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Abstract
Graphics Processing Units (GPU) have been widely adopted to accelerate the execution
of HPC workloads due to their vast computational throughput, ability to execute a large
number of threads inside SIMD groups in parallel and their use of hardware multithread-
ing to hide long pipelining and memory access latencies. There are two APIs commonly
used for native GPU programming: CUDA, which only targets NVIDIA GPUs and
OpenCL, which targets all types of GPUs as well as other accelerators. However these
APIs only expose low-level hardware characteristics to the programmer. So developing
applications able to exploit the dazzling performance of GPUs is not a trivial task, and
becomes even harder when they have irregular data access patterns or control flows.

Several approaches have been proposed to help simplify accelerator programming.
Models like OpenACC and OpenMP are intended to solve the aforementioned program-
ming challenges. They take a directive based approach which allows the users to insert
non-executable directives that guide the compiler to handle the low-level complexities
of the system. However they have a performance gap with native programming models
as their compiler does not have comprehensive knowledge about how to transform code
and what to optimize.

This thesis targets directive-based programming models to enhance their capabilities for
GPU programming. The thesis introduces a new dialect model, which is a combination
of OpenMP and OmpSs. It also includes several extensions and the MACC infrastructure,
a source-to-source compiler targeting CUDA developed on top of BSC’s Mercurium
compiler and able to support the new dialect model. The new model allows the use of
multiple GPUs in conjunction with the vector and heavily multithreaded capabilities
in multicore processors automatically. Moreover, it introduces new clauses to make
use of on-chip memory efficiently. Secondly the thesis focusses on code transformation
techniques and proposes the LazyNP method to support nested parallelism for irregular
applications such as sparse matrix operations, graph and graphics algorithms. The
method efficiently increases thread granularity for the code region where nested paral-
lelism is desired. The compiler generates code to dynamically pack kernel invocations
and to postpone their execution until a bunch of them are available. To the best of our
knowledge, LazyNP code transformation was the first successful code transformation
method related to nested directives for GPUs. Finally, the thesis conducts a thorough
exploration of conventional loop scheduling methods on GPUs to find the advantage
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and disadvantages of each method. It then proposes the concept of optimized dynamic
loop scheduling as an improvement to all the existing methods.

The contributions of this thesis improve the programmability of GPUs. This has had an
outstanding impact on the whole OpenMP and OpenACC language committee. Addi-
tionally, our work includes contributions to widely used compilers such as Mercurium,
Clang and PGI, helping thousands of users to take advantage of our work.
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1 Introduction

In recent years, a revolution has been occurring in the world of computer architecture
research and development. Performance improvements based on clock frequency scaling
are no longer a viable option due to physical limits of power consumption and the ability
to dissipate heat. This has brought new challenges in processor design to find the most
efficient energy consumption/performance ratio.

After these limits were first hit, central processor unit (CPU) architecture underwent a
drastic evolution from single core to multicore. Processor vendors have done a lot of
investment to find out how to increase performance without increasing clock frequency.
As a result, even the simplest CPU today incorporates more than one core. Parallel
systems have become mainstream at CPU architecture and are present even on mobile
devices. However multicores don’t provide enough parallelism for many workloads,
and so over time researchers have started to explore other ways to increase parallelism
such as using massively parallel accelerators as well as multicores.

The new vogue in computer architecture is accelerators, which are mostly used to
supplement special functions of the host processor (CPU). They have gained popularity
in the last few years due to their impressive potential performance, higher ratios
of throughput to consumed power and improved performance versus system cost
when compared to multi-core architectures. Therefore, they have become essential
in several areas of computer science such as High-Performance Computing (HPC),
artificial intelligence (AI), data science, etc. The main examples of these recent hardware
accelerators include Graphics Processing Units (GPU) from NVIDIA, AMD and ARM [1],
the Intel Xeon Phi co-processors [2] and PEZY-SC many-core accelerator [3] or FPGAs
[4].

The current Top500 [5] list, which ranks and details the 500 most powerful non-distributed
computer systems in the world, reflects the popularity of accelerator usage in supercom-
puting area as four of the top 5 machines have either GPUs or Xeon Phi coprocessors
as shown in Table 1.1. In fact, although the second ranked computer seems like it does

1



Chapter 1. Introduction

Rank Name Year Processor Accelerator/Co-Processor
1 Summit 2018 IBM POWER-9 NVIDIA Volta GV100
2 Sunway TaihuLight 2016 Sunway SW26010 None
3 Tianhe-2 (MilkyWay-2) 2013 Intel Xeon E5-2692v2 Intel Xeon Phi 31S1P
4 Sierra 2018 IBM POWER-9 NVIDIA Volta GV100
5 ABCI 2017 Xeon Gold 6148 NVIDIA Tesla V100

Table 1.1: Top 5 supercomputers in the current TOP500 list (June 2018)
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Figure 1.1: Theoretical peak floating point operation per clock cycle, double precision.

not have an accelerator, its CPU incorporates processor with many cores acting like
accelerators. Based on this list, we can assume that in future many computers will
include accelerators.

GPUs are one of the most important and commonly used accelerators today. They play
a crucial role in the context of energy-aware high-performance accelerators. They have
been already widely adopted to accelerate the execution of HPC workloads due to their
large computational throughput, being able to execute a large number of threads inside
SIMD groups in parallel and use of hardware multithreading to hide long pipelining
and memory access latencies.

Figure 1.1 shows performances of different accelerators as well as CPUs. The performance
is shown as GFLOPs, in the order of the tens for CPUs and the hundreds for GPUs
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and Xeon Phi. It is worth noting the need to use parallelization or vectorization to
leverage the full potential. Even though Intel CPUs involve multiple cores (for instance
e5-2699-v4 incorporates 22 cores, this number of cores is very low compared with GPUs.
The impact of this is clear when you look at the low scores for CPUs in Figure 1.1. Clearly
accelerators are doing a great job and obtaining very good performance compared with
CPUs. However, relating a GPU processing unit with each CPU core is inappropriate:
GPU multiprocessors operate batches of their processing units in lock-step, so if there
is diverging code, the code is divided into paths, and each path cannot be processed
independently. We explain GPU architecture and work-flow in detail in Section 2.1.
Apart from accelerators, the other significant advance in computer architecture research
is vectorization. Since massive parallel architectures provide very good speed, CPU
vendors have put a lot of effort into vectorization. Especially Intel stepped forward
vectorization and introduced the first version of AVX, then AVX2 with 256-bit vector
units[6]. More recently, they moved to 512-bit vector extensions with the Initial Many-
Core Instructions (IMCI) included in the Intel Xeon Phi coprocessor (Knights Corner)
and later in the Skylake family of CPUs. With the introduction of AVX in CPUs, in
particular AVX2 with its many masked operations, one can achieve similar execution
behavior to GPUs.

Accelerator programming has gradually added more advanced and flexible instructions
that bring bulk thread parallelism to a broader range of applications and domains.
For instance in newer GPUs, we can find tensor cores designed to provide support
to neural networks, support for nested parallelism with dynamic parallelism feature,
support for independent thread scheduling to improve the performance of diverging
code and support for NVLink [7] which is a wire-based serial multi-lane near-range
communication protocol.

As accelerator architectures have become more sophisticated and advanced, program-
ming accelerators has remained a big challenge. Using accelerators requires a parallel
programming approach which is drastically different to traditional sequential program-
ming. Therefore, several programming ideas have been proposed in recent years to
facilitate programming of accelerators. One of the first attempts was Brook [8], which
was the forerunner to generalized computing on GPUs. More recently CUDA [9] has
become the main programming API for NVIDIA GPUs, and OpenCL [10] provides a
general framework which works with Intel Xeon Phi cards and GPUs as well. However
programming accelerators is still challenging. Some accelerators like GPUs may not be
able run legacy CPU code. On the other hand, Xeon Phi can run the code, but may not
achieve the best performance. Thus, code must be re-written for each accelerator type.
In other words, accelerators have raised the programming barrier to an unaffordable
level.

So to summarise, the history above shows us future computers will incorporate more
and more accelerators due to the to their higher peak performance and performance
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per Watt ratio when compared to multicores. Therefore, accelerator programming must
become sophisticated enough to exploit the best performance from these architectures.
In this thesis, we introduce, implement and optimize high-level programming model for
GPUs accelerators.

1.1 The Problem Statement

While GPUs are becoming more and more sophisticated and offering promising perfor-
mance with reasonable power consumption, programming accelerators in an efficient
manner is still a challenge. This is because the parallel programming needed is fun-
damentally unlike the traditional sequential approach to programming CPUs, also
the existing frameworks are still extremely low-level, further raising the barrier to
programmability. To address this challenge, this thesis proposes several mechanisms
for parallelization and optimizations for compilers and runtime systems targetting
GPUs. From the software contributions perspective, this thesis includes two open-source
contributions for the Mercurium compiler and CLANG C/C++ front-end for LLVM
compiler and one commercial contribution for the NVIDIA PGI Compiler.

1.1.1 High-level Programming Model

Currently there are two APIs commonly used for native GPU programming: CUDA
which targets NVIDIA GPUs and OpenCL which targets all GPUs as well as other
accelerators such as FPGAs. Native GPU programming gives all responsibility to the
programmer who should take care of transforming computationally intensive pieces of
code into kernels to be executed on the accelerator devices as well as write the host code
to orchestrate data allocations, data transfers and kernel invocations with the appropriate
allocation of GPU resources.

To achieve maximum performance out of GPUs, programmers must know GPU architec-
ture as well as have parallel programming knowledge. For instance, it is essential to
know that the GPU hardware has an additional bunching of threads which in NVIDIA is
called a warp with 32 threads, in AMD hardware is called a wavefront with 64 threads.
A warp (or wavefront) is the most fundamental computing unit in GPUs. All the threads
in a warp share the same program counter and therefore execute the same instruction at
the same time, the only difference being the data that they operate on in that instruction.
This is called lock-step execution. Therefore this question comes to mind: Are we
programming a thread or a warp?. The short answer is we program a thread in the
native programming language. However, we must also be aware of how a warp works
in order to achieve the best performance. Therefore, exploiting the best performance
from GPUs is not a trivial task in native GPU programming languages.
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1.1.2 GPU Specific Code Transformations and Optimizations

Native GPU programming is a hard programming task, therefore several programming
ideas have proposed in recent years to ease the burden of programming accelerators
[11, 12, 13, 14, 15, 16, 17]. Currently there are two main standards, OpenMP [12] and
OpenACC [13].

The native models like CUDA or OpenCL are language-based models, therefore these
are flexible enough for the user to apply any optimization they want. Directive-
based programming models like OpenMP are higher-level, therefore they handle code
transformation and optimization. However, without enough information, the compiler
is not able to do the optimizations as well as an expert programmer would. The reason
that can stop the compiler parallelizing code can vary: unknown trip count of loops,
nested and irregular loops, pointer aliasing, complex loop cross-iteration dependencies
or function calls. They all affect the flow of execution, hindering the analysis of the code.
Another reason is that specialised GPU compilers are still relatively new, so they still do
not have comprehensive knowledge about How should the compiler transform code
for GPUs? and What should the compiler optimize for GPUs?.

Code transformation for irregular applications has always been an issue for bulk parallel
GPUs. Moreover, according to the recent DoE report on exascale computing [18], sparse
matrix applications and graph applications are highlighted as particular challenges for
exascale computing due to their load balance problem. In this thesis we propose a code
transformation algorithm that targets irregular applications which have unknown trip
count.

In addition, code optimization is a very important topic for high-level programming
model compilers. Since GPUs are relatively new devices, there is not much compiler
research for them. We investigate the loop optimization method which is one of the most
important optimization approaches in compilers in a long time. However, we have seen
that loop scheduling research is missing when we look at studies about GPU compilers.

Lastly, we propose several extensions to OpenACC and OpenMP models to allow their
compiler to enable more optimizations. These are the two primary standards which HPC
scientists and engineers have come up with to facilitate GPU utilization. However, there
is still a lack of compiler support for these standards for GPUs. Compiler-generated
code is not always able to exploit parallelism successfully in real applications due to
insufficient directives in many cases. Another critical factor is that the native languages
(C, C++ and Fortran) that the standards are based on are gradually improving; therefore
the standards should keep up with the language, and in turn the compilers should keep
up with the standards. However, adapting new language features to the device model is
a long process. Lastly, heterogeneous systems are generally incorporating more than
one accelerator and a host processor in a single node. In order to exploit from entire
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machine, the workload should be balanced among all the accelerators on the system,
which is a non-trivial task.

1.1.3 Heterogeneous Systems

The accelerator computing era introduces a new term which is heterogeneous computing.
Unfortunately, heterogeneous computing makes programming a difficult task even
for expert programmers, especially for programmers who want to exploit machine
resources fully. Firstly, accelerators may not able to run legacy CPU code. Therefore,
applications targeting traditional CPU architectures may have to be redesigned and
rewritten. Another challenge with heterogeneous system is that accelerators most likely
may have their separate memory space which may be designed in a different way than
main memory. It breaks conventional programming approach as programmers always
tend to think that CPUs use single memory space with transparent mechanisms. To
use accelerators, it becomes necessary to manage separate memory spaces by adding
additional code to maintain data movement and keep coherency.

1.2 Thesis Contributions

In this thesis, we present several contributions in the field of directive-based programming
models, compilers and runtime algorithms aimed to leveraging the exploration of GPUs.
The main contributions are the following:

A new dialect programming model: We present a new dialect model, which is a
combination of OpenMP and OmpSs, along with several extensions. We also introduce
a MACC infrastructure1, which is a source-to-source compiler targeting CUDA and
developed on top of OmpSs and able to support the new dialect model. Our model
aims to reduce the burden of programming GPUs and deliver the best performance out
of them. It is developed on top of the Mercurium compiler. This model is a result of
our initial design, implementation, integration, research, and evaluation of compiler
algorithms related to a different aspect of GPU code generation infrastructure.

Code transformation for GPU compilers: We propose a code transformation technique
that covers all types of irregular applications such as sparse matrix, graphs, graphics, etc.
We call our method Lazy Nested Parallelism (LazyNP) since it targets nested parallelism.
The compiler generates code to dynamically pack kernel invocations and to postpone
their execution until a bunch of them are available. Our method is highly efficient and
elegant and can even outperform optimized libraries which are provided by vendors.

GPU specific optimization techniques: We explore using dynamic scheduling for

1MACC is an abbreviation of Mercurium ACCelerator Model
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mapping parallel loop iterations to GPU threads in an NVIDIA PGI OpenACC compiler.
Our method reaches maximum performance with a small grid size. In addition, it
yields better performance for reduction operations. We explain the shortcomings of
static scheduling and why mapping one thread per iteration is undesirable. We then
show how to generate dynamically scheduled loops for GPUs safely, and describe the
implementation in PGI OpenACC compiler.

Extensions for OpenMP and OpenACC standards: We introduce several different
extension ideas to OpenMP and OpenACC standards which includes new directives
and clause to allow programmers to direct the compiler in the code generation process
in GPU device model. We also extended the meaning of some directives and clauses to
increase coverage of code scenarios. These directives and clauses provide the compiler
with information valuable to generate GPU code while utilizing better GPU hardware.
Also we propose extensions able to adapt Modern C++ features such as lambda and
variadics templates and their combinations. Some of these proposals have been included
in the new version of the OpenMP and OpenACC standards.

Multiple device management: We propose a model that can automatically manage
different device types such as GPUs and CPUs while generating code for them. We
extended our MACC infrastructure on OmpSs task model. Our model takes the burden
from programmers and moves it to runtime while minimizing data movement as task
data information is provided in the code. Additionally we also propose a multiple target
task sharing approach which is able to utilize all the system devices such as CPU and
GPU for the same task.

1.3 Thesis Organization

The rest of this thesis is structured as follows. Chapter 2 gives some background to the
problem along with overview of the OmpSs, OpenMP and OpenACC programming
models. It also includes details of the Mercurium, CLANG and PGI compilers which are
their respective development environments. Chapter 3 shows our MACC infrastructure
which is a source-to-source generation model for GPU. Chapter 4 introduces our
proposal on device model extensions for OpenMP and OpenACC standards. Chapter
5 describes our highly efficient code transformation proposal for nested parallelism
for GPUs. Chapter 6 shows our dynamic loop scheduling proposal and its associated
code transformation algorithm for GPUs. Finally in Chapter 7, we conclude this thesis,
discuss the impact of the research and present proposals for future work in this field.
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2 Background and Development
Environment

In this chapter, we give the background of our research work. First, we give an overview
of the GPU architecture (Section 2.1) which is the platform our research based on. Then
we explain how to program GPUs with the native CUDA API (Section 2.1.2).

The next sections explain the three high-level programming models for GPUs along
with their respective compilers. First in (Section 2.2) we explain OmpSs [19] which is a
state-of-art task-based parallel programming model based on (1) Mercurium [20]. Then
in (Section 2.3) we explain about OpenMP and its device model for GPUs. OpenMP is
the de facto standard for shared-memory system programming model. The OpenMP we
used in this thesis is based on (2) Clang/LLVM [21, 22]. Finally in (Section 2.4) we mention
OpenACC which is the standard for the high-level directive-based programming model
for accelerators. We used the (3) PGI [15] compiler for OpenACC.

2.1 Overview of GPU Architecture

GPU architectures differ quite a lot from traditional processors. The main differences
are in the number of cores that they involve and in the size of such cores. The main
characteristic of CPUs is that they consist a few cores which are highly optimized for
sequential processing. By contrast GPUs involves a huge number of tiny cores which
are highly optimised for efficient parallel processing tasks, but quite slow for sequential
processing when compared to CPUs. For instance, Intel Xeon Processor E7-8894 v4
contains 24 cores while NVIDIA P100 GPU contains 3584 cores. Figure 2.1 illustrates the
difference.

Essentially, GPUs have evolved from video cards to extremely powerful and flexible
processors. Their architecture involves fast bandwidth memory and computational
power, with fully programmable processing units that support vector operations.
Architecturally, GPUs are highly parallel streaming processors optimized for vector
operations. Researchers have found that exploiting the GPU can accelerate some
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Figure 2.1: High-level architecture comparison between CPU and GPU

problems by over an order of magnitude over the CPU [8].

In NVIDIA terminology, a GPU involves a number of Streaming Multiprocessor (SM)
units, where an SM roughly corresponds to a CPU core. Each SM has a large register file,
a number of integer and floating point ALUs, instruction fetch units, branch processing
units, load-store units, control units, and a small level 1 data cache. For example each
SM on Fermi and Kepler GPUs has a 48KB configurable, 128B cache-line, write-evict L1
data cache for general off-chip DRAM access [9]. It shares the same chip storage with the
shared memory. However, recent Maxwell and Pascal GPUs devote this storage entirely
for shared memory, while relying on the texture cache to offer L1 caching capability.
As far as we know, all SMs in a GPU are connected via a NoC (Network on Chip) to a
shared L2 cache. The L2 cache is banked and is writable.

Using GPUs for general purpose computing became popular after about 2005. Since
then GPUs have been evolving in the direction of general purpose computing. We show
the basic architectural specifications of five NVIDIA generations in the Table 2.1.

GPUs Arch.
Comp
Cap SMs Warp Slots CTA Slots

Max Dimensionality
of grid of CTAs

Max x-dimension
of a grid of CTAs

Max y,z-dimension
of a grid of CTAs

GT200 Fermi 2.0 16 48 8 3 65535 65535
Tesla K80 Kepler 3.x 13 64 16 3 231

−1 65535
Titan X Maxwell 5.x 16 64 16 3 231

−1 65535
P100 Pascal 6.x 56 64 16 3 231

−1 65535
V100 Volta 7.x 80 64 16 3 231

−1 65535

Table 2.1: The details of NVIDIA GPU architectures.

2.1.1 GPU Execution Model

A GPU executes a kernel grid: each SM executes one or more thread blocks and the
CUDA cores and other execution units in the SM execute the individual threads. A kernel
grid might consists of multiple thread blocks whose shape could be 1-3 dimensional.
And each thread block consists of multiple threads whose shape could also be 1-3
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Figure 2.2: High Level NVIDIA GPU Architecture
1

dimensional. In addition, a kernel grid might involve more threads than the GPU can
handle at once. Underlying hardware maps these multi-dimensional thread blocks and
threads to SM and warps respectively.

The SMs combine a number of threads and run them in a SIMT (Single-Instruction
Multiple Thread) manner. Figure 2.2 illustrates the SM and high-level architecture of an
NVIDIA Kepler GPU. The smallest execution unit of a GPU is called a warp; all enabled
threads in the warp are clocked so they will execute the same instruction at the same
time. This is called lock-step execution. If some threads take a branch and others do not,
the control processor will select one branch target and disable the other set of threads,
continuing until all threads synchronize or otherwise converge.

The execution model increases efficiency by reducing the quantity of resources required
to track thread state and by aggressively reconverging threads to maximize parallelism.
In NVIDA’s new Volta architecture [23], an independent thread scheduler is introduced
to improve the SIMT execution pattern. It allows the GPU to yield execution of any
thread, either to make better use of execution resources or to allow one thread to wait
for data to be produced by another. In this thesis, we have evaluated Fermi, Kepler,
Maxwell and Pascal architectures. However we have not done any evaluation on Volta
architecture as they were not yet available at the time of writing.

Warps are grouped in a thread block also known as a cooperative thread array (CTA). A
CTA is a set of concurrently executing threads that can cooperate among themselves
through barrier synchronization and shared memory. It has an ID within its grid. Each
SM has a number of slots for CTAs and warps. The number of slots differs between GPU
architectures as does the number of threads per SM, as is shown in Table 2.1.
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2.1.2 Native GPU Programming: CUDA

NVIDIA GPUs are one of the most popular accelerators and are extensively integrated in
HPC clusters. Compute Unified Device Architecture (CUDA) [9] is the de-facto standard
for programming NVIDIA GPUs. The programmer has to write specialized pieces of
code called CUDA kernels that are executed concurrently by many threads on the GPU.
A CUDA program is a unified source code including both host and device code. The host
code is pure ANSI C code and the device code is the extension of ANSI C which provides
keywords for labeling data parallel functions or kernels. The host code and device code
are compiled separately. The host code is compiled by the host’s standard C compiler
and the device code is compiled by the NVIDIA compiler or an open-source compiler.
The host code is executed on the host and offloads the device code to be executed on the
device. CUDA provides both a low level driver API and a high level runtime API. The
programmer can use these APIs to manage the execution context environment, the device
memory allocation and deallocation, the data movement between CPU and GPU, the
asynchronous data movement and kernel execution, etc. Since CUDA is proprietary to
NVIDIA, the performance of CUDA program is optimized for NVIDIA GPUs. However
this also means that the program cannot be migrated to any other vendor’s GPUs.

2.2 OmpSs

The OmpSs programming model [19] provides a task-based programming model for
homogeneous and heterogeneous architectures and is designed to be able to support
new architectures that may appear in the future.

2.2.1 OmpSs Programming Model

The OmpSs combines the OpenMP [12] and StarSs [24] programming models, offering a
task-based programming models with extended directives and clauses. In particular, its
objective is to extend OpenMP with new directives to support asynchronous parallelism
and heterogeneity. Thus it significantly enhances the asynchronous parallelism support
in OpenMP. It also takes the task dependence support from StarSs to allow the runtime
to automatically manage and move data and perform different kinds of optimizations.
The OmpSs proposal has been evolving during the last decade and aims to lower
the programmability wall raised by multi/manycores, demonstrating a task based
data approach in which offloading tasks to different devices, as well as managing the
coherence of data in multiple address spaces, is delegated to the runtime system. Several
efforts for the IBM Cell (CellSs [25]), NVIDIA GPU (GPUSs [26]) and homogeneous
multicores (SMPSs [27]) were investigated before arriving at the current unified OmpSs
specification and implementation.
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The main goal of OmpSs is to orchestrate different types of task on heterogeneous systems.
It completely enables asynchronous parallelism by the of use data-dependencies between
the different tasks of the program. OmpSs is currently able to orchestrate applications
on clusters of nodes that combine shared memory processors (SMPs) and other external
devices, for example, GPUs, FPGAs etc. However, it has never aimed to generate
optimized code for the target devices. Therefore, it has no facility to generate code
specifically optimized for GPUs. One of the main contribution of this thesis is the
development of GPU code generation and optimization for OmpSs.

Execution Model

OmpSs is based on a thread-pool execution model while OpenMP uses a fork-join model.
The master thread starts the execution of the program. It orchestrates execution with the
other threads when there is worksharing or task constructs. The idea behind using a
thread-pool is to remove the overhead of creating new threads for each parallel region.
Thus it does not use the parallel construct of OpenMP as there is no need to have it. It is
also worth mentioning that it supports nesting constructs, which allows other threads to
generate work.

The task construct allows expressing parallelism for OmpSs applications. It comes
with data directionality clauses in, out and inout which are same as the depend clause
dependence-type lists in OpenMP. Moreover, it offers two additional clauses to task
constructs: concurrent and commutative. The associated runtime of OmpSs, Nanos++,
constructs a data-dependency graph which is dynamically built with the information
extracted at compiler time from the clauses. We will discuss nanos++ in detail later.
This task graph construction is essential to ensure the application’s data coherence and
correctness. Consequently only ready tasks (i.e., tasks where dependencies have been
satisfied) can be run in parallel.

Memory Model

One of the most powerful parts of OmpSs is that it offers a single address space to
ease the burden on the programmer when dealing with heterogeneous systems. The
underlying runtime mechanism automatically manages multiple address spaces and
moves the data as necessary. Therefore, the data can be truly shared between multiple
address spaces and resides in the correct memory locations. All parallel code can only
safely access the private and shared data that has been marked explicitly with the OmpSs
extended syntax.
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Programming Model

Regarding task support, OmpSs is superset of OpenMP. It defines several extensions to
the OpenMP model as follows.

Task Model

OmpSs supports OpenMP task constructs, plus it offers new clauses.

#pragma omp task [clauses]

{ code block | function }

where clauses specify:

• in, out, inout - input, output and input/output directionality respectively.

– list - scalar, array section, subregion or l-values.

– Multiple dependencies - allow expressions that determine dependencies dynamically
during runtime.

• concurrent - express relaxed inout.

• commutative - relaxed inout.

• reduction - reduction support for tasks.

• resources - resource consumption of the task

• shared, private, firsprivate - data sharing.

• if - if expression.

• final - allows an expression to finalize tasks.

• priority - assigns priority to tasks.

• untied - allows any thread to execute this task.

#pragma omp taskwait [clauses]

• in, out, inout - requires to wait if and only if the data are specified with the clauses.
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It has support for taskloop.

#pragma omp taskloop [clauses] for-loop where clauses specify:

• in - input directionality.

• reduction - reduction support.

• num_tasks - number of tasks.

• nogroup - no grouping.

• grainsize - size of granularity.

Accelerator Orchestration Model

The accelerator support in the OmpSs programming model leverages the tasking model
with data directionality annotations already available in the model (which influenced the
new depend clause in OpenMP 4.5). These annotations are used by the OmpSs runtime
system to compute task dependencies and build a dependence task graph dynamically.
This graph is used to dynamically schedule tasks in a data–flow while being conscious
of the resources available at any given time. OmpSs offers a target directive with the
following syntax:

#pragma omp target [clauses]

task construct | function definition | function header

where clauses specify:

• device - the kind of devices that can execute the construct (smp, cuda or opencl).

• copy_in - shared data that needs to be available in the device before the construct can be
executed.

• copy_out - shared data that will be available after the construct is executed.

• copy_inout - a combination of copy_in and copy_out above.

• copy_deps - copy semantics for the directionality clauses in the associated task construct
(i.e., in will also be considered copy_in, output will also be considered copy_out and inout
as copy_inout).

• implements - an alternative implementation of the function whose name is specified in
the clause for a specific kind of device.
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In order to allow hybrid code with native CUDA and/or OpenCL kernels, the directive
includes two additional clauses:

• ndrange - specification of the dimensionality, iteration space and blocking size to
replicate the execution of the CUDA or OpenCL kernel.

• shmem - data that should be mapped into shared–memory among teams in the
device.

The copy_in, copy_out and copy_inout clauses, together with the lookahead provided
by the availability of the task graph, are used by the runtime system to schedule data
copying actions between address spaces (movements between host and accelerator or
between two accelerator devices if needed). The copydeps is a simple shorthand to reuse
the directionality annotations in the task directive.

Figure 2.3 shows a simple example based on vector addition operation. In this example,
the task which has the compute loop is written as a CUDA kernel and offloaded to a
device with CUDA architecture; the task checking the results is defined to be executed
in the host. Observe that the output of the CUDA task instances is the input of the host
task instances. The dependencies computed at runtime will honor these dependencies,
and the runtime system will take care of doing the data copying operations based on the
information contained in the task graph (dynamically generated at runtime). The ndrange
clause is used to replicate the execution of the CUDA kernel in the device block/thread
hierarchy (one dimension with na*na iterations in total to distribute among teams of na
iterations in this example).

With the device clause, the programmer informs the compiler and runtime system about
the kind of device that can execute the task, not an integer number that explicitly maps
the offloading to a certain device as is done in OpenMP 4.5. This is a big difference
that greatly improves programming productivity when targeting systems with different
numbers and types of accelerators and regular cores.
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1 using T = double;
2 const int N = 1024;
3

4 #pragma omp target device(cuda) ndrange(1, N*N, N)
5 #pragma omp task in(a[:N], b[:N]) out(c[:N])
6 __global__ void vecadd(T *a, T *b, T* c, int N) {
7 int i = threadIdx.x + blockIdx.x * blockDim.x;
8 if (i < N)
9 c[i] += b[i] * a[i];

10 }
11

12 #pragma omp target device(smp) implements(vecadd)
13 #pragma omp task in(a[:N], b[:N]) out(c[:N])
14 void vecadd_smp(T *a, T *b, T* c, int N) {
15 for (int i = 0; i < N; ++i)
16 c[i] += b[i] * a[i];
17 }
18

19 #pragma omp target device(smp)
20 #pragma omp task in(c[:N)
21 bool check_results(T *c, T checksum , int N) {
22 return valid = std::all_of(c, c + N, [] (T const &v) {
23 return v == T(checksum);
24 });
25 }
26

27 int main(int argc, char **argv) {
28 T *a, *b, *c;
29 a = new T[N];
30 b = new T[N];
31 c = new T[N];
32

33 std::fill(a, a + N, T(1));
34 std::fill(b, b + N, T(2));
35

36 vecadd(a, b, c, N);
37 if( !check_results(c, 3) )
38 printf("Results are not valid\n");
39

40 #pragma omp taskwait
41 }

Figure 2.3: Heterogeneous task example with OmpSs
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Figure 2.4: Compilation flow of Mercurium Compiler

2.2.2 OmpSs Infrastructure

Mercurium Compiler

Mercurium [20] is a research-oriented source-to-source compiler with support for C, C++

and Fortran languages. It has been developed by Barcelona Supercomputing Center
with the main goal of enabling fast prototyping of new programming models. It has
support for OmpSs and OpenMP 3.1 programming models.

Mercurium can be divided into three main parts; front-end with full support of C, C++

and Fortran, transformation part which does all the source-to-source transformation and
the last part is codegen that is responsible for regenerating the final source code. Figure 2.4
shows a high-level overview of the three parts of the Mercurium compiler.

Mercurium aims to be an agile compiler without generating object code. It has been
mainly used with the Nanos++ and OpenMP RTL runtimes. It has no goal of optimizing
code or providing deeper analysis. Thus it does not involve any conventional compiler
optimization methods. In the place of this it can enable parallelization and parallelism
related optimizations.

Intermediate Representation

Mercurium maintains the input code as an intermediate representation (IR) within the
compiler. The structure of the IR is based on an abstract syntax tree (AST). The nodes of
the AST represent high-level code structures of the programming language. The IR is
not low-level because one of the main aims of Mercurium is to generate output source
code as similar as possible to the input code.

The AST is built in the Mercurium front-end with information about the explicit code
and data of the compilation unit. However, information regarding declarations is
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minimal in this AST as the code generator of Mercurium is able to deduce it from the
code representation. The type system and other symbolic information are represented
separately from the AST. Mercurium uses independent data structures for these purposes
that are accessible from fields of the AST nodes.

Nanos++ Runtime

The Nanos++ runtime library is the component responsible for executing OmpSs
applications that have been compiled using the Mercurium C/C++ source-to-source
compiler. As we mentioned above, the Mercurium compiler transforms most of the
directives into calls to Nanos++ and it restructures the code in order to be able to be
handled by tasks. Nanos++ offers subsystems that handle the task creation, dependence
analysis, and task execution.

The main responsibility of Nanos++ is to execute the created tasks as fast as possible.
To do so, it uses all the available hardware and software resources of the system. The
hardware resources that Nanos++ manages are the CPUs, GPUs, and system memory,
while the software resources are the threads, provided by the operating system, and the
program tasks, provided by the user application.

The internal design of Nanos++ can be divided into three parts, the representation of
the program tasks, the architecture support, and the behavior subsystems. The program
tasks are represented internally by Work Descriptors, which are entities that represent
the code that has to be executed by Nanos++. The architecture support is composed
of a set of generic concepts that model the hardware and software resources managed
by Nanos++. To support a specific architecture, a concrete implementation of these
concepts must be provided. The behavior subsystems are in charge of executing the
program tasks. Each subsystem fulfills a specific role in the process. However, globally
they provide the logic and the intelligence of the library to manage the system resources
to execute the program tasks as efficiently as possible while ensuring a correct execution
order. Nanos++ provides different implementations of the subsystems that can be
selected by the user when running OmpSs programs in order to achieve a more optimal
performance.

2.3 OpenMP

OpenMP [12] is the de facto standard shared-memory parallel programming model. It
supports C, C++, and Fortran and is based on adding some compiler directives to the
source code, which are then translated into calls to the OpenMP runtime library routines.

Execution Model It offers parallelization with fork-join model, a method of paralleliza-
tion whereby a master thread forks a certain amount of slave threads and the runtime
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1 void saxpy_openmp(float* x, float* y, float a, int N) {
2 #pragma omp parallel for
3 for (int i = 0; i < N; ++i)
4 y[i] += a*x[i];
5 }

Figure 2.5: SAXPY example with OpenMP’s parallel construct

divides the workload among them. The runtime takes care of thread allocation and
privatization. It also runs all threads concurrently. After the execution of the code, the
slave threads join back to the master thread. The Figure 2.5 shows an implementation of
SAXPY using OpenMP directives. Here, fork starts beginning of parallel construct, at the
end of parallel constructs every threads join to the master thread.

Although OpenMP started with the simple idea of fork-join, it has now evolved in different
directions such as task parallelism, SIMD, thread affinity and accelerator support. In
this thesis, we implement and improve the OpenMP accelerator model.

2.3.1 OpenMP Accelerator Model

OpenMP announced support for accelerators starting from version 4.0. The model has
been improved continuously since then. The current stable version is 4.5 which offers a
programming interface that provides a set of directives to offload the execution of code
regions onto accelerators, to map loops inside those regions onto the resources available
in the device architecture, and to map and move data between address spaces.

The main directives are target data and target, which create the data environment
and offload the execution of a code region on an accelerator device respectively. They
offer a map clause to assign data with the region, and the directionality of data can be
expressed as to, from or tofrom within the map clause. As an example, the target
directive of the example in Figure 2.6 creates a data device environment including the
arrays x and y, as specified by the map clauses. The to and tofrom clauses specify the
directions of copy between host and device data environments for the two variables.

The specification also contains the teams directive to create thread teams. The pro-
grammer can control the number of teams and the maximum number of threads in
each team by specifying the num_teams and thread_limit clauses along with the teams
directive, respectively. In each team the threads other than the master thread do not
begin execution until the master thread encounters a parallel region. The distribute
directive specifies how the iterations of one or more loops are distributed across the
master threads of all teams that execute the teams region. For instance, the for-loop
in Figure 2.6 is parallelized firstly by the master thread of each teams and then by the
threads within the teams.
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1 void saxpy_openmp_gpu(float* x, float* y, float a, int N) {
2 #pragma omp target teams distribute parallel for \
3 map(to: x[:N]) map(tofrom: y[:N])
4 for (int i = 0; i < N; ++i)
5 y[i] += a*x[i];
6 }

Figure 2.6: SAXPY Example with OpenMP’s accelerator model

Figure 2.7: Compilation flow of Clang and LLVM

2.3.2 LLVM Compiler Infrastructure

The Low Level Virtual Machine (LLVM) began as research project with the goal of
providing a modern, SSA-based compilation technology. The LLVM [21] is the main
project of LLVM Compiler Infrastructure. It provides a source and target independent
optimizer, along with code generation support for many target processors. It uses
intermediate representations inside the compiler, which are called LLVM-IR. The input
source code of LLVM is also LLVM-IR.

Clang Frontend

The Clang [22] has been developed as side project using the LLVM library and therefore
follows most of its implementation guidelines. It is a front-end for C and C++. One of
the key efforts is to ensure each (new) feature is structured into logical modules in order
to ease the integration and reduce disruption caused by interdependencies. Following
this modular design, each action accomplished by the consumers of each basic element
(token, AST node) tends to be self-contained, either by extending a default action applied
on top of a class of elements or by creating a new class.

Figure 2.7 illustrates the compilation flow of Clang and LLVM. Input C code is given to the
Clang compiler; then Clang compiler generates LLVM-IR. The driver of Clang compiler
passes the generated LLVM-IR to the LLVM compiler which does all optimizations and
generates the actual binary code for the current architecture.
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Figure 2.8: Compilation flow for OpenMP accelerator model with CLANG/LLVM

OpenMP Accelerator Model support in Clang

The Clang compiler includes the full provisions of the OpenMP 4.5 specification with
offload support for NVIDIA GPUs. The initial work is explained in [28] and final work
is presented in [11] where we have contribution in this thesis.

The compilation flow is shown in Figure 2.8. Input C/C++ code with OpenMP accelerator
model directives is transformed into LLVM-IR by Clang. Clang generates LLVM IR
code from its internal Abstract Syntax Tree representation. It is also responsible for
implementing OpenMP constructs and transform code regions that are specified with
OpenMP directives, and replaces them with the calls to the OpenMP runtime library.
LLVM then transforms the output of Clang into the target assembly language.

For NVIDIA GPU targets, Clang does one additional compiler pass as shown in Figure 2.8.
In this pass, LLVM generates PTX language, which is passed to ptxas and nvlink. These
are tools that are provided by NVIDIA and transform PTX programs into the low-level
native GPU assembly language called SASS, which is packed with CUDA binary ELF
sections (also called cubin files).

2.4 OpenACC

OpenACC [13] provides directives that allow programmers to specify code regions to be
offloaded to accelerator devices and to control many features of these devices explicitly.
It was initially designed with accelerators like GPUs in mind, although it is also used to
write parallel programs for multicore CPUs. It is an emerging GPU-based programming
model that is working towards establishing a standard for directive-based accelerator
programming. It has been started in collaboration between CAPS, CRAY, PGI, and
NVIDIA. Using OpenACC allows users to maintain a single code base that is compatible
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with various compilers, while the code is also portable across different possible types of
platforms.

2.4.1 OpenACC Programming Model

The OpenACC API set includes directives and clauses which can be used in conjunction
with C, C++, and Fortran code to program accelerator boards. It is compatible with
OpenMP to provide a portable programming interface that addresses the parallelism in a
shared memory multicore system as well as accelerators. However, there is no previous
work combining the OpenMP device model with OpenACC.

OpenACC offers two types of compute directives parallel and kernels. The main construct
is kernels, which instructs the compiler to transform the annotated code region to
exploit the available parallelism in the device. With the parallel directive however, if
there is any loop inside the following code block and the user does not specify any loop
scheduling technique, all the threads will execute the full loop. OpenACC supports
three levels of parallelism: gang, worker and vector. The parallel construct that launches
gangs that will execute in parallel. Each of the gangs may support multiple workers
that execute vector or SIMD constructs. A variety of clauses are provided to enable
conditional execution, to control the number of threads, to specify the scope of the data
accessed in the accelerator parallel region, and to determine if the host CPU should
wait for the region to complete before proceeding with other work. It also allows
asynchronous execution through an async clause that executes the host computation
asynchronously and allows the user to synchronize using wait.

OpenACC offers the data and update constructs to manage data movement, and
parallel and loop constructs for detailed control of kernel offloading and the parallel
execution of loops.

The loop in Figure 2.9 uses OpenACC directives to identify the parallel loop, and includes
copyin and copy data clauses that declare what data needs to be copied to device memory
and what results need to be copied back if the loop is compiled for an accelerator device.

One of the biggest difference with OpenACC and OpenMP is that OpenACC stan-
dard gives great flexibility to the compiler implementation. It eases the burden for
programmers while increasing portability.
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1 void saxpy_openacc(float* x, float* y, float a, int N) {
2 #pragma acc parallel loop copyin(x[:N]) copy(y[:N])
3 for (int i = 0; i < N; ++i)
4 y[i] += a*x[i];
5 }

Figure 2.9: SAXPY Example with OpenACC

OpenACC OpenMP OpenACC OpenMP
parallel target async wait wait
parallel target teams async nowait
kernels enter data target enter data
loop gang distribute exit data target exit data
loop worker/vector for/simd tile
data target data serial
cache routine declare target
update target update declare declare target

Table 2.2: Comparision of OpenACC and OpenMP device model in terms of directives

2.4.2 PGI Compiler Infrastructure

PGI provides commercial compilers for C++, C and Fortran (with CUDA Fortran) which
include the OpenACC 2.6 directives, OpenMP 4.5 directives, and many other features
[15]. The OpenACC directives grew out of the PGI Accelerator directives which were
first introduced in 2008.

2.5 Conclusion

We have given an overview of the three main directive-based prgramming models for
GPUs. OmpSs is state-of-art task-based parallel programming model which supports
homogeneous and heterogeneous platform without having code generation support for
them. It has been developed by Barcelona Supercomputing Center. It is forerunner of
OpenMP in terms of task model. On the other hand, OpenMP and OpenACC are widely
used APIs. The major directives among these models are summarized in Table 2.2. The
OpenMP API covers only user-directed parallelization, where the programmer explicitly
specifies the actions to be taken by the compiler and runtime system in order to execute
the program in parallel. By contrast the OpenACC programming model allows the
programmer to augment information available to the compilers, including specification
of data local to an accelerator, guidance on mapping of loops onto an accelerator, and
similar performance-related details. To summarise OpenMP is more prescriptive while
OpenACC is more descriptive.
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In the following chapter we first introduce device mode extensions for OpenMP. Then we
focus on code transformations and optimizations to improve the overall performance.
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3 MACC Infrastructure

3.1 Introduction

In this chapter, we present our MACC1 infrastructure, which is a source-to-source code
generation module for NVIDIA GPUs using OpenMP directives, and the associated
code transformation algorithms. It is developed on top of the Mercurium C/C++ source-
to-source compiler. Our aim is to let the compiler offload and parallelize code regions
automatically under the control of user directives. This MACC is one of the main
software contributions of this thesis and was developed during the early years of this
Ph.D work.

From the perspective of a programming language, the MACC infrastructure combines
the task model of OmpSs with the advantages of the OpenMP device model. At that time,
OpenMP, which is the de facto standard for shared-memory programming, did not have
support for GPU, however its draft version included their initial device model. Widely
used programming models including OpenACC were relatively new in GPU area. Their
models involved drawbacks in terms of asynchronous GPU kernel execution and data
management for runtime; also there were intricate directives to get the best performance
from a GPUs. On the other hand, the OmpSs programming model had great support for
asynchronous kernel execution and data management, however OmpSs did not support
GPU code generation. As a consequence, we came up with the idea of combining these
two models to find the most efficient programming model for GPUs.

We have developed a device model based on OmpSs while aiming to discover novel
code transformation methods that deliver the best performance. To do this we have
extended the OpenMP specification in many different ways. At the same time we have
streamlined it by removing the constructs which are not suitable for massive parallel

1MACC is an abbreviation of Mercurium ACCelerator Model

27



Chapter 3. MACC Infrastructure

GPUs. We have researched several extensions to the OpenMP specification which are
presented in Section 4 and Section 5. In this chapter, we introduce a new dialect that
provides an effective solution for GPU programming. This chapter also present code
transformation algorithms for for-loops based on a set of directives. Additionally, we
propose several extensions for the device model that we later use for OpenMP and
OpenACC. These are presented in detail in Chapter 4.

It is important to note that this chapter does not present a research contribution about
compiler algorithms. However, in order to start researching code generation for GPUs,
it was necessary for us to design a base infrastructure for it in a compiler. In this chapter,
we outline the GPU infrastructure model that we designed. This chapter is intended to
offer a high-level outline and skips over some low-level compiler-specific details. As a
result it could be a good start point for the concept of GPU code generation in a compiler
for those readers without expertise in the field.

3.2 Motivation

In recent years, the OpenACC standard has appeared with the aim of providing a higher-
level directive-based approach for programming accelerator devices. In 2013 OpenMP
also announced version 4.0, adding support for device models with the same objective
of OpenACC. They further improved this model in version 4.5. The proposed directive
based model allows the programmer to augment information available to the compilers,
including specification of data local to an accelerator, guidance on mapping of loops
onto an accelerator, and similar performance-related details. However, their solution
still requires knowledge of GPUs from users in order to achieve best performance. They
rely on the programmer for the specification of data regions, transfers between address
spaces and for the specification of the computation to be offloaded in the devices; these
solutions also put a lot of pressure on the compiler which has the responsibility of
generating efficient code based on the information provided by the programmer. Thus,
our first goal is to find out necessary functionalities and adapt them into our model to
specify computation kernels in a more productive way.

The OmpSs proposal has been evolving during the last decade to lower the programma-
bility wall raised by many-core CPUs/GPUs, using a task-based data flow approach
in which the job of assigning tasks to different number devices, as well as managing
the coherence of data in multiple address spaces, is delegated to the runtime system.
Multiple implementations were investigated for the IBM Cell (CellSs [25]), NVIDIA GPU
(GPUSs [26]) and homogeneous multicores (SMPSs [27]) before arriving at the current
unified OmpSs specification and implementation. Initially, OmpSs relied on the use
of existing CUDA and OpenCL to specify the computational kernels. Since OmpSs is
quite promising for heterogeneous task orchestration, we decided to implement our
MACC infrastructure on top of it. So our goal was to investigate a new dialect which is
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combination between OpenMP device model and OmpSs.

Nowadays, open-source compiler technologies led by GCC (the GNU Compiler Collec-
tion) [29] and LLVM [21, 22] dominate in research and industry. Thanks to this, their
maturities are pretty high. Both infrastructures cover all the compilation stages from the
parsing of different programming languages to assembly code generation for several
target architectures. However, researching these infrastructures would be non-trivial for
a Ph.D. The learning curve is high because of the complexity of their components and
the compiler topic itself. Also, evaluating new architectures often depends on the will of
vendors to release a back-end for that particular compilation infrastructure as they are
not commercial compilers which might lead to a long wait. Therefore, we chose to work
on the Mercurium compiler which provides very agile prototyping while at the same
time it taking advantage of any back-end compiler. More recently we started working
on the LLVM and PGI compilers once they become mature for GPU architectures.

3.3 Objectives

The main goal of our MACC proposal is to boost the exploitation of GPUs by enabling
the offloading and parallelization of code that is currently generated sequentially by
the compiler. The key concept to achieve this goal is giving the programmer some of
the responsibility for the offloading, parallelization process and data management that
is currently assumed by the compiler. This allows the programmer to better guide the
compiler parallelization process, indicating to the compiler which code regions are safe
and should therefore be parallelized.

All the factors presented above motivated us to create a source-to-source compiler with
code generation support for GPUs targeting loops and aimed at the fast prototyping of
new compiler proposals. This infrastructure must have the following characteristics:

• Discovering directives and clauses to extend specification: Investigate new directives
and clauses which can help the compiler to generate better code.

• Code transformation: Support essential code transformation for GPUs with the based on
directives. Additionally find out new transformation methods that enhance performance.

• New optimization techniques: Discover GPU specific optimization methods, as this is a
new area for compilers.

3.4 MACC Infrastructure

Our GPU code generation has three main phases: the MACC lowering, the CUDA code
generator, and the MACC device provider. The primary objective of the MACC lowerer is to
transform the input scalar IR into a parallelized CUDA-IR which is compatible. It passes
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Figure 3.1: Compilation phases of MACC Compiler. Unlike Mercuirum compiler, it
involves a brand new lowering phase, which is colored light green.

this CUDA-IR to the CUDA code generator phase, which generates the correct CUDA
code for this CUDA-IR. Then, at some later point in the compiler pipeline, the MACC
device provider generates kernel launch codes that invoke the generated CUDA kernel
through codegen CUDA.

Figure 3.1 illustrates the new phases in the MACC Compiler, which are colored green.
The lowering Nanos phase recognizes OpenMP and OmpSs constructs and replaces them
with Nanos++ library calls. After that it passes the IR to the codegen C/C++ phase to
generate output C/C++ source code. As a result, it produces an output source file which
is also called host code. Besides that, lowering Nanos also passes the IR to the MACC
lowering phase. In this phase, the scalar IR is transformed into CUDA-IR according to the
computation capability of the target NVIDIA GPU. Since each computation capability
has different features, it might affect the code transformation pattern. We support cc2x
for Fermi, cc30 and cc35 for Kepler, 5x for Maxwell and 6x for Pascal architectures. After
that, the CUDA-IR is passed to the CUDA code generator to generate an output CUDA
kernel source file which is also called a device file. In this phase, we inline a library for
the device code that involves device specific functions such as reduction, atomic, etc. On
the other side, the macc device provider inside the codegen C/C++ phase generates CUDA
kernel launch codes and adds them into device file. Both of the files are then compiled
by native compilers such as gcc and nvcc. Finally, our compiler driver links all compiled
files and the Nanos++ runtime library and produces an application binary.

3.5 Programming Model

In this section, we introduce constructs of our model, which is combination of OpenMP
device model and OmpSs. These constructs allow programmers to specify and parallelize
regions to offload and guide the compiler in the GPU code transformation.

30



3.5. Programming Model

3.5.1 Language Terminology

• processor Implementation defined hardware unit.

• device An implementation defined logical execution engine.

• host device The device on which the program begins execution.

• target device A device onto which code and data may be offloaded from the host.

• acc target device A GPU device onto which code and data may be offloaded from the host.

• task A specific instance of executable code and its data environment, generated when a
thread encounters a task construct.

• task region a code region consisting of all code encountered during the execution of a task.

• target task A task generated when a task construct is used immediately after a target
construct.

• acc target task A target task that is generated when task construct is used immediately after
a target construct with device clause and acc device type. In this way, it is guaranteed
that the task region will be offloaded on any target device in the system. It is the target task of
MACC infrastructure.

• host memory The memory space of the processor.

• device memory The memory space of the device.

• team memory The memory space of the team.

3.5.2 Execution and Data Model

The MACC execution model is inherited from the OmpSs execution model, which we
explained in Section 2.2.1. This allows it to take advantage of powerful asynchronous
task execution support and seamless data management. The design of the OmpSs
runtime is highly biassed to delegate most of the decisions to the runtime system, which
is based on the task graph built at runtime (task data dependency clauses) and can
schedule tasks in a data flow way to the available processors and accelerator devices
and orchestrate data transfers and reuse among multiple address spaces. Our MACC
assumes the OmpSs runtime dependency based parallel execution of (offloaded and
non-offloaded) task instances, task scheduling and transparent management of (coherent
or non-coherent) physically distributed address spaces. In our case, multiple address
spaces of different GPUs are managed by the underlying runtime while using using task
dependency clauses.

We propose an acc target task approach to replace the OmpSs execution model, which
is one of the significant difference between MACC and OpenMP. In this approach, the
target construct is always associated to a task construct to make it asynchronous. It
does not have to be used with a nowait clause unlike OpenMP, because every task,
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target task and acc target task is fully asynchronous in our model. Moreover, our runtime
is capable of distributing the created acc target tasks among multiple acc target devices
automatically without any hint from user. To conclude, we support only asynchronous
task while aiming to reduce the complexity of managing multiple GPUs. This is the
most distinct difference between our MACC execution model and OpenMP.

We provide automatic multiple/single target device management with a device clause
within the target construct. Unlike OpenMP, we do not force programmers to set
an integer value which creates a direct mapping between the target regionwith the
physical GPU devices. This direct mapping makes it difficult to write applications
that dynamically offload work to GPUs to achieve load balancing or adapt to device
variability since it forces the programmer to embed in the application logic code to
manage resources. Instead, we use an acc device-type to specify the type of accelerator
that the region can run on and make use of device types to specify what to execute on
the GPU. We then rely on the compiler to generate the kernel code to be executed on the
device. We call acc target device when a device clause is used with an acc device type.
Additionally, any other device types which OmpSs already supports (Section 2.2.1) can
be used together with our model. This approach gives responsibility to the runtime to
choose any physical GPU devices in the system automatically without user interaction.

The task’s data environment can be specified using the in, out and inout clauses of
the task construct (like OpenMP’s depends clause). Our runtime guarantees the task’s
data environment to make ready on the acc target device when the task is executed.
The data environment can be copied from the host device or another acc target device.
Lastly, these clauses enforce dependency constraints on the scheduling of tasks. These
constraints establish dependencies only among tasks. When additional data is required
to be copied apart from a task dependency, it can be specified by the copy_in, copy_out
and copy_inout clause of the target construct. The target data and target update
constructs are not used as the actual data movement is automatically implemented by
the data-flow. Ultimately, our model greatly facilitates data management among the host
device and single or multiple acc target devices.

Figure 3.2 shows an example code using our MACC infrastructure on the top and its
associated execution diagram on the bottom. There are five tasks specified; the device
type of 1st task is cuda, the 2nd, 3rd and 4th ones are acc, and the last one is an smp
type. In addition, there is a taskwait construct at the end of program to make sure that
all the tasks finish before the program is over. For the 1st task, MACC infrastructure
seamlessly launches an optimized cuda kernel in line 10. Then, it makes use of the GPU
code generation facility for the 2nd, 3rd and 4th tasks. Lastly, for the 5th task it creates
a new task on the host device. Now let us explain our execution model which is shown
on the bottom of the Figure. For convenience, let us assume there are two GPUs in this
system. Based on this information, our runtime will firstly execute the 1st task and make
its data environment ready on any available GPU in the system. In our example, the
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first GPU is chosen; the runtime copies array C as it is specified as input dependency
and array D is allocated on the GPU. Then, it executes the 2nd task on the second GPU
concurrently since there is no dependency between the 1st and 2nd tasks. Right after that
it schedules the 3rd task on second GPU due to dependency between the 2nd and 3rd

tasks. As it would be inefficient to move data to another GPU, it uses the second GPU;
the OmpSs runtime is locality-aware among target devices. Since there is a for-loop with
a size 2 in the input code, it executes the 1st, 2nd and 3rd tasks twice. When the program
encounters the 4th task, the runtime chooses one of the available GPUs to run the task. It
is important to note that the 4th task has dependencies on the 1st, 2nd and 3rd tasks. In
our case, the runtime chooses the first GPU; therefore the necessary data environment,
which is array B, is copied to the first GPU from the second GPU. When the program
reaches the 5th task, the runtime makes ready its data environment by copying the arras
from first and second GPUs; then it executes the 5th task on the host device.

3.5.3 Memory Model

OmpSs provides a relaxed-consistency model among tasks. All tasks have access to a
place to store and to retrieve variables, called the host memory. Additionally, each of
them can have a private memory area. Any access by one task to the private memory
area of another task results in unspecified behavior.

To implement the device model, we need to expand the current memory model of OmpSs
as we include GPU devices. In our memory model, all acc target task have their own
memory that is called device memory, which is accessible by host threads via dependency
clauses of the task construct or by copy clauses of the target construct. Furthermore,
the acc target task incorporates one or more teams with a team memory for each. The team
memory is a team private memory, which is accessible only for the threads within a given
team; there is no direct access for host threads and threads within other teams to a team
memory. Figure 3.3 illustrates the memory model of our MACC infrastructure with a
system that has two GPU device. In this example for clarity we only show four host
threads and three teams.

In our MACC infrastructure we map device memory with the global memory of the GPUs
and team memory with shared memory which is on-chip memory. It is important to note
that team memory becomes the fastest memory area after register file of the model. Using
shared memory efficiently is a well-known challenge for the native and user-directed
compiler. We introduce a couple of extensions such as complete and partial array
privatization to better exploit shared memory in Section 4.
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Input Code

1 #pragma omp target device(cuda)

2 #pragma omp task inout(C) out(D) TASK 1
3 __global__ void cuda-kernel(double C, double D) {
4 cuda-codes
5 }
6 int main(int argc char **argv) {
7 double A[N], B[N], C[N] , D[N];
8

9 for(int i = 0; i < 2; ++i) {
10 cuda-kernel(C, D);
11

12 #pragma omp target device(acc)

13 #pragma omp task in(A) out(B) TASK 2
14 structured-block
15

16 #pragma omp target device(acc)

17 #pragma omp task inout(A, B) TASK 3
18 structured-block
19 }
20 #pragma omp target device(acc)
21 #pragma omp task inout(C, B) in(D) TASK 4
22 structured-block
23

24 #pragma omp target device(smp)
25 #pragma omp task in(A, C) TASK 5
26 structured-block
27

28 #pragma omp taskwait
29 }

Execution Diagram

Figure 3.2: Execution model example of MACC infrastructure.
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Figure 3.3: Memory model of MACC programming Model

3.5.4 Threading Model

OmpSs uses a thread pool mechanism; several threads are created to run the tasks
on the different execution units. Threads that run tasks on CPUs are called worker
threads and the threads used to manage and offload tasks to accelerators are called
helper threads and run on the CPU as well. In our MACC infrastructure, we use acc
target tasks which are run on GPUs. In order to manage this, the runtime creates one
helper thread for each GPU devices. As the OmpSs application binary is executed, task
creation codes will be reached and the runtime’s dependency layer will create a new
node in the task dependency graph for each created task. When the task becomes ready,
the runtime scheduler component decides which execution unit will run the task. Then
the architecture support for that unit and the coherence layer coordinate the necessary
data transfers and run the task.

3.5.5 Device Constructs

In this section, we introduce the constructs of our MACC infrastructure that make use of
the code generation facility for GPUs. As we already mentioned, it is combination and
extension of the OmpSs and OpenMP programming models.
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1 #pragma omp target device(acc) [clause [clause], ...] new-line
2 #pragma omp task [clause [claues], ...] new-line
3 structured -block

Figure 3.4: C/C++ syntax of the acc target task

target Construct

The target is the main construct in our device model. The construct is used to offload a
code region; these regions can be any structured block except for function declarations
and definitions. To take advantage of the GPU code generation facility, it must be in the
form of a acc target task, which uses both the target device (acc) and task constructs.

Figure 3.4 shows the syntax of the acc target task for C/C++ which offloads the following
structured-block while enabling GPU code generation. In addition, the data needed for
the task is guaranteed to be ready on the offloaded physical device when runtime runs it.

teams Construct

The teams construct creates a league of thread teams and a master thread for each thread
team executes the code region within the construct. It is used to specify a hierarchy of
resources in the GPUs: a league of num_teams clause teams, each with thread_limit
threads. It is important to note that teams are not connected directly, which is to say
threads in different teams are not allowed to communicate in any native way. It is also
not possible to express a barrier between threads in different teams, and there is no
implicit barrier at end of the construct. Lastly, teams are not allowed to be nested. In
our model, the teams construct must be contained in a acc target task; there must not be
any statements among target, task and teams.

In addition to this, the teams construct involves data sharing attribute clauses which
are: private, firstprivate, and shared. As we discussed in Section 3.5.3, being able
to use data sharing clauses for a team means that there is a special memory space for the
team, which we called the team memory. We explain how we exploit from team memory in
Section 4 as an optimization proposal.

The code in the Figure 3.5 (a) shows usage of the teams construct within a acc target task.
In this example, the structured block is executed by each master thread of the thread
team sequentially. The compiler is free to create up to 16 teams and 32 threads within
each team as is indicated in the num_teams and thread_limit clauses respectively.
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Input code

a. Example with teams construct

1 #pragma omp target device(acc)
2 #pragma omp task
3 #pragma omp teams \
4 num_teams(16) thread_limit(32)
5 {
6 //team sequential region
7 }

Generated code

1 __global__ void kernel1() {
2 if(threadIdx.x == 0 ) {
3 //sequential region
4 }
5 }
6 // kernel launch
7 kernel1 <<< 16,32 >>> (a, b, c);

b. Example with distribute construct

1 #pragma omp target device(acc)
2 #pragma omp task \
3 in(a[:N], b[:N]) out(c[:N])
4 #pragma omp teams \
5 num_teams(16) thread_limit(32)
6 #pragma omp distribute parallel for
7 for(int i = 0; i < N; ++i) {
8 c[i] = a[i] + b[i];
9 }

1 __global__ void
2 kernel2(T* a,T *b,T* c){
3 if(threadIdx.x == 0)
4 for(int i = blockIdx.x;
5 i < N; i+= gridDim.x)
6 c[i] = a[i] + b[i];
7 }
8 //kernel launch
9 kernel2 <<<16,32>>>(a,b,c,N);

c. Example with parallel for construct

1 #pragma omp target device(acc)
2 #pragma omp task \
3 in(a[:N], b[:N]) out(c[:N])
4 #pragma omp parallel for
5 for(int i = 0; i < N; ++i) {
6 c[i] = a[i] + b[i];
7

8 }

1 __global__ void
2 kernel3(T* a,T *b,T* c){
3 for(int i = threadIdx.x;
4 i < N; i+= blockDim.x)
5 c[i] = a[i] + b[i];
6 }
7 // kernel launch
8 kernel3 <<<1, tdim(N)>>>(a,b,c,N);

d. Example with several constructs

1 #pragma omp target device(acc)
2 #pragma omp task in(Anew) out(A)
3 #pragma omp teams
4 #pragma omp distribute
5 for(int j = 0; j < N; ++j) {
6 #pragma omp parallel for \
7 collapse(2)
8 for(int i = 0; i < M; ++i) {
9 for(int k = 0; k < L; ++k) {

10 A[j][i][k] = Anew[j][i][k];
11 }
12 }
13 }

1 __global__ void
2 kernel4(T* A, T* Anew) {
3 for(int j = blockIdx.x;
4 j < N; j += gridDim.x)
5 for(int i = threadIdx.x;
6 i < M; i+= blockDim.x)
7 for(int k = threadIdx.y;
8 k < L; k+= blockDim.y)
9 A[j][i][k] = Anew[j][i][k];

10 }
11 //kernel launch
12 kernel4 << bdim(N), tdim(M, K) >>>
13 (a, b, c, N, M, L);

Figure 3.5: Examples of device constructs and their generated codes by MACC infras-
tructure.
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distribute Construct

The distribute construct is associated with a loop and can be used to partition it into
chunks which are assigned to teams, which is done by the team master of each team. It
must be enclosed within a teams construct.

The code in Figure 3.5 (b) shows usage of a distribute construct. First of all, the acc
target task requires a data environment; when the runtime runs the task, the data must
be ready on the physical device. When compiler reaches the distribute construct, it
will distribute the iterations on the master thread of each team.

parallel Construct

Parallel is the fundamental construct of the OpenMP model that starts parallel execution.
We adapted a similar approach for our model. Essentially, when the program encounters
a parallel construct, it creates a team for that thread. There is an implicit barrier at
the end of the parallel construct. Only the master thread resumes execution beyond
the end of the parallel construct, resuming the task region that was suspended upon
encountering the parallel construct. Any number of parallel constructs can be specified
in a single program.

for Construct

The for directive, which is also know worksharing construct in OpenMP, distributes the
execution of the region among the other threads of the team that encounters it. Threads
execute portions of the region in the context of the implicit tasks each one is executing.
In case there is only one thread in a team, the region is not executed in parallel.

The code in Figure 3.5 (c) shows an example that makes use of parallel for. This example
is similar to the example in Figure 3.5 (b). The only difference is that here the iterations
are distributed across the threads.

atomic Construct

We also integrated the atomic construct to allow user to specify if a storage location is
accessed atomically, rather than exposing it to the possibility of simultaneous read or
write by threads which may result in wrong values.
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Combined Constructs

teams distribute The teams distribute construct is a shortcut for specifying a teams
construct containing a distribute and no other statements.

teams distribute parallel for The teams distribute parallel for construct is a short-
cut for specifying a teams construct containing a distribute parallel loop construct and
no other statements.

parallel for The parallel for construct is a shortcut for specifying a parallel construct
containing one loop construct with one or more associated loops and no other statements.

3.6 Code Transformations

In this section, we explain code transformation algorithms with examples.

3.6.1 Kernel Configuration

When generating kernel code, MACC needs to decide: 1) the dimensionality of the
resources hierarchy (one-, two- or three-dimension teams and threads) and 2) the size in
each dimension (number of teams and threads). In order to support the organization
of the threads in multiple dimensions, MACC supports to use of a collapse clause
which includes an integer to specify the number of nested loops (dimensionality equals
the nesting degree). Since GPUs offer maximum three dimensional thread blocks, the
compiler can collapse maximum three nested loops and assign them to each dimension
of a thread block.

The MACC currently generates one-dimensional teams (the current implementation does
not support nesting of distribute directives). Thread dimensions are initially assigned in
loop nesting order.

3.6.2 Loop Transformation

The MACC takes into account the restrictions of the device (for example a maximum
number of blocks and threads for each CUDA computing capability) and the information
provided by the programmer in the num_teams and thread_limit clauses; if not specified,
the MACC first tries to simply assign one iteration per block and one iteration per thread.
If the iteration count is bigger than allowed by the maximum value of iteration thread or
block, the MACC generates a loop that iterates the loop until it finishes in the output
CUDA kernel. We discuss loop scheduling techniques and a novel contribution to this
thesis, the dynamic loop scheduling method in Section 6.
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Our MACC’s code generation does not break the coalesced memory access pattern to
read or write the global memory efficiently by warps. To that end, MACC performs a
cyclic mapping of loop iterations and tries to eliminate redundant "one iteration" loops
and simplifies increment expressions for induction variables to improve kernel execution
time.

The code in Figure 3.5 (d) shows an example that makes use of several constructs from
our device model. The compiler starts by distributing the first loop across thread blocks.
Then it distributes the second and third loops across threads using the 1st (threadIdx.x)
and 2nd (threadIdx.y) dimensions of the thread block respectively.

3.6.3 Reduction Transformation

Theteams, parallel andfor constructs allow us to create areduction(reduction-identifier:
list) clause. Therefore we have implemented reduction as well for the device model.
When the MACC compiler encounters this clause, it generates reduction code. We
can divide reduction in two parts; 1) reduction within a thread team, 2) reducing item
with thread teams. The next section explains the code generation algorithms for the
reduction clause in detail.

Reduction within a thread team

Figure 3.6(a) and (b) shows examples of reduction occurring only within a thread team.
There are different strategies to parallelize in this case, as shown in the generated CUDA
codes on the right side of the same figure. Figure 3.6(a) has a single thread team in the
kernel; Figure 3.6(b) incorporates multiple thread teams. However, reduction is specified
in a parallel for construct, which tells the compiler to do reduction by threads of a
thread team.

We take advantage from shfl intrinsic to implement our reduction algorithm within a
block for Kepler and later GPU architectures. The full reduction algorithm is explained
in [30]. In brief, shfl enables a thread to directly read a register from another thread in
the same warp. It allows threads in a warp to collectively reduce the reduction value.
The following code example shows reduction within a warp. In our algorithm, we first
reduce within warps. Then the first thread of each warp writes its partial reduction
item to shared memory. Finally, after synchronizing, the first warp reads from shared
memory and reduces again. The algorithm is implemented in the blockReduceSum
function. It is important note that shfl is not available for the Fermi architecture. Thus,
when the compiler needs to generate code for the Fermi architecture, it generates codes
using reduction using shared memory. As we mention in Section 3.4, our compiler uses
different code generators to generate suitable code for each GPU architecture.
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1 for (int i = warpSize/2; i > 0; i /= 2)
2 reductionItem += __shfl_down(reductionItem , i);

Reduction with thread teams

The example of reduction with thread teams is shown in the code on the bottom of the
Figure 3.6(b). Here reduction applies on the entire grid, which should be handled by
threads and thread teams.

In our device model, we map each thread teams to each thread block in CUDA and
there is no synchronization mechanism to synchronize all thread blocks. Our strategy is
to take advantage of the atomic operations of CUDA. In this way, the compiler generates
code to reduce the reduction item by thread block using blockReduceSum. Then, the
first thread of each thread block reduces the partial reduction using atomic operations as
shown in Line 9 on the right side of the same figure.

3.7 GPU Device Model Challenges

In the OpenMP device model, execution in the teams region initially starts in the master
thread of each team. As we integrate this teams construct into our device model, we
inherited its execution model as well. However in the GPU programming model, all
threads are immediately and actively available when the kernel is launched. Because of
this we have to control the teams region with the compiler. Our idea is to coordinate
thread execution: the master thread of each team is used to execute each team’s specific
region, which is guarded by an if statement. When code reaches a distribute or
parallel construct later on, it activates the rest of the threads in the team. However,
this can be tricky sometimes, especially when data needs to be created or if a statement
must be executed by the master thread of thread team.

Figure 3.7 (a) shows the first challenge with the teams construct. In this example, alpha
is created and assigned with a value inside the team region. Once the code reaches the
for loop in Line 10, alpha is used by each thread of the thread team. In other words,
alpha must be broadcast to all the threads by the master thread of the thread team. The
generated kernel is showed in the same figure. We solve this issue by increasing the
complexity of the CUDA code. We get the master thread of thread team to create alpha
in shared memory. When the master thread is done with the memory operation, we
enforce a CUDA ordering constraint on memory operations issued before and after
the barrier instruction by using a threadfence_block. Afterwards, each thread reads
alpha from shared memory safely. Unfortunately this is an implementation challenge
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a. Reduction within thread team

1 #pragma omp target device(acc)
2 #pragma omp task in(a[:N])
3 #pragma omp parallel for \
4 reduction(+:sum)
5 for(int i = 0; i < N; ++i)
6 {
7 sum += a[i];
8

9 }

Generated Code

1 __global__ void
2 kernel1(T *a, int N, T* sum) {
3 int m_sum = 0;
4 for(int i = threadIdx.x;
5 i < N; i+= blockDim.x)
6 m_sum += a[i];
7 int res = blockReduceSum(m_sum);
8 if(threadIdx.x == 0) *sum += res;
9 }

b. Reduction within thread team

1 #pragma omp target device(acc)
2 #pragma omp task in(a[:N])
3 #pragma omp teams distribute
4 for(int i = 0; i < N; ++i) {
5 int sum = 0;
6 #pragma omp parallel for \
7 reduction(+:sum)
8 for(int i = 0; i < N; ++i) {
9 sum += a[i];

10 }
11

12 b[i] = sum;
13 }

Generated Code

1 __global__ void
2 kernel2(T *a, int N, T* sum) {
3 for(int i = blockIdx.x;
4 i < N; i+= gridDim.x) {
5 int sum = 0, m_sum = 0;
6 for(int i = threadIdx.x;
7 i < N; i+= blockDim.x) {
8 m_sum += a[i];
9 }

10 int res = blockReduceSum(m_sum);
11 if(threadIdx.x == 0) b[i] = res;
12 }
13 }

Reduction with thread blocks

1 #pragma omp target device(acc)
2 #pragma omp task in(a[:N])
3 #pragma omp teams distribute \
4 parallel for \
5 reduction(+:sum)
6 for(int i = 0; i < N; ++i)
7 {
8

9 sum += a[i];
10

11 }

Generated Code

1 __global__ void
2 kernel3(T *a, int N, T* sum) {
3 int m_sum = 0;
4 for(int i=threadIdx.x+blockDim.x*

blockIdx.x;
5 i < N;i+= blockDim.x*gridDim.x)
6 m_sum += a[i];
7 int res = blockReduceSum(m_sum);
8 if(threadIdx.x == 0)
9 atomicAdd(sum, res);

10 }

Figure 3.6: Examples with reduction clause
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for compilers since there is team sequential region.

To understand in more detail, we introduce a further example in Figure 3.7 (b). A
team sequential region takes decisions on what control-flow path is to be followed, and
ultimately which parallel region is to be executed. In this scheme, the compiler generates
code from a single code section that is split in two parts: 1) team sequential region for
if-cond; 2) the execution phase for distribute parallel for regions. The generated
code is shown on the right side of the same figure. The compiler generates lines 2 - 8 for
the team sequential region. A variable shared in Line 2 by a thread in the same team is
allocated into shared memory and used by team masters to guide the execution of all
threads later on. This part is executed by the master of the thread teams, which is the first
thread in our case. After this phase, a memory fence and synchronization guarantees
that non-master threads wait for the masters to take decisions on their behalf. Once the
master threads of each team finish this phase, all threads can proceed to the next phase.
Here, based on the decisions taken in the previous phase, the threads execute one of
the parallel regions. As seen, the team sequential region increases the complexity of the
generated CUDA code. Even though the input code seems very neutral, the compiler
has to generate inefficient code as there is no pattern for GPUs.

A recent study investigated another solution for these challenges in the OpenMP device
model of the Clang front-end. This is called control-loop [11, 28]. Here the compiler
generates a while loop to mimic a state machine that handles codes regions such as
team, thread, sequential etc. The aim of doing that is that the control-loop scheme does
not affect the core code generation scheme of Clang. Their approach solves the problem
perfectly, however it results in poorer performance than our approach.

3.8 Conclusion

In this chapter, we introduced our MACC infrastructure, source-to-source code generation
scheme for NVIDIA GPUs infrastructure designed and implemented in the Mercurium
C/C++ source-to-source compiler. It is one of the the largest piece of software developed
during this Ph.D. It is also used as the basis for the two following contributions of the
thesis (presented in Chapter 4 and Chapter 5).
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a. Input Code

1 #pragma omp target device(acc)
2 #pragma omp task in(a) inout(c)
3 #pragma omp teams
4 {
5

6 // team sequential region
7 float alpha = 2.0;
8

9 #pragma omp parallel for
10 for(int i = 0; i < N; ++i)
11 {
12 y[i] += alpha * x[i];
13 }
14

15 }

a. Generated Kernel

1 __global__ kernel_1(...) {
2 __shared__ float macc_sh_1;
3 float macc_local_1;
4 if(threadIdx.x == 0) {
5 macc_sh_1 = 2.0;
6 __threadfence_block();
7 }
8 __syncthreads();
9 macc_local_1 = macc_sh_1;

10 for(int i = threadIdx.x;
11 i < N;
12 i += blockDim.x ) {
13 y[i] += macc_local_1 * x[i];
14 }
15 }

b. Input Code

1 #pragma omp target device(acc)
2 #pragma omp task \
3 in(a, x, d) inout(b, y)
4 #pragma omp teams
5 {
6 // if-cond in team sequential region
7 if(++d[0] > 0)
8 {
9 #pragma omp distribute parallel for

10 for(int i = 0; i < N; ++i)
11 {
12 y[i] += alpha * x[i];
13 }
14 }
15 else {
16 #pragma omp distribute parallel for
17 for(int i = 0; i < N; ++i)
18 {
19 b[i] += alpha * a[i];
20 }
21 }
22 }

b. Generated Kernel

1 __global__ kernel_2(...) {
2 __shared__ int macc_sh_1;
3 int macc_local_1;
4 if(threadIdx.x == 0) {
5 macc_sh_1 = ++d[0] > 0;
6 __threadfence_block();
7 }
8 __syncthreads();
9 macc_local_1 = macc_sh_1;

10 int tid =
11 threadIdx.x+blockDim.x*BlockIdx.x;
12 if(macc_sh_1) {
13 for(int i = tid;
14 i < N; i += gridDim.x*blockDim.x)
15 y[i] += alpha * x[i];
16 }
17 else {
18 for(int i = tid;
19 i < N;
20 i += gridDim.x*blockDim.x)
21 b[i] += alpha * a[i];
22 } }

Figure 3.7: Device model challenging examples for GPUs.
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4 Device Model Extensions for
OpenMP and OpenACC

4.1 Multiple Target Code Generation

In this chapter we propose an extension to the directive-based programming models
to support multiple-target task sharing, i.e. the possibility of sharing the execution (of
multiple instances) of a task on different devices. We also analyze its implementation
in the compiler and runtime system and evaluate its performance in a prototype
implementation in the OmpSs programming model. The proposed extension eases the
use of multiple accelerators in conjunction with the vector and heavily multithreaded
capabilities in multicore processors without any code modification. The compiler is
responsible for the generation of device-specific code for each device kind, delegating to
the runtime system the dynamic scheduling of tasks to each available device. The new
proposed clause conveys useful insight to guide the scheduler while keeping a clean,
abstract and machine independent programmer interface.

The proposal is evaluated using three kernels (N-Body, tiled matrix multiply and Stream
benchmark) on ARM, Intel x86 and IBM Power-8 based systems, resulting in speed–ups
in the 8-20% range compared to versions in which only the GPU is used, reaching 96%
of the additional peak performance thanks to the reduction of data transfers and the
benefits introduced by the OmpSs NUMA-aware scheduler.

4.1.1 The Proposal of Multi Target Approach

In this section we propose an extension to the target directive to provide support for
multiple target task sharing and comment on its implications for the implementation of
the compiler and runtime system.
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1 #pragma omp target device( list[ device-name ] ) \
2 resources(list[ device-name : percentage-integer-expression])
3 #pragma omp task
4 structured-block

Figure 4.1: Usage of Multi Targeting support

Target Directive Syntax Extension

We propose to extend the target construct in two complementary ways: (i) by allowing
the specification of multiple device kinds in the device clause; and (ii) with a new
resources clause to give hints to the runtime system to appropriately balance the
scheduling of tasks to the different devices in the system. Figure 4.1 shows the proposed
syntax extension.

When more than one device type is listed in the device clause, the compiler will have to
generate a different code version for each of them. This requires mapping the generic
thread hierarchy in the OpenMP 4.0 accelerator model to the actual thread hierarchy in
the device. At runtime, the information provided in the resources clause will be used
to decide where to schedule the execution of the next task instance. For each device the
programmer specifies a value (or expression) over 100 which indicates the amount of
"tokens" consumed every time a task is scheduled on that device; once a task finishes
its execution, that number of tokens is restored. If at any time the number of tokens
available is not sufficient, the runtime will not be able to schedule the task to that device,
choosing a different device that requires less resources if possible.

As an example, the upper part in Figure 4.2 shows the main loop in an N-Body simulation
kernel. In this example, the programmer specifies in Line 4 that the target region can be
executed both on the host (smp) and the accelerator (acc). In addition, the programmer
specifies the number of tokens consumed/released every time a task is scheduled to
execute or finishes its execution on every possible device: 1 token (over 100) when task
is offloaded to the accelerator or 40 tokens (over 100) when executed in the host. In
this case the programmer expresses that no more than 2 tasks should be scheduled to
be executed in the host at any time. The combinations can be estimated considering
separate performance of multiple targets after some initial experiments.

Compiler Support to the device Clause

Figure 4.3 shows the compilation pipeline in the MACC compiler once the Mercurium
Intermediate Representation (IR) has been generated. Different device-specific IR
lowering phases can be implemented, each one either transforming the IR (e.g. for the
smp device by inserting the appropriate calls to the OmpSs runtime system) or generating
an output file to be compiled by a device-specific native compiler (e.g. CUDA for the
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All-Pairs N-Body Simulation with O (n2) Complexity

1 //N-Body Computation
2 for (int ii = 0; ii < n; ii+=BS)
3 {
4 #pragma omp target device(acc,smp) resources(acc:1, smp:40)
5 #pragma omp task in([n]px,[n]py,[n]pz) inout(pvx[ii;BS],pvy[ii;BS],pvz[ii;BS

])
6 #pragma omp teams
7 #pragma omp distribute parallel for
8 for (int i = ii; i < ii+BS; ++i) {
9 float Fx = 0.0f; float Fy = 0.0f; float Fz = 0.0f;

10

11 #pragma omp simd reduction(+:Fx,Fy,Fz)
12 for (int j = 0; j < n; j++) {
13 float dy = py[j] - py[i];
14 float dz = pz[j] - pz[i];
15 float dx = px[j] - px[i];
16 float distSqr = dx*dx + dy*dy + dz*dz+CONST;
17 float invDist = 1.0f / sqrtf(distSqr);
18 float invDist3 = invDist * invDist * invDist;
19 Fx += dx * invDist3; Fy += dy * invDist3; Fz += dz * invDist3;
20 }
21 pvx[i] += dt*Fx; pvy[i] += dt*Fy; pvz[i] += dt*Fz;
22 }
23 }

Transformed ACC-Task Code

1 #pragma omp teams
2 #pragma omp distribute parallel

for
3 for (int i ...) {
4 for (int j ...) {
5 ...
6 }
7 }

Transformed SMP-Task Code

1 #pragma omp parallel for schedule(
runtime)

2 for (int i ...) {
3 #pragma omp simd [ clause ...]
4 for (int j ...) {
5 ...
6 }
7 }

Figure 4.2: N-Body example of MACC IR Code Transformation
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Figure 4.3: Overview of device dispatcher and IR lowering units.

acc device). The multiple device dispatcher unit is in charge of forwarding a new copy
of the IR for each device type listed in the device clause to the appropriate lowering
phase. The implementation is extensible as shown by dotted lines and the nextgen_device
lowering phase. At the end of the compilation pipeline, the compiler driver compiles
each output file with appropriate back-end compiler and link object files to generate the
final executable file.

Before the execution of the SMP lowering phase it is necessary to execute an IR reducer
phase. This phase is in charge of adapting the thread hierarchy supported by the OpenMP
4.5 accelerator model (teams and threads) to the flat thread model in the host, as shown
in Figure 4.4. This step basically selects the outermost loop affected with a distribute or
parallel for directive, and transforms it into a parallel for directive with runtime
schedule type, which is set to ( dynamic, iteration_count / omp_get_thread_num() ). Other
directives in the target region are ignored, except for simd constructs which are then
lowered to specific SIMD operations in the host.

The lower part in Figure 4.2 shows how the directives are interpreted for each device
type in order to adapt the generic thread hierarchy to each specific device: acc on the
left and smp on the right.

Compiler and Runtime Support for the resources Clause

For the resources clause, the compiler just parses the two fields for each device kind
and passes this information to the runtime system though an internal runtime call. This
information is used by the runtime system to account for the total number of resource
"tokens" available at any time. When a task is ready for execution, the runtime checks if
enough tokens are available for any of the possible target devices; if so, then the runtime
subtracts the specified resource tokens for the selected device from the currently available
tokens. When the task finishes its execution, the runtime adds the same amount of
tokens to the total count. Both operations are done using atomic operations. The OmpSs
runtime also offers a call to initialize the total number of tokens to a certain value.
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Figure 4.4: Overview of Automatically Transformed Thread Hierarchy

4.1.2 Experimental Evaluation

In this section we present the performance evaluation of the multiple targeted task-
sharing proposal and its implementation in the MACC compiler and OmpSs runtime
system. To that end we use a variety of system configurations and three small kernel
applications: N-Body, tiled matrix multiply and the Stream benchmark.

System Configurations

Table 4.1 shows the main characteristics of the four systems that have been used
for the experimental evaluation of the proposal. The different system configurations
offer different ratios between the performance of the host and the performance of the
accelerator devices.

The 1st system is based on an old generation of Nvidia GPUs (Fermi architecture) while
the 2nd and 3rd systems are based on a more recent Nvidia GPU (Tesla K40). The first
two systems are based on Intel hosts while the 3rd system is based on the emergent
IBM Power8 architecture with high memory bandwidth and increased hardware thread
counts. Finally the 4th system is based on ARM SoC with a tiny GPU which includes
just one Streaming Multiprocessor Architecture (SMX).

All CUDA codes in this section, have been automatically generated by the MACC
compiler and compiled with nvcc v7.0, except for the 4th system which makes use of
v6.0. GCC 4.9 is used to compile host codes on all systems with -O3 optimization level.
The simd construct is in OpenMP and auto-vectorization is performed by the back-end
GCC compiler.
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System Processor Memory Nvidia GPU

1
2 x Intel Xeon(TM) E5649 sockets
6-core/socket at 2.53GHz 24 GB

2 x Tesla M2090
(Fermi, 512 cores)

2
1 x Intel Core(TM) i7-4820K socket
4-core/socket, 2-hw threads/core at 3.70GHz 64 GB

2 x Tesla K40c
(Kepler, 2880 cores)

3
2 x IBM Power S824L sockets
12-core/socket, 8-hw threads/core at 3.52 GHz 1 TB

2 x Tesla K40m
(Kepler, 2880 cores)

4
Nvidia Jetson TK1 SoC
4-core Cortex-A15 up to 2.5GHz 2 GB

1 x GK20A
(Kepler, 192 cores)

Table 4.1: System Configurations

OmpSs Runtime Configurations and Thread Binding

The OmpSs runtime is used to support the execution of work-sharing and tasking
constructs. In addition, the OmpSs runtime manages host/GPU data transfers and
concurrent kernel execution and CUDA streams. To that end OmpSs reserves a helper
thread in the socket for each GPU device attached to it; the rest of threads are used
to execute smp tasks. The execution of smp target regions is assigned to sockets in a
round-robin way, and work-sharing constructs inside an smp target region are bound to
the threads in a single socket,

For the 3rd system, based on IBM Power8 processors, we have activated the NUMA-aware
scheduler feature in the OmpSs runtime. The runtime detects the socket architecture
of the system and binds threads properly, distributing tasks according to the memory
layout. Besides that, in order to investigate the effect of multithreading inside a core,
we adjust the OmpSs thread binding (using an environment variable) to use 1, 2, 4 or 8
threads per core.

Performance Results

N-Body. This kernel computes the motion of a set of bodies based on the forces between
them. For this simulation, an all-pairs algorithm is used with O (n2) complexity, as shown
in the upper code in Figure 4.2. The resources values have been set to maximize load
balancing between tasks executed on the host processors and the GPU devices.

Figure 4.5 shows the performance results obtained for the N-Body kernel. The per-
formance plot of the top-right corner shows the performace achieved when using the
cores in the host for the three first system configurations. The main performance plot
in shows how that performance is improved when using one and two GPUs, reaching
performance increases in the 8%-14% and 4%-10% ranges, respectively. This contributed
performance is very close to the ideal performance which could be obtained by just
adding the performance of the CPU to the GPU.
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Figure 4.5: N-Body Simulation Performance Results

Figure 4.6: N-Body and tiled-gemm Performance on Jetson TK1.

Finally, the performance of the N-Body kernel has also been evaluated on the 4th system
based on the Jetson TK1. The left plot in the Figure 4.6 shows three different results:
CPU only, GPU only and combined CPU/GPU. In this case, the performance benefit is
up to 20% due to the relatively close performance of the ARM cores and the small GPU
in the SoC.

Tiled Matrix Multiply.

The kernel performs a dense matrix multiplication of two square matrices A×B C.
Matrices are divided in blocks and each task is responsible for the computation of one of
such blocks of the output matrix C. The matrix size is used 8192x8192 double-precision
floating-point elements with 512x512 block size.

The matrix multiply kernel is written using six nested loops: the three innermost ones
are annotated with MACC directives for multiple target devices. The MACC compiler
transformed these into non-optimized CUDA code (the current implementation lacks
many optimization phases that would be necessary to generate an optimized kernel)
and they were then highly optimized using expensive optimization features of back-end
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Figure 4.7: Matrix Multiplication Computation Performance Results

compiler for the host.

The performance for this kernel has been evaluated on the NVIDIA Jetson TK1 (right
plot in Figure 4.6) and IBM Power8 (Figure 4.7) platforms. For the TK1 system we can
conclude that the work was shared among all the SoC elements, with all the cores being
able to contribute to the performance of the GPU.

For the Power8 system, the plot on the top-right corner shows the performance that is
obtained when using different numbers of SMT threads. The main plot in that figure
then shows how this performance is improved using the hybrid system, observing
performance increases of 30% and 16% when one and two GPUs are used, respectively.
Observe that the best result is obtained when two SMT threads per core are activated,
since each Power8 core includes two vector units and load/store units.

STREAM. This benchmark [31] is commonly used to benchmark memory bandwidth.
It consists of four micro-benchmarks accessing three vectors a, b and c and a scalar
variable, inside an iterative loop that repeats their execution a number of times. Loop
tiling has been applied to the outermost loop in these four operations in order to divide
the iterations into multiple tasks and to run them in parallel. Task dependencies are
specified between the tasks computing the four different operations.

This benchmark is evaluated using the 2nd and 3rd system. Both use the same Nvidia
GPU (with theoretical memory bandwidth of 288 GB/s). However, the processors in
the 2nd system report a memory bandwidth of 59.7 GB/s while the processors in the 3rd

system report an average 192 GB/s (with a maximum of 275GB/s on the individual micro
benchmarks [32]). Therefore, comparing these two systems provides a good opportunity
to see how the runtime is able to fully exploit the additional bandwidth in the Power8
system.

Figure 4.8 shows the average bandwidth reported by the Stream benchmark when
different numbers of SMP workers are used, for both systems evaluated. For the Power8
system (right plot), a speed up to 84% over GPU baseline is achieved when using all the
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Figure 4.8: Stream Bandwidth Performance Avg Rate(GB/s)

cores in the entire system. For the i7-based system (left plot), the best performance is
achieved when only two cores are used, showing the memory bandwidth bottleneck of
the socket. When GPU tasks are finished, the runtime steals tasks which were initially
assigned to the CPU, forcing the runtime to copy data from host to device.

4.2 Exploiting On-Chip Memory

We introduce a new data sharing clauses for the distribute construct of OpenMP which
exploit the on chip memory of GPUs. We have implemented our idea on the MACC
compiler, introduced in the Section 3.

The on chip memory, which is also known as shared memory in CUDA, is the fastest
memory memory area after registers. It is allocated per block, so each thread in the block
shares the same shared memory. It has a number of uses, such as reduction to make
possible global memory coalescing. However, there are a few difficulties with shared
memory; 1) shared memory is a fairly small area, typically 48KB or 96KB, 2) it requires
size configuration before launching the CUDA kernel, 3) there is no direct access to
shared memory from host memory, threads in the same block must load data from the
global memory to shared memory.

From the viewpoint of the compiler, the difficulties of shared memory make it impossible
for compilers to generate code automatically using shared memory. First of all, compilers
can not make a decision about where and how much of global memory is going to load
to shared memory. Secondly, they can not decide how much shared memory to use,
because the types of variables are not clear at compile time. Because of these reasons, we
introduce three new clauses to give hints to the compiler. We also extended the current
specification.
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4.2.1 Array Privatization

MACC makes use of shared memory for threads in a team based on the specification of
private and firstprivate data structures in the distribute directive, so that each team
allocates a private copy in its own shared memory. MACC analyzes the size of the data
structure to be privatized and generates code for its allocation and copying from global
memory to shared memory in each team.

However, for very large private arrays this is not possible to apply. For these cases we
have implemented three new clauses. With these clauses, and the chunk size provided
in the dist_schedule(static,chunk size) clause in the distribute directive or near
by array variable, the compiler just allocates a portion of the arrays to each team
and performs the necessary copies according to the firstprivate and lastprivate
semantics.

• dist_private(list) : shared memory is only allocated up to indicated chunk
size.

• dist_firstprivate(list) : shared memory is allocated up to indicated chunk
size and it is filled with own part of array at global memory.

• dist_lastprivate(list) : shared memory is allocated up to indicated chunk size.
End of the distribute scope, allocated area from shared memory is recopied to own
location at the global memory.

• dist_firstlastprivate(list) : it is a short-cut for specifying dist_firstprivate(list)
and dist_lastprivate(list) at the same time.

4.2.2 Experimental Evaluation

For the experimental evaluation we have used a node with 2 Intel Xeon E5649 sockets
(6 cores each) running at 2.53 GHz and with 24 GB of main memory, and two Nvidia
Tesla M2090 GPU devices (512 CUDA cores each, compute capability 2.0) running at
1.3GHZ and with 6GB of memory per device. For the compilation of OpenACC codes
we have used the HMPP (version 3.2.3) compiler from CAPS [33]. For the compilation
of OmpSs codes, we have used the Mercurium and Nanos environment. GCC 4.6.1 has
been used as the back-end compiler for CPU code generation and the CUDA 5.0 toolkit
for device code generation. Performance is reported in terms of execution time for the
kernels generated and the speed-up relative to sequential execution on a single core for
the complete application.

We used DG which is a kernel version of a climate benchmark developed by National
Center for Atmospheric Research [34]. The code consists of a single target region that
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Figure 4.9: Performance evaluation for DG kernel

is executed inside an iterative time step loop that is repeated for a fixed number of
iterations. Inside the target region the iterations of two nested loops are mapped to the
teams/thread hierarchy as specified by the programmer. Figure 4.10 shows the code for
the program.

Figure 4.9 shows the performance that is achieved by different versions of the code,
described in the following bullet points:

• CUDA: hand-optimized CUDA version of the application (with host and kernel
code written in CUDA) available from NCAR.

• OmpSs+CUDA: OmpSs version of the application leveraging (only) the computa-
tional kernels written in CUDA.

• OpenACC: OpenACC version available from NCAR compiled by HMPP compiler.

• OpenMP 4.5: Extended versions of our OpenMP accelerator model implementation
compiled by MACC compiler, including additional clauses to influence kernel
code generation.

Comparing bars labelled CUDA and OmpSs/CUDA in Figure 4.9 one can extract a first
conclusion: OmpSs is able to leverage existing CUDA kernels with similar performance
as full host/device CUDA codes. In this case we observe a small performance degradation
probably due to overheads of the runtime in generating tasks in each iteration of the
time step loop that are unnecessary.
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1 #define NELEM 90000
2 #define SIZE (NELEM*nX*nX)
3 #define CHUNK 256
4 #define NT 5625
5 double delta[nX*nX], der[nX*nX], grad[nX*nX], flx[SIZE], fly[SIZE];
6 //
7 for (it=0; it<nit; it++)
8 {
9 #pragma omp target device(acc)

10 #pragma omp task inout(flx[0:SIZE],fly[0:SIZE])
11 #pragma omp teams num_teams(NT) private(grad) firstprivate(delta,der)
12 #pragma omp distribute parallel for \
13 dist_first_lastprivate([CHUNK]flx, [CHUNK]fly)
14 for (ie=0; ie < nelem; ie++) {
15 #pragma omp parallel for private(j)
16 for (ii=0; ii < nX*nX; ii++) {
17 int k = ii % nXa, l = ii / nX;
18 double s2 = 0.0, s1 = 0.0;
19 for (j=0; j < nX; j++) {
20 s1 = 0;
21 for (int i=0; i < nX; i++)
22 s1 = s1 + (delta[j*nX+l]* flx[ie*nX*nX+i+j*nX]* der[k*nX+i]+

delta[k*nX+i]* fly[ie*nX*nX+i+j*nX]* der[l*nX+j])* gw[i];
23

24 s2 = s2 + s1*gw[j];
25 }
26 grad[ii] = s2;
27 }
28 #pragma omp parallel for
29 for (ii=0; ii < nX*nX; ii++) {
30 flx[ie*nX*nX+ii] = flx[ie*nX*nX+ii]+ dt*grad[ii];
31 fly[ie*nX*nX+ii] = fly[ie*nX*nX+ii]+ dt*grad[ii];
32 }
33 }
34 }

Figure 4.10: Example to explain MACC implementation of shared memory - DG Kernel
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4.3 Conclusion

In this chapter, we firstly have proposed an extension to the directive-based programming
models to support the possibility of sharing the execution (of multiple instances) of
a task on different devices in a heterogenous architecture. We have analyzed its
implementation in the compiler and runtime system and evaluated its performance
in a prototype implementation using the OmpSs programming model. For this we
used a variety of system configurations and three different intensive kernel applications.
The proposed extension eases the use of multiple accelerators in conjunction with the
vector and heavily multithreaded capabilities in multicore processors without any code
modification. The new proposed clauses convey useful insight to guide the scheduler
while keeping a clean, abstract and machine independent programmer interface. The
performance evaluation shows that with the new resources-based scheduler the runtime
is able to take advantage of all devices available in the heterogeneous system.

Programming models are playing an important role in the “slow” widespread adoption
of heterogeneous systems. In this section we comment on three proposals closely related
to the work presented in this section: versioning scheduler in OmpSs [35], CoreTSAR
[36] and the resource-aware scheduling in [37].

Regarding the original OmpSs, the programmer has to provide the kernels to be executed
on the devices using CUDA or OpenCL. The MACC compiler used in this section is
able to target the thread hierarchies in different devices from a single OpenMP 4.0 target
region. The versioning scheduler policy schedules a task to the fastest device available
at that time; prior to that, in a learning phase the runtime measures the execution of
the task on the different devices in order to train the system. This greedy policy may
easily result in load imbalance. CoreTSAR [36] also proposes an adaptive scheduler
with different techniques, based on an initial learning phase for a subset of statically
assigned iterations of the target loop region.

Resource-aware task scheduling [37] investigates the benefits of adding information
about the usage of resources (such as memory and bandwidth) for each task. This
information, provided by the programmer thorugh a new clause in the task construct,
is then used by the runtime to decide where to schedule that task. In our proposal we
extend this model by considering the heterogeneity of the different devices available in
the system.

Secondly, in this section, we have proposed an extension to the directive-based program-
ming models to improve on-chip usage. The method is also knows as array privatization
which makes different threads access distinct memory addresses, so that different threads
do not access the same memory address. It is a technique where data that is common
or shared among parallel tasks is duplicated so that different parallel tasks can have a
private copy to operate on. Our results shows that automatically generated code can
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reach the performance of hand-written CUDA codes.
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5 Code Transformation of Nested
Parallelism for GPUs

As we explained in Chapter 2, Graphics Processing Units (GPU) have been widely
adopted to accelerate the execution of HPC workloads due to their vast computational
throughput, being able to execute a large number of threads inside SIMD groups in
parallel and using hardware multithreading to hide long pipelining and memory access
latencies. Early GPU programs were based on a flat, bulk parallel programming model,
in which programs had to perform a sequence of kernel launches. In the latest releases
of these devices, dynamic parallelism is supported, adding the ability to launch kernels
from threads running on the device, without host intervention. Unfortunately, the
overhead of launching kernels from the device is higher than launching them from
the host. In order to reduce these overheads, this thesis proposes and evaluates a
user-directed code transformation technique (LazyNP which stands for Lazy Nested
Parallelism) that targets nested parallelism. The compiler generates code to dynamically
pack kernel invocations and to postpone their execution until a bunch of them are
available. The thesis shows that for seven benchmark programs used in the evaluation,
LazyNP can effectively exploit nested parallelism, significantly increasing performance
when compared to eager implementations using dynamic parallelism or other code
versions not making use of nested parallelism and well-tuned libraries.

5.1 Introduction

Early GPU programs were based on a flat, bulk parallel programming model, in which
programs had to perform a sequence of kernel launches, each kernel trying to expose
enough data parallelism to efficiently use the available resources in the GPU. In order
to give support to more irregular codes (e.g., graph algorithms with irregular data
access patterns and unpredictable control flows), the latest releases of GPUs include
dynamic parallelism [38]. As explained above, dynamic parallelism makes it possible
to launch kernels from threads running on the device, without CPU intervention. The
nested parallelism that is available in a wide range of applications is thus supported,
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dispatching a coarse-grained kernel which in turn dispatches finer-grained kernels to do
work where needed, improving load balancing.

Unfortunately, the overhead of launching kernels from the device is much higher
compared to launching from the CPU. Recent studies [39, 40] show that dynamic
parallelism introduces noticeable overhead during kernel launch, precluding in most
cases the exploitation of nested parallelism to improve application performance. In
order to mitigate this overhead, this thesis proposes LazyNP, a code transformation
technique for directive-based programming model in order to efficiently exploit the
potential performance of nested parallelism.

This thesis makes the following contributions in this area:

• LazyNP is proposed as a compiler technique for directive based programming languages
that collects nested kernel invocations until a reasonable number of them are available,
postponing their execution as a single kernel or multi-thread code.

• Three different code transformations are proposed to implement LazyNP for GPU accel-
erator devices (CTA-based, warp-based and host-based) together with some additional
compiler optimizations.

• LazyNP also proposes two different code transformation techniques (CPU Managed and
Cross) to implement nested parallelism using hybrid GPU+CPU.

• Performance evaluation of LazyNP with real applications and data sets, comparing results
with other code generation alternatives and/or optimized libraries.

The techniques proposed in this chapter target CUDA code, although they could be
directly re-targeted to OpenCL or to an intermediate assembly such as PTX [41] or SPIR
[42]. However, the proposed code transformation techniques can be applied onto CUDA
compilers as a replacement algorithm for dynamic parallelism launch.

5.2 Motivation

Dynamic parallelism was introduced in an attempt to improve programming productivity
and to broaden the applicability of GPU programming for irregular algorithms. However,
it comes at the expense of a noticeable kernel dispatch overhead which precludes the
exploitation of nested parallelism if used in a naïve way. This section motivates the
proposal in this chapter by analyzing these aspects.

Kernel dispatch overhead

The overhead of dispatching a new kernel from the device incurs a noticeable slowdown
due to the cost of dispatching device-side kernels, as already shown in previous studies
[40, 39]. This section tries to quantify these overheads in a more precise way, exploring
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three different ways to dispatch kernels from the device. This initial evaluation will
be useful to understand the decisions taken in the code generation strategies that are
proposed in this chapter. The three alternatives are shown in Figure 5.1 and explained
below:

• Thread-based kernel dispatch: each thread executing the parent kernel dispatches new
child kernels. For example, for a device with 24 SM and 128 threads per SM, the number
of child kernels simultaneously launched is 128×24.

• Warp-based kernel dispatch: only the master thread in each warp executing the parent
kernel dispatches new child kernels. For example, assuming 32 threads per warp, the
number of child kernels simultaneously launched is (128÷32)×24.

• CTA-based kernel dispatching: only the master thread in each thread block (CTA) executing
the parent kernel dispatches new child kernels. For example, 24 simultaneously launched
kernels for a device with 24 SM units.

In all three cases the parent grid is configured so that the complete device is occupied
(launching as many thread blocks as the number of SM in the device and as many
threads per thread block as possible). Child kernels dispatched from the parent kernel
are configured with NG 64 blocks and BS 128 threads per block.

1 __global__ void child( ){ /* Dummy Child */}
2

3 /* Thread-based kernel dispatch */
4 __global__ void kernel_THREADbased(..., int N) {
5 while (N > 0) {
6 if (threadIdx.x < N) child<<<NG, BS>>>();
7 N -= blockDim.x*gridDim.x;
8 } }
9

10 /* Warp-based kernel dispatch */
11 __global__ void kernel_WARPbased(..., int N) {
12 while (N > 0){
13 if (warpId < N && laneId == 0)
14 child<<<NG, BS>>>();
15 N -= numWARPs;
16 } }
17

18 /* CTA-based kernel dispatch */
19 __global__ void kernel_CTAbased(..., int N) {
20 while (N > 0) {
21 if (threadIdx.x == 0 && blockIdx.x < N)
22 child<<<NG, BS>>>();
23 N -= gridDim.x;
24 } }

Figure 5.1: Three alternatives for device-side kernel dispatch.
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Figure 5.2 shows the overall overhead of dispatching a certain number of threads for the
three different schemes mentioned above for two different NVIDIA devices (Tesla K80
and Titan-X). The main observations from this plot are: (1) the serialization imposed
and conflicts in the Grid Management Unit (GMU) lead to an exponential growth in
the overhead experienced; and (2), the CTA-based approach seems to be the most
competitive approach for dispatching child kernels for every number of threads tested.
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Figure 5.2: Overall overhead for Thread-, Warp- and CTA-based dynamic parallelism.

5.2.1 Naïve approaches to make use of dynamic parallelism

This subsection discusses the effect of the observed kernel dispatch overhead in the
implementation of a BFS (breadth-first search) application kernel, showing that a naïve
use of dynamic parallelism may not improve performance as expected when it should
be useful to catch the appropriate granularity in this irregular application.

Figure 5.3 shows the skeleton of a graph traversal kernel that follows the usual edges-
oriented approach to parallelize its execution [43, 44, 45, 1, 46]. Each node of the graph
is assigned to a thread that is responsible for processing a variable number of edges in
the loop at line 8. The variable A[i].Edges (trip count) in this loop introduces thread
divergence which may be very relevant when the variability is high. For illustrative
purposes in this section, Table 5.1 shows this variability for the lanes within a warp.

Figure 5.4 illustrates the execution timeline for a single warp of the kernel in Figure 5.3
assuming the number of iterations shown in Table 5.1 (for warp size equals to 8). In the
timeline, each horizontal row shows the threads (lanes) that actively participate in the
lock-step execution and the number of times it is repeated. In the beginning, all threads
in the warp first execute BB.init; after that, they all start executing the BB.process loop
body. After 10 iterations, some lanes (2,4,6) stop doing useful work, followed by lanes 3
and 5 at iteration 30 and during 100 iterations. At the end of the kernel, only lane 1 is
active during 200 iterations while all other lanes wait idle.
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1 __global__ void graphTraversal (...) {
2 int tid = threadIdx.x + blockIdx.x * blockDim.x;
3 int nt = grimdDim.x * blockDim.x;
4 for (int i = tid; i < N; i += nt) {
5 BB.Init
6

7 /* Imbalanced workload issue */
8 for (int j = 0; j < A[i].Edges; j++){
9 BB.Process

10 }

11 BB.AfterProcess
12 } }

Figure 5.3: CUDA code skeleton for graph traversal without using dynamic parallelism
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Figure 5.4: Execution timeline for a single warp (warp size 8) of the kernel in Figure 5.3

LANES 1 2 3 4 5 6 7 8
trip count 330 10 30 10 30 10 130 130

Table 5.1: Inner iteration trip count for the loop in line 9 in Figure 5.3.

Since lanes 1, 7 and 8 have much more work than the others, dispatching their work as
a child kernel would be the solution offered by dynamic parallelism to cope with the
load imbalance problem, executing them with additional resources. Figure 5.5 shows
the CUDA code skeleton that would naïvely exploit dynamic parallelism, only using
it when the number of iterations is larger than a certain threshold. This approached is
named EagerDP in contrast to the LazyNP proposal in this thesis. The lower part in the
same figure shows the timeline for its execution, assuming a threshold of 100 iterations.
In order to show the performance of the EagerDP approach, the original CUDA imple-
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1 __global__ void graphTraversal_eagerDP (...) {
2 int tid = threadIdx.x + blockIdx.x * blockDim.x;
3 int nt = grimdDim.x * blockDim.x;
4 for (int i = tid; i < N; i += nt) {
5 BB.Init
6 if(A[i].Edges > THRESHOLD)
7 BB.EagerDP //launch child_kernel <<<...>>>(...);

8 else
9 for (int j = 0; j < A[i].Edges; j++){

10 BB.Process
11 }

12 BB.AfterProcess
13 } }
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Figure 5.5: EagerDP: (top) CUDA skeleton code for graph traversal application making
a naïve use of dynamic parallelism; (bottom) warp execution timeline, assuming warp
size equals to 8.

mentation of BFS in the Rodinia Benchmark [44] was translated to the OpenMP 4.5
accelerator model, as shown Figure 5.6. It is important to note that in the innermost
loop, nested parallelism is only enabled when the number of edges for the current node
is higher than THRESHOLD, making use of the if clause for the parallel for pragma.
This version has was compiled using the open-source MACC compiler (implementing
[47]) and executed with two graphs with different distributions of number of edges per
node (linear and exponential distributions). The left vertical axis in Figure 5.7 shows the
speed–up that was obtained when using EagerDP for these two graphs when compared
to the original CUDA version in Rodinia, for different values of the threshold that decides
when to dispatch child kernels (horizontal axis). Notice that bars that are not visible in
fact have a slowdown. The same plot includes two lines (referenced to the right vertical
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1 #pragma omp target teams distribute parallel for
2 for( i = 0; i < N; i++ ){
3 BB.Init
4

5 #pragma omp parallel for if(A[i].Edges > THRESHOLD)
6 for(int j = 0; j < A[i].Edges; j++){
7 BB.Process
8 }

9 BB.AfterProcess
10 }

Figure 5.6: Version of the edges-oriented graph application in the Figure 5.3 making use
of the OpenMP accelerator directives.

axis) showing the number of child kernels that have been dispatched. As can be seen,
for the linear distribution graph the use of dynamic parallelism results in a slowdown
since an excessive number of child kernels are invoked; for the exponential distribution
graph, a maximum 1.24x speed-up is obtained, although for most values of threshold
the execution is slower than the original CUDA version.

Figure 5.7: Speedup for the EagerDP Implementation of BFS.

The main conclusion from these experiments is that the programmer should be selective
when deciding on the use of dynamic parallelism, carefully validating when it is
worthwhile to use it in the application. In the naïve (EagerDP) implementation of
dynamic parallelism, the value of the threshold that is used to make this decision has
a critical impact, resulting in catastrophic effects on performance. In order to handle
this in an appropriate way, this thesis contributes a new code generation strategy and
execution approach that will make dynamic parallelism useful and perform better by
reducing the number of child kernel dispatches without the need of carefully tuning the
threshold value.
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5.3 Background

This section briefly describes dynamic parallelism which has been introduced in Nvidia
GPUs and its current support in user-directed accelerator programming models (in
particular OpenACC and OpenMP).

5.3.1 Dynamic parallelism in Nvidia GPU

Nvidia GPU architectures are based on a number of Streaming Multiprocessor (SM) units,
which are named SMX in Kepler [48] and SMM in Maxwell [49]. The devices include
several SM units, with 192 and 128 single-precision cores per SM unit, respectively. To
exploit all cores available, CUDA has two levels of parallelism: threads in a Cooperative
Thread Array (CTA, also called thread block) and then CTAs in a Grid (also known as a
kernel). Threads in a kernel are bundled into 32-thread warps, a warp being the basic
lock-step execution unit in the GPU: threads within each warp share the same program
counter (PC) and execute the same instruction at each cycle.

With dynamic parallelism, threads executing a kernel dispatched from the host (parent
kernel) can launch new kernels (child kernels) without any host intervention. Nvidia
GPUs include the so-called Grid Management Unit (GMU) which manages and prioritizes
Grids to be executed. The GMU can pause the dispatch of new Grids and queue pending
and suspended Grids until they are ready to run. The GMU also has a direct connection
to the SM units in the device to permit Grids that launch additional work on the GPU
via dynamic parallelism to send the new work back to the GMU to be prioritized and
dispatched. As when launching kernels from a host, parameters for the child kernel
to be dispatch are stored in constant memory, and the address is passed to the GMU
with its associated configurations. The kernel that dispatched the additional workload
is paused, and the GMU can dispatch the device-side kernels or the suspended parent
kernel. The GMU will hold the parent kernel inactive until the dependent work has
completed.

5.3.2 Support for dynamic parallelism in directive-based accelerator models

OpenACC [13] provides directives that allow programmers to specify code regions to be
offloaded to accelerator devices and to control many features of these devices explicitly.
The main construct is kernels, instructing the compiler to transform the annotated code
region to exploit the available parallelism in the device. OpenACC also offers the data
and update constructs to manage data movement, and parallel and loop constructs
for detailed control of kernel offloading and the parallel execution of loops. Version
2.5 provides support for nested parallelism, allowing the programmer to nest parallel
and kernels constructs. Nevertheless, the currently available versions of OpenACC 2.5
compilers from PGI, CRAY and GCC do not support nested parallelism.
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The accelerator model in the OpenMP 4.5 programming interface also provides a set of
directives to offload the execution of code regions onto accelerators.The main directives
are target data and target, which creates the data environment and offload the
execution of a code region on an accelerator device, respectively. The specification also
contains the teams directive to create thread teams. In each team, the threads other than
the master thread do not begin execution until the master thread encounters a parallel
region. The distribute directive specifies how the iterations of one or more loops are
distributed across the master threads of all teams that execute the region.

5.4 Lazy Nested Parallelism code transformation

This section presents the basic idea behind the proposed Lazy Nested Parallelism (LazyNP)
code transformation, which could be used to compile nested parallelism in compilers
for directive–based accelerator programming models such as OpenMP or OpenACC.
As we mentioned in the introduction, LazyNP offers efficient nested parallelism for
GPUs and hybrid CPU/GPU systems. Sections 5.5 and 5.6 present the details for the
implementation of LazyNP for GPUs and hybrid systems, respectively.

Instead of directly launching the execution of child kernels, LazyNP dynamically bundles
kernel instantiations and postpones their execution until a sufficiently large number of
them is available. To do that, LazyNP saves in a buffer the necessary variables in the
context of the parent thread to execute the kernel instantiation in a deferred way. Finally,
when all threads executing the parent kernel finish, LazyNP launches the execution of a
single kernel or multi-thread parallel code, named Next-Level parallel Kernel (NLK), to
actually execute the finer-grained invocations in parallel to saturate the GPU. Hence,
LazyNP thoroughly minimizes the kernel launching count and makes use of nested
parallelism to exploit the right granularity for irregular applications.

Figure 5.8 shows how the original code in Figure 5.3 could be transformed in order to
implement the LazyNP idea and a possible execution timeline for a warp. The outer
iteration is mapped to all threads of the parent kernel as done by the MACC compiler.
The basic blocks starting with BB.LazyNP are injected by the compiler to implement
the fundamental LazyNP approach. After initializing the data structures necessary to
support LazyNP in BB.LazyNP.Init, the parent kernel may iterate several times (line
7) depending on the size of the problem N. Later, each thread executing the parent
kernel decides (conditional statement in line 9 checking if enough iterations need to be
executed) whether to immediately execute the loop (lines 13–14) or to save the context
for postponed execution of the loop as a child kernel (line 10). Threads that save the
context are directed to LazyNP_HandleCases_1 label with the aid of goto in line 11. The
reason for that is we support LazyNP even in case of the idle lane within a warp due to
the control-flow dependency. Finally, in BB.LazyNP.HandleCases, all postponed kernel
invocations are executed through a single NLK dispatch. Section 5.5 and 5.6 provide
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three different implementations for GPU and two implementations for hybrid CPU/GPU
systems.

1 struct buffer_type{ int i; };
2

3 __global__ void graphTraversal_LazyNP (...,
4 buffer_type *global_buffer) {

5 BB.LazyNP.Init

6 int tid = threadIdx.x + blockIdx.x * blockDim.x;
7 int nt = grimdDim.x * blockDim.x;
8 for (int i = tid; i < N; i += nt) {
9 BB.Init

10 if(A[i].Edges > warpSize){
11 BB.LazyNP.Save /* Save into global_buffer */

12 goto LazyNP_HandleCases_1;
13 }
14 for (int j = 0; j < A[i].Edges; j++)
15 BB.Process

16 BB.AfterProcess
17

18 LazyNP_HandleCases_1:

19 BB.LazyNP.HandleCases

20 } }
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Figure 5.8: After applying LazyNP code transformation to graph traversal in the Figure 5.6
(top) and warp execution timeline (warp size 8)

Figures 5.9 and 5.17 show the codes for the NLK, in the form of a GPU kernel and
a multi-thread code, respectively, that process the contexts that were saved in the
global context buffer (global_buffer) for postponed kernel executions. First, the NLK
pops a context of the parent thread according to its block identifier (line 3 and line 5,
respectively); after that the NLK simply executes the code in the original kernel with the
context popped from that buffer in parallel. In this example, the context only consists of
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the value of variable i in the code on the top part of Figure 5.8.

LazyNP is also applicable when there are opportunities for multiple nested-parallel
regions; in this case, the compiler generates multiple NLK kernels and global context
buffers to handle their execution independently.

1 __global__ void LazyNP_child_NLK(..., buffer_type *global_buffer) {
2 int i = global_buffer[blockIdx.x].i;
3 /* Parallelised inner-loop of outer-loop*/
4 for(int j = threadIdx.x ; j < A[i].Edges; j += blockDim.x)
5 BB.Process
6

7 if(macc_if_master_cta())

8 BB.AfterProcess
9 }

Figure 5.9: NLK generated by the compiler for the postponed execution of iterations in
the graph traversal applications.

5.4.1 LazyNP condition

LazyNP does not require programmers to choose a threshold value. The compiler
automatically injects a condition in line 10 of the code transformed in the Figure 5.8 to
decide between context saving and in-place execution. The threshold value is based on
the warp size of the GPU actually used (which can be obtained from the read-only PTX
%warpsize register): if the trip count is smaller than the threshold, the NLK will not be
able to fully utilize warp SIMD lanes. However the programmer can always override
this threshold by using the if clause in the inner OpenMP parallel or target directive.

5.4.2 Packaging kernel invocations

As mentioned before, LazyNP needs to save the context of the parent thread in order
to execute the NLK. The context could include the value of variables in the thread’s
stack or in shared memory, while the rest of variables are accessed as global variables
(function parameters or global memory variables). The global context buffer resides
in global memory since this is the only memory in the device that is accessible to both
kernels and host. It is also coherent when dynamic parallelism is used between child
and parent kernels. The size of each element in the context buffer is determined by the
compiler taking into account the size of necessary context variables of the parent thread.
During parent kernel configuration, the buffer is allocated, and its pointer is passed (line
3 in code in Figure 5.8). The number of elements in the buffer is decided by the compiler
based on the trip count of the thread mapped outermost loop.

69



Chapter 5. Code Transformation of Nested Parallelism for GPUs

5.4.3 Code execution order

LazyNP should preserve the execution order of the code that follows postponed kernel
invocations. To maintain this order, LazyNP moves the code blocks after the inner-
iteration into the NLK, executing them right after parallel execution of the inner-iteration.
In the code generated in Figure 5.8, BB.AfterProcess is not executed by the parent
kernel anymore, but moved into lines 8–9 inside the NLK in Figure 5.9 and only executed
by a single thread of the NLK as expected. In the case when the execution order does
not need to be maintained, a nowait clause on the nested construct of inner iteration
should be used.

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 2

child child child child child child

Figure 5.10: EagerDP

  __syncthreads ( )     
Master Thread

  __syncthreads ( )     

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

child

Master Thread

child

Figure 5.11: LazyNP-CTA

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 2

child child child

Figure 5.12: LazyNP-WARP

  cudaDeviceSynchronize ( )   
HOST

child

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

Figure 5.13: LazyNP-HOST

  cudaDeviceSynchronize ( )   
HOST

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

Host
Multi-Thread

Figure 5.14: LazyNP-CPU Managed

Host
Multi-Thread

cudaDeviceSynchronize ( )
wait()

CPU

migrate data

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 1

Thread1

Warp 1

Thread2 Thread1

Warp 2

Thread2

CTA 2 GPU

Figure 5.15: LazyNP-Cross

Figure 5.16: Illustration of EagerDP approach of dynamic parallelism (a), three LazyNP
techniques for GPUs (b, c and d) and two LazyNP techniques for CPU+GPU hybrid
systems (e and f).

5.5 LazyNP code transformations for GPUs

Three different strategies are proposed to dispatch the NLK: CTA-based, Warp-based
and Host-based LazyNP. The main difference is which threads in the device actually
dispatch the NLK in BB.LazyNP.HandleCases in Figure 5.8: the main thread for each
CTA, the main thread of each warp or the thread running on the host, respectively. The
three approaches also differ in the actual support for dynamic parallelism in the device;
Host-based LazyNP allows nested parallelism in devices that do not provide support for
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dynamic parallelism, while the other two require support in the device. The following
subsection examines the three approaches in detail.

5.5.1 CTA-based LazyNP

In this approach, all threads in each CTA collectively contribute to kernel bundling;
however, only the master thread in each CTA is responsible for dispatching the NLK.
Figure 5.16(b) illustrates the NLK dispatching and synchronization of this code transfor-
mation technique.

In Figure 5.8 for BB.LazyNP.Init block, the compiler needs to generate code to 1)
initialize the per–CTA local buffer that will store kernel invocations, 2) initialize the
CUDA stream that is needed to allow the concurrent execution of postponed kernel
invocations and 3) initialize three counters which help to manage memory offset and to
count the total number of iterations bundled. In addition to the global context buffer, this
approach makes use of a per–CTA local buffer allocated in GPU shared–memory for fast
access the fastest memory after CUDA thread registers); its size is calculated together
with the global context buffer and passed as a dynamic shared memory argument to the
parent configuration. In BB.LazyNP.Save the compiler injects code to save the context
for the postponed child kernel in the local buffer, incrementing the counters one by
one. The counters are increased using atomic operations of the GPU API. Finally, in
BB.LazyNP.HandleCases the compiler first injects code to synchronize threads in same
CTA (__syncthreads()), making sure that all instances are already bundled. Then the
memory portion of global memory is determined, and the local buffer is collectively
copied to this area. After that, the master thread of each CTA configures and invokes the
NLK. Also, the thread number of the NLK is found by determining the mean value of
the total trip count of bundled inner iterations.

5.5.2 Warp-based LazyNP

In this approach, only the master thread in each warp dispatches the NLK as illustrated
in Figure 5.16(c). Each warp has a buffer that is located in the shared–memory and an
individual set of counters that need to be injected by the compiler for the BB.LazyNP.Init
basic block in Figure 5.8. The per–warp local buffer is a portion of shared memory that
is calculated using the warp and lane ID. To find the warp and lane ID, inline device
functions are generated that return read-only registers %warpid and %laneid and only
can be accessed via PTX.

In BB.LazyNP.Save the compiler injects code to insert contexts in each per–warp buffer
using the corresponding per–warp counters. To increment the warp specific counter
in the fastest way, we make use of warp aggregated functions following the same
implementation as in [50].
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Finally, in the code injected by the compiler for BB.LazyNP.HandleCases there is no
need for synchronization because threads belonging to the same warp share the same
instruction counter and thus execute the same instruction in “lock step” fashion. The
per–warp local buffer is copied to global memory and the master thread of each warp
dispatches the NLK using dynamic parallelism.

5.5.3 Host-based LazyNP

In this approach, the NLK is dispatched from the host thread in the CPU without
relying on dynamic parallelism in the device as shown in the Figure 5.16(d). Therefore
this approach allows the exploitation of nested parallelism in devices prior to the
Kepler architecture. The basic idea is to bundle child kernel invocations into a global
buffer during the execution of the parent kernel; once the parent kernel is finished, the
postponed invocations in the NLK are then dispatched from the host.

The host is responsible for the initialization of the counters and global buffer in global
memory. Once the parent kernel is finished, the thread in the host continues execution
with all bundled contexts in the global buffer, which is copied to host memory. Finally,
the host configures and dispatches the execution of the NLK if there are postponed
instances available.

5.6 LazyNP code transformations for hybrid systems

Two different code transformation strategies are proposed to implement LazyNP to
exploit hybrid CPU/GPU systems: CPU Managed and Cross. The main difference between
them, as shown in Figure 5.16, is the parallel (Cross) or serialized (CPU Managed)
execution in the CPU and GPU devices. The two approaches also differ in how the
merging of data computed in the two devices occurs: CPU Managed relies on the
automatic data migration feature of CUDA Unified Memory Access (UMA) while Cross
relies on code injected by the compiler to migrate data.

5.6.1 CPU Managed LazyNP

In this approach, CUDA Unified Memory (UMA) is used to take advantage of simple data
movement. The CUDA UMA creates a pool of managed memory that is shared between
the CPU and GPU, bridging the CPU-GPU divide. The data used in the parent kernel
and global context buffer are allocated by CudaMallocManaged routine with accordance
with UMA. Different from other device based LazyNP techniques, the host dispatches
multi-thread the NLK as shown in the Figure 5.16(e). The child kernel invocations are
bundled collectively by the entire kernel into global buffer during execution. Once
the parent kernel is finished, the host executes multi-thread the NLK as shown in the
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1 void LazyNP_child_NLK(..., int buffer_count ,
2 DT *global_buffer) {
3 #pragma omp parallel for
4 for (int ctxid = 0; i < buffer_count; ++i){
5 int i = global_buffer[ctxid].i;
6 for(int j = 0 ; j < A[i].Edges; j++) {
7 BB.Process
8 }

9 BB.AfterProcess
10 }

Figure 5.17: Multi-thread Next Level Kernel (NLK) generated by the compiler for the
postponed execution of iterations in the graph traversal applications

Figure 5.17. As kernel data and global buffer are accessible to both GPU and CPU side,
they are passed as pointers to the NLK.

5.6.2 Cross Offloading LazyNP

The last strategy goes beyond the postponing idea of LazyNP. The main difference of
LazyNP Cross is that the outermost iteration is run by the GPU and CPU concurrently as
shown in Figure 5.16(f). According to the LazyNP condition, CPU and GPU execute a
different partition of the inner iteration. When the LazyNP condition is true, the GPU
kernel simply ignores execution of the inner iteration while CPU code executes it and
vice versa. Unfortunately, the CUDA UMA model does not allow concurrent data access
from both CPU and GPU side (as far as we know, future NVIDIA devices will provide
this support). Therefore, after execution, partially computed data needs to be merged.
To do that, the data is replicated into GPU memory and it is kept as original data. Once
the execution is finished, first the data produced by CPU is sent to GPU, then merging is
carried out by comparing the original data with the data sent by the CPU and copying
in the CPU computed data if it differs from the original.

5.7 Complementary Optimizations

In this section we discuss optimization techniques to enhance the performance and
applicability of LazyNP in certain situations.

5.7.1 Reducing idleness in LazyNP

This section proposes a simple optimization to reduce the “idleness” of threads during
the parent kernel execution. In the execution timeline in Figure 5.8 one can observe
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that those lanes that save their context for postponed execution (2nd step for lanes 1, 7
and 8) remain idle after that. However, in fact these lanes are not idle but executed the
same instructions within the loop with no effect (since all lanes share the same program
counter PC register). With the optimization that we are proposing, called w-boost, lanes
1, 7 and 8 also execute some iterations in their original trip count and save the rest for
postponed execution in the NLK. With this optimization, we increase warp execution
efficiency in the parent kernel and at the same time we decrease the execution time of
the NLK.

Figure 5.18 shows the skeleton of the new parent kernel (top) and warp execurion
timeline. Observe that now lanes 1, 7 and 8 execute iterations during parent kernel
execution (steps 3rd and 4th). First, warp lanes reduce the largest trip-count to the value
warpTc that is smaller than threshold using the butterfly shuffle instruction [30] (lines
9–11). At the same time, the value obtained corresponds to the largest trip count of lanes
that do not need nested parallelism. Next, w-boost lets all lanes execute iterations up to
warpTc. For those lanes that want to exploit nested parallelism, the associated NLK will
start executing iterations starting from warpTc.

5.7.2 Memory Space Tracker

GPU devices have several memory address spaces; global, shared, local, constant and
texture memories. Each has advantages and disadvantages. Unlike host programming,
address spaces are specifiable by using device API qualifiers such as __shared__,
__device__ or __constant__ in the code. Also, directive based GPU compilers decide
address spaces either automatically according to their compiler algorithms or based on
directives. However, address space is only declared in variable declarations. Later on
the address space of variables is not clear to the compiler.

The challenge of address spaces with nested parallelism is that only global and constant
memory can be used for communication. The other memory spaces are exclusive to
kernels and cannot passed as a parameter to another kernel. Figure 5.19 demonstrates
these challenges. It follows this transformation; firstly it copies a to global memory
from host, afterwards it copies shared memory as it is specified as firstprivate. Also,
pointer variable p are derived from the a variable and this is also used in the nested
teams construct. However, the compiler doesn’t know where pointer p resides when
communication is needed. Therefore, it has to ask the device runtime even though the
variable address space is quite obvious.

We propose a memory space tracker for directive based GPU compilers as an elegant
solution to this problem. We have extended our MACC compiler’s IR for the GPU
variable symbols in order to keep its address space. When pointer arithmetic occurs,
the compiler will already be able to figure out where the assigned variables reside
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1 __global__ void graphTraversal_LazyNP_wboost (...,
buffer_type *global_buffer) {

2 BB.LazyNP.Init

3 int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 int nt = grimdDim.x * blockDim.x;
5 for (int i = tid; i < N; i += nt) {
6 BB.Init
7 int warpTc = A[i].Edges > warpSize ? 0 : A[i].Edges;
8 warpTc = macc_warp_reduce_max(warpTc);
9

10 for (int j = 0; j < A[i].Edges; j++)
11 if( j < warpTc )
12 BB.Process
13 if(A[i].Edges > warpSize)
14 BB.LazyNP.Save /* Save into global_buffer */

15 else

16 BB.AfterProcess
17

18 BB.LazyNP.HandleCases

19 } }

W
A

P
R

 E
X

EC
U

TI
O

N
 B

A
SI

C
 B

LO
C

K
S

B
B

.I
n

it
B

B
.L

a
zy

N
P

.S
a

v
e

B
B

.P
ro

ce
ss

B
B

.P
ro

ce
ss

LANE-1 LANE-2 LANE-3 LANE-4 LANE-5 LANE-6 LANE-7 LANE-8

LANE-1 LANE-2 LANE-3 LANE-4 LANE-5 LANE-6 LANE-7 LANE-8

LANE-1 LANE-2 LANE-3 LANE-4 LANE-5 LANE-6 LANE-7 LANE-8

LANE-1 LANE-2 LANE-3 LANE-4 LANE-5 LANE-6 LANE-7 LANE-8

T
im

e

Context 

Buffer

lane-1|tc=300

lane-7|tc=100

lane-8|tc=100

lane-1|tc=300

lane-7|tc=100

lane-8|tc=100

SAVE 
CONTEXT

lane-1|tc=300

lane-7|tc=100

lane-8|tc=100

Figure 5.18: LazyNP with w-boost optimization: (top) code for parent kernel and
(bottom) warp execution timeline assuming Iteration trip counts in Table 1.

by doing address space backtracking. For example, to decide the address space of
p in the Figure 5.19, the compiler will check easily where pointer a resides. Also, if
pointer arithmetic is not solvable during compilation, we use the __isGlobal device
API function.

5.8 Experimental evaluation

In this section, we evaluate the performance that is obtained when LazyNP is used to
exploit nested parallelism. Results are compared with the original CUDA implementation.
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1 #pragma omp target map(to:a[N], b[N])
2 #pragma omp teams distribute firstprivate(a, b)
3 for (int i = 0; i < count; ++i){
4 int* p = a;
5 #pragma omp teams distribute parallel for
6 for (int j = start; j < end; ++j)
7 {
8 int v1 = p[j];
9 int v2 = b[j];

10 // < ... Codes ... >
11 }
12 }

Figure 5.19: Simple Example with Pointer Arithmetic in Directive Specified Code Block

In some cases, performance is compared with state-of-art libraries and multi-thread
OpenMP. We implemented five LazyNP code transformation proposals in the source-to-
source MACC compiler[14] that supports OpenMP 4.5 targeting CUDA code.

5.8.1 Experimental platform

Experiments are done on two different systems:

1. Intel(R) Xeon E5-2630 v3 (Haswell) 8-core, 128GB of main memory, executing Red Hat
Enterprise Server and an Nvidia Tesla K80 GPU with 2x2449 CUDA cores, compute
capability 3.7 and 2x6GB of device memory. The GPU includes 2x13 SM units, each with
192 single-precision CUDA cores;

2. Nvidia Jetson TK1 ARM SoC, 4-core Cortex-A15 up to 2.5GHz, with 2 GB of shared
memory between CPU and GPU and GK20A Kepler GPU that has one SMX with 192 cores.

GCC 4.9 has been used as a back-end compiler for CPU code generation, and CUDA
7.5 and 6.5 toolkits have been used for 1st and 2nd system respectively for device code
generation.

5.8.2 Benchmarks

Seven benchmarks have been selected to evaluate the performance of LazyNP:

• Kernels originally implemented making use of dynamic parallelism:

1. Connected Component Labelling (CCL) is a well-known labeling algorithm
that is commonly used for object detection[51].

2. Bezier Tessellation(BT), a frequently used kernel in computer graphic packages
[52].

76



5.8. Experimental evaluation

• Graph algorithms:

1. Breadth-First Search (BFS) iterative graph traversal algorithm [44].

2. Betweenness Centrality (BC) to compute the centrality metric (number of
shortest paths traversing a node) for all nodes in a graph [1]

3. Graph Coloring (GC), refers to the problem of finding the minimum number
of colors [45]

4. Single Source Shortest Path (SSSP) to find the shortest path to every vertex
from a single source[46].

• Sparse matrix vector multiplication (SpMV y = Ax), one of the most used kernels
in high-performance computing programs. A nested parallel version of SpMV in
OpenMP 4.5 has been (using the CSR format for matrices) and compared with
state-of-the-art libraries: Nvidia cuSPARSE [53] and CUSP [54]. A variety of sparse
matrices have been used from the University of Florida sparse matrix collection
[55].

For the four last graph-based benchmarks, we have selected 3 of the largest social
network graphs from SNAP dataset [56] which have different characteristic and that fit
on the GPU device used for the experimental evaluation.

5.8.3 Overall results

Figure 5.20 shows the overall speed–up on the 1st system relative to original CUDA
implementation, OpenMP CPU and the five different flavours of LazyNP for the 7
benchmarks in this chapter. In general, we can conclude that Host-based LazyNP yields
the best performance with a speed–up of up to 43x and an average 5x speed–up. We
observe WARP and CTA-Based methods always exhibit lower speed–up than Host-based
LazyNP. The main reason is that they invoke a relatively greater number of child
kernels than Host-based LazyNP, thus kernel launch overhead becomes a significant
factor degrading performance. On the other hand, the two LazyNP approaches that
make use of hybrid CPU+GPU obtain speed-ups against CUDA in general. LazyNP
Cross exhibits the best performance for SpMV and CCL applications due to the effective
CPU performance as is shown by the OpenMP CPU result. However, LazyNP CPU
Managed is not good as LazyNP Cross. We observe that LazyNP CPU Managed suffers from
performance degradation due to CUDA UMA. Our results show that managing data
transfer and migration by the user-directed compiler and runtime has better performance
than the current CUDA UMA for non-unified memory systems. In summary we find
LazyNP Host-based is the best to implement nested parallelism, which is interesting since
it is the only approach that does not require the dynamic parallelism support available
in recent GPU devices.
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Figure 5.20: Overall speed–up of LazyNP with respect to baseline original CUDA
implementation on Nvidia k80 and Intel CPU

Figure 5.21 shows the overall speed–up of the 2nd system. Since the 2nd system does not
have support for dynamic parallelism, CCL and BT are excluded as they are originally
implemented with dynamic parallelism, and LazyNP CTA and WARP are not evaluated
for the same reason. In general LazyNP CPU Managed yields the best result with 1.6x
speed–up over CUDA. However, if only the GPU is desired to be used, LazyNP Host-
based exhibits nearly as good performance with 1.4x speed–up. On the other hand, we
observed CUDA UMA efficiently solves data migration for physically unified memory
systems. In general, we can conclude that LazyNP CPU Managed obtains the best result
due to the relatively close performance of the ARM cores and the small GPU in the SoC.

5.8.4 SpMV

Figure 5.22 presents the speed–ups on the 1st system with the different LazyNP approaches.
Speed–up is measured relative to the Intel MKL library (11.2 using Intel OpenMP)
executed on the host that are obtained. Five different input matrices were used: three of
them highly irregular (rajat30,ASIC_680k and trans5) and two regular (cothesissDBLP and
eu-2005). For the highly irregular ones, device based LazyNP Host achieves a maximum
speed-up of 1.5x, 1.9x and 1.2x, respectively. Compared to the well optimized Nvidia
cuSPARSE and CUSP, LazyNP obtains an speed–up of 55x, 82x and 110x, respectively,
despite the fact that the MACC compiler used to generate CUDA code does not apply a
wide range of optimizations, such as coalesced memory access, CUDA vectorization,
(etc.).

For the two less irregular matrices, LazyNP CPU Managed yields maximum speed–ups of
2.84x and 2.1x over Intel-MKL. In this case, cuSPARSE achieves much better performance
than LazyNP Host because it benefits from compiler optimizations not available in the
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Figure 5.21: Overall speed–up of LazyNP with respect to baseline original CUDA
implementation on Jetson TK1 SoC

MACC compiler. In all cases, LazyNP is able to achieve better results than EagerDP and
the CUDA version without nested parallelism.

Finally we have also implemented the SpMV kernel following the Free Launch [57]
proposal, as it addresses the same problem as our LazyNP proposal. The basic idea
is that the parent kernel collects contexts for postponed inner iteration and it assigns
execution of postponed iteration to parent kernel threads. To ensure collection is done
properly, it uses entire grid (inter-blocks) synchronization which GPUs naturally do not
support. Figure 5.22 shows that Free Launch outperforms CUDA and naïve EagerDP.
However, it suffers several times from the synchronization cost of the entire grid and
possible imbalanced inner iteration assignment, and thus it obtains slower performance
than LazyNP.

5.8.5 Graph algorithms

The three plots in the upper part of Figure 5.23 show the speed–up on the 1st system,
relative to the original CUDA version without dynamic parallelism, obtained by the five
different LazyNP approaches, for the three different graphs used. For the web-google
graph LazyNP achieves 1.65x, 2.43x, 1.6x and 1.78x for BC, GC, BFS and SSSP, respectively.
The best results are obtained when using the wikitalk dataset since it is the most irregular
one; in this case, the speedups are 19.2x, 2.9x, 9.1x and 3.2x, respectively.
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5.8.6 Effect of w-boost optimization

The purpose of w-boost in LazyNP was to improve warp utilization during the execution
of the parent kernel. We have examined the impact of w-boost on three LazyNP flavours
with four graph algorithms in the Figure 5.24 using the 1st system. As can be seen from
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Figure 5.24: Left: Warp Execution Efficiency Graph of four graph applications with
w-boost optimization. Right: Geometric mean of SpeedUP of four graph application

the results, we obtain improvements in general. However, we observe that w-boost
may result in worse performance. In order to understand the reason, we have used the
Nvidia nvprof profiler, measuring the ratio of active threads in the warp for all executed
instructions (this gives a measure of control divergence and/or workload unbalance).
nvprof does not give the metric for parent and child kernels individually in case of
dynamic parallelism. Figure 5.24 shows warp efficiency, as one can see, and as expected,
w-boost improves warp execution efficiency, making SIMD lanes in warps better utilized
and decreasing control flow divergence. However we observe that w-boost increases the
memory stall ratio since the parent kernel does not have recommended style memory
access pattern among all applications that we used. Therefore, before applying w-boost
optimization one should analyze the code block inside the nested parallel region in
terms of its memory pattern.

5.8.7 LazyNP sensitivity analysis

Finally we analyze the effect of the threshold value that can be added in the if clause
that is used to decide between postponed and direct execution (e.g. line 10 in Figure 5.8).
The lower 3 plots in Figure 5.23 show the speed–up over CUDA that is obtained by
LazyNP when different values for threshold are used for the Betwenness Centrality
OpenMP code. The minimum threshold evaluated is 32 (minimum value chosen by
default in order to ensure the complete utilization of SIMD lanes in warps). The three
graphs shown correspond to the three graphs that have been used for the evaluation
(Google, NotreDame and WikiTalk). The conclusions for the other benchmarks are
similar. Observe that in general performance decreases when the threshold increases
(although in all cases is always larger that 1x); in general the best performance is obtained
when threshold is the smallest value, trying to make use of nested parallelism as much
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as possible.

5.9 Related Work

Different architectural solutions have been proposed to reduce warp divergence; none
of them is currently available on real hardware. DWF [58],[59] proposes a solution
to collect threads in different warps according to their workload, merging them and
executing under the same PC. LWM [60] proposes a large warp micro architecture that is
able to create sub-warps that can fit the SIMD lane inside a large warp. Dynamic Thread
Block Launch (DTBL [61]) proposes a more lightweight mechanism to support dynamic
parallelism, dynamically adding blocks to the current kernel.

In this second group of related work, we consider different software solutions that also try
to reduce thread divergence and load unbalance, although with some restrictions when
applied to highly irregular problems and workload dependent memory accesses. In an
early OpenMP compiler framework for GPU [62] the authors proposed loop collapsing
for irregular applications; however their solution is only applicable for very specific code
patterns. The authots [63] propose to apply data re-mapping across multiple warps to
cope with thread divergence; however, the proposal may be inefficient since it requires
communication between host and kernel. [64] proposes loop merging to re-order code
blocks within a loop. The same effect is obtained with our warp boosting (w-boost)
optimization technique.[65] offers a CUDA compiler patch to re-order codes for warp
efficiency, automatically detecting divergence and transforming code; unfortunately,
their proposal does not improve performance for programs with irregular memory
patterns.

Finally, a few current proposals are dealing with nested parallelism in GPU programming.
CUDA-NP [39] is proposed as an alternative to dynamic parallelism. CUDA-NP
introduces directives to mimic nested parallelism without using dynamic parallelism;
the main idea is to create more than the requested number of threads in advance,
activating them when necessary to compute the iterations annotated with their directives.
We believe that the solution based on dynamic parallelism is more suitable for large
numbers of threads. FreeLaunch [57] has proposed a substitution for the child kernel
invocation method based on reusing the parent kernel thread. It uses software-based
grid syncronization, so it is based on persistence thread [66]. However the persistence
thread approach results in a slowdown since it is forced to create small grid sizes. Also,
grid synchronization brings overhead as it is based on CUDA atomics. [67] offers pragma
directives for CUDA compilers to handle nested parallelism. [68] offers code replacing
dynamic parallelism for CUDA compilers. [67] and [68] are very similar solutions to
each other. They both handle dynamic parallelism using a similar solution to ours.
However they don’t focus on nested parallelism in directive based compilers. Unlike
ours, their methods do not make use of hybrid systems. We also offer two additional
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code transformation mechanisms to benefit from the performance of hybrid CPU/GPU
systems.

5.10 Conclusion

This chapter proposes and evaluates a code transformation technique, LazyNP, which
effectively supports nested parallelism in GPUs and is tailored to compilers for user-
directed accelerator programming models such as OpenACC or OpenMP. LazyNP
dynamically packs kernel invocations and postpones their execution until a bunch of
them are available. The chapter proposes three different approaches for only device
based code generation; for one of them, we also show how is it possible to exploit nested
parallelism in GPUs that do not provide hardware support for dynamic parallelism.
Also, two different code generation techniques are proposed for hybrid CPU/GPU usage.

This implementation of nested parallelism can overcome the problem of finding the right
granularity for irregular nested loops and changing memory access patterns. We have
proposed three different code transformation techniques and explored their pros and
cons to better understand how they work. LazyNP collects the context of the irregular
workload of threads at the kernel to context buffer and retrieves them in another kernel
with fine granularity. LazyNP can increase performance, warp execution efficiency and
memory access efficiency of real-world programs that contain the irregular pattern.

LazyNP has been evaluated using very relevant algorithms both in sparse scientific
computation and graph algorithms, resulting in important speed–ups when compared
to eager implementations using dynamic parallelism, other code versions not making
use of nested parallelism and well-tuned libraries. For example, for nested Bezier
tessellation, LazyNP achieves between 4x-24x speed–up with respect to non-nested
version, depending on the input data. Speed–ups between 2x–20x are achieved over
native CUDA implementation for a graph processing application. For SpMV, LazyNP
outperforms well optimized libraries, making The GPU useful when matrices are highly
irregular. LazyNP thus forms one of the major contributions of this thesis.
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6 Dynamic Loop Scheduling

When compiling parallel loops for execution on a multi-core CPU, the programmer or
compiler must decide how many threads to create and then must decide which thread
will execute each loop iteration. For CPU execution, the number of threads is usually the
number of cores, or the number of available thread contexts, which is a small multiple
of the number of cores. Two common scheduling decisions are static or dynamic loop
scheduling, and choosing cyclic or chunk iteration scheduling.

GPUs support many more threads within thread blocks of execution, typically thousands
of threads. However these threads are short-lived and typically not all threads will be
simultaneously resident. When developing or compiling parallel loops for execution on
a GPU, the programmer or compiler must again decide how many threads to launch, and
which thread will execute each iterations. The simplest mapping is to create one thread
for each loop iteration and to statically map the loop iterations sequentially across the
threads. However, it is undesirable for directive-based compilers due to the unknown
trip count of the parallel loop. For this reason, typical compilers generate a kernel with a
for-loop which processes the parallel loop of the kernels’ threads in a cyclic order. In this
way, compilers make sure that the generated kernel completes all the iterations of the
parallel loop; also the thread and grid size of the kernel will never exceed the maximum
limit. Unfortunately, this method does not yield as good performance as the simplest
mapping.

To address these issues, we first conduct a thorough exploration of conventional
loop scheduling methods on GPUs. Through further quantification, we find out the
advantages and disadvantages of each scheduling method. By leveraging these insights
and taking the hardware scheduler into account, we propose the concept of optimized
dynamic loop scheduling along with an implementation in the NVIDIA PGI OpenACC
compiler. Our method yields better performance than the solution used in directive-based
compilers, providing the same performance as the simplest mapping. In addition, in the
presence of reduction operations it delivers the better performance than all previous
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scheduling methods. Moreover, it uses very small grid size to reach peak performance.
We evaluate our techniques using a wide range of popular OpenACC applications on
all modern generations of NVIDIA GPU architectures. We conclude with performance
comparisons of dynamic scheduling vs. static scheduling by using the latest version
of the PGI compiler, showing speed–ups of up to 1.24X and 1.36X for Kepler K80 and
Pascal P100 GPUs respectively with mean speed–ups of 1.08X and 1.05X.

6.1 Introduction

GPU programming models offer a hierarchy of 1D-3D thread and grid sizes (number of
thread blocks) in software that mimics how thread processors are grouped on the GPU.
This mechanism provides a natural way to invoke computation across the elements in
domains such as vector, matrix and so on. To facilitate choosing the thread and grid size,
CUDA materials and sample codes from NVIDIA [52] recommend configuring kernels
with a size and dimension with a domain element. A CUDA kernel can have maximum
1024 threads as the thread block size and 2

31
−1 thread blocks as the grid size. For a

typical CUDA kernel, the grid size is meant to be able to increase if the domain size
is larger than maximum allowed thread block size. In this thesis, we call this method
static one-to-one scheduling. Unfortunately, it is undesirable for directive-based GPU
compilers due to the unknown trip count and domain size at the compile time. On the
other hand, this technique might still leave room for performance improvements. For
instance, thread blocks, which are also known as Cooperative Thread Arrays (CTA), are
processed by a streaming processing (SM) unit, so they share the resources of the SM
such as on-chip memory. This might lead to idle thread blocks if they are not scheduled
due to insufficient resources. In order to reduce the number of thread blocks, a widely
used scheduling method is static cyclic scheduling. In this algorithm, the workload
is partitioned into blocks with a fixed size statically. Then the partitioned blocks are
processed in a sequential fashion. Unfortunately, in this case, domain elements are
mapped statically; each iteration is assigned to the block id and thread id that is provided
by software in sequential order. This can lead to stalling among thread blocks since a
GPU is designed to be run parallel.

Various micro architectural and compiler solutions have been suggested for improving
thread scheduling for GPUs. Most of the previous methods are based on warp forma-
tion [69, 59], the compiler based solutions rely on the voting feature of warps [65] to
improve warp efficiency. However, loop scheduling based on CTAs seems to be viewed
as not worth researching. We think that the reasons that hinder the research advancement
in this domain are unclear details about hardware and unknown CTA-Scheduler. The de-
fault CTA scheduler is hardware implemented and is called the GigaThread Engine [70].
It promises to manage load balanced scheduling for CTAs on SMs. Since it claims that
they tune or influence it directly, CTA scheduling is widely ignored by applications and
compiler developers. Because of this, previously-studied CTA scheduling techniques
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are hardware based [71, 72].

In this chapter of the thesis, we first study different scheduling techniques on GPUs and
discuss advantages and disadvantages of them. This led to our design for a Optimized
Dynamic Loop Scheduling compiler method for GPUs that enables efficient execution of
CTAs. It can yield the best performance with a small grid size. Moreover, it performs
better than the scheduling method that user-directed GPU compilers use. In our solution,
the workload is assigned to CTAs dynamically by the compiler, once a CTA finishes the
work it requests the next part from the remaining work. In addition to this, we provide a
CTA throttling method that limits the number of CTAs on an SM to reduce the contention
for execution resources. To the best of our knowledge, this is the first work that provides
compiler automated loop scheduling on GPUs for performance enhancement.

We provide a code transformation algorithm for our proposed dynamic loop scheduling
solution for user-directed accelerator programming models. This is implemented on
the NVIDIA PGI OpenACC compiler [15]. We also discuss how our technique can be
applied to other programming models.

Overall, this work makes several major contributions:

• We first demonstrate scheduling techniques and discuss their advantages and
disadvantages.

• We propose an optimized dynamic loop scheduling method along with code transfor-
mation and complementary optimization, and describe its implementation in the
NVIDIA PGI OpenACC compiler.

• We show the limitations of our approach, which are directly related to limitations
of the current GPU programming models and hardware.

• We evaluate the performance improvement of optimized dynamic loop scheduling
relative to the static cyclic scheduling which is currently used by the PGI compiler,
both on simple kernel loops and for whole applications.

6.2 More GPU Architecture

We showed the general architecture of GPUs and its execution model in Chapter 2.2.
As mentioned, a GPU processor consists of several SIMD cores, known as Streaming
Multiprocessors (SMs) in CUDA terminology and Compute Units (CUs) in OpenCL.
Thread block/CTA, which encapsulates several threads, is the primary unit for delivering
jobs to SMs. The GPU schedules CTAs among SMs. From the hardware perspective,
there is no execution dependency among CTAs — there is no execution order of CTAs.

CTA Scheduling : The default CTA scheduler, known as GigaThread Engine [70], is
hardware implemented. It is not programmable at all. As no software approaches can
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tune it directly, previously proposed CTA scheduling techniques are mostly hardware-
based [71].

The default CTA scheduling policy on the GPU has been assumed as round-robin
(RR) [73, 74, 75, 76, 77]: First, the CTA-scheduler (i.e., GigaThread Engine) assigns each
SM with at least one CTA. If an SM still has sufficient resources (e.g., registers, shared
memory, warpslots, etc) to sustain extra CTAs, a second round of assignment happens.
However, the actual scheduling could be as simple or as complicated as NVIDIA wishes
to make it (trade-off: hardware simplicity versus load balancing) [78]. With more
transistors available now, scheduling is likely more sophisticated. To conclude all we
can say is the hardware embedded CTA scheduler promises load balancing.

6.3 Loop Scheduling on GPUs

Loops are the primary source of parallelism for compilers. Scheduling of parallel loops
has always been an important issue in parallel programming. A number of algorithms
have been proposed for how to partition and schedule the loops onto available processors
(which can also be called computation units).

In order to implement our software scheduling methods, our first challenge is to find
out the most effective computation unit to schedule loops on. As we mentioned in
Section 2.1, GPUs have several computation units such as threads, warps, SMs and CTAs.
Firstly, we simply exclude SMs as we do not have direct access from software. Then, we
eliminate threads since threads within a warp share the same program counter (PC) and
execute the same instruction at each cycle. So they cannot be scheduled individually.
That leaves CTA as the most basic unit that delivers the job to the SM and also each CTA
contains warps. Moreover, CTAs are essentially individual units and they are accessible
from software. For this reason, we choose CTA as our computation unit to implement
scheduling methods.

In the rest of section, we first explain state-of-the-art loop scheduling methods, which are
used by OpenACC compilers and CUDA programmers, and illustrate their execution
diagram. We then describe our proposal for optimized dynamic loop scheduling. To be
able to illustrate loop scheduling methods clearly, we explain them through the AXPY
application, which stands for A*X + Y, which is a function from Basic Linear Algebra
Subroutines (BLAS) [79] library. AXPY is a combination of scalar multiplication and
vector addition, and it is very simple: it takes as input two vectors of X and Y with N
elements each, and a scalar value A.
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6.3.1 Conventional Loop Scheduling Methods

Static scheduling describes the approach where we have already controlled the mapping
of the iteration to threads/processes are executed in our code at compile time. However,
static scheduling algorithms ignore the fact that the amount of computation performed
per iteration may differ, or that it cannot always be determined a priori (for example, the
amount of computation could be dependent on the data). Moreover, in our case, the
speed of each thread block (CTA) may also differ because of multiple interferences in the
SM. Therefore static scheduling can often suffers from load imbalance, resulting in poor
speed-up eve inf the workload appears perfectly balanced.

Static Scheduling (One-to-One)

This is a simple way of scheduling in native GPU programming. First the CUDA kernel is
configured with same dimension as the domain element such as vector, matrix or another
data type. Then the kernel size is configured with the same size as the domain element.
In a nutshell, each iteration is assigned to each thread; there is a one-to-one relationship
between iteration size and grid size. As we mentioned in the previous section, GPU
hardware involves a scheduler that takes care of load balancing of CTAs. From the
perspective of CUDA, this is the most common way of developing and configuring a
kernel.

Figure 6.1 shows a simple example of AXPY using static scheduling in CUDA. Each
element of the vector is assigned to a thread of the grid. In the top of the same figure the
execution diagram of the code block is illustrated. For convenience we assume the size
of domain element, that is array y, is not bigger than the size that CUDA allows. Thus
the entire grid fits perfectly to the iteration size.

Static Cyclic Scheduling

An alternative method of static scheduling is static cyclic scheduling. In this algorithm,
the workload is partitioned into blocks with a fixed size statically. Then, it processes
partitioned blocks in a sequential fashion.

When we apply this method on the CUDA kernel, we create a strip-mining loop in the
kernel. The kernel iterates the loop [N/G] times, where N is our domain size or trip count
of the loop and G is the fixed block size which is the size of the kernel. It is important
to note that, the kernel size [G] should smaller than domain size [N]. Otherwise, this
method transforms to static one-to-one scheduling. Figure 6.1 (second from the top)
shows the same AXPY example using static cyclic scheduling in CUDA. Again the figure
illustrates its execution graph. As you can see, each thread block processes a chunk of
the parallel loop in sequential order. When they finish execution, they increase their
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offset to process the next chunk. Thread blocks continue execution until they finish all
iterations of the parallel loop.

6.3.2 The Proposal of Dynamic Loop Scheduling

Dynamic scheduling, also known as self-scheduling, has always been a major topic
in parallel programming. It divides the iteration space up into a fixed number of
blocks, which can be also called subtasks, and processes them by computation units in a
first-come-first-served basis. There are numerous previous studies in this topic such as
[80, 81]. If the imbalance becomes large, then it is necessary to dynamically adjust the
work assigned to each processor at run-time to balance the load. However, from the
perspective of a CUDA programmer, load balancing is not a viable problem as CUDA
promises a hardware scheduler. Therefore, dynamic loop scheduling has been ignored
off-limits in CUDA programming research.

When we apply the idea of dynamic scheduling on CUDA, we divide the entire workload
into subtasks [N/G]. In this case, N is our domain size or trip count and G is the size
of the CUDA thread block. We process them using computation units which are CTAs.
Ideally, the subtasks need not be of fixed granularity, and in fact, the granularity could
vary dynamically. In our case, as we schedule loops by CTAs we just simply assign [G]
with the CUDA thread block size.

It is important to note that in CUDA programming, programmers can create an excessive
number of CTAs and performance might differ according the kernel size. For this reason,
choosing the right number of CTAs becomes a challenge as controlling the subtasks
could become a bottleneck in dynamic scheduling. We overcome this problem via a
throttling technique that we propose in Section 6.4.2.

Dynamic Scheduling

This algorithm partitions the loops into subtasks containing one or more iterations [N/C],
where N is the number of iteration and C is the number of CTAs. Each then continuously
allocates and executes one subtask at a time until no subtasks are left for processing.
Each CTA processes a subtask by its threads.

From the perspective of CUDA, the common method for implementing dynamic loop
scheduling is to let each thread atomically increment a global scheduling counter. The only
problem with this approach is the need to reinitialize the scheduling counter before each
use. Our implementation uses this method with the available efficient atomic increment
operation, but we will see the problems caused by the need for re-initialization.

Since this is used for thread block scheduling, we have thread zero in the thread block
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perform the atomic increment. Thread zero then shares the updated value using CUDA
shared memory. Effectively, the dynamically-scheduled code for the SAXPY loop looks
like that in Figure 6.2 (top). The dynamically-scheduled loop now has an atomic
increment at line 6 and one synchronization which is at line 7 to ensure that thread zero
doesn’t finish its work and do another increment before the other threads are done using
its value. We also show its GPU execution diagram in the same figure. As you can see in
the diagram, thread blocks process the parallel loop dynamically and chunk by chunk.
In our implementation, we map chunk size with number of threads within the thread
block to be able to map one thread with one iteration.

Optimized Dynamic Loop Scheduling

We propose an optimized dynamic loop scheduling technique which is a compromise
between static cyclic scheduling and dynamic scheduling. As we mentioned above,
GPUs have a hardware embedded CTA scheduler on each SM that seemingly works in a
round-robin fashion. Hence, we do not need dynamic scheduling for the first iteration
as the GPU has already scheduled CTAs to the SM in a balanced way. However, we do
need dynamic scheduling for later on since the performance of each CTA may differ for
later parts of the loop.

In the straightforward code for a dynamically-scheduled loop in Figure 6.2 (top), the
first operation by every thread block is an atomic increment. If all thread blocks start at
essentially the same time, this will cause immediate conflicts on the memory accesses,
requiring many instruction retry operations. In fact, we know the grid size, so we
can statically schedule the first iteration for each thread block and then use dynamic
scheduling for the subsequent iterations. This is shown in Figure 6.2 (bottom), with the
initial iteration statically assigned at line 6, and the atomic increment for subsequent
iterations moved to line 11.

Figure 6.2 (bottom) shows the AXPY example using dynamic scheduling in CUDA. Also,
the figure on the right side illustrates its execution graph.
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Static scheduling (one-to-one)

1 __global__ void AXPY(T* x, T* y, T a, int N) {
2 /* BlockId is statically assigned by blockIdx.a */
3 int i = threadIdx.x + blockIdx.a * blockDim.x;
4 if(i < N)
5 y[i] = a * x[i] + y[i];
6 }
7 ...
8 /* Kernel Launch */
9 AXPY<<< N/BS, BS >>> (x, y, a, N);

0 Iteration Size= N

TB-0 TB-1 TB-2 TB-3 TB-4 TB-5 TB-6 TB-7 TB-8 TB-9 TB-L

.................
Grid Size= (N/BS)

Size=BS

Kernel

Launch

TB-0 TB-1 TB-2 TB-3 TB-4 TB-5 TB-6 TB-7 TB-8 TB-9 TB-L

.................

Static Cyclic scheduling

1 __global__ void AXPY(T* x, T* y, T a, int N) {
2 /* BlockId is statically assigned by blockIdx.a */
3 for(int i=threadIdx.x+blockIdx.a*blockDim.x; i<N; i+=blockDim.x*gridDim.x) {
4 y[i] = a * x[i] + y[i];
5 }
6 }
7 ...
8 /* Kernel Launch (GridSize < N) */
9 AXPY<<< GridSize , BS >>> (x, y, a, N);

0

Grid Size< N

Iteration 1

.. .....

Iteration 2 Iteration= N/BS

Iteration Size= N

TB-0

TB-0

TB-1

TB-1

TB-2

...

TB-2

...

TB-L

Size=BS

TB-L

Kernel

TB-0 TB-1 TB-2 TB-L TB-0 TB-1 TB-2

...
TB-L

Launch

Figure 6.1: The CUDA code of AXPY example using static scheduling methods.
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Dynamic scheduling

1 __device__ static int sctr = 0;
2 __global__ void AXPY_dynamic(T* x, T* y, T a, size_t N) {
3 __shared__ int si;
4 while(true) {
5 if( threadIdx.x == 0 )
6 si = atomicAdd(&sctr, 1);
7 __syncthreads();
8 int i = si * blockDim.x + threadIdx.x;
9 if( i >= N ) break;

10 y[i] = a * x[i] + y[i];
11 }
12 }
13 /* Kernel Launch */
14 GridSize = MaxActiveConcurrentThread/BS;
15 AXPY_dynamic <<< GridSize, BS >>> (x, y, a, N);

Grid Size< N

TB-0 TB-1 TB-2

...
TB-L

Size=BS

Kernel

Iteration Size= N

TB-2

.
TB-L TB-2TB-LTB-0 TB-1 TB-2 TB-L

. . . . . . .
TB-0 TB-0

.
0

Launch

Optimized Dynamic GPU scheduling

1 #define NT 128
2 __device__ int sctr = 0;
3 __global__ void AXPY_opt_dynamic __launch_bounds__(NT)
4 (T* x, T* y, T a, size_t N) {
5 __shared__ int si;
6 int i = threadIdx.x+blockIdx.x*NT;
7 loop:
8 y[i] = a * x[i] + y[i];
9 if( threadIdx.x == 0) si = atomicAdd(&sctr, 1);

10 __syncthreads();
11 i = threadIdx.x + gridDim.x * NT + si * NT;
12 if( i < N) goto loop;
13 }
14 /* Kernel Launch */
15 GridSize = MaxActiveConcurrentThread/BS;
16 AXPY_opt_dynamic <<< GridSize , BS >>> (x, y, a, N);

Grid Size< N
Grid Size= MaxActiveConcurrentThread/ BS

TB-0 TB-1 TB-2

...
TB-L

Size=BS

Kernel

Iteration 1

.
Iteration Size= N

TB-0 TB-1 TB-2

...
TB-L TB-L TB-0 TB-1TB-2 TB-L

. . . .
TB-0

.
TB-0

.

0

Launch

Figure 6.2: The CUDA code of AXPY example using dynamic scheduling methods.
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Figure 6.3: Speedup of loop scheduling methods with different trip count.

6.3.3 Preliminary Evaluation

To clarify performance, we run all the AXPY applications with different loop scheduling
methods and with different data sizes. We used 1st platform from Section 6.5.1.

We analyzed the performance of each AXPY application from the following perspectives:
first how does it change with different trip count, second which grid size is the best. We
use static cyclic as our baseline since it is used by directive based compilers. Figure 6.3
shows the speedup graph over static cyclic scheduling. We used the kernels that we
show in Figure 6.1, 6.2 with 128 block size and 208 grid size. For static one-to-one
scheduling, we create a bigger kernel to map each iteration with each thread. It is worth
noting that in AXPY the data size is equal to the trip count of the loop that we want
to parallelize. We start evaluating AXPY from trip count 524.288, because we want to
ensure that static cyclic scheduling iterates a couple times through the parallel loop.
As the results show, static cyclic scheduling yields the worst performance when the
kernel size is smaller than the trip count. Another conclusion of this graph is that static
one-to-one and optimized dynamic scheduling show close performance with all trip
counts and geometric mean. However, we can conclude that when static one-to-one
cannot be used, optimized dynamic scheduling achieves the same performance with a
small grid size.

We also explore how performance changes with different grid sizes. Figure 6.4 shows
the speedup of dynamic scheduling methods over static cyclic scheduling with different
grid size when trip count is 535.000.000. Here, the best performance comes from 208
grid size which is not a surprise for us. We explain our method of finding the best grid
size in Section 6.4.2. As you can see from graph, finding grid size is tricky but important.
If you do not define the right grid size, performance degrades.
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Figure 6.4: Speedup of dynamic loop scheduling methods with different grid size.

6.4 Implementation of Dynamic Scheduling on OpenACC

In this thesis, we have used the PGI OpenACC compiler to implement dynamic
scheduling, so we are going to explain the challenges involved. Even though we have
already showed the dynamic scheduling code pattern in CUDA, there are two challenges
to implementing it in a directive based compiler. The first is that OpenACC allows
asynchronous parallel loops, by putting the loop on an async queue (an OpenACC async
queue maps to a CUDA stream). This means the loop can run asynchronously with
the host CPU, and can run asynchronously with another parallel loop on a different
async queue. Each parallel loop is compiled into a GPU kernel, and current GPUs
allow a second kernel to start before the first kernel is completely finished. If we have
two instances of this kernel running asynchronously, perhaps launched from two host
threads, then both copies would be updating the same counter. Our implementation
has a fixed limit of async queues, so we addressed this problem by having an array of
scheduling counters, one for each possible async queue. The compiler adds an additional
argument to the generated kernel containing the async queue number, which is used as
the index to the array of counters.

The second problem is that the scheduling counter has to be reinitialized to zero. On
a multicore CPU, this is typically done by having the thread that starts the parallel
operation reset the counter before initiating the other threads. On a GPU, the thread
blocks can’t communicate and usually can’t even reach a global barrier. New features in
NVIDIA Pascal and Volta GPUs with the CUDA 9.0 drivers will support a global barrier
in limited cases, which we discuss further below.

We explored two different methods to reinitialize the counter. One method would be
to have the host either issue a memset operation or launch a trivial kernel, to reset the
counter either just before or just after the computational kernel. This is safe as along
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1 #define NT 128
2 __device__ int sctr[16] = {0,0,...,0},
3 sexit[16] = {0,0,...,0};
4 __global__ void AXPY_opt_dynamic_v2 __launch_bounds__(NT)
5 (T *y, T a, T *x, int n, int async) {
6 __shared__ int si;
7 int i = threadIdx.x+blockIdx.x*NT;
8 loop:
9 y[i] = a * x[i] + y[i];

10 if( threadIdx.x == 0)
11 si = atomicAdd(&sctr, 1);
12 __syncthreads();
13 i = threadIdx.x + gridDim.x * NT + si * NT;
14 if( i < N)
15 goto loop;
16 if (threadIdx.x == 0) {
17 int e = atomicAdd(&sedit[async], 1);
18 if (e + 1 == gridDim.x) { // last block
19 sctr[async] = 0;
20 sexit[async] = 0;
21 }
22 }
23 }

Figure 6.5: Dynamically-scheduled saxpy with counter reinitialization

as the memset or kernel are on the same async queue, since only one operation can be
active on any async queue. However, while the memset or small kernel are fast, the
CPU overhead of initiating the memset or launching the kernel is relatively high, much
higher than the actual reset operation, so we wanted to avoid this.

The other method is to have the kernel itself reset the counter when the last thread block
finishes. This requires a second exit counter to keep track of how many thread blocks
have completed, and for the last thread block to reset both the scheduling counter and
the exit counter. Now, the generated code for the kernel looks like Figure 6.5, with
the reset code at lines 16-22. Since this is compiler-generated code, the complexity is
completely hidden from programmers.

6.4.1 Limitations

Our method for reinitializing the scheduling counter enforces limitations on which loops
can benefit from dynamic scheduling. In particular, it can only be applied to outermost
loops or outermost collapsed loops in a compute construct. This method of dynamic
scheduling can’t be applied to parallel loops contained in an outer sequential loop, or in
a procedure called from the compute construct. This is because the scheduling counter
is reinitialized only once, when the kernel completes.
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The CUDA 9.0 driver with NVIDIA Pascal and Volta GPUs allows kernels to synchronize
at a global barrier, across all threads of all thread blocks. This requires launching
the kernel differently, and requires the grid to be small enough so that the entire grid
can be active at the same time. With this feature, the scheduling counter could be
reinitialized in a global critical section just before or just after the parallel loop, which
would remove the above restrictions. Our initial experiments using the global barrier
were not promising, however. The overhead of the global barrier is high enough to
eliminate the benefit of dynamic scheduling, though we are continuing our experiments.
Future implementations may improve this overhead.

One advantage of our reinitialization scheme compared to using a global barrier is that
all thread blocks except the last can exit, freeing up their GPU resources. If there are
other parallel kernels on other async queues, those kernels could start execution before
all thread blocks finish.

6.4.2 Complementary Optimization

CTA Throttling CTA throttling limits the number of concurrent CTAs on an SM to reduce
the contention for execution resources (e.g., caches and bandwidth). However, naïvely
decreasing the total number of CTAs in the kernel to adjust the throttling degree can
cause performance degradation due to the imbalance of CTAs on SMs for the hardware
scheduler. We propose a software based CTA throttling optimization method. Our
method always allocates the maximum number of CTA slots that the GPU has for an
application at kernel grid configuration in order to occupy all the CTA slots. Our method
finds the exact grid size which the GPU can host at the same time. The formula we use
is shown in Figure 6.6. We give the GPU related variables for the NVIDIA Tesla K80 in
the same Figure (top). For the sake of simplicity, let us assume that we would like to
have a 128 block size. Then when we put all the variables into the formula, we obtain
208 grid size. It is important to note that we used 208 when evaluating the preliminary
AXPY in Section 6.3.3. However, in practice calculating the right grid size would be
more complicated when dynamic/static shared memory is desired. For those kind of
cases, we take advantage of the CUDA Occupancy API.
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Kepler K80 variables

NumOfSM = 13
WarpSize = 32
WarpSlotPerSM = 64

Pascal P100 variables

NumOfSM = 56
WarpSize = 32
WarpSlotPerSM = 64

Formula of Finding "The Right GridSize"

MaxActiveConcurrentThread = NumOfSM x WarpSize x WarpSlotPerSM
GridSize = MaxActiveConcurrentThread / BS

Figure 6.6: Formula of Finding Maximum Active Concurrent Threads and Grid Size of
GPU

6.5 Experimental Evaluation

This section describes the experimental platform, the test programs, and the results of
running those programs with static and dynamic loop scheduling.

6.5.1 Experimental Platform

We ran experiments on two different systems. These are:

1. An NVIDIA Tesla K80 GPU with two GPUs, each with 2449 CUDA cores, compute
capability 3.7 and 6GB of device memory. Each GPU includes 13 SM units, each
with 192 single-precision CUDA cores. The host processor is 2 x Intel Xeon E5–2630
v3 (Haswell) 8-core processors, (each core at 2.4 GHz,and with 20 MB L3 cache).

2. An NVIDIA Tesla P100 GPU with 3584 CUDA cores, compute capability 6.0
and 16GB of device memory. The GPU includes 56 SM units, each with 192
single-precision CUDA cores The host processor is 2x IBM PowerNV 8335-GTB @
4.00GHz (10 cores and 8 threads/core, total 160 threads per node). The system is
also called Power8 Minsky.

We used NIVIDA PGI compiler 17.10 version. The CUDA 8.0 driver and toolkit was
used for both systems.

6.5.2 Benchmarks

Table 6.1 shows the properties of the benchmark programs used for evaluation. We have
used twelve applications with different problem sizes as shown in the Problem Size row
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Category Language Name Abbrv Description Problem Size Origin

Linear Algebra

C
C
C
C

axpy
gemm
syrk
syrk2

SPY
MM
SK
SK2

y = a * x + y
dense matrix multiplication
symmetric rank-k matrix operation
symmetric rank-2k matrix operation

[16M], [64M], [256M]
4096
4096
4096

[82]
[82]
[82]
[82]

Graph Traversal
C++
C++

bfs
sssp

BFS
SP

breadth first search
single-source shortest path

16M
16M

[44]
[46]

Iterative Solvers
C
C

Jacobi 1D
Seidel 2d

JB1
SD2

Jacobi iterative solver 1D array
Gauss-seidel iterative solver, 2D array

[16M], [64M], [256M]
4096

[82]
[82]

Reduction

C
C
Fortran
C

montecarlo pi
352.ep
Laplace 2d
dotproduct

PI
EP
LP2
DP

pi calculation
embarrassingly parallell benchmark (NAS)
Jacobi iterative solver 2D array
dot product

[20M], [64M]
CLASS=D
4096
[16M], [64M], [256M]

[84]
[83]
[52]
[82]

Table 6.1: Benchmarks, descriptions, problem sizes tested, and references.

in the same table. These include seven stnad alone applications and the PolyBench/GPU
benchmark suite [82]. Problem sizes for these applications correspond to the vector size
for the first two linear algebra programs, and the size of one dimension of the matrix for
the other linear algebra and solver programs.

For the bfs and sssp graph traversals from the Rodinia benchmark suite [44], we used
a 64K node graph. We used the PI calculation application for calculating monte carlo
algorithms, we evaluated it with different problem sizes. The 352.EP application is from
the SPEC ACCEL benchmark suite [83], which is each run with class=D datasets. The
SPEC ACCEL runs are estimates, as they were not run in the SPEC performance harness.
We evaluated laplace equations as Jacobi 2d using the Fortran programming language.

Methodology

The PGI 17.10 compiler imposes a maximum limits of 65536 on grid size because creating
a bigger grid size is not desirable for many cases as mentioned. Also, it configures
thread block size with 128 unless user specifies thread size by using OpenACC clauses.
As we would like to compare performance between static cyclic scheduling and our
optimized scheduling approach, we should enable static cyclic scheduling. To do this,
the trip count of the loop we want to parallelize must exceed thread block size x grid size.
Otherwise, the compiler can use static one-to-one scheduling as the trip count does not
exceed the limit.

In Table 6.1 the Problem size column shows the input data set size. We choose problem
sizes which always enable static cyclic scheduling, thus we ensure a bigger trip count
than the limit. In case of SPY, JB1, PI, DP, problem size equals to trip count of the outer
loop. In case of MM, SK, SK2, JB2, SD2, LP2, we use a collapse(2) clause on the outermost
iteration to fuse the trip counts of two loops. For the EP application, we used the biggest
class which the SPEC benchmark provides [83]. For the graph traversal application, we
used graph generator application, which comes with Rodinia benchmark, to generate a
bigger graph.
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Figure 6.7: Application based speed-up of optized dynamic scheduling over static cyclic
scheduling.

6.5.3 Experimental Results

The performance runs were made on the systems described above. For all the benchmarks,
the times to compute kernels were measured and compared. We run each kernel multiple
times; the results are then the average of multiple runs.

Figure 6.7 shows the speed up of each application with different problem sizes as we
show in Table 6.1. The x-axis shows the category of benchmark, the final column shows
the geometric mean of all benchmarks. All the results are normalized to the baseline
and measured by the average of multiple runs. We took the original PGI compiler,
which uses static cyclic scheduling as default, as a basis. Then we compared it with
our optimized dynamic loop scheduling. The implementation includes CTA throttling
optimization. Enabling CTA throttling improves the performance in almost every case.
We intentionally did not measure performance without CTA throttling optimization
since we know performance would not be better as we explained in the AXPY example
above. Our method yields up to 1.24X and 1.36X speed-up for Kepler K80 and Pascal
P100 GPUs respectively with mean speed-up of 1.08X and 1.05X. From these results, we
believe that dynamic loop scheduling is effective, giving better performance even with
smaller grids, thus enabling the additional benefits of smaller grids.

The mean speed-up for each application is positive and applications which make use
of reduction see a better speed-up. The reason for the better reduction operation is
that dynamic scheduling reduces significantly the grid size which indirectly reduces
the cost of reducing the reduction item. Another important thing is that we have not
measured speed up relative to static one-to-one scheduling. As we explained in the
experimental methodology section, we forced the compiler to enabled static cyclic
scheduling. However, we believe that if we used static one-to-one scheduling, we would
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not obtain speed-up except with applications that use reduction.

6.6 Related Work

To the best of our knowledge, all other compilers that generate CUDA-like code from
parallel loops use a static schedule. This is the first study to explore alternative compiler-
generated loop scheduling methods.

Different architectural solutions have been proposed to schedule warps or thread blocks;
none are currently available on real hardware. Kayiran et al [76] propose a thread
block scheduling mechanism that estimates the amount of thread-level parallelism to
improve GPU performance by reducing cache and DRAM contention. Jog et al [73]
propose OWL, a series of thread block-aware scheduling techniques to enhance the
performance of DRAM. Fung et al [69] and Mao et al [71] focused on warp scheduling to
increase off-chip memory performance. Lee et al [72] proposed alternative thread block
scheduling in hardware, restricting the maximum number of thread blocks in each SM
to reduce contention. Two other publications [85, 77] propose other hardware-based
thread block schedulers. All the hardware proposals were validated using simulators.

Li et al [75] studies scheduling in GPU programming. They propose a method to schedule
thread blocks where there is potential data reuse together on the same SM. Although
their work is different from static cyclic scheduling and can increase performance, it is
not a dynamic loop scheduling technique.

6.7 Conclusions

In this chapter, we described the design, implementation, and evaluation of an optimized
dynamic loop scheduling technique for GPUs. This is designed for use by with high-level
parallel programming models, such as OpenACC and OpenMP. Our experiments show
that dynamic loop scheduling significantly improves performance compared to the
common static cyclic schedule, and allows use of smaller grids without performance loss,
which then enables other benefits. This is the final significant contribution of this thesis.
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7 Conclusions and Future Work

7.1 Conclusions of the Thesis

As we get approach the Exascale era, GPUs have gained great traction due to their
performance / power ratio. However, programming GPUs remains a challenging task.
To overcome this, several high-level directive-based programming models have emerged
that simplify the GPU programming while maintaining the high performance. OpenACC
and OpenMP have done a great job by standardizing the programming model for GPUs.
Nevertheless, due to lack of code generation algorithms, optimization techniques and
unprepared runtimes, these approaches can not become de facto standards for GPU
programming. This dissertation tries to address these issues by showing how different
parallelization techniques and optimizations can be applied both manually by the user
and automatically in the compiler and at runtime.

In this thesis, we presented the following contributions that target GPU compilation
within the scope of the OpenMP, OpenACC and OmpSs programming models:

• A New Dialect Programming Model: We presented the device model approach
for GPU developed in the Mercurium source-to-source compiler as a combination
of OpenMP and OmpSs in the Chapter 3. This model is a result of our initial design,
implementation, integration, research, and evaluation of compiler algorithms
related to a different aspect of GPU code generation infrastructure.

• Extensions for OpenMP and OpenACC standards: In Chapter 4, we introduced
several different extension ideas to OpenMP and OpenACC standards including
new directives and clauses that allow programmers to direct the compiler in the
code generation process in GPU device model. We extended the meaning of some
of directives and clauses to increase coverage of code scenarios. These directives
and clauses provide the compiler with information valuable to generate GPU code
while utilizing better GPU hardware. Besides, we propose extensions set to adapt
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Modern C++ features such as lambda, variadics templates and usage of their
combination. Some of this proposals are included in the new version of OpenMP
and OpenACC standards.

• Multiple Device Management: We proposed multiple target task sharing model
which provides a mechanism to exploit GPUs, CPUs and another accelerators in
Chapter 4.1. can automatically manage different device types such as GPUs and
CPUs while generating code for them.

• Code Transformation for GPU compilers: In Chapter 5, we proposed a code
transformation technique that covers all the irregular applications such as sparse
matrix, graphs, graphics, etc. We proposed and evaluated a code transformation
technique, LazyNP that effectively supports nested parallelism in GPUs, mainly
tailored to compilers for user-directed accelerator programming models such
as OpenACC or OpenMP. LazyNP dynamically packs kernel invocations and
postpones their execution until a bunch of them are available. We propose three
different approaches for GPU device based code generation; for one of them we also
show how is it possible to exploit nested parallelism in GPUs that do not provide
hardware support for dynamic parallelism. Also, two different code generation
techniques are proposed for hybrid CPU/GPU usage. LazyNP is evaluated for very
relevant algorithms both in sparse scientific computations and graph algorithms,
resulting in important speed–ups when compared to eager implementations using
dynamic parallelism, other code versions that don’t use nested parallelism and
well-tuned standard libraries.

• Optimization Techniques for GPU compilers: We explore using dynamic schedul-
ing for mapping parallel loop iterations to GPU threads in an NVIDIA PGI Ope-
nACC compiler in Chapter 6. We described the design, implementation, and
evaluation of an optimized dynamic loop scheduling technique for GPUs. This is
designed for use with high-level parallel programming models, such as OpenACC
and OpenMP. Our experiments show that dynamic loop scheduling improves
performance compared to the common static cyclic schedule, and allows use of
smaller grids without performance loss, which then enables other benefits.

7.2 Impact

This thesis has had significant impact on the fields of programming models and
compilers for GPU applications. In addition, it has driven contributions to the OpenMP
and OpenACC programming standard. These two standards are widely adopted and
used by many people to run and parallelize applications. We presented our proposal
to the OpenMP Architecture Review Board (ARB) Committee, OpenACC Language
Committee and participated in its refinement. Our proposals on extending OpenMP
and OpenACC are still under discussion.
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To the best of our knowledge, our LazyNP code transformation is first successful compiler
method for transformation of nested directives for GPUs. Although nested directive
usage is an allowed pattern in OpenMP and OpenACC, there is no compiler to support
the use of it since it is not a successful solution. Our solution is very influential and it
has piqued the interest of some members of the IBM compiler team. We are going to
move on by implementing it for commonly used compilers such as Clang or PGI.

Our dynamic loop scheduling method is the first research we know of into loop
scheduling for GPUs. It is a result of collaboration with the NVIDIA PGI OpenACC
compiler team. It is implemented in the NVIDIA PGI OpenACC compiler which is one
of the best OpenACC compilers and delivers the best performance also it is a commercial
product.

Finally, we have introduced some complementary extensions which we explain in
the following section; these have had a direct impact on the OpenMP and OpenACC
standards. Our extension proposals influenced the official extensions (OpenMP 5.0 and
the next version of OpenACC). In terms of software contribution they were already
implemented in the open-source CLANG compiler and are already pushed to the
master branch of the Clang compiler during collaboration with the IBM T.J. Watson
Research Center. We also integrated support for the PGI NVIDIA OpenACC compiler
by collaborating with NVIDIA Corporation. The following list summarize the impact of
thesis. The following section explains these extensions in more detail.

• Accepted features by OpenMP or OpenACC Standards

– Implicitly Function Offload Feature

– Lambda Expression Support (C++11/14/17)

• Software Impact

– Mercurium Compiler

– Clang Frontend

– PGI Compiler

Implicit declare target and routine

When a function needs to be invoked in an OpenMP target or an OpenACC parallel or
kernels region, its definition and declaration must be marked by declare target or routine
in OpenMP and OpenACC respectively. However, it can be very tedious if there is
code with many many lines like in Figure 7.1 (a). Programmers must includes required
directives as in Figure 7.1 (b).

To ease burden for programmers, we have proposed a compiler based solution that
automatically figures out which functions are called in target, kernels or parallel regions.
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1

2 int bar();
3 int foo() { return bar(); }
4

5 void main () {
6 #pragma omp target
7 foo();
8 }
9

10 int baz() { return 1; }
11 int bar() { return baz(); }
12 ;

1 #pragma omp declare target
2 int bar();
3 int foo() { return bar(); }
4 #pragma omp end declare target
5 void main () {
6 #pragma omp target
7 foo();
8 }
9 #pragma omp declare target

10 int baz() { return 1; }
11 int bar() { return baz(); }
12 #pragma omp end declare target

Figure 7.1: Example of implicit declare target in OpenMP 4.5

After that, the compiler generates device codes for each function automatically. The
extension is already in the OpenMP 5.0 document, we have also proposed the same
thing to the OpenACC language committee.

Lambda expression of C++

In recent years, the C++ programming language moved into new era. C++11 introduced
several major new features, C++14 added even more features on top of C++11 and
C++17 is coming with a lot of new features. One of the most important feature of
modern C++ is lambda which is introduced to provide a convenient way of defining
an anonymous function object right at the location where it is invoked or passed as an
argument to a function. In general, lambdas are used to encapsulate a few lines of code
that are passed to algorithms or asynchronous methods. OpenMP and OpenACC intend
to support C++. However their C++ support is out of date and doesn’t include the new
features in C++11/14.

Using lambda with OpenACC or OpenMP seems like it should be easy as shown in
Figure 7.2. However, it is not possible using it with the current standard. Lambda
makes it very easy to define anonymous function in C++, however it hides the real
function which is generated. This leads a problem for the device model of OpenMP and
OpenACC as each function must be marked. When the compiler comes across a lambda,
it deduces a struct that involves an operator() function and captured data. The code
on the bottom in the same Figure shows the deduced middle-level code for lambda
expression by compiler. Here, the compiler generates a struct that has *a, *b private
variables inside and operator() function for lambda expression. Also, it replaces the
lambda with a struct creation. Now let’s imagine this from the perspective of the device
model of the OpenMP/OpenACC compiler This expects each function to be marked if
the function is used on the device. In this example, operator() function is hidden by
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C++ language and user has no right to mark it with directives. Therefore, our solution
is that compiler must support an implicit declare target and routine feature.

The problem does not end here. As you can see Figure 7.2, lambda’s capture-by-value
feature is used which captures automatically the variables used in the lambda section. In
our example *a and *b are captured. The compiler creates a lambda struct as mentioned
with two member for *a and *b. Unfortunately, these data and the struct are hidden by
the compiler. If the pointer fields ( *a and *b ) of this structure is not translated; it still
refer to an address in the host’s address space. This leads to invalid references when the
lambda runs on a GPU.

To successfully map a structure of arrays, as in this case, the runtime must map not just
the structure itself but traverse deeper to also map the fields (pointers) within it. We
modified our compiler and runtime to add limited deep copy support for the special
case of a lambda function. After mapping the lambda structure, the runtime checks for
the presence of each member pointer within the device data environment. If present, the
corresponding device address replaces the host pointer value in the field of the mapped
lambda structure.

7.3 Publications

The work presented in this thesis resulted in five main publications plus a further
pending publication.

The first paper is titled On the Roles of the Programmer, the Compiler and the Runtime System
When Programming Accelerators in OpenMP [14]. It was published in the 10th International
Workshop on OpenMP, in 2014. This paper introduces our device model infrastructure
with OpenMP in Mercurium Compiler.

The second paper is titled Multiple Target Task Sharing Support for the OpenMP Accelerator
Model [86]. It was published in the 12th International Workshop on OpenMP, in 2016.
This paper was written in collaboration with NVIDIA Corporation and it proposes
an extension to the OpenMP directive-based programming model to support the
specification and execution of multiple instances of task regions on different devices.

The third paper is called Exploring Dynamic Parallelism in OpenMP [47] which is published
in Second Workshop on Accelerator Programming using Directives at Supercomputing 2015
conference. In this paper, we performed a preliminary evaluation of our nested parallelism
in OpenMP.

The fourth article is a short paper titled Collective Dynamic Parallelism for Directive
Based GPU Programming Languages and Compilers [87] which is published in International
Conference on Parallel Architectures and Compilation, PACT 2016. It introduces efficient

107
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1 template <typename EXE, typename BODY>
2 double bench_forall(int s, int e, BODY body)
3 {
4 StartTimer();
5 if (is_same<EXE, Serial >::value) {
6 for (int i = s; i < e; ++i)
7 body(i);
8 } else if (is_same<EXE, OpenMP >::value)
9 {

10 #pragma omp parallel for
11 for (int i = s; i < e; ++i)
12 body(i);
13 } else if (is_same<EXE, OpenMP_device >::value)
14 {
15 #pragma omp target distribute parallel for
16 for (int i = s; i < e; ++i)
17 body(i);
18 } else if (is_same<EXE, OpenACC >::value)
19 {
20 #pragma acc parallel loop
21 for (int i = s; i < e; ++i)
22 body(i);
23 }
24 return EndTimer();
25 }
26

27 template <typename T>
28 void do_bench_saxpy(int N, T *a, T* b, T x)
29 {
30 double stime, time;
31 auto saxpy = [=](int i)
32 { b[i] += a[i] * x; };
33

34 stime = bench_forall <Serial >(0, N, saxpy);
35 time = bench_forall <OpenMP >(0,N, saxpy);
36 printf("OpenMP Multicore Speedup %.2lf\n",stime/time);
37

38 #pragma omp target enter data map(in:a[:N], b[:N])
39 time = bench_forall <OpenMP_device >(0,N, saxpy);
40 printf("OpenMP GPU Speedup %.2lf\n",stime/time);
41

42 #pragma acc enter data copyin(in:a[:N], b[:N])
43 time = bench_forall <OpenACC >(0,N, saxpy);
44 printf("OpenACC Speedup %.2lf\n",stime/time);
45 }

Figure 7.2: The for_all implementer with lambda that supports serial, OpenMP for
multicore, OpenMP_device for GPUs and OpenACC version
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nested parallelism code transformations techniques for GPU compilers.

The fifth paper is Offloading Support for OpenMP in Clang and LLVM [11]. It was published
in the Third Workshop on the LLVM Compiler Infrastructure in HPC at Supercomputing
Conference in 2016. This paper was written in collaboration with IBM T.J. Watson Research
Center and it describes the code generation support on Clang compiler.

The latest paper is still pending. It is called LazyNP: Effective Code Transformation for Nested
Parallelism in User-Directed Accelerator Programming and is submitted for publication
in IEEE Transactions on Parallel and Distributed Systems. It improves efficient nested
parallelism code transformations techniques for GPU compilers and heterogeneous
systems.

In addition to the above publications we plan to produce a further paper about dynamic
loop scheduling as described in Section 6.

7.4 Future Work

Our device model infrastructure in Mercurium compiler lays the basis for further
research. This research can include new compiler algorithms and approaches that take
advantage of instructions of new GPUs architectures to bring.

In the context of the device model extensions for OpenMP and OpenACC there is still
room for improvement. More extensions in the programming model’s language may
be in user-directed optimizations that allow the compiler to use more sophisticated
approaches.
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