
Ingredient IScrop_ha 

Maize 
Cypermethrin 9.58x10+3 Lambda-

cyhalothrin 6.02x10+1 Thifensulfuron-
methyl 1.22x10+1 

Pendimethalin 2.06x10+1 Fluroxypyr 9.27x10+0 Pyraclostrobin 1.15x10+1 

Pyraclostrobin 1.50x10+1 Pendimethalin 9.01x10+0 Fluroxypyr 1.00x10+1 

Grass 

Pendimethalin 1.50x10+1 Pendimethalin 1.04x10+1 Pendimethalin 1.24x10+1 

Dimethoat 1.16x10+0 MCPA 1.96x10-1 MCPA 2.54x10-1 

MCPA 6.73x10-1 Thifensulfuron-
methyl 1.10x10-1 Thifensulfuron-

methyl 1.28x10-1 

Winter 
wheat 

Cypermethrin 1.04x10+3 Lambda-
cyhalothrin 2.86x10+2 Lambda-

cyhalothrin 3.39x10+2 

Alpha-
cypermethrin 4.50x10+2 Epoxiconazol 2.89x10+1 Prosulfocarb 6.51x10+1 

Pendimethalin 3.68x10+2 Pendimethalin 2.22x10+1 Folpet 4.64x10+1 

Spring 
Barley 

Cypermethrin 1.26x10+3 Lambda-
cyhalothrin 3.35x10+2 Lambda-

cyhalothrin 5.54x10+2 

Alpha-
cypermethrin 5.29x10+2 Alpha-

cypermethrin 3.66x10+1 Pendimethalin 2.35x10+1 

Lambda-
cyhalothrin 2.26x10+2 Pendimethalin 2.56x10+1 Fluroxypyr 9.74x10+0 

Rape 

Cypermethrin 5.93x10+2 Lambda-
cyhalothrin 3.63x10+2 Lambda-

cyhalothrin 9.04x10+2 

Alpha-
cypermethrin 4.09x10+2 Pendimethalin 2.02x10+2 Azoxystrobin 1.94x10+2 

Lambda-
cyhalothrin 4.09x10+2 Azoxystrobin 1.95x10+2 Pendimethalin 1.67x10+2 

Peas 

Lambda-
cyhalothrin 1.36x10+3 Lambda-

Cyhalothrin 1.69x10+3 Aclonifen 2.91x10+3 

Pendimethalin 1.02x10+3 Pendimethalin 1.07x10+3 Lambda-
cyhalothrin 2.64x10+3 

Alpha-
cypermethrin 8.29x10+2 Propiconazol 6.03x10+1 Pendimethalin 8.03x10+2 
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SI2-5 Sensitivity Analysis    

Input parameter sensitivity analysis 

As input parameter sensitivity analysis was performed on several input parameters (crop 

characteristics, pesticide properties, off-field emissions allocation) using Maize as an example 

in 2013 (Mz-13) and Peas in 2015 (Ps-15). We varied each input parameter by a factor of 2 and 

calculated the corresponding change in the impact score. The effect on the output due to a 

change in an input is measured by local sensitivity to input Sin [-] (Rosenbaum et al., 2018) and 

expressed as: 

௜ܵ௡ = 	 ൫∆ܵܫ௖௥௢௣_௛௔ ⁄௖௥௢௣_௛௔ܵܫ ൯ ௡ݐݑ݌݊ܫ∆) ⁄௡ݐݑ݌݊ܫ )⁄       (S1) 

Where ∆ IScrop_ha is the resulting change of the potential, freshwater impact score (IScrop_ha) over 

the change in input n. 

Table S2-10. Sensitivity to model input parameters varied by a factor of 2 for Maize in 2013 
(Mz-13) and Peas in 2015 (Ps-15)   
 

Parameter in Mz-13 Sin [-] 
Fraction of drift lost 0.95 
Leaf area index (LAI) 0.02 
Vapor pressure 0.001 
Freshwater to soil ratio 0.93 
Parameter in Peas-15 Sin [-] 
Fraction of drift lost 0.76 
Leaf area index (LAI) 0.07 
Vapor pressure 0.0001 
Freshwater to soil ratio 0.73 
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Abstract  

Application of pesticides is a fundamental practice for viticulture. LCA has proved to be a 

useful tool to assess the environmental performance of agricultural production, where including 

toxicity-related impacts for pesticide use is still associated with methodological limitations, 

especially for inorganic (i.e. metal-based) pesticides. Downy mildew is one of the most severe 

diseases for vineyard production. For disease control, copper-based fungicides are the most 

effective and used PPP in both conventional and organic viticulture. This study aims to improve 

the toxicity-related characterization of copper-based fungicides (Cu_Fun) in LCA studies. 

Potential freshwater ecotoxicity impacts of 12 active ingredients used to control downy mildew 

in European vineyards were quantified and compared. Soil ecotoxicity impacts were calculated 

for specific soil chemistries and textures. To introduce spatial differentiation for Cu_Fun in 

freshwater and soil ecotoxicity characterization, we used 7 European water archetypes and a set 

of 15034 non-calcareous vineyard soils for 4 agricultural scenarios. Cu_Fun ranked as the most 

impacting substance for potential freshwater ecotoxicity among the 12 studied active 

ingredients. With the inclusion of spatial differentiation, Cu_Fun toxicity potentials vary 3 

orders of magnitude, making variation according to water archetypes potentially relevant. In 

the case of non-calcareous soils ecotoxicity characterization, the variability of Cu_Fun impacts 

in different receiving environments is about 2 orders of magnitude. Our results show that 

Cu_Fun potential toxicity depends mainly on its capacity to interact with the emission site, and 

the dynamics of this interaction (speciation). These results represent a better approximation to 

understand Cu_Fun potential toxicity impact profiles, assisting decision makers to better 

understand copper behavior concerning the receiving environment and therefore how 

restrictions on the use of copper-based fungicides should be considered in relation to the 

emission site.  

Keywords Life cycle assessment (LCA) - USEtox - inorganic pesticides - freshwater 

ecotoxicity - soil ecotoxicity - non-calcareous vineyards  
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3. 1 Introduction 

Although pesticides or plant protection products (PPP) are routinely applied in agriculture, one 

of the critical points within LCAs of agricultural systems is the lack of characterizing potential 

toxicity-related impacts for pesticide use in crop production. This lack is even more apparent 

when it comes to the evaluation of inorganic pesticides (i.e. metal-based pesticides), approved 

for organic farming, as these are not as well understood and characterized as synthetic 4 

pesticides.  

Nowadays, fungicides represent the most used active ingredients (AI) in conventional and 

organic agriculture, with a total annual use in the EU28 of 169,000 tons for 2014. Furthermore, 

Inorganic fungicides account for 39-55% of the total applied fungicides in the EU (European 

Commission, 2009; Eurostat, 2016).  

European vineyards represent more than 50% of the total world area of vines (OIV, 2016), and 

the long-term use of pesticides in vineyards has contributed to increased concentrations of these 

substances in different environmental compartments (Hildebrandt et al., 2008; Ribolzi et al., 

2002; Wightwick et al., 2008). Concerning pesticide use, one of the main differences between 

conventional and organic viticulture production is that in general synthetic pesticides are not 

allowed for use in organic pest management, whereas inorganic pesticides are indispensable for 

organic vine cultivation.  

Furthermore, copper-based fungicides (Cu_Fun) are the most efficient and widely used PPP in 

Europe in both conventional and organic viticulture to control vine fungal diseases, such as 

downy mildew caused by Plasmopara viticola, one of the most severe and devastating diseases 

for grapevine (Agrios, 2005). Therefore, the extensive use of fungicides to control this and other 

fungal pests has posed significant environmental problems, such as unwanted residues in plants 

and water, reduction of the quality and degradation of soils, as well as some ecotoxicological 

threats in non-target organisms (Fantke et al., 2011a; Komarek et al., 2010). Different studies 

                                                   

4 The terms synthetic pesticides and synthetic fungicides in this thesis refer to pesticides that contain xenobiotic 
organic compounds as active ingredients that are prohibited in organic crop and livestock production (European 
Comission, 2008). 
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have evaluated the environmental profile of viticulture and wine production from a life cycle 

perspective (Bartocci et al., 2017; Benedetto, 2013; Point et al., 2012). In line with LCA studies 

of other agricultural systems, one of the repeatedly assessed impact category for viticulture is 

the evaluation of global warming potential (Bosco et al., 2011; Steenwerth et al., 2015) with 

particular focus on water or carbon footprint indicators (Bonamente et al., 2016; Bosco et al., 

2013; Lamastra et al., 2014). In contrast, impact categories related to toxicity are often 

disregarded, partly due to missing data for all involved chemicals including pesticides and 

partly due to high perceived and real uncertainties (Fantke et al., 2016; Rosenbaum et al., 2015). 

Consequently, pesticides and their effects on freshwater and terrestrial ecosystems are 

frequently omitted, even though they are one of the significant environmental concerns linked 

with agriculture (Meier et al., 2015). Furthermore, including ecotoxicity in LCA does not 

necessarily mean that the toxic effects of pesticide use are being considered. For instance, 

Benedetto (2013) reports pesticide emissions without including the related impact factors 

despite available characterization models. Other studies evaluated ecotoxicity impacts related 

to pesticide production but do not quantify the impacts in the use phase (Jimenez et al., 2014; 

Point et al., 2012). Although numerous studies acknowledge the use of copper in vineyard 

production, and the impacts of the production of Cu_Fun are included in a few of them (Point 

et al., 2012; Villanueva-Rey et al., 2014), the impact resulting from the use of these fungicides 

is not considered.  

Freshwater ecotoxicity can be characterized with different available methods, such as the 

UNEP-SETAC scientific consensus model for toxicity characterization of chemical emissions 

in LCIA (Rosenbaum et al., 2008) that is endorsed by the UNEP-SETAC Life Cycle Initiative 

(Westh et al., 2015). In the case of soil ecotoxicity characterization, several emerging 

approaches exist (Haye et al., 2007; Lofts et al., 2013; Owsianiak et al., 2013), but no method 

has been yet widely adopted. Finally, there is a lack of agreement on how to assess ecotoxicity-

related impacts of metal-based pesticides that are currently not adequately characterized by any 

existing model (Hauschild and Huijbregts, 2015; Meier et al., 2015). 

Characterization of the toxic effects of metal-based emissions in LCIA assumes that the toxicity 

is a function of the activity of the free metal ion (Campbell, 1995; Owsianiak et al., 2015), 

which is related to the relevant chemical species, Cu(II). Factors such as water pH, dissolved 

organic carbon (DOC) and water hardness (Allen and Janssen, 2006; Gandhi et al., 2010), and 
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soil organic carbon (SOC), soil pH and texture (Komarek et al., 2010) control metal speciation 

and thus its potential toxic effects. Consequently, incorporating and defining these 

geographically distinct characteristics in which the inventory flows (i.e. pesticide emissions) 

occur will have a significant influence on the ecotoxicological impact assessment of Cu_Fun 

AIs in LCA (Gandhi et al., 2011b; Potting and Hauschild, 2006). 

The main objective of the present work is to improve the consideration of copper-based 

fungicides in LCA with focus on three specific aims: First, to characterize fungicide emissions 

and freshwater ecotoxicity impacts to compare results of copper-based fungicides with 

commonly used AIs to control downy mildew in European vineyards. Second, to introduce soil 

ecotoxicity characterization for copper-based fungicides. Third, to include spatial 

differentiation on the assessment of freshwater and soil ecotoxicity characterization associated 

with the application of copper-based fungicides in European vineyards. 

We identified the most relevant aspects for modeling ecotoxicity in freshwater and soil as direct 

impact pathways for pesticide use. We quantified the freshwater ecotoxicity potential of the 

main AI (synthetic and copper-based) used to control downy mildew in European vineyards 

using USEtox 2.02 as characterization model (http://usetox.org). Thereafter, we estimated 

characterization factors (CF) for non-calcareous soils based on the multiple linear regression 

model developed by Owsianiak et al. (2013). Finally, we introduced geographic variability for 

copper-based fungicides used in European vineyards, with the truly dissolved metal fraction as 

proposed by Dong et al. (2014) evaluated in seven European water archetypes (Gandhi et al., 

2011a) and assessed the potential soil ecotoxicity impacts in different application scenarios for 

specific non-calcareous vineyard soils. 

3.2 Selection of active ingredients 

The main fungicide AIs used to control downy mildew, their application practices in 

conventional and organic viticulture for vineyards were investigated. We selected the main AI, 

accepted in the EU regulation; by their effectiveness, agronomical importance and widespread 

use in European vineyards against downy mildew (Aybar, 2008; EFSA, 2013; MAPAMA, 2016; 

Renaud-Gentié et al., 2015).  

http://usetox.org).
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The European Commission has approved the use of five different AIs of Cu_Fun (cuprous oxide, 

copper hydroxide, Bordeaux mixture, copper oxychloride, and tribasic copper sulfate) in both 

conventional and organic viticulture (European Commission, 2009). In our analysis, all copper-

based fungicides will be represented by the copper cation Cu(II) as this is the prevalent species 

in all related fungicides (Kabata-Pendias, 2011) and the metal ion is considered the relevant 

part of these fungicides with respect to potential ecotoxicity impacts. As application rate for 

Cu(II), we used 0.918 kg ha-1, which is the average value of reported application doses for 

treatments with copper-based fungicides in vineyards, against downy mildew, ranging from 

0.18 kg ha-1 for tribasic copper sulfate to 2.0 kg ha-1 for tribasic copper sulfate. The 12 synthetic 

and inorganic fungicide AIs selected are presented in Table 3.1. Furthermore, all application 

doses used in our study were based on recommended doses for protecting vineyards against 

downy mildew for European standards and regulation (Commission, 2016; EFSA, 2013; 

EGTOP, 2014; MAPAMA, 2016). A complete list of the evaluated pesticide AIs, their 

physicochemical properties, application methods and doses and maximum residue levels are 

presented in the Supporting Information for chapter 3 (SI_3), Section SI_3-1. 

Table 3.1 Fungicide active ingredients evaluated with their respective CAS registry numbers 
(RN) and recommended dose per application. 

CAS RN Active 
ingredient 

Dose per application 
[kg ha-1] 

131860-33-8 Azoxystrobin 0.250 
57966-95-7 Cymoxanil 0.121 
110488-70-5 Dimethomorph 0.225 
39148-24-8 Fosetil-Al 2.000 
57837-19-1 Metalaxyl 0.300 
70630-17-0 Metalaxyl-M 0.300 
133-06-2 Captan 1.250 
133-07-3 Folpet 1.500 
8018-01-7 Mancozeb 1.600 
12427-38-2 Maneb 1.860 
9006-42-2 Metiram 1.400 
15158-11-9 Cu (II) †  0.918 

†The CAS numbers and specific application doses [kg ha-1] for the five copper-based AIs are presented in the 
Supporting Information, Section SI_3-1. 
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3.3 Assessment framework 

To quantify potential ecotoxicological impacts of the emitted fungicide fractions on exposed 

ecosystems, we followed the general LCIA emission-to-damage framework (Jolliet et al., 2004):  

ܫ ௜ܵ,௫ = ∑ ݉௜,௫ × ௜,௫௜ܨܥ          (3.1) 

Where ecotoxicity impact scores	(IS୧,୶), in PAF m3 d ha-1, refer to the potential impact caused 

by the application of an AI x  to compartment 	i , and is expressed as the product of the 

characterization factor for ecotoxicity (CF୧,୶), in PAF m3 d kgୣ୫୧୲୲ୣୢ
ିଵ , and the inventory output, 

that is the mass of AI x emitted to compartment i, m୧,୶ [kgୣ୫୧୲୲ୣୢ 	ha-1]. 

3.3.1 Emission quantification 

Pesticide emissions as output of the LCI analysis (݉௜,௫) can be derived from applied doses and 

vary with application method. By obtaining information on pesticide application methods in 

European vineyards from experts of viticultural practices, and from statistics or literature (for 

more information see SI_3, Section SI3-1) we identified that the most common application 

method is foliar application using air blast sprayers. 

Currently, only a restricted number of LCI models provide estimates of emissions to the 

different environmental compartments, but despite the extensive coverage regarding synthetic 

pesticides, climates and soils, these models are not suitable to properly assess metal-based 

pesticides. Based on this limitation, we assumed a static emission distribution that is dependent 

on the application practices to control downy mildew in vineyard production for the European 

context. The emission fractions were assumed to be 45% emitted to soil, 17% emitted to air and 

1% emitted to freshwater, while the remaining 37% is retained by the treated crops. This 

assumption was based on specific percentages, or primary distributions, of fungicide 

application for vineyards with the air-assisted sprayer in Europe (Balsari and Marucco, 2004; 

Gil et al., 2014; Pergher and Gubiani, 1995; Pergher et al., 2013). This primary distribution 

takes into account different processes affecting the distribution of the pesticides, such as 

application methods and equipment, the growth stage of the vines (target retention), spray drift 

and drip. 
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3.3.2 Ecotoxicity characterization in freshwater 

Characterization factors for freshwater ecotoxicity impacts of chemical emissions can be 

expressed as follows: 

CF௙௪ = ௙௪ܨܨ × ௙௪ܨܺ ×  ௙௪        (3.2)ܨܧ

with a fate factor (ܨܨ௙௪), in days, representing transport, distribution and degradation in the 

environment; a dimensionless ecosystem exposure factor (XFfw) defined as the bioavailable 

fraction of a chemical in freshwater, and an ecotoxicity effect factor (EFfw) expressing the 

ecotoxicological effects in the exposed freshwater ecosystems (Hauschild and Huijbregts, 

2015). 

USEtox 2.02 provided CFs for freshwater ecotoxicity expressed as PAF m3 d kgୣ୫୧୲୲ୣୢିଵ  

representing the potentially affected fraction (PAF) of ecosystem species integrated over time 

and exposed water volume per unit of mass of an emitted chemical [PAF	mଷ	d	kgୣ୫୧୲୲ୣୢିଵ ] 

(Henderson et al., 2011). 

The freshwater impact scores (ISfw) for the 12 AIs studied were calculated using eq. 3.1, where 

the CF for each AI was estimated using the landscape dataset for Europe in USEtox. 

3.3.3 Ecotoxicity characterization in non-calcareous soils 

We applied the modeling approach for terrestrial ecotoxicity characterization (Owsianiak et al., 

2013) that introduces the accessibility factor (ACF) into the definition of CFs for soil 

ecotoxicity: 

௦௟ܨܥ = ௦௟ܨܨ × ௦௟ܨܥܣ × ௦௟ܨܤ ×  ௦௟        (3.3)ܨܧ

Where FFsl is the fate factor representing the residential time of total metal mass in soil; ACFsl 

is the accessibility factor defined as the reactive fraction of total metal in soil; BFsl is the 

bioavailability factor defined as the free ion fraction of the reactive metal in soil, and EFsl is the 

terrestrial ecotoxicity effect factor. 
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3.4 Spatial differentiation  

3.4.1 Inclusion of spatial differentiation in the freshwater IS for Cu(II)  

For the incorporation of spatial differentiation in the freshwater impact assessment ISfw-EU, we 

first introduced seven European water archetypes (Gandhi et al., 2011a). These represent the 

variation of freshwater chemistries in Europe, and each archetype contains a specific dataset 

with water factors of significant influence on the speciation of Cu(II) (see SI, Section SI-2 for 

further details). Furthermore, three application rate scenarios (S1=0.75, S2=1.5 and S3=3 kg 

ha-1) were derived from the most common use of copper-based fungicides in both conventional 

and organic viticulture, to introduce spatial aspects also in the emission quantification. 

The ISfw-EU were calculated based on the inventory estimates and using the framework 

described above (eq. 3.1). The specific freshwater CFs for the EU water types (CFfw-EU) for 

Cu(II) introduce in eq.2 the bioavailability factor (BFfw) which is the fraction of truly dissolved 

metal in freshwater (Dong et al., 2014; Gandhi et al., 2010). 

 

3.4.2 Inclusion of spatial differentiation in non-calcareous soil IS for Cu(II)  

We estimated the new CFsl for Cu(II) directly from soil parameters (i.e. pH, SOC, texture) for 

vineyards in Europe using the multiple linear regression model (MLRm) proposed by 

Owsianiak et al., (2013). A set of more than 20,000 European vineyards were recorded from 

the CORINE land cover project (EEA, 2002), and their correspondent soil parameters from the 

harmonized soil database HWSD (version 1.2) were selected (Fao/Iiasa/Isric/Isscas/Jrc, 2012). 

Geospatial analysis by means of ArcGIS (ESRI, 2017) was used to correlate the vineyards with 

the predominant soils of the exact areas where the vineyards were located. We only included 

soils with pH between 4.4 and 8.0 (typical vine growing range). Since the MLRm is not 

applicable to calcareous soils, soils that have a pH between 4.4 and 6.5 and carbonate content 

(CaCO3) above 0% were excluded; also, those soils with pH > 6.5 and CaCO3 higher than 10% 

were excluded. This resulted in 15034 non-calcareous vineyard soils for which CFsl were 

calculated. 
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For estimating the ISsl, we followed the modeling framework described in eq. 3.3. We estimated 

the impacts of 4 different application rate scenarios to simulate diverse viticultural practices 

across Europe. The two first emission scenarios represent standard (So1) and good agricultural 

practices (So2). For the other two scenarios, we tested the total maximum emission in one year 

of copper-based fungicide use of 6 kg ha-1 (So3) in organic farming (Commission, 2016) and a 

reduced rate of 3 kg ha-1 (So4) in some viticultural regions (EGTOP, 2014). 

3.5 Results and discussion 

3.5.1 Potential freshwater ecotoxicity impacts  

Results of the freshwater ecotoxicity impact assessment for the 12 AIs aggregated over all 

emission compartments are shown in Figure 3.1 and impact results for the individual emission 

compartments are presented in Figure 3.2. There was up to 6 orders of magnitude variation in 

the ISfw for the 12 different fungicide AIs (Figure 1), with dimethomorph (23.5 PAF m3 d ha-1) 

as the least potentially toxic substance and copper-based fungicides (4.6 million PAF m3 d ha-

1) as the most potentially toxic AI. 

 
Figure 3.1. Potential freshwater ecotoxicity impact scores (ISfw) [PAF m3 d ha-1] and total 
emissions [kgemitted ha-1] for the 12 fungicide AIs ranked according to increasing impact scores. 
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In the case of the ISfw for the synthetic pesticides, our findings show that fungicides, such as 

folpet (33300 PAF m3 d ha-1), would yield the highest potential freshwater ecotoxicity impacts 

if Cu(II) is not included (Figure 3.1). ISfw for azoxystrobin, mancozeb, captan or maneb 

presented a lower potential impact despite the fact that they are emitted in similar quantities to 

folpet, this is mainly due to a higher EFfw with respect to the other AIs (meaning also a high 

HC50 value). Fosetyl-aluminum is the AI with the highest application dose, but its relatively 

low ecotoxicity potential (48.3 PAF m3 d ha-1) ranked it as one of the less potentially impacting 

substances. Pesticide application doses across AIs varied ~1 order of magnitude and therefore 

contributed only little to the variation of the ISfw across AIs over 6 orders of magnitude. These 

results strongly indicate that the amount of pesticide applied (pesticide use) is usually not an 

adequate indicator for toxicity-related freshwater ecosystem impacts in LCA, but that instead a 

combination of amount applied, fractions emitted, and the characterization of fate, exposure 

and related potential ecotoxicity effects are required.  

For the few available vineyard-related LCA studies that contain potential freshwater ecotoxicity 

impacts, the results are not easily comparable across studies. This may be due to different 

methodological choices made in these studies, such as the inventory parameters considered, the 

methods used to estimate emissions and the impact assessment model used. Furthermore, an 

interesting finding of the comparison of these studies is the lack of transparency in ecotoxicity 

results, since many studies did not specify whether and how pesticide impacts were quantified. 

Our findings regarding synthetic fungicides are consistent with results obtained by Villanueva-

Rey et al., (2014), where ISfw are dominated by folpet, but contrary to the results of Renaud-

Gentié et al., (2015), which shows lower ecotoxicity impacts related to pesticides. The 

contradictory findings may be explained in the assumptions for the inventory analysis, where 

we have assumed fixed values of emissions for the different environmental compartments 

across fungicide AIs (Figure 3.2), and in consequence, our potential impact values for the 

synthetic fungicides differ. The authors (Renaud-Gentié et al., 2015) adapted the PestLCI 2.0 

emission quantification model to be applied in vineyard production; this tool defined the 

technosphere as the agricultural field including the air column above it (up to 100 meters) and 

the soil up to 1-meter depth (Dijkman et al., 2012). This means that pesticide emissions to soil 

are not considered, and this could be one reason for the differences between the results in the 

impact assessment compared to the present study. In the case of folpet, there are further 
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differences that are explained by the use of a CF specifically calculated in the study of Renaud-

Gentié and co-authors. This highlights that following different methodological approaches can 

yield considerably different impact scores. 

 
Figure 3.2 Potential freshwater ecotoxicity impact scores (ISfw) [PAF m3 d ha-1] diagonalized 
for the 12 fungicide AIs for each of the receiving emission compartments (right-side y-axis), 
corresponding emissions [kgemitted ha-1] (x-axis), and CFs [PAF	mଷ	d	kgୣ୫୧୲୲ୣୢିଵ ] (left-side y-
axis). 
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Although most other studies mention the use of copper in vineyards, only the work by Neto et 

al., (2013) and Notarnicola, (2003) include impacts for copper-based fungicides in both the 

production and the use phase. In Notarnicola et al. (2003), the results on impact categories are 

presented in aggregated percentages and not in absolute values. In that study, ecotoxicity was 

the most contributing impact category in the agricultural phase and depended mainly on the 

pesticide use. Unfortunately, there is no particular mentioning of the AI contribution to allow a 

comparison with our own findings. Neto et al., (2013) displayed aggregated results per impact 

category. They concluded that viticulture stage was the more substantial contributor to overall 

impact categories. Freshwater and soil ecotoxicity are due to the use of glyphosate for weed 

control. The results from these two studies cannot be directly compared with the results from 

the present study for several reasons, including the use of different inventory models, impact 

assessment methods and different methods to aggregate results. 

Some of the challenges that constitute the main reasons why freshwater ecotoxicity assessments 

are not routinely included in comparative LCAs are the low availability of data and the 

perception of a limited reliability upon models that allow the quantification of inventories and 

impacts. In fact, the inclusion of potential freshwater ecotoxicity impacts provided valuable 

additional insight into the environmental performance of different agricultural systems in our 

study. The potential impacts of pesticides in organic crop production are in general lower than 

those reported for conventional crop production (Meier et al., 2015). However, including 

copper-based fungicides in the impact assessment may lead to different conclusions. 

Our results emphasize that it is necessary to include copper-based fungicides with focus on the 

development and refinement of characterization factors, as well as, inventory emission 

fractions. 

In the evaluation of the substance ranking, it is also important that the modeling upon which 

these results are based is inherently complex and subject to many assumptions and 

simplifications. Therefore, and since impact scores represent potential impacts rather than 

actual effects, our results cannot be validated against experimental data or compared with risk 

evaluation and must always be seen in an LCA context, where overall environmental 

performances of compared product systems are assessed.  
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Furthermore, characteristics of all AIs, such as the usage and the effectiveness for disease 

control, the mode of action and the metabolite formation, the increment of pest-resistant strains, 

among other features, should be considered when comparing different AIs for pesticide 

substitution treatments. Otherwise, it will be hard to identify the most viable and sustainable 

alternative (Fantke et al., 2015, 2011b). 

Regarding the agronomical importance of copper use against downy mildew, some authors have 

concluded that under high pressure of the disease on organic viticulture, the only substance to 

offer effective control was a copper-based fungicide (Komarek et al., 2010; Spera et al., 2007). 

In low and medium disease pressure, alternative treatments (i.e. biocontrol agents, natural 

derivatives, plant extracts, etc.) may offer an adequate disease control (La Torre et al., 2011). 

Therefore, grapevine downy mildew control using reduced copper amounts in organic 

viticulture is feasible, if pest management is performed in combination with alternative 

treatments.  

Freshwater ecotoxicity impact scores depend on several parameters, with fluctuating 

uncertainties. For USEtox CFs, an uncertainty range of 1-2 orders of magnitude has been 

determined, and the major sources of uncertainty are substances half-lives and ecotoxicity effect 

estimates (Henderson et al., 2011). Therefore, an AI with CF of 1000 PAF m3 d kgୣ୫୧୲୲ୣୢିଵ may 

not be (but possibly is), more toxic than an AI with CF of 100 PAF m3 d kgୣ୫୧୲୲ୣୢିଵ . The 

uncertainty of the emissions has not been quantified before and is also beyond the scope of the 

present study. Perhaps a more significant and probably more conclusive analysis is the inclusion 

of spatial differentiation for the AI that may present substantial changes due to natural variations 

of the emission compartment. 

3.5.2 Characterization results for non-calcareous soils  

Site-dependent CFs for Cu(II) in the 15034 European vineyards non-calcareous soils vary over 

~1.5 orders of magnitude, with mean values equal to 2340 PAF m3 d kgୣ୫୧୲୲ୣୢିଵ  and spatially 

differentiated ranges from 155 to 7240 PAF m3 d kgୣ୫୧୲୲ୣୢିଵ . The results from the MLRm show 

that the CFs for Cu(II) are determined mainly by SOC, that influences Cu(II) mobility (i.e. 

metal fate) and the effects of soil pH, influencing Cu(II)  bioavailability, this trend is 

represented in  Figure 3.3. The clay content is rather poorer descriptor for the CFs of Cu(II) (2 
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orders of magnitude lower than SOC) and did not show a particular trend, although, is 

interaction with the other parameters is significant. 

 
Figure 3.3 Characterization factors for 15034 non-calcareous vineyard soils CFs [PAF 
mଷ	d	kgୣ୫୧୲୲ୣୢିଵ ], calculated from soil parameters, with respect to soil organic carbon [%] and 
soil pH. 

The parent materials of the soils (e.g., clay content) influence mobility of copper in soils, clay 

minerals and organo-clay associations together with particular organic matter are the primary 

carrier phases of Cu(II) in soils. Its solubility is highly dependent on the soil pH, and it could 

be more available at pH values below six. In acidic vineyard soils, copper is more mobile and 

can more easily reach ground water. Furthermore, the mobility can be affected at pH values 

above ~7.5 and at this pH the formation of copper complexes (Cu-SOC) is promoted by the 

solubilization of SOC. Regarding copper soil ecotoxicity characterization, it is well known that 

the complexation of Cu(II) with SOC reduces its toxicity potential significantly. This is 

congruent with the trend shown in Figure 3.3. Furthermore, in a study on soils contaminated 

with copper it was shown that in organic soils, less than 0.2% of total copper was in the free 

ion form Cu(II) at pH 4.8–6.3 (Karlsson et al., 2006). 
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3.6 Spatially differentiated results  

Our results have already shown that different factors affect the ecotoxicity of the studied 

fungicide AIs. In the case of copper-based fungicides, the conditions where emissions occur 

could be critical to determine its potential ecotoxicity-related impacts. In ecotoxicity 

characterization models of metals, it is assumed that the potentially ecotoxic effects on 

ecosystems are a function of the activity of the free metal ion. It is also well known that copper 

behavior (speciation and mobility) is influenced by, and substantially dependent on, the 

chemistry of the emission receiving environment (freshwater or soil) and thus influencing the 

potential ecotoxicity of Cu(II). Hence, spatial differentiation and the inclusion of site-dependent 

CF’s are relevant when assessing impacts of copper-based fungicides (Potting and Hauschild, 

2006). Such evaluation will provide a more accurate assessment of the potential impacts of 

Cu(II) emissions. Therefore, we present the following results for input parameters that display 

significant geographical variability in the quantification of IS for Cu(II). 

3.6.1 Spatially differentiated freshwater impacts 

Results for the freshwater ecotoxicity scenarios evaluated introducing different water 

chemistries are summarized in Table 3.2. The ISfw-EU range from 42.1 PAF m3 d ha-1 (S1-EU1 

water type) to 168000 PAF m3 d ha-1 (S3-EU6 water type) in the seven European archetypes 

and across the different scenarios. 

Table 3.2 ISfw-EU for Cu(II) in three different scenarios for the seven European water types. 

Water 
type* 

ISfw-EU [PAF m3 d ha-1] 
Base 

Scenario† S1 S2 S3 

EU1 1.21x10+2 4.21x10+1 3.16x10+2 6.32x10+2 
EU2 5.05x10+2 1.76x10+2 1.32x10+3 2.63x10+3 
EU3 1.21x10+3 4.21x10+2 3.16x10+3 6.32x10+3 
EU4 2.89x10+2 1.01x10+2 7.55x10+2 1.51x10+3 
EU5 1.35x10+4 4.68x10+3 3.51x10+4 7.02x10+4 
EU6 3.23x10+4 1.12x10+4 8.42x10+4 1.68x10+5 
EU7 1.08x10+4 3.74x10+3 2.81x10+4 5.62x10+4 

*Water archetypes from Gandhi et al., (2011a). †Same application dose for copper-based fungicides used for the 
quantification of ISfw. 
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These results for copper-based fungicides show that water conditions with low hardness and 

low DOC, and medium pH, represented by water type EU6, have higher ecotoxicity potential 

than EU1 water type, which has a higher pH and hardness. These differences in water chemistry 

not only influence changes in the ISfw-EU but may also lead to ranking changes when comparing 

with the other fungicide AIs. The ~3 orders of magnitude of variation among the seven 

European water archetypes illustrate the relevance of the inclusion of spatial differentiation. 

Furthermore, if we consider the ISfw-EU from the base scenario, we can already see ranking 

changes for Cu(II) with respect to the other AIs for all European water archetypes. 

It is important to stress that the variations in the ISfw-EU are more dependent on the different 

water chemistries than the dose of AIs applied. Although copper-based fungicides show higher 

potential impacts in freshwater ecosystems than the synthetic fungicides, variabilities in the 

receiving emission environment (soil or water) could make these impacts also highly variable. 

On the other hand, Komarek et al., (2010) tested for a study that was conducted from 2004 to 

2007 if there were substances that might replace copper in organic viticulture. One of their main 

findings shows that currently, there is no treatment that is as effective as copper for controlling 

grapevine downy mildew in organic vineyards (Komarek et al., 2010). In this context, the 

present study may help to understand different pest managements in various environments 

better, and give more accurate environmental impacts profiles. This could lead to an integrated 

management system in which a less efficient product is applied in combination with copper-

based fungicides to reduce the total dose of Cu(II) applied, and as a consequence, reduce the 

overall potential ecotoxicity impacts. 

3.6.2 Spatially differentiated non-calcareous soil impacts 

Impact scores in non-calcareous soils for Cu(II) showed up to 2 orders of magnitude of 

difference in the scenarios that simulated different agricultural practices per application So1 

and So2. In the same way, So3 and So4 vary 2 orders of magnitude, with values 2 times higher 

than So1 and So2, thereby keeping in mind that these values evaluate maximum allowed copper 

application in one year for copper fungicides use. 
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Figure 3.4 Impact scores for European vineyard non-calcareous soils (ISsl) aggregated by 
country for the scenario So1 that represent standard agricultural practices for copper-based 
fungicide application. ISsl in [PAF m3 d ha-1]. 

The specific soil texture and chemical composition of the evaluated vineyards varied around 2 

orders of magnitude for the same application scenario. Results aggregated by country are shown 

in Figure 3.4 and reflect how potential ISsl could vary depending on emission site. In this 

context, it is important to note that calcareous vineyard soils were excluded from our study; 

therefore, impacts occurred in this type of vineyards have not been considered. In the scenarios 

with more restrictive copper use, the potential impacts show a lower variation in the aggregated 

soil ecotoxicity impact potential per country. 

3.7 Conclusions 

3.7.1 Application of our results and implications for decision making  

While the evaluation of global warming potentials in viticulture has been extensively analyzed 

in most studies, vineyard or wine-related LCAs often neglect to assess ecotoxicity-related 

impacts, despite their importance at a local and regional level in vineyard areas. Moreover, to 

the best of our knowledge, the current study constitutes an extended vision of LCIA to an 
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agricultural product, not only through freshwater and terrestrial soil ecotoxicity evaluation but 

also through the inclusion of spatial differentiation and the use of emerging methodologies. 

The primary outcome of our work is the potential application of these findings for LCA studies 

in agricultural systems. Our contribution involves assisting decision makers to understand 

better copper-related fungicide behavior and the importance of distinguishing its environmental 

impact depending on the different receiving emission environments and how restrictions on the 

use of copper-based fungicides should take into account the emission site. 

This study has several implications for impact assessment of copper-related compounds. 

Considering geographic variability both in metal hazard and LCA might provide more accurate 

results for the evaluation of ecotoxicity impacts, and will help to draw conclusions that are more 

reliable in environmental impact profiles. The present study has indicated the importance of 

including spatial differentiation in the ecotoxicity assessment of copper-based fungicides. 

Accounting and evaluating for PPP potential ecotoxicity (e.g., for substitution of AIs) should 

include variations of the receiving emission environment.  

3.7.2 Limitations and future research needs  

The methodology applied to characterize Cu(II) do not capture important aspects of metal 

speciation, such as essentiality or active plant uptake. Although the translation on the LCIA is 

not straightforward, because specific important spatially varying characteristics, such as cation 

exchange capacity describing the ionic composition of soil pore water, are not routinely 

measured. As demonstrated by Owsianiak et al. (2013), CFs for copper are determined mainly 

by OC (influencing fate) and pH (influencing bioavailability). LCIA models should, therefore, 

be metal-specific, and the results presented here cannot be extrapolated to other metals. In this 

regard, the modeling framework used in this study is only applicable to non-calcareous soils, 

although it is acknowledged that vineyard cultivation in calcareous soils is a typical practice in 

many European areas. 

Further research is needed on how to account for erosion both in the emission quantification 

and how it might affect the impact assessment of metal-based pesticides. To our knowledge, 

the methods, both for impact characterization (for terrestrial soil ecotoxicity) and emission 

modeling of pesticides are not mature enough to be extensively applied in LCA. In this sense, 
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this study is a first step towards to a more precise assessment of potential ecotoxicity impacts 

associated with agricultural production systems in general and in vineyard cultivation in 

particular. 

If these improvements are routinely incorporated into agricultural LCAs, an important issue 

arises, which is, what is the most representative yet practical spatial information needed and 

feasible for LCAs on agricultural systems? This is a key subject that will need particular 

attention upon in future efforts. 
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Supporting information (SI_3) 

Table S3-1 Evaluated pesticide active ingredients application doses and maximum residue 
levels (MRL) 

CAS-RN Active ingredient 
Mass KOW Pvap Sol Dose    

(kg ha-1) 
 

MRL† 
(ppm) 

 

MRL‡ 
(ppm) 

 g mol-1 - Pa mg L-1 

131860-33-8 Azoxystrobin 403 3.16x10+2 1.10x10-10 6.00x10+0 0.25 3 0.01* 
57966-95-7 Cymoxanil 198 1.74x10+4 1.51x10-4 8.90x10+2 0.121 0.03 0.01* 
110488-70-5 Dimethomorph 388 4.79x10+2 9.84x10-7 1.87x10+1 0.225 3 0.01* 
39148-24-8 Fosetil-Al 354 3.98x10-3 2.72x10-7 1.11x10+5 2.00 100 2.0* 
57837-19-1 Metalaxyl 279 4.47x10+1 3.31x10-3 8.40x10+3 0.30 2 0.05* 
70630-17-0 Metalaxyl-M 279 5.13x10+1 3.31x10-3 2.60x10+4 0.30 1 0.05* 
133-06-2 Captan 301 6.31x10+2 1.20x10-5 5.10x100 1.25 0.03* 0.03* 
133-07-3 Folpet 297 7.08x10+2 2.09x10-5 8.00x10-1 1.50 6 - 20 0.03* 
8018-01-7 Mancozeb 212 4.17x100 1.00x10-5 1.14x10+5 1.60 5 0.05* 
12427-38-2 Maneb 212 4.17x100 1.00x10-5 1.14x10+5 1.86 5 0.05* 
9006-42-2 Metiram 504 2.00x100 1.92x10-11 1.86x10+2 1.40 5 0.05* 
Copper-based fungicides     0.918§   

8011-63-0 Bordeaux 
Mixture 861 2.75x100 3.40x10-13 2.20x100 0.15-1.2 50 20 

20427-59-2 Copper 
hydroxide  97 2.75x100 1.00x10-6 5.06x10-1 0.60-1.5 50 20 

1332-40-7 Copper 
oxychloride  427 2.75x100 1.00x10-6 1.19x100 0.22-1.5 50 20 

1317-39-1 Cuprous oxide  143 2.24x10-1 1.00x10-13 6.39x10-1 1.16-1.8 50 20 

12527-76-3 Tribasic copper 
sulfate 461 2.75x100 3.40x10-13 3.42x100 0.76-2.0 50 20 

† Values for table and wine grapes 
‡ Values for grape leaves 
* Indicates lower limit of analytical determination 
§mean value for application dose  
 

Table S3-2 7 European water archetypes representing the variation of freshwater chemistries 
in Europe and specific water factors 

Freshwater 
archetype 

 

pH 
 

DOC Hardness Ca2+ Mg2+ Na+ 
(mg l-1) 

K+ 
(mg l-1) 

SO4
2- 

(mg l-1) (mg l-1) (mg CaCO3 l-1) (mg l-1) (mg l-1) 

EU Archetype 1 8.1 8.4 221 56.6 19.5 65.8 0.1 67 
EU Archetype 2 7.6 6.1 132 42.48 6.22 26.67 3.52 48.03 
EU Archetype 3 8.2 1.7 169 58.51 5.59 2.6 0.78 9.61 
EU Archetype 4 7.3 17.8 165 52.1 8.58 11.79 0.82 109 
EU Archetype 5 6.7 2.2 78 20.3 6.7 17 0.1 67 
EU Archetype 6 6.4 1.6 28 6.69 2.65 7.2 2.82 85.5 
EU Archetype 7 5.9 8.9 10 2.48 0.95 6.39 1.8 2.88 
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Abstract  

For agricultural pesticides, typically only the mass applied to the field is known, while there is currently 

no agreement on how to quantify related environmental emissions for all pesticide-crop combinations 

at the global scale. This is a practical challenge in life cycle assessment (LCA) for comparing pesticide 

application in different agricultural practices and regions. In response to this challenge, an international 

effort was initiated to reach agreement on recommended default agricultural pesticide emission fractions 

for use in LCA. In the frame of this global effort, the current study focuses on the establishment of 

default scenarios for agricultural practices. Aiming to define a specific set of pesticides, crops and 

application methods scenario combination for estimate global emission fractions of pesticides applicable 

for life cycle assessment, and present the consensual recommendations for this task of the pesticide 

effort. As a baseline, the influencing factors affecting pesticide distribution and emissions were defined. 

Afterwards, all inputs required to run the scenarios were collect and classified. Second, the preset 

scenarios were constructed and the core components further related. Experts were consulted in different 

stages of the study until the final scenarios were agreed, meaning that this working process was iterative. 

The application scenarios defined capture the critical factors for determining pesticide distribution in a 

representative variety of cropping systems. The main strength of these developed scenarios is the 

transparency and open development in every step of the process, comprising the acceptance of different 

stakeholders and the scientific support of experts involved in the consensus effort.   

   

Keywords Life cycle assessment (LCA) - Agriculture – Environmental impacts – Emission 

quantification – Cropping systems  

  



Chapter 4 

 

80 

 

4.1 Introduction 

Pesticides are intended to serve as plant protection products (PPP), helping to prevent, 

undermine, kill, or otherwise dismays pests and diseases. Although pesticides have beneficial 

outcomes, they also have drawbacks and potential environmental problems (Carlson, 1962). 

Furthermore, population growth, land competition, and the pressure to enhancement yield 

productions are leading towards a more intensive use of pesticides. Hence, agricultural 

pollution by the use of pesticides is a cause of significant concern for the general population. 

This nuisance is reflected in more public and political attention on the sustainable use of 

pesticides, as well as in a reduction of their diffuse pollution.  

To meet local (national action plans - NAP), regional (EC, 2009), and globally sustainable 

development goals (United Nations, 2015), agriculture and food production systems need to be 

improved to move towards more sustainable farming practices, and therefore, to more 

sustainable use of pesticides. Recent studies have suggested a research agenda for agricultural 

sustainability that is further supported by national and international strategies (Sala et al., 2017; 

Soussana, 2014). In this perspective, integrated pesticide management (IPM), low input and 

organic agriculture have been promoted as more sustainable alternatives to conventional 

agriculture (Bucur, 2013; OECD, 2000; Rossi et al., 2012).  

Holistic approaches such as life cycle assessment (LCA) are frequently accepted in the effort 

to account for the environmental performance of different production systems. Also, LCA 

models are supported by cause-effect relationships in different environmental compartments, 

which allow understanding the environmental consequences of human interventions. However, 

a practical challenge for LCA of agricultural systems is the comparison between different 

farming practices. This is especially true when considering pesticides use, which is further 

affected by significant inconsistencies within the inventory and the impact assessment phase 

(Meier et al., 2015; Notarnicola et al., 2017; Rosenbaum et al., 2015).   

Commonly, the understanding of agricultural practices through LCA approaches results 

intricate when the quantification of the proportion of pesticide active ingredient (AI) emitted to 

the different environmental compartments is based only on the dose applied to the agricultural 

field. There are very different approaches and assumptions that are currently applied in 

quantifying LCI of pesticides (e.g., Ecoinvent (Nemecek and Kagi, 2007), the US field crop 
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LCI database (NREL, 2016) or the organic pesticide emission model PestLCI (Birkved and 

Hauschild, 2006; Dijkman et al., 2012). In general, these approaches offer inconsistent results 

which are partially overlapping (spatially or temporally) the impact pathways for pesticide use. 

Besides, these tend to be not compatible or comparable, and therefore, they influence the impact 

assessment results. As a consequence, these approaches may not represent realistic conditions 

in LCA studies involving agricultural systems (Peña et al., 2018; Rosenbaum et al., 2015). 

On the other hand, it is well established that processes and conditions such as deposition, 

volatilization, leaching, runoff, and plant uptake, predominantly influence fate and behavior of 

pesticides. Moreover, all these processes depend on many factors, for example, the 

physicochemical properties of the AI, the application method and machinery, crop 

physiognomies, the weather conditions and soil characteristics (Fantke et al., 2011; Renaud-

Gentié et al., 2015; van Zelm et al., 2013). All this processes and factors generate complexity, 

making the preparation of inventories particularly difficult and denote a significant obstacle to 

understand the distribution and transport of a pesticide after its application to the agricultural 

fields, and to quantify emissions to environmental media. Therefore, understanding and 

simplifying these processes and factors are essential to a realistic evaluation of pesticides 

impacts (Reichenberger et al., 2007; Zhang et al., 2018). 

Environmental fate of a chemical emission in LCA is typically modeled during the impact 

assessment (LCIA). However, given the significant influence of the local conditions to transport 

processes from the pesticide application to environmental compartments (i.e. air water, 

agricultural soil and natural soil), the first moments of environmental fate of pesticides should 

be considered as part of the inventory modeling (Rosenbaum et al., 2015; van Zelm et al., 2014). 

As a response to the needs for harmonization of the current modeling approaches including the 

assumptions for system boundaries, the interface between inventory and impact assessment, 

and the definition of default scenarios for specific practice and systems, a global effort started 

in 2012 under the Tox-Train project funded by the European Commission (DTU, 2016). This 

effort aims to arrive at a consensus on how to quantify pesticide emission fractions for use in 

LCA.            

In the frame of this global effort, the current study focuses on the establishment of default 

scenarios for agricultural practices. Aiming to define a specific set of pesticides, crops and 
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application methods scenario combination for estimate global emission fractions of pesticides 

applicable for life cycle assessment, and present the consensual recommendations for this task 

of the pesticide effort.  

4.2 Methodology to define application scenarios  

4.2.1 The pesticide consensus effort: brief history and framework 

With the goal of defining, developing and agreeing on the quantification framework, inputs and 

outputs towards a set of pesticide emission fractions for use in LCA, a global effort was 

originated in 2012 (Fantke et al., 2017). In this context, different workshops along with 

distributed tasks for research teams in between the workshops were organized (see, Figure 4.1) 

involving more than 100 specialists representing different stakeholders from the five continents 

(Fantke et al., 2017).  

The scoping workshop held in Glasgow (UK) in 2013, provides guidance on the delimitation 

between LCI-LCIA and further recommends on how to consistently account for emissions and 

impact assessment concerning pesticide use in agriculture (Rosenbaum et al., 2015). 

Furthermore, different tasks to evaluate state of the art on emission modeling and address 

current challenges for the emission quantification were conducted as a follow-up for this 

workshop. In a further step the framework workshop (Basel, Switzerland in 2014), defines a set 

of data and models that can be consistently combined and used it as a common emission 

quantification framework. Moreover, based on the findings of this workshop several tasks were 

identified and carried out as part of the work to calculate default values for emission fractions 

depending on the conditions of the pesticide application (Fantke, 2016a). One of those tasks 

was the development of archetypical and aggregated set of scenarios across crops and 

agricultural practices for simplification, and therefore, the starting point for the present work 

(Figure 4.1). 
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Figure 4.1 Overview of the identified and distributed working steps towards the pesticide 
emission fractions for use in LCA, in the frame of the pesticide consensus effort. In green 
highlighted, the task advanced within this study. 

At a further step a preset of representative archetypes, for pesticides, crops and application 

methods were pre-defined (the steps followed to this end are further explained in section 4.2.2). 

This advanced scenarios and the modifications on the calculation framework toward a 

consensual emission model, developed by other teams involved in the effort, were presented 

and discussed at the consensus workshop (Bordeaux, France in 2015). In this building 

workshop, a consensual agreement was reached on the modeling framework, the output format 
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for the emission results, the data associated for the implementation and the default scenarios to 

be recommended for LCA (Fantke, 2016b). The scenarios were further refined (as described in 

section 4.3) and used as input for the first test of primary emission fractions per country and by 

pesticide target class (the later been carried out by other team involved in the modeling task) 

(Grant, 2016), and presented together in the stakeholder workshop held in 2016 in Dublin 

(Ireland) (Fantke, 2017). 

4.2.2 Steps towards scenario definition  

As a baseline, the influencing factors affecting pesticide distribution and emissions were 

defined. Once applied, pesticides move off the treated crop into the environmental media. This 

movement (to specific target zones on the plant) can be beneficial, but also can transform 

pesticides as potential pollutants affecting air, water resources, wildlife, beneficial insects, and 

other crops. The process with significant influence on pesticide distribution and transport, and 

hence on the emissions fractions to environmental media are presented in Figure 4.2.   

 

Figure 4.2 Pesticide distribution and pathways of transport. Adapted from Rossi (2012). 

Different pesticide fractions may be directly emitted to air, soil, and, in some cases, to surface 

water (Figure 4.2). Drift and runoff have been recognized as two of the most relevant process 

for distribution and transport (Holterman et al., 2017; Reichenberger et al., 2007). Many studies 
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also include deposition, volatilization and plant uptake (Cryer et al., 2001; Davie-Martin et al., 

2013; Fantke et al., 2011; Lebeau et al., 2011). At the same time these processes are govern and 

influenced by different factors, such as the pesticide product (hence, the AI), the application 

method and equipment, the conditions (i.e. weather) in the area, the crop class (canopy 

morphology) and the existence or not of buffer zones (Fantke and Juraske, 2013; Renouf et al., 

2018; Rosenbaum et al., 2015). In the present study, these influencing factors are assessed for 

the establishment of default application scenarios. Furthermore, the recommendations about the 

data requirements to perform a representative LCI for pesticide use were followed (Fantke, 

2016a; Rosenbaum et al., 2015).   

The overall information flow for defining and developing an archetypical and aggregated set of 

scenarios across globally occurring agricultural practices builds on several steps, presented in 

Figure 4.3. 

 

Figure 4.3 Diagram of the followed steps for defining and agreeing on application scenarios. 

The first step, once the factors affecting pesticides emission were identified, was to collect and 

classified input required. Second, the preset scenarios were constructed and the core 

components further related. Experts were consulted in different stages of the study until the 

final scenarios were agreed, meaning that this working process was iterative. 
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4. 3 Results 

4.3.1 Crop class selection     

Selecting crop classes is essential for estimating default global emission fractions of pesticides. 

The crop classification reflects several elements related to crops, including the crop species, the 

variety, the morphology and the growing cycle. To define the crop class for the application 

scenarios more than 172 different types of crops were identified. In this sense, and to facilitate 

data collection, statistical tasks and future comparisons, the FAO classification was selected as 

a starting point (FAO, 2010). To delimitated crop classes, the morphology of the crop was a 

central point, given its close relation to define pesticides application method and equipment. 

Likewise, the global agricultural production data (FAOStat) was the base for the selection of 

the different crop classes to be used in the study.  

It is difficult to find the right balance on how much simplification can be feasible, without 

losing reliability on the definition of scenarios. Thus, the further inclusion and refinement of 

the crop classes were made accounting as much as possible for different agricultural and crop 

characteristics, but without forgetting, the simplification needed for modeling proposes. Crop 

classes, then, were further aggregated and allocated following, additionally to FAO 

classification, the central product classification (CPC) (UN, 2015) and expert advice. Finally, 

crops were classified into 18 crop classes and several example crops within each class (Table 

4.1). 

Table 4.1 Defined crop classes, crop examples within each class and the central product 

classification (CPC). 

Defined crop class Crop examples 

Berries Strawberry, cape gooseberry,  
CPC 135, 135- 

Citrus fruits +Olive Orange, lemon, lime, grapefruit, olive 
CPC 145, 132, 132- 

Fruits temperate Apple, pear, apricot, peach, nectarine 
CPC 13, 134, 134-, 1239,1315 

Grapes/Vines Grape 
CPC 133, 1351 

Malvaceae Cotton  
CPC 192- 
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Defined crop class Crop examples 

Nuts Almond, chestnut, hazelnut, pistachio 
CPC 137, 137- 

Oil-Bearing crops  Sunflower, rapeseed,  soy bean, peanut 
CPC 14, 14-, 144-, 1319, 

Oil-Bearing trees +Banana Palm oil, coconut, banana, plantain, 
CPC 146, 1491, 1313, 1312 

Other permanent crops Coffee, cocoa, tea 
CPC 16, 16-, 19-, 165-, 1691 

Paddy rice Paddy rice 
CPC 113 

Panicoideae Maize, sorghum 
CPC 112, 114, 1911, 1214 

Poaceae Sugar cane 
CPC 18, 1802 

Pooideae Wheat, barley, oat, rye, barley,  quinoa 
CPC (cereals) (Forage) 11-, 119-, 1199 

Pulses 
Beans, lentils, peas, vetch, lupin, 
cheakpea, cowpea 
CPC 124, 170- 

Roots and tubers Potato, yam, cassava, taro, onion, garlic 
CPC 15-, 125-, 125, 127, 194 

Tropical and subtropical 
fruits  

Sub-tropical/tropical fruits ( mango, 
guayaba, papaya,  date) 
CPC 131, 131- 

Vegetables fruit 
Fruit solanacees, cucurbitacees 
(passionfruit, lulo, maracuya) 
CPC 122, 122-, 123-,  124- 

Vegetables leafy Cabbage, lettuce, cauliflower, broccoli 
CPC 12, 121-, 129, 1243, 1919 

Once the crop class aggregation was performed, we need to intersect the crop classes with 

spatial data to generate the full set of scenarios. This contribution of each crop class to the 

overall land area is relevant to calculate the default values for pesticide emissions at a global 

scale. To this end, an extrapolation from crop specific harvested area and crop class were made. 

Data from FAOstat (FAO, 2016) and EARTHStat (UBC, 2016) by crop item harvested area 

was used (average over last 10 years for all values), to aggregate over crops to match the 

selected crop classes; obtaining a global value for harvested area (ha) by each one of the 18 

crop class. One example of this classification is presented in Figure 4.4. 



Chapter 4 

 

88 

 

 

Figure 4.4 Example for pulses of the selected crop classes with the corresponding harvested 

area (ha). 

4.3.2 Pesticide classes and aggregation     

Pesticide or plant protection products (PPP) are standard terms that include several classes of 

substances. These substances differ in their physical and chemical characteristics from one to 

another, but also, can be classified based on shared properties. Nowadays, there are many 

methods of pesticide classification (e.g., based on the mode of action, the sources on origin, the 

spectrum of action, the formulation, the toxicity level, among others). Three of the most popular 

classes comprises: i) the classification based on the chemical composition of the AI, ii) the 

classification based on the mode of entry, and iii) the classification based on the pesticide 

function and the organisms they kill (Yadav and Devi, 2017).   

The most used classification is the one based on the chemical composition and the nature of AI. 

This classification provides a clue on the physical and chemical properties of the pesticides. 

However, the chemical based classification is rather complex, because in general modern 

pesticides include both plant origin and synthetic AI, from which organic and inorganic AI can 

be further divided into many categories. For example, synthetic-organic-insecticides can be 

further classified as organophosphates, carbamates or pyrethroids, to mention some. 

The ways pesticides come in contact or enter the target are known as modes of entry. Based on 

those modes of entry, pesticides can be classified as stomach poisons (ingestion), systemic, 

contact, fumigants and repellents. Even though this classification reduces complexity; the AI 
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cannot be further related with the crop class - application method combination, hence do not 

allow us to define proper application scenarios.               

Finally, under the classification method based on the pesticide function, AI are categorized 

based on the target pest(s) or organism(s) they are intended to kill or affect (e.g., larvicides, 

ovicides, nematicides, among many others), or the function they have over those targets (e.g., 

chemosterilants, defoliants, desiccants, etc.). In addition, some AIs can have multiple but equal 

effects to control different pests and may be considered in more than one pesticide class (e.g., 

metam sodium/potassium can be equally classified as fungicide, insecticide and nematicide). 

Given the versatility and the potential for further aggregation, this classification method was 

chosen.  

Following the EU – Pesticides Database (EC, 2016) and the guidance for selecting input 

parameters in modeling fate and transport of pesticides (US-EPA, 2009), more than                 30 

different target classes were identified. From those, 13 key target classes were determined and 

finally aggregated into nine definitive pesticide classes (see, Table 4.2). This aggregation was 

made considering that in practice many pesticides are applied to the same application method; 

furthermore, depending on the crop class the same equipment may be used to apply different 

pesticides. 

Table 4.2 Defined pesticide target class. 

Defined Target Class Examples 
Acaricide / Miticide Abamectin, Malathion 
Attractant / Repellent Dodecyl acetate 
Fungicide  
Insecticide 

Pyraclostrobin 
Thiacloprid 

Herbicide  Bentazone 
Molluscicide Ferric phosphate 
Nematicide Oxamyl 
Plant growth regulator Ethephon 
Rodenticide Magnesium phosphide 

Finally, this aggregation was also made taking in account the pesticide list, which another task 

group was collecting, allocating all AI into one of the defined target class. Moreover, different 

practices accounted in the aggregation process follow the scientific opinion of different experts 

involved in the consensus effort. 
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4.3.3 Application methods and drift association     

Along with crop characteristics and pesticide active ingredients, application methods affects 

pesticide emission fractions, since diverse equipment and practices show different potentials 

for drift and many other distribution processes (van de Zande et al., 2007). Nowadays there are 

many types of equipment and machinery for pesticide application in agricultural production. A 

review of the most used equipment in different agricultural systems was performed. At a first 

step, the pesticide application methods and areas of use were divided into seven categories and 

eight subcategories. Second, the spray application equipment was dived by orientation (i.e. 

vertical or horizontal), volume and sped. Third, a first aggregation was completed to create nine 

application method categories, summarized in Table 4.3.  

Table 4.3 Summary and description of application methods categories. 

Application 
Methods Description Image 

Hand operated 
sprayers  

This category includes trigger pump sprayer, gun 
sprayer, backpack sprayer, knapsack sprayer, 
among others. These sprayers can vary widely in 
type and pressure capability. However, their 
distinguishing feature is the extension that ends in 
an adjustable nozzle, with a hose attached to a small 
portable tank or larger stationary container. 

 

Boom Sprayers 

Boom sprayers have multiple nozzles spaced over 
the length of the boom. Tractor mounted booms 
sprayers are generally used to broadcast liquid 
pesticides over large areas. The nozzles are directed 
towards the ground, and boom widths ranging from 
6 to 36 meters.  

 

Air-blast sprayer 

Air-blast sprayers are most often used on orchard 
crops, grapes and some berry crops. Have nozzles 
placed in a very high-speed air stream produced by 
a fan. The air stream propels the very fine spray 
droplets to the target. Also, the air stream creates 
leaf movement, allowing better coverage of 
insecticides and fungicides.  

 

Aerial 
applicators 

Aircraft and helicopters are used for applying 
pesticides either as a solid or liquid, including ULV 
spray.  Aircraft are mostly used for large, 
continuous areas that may be sprayed with a 
minimum number of turns. Helicopters are useful 
for treating discrete or isolated patches. 
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Application 
Methods Description Image 

Granular 
applicators  

Are available to broadcast pesticide granules over 
an entire field surface or in bands that correspond 
to crop rows. Application equipment may use 
gravity or a positive metering mechanism to 
regulate the flow of granules. Small, hand-operated 
granule dispersal equipment (e.g., push rotary 
spreaders) may be used to treat smaller areas such 
as in landscaping.  

 

Fumigation, 
foggers,  Low 
Volume (LV), 
Ultra Low 
Volume (ULV) 
Sprayers 

Thermal foggers: use heat to vaporize the pesticide 
into a highly visible dense fog. LV and ULV 
sprayers: also known as "cold foggers", use 
concentrated pesticides with no carrier. Cold 
fogging produces small droplets using individual 
nozzles to break up the liquid droplets. As the 
droplets are microscopic, the spray area is 
increased. 

 

LV or ULV Sprayers are used by small farmers in 
Africa mainly on cotton crops. A spinning disk 
moved by an electric motor spreads the product in 
very small droplets. 

 

Chemigation  
Chemigation is the application of pesticides to 
crops through the irrigation system by mixing the 
AIs with the irrigation water. 

 

This set of application methods was a combined with a review of databases and expert, 

technicians and agronomist opinions, regarding the most common application method per crop 

class-target class combination. This refinement was done having in mind the most 

representative agricultural practices for different regions, including tropical ones, and the 

availability of drift models that help to describe this specific process. On the other hand, as the 

application method is one of the primary factors determining drift a further step was performed 

to define suitable air emission and drift reduction fractions per all application and crop class 

combination. 

For example for field crops, pesticides are most commonly applied using boom sprayers, in this 

case, pesticides are usually diluted in water and distributed in the field by atomizing the liquid 

into droplets from nozzles. For such a case (e.g., field crop and boom sprayer), various spray 

drift functions and models have been developed (Butler-Ellis and Miller, 2010; Holterman and 

van de Zande, 2003; Lebeau et al., 2011). In orchards, different types of sprayers are used (e.g., 
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for fruit crops, trees, tall crops, so on) but still some underlying principles are comparable. For 

example, the droplets are distributed more or less horizontally or even upward into the crop 

using air flow. In this cases spray drift are significantly higher than those for field crops and 

drift functions have also been previously developed (Ganzelmeier and Rautmann, 2000; 

Holterman et al., 2017).  

The selected application method and associated drift functions were assigned to the 

corresponding crop and pesticide target combinations. To further differentiate application 

practices, when possible drift reduction was also integrated into the scenarios by the use of anti-

drift nozzles, shielded or air assistance equipment (e.g., fungicide application to grape vines 

and anti-drift nozzles) obtaining the final application scenarios. 

4.3.4 Resulting application scenarios     

In total 84 different default scenarios for agricultural practices were defined for a specific set 

of pesticides, crop classes, and application methods associated to wind drift fractions and drift 

reduction types. These scenarios were used to cover the principal globally occurring pesticide 

application practices. Furthermore, these scenarios were coupled with psychochemical data for 

pesticides and with global data for climate, soils and land use; and used as an input for estimate 

global emission fractions of pesticides applicable for life cycle assessment, in the context of the 

pesticide consensus effort.     

To illustrate the applicability of the application scenarios, two practical examples were carried 

out. The first is a follow-up to the case illustrated in section 4.3.1 through all the steps for the 

archetypical classification. The second compares realistic agricultural data and the output using 

the application scenarios. 

Example 1: Archetypical classification for the case of pesticide treatments for pulses 

The Resulting archetypical classification for insecticide application on lentils is illustrated in 

Figure 4.5. This shows the result of following all the steps until the definition of a specific 

application scenario for the selected example. 
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Figure 4.5 Illustration of scenario definition for insecticide application on lentils, a practical 

example. 

Example 2: Realistic application data and application  

To compare the output results of the different scenarios defined, the application practices for 

treating specific diseases in 13 different crops were investigated. The agricultural data and the 

archetypical classification of scenarios combining crop class, pesticide target class and 

application method, for the selected pesticide treatments are presented in Table 4.4. 

Table 4.4 Results for the illustrative example of realistic application practices and the 

application scenarios defined in the study. 

Realistic application practices Results for application scenarios 

Crop Pest or 
disease 

Active 
ingredient 

Dose 
kgAI ha-1 Crop class Pesticide 

target 
Application 

method 

Banana Banana 
weevil Azadirachtin 0,038 

Oil-Bearing 
trees + 
Banana 

Insecticide Air-blast 
sprayer 

Barley Weeds Pendimethalin 1,65 Pooideae Herbicide Boom sprayers 
Corn Weeds Mesotione 0,12 Panicoideae Herbicide Boom sprayers 

Grape Mildew Fosetil-Al 0,16 Grapes/ 
vines Fungicide Air-blast 

sprayer  
Green 
peas Weeds Aclonifen 1,2 Pulses Herbicide Boom sprayers 

Lemon Weeds Pendimethalin 1,65 Citrus fruits  
+olive Herbicide Boom sprayers 
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Realistic application practices Results for application scenarios 

Crop Pest or 
disease 

Active 
ingredient 

Dose 
kgAI ha-1 Crop class Pesticide 

target 
Application 

method 

Nectarine Rust Mancozeb 0,37 Fruits 
temperate Fungicide Air-blast 

sprayer  

Potato Orthoptera Chlorpyrifos 0,08 Roots and 
tubers Insecticide Air-blast 

sprayer 

Rice Weeds Bensulfuron 
methyl 0,06 Paddy rice Herbicide Boom sprayers 

Spinach Orthoptera Chlorpyrifos 0,10 Vegetables 
leafy Insecticide Hand operated 

sprayers  

Tomato Mildew Mancozeb 0,37 Vegetables 
fruit Fungicide Air-blast 

sprayer  
Wheat Weeds Pendimethalin 1,65 Pooideae Herbicide Boom sprayers 

With these results is possible to infer that the application scenarios defined are a significant 

input, which can capture some of the most relevant features of pesticide application practices, 

to quantify default pesticide emission fractions for use in LCA.           

4.4 Conclusions 

The application scenarios defined capture the critical factors for determining pesticide 

distribution in a representative variety of cropping systems. The main strength of these 

developed scenarios is the transparency and open development in every step of the process, 

comprising the acceptance of different stakeholders and the scientific support of experts 

involved in the consensus effort.   

Finally, this combination of likely application scenarios represents one-step towards the 

consensus to estimate global emission fractions of pesticides. For practitioners, these results 

constitute a simplification and an advance for been able to compare different agricultural 

practices in the context of pesticide use assessment in LCA studies. Further developments 

should include efforts to improve application method aggregation and the inclusion when 

possible of different categories such as soil disinfection and seed dressing; other crop classes 

such as flower crops, Bromeliaceae (e.g., pineapple), and to test the effects of the adjuvants on 

pesticides to quantify emission fractions. 

 

 



Definition of application scenarios   

 

95 

  

Acknowledgments 
We like to acknowledge the scientific contribution from Stefan Reichenberger, Tim Grant, 
Teunis Dijkman and Carole Sintfort regarding drift functions and drift reduction factors. Also, 
from Claudin Basset‐Mens and Henri Vanniere, in the application methods in tropical regions. 
Finally, gratefully acknowledge the contribution of the more than 100 participants in the 
pesticide consensus effort, which have contributed in many ways to develop this work. 



Chapter 4 

 

96 

 

References   

Birkved, M., Hauschild, M.Z., 2006. PestLCI-A model for estimating field emissions of pesticides in 
agricultural LCA. Ecol. Modell. 198, 433–451. doi:10.1016/j.ecolmodel.2006.05.035 

Bucur, I., 2013. Development of Sustainable Agriculture - a Key Element for Romania ’ s Progress. 
Eonomic Insihts- Trends and Challenges II, 104–112. 

Butler-Ellis, M.C., Miller, P.C.H., 2010. The Silsoe Spray Drift Model : A model of spray drift for the 
assessment of non-target exposures to pesticides. Biosyst. Eng. 107, 169–177. 
doi:10.1016/j.biosystemseng.2010.09.003 

Carlson, R., 1962. Silent Spring. Houghton Mifflin Company. 
Cryer, S.A., Fouch, M.A., Peacock, A.L., Havens, P.., 2001. Characterizing agrochemical patterns and 

effective BMPs for surface waters using mechanistic modeling and GIS. Environ. Model. Assess. 6, 
195–208. doi:10.1023/A 

Davie-Martin, C.L., Hageman, K.J., Chin, Y.P., 2013. An improved screening tool for predicting 
volatilization of pesticides applied to soils. Environ. Sci. Technol. 47, 868–876. 
doi:10.1021/es3020277 

Dijkman, T.J., Birkved, M., Hauschild, M.Z., 2012. PestLCI 2.0: A second generation model for 
estimating emissions of pesticides from arable land in LCA. Int. J. Life Cycle Assess. 17, 973–986. 
doi:10.1007/s11367-012-0439-2 

DTU, 2016. TOX-TRAIN - Final report summary. Implementation of a TOXicity assessment tool for 
practical evaluation of life-cycle impacts of technologies (TOX-TRAIN). FP7-PEOPLE ID-285286. 
Danmarks Tekniske Universitet. 

EC, 2016. EU Pesticides Database [WWW Document]. URL 
http://ec.europa.eu/food/plant/pesticides/eu-pesticides-
database/public/?event=activesubstance.selection&language=EN (accessed 6.5.15). 

EC, 2009. Directive 2009/128/EC of the European Parliament and the Council of 21 October 2009 
establishing a framework for Community action to achieve the sustainable use of pesticides. October 
309, 71–86. doi:10.3000/17252555.L_2009.309 

Fantke, P., 2017. Stakeholder workshop - Dublin, 2016 [WWW Document]. 
Fantke, P., 2016a. Framework workshop- Basel, 2014 [WWW Document]. 
Fantke, P., 2016b. Consensus workshop - Bordeaux 2015 [WWW Document]. 
Fantke, P., Anton, A., Grant, T., Hayashi, K., 2017. ライフサイクルアセスメントのための農薬排

出の定量化：グローバルコンセンサスの形成過程. (Pesticide Emission Quantification for Life 
Cycle Assessment: A Global Consensus Building Process). J. Life Cycle Assessment, Japan 13, 245–
251. 

Fantke, P., Charles, R., Alencastro, L.F. de, Friedrich, R., Jolliet, O., 2011. Plant uptake of pesticides 
and human health: Dynamic modeling of residues in wheat and ingestion intake. Chemosphere 85, 
1639–1647. doi:10.1016/j.chemosphere.2011.08.030 

Fantke, P., Juraske, R., 2013. Variability of pesticide dissipation half-lives in plants. Environ. Sci. 
Technol. 47, 3548–3562. doi:10.1021/es303525x 

FAO, 2016. FAOSTAT-Crops [WWW Document]. URL http://www.fao.org/faostat/en/#data/QC 
(accessed 9.16.16). 

FAO, 2010. Indicative Crop Classification Version 1.0 (ICC) World Programme for the Census of 
Agriculture [WWW Document]. 

Ganzelmeier, H., Rautmann, D., 2000. Drift, drift reducing sprayers and sprayer testing. Asp. Appl. 
Biol. 57, 1–10. 

Holterman, H.., van de Zande, J.C., 2003. IMAG Drift Calculator v 1.1. User Manual. 
Holterman, H.J., van de Zande, J.C., Huijsmans, J.F.M., Wenneker, M., 2017. An empirical model based 

on phenological growth stage for predicting pesticide spray drift in pome fruit orchards. Biosyst. 
Eng. 154, 46–61. doi:10.1016/j.biosystemseng.2016.08.016 

Lebeau, F., Verstraete, A., Stainier, C., Destain, M.., 2011. RTDrift: a real time model for estimating 
spray drift from ground applications. Comput Electron Agric 161–174. 

http://ec.europa.eu/food/plant/pesticides/eu-pesticides-
http://www.fao.org/faostat/en/#data/QC


Definition of application scenarios   

 

97 

  

Meier, M.S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., Stolze, M., 2015. Environmental 
impacts of organic and conventional agricultural products - Are the differences captured by life cycle 
assessment? J. Environ. Manage. 149, 193–208. doi:10.1016/j.jenvman.2014.10.006 

Nemecek, T., Kagi, T., 2007. Life cycle inventories of Agricultural Production Systems, ecoinvent 
report No. 15, Final report of Ecoinvent V2.0. 

Notarnicola, B., Sala, S., Anton, A., McLaren, S.J., Saouter, E., Sonesson, U., 2017. The role of life 
cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. 
Prod. 140, 399–409. doi:10.1016/j.jclepro.2016.06.071 

NREL, 2016. U.S Life Cycle Inventory Database. [WWW Document]. Natl. Renew. Energy Lab. URL 
https://www.lcacommons.gov/nrel/search (accessed 11.11.16). 

OECD, 2000. ADOPTION OF TECHNOLOGIES FOR SUSTAINABLE FARMING SYSTEMS, in: 
WORKSHOP PROCEEDINGS. Organisation for Economic Co-operation and Development. 
Wageningen, p. 149. 

Peña, N., Knudsen, M.T., Fantke, P., Antón, A., Hermansen, J.E., 2018. Freshwater ecotoxicity 
assessment of pesticides use in crop production: Testing the influence of modeling choices. J. Clean. 
Prod. submitted. 

Reichenberger, S., Bach, M., Skitschak, A., Frede, H.G., 2007. Mitigation strategies to reduce pesticide 
inputs into ground- and surface water and their effectiveness; A review. Sci. Total Environ. 384, 1–
35. doi:10.1016/j.scitotenv.2007.04.046 

Renaud-Gentié, C., Dijkman, T.J., Bjørn, A., Birkved, M., 2015. Pesticide emission modelling and 
freshwater ecotoxicity assessment for Grapevine LCA: adaptation of PestLCI 2.0 to viticulture. Int. 
J. Life Cycle Assess. 20, 1528–1543. doi:10.1007/s11367-015-0949-9 

Renouf, M.A., Renaud-Gentié, C., Perrin, A., van der Werf, H.M.G., Kanyarushoki, C., Jourjon, F., 
2018. Effectiveness criteria for customised agricultural life cycle assessment tools. J. Clean. Prod. 
179, 246–254. doi:10.1016/j.jclepro.2017.12.170 

Rosenbaum, R., Anton, A., Bengoa, X., Bjorn, A., Brain, R., Bulle, C., Cosme, N., Dijkman, T.J., 
Fantke, P., Felix, M., Geoghegan, T.S., Gottesburen, B., Hammer, C., Humbert, S., Jolliet, O., 
Juraske, R., Lewis, F., Maxime, D., Nemecek, T., Payet, J., Rasanen, K., Roux, P., Schau, E.M., 
Sourisseau, S., van Zelm, R., von Streit, B., Wallman, M., 2015. The Glasgow consensus on the 
delineation between pesticide emission inventory and impact assessment for LCA. Int. J. Life Cycle 
Assess. 20, 765–776. doi:10.1007/s11367-015-0871-1 

Rossi, V., Caffi, T., Salinari, F., 2012. Helping farmers face the increasing complexity of decision-
making for crop protection. Phytopathol. Mediterr. 51, 457–479. 

Sala, S., Anton, A., McLaren, S.J., Notarnicola, B., Saouter, E., Sonesson, U., 2017. In quest of reducing 
the environmental impacts of food production and consumption. J. Clean. Prod. 140, 387–398. 
doi:10.1016/j.jclepro.2016.09.054 

Soussana, J.F., 2014. Research priorities for sustainable agri-food systems and life cycle assessment. J. 
Clean. Prod. 73, 19–23. doi:10.1016/j.jclepro.2014.02.061 

UBC, 2016. EARTHstat- University of Minesota [WWW Document]. Glob. Landscapes Initiat. URL 
http://www.earthstat.org/ (accessed 9.1.16). 

UN, 2015. Central Product Classification, Ver.2.1, United Nations Publication. 
United Nations, 2015. Transforming our world: the 2030 Agenda for Sustainable Development, General 

Assembley 70 session. doi:10.1007/s13398-014-0173-7.2 
US-EPA, 2009. Guidance for Selecting Input Parameters in Modeling the Environmental Fate and 

Transport of Pesticides. Version 2.1 [WWW Document]. URL https://www.epa.gov/pesticide-
science-and-assessing-pesticide-risks/guidance-selecting-input-parameters-modeling (accessed 
5.6.15). 

van de Zande, J.C., Michielsen, J.M.G.P., Stallinga, H., 2007. Spray drift and off-field evaluation of 
agrochemicals in the Netherlands. 

van Zelm, R., Larrey-Lassalle, P., Roux, P., 2014. Bridging the gap between life cycle inventory and 
impact assessment for toxicological assessments of pesticides used in crop production. Chemosphere 
100, 175–181. doi:10.1016/j.chemosphere.2013.11.037 

https://www.lcacommons.gov/nrel/search
http://www.earthstat.org/
https://www.epa.gov/pesticide-


Chapter 4 

 

98 

 

van Zelm, R., Stam, G., Huijbregts, M.A.J., van de Meent, D., 2013. Making fate and exposure models 
for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases. Chemosphere 
90, 312–317. doi:10.1016/j.chemosphere.2012.07.014 

Yadav, I., Devi, N., 2017. Pesticides Classification and Its Impact on Human and Environment, in: 
Environmental Science and Engineering. pp. 140–158. 

Zhang, X., Luo, Y., Goh, K.S., 2018. Modeling spray drift and runoff-related inputs of pesticides to 
receiving water. Environ. Pollut. 234, 48–58. doi:10.1016/j.envpol.2017.11.032. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5.  

General conclusions and Outlook  





Conclusions and outlook 

 

101 

 

5.1 General conclusions  

In this thesis, the methodologies to quantify emission fractions, toxicity impacts on ecosystems 

and define pesticide application scenarios were advanced to facilitate the assessment of 

pesticides use in open-field crop production.  

The ecotoxicological burden on freshwater ecosystems from pesticide use was evaluated by 

using Denmark´s feed production from the period 2013- 2015 as a case of study. Besides, the 

influence of the emission inventory modeling on the environmental impact profiles of maize, 

grass, winter wheat, spring barley, rapeseed and peas was assessed. At the same time, a 

simplified estimation routine that allows the inclusion of the agricultural field on the assessment 

for pesticide emission fractions was proposed. Furthermore, it was framed a suitable interface 

for pesticide emission inventory (LCI) and impact assessment (LCIA) and the related mass 

distribution of pesticide avoiding a temporal overlapping. Freshwater impacts did not follow 

the same trend and did not present any direct correlation to the pesticide amount applied. Some 

of the main factors influencing impact results were the interface between inventory estimates 

and impact assessment, and the consideration of when (i.e. crop growth development) and how 

pesticides are applied (i.e. application method or equipment).  

Freshwater and soil ecotoxicity impacts of copper-based fungicides were quantified and 

characterized including spatial differentiation on the assessment in a practical case study on 

European vineyard production to improve the considerations of metal-based pesticides in 

ecotoxicity impact assessment of agricultural production. The consistent use of soil and water 

chemistry values has proven to be particularly important in the ecotoxicity impact evaluation 

of copper-based fungicides. Furthermore, the inclusion of ecotoxicity impacts of metal-based 

pesticides provided valuable additional insight into the environmental performance of different 

agricultural systems, especially for organic crop production. Hence, improving the accuracy 

and reliability of environmental impact profiles of cropping systems allowing at the same time, 

more realistic comparisons. 
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5. 2 Limitations and practical relevance 

Some of the limitations of this thesis are related to the data quality and uncertainties. In this 

regard the uncertainty of the methods used in this work where not measured, these measurement 

is beyond the scope of the present study.      

The methodology applied to characterize Cu(II) do not capture important aspects of metal 

speciation, such as essentiality or active plant uptake. Although the translation on the LCIA is 

not straightforward, because specific important spatially varying characteristics, such as cation 

exchange capacity describing the ionic composition of soil pore water, are not routinely 

measured. As demonstrated by Owsianiak et al. (2013), CFs for copper are determined mainly 

by OC (influencing fate) and pH (influencing bioavailability). LCIA models should, therefore, 

be metal-specific, and the results presented here cannot be extrapolated to other metals. In this 

regard, the modeling framework used in this study is only applicable to non-calcareous soils, 

although it is acknowledged that vineyard cultivation in calcareous soils is a typical practice in 

many European areas. 

On the other hand, the work on this thesis contributes to various practical implementations for 

life cycle assessment of agricultural products and systems. These include: 

 The advances related to the LCI help to simplify this process, especially important for 

consultants, industry, and all those practitioners who need to include agricultural 

systems in their background process to perform an LCA study. 

 The contribution of this thesis to LCA application on agricultural systems, involves 

assisting decision makers to understand better copper-based fungicide behavior and the 

importance of distinguishing its environmental impact depending on the different 

receiving environments and how restrictions on the use of this fungicides should take 

into account the emission site. 

 This study has several implications for impact assessment of copper-related compounds. 

Considering geographic variability both in metal hazard and LCA might provide more 

accurate results for the evaluation of ecotoxicity impacts, and will help to draw 

conclusions that are more reliable in environmental impact profiles.   
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 The application scenarios developed in this thesis consisted of a first step for the 

estimation of global default pesticide emission fractions. As remarked in chapter 4, there 

are many influencing factors and processes affecting pesticide distribution. Therefore, 

these application scenarios represent the complexity and variability of agricultural 

practices while simplifying and facilitating the assessment of pesticide application. It is 

worth to mention that focusing on LCA practitioner a balanced simplification could help 

to consumers, industry and policymakers to deal with the environmental aspects of 

agricultural production, while deepening into much more elaborated methodologies 

with a high need of data and time consumption to assess such a complex sector could 

hamper its assessment. 

These outcomes establish an extended vision of LCA to agricultural production, not only 

through ecotoxicity impact evaluation but also through the inclusion of spatially differentiated 

outputs and the use of emerging methodologies.  

5. 3 Further research needs  

The methodological advances for the ecotoxicity assessment of pesticide use are opening 

numerous perspectives. Furthermore, from the outcomes and conclusions of this dissertation, 

different possibilities for future research work are identified. These perspectives are presented 

below as a sort of roadmap:  

a) Account for the effect of adjuvants in pesticide formulations and chemical mixtures in 

the environment 

Agricultural areas are subject of many interventions and pesticide emissions rarely take 

place in isolation. The environmental media is commonly exposed to different mixtures 

of chemicals. Accounting for the effect of these chemical mixtures and their interaction 

in the media may potentially increase pesticides toxicity; an example for this is the 

presence of surfactants, a common substance in pesticide formulation (Dollinger et al., 

2018; Khan and Brown, 2016). Likewise, impacts linked to background concentrations 

from early applications (especially important for metal-based pesticides). Current 

methodologies to deal with mixture toxicity of chemicals are available and have 

validated for pesticides (Backhaus and Faust, 2012; Nowell et al., 2014). The 
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challenging task now is how to integrate those with the current characterization 

methodologies.   

b) The inclusion of transformation products on the assessment of pesticides  

Present models lack the capabilities to account for the transformation products of 

pesticide active ingredients (e.g., metabolites), a possibly serious deficiency that needs 

further attention. This is particularly troublesome for substances that rapidly degrade 

into more stable compounds, some of which are more toxic than the parent one (e.g., 

Fosetil-Al into ethanol and phosphonic acid). According to van Zelm et al. (2010), the 

inclusion of such transformation products could increase (up to 5 orders of magnitude) 

the characterization results for freshwater ecosystems. 

c) Influence of metal emissions on impacts from agricultural production 

Advance in the assessment and further inclusion of metal emissions from agricultural 

production (e.g., application of pesticides, manure and chemical fertilizers) into LCA 

studies. Furthermore, characterizing the critical aspects (such as essentiality for plants, 

humans and ecosystems; bioavailability, degradability, among others) to not only 

consider toxicity assessment of metals in ecosystems and residues in food crops, but 

also to improve the consideration of metal emissions in other relevant indicators for 

LCA.  

d) Groundwater ecotoxicity pathways and impact characterization   

Groundwater is recognized as significant impact pathway for pesticides toxicity. 

Furthermore, it is an emission compartment that is not consistently linked to LCIA 

models. Hence, further research is needed for a groundwater ecotoxicity indicator and 

clear guidelines on how to use LCIA models with groundwater in combination with 

emissions to groundwater ecosystems. 

e) Terrestrial ecotoxicity indicator and characterization factors for soils 

Terrestrial ecotoxicity for soil organisms is a specific impact pathway or indicator that 

have been shown to be relevant in the context of pesticides ecotoxicity, and is commonly 

overlooked and not included in LCA studies involving agricultural systems. Advances 

for metals have been already implemented and successfully applied in the work of 

Owsianiak (2013) showing its importance. However, further efforts need to be 

conducted for terrestrial ecotoxicity characterization of pesticides and the development 

of terrestrial ecotoxicity as indicator. 
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Although research is still required to fully address ecotoxicity impacts from pesticides and other 

agrochemicals, this thesis has contributed to advance in the methodologies to quantify those 

impacts. The less significant factors involved in this assessment have been simplified without 

losing rigorousness. Otherwise, those significant ones to the assessment have been highlighted 

or included. This contribution implies a step forward in the consensus effort initiative and could 

be used as input for the operationalization of pesticides assessment in LCA studies. 
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