
Spatial and spatio-temporal point patterns on linear
networks

Dissertation submitted by Mohammad Mehdi Moradi to apply for the joint
doctorate degree from the Universitat Jaume I, Universidade Nova de Lisboa and

Universität Münster.

European Joint Doctorate Marie Sklodowska-Curie in
Geoinformatics

Doctoral School from Universitat Jaume I

Mohammad Mehdi Moradi

Supervisors:

Jorge Mateu Ana Cristina Costa Edzer Pebesma
(Universitat Jaume I) (Universidade Nova de Lisboa) (Universität Münster)

Castellón de la Plana (Spain), November 2018

This dissertation is funded by the European Commission
within the Marie Skłodowska-Curie Actions (ITN-EJD). Grant
Agreement num. 642332 - GEO-C - H2020-MSCA-ITN-2014.

i

To my parents, my brother and my sister

iii

Acknowledgments

First of all I would like to express my sincere gratitude to my supervisor Jorge
Mateu for his continuous support, patience, motivation, and immense knowledge.
Besides, I would like to thank my co-supervisor Edzer Pebesma who provided me
with the opportunity of visiting his research group during my external semester and
also for his insightful comments, encouragement and being always in my disposal.
I also thank my co-supervisor Ana Cristina Costa for her thoughtful comments and
encouragement.

My sincere thanks also goes to Adrian Baddely, Ottmar Cronie and Ege Rubak
who provided me the opportunity to visit their research group and collaborate with
them in several projects. I am also grateful to Gopalan Nair, Tilman M. Davies,
Suman Rakshit and Raphael Lachieze-Rey that I had the pleasure to work with
them during my phd.

I take this opportunity to thank the members of GEOTEC for their help and
encouragement, especially Carlos Granel and Sergi Trilles. Special thanks go to
my friends Fernando Benitez, Carolina Jimenez, Diego Pajarito, Manuel Portela
and Khoi Manh for their support, encouragement and helps.

I would also thank Janine Illian and Rasmus Waagepetersen for their helpful
comments and suggestions.

Last but not least, I would like to give further thanks to my family for their
continued support and encouragement throughout my studies and life.

v

Resumen

Los datos con componente espacial suelen formarse con diferentes tipos de
geometrı́as, como pueden ser lineales, poligonales o puntuales, entre otras. Estas
últimas, las puntuales, están formadas por pares de coordenadas, las cuales
se consideran patrones y los puntos son llamados eventos. Estos pueden estar
distribuidos de forma regular o irregular dentro de un mismo espacio. Esta
distribución puede darse en contextos muy variados, como puede ser en las
ciencias geoespaciales, ecologı́a, astronomı́a, econometrı́a, criminologı́a, entre
otros. Por ejemplo, los puntos pueden representar desde árboles dentro de
un bosque, accidentes de tráfico o crı́menes en una ciudad. En Møller and
Waagepetersen (2003); Baddeley and Turner (2005); Illian et al. (2008); Gelfand
et al. (2010); Okabe and Sugihara (2012); Diggle (2003); Baddeley et al. (2015)
se pueden encontrar diferentes ejemplos de este tipo de datos. Muchos de
los patrones observados también pueden incluir una componente temporal, y
son llamados patrones espacio-temporales. En ocasiones, la ubicación de los
objetos se registra de forma regular o irregular a través del tiempo. En este
caso, cada objeto tiene un conjunto de puntos consecutivos que definen una
trayectoria. Con lo que se obtiene, no solo unos patrones de puntos, sino un
patrón de las trayectorias, como puede ser el movimiento de taxis, animales,
humanos, etc. La actual tesis, se centra principalmente en los patrones puntuales
espaciales y espacio-temporales que suceden en una red lineal, como pueden
ser los accidentes en las calles de una ciudad. Finalmente, también se incluyen el
análisis de las trayectorias. La tesis se estructura de la siguiente manera:

En primer lugar, se presenta un capı́tulo introductorio (Capı́tulo 1) en el que se
muestra un breve resumen de la teorı́a de los procesos puntuales espaciales en
R2, redes lineales y trayectorias. De ellos, se presentan conceptos básicos a nivel

vi Resumen

abstracto e introduciendo de ellos algunas caracterı́sticas importantes. También,
se definen teóricamente algunos modelos clásicos de procesos puntuales. Se
presentan los estimadores de intensidad, summary-statistics y relative risk.

El Capı́tulo 2 tiene como objetivo revisar y proponer algunos estimadores
de intensidad basados en kernel para patrones de puntos espaciales en redes
lineales, junto con el estudio de sus propiedades. La estimación de la intensidad de
los patrones de puntos en redes lineales, como es el caso de una red de carreteras,
parece ser una tarea complicada (Rakshit et al., 2018). Varias técnicas publicadas
en la literatura en los contextos de geografı́a e informática, han resultado ser
erróneas carreteras, parece ser una tarea complicada (Rakshit et al., 2018). Las
técnicas existentes también son computacionalmente costosas, especialmente
cuando se analizan gran cantidad de datos, es decir, conjuntos de datos con
una alta concentración de puntos y/o una gran red (Rakshit et al., 2018). Existen
trabajos en la literatura que proponen estimadores de intensidad Borruso (2003,
2005, 2008); Xie and Yan (2008); Okabe et al. (2009); McSwiggan et al. (2017).
Además, en este mismo capı́tulo se revisan algunos de los estimadores de
intensidad actuales y se proponen dos nuevos estimadores, con el objetivo de
mejorar los actuales, tanto estadı́sticamente como computacionalmente. En
primer lugar, se presenta un estimador de intensidad basado en kernel, el cual
aplica una corrección de borde y revisa sus propiedades estadı́sticas (Moradi
et al., 2017) tales como unbiasedness, mass conservation y variance. Mediante
una simulación, se prueba su rendimiento estadı́stico y se compara con el de
Okabe et al. (2009); Okabe and Sugihara (2012). En segundo lugar, se propone
un método computacionalmente eficiente y con principios estadı́sticos de 2D
convolution (Rakshit et al., 2018). Para ello se utiliza la transformada rápida
de Fourier, la cual trabaja de forma eficiente incluso en redes grandes y para
grandes bandwidth, y es robusta frente a posibles errores en la geometrı́a de la
red. También se discute el sesgo, variance, asymptotics, selección del bandwidth,
estimación de variance, estimación de relative risk y adaptive smoothing. Además,
se realiza un análisis de su rendimiento y se compara con el de McSwiggan
et al. (2017), tanto estadı́sticamente como computacionalmente. A lo largo del
mismo capı́tulo, y utilizando los métodos propuestos, también se analizan varios
conjuntos de datos reales como datos del crimen de Castellón, (España) y Chicago
(EEUU) y los accidentes de tráfico de Medellı́n (Colombia) y Western Australia
(Australia).

Resumen vii

El Capı́tulo 3 propone una nueva técnica para proporcionar un estimador de
intensidad adaptativo para procesos de puntos espaciales independientemente
del state space (Moradi et al., 2018a). La técnica es introducida y aplicada a
los estimadores de intensidad de Voronoi. Además, se revisan sus propiedades
estadı́sticas y se estudia su comportamiento a través de diferentes simulaciones.
Los estimadores de intensidad de Voronoi son adaptativos y no necesitan definir
previamente parámetros; en ellos la estimación de intensidad está condicionada
por el tamaño recı́proco de la celda de Voronoi que contiene esa ubicación. Su
principal inconveniente, se debe a que tiende a suavizar los datos en regiones
donde la densidad puntual del patrón de punto observado es alta, siendo demasi-
ado suave en regiones donde la densidad de puntos es baja. Para remediar este
problema, es decir, para encontrar un término medio entre el suavizado excesivo y
el subestimado, se propone una técnica de suavizado adicional para estimadores
de intensidad Voronoi para procesos puntuales en espacios métricos arbitrarios,
que se basa en aplicar repetidamente raleos independientes del proceso puntual
(Moradi et al., 2018a). Se muestra que la técnica de remuestreo suavizado mejora
la estimación de manera significativa. Además, se estudia las propiedades es-
tadı́sticas, como la imparcialidad y la variance, y se propone una regla del pulgar
y un enfoque de validación cruzada basada en datos para elegir la cantidad de
dilución/suavizado que se aplicará. También se aplica a dos conjuntos de datos
reales, en los accidentes de tráfico en un área de Houston (EEUU) (Patrón de
punto de red lineal) y Finish pines que consiste en la ubicación de árboles en un
bosque finlandés (patrón de puntos de dos dimensiones).

El Capı́tulo 4 se centra en los procesos puntuales espacio-temporales en redes
lineales. En algunos trabajos, solo se considera el dominio espacial y se analizan
los patrones de puntos independientemente del tiempo, mientras que ellos están
ocurriendo inherentemente de forma conjunta en el espacio y el tiempo. Sin
embargo, puede haber preguntas que el análisis espacial no puede responder
(Diggle, 2003). Para ello, se presentan varias caracterı́sticas de patrones de
puntos espacio-temporales cuando las ubicaciones espaciales están restringidas
a una red lineal (Moradi et al., 2018b). Se propone un estimador de intensidad
basado en kernel para resaltar la concentración alta/baja de eventos dentro de
la red y el tiempo, ya sea de forma conjunta o por separado. También se utilizan
caracterı́sticas de segundo orden de patrones de puntos espacio-temporales en
redes lineales, como la función K-function y la función de correlación de pares

viii Resumen

para analizar el tipo de interacción entre los puntos (Moradi et al., 2018b). Los
cuales son independientes de la geometrı́a de la red y tienen valores conocidos
para los procesos de puntos de Poisson. Por lo que, se pueden usar para medir
la desviación de Poisson y también para la selección del modelo. Finalmente,
también se han utilizado diferentes conjuntos de datos reales, como por ejemplo
los accidentes de tráfico en una área de Houston (EEUU), en una área de Medellı́n
(Colombia) y una área de Eastbourne (Reino Unido).

El Capı́tulo 5 presenta se centra en las trayectorias. En el cual se proponen
varias clases, métodos y metodologı́as estadı́sticas, provenientes del paquete
trajectories de R para analizar conjuntos de datos en movimiento (Moradi et al.,
2018c). Hay que tener en consideración que el paquete trajectories amplı́a aún
más las capacidades del paquete spacetime (Pebesma, 2012). El R paquete
trajectories proporciona códigos/funciones para manejar, simular y analizar es-
tadı́sticamente datos de movimiento independientemente del dominio y convertir
un patrón de trayectoria en una lista de patrones de puntos basados en timestamps
regulares. Para comprender el comportamiento de los objetos en movimiento,
se propone un método de estimación de la intensidad (para resaltar las calles y
caminos más visitadas), se realiza un análisis de distancia, también se presenta
un suavizado de movimientos y se calcula el área de variabilidad de las carac-
terı́sticas de segundo orden (para ver los cambios del tipo de interacción entre
objetos a través del tiempo). Con el fin de comparar la intensidad estimada (ob-
servada) con la intensidad esperada, se introducen los chimaps, que resaltan las
áreas con intensidad estimada más alta/más baja que la esperada. También se
utilizan datos reales, en este caso de taxis en movimiento de Beijing (China).

Palabras clave: Caracterı́sticas de segundo orden, Espacio-temporal, Estim-
ador adaptativo, Intensidad, Kernel, Procesos puntuales, Red lineal, Remuestreo-
suavizado, Trayectoria, Voronoi.

ix

Abstract

The last decade witnessed an extraordinary increase in interest in the analysis
of network related data and trajectories. This pervasive interest is partly caused
by a strongly expanded availability of such datasets. In the spatial statistics field,
there are numerous real examples such as the locations of traffic accidents and
geo-coded locations of crimes in the streets of cities that need to restrict the
support of the underlying process over such linear networks to set and define a
more realistic scenario. Examples of trajectories are the path taken by moving
objects such as taxis, human beings, animals, etc.

Intensity estimation on a network of lines, such as a road network, seems to
be a surprisingly complicated task. Several techniques published in the literat-
ure, in geography and computer science, have turned out to be erroneous. We
propose several adaptive and non-adaptive intensity estimators, based on kernel
smoothing and Voronoi tessellation. Theoretical properties such as bias, variance,
asymptotics, bandwidth selection, variance estimation, relative risk estimation,
and adaptive smoothing are discussed. Moreover, their statistical performance is
studied through simulation studies and is compared with existing methods.

Adding the temporal component, we also consider spatio-temporal point pat-
terns with spatial locations restricted to a linear network. We present a non-
parametric kernel-based intensity estimator and develop second-order character-
istics of spatio-temporal point processes on linear networks such as K-function
and pair correlation function to analyse the type of interaction between points.

In terms of trajectories, we introduce the R package trajectories that contains
different classes and methods to handle, summarise and analyse trajectory data.
Simulation and model fitting, intensity estimation, distance analysis, movement
smoothing, Chi maps and second-order summary statistics are discussed.

x Abstract

Moreover, we analyse different real datasets such as a crime data from Chicago
(US), anti-social behaviour in Castellón (Spain), traffic accidents in Medellı́n
(Colombia), traffic accidents in Western Australia, motor vehicle traffic accidents
in an area of Houston (US), locations of pine saplings in a Finnish forest, traffic
accidents in Eastbourne (UK) and one week taxi movements in Beijing (China).

Keywords: Adaptive estimator, Intensity estimator, Kernel, Linear network,
Point process, Resample-smoothing, Second-order summary statistics, Space-
time, Trajectory, Voronoi.

xi

Contents

Resumen v

Abstract ix

1 Introduction 1

1.1 Data examples . 1

1.2 Spatial point processes on R2 . 3

1.2.1 Point process models . 5

1.2.2 Intensity estimators . 6

1.2.3 Relative risk . 10

1.2.4 Second-order summary statistics 11

1.3 Spatial point processes on linear networks 13

1.3.1 Linear networks . 14

1.3.2 Second-order summary statistics 16

1.4 Trajectories . 19

1.5 Organization of the thesis . 21

2 Kernel smoothing for network events 25

2.1 Introduction . 25

2.2 Datasets . 28

2.2.1 Chicago crime data . 28

2.2.2 Castellón anti-social behaviour 29

2.2.3 Traffic accident in Medellı́n 30

xii Contents

2.2.4 Traffic accident in Western Australia 30

2.3 Equal-split intensity estimators . 31

2.4 Adapted Jones-Diggle estimator 33

2.4.1 Statistical properties . 35

2.4.2 Simulation study . 36

2.4.3 Chicago crime data . 40

2.4.4 Castellón anti-social behaviour 42

2.5 Heat kernel intensity estimator . 42

2.6 Fast kernel smoothing using 2D convolution 44

2.6.1 Fast computation . 46

2.6.2 Chicago example . 48

2.6.3 Theoretical properties . 50

2.6.4 Toy example . 52

2.6.5 Simulation experiments . 56

2.6.6 Relative risk and smoothing on a network 60

2.6.7 Traffic accidents on urban roads of Medellı́n 63

2.6.8 Adaptive smoothing . 65

2.6.9 Traffic accidents in Western Australia 68

2.7 Summary . 80

3 Resample-smoothing of Voronoi estimators 83

3.1 Introduction . 83

3.2 Setup . 85

3.2.1 Independent thinning . 85

3.2.2 Voronoi tessellations . 86

3.2.3 Voronoi intensity estimation 86

3.3 Resample-smoothing of intensity estimators 87

3.3.1 Definition of Resample-Smoothing 88

3.3.2 Theoretical properties . 89

3.3.3 Choosing the smoothing parameters 95

3.3.4 Large scale data and sparsity 96

3.4 Numerical experiments . 96

Contents xiii

3.4.1 Homogeneous Poisson process 97

3.4.2 Inhomogeneous Poisson process 99

3.4.3 Log-Gaussian Cox process 105

3.4.4 Thinned simple sequential inhibition point process 106

3.5 Houston traffic accident . 113

3.6 Finnish pines . 114

3.7 Summary . 115

4 Spatio-temporal point patterns on networks 117

4.1 Introduction . 117

4.2 Setup . 118

4.3 Methodologies . 121

4.3.1 First-order characteristics 121

4.3.2 Homogeneous second-order characteristics 122

4.3.3 Inhomogeneous second-order characteristics 126

4.4 Data analysis . 127

4.4.1 Traffic accidents in Houston 128

4.4.2 Traffic accidents in Medellı́n 129

4.4.3 Traffic accidents in Eastbourne 131

4.5 Summary . 133

5 Trajectory analysis 137

5.1 Introduction . 137

5.2 Classes and methods . 138

5.2.1 Track . 138

5.2.2 Tracks . 141

5.2.3 TracksCollection . 141

5.2.4 segments . 142

5.2.5 Methods . 143

5.3 Simulation and model fitting . 145

5.3.1 Trajectory simulation . 145

5.3.2 Model fitting . 147

xiv Contents

5.4 Exploratory data analysis . 149

5.4.1 Data . 149

5.4.2 Distance analysis . 150

5.4.3 Movement smoothing . 153

5.4.4 Intensity function . 156

5.4.5 Chi maps . 158

5.4.6 Second-order summary statistics 160

5.5 Summary and discussion . 162

6 Conclusions and Future work 165

A Publications and research visits 169

Bibliography 173

xv

List of tables

2.1 Computation time (in milliseconds) for the diffusion algorithm and
the convolution algorithm applied to the Chicago data with different
bandwidths σ or τ (in feet). 49

2.2 Computation time (in minutes) of the diffusion algorithm for different
step-sizes (in km), the adaptive algorithm for different number of
bins m, and the convolution algorithm (U = uniform correction; J =
Jones-Diggle correction), applied to the Western Australian accident
data with different bandwidths τ or σ (in km). 75

3.1 Estimates of IAB, ISB and IV for λ̂Vp,m(u), u ∈ W = [0, 1]2, m =

200, 300, 400, p = 0.1, . . . , 1, based on 500 realisations of a homo-
geneous Poisson process in W = [0, 1]2 with intensity λ = 60. . . . 98

3.2 Cross-validation selections of p for m = 200 in a geometric se-
quence, based on 100 realisations of a homogeneous Poisson pro-
cess in W = [0, 1]2 with intensity λ = 60. 99

3.3 Estimates of IAB, ISB and IV for λ̂Vp,m(u), u ∈ W = [0, 1]2, m =

200, 300, 400, p = 0.1, . . . , 1, based on 500 realisations of an inhomo-
geneous Poisson process on W = [0, 1]2 with intensity λ(x, y) =

|10 + 90 sin(16x)|. 99

3.4 Cross-validation selections of p in a geometric sequence for m =

200, based on 100 realisations of an inhomogeneous Poisson pro-
cess in W = [0, 1]2 with intensity λ(x, y) = |10 + 90 sin(16x)|. . . . 102

xvi List of tables

3.5 Estimates of IAB, ISB and IV for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m =

200, 300, 400, p = 0.1, . . . , 1, based on 500 realisations of a log-
Gaussian Cox process in W = [0, 1]2 with mean function (x, y) 7→
log(40| sin(20x)|) and ((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1)−(x2, y2)‖/0.1}
as covariance function for the driving random field. 106

3.6 Cross-validation selections of p in a geometric sequence for m =

200, based on 100 realisations of a log-Gaussian Cox process in
W = [0, 1]2 with mean function (x, y) 7→ log(40| sin(20x)|) and covari-
ance function ((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1) − (x2, y2)‖/0.1}
for the driving random field. 106

3.7 Estimates of IAB, ISB and IV for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m =

200, 300, 400, p = 0.1, . . . , 1, based on 500 realisations of an inde-
pendently thinned simple sequential inhibition process in W = [0, 1]2

with intensity ρ(x, y) = 450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| +
1{1/3 ≤ x < 2/3}|x− 0.5|+ 1{x ≥ 2/3}|x− 0.95|, x, y ∈ W 110

3.8 Cross-validation selections of p in a geometric sequence for m =

200, based on 100 realisations of an independently thinned simple
sequential inhibition process in W = [0, 1]2 with intensity ρ(x, y) =

450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| + 1{1/3 ≤ x < 2/3}|x −
0.5|+ 1{x ≥ 2/3}|x− 0.95|, x, y ∈ W 113

3.9 Cross-validation selected values for p, based on the sequence
m = 100, 110, . . . , 200. 114

3.10 Cross-validation selected values for p, based on the sequence
m = 100, 110, . . . , 200. 115

5.1 Methods implemented in the package trajectories for objects from
class ‘Track’,‘Tracks’ and ‘TrackCollection’. 144

xvii

List of figures

1.1 Locations of trees in a forest in New Zealand. 1

1.2 Locations of street crimes close to the University of Chicago, US. . 2

1.3 Atlantic tropical storm trajectories in the period 2009-2012. 3

2.1 Point patterns. Left : Non-randomly distributed points. Right : Ran-
domly distributed points on a linear network. 26

2.2 Locations of street crimes close to the University of Chicago, US. . 28

2.3 Castellón anti-social behaviour during January 2013. 29

2.4 Traffic accidents in Medellı́n, Colombia during the year 2016 which
caused Left : personal injury, Middle: fatal, Right : property damage. 30

2.5 Traffic accidents in Western Australia during the year 2011. 31

2.6 Realisations of inhomogeneous Poisson processes. Left : with
intensity function (2.10) on network L1, Right : with intensity function
(2.12) on network L2. 37

2.7 Bandwidth selection, ISE versus a sequence of bandwidth smooth-
ing parameter σ. 38

2.8 Intensity visualisation for the pattern on the left hand side of Figure
2.6. Left : true intensity, Middle: adapted Jones-Diggle corrected
estimator (2.7) with ISE = 9.57, Right : equal-split discontinuous
(2.2) with ISE = 9.66. 38

2.9 Bandwidth selection, ISE versus a sequence of bandwidth smooth-
ing parameter σ. 40

xviii List of figures

2.10 Intensity visualisation for the pattern on the right hand side of Figure
2.6. Left : true intensity, Middle: adapted Jones-Diggle corrected
estimator (2.7) with ISE = 8.710, Right : equal-split discontinuous
(2.2) with ISE = 15.384. 41

2.11 Bandwidth selection for Chicago crime data. ˆ|L| =
n∑
i=1

1/λ̂JDL (xi)

against a sequence of bandwidth smoothing parameter σ (based
on feet). Horizontal dashed line shows the total length of the network. 41

2.12 Estimated intensity using adapted Jones-Diggle corrected estimator
for Chicago street crime data with a bandwidth parameter of σ = 650

feet. 42

2.13 Bandwidth selection for Castellón anti-social behaviour data. Hori-
zontal dashed line shows the total length of the network. 43

2.14 Estimated intensity using adapted Jones-Diggle corrected estimator
for Castellón anti-social behaviour data with a bandwidth parameter
of σ = 0.9 km. 43

2.15 Kernel estimates of intensity for Chicago data. Perspective views
with height representing the function value. Left: diffusion estimate
with bandwidth 125 feet. Right: convolution method with bandwidth
100 feet and uniform correction. 49

2.16 Toy example. Simulated point pattern of 4 points on a network of
total length 3 units. 53

2.17 Kernel estimates of the intensity for the toy example. Left: diffusion
estimate with bandwidth τ = 0.225 units. Middle: convolution estim-
ate with uniform correction, bandwidth σ = 0.15 units. Right: con-
volution estimate with Jones-Diggle correction, bandwidth σ = 0.15

units. Perspective views with height representing the function value.
Vertical scales are equal. 53

2.18 Edge correction denominator cL(u) for the toy network of Figure 2.16
with bandwidth σ equal to 0.015, 0.15 and 1.5 units (left to right).
Perspective views with height representing the function value, using
different vertical scales. 54

List of figures xix

2.19 Predicted performance on the toy example. Assuming a uniform
Poisson process with intensity 2, and kernel smoothing with band-
width 0.15. Top Left: variance (= MSE) of the uniform correction
estimator. Top Right : variance of the Jones-Diggle correction es-
timator. Bottom Left: bias of the Jones-Diggle correction estimator,
with positive values shown by solid grey colour and negative values
by diagonal shading. Bottom Right: MSE of the Jones-Diggle cor-
rection estimator. Variance and MSE panels use the same vertical
scale. 55

2.20 Typical simulated realisations for each of the eight scenarios. Top
row: Chicago street network. Bottom row: southern part of the city
of Perth, extracted from the Western Australian road network. The
Gaussian mixture and LGCP realisation scenarios are based on an
initial 2D surface defined on W . The diffusion estimate scenario
is based on the original data observed on the relevant network.
Simulated realisations all have size n = 500. 56

2.21 Integrated squared error (ISE) of the convolution and diffusion es-
timators applied to simulated data. Left column: Chicago network;
Right column: southern Perth network. Rows represent the four
scenarios in Figure 2.20. The bottom horizontal axis in each panel
shows the bandwidth σ of the convolution estimator; the top hori-
zontal axis shows the bandwidth τ of the diffusion estimator. Box-
plots show the numerically computed ISEs for the diffusion estimator.
Lines show the theoretically calculated ISEs for λ̂UL,con (red, solid)
and λ̂JDL,con (green, dashed). Bandwidths are in feet for Chicago, and
in km for southern Perth. 59

2.22 Mean relative execution time per estimate for λ̂HL relative to both
λ̂UL,con and λ̂JDL,con across all four scenarios for the Chicago and south-
ern Perth networks (left and right respectively). 61

2.23 Estimated intensity functions for each type of accident in Medellı́n
data, using convolution estimator and uniform correction (2.14).
Left: property damage, bandwidth 0.36 km; Middle: personal injury,
bandwidth 0.36 km; Right: fatal, bandwidth 0.67 km. Intensity values
are reported as accidents per km. 64

xx List of figures

2.24 Estimated relative risk of different types of accidents, relative to
accidents which caused only property damage. Left : personal
injury; Right: fatality. 65

2.25 Likelihood cross-validation criterion cv(σ) plotted against bandwidth
σ for the kernel estimators of intensity of traffic accidents on the
Western Australian road network. Left: uniform-corrected estimator;
the vertical line shows the optimum at σ = 9.1 km. Right: Jones-
Diggle estimator; the vertical line shows the optimum at σ = 10.9

km. 69

2.26 Fixed-bandwidth estimate of intensity for the accidents on the West-
ern Australian road network using the uniform correction with σ = 9.1

km. Intensity values are accidents per km. 70

2.27 Fixed-bandwidth estimate of intensity for the accidents on the West-
ern Australian road network using the Jones-Diggle correction with
σ = 10.9 km. Logarithmic colour map. Intensity values are accidents
per km. 71

2.28 Adaptive-bandwidth intensity estimate for the accidents on the West-
ern Australian road network using Jones-Diggle correction. Logar-
ithmic colour map. Intensity values are accidents per km. 72

2.29 Accidents recorded in the Perth metropolitan area. 73

2.30 Adaptive-bandwidth intensity estimate for the accidents in metropol-
itan Perth using Jones-Diggle correction. Linear colour map with
gamma-corrected colour sequence. Intensity values are accidents
per km. Map is 60 km wide. 74

2.31 Accidents recorded in the Central Business District of the city of
Perth. 76

2.32 Intensity estimate in the Perth CBD using fixed-bandwidth uniform
correction with automatically selected bandwidth σ = 0.091 km.
Intensity values mapped to colours. 77

2.33 Intensity estimate in the Perth CBD using fixed-bandwidth uniform
correction with automatically selected bandwidth σ = 0.091 km.
Intensity values are proportional to line width. 78

2.34 Perspective view of fixed-bandwidth uniform correction estimate. . 79

List of figures xxi

2.35 A screenshot of the fixed and adaptive intensity estimates of the
Perth CBD data shown as interactive HEN plots. Accessible at the
URL noted in the text. 79

3.1 Estimation error plots for a realisation of a homogeneous Poisson
process X in W = [0, 1]2 with intensity λ = 60. Left : p = 0.2 and
m = 200. Right : p = 1. 98

3.2 Estimated bias for λ̂Vp,m(u) and λ̂U(u), u ∈ W = [0, 1]2, m = 200,
based on 500 realisations of a homogeneous Poisson process X ⊂
W = [0, 1]2 with intensity λ = 60. From top-left to bottom-right:
λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth
selection (1.12) and (1.13). 100

3.3 Estimated variance for λ̂Vp,m(u) and λ̂U(u), u ∈ W = [0, 1]2, m =

200, based on 500 realisations of a homogeneous Poisson process
X ⊂ W = [0, 1]2 with intensity λ = 60. From top-left to bottom-right:
λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth
selection (1.12) and (1.13). 101

3.4 True intensity and estimation error plots for a realisation of an
inhomogeneous Poisson process on W = [0, 1]2 with intensity
λ(x, y) = |10 + 90 sin(16x)|. Left : p = 0.2 and m = 200. Middle:
p = 1, Right : True intensity. 102

3.5 Estimated bias for λ̂Vp,m(u) and λ̂U(u), u ∈ W = [0, 1]2, m = 200,
based on 500 realisations of an inhomogeneous Poisson process
X ⊆ W = [0, 1]2 with intensity ρ(x, y) = |10 + 90 sin(16x)|. From
top-left to bottom-right: λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and
λ̂U(u) using bandwidth selection (1.12) and (1.13). 103

3.6 Estimated variance for λ̂Vp,m(u) and λ̂U(u), u ∈ W = [0, 1]2, m = 200,
based on 500 realisations of an inhomogeneous Poisson process
X ⊆ W = [0, 1]2 with intensity ρ(x, y) = |10 + 90 sin(16x)|. From
top-left to bottom-right: λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and
λ̂U(u) using bandwidth selection (1.12) and (1.13). 104

xxii List of figures

3.7 True intensity and estimation error plots for a realisation of a log-
Gaussian Cox process in W = [0, 1]2 with mean function (x, y) 7→
log(40| sin(20x)|) and ((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1)−(x2, y2)‖/0.1}
as covariance function for the driving random field. Left : p = 0.2

and m = 200. Middle: p = 1. Right : True intensity. 107

3.8 Estimated bias for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m = 200, based on
500 realisations of a log-Gaussian Cox process X ⊆ W = [0, 1]2

where the driving Gaussian random field has mean function (x, y) 7→
log(40| sin(20x)|) and ((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1)−(x2, y2)‖/0.1}
as covariance function. From top-left to bottom-right: λ̂Vp,m(u) with
p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth selection
(1.12) and (1.13). 108

3.9 Estimated variance for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m = 200, based on
500 realisations of a log-Gaussian Cox process X ⊆ W = [0, 1]2

where the driving Gaussian random field has mean function (x, y) 7→
log(40| sin(20x)|) and ((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1)−(x2, y2)‖/0.1}
as covariance function. From top-left to bottom-right: λ̂Vp,m(u) with
p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth selection
(1.12) and (1.13). 109

3.10 True intensity and estimation error plots for a realisation of an inde-
pendently thinned simple sequential inhibition process in W = [0, 1]2

with intensity ρ(x, y) = 450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| +
1{1/3 ≤ x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|, x, y ∈ W . Left :
p = 0.2 and m = 200. Middle: p = 1. Right : True intensity. 110

3.11 Estimated bias for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m = 200, based on 500

realisations of an independently thinned simple sequential inhibition
process in W = [0, 1]2 with intensity ρ(x, y) = 450p(x, y), p(x, y) =

1{x < 1/3}|x− 0.02|+ 1{1/3 ≤ x < 2/3}|x− 0.5|+ 1{x ≥ 2/3}|x−
0.95|, x, y ∈ W . From top-left to bottom-right: λ̂Vp,m(u) with p =

0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth selection (1.12)
and (1.13). 111

List of figures xxiii

3.12 Estimated variance for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m = 200, based
on 500 realisations of an independently thinned simple sequential
inhibition process in W = [0, 1]2 with intensity ρ(x, y) = 450p(x, y),
p(x, y) = 1{x < 1/3}|x− 0.02|+ 1{1/3 ≤ x < 2/3}|x− 0.5|+ 1{x ≥
2/3}|x − 0.95|, x, y ∈ W . From top-left to bottom-right: λ̂Vp,m(u)

with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth selection
(1.12) and (1.13). 112

3.13 Left : Motor vehicle traffic accidents in an area of Houston, US,
during April, 1999. Right : Resample-smoothed Voronoi intensity
estimate for m = 200 and p = 0.15. 114

3.14 The estimate ρ̂Vp,m(u), u ∈ W , m = 200, for p = 0.2 (left) and p = 0.5

(right), together with the locations of 126 pine saplings in a Finnish
forest, within a rectangular window W = [−5, 5]× [−8, 2] (metres). 115

4.1 The motor vehicle traffic accidents in Houston near the university
of Houston in 2001 which caused non-incapacitating injury such
as bump on the head, abrasions or minor lacerations. Left: The
projection of the data onto the network. Right: Cumulative number
of data points versus time. 129

4.2 Intensity estimates for motor vehicle traffic accidents in Houston.
Left: Intensity estimate of daily hours together with the frequency
of accidents per hour (bar plot). Right: Intensity estimate of the
projection onto the network. 130

4.3 Estimated second-order characteristics for motor vehicle traffic acci-
dents in Houston. Left: Inhomogeneous K-function. Right: Inhomo-
geneous pair correlation function. Gray surfaces are envelopes
based on 99 simulations and significance level 5% from the com-
plete spatio-temporal randomness. 130

4.4 Traffic accidents in Medellı́n during the year 2016. Left: The pro-
jection of data onto the network. Right: Cumulative number of data
points versus occurrence time. 131

4.5 Intensity estimates for traffic accidents in Medellı́n. Left: Intensity
estimate of daily hours together with the frequency of accidents per
hour (bar plot). Right: Intensity estimate of the projection onto the
network. 132

xxiv List of figures

4.6 Estimated second-order characteristics for traffic accidents in Medellı́n.
Left: Inhomogeneous K-function. Right: Inhomogeneous pair cor-
relation function. Gray surfaces are envelopes based on 99 sim-
ulations and significance level 5% from complete spatio-temporal
randomness. 133

4.7 Traffic accidents in the down-town of Eastbourne (UK) in . Left: The
projection of data onto the network. Right: Cumulative number of
data points versus occurrence time. 134

4.8 Intensity estimates for traffic accidents in the down-town of East-
bourne. Left: Intensity estimate of daily hours together with the
frequency of accidents per hour (bar plot). Right: Intensity estimate
of the projection onto the network. 135

4.9 Estimated second-order characteristics for traffic accidents in the
down-town of Eastbourne. Left: Inhomogeneous K-function. Right:
Inhomogeneous pair correlation function. Gray surfaces are point-
wise envelopes based on 99 simulations and significance level 5%

from complete spatio-temporal randomness. 135

5.1 Three consecutive movements of 50 taxis in Beijing, China on Feb
2008 per 20 minutes. 137

5.2 Single track A1 passed by person A. 140

5.3 Classes for trajectory data in the package trajectories. Solid arrows
denote inheritance. Arrows show the corresponding slot’s class and
slot’s names are displayed using lines accordingly. 143

5.4 Co2 consumption over time. 145

5.5 Simulated random tracks using rTrack. x is random track with all
defaults. y is a random track transformed to a unit box. w is a
random track transformed to the box [0, 10] × [0, 10] and z is in a
same box as w but with random number of points. 148

5.6 Map of the studied area in Beijing, China. 150

5.7 Average pairwise distance between taxis in Beijing, China. Left :
Within the period 2-8, Feb 2008. Right : During 3-rd of Feb 2008. . . 152

List of figures xxv

5.8 Movement smoothing for taxi data in Beijing, China based on
timestamp = "20 mins" and movements with length longer than
1000 meters. 155

5.9 Average length of movements by taxis in Beijing, China versus time
based on timestamp = "20 mins", and movements with length
longer than 1000 meters. Left : Within the period 2-8 Feb 2008.
Right : During the 3-rd of Feb 2008. 156

5.10 Estimated intensity function. Left : Beijing. Right : Beijing metropol-
itan area. 158

5.11 Chi maps. Left : in the morning, Middle: in the afternoon, Right : at
night. Exact time is reported on top of each plot. 160

5.12 Variability area of second-order summary statistics for taxi data in
Beijing, China. Left : K-function, Right : pair correlation function. . 162

1

CHAPTER 1

Introduction

1.1 Data examples

One type of spatial data is when it comes as a set of points which are regularly/ir-
regularly distributed within a region of space. Such data might be seen in different
contexts such as geo-science, ecology, astronomy, econometrics, criminology, etc.
Examples may include trees in a forest, traffic accidents, street crimes, mobile
phone calls, animal sightings, or cases of a rare disease. Figure 1.1 shows the
location of 86 trees in a forest in New Zealand in a region of approximately 140 by
85 feet. This data was firstly collected by Mark and Esler (1970) and then extracted
and analysed by Ripley (2005).

Figure 1.1: Locations of trees in a forest in New Zealand.

2 1.1. Data examples

Figure 1.2 displays the locations of street crimes reported in the period of 25
April to 8 May 2002, in an area of Chicago, US close to the University of Chicago.
The original crime map was published in the Chicago Weekly News in 2002 and it
has later been analysed by Ang et al. (2012); Baddeley et al. (2015); Moradi et al.
(2017); Rakshit et al. (2018). In real world, there are numerous and various events
that are strongly constrained by networks, such as traffic accidents and fast-food
shops located alongside streets (Okabe and Sugihara, 2012).

Figure 1.2: Locations of street crimes close to the University of Chicago, US.

Such patterns, as those shown in Figure 1.1 and 1.2, are called “spatial point
patterns” and the locations are referred as “events”. Both displayed datasets are
available in the R package spatstat. More of such examples can be found in
Møller and Waagepetersen (2003); Baddeley and Turner (2005); Illian et al. (2008);
Gelfand et al. (2010); Okabe and Sugihara (2012); Diggle (2003); Baddeley et al.
(2015).

Sometimes the location of objects are recorded over time and according to
regular/irregular timestamps. Thus, in this case, we have a set of consecutive
points per object and it can be displayed as a track instead of points, and the final
pattern is a pattern of tracks which is called “trajectory pattern”. Figure 1.3 shows
the Atlantic tropical storm trajectories, in the period of 2009-2012. The dataset is
stored in the R package trajectories (Moradi et al., 2018c).

Chapter 1. Introduction 3

100°W 80°W 60°W 40°W 20°W 0°

10
°N

20
°N

30
°N

40
°N

50
°N

60
°N

Figure 1.3: Atlantic tropical storm trajectories in the period 2009-2012.

Datasets in such form are often considered as outcomes of some random
mechanism (Baddeley et al., 2015) that a researcher might be interested to
discover. For instance, in Figure 1.1 and 1.2, one may be interested to know if
events are uniformly distributed over the corresponding region or if there is any
particular interaction between them. In Figure 1.3 we may wish to know if the
behaviour of objects changes over time.

This chapter is devoted to review the preliminaries that are needed for analysing
such datasets. Section 1.2 provides some definitions and reviews some char-
acteristics of spatial point processes on R2. A brief introduction to spatial point
processes on linear networks is provided in Section 1.3, and Section 1.4 reviews
some preliminaries about trajectory patterns.

1.2 Spatial point processes on R2

A spatial point process is a random countable subset of state space R2. Through-
out this thesis, we only consider finite and simple point processes such that the
total number of points has finite second moment, see Daley and Vere-Jones (2003,
Chapter 5). The outcome of such process is called a spatial point pattern which is

4 1.2. Spatial point processes on R2

a dataset giving the observed spatial locations of things or events. However, in
practice, we only observe some points placed in a bounded observation window
W ⊂ R2. Hereafter, we denote point processes with capital letters such as X, Y, . . .
and the corresponding point patterns as x,y, For any arbitrary bounded subset
A ⊂ R2, its cardinality, N(X ∩ A), is the number of points falling in A ⊂ R2. For
any point process X,

E[N(X ∩ A)] =

∫
A

λ(u)du, u ∈ R2, (1.1)

where λ(·) is called intensity function which governs the behaviour of the underlying
point process and shows how it uses the corresponding space. When studying
point patterns, one of the very first steps is to investigate the behaviour of the
intensity function. Intuitively, the intensity function λ(u) is the expected number of
points per unit area in the vicinity of location u ∈ R2. If the intensity function λ(·)
is constant, then the point process X is called homogeneous, otherwise it is an
inhomogeneous point process on R2. Equation (1.1) might be extended to higher
orders, e.g. for every subsets A,B ⊂ R2,

E [N(X ∩ A)N(X ∩B)] =

∫
A

∫
B

λ2(u, v)dudv, u, v ∈ R2, (1.2)

where λ2(·, ·) is the second-order product density function of X.

A spatial point process X on state space R2 is stationary if its distribution is
invariant under translations, i.e. for any arbitrary point a ∈ R2 the distributions of
X and X + a are the same (Møller and Waagepetersen, 2003). Although such
aspect might add much to the convenience, in practice we usually face datasets
with lack of stationarity. The point process X is second-order intensity-reweighted
stationary if the second moment measure

M(A,B) = E
∑

xi∈X∩A

∑
xj∈X∩B

1

λ(xi)λ(xj)
, (1.3)

is second-order stationary, i.e. M(A,B) = M(A+a,B+a) for all a ∈ R2 (Baddeley
et al., 2000). The point process X is isotropic if its distribution is invariant under
rotations around the origin (Møller and Waagepetersen, 2003).

We denote a realisation of a point processX with n points as x = {x1, x2, . . . , xn}
where the number of points n is not fixed previously. In other words, it varies from

Chapter 1. Introduction 5

one realisation to another one. For any non-negative and measurable function f
on R2, the intensity function λ(·) satisfies

E
∑
x∈X

f(x) =

∫
R2

f(u)λ(u)du. (1.4)

Equation (1.4) has been widely used in the literature of point processes and it is
called Campbell’s formula and it can be extended to higher orders so that e.g. for
second-order is of the form

E
6=∑

x,y∈X

f(x, y) =

∫
R2

∫
R2

f(u, v)λ2(u, v)dudv, (1.5)

where
6=∑

means that the sum is over distinct pair of points.

1.2.1 Point process models

A very popular and important model for point processes is the Poisson point
process which satisfies the following conditions:

1. N(X ∩ A) follows a Poisson distribution with parameter
∫
A
λ(u)du.

2. Given N(X ∩W) = n, events in the window W constitute an independent
random sample from the uniform distribution over W .

3. For any finite number of disjoint subsets Ai ⊂ W (i = 2, . . . ,m), the random
variables N(Ai ∩W) are independent.

Such conditions lead to have no interaction amongst the events so that they do not
tend to either happen closely or distantly. Such model might bring ease, however
as listed above, a crucial assumption of Poisson point process models is that
points are independent of each other, which does not seem to be an appropriate
assumption when analysing real data. Due to simplicity and having known values
for summary statistics (see Section 1.2.4), Poisson processes are usually used
as a benchmark for model selection. They are also used to build more complex
and flexible models such as Cox point processes which are clustered due to an
environmental random heterogeneity (Møller and Waagepetersen, 2003). The
source of such environmental heterogeneity might itself be stochastic in nature
(Diggle, 2003).

6 1.2. Spatial point processes on R2

A Cox point process is a Poisson process when its intensity function is con-
sidered as a realisation of a random field, i.e. doubly stochastic behaviour is here
considered. This being said, the conditional distribution of a Cox process given
the underlying random field is a Poisson point process. For details of random
fields see Adler (1981). A Cox process is assumed stationary if the underlying
random field is stationary. For a broad introduction to Cox processes, see Møller
and Waagepetersen (2003, Chapter 5).

In some real applications events might tend to not get close to each other more
than a particular distance. A nice example in biology is provided in van Lieshout
(2000, Chapter 2) where in a pattern of cells, no nucleus can be closer to other
nucleus more than a particular distance. A family of point processes which might
cover such behaviour is Markov point processes that considers a density for point
processes with respect to a Poisson process. For key references to Markov point
processes see van Lieshout (2000) and Møller and Waagepetersen (2003).

1.2.2 Intensity estimators

One of the very first steps to get into the behaviour of the point pattern x is
to study the intensity function λ(·) since it might reveal the distribution of the
underlying point process X. If the point process X has constant intensity function,
then

λ̂ =
n(x)

|W |
, (1.6)

is an unbiased estimator for the intensity function λ(·) where n(x) is the number of
points of pattern x and |W | is the volume of window W . However, in practice, this
assumption seems hard to be realistic.

1.2.2.1 Kernel smoothing

Kernel smoothing is usually the most popular method to estimate the intensity
function. The uncorrected kernel estimator is of the form

λ̂0(u) =
n∑
i=1

κ(u− xi), u ∈ W, (1.7)

where the kernel κ is a probability density function on R2. This estimator generates
bias close to the edges which is caused by not having access to data points

Chapter 1. Introduction 7

outside the window. In order to improve the efficiency of the estimator (1.7), Diggle
(1985) introduced an uniformly corrected version as

λ̂U(u) =
1

eW (u)

n∑
i=1

κ(u− xi), u ∈ W, (1.8)

where

eW (u) =

∫
W

κ(u− v)dv, (1.9)

is the mass of the kernel centred at u that falls inside the window. The correction
(1.9) is often called the “uniform” edge correction, because it ensures that λ̂U(·)
is a pointwise unbiased estimator when the true intensity is uniform. That is, if
λ(u) ≡ λ > 0, then E[λ̂U(u)] ≡ λ. Jones (1993) proposed an alternative estimator
as

λ̂JD(u) =
n∑
i=1

κ(u− xi)
eW (xi)

, u ∈ W, (1.10)

often confusingly called the “Diggle correction” in the spatial statistics literature.
We shall call it the “Jones-Diggle” correction. This estimator conserves total mass,
that is, ∫

W

λ̂JD(u)du = n. (1.11)

The initial difference between (1.8) and (1.10) is the way they apply the correction
that makes other differences in terms of efficiency. The degree of smoothing in
the estimators above strongly depends on the smoothing parameter bandwidth.
A small bandwidth might result in under-smoothing while a large bandwidth may
over smooth the intensity. Moreover, small bandwidth results in small bias and
large variance, while large bandwidth makes larger bias and less variation. For
more details see Baddeley et al. (2015, Chapter 6).

However, to compute the aforementioned intensity estimators, a smoothing
bandwidth parameter needs to be picked previously. Bandwidth selection process
has always been a challenge when estimating intensity functions using kernel
smoothing methods. Prior researches such as Diggle (1985); Silverman (1986);
Berman and Diggle (1989); Scott (1992); Wand and Jones (1994); Jones et al.
(1996); Loader (1999) on bandwidth selection method show that we are unlikely to
find a data-based method which performs uniformly well. Diggle (1985) aimed at

8 1.2. Spatial point processes on R2

finding a proper choice of bandwidth by minimising the “mean square error ” when
the underlying point process is assumed to be a stationary Cox process. However,
the very common method to find a proper bandwidth might be “leave-one-out”
cross validation based on the Poisson point process likelihood in which it selects a
bandwidth which maximises

CV (σ) =
n∑
i=1

log(λ̂−iσ (xi))−
∫
S

λ̂σ(u)du, (1.12)

where σ is bandwidth and λ̂−iσ (xi) is the intensity estimator at data point xi when we
have excluded xi from the point pattern in question. In other words, the contribution
of xi in the sum in equations (1.8) and (1.10) has been omitted. For estimators
which provide mass conservation such as estimator (1.10), we might exclude the
integral part in the cross validation since it is equal to the number of data points.

A simple way to at least reach a range of trial values of σ is the Scott’s rule of
thumb (Scott, 1992) according to which, j-th Cartesian coordinate (j = 1, 2) should
be smoothed with bandwidth σj = cn,2sj where sj is the sample standard deviation
of the j-th Cartesian coordinate values for the data points, and cn,2 = (4n)−1/6

where n is the number of data points.

Cronie and van Lieshout (2018) defined a non-model-based approach to choose
the bandwidth based on the fact that

E
∑

x∈X∩W

1

λ(x)
=

∫
W

1

λ(u)
λ(u)du = |W |, u ∈ W. (1.13)

Equation above results from using the Campbell formula (1.4). Cronie and van
Lieshout (2018) considered a proper choice of the bandwidth as the one which
minimises the discrepancy between the total volume of the corresponding window
W and the left side of equation (1.13) when λ(x) is replaced by its estimator.
An extensive comparison with other methods based on “leave-one-out” cross
validation and “mean square error ” is also provided by Cronie and van Lieshout
(2018).

1.2.2.2 Adaptive kernel intensity estimators

Intensity estimators such as (1.7),(1.8) and (1.10) are based on “fixed-bandwidth
smoothers”, i.e. same kernel and the same bandwidth are considered to calculate

Chapter 1. Introduction 9

the estimator at different spatial locations in which local effects on the estimation
might be neglected. Especially, a fixed smoothing bandwidth is unsatisfactory
when the true intensity varies greatly across the spatial domain, because it is
likely to cause over-smoothing in the high-intensity areas and under-smoothing
in the low intensity areas. Kernel estimators such as (1.7),(1.8) and (1.10) might
suffer from sharp boundaries between areas with high and low intensity, because
this boundary will be smoothed out (Baddeley et al., 2015). In such situations,
adaptive (variable-bandwidth) kernel estimation can perform substantially better
(Abramson, 1982; Hall and Marron, 1988) where an alternative is to allow the
degree of smoothing to be adapted to local smoothing requirements. Adaptive
versions of (1.8) and (1.10) are in the form of

λ̂Ua (u) =
1

eW (u, σ(u))

n∑
i=1

κσ(xi)(u− xi), u ∈ W, (1.14)

and

λ̂JDa (u) =
n∑
i=1

κσ(xi)(u− xi)
eW (xi, σ(xi))

, u ∈ W, (1.15)

where σ(·) is the spatially-varying bandwidth function (Marshall and Hazelton, 2010;
Rakshit et al., 2018). Although estimator (1.14) is analogous to the estimator (1.8),
it does not retain the same unbiasedness property. However, estimator (1.15) still
provides mass conservation. Estimators (1.14) and (1.15) take longer time to be
computed.

1.2.2.3 Adaptive Voronoi estimators

The Voronoi cell associated with a particular data point xi is the area of R2

which is closer to xi than any other points when the observed point pattern
x = {x1, x2, · · · , xn} is distributed over W ⊂ R2. We then denote a Dirichlet cell as

Vxi = Vxi(x,W) = {u ∈ W : ||u− xi|| ≤ ||u− xj|| for all xj ∈ x \ {xi}}, (1.16)

where || · || stands for the Euclidean distance. Finding the Dirichlet cell of all data
points results in a set of non-overlapping, disjoint and convex polygons which build
a Voronoi tessellation out of the observed point pattern. The adaptive Voronoi
intensity estimator λ̂(u) at location u ∈ W is then the reciprocal size of Vu(x,W),
the cell where u belongs to. This estimator is unbiased when the underlying
point process is homogeneous, conserves mass and performs well when there

10 1.2. Spatial point processes on R2

are abrupt changes in the intensity of observed data (Baddeley et al., 2015,
Chapter 6). However, it generates a huge variance (Barr and Schoenberg, 2010;
Moradi et al., 2018a). Apparently, it was first introduced by Brown (1965) and Ord
(1978). Ebeling and Wiedenmann (1993) used Voronoi estimators to study spatial
concentration of photons locally. Other applications such as estimating neuronal
density can be found in Duyckaerts et al. (1994); Duyckaerts and Godefroy (2000).
Barr and Schoenberg (2010) investigate statistical properties of such intensity
estimator when the underlying point process is supposed to be an inhomogeneous
process. Under particular conditions, they also discussed being approximately
ratio-unbiased when the underlying point process is an inhomogeneous Poisson
process. Moreover, this Voronoi technique has also been used in statistical
seismology (Ogata, 2011; Baddeley et al., 2015).

1.2.3 Relative risk

Sometimes the point pattern in question contains points with different marks. A
very known example might be a spatial case-control study in which some points
play the role of control and others the spatial locations of a set of disease cases.
The spatially varying risk of the case study might be measured by the ratio of
the intensity function of the two point processes (Bithell, 1991; Kelsall and Diggle,
1995a,b; Diggle, 2003; Baddeley et al., 2015).

Consider there are two different observed point patterns x and y, generated by
point processes X and Y , respectively. The relative risk of the two point process
is of the form

ρ(u) = log
λX(u)

λY (u)
, u ∈ S, (1.17)

where λX(u), λY (u) are the intensity functions of the underlying point processes X
and Y , respectively. However, in practice, ρ needs to be estimated and it demands
to estimate λX(u) and λY (u) individually. An enough good estimate of ρ provides
us with the spatially-varying relative frequency of each type of points.

The very first idea to estimate ρ is to use the plug-in estimator based on kernel
estimators of λX(u) and λY (u). Here, the challenge is to choose bandwidth
smoothing parameter. As the two patterns x and y are generated by two different
point process, one might estimate λX(u) and λY (u) using different bandwidth
parameters. Nevertheless, theoretical arguments provided by Kelsall and Diggle

Chapter 1. Introduction 11

(1995a) suggest to use equal bandwidths. Davies et al. (2016) show that using
different bandwidth parameters might lead in potentially misleading methodological
artefacts in the resulting estimates. Different bandwidth selection methods for the
optimal estimation of relative risk ρ are discussed in Lawson and Williams (1993);
Kelsall and Diggle (1995a,b); Diggle et al. (2005); Hazelton (2008); Davies and
Hazelton (2010); Davies (2013); Davies and Baddeley (2018). An overview of
various estimators and bandwidth selection methods is also provided by Davies
et al. (2018).

Some jointly optimal bandwidth selection methods including minimising the
approximate mean integrated squared error (MISE) of the log-transformed risk
surface (Kelsall and Diggle, 1995a), a weighted-by-control MISE (Hazelton, 2008)
and a crude plug-in approximation to the asymptotic MISE (Davies, 2013) are
implemented in R package sparr (Davies et al., 2018).

1.2.4 Second-order summary statistics

In order to get into the type of the interaction between events, we might aim at
studying the correlation between events. In the literature of point processes, the
type of such correlation can be determined by using summary statistics. Thinking
of correlation, the first thing that comes to mind might be using “second-moment”
quantities which are built based on pairs of points. Note that to be able to calculate
the second-moment quantities we need to estimate the first moment previously.
We now review some summary statistics in point process literature.

A summary function that is mostly used to analyse the spatial correlation of
point events is K-function which is firstly introduced by Ripley (1977). Considering
X a stationary point process on R2 with constant intensity λ, Ripley (1977) defined
the K-function so that λK(r) is the expected number of further points of X lying
within a distance r of a typical point of X, i.e. for any location u ∈ R2,

K(r) =
1

λ
E [N(X ∩ b(u, r) \ {u}) | u ∈ X] , (1.18)

where b(u, r) is a disc of radius r centred at u. The expectation in (1.18) is formally
defined as an expectation with respect to the Palm distribution of X at u, see
Daley and Vere-Jones (2003) and Møller and Waagepetersen (2003). Since X

is stationary, this expectation does not depend on the choice of location u. For
any bounded region B ⊂ R2 with area |B| > 0, K(r) can be expressed as a

12 1.2. Spatial point processes on R2

second-moment quantity,

K(r) =
1

λ2|B|
E

 ∑
xi∈X∩B

∑
xj∈X

1{0 < ‖xj − xi‖ ≤ r}

 , (1.19)

so that λ2 |B|K(r) is the expected number of ordered pairs of distinct points (xi, xj)

lying at most r units apart, with the first point xi falling in B. Again, the stationarity
of X implies that the right hand side of (1.19) does not depend on the choice of B.

When a realisation of X is observed inside the window W ⊂ R2, giving a point
pattern x = {x1, . . . , xn} of points xi ∈ W , the estimator of K(r) is of the form

K̂(r) =
|W |

n(n− 1)

∑
i

∑
j 6=i

1{‖xi − xj‖ ≤ r}eW (xi, xj, r), (1.20)

where eW (xi, xj, r) is a correction for edge effect bias (Baddeley et al., 2015).

Note that (1.20) is a biased estimator of K(r). The double sum on the right
of (1.20) is an unbiased estimate of λ2|W |K(r) for any stationary point process.
The denominator n(n− 1) effectively serves as an estimator of λ2|W |2, but is only
unbiased if X is a Poisson process. Writing K̂(r) = A/B where A is the double
sum in (1.20) and B = n(n− 1)/|W |, we have E[A]/E[B] = K(r) if X is a Poisson
process. Under reasonable assumptions, K̂(r) is a consistent estimator of K(r).
In practice the bias is usually small when r is not too large (Moradi et al., 2018d).

However, when analysing real data, it rarely happens to have the point process
in question stationary. Thus, the empirical K-function might be misleading if
applied to point pattern data which are spatially inhomogeneous. By developing
an analogue of K-function (1.19), Baddeley et al. (2000) extended the K-function
to the cases in which the pattern is spatially inhomogeneous. For second-order
intensity-reweighted stationary point processes, they defined the K-function as

Kinhom(r) =
1

|B|
E

 ∑
xi∈X∩B

∑
xj∈X

1{0 < ‖xj − xi‖ ≤ r}
λ(xi)λ(xj)

 , (1.21)

which does not depend on the choice of B. Baddeley et al. (2000) further proposed
the following pointwise unbiased estimator

K̂inhom(r) =
1

|W |
∑
i

∑
j 6=i

1{‖xi − xj‖ ≤ r}eW (xi, xj, r)

λ(xi)λ(xj)
, (1.22)

Chapter 1. Introduction 13

where similar to (1.20), eW (xi, xj, r) is an edge correction. In the literature, different
edge corrections have been developed and an overview and comparison can be
found in Gabriel (2014).

In practice, however, λ(·) needs to be estimated as it is not known previously.
Thus, an estimate of λ(·) is needed in advance to compute (1.22). Notwithstanding,
replacing λ(·) by λ̂(·) in (1.22) makes it severely under-biased which might be
caused from the bias of the intensity estimator. Baddeley et al. (2000) suggested
to use the “leave-one-out” kernel smoother to estimate the intensity function which
seems to provide a better estimator for the K-function.

Regardless of homogeneity, for Poisson point processes K(r) = πr2. Values
larger than πr2 indicate clustering behaviour while values smaller than πr2 point
out repulsion. Another second-order summary statistic which has been frequently
used is the pair correlation function that is defined as

g(u, v) =
λ2(u, v)

λ(u)λ(v)
, u, v ∈ R2. (1.23)

For Poisson processes, g(·, ·) = 1 as λ2(·, ·) = λ(·)λ(·). Values larger than one
indicate clustering behaviour whereas values less than one show repulsion. This
comes from the fact that values larger than one mean λ2(·, ·) > λ(·)λ(·) which
shows the tendency of points to be closer to each other. With the assumption that
g is translation invariant, i.e. g(u, u+ h) = g0(h) for some function g0 : R2 → [0,∞),
then X is second-order intensity-reweighed stationary and

Kinhom(r) =

∫
b(o,r)

g0(h)dh, (1.24)

where b(o, r) denotes a disc centred at origin with radius r > 0.

1.3 Spatial point processes on linear networks

The last decade witnessed an extraordinary increase in interest in the analysis
of network related data within numerous disciplines. This pervasive interest is
partly caused by a strongly expanded availability of network data. In the spatial
statistics field, there are numerous real examples such as the location of traffic
accidents, geo-coded locations of crimes or anti-social behaviour events in the
streets of cities that need to restrict the support of the underlying process over

14 1.3. Spatial point processes on linear networks

such linear networks to set and define a more realistic scenario. Network events
can be categorised to on-network events such as traffic accidents which inherently
happen on street networks and alongside-network events such as street crimes on
side-walk which are usually committed alongside to street networks. The inherent
geometry of a linear network makes the analysis of spatial point patterns as a
different story with respect to the analysis of such patterns occurring on planar
regions (reviewed in Section 1.2). For example, measuring distance between
events play an important role when events are living on a linear network.

A nice introduction on spatial analysis along networks can be found in Okabe and
Sugihara (2012). Following, we provide the extension of spatial point processes to
network events.

1.3.1 Linear networks

A line segment in the plane with endpoints u and v can be written in a parametric
form as [u, v] = {tu + (1− t)v : 0 ≤ t ≤ 1} with u, v ∈ R2. A linear network L can
be defined as the union of a finite collection of line segments embedded in the
plane (Ang et al., 2012). The endpoints of the segments are called nodes and the
degree of a node n (denoted by δ) is the number of line segments that share the
same node (Okabe and Sugihara, 2012). The total length of all line segments in
L is denoted by |L|. The distance between two points u and v in the network L
is usually computed by the shortest-path distance dL(u, v) which is the minimum
of the length of all possible paths between u and v. However, different possible
distances have been discussed in Rakshit et al. (2017); Anderes et al. (2017).

The disc of radius r > 0 centred at the point u ∈ L is given by bL(u, r) =

{v ∈ L : dL(u, v) ≤ r} which includes all points within a shortest-path distance
less than r, and its relative boundary ∂bL(u, r) is the set of points lying exactly r
units away from u. Moreover, the circumference m(u, r) is the number of points
in the relative boundary with centre at u and radius r which are on the linear
network L, i.e. m(u, r) = #{∂bL(u, r) ∩ L}. The circumference is finite for r <∞
and m(u,∞) = ∞ by convention. In addition, R(L) is the largest value so that
m(u, r) 6= 0 for all events u ∈ X and all r ≤ R(L) (for more details see (Baddeley
et al., 2015, Chapter 17)).

Similar to planar point processes, a point process X on a linear network L

with no overlapping points is a random countable subset of R2. Applying some

Chapter 1. Introduction 15

modifications, most of the provided details in Section 1.2 are also valid for network
events. For instance, the intensity measure (1.1) is in the form

E[N(X ∩ A)] =

∫
A

λ(u)d1u, u ∈ L, (1.25)

where d1u denotes one-dimensional integration over the line segment (Federer,
1996; Ang et al., 2012), λ(·) is considered as the intensity function of X and A ⊂ L.
Here, λ(u) gives the expected number of points per unit length of the network in
the vicinity of location u. For any non-negative and measurable function f on L,
Campbell’s formula is of the form

E
∑
x∈X

f(x) =

∫
L

f(u)λ(u)d1u. (1.26)

Surprisingly, intensity estimation on a network of lines, such as a road network,
seems to be a complicated task. Several techniques published in the literature, in
geography and computer science, have turned out to be erroneous in which some
of the existing techniques are also computationally expensive (Xie and Yan, 2008;
Okabe et al., 2009; McSwiggan et al., 2017; Moradi et al., 2017). In Chapter 2, we
will review the current intensity estimations together with their advantages and/or
disadvantages. Some new intensity estimators are also proposed in Chapters 2
and 3.

Due to the nature of networks, there is still no clear picture of how stationarity can
be defined on linear networks. For example, using the classical shift transformation,
there is no guarantee if the point will still live on the network after transformation.
Baddeley et al. (2017) considered some popular procedures to construct point
patterns on networks and pointed out that models are no longer stationary when
distance is measured using the shortest-path distance. Having no clear picture of
an applicable transformation method on networks might make some restriction of
developing more complex models and summary statistics such as higher order
ones (van Lieshout, 2011). However, Anderes et al. (2017) developed some
parametric classes of covariance functions for linear networks, defined on the
nodes and edge points. Their covariance functions are also isotropic i.e. they only
depend on the geodesic distance or resistance metric which was considered in
Anderes et al. (2017). The resistance metric here is an extension of the resistance

16 1.3. Spatial point processes on linear networks

metric developed in electrical network theory (Anderes et al., 2017). van Lieshout
(2017) also defined nearest-neighbour point processes on linear networks.

1.3.2 Second-order summary statistics

Another consequence of considering a linear network as a state space for the
point process X is coming up when dealing with summary statistics such as
K-function and pair correlation function. Okabe and Yamada (2001) adapted
the K-function to the linear network by only replacing the Euclidean distance by
shortest-path distance as

K̂net(r) =
|L|

n(n− 1)

n∑
i=1

∑
j 6=i

1{dL(xi, xj) ≤ r}. (1.27)

However, this modification was affected by the geometry of the linear network and
its interpretation was not easy. The K̂net can be reformed as a Palm expectation
and then it discloses that K̂net depends on locations, even for Poisson processes,
see Ang et al. (2012). Thus, there is no simple benchmark to measure the
deviation from Poisson processes. Moreover, no connection between K̂net and
pair correlation function could be provided.

Knowing this, Ang et al. (2012) proposed a modification as

K̂L(r) =
|L|

n(n− 1)

n∑
i=1

∑
j 6=i

1{dL(xi, xj) ≤ r}
m(xi, dL(xi, xj))

, (1.28)

for 0 ≤ r ≤ R(L). The m(xi, dL(xi, xj)) in the denominator of (1.28) is some-
how playing the role of an edge correction by adding a contribution from each
pair of points. This is actually analogous to the isotropic edge correction, since
m(xi, dL(xi, xj)) is a measure of the size of the boundary of the ball of radius
dL(xi, xj) centred at xi (Ripley, 1977; Ang et al., 2012). For the point process X
on the linear network L with constant intensity λ > 0, Ang et al. (2012) defined the
geometrically corrected K-function as

KL(u, r) =
1

λ
E

[∑
i

1{dL(u, xi) ≤ r}
m(u, dL(u, xi))

∣∣∣ u ∈ X] , (1.29)

and called X second-order pseudostationary if KL(u, r) does not depend on
u. They also showed that any homogeneous Poisson process is second-order

Chapter 1. Introduction 17

pseudostationary according to which KL(u, r) = KL(r) = r. Therefore, this can be
used as a benchmark when measuring deviation from Poisson processes. They
next defined the pair correlation function with the form

gL(u, v) =
λ2(u, v)

λ2
, u, v ∈ L, (1.30)

where λ2(u, v) is the second-order product density function of X. When gL(u, v) =

g0(dL(u, v)), i.e. the pair correlation only depends on the shortest-path distance
between two points in question, then X is second-order pseudostationary and in
this case

KL(r) =

∫ t

0

g0(t)dt. (1.31)

The estimator (1.28) is ratio-unbiased and its asymptotic bias and variance is
studied in Baddeley et al. (2000); Ang et al. (2012).

Equations (1.29) and (1.30) are built for homogeneous point processes which
is not realistic when dealing with real datasets. In order to make the network
K-function (1.29) and pair correlation function (1.30) applicable to a class of non-
stationary processes, Ang et al. (2012) considered a point process X on a linear
network L with intensity function λ(u) and product density function λ2(u, v), and
introduced the pair correlation function as

gLI(u, v) =
λ2(u, v)

λ(u)λ(v)
, u, v ∈ L, (1.32)

and it can be interpreted informally as the standardized probability density that a
pair of events occur in two infinitesimal discs d1u and d1v. The point process X is
called second-order reweighted pseudostationary (SORS) if the pair correlation
function depends only on the shortest-path distance gLI(u, v) = g0(dL(u, v)) (see
Ang et al. (2012)). We point out that for Poisson process on linear networks, the
product density function satisfies that λ2(u, v) = λ(u)λ(v) and therefore gLI(u, v) =

1.

In general, the inhomogeneous geometrically corrected pair correlation function
(1.32) has a direct relationship with the inhomogeneous geometrically corrected
K-function (see Illian et al. (2008),Baddeley et al. (2015)) according to which

KLI(r) =

∫ r

0

g0(t)dt, r ≥ 0, (1.33)

18 1.3. Spatial point processes on linear networks

where this direct relationship can be rewritten as

g0(r) =
d

dr
KLI(r), r ≥ 0. (1.34)

The inhomogeneous geometrically corrected K-function has also a simple form
for Poisson processes on linear networks, and it is given by

KLI(r) = r, for r ≥ 0. (1.35)

Similar to the case of planar point processes, KLI > r (gLI > 1) indicates clustering
behaviour and KLI < r (gLI < 1) shows inhibition among points.

An approximately unbiased estimator of the inhomogeneous geometrically cor-
rected K-function (1.33) is given by

K̂LI(r) =
1

|L|

n∑
i=1

∑
j 6=i

1{dL(xi, xj) ≤ r}
λ̂(xi)λ̂(xj)m(xj, dL(xi, xj))

, 0 ≤ r ≤ R(L), (1.36)

where λ̂(·) is an estimate of intensity function. However, the estimator (1.36) has
a high variance. Ang et al. (2012) proposed to replace |L| by

∑n
i=1 1/λ̂(xi) to

decrease the variance due to the positive correlation between numerator and
denominator. The new estimator then takes the form

K̂LI(r) =
1∑n

i=1 1/λ̂(xi)

n∑
i=1

∑
j 6=i

1{dL(xi, xj) ≤ r}
λ̂(xi)λ̂(xj)m(xj, dL(xi, xj))

, 0 ≤ r ≤ R(L).

(1.37)
A non-parametric estimator of the inhomogeneous geometrically corrected pair
correlation function on a linear network L is

ĝLI(r) =
1∑n

i=1 1/λ̂(xi)

n∑
i=1

∑
j 6=i

κ(dL(xi, xj)− r)
λ̂(xi)λ̂(xj)m(xj, dL(xi, xj))

, 0 ≤ r ≤ R(L),

(1.38)
were κε is a one-dimensional kernel function.

It is noted that in the calculation of K̂LI(r) and ĝLI(r) we need an intensity func-
tion estimator. Thus, the estimation of the first-order intensity plays an important
role (and it is crucial) in the estimation of the inhomogeneous geometrically correc-
ted K- and pair correlation functions (Baddeley et al., 2015; Moradi et al., 2018d).
Point processes on linear networks and in particular their intensity estimators will
be discussed in Chapters 2 and 3.

Chapter 1. Introduction 19

1.4 Trajectories

Modern data collection techniques allow tracking objects continuously. This
means that we do not only know the current location of a moving object, we also
track the objects over time. A set of some tracks from different moving objects may
be considered a trajectory pattern (see Figure 1.3). Examples can be found when
studying traffic flow, taxis movements, animal movements, etc.

Güting and Schneider (2005) focused on moving objects databases and ex-
tended database technology to deal with moving objects. Challa et al. (2011)
presented an introduction to the field of object tracking and provided solid found-
ation to the collection of diverse algorithms developed by academics, scientific
researchers and engineers. Hanks et al. (2015) proposed a continuous-time
discrete-space (CTDS) model for animal movement. Russell et al. (2016) intro-
duced an approach that models dependent movement by augmenting a dynamic
marginal movement model with a spatial point process interaction function within a
weighted distribution framework. Niu et al. (2016) considered a multivariate Orn-
stein Uhlenbeck diffusion process to model the movement of animals in continuous
time. Hooten and Johnson (2017) presented a natural basis function approach to
constructing appropriate covariance models for movement processes.

There are already some R packages available in CRAN Task View: Hand-
ling and Analyzing Spatio-Temporal Data to handle moving objects. Most of
them are focused on handling and analysing animal movements such as ade-
habitatLT (Calenge, 2006), tripEstimation (Sumner et al., 2009), argosfilter
(Freitas, 2012), V-Track (Campbell et al., 2012), animalTrack (Farrell and Fuiman,
2013), BBMM (Nielson et al., 2013), bcpa (Eliezer, 2014), BayesianAnimal-
Tracker (Yang, 2014), TrackReconstruction (Battaile, 2014), mkde (Jeff et al.,
2014), SimilarityMeasures (Toohey, 2015), smam (Jun and Vladimir, 2016),
trip(Sumner, 2016), moveHMM (Michelot et al., 2016), FLightR (Rakhimberdiev
et al., 2017). In particular, the package adehabitatLT (Calenge, 2006) provides
tools to simulate trajectories using a Brownian motion, correlated Random walks
and Levy walks. Toohey (2015) presented four different similarity measures in Sim-
ilarityMeasures. Michelot et al. (2016) in moveHMM provided animal movement
modelling using hidden Markov models. Using multiple regression, fishmove
(Radinger and Wolter, 2014) provides functions to predict fish movement para-
meters. R package trackeR (Frick and Kosmidis, 2017) provides infrastructure for

https://cran.r-project.org
https://cran.r-project.org

20 1.4. Trajectories

running and cycling Data.

However, to the best of our knowledge, R is still missing a complete set of
generic data structures and methods to effectively analyse trajectories without
being limited to a particular domain. Looking at trajectory patterns as they live
in space and move over time, we aim at building statistical methodologies for
trajectory patterns using the literature of spatial point pattern. Following, we
provide a definition of a trajectory pattern from the point process perspective
(Moradi et al., 2018c).

Definition 1.1. A trajectory pattern is a dataset which provides observed tracks
(si) of a set of moving objects such as cars, humans, etc over a finite time period T .
We denote a trajectory pattern consisting of n > 0 single tracks as S = {si : si ⊂
R2, i = 1, . . . , n}, that is a countable set of tracks. Each si is itself a countable set
of points, e.g. si = {xsi1 , x

si
2 . · · · , xsimi

} with i = 1, · · · , n where each si consists of
mi <∞ points that are associated with an increasing set of time stamps t1, ..., tmi

,
tj < tj+1∀j.

We point out that the length of each of the tracks si is not necessarily the
same for all tracks. In other words, they might have different start/end times.
Each single track si represents the movement of a moving object within a finite
time/area. It is usually supposed that locations of a moving object are recorded
in regular timestamps. However, if timestamps are not regular, one can still
interpolate the locations in regular timestamps. Therefore, each single track in
S might be seen as a set of points corresponding to the considered timestamps.
Discretising all tracks of S according to regular timestamps results in a list of point
patterns (one per each time) which enables us to consider a trajectory pattern
as a point pattern which is changing over time. Therefore, using point pattern
methodology, one can study the behaviour of moving objects over time. For
instance, the spatially varying distribution of objects and the type of interaction
between them over time can be of interest. Assume that the trajectory pattern
S is observed within the time period T , thus discretising T into a time sequence
{ti : ti ⊂ T, i = 1, . . . , k where ti < tj if i < j} generates a collection of
spatial point patterns, say, x1,x2, . . . ,xk (k > 1). Nevertheless, one may still
consider S as a point process on R2⊗k, where R2⊗k means R2×· · ·×R2 for k times
when the length of timestamps is k. We do not discuss this other approach here.

Chapter 1. Introduction 21

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 is devoted to review
and propose some kernel-based intensity estimators for spatial point patterns
on linear networks together with studying their properties. Intensity estimation
of point patterns on linear networks, such as a road network, seems to be a
complicated task. Several techniques published in the literature, in geography
and computer science, have turned out to be erroneous. Existing techniques are
also computationally expensive, especially when analysing big data i.e. too many
points and/or a huge network. Prior works proposing intensity estimators include
Borruso (2003, 2005, 2008); Xie and Yan (2008); Okabe et al. (2009); McSwiggan
et al. (2017). In Chapter 2, we review some of the current intensity estimators and
propose two new estimators with the aim of improving current estimators, both
statistically and computationally. First, we present a kernel-based edge-corrected
intensity estimator and review its statistical properties (Moradi et al., 2017) such as
unbiasedness, mass preservedness and variance. Through a simulation study, its
statistical performance is studied and compared with that of Okabe et al. (2009);
Okabe and Sugihara (2012). Second, we propose a computationally efficient and
statistically principled method using 2D convolution (Rakshit et al., 2018). This can
be computed rapidly using the Fast Fourier Transform, even on large networks and
for large bandwidths, and is robust against errors in network geometry. We also
discuss its bias, variance, asymptotics, bandwidth selection, variance estimation,
relative risk estimation and adaptive smoothing. Moreover, its performance is
analysed and compared with that of McSwiggan et al. (2017), both statistically and
computationally. Throughout the Chapter 2 and using proposed methods, several
real datasets are also analysed such as crime data in an area near the university
of Chicago, Us, anti-social behaviour data in Castellón, Spain, traffic accidents in
Medellı́n, Colombia and Western Australia.

Chapter 3 proposes a new technique to provide an adaptive intensity estim-
ator for spatial point processes independently of the state space (Moradi et al.,
2018a). The technique is introduced and applied to Voronoi intensity estimators,
and its statistical properties are reviewed and its behaviour is studied through a
simulation study. Voronoi intensity estimators are both parameter-free and ad-
aptive; the intensity estimate at a given location is given by the reciprocal size of
the Voronoi/Dirichlet cell containing that location. Their major drawback is that

22 1.5. Organization of the thesis

they tend to under-smooth the data in regions where the point density of the
observed point pattern is high and over-smooth in regions where the point density
is low. To remedy this problem, i.e. to find some middle-ground between over-
and under-smoothing,we propose an additional smoothing technique for Voronoi
intensity estimators for point processes in arbitrary metric spaces, which is based
on repeated independent thinnings of the point process/pattern (Moradi et al.,
2018a). We show that our resample-smoothing technique improves the estimation
significantly. In addition, we study statistical properties such as unbiasedness
and variance, and propose a rule-of-thumb and a data-driven cross-validation
approach to choose the amount of thinning/smoothing to apply. We also apply it to
two real datasets, traffic accidents in an area of Houston, US (linear network point
pattern) and Finish pines which consists of location of trees in a Finnish forest
(planar point pattern).

Chapter 4 focuses on spatio-temporal point processes on linear networks. Some-
times we only consider the spatial domain and analyse point patterns regardless
of time while they are inherently happening jointly in space and time. Nevertheless,
there might be questions that spatial analysis can not answer (Diggle, 2003). We
present several characteristics of spatio-temporal point patterns when spatial loca-
tions are restricted to a linear network (Moradi et al., 2018b). A non-parametric
kernel-based intensity estimator is proposed to highlight the high/low concentration
of events within the network and time, either jointly or separately. We also develop
second-order characteristics of spatio-temporal point patterns on linear networks
such as K-function and pair correlation function to analyse the type of interac-
tion between points (Moradi et al., 2018b). They are independent of network’s
geometry and have known values for Poisson point processes. Thus they can be
used to measure deviation from being Poisson and also for model selection. Three
traffic accidents datasets from Houston (US), Medellı́n (Colombia) and Eastbourne
(UK) are also analysed using the developed methodologies.

In Chapter 5, we pay special attention to trajectories. We propose several
classes, methods and statistical methodologies, accommodated in R package
trajectories to analyse movement datasets (Moradi et al., 2018c). Note that
package trajectories further extends the capabilities of the R package spacetime
(Pebesma, 2012). The R package trajectories provides functions to handle,
simulate and statistically analyse movement data regardless of the domain and
by converting a trajectory pattern to a list of point patterns based on regular

Chapter 1. Introduction 23

timestamps. To understand the behaviour of moving objects, we propose an
intensity estimation method (to highlight the more visited streets, dense paths,
etc), distance analysis, movements smoothing and variability area of second-
order summary statistics (to see the changes of the type of interaction between
objects over time). In order to compare the estimated (observed) intensity with
the expected intensity, we further introduce chimaps that highlights the areas with
higher/lower estimated intensity than expected intensity. Using the developed
methodologies in package trajectories, we finally analyse a taxi movement data
from Beijing, China.

Lastly, the thesis ends with Chapter 6 providing a summary of our findings and
some future lines of research.

25

CHAPTER 2

Kernel intensity estimators for network
events

2.1 Introduction

When the data is of the form of point patterns on linear networks, it is challenging
to estimate the intensity function. The classical statistical methodologies were
originally designed for analysing events on a plane, however as a matter of
convenience, they were used to get into the behaviour of some other events which
are inherently not planar point patterns. Although this might facilitate the analysing
process, it may also lead to false conclusions.

Figure 2.1 shows two point patterns, the original pattern is the plot on the right
side of Figure 2.1. The same point pattern after retaining the same data points
and removing the network is displayed on the left plot of Figure 2.1. Looking only
on the left plot, one may feel that such data is generated by a cluster point process
while considering the network as the support of data points makes it hard to judge.
This simple example might be a warning to consider the network as state space
when data points are inherently living on networks. We point out that the pattern
on the right plot in Figure 2.1 is a realisation of 120 points randomly distributed
over the network. Yamada and Thill (2004) compared the network and planar
K-function by applying them to traffic accident data and showed that using the
methods for planar point patterns to study network events might be problematic
since they may indicate a significant chance of over-detecting clustered patterns.

26 2.1. Introduction

Figure 2.1: Point patterns. Left : Non-randomly distributed points. Right : Randomly
distributed points on a linear network.

However, considering the network as the state space of data points demands
further modification in the corresponding methodologies. The very first necessary
change is the way to measure the distance between data points. Initially, the
shortest-path distance was considered instead of Euclidean distance (Okabe and
Yamada, 2001; Borruso, 2005; Xie and Yan, 2008; Okabe and Sugihara, 2012),
although, later Rakshit et al. (2017); Anderes et al. (2017) discussed other kind of
distances.

In order to consider a more realistic scenario when dealing with network events,
there has been some attempts. Okabe and Yamada (2001) replaced the Euclidean
distance by the shortest-path distance, and modified the empirical Ripley K-
function by adapting it to the case of a linear network. Ver Hoef et al. (2006)
developed spatial autocovariance models for stream networks that incorporate flow
and use stream distance. Okabe and Satoh (2006) provided a simple procedure
to convert a non-uniform network to an uniform one so that the graph of the new
network is not a straight-line graph, i.e. its edges may be a polygonal line segment
or it may be curved.

Borruso (2003, 2005, 2008) offered several ad hoc proposals for kernel smooth-
ing of network data. One is the “Euclidean, divide-by-length” smoother (Borruso,

Chapter 2. Kernel smoothing for network events 27

2008)

λ̂BL (u) =
N(x ∩ b(u, r))
|L ∩ b(u, r)|

, u ∈ R2, (2.1)

where b(u, r) = {v ∈ L : ‖v − u‖ ≤ r} is the two-dimensional disc of fixed radius
r > 0 centred at the query location u. Note that Borruso (2008) allows u to be any
location in a two-dimensional space. The numerator of (2.1) is the number of data
points lying at most r units away from the query location, while the denominator is
the total length of network lying at most r units from u, measured by Euclidean
distance. This was described as a “pure” density estimate (Borruso, 2008, p. 382)
but no justification was given and no statistical properties were discussed. Xie and
Yan (2008) proposed a non-parametric kernel-based estimator to analyse traffic
accidents, a network version of uncorrected intensity estimator (1.7). However,
this estimator did not consider the structure of the linear network around the points,
and as a result it provided a highly biased estimation.

Okabe et al. (2009) introduced equal-split network kernel density estimators,
both under continuous and discontinuous schemes, but as these estimators are
based on nodes between pairs, if the path (buffer) between two points in question
does not contain any node we then suspect whether they can detect the intensity.
Details of these estimators are provided in Section 2.3. Using a constructive
process based on stream distance and moving average functions, Ver Hoef and
Peterson (2010) developed spatial autocovariance models for spatially continuous
data on stream networks. The K-function adapted to the linear network case by
Okabe and Yamada (2001) was affected by the geometry of the linear network
and its interpretation was not easy. Therefore, Ang et al. (2012) corrected it
by defining a geometrically corrected K-function which does not depend on the
geometry of the network. Baddeley et al. (2014) assumed multi-type point patterns
and discussed the first- and second-order characterizations of such a pattern
on a linear network. O’Donnell et al. (2014) mentioned data which are collected
over river networks and developed methods of flexible regression for such a data,
discussed local fitting, penalized methods and a spatio-temporal model. In order to
fix effects estimation, prediction and the estimation of only covariance parameters,
Som et al. (2014) considered optimal sampling designs for stream networks.

In Section 2.2, we present some real datasets of traffic accidents and street
crimes. Section 2.3 reviews the kernel smoothing method defined by Okabe et al.
(2009); Okabe and Sugihara (2012). The adapted Jones-Diggle intensity estimator

28 2.2. Datasets

defined by Moradi et al. (2017) is presented in Section 2.4. Section 2.5 is devoted
to review the heat kernel intensity estimator by McSwiggan et al. (2017) and
Section 2.6 proposes a fast kernel smoothing using 2D convolution (Rakshit et al.,
2018).

2.2 Datasets

This Section is devoted to present some real examples of network events such
as street crimes and traffic accidents.

2.2.1 Chicago crime data

The spatial locations of 116 reported street crimes in the period 25 April to
8 May 2002, recorded over a fortnight in an area of Chicago, US are shown in
Figure 2.2. The original crime map was published in the Chicago weekly news in
2002. The data points are labelled by the type of crime such as assault, burglary,
car-theft, damage, robbery, theft and trespass. The street network contains 338

intersections, 503 line segments and a total length of 31150 feet (5.9 miles, 9.5 km).

trespass

theft

robbery

damage

cartheft

burglary

assault

Figure 2.2: Locations of street crimes close to the University of Chicago, US.

After ignoring the type of crimes, this dataset was firstly analysed by Ang et al.
(2012) and (Baddeley et al., 2015, p. 721). Ang et al. (2012) considered a

Chapter 2. Kernel smoothing for network events 29

log-quadratic intensity and fitted a parametric model by approximate maximum
likelihood using a one-dimensional variant of the Berman-Turner algorithm (Berman
and Turner, 1992).

2.2.2 Castellón anti-social behaviour

The Castellón anti-social behaviour data reports geo-referenced coordinates of
phone calls received by the Police station in the city of Castellón, Spain during
January 2013. The listed calls were received by the local Police call centre or trans-
ferred by 112 emergency service to the local Police call centre. Geo-codification
was performed indirectly by local officials based on precise address information
provided by the callers. The calls comprise up to nine different types of crimes
or anti-social behaviour categories, but we here only focus on anti-social actions
comprising a total number of 184 events in the streets of Castellón. The city of
Castellón is divided into 108 census tracks with an overall surface of 108.6 km2.
The linear network contains 450 nodes and 2242 line segments, with a total length
of 161.17 km. This linear network shows a fairly high degree of complexity given
by the old-fashion design of the historical centre of the city (see Figure 2.3).

Figure 2.3: Castellón anti-social behaviour during January 2013.

30 2.2. Datasets

2.2.3 Traffic accident in Medellı́n

Figure 2.4 shows the locations of traffic accidents (based on accident severity)
in the urban area of Medellı́n, Colombia, in 2016 which were published in the
OpenData portal of Medellı́n Town Hall1. After cleaning, the data consists of 10, 764

points, classified by accident severity as either “property damage”, “personal injury”
or “fatal” accidents (comprising 4627, 6004 and 133 points respectively). The three
types of accident are displayed in separate panels in Figure 2.4. The road network
has 54, 164 road segments and total length 1244 km with maximum degree of node
6.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.4: Traffic accidents in Medellı́n, Colombia during the year 2016 which
caused Left : personal injury, Middle: fatal, Right : property damage.

2.2.4 Traffic accident in Western Australia

The most challenging dataset in this Chapter is shown in Figure 2.5; it gives
the locations of 14, 562 traffic accidents, recorded for the year 2011, on the road
network in the southern half of the state of Western Australia. The road network
data originally contained 626, 031 individual road segments but this has been
reduced to 115, 169 segments for analysis. The accident locations and the road

1https://www.medellin.gov.co/geomedellin/

Chapter 2. Kernel smoothing for network events 31

network itself are highly concentrated in the urban area along the west coast of
the state. Major highways are also clearly visible from the accident pattern.

Figure 2.5: Traffic accidents in Western Australia during the year 2011.

2.3 Equal-split intensity estimators

Okabe et al. (2009) considered a sub-network Lu of L where the shortest-path
distance between u and any point on Lu is less or equal to ε, and they called it
“buffer network ” of u with width ε. This is equivalent to the concept of a disc centre
at u and radius ε/2, i.e. bL(u, ε/2). Then, Okabe et al. (2009) defined the network
kernel density estimator (network KDE), an intensity estimator for a linear network,
as

λ̂OL (u) =
1

n

n∑
i=1

Kvi(u), u ∈ L, (2.2)

where Kv(u) is the equal-split discontinuous/continuous kernel function according
to which they are producing discontinuous/continuous function on a network L. It

32 2.3. Equal-split intensity estimators

is important to point out that here continuity at nodes is of interest.

Consider N(1) the set of nodes with degree one, and N(≥3) the set of nodes with
degree larger or equal than three. Let Ln(1)q

be the discs (buffer networks) of the
q-th node in N(1) with width 2ε, and Ln(≥3)q

be the discs (buffer networks) of the
q-th node in N(≥3) with width 2ε. Then

L(1) = {Ln(1)q
|n(1)q ∈ N(1)} and L(≥3) = {Ln(≥3)q

|n(≥3)q ∈ N(≥3)}. (2.3)

The complement set of above discs (buffer networks) with respect to L is given by

L(2) = {Ln(2)q
|n(2)q ∈ (N(1) ∪N(≥3))

c}, (2.4)

where L(2) is the set of discs (buffer networks) with exactly two endpoints. Network
KDE methods vary form L(1) to L(2) and L(≥3). Okabe and Sugihara (2012) claim
that the network KDE on L(1) and L(2) is equivalent to the case of one-dimensional
probability density estimation (see Silverman (1986)). For L(≥3) the equal-split
discontinuous kernel density function must be calculated for two different cases as
follows:

Case 1: If the point u ∈ L does not coincide with a node, the general idea
to count is to traverse all the paths over the disc bL(u, ε) from u to the points in
∂bL(u, ε) visiting the nodes located on the shortest-path between u and v, and
equally divide the value of κ(dL(u, v)) by the degree of the respective node minus
one for each node, and repeating the same procedure for each path on the disc.
The final expression for an equal-split discontinuous kernel density function is
given by

Kv(u) =


κ(dL(u, v))

(δ1 − 1)(δ2 − 1) · · · (δq − 1)
, 0 ≤ dL(u, v) ≤ ε,

0, dL(u, v) > ε,
(2.5)

where q is the index for the order of the nodes located on the shortest-path between
u and v, and κ is a one-dimensional kernel function. Note that, if the path between
u and v does not contain any node, then Kv(u) = κ(dL(u, v)), i.e. Kv(u) turns into
the uncorrected kernel estimator of the intensity function (see equation (1.7) and
(Baddeley et al., 2015, p. 168)). A simple example that produces buffers with no
node is the real line.

Chapter 2. Kernel smoothing for network events 33

Case 2: If the point u ∈ L coincides with a node, the expression for an equal-split
discontinuous kernel density function is given by

Kv(u) =


2κ(dL(u, v))

δ0(δ1 − 1)(δ2 − 1) · · · (δq − 1)
, 0 ≤ dL(u, v) ≤ ε,

0, dL(u, v) > ε,
(2.6)

where δ0 is the degree of u. Okabe and Sugihara (2012) showed that the equal-split
functions satisfy the conditions of being a kernel function, and provided a proof
for the their unbiasedness property when density is given as a uniform probability
density function since being complete spatial randomness (CSR) is one of the
most fundamental hypotheses in spatial analysis. In case that observed data
does not support being uniform, they suggested to use the probability integral
transformation in Okabe and Satoh (2006), convert the non-uniform network to a
uniform one and then obtain unbiased estimators. However, in practice modifying
the structure of a network to reach unbiasedness can not be a good choice (see
more details in Okabe and Satoh (2006) and Okabe and Sugihara (2012)).

In brief, equal-split discontinuous kernel method divides the mass at nodes
into outgoing segments equally and it results a discontinuous function on the
network. Okabe et al. (2009); Okabe and Sugihara (2012) thought that there
appears to be no systematic method available for finding a continuous KD function
on a network (Okabe and Sugihara, 2012, p.183), hence, by only changing the
manner of splitting and applying the same algorithm like equal-split discontinuous
one, they defined the equal-split continuous which produces unbiased (assuming
similar assumptions on density) and continuous function on the linear network
(Okabe and Sugihara, 2012, p. 192). Note that in order to produce a continuous
function, Okabe and Sugihara (2012) increased the weight of outgoing segments
and decreased the weight of incoming segments in the discontinuous algorithm.
Hence, although it results in an unbiased, mass preserved and continuous function
on the network, it seems to be somewhat artificial. More formal details about
equal-split continuous KD function can be found in Okabe et al. (2009) and Okabe
and Sugihara (2012, Section 9.2.3, p. 183).

2.4 Adapted Jones-Diggle estimator

We extended the non-parametric kernel-based edge-corrected intensity estim-
ator 1.10 to the linear network case (Moradi et al., 2017). The natural extension is

34 2.4. Adapted Jones-Diggle estimator

of the form

λ̂JDL (u) =
n∑
i=1

κ(dL(u, xi))

eL(xi)
, u ∈ L, (2.7)

where κ is a one-dimensional kernel function, and

eL(v) =

∫
L

κ(dL(v, u))d1u, v ∈ L, (2.8)

is an edge-correction factor. Following Federer (1996) and Ang et al. (2012), the
computation of the edge-correction factor in (2.8) on a linear network is given by

eL(v) =

∫
L

κ(dL(u, v))d1u =

∫ ∞
0

∑
u∈L:dL(u,v)=r

κ(dL(u, v))dr

=

∫ ∞
0

∑
u∈L:dL(u,v)=r

κ(r)dr =

∫ ∞
0

κ(r)m(v, r)dr. (2.9)

Note that the edge-correction in (2.9) involves the circumference function m(v, r)

which provides local information about the structure of the linear network on each
point. Therefore, Moradi et al. (2017) takes into account the essence in Okabe and
Sugihara (2012) which is counting over discs (buffer networks), but in this case
the weight assigned by the kernel is equally distributed over the segments that
composed the respective disc. It is also important to point out that the estimator
(2.7) is independent of the choice of the kernel, i.e. kernel functions used to
estimate the density function non-parametricly can be accommodated in equation
(2.7).

Equation (1.8) can also be extended to the network case as

λ̂UL(u) =
1

eL(u)

n∑
i=1

κ(dL(u, xi)), u ∈ L, (2.10)

where eL(u) is the network version of uniform edge correction and can be calcu-
lated using (2.9).

Chapter 2. Kernel smoothing for network events 35

2.4.1 Statistical properties

The analogous estimator of (2.7) for the planar case (i.e. (1.10)) has been
widely studied in the literature of spatial point processes. Properties such as
unbiasedness, the variance and the appropriate bandwidth selection are analysed
in (Møller and Waagepetersen, 2003; Illian et al., 2008; Diggle, 2003; Baddeley
et al., 2015). Following, we review some statistical properties of the intensity
estimator (2.7).

Property 2.4.1.
∫
L
λ̂JDL (u)d1u is an unbiased estimator of µ(L) =

∫
L
λ(u)d1u.

Proof. In order to show the unbiasedness, by using Campbell’s formula (1.26) and
Fubini’s theorem,

E
[∫

L

λ̂JDL (u)d1u

]
= E

[∫
L

∑
x∈X

κ(dL(u, x))

eL(x)
d1u

]
=

∫
L

E

[∑
x∈X

κ(dL(u, x))

eL(x)

]
d1u

=

∫
L

∫
L

κ(dL(u, v))

eL(v)
λ(v)d1vd1u

=

∫
L

λ(v)d1v = µ(L).

Property 2.4.2. If the intensity function λ is constant, then the estimator (2.10) is
unbiased while the estimator (2.7) is not.

Proof.

E[λ̂UL(u)] = E

[∑
x∈X

κ(dL(u, x))

eL(u)

]
= λ

∫
L

κ(dL(u, v))

eL(u)
d1v = λ.

E[λ̂JDL (u)] = E

[∑
x∈X

κ(dL(u, x))

eL(x)

]
= λ

∫
L

κ(dL(u, v))

eL(v)
d1v.

Property 2.4.3. The intensity estimator (2.7) produces a continuous function on a
network L, that is, arbitrary points ui ∈ L with a same distance d = dL(ui, v) from
v ∈ L ∩X receive the same mass κ(d)/eL(v) regardless of the path between ui
and v. In other words, when the path from v to ui touches a node, each outgoing
segment receives a copy of the kernel tail.

36 2.4. Adapted Jones-Diggle estimator

Property 2.4.4. Assume X is a Poisson point process on a linear network L. Then,
the variance of λ̂JDL (u) is

V (λ̂JDL (u)) =

∫
L

[
κ(dL(u, v))

eL(v)

]2

λ(v)d1v

and its unbiased estimator is V̂ (u) =
n∑
i=1

[κ(dL(u, vi))/eL(vi)]
2 (Baddeley et al.,

2015, p. 173).

We note that similar properties for the estimator (2.10) can be shown.

2.4.2 Simulation study

We carried out a simulation experiment to compare the accuracy and perform-
ance of the proposed intensity estimator (2.7) with the equal-split discontinuous
kernel density estimator (2.2) under inhomogeneous Poisson processes (Moradi
et al., 2017). Okabe and Sugihara (2012) mentioned that both discontinuous
and continuous network KDE are unbiased, but the equal-split continuous density
estimator takes longer time to be computed (see Okabe and Sugihara (2012,
Section 9.3) for more details) due to a different manner of splitting. Nevertheless, it
also depends on code implementation and it may have a fast implementation later.

Moradi et al. (2017) built two linear networks L1 and L2 so that L1 (on the
left side of Figure 2.6) has 19 nodes, 26 lines, and a total length of 39.38 units,
within a window [0, 5]× [0, 5] units2. It also contains 12 intersections with degrees
varying between 2 and 6. Network L2 (on the right side of Figure 2.6) has 40

nodes, 48 lines, and a total length of 45.62 units, within a window [0, 6] × [0, 7.1]

units2. The function density.lpp with argument continuous=FALSE from the
R package spatstat (1.48-0) was used to compute the equal-split discontinuous
density estimator. It is worth pointing out that throughout this simulation study,
both the estimator (2.7) and the equal-split discontinuous density estimator (2.2)
are computed by using Gaussian kernel function (Silverman, 1986) and the tail
of the kernel for the distances larger than 4σ has not been considered. In other
words, a tail of the kernel with total mass less than M = 1− p(x < 4σ) has been
deleted, where x follows the same distribution as the kernel function κ and σ is
the smoothing bandwidth parameter. In this simulation study, κ is the Gaussian
distribution with mean 0 and standard deviation σ.

Chapter 2. Kernel smoothing for network events 37

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.6: Realisations of inhomogeneous Poisson processes. Left : with intensity
function (2.10) on network L1, Right : with intensity function (2.12) on network L2.

In order to draw the comparison, we considered two inhomogeneous Poisson
process so that Figure 2.6 shows single realisations of both (Moradi et al., 2017).
Note that the distribution of events is exponentially changing over both networks
and forming the inhomogeneity.

Throughout the simulation study, as the true intensity function is known, the
optimal bandwidth is selected using

ISE =

∫
L

(λ̂JDL (u)− λ(u))2d1u, (2.9)

meaning that an optimum bandwidth is the one that minimises the integrated
squared error (ISE).

Example 2.4.1. Consider an inhomogeneous Poisson process on the linear net-
work L1 with expected number of points E[N(L1)] ' 49 and intensity function

λ1(x, y) = 0.2 e 0.3(x+y) with (x, y) ∈ L1. (2.10)

A single realization is shown in the left hand side of Figure 2.6. In order to
estimate the intensity function, we first need to find an optimum bandwidth so that
we use equation (2.9). Figure 2.7 shows that σ = 1.2 is the one which minimises
the integrated squared error (ISE).

38 2.4. Adapted Jones-Diggle estimator

1.0 1.5 2.0 2.5 3.0

10
11

12
13

σ

IS
E

Figure 2.7: Bandwidth selection, ISE versus a sequence of bandwidth smoothing
parameter σ.

Using σ = 1.2 unit, we estimate the intensity of the pattern in the left hand side
of Figure 2.6 through both intensity estimators (2.2) and (2.7), and together with
the true intensity are exhibited in Figure 2.8.

Figure 2.8: Intensity visualisation for the pattern on the left hand side of Figure 2.6.
Left : true intensity, Middle: adapted Jones-Diggle corrected estimator (2.7) with
ISE = 9.57, Right : equal-split discontinuous (2.2) with ISE = 9.66.

By comparing both estimated intensities in Figure 2.8, it is apparently possible to
see that the equal-split discontinuous density estimator assigns a specific thickness
along some line segments which can be somewhat equivalent to consider a

Chapter 2. Kernel smoothing for network events 39

constant estimated intensity value along each line segment of the linear network
L1. However, this is clearly not the case, as the point pattern in Figure 2.6 is not
homogeneous and its intensity is changing exponentially over the network. On
the other side, adapted Jones-Diggle corrected estimator assigns more precise
values of the intensity to the different parts of the line segment, as shown in
the middle plot in Figure 2.8. It is thus able to identify high/low intensity values
along each line segment in the linear network. Moreover, in terms of ISE, adapted
Jones-Diggle corrected estimator (ISE=9.57) outperforms equal-split discontinuous
density estimator (ISE=9.66).

In order to have a better comparison, we then simulated 500 realisations over
the linear network L1 of an inhomogeneous Poisson process with intensity function
(2.10). By using σ = 1.2 units (see Figure 2.7), both adapted Jones-Diggle
corrected estimator (2.7) and equal-split discontinuous (2.2) were computed for
each one, and we evaluated

MISE = E[ISE] = E
[∫

L

(
λ̂L(u)− λ(u)

)2

d1u

]
=

∫
L

var
[
λ̂L(u)

]
d1u+

∫
L

bias
[
λ̂L(u)

]2

d1u (2.11)

according to which the adapted Jones-Diggle corrected estimator (2.7) has MISE =

10.95 and the equal-split discontinuous (2.2) has MISE = 13.56. Therefore, in this
example the adapted Jones-Diggle corrected estimator evidently has a better
performance than the equal-split discontinuous.

Example 2.4.2. Consider an inhomogeneous Poisson process on the linear net-
work L2 with expected number of points E[N(L2)] ' 42 and intensity function

λ2(x, y) = e(x−y)/x with (x, y) ∈ L2. (2.12)

Similar to Example 2.4.1, we consider ISE in equation (2.9) to find the optimum
bandwidth according to which Figure 2.9 shows ISE versus a sequence of band-
widths σ. Figure 2.9 exhibits that σ = 1.95 units is the optimal bandwidth and it
minimises the ISE.

Figure 2.10 shows the estimated intensity through the equal-split discontinuous
(right plot) and adapted Jones-Diggle corrected estimator (middle plot) together
with the true intensity (left plot). From Figure 2.10 we can see that the adapted
Jones-Diggle corrected estimator (2.7) outperforms the equal-split discontinuous

40 2.4. Adapted Jones-Diggle estimator

estimator (2.2) along the segments and it can detect the low/high intensity parts
of segments well. Also, ISE for adapted Jones-Diggle corrected estimator is 8.54

while it has the amount of 11.27 for equal-split discontinuous estimator. According
to Figure 2.8 and 2.10, we now suspect whether the equal-split discontinuous
estimate can disclose the low/high intensity parts of segments, when events are
distributed as an inhomogeneous Poisson process.

1.0 1.5 2.0 2.5 3.0

8.
5

9.
0

9.
5

10
.0

10
.5

11
.0

11
.5

σ

IS
E

Figure 2.9: Bandwidth selection, ISE versus a sequence of bandwidth smoothing
parameter σ.

Similar to Example 2.4.1, we continue with simulating 500 realisations of an
inhomogeneous Poisson process with intensity function (2.12) on the network
L2 and we again lie on MISE (2.11) to compare the performance of adapted
Jones-Diggle corrected estimator and equal-split discontinuous one. Considering
σ = 1.95 as an optimum bandwidth parameter (see Figure 2.9), both adapted
Jones-Diggle corrected estimator and equal-split discontinuous are computed for
500 realisations, and they result in a MISE = 7.81 and MISE = 10.00, respectively.

2.4.3 Chicago crime data

In order to find an optimum bandwidth parameter we use equation (1.13) defined
by Cronie and van Lieshout (2018). Figure 2.11 shows that σ = 650 feet can
minimise the discrepancy in (1.13) while σ = 60 feet, used by Baddeley et al.

Chapter 2. Kernel smoothing for network events 41

Figure 2.10: Intensity visualisation for the pattern on the right hand side of Figure
2.6. Left : true intensity, Middle: adapted Jones-Diggle corrected estimator (2.7)
with ISE = 8.710, Right : equal-split discontinuous (2.2) with ISE = 15.384.

(2015), produce a large bias. We note that this bandwidth, although allowing to
show a nice visualisation, does not provide a good intensity estimation.

0 200 400 600 800

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

σ

|L
|^

Figure 2.11: Bandwidth selection for Chicago crime data. ˆ|L| =
n∑
i=1

1/λ̂JDL (xi)

against a sequence of bandwidth smoothing parameter σ (based on feet). Hori-
zontal dashed line shows the total length of the network.

Bandwidth σ = 650 is a much more larger value than the one used in Baddeley

42 2.5. Heat kernel intensity estimator

Figure 2.12: Estimated intensity using adapted Jones-Diggle corrected estimator
for Chicago street crime data with a bandwidth parameter of σ = 650 feet.

et al. (2015, p.721), but we guarantee less bias with this amount of bandwidth.
The data is markedly inhomogeneous, and though we are using a non-parametric
estimation only based on the locations of crimes, we note that Figure 2.12 shows
the same result as in Ang et al. (2012) who used a parametric model, confirming
higher intensity in the upper side of the network.

2.4.4 Castellón anti-social behaviour

Figure 2.13 shows ˆ|L| =
n∑
i=1

1/λ̂JDL (xi) versus a sequence of bandwidth smooth-

ing parameter σ (based on km) which suggests a bandwidth of σ = 0.9 km based
on benchmark (1.13). The adapted Jones-Diggle estimator (2.7) is represented in
Figure 2.14, providing indication of inhomogeneity in the pattern. It also indicates
higher intensity in the city centre, possibly due to existing areas of night life with
pubs and discos that make noise and general disturbances among the population
living in these areas. Adding covariate information would enrich the intensity
estimation, but we have preferred to focus only on the non-parametric estimation
of the intensity.

2.5 Heat kernel intensity estimator

McSwiggan et al. (2017) developed a statistically principled kernel estimator
on a linear network by exploiting the connection between kernel smoothing and

Chapter 2. Kernel smoothing for network events 43

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
50

10
0

15
0

σ

|L
|^

Figure 2.13: Bandwidth selection for Castellón anti-social behaviour data. Hori-
zontal dashed line shows the total length of the network.

Figure 2.14: Estimated intensity using adapted Jones-Diggle corrected estimator
for Castellón anti-social behaviour data with a bandwidth parameter of σ = 0.9 km.

diffusion (Chaudhuri and Marron, 2000; Botev et al., 2010).

Their diffusion estimator λ̂HL (u) can be expressed as a kernel sum

λ̂HL (u) =
n∑
i=1

κτ (xi, u), u ∈ L, (2.13)

where κτ (xi, v) is the heat kernel, the probability density at time t = τ 2 of a particle
executing a Brownian motion on the network, starting from location xi at time 0.

44 2.6. Fast kernel smoothing using 2D convolution

There is no simple closed-form expression for κτ . McSwiggan et al. (2017, Lemma
2, p. 12) showed that the diffusion estimator is formally equivalent to the “equal-
split continuous” rule (Sugihara et al., 2010; Okabe and Sugihara, 2012, Chap. 9)
applied to the Gaussian kernel. The diffusion estimator conserves mass and is
unbiased when the true density is uniform (McSwiggan et al., 2017, Section 7).
The diffusion estimator also satisfies the classical time-dependent heat equation,
so that (2.13) can be computed by solving the heat equation up to time t = τ 2. An
implementation by McSwiggan et al. (2017) is available in the R package spatstat
(Baddeley and Turner, 2005; Baddeley et al., 2015). Table 2.1 in Section 2.6.2
shows timings for the Chicago data in Figure 2.12 using default settings for the
heat equation algorithm for the diffusion estimate. Unfortunately, computation on a
large network , such as that illustrated in Figure 2.5, can be costly, depending on
the bandwidth and the spatial resolution.

2.6 Fast kernel smoothing using 2D convolution

In this Section we propose a kernel estimator on a linear network based on a two-
dimensional smoothing kernel by Rakshit et al. (2018). The original motivation was
speed: this estimator can be expressed in terms of two-dimensional convolutions
of the kernel, so it can be computed very rapidly using the FFT. However it also
has theoretical and methodological advantages.

Definition 2.1. Let x = {x1, . . . , xn} be a point pattern on a linear network L.
Let κ denote a bivariate kernel function, that is, a probability density on R2. The
convolution kernel estimator of intensity is, with the uniform correction,

λ̂UL,con(u) =
1

cL(u)

n∑
i=1

κ(u− xi), u ∈ L, (2.14)

and with the Jones-Diggle correction

λ̂JDL,con(u) =
n∑
i=1

κ(u− xi)
cL(xi)

, u ∈ L, (2.15)

where
cL(u) =

∫
L

κ(v − u)d1v, u ∈ L. (2.16)

Notice that (2.14) and (2.15) are similar to (1.8) and (1.10) respectively, and
could have been formally “derived” by replacing the two-dimensional integral over

Chapter 2. Kernel smoothing for network events 45

the window W by the one-dimensional integral over the network L. They can
also be “derived” from (2.10) and (2.7), if we replace the one-dimensional kernel
over the network L by a two-dimensional kernel over the window W . However, a
rigorous justification needs to be found, and statistical properties analysed in this
new setting.

The sum in (2.14) is the usual kernel estimator of intensity in two dimensions
without edge correction. The denominator cL(u) defined in (2.16) is the convolution
of the kernel κ with the arc-length measure on the network. Both functions are
now evaluated only at locations on the network.

Intuitively it may seem wrong to use a two-dimensional kernel to estimate a
one-dimensional density. However, the normalisation in (2.14)–(2.15) ensures that
the result has the correct dimension. Values of κ have dimension length−2 (points
per unit area) while values of cL(·) are integrals of κ against length, so they have
dimension length−1. Consequently (2.14) and (2.15) have the correct dimension
length−1 (points per unit length).

In the special case where κ is the uniform density on a disc of fixed radius r > 0,
i.e. κ(u) = a 1{‖u‖ ≤ r} where a = 1/(πr2), the sum in (2.14) is equal to a times
the number N(x ∩ bL(u, r)) of data points falling in the disc of radius r centred
at u. The denominator cL(u) is equal to a times the total length |L ∩ bL(u, r)| of
network segments falling in the same disc. The uniform-correction estimator (2.14)
reduces to

λ̂UL,con(u) =
N(x ∩ b(u, r))
|L ∩ b(u, r)|

, u ∈ L, (2.17)

the number of points divided by the total length of network in a disc of radius
r centred on u. This is Borruso’s estimator (2.1), but now restricted to query
locations u lying on the network. The Jones-Diggle correction estimator (2.15)
reduces to

λ̂JDL,con(u) =
∑

xi∈b(u,r)

1

|L ∩ b(xi, r)|
, u ∈ L. (2.18)

This corresponds to associating, with each data point xi, a unit mass which is then
uniformly spread over the part of the network lying within an Euclidean distance r
of xi.

Returning to the general case, the normalising factor cL(u) in (2.16) is also very

46 2.6. Fast kernel smoothing using 2D convolution

closely related to the “network density” proposed by Borruso (2003),

B(u) =
1

m

m∑
j=1

κ(u− vj), u ∈ Rd, (2.19)

where v1, . . . , vm are random sample points on the network. The function B(u)

for u ∈ R2 was used by Borruso (2003) in order to investigate the spatial density
of the lines themselves. By Campbell’s formula (1.26), if the sample points are
uniformly distributed, E[B(u)] = cL(u)/|L| for u ∈ L. Thus, cL(u) or B(u) has the
interpretation of a reference or baseline value that would be obtained if the data
points were uniformly randomly distributed on the network.

The uniform correction estimator (2.14) could also be motivated by techniques
for estimating spatially-varying relative risk in a case-control study (see Section
1.2.3 and 2.6.6). The data points xi are viewed as the locations of cases, and a
random sample of points uniformly distributed on the network will serve as the
controls. The standard estimator of relative risk is the ratio of kernel estimates of
probability density for the cases and for the controls. This is effectively the same
as (2.14).

It is theoretically permissible to choose a kernel κ which is not isotropic, i.e. not
invariant under rotation. This seems undesirable in practice, except in situations
where the coordinate system is not isometric, such as the latitude–longitude
coordinates on a globe. We shall assume that κ is isotropic.

Unlike estimators of intensity based on path distances in the network, the
convolution estimators are robust against errors in the geometry of the network.
If κ is uniformly continuous, the quantities (2.14), (2.15), (2.16) are continuous
functions of the point pattern x and the linear network L under the Wasserstein
metric (Rüschendorf, 1994).

2.6.1 Fast computation

The sums in (2.14)–(2.15) and the integral (2.16) can be recognised as convolu-
tions of the kernel κ with different measures M on R2. These may be computed
rapidly using the FFT, using the rule (Pinsky, 2002, p. 13, 92)

κ ∗M = F−1(F(κ) · F(M)), (2.20)

where ∗ denotes convolution, F is the Fourier transform, and “·” is pointwise
multiplication of functions.

Chapter 2. Kernel smoothing for network events 47

The sum in (2.14) is the convolution of the kernel κ with the counting measure
on data points (Silverman, 1982). It would usually be computed by discretising the
point pattern x onto a fine grid of pixels (where each pixel value equals the number
of data points falling in the pixel), then applying (2.20). Similarly, the estimator
(2.15) is the convolution of κ with the measure that puts mass 1/cL(xi) on data
point xi for i = 1, . . . , n. A similar computational strategy can be used.

The denominator cL(u) in (2.16) is the convolution of κ with arc length measure
on the network. Here one can discretise the network onto a pixel grid, where each
pixel value equals the length of network segments intersecting the pixel, and apply
(2.20). To suppress artefacts such as aliasing and numerical underflow, Rakshit
et al. (2018) recommends that pixel size should be smaller than one-tenth of the
smoothing bandwidth.

Alternatively, for appropriate choices of the kernel, cL(u) can be computed
analytically. Decompose cL(u) into contributions from each network segment

cL(u) =

∫
L

κ(u− v)d1v =
N∑
j=1

∫
lj

κ(u− v)d1v =
N∑
j=1

clj(u). (2.21)

When κ is the two-dimensional isotropic Gaussian kernel with mean 0 and standard
deviation σ, it can easily be calculated that

clj(u) = φσ(u2) |Φσ(sj − u1)− Φσ(u1)| , (2.22)

where φσ,Φσ are, respectively, the probability density function and cumulative
distribution function of the Gaussian N(0, σ2) distribution, sj = |lj| is the length
of the segment lj, and (u1, u2) are the coordinates of u in a coordinate system in
which the origin is an endpoint of lj and the first coordinate axis is parallel to lj.
The function (2.22) can be evaluated rapidly at a fine grid of pixels u.

We implemented these procedures in the R language using the package spat-
stat (Baddeley and Turner, 2005; Baddeley et al., 2015). Computation of (2.14)–
(2.16) was implemented in R (relying on existing implementations of the FFT)
while the analytic computation (2.22) was implemented in C. Timings given in this
Section (i.e. entire Section 2.6) refer to the implementation of (2.14)–(2.16) using
byte-compiled R code (Tierney, 2001) and the fftw library for FFT computation
(Frigo and Johnson, 2005; Karim, 2017).

48 2.6. Fast kernel smoothing using 2D convolution

2.6.2 Chicago example

Table 2.1 shows computation times for our proposed convolution algorithm
(Definition 2.1) and the diffusion algorithm (Section 2.5) applied to the Chicago
data for various values of the bandwidth. Computation time increases steeply with
bandwidth for the diffusion algorithm but is roughly constant for the convolution
algorithm. Note however that, for a given bandwidth τ , the diffusion algorithm
also provides kernel estimates for a finely-spaced sequence of bandwidths η with
0 < η ≤ τ .

Comparison of the two methods is complicated by the fact that the diffusion
bandwidth τ and convolution bandwidth σ have different meanings. The bandwidth
τ for the diffusion method can be interpreted as a path distance on the network,
while the bandwidth σ for the convolution method is a Euclidean distance in two-
dimensional space. A rough conversion rule is needed for practical purposes. To
investigate this, one may inspect a scatter plot of shortest-path distance against
Euclidean distance for a random sample of points on the network. In our experi-
ence, an approximately proportional relationship between shortest-path distance
dL(u, v) and Euclidean distance ‖u − v‖2 (index 2 to emphasize the dimension)
holds for some kinds of networks, in particular for street networks. That is,

dL(u, v) ≈ β‖u− v‖2 (2.23)

for independent uniform random locations u and v on L, where β is the conversion
factor. For the Chicago network we estimate β ≈ 1.25. In any network we have
‖u− v‖2 ≤ dL(u, v) for all u, v. In a perfect grid composed of a× b rectangles, it is
easy to show that dL(u, v) = ‖u− v‖1 + q(u, v), where ‖ · ‖1 denotes the L1 norm
and q(u, v) ≤ 2(a+ b). Since ‖u− v‖1 ≤

√
2‖u− v‖2, the approximation (2.23) with

β = 1.25 should be reasonable in any rectangular grid.

For general networks, we shall estimate the conversion factor β by generating a
large sample of independent uniform random points on the network, evaluating
the pairwise Euclidean distances and pairwise shortest-path distances, and fitting
a proportional regression (2.23) with standard deviation proportional to the mean.

Figure 2.15 shows intensity estimates for the Chicago crimes using the diffusion
and convolution methods, with comparable bandwidths 125 feet and 100 feet
respectively. These are three-dimensional perspective views in the style of Okabe
and Sugihara (2012) in which the function values are represented by the heights

Chapter 2. Kernel smoothing for network events 49

Table 2.1: Computation time (in milliseconds) for the diffusion algorithm and the
convolution algorithm applied to the Chicago data with different bandwidths σ or τ
(in feet).

σ or τ 50 100 150 200 250 300 350 400 450 500
λ̂HL 53 77 116 176 246 327 429 546 676 824
λ̂UL,con 44 41 41 41 41 42 44 42 42 41
λ̂JDL,con 41 41 41 42 43 41 41 41 41 38

of vertical walls erected above each segment of the network. While their overall
appearance is very similar, the two estimates show some clear differences near
the boundary, for example, on the eastern-most road and the north-west terminal
nodes. The eastern-most road is geographically close to crime locations but the
corresponding network path distance is much longer.

Figure 2.15: Kernel estimates of intensity for Chicago data. Perspective views with
height representing the function value. Left: diffusion estimate with bandwidth 125
feet. Right: convolution method with bandwidth 100 feet and uniform correction.

50 2.6. Fast kernel smoothing using 2D convolution

2.6.3 Theoretical properties

2.6.3.1 Bias

If X is a point process on L with intensity function λ(u), u ∈ L, then by Camp-
bell’s formula (1.26) the estimators (2.14) and (2.15) have mean values

E[λ̂UL,con(u)] =
1

cL(u)
E
∑
i

κ(u− xi) =

∫
L
κ(u− v)λ(v)d1v∫
L
κ(u− v)d1v

, (2.24)

E[λ̂JDL,con(u)] =

∫
L

κ(u− v)

cL(v)
λ(v)d1v, (2.25)

for u ∈ L. The right-hand sides can be regarded as smoothed versions of the
intensity function. In particular if X has uniform intensity λ(u) ≡ λ > 0, then

E[λ̂UL,con(u)] ≡ λ, (2.26)

E[λ̂JDL,con(u)] = λ

∫
L

κ(u− v)

cL(v)
d1v, (2.27)

for u ∈ L, so that the uniform correction estimator (2.14) is pointwise unbiased,
while the Jones-Diggle correction estimator (2.15) is not.

2.6.3.2 Variance

If X is a Poisson point process on L with intensity function λ(u), then the general
variance formula

var

[
n∑
i=1

h(xi)

]
=

∫
L

h(u)2λ(u)d1u (2.28)

holds for any function h : L→ R for which the right-hand side is integrable. Hence
the pointwise variances of the uniform correction estimator (2.14) and Jones-Diggle
correction estimator (2.15) are, respectively,

var
[
λ̂UL,con(u)

]
=

1

cL(u)2

∫
L

κ(u− v)2λ(v)d1v, (2.29)

var
[
λ̂JDL,con(u)

]
=

∫
L

κ(u− v)2

cL(v)2
λ(v)d1v, (2.30)

for u ∈ L. In particular, if X is a uniform Poisson process with intensity λ, then

var
[
λ̂UL,con(u)

]
=

λ

cL(u)2

∫
L

κ(u− v)2d1v, u ∈ L, (2.31)

var
[
λ̂JDL,con(u)

]
= λ

∫
L

κ(u− v)2

cL(v)2
d1v, u ∈ L. (2.32)

Chapter 2. Kernel smoothing for network events 51

The variance is not constant over the network, even if the true intensity is uniform.

The variances (2.29) and (2.30) can also be estimated unbiasedly from data
{x1, . . . , xn} by (respectively)

V̂U(u) =
1

cL(u)2

n∑
i=1

κ(u− xi)2, (2.33)

V̂JD(u) =
n∑
i=1

κ(u− xi)2

cL(xi)2
, (2.34)

for u ∈ L. These expressions can again be evaluated using FFT methods. This is
another advantage of the convolution method: although analogous formulae exist
for the variances of other intensity estimators, their computational cost is usually
prohibitive. For the convolution method, computation of variance estimates (2.33)
and (2.34) takes roughly the same time as computing the intensity estimates (2.14)
and (2.15) themselves.

2.6.3.3 Asymptotics

Here we briefly sketch some asymptotic properties of our proposed intensity
estimator, and its asymptotic equivalence with other estimators.

Consider the kernel with bandwidth σ > 0 defined by κσ(u) = σ−2κ1(u/σ) for
u ∈ R2, where κ1 is a given, fixed, probability density on R2. We assume κ1(x) is
continuous at x = 0. The estimators (2.14) and (2.15) computed using κ = κσ will
be denoted by λ̂Uσ and λ̂JDσ respectively.

Large bandwidth, fixed data

Suppose the point pattern dataset x is fixed and the bandwidth σ increases. Then
the convolution estimate (Definition 2.1) converges to a constant intensity on the
entire network L.

To prove this, since κ1 is continuous at 0, as σ →∞ we have κσ(x−y) ∼ σ−2κ1(0)

for any fixed x, y ∈ L. Hence λ̂Uσ (u) → λ and λ̂JDσ (u) → λ, uniformly in u, where
λ = n/|L| is the average intensity over the network.

By comparison, the diffusion estimate (2.13) converges as σ →∞ to a function
which is constant on each connected component of the network (McSwiggan et al.,
2017, Section 7.2).

52 2.6. Fast kernel smoothing using 2D convolution

Increasing intensity, decreasing bandwidth

Standard asymptotic results for kernel density estimation on the infinite real line
can be generalised to a linear network, adapting the approach of Botev et al. (2010).
Let N →∞ and suppose the true intensity is λN(u) = Nλ1(u) on L, where λ1(u) is
twice continuously differentiable. Assume the bandwidth σN satisfies σN → 0 and
NσN →∞. Then adapting Botev et al. (2010, Theorem 1), for any location u that is
not a node, the behaviour of λ̂Uσ (u)/N and λ̂JDσ (u)/N is asymptotically equivalent to
that which would occur if the network were an infinite straight line. Both estimators
are asymptotically equivalent to the kernel smoother on the real line with (one-
dimensional) kernel ζσ(x) = κσ((0, x))/Z1(σ), where Z1(σ) is the normalising
constant Z1(σ) =

∫∞
−∞ κσ((0, x))dx. By change of variables Z1(σ) = (1/σ)Z1(1) so

that ζσ(x) = σ−1ζ1(x/σ) in accordance with the usual scaling behaviour of a kernel
in one dimension.

In the special case where the two-dimensional kernel κσ is the isotropic Gaussian
density with standard deviation σ in each coordinate, the corresponding one-
dimensional density ζσ is the Gaussian density with standard deviation σ, and the
normalised bias and variance of the convolution estimator λ̂U(u)/N satisfy, for any
fixed u ∈ L,

E
[
N−1λ̂UL,con(u)− λ1(u)

]
=
σ2

2

∂2λ1

∂u2
+O(σ4), (2.35)

var
[
N−1λ̂UL,con(u)

]
=

λ1(u)

2
√
πNσ

+ o(1), (2.36)

and similarly for N−1λ̂JDL,con(u). At a node v of degree m, the estimate λ̂UL,con(v) is
equal to 1/m times the sum of m asymptotically independent contributions with
asymptotic bias and variance of the form (2.35)–(2.36), hence these asymptotics
also hold at a node.

2.6.4 Toy example

It is instructive to consider a very small example. Figure 2.16 shows a simulated
pattern of 4 points on a network which has total length 3 units and bounding box
about 0.8 by 0.9 units.

Kernel estimates of the intensity for this pattern are shown in Figure 2.17. The
left panel shows the diffusion kernel estimate (2.13) with bandwidth τ = 0.225 units.

Chapter 2. Kernel smoothing for network events 53

●

●

●

●

Figure 2.16: Toy example. Simulated point pattern of 4 points on a network of
total length 3 units.

Figure 2.17: Kernel estimates of the intensity for the toy example. Left: diffusion
estimate with bandwidth τ = 0.225 units. Middle: convolution estimate with
uniform correction, bandwidth σ = 0.15 units. Right: convolution estimate with
Jones-Diggle correction, bandwidth σ = 0.15 units. Perspective views with height
representing the function value. Vertical scales are equal.

The middle and right panels show the convolution estimates using an isotropic
Gaussian kernel with standard deviation 0.15 units (The bandwidths τ = 0.225 and
σ = 0.15 are comparable for reasons explained in Section 2.6.2). The middle panel
is the uniform correction estimate (2.14) and the right panel is the Jones-Diggle
correction estimate (2.15), using the same vertical scale. Maximum estimated
intensity is 4.2 for the uniform correction and 3.4 for the Jones-Diggle correction.

These estimates behave differently near the “boundary” of the network. In
particular, at a terminal endpoint of the network, the diffusion estimate always has
zero slope (McSwiggan et al., 2017). For the convolution method, the uniform
correction tends to inflate the intensity estimate near a terminal endpoint, while

54 2.6. Fast kernel smoothing using 2D convolution

the Jones-Diggle correction estimate tends to taper off more sharply.

Figure 2.18: Edge correction denominator cL(u) for the toy network of Figure 2.16
with bandwidth σ equal to 0.015, 0.15 and 1.5 units (left to right). Perspective views
with height representing the function value, using different vertical scales.

Figure 2.18 shows the edge correction denominator cL(u) defined in (2.16)
evaluated for the toy example using the isotropic Gaussian kernel with three
different bandwidths. For small values of σ, the function cL(u) is roughly constant
along each segment, with larger values near the nodes. For moderate to large
values of σ, the function achieves a maximum near the centre of the network, and
declines toward the periphery. For very large values of σ the function is roughly
constant.

If we define the “boundary” of the network as consisting of locations u where
cL(u) takes its smallest values, then Figure 2.18 shows that the boundary may
include segments and nodes of the network which are spatially extreme — say,
which are close to the boundary of the convex hull of the network — as well as
terminal nodes of the network.

The top left and top right panels of Figure 2.19 show the predicted variance of
the uniform and Jones-Diggle corrections respectively, with smoothing bandwidth
0.15 units, and assuming a Poisson process with uniform intensity λ = 2 (mean
total number of points λ|L| = 6). The variance was computed using equations
(2.29) and (2.30). The uniform correction tends to inflate the variance near the
boundary, and has larger maximum variance than the Jones-Diggle correction
(5.4 against 3.2) but interestingly the two estimates have roughly equal integrated
variance (6.6) so that overall the uniform correction has slightly smaller ISE (6.6
against 6.9). The pointwise mean square error of the Jones-Diggle estimate is
shown in the bottom right panel of Figure 2.19.

Chapter 2. Kernel smoothing for network events 55

Figure 2.19: Predicted performance on the toy example. Assuming a uniform
Poisson process with intensity 2, and kernel smoothing with bandwidth 0.15. Top
Left: variance (= MSE) of the uniform correction estimator. Top Right : variance
of the Jones-Diggle correction estimator. Bottom Left: bias of the Jones-Diggle
correction estimator, with positive values shown by solid grey colour and negative
values by diagonal shading. Bottom Right: MSE of the Jones-Diggle correction
estimator. Variance and MSE panels use the same vertical scale.

56 2.6. Fast kernel smoothing using 2D convolution

The bottom left panel of Figure 2.19 shows the predicted bias of the Jones-
Diggle correction estimator (2.15), assuming a uniform intensity λ = 2. The bias
was calculated by expressing (2.27) as a convolution and using the FFT. The bias
ranges from −1 to +0.4; it is large and negative near an isolated endpoint of the
network.

2.6.5 Simulation experiments

Simulation experiments are necessary in order to compare the performance of
our convolution method (2.14)–(2.15) with that of the diffusion method (2.13).

2.6.5.1 Description of experiments

Figure 2.20: Typical simulated realisations for each of the eight scenarios. Top
row: Chicago street network. Bottom row: southern part of the city of Perth,
extracted from the Western Australian road network. The Gaussian mixture and
LGCP realisation scenarios are based on an initial 2D surface defined on W . The
diffusion estimate scenario is based on the original data observed on the relevant
network. Simulated realisations all have size n = 500.

We simulated eight different scenarios, illustrated in Figure 2.20. In the top
row, the network L is taken to be the street network from the Chicago data
(Figure 2.2). In the bottom row, L is a subset of the Western Australian road

Chapter 2. Kernel smoothing for network events 57

network (Figure 2.5) representing the southern part of the city of Perth, comprising
18, 870 road segments.

In the first column of Figure 2.20, the intensity is constant on the network. In
the second column, a mixture of K isotropic Gaussian probability densities (K = 2

for Chicago; K = 4 for southern Perth), with different variances, and with mean
vectors lying inside the convex hull of the network, was chosen arbitrarily and
restricted to the network. In the third column, a realisation of a stationary log-
Gaussian random field was generated and restricted to the network. In the fourth
column, an intensity function was computed by applying the diffusion method to
the original point pattern data for the relevant network. Each intensity was scaled
to integrate to an expected sample size of 500. These eight functions were then
held fixed for the rest of the experiment.

For each given scenario with true intensity λ on L, we generated 100 simu-
lated realisations of a Poisson process with intensity λ. For each realisation we
computed the intensity estimates λ̂UL,con and λ̂JDL,con for several bandwidths σ, and
computed the diffusion estimate λ̂HL over the corresponding bandwidths τ = βσ,
where β is the conversion factor in (2.23). We used β ≈ 1.25 for the Chicago
network and β ≈ 1.42 for the southern Perth network. Pixel images were com-
puted with resolution 128 × 128 for the Chicago network and 2048 × 2048 for the
southern Perth network to ensure sufficient accuracy. Performance was measured
by computing, for each estimate λ̂, the integrated squared error ISE, and by noting
the computation time.

2.6.5.2 Details of simulation scenarios

For the scenarios based on the Chicago network, the data are contained in the
rectangle W = [0.4, 1281.9] × [153.1, 1276.6] feet. Scenario 2 (Gaussian mixture)
is the restriction to the network of a mixture of 2 isotropic Gaussian densities
plus a small additive constant. The two Gaussian densities have equal mixture
probabilities of p = 0.5 − 0.05/|W | each and the additive constant is 1 − 2p.
Their parameters (µ1, µ2, σ) are equal to (500, 500, 100) and (1000, 1000, 100) feet.
Scenario 3 is the restriction to the network of a log-Gaussian random field with
zero log mean and an exponential correlation function with variance and scale
parameters 2 and 100 respectively. Scenario 4 is the result of diffusion kernel
smoothing of the original data with bandwidth 50 feet. All intensity functions were

58 2.6. Fast kernel smoothing using 2D convolution

normalised to integrate to 500 on L.

For the scenarios based on South Perth, the network L is the subset of Western
Australia data in the rectangle W = [382.269, 438.7022] × [6417.982, 6480.644] km.
Segments of length zero were removed. The resulting network is connected, and
has 18873 segments, 15043 vertices, total length 3259.7 km, and maximum node
degree 8. Scenario 2 (Gaussian mixture) is the restriction to the network of a
mixture of 4 isotropic Gaussian densities plus a small additive constant. The
four Gaussian densities have equal mixture probabilities of p = 0.25 − 0.1/|W |
each and the additive constant is 1 − 4p. Their parameters (µ1, µ2, σ) are equal
to (430, 6470, 5), (410, 6445, 2), (390, 6430, 1) and (388, 6448, 1). Scenario 3 is the
restriction to the network of a log-Gaussian random field with zero log mean and
an exponential correlation function with variance and scale parameters 2.8 and 0.3

respectively. Scenario 4 is the result of diffusion kernel smoothing of the subset of
the WA crashes data that falls on L with bandwidth 1.75 km. All intensity functions
were normalised to integrate to 500 on L.

All simulation results are based on 100 independently generated realisations of
the Poisson process for each unique scenario.

2.6.5.3 Results

Figure 2.21 shows statistical performance of the estimators. Boxplots show the
spread of ISE values for the diffusion estimates computed from 100 simulated
realisations, and are plotted against the diffusion kernel bandwidth τ indicated at
the top of each panel. Curves show the mean integrated squared error MISE for
the convolution method, computed by evaluating the analytic formulae for bias and
variance in Section 2.6.3, and plotted against the convolution kernel bandwidth
σ indicated at the bottom of each panel. We verified that these analytic formulae
accurately predicted the sample means of ISE obtained in the simulations.

For the scenarios with uniform intensity, shown in the top row of Figure 2.21,
MISE decreases with increasing bandwidth. This is expected, since the optimal
estimate is constant, which is obtained as the bandwidth approaches infinity.
The uniform correction estimator λ̂UL,con has the best empirical performance, as
expected.

For the other three scenarios, performance is optimised at an intermediate value
of the bandwidth. This is the familiar tradeoff between bias and variance. For the

Chapter 2. Kernel smoothing for network events 59

●●●

●●●●●

● ●●●●

●●
●●

●
●
●
●●●

●
●
●
●●● ●

●
●
●● ●

●
●
●● ●

●
●
● ●

●
●
● ●

●
●

●●● ●●● ●●● ●●● ●●● ●●● ●
0.

2
0.

5
1.

0
2.

0
5.

0
10

.0
20

.0

5 15 25 35 45 55 65 75 85

10 20 30 40 50 60 70 80 90 100 110

λH

convolution bandwidth

diffusion bandwidth

U
ni

fo
rm

 in
te

ns
ity

Chicago

ISE (Uniform)
ISE (Jones−Diggle)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10
20

50
10

0
20

0
50

0
10

00

0.08 0.28 0.48 0.68 0.88

0.1 0.4 0.7 1 1.2

λH

convolution bandwidth

diffusion bandwidth

South Perth

ISE (Uniform)
ISE (Jones−Diggle)

●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

1
2

5
10

20

5 15 25 35 45 55 65 75 85

10 20 30 40 50 60 70 80 90 100 110

G
au

ss
ia

n
m

ix
tu

re

● ●● ●●
●●
● ●●

●

50
10

0
20

0
50

0
10

00

0.08 0.28 0.48 0.68 0.88

0.1 0.4 0.7 1 1.2

●

●●

●
●

●●
●●●●

●●●●
●

10
15

20
25

5 15 25 35 45 55 65 75 85

10 20 30 40 50 60 70 80 90 100 110

LG
C

P
 r

ea
lis

at
io

n

● ● ● ●●●
●●●

●●●
●●●

11
00

12
00

13
00

14
00

15
00

16
00

0.08 0.28 0.48 0.68 0.88

0.1 0.4 0.7 1 1.2

●

●
●

●

●

●●

●

●●

●●●●

●●●

●
●●●

●

●●●●

●

●
●

●
●

●
●

2
5

10
20

5 15 25 35 45 55 65 75 85

10 20 30 40 50 60 70 80 90 100 110

D
iff

us
io

n
es

tim
at

e

●

●●

● ●
●

●
●

●

●
●

50
10

0
20

0
50

0
10

00

0.08 0.28 0.48 0.68 0.88

0.1 0.4 0.7 1 1.2

Figure 2.21: Integrated squared error (ISE) of the convolution and diffusion
estimators applied to simulated data. Left column: Chicago network; Right column:
southern Perth network. Rows represent the four scenarios in Figure 2.20. The
bottom horizontal axis in each panel shows the bandwidth σ of the convolution
estimator; the top horizontal axis shows the bandwidth τ of the diffusion estimator.
Boxplots show the numerically computed ISEs for the diffusion estimator. Lines
show the theoretically calculated ISEs for λ̂UL,con (red, solid) and λ̂JDL,con (green,
dashed). Bandwidths are in feet for Chicago, and in km for southern Perth.

60 2.6. Fast kernel smoothing using 2D convolution

convolution method, this tradeoff can be quantified using the analytic formulae for
bias and variance in Section 2.6.3.

In the Gaussian mixture and LGCP scenarios, the competing methods have
roughly equal performance overall. For large bandwidths, the diffusion method
has better performance than the convolution method. Interestingly, this advantage
disappears near the optimal bandwidth, where the two methods have roughly equal
MISE. This suggests that, provided we do not greatly over– or under–smooth, the
convolution estimators are capable of performing as well as the diffusion method.
The uniform correction has a slight advantage over the Jones-Diggle correction.

The diffusion estimate scenario shows results that clearly favour the diffusion
estimator λ̂HL for large bandwidths. This is unsurprising since the behaviour of the
diffusion estimate near a terminal vertex precisely matches the behaviour of the
“true” intensity surface in this synthetic problem. For nearly optimal bandwidths,
there is no great difference in performance.

2.6.5.4 Computation times

For the convolution method, execution times were roughly constant as a function
of the bandwidth, and were roughly independent of the spatial pattern of points.
Execution times were around 0.06 sec to produce a 128× 128 pixel image for the
Chicago network, and around 20 seconds for a 2048× 2048 image for the southern
Perth network.

In both networks, execution time for λ̂HL is comparable to that for λ̂UL,con and λ̂JDL,con
for small to moderate bandwidths, but rises steadily with increasing bandwidth,
reaching 0.2 sec and 80 seconds in Chicago and southern Perth respectively at
the largest bandwidth considered. This is emphasised by Figure 2.22 which shows
mean execution times of λ̂HL , relative to the uniform and Jones-Diggle convolution
estimators, across all eight scenarios.

2.6.6 Relative risk and smoothing on a network

Here we sketch how the convolution method can be generalised for the purpose
of estimating spatially-varying relative risk and for smoothing numerical responses
observed at sample points on a network.

Chapter 2. Kernel smoothing for network events 61

20 40 60 80

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

mean relative time +/− 2 sd

λ̂H λ̂U

λ̂H λ̂JD

20 40 60 80 100

convolution bandwidth

diffusion bandwidth

0.2 0.4 0.6 0.8 1.0

1
2

3
4

mean relative time +/− 2 sd

λ̂H λ̂U

λ̂H λ̂JD

0.15 0.45 0.75 1.05 1.35

convolution bandwidth

diffusion bandwidth

Figure 2.22: Mean relative execution time per estimate for λ̂HL relative to both
λ̂UL,con and λ̂JDL,con across all four scenarios for the Chicago and southern Perth
networks (left and right respectively).

2.6.6.1 Weighted kernel estimators

Numerical weights wi associated with the data points xi can be incorporated in
the kernel estimators (2.14)–(2.15) giving

λ̂UL,con(u) =
1

cL(u)

n∑
i=1

wi κ(u− xi), u ∈ L, (2.37)

λ̂JDL,con(u) =
n∑
i=1

wi
κ(u− xi)
cL(xi)

, u ∈ L. (2.38)

Weighted kernel estimators serve many purposes. The weight may represent
multiplicity: for example if wi is the number of vehicles involved in the traffic
accident that occurred at location xi, then the weighted intensity estimate is the
spatially-varying number of vehicles involved in accidents per unit length. Weights
may also be used to adjust for a denominator: if wi = 1/vi, where vi is the traffic
volume (average number of cars passing this location per hour), then the weighted
intensity estimate is a spatially-varying accident risk (accidents per car–km).

2.6.6.2 Relative risk

The literature of relative risk is briefly reviewed in Section 1.2.3. In this Section
and using the convolution method, we provide non-parametric estimators of the
network version of (1.17)

62 2.6. Fast kernel smoothing using 2D convolution

A standard approach is to estimate ρ(·) using a plug-in estimator based on
kernel estimators of λX and λY . It would be possible to use different smoothing
bandwidths for the two point patterns, although there are theoretical arguments for
using equal bandwidths (Kelsall and Diggle, 1995a). Recent research suggests
that unequal bandwidths can cause undesirable “halo” artefacts in the estimate of
ρ(·) (Davies et al., 2016), at least in adaptive estimation. Hence we recommend
using the same bandwidth σ to estimate both λX and λY . If the uniform correction
(2.14) is used, then the plug-in estimate of ρ(·) is

ρ̂U(u) = log

∑
i κσ(u− xi)∑
j κσ(u− yj)

, (2.39)

in which the edge correction factor cL(u) has cancelled out (Hazelton, 2008).
This is equivalent to the usual uniform-correction estimate of relative risk in two-
dimensional space, restricted to locations on the network. For the Jones-Diggle
correction (2.15) the plug-in estimate of ρ(·) is

ρ̂JD(u) = log

∑
i κσ(u− xi)/cL(xi)∑
j κσ(u− yj)/cL(yj)

. (2.40)

Bandwidth selection for the optimal estimation of relative risk is different from band-
width selection for intensity estimation. For spatial relative risk in two dimensions,
several techniques for bandwidth selection are canvassed by Diggle (2003); Kelsall
and Diggle (1995a); Diggle et al. (2005); Lawson and Williams (1993); Hazelton
and Davies (2009); Davies et al. (2018) and summarised in Davies et al. (2018,
Section 4.2). These can be adapted immediately to a linear network: we do not
discuss them here.

For statistical inference, Hazelton and Davies (2009) introduced asymptotic
p-value surfaces for relative risk. These could also be adapted to the network
setting.

2.6.6.3 Spatial smoothing

Suppose we observe numerical responses z1, . . . , zn at a set of sample loca-
tions x1, . . . , xn, and seek to estimate the spatially-varying mean response. In
the Nadaraja-Watson approach to smoothing (Nadaraya, 1964; Watson, 1964;
Nadaraya, 1989), the estimate of the mean response Z(u) at a location u is a
weighted average of the observed responses zi at nearby points xi, weighted by

Chapter 2. Kernel smoothing for network events 63

the smoothing kernel. For our convolution method, the uniform and Jones-Diggle
corrections give respectively

ẐU(u) =

∑
i ziκ(u− xi)∑
i κ(u− xi)

, (2.41)

ẐJD(u) =

∑
i ziκ(u− xi)/cL(xi)∑
i κ(u− xi)/cL(xi)

(2.42)

for locations u ∈ L. These estimates can be calculated rapidly using the techniques
described in Section 2.6.1. Bandwidth selection for spatial smoothing can be based
on minimising the sum of squared errors of interpolation S =

∑
i[zi − Ẑ−i(xi)]2,

where Ẑ−i(xi) is the leave-one-out estimate of Z(xi) obtained by omitting terms
associated with xi from both numerator and denominator of (2.41)–(2.42).

2.6.7 Traffic accidents on urban roads of Medellı́n

The locations of traffic accidents in the urban area of Medellı́n, Colombia, in
2016 are shown in Figure 2.4 which were published in the OpenData portal of
Medellı́n Town Hall2. Details of the dataset are provided in Section 2.2.3.

We first estimate the intensity of each type of accident using the convolution
estimate with the uniform correction (2.14). For these individual intensity estimates,
bandwidths were selected using the extension of Scott’s rule of thumb (see Section
1.2.2.1 and Rakshit et al. (2018)), yielding bandwidths of 0.36, 0.36 and 0.67 km for
property damage, personal injury and fatal accidents, respectively. For comparison,
likelihood cross-validation yielded bandwidths of 0.24, 0.24 and 1.07 km respectively.
Figure 2.23 below shows the estimated intensity of each type of accident using the
convolution estimate with the uniform correction (2.14). Due to the complexity of
the road network, the intensity values are now rendered as colours rather than line
thicknesses or vertical heights. Each panel in Figure 2.23 is a 500×500 pixel image
and required computation time of about 9 seconds. Using the default resolution
128× 128 would have reduced the computation time to 1.3 sec.

Figure 2.24 shows plug-in estimates of relative risk for different types of ac-
cidents, relative to accidents which caused only property damage. Due to the
complexity of the road network, the relative risk values are now rendered as col-
ours rather than vertical heights. The estimates were computed by taking ratios of
intensity estimates with the uniform correction (2.14), using the same bandwidth

2https://www.medellin.gov.co/geomedellin/

64 2.6. Fast kernel smoothing using 2D convolution

Figure 2.23: Estimated intensity functions for each type of accident in Medellı́n
data, using convolution estimator and uniform correction (2.14). Left: property
damage, bandwidth 0.36 km; Middle: personal injury, bandwidth 0.36 km; Right:
fatal, bandwidth 0.67 km. Intensity values are reported as accidents per km.

σ for numerator and denominator. For estimation of relative risk, σ was selected
using the weighted mean integrated squared error criterion of Hazelton (2008),
available in the R package sparr (Davies et al., 2018). This yielded bandwidths
of 0.715 km for the relative risk of personal injury to property damage, and 0.88

km for the relative risk of fatality to property damage. Each panel in Figure 2.24
is a 500 × 500 pixel image and required computation time of about 20 seconds.
Using the default resolution 128× 128 would have reduced the computation time
to 3 seconds.

The left panel of Figure 2.24 shows the relative risk of accidents involving
personal injury relative to accidents involving property damage. The average
relative risk is 6004/4627 ≈ 1.3. Estimated relative risks which are 3 times higher
than average occur in the northern part of the urban area. The right panel shows
the relative risk of fatal accidents to those involving property damage (average
relative risk 133/4627 ≈ 0.029). Estimated relative risks almost 3 times higher than
average occur in central and northern areas.

Chapter 2. Kernel smoothing for network events 65

Figure 2.24: Estimated relative risk of different types of accidents, relative to
accidents which caused only property damage. Left : personal injury; Right: fatality.

2.6.8 Adaptive smoothing

The Western Australian road accident data shown in Figure 2.5 exhibit huge spa-
tial variation in the concentration of data points. In such situations it is well known
that fixed-bandwidth kernel estimation can perform poorly. Dense concentrations
of accidents in the urban areas will be over-smoothed, and sparse accidents in
the remote desert will be under-smoothed. Adaptive (variable-bandwidth) kernel
estimation can perform substantially better in this context (Abramson, 1982; Hall
and Marron, 1988).

A novel complication is that the network itself has huge spatial variation. This
makes it more difficult to judge by eye the density of accidents per unit length of
road. It also causes computational difficulties, since a much finer spatial resolution
is required in urban areas than in the remote desert.

A pragmatic approach might be to divide the state of Western Australia into
different sub-regions which are then analysed separately. We show one example
in Section 2.6.9.3. To avoid artefacts at the boundaries between sub-regions, one
could instead construct a spatially-varying bandwidth function σ(u), u ∈ L and

66 2.6. Fast kernel smoothing using 2D convolution

estimate the intensity by

λ̂U(u) =
1

cL(u, σ(u))

n∑
i=1

κσ(xi)(u− xi), u ∈ L, (2.43)

analogous to the uniform correction (2.14), although it does not retain the same
unbiasedness property. Estimators of the form (2.43) in 2D were proposed by
Marshall and Hazelton (2010).

An alternative is to allow each data point xi to have its own smoothing bandwidth
σi, and estimate the intensity by

λ̂JD(u) =
n∑
i=1

κσi(u− xi)
cL(xi, σi)

, u ∈ L, (2.44)

analogous to the Jones-Diggle correction (2.15), where

cL(u, σ) =

∫
L

κσ(u− v)d1v, u ∈ L. (2.45)

This estimator conserves mass, i.e.
∫
L
λ̂JD(u)d1u = n. Notice that (2.43) and (2.44)

are actually the network version of (1.14) and (1.15).

Direct computation of either (2.43) or (2.44) would be very costly. For compu-
tational efficiency we can follow the partitioning strategy of Davies and Baddeley
(2018, Section 4) in which continuously-varying bandwidths σ are mapped to
discretised bandwidths σ∗ = h(σ) where the function h takes only the values
h1, . . . , hm with m� n.

For the Jones-Diggle style estimate (2.44), let σ∗i = h(σi) be the discretised
bandwidth associated with data point xi. Then λ̂JD(u) is approximated by

λ̂JD∗(u) =
n∑
i=1

κσ∗i (u− xi)
cL(xi, σ∗i)

, u ∈ L. (2.46)

This can be computed by dividing the point pattern x into sub-patterns x(1), . . . ,x(m)

according to the value of the discretised bandwidth, computing the fixed-bandwidth
kernel estimate for each sub-pattern, and summing the results

λ̂JD∗(u) =
m∑
j=1

∑
i:σ∗i =hj

κhj(u− xi)
cL(xi, hj)

=
m∑
j=1

λ̂JDhj (u | x(j)), u ∈ L, (2.47)

Chapter 2. Kernel smoothing for network events 67

where λ̂JDσ (u | y) is the Jones-Diggle corrected estimate (2.15) with bandwidth σ
computed for point pattern y. Total computation time for (2.47) is about m times
the cost of the fixed-bandwidth Jones-Diggle corrected estimate.

For the uniform-style estimate (2.43), the discretised approximation to λ̂U(u) is

λ̂U∗(u) =
1

cL(u, h(σ(u)))

n∑
i=1

κσ∗(xi)(u− xi), u ∈ L. (2.48)

To compute this, we again partition the point pattern x into sub-patterns accord-
ing to the value of σ∗i = h(σ(xi)), but evaluate the uncorrected fixed-bandwidth
estimate for each sub-pattern

λ̂hj(u | x(j)) =
∑

i:σ∗i =hj

κhj(u− xi), u ∈ L, (2.49)

then sum these estimates and normalise

λ̂U∗(u) =
1

cL(u, σ∗(u))

m∑
j=1

λ̂hj(u | x(j)), u ∈ L. (2.50)

Total computation time for (2.50) is again about m times the cost of the fixed-
bandwidth estimate. The approximation (2.48)–(2.50) could produce artefacts
associated with abrupt transitions in the value of σ∗(u). These artefacts could be
avoided by using the three-dimensional FFT technique for adaptive estimation
proposed by Davies and Baddeley (2018), instead of partitioning the bandwidths.

It remains to choose the bandwidths σi associated with each data point, or the
bandwidth function σ(u) for locations u ∈ L. Abramson (1982) argues that the
optimal smoothing bandwidth should be inversely proportional to the square root
of the true density at the given location. This can be approximated using a pilot
estimate of the intensity. The pilot estimate could be a fixed-bandwidth intensity
estimate, or another type of intensity estimate that can be calculated rapidly.

Given a pilot estimate of the intensity λ̃(xi) for each data point xi, the prescription
of Abramson (1982) is to compute initial bandwidths

ai =

(
λ̃(xi)

n

)−1/2

, (2.51)

then to derive the smoothing bandwidths

σi = σ#ai
a
, (2.52)

68 2.6. Fast kernel smoothing using 2D convolution

where a = (
∏

i ai)
1/n is the geometric mean of the initial bandwidths, and σ# is

the global bandwidth. Bandwidth selection for the adaptive case mainly involves
selection of the value of σ#.

The adaptive estimation of relative risk was introduced by Davies and Hazelton
(2010), who also developed asymptotic tolerance contours. Davies et al. (2016)
argued that the adaptive risk estimator should be symmetrised to use common
bandwidth factors, extending an argument of Kelsall and Diggle (1995a) to the
adaptive case. These results can be extended to the case of a linear network.

2.6.9 Traffic accidents in Western Australia

Figure 2.5 shows the spatial locations of 14, 562 road traffic accidents recorded
for the year 2011 on the road network of the State of Western Australia. The data
were provided by the Western Australian state government department of Main
Roads, and are made available for publication as part of the Western Australian
Whole of Government Open Data Policy. The road network was simplified from its
original 626, 031 segments to 115, 169 segments, with a total length of approximately
97, 165 km. Duplicate accident locations were removed because these are typically
separate records of each of the vehicles involved in a multiple-vehicle collision.

2.6.9.1 Fixed bandwidth estimation

We first use the fixed-bandwidth estimators (2.14) and (2.15) to estimate the
intensity of accidents on the network. Figure 2.25 shows the cross-validation
criterion cv(σ) plotted against bandwidth σ for both estimators. Optimal bandwidths
are σ = 9.1 km for the uniform-corrected estimator and 10.9 km for the estimator
with Jones-Diggle correction. The modified Scott rule gives σ = 8.9 km and would
have been acceptable in practice.

Figure 2.26 shows the fixed-bandwidth uniform correction estimate of accident
intensity for the state of Western Australia using σ = 9.1 km. Figure 2.27 plots
the fixed-bandwidth intensity estimate using the Jones-Diggle correction (2.15)
with the optimal bandwidth 10.9 km. A logarithmic colour scale is used here in
order to retain visual detail, because the intensity estimates vary by 20 orders of
magnitude across the image. To avoid artefacts, intensity values falling below a
threshold of 10−5 accidents per km (corresponding to an average of one accident
across the entire network) have been replaced by this threshold.

Chapter 2. Kernel smoothing for network events 69

6 7 8 9 10 11 12

−
16

40
0

−
16

30
0

−
16

20
0

−
16

10
0

−
16

00
0

−
15

90
0

σ (km)

C
V

(σ
)

6 7 8 9 10 11 12

−
16

20
0

−
16

00
0

−
15

80
0

−
15

60
0

−
15

40
0

σ (km)

C
V

(σ
)

Figure 2.25: Likelihood cross-validation criterion cv(σ) plotted against bandwidth σ
for the kernel estimators of intensity of traffic accidents on the Western Australian
road network. Left: uniform-corrected estimator; the vertical line shows the
optimum at σ = 9.1 km. Right: Jones-Diggle estimator; the vertical line shows the
optimum at σ = 10.9 km.

The two corrections give very similar estimates. Both corrections show the effect
of over-smoothing in the urban areas along the west coast, and under-smoothing
in the remote east. These are common features of fixed bandwidth estimates
applied to spatially heterogeneous patterns (Loftsgaarden and Quesenberry, 1965;
Breiman et al., 1977; Davies and Baddeley, 2018).

In the remote eastern areas where no accidents have been recorded, some
intensity estimates are close to zero and may be negative due to numerical error.
This occurs more frequently with the uniform correction. Zero values are quite
likely if the kernel κ has bounded support.

2.6.9.2 Adaptive bandwidth estimation

It is evident from Figure 2.5 that accidents are highly concentrated in one area,
the location of the capital city of Perth. This contains more than 75% of the state’s
population, while the remote eastern part of the state has very low population
density and traffic volume. Although the road network itself is also much denser
in Perth than elsewhere, the estimated accident rate per kilometre shown in

70 2.6. Fast kernel smoothing using 2D convolution

Figure 2.26: Fixed-bandwidth estimate of intensity for the accidents on the
Western Australian road network using the uniform correction with σ = 9.1 km.
Intensity values are accidents per km.

Figures 2.26 and 2.27 is still much higher in Perth. Fixed-bandwidth estimators
are not suitable for analysing such spatially heterogeneous point patterns.

Figure 2.28 shows the adaptive estimate of intensity for the Western Australian
road accidents using the Jones-Diggle style estimator (2.44). The pilot estimate of
the intensity was taken to be the fixed-bandwidth Jones-Diggle corrected convolu-
tion estimate (2.15) with bandwidth σ = 10.9 km shown in Figure 2.27. Adaptive
bandwidths σi for each data point xi were then derived using Abramson’s rule
(2.51)–(2.52) with global bandwidth σ# = 10.9 km. Values of σi ranged between
7.5 and 171 km. The adaptive bandwidths σi were divided into 30 groups of
equal size, and the adaptive intensity estimate was computed using the discrete
approximation (2.46) in the form (2.47).

The Figure 2.28 shows that the adaptive kernel-smoothed estimates have
removed under-smoothing in the remote east, while retaining slightly more detail
of the high intensity in the west.

Chapter 2. Kernel smoothing for network events 71

Figure 2.27: Fixed-bandwidth estimate of intensity for the accidents on the
Western Australian road network using the Jones-Diggle correction with σ = 10.9

km. Logarithmic colour map. Intensity values are accidents per km.

2.6.9.3 Perth metropolitan area

Figure 2.29 shows accidents recorded in the Perth metropolitan area, defined
as the rectangle [372, 431]× [6434, 6501] km. There are 12408 accident locations;
the network has a total length of 10318.8 km; the average accident density is 1.20
points per km. Figure 2.30 shows an adaptive estimate of accident intensity for the
metropolitan Perth area (Figure 2.29), which is actually a 60× 67 km subregion
of Figure 2.5. The pilot estimate was a fixed-bandwidth Jones-Diggle estimate
with a bandwidth of 0.35 km selected by cross-validation. Adaptive bandwidths
ranged from 0.1 to 1.1 km. The Figure 2.30 reveals that the accident data contain
exquisite detail about the urban road system, including the main freeways and
their tributaries, the central business district and the coastal town of Fremantle.

2.6.9.4 Computation times

Table 2.2 reports the time taken to compute intensity estimates for the Western
Australian accident data using the diffusion algorithm, the fixed bandwidth con-

72 2.6. Fast kernel smoothing using 2D convolution

Figure 2.28: Adaptive-bandwidth intensity estimate for the accidents on the
Western Australian road network using Jones-Diggle correction. Logarithmic
colour map. Intensity values are accidents per km.

volution algorithms with uniform and Jones-Diggle corrections, and the adaptive
bandwidth algorithm corresponding to the Jones-Diggle style correction.

All computations were performed on a 2.4 GHz Intel Core i7 laptop with 8 GB
RAM using byte-compiled R code. The Fast Fourier Transform was computed
using the fftw library.

As expected, the computation time for the diffusion estimator increased with
bandwidth τ , while computation time for the convolution estimators was not de-
pendent on bandwidth σ.

Timings depend crucially on algorithm parameters, including the spatial res-
olution of the resulting pixel image (pixel width ε), the step-size δ of the sample
points along the linear network for the diffusion algorithm, and the number m of
discretised bandwidths in the adaptive estimator. These experiments generated a
512× 512 pixel image so that ε ≈ 2.8 km.

In the case of the Western Australian accidents, the effect of δ is crucial. Heurist-
ically, computation time for the diffusion algorithm should be roughly proportional
to δ−3 for small δ, and this is confirmed by Table 2.2. Six hours of computation was

Chapter 2. Kernel smoothing for network events 73

●●●●●●

●●

●●

●●●●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●●

●
●
●●●●●

●

●

●●●●●●●●●●●●●
●●●●●

●●

●●●

●●
●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●
●●●●●

●●●

●●

●●●●●●●●●
●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●●

●●●●●●●●●●●

●●

●●●●●●●●●●●●
●●

●●●●

●●●

●
●●●●

●●●

●

●●●

●

●
●●

●

●●

●●●●●●●●●●●●●●●
●

●

●

●

●●●●●●●●●●●●●●

●
●●●
●●●
●●●
●

●●●
●●●●●●●● ●

●

●

●●●●●●
●●●

●●●●●●

●●●●●●
●●●●

●

●● ●●
●
●

●●

●●
●●●●

●
●●

●
●●●●●●

●

●●●●●●
●

●●
●●

●●●
●
●
●

●

●●●●●●●
●

●●

●

●

●
●

●

●●

●
●●●

●●
●●

●●

●

●
●

●

●
●●

●●●
●

●
● ●●

●●

●

●●

●●●●

●●

●
●

●●●●

●

●

●●

●●

●●

●

●
● ●

●●●●

●●●●

●●

●●●

●●

●●●
●●●●●●●●
●●

●

●●●●

●

●
●

●●●
●●

● ●
●

●
●
●●●

●

●

●
●

●●
●

●●

●●●●

●●

●

●

●

●●●●●●
●●
●●

●● ●

●
●

●●

●

●

●

●

●●●

●●●
●●●

●●●

●●

●●●●
●

●

●●●
●

●

●●●

●

●●

●

●

●●●
●

●

●●

●
● ●

●

●●

●

●●

●●●

●●●●●●●
●●

●●●
●●●●

●●●●●●●
●

●●●
●

●

●●●●●
●●●●●

●●● ●●● ●

●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●

●

●●

●
●

●●●

●

●
●

●●

●●

●●
●

●
●
●

●●●●●
●●
●●●

● ●●●●●●●●●●● ●●●●
●

●

●

●

●●●
●

●

●● ●
●

●●●●
●

●●●●●●●●
● ●●

●

●●

●●
●

●●●● ●

●

●

●

●
●

● ●
●

● ●
●

●
●●●●

●

●●●●●
●

●●●●●●●●

●●● ●
●●●
●

●
●

●●●

●

●●

●●●

●●●●●●●●●●
●

●●●●●

●

●

●

●●●

●

●
●●

●

●

●●

●

●
●
●

●
●

●●

●●●
●

●●
●

●●●

●

●

●●

●
●●

●●●
●
●

●
●●●●●●●

●

●●
●●

●● ●

●

●●●●●●●

●
●
●●

●● ●●●●●●●●●●●●●●●● ●
●●

●●●●●●●●●●●●●●●●● ●●●●●
●

●●●● ●●●
●●●●● ●●● ●

●
●●●●●●●●

●●
●●

●●●●●
●

●
●●●●●

●
●●

●●●●

●
●●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●

● ●
●

● ●●●●●
●●●●●●●●
●●●●

●
●●●●●●
●
●

●●● ● ●●● ●

●●●●●

●

●

●●●●●

●

● ●

●●
●

●●●●●●

●●●●●●

●●
●
●
●●●

●

●● ●●
●
●● ●

●●● ●
●

●●
●

●

●

●●●
●

●●● ●●●●●●●

●
●●

●●●●
●●●●
●

●

●
●●

●

●

●
●●●●

●

●
●●●

●

●
●●

●●●●

●

●●●●●
●●

●

●
●●●●●

●●
●

●
●●

●●
●●●●●●

●●●●●●●●
●

●

●●●●●●●●●●
●●●●

●●●●
●●●●

●
●● ●●

●●
●

●●

●
●

●
●● ●

●

●

●●●●

●●

●
●●●
●●●●

●
●

●●●

●
●

●●●●●

●
●●

● ●●●●

●●●●
●
●

●●●●●●●●●●
●

●
●●

●●●●●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●●

●

●●●● ●●●●●●

●
●●●
●●

●

●●

●●

●●●●●

●

●

●

●
●

●

●●●●●●

●

●

●
●●●●●●

●●

●
●●

●●

●●

●

●●

●

●
●●

●
●

●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●
●●●●

●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●

●●●

●●●●●

●

●● ●●●●●●●●●●●●●●● ● ●●

●●●●●●●●●●●●●●●●●

●
●

●●●●●●● ●●●
●●
●

●
●

●●●●

●●●●●●
●
●●●●●●●

●
●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●●●●
●●●●

●
●
●●●

●●
●●

●●
●
●●●●

●●●
●

●●●●
●●●●

●●●

●

●●●●●●●●
●●●

●●
●

●●●

●●●
●●●

●●●●●●●●●●●●●●
●●●●●

●●●

●●●●
●●●●●●

●●
●●

●

●

●●
●●●

●

●
●

●●
●

●

●●●●●●
●

●
●●

●●●
●

●●●●●
●●●●●●●●●

●

●●●●
●

●
●

●●●●
●

●
●

●●●

●

●

●
●

●

●●●●●

●●●●●●●●●●

●●●

●●
●●●

●

●
●

●●

●●●●
●●

●●●

●

●

●

●●

●●●●●
●●●●●●●

●●

●●●
●●●●

●●●● ●●●●

●

●●●

●●●●● ●

●
●

●

●

●

●

●
●

●●●

●●●●●●●●●●●●●
●

●●●●
●●

●●
●

●●
●

●
●●

●●

●●●

●
●
●●●

●

● ●
●

●
●●

●
●

●●●

●●●

●●

●
●●●

●
●

●●

●
●

●● ●●
●●
●●●●

●

●●
●●

●●●●
●

●●

●

●●●●

●●●●

●

●●

●

●
●

●●

●

●
●●●●

●●●●●
● ●

●

●
●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●● ●●●●
●

●●●●●

●●

●●●●●●●

●●

●●●
●●

●●

●●●●●●●●●●●
●●●●●●●
●●●●

●●●●●
●
●●●●●●●

●
●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●●● ●●●
●

●

●●●●●
●

●
● ●

●●●
●●

●

●●●
●●●●●

●
●●

●●●●●

●

●●
●● ●

●●●●●
●●
●●●
●●●●

●●
●

●

●

●●

●●●●

●●
●

●●

●

●●

●

●●●●●●●●●●●●●●

●

●

●●

●●

● ●

●

●

●●

●

●●●
●

●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●●

● ●

●

●
●

●●

●●
●●

●●●

●

●
●●

●●●●
●●●●●●

●●
●

●●
●

●

●

●
●

●●●

●●●

●

●
●●

●

●● ●

●
●

●
●

●

●
●●●●

●
●

●

●
●

●●●

●

● ●

●

●●●
●

●●●

●

●
● ●

●●●

●

●

●

●

●

●

●
●

●
●●

●●

●●
● ●

●
●

●

● ●

●

●
●

●
●

●●●●●●
●●

●
●

● ●●●●● ●●●●
●●●●

●●●●
●●● ●●●

●●●

●●
●●

●●●●

●
●
●●●

●
●●●●●

●●●●●●●●
●●●●●●●●●●●●
●●●
●●●●●
●●
●

●●
●●
●●●●●
●
●
●●●

●

●●●●●

●

●

●
●●●●
●

●●

●●
●
●

●

●●●
●●●●

●

●●●●●●●●●●●●●
●●●●●

●●

●●●●●●●●●●●●●●

●●●●●
●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●● ●●●● ●

●● ●●●●●●●●
●●●●● ●●●●

●
●●●●●

●●●●
●

●
●

●●●●●●●●●● ●
●●●●●●●●●

●
●

●●●
●●●

●●

●
●●●●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●

●●●●

●●

●●●●
●●

●●●
●
●●●
●

●

●

●●● ●●●
●●

●●
●●

●●●●●●●●●●
●●●●●
●

●
●●

●●● ●
●
●●●

●●●●
●
●

●

●●
●● ●

●● ●

●●●●●●●●●●●●●●
●●
●●●●●●●●●● ●●●
●●●●●●●●●

●
●●●●● ●●●● ●

●
●

●●
●
●●

●

●
●
●

●
●●
●●

●●●
●

●●● ●●● ●●●●●●
●●●●●●●
●●●●●

●●●●●
●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●●●●●●●
●●●●●

●●

● ●●●●●●●●

●
●

●●●
●

●

●
●
●

●● ●
●●●

●
●
●

●
●●●●●●●
●

●
●●●●● ●●●

●

●●
●

●
●

●

●

●●●

● ●
●

●●

●

●●●●
●
●

●●

●●●

●

●●●●●●●●●●●●
●●

●

●

●●●●
●
●●●●
●

●●●●

●●
●●●
●

●● ●
●●●

●
●

●

●●●●●●●●

●

●
●

●●
●

●
●

●

●

●●●●●
●

●●●
●●
●

●
●
●●●●
●●●

●●●●
●●

●●
●

●

●●●

●
●

●●●●●●●●● ●●● ●●●●●●●●●●●
●

●●●

●
●●●●

●●●●

●● ●●
●●●
●●●●
●●●●●●
●
●●

●

●

●

●●●●
●●●

●●●●●
●●● ●●●●●
●
●●●●●●

●
●●

● ●●●

●
●●●●●
●●●●

●●●

●
●

●
●

●

●

●●●●
●●●●●
●●●●●●●●●●●●

●●● ●●
●
● ●
●● ●●●●●●●●●●●

●●

●

●●

●

●●
●●●● ●

●●

●●●

●●●●
●●

●

●●●
●

●●●●

●●
● ● ●

●●●
●●

●●●●●
●●
●
●

●●●●
●●

●●

●●●
●

●●
●

●●
●●●●●●●●●●●●

●●
●●●●●

●●●● ●
●●

●

●

●

●●

●●

●
●●

●

●●●● ●

●●

●
●●
●

●

●●●●

●●●●
●●
●●●●

●
●●●●●●●●●●
●●●●

●

●

●
●

●●●●●

●●●

●●

●●●

●●●

●

●●
●

●●●●
● ●●●

●●
●●●●●●●●

●●

●●●●●●● ●● ●●●●●

●●

●●●
●●
●

●●●

●●
●●●

●●●●●●●●
●

●●●
●●

●●●●●●●●
●●
●

●

●

●●●●●●

●●
●●
●●●●

● ●●

●
●●●

●●
●
●●●●

●●●
●●●

●●
●●●●●

●●●
●●●
●●

●
●

●●●●● ●●
●●

●● ●●●●

●
●●

●

●

●
●

●

●● ●

●●●●

●●
●

●
●
●●

●●●●

●●

●

●●●●

●

●●
●●

●●

●●●●●

●

●●
●
●
●●

●

●●

●

● ●●

●●

●

●

●

●●
●●

●● ●

●

●

●●●●

●●●●●●●
●●

●

●

●

●●●●●●●●● ●

●

●●

●●●

●

●

●
●●

●●●

●

●

●

●
●

●

●●●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●●●●●

●●●
●

●●

●

●

●
●

●

●

●●● ●●●●●●●●●●●●
●●●●●

●●●
●

●
●●
●●●

●

●
●●●●
●●●●●●●●●●●

●

● ●●●●
●

●●●●
●●●●●
●●●●●●●●●●●

●
●●

●●●●●

●●●●●
●●●●●

●

●
●●●

●●●

●●●●

●

●●

●

●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●
●●●●●●●●●●●● ●●●●●●●●

●
●●

●●●●

●●●●
●●●

●●
●●●●●●●

●●●●●●●●●●●
●

●●●●●●

●●●●●●
●●
●

●●
●

●
●●●●●●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●
●●●●

●

●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●

●

●
●●
●●●
●●

●

●
●

●●●●●
●●●

●●●●●●●
●●
●●●●●
●●●●●

●
●●

●●●●

●●●●●●
●

●●●
●●●●●

●●●

●●●●●●
●●●●

●●●●●

●●●

●●●

●

● ●●●●

●●
●●

●

●●●●●●

●●●
●●

●●●● ●●●●●●
●●●●●

●
●
●●●●●●●

●●●

●●●●

●

●●

●
●

● ●●●●●

●●

●
●●●●●

●●

●●●

●

●

●
●●●●

●
●

●

●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●

●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●

●●●●●●
●●

●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●

●●●●●●●●●
●●

●●
●●●

●●●●●●●●●●●●

●
●●●●●●

●●●●●●
●

●●●●
●●

●
●●

●●●●●●●●●●●●
●●●

●●●●●●●

●
●●●

●●

●●

●
●
●●●

●●●●●●
●

●
●●

●●●●●

●
●●●●●●●

●

●●●

●

●

●●
●●

●
●

●

●●●

●

●●●●

●●

●●
●●

●●●

●
●

●

●

●

●●●●

●

●●●●●●●
●

●●
●

●●
●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●

●●

●●●●●●●●
●●●●

●●●●●●●
●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●

●●●

●
●●

●●

●●●●

●● ●●●●
●●

●
●●●●●

●●

●●●●●●●●●●●●

●
●●

●
●

●●●●●

●●●●●●

●●●●●●●●●● ●●●
●●●●●

●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●

●●●●
●●●●●●●●

●
●●

●●●●●●

●

●●●

●●

●●●●●●●

●●●
●
●●●
●
●●●●
●●
●●●
●
●●
●●

●
●

●●●●

●
●

●

●●●
●●

●●
●●●●

●●●●
●●

●
●●●●●●●●●●●●●
●●●

●

●
●

●●●
●●●●●

●●●
●●

●● ●
●●●●●

●

●
●●

●●●●●●●●●●●●

● ●●●

●●●

●●●●●

●

●●●

●
●●●●●
●●
●●●●●●●●●●●

●

●
●

●●●
●●●●●

●●●●

●●

●
●●

●
●●

●●

●

●
●●●●●●
●●

●●●●●●●●●●●
●

●●●● ●●●●●●

●

●●●●●

●●
●●

●●●

●●
●

●●●●
●
●●●●●●●●●●●

●

●●●●●●
●●●

●●●●●

●●

●●
●

●●●●
●

●●● ●●● ●●●●●

●●●

●

●●●●●
●
●

●

●●

●

●●●

●●●
●●

●●

●●

●

●

●●●●

●●
●●●

●

●

●
●●●●●●●

●●●●●●
●

●●●
●●

●●●●●●●●●●●●
●
●

●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●

●●●●●●
●●●●●●●●●●●

●●●●●

●
●
●●●●●

●
●

●
●
●●

●●
●●●●
●
●●

● ●●●●●●●●●●
●●●

●●●
●●●

●●●●

●

●
●

●●●
●●
●●
●●
●●●●●
●●●

●
●●●●●
●
●●●●●●●●●
●●●●●
●
●
●●●●●●

●●●●

●●●●●●●●●

●●
●●

● ●

●●
●●●●

●●●

●●●●

●●
●●●

●●●

●●●●●●
●●●
●

● ●●
●●●●

●
●●●●●
●●●
●●

●●●●●
●●●
●●

●

●●●●●●●●●
●●

●
●●

●
●●
●●●●●●
●●●●

●
●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●
●●●●●
●●

●●●●●●●●●
●

●●●●●●●●●●
●●●
●●

●●●●●●
●●●●●●●

●●●●●

●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●●
●●●●

●
●

●●●●●● ●●●●●●●●●
●●●●

●●●●●●

●
●

●●● ●●●●●●●●

●●●
●●●

●
●●●●●
●●●●

●●●●●●●●●
●●●●●●●

●●●●
●●●●●●●●●●

●
●●

●
●●●●●●●

●

●
●●

●●

●●

●●●

●

●●●●

●●

●●●

●●
●●

●
●●● ●●●●

●
●●●●

●

●●● ●
●

●

●

●

●

●●●●●

●● ●
●●●●●

●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●
●

●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●
●
●
●●●●●●●●●●●

●●
●
●

●
●●●●●●●●●

●
●●
●

●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●

●●
●●
●
●●●●●●

●●●●●●●●●●

●
●●●

●●
●●●●
●●

●●●
●●●●●

●
●
●●

●●●●●●
●

●●●●●●●●●
●●●
●
●●●●
●●●

●●●
●●●●●

●●●●●●

●● ●●

●●
●●●●●●

●
●

●●●●
●
●

●
●●●●

●

●●

●

●●●●●●●●●●●●

●●

●

●●

●●●

●●

●
●

●●
●●
●●

●

●
●

●
●●●●●●●●●●

●●●
●●●●●●●●

●●●●●
●
●

●●●●●●●●●●
●

●

●●●●●●
●

● ●●

●
●●●

●●●●

●●

●●●●●●●●●●●●●●●●

●
●

●

●
●●

●

●
●●●●● ●●●

●

●●
●●●●●●

●●●●

●

●●●●

●

●● ●
●●● ●●

●●●
●●●●

●
●●●

●●
●●●●●
●

●●

●●●●

●●●●●

●

●

●

●
●

●●●●

●●●●●●●

●●

●●●●●●●●●●
●●●

●●●●
●●●

●

●●●

●●●●●●●●

●
●●●●●●●

●●●●●●●
●●●●●●●●● ●

●●●
●●

●●

●

●

●

●●●●
●●●●●●●●● ●●●

●●●

●●●
●●●

●●●●●●

●
●●●●●●

● ●●●●●●●●●●●●●

●●
●●●●●

●●●●●●●
●●●●●●

●●
●

●●
●●●

●●●●●●●●●●●●●●●●
●●

●●●

●●●●●●●

●
●●●

●

●●
●●
●

●●●●●
●●

●

●●●

●●●

●●
●
●●●
●●●●
●

●●●●
●
●●

●●●●●●●●●●●●●●●●

●●
●●●●●● ●

●●

●

●●

●
●●●●

●●●●●●●●●●●
●●●●

●●●●

●● ●●●●●●●●●●
●●●●●●●

●●

●● ●●●
●●●
●●
●

●

●●●●●●●●●●●●●●●●●●●

●● ●

●
●●●●
●●●●● ●●●●●●●

●

●
●

●
●●

●●●●
●●●

●●
●
●

●

●●
●●●●●

●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●● ●●●

●●●●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●

●●●●

●●●●

●●●●

●●●●●●●

●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●
●●●

●●●

●

●

●●●●

●●●●●●
●●●●●●●●

●●
●●●●●

●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●
●

●●
●●
●●●
●●●

●●●

●●

●
●
● ●●●●●

●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●
●

●●●●
●

●●●●●●●
●

●●●●●
●●●
●●

●●●●●●●

●●●
●●
●
●●
●●●●
●●●●
●●●●●
●●●
●
●●
●●●
●●●

●●●

●●●●●●

●

●●●●●●●●●

●●●

●
●●●●●
●●●●●●●●●●

●●●●●
●●●
●●●●●●●●
●●●●
●

●●●●●
●●
●●●●
●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●

●●●
●●●●●

●●●●●●
●
●●●

●●●●●

●●●●●●●●●●●●●●

● ●●●●●●●●●●
●

●●
●●●
●●●●

●● ●●●●●●
●●●●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●●●
●●●●●●
●
●

●● ●●●●
●●●●●●

●●

●

●●●
●

●●●
●●●

●●●

●
●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●●●●●
●●●●●●●

●●●
●●● ●●●●●●●●

●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●

●

●●● ●●●●

●●● ●●

●●●
●
●●●●
●●
●●●

●
●

●
●●

●●●●●●
●●●●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●●●
●

●●●●
●●●●●●●●●

●●●
●●

●●●●
●●●●●

●●●●●●●
●●●●●●

●●●

●●●●●●●●●●
●●●●●
●●●●

●●●
●●
●●●●

●●●●●
●●

●

●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●
●●
●●●●
●●
●●
●●●
●●●●●●●●●●●●
●

●●●●
●●
●

●●●●●●●

●●●
●

●

●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●

●
●●●●●

●●●●
●
●●●●●
●●●●●●●●●

●●
●●●●●●
●●●●●●
●●●●●●●
●
●●●●●

●●●●
●●●●●●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●
●●●

●

●●●●●
●●●●●●

●●
●

●●●●
●

●●●

●●●●

●●●●●●
●●

●●

●●●●●●●●●●●●●●● ●●●●●
●●●●●●●
●
●●●●●

●

●
●
●●

●●●
●●●●

●●●
●

●●●●●

●● ●●●●
●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●
●

●●●●●

●●●
●

● ●●●
●

●●●● ●
●
●●●●●●

●●●●●
●

●●●●●●●

●
●

●●●●
●●●●●●●●●● ●●

●●●●●●●●●
●

●

●●●●●●●●

●●●
●

●

●● ●
● ●

●●●●●●●

●

●

●●●●●●●

●
●
●●
●●

●

●

●

●●●●●●
●●●●●
●●●●●

●●

●●●●●●
●

●●●●●●●●●●
●
●

●●●●●●●
●
●

●●

●
●●●

●●●●●●

●●●

●
●●
●

●●

●

●●●
●●●

●
●●●

●

●
●

●

●●●

●
●

●●● ●

●
●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●

●●

●●●●●●●●

●●●

●●
●●

●●●●●●
●●●●●

●

●●●●●
●

●

●

●

● ●

●

●●●●●

●●●
●

●

●

●
●

●● ●●●●

●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●
●●●●

●

●
●

●●●●●
●●●●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●
●
●●

●●●●

●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●●

●

●●●●●●●
●●●●

●●●●

●●●●●

● ●

●
●●●●●●●

●
●●●●

●●
●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●
●●●●●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●

●
●●●●

●●●●●

●●
●●●

●●●●●●●
●●●

●

●
●

●●●●●●●●●
●

●●

●●
●●●

●●●●●●●●

●

●

● ●

● ●●

●●●●●●●●

●

●●●●●●●●●●●
●●●●

●

●

●

●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●

●

●●●●●●●

●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●●●●
●

●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●
●●●

●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●● ●

●●

●●●
●●

●

●
●
●●●●

●
●

●
●●

●●●

●
●

●

●

●●●●● ●●

●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●

●●

●

●
●
●

●●●●
●●●

●

●
●●

●

●

●●

●

●● ●●●●● ●●●●●●●●● ●

●
●●● ● ●

●
●●●●

●

●●●●●
●
●●●●●●
●●●●
●●

●●●●●●●●●●●
●●●●●
●●●

●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●

●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●

●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●●

●●●●●●●●●

●●●●●
●●●●●●●
●●● ●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●●●●●●●●●

●●●
●●●●● ●●●●

●●●

●●
●

●●
●

●

●
●

●●●●
●●

●

● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●
●●●●●●●●

●●
●
●●

●●●●●
●● ●●

●●●●
●

●●●●●
●●● ●●●

●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●
●●●●●●●

●●● ●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●
●●● ●●●●●●●● ●●●● ●●●●●
●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●

●●●

●●●

●●●●
●●●

●

●

●●
●●●
●●●●

●●●●●●

●●●●●●●●●●
●●●●●
●

●●

●
●●●●●●●●●●●●●●●●●● ●
●●

● ●●●●●●

●●●
●●●●●●●●●●

●●●●●
●●

●●● ●
●
●

●●●●
●●

●●●
●●

●

●
●

●
●●●

● ●●

●●

●●

●●

●●●
●●
●●●

●●●●●●
●●●●●●●●

●●●●●

●●●

●●●●

●●●
●●●●●●

●●●
●

●●●●
●●
●●●

●

●●●
●
●●●

●● ●●●●●●●●●●●

●
●●

●●●
●
●●
●●●●
●

●

●
●●●●●

●●●
●●●

●●●●●●●
●

●

●●●●●●●●●●●●
●

●
●●

●

●●●●
●●●

●●

●●●●●

●
●

●●●●●●

●●●●●
●

●●●●

●
●

●●

●●●●●
●

●●

●●●

●

●●●
●●●

●●●
●●●

●

●
●●

●
●●

●
●●●●

●
●●

●

●

●●●●●●●●●

●
●

●●
●

●●●
●●●●

●●

●
●

●
● ●●●●●●●●●●●●

●●●●●●●● ●●●●●●● ●

●●●●●●

●●
●
●●
●●

●●●●
●●●●
●●
●●●●●●●●●

●

●●
●

●

●
●

●●●●●

●
●
●●●

●●●●●●

●

●

●

●

●
●
●

●

●

●●

●●●

●●●

●

●

●●
●●

●
●●●

●●
●

●

●

●

●
● ●

●●●●● ●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●

●●●●●●
●●●●●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●● ●●

●

●

●●●

●●

●

●

●●

●●

●

●●
●●

●

●●●

●●

●●●
●●
●

●●
●

●

●
●

●●●●●●●

●

●

●●
●●

●

●

●

●●●●
●

●

●●

●●●
●●●

●
●●●●

●

●

● ●
●

●●●
●

●

●●

●

●●●●●●●●●●
●●●●●●

●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●

●●●●●

●

●
●●

●●●
●●●

●●●
●●

●●
●●●●●●●●●●●

●●

●●●
●●●
●●●

●●●●●

●
●●

●

●●●●
●

●●
●●●●●

●●●●●●●

●●●●●●

●

●●●●●●●●●●●●
●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●
●

●●●●

●●●

●●●
●●●●
●●●●●

●●●●
●●●●●●

●●
●●●●●●
●●●●
●●●●
●●●●
●●●
●
●●●

●●

●●●●
●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●

●

●

●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●
●●
●●●●
●●●●

●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●●●●●●●●
●●●●●●

●●●●●●●● ●●●●●●●

●●●
●●

●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●
●

●●
●
●

●●●●●●●●●●●

●●●●
●●●●

●
●●●●●●●

●

●
●●●

●●
●●●●●

●●

●●●

●●●●●●●●●●●●●
●●●

●
●●●●●●
●●●●

●●
●●●●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●● ●

●●
●●●●●●●●●
●●●●●●●●●●●

●●
●●

●●●●

● ●●●●●●●●

●●●●●●●●●●●

● ●●●●
●

● ●●

●●●●●

●●●

●●●●●● ●●●

●

●●

●●
●

●●

●

●

●●

●
●

●

●●

●

●

●

●●

●
●
●

●

●●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●

●
●●

●●●

●

●●●●●●
●

●●●

●

●

●
●

●

● ●

●

●●●

●●

●

●●●●●●●●●

●

●

●● ●

●

●

●

●

●

●

●●●

●●●

●
●● ●

●●
●●●●●●●

●

●

●

●●

●
●

●●●●

●●●
●●●●● ●●

●●

● ●
● ●

●

●

●●

●●

●

●●●●●●

●

●

● ●

●

●●
●●

●●●
●●

●

●●

●

●●

●

●

●

●

●●

●●●

●●

●

●

●

● ●●●●●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●●●

●●

●

●

●●

●●

●●●

●

Figure 2.29: Accidents recorded in the Perth metropolitan area.

required in one case. Our implementation of the diffusion algorithm chooses δ = ε

by default, and for this choice, the diffusion estimator is as fast as the convolution
estimators. However, this also causes substantial bias in the diffusion estimates,
because the Western Australian network contains many urban road segments
shorter than δ = 2.8 km, and the diffusion algorithm approximates these segment
lengths by rounding upward to a multiple of δ. A reasonably accurate estimate is
obtained only when δ ≤ 0.05 km, but this inflates the computation time by several
orders of magnitude.

Computation of the fixed bandwidth convolution estimates took approximately
12 seconds, irrespective of σ. For adaptive estimation, computation time ranged
from 2 to 8 minutes, increasing with the number of discretised bandwidths m.

74 2.6. Fast kernel smoothing using 2D convolution

Figure 2.30: Adaptive-bandwidth intensity estimate for the accidents in metropol-
itan Perth using Jones-Diggle correction. Linear colour map with gamma-corrected
colour sequence. Intensity values are accidents per km. Map is 60 km wide.

Chapter 2. Kernel smoothing for network events 75

Table 2.2: Computation time (in minutes) of the diffusion algorithm for different
step-sizes (in km), the adaptive algorithm for different number of bins m, and
the convolution algorithm (U = uniform correction; J = Jones-Diggle correction),
applied to the Western Australian accident data with different bandwidths τ or σ
(in km).

τ or σ (km)
step size δ (km) 6.0 8.0 10.0 12.0 14.0

diffusion 0.05 60 107 165 240 330
0.10 8 14 22 30 42
0.15 2.5 4.2 6.5 9.2 12.5
0.20 1.2 2.0 3.0 4.1 5.5
0.25 0.7 1.1 1.6 2.2 3.0
0.30 0.5 0.8 1.1 1.4 1.8
1.0 0.2 0.2 0.2 0.2 0.2
2.0 0.2 0.2 0.2 0.2 0.2
3.0 0.2 0.2 0.2 0.2 0.2

convolution (U) 0.2 0.2 0.2 0.2 0.2
convolution (J) 0.2 0.2 0.2 0.2 0.2
adaptive m = 10 2.0 2.0 2.1 2.2 2.2

m = 50 7.1 7.1 7.3 6.8 6.1
m = 100 8.7 9.1 9.1 8.8 8.5

76 2.6. Fast kernel smoothing using 2D convolution

2.6.9.5 Accidents in the Perth Central Business District

Figure 2.31 shows accidents recorded in the Central Business District of the
city of Perth, defined as the rectangle [389.2845, 394.8112] × [6462.688, 6466.778]

km. There are 1355 accident locations; the network has a total length of 251.9 km;
the average accident density is 5.4 points per km.

Figure 2.32 shows a fixed-bandwidth estimate of the intensity using the uniform
correction, with cross-validated bandwidth σ = 0.091 km or about 90 metres. The
main north-south freeway stands out clearly.

Figure 2.31: Accidents recorded in the Central Business District of the city of
Perth.

Figures 2.33–2.35 below show several alternative styles of plotting the same
intensity values that are depicted in Figure 2.32.

In Figure 2.33, line segments are drawn with variable width, proportional to the
intensity function value. Figure 2.34 is a perspective view in the style of Okabe
and Sugihara (2012) in which the function values are represented by the heights
of vertical walls erected above each segment of the network.

Figure 2.35 shows two panels representing the fixed-bandwidth and adapt-

Chapter 2. Kernel smoothing for network events 77

Figure 2.32: Intensity estimate in the Perth CBD using fixed-bandwidth uniform
correction with automatically selected bandwidth σ = 0.091 km. Intensity values
mapped to colours.

ive estimates respectively as three-dimensional surfaces. We refer to these as
“heightened network” (HEN) plots. They are similar in style to those of Borruso
(2008), in that they portray a function defined on the two-dimensional plane as a
surface viewed in perspective. In our case, the function is simply the extension
of the estimator (2.14), (2.15), (2.43) or (2.44) to all locations u ∈ R2, which is an
intermediate result in the convolution method calculations. The surface height is
proportional to this function value; the surface colour also represents the function
value; and the network itself is overlaid onto the surface.

Figure 2.35 is a screenshot of an interactive 3D graphics tool which can be
viewed at http://www.stats.otago.ac.nz/~tdavies/wacbd_hen.html. The plots
can be controlled using the mouse; left-click and hold to rotate, scroll up/down to
zoom in/out.

The left panel of Figure 2.35 represents the fixed-bandwidth estimate described
above. The right panel is an adaptive estimate from the same data computed
using the partitioning approach detailed in Section 2.6.8 (using the fixed bandwidth
estimate as the pilot, and setting the global bandwidth at the same value used;
σ# = 0.091 km). Characteristically, we see a smoother adaptive estimate in areas

78 2.6. Fast kernel smoothing using 2D convolution

0

5

10

15

20

25

Figure 2.33: Intensity estimate in the Perth CBD using fixed-bandwidth uniform
correction with automatically selected bandwidth σ = 0.091 km. Intensity values
are proportional to line width.

of relatively low point density when compared to the fixed bandwidth estimate, with
taller peaks than the fixed bandwidth estimate in the most dense areas.

2.6.9.6 Findings

Intensity estimates for the Western Australian road accident data range from 0 to
40 accidents per km. The highest intensity values occur in the main conurbations
and along major highways.

The intensity of accidents is a measure of accident frequency (number of
accidents per km) rather than risk (probability of an accident occurring to a given
vehicle at this location). The intensity estimates may be useful for planning
emergency response, but need further analysis if they are to be used for road
safety research. Estimation of accident risk would require a denominator such as
the traffic volume (number of vehicles passing the given location per hour) and
explanatory variables such as speed limit.

In this analysis the choice of graphical display method for the intensity estimate
was quite influential. The intensity values could have been represented as vertical

Chapter 2. Kernel smoothing for network events 79

Figure 2.34: Perspective view of fixed-bandwidth uniform correction estimate.

Figure 2.35: A screenshot of the fixed and adaptive intensity estimates of the
Perth CBD data shown as interactive HEN plots. Accessible at the URL noted in
the text.

80 2.7. Summary

heights (e.g. Figure 2.15), colours (with different kinds of colour map shown in e.g.
Figure 2.24), line thicknesses (e.g Figure 2.33) or an interactive 3D graphic (e.g.
Figure 2.35). Naturally, the best choice regarding visualisation depends on the
complexity of the network and the variability in the estimated intensity values.

Instead of removing duplicate points which refer to the same accident, an
alternative would have been to count the number of vehicles involved in each
accident, and retain this as an attribute of the accident location. This would have
enabled separate study of single- and multiple-vehicle accidents. The number of
vehicles could also serve as a weight associated with each location: the weighted
kernel estimator would provide the spatially-varying number of vehicles involved in
accidents per unit length, as discussed in Section 2.6.6.1.

2.7 Summary

In this Chapter, we reviewed the current kernel intensity estimators for spatial
point patterns on linear networks and also proposed some new intensity estimators.

In Sections 2.3 and 2.4, we reviewed the equal-split intensity estimators (Okabe
et al., 2009; Okabe and Sugihara, 2012) and the adapted Jones-Diggle estimator
(Moradi et al., 2017) and their theoretical properties are also studied. A simulation
study confirms a better performance for adapted Jones-Diggle estimator (2.7) by
Moradi et al. (2017). We also applied the estimator (2.7) to a street crime data in
Chicago, US and a dataset of anti-social behaviour in Castellón, Spain in which
their spatially varying behaviour is represented in Figures 2.12 and 2.14.

The diffusion kernel estimator proposed by McSwiggan et al. (2017) was re-
viewed in Section 2.5 and later compared with the convolution method (definition
2.1) by (Rakshit et al., 2018). The convolution method is well defined in Sec-
tion 2.6 and its theoretical properties such as bias, variance and asymptotics
are studied. It is very fast to compute for any value of bandwidth. There is an
exact, tractable variance formula and a variance estimator which can easily be
computed. The calculation of leave-one-out estimates is also easy. Estimation
can easily be confined to a subregion of space. Compared to other techniques
which depend on path lengths in the network, the convolution method is much
less sensitive to changes or errors in the connectivity of the network. This may be
either an advantage or disadvantage in different contexts. It may be considered
inappropriate to allow mass to “tunnel” between parts of the network which are

Chapter 2. Kernel smoothing for network events 81

not interconnected; a similar issue arises in two-dimensional density estimation
(Barry and McIntyre, 2011). However this property also makes it much easier to
estimate spatio-temporal variation when the network itself is changing over time:
for example, urban road networks are continually being modified. We have also
analysed two big datasets of traffic accidents in Medellı́n, Colombia and Western
Australia, represented in Figures 2.4 and 2.5 respectively.

In general, the kernel smoothing methods need to deal with bandwidth selection,
which it is often selected based on some assumptions such as being Poisson
(cross-validation), stationary Cox, etc. Therefore, in Chapter 3, we discuss Voronoi
intensity estimators which are fully non-parametric and also propose an additional
smoothing to improve their general performance.

83

CHAPTER 3

Resample-smoothing of Voronoi intensity
estimators

3.1 Introduction

In point pattern analysis (van Lieshout, 2000; Diggle, 2003; Chiu et al., 2013;
Baddeley et al., 2015), exploratory investigation often starts with non-parametric
analysis of the spatial intensity of points. The intensity function, which is a first
order moment characterisation of the point process assumed to have generated
the data, reflects the abundance of points in different regions and may be seen as
a “heat map” for the events (see Chapter 2). For most datasets, it is not realistic to
assume that the underlying point process is homogeneous, i.e. that its intensity
function is constant; rather it is natural to start by assuming inhomogeneity.

The most prominent approach to non-parametric intensity estimation is un-
doubtedly kernel estimation that is widely discussed in Section 1.2.2.1 and in
Chapter 2. The degree of smoothing is controlled by a smoothing parameter,
bandwidth, and the resulting estimates heavily depend on the choice of bandwidth.
A small bandwidth may result in under-smoothing whereas a large bandwidth might
result in over-smoothing of the intensity. Data-based procedures for bandwidth
selection have been studied extensively (Diggle, 1985; Silverman, 1986; Berman
and Diggle, 1989; Scott, 1992; Wand and Jones, 1994; Jones et al., 1996; Loader,
1999) including some recent advances by Cronie and van Lieshout (2018) (see
Section 1.2.2.1). A further problem with kernel estimation is that, if there are wide

84 3.1. Introduction

variations in intensity across the spatial domain, it may be impossible to find a
single fixed bandwidth value which is satisfactory for smoothing every part of the
spatial domain. Consequently the bandwidth must be spatially-varying, giving
rise to a spatially “adaptive” kernel estimator (Diggle, 2003; Davies and Hazelton,
2010; Davies et al., 2016; Davies and Baddeley, 2018) at the cost of increased
complexity (see Section 1.2.2.2). Recently there has been increasing interest in
point patterns on linear networks (Okabe and Sugihara, 2012; Ang et al., 2012;
Baddeley et al., 2015; Rakshit et al., 2018). Kernel smoothing of network events
was already studied in Chapter 2.

As a consequence of underlying causes such as demography and human
mobility, it is quite common to encounter sharp boundaries between high and
low concentrations of events. For example, street crimes and traffic accidents
tend to happen in particularly busy streets, which may be surrounded by quiet
neighbourhoods. The classical kernel estimation approach is often unsuitable for
such types of data.

In this Chapter, echoing Barr and Schoenberg (2010), we argue that kernel-
based approaches may be unsatisfactory when there are sharp boundaries
between parts with high and low intensity. Fixed bandwidth kernel smoothing
results in over-smoothing in high-intensity areas, under-smoothing in low-intensity
areas, and a blurring of sharp boundaries (Baddeley et al., 2015). By using a
spatially adaptive kernel estimator we may reduce such problems when estimat-
ing the intensity function, but optimal bandwidth selection becomes even more
challenging and important (Davies and Hazelton, 2010).

As an alternative, one could consider an approach without any choice of tuning
parameters, e.g. a tessellation-based approach (van Lieshout, 2012; Schaap,
2007). One such approach is provided by Voronoi intensity estimation (Ord, 1978;
Barr and Schoenberg, 2010; Okabe and Sugihara, 2012), defined such that within
a given Voronoi cell of the point pattern the intensity estimate is set to the reciprocal
of the size of that cell (Okabe et al., 2000). When employing the Voronoi intensity
estimator, one thing that quickly becomes evident is that it often accentuates
local features too much, in particular in regions with high event density. This
reflects a previously observed phenomenon: adaptive estimators, such as the
Voronoi intensity estimator, may smooth too little whereas kernel estimators may
smooth too much in dense regions (Baddeley et al., 2015, Section 6.5.2). Hence,
one should be able to find some middle ground and we here aim at providing a

Chapter 3. Resample-smoothing of Voronoi estimators 85

contribution to that.

Section 4.2 provides the necessary preliminaries and we propose the resample-
smoothing of intensity estimators in Section 3.3. A simulation study is drawn
in Section 3.4 which assesses the performance of the proposed methodology
numerically. Traffic accident in an area of Houston, US and location of trees in a
Finnish forest are also analysed in Sections 3.5 and 3.6, respectively.

3.2 Setup

Throughout this Chapter we consider spatial point processes on general state
space S assumed to be a complete separable metric space with distance metric
d(·, ·), unless we specifically consider R2 or a linear network L. We further assume
there is a reference measure A 7→ |A| for A ⊆ S, which is sigma-finite and locally
finite.

3.2.1 Independent thinning

A key ingredient in our smoothing technique is independent thinning (Chiu
et al., 2013, Section 5.1): given some measurable retention probability function
p(u) ∈ (0, 1], u ∈ S, we run through the points of the point process X and delete a
point x ∈ X with probability 1− p(x), independently of the deletions carried out for
the other points of X. The resulting thinned process has intensity

λth(u) = p(u)λ(u), u ∈ S,

where λ(·) is the intensity of the original process X (Chiu et al., 2013, Chapter
5.1). For further details on the thinning of point processes, see e.g. Møller and
Schoenberg (2010) and Daley and Vere-Jones (2008, Section 11.3.).

It is worth mentioning that a Poisson process stays Poissonian after independent
thinning (Daley and Vere-Jones, 2008, Exercise 11.3.1) and, in addition, the
independent thinning of an arbitrary point process X with low retention probability
results in a point process which, from a distributional point of view, is approximately
a Poisson process (Baddeley et al., 2015, Section 9.2.2).

86 3.2. Setup

3.2.2 Voronoi tessellations

The next key ingredient in our estimation scheme is the Voronoi/Dirichlet tes-
sellation of a point pattern x = {x1, . . . , xn} ⊆ W ⊆ S (Chiu et al., 2013; Okabe
et al., 2000) which we briefly reviewed in Section 1.2.2.3. Generally speaking, a
tessellation of W is a tiling such that i) the union of all tiles constitutes all of W ,
and ii) the interiors of any two tiles have empty intersections.

The Voronoi/Dirichlet cell Vx associated with x ∈ x consists of all u ∈ S which
are closer to x than any y ∈ x \ {x}, i.e.

Vx = Vx(x,W) = {u ∈ W : d(x, u) ≤ d(y, u) for all y ∈ x \ {x}}, (3.1)

and the tiling {Vx}x∈x is termed the Voronoi/Dirichlet tessellation generated by x.
Clearly, the shape of each Vx depends on the distance d(·, ·) chosen for S and its
size, |Vx|, depends on the chosen reference measure | · |. Note that (3.1) is the
general version of (1.16).

3.2.3 Voronoi intensity estimation

In practice, it is often the case that events mainly occur in specific parts of
the study region, e.g. that accidents often happen in more crowded streets or on
specific parts of a highway, or that trees tend to grow mainly in specific parts of a
forest. In other words, there are sharp boundaries between parts with high and
low intensities. We argue, similarly to Barr and Schoenberg (2010) and Ogata
(2011), that in order not to blur such boundaries, it is preferable to employ an
adaptive intensity estimation scheme, which adapts locally to changes in the
spatial distribution of the events.

Here we focus on a particular kind of adaptive intensity estimator, the Voronoi
estimator, defined as follows.

Definition 3.1. For a point process X with intensity function λ(·), the Voronoi
intensity estimator of λ(u), u ∈ W ⊆ S, |W | > 0, is given by

λ̂V (u) = λ̂V (u;X,W) =
∑

x∈X∩W

1{u ∈ Vx}
|Vx|

=
∑

x∈X∩W

1{u ∈ Vx(X,W)}
|Vx(X,W)|

, u ∈ W,

(3.2)

where Vx is the Voronoi cell defined in (3.1). If X ∩W = ∅ then ρ̂V (u) = 0.

Chapter 3. Resample-smoothing of Voronoi estimators 87

It should be noted that the points of X which lie outside W may interact with
those inside W . Indeed, due to the way we define the Voronoi cells in expression
(3.1), the Voronoi intensity estimator neglects possible edge effects.

The Voronoi intensity estimator, which was introduced by Brown (1965) and
Ord (1978) in the context of Euclidean spaces has been also considered by
Baddeley (2007), Ogata (2011), Barr and Schoenberg (2010), and van Lieshout
(2012). In the context of linear networks, Okabe and Sugihara (2012) discussed a
Voronoi based density estimator, which they referred to as the network Voronoi cell
histogram, for the purpose of non-parametric density estimation on linear networks.
They further discussed geometric properties of Voronoi tessellations on linear
networks. Barr and Schoenberg (2010) focused on the planar case and particular
statistical properties.

3.3 Resample-smoothing of intensity estimators

Barr and Schoenberg (2010) pointed out that when there are abrupt changes in
intensity, kernel-based estimators may yield substantial bias and high variance, and
they showed that the Voronoi estimator can alleviate these problems. Unfortunately,
Voronoi estimators tend to under-smooth in very dense areas surrounded by nearly
empty neighbourhoods. This may be said about adaptive estimators in general;
there is a tendency of adapting too much to the particular features of the observed
point pattern x, rather than reflecting the features of the intensity function of
the underlying point process X. To see how the under-smoothing, i.e. the over
accentuating of local features of the Voronoi intensity estimator occurs, note that
for a pattern x, if x ∈ x is located in a very dense part then its Voronoi cell becomes
small and, consequently, λ̂V (u) = 1/|Vx| becomes very large for u ∈ Vx. A further
issue with the Voronoi intensity estimator is that its variance tends to be quite large,
thus resulting in quite unreliable estimates.

One may further ask whether there are data-dependent tessellations {Ci},⋃
i Ci = W , giving rise to estimators λ̂(u) =

∑
i βi1{u ∈ Ci}, βi > 0, which perform

better than the Voronoi intensity estimator. In addition, an advantage of the kernel
estimation approach is arguably in that it generates a smoothly varying intensity
estimate, at least when using certain kernels, as opposed to the possibly unnatural
“jumps” generated by the Voronoi estimator.

As a remedy for these issues, one suggestion is to follow Barr and Schoenberg

88 3.3. Resample-smoothing of intensity estimators

(2010) by considering the so-called centroidal Voronoi intensity estimator. A further
idea is to introduce a smoothing procedure for λ̂V (·), which would reduce the
unnaturally extreme peaks while smoothing out the “jumps”. We next propose
such a smoothing procedure, which we refer to as resample-smoothing.

3.3.1 Definition of Resample-Smoothing

Recall the independent thinning operation in Section 3.2.1. We will here focus
on the simple case where p(u) ≡ p ∈ (0, 1], u ∈ L, which is referred to as p-thinning
(Chiu et al., 2013, Section 5.1); we identify the case p = 1 with the unthinned
process X. From Section 3.2.1 we have that

λ(u) =
λth(u)

p
, u ∈ S,

where we recall the intensity λth(·) of the thinned process Xp. Hence, dividing by
p is exactly what is needed to compensate for the reduced intensity caused by
removing points.

We exploit this relationship in the following way. Given a point pattern x and an
estimator λ̂(·) of λ(u), u ∈ W , fix some p ∈ (0, 1] and generate m ≥ 1 independent
random point patterns, each obtained by randomly thinning the original point
pattern with the same retention probability p. This results in the thinned patterns
x1
p, . . . ,x

m
p , each for which the intensity is estimated. We now let the average

of these m estimated intensity functions, divided by p, be reported as the final
estimate; note the similarity with the approach considered by Baddeley (2007).
The resample-smoothed Voronoi intensity estimator is formally defined as follows
(Moradi et al., 2018a).

Definition 3.2. Consider a point process X ⊂ S with intensity function λ(·). Given
some p ∈ (0, 1] and m ≥ 1, the resample-smoothed Voronoi intensity estimator of
λ(u), u ∈ W ⊆ S, |W | > 0, is given by

λ̂Vp,m(u) = λ̂Vp,m(u;X,W) =
1

m

m∑
i=1

λ̂Vi (u)

p
, u ∈ W, (3.3)

where

λ̂Vi (u) = λ̂V (u;X i
p,W) =

∑
x∈Xi

p

1{u ∈ Vx(X i
p,W)}

|Vx(X i
p,W)|

Chapter 3. Resample-smoothing of Voronoi estimators 89

is the Voronoi intensity estimator based on the i-th thinned process X i
p of X ∩W .

Note that when p = 1, λ̂Vp,m(·) reduces to λ̂V (·) for any m ≥ 1.

Reflecting on the effect of the thinning procedure, for each thinned version we
obtain new Voronoi cells and consequently different locations of the jumps in the
corresponding intensity estimate λ̂Vi (·). This is what results in the “smoothing”
and it is also the remedy for choosing the specific tiling in a possibly wrong/rigid
way. Note also that we in fact simply are considering the average of m different
estimators of ρ(·).

3.3.2 Theoretical properties

We next look closer at some statistical properties of resample-smoothed Voronoi
intensity estimators. We stress that in the case of the restriction X ∩W of a point
process to a bounded region W 6= S, the Voronoi cells Vx(X,W) are different from
those when W = S. Hereby distributional properties of λ̂Vp,m(·) may be different
depending on how W is chosen.

Turning to the first order properties of λ̂Vp,m(·), we note that∫
W

λ̂Vp,m(u)du =
1

mp

m∑
i=1

∑
x∈Xi

p

∫
W
1{u ∈ Vx(X i

p,W)}du
|Vx(X i

p,W)|
=

1

mp

m∑
i=1

N(X i
p ∩W).

(3.4)

Hence, when p = 1 we have preservation of mass, i.e.
∫
W
λ̂Vp,m(u)du = N(X ∩W).

Taking expectations on both sides in (3.4) results in

E
[∫

W

λ̂Vp,m(u)du

]
=

1

m

m∑
i=1

p
∫
W
λ(u)du

p
=

∫
W

λ(u)du, (3.5)

i.e., for any m ≥ 1 and p ∈ (0, 1],
∫
W
λ̂Vp,m(u)du is an unbiased estimator of

E[N(X ∩W)].

We now consider the asymptotic scenario where the number of thinned patterns,
m ≥ 1, in the estimator (3.3) tends to infinity.

Lemma 3.3.1. Given fixed p ∈ (0, 1], for any point pattern x ⊂ W ⊆ S we have
that limm→∞ λ̂

V
p,m(u;x,W) a.s. exists.

Proof. Conditionally on x, all λ̂Vi (u) are non-negative i.i.d. random variables, hence
by the (conditional) law of large numbers, λ̂Vp,m(u) converges a.s. to the conditional

90 3.3. Resample-smoothing of intensity estimators

expectation of λ̂Vi (u) given x. Using (3.5), it yields that the latter conditional
expectation is a.s. finite.

Noting that E[λ̂Vp,m(u;X,W)] = E[λ̂V (u;Xp,W)]/p for any p ∈ (0, 1] and m ≥ 1,
we see that λ̂Vp,m(u;X,W) is unbiased for the estimation of the intensity of X if and
only if the original Voronoi intensity estimator is unbiased for the estimation of the
intensity of an arbitrary thinning Xp. There is unfortunately not much more to be
said without explicitly saying something about the distributional properties of X.

When X is stationary, all Voronoi cells have the same distribution and we may
speak of the typical Voronoi cell V0 = V0(X), which satisfies V0

d
= θ−xVx(X,S) for

any x ∈ X; here θ−x denotes the transformation/shift such that x is taken to the
origin 0 ∈ S.

Theorem 3.3.1. For a stationary point process X ⊂ W = S with intensity λ > 0,
the resample-smoothed Voronoi intensity estimator is unbiased for any choice of
p ∈ (0, 1] and m ≥ 1.

Proof. A p-thinning of X is again stationary with intensity pλ. By Daley and
Vere-Jones (2008, Expression (11.3.2)),

GθvXp(·) = G(θvX)p(·) = GθvX(p ·+1− p) = GX(p ·+1− p) = GXp(·), v ∈ S,

where GX(·) is the generating functional of X. Using Last (2010, Corollary 8.7) we
immediately obtain that E[λ̂Vp,m(u)] = E[λ̂V (u;Xp, S)]/p = pλ/p = λ.

As our main interest lies in estimating non-constant intensity functions, stationary
models are of limited practical interest. We next turn to inhomogeneous Poisson
processes in Euclidean spaces.

Theorem 3.3.2. Let X ⊆ W = S = Rd, d ≥ 1, be a Poisson process with intensity
function λ(u), u ∈ Rd, which satisfies the Lipschitz condition that for some µu > 0,
|λ(v)− λ(u)| ≤ µuε for v ∈ B(u, ε) and ε > 0 sufficiently small; B(u, ε) denotes the
Euclidean ball with centre u and radius ε > 0. Denoting by Cu(X) the Voronoi cell
containing u ∈ Rd, assume further that mκ := supu∈Rd E[|Cu(X)|−κ] <∞ for some
κ ≥ 1 + 1/d. Then, for any u ∈ Rd, p ∈ (0, 1] and m ≥ 1,∣∣∣λ(u)− E

[
λ̂Vp,m(u)

]∣∣∣ ≤ Cp−1(pλ(u))−1/d log(pλ(u))2/d

Chapter 3. Resample-smoothing of Voronoi estimators 91

for some C > 0 that depends on the intensity. The right hand side tends to 0 as
the intensity tends to infinity.

Proof. We denote by xu(X) ∈ X the centre of the Voronoi cell Cu(X), the cell
containing u ∈ Rd. Let ε > 0, µ = µu and λ− = minv∈B(u,ε) λ(v), such that
λ(v)/2 ≤ λ(v)− µε ≤ λ− ≤ λ(v) on B(u, ε). Let X− be obtained by independently
removing/adding points at rate λ− − λ(v), v ∈ Rd. Note that X− is a homogeneous
Poisson process with intensity λ− and X− ⊆ X on B(u, ε) a.s..

We call Voronoi neighbours in some configuration x the centres of cells of x
which are neighbours of Cu(x). Denote by R(x) the maximal Euclidean distance
between xu(x) and its Voronoi neighbours. Remark that if R(x) ≤ ε, then Cu(x) ⊆
B(u, ε). One can find a finite number of balls such that if any such ball contains a
point of x, then R(x) ≤ 1. Hence, using the void probabilities of X, we have at the
scale ε for X that

P(R(X) ≥ ε) ≤ Cd e−cdλ−ε
d

for some Cd, cd > 0.

Now, let Ω be the event that X and X− coincide on B(u, ε) and R(X) ≤ ε.
Conditionally on Ω, Cu(X) = Cu(X−) ⊆ B(u, ε). We obtain

1{Ωc} ≤ 1{R(X)>ε} +
∑

x∈X−∩B(u,ε)

1{x eliminated at thinning},

P(Ωc) ≤ P(R(X) > ε) +

∫
B(u,ε)

µεdx ≤ Cd e−cdλ−ε
d

+cεdµε.

Let further κ′ = (1 − κ−1)−1 ≤ d + 1. By Hölder’s inequality and Theorem 1 we
have that∣∣∣E [λ̂V (u)

]
− λ(u)

∣∣∣ ≤ ∣∣∣∣E [1{Ω} 1

|Cu(X)|

]
− λ(u)

∣∣∣∣+ E
[
1{Ωc}

1

|Cu(X)|

]
≤
∣∣∣∣E [1{Ω} 1

|Cu(X−)|
− λ(u)

]∣∣∣∣+ (E|Cu(X)|−κ)1/κP(Ωc)1/κ′

≤E
[

1

|Cu(X−)|
− λ−

]
︸ ︷︷ ︸

=0

+1{Ωc}
1

|Cu(X−)|
+ |λ(u)− λ−|

+m(cdµε
dε+ Cd e−cdλ−ε

d

)1/κ′

≤µε+ 2m(cdµε
dε+ Cd e−cdλ−ε

d

)1/κ′ .

92 3.3. Resample-smoothing of intensity estimators

Setting ε = λ
−1/d
− log(λ−)2/d and recalling that λ(u)/2 ≤ λ−, using that κ′ ≤ d + 1,

proves the result for the original Voronoi intensity estimator.

As a p-thinning Xp, p ∈ (0, 1], of X is a Poisson process with intensity pλ(·), we
finally note that

p|E[λ̂Vp,m(u)]− λ(u)| =
∣∣∣E [λ̂V (u;Xp,Rd)

]
− pλ(u)

∣∣∣
≤ µp−1ε+ 2m(cdµp

−1εdε+ Cd e−cdpλ(u)εd)1/κ′ ,

since E|Cu(Xp)|−κ ≤ E|Cu(X)|−κ.

Remark 3.3.1. The moment condition, and the Lipschitz assumption on λ can be
relaxed to weaker versions and still have the left hand side go to 0, but the rate
would be different.

It has been conjectured that the size of the typical cell of a homogeneous
Poisson process follows a (generalised) Gamma distribution (see e.g. Chiu et al.
(2013)); note in particular Lemma 3.3.2. The moment condition in the statement of
the above result, i.e. mκ <∞, would be satisfied if this is indeed the case. Under
such a conjectured distribution, Barr and Schoenberg (2010) showed that in the
planar case the original Voronoi intensity estimator is ratio-unbiased for a given
class of intensity functions.

Regarding the variance of λ̂Vp,m(u), the next result shows that by thinning as
much as possible we also obtain a variance of the resample-smoothed Voronoi
estimator which is close to 0. Hence, for cases where the estimator is unbiased
we should, in theory, smooth as much as possible, in combination with choosing
m as large as possible.

Theorem 3.3.3. Consider a point processX observed inW ⊆ S, with var
[
λ̂V (u)

]
<

∞ for any u ∈ W . For any p ∈ (0, 1] and m ≥ 1 we have that

var
[
λ̂Vp,1(u)

]
/m ≤ var

[
λ̂Vp,m(u)

]
≤ var

[
λ̂Vp,1(u)

]
,

and var
[
λ̂Vp,m(u)

]
converges as m → ∞ to the covariance between λ̂V1 (u)/p =

λ̂V (u;X1
p ,W)/p and λ̂V2 (u)/p = λ̂V (u;X2

p ,W)/p. Moreover, for a fixed m ≥ 1 and a

bounded W it follows that limp→0 var
[
λ̂Vp,m(u)

]
= 0.

Chapter 3. Resample-smoothing of Voronoi estimators 93

Proof. Note first that

var
[
λ̂Vp,m(u)

]
=

1

(mp)2

m∑
i=1

var
[
λ̂V1 (u)

]
+

1

(mp)2

∑
i 6=j

cov
[
λ̂Vi (u), λ̂Vj (u)

]
(3.6)

=
1

m
var
[
λ̂V1 (u)/p

]
+
m− 1

m
cov

[
λ̂V1 (u)/p, λ̂V2 (u)/p

]
= var

[
λ̂Vp,1(u)

] 1 + (m− 1) corr
[
λ̂V1 (u), λ̂V2 (u)

]
m

,

where cov [·] and corr [·, ·] denote covariance and correlation, respectively. Since
the variance is non-negative, by (3.6) we obtain that corr

[
λ̂V1 (u), λ̂V2 (u)

]
≥ −1/(m−

1) for any m ≥ 1, i.e. the correlation is non-negative, whereby

var
[
λ̂Vp,1(u)

]
/m ≤ var

[
λ̂Vp,m(u)

]
≤ var

[
λ̂Vp,1(u)

]
. (3.7)

Also, letting m→∞ in (3.6) we obtain cov
[
λ̂V1 (u), λ̂V2 (u)

]
/p2 since var

[
λ̂V1 (u)

]
<

∞.

Regarding the variance tending to 0, it is sufficient to show it for m = 1 since
var
[
λ̂Vp,m(u)

]
≤ var

[
λ̂Vp,1(u)

]
. Let (Xp)p∈(0,1] be a coupling such that Xp is non-

increasing in terms of inclusion: assign independent U(0, 1)-distributed labels to
the points of X and generate Xp by keeping all points with labels smaller than
p. For a bounded W there is a.s. some p0 ∈ (0, 1) such that Xp = ∅ for all
p ∈ (0, p0). Hence, λ̂Vp,1(u) = λ̂V (u;Xp,W)/p = 0/p = 0 (by definition) for such p,
which means that the limit λ̂Vp,1(u) ↓ 0 is deterministic. Since there are p ∈ (0, 1]

such that E[λ̂Vp,1(u)2] <∞, by the dominated convergence theorem it follows that

var
[
λ̂Vp,1(u)

]
→ 0 as p→ 0.

From the proof of Theorem 3.3.1 we have that the p-thinning Xp of a stationary
point process X with intensity λ > 0 is again stationary, but with intensity pλ. For
Xp, the distribution P̄p(·) of the size of the cell that covers u is the same for any
u ∈ S and it is given by (see Last (2010, Section 8) and Schneider and Weil (2008,
Theorem 10.4.1.))

P̄p(A) = pλ

∫
A

tP|V0(Xp)|(dt), A ⊆ [0,∞), (3.8)

where P|V0(Xp)|(·) is the distribution of the typical cell size. Besides giving us the
unbiasedness in Theorem 3.3.1, i.e.

E[λ̂Vp,m(u)] = p−1pλ

∫ ∞
0

t−1tP|V0(Xp)|(dt) = λ,

94 3.3. Resample-smoothing of intensity estimators

the relationship (3.8) further yields

E[λ̂Vp,1(u)2] =
1

p2

∫ ∞
0

1

t2
P̄p(dt) =

λ

p

∫ ∞
0

1

t
P|V0(Xp)|(dt) =

λ

p
E0[1/|V0(Xp)|],

var
[
λ̂Vp,1(u)

]
=
λ

p
E0[1/|V0(Xp)|]− λ2.

Through the proof of Theorem 3.3.3 we obtain

var
[
λ̂Vp,m(u)

]
= λ

(
E0[1/|V0(Xp)|]

p
− λ
) 1 + (m− 1)corr

[
λ̂V (u;X1

p , S), λ̂V (u;X2
p , S)

]
m

,

Unfortunately, we cannot get much further in the general setup; the problem lies in
that P|V0|(·) typically is not known.

There is, however, one particular case where we can say a bit more and that is
for Poisson processes on R.

Lemma 3.3.2. For a Poisson process on R with intensity λ > 0, for any p ∈
(0, 1] and m ≥ 1 the typical cell size of Xp follows an Erlang/Gamma distribution
with shape and rate parameters 2 and 2pλ, respectively, and var

[
λ̂Vp,m(u)

]
≤

var
[
λ̂Vp,1(u)

]
= λ2.

Proof. Recall that Xp is a homogeneous Poisson process with intensity pλ. For
a typical point of Xp, let ∆− and ∆+ be the distances to the point’s nearest
neighbours to the left and to the right, respectively; they are independent and
exponentially distributed with mean pλ. Since ∆−/2 and ∆+/2 are independent and
exponentially distributed with mean 2pλ, the typical cell size, ∆−/2 + ∆+/2, follows
an Erlang/Gamma distribution with shape parameter 2 and rate 2pλ, whereby the
density of P|V0(Xp)|(·) is given by f|V0(Xp)|(t) = (2pλ)2t e−2pλt. Through (3.8) we now
obtain

E[λ̂Vp,1(u)2] =
λ

p
E0[1/|V0(Xp)|] =

λ

p

∫ ∞
0

1

t
(2pλ)2t e−2pρt dt

= 4pρ3

∫ ∞
0

e−2pλt dt =
4pλ3

2pλ
= 2λ2, (3.9)

i.e., var
[
λ̂Vp,m(u)

]
≤ var

[
λ̂Vp,1(u)

]
= 2λ2 − λ2 = λ2 by Theorem 3.3.3.

Empirically, we have consistently observed that for a large enough m, the
variance of ρ̂Vp,m(u) decreases with p, for u ∈ W located a given distance from the
boundary of W ⊆ S. As this is partly justified by Theorem 3.3.3, we are led to the
following conjecture.

Chapter 3. Resample-smoothing of Voronoi estimators 95

Conjecture 3.3.1. For an arbitrary point process X ⊂ S and a large enough m,
the variance of ρ̂Vp,m(u) is a decreasing function of p ∈ (0, 1]. In particular, if ρ̂Vp,m(u)

is unbiased, this means that MISE is decreasing with p.

3.3.3 Choosing the smoothing parameters

When using the resample-smoothed Voronoi intensity estimator (3.3) in practice,
one needs to specify the smoothing parameters m ≥ 1 and p ∈ (0, 1] prior to
finding the intensity estimate. We next discuss how to obtain proper choices for m
and p.

3.3.3.1 Choosing the number of thinnings

Lemma 3.3.1 tells us that for fixed p ∈ (0, 1], k ≥ 1 and any point pattern
x ⊂ W ⊆ S we have that λ̂Vp,m(u;x,W) converges a.s. as m→∞. The question
that remains, however, is for which m ≥ 1 we are sufficiently close to the limit. In
our numerical experiments in Section 3.4 we illustrate that the estimated bias and
variance of λ̂Vp,m(u) do not change significantly for m ≥ 200. Hence, we propose to
fix m = 200 and proceed by finding a proper choice for p ∈ (0, 1].

3.3.3.2 Choosing retention probability

The selection of p ∈ (0, 1] is clearly the more delicate matter here; essentially
we are faced with problems similar to those of choosing bandwidths in kernel
estimation.

Through our numerical experiments (see Section 3.4) we have found that the
choice p ∈ [0.1, 0.3] always seems to generate the best intensity estimates in the
sense that the variance-bias-tradeoff is taken into account by keeping both the
bias and variance relatively small. The lower limit 0.1 is based on our observation
that the removal of more than 90% of the points per thinning might generate too
flat estimates in some cases; from Section 3.4, Theorem 3.3.3 and Conjecture
3.3.1 it seems that the smaller the p, the better the estimate. We refer to the choice
of m = 200 and p ∈ [0.1, 0.3] as our rule-of-thumb.

We also propose a cross-validation approach to select p when a data-driven
approach is preferred to the rule-of-thumb (see (1.12)). However, if the value
obtained for p through the cross-validation would deviate too much from the rule-

96 3.4. Numerical experiments

of-thumb, we advise to proceed with the rule-of-thumb; see the log-Gaussian Cox
process example in Section 3.4 for a situation where this occurs.

3.3.4 Large scale data and sparsity

In general, when the number of events, n, is very large for an observed point
pattern x = {x1, . . . , xn}, it is often natural to consider an adaptive intensity
estimator as the scales of intensity likely vary a lot.

It may not be computationally feasible to compute λ̂Vp,m(·), p ∈ (0, 1], for an
arbitrary m ≥ 1 (or any other intensity estimator for that matter). An alternative way
of exploiting the proposed setup is to consider λ̂Vp0,m(·) for some p0 ∈ [0.1, 0.3] and
m = 1. This means that we would introduce sparsity by only having to generate
Voronoi cells for 10–30% of the original number of points. The results in Section
3.4 indicate how good an estimate one would typically obtain. Moreover, if the
computation of λ̂Vp0,1(·) is reasonably quick, one could generate another estimate
λ̂Vp0,1(·) and average over these to obtain λ̂Vp0,2(·). One could then continue like this
in a stepwise fashion, given a total computation timeframe.

3.4 Numerical experiments

As previously pointed out, we assess the performance of our intensity estimation
approach numerically, which we choose to do in the Euclidean setting.

In our simulation study, we consider four different types of models with varying
degrees of change in intensity and spatial interaction; clustering, spatial random-
ness and regularity. For each model we use 500 realisations on W = [0, 1]2 to
generate numerical estimates of relevant quantities such as bias, variance, In-
tegrated Variance (IV), Integrated Square Bias (ISB) and Integrated Absolute
Bias (IAB) for ρ̂Vp,m(u), u ∈ W ; recall that Mean Integrated Square Error (MISE) is
obtained as the sum of IV and ISB. We also provide a comparison with the kernel
intensity estimator under the uniform correction (1.8) and using two different band-
width selection methods (1.12) and (1.13) (Loader, 1999; Cronie and van Lieshout,
2018). The resample-smoothed Voronoi estimators in the two-dimensional plane
and on a linear network were implemented in the R language using the package
spatstat (Baddeley et al., 2015) and will be released publicly in a future version
of spatstat. Our simulation experiments and figures were generated using this

Chapter 3. Resample-smoothing of Voronoi estimators 97

implementation.

The overall conclusion is that we clearly reduce the estimation errors by resample-
smoothing the Voronoi intensity estimator. Moreover, the cross-validation approach
to selecting p on average yields slightly poorer intensity estimates than the rule-of-
thumb, in particular if the model is clustered.

3.4.1 Homogeneous Poisson process

Here we consider a homogeneous Poisson process X ⊂ W = [0, 1]2 with
intensity λ = 60. Table 3.1 provides estimates of IAB, ISB and IV for λ̂Vp,m(u),
u ∈ W , m = 200, 300, 400, p = 0.1, . . . , 1; recall that we use 500 realisations of
X. Indeed, the bias seems fairly stable over the range of values for p and the
variance is clearly decreasing with p; choosing p according to the rule-of-thumb
keeps MISE small. For illustrational purposes, in Figure 3.1 we provide estimation
error plots for one of the realisations, for p = 0.2 and p = 1 with m = 200, and one
can clearly see the gain of the resample-smoothing; note that the under-estimation
occurs in the empty regions. In addition, we provide plots of the estimated bias
and variance for p = 0.1, 0.3, 0.5, 0.7, 0.9, 1 when m = 200, together with estimated
bias and variance for kernel intensity estimate λ̂U(u) considering both bandwidth
selection method (1.12) and (1.13), and they essentially confirm what has been
observed in Table 3.1. See Figures 3.2 and 3.3.

Turning to the cross-validation approach to selecting p for m = 200, based on
100 realisations of the model, we obtain IAB = 4.9, ISB = 30.3 and IV = 255 which
are in the range of what one obtains when p is fixed in (0.1, 0.3). In Table 3.2 we
further provide the 100 selected values for p and we see that the majority of the
selected values for p fall within the range of our rule-of-thumb. Comparing with
kernel estimation under uniform edge correction, using Poisson likelihood cross-
validation (1.12) to select the bandwidth, we obtain IAB = 0.24, ISB = 0.11 and
IV = 126.05. By instead employing the bandwidth selection method (1.13) (Cronie
and van Lieshout, 2018), we obtain IAB = 0.87, ISB = 1.12 and IV = 688.25.

98 3.4. Numerical experiments

Table 3.1: Estimates of IAB, ISB and IV for λ̂Vp,m(u), u ∈ W = [0, 1]2, m =

200, 300, 400, p = 0.1, . . . , 1, based on 500 realisations of a homogeneous Poisson
process in W = [0, 1]2 with intensity λ = 60.

IAB ISB IV

p

m 200 300 400 200 300 400 200 300 400

.1 5.7 5.7 5.7 43.5 43.2 43.0 158.4 154.8 152.5

.2 4.6 4.6 4.6 28.4 28.5 28.4 264.1 260.3 257.9

.3 3.9 3.9 3.9 22.5 22.2 22.2 375.3 370.6 368.8

.4 3.5 35 3.5 19.7 19.6 19.6 490.6 488.8 487.8

.5 3.2 3.2 3.2 18.1 18.1 18.1 672.0 623.9 622.9

.6 3.0 3.0 3.0 17.1 17.1 17.0 781.9 779.4 779.0

.7 2.9 2.9 2.9 16.5 16.5 16.5 960.0 958.7 958.8

.8 2.9 2.9 2.9 16.0 16.0 16.0 1172.2 1171.8 1171.1

.9 2.9 2.9 2.9 15.8 15.8 15.8 1422.2 1419.6 1418.9
1 2.9 2.9 2.9 15.8 15.8 15.8 1733.2 1733.2 1733.2

0
10

20
30

40
50

60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

0
20
0

40
0

60
0

80
0

10
00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

Figure 3.1: Estimation error plots for a realisation of a homogeneous Poisson
process X in W = [0, 1]2 with intensity λ = 60. Left : p = 0.2 and m = 200. Right :
p = 1.

Chapter 3. Resample-smoothing of Voronoi estimators 99

Table 3.2: Cross-validation selections of p for m = 200 in a geometric sequence,
based on 100 realisations of a homogeneous Poisson process in W = [0, 1]2 with
intensity λ = 60.

p 0.10 0.13 0.18 0.24 0.33 0.44 0.59 0.80
Frequency 63 15 5 8 3 4 2 0

3.4.2 Inhomogeneous Poisson process

More interestingly, we next consider 500 realisations of an inhomogeneous
Poisson process X ⊆ W = [0, 1]2 with intensity λ(x, y) = |10 + 90 sin(16x)|; the
expected total point count is 58.6. Table 3.3 provides estimates of IAB, ISB and
IV for λ̂Vp,m(u), u ∈ W , m = 200, 300, 400, p = 0.1, . . . , 1. Moreover, in Figure 3.4
we provide estimation error plots for one of the realisations, for p = 0.2 and p = 1

with m = 200, and, we also provide plots of the estimated bias and variance for
p = 0.1, 0.3, 0.5, 0.7, 0.9, 1 and m = 200. See Figures 3.5 and 3.6.

Table 3.3: Estimates of IAB, ISB and IV for λ̂Vp,m(u), u ∈ W = [0, 1]2, m =

200, 300, 400, p = 0.1, . . . , 1, based on 500 realisations of an inhomogeneous Pois-
son process on W = [0, 1]2 with intensity λ(x, y) = |10 + 90 sin(16x)|.

IAB ISB IV

p

m 200 300 400 200 300 400 200 300 400

.1 25.6 25.6 25.6 892.3 891.8 891.7 154.2 150.1 147.6

.2 25.5 25.5 25.5 882.8 883.2 883.3 249.1 247.3 245.6

.3 25.6 25.5 25.5 881.5 881.5 881.5 360.1 356.3 356.2

.4 25.5 25.5 25.5 878.8 879.0 879.0 479.9 477.2 475.0

.5 25.5 25.5 25.5 872.6 872.5 872.6 609.8 609.6 609.8

.6 25.4 25.4 25.4 862.7 862.7 862.7 762.6 764.3 764.1

.7 25.2 25.2 25.2 849.9 850.0 850.0 952.0 948.3 949.0

.8 25.0 25.0 25.0 835.1 834.8 834.8 1171.9 1172.3 1172.1

.9 24.7 24.7 24.7 817.7 817.6 817.6 1440.1 1440.9 1440.0
1 24.4 24.4 24.4 799.3 799.3 799.3 1783.8 1783.8 1783.8

100 3.4. Numerical experiments

−2
0

−1
0

0
10

20

−2
0

−1
0

0
10

20

−2
0

−1
0

0
10

20

−2
0

−1
0

0
10

20

−2
0

−1
0

0
10

20

−2
0

−1
0

0
10

20

−2
0

−1
0

0
10

20

−2
0

−1
0

0
10

20

Figure 3.2: Estimated bias for λ̂Vp,m(u) and λ̂U(u), u ∈ W = [0, 1]2, m = 200, based
on 500 realisations of a homogeneous Poisson process X ⊂ W = [0, 1]2 with in-
tensity λ = 60. From top-left to bottom-right: λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1,
and λ̂U(u) using bandwidth selection (1.12) and (1.13).

Chapter 3. Resample-smoothing of Voronoi estimators 101

50
00

10
00
0

15
00
0

50
00

10
00
0

15
00
0

50
00

10
00
0

15
00
0

50
00

10
00
0

15
00
0

50
00

10
00
0

15
00
0

50
00

10
00
0

15
00
0

50
00

10
00
0

15
00
0

50
00

10
00
0

15
00
0

Figure 3.3: Estimated variance for λ̂Vp,m(u) and λ̂U(u), u ∈ W = [0, 1]2, m = 200,
based on 500 realisations of a homogeneous Poisson process X ⊂ W =

[0, 1]2 with intensity λ = 60. From top-left to bottom-right: λ̂Vp,m(u) with p =

0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth selection (1.12) and (1.13).

102 3.4. Numerical experiments

−5
0

0
50

10
0

15
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
20
0

40
0

60
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20
40

60
80

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.4: True intensity and estimation error plots for a realisation of an
inhomogeneous Poisson process on W = [0, 1]2 with intensity λ(x, y) = |10 +

90 sin(16x)|. Left : p = 0.2 and m = 200. Middle: p = 1, Right : True intensity.

Turning to the cross-validation approach to selecting p based onm = 200 and 100

realisations of the model, we obtain IAB = 25.5, ISB = 885.2 and IV = 218.5, with
the majority of the selected p’s coinciding with the rule-of-thumb (see Table 3.4).
Comparing with kernel estimation under uniform edge correction, using Poisson
likelihood cross-validation (1.12) to select the bandwidth, we obtain IAB = 25.16,
ISB = 853.24 and IV = 158.00. By instead employing the bandwidth selection
(1.13), we obtain IAB = 24.43, ISB = 797.02 and IV = 636.63.

Hence, the conclusions here are essentially the same as for the homogeneous
Poisson process in Section 3.4.1, with the main difference arguably being that
inhomogeneity enforces slightly harder thinning in the cross-validation.

Table 3.4: Cross-validation selections of p in a geometric sequence for m = 200,
based on 100 realisations of an inhomogeneous Poisson process in W = [0, 1]2

with intensity λ(x, y) = |10 + 90 sin(16x)|.

p 0.10 0.13 0.18 0.24 0.33 0.44 0.59 0.80
Frequency 69 15 11 2 0 1 0 2

Chapter 3. Resample-smoothing of Voronoi estimators 103

−6
0

−4
0

−2
0

0
20

40
60

−6
0

−4
0

−2
0

0
20

40
60

−6
0

−4
0

−2
0

0
20

40
60

−6
0

−4
0

−2
0

0
20

40
60

−6
0

−4
0

−2
0

0
20

40
60

−6
0

−4
0

−2
0

0
20

40
60

−6
0

−4
0

−2
0

0
20

40
60

−6
0

−4
0

−2
0

0
20

40
60

Figure 3.5: Estimated bias for λ̂Vp,m(u) and λ̂U(u), u ∈ W = [0, 1]2, m = 200, based
on 500 realisations of an inhomogeneous Poisson process X ⊆ W = [0, 1]2 with
intensity ρ(x, y) = |10 + 90 sin(16x)|. From top-left to bottom-right: λ̂Vp,m(u) with
p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth selection (1.12) and (1.13).

104 3.4. Numerical experiments

50
00

10
00
0

15
00
0

20
00
0

50
00

10
00
0

15
00
0

20
00
0

50
00

10
00
0

15
00
0

20
00
0

50
00

10
00
0

15
00
0

20
00
0

50
00

10
00
0

15
00
0

20
00
0

50
00

10
00
0

15
00
0

20
00
0

50
00

10
00
0

15
00
0

20
00
0

50
00

10
00
0

15
00
0

20
00
0

Figure 3.6: Estimated variance for λ̂Vp,m(u) and λ̂U(u), u ∈ W = [0, 1]2, m = 200,
based on 500 realisations of an inhomogeneous Poisson process X ⊆ W = [0, 1]2

with intensity ρ(x, y) = |10 + 90 sin(16x)|. From top-left to bottom-right: λ̂Vp,m(u) with
p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth selection (1.12) and (1.13).

Chapter 3. Resample-smoothing of Voronoi estimators 105

3.4.3 Log-Gaussian Cox process

Turning to the scenario where the underlying point process exhibits cluster-
ing, we next consider 500 realisations of a log-Gaussian Cox process X ⊆
W = [0, 1]2 where the driving Gaussian random field has mean function (x, y) 7→
log(40| sin(20x)|) and covariance function ((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1) −
(x2, y2)‖/0.1}. Hereby, the intensity is given by ρ(x, y) = 40| sin(20x)| e1. Table
3.5 provides estimates of IAB, ISB and IV for ρ̂Vp,m(u), u ∈ W , m = 200, 300, 400,
p = 0.1, . . . , 1 and we see that the rule-of-thumb, i.e. p ∈ [0.1, 0.3], seems to be the
preferable choice. In Figure 3.7 we provide estimation error plots for one of the
realisations, for p = 0.2 and p = 1 with m = 200, and plots of the estimated bias
and variance for p = 0.1, 0.3, 0.5, 0.7, 0.9, 1 and m = 200 are also provided in the
Figures 3.8 and 3.9. Here it becomes visually clear that the resample smoothing
is improving the estimation quite significantly.

The cross-validation approach to selecting p based on m = 200 and 100 real-
isations of the model yields IAB = 28.4, ISB = 1118.2 and IV = 17207.5, which
may be comparable to the choice p ≈ 0.5. In Table 3.6 we further provide the 100

selected values for p. The phenomenon that too little smoothing tends to be ap-
plied (p is mainly chosen large) is not extremely surprising; as our cross-validation
approach is based on a Poisson process likelihood function, it treats a realisation
x of X as a realisation of a Poisson process which has the corresponding realisa-
tion of the driving (random) intensity field as intensity function. In other words, it
tries to perform state estimation, i.e. it tries to reconstruct each realisation of the
driving intensity field through x. This phenomenon, and that the Poisson process
likelihood cross-validation is not performing well for clustered inhomogeneous
point processes, has previously been observed in the context of kernel intensity
estimation (Cronie and van Lieshout, 2018). Hence, if one suspects that there is
clustering in addition to inhomogeneity, or if the cross-validation generates large
values for p, then it is wiser to stick with the proposed rule-of-thumb, p ∈ [0.1, 0.3].
In fact cross-validation generated deviations from the rule-of-thumb may be seen
as a possible indication of clustering or inhibition.

Comparing with kernel estimation under uniform edge correction, using Poisson
likelihood cross-validation (Loader, 1999; Baddeley et al., 2015) to select the
bandwidth, we obtain IAB = 27.75, ISB = 1031.03 and IV = 9952.85. By instead
employing the bandwidth selection method of Cronie and van Lieshout (2018), we

106 3.4. Numerical experiments

obtain IAB = 28.97, ISB = 1117.94 and IV = 3856.79.

Table 3.5: Estimates of IAB, ISB and IV for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m =

200, 300, 400, p = 0.1, . . . , 1, based on 500 realisations of a log-Gaussian Cox
process in W = [0, 1]2 with mean function (x, y) 7→ log(40| sin(20x)|) and
((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1) − (x2, y2)‖/0.1} as covariance function for
the driving random field.

IAB ISB IV(×102)

p

m 200 300 400 200 300 400 200 300 400

.1 29.5 29.5 29.5 1181.5 1181.9 1180.9 48.8 48.8 48.7

.2 28.8 28.8 28.8 1127.3 1127.4 1127.3 87.8 87.2 88.0

.3 28.2 28.2 28.2 1081.4 1081.7 1081.6 123.8 122.6 123.1

.4 27.6 27.6 27.6 1038.8 1039.2 1039.4 153.2 153.0 152.6

.5 27.1 27.1 27.1 1000.1 999.6 999.7 181.3 182.2 182.0

.6 26.5 26.5 26.5 963.9 963.7 963.5 212.4 212.5 212.1

.7 26.0 26.0 26.0 930.5 930.4 930.6 243.1 243.0 243.2

.8 25.6 25.6 25.6 901.1 900.6 900.7 278.8 279.2 279.3

.9 25.2 25.2 25.2 874.4 874.3 874.2 321.4 321.5 320.9
1 24.7 24.7 24.7 852.3 852.3 852.3 371.4 371.4 371.4

Table 3.6: Cross-validation selections of p in a geometric sequence for m = 200,
based on 100 realisations of a log-Gaussian Cox process in W = [0, 1]2 with mean
function (x, y) 7→ log(40| sin(20x)|) and covariance function ((x1, y1), (x2, y2)) 7→
2 exp{−‖(x1, y1)− (x2, y2)‖/0.1} for the driving random field.

p 0.10 0.13 0.18 0.24 0.33 0.44 0.59 0.80
Frequency 4 4 0 1 8 14 34 35

3.4.4 Thinned simple sequential inhibition point process

To study inhomogeneity in combination with inhibition, we consider a simple
sequential inhibition point process in W = [0, 1]2 with a total point count of 450 and

Chapter 3. Resample-smoothing of Voronoi estimators 107

0
10
0

20
0

30
0

40
0

50
0●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
50
00

10
00
0

15
00
0

20
00
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20
40

60
80

10
0●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.7: True intensity and estimation error plots for a realisation of a log-
Gaussian Cox process in W = [0, 1]2 with mean function (x, y) 7→ log(40| sin(20x)|)
and ((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1) − (x2, y2)‖/0.1} as covariance function
for the driving random field. Left : p = 0.2 and m = 200. Middle: p = 1. Right : True
intensity.

inhibition distance 0.3, which we thin according the retention probability function
p(x, y) = 1{x < 1/3}|x− 0.02|+ 1{1/3 ≤ x < 2/3}|x− 0.5|+ 1{x ≥ 2/3}|x− 0.95|,
x, y ∈ W . This results in an inhomogeneous process with intensity ρ(x, y) =

450p(x, y), which yields an expected total point count of 53.6. Table 3.7 provides
estimates of IAB, ISB and IV for ρ̂Vp,m(u), u ∈ W , m = 200, 300, 400, p = 0.1, . . . , 1.
Just as for the previous models, we argue that p should be chosen within the range
of the rule-of-thumb.

In Figure 3.10 we provide estimation error plots for one of the realisations, for
p = 0.2 and p = 1 with m = 200, and plots of the estimated bias and variance for
p = 0.1, 0.3, 0.5, 0.7, 0.9, 1 and m = 200 can be found in Figures 3.11 and 3.12 .
Also here the improvements caused by the resample-smoothing are visually clear.

The cross-validation approach to selecting p based on m = 200 and 100 real-
isations of the model yields IAB = 25.1, ISB = 932.9 and IV = 595.2, which is
comparable to choosing p ≈ 0.5. Moreover, Table 3.8 lists the selected values for
p and we see that they tend to be either very large or very small. It thus seems
that approximately one third of the time the cross-validation chooses p within our
rule-of-thumb, and approximately half of the time it chooses p too large. Comparing
with kernel estimation under uniform edge correction, using Poisson likelihood
cross-validation to select the bandwidth, we obtain IAB = 20.5, ISB = 663.94 and
IV = 485.48. By instead employing the bandwidth selection method of Cronie and
van Lieshout (2018), we obtain IAB = 23.97, ISB = 860.67 and IV = 308.47.

108 3.4. Numerical experiments

−1
50

−1
00

−5
0

0
50

10
0

15
0

−1
50

−1
00

−5
0

0
50

10
0

15
0

−1
50

−1
00

−5
0

0
50

10
0

15
0

−1
50

−1
00

−5
0

0
50

10
0

15
0

−1
50

−1
00

−5
0

0
50

10
0

15
0

−1
50

−1
00

−5
0

0
50

10
0

15
0

−1
50

−1
00

−5
0

0
50

10
0

15
0

−1
50

−1
00

−5
0

0
50

10
0

15
0

Figure 3.8: Estimated bias for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m = 200, based on
500 realisations of a log-Gaussian Cox process X ⊆ W = [0, 1]2 where the
driving Gaussian random field has mean function (x, y) 7→ log(40| sin(20x)|) and
((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1)− (x2, y2)‖/0.1} as covariance function. From
top-left to bottom-right: λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using
bandwidth selection (1.12) and (1.13).

Chapter 3. Resample-smoothing of Voronoi estimators 109

2e
+0
6

6e
+0
6

1e
+0
7

2e
+0
6

6e
+0
6

1e
+0
7

2e
+0
6

6e
+0
6

1e
+0
7

2e
+0
6

6e
+0
6

1e
+0
7

2e
+0
6

6e
+0
6

1e
+0
7

2e
+0
6

6e
+0
6

1e
+0
7

2e
+0
6

6e
+0
6

1e
+0
7

2e
+0
6

6e
+0
6

1e
+0
7

Figure 3.9: Estimated variance for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m = 200, based
on 500 realisations of a log-Gaussian Cox process X ⊆ W = [0, 1]2 where the
driving Gaussian random field has mean function (x, y) 7→ log(40| sin(20x)|) and
((x1, y1), (x2, y2)) 7→ 2 exp{−‖(x1, y1)− (x2, y2)‖/0.1} as covariance function. From
top-left to bottom-right: λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using
bandwidth selection (1.12) and (1.13).

110 3.4. Numerical experiments

Table 3.7: Estimates of IAB, ISB and IV for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m =

200, 300, 400, p = 0.1, . . . , 1, based on 500 realisations of an independently
thinned simple sequential inhibition process in W = [0, 1]2 with intensity ρ(x, y) =

450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| + 1{1/3 ≤ x < 2/3}|x − 0.5| + 1{x ≥
2/3}|x− 0.95|, x, y ∈ W .

IAB ISB IV

p

m 200 300 400 200 300 400 200 300 400

.1 32.4 32.4 32.4 1502.2 1502.7 1502.2 109.4 105.9 103.4

.2 31.2 31.2 31.2 1385.7 1385.2 1384.5 176.2 173.8 172.2

.3 29.2 29.2 29.2 1223.6 1223.0 1222.8 253.4 251.2 250.3

.4 27.0 27.0 27.0 1060.4 1060.7 1060.3 348.8 345.3 345.3

.5 25.0 25.0 25.0 919.5 919.8 920.6 457.3 455.6 454.1

.6 23.1 23.1 23.1 803.3 803.3 803.0 584.4 582.7 581.9

.7 21.5 21.5 21.5 707.9 707.7 707.8 734.2 733.9 732.8

.8 20.0 20.1 20.1 628.5 628.9 629.1 916.3 914.2 913.4

.9 18.9 18.9 18.9 567.2 567.5 567.7 1120.5 1118.5 1117.5
1 24.7 24.7 24.7 852.3 852.3 852.3 1382.4 1382.4 1382.4

−1
00

−5
0

0
50

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−1
00

0
10
0

20
0

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

20
40

60
80

10
0

12
0

14
0

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Figure 3.10: True intensity and estimation error plots for a realisation of an
independently thinned simple sequential inhibition process in W = [0, 1]2 with
intensity ρ(x, y) = 450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| + 1{1/3 ≤ x <

2/3}|x− 0.5|+ 1{x ≥ 2/3}|x− 0.95|, x, y ∈ W . Left : p = 0.2 and m = 200. Middle:
p = 1. Right : True intensity.

Chapter 3. Resample-smoothing of Voronoi estimators 111

−5
0

0
50

−5
0

0
50

−5
0

0
50

−5
0

0
50

−5
0

0
50

−5
0

0
50

−5
0

0
50

−5
0

0
50

Figure 3.11: Estimated bias for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m = 200, based on 500

realisations of an independently thinned simple sequential inhibition process in
W = [0, 1]2 with intensity ρ(x, y) = 450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| +
1{1/3 ≤ x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|, x, y ∈ W . From top-left to
bottom-right: λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth
selection (1.12) and (1.13).

112 3.4. Numerical experiments

20
00

40
00

60
00

80
00

10
00
0

20
00

40
00

60
00

80
00

10
00
0

20
00

40
00

60
00

80
00

10
00
0

20
00

40
00

60
00

80
00

10
00
0

20
00

40
00

60
00

80
00

10
00
0

20
00

40
00

60
00

80
00

10
00
0

20
00

40
00

60
00

80
00

10
00
0

20
00

40
00

60
00

80
00

10
00
0

Figure 3.12: Estimated variance for ρ̂Vp,m(u), u ∈ W = [0, 1]2, m = 200, based on
500 realisations of an independently thinned simple sequential inhibition process
in W = [0, 1]2 with intensity ρ(x, y) = 450p(x, y), p(x, y) = 1{x < 1/3}|x − 0.02| +
1{1/3 ≤ x < 2/3}|x − 0.5| + 1{x ≥ 2/3}|x − 0.95|, x, y ∈ W . From top-left to
bottom-right: λ̂Vp,m(u) with p = 0.1, 0.3, 0.5, 0.7, 0.9, 1, and λ̂U(u) using bandwidth
selection (1.12) and (1.13).

Chapter 3. Resample-smoothing of Voronoi estimators 113

Table 3.8: Cross-validation selections of p in a geometric sequence for m = 200,
based on 100 realisations of an independently thinned simple sequential inhibition
process in W = [0, 1]2 with intensity ρ(x, y) = 450p(x, y), p(x, y) = 1{x < 1/3}|x−
0.02|+ 1{1/3 ≤ x < 2/3}|x− 0.5|+ 1{x ≥ 2/3}|x− 0.95|, x, y ∈ W .

p 0.10 0.13 0.18 0.24 0.33 0.44 0.59 0.80
Frequency 24 3 3 2 6 13 21 28

3.5 Houston traffic accident

The dataset consists of motor vehicle traffic accident locations in a given area
of Houston, US, during the month of April 1999. The linear network L describing
the street/road network in question (see Figure 3.13) has a total length of 708301.7

feet, and has 187 nodes (road intersections) with a maximum vertex degree of 4,
and 253 line segments, i.e. pieces of streets connecting the intersections.

Figure 3.13 (left) shows the reference points of the 249 accidents in question over
the street network. The data have been collected by individual police departments
in the Houston metropolitan area and have been compiled by the Texas Department
of Public Safety. The compiled data have been obtained by the Houston-Galveston
Area Council and have been geocoded by N. Levine. Between 1999 and 2001, in
the eight-county region considered, there were 252, 241 serious accidents, with
an average of 84, 080 per year. From these accidents, 1, 882 were person related.
See Levine (2006, 2009) for details.

In Figure 3.13 (right) we also provide the resample-smoothed Voronoi intensity
estimate obtained for m = 200 and p = 0.15. The specific choice p = 0.15 has
been motivated by the rule-of-thumb p ∈ [0.1, 0.3] and Table 3.9, which shows
the selected values for p ∈ (0, 1] obtained by carrying out cross-validation for the
sequence m = 100, 110, . . . , 200. We see that most of the selected values for p are
given by 0.15.

Visually, there seems to be a good correspondence between the observed
pattern and the obtained estimate. Note that for higher values of p, in the right panel
of Figure 3.13 we would obtain more significant blobs in the parts corresponding
to the dense parts in the left panel of Figure 3.13.

114 3.6. Finnish pines

5e−04

0.001

0.0015

Figure 3.13: Left : Motor vehicle traffic accidents in an area of Houston, US, during
April, 1999. Right : Resample-smoothed Voronoi intensity estimate for m = 200

and p = 0.15.

Table 3.9: Cross-validation selected values for p, based on the sequence m =

100, 110, . . . , 200.

m 100 110 120 130 140 150 160 170 180 190 200
p 0.15 0.20 0.20 0.20 0.20 0.15 0.15 0.15 0.15 0.15 0.15

3.6 Finnish pines

The dataset consists of locations of 126 pine saplings in a Finnish forest, within
a rectangular window W = [−5, 5] × [−8, 2] (metres), and can be found in the
R package spatstat (Baddeley et al., 2015). It was recorded by Seppo Kellomaki,
Faculty of Forestry, University of Joensuu, Finland, and further processed by Antti
Penttinen, Department of Statistics, University of Jyväskylä, Finland.

In Figure 3.14 we illustrate the estimate ρ̂Vp,m(u), u ∈ W , m = 200, for p = 0.2

and p = 0.5, together with the locations of the saplings. We also provide the
cross-validation results for the sequence m = 100, 110, . . . , 200 in Table 3.10 which
motivates the choice p = 0.5. We argue that p = 0.2 is the preferable choice since
it better respects the global features of the data.

Chapter 3. Resample-smoothing of Voronoi estimators 115

1
1.
5

2
2.
5

3
3.
5

4

2
4

6
8

10
12

Figure 3.14: The estimate ρ̂Vp,m(u), u ∈ W , m = 200, for p = 0.2 (left) and p = 0.5

(right), together with the locations of 126 pine saplings in a Finnish forest, within a
rectangular window W = [−5, 5]× [−8, 2] (metres).

Table 3.10: Cross-validation selected values for p, based on the sequence m =

100, 110, . . . , 200.

m 100 110 120 130 140 150 160 170 180 190 200
p 0.65 0.40 0.50 0.45 0.40 0.50 0.45 0.55 0.50 0.50 0.50

3.7 Summary

Although the Voronoi intensity estimator estimates the intensity function by
considering the local effects and it does represent the local behaviour better
than kernel estimators, it however generates a huge variance. In this chapter,
we focused on the Voronoi intensity estimator and provided a new technique to
improve its performance in terms of variance.

We have proposed a general approach for resampling/additional smoothing of
arbitrary intensity estimators, which is based on averaging over rescaled intensity
estimators generated by a set of thinned samples. The point pattern in question is
thinned according to some independent p-thinning. Although such technique can
be easily applied to Voronoi intensity estimates regardless of the state space, we
considered point processes on R2 and linear networks. The proposed estimator

116 3.7. Summary

is well defined and its smoothing parameter selection was also discussed. A
rule-of-thumb is also provided by considering retention probability p within the
range [0.1− 0.3].

We studied the theoretical behaviour of such intensity estimator such as un-
biasedness and variance. A simulation study was drawn to see its perform-
ance when dealing with homogeneous/inhomogeneous Poisson processes, Log-
Gaussion Cox point processes and thinned simple sequential inhibition processes.
It is clearly shown that the variance decreases when retention probability p de-
creases. However, the bias (estimation error) of the proposed estimator seems
fairly stable.

So far, we have only considered spatial point processes whereas sometimes
data points are labelled with the time occurrence of the event. This demands
spatio-temporal analysis which will be discussed in the next Chapter.

117

CHAPTER 4

Spatio-temporal point patterns on linear
networks

4.1 Introduction

Naturally, most of spatial point patterns are snapshots of spatio-temporal pat-
terns occurring along time. Sometimes (as explained in Chapters 2 and 3), we
only consider the spatial domain and analyse point patterns regardless of time
while they are inherently happening jointly in space and time. In the case of spatio-
temporal point processes on linear networks, the same story holds. Thinking of
traffic accidents or street crimes that happen on streets of cities, we easily see
that many accidents happen in particular moments of a day, which depends on
time. Also some crimes, as robberies, happen in the sidewalk when it is crowded.
Knowing that there may be scientific questions that can not be answered by only
analysing spatial components (not considering time) (Diggle, 2003), it prompts to
consider the time component when analysing point patterns on networks.

The challenge when we think on network events is that we face a change of
support, i.e. events do not happen on the entire space. Since the location of
events is restricted to a linear network, clearly existing methods for spatio-temporal
point processes on R2 × R+ can not be appropriate. Considering a network as
state-space instead of the entire space requires modifications in the whole story.

Although network events got attention recently (see Chapters 2 and 3), temporal
components have not been taken into account yet. Knowing that the behaviour of

118 4.2. Setup

spatial data may vary over time since they are spatio-temporal patterns inherently
(considering the occurrence time of events), we here aim at considering the
temporal component and develop methods to be able to study spatio-temporal point
processes on linear networks. In this Chapter, we develop a kernel-based intensity
estimator to estimate the intensity function of spatio-temporal point patterns on
networks. We then present spatio-temporal second-order summary statistics,
the K-function and the pair correlation function, which are useful to study the
correlation between events. They are independent of the geometry of the network
and have known values for Poisson point processes. Such summary statistics
can be used in model selection as benchmarks due to having known forms under
completely spatio-temporal randomness. Non-parametric estimates are also
provided for both homogeneous and inhomogeneous processes.

Section 4.2 provides some definitions and preliminaries of spatio-temporal point
processes on linear networks. Section 4.3 is devoted to the first- and second-order
tools of spatio-temporal point processes on linear networks and presents the
corresponding definitions, estimators and properties. In Section 4.4 we consider
some applications to traffic accidents and demonstrate our findings from datasets
of Houston (US), Medellı́n (Colombia) and Eastbourne (UK).

4.2 Setup

As explained in the Chapters 2 and 3, point processes on linear networks are
recently considered to analyse events that are happening on/along a network, such
as traffic accidents, car thefts, assaults and so forth. Suppose that the reference
locations are labelled by the time of occurrence. We can then consider these
events as spatio-temporal point patterns on linear networks. Any spatio-temporal
point process X on a linear network L ⊂ R2 is a random countable subset of
R2 ×R+ in which the location of events is restricted to lying on a network structure
L. As the location of events is limited to the network L and also, the travel distance
is somehow different from the Euclidean distance, such events might not be
analysed properly through more classical statistical methods for spatio-temporal
point processes in R2 × R+; note the work in Lu and Chen (2007). Examples of
spatial point patterns on linear networks are already analysed in the Chapters
2 and 3. Considering the setup of spatial point processes on linear networks,
we directly focus on a spatio-temporal point process X on the network L with

Chapter 4. Spatio-temporal point patterns on networks 119

no overlapping points (x, tx) where x ∈ L is the location of an event and tx ∈ T
(T ⊂ R+) is the corresponding time occurrence of x. Hence, a realisation of X,
say x, with n events can be represented as x = {(xi, txi), i = 1, . . . , n} where each
(xi, txi) ∈ L × T . Naturally, most spatial processes exhibit a temporal behaviour
while it has often been neglected. We here aim at bringing the temporal behaviour
on board and engage it in analysing network events. There may be questions
that we can not answer by only analysing the spatial behaviour (Diggle, 2003) of
events, e.g. the number of traffic accidents may vary over time (hour, day, week,
etc). Note that the temporal state-space T can be either a continuous or a discrete
set.

A realisation x of a spatio-temporal process X on a linear network L and
within a bounded temporal period T is formed by a finite set of distinct points
(xi, txi) ∈ L × T . A spatio-temporal disc with centre (xi, txi) ∈ L × T , network
radius r > 0 and temporal radius t > 0 is defined as

bLT ((xi, txi), r, t) = {(u, tu) ∈ L× T : dL(xi, u) ≤ r and |txi − tu| ≤ t},

where dL denotes the shortest-path distance on the linear network L and | · | is a
numerical distance. The cardinality of the subset A ⊂ L×T , N(X∩A) ∈ {0, 1, . . .},
is the number of points restricted to A, whose expected number is denoted by

µ(A) = E[N(A)], A ⊂ L× T.

Assume that X has an intensity function λ(·) and a second-order product density
function λ2(·, ·), hence,

E[N(X ∩ A)] =

∫
A

λ(u, tu)d2(u, tu), A ⊂ L× T,

where d2(u, s) denotes the integration over L× T , and

E[N(X ∩ A)N(X ∩B)] =

∫
A

∫
B

λ2((u, tu), (v, tv))d2(u, tu)d2(v, tv), A,B ⊂ L× T.

For a homogeneous process, λ(·, ·) takes a constant value λ for any point in L× T ,
i.e. the events are spread out over L× T uniformly. Following Campbell’s theorem
(1.26), for any non-negative function f : (L× R+)× (L× R+)→ [0,∞),

E

 6=∑
(x,tx),(y,ty)∈X

f ((x, tx), (y, ty))


=

∫ ∫
f ((u, tu), (v, tv))λ2((u, tu), (v, tv))d2(u, tu)d2(v, tv),

120 4.2. Setup

where
6=∑

means that the sum is over distinct pairs of points (Diggle, 2003). Never-
theless, one can still work with the projection of X onto the linear network L and
the time interval T , which are given as

Xnet = {x : (x, tx) ∈ X}, Xtime = {tx : (x, tx) ∈ X},

where Xnet defines a spatial point process on L, and Xtime stands for a temporal
point process on T (Møller and Ghorbani, 2012; Diggle, 2003). Note that Xnet

and Xtime may no longer be simple point processes in the sense of having no
overlapping points. Then, the corresponding intensity functions of Xnet and Xtime

can be obtained as

λnet(u) =

∫
T

λ(v, tv)dtv, λtime(tu) =

∫
L

λ(v, tv)d1v (4.1)

where d1u denotes one-dimensional integration over the line segment (Federer,
1996).

The Poisson point process model is crucial in defining other more complicated
models and can be considered as a benchmark model in exploratory data analysis.
Definition of a spatio-temporal Poisson process on L×T is similar to that on R2×T .
Thus, for a spatio-temporal Poisson point process, the points (x, tx) on L× T need
to satisfy the following conditions:

• In any bounded set A ⊂ L × T , N(X ∩ A) follows a Poisson distribution
with expected number

∫
A
λ(u, tu)d2(u, tu). For instance, if we assume A =

AL × AT ⊂ L× T , then the expected value is the expected number of points
in the subnetwork AL and within the time interval AT .

• For any k arbitrary disjoint subsets of L× T , say A1, . . . , Ak, their numbers
of points N(X ∩ A1), . . . , N(X ∩ Ak) are independent variables.

Moreover, for any time interval S = [s1, s2] ⊂ T , the projection of X onto L defines
a spatial Poisson process on L with intensity function

∫ s2
s1
λ(u, tu)dtu. Similarly, for

any set of segments A ⊂ L, the projection of X onto T defines a one-dimensional
Poisson process with intensity function

∫
A
λ(u, tu)d1u (Illian et al., 2008). For more

details, see Diggle (2003, Chapter 10) and Baddeley et al. (2015, Chapter 17).

We note that here we need to be able to perform integration of functions f on
L× T . To do so, we here follow Federer (1996) and Ang et al. (2012), converting
the integration over L× T to the one on R+ × R+.

Chapter 4. Spatio-temporal point patterns on networks 121

For any measurable function f : L× T → R,∫
L×T

f(v, tv)d2(v, tv) =

∫ ∞
0

∫ ∞
0

∑
(v,tv)∈L×T :dL(u,v)=r & |tu−tv |=t

f(v, tv) dr dt. (4.2)

For instance, consider

f(v, tv) = h(dL(u, v), |tu − tv|),

then,∫
L×T

h(dL(u, v), |tu − tv|)d2(v, tv) =

∫ ∞
0

∫ ∞
0

h(r, t)M((u, tu), r, t) dr dt,

where M((u, tu), r, t) is the number of points lying exactly at the shortest-path
distance r ≥ 0 and the time distance t ≥ 0 away from (u, tu) (Moradi et al., 2018b).

4.3 Methodologies

This Section is devoted to first- and second-order characteristics of a spatio-
temporal point process X on L× T .

4.3.1 First-order characteristics

Similar to spatial analysis, a very first attempt to understand the behaviour of
events is to analyse whether the distribution of a spatio-temporal point process
X varies over its corresponding state-space L× T . We then firstly need to study
the intensity function λ(·, ·) so that a good estimate can reveal the more populated
parts in both the linear network and the temporal range. We here point out that the
intensity function λ(u, tu) can also be interpreted as a conditional spatial intensity
given any time t or a conditional temporal intensity given any subnetwork of L
(Diggle, 2003).

As a general assumption, and following Gabriel and Diggle (2009), Møller and
Ghorbani (2012) and Ghorbani (2013), we consider that the intensity function
λ(u, tu) is separable, i.e.,

λ(u, tu) = λ̄1(u)λ̄2(tu), (u, tu) ∈ L× T (4.3)

where λ̄1 and λ̄2 are non-negative functions on L and T , respectively. As a result
of (4.1) and (4.3),

λnet(u) = λ̄1(u)

∫
T

λ̄2(tu)dtu, λtime(tu) = λ̄2(tu)

∫
L

λ̄1(u)d1u.

122 4.3. Methodologies

Then, the intensity function λ(u, tu) can be rewritten as

λ(u, tu) =
λnet(u)λtime(tu)∫

L×T λ(u, tu)d2(u, tu)
. (4.4)

Note that if X is a homogeneous point process then all λ, λnet and λtime take
constant values. However, we here do not assume homogeneity, i.e. we assume
that the intensity function varies over L × T . Taking the count function N into
account, the denominator in (4.4) equals the expected number of points in L× T .
Suppose we are given λ̂net(u) and λ̂time(tu) so that they result unbiased estimators
for the expected number of observed points, say n, then it is not surprising that

λ̂(u, tu) =
λ̂net(u)λ̂time(tu)

n
, (u, tu) ∈ L× T, (4.5)

provides an unbiased estimator for the expected number of observed points, i.e.

E
[∫

L×T
λ̂(u, tu)d2(u, tu)

]
=

∫
L×T

λ(u, tu)d2(u, tu) = E [N(L× T)] = n,

meaning that the intensity estimator (4.5) preserves mass. Therefore, and in order
to estimate the intensity function, we follow the idea in (4.5), knowing that this kind
of estimation has already been proposed in the literature, see Gabriel and Diggle
(2009); Møller and Ghorbani (2012); Ghorbani (2013).

In order to estimate λnet(u) non-parametrically, one can consider equal-split
kernel density estimators (2.2) defined by Okabe et al. (2009), a heat-kernel
estimator (2.13) introduced by McSwiggan et al. (2017), an adapted Jones-Diggle
estimator (2.7) by Moradi et al. (2017), the quick kernel-based method (2.14) or
(2.15) proposed by Rakshit et al. (2018) or resample-smoothed Voronoi intensity
estimator (3.3) defined by Moradi et al. (2018a). Note also the usability of adaptive
kernel intensity estimators. For details of the aforementioned methods, see the
Chapters 2 and 3. Here we use the quick kernel-based estimator developed in
Rakshit et al. (2018) to estimate λnet(u) and the usual kernel smoothing technique
to estimate λ̂time(tu). The bandwidth for the estimation of λnet(u) will be selected by
Scott’s rule of thumb (Rakshit et al., 2018) and the bandwidth to estimate λtime(tu)

will be chosen using Silverman’s rule of thumb (Silverman, 1986).

4.3.2 Homogeneous second-order characteristics

Additionally to the intensity function, one may think of second-order summary
statistics such as the K-function and the pair correlation function to get an insight

Chapter 4. Spatio-temporal point patterns on networks 123

into the type of interaction between the events. In such analysis, it is often assumed
that the point process, a realisation of which is under description, is stationary
(pseudostationary). We here begin with second-order pseudostationary point
processes, and in Section 4.3.3 we turn to the inhomogeneous case which is
usually more suitable for analysing real datasets.

Definition 4.1. Assume X is a spatio-temporal point process on L × T with
constant intensity function λ > 0. Then, the homogeneous linear K-function is
given by

KST
L ((u, tu), r, t) =

1

λ
E

 ∑
(x,tx)∈X

1{0 < dL(u, x) ≤ r , |tu − tx| ≤ t}
M((u, tu), dL(u, x), |tu − tx|)

∣∣∣∣∣∣ (u, tu) ∈ X

 ,(4.6)

for all r, t ≥ 0 that satisfy M((u, tu), r, t) > 0. Then, X is called second-order
pseudostationary if KST

L ((u, tu), r, t) does not depend on the point (u, tu), and we
then write KST

L ((u, tu), r, t) = KST
L (r, t) which is an extension of the geometrically

corrected K-function to the context of spatio-temporal point processes on a linear
network L.

For details on the geometrically corrected K-function for spatial point processes
on a linear network L, see Section 1.3.

Theorem 4.3.1. For a homogeneous Poisson point process on L×T with constant
intensity function λ, KST

L ((u, tu), r, t) = rt.

Proof. Note that the expectation in the right-hand side of (4.6) is an expectation
with respect to the Palm distribution of the point process X on L × T . For a
Poisson process X, Slivnyak’s theorem says that the reduced Palm distribution at
any location (u, tu) is identical to the distribution of X (Møller and Waagepetersen,
2003; Baddeley et al., 2015). Then by using the transformation in (4.2) and
Campbell’s theorem,

λKST
L ((u, tu), r, t) = E

 ∑
(x,tx)∈X

1{0 < dL(u, x) ≤ r , |tu − tx| ≤ t}
M((u, tu), dL(u, x), |tu − tx|)

∣∣∣∣∣∣ (u, tu) ∈ X


= E

 ∑
(x,tx)∈X

1{0 < dL(u, x) ≤ r , |tu − tx| ≤ t}
M((u, tu), dL(u, x), |tu − tx|)


= λ

∫
L×T

1{0 < dL(u, x) ≤ r , |tu − tx| ≤ t}
M((u, tu), dL(u, x), |tu − tx|)

d2(u, tu)

= λrt.

124 4.3. Methodologies

This can then be used as a benchmark in model selection to see the deviation
from the Poisson model. Assume that the second-order product density function
λ2(·, ·) exists, then the pair correlation function of a spatio-temporal point process
X with constant intensity function λ on L× T is of the form

gSTL ((u, tu), (v, tv)) =
λ2((u, tu), (v, tv))

λ2
, (u, tu), (v, tv) ∈ L× T, (4.7)

which is the standardised probability function of observing a pair of points from
X occurring jointly in each of two infinitesimally small areas around (u, tu) and
(v, tv) (Gabriel and Diggle, 2009; Møller and Ghorbani, 2012). Note that here
a small area around (u, tu) is a small segment (sub-network) extended over a
short period of time. Following Gabriel and Diggle (2009) and Ang et al. (2012),
it can be shown that for Poisson processes and any pairs (u, tu), (v, tv) ∈ L× T ,
gSTL ((u, tu), (v, tv)) = 1 as λ2((u, tu), (v, tv)) = λ2.

Since both theK-function and the pair correlation function have certain values for
Poisson processes, they can be used to reveal any deviation from being Poisson,
that is, KST

L (r, t) > rt (gSTL (r, t) > 1) shows clustering, whereas KST
L (r, t) <

rt (gSTL (r, t) < 1) indicates inhibition.

As KST
L and gSTL are closely connected, the following theorem shows their

relationship in the context of spatio-temporal point patterns on linear networks.

Theorem 4.3.2. A spatio-temporal point process X on L×T with constant intensity
function λ > 0 is second-order pseudostationary if for any pairs (u, tu), (v, tv) ∈ L×
T with dL(u, v) <∞, |tu − tv| <∞, the pair correlation function gSTL ((u, tu), (v, tv))

depends only on the distance vector (dL(u, v), |tu − tv|) , and in this case

KST
L (r, t) =

∫ r

0

∫ t

0

gSTL (r′, t′)dr′dt′, (4.8)

where r denotes the shortest-path distance, and t is the corresponding temporal
distance.

Proof. Assume X is second-order pseudostationary, and

g0(r′, t′) =
1{r′ < r , t′ < t}
M((u, tu), r′, t′)

. (4.9)

Chapter 4. Spatio-temporal point patterns on networks 125

Then,

KST
L (r, t) =

1

λ
E

 ∑
(x,tx)∈X

g0(dL(u, x), |tu − tx|)

∣∣∣∣∣∣ (u, tu) ∈ X

 .
By using the properties of Palm distributions, the above equation can be rewritten
as follows,

KST
L (r, t) =

1

λ

∫
L×T

λ2((u, tu), (v, tv))

λ
g0(dL(u, v), |tu − tv|)d2(v, tv)

=

∫
L×T

gSTL ((u, tu), (v, tv))g0(dL(u, v), |tu − tv|)d2(v, tv)

=

∫
L×T

gSTL (dL(u, v), |tu − tv|)g0(dL(u, v), |tu − tv|)d2(v, tv),

where the last equation comes from the second-order pseudostationary property
of X. Now, let

h(r′, t′) = gSTL (r′, t′)g0(r′, t′)M((u, tu), r
′, t′)

= gSTL (r′, t′)1{r′ < r , t′ < t},

Then,

KST
L (r, t) =

∫
L×T

h(dL(u, v), |tu − tv|)
M((u, tu), r′, t′)

d2(v, tv)

=

∫ ∞
0

∫ ∞
0

h(r′, t′)dr′dt′

=

∫ t

0

∫ r

0

gSTL (r′, t′)dr′dt′. (4.10)

Moreover, it is clearly seen that KST
L (r, t) does not depend on the events.

In practice, however, we usually need to estimate the K-function (4.6) and the
pair correlation function (4.7). Following Ang et al. (2012) and Section 1.3.2, we
propose a non-parametric estimator of KST

L (r, t) as

K̂ST
L (r, t) =

|L| |T |
n(n− 1)

n∑
i=1

∑
i 6=j

1{dL(xi, xj) < r , |txi − txj | < t}
M((xi, txi), dL(xi, xj), |txi − txj |)

, (4.11)

where |L| > 0 and |T | > 0 are the total length of the linear network L and of the
time interval T , respectively. The corresponding estimator for gSTL (r, t) is

ĝSTL (r, t) =
|L| |T |
n(n− 1)

n∑
i=1

∑
i 6=j

κε(dL(xi, xj)− r)κδ(|txi − txj | − t)
M((xi, txi), dL(xi, xj), |txi − txj |)

, (4.12)

126 4.3. Methodologies

where κε and κδ are one-dimensional kernel functions with bandwidth parameters
ε and δ, respectively. The properties of the estimators (4.11) and (4.12) are similar
to those in the spatial case, which have been studied in Ang et al. (2012) and
Section 1.3.2.

4.3.3 Inhomogeneous second-order characteristics

Motivated by practical situations where we often face a number of cases that ho-
mogeneity is not a realistic assumption (e.g. traffic accidents happen in particular
areas and during specific hours), we extend both the KST

L and gSTL to inhomogen-
eous processes. In the two-dimensional space, Baddeley et al. (2000) developed
a version of Ripley’s K-function (Ripley, 1977) to the case that can handle non-
stationary point processes, see Section 1.2. Gabriel and Diggle (2009) extended
the inhomogeneous K-function to spatio-temporal point processes on R2 × R+.
Similar to Baddeley et al. (2000) and Gabriel and Diggle (2009), here we also
know that if simple exploratory analysis reveals that the pattern in question can not
have a constant intensity function, then the homogeneous K-function (4.6) and
the pair correlation function (4.7) can no longer be proper choices. At this stage,
we need an analogue of the spatio-temporal K-function and the pair correlation
function defined by Gabriel and Diggle (2009) for the case of linear networks. We
now define such second-order summary statistics (Moradi et al., 2018b).

Definition 4.2. AssumeX is a spatio-temporal point process on L×T with intensity
function λ(u, tu) > 0 and second-order product density function λ2((u, tu), (v, tv)).
Then, the inhomogeneous pair correlation function is of the form

gSTLI ((u, tu), (v, tv)) =
λ2((u, tu), (v, tv))

λ(u, tu)λ(v, tv)
, (u, tu), (v, tv) ∈ L× T. (4.13)

If gSTLI ((u, tu), (v, tv)) = gSTLI (dL(u, v), |tu− tv|), then X is called second-order intens-
ity reweighted pseudostationary and isotropic.

Definition 4.3. For a second-order intensity reweighted pseudostationary and
isotropic spatio-temporal point process X on L×T with intensity function λ(u, tu) >

0, the inhomogeneous K-function is given by

KST
LI ((u, tu), r, t) = E

 ∑
(x,tx)∈X

1{0 < dL(u, x) < r , |tu − tx| < t}
λ(x, tx)M((u, tu), dL(u, x), |tu − tx|)

∣∣∣∣∣∣ (u, tu) ∈ X

 .(4.14)

Chapter 4. Spatio-temporal point patterns on networks 127

Under the assumption of Definition 4.3, equation (4.14) can be rewritten as

KST
LI ((u, tu), r, t) = KST

LI (r, t) =

∫ r

0

∫ t

0

gSTLI (r′, t′)dr′dt′.

Note that the proof of the above equality is similar to that of Theorem 4.3.2.
Moreover, for Poisson processes, and for any r, t > 0,KST

LI (r, t) = rt and gSTLI (r, t) =

1.

Following Gabriel and Diggle (2009), Ang et al. (2012) and Gabriel (2014), KST
LI

can be non-parametrically estimated by

K̂ST
LI (r, t) =

1

|L| |T |

n∑
i=1

∑
i 6=j

1{dL(xi, xj) < r , |txi − txj | < t}
λ̂(xi, txi)λ̂(xj, txj)M((xi, txi), dL(xi, xj), |txi − txj |)

,(4.15)

and gSTLI by

ĝSTLI (r, t) =
1

|L| |T |

n∑
i=1

∑
i 6=j

κε(dL(xi, xj)− r)κδ(|txi − txj | − t)
λ̂(xi, txi)λ̂(xj, txj)M((xi, txi), dL(xi, xj), |txi − txj |)

,(4.16)

where λ̂(·, ·) is an estimate of the intensity function, κε and κδ are one-dimensional
kernel functions with bandwidths ε and δ, respectively.

Estimators (4.15) and (4.16) are unbiased when the intensity function is known
or has been estimated with low bias and variance (Baddeley et al., 2000; Gabriel
and Diggle, 2009; Ang et al., 2012; Gabriel, 2014), but in practice we usually need
to estimate the intensity function. Therefore and in order to reduce the bias and
variability of estimators (4.15) and (4.16), Moradi et al. (2018d) recommends using
the reciprocal of the following normalisation factor

D(x) =
1

(|L| |T |)2

n∑
i=1

∑
i 6=j

1

λ̂(xi, txi)λ̂(xj, txj)
. (4.17)

Hence, the updated estimates of the inhomogeneous K-function and the inhomo-
geneous pair correlation function are as

1

D(x)
K̂ST
LI (r, t) and

1

D(x)
ĝSTLI (r, t), (4.18)

which ensure a minimised bias and variance (Moradi et al., 2018d).

4.4 Data analysis

In this Section we consider some applications to traffic accidents and analyse
datasets from Houston (US), Medellı́n (Colombia) and Eastbourne (UK).

128 4.4. Data analysis

4.4.1 Traffic accidents in Houston

Figure 4.1 shows the pattern of motor vehicle traffic accidents in an area of Hou-
ston (US) near the university of Houston in 2001 which caused non-incapacitating
injury such as bump on the head, abrasions or minor lacerations. The data was
collected by individual police departments in the Houston metropolitan area and
were compiled by the Texas Department of Public Safety. The compiled data
were obtained by the Houston-Galveston Area Council and was geocoded by N.
Levine, see Levine (2006, 2009) for details. The space-time pattern contains 144

reference points representing the location and corresponding occurrence time of
traffic accidents, with a corresponding linear network with total length 144, 253.4

feet and maximum node degree 5. The network is built by 610 nodes and 631
segments. The occurrence time of each traffic accident is rounded to an integer
number, i.e. all accidents happened between midnight and 1 am are labelled by 0
as occurrence time.

From the right plot in Figure 4.1 we can see some jumps in the number of
accidents during the afternoon and evening. The projected pattern onto the
network is also displayed in the left plot in Figure 4.1.

We estimated the intensity function using the estimator (4.5), and both the
intensities in time and over the network are represented in Figure 4.2. From the
left plot in Figure 4.2 we can see an increase in the estimated intensity during
the afternoon which might be caused by heavier traffic jams in the afternoon,
especially in the commuting hours. A decrease in the intensity during the night
is also clearly visible. The right plot in Figure 4.2 shows the estimated intensity
over the network in which the wider the segment the higher the intensity. Higher
intensity is visible in the main north-south streets. The bandwidth 993.29 feet and
1.76 hours were considered to estimate the intensity function over the network and
in time, respectively.

Figure 4.3 represents the estimated inhomogeneous K-function and pair cor-
relation function for Houston data together with the corresponding pointwise en-
velopes based on 99 simulations and significance level 5%, from a complete
spatio-temporal random model. Both corresponding surfaces of K-function and
pair correlation function are mainly within the envelops, indicating spatio-temporal
randomness, except for some indication of clustering for a range of distances and
time lags.

Chapter 4. Spatio-temporal point patterns on networks 129

 xy−locations on linear network

0 5 10 15 20

0

500

1000

1500

cumulative number

time(hour)

Figure 4.1: The motor vehicle traffic accidents in Houston near the university of
Houston in 2001 which caused non-incapacitating injury such as bump on the
head, abrasions or minor lacerations. Left: The projection of the data onto the
network. Right: Cumulative number of data points versus time.

4.4.2 Traffic accidents in Medellı́n

Figure 4.4 shows the traffic accidents in an area near the pontifical bolivarian
university in Medellı́n (Colombia) during 2016. The entire data were published in
the OpenData portal of Medellı́n Town Hall. The represented data in Figure 4.4
has 665 points on a network with total length 29759.42 meters, 643 nodes and
728 segments. The maximum node degree is 6.

From Figure 4.4 we can see that most of the accidents happened near the
intersections and also there are some jumps in the cumulative number of accidents
during the afternoon.

Using the intensity estimator (4.5), we estimated the intensity function of such
data, and both the intensities in time and over network are represented in Figure
4.5. The estimated intensity in time shows a clear decrease during night whereas
the intensity starts growing up from morning and it has a peak around 3 pm. The
estimated intensity of the projection onto the network is displayed in the right

130 4.4. Data analysis

0 5 10 15 20

0
5

10
15

time(hour)

λ̂ t
im
e

5e−04

0.001

0.0015

0.002

0.0025

0.003

Figure 4.2: Intensity estimates for motor vehicle traffic accidents in Houston. Left:
Intensity estimate of daily hours together with the frequency of accidents per hour
(bar plot). Right: Intensity estimate of the projection onto the network.

Figure 4.3: Estimated second-order characteristics for motor vehicle traffic acci-
dents in Houston. Left: Inhomogeneous K-function. Right: Inhomogeneous pair
correlation function. Gray surfaces are envelopes based on 99 simulations and
significance level 5% from the complete spatio-temporal randomness.

Chapter 4. Spatio-temporal point patterns on networks 131

 xy−locations on linear network

0 5 10 15 20

0

2000

4000

6000

8000

cumulative number

time(hour)

Figure 4.4: Traffic accidents in Medellı́n during the year 2016. Left: The projec-
tion of data onto the network. Right: Cumulative number of data points versus
occurrence time.

plot of Figure 4.5 confirming higher intensity in the eastern part of the network.
Bandwidths 87.12 meters and 1.26 hours were used for the estimation of intensities
over network and in time, respectively.

Figure 4.6 shows perspective plots of the estimated inhomogeneous K-function
and pair correlation function for Medellı́n data together with the corresponding
envelopes based on 99 simulations and significance level 5% from a complete
spatio-temporal random model. According to both plots in Figure 4.6, a spatio-
temporal interaction between data points is visible, indicating both clustering and
inhibition behaviour within certain distances and periods of time. This behaviour
might suggest fitting a multi-scale area-interaction model to such data.

4.4.3 Traffic accidents in Eastbourne

Figure 4.7 shows the traffic accidents in the down-town of Eastbourne (UK). The
network was provided by “OS OpenData 1” and is usable under the terms of the
OS OpenData license. The traffic locations were collected by the UK Department

1www.ordnancesurvey.co.uk

132 4.4. Data analysis

0 5 10 15 20

0
10

20
30

40
50

time(hour)

λ̂ t
im

e

0.02

0.04

0.06

Figure 4.5: Intensity estimates for traffic accidents in Medellı́n. Left: Intensity
estimate of daily hours together with the frequency of accidents per hour (bar plot).
Right: Intensity estimate of the projection onto the network.

for Transport 2 and obtained through kaggle3. Accidents happened during the
period 2005-2010. The network contains 119 nodes and 153 line segments with
a total length of 17270.61 meters. Maximum node degree is also 4. The point
pattern contains 163 points, representing the locations of traffic accidents that are
labelled by the time occurrence. The point pattern on the left side of Figure 4.7
shows concentration of points around some intersections, it further seems there
are more accidents in south-north streets. The right plot in Figure 4.7 shows some
jumps in the afternoon which is a hint of happening more accidents during the
afternoon.

Figure 4.8 displays the estimated intensities over both linear network and in
time. The estimated time intensity confirms a higher intensity during the afternoon
and also shows an increase from the morning, a peak around 4 pm and it the
decreases towards the night. The estimated intensity in the right side of Figure
4.8 shows higher intensities around some intersections. Bandwidths 80 meters

2www.data.gov.uk
3www.kaggle.com

Chapter 4. Spatio-temporal point patterns on networks 133

Figure 4.6: Estimated second-order characteristics for traffic accidents in Medellı́n.
Left: Inhomogeneous K-function. Right: Inhomogeneous pair correlation function.
Gray surfaces are envelopes based on 99 simulations and significance level 5%

from complete spatio-temporal randomness.

and 1.21 hours were used to estimated the intensities over network and in time,
respectively.

Figure 4.9 shows the estimations of the inhomogeneous K-function and pair
correlation function together with pointwise envelopes based on 99 simulations and
significance level 5% from a complete spatio-temporal random model. According
to Figure 4.9, there seems to be an evidence of clustering behaviour within some
particular distances and time lags.

4.5 Summary

We provided preliminaries of spatio-temporal point processes on linear networks.
The proposed methodologies allow us to include time component when analysing
network point patterns. We introduced a kernel-based intensity estimator which
preserves mass. This allows to figure out the higher and lower intensity parts within
space and time jointly. We also developed second-order summary statistics, the K-
function and pair correlation function, for spatio-temporal point processes on linear
networks to analyse the type of interaction between data points. The defined K-

134 4.5. Summary

 xy−locations on linear network

0 5 10 15 20

0

500

1000

1500

2000

cumulative number

time(hour)

Figure 4.7: Traffic accidents in the down-town of Eastbourne (UK) in . Left: The
projection of data onto the network. Right: Cumulative number of data points
versus occurrence time.

function and pair correlation function have known values for Poisson processes that
can be used for model selection and to measure deviation from being Poisson. Non-
parametric estimators were discussed for both homogeneous and inhomogeneous
cases. The estimators are independent of the geometry of the network and it then
allows comparing the behaviour of different point patterns on different networks.
The introduced K-function and pair correlation function also maintain the same
relationship similar to their analogues in space. Although the computations in
Sections 4.4.1, 4.4.2 and 4.4.3 were fast, the current implementation of the K-
function and the pair correlation function might be computationally expensive in
large networks.

Three different traffic accidents data from different countries (US, Colombia, UK)
were analysed. The estimated time intensities for all the three datasets showed
an increase from the morning to the afternoon and a decrease over the night that
might be caused due to rush hours. Also some particular streets showed higher
intensities. According to the K-function and the pair correlation function, the three
considered datasets showed different types of interaction such as randomness,

Chapter 4. Spatio-temporal point patterns on networks 135

0 5 10 15 20

0
5

10
15

20

time(hour)

λ̂ t
im
e

0.005

0.01

0.015

0.02

0.025

0.03

Figure 4.8: Intensity estimates for traffic accidents in the down-town of Eastbourne.
Left: Intensity estimate of daily hours together with the frequency of accidents per
hour (bar plot). Right: Intensity estimate of the projection onto the network.

Figure 4.9: Estimated second-order characteristics for traffic accidents in the down-
town of Eastbourne. Left: Inhomogeneous K-function. Right: Inhomogeneous
pair correlation function. Gray surfaces are pointwise envelopes based on 99
simulations and significance level 5% from complete spatio-temporal randomness.

136 4.5. Summary

clustering and inhibition within certain distances and periods of time.

137

CHAPTER 5

trajectories: Classes and Methods for
Trajectory Data

5.1 Introduction

Human beings, cars, bicycles, animals, etc. are examples of moving objects in
space and over time. New techniques allow tracking such objects continuously.
Figure 5.1 shows three consecutive movements of 50 taxis in Beijing, China per 20

minutes. From Figure 5.1, it can be seen that e.g. the length/speed of movements
over the same period of time depends on space.

In practice, however, the locations of objects are recorded according to regu-
lar/irregular time stamps so that there is a set of spatial point patterns on R2 within

Figure 5.1: Three consecutive movements of 50 taxis in Beijing, China on Feb
2008 per 20 minutes.

138 5.2. Classes and methods

the time period in question. This motivates us to build statistical methodologies to
analyse movement data using the literature of spatial point process. Studying the
behaviour of moving objects over time and their interaction, either between objects
or with the environment, plays a crucial role in understanding how they use space
and more importantly how they interact with each other. As moving objects are
moving within a particular area over time, they then have two sources of random
effect.

We provide some statistical tools to handle, simulate and statistically analyse
movement data regardless of the domain, converting a trajectory pattern into a list
of point patterns based on regular timestamps. Distance analysis can reveal the
behaviour of objects over time and with respect to each other. We also propose
different functions to analyse the behaviour of objects through time and see how
they use space and also how they interact with each other. The type of interaction
between objects may vary over time.

Section 5.2 reviews some classes and methods to handle trajectories. Simulat-
ing random trajectories and model fitting is discussed in Section 5.3. In Section
5.4 we provide statistical methodologies to analyse the first- and second-order
characteristics of moving objects together with distance analysis and movement
smoothing. The new methods are applied to a dataset of taxis movement in Beijing,
China during the period of Feb. 2 to Feb. 8, 2008 in Section 5.4.

5.2 Classes and methods

In this section, we review different classes of trajectories to handle movement
data in R. These classes were initially defined in the R package spacetime
(Pebesma, 2012). Before moving into the details and start analysing trajectory
patterns, we load the package with

R> library("trajectories")

5.2.1 Track

The class ‘Track’ represents a single track followed by a person, animal or
an object. Instances of this class are meant to hold a series of consecutive
location/timestamps that are not interrupted by another activity. The class contains
five slots: @sp to store the spatial points, @time to store the corresponding time,

Chapter 5. Trajectory analysis 139

@endtime to store the end time when having generalised line geometries with one
value per attribute for a set of points (otherwise, defaults to the time defined in
@time), @data to store the attributes (covariate information) and @connections to
keep a record of attribute data between points (e.g., distance, duration, speed and
direction). A ‘Track’ object can be created out of an ‘STIDF’ object (see Pebesma
(2012)) as follows

R> set.seed(10)

R> t0 = as.POSIXct(as.Date("2013-09-30",tz="CET"))

R> x = c(7,6,5,5,4,3,3)

R> y = c(7,7,6,5,5,6,7)

R> n = length(x)

R> t = t0 + cumsum(runif(n) * 60)

R> crs = CRS("+proj=longlat +ellps=WGS84") # longlat

R> stidf = STIDF(SpatialPoints(cbind(x,y),crs), t,

+ data.frame(co2 = rnorm(n,mean = 10)))

R> A1 = Track(stidf)

R> A1

An object of class Track

7points

bbox:

min max

x 3 7

y 5 7

Time period: [2013-09-30 02:00:30, 2013-09-30 02:02:31]

Figure 5.2 shows the plot of track A1 passed by person A. By default, distance,
duration, speed and direction are computed as the connections data. Optionally, a
data frame containing additional connections data (covariates) and/or a custom
function for calculating the data of segments between consecutive points can be
passed.

Moreover, and using the function as.Track, one can create an object of class
‘Track’ if spatial coordinates and corresponding times are provided. Additional
information can also be passed to the function as.Track using an argument
covariate.

140 5.2. Classes and methods

R> plot(A1)

3°E 4°E 5°E 6°E 7°E

4.
5°
N

5°
N

5.
5°
N

6°
N

6.
5°
N

7°
N

7.
5°
N

Figure 5.2: Single track A1 passed by person A.

R> x <- runif(10,0,1)

R> y <- runif(10,0,1)

R> date <- seq(as.POSIXct("2015-1-1 0:00"), as.POSIXct("2015-1-1 9:00"),

+ by = "hour")

R> records <- as.data.frame(rpois(10,5))

R> as.Track(x,y,date,covariate = records)

An object of class Track

10points

bbox:

min max

x 0.23958913 0.8382877

y 0.09308813 0.9546536

Time period: [2015-01-01, 2015-01-01 09:00:00]

Chapter 5. Trajectory analysis 141

5.2.2 Tracks

The class ‘Tracks’ embodies a collection of tracks followed by a single person,
animal or object. The class contains two slots: @tracks to store the tracks as
objects of class ‘Track’ and @tracksData to hold a summary record for each
particular track (e.g. minimum and maximum time, total distance and average
speed). An object of class ‘Tracks’ can be created by

R> x = c(7,6,6,7,7)

R> y = c(6,5,4,4,3)

R> n = length(x)

R> t = max(t) + cumsum(runif(n) * 60)

R> stidf = STIDF(SpatialPoints(cbind(x,y),crs), t,

+ data.frame(co2 = rnorm(n,mean = 10)))

R> A2 = Track(stidf)

R> # Tracks for person A:

R> A = Tracks(list(A1=A1,A2=A2))

R> A

An object of class Tracks

2 tracks followed by a single object

where A1 and A2 are of class ‘Track’. By default, the minimum and maximum
coordinates and time, the total number of geometries, the total distance as well
as the average speed are computed as the summary information data. As for the
‘Track’ method, a data frame and/or a custom function can be passed to expand
the default data.

5.2.3 TracksCollection

The class ‘TracksCollection’ represents a collection of tracks followed by many
persons, animals or objects. The class contains two slots: @tracksCollection to
store the tracks as objects of class ‘Tracks’ and @tracksCollectionData to hold
summary information about each particular person, animal or object (e.g., the total
number of tracks per each object). A ‘TracksCollection’ object can be created by

R> # person B, track 1:

R> x = c(2,2,1,1,2,3)

142 5.2. Classes and methods

R> y = c(5,4,3,2,2,3)

R> n = length(x)

R> t = max(t) + cumsum(runif(n) * 60)

R> stidf = STIDF(SpatialPoints(cbind(x,y),crs), t,

+ data.frame(co2 = rnorm(n,mean = 10)))

R> B1 = Track(stidf)

R> # person B, track 2:

R> x = c(3,3,4,3,3,4)

R> y = c(5,4,3,2,1,1)

R> n = length(x)

R> t = max(t) + cumsum(runif(n) * 60)

R> stidf = STIDF(SpatialPoints(cbind(x,y),crs), t,

+ data.frame(co2 = rnorm(n,mean = 10)))

R> B2 = Track(stidf)

R> # Tracks for person B:

R> B = Tracks(list(B1=B1,B2=B2))

R> Tr = TracksCollection(list(A=A,B=B))

R> Tr

An object of class TracksCollection

2 collection of tracks followed by 2 object

where A and B are objects of class ‘Tracks’. By default, the total number of
tracks as well as the minimum and maximum coordinates, and time are computed
as the summary information data. As for the ‘Track’ and ‘Tracks’ methods outlined
above, a data frame and/or a custom function can be passed to expand the default
data.

5.2.4 segments

The class ‘segments’ is written to provide a data structure for storing all the
segments of a track, with a segment representing the line between two consecutive
points.

Figure 5.3 shows the classes and their connection. We point out that classes
‘STIDF’,‘STI: irregular’ and ‘STI’ belong to the package spacetime inherently.

Chapter 5. Trajectory analysis 143

Figure 5.3: Classes for trajectory data in the package trajectories. Solid arrows
denote inheritance. Arrows show the corresponding slot’s class and slot’s names
are displayed using lines accordingly.

5.2.5 Methods

A wealth of methods have been implemented to cover the most frequently
used use cases. Table 5.1 lists some of the methods applied to the objects of
classes Track, Tracks and TracksCollection. Apart from those listed in Table 5.1,
attribute data can be obtained or replaced by using [], [[]], @ and $.

The use of some methods in Table 5.1 is shown in the following lines of code.
Figure 5.4 shows the trellis plot of object Tr from class ‘TracksCollection’ which is
previously created. We point out that we have used slot data of the corresponding
tracks as attributes to see their changes over time.

R> dim(A1)

geometries

7

R> dim(B1)

144 5.2. Classes and methods

Table 5.1: Methods implemented in the package trajectories for objects from
class ‘Track’,‘Tracks’ and ‘TrackCollection’.

Method Operation
dim Returns the number of spatial points of any track

summary Summarises the internal information
proj4string Retrieves projection attributes
coordinates Retrieves the coordinates of spatial locations
coordnames Retrieves coordinate names of fixes

bbox The box (window) which contains the objects
stbox The spatio-temporal box (window) which contains the objects

aggregate Spatially aggregate track properties (coercing fixes to points)
compare Compares two ‘Track’ objects: for the common time period
dists Compares two ‘Tracks’

downsample Remove fixes from a ‘Track’
frechetDist Compute Frechet distance between two ‘Track’ objects

stcube Draw a space-time cube
stplot Create trellis plot for ‘TracksCollection’ objects

generalize Resample ‘Track’ to lower freqency or minimal distance
cut Obtain ranges of space and time coordinates

geometries

6

R> stbox(A1)

x y time

min 3 5 2013-09-30 02:00:30

max 7 7 2013-09-30 02:02:31

R> downsample(A1,B1)

An object of class Track

6points

bbox:

Chapter 5. Trajectory analysis 145

min max

x 3 7

y 5 7

Time period: [2013-09-30 02:00:30, 2013-09-30 02:02:31]

R> stplot(Tr, attr = "co2", arrows = TRUE, lwd = 3,

+ by = "IDs",cex.axis=2)

A B

8.5

9.0

9.5

10.0

10.5

11.0

Figure 5.4: Co2 consumption over time.

5.3 Simulation and model fitting

5.3.1 Trajectory simulation

Simulating trajectory patterns can be a useful tool to imitate true phenomena and
understand their behaviour. The package trajectories allows simulating tracks
using rTrack, rTracks, rTracksCollection where rTrack() generates a single
track, rTracks() simulates a collection of tracks assumed to be passed by a
single object and rTracksCollection is used to simulate a set of tracks passed by
different objects. By default, these functions do not consider any box (or window)
for the track to be simulated in and consider origin=c(0,0) as the origin of the
track. However, one can still restrict the track to a desirable closed box using the

146 5.3. Simulation and model fitting

argument bbox. If transform=TRUE and no bbox is given, then rTrack transforms
the track to the default box [0, 1]× [0, 1], where in this case the origin is a random
point in the default box. If a default box bbox (e.g. m in the following example) is
given and transform=TRUE, then origin is a random point in bbox and the final
track is also transformed into bbox. The function rTrack simulates tracks with a
predefined number of points per track (indicated as n in the code with default 100).
However if nrandom=TRUE then it simulates a track with a random number of points
based on a Poisson distribution with parameter n. An example of these functions
is the following

R> set.seed(10)

R> x <- rTrack();x

An object of class Track

100points

bbox:

min max

x -53.38677 -3.232289

y -53.08787 -1.594295

Time period: [1970-01-01, 1970-01-01 01:39:00]

R> y <- rTrack(transform = T);y

An object of class Track

100points

bbox:

min max

x 0 1

y 0 1

Time period: [1970-01-01, 1970-01-01 01:39:00]

R> m <- matrix(c(0,10,0,10),nrow=2,byrow = T)

R> w <- rTrack(bbox = m,transform = T);w

An object of class Track

100points

bbox:

Chapter 5. Trajectory analysis 147

min max

x 0 10

y 0 10

Time period: [1970-01-01, 1970-01-01 01:39:00]

R> z <- rTrack(bbox = m,transform = T,nrandom = T);z

An object of class Track

108points

bbox:

min max

x 0 10

y 0 10

Time period: [1970-01-01, 1970-01-01 01:47:00]

Figure 5.5 shows four different random tracks: x is a random track with all defaults,
y is a random track transformed to a unit box, w is a random track transformed to
the box [0, 10] × [0, 10], and z is a simulated track in a same box as w but with a
random number of points. The number of points in w is 100 whereas z is constituted
by 108 points.

5.3.2 Model fitting

The behaviour of a track might also be studied using available tools for time
series modelling. However, obtaining a proper model is extremely important as
it highlights the underlying structure of the series, and the fitted model can be
used for future forecasting. The R package trajectories can fit ARIMA models to
movement data. Using R package forecast, the function auto.arima.Track fits
arima models to the spatial coordinates of an object of class ‘Track’. Note this
is applicable to individuals. See example below. We point out that the dataset
Beijing is stored in package taxidata and can be installed using the following line
of code

R> install.packages("taxidata",

+ repos = "http://pebesma.staff.ifgi.de",type = "source")

148 5.3. Simulation and model fitting

R> par(mfrow=c(2,2),mar=rep(2.2,4))

R> plot(x,lwd=2,main="x");plot(y,lwd=2,main="y")

R> plot(w,lwd=2,main="w");plot(z,lwd=2,main="z")

−50 −40 −30 −20 −10

−
50

−
40

−
30

−
20

−
10

0

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

0 2 4 6 8 10

0
2

4
6

8
10

w

0 2 4 6 8 10

0
2

4
6

8
10

z

Figure 5.5: Simulated random tracks using rTrack. x is random track with all
defaults. y is a random track transformed to a unit box. w is a random track
transformed to the box [0, 10]× [0, 10] and z is in a same box as w but with random
number of points.

R> library("forecast")

R> library("taxidata")

R> Beijing <- taxidata

R> auto.arima.Track(Beijing[[5]])

Arima model fitted to x-coordinate: ARIMA(1,0,2) with non-zero mean

Arima model fitted to y-coordinate: ARIMA(2,1,2) with drift

Chapter 5. Trajectory analysis 149

5.4 Exploratory data analysis

This Section presents some statistical methods, implemented in the R package
trajectories, to analyse the behaviour of trajectory patterns. A single plot of
trajectories pattern might not display interesting information, and if the pattern
contains too many tracks, it then needs some analysis to summarise and reveal
concealed information. In particular, one may be interested in discovering the
more visited streets within a city. Other interesting findings could be the type of
interaction between moving objects over time. In short, having a trajectory pattern,
we might be interested in answering the following questions:

1. How does the average distance between objects change over time?

2. How is the spatially varying distribution of objects?

3. How do moving objects interact with each other? Does their interaction vary
over time?

4. How does the spatially varying distribution of objects vary over time?

5.4.1 Data

We considered a sample of the T-Drive trajectory dataset that contains one-week
trajectories of 10357 taxis during the period of Feb. 2 to Feb. 8, 2008, within Beijing,
China. T-drive is a smart driving direction services based on GPS trajectories
of a large number of taxis. The GPS-equipped taxis are mobile sensors probing
the traffic flows on road surfaces. So, the taxi trajectories contain the information
of both human knowledge of experienced drivers and traffic patterns. The total
number of points in this dataset is about 15 million and the total distance of the
trajectories reaches up to 9 million kilometres. For more details about the data,
see Yuan et al. (2010, 2011).

We here point out some useful information about the dataset:

• 21 taxis have no information recorded.

• Regardless of taxis with no information, there are 4694 taxis with less than
10 recorded locations in at least one day.

150 5.4. Exploratory data analysis

• There are tracks with some jumps to the outside of the studied area and it
may be caused by lack of GPS accuracy so that wrong locations have been
removed. These locations might later be recovered by interpolation.

Considering the aforementioned points, we thus analyse the cleaned dataset which
is based on moving data of 5642 taxis. The map of the studied area is displayed
in Figure 5.6. It is seen that the metropolitan area of Beijing is almost located
in the centre of the map while there are some other townships, airports in the
countryside of Beijing.

Figure 5.6: Map of the studied area in Beijing, China.

In the following, we present the implemented methods in trajectories by apply-
ing them to the taxi movement dataset in Beijing, China.

5.4.2 Distance analysis

A simple way to get into the nature of movement data is to study the distance
between objects. The function dists provides users with calculating the distance
between a pair of objects of class ‘Tracks’. This considers the distance between
tracks when they overlap in time. The output is a matrix with distances between

Chapter 5. Trajectory analysis 151

each pair of tracks or ’NA’, if they do not overlap in time. A function to calculate
distances can be passed to dists, such as mean, sum, frechetDist, etc.

R> tracks1 <- Tracks(list(Beijing[[1]],Beijing[[2]]))

R> tracks2 <- Tracks(list(Beijing[[3]],Beijing[[4]]))

R> dists(tracks1,tracks2,mean)

[,1] [,2]

[1,] 16854.55 9103.338

[2,] 15025.30 10275.476

5.4.2.1 Average distance over time

The distance between objects over time might discover some interesting in-
formation. Studying pairwise distances over time can somehow reveal the type of
interaction between objects. Having a pattern of tracks, we may be able to see
how moving objects interact each other over time. Moreover, this can highlight
the crowded hours within a particular period of time. We here propose to look
at average pairwise distances over time. To do so, one can imitate the following
steps:

1. Based on the time range of all tracks si, create a regular time sequence.

2. Interpolate each track si based on the created time sequence. For this
purpose, the function reTrack can be used. It reconstructs each track si
according to a desirable time sequence.

3. Discretise the trajectory pattern S to a collection of point patterns
x1,x2, . . . ,xk. Note that the number of points in each pattern might be
different.

4. For each xi, i = 1, . . . , k, calculate pairwise distances between all data
points.

5. Report the average of pairwise distances per each time.

152 5.4. Exploratory data analysis

Steps above are implemented in the function avedistTrack. In order to use
avedistTrack, we only need to specify the argument timestamp. It then returns
the average distance between objects based on the corresponding timestamps.

R> par(mfrow=c(1,2))

R> meandist <- avedistTrack(Beijing,timestamp = "20 mins")

R> plot(meandist,type="l",lwd=2,cex.axis=1.7,cex.lab=1.7)

R> distinframe <- data.frame(tsq=attr(meandist,"tsq")

+ ,dist=meandist)

R> dist3rd <- distinframe[substr(distinframe$tsq,start = 1,stop=10)

+ =="2008-02-03",]

R> plot(dist3rd$tsq,dist3rd$dist,type="l",xlab="time",

+ ylab="average distance",lwd=2,cex.axis=1.7,cex.lab=1.7)

Sun Mon Tue Wed Thu Fri

14
00

0
18

00
0

22
00

0
26

00
0

time

av
er

ag
e

di
st

an
ce

03:00 08:00 13:00 18:00 23:00

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0

time

av
er

ag
e

di
st

an
ce

Figure 5.7: Average pairwise distance between taxis in Beijing, China. Left : Within
the period 2-8, Feb 2008. Right : During 3-rd of Feb 2008.

Figure 5.7 shows the average distance between taxis in Beijing. The left plot
shows the average pairwise distance between taxis for all the week and it is easily
seen that there is a daily trend. In order to see the more crowded hours within a
day, we show the average pairwise distances during the 3-rd of Feb 2008 in the
right plot in Figure 5.7. It can be seen that the crowded time comes between
midday and 17. Also, it shows how taxis are getting far from each other during
night. Note that small average distances between taxis might be a sign of traffic

Chapter 5. Trajectory analysis 153

during the corresponding hours. We point out that the reason of having larger
average distances in the last two days might be the Chinese new year holidays.

As an alternative, one can use nearest neighbour distances instead of pairwise
distances. But that might not be a good choice when there are several clusters in
the generated point patterns surrounded by possible empty neighbourhoods. This
might be seen when trajectory pattern contains different sets of tracks concentrated
in some particular subregions.

5.4.3 Movement smoothing

Aiming at analysing moving objects, it might be of interest to highlight the
relationship of movement with space and time. This Section is considered to
perform smoothing over the length of movements per each consecutive time.
Thus, it might reveal those areas with faster/slower movements. For this purpose,
the function Track.idw performs inverse-distance weighted smoothing over a
trajectory pattern by imitating the following steps:

1. Follow steps 1-3 in Section 5.4.2.

2. Using each consecutive point patterns, say xo and xd, build k− 1 segment
patterns.

3. For each segment pattern, find the mid-point of segments, mark it with the
length of the corresponding segment.

4. Using the marked mid-points, create k − 1 marked point patterns where
each mark represents the length of movement per location.

5. Apply the function idw from the package spatstat (Baddeley et al., 2015)
to each marked point pattern where it does inverse-distance weighted
smoothing.

6. Step 5 returns k − 1 maps in which the average of them is the output of
function Track.idw.

Mathematically speaking, if for each point pattern xi, data points {x1, x2, . . . , xni
}

are marked by {l1, l2, . . . , lni
} then the smoothed value at an arbitrary location

154 5.4. Exploratory data analysis

u ∈ W is

ḡ(u) =
1

k − 1

k−1∑
i=1

ni∑
j=1

wjlj

ni∑
j=1

wj

 , (5.1)

where

wj =
1

(d(u, xj))p
, (5.2)

in which d measures the distance between u and xj ∈ xi, lj is the corresponding
mark of xj that is the length of the corresponding segment to xj, ni is the number
of points in the i-th pattern and p is an integer, being 2 as a default value. For
details see Baddeley et al. (2015, Chapter 15).

In order to use Track.idw, we only need to set the argument timestamp. When
collecting data, it may happen to record the location of objects which are actually
stopped. Therefore and to not include them in the movement smoothing, there is
an argument epsilon so that movements with length less than epsilon are not
included in the computation. If no epsilon is set in the function, it then uses all
segments. The following code generates an image of class ‘im’ which reflects the
smoothed movement of taxis per 20 minutes.

R> b <- Track.idw(Beijing,timestamp = "20 mins",epsilon=1000)

R> plot(b,main="",ribwid=0.04,ribsep=0.02)

Figure 5.8 shows the movement smoothing for taxi data in Beijing according
to the timestamp= "20 mins". Here, we have not considered movements with
length less than 1000 meters. In other words, we assume taxis with the length
of movements less than 1000 meters per 20 minutes as stopped. This confirms
that moving in the centre is slower than countryside/highways in Beijing, and in
particular, it reveals some highways/freeways in which taxis are moving faster.

After smoothing the length of movements over space, we now turn to see the
changes in the average of the length of movements over time. The function
avemove measures the average length of movements passed by a collection of
tracks based on a desirable timestamps. Now, we apply this to the taxi data in
Beijing as follows:

Chapter 5. Trajectory analysis 155

40
00

50
00

60
00

70
00

80
00

90
00

Figure 5.8: Movement smoothing for taxi data in Beijing, China based on
timestamp = "20 mins" and movements with length longer than 1000 meters.

R> q <- avemove(Beijing,timestamp = "20 mins",epsilon=1000)

R> par(mfrow=c(1,2))

R> plot(q,type="l",lwd=2,cex.axis=1.7,cex.lab=1.7)

R> qdata <- data.frame(q,attr(q,"tsq")[-c(1,length(attr(q,"tsq"))

+)])

R> colnames(qdata) <- c("dist","startingtime")

R> q3rd <- qdata[substr(qdata$startingtime,start = 1,stop=10)

+ =="2008-02-03",]

R> plot(q3rd$startingtime,q3rd$dist,type="l",xlab="time (hour)"

+ ,ylab="average movement",lwd=2,cex.axis=1.7,cex.lab=1.7)

Figure 5.9 shows the average length of movements per 20 minutes by taxis in
Beijing. The daily trend can be seen in the left plot, and the right plot shows
that between midnight and early morning, the average length of movements is
decreasing while from morning till noon there is an increase in the length of
movements. In the afternoon, there can be seen a decrease in the average length
of movements which might be caused by traffic.

156 5.4. Exploratory data analysis

Sun Mon Tue Wed Thu Fri

50
0

10
00

15
00

20
00

25
00

30
00

time

av
er

ag
e

m
ov

em
en

t

03:00 08:00 13:00 18:00 23:00

50
0

10
00

15
00

20
00

25
00

30
00

time (hour)

av
er

ag
e

m
ov

em
en

t
Figure 5.9: Average length of movements by taxis in Beijing, China versus time
based on timestamp = "20 mins", and movements with length longer than 1000

meters. Left : Within the period 2-8 Feb 2008. Right : During the 3-rd of Feb 2008.

5.4.4 Intensity function

Being able to convert a trajectory pattern to a list of spatial point patterns
as explained in Section 5.4.2, we now present an average intensity function for
trajectory patterns as, e.g. using “Jones-Diggle” correction (1.10),

̂̂
λ(u) =

1

k

k∑
i=1

λ̂JDi (u) =
1

k

k∑
i=1

ni∑
j=1

κ(u− xj)
eW (xj)

, u ∈ W, (5.3)

Such estimator can highlight more visited areas based on the tracks of moving
objects (e.g. humans, cars) within the time period in question. The intensity
estimator (5.3) can be calculated using the following steps:

1. Follow steps 1− 3 as in Section 5.4.2.

2. For each xi, estimate the intensity function, say, λi.

3. The average over all estimated intensity functions λ̂i may be considered
as an estimated intensity for the trajectory pattern S.

Intuitively, we interpret ̂̂λ(u) as the average expected number of points (objects)
within the time period T in a small area around u. As a simple example, consider

Chapter 5. Trajectory analysis 157

the movements of cars within a city in a particular day. The estimator (5.3) reveals
the more dense streets, highways, freeways, etc in that day. The intensity estimator
(5.3), can use both edge corrections (1.8) and (1.10), is implemented in the tra-
jectories package using the function density.list. The function density.list

builds the point patterns x1,x2, . . . ,xk and pass them to the function density.ppp

in the package spatstat.

We next turn to calculate the average estimated intensity of the taxi data using
the estimator (5.3).

R> d <- density(Beijing,timestamp = "20 mins",bw.ppl)

R> par(mfrow=c(1,2))

R> plot(d,main="",ribwid=0.04,ribsep=0.02)

+ #focus on the center

R> w <- owin(c(440000,455000),c(4410000,4430000))

R> pps <- attr(d,"ppps")

R> npps <- lapply(X=1:length(pps),FUN = function(i){

+ pps[[i]][w]

+ })

+

R> centerimg <- lapply(X=1:length(npps),FUN = function(i){

+ density(npps[[i]],bw.ppl(npps[[i]]))

+ })

+

R> fcenterimg <- Reduce("+",centerimg)/length(centerimg)

+

R> plot(fcenterimg,main="",ribwid=0.04,ribsep=0.02)

Figure 5.10 shows the estimated intensity using the uniform edge correction for
both Beijing and its metropolitan area. The bandwidth has been selected using
a likelihood cross-validation method and the function bw.ppl in spatstat. Other
bandwidth selection methods can also be passed to density.list. Figure 5.10
highlights the most well-traveled areas in which those areas in the countryside
with higher intensities (left plot) are some townships or airports. The right plot
highlights the crowded routes within the centre of Beijing, China.

One may still think of adaptive intensity estimators, see Chapters 2 and 3. We
here point out that as the estimator (5.3) is built based on an average of estimated

158 5.4. Exploratory data analysis

5e
−0
6

1e
−0
5

1.
5e
−0
5

5e
−0
6

1e
−0
5

1.
5e
−0
5

2e
−0
5

Figure 5.10: Estimated intensity function. Left : Beijing. Right : Beijing metropolitan
area.

intensities of a set of spatial point patterns, one can estimate each of λi using
adaptive estimators resulting in a final adaptive estimator for the corresponding
trajectory pattern.

5.4.5 Chi maps

After discretising the trajectory pattern S to some point patterns and being able
to estimate the individual intensity functions λi(·), one may think of discovering the
areas with more/less events than the expected number. This motivates us to think
of χ2 statistics

χ2 =
o− e√
e
, (5.4)

which measures the discrepancy between the expected number (e) and the ob-
served number (o). This can be easily applied to the estimated intensity functions
λ̂1, λ̂2, . . . , λ̂k and in any time ti, i = 1, . . . , k, and as a result we can see where the
estimated intensity differs from the expected intensity. For example, for a fixed
time t = t1,

et1(u) =

k∑
i=1

λ̂i(u)
∑
v∈W

λ̂1(v)

k∑
i=1

∑
v∈W

λ̂i(v)

, u ∈ W,

Chapter 5. Trajectory analysis 159

is the expected intensity at time t = t1 and location u ∈ W . Doing so for all u ∈ W
enables us to draw a map of χ2 values in a fixed time. The resulting map discloses
the areas where the estimated intensity differs from the expected intensity. The
function chimaps generates a map based on a given timestamp and rank. The
argument rank is a number between one and the length of the generated time
sequence based on the given timestamp, and with default one.

The chi maps of the 3-rd of Feb based on three different ranks are displayed in
Figure 5.11. Values of each pixel are calculated by equation (5.4). We show the
chi maps for three different times during the day in which changes over time can
be seen. The left plot of Figure 5.11 shows the chi map at 06:10:44 so that the
estimated intensity is higher than the expected intensity in the countryside. The
reason for this might be the movements from countryside to the city center in the
early morning. The middle plot of Figure 5.11 shows that the estimated intensity in
the city is higher than the expected intensity. This may be caused by heavier traffic
in the city during the day than in the countryside. In the right plot of Figure 5.11,
although the estimated intensity is still slightly higher than the expected one in the
city, we can see that the χ2 statistic (5.4) takes values around 0 almost everywhere
at night. These three plots together confirm the changes in the values of the χ2

statistic (5.4) over time so that the mass is moving to the city in the morning and
goes away in the evening. This behaviour may be explained by the movements to
the city in the morning and moving back to the countryside in the evening.

R> ch <- chimaps(Beijing,timestamp = "20 mins",rank = 200)

R> chall <- attr(ch,"ims")

R> minmax <- lapply(X=1:length(chall),function(i){

+ return(list(min(chall[[i]]$v),max(chall[[i]]$v)))

+ })

R> minmax <- do.call("rbind",minmax)

R> col5 <- colorRampPalette(c(’blue’,’white’,’red’))

R> color_levels <- 200

R> par(mar=c(0,0,1,1))

R> par(mfrow=c(1,3))

R> plot(chall[[51]],zlim=c(-max(abs(unlist(minmax))),

+ max(abs(unlist(minmax)))),main=attr(ch,"timevec")[51]

+ ,ribwid=0.04,ribsep=0.02,col=col5(n=color_levels))

160 5.4. Exploratory data analysis

+

R> plot(chall[[75]],zlim=c(-max(abs(unlist(minmax))),

+ max(abs(unlist(minmax)))),main=attr(ch,"timevec")[75]

+ ,ribwid=0.04,ribsep=0.02,col=col5(n=color_levels))

+

R> plot(chall[[104]],zlim=c(-max(abs(unlist(minmax))),

+ max(abs(unlist(minmax)))),main=attr(ch,"timevec")[104]

+ ,ribwid=0.04,ribsep=0.02, col=col5(n=color_levels))

−0
.0
01

−5
e−
04

0
5e
−0
4

0.
00
1

2008−02−03 06:10:44

−0
.0
01

−5
e−
04

0
5e
−0
4

0.
00
1

2008−02−03 14:10:44

−0
.0
01

−5
e−
04

0
5e
−0
4

0.
00
1

2008−02−03 23:50:44

Figure 5.11: Chi maps. Left : in the morning, Middle: in the afternoon, Right : at
night. Exact time is reported on top of each plot.

5.4.6 Second-order summary statistics

After discretising a trajectory pattern and estimating the intensity function of
each single resulted point pattern, we now turn to look at the interaction between
the moving objects over time. We are interested in distinguishing whether objects
tend to move independently or they show some kind of dependence (e.g. clustering
or inhibition). A common way in the point process literature is to use summary
statistics such as K-function and pair correlation function (see Section 1.2.4).
Pairwise distances are the hint here: if objects tend to be close to each other, then
most of the pairwise distances are going to be small, and if they favour to stand far,
then only a few of the pairwise distances are small (Baddeley et al., 2015). Having
this in mind, we next turn to use these functions in analysing the trajectory pattern
S. Similar to our proposal for the intensity function and using summary statistics

Chapter 5. Trajectory analysis 161

for point patterns, we here propose a variability area for the K-function and the
pair correlation function as follows:

1. According to regular timestamps, discretise the trajectory pattern S and
build the point patterns x1,x2, . . . ,xk.

2. For all the resulted point patterns x1,x2, . . . ,xk, estimate the K-function
using (1.22).

3. From the estimated K-functions K̂1, K̂2, . . . , K̂k, build the pointwise vari-
ability area of the K-function, i.e. for each value of distance argument r,
sort K̂i(r) and then take the lowest and highest value amongst all; doing
so for a sequence of r results in a variability area for the K-function. This
shows how the type of interaction between objects changes over time.

Note that steps above can be applied to the pair correlation function as well.
Variability area of K-function and pair correlation function for trajectory patterns
are accommodated in functions Kinhom.Track and pcfinhom.Track respectively.

In calculating both K-function and pair correlation function, users can take
advantage of the bandwidth selection to first estimate the intensity function and
then pass estimated intensities to the function Kinhom or pcfinhom. The default
is to not pass any estimated intensity function to Kinhom or pcfinhom in which the
intensity will be estimated using the ‘leave-one-out’ kernel smoother (Baddeley
et al., 2000, 2015). Different edge corrections can be also passed to Kinhom.Track

and pcfinhom.Track.

Finally and taking into account that estimated intensity in Figure 5.10 represents
a non-uniform distribution and/or clustering behaviour. We show the variability area
of K-function and pair correlation function over time in Figure 5.12 (considering
the “translate” correction, see Gabriel (2014)). The left plot displays the variation
of K-function, showing that for small distances taxis tend to have a clustering
behaviour while for larger distances they favour inhibition. The right plot of the
variation of the pair correlation function also confirms the same behaviour. Due to
the preference of moving within particular zones, K-function and pair correlation
function might result as what is displayed in Figure 5.12. In other words, taxis might
prefer to take passengers to close destinations within particular zones rather than

162 5.5. Summary and discussion

further destinations. Argument q is to use quantiles of the values of K-function (or
pair correlation function) rather than using maximum and minimum. Default q=0
uses maximum and minimum.

R> K <- Kinhom.Track(Beijing,correction = "translate",

+ timestamp = "20 mins",q=0)

R> par(mfrow=c(1,2))

R> plot(K,cex.axis=1.7,cex.lab=1.5,cex=2)

R> g <- pcfinhom.Track(Beijing,timestamp = "20 mins",q=0)

R> plot(g,cex.axis=1.7,cex.lab=1.5,cex=2)

0 5000 10000 150000e
+0
0

2e
+0
8

4e
+0
8

6e
+0
8

r

K i
nh
om
(r
)

Kinhom
pois

Kinhom

0 5000 10000 15000

0
10

20
30

40
50

60

r

g in
ho
m
(r
)

ginhom
pois

ginhom

Figure 5.12: Variability area of second-order summary statistics for taxi data in
Beijing, China. Left : K-function, Right : pair correlation function.

We point out that as this kind of discretising trajectory patterns results in a set
of spatial point patterns, it may also drive us to consider them as replicated spatial
point patterns. Therefore, one may be able to introduce a single K-function or pair
correlation function for all patterns. Note that in this case, point patterns are not
independent. For more details, see Diggle (2003, Section 5.4).

5.5 Summary and discussion

Analysing trajectory data is often a challenge as moving objects are living in
space whereas moving in time. Such data might be analysed in space or time
separately.

In this Chapter, we introduced a set of classes to handle trajectory data and
defined a set of methods to summarise trajectory patterns. We have considered

Chapter 5. Trajectory analysis 163

different classes to handle tracks passed by one object or a group of objects.
We also aimed at statistically analysing trajectory data in space and see the
changes in the behaviour of data over time. To do so, the literature of spatial point
processes has been adapted to trajectory patterns. An average intensity function
is defined for a trajectory pattern with tracks that overlap in time and it nicely
reveals the more visited spots, streets, highways, etc. Pairwise distances between
different objects have been also considered in trajectories showing how moving
objects interact over time. Moreover, we have implemented methods to smooth the
length of movements over time which highlights where objects move faster/slower.
In addition, the discrepancy between the estimated intensity and the expected
intensity per location per time can be studied in trajectories which shows how
the mass is moving within the studied area over time. We finally presented a
variability area for second-order summary statistics such as K-function and pair
correlation function which displays the type of interaction between objects over
time, highlighting possible clustering or inhibition.

To perform an exploratory data analysis, we finally applied the developed meth-
odologies to taxi data from Beijing, China. The results nicely highlight the behaviour
of taxis over time. We have recognised where the more visited spots are and
also at what time data pattern is denser or objects get closer to each other. We
smoothed the movements of taxis and discovered where and what time they move
faster. Not surprisingly, results confirm that moving within the city is slower than
countryside or highways. Also, in the afternoon there is a decrease in the length
of movements which might be affected by traffic. Chi maps have been studied
showing how the mass is moving within the studied area. They display that objects
are moving from countryside to the city in the morning reporting a heavy traffic in
the city in the afternoon, as the estimated intensity is higher than the expected one.
Chi maps also confirm that the discrepancy between the estimated intensity and
the expected one is smaller during the evening than any other time. The variability
area of K-function and pair correlation function show that for small distances, taxis
tend to show a clustering behaviour while for longer distances they show repulsion.

165

CHAPTER 6

Conclusions and Future work

In this thesis we have mainly focused on spatial and spatio-temporal point pro-
cesses on linear networks and trajectory analysis. Throughout the thesis, we have
developed: 1) several intensity estimation methods for network events, with both
adaptive and non-adaptive approaches; 2) an intensity estimator and second-order
summary statistics for spatio-temporal network data; 3) classes and methods to
analyse movement data. Publications associated with the thesis research are
listed in Appendix A.

In Chapter 2, we broadly discussed the literature of spatial point processes on
linear networks. The current intensity estimators were reviewed and it seemed to
be challenging to estimate the intensity function of network events. Two different
kernel intensity estimators for spatial point patterns on linear networks are defined
and compared with the current intensity estimators. Their theoretical properties
such bias, variance, asymptotic results, bandwidth selection, variance estima-
tion, relative risk estimation and adaptive smoothing are also studied. We first
introduced a kernel intensity estimator which is an extension of ‘Jones-Diggle’
intensity estimator in R2 (equation (1.10)) to the case of linear networks. This
estimator provides a continuous function over the linear network (subject to us-
ing a continuous kernel function), it is mass preserved and its variance can be
estimated numerically. In terms of MISE, it shows a better general performance
comparing to the equal-split discontinuous estimator (Okabe et al., 2009; Okabe
and Sugihara, 2012). Second, we proposed a kernel-based intensity estimator
using 2D convolution. The main motivation for this estimator was computation time.

166

The proposed estimator is computationally efficient and a statistically principled
method for kernel smoothing of point pattern data on a linear network. The point
locations, and the network itself, are convolved with a two-dimensional kernel, then
combined into an intensity function on the network. This can be computed rapidly
using the Fast Fourier Transform, even on large networks and for large bandwidths,
and is robust against errors in network geometry. The estimator is consistent and
its statistical efficiency is only slightly sub-optimal.

In Chapter 3, we paid particular attention to Voronoi intensity estimators. These
estimators are fully non-parametric and reflect the local features nicely. However,
the problem with such estimators is visible when in the point pattern there are
very dense parts surrounded by possibly empty neighbourhoods. In such situation,
the Voronoi cell becomes very small and consequently the intensity becomes
huge with flat intensity close by. This generates an intensity estimate with a huge
variance. In order to smooth out the sharp boundaries and reduce the variance,
we proposed an additional smoothing technique for intensity estimators for point
processes in arbitrary metric spaces, which is based on repeated independent
thinnings of the point pattern. Through a simulation study we showed that our
resample-smoothing technique improves the estimation significantly. In addition,
we discussed unbiasedness and variance, and proposed a rule-of-thumb and a
data-driven cross-validation approach to choose the amount of thinning/smoothing
to apply.

In Chapter 4, we provided preliminaries of spatio-temporal point processes
on linear networks. This being said, we allowed time component to be included
in analysing spatio-temporal network data. Spatial and temporal component
processes were discussed together with their intensity functions. We presented a
kernel-based intensity estimator for spatio-temporal point patterns on networks
which preserves mass. The second-order summary statistics K-function and pair
correlation function were defined to analyse the type of interaction between the
data points. We showed that the K-function and the pair correlation function
are independent of the geometry of network and have known values for spatio-
temporal Poisson processes on networks. This then could be used as a benchmark
to measure the deviation from being Poisson and also for model selection.

In Chapter 5, we focused on movement data such as taxi movement and dis-
cussed the R package trajectories which provides different classes and methods
to handle and summarise trajectory data in R. Studying the behaviour of moving

Chapter 6. Conclusions and Future work 167

objects over time and their interaction, either between objects or with environment,
plays a crucial role in understanding how they use space and more importantly how
they interact with each other. Objects are moving within a particular area over time,
thus a snapshot of a trajectory pattern might be seen as a spatial point pattern.
Package trajectories provides simulation of tracks and model fitting. Moreover,
using the literature of point processes, we developed different methodologies
such as estimating intensity functions, distance analysis, second-order summary
statistics, Chi maps and movement smoothing for movement data. The proposed
statistical methods are accommodated in R package trajectories which make
them reusable for users. We also provided details of how to make use of the
proposed methods in practice.

Regarding future works, there are several lines of research arising from this
work which should be pursued. In Chapter 2, we discussed intensity estimators
and relative risk non-parametrically. It is our intention to incorporate possible cov-
ariates in the play and analyse their effect on the intensity function and relative risk.
Working with network events, possible covariates might be distances to particular
places such as roundabouts, intersections, parks, cinemas, universities, hospit-
als, etc. However, parametric model fitting still suffers from model development.
Having said this, we also plan to develop area-interaction models for network
events. Another interesting line to pursue is to develop higher-order summary
statistics for inhomogeneous point processes on linear networks. This however
demands developing suitable mathematical transformation methods and statistical
justification. The linear network plays an important role when analysing network
data, nevertheless, the network may change over time. Therefore, this might also
be taken into account when performing spatio-temporal analysis. The idea of
resample-smoothing can also be adapted to some other tessellation, generated
by the point pattern in question. In terms of trajectory analysis, important features
affecting object’s movement might include points of interest in cities, weather,
pollution, urban design and so forth. However, analysing such effects requires
parametric studies that are not included in the current version of R package
trajectories and are left for the future.

169

APPENDIX A

Publications and research visits

• Journal papers with impact factor:

1. Mohammad Mehdi Moradi, Francisco Rodrı́guez-Cortés and Jorge
Mateu. (2017). On kernel-based intensity estimation of spatial point
patterns on linear networks. Journal of Computational and Graphical
Statistics. Volume 27 (2), 302–311.

2. Khoi Manh Ngo, Sven Casteleyn, Mohammad Mehdi Moradi, and
Edzer Pebesma. (2018). Do monetary incentives influence users’
behaviour in participatory sensing?. Sensors. Volume 18 (5), 14–26.

3. Suman Rakshit, Tilman M. Davies, Mohammad Mehdi Moradi, Greg
McSwiggan, Gopalan Nair, Jorge Mateu, and Adrian Baddeley. (2018).
Fast kernel smoothing of point patterns on a large network using 2d
convolution. Submitted for publication.

4. Mohammad Mehdi Moradi, Ottmar Cronie, Ege Rubak, Raphael Lachieze-
Rey, Jorge Mateu, and Adrian Baddeley. (2018). Resample-smoothing
of Voronoi intensity estimators. Submitted for publication.

5. Mohammad Mehdi Moradi, Edzer Pebesma, and Jorge Mateu. (2018).
trajectories: Classes and Methods for Trajectory Data. Submitted for
publication.

6. Mohammad Mehdi Moradi, Jorge Mateu, and Adrian Baddeley. (2018).
First and second-order characteristics of spatio-temporal point pro-
cesses on linear networks. Submitted for publication.

170

7. Mohammad Mehdi Moradi, Nicholas Read, Jorge Mateu, and Adrian
Baddeley. (2018). Normalisation of the inhomogeneous K-function and
pair correlation function. Submitted for publication.

• Conference papers:

1. Mohammad Mehdi Moradi, Francisco Rodrı́guez-Cortés and Jorge
Mateu. (2016). An adapted intensity estimator for linear networks with
an application to modeling anti-social behavior in an urban environment.
METMA VIII. The University of Valencia, Valencia – Spain. ISBN: 978-
84-608-8468-2.

2. Mohammad Mehdi Moradi, Ottmar Cronie and Jorge Mateu. (2017).
The smoothing of Voronoi Intensity estimators and its application to
network point pattern data. Spatial Statistics 2017: One World, One
Health, Lancaster University, UK.

Note: This publication was awarded the best poster presenta-
tion by the scientific committee of the conference.

• Workshops:

1. Fernando Benitez, Mohammad Mehdi Moradi, Joaquı́n Huerta, Pau
Arago, Jorge Mateu, Marco Painho and Guiying Du. (2017). Open Data
for Open Cities: Re-use and discovery level, applied to the spatial point
process on linear networks. AGILE conference 2017. The University of
Wageningen, the Netherlands.

• Research visits:

1. Department of Mathematics and Mathematical Statistics, Umeå Univer-
sity, Sweden. Dr. Ottmar Cronie. 16 September 2016 until 2 October
2016.

2. Institute for Geoinformatics, Muenster University, Germany. Prof. Edzer
Pebesma. 7 October 2016 until 28 December 2016.

3. Faculty of Science and Engineering, School of Elec Eng, Comp and
Math Sci (EECMS), Curtin University, Australia. Prof. Adrian Baddeley.
21 March 2017 until 3 May 2017.

Appendix A. Publications and research visits 171

4. Department of Mathematical Sciences, Aalborg University, Denmark.
Dr. Ege Rubak. 5 November 2017 until 11 November 2017.

5. Institute for Geoinformatics, Muenster University, Germany. Prof. Edzer
Pebesma. 7 October 2017 until 18 December 2017.

• Internship:

1. Policia local de Castellón. 9 January 2017 until 10 February 2017.

173

Bibliography

ABRAMSON, I. S. (1982). On bandwidth variation in kernel estimates - A square
root law. The Annals of Statistics, 10(4), pp. 1217–1223.

ADLER, R. J. (1981). The Geometry of Random Fields. Siam.

ANDERES, E.; MØLLER, J. and RASMUSSEN, J. (2017). Isotropic covariance
functions on graphs and their edges. arXiv preprint arXiv:1710.01295.

ANG, Q. W.; BADDELEY, A. and NAIR, G. (2012). Geometrically corrected second
order analysis of events on a linear network, with applications to ecology and
criminology. Scandinavian Journal of Statistics, 39(4), pp. 591–617.

BADDELEY, A. (2007). Validation of statistical models for spatial point patterns.
In: J.G. Babu and E.D. Feigelson (Eds.), Statistical Challenges in Modern
Astronomy IV, volume 371 of Astronomical Society of the Pacific, Conference
Series, pp. 22–38. Astronomical Society of the Pacific, San Francisco, California,
USA.

BADDELEY, A.; JAMMALAMADAKA, A. and NAIR, G. (2014). Multitype point process
analysis of spines on the dendrite network of a neuron. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 63(5), pp. 673–694.

BADDELEY, A.; MØLLER, J. and WAAGEPETERSEN, R. (2000). Non-and semi-
parametric estimation of interaction in inhomogeneous point patterns. Statistica
Neerlandica, 54(3), pp. 329–350.

BADDELEY, A.; NAIR, G.; RAKSHIT, S. and MCSWIGGAN, G. (2017). “Stationary”
point processes are uncommon on linear networks. Stat , 6(1), pp. 68–78.

174 Bibliography

BADDELEY, A.; RUBAK, E. and TURNER, R. (2015). Spatial Point Patterns:
Methodology and Applications with R. CRC Press.

BADDELEY, A. and TURNER, R. (2005). Spatstat: an R package for analyzing
spatial point patterns. Journal of Statistical Software, 12(6), pp. 1–42.

BARR, CH. D. and SCHOENBERG, F. P. (2010). On the Voronoi estimator for the
intensity of an inhomogeneous planar Poisson process. Biometrika, 97(4), pp.
977–984.

BARRY, R. P. and MCINTYRE, J. (2011). Estimating animal densities and home
range in regions with irregular boundaries and holes: A lattice-based alternative
to the kernel density estimator. Ecological Modelling, 222(10), pp. 1666–1672.

BATTAILE, B. (2014). TrackReconstruction: Reconstruct animal tracks from mag-
netometer, accelerometer, depth and optional speed data. R package version
1.1 https://cran.r-project.org/package=TrackReconstruction.

BERMAN, M. and DIGGLE, P. (1989). Estimating weighted integrals of the second-
order intensity of a spatial point process. Journal of the Royal Statistical Society,
Series B, 51(1), pp. 81–92.

BERMAN, M. and TURNER, R. (1992). Approximating point process likelihoods
with GLIM. Applied Statistics, 41(1), pp. 31–38.

BITHELL, J. F. (1991). Estimation of relative risk functions. Statistics in Medicine,
10(11), pp. 1745–1751.

BORRUSO, G. (2003). Network density and the delimitation of urban areas. Trans-
actions in GIS, 7(2), pp. 177–191.

BORRUSO, G. (2005). Network Density Estimation: Analysis of Point Patterns
over a Network. In: Computational Science and its Applications — ICCSA 2005,
Number 3482 in Lecture Notes in Computer Science, pp. 126–132. Springer,
Berlin/Heidelberg.

BORRUSO, G. (2008). Network Density Estimation: A GIS Approach for Analysing
Point Patterns in a Network Space. Transactions in GIS, 12(3), pp. 377–402.

https://cran.r-project.org/package=TrackReconstruction

Bibliography 175

BOTEV, Z. I.; GROTOWSKI, J. F. and KROESE, D. P. (2010). Kernel density
estimation via diffusion. Annals of Statistics, 38(5), pp. 2916–2957.

BREIMAN, L.; MEISEL, W. and PURCELL, E. (1977). Variable kernel estimates of
multivariate densities. Technometrics, 19(2), pp. 135–144.

BROWN, G. S. (1965). Point Density in Stems per Acre. Forest Research Institute,
New Zealand Forest Service.

CALENGE, C. (2006). The package “adehabitat” for the R software: a tool for the
analysis of space and habitat use by animals. Ecological Modelling, 197(3), pp.
516–519.

CAMPBELL, H. A.; E. WATTS, M.; DWYER, R. G. and FRANKLIN, C. E. (2012).
V-Track: software for analysing and visualising animal movement from acoustic
telemetry detections. Marine and Freshwater Research, 63(9), pp. 815–820.

CHALLA, S.; MORELANDE, M.; MUSICKI, D. and EVANS, R. (2011). Fundamentals
of Object Tracking. Cambridge University Press.

CHAUDHURI, P. and MARRON, J. S. (2000). Scale space view of curve estimation.
Annals of Statistics, 28(2), pp. 408–428.

CHIU, S. N.; STOYAN, D.; KENDALL, W. S. and MECKE, J. (2013). Stochastic
Geometry and its Applications. John Wiley & Sons.

CRONIE, O. and VAN LIESHOUT, M. N. M. (2018). A non-model-based approach
to bandwidth selection for kernel estimators of spatial intensity functions. Bio-
metrika, 105(2), pp. 455–462.

DALEY, D. J. and VERE-JONES, D. (2003). An Introduction to the Theory of Point
Processes: Volume I: Elementary Theory and Methods. Springer-Verlag New
York.

DALEY, D. J. and VERE-JONES, D. (2008). An Introduction to the Theory of Point
Processes: Volume II: General Theory and Structure. Springer-Verlag New
York.

DAVIES, T. M. (2013). Jointly optimal bandwidth selection for the planar kernel-
smoothed density-ratio. Spatial and Spatio-Temporal Epidemiology , 5, pp.
51–65.

176 Bibliography

DAVIES, T. M. and BADDELEY, A. (2018). Fast computation of spatially adaptive
kernel estimates. Statistics and Computing, 28(4), pp. 937–956.

DAVIES, T. M. and HAZELTON, M. L. (2010). Adaptive kernel estimation of spatial
relative risk. Statistics in Medicine, 29(23), pp. 2423–2437.

DAVIES, T. M.; JONES, KH. and HAZELTON, M. L. (2016). Symmetric adaptive
smoothing regimens for estimation of the spatial relative risk function. Computa-
tional Statistics & Data Analysis, 101, pp. 12–28.

DAVIES, T. M.; MARSHALL, J. C. and HAZELTON, M. L. (2018). Tutorial on kernel
estimation of continuous spatial and spatiotemporal relative risk. Statistics in
Medicine, 37(7), pp. 1191–1221.

DIGGLE, P. (1985). A kernel method for smoothing point process data. Applied
Statistics, 34(2), pp. 138–147.

DIGGLE, P. (2003). Statistical Analysis of Spatial and Spatio-Temporal Point
Patterns. CRC Press.

DIGGLE, P.; ZHENG, P. and DURR, P. (2005). Non-parametric estimation of spatial
segregation in a multivariate point process: bovine tuberculosis in Cornwall, UK.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), pp.
645–658.

DUYCKAERTS, CH. and GODEFROY, G. (2000). Voronoi tessellation to study the
numerical density and the spatial distribution of neurones. Journal of Chemical
Neuroanatomy , 20(1), pp. 83–92.

DUYCKAERTS, CH.; GODEFROY, G. and HAUW, J. (1994). Evaluation of neuronal
numerical density by Dirichlet tessellation. Journal of Neuroscience Methods,
51(1), pp. 47–69.

EBELING, H. and WIEDENMANN, G. (1993). Detecting structure in two dimensions
combining Voronoi tessellation and percolation. Physical Review E , 47(1), p.
704.

ELIEZER, G. (2014). bcpa: Behavioral change point analysis of animal movement .
R package version 1.1 https://cran.r-project.org/package=bcpa.

https://cran.r-project.org/package=bcpa

Bibliography 177

FARRELL, E. D. and FUIMAN, L. (2013). animalTrack: Animal track reconstruction
for high frequency 2-dimensional (2D) or 3-dimensional (3D) movement data. R
package version 1.0.0 https://cran.r-project.org/package=animalTrack.

FEDERER, H. (1996). Geometric Measure Theory. Springer-Verlag.

FREITAS, C. (2012). argosfilter: Argos locations filter . R package version 0.63.
https://CRAN.R-project.org/package=argosfilter

FRICK, H. and KOSMIDIS, I. (2017). trackeR: Infrastructure for Running and Cycling
Data from GPS-Enabled Tracking Devices in R. Journal of Statistical Software,
82(7), pp. 1–29. ISSN 1548-7660. https://www.jstatsoft.org/v082/i07.

FRIGO, M. and JOHNSON, S. G. (2005). The Design and Implementation of
FFTW3. Proceedings of the IEEE , 93(2), pp. 216–231. Special issue on
“Program Generation, Optimization, and Platform Adaptation”.

GABRIEL, E. (2014). Estimating second-order characteristics of inhomogeneous
spatio-temporal point processes. Methodology and Computing in Applied Prob-
ability , 16(2), pp. 411–431.

GABRIEL, EDITH and DIGGLE, PETER (2009). Second-order analysis of inhomo-
geneous spatio-temporal point process data. Statistica Neerlandica, 63(1), pp.
43–51.

GELFAND, A. E.; DIGGLE, P.; GUTTORP, P. and FUENTES, M. (2010). Handbook
of Spatial Statistics. CRC press.

GHORBANI, MOHAMMAD (2013). Testing the weak stationarity of a spatio-temporal
point process. Stochastic Environmental Research and Risk Assessment , 27(2),
pp. 517–524.

GÜTING, R. H. and SCHNEIDER, M. (2005). Moving Objects Databases. Elsevier.

HALL, P. and MARRON, J. S. (1988). Variable window width kernel estimates of
probability densities. Probability Theory and Related Fields, 80(1), pp. 37–49.

HANKS, E. M.; HOOTEN, M. B. and ALLDREDGE, M. W. (2015). Continuous-time
discrete-space models for animal movement. The Annals of Applied Statistics,
9(1), pp. 145–165.

https://cran.r-project.org/package=animalTrack
https://CRAN.R-project.org/package=argosfilter
https://www.jstatsoft.org/v082/i07

178 Bibliography

HAZELTON, M. L. (2008). Kernel estimation of risk surfaces without the need for
edge correction. Statistics in Medicine, 27(12), pp. 2269–2272.

HAZELTON, M. L. and DAVIES, T. M. (2009). Inference based on kernel estimates
of the relative risk function in geographical epidemiology. Biometrical Journal ,
51(1), pp. 98–109.

HOOTEN, M. B. and JOHNSON, D. S. (2017). Basis function models for animal
movement. Journal of the American Statistical Association, 112(518), pp. 578–
589.

ILLIAN, J.; PENTTINEN, A.; STOYAN, H. and STOYAN, D. (2008). Statistical Analysis
and Modelling of Spatial Point Patterns. John Wiley & Sons.

JEFF, A. T.; JAMES, SH.; JUN, ZH.; SINKOVTS, R.; CHOURASIA, A.; LOCK-
WOOD, G. and FISHER, R. N. (2014). mkde: 2D and 3D movement-based
kernel density estimates (MKDEs). R package version 0.1 https://cran.r-
project.org/package=mkde.

JONES, M. CH. (1993). Simple boundary correction for kernel density estimation.
Statistics and Computing, 3(3), pp. 135–146.

JONES, M. CH.; MARRON, J. S. and SHEATHER, S. (1996). A brief survey of
bandwidth selection for density estimation. Journal of the American Statistical
Association, 91(433), pp. 401–407.

JUN, Y. and VLADIMIR, P. (2016). smam: Statistical Modeling of Animal Movements.
R package version 0.3-0 https://cran.r-project.org/package=smam.

KARIM, R. (2017). fftwtools package. R package version 0.9-8 https://cran.r-
project.org/package=fftwtools.

KELSALL, J. E and DIGGLE, P. (1995a). Kernel estimation of relative risk. Bernoulli ,
1(1–2), pp. 3–16.

KELSALL, J. E. and DIGGLE, P. (1995b). Non-parametric estimation of spatial
variation in relative risk. Statistics in Medicine, 14(21-22), pp. 2335–2342.

LAST, G. (2010). Stationary random measures on homogeneous spaces. Journal
of Theoretical Probability , 23(2), pp. 478–497.

https://cran.r-project.org/package=mkde
https://cran.r-project.org/package=mkde
https://cran.r-project.org/package=smam
https://cran.r-project.org/package=fftwtools
https://cran.r-project.org/package=fftwtools

Bibliography 179

LAWSON, A. B. and WILLIAMS, F. L. R. (1993). Applications of extraction mapping
in environmental epidemiology. Statistics in Medicine, 12(13), pp. 1249–1258.

LEVINE, N. (2006). Houston, Texas, Metropolitan Traffic Safety Planning Program.
Transportation Research Record: Journal of the Transportation Research Board ,
1969(1), pp. 92–100.

LEVINE, NED (2009). A Motor Vehicle Safety Planning Support System: The Hou-
ston Experience. In: Stan Geertman and John Stillwell (Eds.), Planning Support
Systems Best Practice and New Methods, pp. 93–111. Springer Netherlands,
Dordrecht. ISBN 978-1-4020-8952-7.

LOADER, C. (1999). Local Regression and Likelihood. Springer, New York.

LOFTSGAARDEN, D. O. and QUESENBERRY, C. P. (1965). A non-parametric
estimate of a multivariate density function. Annals of Mathematical Statistics,
36(3), pp. 1049–1051.

LU, YONGMEI and CHEN, XUWEI (2007). On the false alarm of planar K-function
when analyzing urban crime distributed along streets. Social Science Research,
36(2), pp. 611–632.

MARK, A. F. and ESLER, A. E. (1970). An assessment of the point-centred quarter
method of plotless sampling in some New Zealand forests. Proceedings (New
Zealand Ecological Society), (17), pp. 106–110.

MARSHALL, J. C. and HAZELTON, M. L. (2010). Boundary kernels for adaptive
density estimators on regions with irregular boundaries. Journal of Multivariate
Analysis, 101(4), pp. 949–963.

MCSWIGGAN, G.; BADDELEY, A. and NAIR, G. (2017). Kernel density estimation
on a linear network. Scandinavian Journal of Statistics, 44(2), pp. 324–345.

MICHELOT, T.; LANGROCK, R. and PATTERSON, T. A. (2016). moveHMM: an R
package for the statistical modelling of animal movement data using hidden
Markov models. Methods in Ecology and Evolution, 7(11), pp. 1308–1315.

MØLLER, J. and SCHOENBERG, F.P. (2010). Thinning spatial point processes into
Poisson processes. Advances in Applied Probability , 42(2), pp. 347–358.

180 Bibliography

MØLLER, J. and WAAGEPETERSEN, R. (2003). Statistical Inference and Simulation
for Spatial Point Processes. CRC Press.

MØLLER, JESPER and GHORBANI, MOHAMMAD (2012). Aspects of second-order
analysis of structured inhomogeneous spatio-temporal point processes. Statist-
ica Neerlandica, 66(4), pp. 472–491.

MORADI, M. M.; CRONIE, O.; RUBAK, E.; LACHIEZE-REY, R.; MATEU, J. and
BADDELEY, A. (2018a). Resample-smoothing of Voronoi intensity estimators.
Submitted for publication.

MORADI, M. M.; MATEU, J. and BADDELEY, A. (2018b). First and second-order
characteristics of spatio-temporal point processes on linear networks. Submitted
for publication.

MORADI, M. M.; PEBESMA, E. and MATEU, J. (2018c). trajectories: Classes and
Methods for Trajectory Data. Submitted for publication.

MORADI, M. M.; READ, N.; MATEU, J. and BADDELEY, A. (2018d). Normalisation
of the inhomogeneous K-function and pair correlation function. In preparation.

MORADI, M. M.; RODRIGUEZ-CORTES, F. and MATEU, J. (2017). On kernel-based
intensity estimation of spatial point patterns on linear networks. Journal of
Computational and Graphical Statistics, 27(2), pp. 302–311.

NADARAYA, E. A. (1964). On estimating regression. Theory of Probability and its
Applications, 9(1), pp. 141–142.

NADARAYA, E. A. (1989). Nonparametric Estimation of Probability Densities and
Regression Curves. Kluwer, Dordrecht.

NIELSON, R. M.; SAWYER, H. and MCDONALD, T. L. (2013). BBMM:
Brownian bridge movement model . R package version 3.0 https://cran.r-
project.org/package=BBMM.

NIU, M.; BLACKWELL, P. G. and SKARIN, A. (2016). Modeling interdependent
animal movement in continuous time. Biometrics, 72(2), pp. 315–324.

O’DONNELL, D.; RUSHWORTH, A.; BOWMAN, A. W.; MARIAN. SCOTT, E. and
HALLARD, M. (2014). Flexible regression models over river networks. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 63(1), pp. 47–63.

https://cran.r-project.org/package=BBMM
https://cran.r-project.org/package=BBMM

Bibliography 181

OGATA, Y. (2011). Significant improvements of the space-time ETAS model for
forecasting of accurate baseline seismicity. Earth, Planets and Space, 63(3),
p. 6.

OKABE, A.; BOOTS, B.; SUGIHARA, K. and CHIU, S.N. (2000). Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams. Wiley, second edition.

OKABE, A. and SATOH, T. (2006). Uniform network transformation for points
pattern analysis on a non-uniform network. Journal of Geographical Systems,
8(1), pp. 25–37.

OKABE, A.; SATOH, T. and SUGIHARA, K. (2009). A kernel density estimation
method for networks, its computational method and a GIS-based tool. Interna-
tional Journal of Geographical Information Science, 23(1), pp. 7–32.

OKABE, A. and SUGIHARA, K. (2012). Spatial Analysis along Networks: Statistical
and Computational Methods. John Wiley & Sons.

OKABE, A. and YAMADA, I. (2001). The K-function method on a network and its
computational implementation. Geographical Analysis, 33(3), pp. 271–290.

ORD, J. K. (1978). How many trees in a forest? Mathematical Sciences, 3, pp.
23–33.

PEBESMA, E. (2012). spacetime: Spatio-Temporal data in R. Journal of Statistical
Software, 51(7), pp. 1–30.

PINSKY, M. A. (2002). Introduction to Fourier Series and Wavelets. American
Mathematical Society.

RADINGER, J. and WOLTER, CH. (2014). Patterns and predictors of fish dis-
persal in rivers. Fish and Fisheries. R package “fishmove”, version 0.3-3
http://dx.doi.org/10.1111/faf.12028.

RAKHIMBERDIEV, E.; SAVELIEV, A.; PIERSMA, T. and KARAGICHEVA, J. (2017).
FLightR: an R package for reconstructing animal paths from solar geolocation
loggers. Methods in Ecology and Evolution.

RAKSHIT, S.; DAVIES, T. M.; MORADI, M. M.; MCSWIGGAN, G.; NAIR, G.; MATEU,
J. and BADDELEY, A. (2018). Fast Kernel Smoothing of Point Patterns on a
Large Network using 2D Convolution. Submitted for publication.

http://dx.doi.org/10.1111/faf.12028

182 Bibliography

RAKSHIT, S.; NAIR, G. and BADDELEY, A. (2017). Second-order analysis of point
patterns on a network using any distance metric. Spatial Statistics, 22(1), pp.
129–154.

RIPLEY, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical
Society. Series B (Methodological), 39(2), pp. 172–212.

RIPLEY, B. D. (2005). Spatial Statistics. John Wiley & Sons.

RÜSCHENDORF, L. (1994). Wasserstein metric. In: M.Hazewinkel (Ed.), Encyclo-
pedia of Mathematics, Kluwer, Dordrecht, NL.

RUSSELL, J. C.; HANKS, E. M and HARAN, M. (2016). Dynamic models of
animal movement with spatial point process interactions. Journal of Agricultural,
Biological, and Environmental Statistics, 21(1), pp. 22–40.

SCHAAP, WILLEM EGBERT (2007). DTFE: the Delaunay Tessellation Field Estim-
ator. Ph.D. thesis, University of Groningen.

SCHNEIDER, R. and WEIL, W. (2008). Stochastic and Integral Geometry. Probab-
ility and its Applications. Springer, Dordrecht.

SCOTT, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and
Visualization. John Wiley & Sons.

SILVERMAN, B. W. (1982). Kernel density estimation using the fast Fourier trans-
form. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31(1),
pp. 93–99.

SILVERMAN, B. W. (1986). Density Estimation for Statistics and Data Analysis.
Routledge.

SOM, N. A.; MONESTIEZ, P.; VER HOEF, J. M.; ZIMMERMAN, D. L. and PETERSON,
E. E. (2014). Spatial sampling on streams: principles for inference on aquatic
networks. Environmetrics, 25(5), pp. 306–323.

SUGIHARA, K.; SATOH, T. and OKABE, A. (2010). Simple and unbiased kernel
function for network analysis. In: ISCIT 2010 (International Symposium on
Communication and Information Technologies), pp. 827–832. IEEE.

Bibliography 183

SUMNER, M. D. (2016). trip: Tools for the Analysis of Animal Track Data. R
package version 1.5.0 https://cran.r-project.org/package=trip.

SUMNER, M. D.; WOTHERSPOON, S. J. and HINDELL, M. A. (2009). Bayesian
estimation of animal movement from archival and satellite tags. PLoS One,
4(10), p. e7324.

TIERNEY, L. (2001). Compiling R: A Preliminary Report. In: K.Hornik and F.Leisch
(Eds.), DSC 2001: Proceesings of the Second International Workshop on
Distributed Statistical Computing, . ISSN 1609-395X.

TOOHEY, K. (2015). SimilarityMeasures: Trajectory Similarity Measures. R
package version 1.4 https://cran.r-project.org/package=SimilarityMeasures.

VAN LIESHOUT, M. N. M. (2000). Markov Point Processes and their Applications.
World Scientific.

VAN LIESHOUT, M. N. M. (2011). A J–function for inhomogeneous point processes.
Statistica Neerlandica, 65(2), pp. 183–201.

VAN LIESHOUT, M. N. M. (2012). On Estimation of the Intensity Function of a
Point Process. Methodology and Computing in Applied Probability , 14(3), pp.
567–578.

VAN LIESHOUT, M. N. M. (2017). Nearest-neighbour Markov point processes on
graphs with Euclidean edges. arXiv preprint arXiv:1710.07502.

VER HOEF, J. M. and PETERSON, E. (2010). A moving average approach for
spatial statistical models of stream networks. Journal of the American Statistical
Association, 105(489), pp. 6–18.

VER HOEF, J. M.; PETERSON, E. and THEOBALD, D. (2006). Spatial statistical
models that use flow and stream distance. Environmental and Ecological
statistics, 13(4), pp. 449–464.

WAND, M. P. and JONES, M. CH. (1994). Kernel Smoothing. Crc Press.

WATSON, G. S. (1964). Smooth regression analysis. Sankhyā: The Indian Journal
of Statistics, Series A, 26(4), pp. 359–372.

https://cran.r-project.org/package=trip
https://cran.r-project.org/package=SimilarityMeasures

184 Bibliography

XIE, ZH. and YAN, J. (2008). Kernel density estimation of traffic accidents in
a network space. Computers, Environment and Urban Systems, 32(5), pp.
396–406.

YAMADA, I. and THILL, J. (2004). Comparison of planar and network K-functions in
traffic accident analysis. Journal of Transport Geography , 12(2), pp. 149–158.

YANG, S. L. (2014). BayesianAnimalTracker: Bayesian Melding of GPS
and DR Path for Animal Tracking. R package version 1.2 https://cran.r-
project.org/package=BayesianAnimalTracker.

YUAN, J.; ZHENG, Y.; XIE, X. and SUN, G. (2011). Driving with knowledge from
the physical world. In: Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 316–324. ACM.

YUAN, JING; ZHENG, YU; ZHANG, CHENGYANG; XIE, WENLEI; XIE, XING; SUN,
GUANGZHONG and HUANG, YAN (2010). T-drive: driving directions based on taxi
trajectories. In: Proceedings of the 18th SIGSPATIAL International conference
on advances in geographic information systems, pp. 99–108. ACM.

https://cran.r-project.org/package=BayesianAnimalTracker
https://cran.r-project.org/package=BayesianAnimalTracker

	Resumen
	Abstract
	Introduction
	Data examples
	Spatial point processes on R2
	Point process models
	Intensity estimators
	Relative risk
	Second-order summary statistics

	Spatial point processes on linear networks
	Linear networks
	Second-order summary statistics

	Trajectories
	Organization of the thesis

	Kernel smoothing for network events
	Introduction
	Datasets
	Chicago crime data
	Castellón anti-social behaviour
	Traffic accident in Medellín
	Traffic accident in Western Australia

	Equal-split intensity estimators
	Adapted Jones-Diggle estimator
	Statistical properties
	Simulation study
	Chicago crime data
	Castellón anti-social behaviour

	Heat kernel intensity estimator
	Fast kernel smoothing using 2D convolution
	Fast computation
	Chicago example
	Theoretical properties
	Toy example
	Simulation experiments
	Relative risk and smoothing on a network
	Traffic accidents on urban roads of Medellín
	Adaptive smoothing
	Traffic accidents in Western Australia

	Summary

	Resample-smoothing of Voronoi estimators
	Introduction
	Setup
	Independent thinning
	Voronoi tessellations
	Voronoi intensity estimation

	Resample-smoothing of intensity estimators
	Definition of Resample-Smoothing
	Theoretical properties
	Choosing the smoothing parameters
	Large scale data and sparsity

	Numerical experiments
	Homogeneous Poisson process
	Inhomogeneous Poisson process
	Log-Gaussian Cox process
	Thinned simple sequential inhibition point process

	Houston traffic accident
	Finnish pines
	Summary

	Spatio-temporal point patterns on networks
	Introduction
	Setup
	Methodologies
	First-order characteristics
	Homogeneous second-order characteristics
	Inhomogeneous second-order characteristics

	Data analysis
	Traffic accidents in Houston
	Traffic accidents in Medellín
	Traffic accidents in Eastbourne

	Summary

	Trajectory analysis
	Introduction
	Classes and methods
	Track
	Tracks
	TracksCollection
	segments
	Methods

	Simulation and model fitting
	Trajectory simulation
	Model fitting

	Exploratory data analysis
	Data
	Distance analysis
	Movement smoothing
	Intensity function
	Chi maps
	Second-order summary statistics

	Summary and discussion

	 Conclusions and Future work
	Publications and research visits
	Bibliography

