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Abstract
Fiber reinforced composite materials are nowadays used in several industrial
applications that pursue structural weight reduction to reduce fuel consump-
tion. The stiffness-to-weight and strength-to-weight ratios of composite ma-
terials made them an excellent choice for aerospace applications. However,
impact loads is one of the major design concerns of aeronautical structures
made by laminate composite materials. It is especially the case of Low Veloc-
ity Impact (LVI) events that despite leading to barely visible impact damage
can significantly reduce the mechanical performance of composite structures.
Reliable numerical models can help in reducing the actual amount of phys-
ical tests that are time-consuming and costly. Nevertheless, impact simula-
tions are computationally intensive and their application in large composite
structures is limited. Furthermore, the numerical models require many pa-
rameters that affect their efficiency, accuracy, objectivity and robustness. The
present thesis aims to define a clear and efficient methodology to build re-
liable numerical models for the LVI and Compression After Impact (CAI)
simulation of composite structures that can be applied in challenging appli-
cations of scientific and industrial interest.

Firstly, the present work describes a methodology to simulate LVI and
CAI on composite laminates that is validated experimentally at the coupon
level. The key definitions are discussed and especial attention is devoted
to the definitions that affect the computational efficiency. Novel formulas,
which are useful for optimum mesh discretization, are proposed to predict
the cohesive zone length of composites undergoing delamination under pure
fracture modes. A numerical benchmark of different finite element types
and interaction technologies commonly used in the literature is performed
to compare their computational performance and accuracy. Furthermore,
criteria to efficiently define cohesive numerical parameters are proposed.

Numerical simulations can help in the understanding of the damage se-
quence of polymer based composite laminates during an impact event, which
can be a difficult task to perform experimentally when dealing with a large
number of plies. The proposed methodology is applied to predict the LVI
and CAI of thin ply fabric laminates, which is a computationally challenging
case due the large number of plies and interfaces involved. The numerical
results indicate that matrix cracking effects can be assumed negligible for the
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studied thin ply laminate while delamination and especially the fiber traction
separation law shape are important for accurate predictions.

Finally, the methodology is applied for the prediction of relatively large
composite sub-components with the aim to show that the proposed method-
ology enables analyses at larger scales. It is demonstrated the potential of
the methodology and employed techniques to address problems of industrial
interest such as the strength prediction of both undamaged and damaged
stiffened panels.



Resum
Els materials compòsits són actualment utilitzats en diferents sectors indus-
trials que busquen la reducció de pes estructural amb la finalitat de reduir el
consum de combustible. La rigidesa i resistència que ofereixen en relació amb
el seu pes els ha convertit en una excel·lent opció per aplicacions aeronàu-
tiques. No obstant això, les càrregues a impacte són una de les principals
preocupacions en el disseny d’estructures aeronàutiques fabricades amb lam-
inats de material compòsit. És especialment el cas d’impactes a baixa veloc-
itat que deixen dany difícil de detectar durant inspeccions visuals però que
poden reduir significativament la resistència de l’estructura. L’ús de models
numèrics fiables pot ajudar a reduir l’actual nombre d’assaigs experimentals
que són costosos tant en temps com econòmicament. Tanmateix, l’aplicació
de models numèrics en estructures de material compòsit de gran dimensió
es veu limitada pel cost computacional que representen. A més, els mod-
els numèrics requereixen moltes definicions que afecten la seva eficiència,
precisió, objectivitat i robustesa. La present tesi té com a objectiu desen-
volupar una metodologia clara i eficient per realitzar prediccions fidedignes
d’impacte a baixa velocitat i compressió després d’impacte en estructures de
material compòsit que pugui ser aplicada en casos de rellevància científica i
industrial.

En primer lloc, es descriu una metodologia per a la simulació d’impacte
a baixa velocitat i compressió després d’impacte en laminats de compòsit la
qual és validada experimentalment a escala de proveta de laboratori. Les
definicions més importants es discuteixen i es té especial atenció en aque-
lles que afecta l’eficiència computacional. Per una òptima discretització del
model és desitjable conèixer la longitud de zona cohesiva. Noves fórmules
per predir la longitud de zona cohesiva en delaminació es proposen per
modes purs de fractura. Es realitza un estudi numèric comparatiu de dife-
rents tecnologies d’element finit i d’interacció cohesiva típicament utilitzades
en la literatura amb la finalitat de comparar la seva precisió i eficiència com-
putacional. A més, es proposen criteris per definir paràmetres numèrics del
model cohesiu que afecten el temps computacional.

Els models numèrics poden ajudar a entendre la seqüència de dany du-
rant esdeveniments d’impacte, els quals poden ser complicats d’analitzar ex-
perimentalment. La metodologia proposada s’aplica per predir la resposta
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a impacte i compressió després d’impacte en laminats de capes primes. És
un cas que representa un repte computacional per l’elevat nombre de capes i
interfases involucrades. Els resultats numèrics contrastats experimentalment
indiquen que els efectes de trencament de matriu es poden obviar mentre
que la delaminació i especialment la forma de la llei cohesiva de la fibra són
de gran importància en les prediccions de laminats de capes primes.

Finalment, la metodologia s’aplica per la predicció de sub-components
rigiditzats de material compòsit amb la finalitat de mostrar que la metodolo-
gia permet anàlisis a escales majors. Es demostra el potencial de la metodolo-
gia i tècniques utilitzades per adreçar problemes d’interès industrial com és
la predicció de la resistència d’un panell rigiditzat abans i després de ser
danyat per un eventual impacte.



Resumen
La aplicación de materiales compuestos se puede encontrar actualmente en
distintos sectores industriales que buscan la reducción de peso estructural
con la finalidad de reducir el consumo de combustible. La rigidez y resis-
tencia que ofrecen con relación a su peso les hace una excelente opción para
aplicaciones aeronáuticas. No obstante, las cargas a impacto es uno de los
casos de mayor preocupación para el diseño de estructuras aeronáuticas de
material compuesto. Este es especialmente el caso de impacto a baja veloci-
dad que induce un daño difícil de detectar durante inspecciones visuales
pero que puede reducir significativamente la resistencia mecánica en estruc-
turas de material compuesto. El uso de modelos numéricos fiables puede
ayudar a reducir la actual cantidad de ensayos experimentales que son cos-
tosos tanto en tiempo como económicamente. Sin embargo, la aplicación
de modelos numéricos a estructuras de material compuesto de gran tamaño
se ve limitada por su coste computacional. Además, los modelos requieren
muchas definiciones que afectan a su eficiencia, precisión, objetividad y ro-
bustez. La presente tesis tiene como objetivo desarrollar una metodología
clara y eficiente para realizar predicciones fiables de impacto a baja veloci-
dad y compresión después de impacto en estructuras de material compuesto
que pueda ser aplicada a casos de relevancia científica e industrial.

En primer lugar, se describe una metodología para la simulación de im-
pacto a baja velocidad y la compresión después de impacto en laminados de
material compuesto la cual se valida experimentalmente a escala de probeta.
Las definiciones más importantes se discuten y se presta especial atención
a las definiciones que comprometen la eficiencia computacional. Para una
óptima discretización del modelo es deseable conocer la longitud de zona
cohesiva. Nuevas fórmulas para predecir la longitud de zona cohesiva en
deslaminación se proponen por modos puros de fractura. Se realiza un estu-
dio numérico comparativo de distintas tecnologías de elemento finito e inter-
acción cohesiva comúnmente utilizadas en la literatura para comparar su pre-
cisión y eficiencia computacional. Además, se proponen criterios para definir
parámetros numéricos del modelo cohesivo que afectan al tiempo computa-
cional.

Los modelos numéricos pueden ser utilizados para entender la secuencia
de daño en el material durante eventos de impacto, los cuales son difíciles de
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analizar experimentalmente. La metodología propuesta es aplicada para pre-
decir la respuesta a impacto y compresión después de impacto de laminados
de lámina delgada. Es un caso que representa un reto computacional debido
al elevado número de láminas e interfaces que contienen este tipo de lamina-
dos. Los resultados numéricos contrastados experimentalmente indican que
el efecto de rotura de matriz es insignificante mientras que la deslaminación
así como la forma de la ley cohesiva de la fibra resultan de vital importancia
para las predicciones de laminados de lámina delgada.

Finalmente, la metodología es aplicada para la predicción de sub-
componentes rigidizados de material compuesto con la finalidad de mostrar
que la metodología permite análisis a escalas superiores. Se demuestra el
potencial de la metodología y técnicas empleadas para problemas de interés
industrial como es la predicción de la resistencia de sub-componentes de ma-
terial compuesto antes y después de ser dañados por un impacto.



Part I

Introduction and Literature
Review
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Chapter 1

Introduction

1.1 Background

A composite material can be defined as the result of merging two or more
different materials. Wood, rocks or shells are examples of composite materi-
als found in the nature but there exist man-made composite materials such
as paper, bricks or concrete. More recent man-made composite materials are
those made by glass or carbon fibers embedded within a polymeric matrix.
Composites aims to merge different materials that combined offer better per-
formance that their constituents acting independently.

Composite materials can be classified depending on the matrix material
or the reinforcement type. Polymer Matrix Composites (PMC) (e.g. ther-
moplastics or thermosets), Metal Matrix Composites (MMC), and Ceramic
Matrix Composites (CMC) are the most common matrix types. The rein-
forcement can be in the form of continuous fibers, discontinuous fibers, or
particles as shown in Fig. 1.1.

Fig. 1.1: Composite reinforcement forms (source: Zweben [94]).

The reinforcement can present different fiber architectures as shown in
Fig. 1.2 depending on the design requirements or the manufacturing pro-
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Chapter 1. Introduction

cess. On the one hand, discontinuous fibers or also called short fiber rein-
forcements are typically randomly distributed or oriented according to the
manufacturing process (e.g. injection molding process). On the other hand,
continuous fiber reinforcements are commercially available in the form of
unidirectional (UD) tapes or forming woven fabrics (also 3-D textiles) with
different weave features possibilities. The fabric fabrication is done by weav-
ing, braiding, knitting, stitching, and by using non-woven techniques. Con-
tinuous fiber reinforcements are usually employed in the form of laminates.
A laminate consists of more than one layer, which is also called ply or lam-
ina, stacked over each together. The orientation of each ply can be different
according to mechanical design requirements. In fact, there exists manu-
facturing systems such as Automatic Fiber Placement (AFP) that allows to
change the fiber orientation point-to-point.

Fig. 1.2: Fiber arrangement patterns at the lamina level (source: Gürdal et al. [71]).

Fiber Reinforced Polymers (FRP) composite materials (e.g. carbon/epoxy,
kevlar/epoxy) have outstanding specific stiffness and strength properties,
corrosion resistance and fatigue performance. Furthermore, the ability to
mold composite materials into complicated shapes more easily that most
other materials allows more freedom to designers and engineers. These fac-
tors allow building structures with significant savings in terms of mainte-
nance and weight. Applications of FRP is found in several fields such as
wind energy, sport goods, civil engineering, car and marine industry. How-
ever, it is the aerospace industry, including military and commercial aircraft,
the largest consumer of FRP composite materials [43] in an effort to reduce
green house gas emissions and fuel costs, which are the largest operating
expense for airlines. Nowadays, composite materials have been introduced
in primary structure components in the most recent long range air-planes as
shown in Fig. 1.3 and reported by Jerome [85].

Composite materials are generally tailored to work under in-plane loads.
Impact events are one of the most critical loads for composite structures be-
cause different damage mechanisms might take place even for low impact
energies. Vaidya and Uday [162] categorized the impact response of ma-
terials into hyper velocity impact, high velocity impact or ballistic impact,
intermediate velocity impact, and low velocity impact regimes. Hyper ve-
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1.1. Background

Fig. 1.3: Materials used in the body of Boeing 787 (source: [168]).

locity impact occurs for velocities larger than 1000 m/s. The target material
behaves like a fluid. This type of impact occurs in the context of micromete-
orites protection. High velocity impact ranges from 50 m/s to 1000 m/s. It is
usually the result of arms fire or explosive warhead fragments but also due
to bird strikes. This impact type leads to localized damage. The boundary
condition effects can be ignored because the structure does not have time to
respond. Intermediate velocity impact occur at velocities in the range from
10 m/s to 50 m/s which are related to foreign object debris on roads and
runaways. Low Velocity Impact (LVI) occur at velocities below 10 m/s which
are commonly related to tool drops. It is generally accepted that LVI can
be treated as a quasi-static event [145, 148, 171]. Global plate motion occurs
and the dynamic structural response of the target is important because it can
absorb energy elastically. Sometimes high-velocity impact is associated to a
small mass of the impactor while LVI to a large mass impactor. However,
Olsson [114] and Christoforou and Yigit [42] demonstrate that the response
under elastic conditions depends on the impactor mass, the mass of the im-
pacted plate and the structural stiffness.

Fig. 1.4: SEM micrograph of a specimen cross section after a 3.9 mm indentation [163]. The
specimen was cut along the 90o direction. The dashed white line represents the center of the
indentation.

Fig. 1.4 shows the three most commonly observed types of impact-
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induced damage in carbon/epoxy composite laminates: matrix cracking,
fiber breakage and delaminations. The micrograph is taken from an in-
dentation test [163]. Quasi-static indentation tests are often used to obtain
experimental evidence of the damage sequence occurred during a LVI test.

Laminated composites can easily undergo Barely Visible Impact Damage
(BVID) under transverse loads such as LVI. BVID is associated with impact
events where delamination is the main damage mechanism with almost no
indentation. Delaminations are a major threat in composite laminates be-
cause they are hidden and reduce significantly the compressive strength of
an impacted structure. BVID is mainly associated to damage in the form of
delaminations while in Visible Impact Damage (VID) matrix cracking and
fiber failure are also present and the damage is are visible in both faces as
sketched in Fig. 1.5.

Fig. 1.5: Sketch of damage mechanisms associated to BVID and VID (source: [29]).

In conventional composite laminates, matrix cracking is usually the first
damage mechanism to appear due to intralaminar shear and tension stresses
and often trigger delamination [163]. Delaminations are prone to propagate
under in-plane loading. Fibre, matrix cracking and delaminations reduce the
residual strength of a structural component and decrease its buckling load
limit. Fig. 1.6 sketches the type of damage and the effect on the compression
strength after impact as a function of the impact energy. For this reason, it
is of paramount importance the structural behaviour of a component under
compression load during the design process.
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Fig. 1.6: Sketch of the induced damage and the compression strength after impact as a function
of the impact energy (source: [128]).

1.2 Motivation

The use of composite laminates in structural applications has become a real-
ity during the last years within the commercial aeronautical industry. Weight
reduction is a cornerstone to reduce fuel consumption and CO2 emissions.
Nevertheless, LVI events are a major concern during the design of aerospace
structures made of composite laminates because they can leave the struc-
ture with BVID. BVID is difficult to detect by visual inspection while the
mechanical performance can be significantly reduced due to the presence of
hidden delaminations. This is especially the case under compression loading
in which existent delamination reduce the buckling load. Delaminations can
open (i.e. buckling of sub-laminates) under compression loading and then
allowing the damage to propagate from the initial state until the subsequent
failure of the structure. Thus, it is of interest to assess the damage toler-
ance of the impacted composite laminate, which is usually done through the
Compression After Impact (CAI) test [17]. Fig. 1.7 sketches different buck-
ling modes that can occur during the CAI test. It is worth noting that LVI
can reduce the CAI strength as much as 60% in a typical aerospace fibre-resin
system [74].

The certification of new materials in aerospace applications involves ex-
tensive experimental campaigns that are time-consuming and costly. The
building block approach [81] is followed to gain understanding and to min-
imize the amount of large scale tests. At each step of the building block
approach, experimental tests and analysis techniques are combined because
it would be infeasible to test all loading and environmental scenarios [44].
Thus, reliable analysis techniques can help in reducing the actual amount of
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Fig. 1.7: Buckling modes of delaminated plates under compression loading (source: [47]).

physical tests. For this reason, modeling impact events has been the focus of
many researchers over the years.

The resulting damage from an LVI depends on the impactor features (e.g.
material, shape, mass, velocity), the composite structure features (e.g. mate-
rial, geometry, boundary conditions) as well as the environmental conditions.
The prediction of CAI strength depends on the composite structure features,
and especially on the damage occurred during the impact event. Modeling
LVI and CAI events have been treated either analytically or by means of nu-
merical methods in the literature.

Analytic impact models are a powerful tool for their conceptual frame-
work that provides a fast assessment on the type of damage. Some relevant
contributions are the work from Abrate [4] and Olsson [115, 118, 119]. How-
ever, impact analytical models are usually restricted to the elastic regime and
specific geometries. The interaction among damage mechanisms and their
progression is difficult to be considered. For damage tolerance assessments
such as the CAI, an initial damage has to be assumed to predict analytically
the residual strength [111, 169] what limits their predictive capability.

Virtual testing by means of non-linear Finite Element Analysis (FEA) is
an alternative that can tackle the complexity of the physical phenomena - ge-
ometric and material non-linearities, dynamic structural behavior and load-
ing, contact - without any restriction in terms of geometry and boundary
conditions. The stress field takes into account the interaction among damage
mechanisms and their damage progression. In addition, the impacted model
can be used for the damage tolerance analysis sequentially without assuming
any initial damage.

However, virtual testing is computationally intensive which limits its ap-
plication to structural components. The advent of new materials such as thin
ply laminates represent a computational challenge for the large number of
plies and interfaces involved. Furthermore, virtual testing requires many
parameters that can affect the model efficiency, objectivity and robustness,
which sometimes are not clearly reported in the literature.
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1.3 Objectives

The present thesis aims to present a clear and efficient methodology to build
reliable numerical models for the LVI and CAI simulation that can be applied
in challenging applications of scientific and industrial interest in the field of
composite structures. In essence, a methodology that enables analyses at
larger scales than the coupon-level.

To achieve this main goal, the specific objectives of the thesis are, firstly to
provide a methodology that defines the key parameters to feed the numerical
models in order to make them reliable and efficient with the current state-
of-the-art numerical tools and material models. Secondly, to validate the
methodology with experimental data. Finally, to use the methodology for
applications of scientific and industrial interest such as the LVI and CAI on
thin ply laminates and aircraft composite stiffened panels.

1.4 Thesis lay-out

The thesis is structured in four parts. The first part includes an introduction
and a literature review of the topic. The second part describes the method-
ology used throughout the thesis while the third part presents two cases in
which the methodology described in the second part is applied and validated.
Finally, the fourth part concludes with an assessment of the achievements
made and suggestions for future work.

More specifically, Chapter 2 reviews the numerical investigations deal-
ing with LVI and CAI from the literature. The existent techniques and ap-
proaches to model impact as well as the required definitions to set-up the
models (e.g. finite element discretization, material models) are reported con-
cisely. The literature review is not restricted to LVI at the coupon level for
standard plies. It also covers numerical studies dealing with composite struc-
tures.

The finite element discretization is an important aspect to correctly dissi-
pate the energy of the model. In Chapter 3, the range of applicability of the
existent analytical formula to predict the cohesive zone length for material
undergoing delamination is studied and new formula are proposed.

Chapter 4 presents a methodology to simulate LVI and CAI on compos-
ite laminates, which pays special attention to definitions related to model
accuracy, objectivity, efficiency and robustness. A numerical benchmark is
performed at the coupon level, which is supported with experimental data,
to compare different modeling strategies in terms of computational perfor-
mance and accuracy.

The methodology from Chapter 4 is applied in Chapters 5 and 6. The
results of both Chapters are compared with experimental data. Chapter
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5 presents the LVI and the CAI simulation results of thin ply weave lami-
nates, which represents a computational achievement due to the large num-
ber of plies and interfaces involved. The numerical results provide under-
standing on the governing damage mechanisms of thin ply laminates during
LVI events and highlight the importance of the fiber traction separation law.
Chapter 6 presents novel results of LVI and the sequential CAI tests on large
composite stiffened panels.

Finally, the thesis is concluded in Chapter 7 with overall concluding re-
marks and Chapter 8 discusses suggestions for future work.
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Chapter 2

Literature review

The increase of computing power during the last decade allowed reasearchers
to perform numerical investigations to better understand and predict the LVI
and CAI of composite laminates. However, they are still computationally
expensive. For this reason, most numerical investigations in the literature
address LVI and CAI predictions at the coupon-level and their use at larger
scales is still limited. This chapter aims to provide perspective for improve-
ments on the existent techniques and modeling methodologies used in the
literature for the simulation of LVI and CAI of composite laminates, paying
special attention towards the computational efficiency.

2.1 LVI and CAI numerical modeling

Several investigations [2,32,45,53,61,65,67,80,86,98,99,109,126,132,136,154]
agree with using the Finite Element Method (FEM) to model the meso-scale
of composite laminates to predict the LVI and CAI at the coupon level.

Within the FEM framework, impact numerical models can be classified
as strength based models [78, 100], fracture mechanics based models [96] or
Continuum Damage Mechanics (CDM) based models.

Strength based impact models [78, 100] allow to accurately predict the
damage initiation during an impact event if appropriate failure criteria are
used. The limitation of strength based numerical models is that they can-
not account for damage propagation unless the elements are deleted or me-
chanical properties are knocked down once reached certain failure criteria.
However, if this is done without any mesh regularization procedure the en-
ergy dissipated depends on the element size [26, 113]. As a consequence, the
model becomes mesh dependent and the damage progression as well as the
dissipated energy is not objective.

However, impact involves dissipation of energy through different damage
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mechanisms. Thus, fracture mechanics based impact models [96] can take
into account the material fracture toughness and the damage progression.
However, this type of analyses might require to have an initial crack.

CDM based models have proved their suitability in several studies for the
prediction of LVI [32, 53, 61, 77, 98, 99, 132], and LVI with the sequential CAI
tests [2,3,36,45,65,67,109,126,136,154] of composite laminates at the coupon
level.

The CDM framework [92,123] combines failure criteria to predict damage
initiation with fracture mechanics to predict damage progression through
coupling internal damage variables, which represent each damage mecha-
nism. Different continuum finite element types can be used depending on
the desired detail of the stress state. Most LVI studies [2, 3, 32, 36, 45, 61, 65,
67, 77, 86, 98, 99, 109, 126, 136, 154] support the use of CDM in combination
with the Cohesive Zone Model (CZM) as frameworks to model intralaminar
and interlaminar damage, respectively. The CZM is widely used to model
delamination which can be used by means of cohesive elements or cohesive
surfaces.

Impact involves geometric and material non-linearities, contact, dynamic
structural behaviour and loading. For this reason, explicit schemes are gen-
erally used in the literature for LVI and CAI simulations [2,32,45,53,61,65,67,
80, 86, 98, 99, 109, 126, 132, 136, 154] to avoid some of the numerical difficulties
from implicit solvers.

Explicit dynamics procedure solves the boundary - value problem as a
wave propagation problem. A bounded solution is obtained when the sim-
ulation time increment (4t) is below the Stable Time Increment (STI), which
is a stability limit; the minimum time that a dilatation wave takes to move
across any element of the model.

The STI of a continuum finite element (4telem) or a finite thickness cohe-
sive element is given by:

4 telem ≤ l∗α
√

ρ

E
(2.1)

where ρ is the material density, E the maximum component of the constitutive
tensor, and α =

√
1 + ζ2− ζ with ζ being the fraction of critical damping that

prevent finite elements from ringing or even collapsing in the highest element
frequency [1]. l∗ is the characteristic element length, which is related to the
shortest finite element edge.

The STI of a cohesive element (i.e. zero-thickness) or cohesive surface
(4tcoh

int ) is:

4 tcoh
int ≤

√
ρ̄

Kcoh
(2.2)

where ρ̄ and Kcoh are the surface density and the penalty stiffness from the
cohesive element or cohesive surface, respectively.
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In case of using the contact penalty method, the STI due to contact (4tcon
int )

is controlled by:

4 tcon
int ≤

√
ρhelem

Kn
(2.3)

where ρ is the material density, helem the element thickness where contact
occurs and Kn the normal contact penalty stiffness.

The computational time of an explicit simulation is governed by the STI;
4tmin = min(4telem, 4tcoh

int , 4tcon
int ). Therefore, special attention on the mini-

mum element size of the model must be paid because even if it is a single fi-
nite element with a smaller size than the remaining elements from the model,
it will control the model STI. This is one of the reasons why most LVI studies
that use an explicit approach employ structured meshes.

The main definitions needed for an impact numerical model are: the in-
tralaminar damage model, the interlamimar damage model, the modeling
strategy, the finite element discretization, and the element deletion criterion.
These definitions involve several parameters that affect the model robustness,
efficiency, accuracy and objectivity, which sometimes are not clearly reported
in the literature.

2.1.1 Intralaminar damage model

There are several numerical studies on LVI predictions of composite lami-
nates in which different CDM models are used to model the intralaminar
damage [53, 80, 87, 95, 101, 102, 106, 108, 132, 154, 167]. The main differences
among them are: three-dimensional or plane stress conditions; in-plane shear
loading behaviour; the mesh regularization algorithm used to address strain
- softening; and especially the damage initiation and the damage propagation
criteria.

Impact models assuming plane stress conditions [61,67,80,86,131,142,166]
or three dimensional conditions [2, 7, 45, 53, 59, 65, 87, 98, 99, 126, 132, 154] are
used in the literature depending on the desired compromise among compu-
tational effort and detailed analysis. Out-of-plane damage mechanisms are
neglected under plane stress conditions.

Plasticity under in-plane shear loading is generally considered [7,53,59,61,
80,86] even though there are some authors that neglects it [65,98,99,132,166].

The crack band model [26] is widely used to deal with strain localization.
Tan et al. [154] calculates the characteristic element length more accurately by
considering the actual fracture plane in the finite element. Donadon et al. [53]
extended to 3-D the solution proposed from Oliver et al. [113] to overcome
some of the crack band model limitations.

Generally, rate-dependency is neglected in LVI numerical models [2,3,32,
36,45,53,61,65,67,86,98,99,109,126,132,136,154]. However, Williams and Vaziri
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[166] and Iannucci et al. [80] considered strain-rate effects in the CDM. It is
generally accepted that in LVI the velocity is low enough to assume a static
response of the structure [145,148,171]. Furthermore, carbon fiber composites
are considered rate-independent in fiber-dominated modes, but glass and
Kevlar do show rate stiffening and strengthening [72]. However, matrix-
dominated modes are rate-dependent [79] but it depends on the matrix type.
Generally, thermoset resins are less rate-dependent than thermoplastic resins.

Some impact models use simplified damage initiation criteria (e.g. maxi-
mum strain or stress) [80,87,166,167] while others use more physically based
approaches [53, 65, 98, 99, 132, 154]. The main differences among them are in
the definition of the fiber compression and the matrix compression strength.
Initiatives like the World Wide Failure Exercise (WWFE) organized by Hin-
ton et al. [76] assess and review the predictive capability of some established
failure theories from the literature.

The damage evolution is usually represented by linear or quasi-
exponential strain - softening laws [53,59,61,65,80,98,99,132,142,154]. How-
ever, it is worth mentioning that some studies [50, 121, 122] highlight the im-
portance of the damage evolution because multiple damage mechanisms oc-
cur during the fracture of a composite laminate (e.g. fiber-bridging, fiber
pull-outs), which are actually embedded within the traction separation law
shape at the macro-scale level.

Standard test methods are available to measure the majority of the inde-
pendent ply material properties needed for the definition of damage models
defined at the ply-level. Ply elastic and strength properties can be obtained
according to American Society for Testing Materials (ASTM) for tensile [18],
compression [15] and shear loading [19, 20]. The tensile and shear matrix
fracture toughness can be obtained according to [21] and [83, 105], respec-
tively. The matrix compression fracture toughness is dependent on the shear
matrix fracture toughness and on the fracture angle [101, 102]. There is no
standard for measuring the fiber fracture toughness. However, there exist
proposed procedures in the literature [37, 129]. The same occurs to measure
the traction separation law associated to fiber damage [121, 122].

2.1.2 Interlaminar damage model

The CZM was introduced in the early sixties by Barenblatt [62] and Dug-
dale [55] to model different non-linear processes while avoiding the stress
singularity at the front of an existing crack. Barenblatt focused on brittle
fracture while Dugdale focused on plastic fracture. The CZM assumes that
the entire Failure Process Zone (FPZ) is lumped into the crack plane. This
assumption makes the CZM very efficient in situations that the crack path is
known beforehand. As a consequence, the CZM is generally used to model
delamination which can be used by means of cohesive elements or cohesive
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surfaces.
The CZM concept is sketched in Fig. 2.1. The CZM represents the FPZ

(damaged material) through a fictitious crack (dashed line) able to transfer
cohesive forces from one face to another. These forces are given by the so-
called cohesive law (see Fig. 2.7), which relates them with the Crack Opening
Displacements (COD). The area underlying area is the facture energy. There
exist standard procedures to obtain the interlaminar fracture energy [21, 22,
83]. The Cohesive Zone Length (CZL) is the distance at the crack plane where
the cohesive forces are acting.

Non-damaged 

material

Damaged 

material

Cracked 

material

Elastic zone Cohesive zone Crack - Stress free zone

x

y

G
Ic

t 

dIc

Cohesive zone 
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Fig. 2.1: FPZ of a quasi-brittle material (top), CZM concept (middle) and stress distribution along
the crack path for a constant cohesive law under pure mode I loading (bottom).

The main differences among interlaminar CZM’s from the literature are
the initiation and propagation criteria under mixed mode conditions as well
as the cohesive law shape considered, which controls the damage evolution.

Orifici et al. [120] reviewed the existent formulations to model delamina-
tion based on the CZM approach. Maximum stress criterion [86] or quadratic
nominal stress criterion [59,61,87,134,136,142,154] are generally used. Turon
et al. [155] proposed a thermodynamically consistent damage model in which
the damage initiation criteria is formulated according to the damage propa-
gation (i.e. Benzeggagh and Kenane criterion [27]). Some LVI studies [65, 98]

15



Chapter 2. Literature review

use a CZM [66] based on it. However, failure criteria that predict delami-
nation initiation under mixed-mode conditions have not been fully validated
due to the lack of experimental data [155].

A power law criterion is used for mixed-mode fracture propagation [61,80,
86, 87, 134]. Some authors assume a linear coupling between fracture modes
[77,136], while others [59,65,98,99] use the Benzeggagh-Kenane criterion [27].
Camanho et al. [33] argues that Benzeggagh-Kenane criterion [27] is a suitable
criterion for the critical energy release rate under mixed-mode ratio in epoxy
and PEEK composites.

Most impact models assume a cohesive law with linear softening [59, 61,
77, 87, 134, 136, 142, 154] and some with an exponential one [77, 136]. Linear
softening cohesive laws has a good compromise among accuracy and compu-
tational efficiency to model delamination [5]. The FPZ in composites delami-
nation under pure mode I is usually small unless fiber-bridging mechanisms
are present. Consequently, the effect of the cohesive law shape on the struc-
tural response is negligible as Alfano reported [5]. However, it is less clear
the importance of the cohesive law shape under pure mode II delamination
because the FPZ is usually larger than in mode I. Dourado et al. [54] studied
the importance of the cohesive law shape to predict End Notched Flexural
(ENF) tests. A bi-linear law was needed for HS160REM carbon/epoxy spec-
imens while a linear softening was used for T800H/3900-2. Catalanotti et
al. [38] investigated the effect of through-thickness compressive stress and
friction on mode II interlaminar fracture toughness experimentally and nu-
merically. Linear softening together with frictional effects could predict the
experimental tests of IM7/8552. There is no standard procedure to determine
the interlaminar traction separation law shape. However, Sarrado et al. [138]
devised an experimental procedure to obtain the cohesive law shape of com-
posite bonded joints (i.e. epoxy adhesive). In the case of adhesive bonded
joints the cohesive law shape has an impact on the structural response be-
cause the FPZ is larger than in composite delmaintion. This could be also the
case in composite delamination with significant fiber-bridging.

Turon et al. [156] demonstrated that changes in the local mode ratio dur-
ing the evolution of damage under mixed-mode loading might cause errors
in the energy dissipation calculation. To solve this issue, it was proposed a
relationship between interlaminar strengths and fracture toughness [156] and
more recently a new formulation has been proposed [159].

2.1.3 Modeling strategy

As previously mentioned, there is agreement that the meso-scale provides
enough detail of the stress state for LVI and CAI prediction. The plies are
modeled as a homogeneous orthotropic continuum material and the inter-
faces between plies where delamination can potentially takes place are mod-
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eled by means of cohesive interactions (e.g. cohesive elements, cohesive sur-
faces) as sketched in Fig. 2.2. In fact, the potential interface for delamination
under impact loading only occurs between plies with different fiber orienta-
tion [64]. In LVI and CAI simulations, the CZM is commonly employed only
at the interfaces between plies with mismatch angle. The interlaminar frac-
ture toughness is obtained from standard interlaminar tests [21, 83], which
use 0o specimens. However it is known that depending on the interface
mismatch angle [9,51] and the stacking sequence [133] different interlaminar
fracture toughness can be obtained what is explained by the presence of more
or less fiber bridging and crack migration [127].

Fig. 2.2: Superposition of the finite element meso-scale model idealization with a damaged
composite laminate (source: González et al. [65]).

Within the FEM, the CZM can be used by means of cohesive elements that
computes the openings based on the cohesive element nodal displacements or
by means of cohesive surfaces which compute the openings through a contact
algorithm without requiring perfect match between upper and lower surface
nodes. Depending on the cohesive interaction, different modeling strategies
can be used as discussed in González et al. [65] and sketched in Fig. 2.3. The
use of conforming meshes is the simplest pre-processing approach. Non-
conforming meshes might be used in case of meshing each ply according to
the corresponding fiber orientation to avoid mesh bias effect [63,97]. Cohesive
surfaces can be used in non-conforming meshes straightforwardly while tie
constraints are needed if cohesive elements are used.

Another approach, which is sketched in Fig. 2.4, is the one used by some
authors [2,32,77,136,150] that model the plies according to the fiber direction
with solid elements and insert cohesive elements vertically and horizontally
to model matrix cracking and delamination, respectively. The discontinuity
formed by matrix cracking can be well represented while the approach avoids
large element distortions due to modeling matrix damage through a smear
damage approach. The approach only allow conventional ply orientations
(i.e. 0o, 45o , 90o) due to topological reasons. The authors [2,32,77,136] use a
strength based model to model matrix cracking while damage initiation and
propagation criteria are considered for delamination. Sun and Hallett [150]
used damage initiation and propagation criteria for both intralaminar and
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Fig. 2.3: Strategies for modeling laminate composites at the meso-scale: (a) using conforming
meshes between cohesive elements and continuum elements, (b) using non-conforming meshes
between cohesive elements and continuum elements by means of tie constraints, or (c) cohesive
surfaces and continuum elements that allows conforming and non-conforming meshes. The
variables shown are: h laminate thickness; he cohesive element thickness; hp ply or sublaminate
thickness (source: González et al. [65]).

interlaminar cohesive elements. This approach offers computational bene-
fits because it makes the intralaminar constitutive model simple by only ac-
counting for fiber breakage or even simpler if only linear elastic behaviour is
considered as in [150]. Nevertheless, it is not clear the mesh discretization cri-
terion needed to correctly capture matrix cracking. In fact, the computational
benefits can be compromised if fine discretization is needed.

Fig. 2.4: Sketch of the meso-scale modeling approach used in [2, 32, 136, 150] (source: Bouvet et
al. [32]).

Some authors [53,80,166] neglect modeling the effect of delamination and
only consider the ply damage mechanisms to reduce the computational effort
even though it generally implies a loss of accuracy. Raimondo et al. [132] pro-
posed a constitutive model which takes into account both intralaminar and
interlaminar damage mechanisms for the sake of computational efficiency.
Delamination is assumed to occur at the mid-plane of each ply. Despite the
approximation on the delamination kinematics, they obtained good correla-
tion with the experimental results. Other authors only consider few interfaces
for delamination [86, 87, 109]. It is worth remarking the results from Johnson
et al. [86] which shows the results sensitivity to the number of interfaces
for delamination considered (see Fig. 2.5). Similar results were reported by
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Mendes et al. [109] who considered zero and one interface for delamination
at the mid-plane of the laminate.

Fig. 2.5: Effect of modeling different number of interfaces for delamination (source: Johnson et
al. [86]).

Different cohesive interaction technologies and finite element types are
possible within the FEM to account for intralaminar and interlaminar dam-
age, respectively.

The CZM by means of cohesive elements or cohesive contact surfaces is
widely used in the literature to model delamination.

Cohesive surfaces naturally handles large displacements and non-
conforming meshes. However, they are more expensive computationally
than cohesive elements due to the contact tracking algorithm [99]. Zero-
thickness cohesive elements [3,32,59,61,87,142] and finite thickness cohesive
elements [36, 45, 65, 98, 99, 126, 134] have been mostly used to model LVI in
comparison with cohesive surfaces [67, 99, 154]. This is probably due to the
fact that cohesive elements are easier to implement and develop them than
cohesive surfaces. Within an explicit finite element framework, finite thick-
ness cohesive elements detrimentally affect the element STI due to the small
thickness. Different thickness are used in the literature: 0.001 mm in [36];
0.01 mm in [65, 98, 99, 134]; 0.02 mm in [45]; 0.1 mm [126]. The STI of zero-
thickness cohesive elements is governed by two numerical parameters (see
Eq. (2.2)): the surface density (ρ̄) and the penalty stiffness (Kcoh). Both pa-
rameters affect the model efficiency and accuracy and it is not clear in the
literature how they should be defined.

The penalty stiffness (Kcoh) could be defined as the ratio of the interface
elastic modulus with the interface thickness [46]. Some authors [46, 80] con-
sider the interface thickness as one fifth of the adjacent sublaminate. Turon et
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al. [158] recommended to define the penalty stiffness as Kcoh ≥ 50E22
hp

to avoid
affecting the compliance of the system; E22 is the transverse elastic moduli
and hp the adjacent sublaminate thickness. The aforementioned definitions
lead to penalty stiffness values on the order of 5 × 105 - 1 × 106 N/mm3,
which are values used by other authors with satisfactory results [33,154,158].
Schwab et al. [142] chose the penalty stiffness such as the contact work is
smaller than a tenth of the energy contribution of any other mechanism.
Nevertheless, different values are used in the literature without a clear defi-
nition [32, 59, 61, 87].

On the other hand, zero-thickness cohesive elements have no volume.
Therefore, their mass should be zero. However, they require a mass definition
(i.e. density by unit surface ρ̄) because in a dynamics system all the nodes
need inertia and mass terms, which is usually not reported.

Solid elements with reduced integration are mostly used in LVI simula-
tions [32,53,59,61,65,87,98,99,132,136,154] for their computational efficiency
but also to alleviate locking pathologies while taking into account the three
dimensional stress state. Mechanisms such as the in situ effect [34, 56] or
matrix cracking induced delamination can be naturally captured with appro-
priate failure criteria and accurate stress fields. However, several elements
through the thickness of every ply as well as good aspect ratios may be
needed for accurate transverse stress fields.

Continuum shell elements or also called solid-shell finite elements are
three dimensional elements with a shell-like kinematics but continuum topol-
ogy. Contact takes place on the actual shell surface and thickness varia-
tions based on physical nodes are accounted for. Furthermore, they can be
naturally connected with solid elements since both have displacements as
degrees of freedom. Continuum shell elements allow higher aspect ratios
than solid elements between in-plane and thickness dimensions. Nonethe-
less, the STI of continuum shell elements in explicit simulations can be con-
trolled by the shell element thickness. Continuum shell elements have been
used as an efficient alternative to solid elements for LVI and CAI simula-
tion [3, 36, 116, 117, 131, 134].

Conventional shell elements are structural elements based on plate theory.
Plate theory takes advantage of the small thickness compared to the planar
dimensions to reduce the full three-dimensional solid mechanics problem to
a two-dimensional one. This involves a reduction in terms of computational
cost while being suitable for bending problems because of the rotational de-
grees of freedom. Furthermore, in explicit simulations the element thickness
does not detrimentally affect the element STI of the model. However, conven-
tional shell elements do not provide accurate results for transverse shear and
normal strains [153]. Love - Kirchhoff plate theory neglects transverse shear
deformations while Reissner - Mindlin first order theory assume through the
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thickness constant deformation by considering shear coefficients to correct
the corresponding strain energy terms. Higher order theories have been pro-
posed in the literature to improve the transverse description and a review
can be found in Noor et al. [112]. Despite a poorer transverse description
in comparison with solid or advanced continuum shell elements formula-
tions, conventional shell elements are considered a well balanced combina-
tion in terms of accuracy and computational efficiency [112]. Nevertheless,
contact related issues and poor kinematic description to account for delam-
ination is reported when stacking several conventional shell elements over
each other [31, 48]. This has probably limited its application for the simula-
tion of the LVI and CAI simulation. Johnson et al. used conventional shell
elements for the simulation of LVI on composite laminates [86]. Schwab et
al. [141, 142] used conventional shell elements together with zero-thickness
cohesive elements to model intermediate velocity impact and high energy
impact on glass fabric reinforced epoxy components due to fan blade out.
Shell elements are merged with zero-thickness cohesive element but with ge-
ometrical finite thickness as sketched in Fig. 2.6. The ply thickness is scaled
within the contact formulation in regions of delaminations to avoid inter-
penetration issues when the cohesive elements are deleted. It is a computa-
tionally efficient approach but it is worth noting that non-conforming meshes
cannot be used and inter-ply friction effects could only be accounted for if the
interlaminar damage model is formulated accordingly. Also, the computed
openings (i.e. slidings) might be inaccurate in some situations because the
cohesive elements nodes are placed at the ply or sublaminate mid-plane and
not at the actual interface position. Nevertheless, in situations where damage
is highly localized (e.g. intermediate and high energy impact) or small trans-
verse shear occurs (e.g. very small ply thickness) could be accurate enough.

Fig. 2.6: Modeling strategy employed in Schwab et al. [141, 142] (source: Schwab et al. [142]).

Several modeling strategies are reported in the literature for the simula-
tion of LVI of composite laminates. Despite being accepted the computational
efficiency of conventional shell elements, they have not been used for the sim-
ulation of LVI and the sequential CAI of composite laminates. Furhtermore,
a study that compares the different technologies in terms of computational
performance and accuracy is missing in the literature.
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2.1.4 Finite element discretization

The element size of the model is an important aspect that affects the stress
field predictions and the correct intralaminar and interlaminar energy dissi-
pation. Thus, it is related to model objecitivy.

Intralaminar discretization

The element size is important to accurately predict the stress field but also
for correct intralaminar energy dissipation. Element sizes ranging from 0.5
to 2 mm are typically reported [2, 32, 36, 45, 53, 80, 87, 109, 126, 131, 132, 134,
136]. However, some authors [3, 65, 67, 98, 99, 154] highlight the importance
of avoiding snap-back at the element level for correct intralaminar energy
dissipation despite using a mesh regularization algorithm. The maximum
element size is calculated for each damage mechanism (N = ± 1, ± 2, 6) by
Eq. (2.4).

l∗ 6
2GN EN

X2
N

(2.4)

where l∗, EN and XN are the characteristic element length, the elastic modu-
lus, and the strength for a given damage mechanism N, respectively.

If it is unfeasible the mesh size size prescribed by Eq. (2.4), the snap-back
at the element level can be avoided by reducing the corresponding strength
[26]:

XN =

√
2GN EN

l∗
(2.5)

The damage initiation predictions is affected but the strength modification
ensures correct energy dissipation.

Interlaminar discretization

The interlaminar mesh discretization has to be chosen according to the inter-
laminar FPZ size. The damage initiation and propagation are not correctly
computed if the interlaminar FPZ or also called the CZL is not properly dis-
cretized, as highlighted in Turon et al. [158]. At least three elements are
needed along the CZL for correct interlaminar damage predictions [60, 110].
Turon et al. [158] proposed an engineering solution for the use of coarse
meshes on delamination which consists of reducing the material interface
strength so as to enlarge the interlaminar FPZ while keeping the actual inter-
laminar fracture toughness for correct interlaminar energy dissipation.

The interlaminar FPZ is not generally considered in the selection of the
mesh size but some authors [65, 87, 154] do consider this aspect through the
formula proposed by Rice [135]. However, the expression was derived for
infinite specimens under mode II fracture mode leading to an over-prediction
of the actual CZL.
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2.1. LVI and CAI numerical modeling

Hillerborg [75], one of the pioneers in using CZM with FEM, defined a
characteristic length parameter (lch), which is a material property. Based on
the definition from Hillerborg [75] and the equivalent elastic modulus for
orthotropic materials derived by Sih et al. [146], Yang et al. [170] defined the
characteristic length of orthotropic materials for pure mode I as:

lchI =
GIcE′I

τ2
Ic

=
K2

Ic
τ2

Ic
(2.6)

While the characteristic length for orthotropic materials under pure mode II
loading is defined as [170]:

lchI I =
GI IcE′I I

τ2
I Ic

=
K2

I Ic
τ2

I Ic
(2.7)

where E′i , Gic, τic and Kic are the equivalent elastic modulus, the critical en-
ergy release rate, the strength, and the critical stress intensity factor, respec-
tively. They are defined accordingly to the fracture mode (i = I, II).

The CZL and the characteristic length are proportional, but generally not
the same. In fact, the characteristic length can significantly over-predict the
CZL as demonstrated by the existing analytic [25, 55, 68, 84] and numerical
studies [73, 157].

Within the CZM framework, different cohesive law shapes can be em-
ployed depending on the fracture mechanism to be modeled. The cohe-
sive law shape contains information from physical processes occurring at the
micro-scale. Some examples traditionally used are the constant, linear and
quasi-exponential softening laws (see Fig. 2.7).
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Fig. 2.7: a) Constant b) Linear and c) Quasi-exponential softening cohesive laws. τi − δi repre-
sents traction vs. opening for mode I and shear stress vs. sliding for mode II (i = I, II).

Fig. 2.8 sketches the CZL with the stress profile for a linear and constant
cohesive law shape. It is also sketched how the CZL drastically decreases
with the arm thickness for slender bodies. The COD along the CZL depend
on the cohesive law shape, the characteristic length, and structure geometry
and size.
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distribution under pure mode I loading.
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The CZL has an upper limit in which is not affected by the structure size.
This occurs when the CZL is much smaller than the specimen size.

In Turon et al. [157], the CZL for a crack in an infinite specimen (l∞
czi) was

defined as:

l∞
czI = M∞

I
GIcE′I

τ2
Ic

= M∞
I lchI (2.8)

l∞
czI I = M∞

I I
GI IcE′I I

τ2
I Ic

= M∞
I I lchI I (2.9)

where M∞
i is a dimensionless constant, which depends on the fracture mode

(i = I, II).
The different M∞

i values found in the literature for different cohesive laws
are summarized in Table 2.1.

Reference M∞
i Cohesive Law Mode

Irwin [82] 1/π Constant I

Dugdale [55] and others [24, 57, 84] π/8 Constant I

Palmer and Rice [124] π/8 Constant II

Planas and Elices [84], Bao and
Suo [24]

0.731 Linear softening I

Planas and Elices [84] 2.92 Quasi-exponential softening I

Table 2.1: M∞
i values (i = I, II) proposed in the literature for different cohesive laws in remotely

loaded notched specimens.

The first author who estimated the size of the inelastic zone at the near
field of an existing crack under pure mode I was Irwin [82]. Irwin obtained
M∞

I = 1
π for a crack in an infinite sheet. Irwin’s approach cuts the singularity

off and introduces the yield strength. Then, it is imposed global equilibrium
with the elastic stress distribution from Linear Elastic Fracture Mechanics
(LEFM) on the perpendicular axis to the crack plane by extending the crack
(i.e. effective crack). It does not represent the correct stress distribution at
near tip field but it is an estimation.

Dugdale [55] also investigated plasticity at the front of an existing crack
and the size of the plastic zone under pure mode I. Dugdale considered a
constant cohesive law defined by the yield strength while assuming all plastic
deformation to be lumped into the crack plane. No softening or failure crite-
ria was originally included. Nevertheless, Dugdale’s model becomes equiv-
alent to consider a cohesive zone model with a constant law (Fig. 2.7a) if a
cut-off is added so that the material completely breaks when a critical COD
(δic) is reached. As discussed in Bažant and Planas [25], the constant cohesive
law does not usually give accurate results. However, it has traditionally been
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of particular interest due to its analytic treatment. Dugdale [55] obtained
M∞

I = π
8 under pure mode I loading by linear superposition of the stress in-

tensity factors produced by the external loads and a constant cohesive force
distribution along the CZL. The procedure correctly takes into account the
stress field of a notched specimen subjected to a remote load with cohesive
forces acting along the CZL.

Palmer and Rice [124] followed Dugdale’s procedure to obtain M∞
I I =

9π
32

for the growth of slip surfaces in clays. It is straightforward to obtain M∞
I I =

π
8 for a constant cohesive law.

Smith [57] developed a closed-form expression for a range of constant
piece-wise cohesive law shapes under pure mode I. It was also found M∞

I =
π
8 for a constant cohesive law.

Planas and Elices [84] compared the CZL obtained from constant, linear
and quasi-exponential cohesive laws under pure mode I loading. Dugdale’s
procedure complemented with an asymptotic analysis [130] previously de-
veloped by the same authors was used. The values obtained were M∞

I = π
8

for constant, M∞
I = 0.731 for linear, and M∞

I = 2.92 for quasi-exponential
softening laws. Thus, the CZL is sensitive to the cohesive law shape. This
finding is consistent with the previously obtained by Smith [57].

The CZL for remotely loaded infinite specimens is not generally appli-
cable in the field of composites due to the slender nature of common lami-
nate structures. For instance, in the commonly used Double Cantilever Beam
(DCB) test [21] and the Calibrated End Load Split (C-ELS) test [83] in fracture
mechanics, the CZL might be comparable or larger than the arm thickness.

Out of the infinite limit range, the CZL becomes fracture mode, material
and structure dependent. Therefore, Eqs. (2.8) - (2.9) are not valid any more
because the thickness effect is not taken into account.

Smith [149], using Euler-Bernoulli beam theory and assuming an initial
crack size to be very large compared to the beam height, obtained the follow-
ing analytic solution for the CZL of a homogeneous slender body under pure
mode I:

l0
czI = (M0

I lchI)
1/4 h3/4 (2.10)

where h is the arm thickness, M0
I is a dimensionless constant, which depends

on the fracture mode (i = I,II). Table 2.2 shows the different M0
I values found

in the literature for different cohesive laws.
Smith [149] obtained M0

I = 1/3 and M0
I = 1 for a constant and a linear

softening law, respectively. The stress distribution due to the cohesive law
considered was accurately taken into account by solving the boundary value
problem. If a linearly decreasing stress distribution is assumed along the
CZL, what implies that the cohesive law is not exactly linear, M0

I = 2. The
assumption leads to slightly larger CZL predictions.

Bao and Suo [24] also obtained M0
I = 1/3 for the constant cohesive law
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case. The equilibrium problem was not solved analytically. Instead, a numer-
ical solution of the beam problem was used [152] to relate the critical energy
release rate (GIc) with the CZL (l0

czI).
The CZL of homogeneous slender bodies under mode II was studied by

Massabò and Cox [107] when investigating mode II bridging mechanisms in
delamination. Length scales for linear and power bridging laws were found.
Assuming a cohesive crack in an isotropic material with a constant cohesive
law for the ENF specimen Massabò and Cox obtained M0

I I == 1/2. If a
linearly decreasing stress distribution is assumed, M0

I I becomes M0
I I = 1.

The CZL for mode II scales as:

l0
czI I =

√
M0

I I lchI I h (2.11)

Reference M0
i Cohesive Law Mode

Smith [149] , Bao and Suo [24] 1
3 Constant I

Smith [149] 1 Linear softening I

Massabò and Cox [107] 1
2 Constant II

Table 2.2: M0
i values (i = I, II) proposed in the literature for different cohesive laws in pre-cracked

slender specimens.

The analytic solutions for slender specimens assume a very large crack in
comparison with the specimen height. The CZL changes during crack growth
due to an increase of the structure compliance. Consequently, solutions as-
suming large crack length ensure a correct mesh discretization throughout
the whole analysis.

To the author’s knowledge only two studies in the literature [73,157] have
compared the existent analytic formulas with the CZL obtained from numer-
ical results. Both of them employed a linear softening cohesive law and the
same baseline specimen geometry, laminate and interlaminar properties. In
both studies the CZL was investigated under mode I (i.e. DCB test), mode
II (i.e. ENF test) and Mixed Mode Bending loading (i.e. MMB test) for dif-
ferent arm thickness. Harper and Hallett [73] performed three-dimensional
analyses while in Turon et al. [157] the analyses were two-dimensional under
plane strain conditions. Both compared the numerical results with Eqs. (2.8)
- (2.11).

Both studies concluded that Eqs. (2.8) - (2.11) significantly over-predict the
numerically obtained CZL. Therefore, there is no clear and general expression
to predict the CZL of composites undergoing delamination.

27



Chapter 2. Literature review

2.1.5 Element deletion criterion

Excessive element distortion issues, which can eventually abort the simula-
tion, are common in explicit FEA that involve severe damage as LVI, CAI or
crash simulations. This aspect can significantly compromise the accuracy and
robustness of the numerical models even though it is often not discussed or
clearly reported [2, 36, 45, 61, 109, 126, 132, 134, 150].

There is no clear agreement in the criterion to overcome element distor-
tion issues in the literature. Some authors [3, 65, 80, 98, 99, 142, 154] delete
the continuum elements when a certain value of the fiber damage variable is
reached while others [59, 67, 87] limit the damage variable to a certain value
without element deletion. Depending on the author, the fiber damage vari-
able can grow up to 0.9 [87], 0.99 [59, 142, 154] or 0.999 [3, 65, 67, 98, 99] or
even 1 [80]. However, this is not enough to avoid element distortion issues
in UD laminates because the damaged matrix undergoes severe distortions.
The transverse and shear damage variables are also limited in some studies
to grow up to 0.99 [59,65,98] or 0.999 [3]. Tan et al. [154] deleted the elements
when the shear strain reached 1% or when the fiber damage variable reached
0.99. Lately, Chiu et al. [41] in crash simulations proposed to delete the ele-
ments when the fiber damage variable reached 0.99 or when the determinant
of the deformation gradient reached certain values, which were based on a
sensitivity analysis.

2.2 LVI and CAI on thin ply laminates

Several studies on LVI and CAI of carbon/epoxy laminates at the coupon
level have been reported in the literature during the last years. However,
there exist new trends in terms of manufacturing and materials in the com-
posite material community. In the recent years, a growing interest has been
devoted towards thin ply composite materials. Spread-tow thin-ply technol-
ogy [90] allowed to commercially produce UD and fabric thin ply laminae.
The use of thinner laminae is aimed to produce thinner and lighter lami-
nates but also with improved fiber orientation and uniformity, smoother ply
drops and reduced crimp. It is also motivated by the enhancement of the
damage resistance due to the in situ effect [34, 56], which gains importance
when reducing the ply thickness in multidirectional laminates. The in situ
effect on conventional UD ply laminates has been demonstrated experimen-
tally [30, 40, 125, 143] and numerically [11, 14].

Comprehensive research work on the mechanical performance of UD thin-
ply pre-preg based laminates [147, 172, 173] and UD non-crimp fabrics pre-
preg have been carried out during the last decade [12, 70]. Laminates with
thinner plies generally have better damage resistance and fatigue life than
conventional laminates because sub-critical damage mechanisms (e.g. matrix
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cracking, delamination) occurrence prior to ultimate laminate failure are re-
duced or delayed in many situations [8, 10, 147, 172]. It is known that they
exhibit a more brittle behaviour which can lead to earlier unstable failure
in notched specimens under tensile loads (e.g. open hole tension) [10, 147].
However, there is no clear consensus on the LVI and CAI resistance of thin
ply laminates [8, 64, 137, 144, 147, 173] but it could be said that thicker plies
lead to larger delaminations while thinner plies lead to more fiber breakage
during a LVI event. The aforementioned experimental studies reported that
equal or improved CAI strength are achieved with thinner plies. In any case,
experimental evidences [8, 137, 163, 164, 173] show that laminates with thin-
ner plies behave differently than those with thicker ones under impact loads;
fiber breakage becomes more relevant while matrix cracking is reduced and
the consequent induced delamination is practically suppressed. It is thought
that interlaminar stresses and fiber breakage induce delamination [137, 164].
These observations are reported either for UD [137] and fabric thin ply lami-
nates [164].

Despite the existing interest and the comprehensive experimental research
work done in the last years, less studies are found on the analysis of thin ply
laminates which could bring some insight or support some thoughts based on
experimental observation. A pioneering contribution was from from Olsson
[115]. Olsson [115] presented an analytical model for damage prediction due
to large mass impact in which the same thin-ply weave laminate used in
the present thesis (see Chapter 5) was investigated (i.e. TeXtreme R© 80 g/m2).
The model is applicable until fiber damage initiation. Olsson [115] concluded
that compression fiber failure occurred before delamination and argues that
delamination was likely to be induced by fiber fracture.

There exist two proceedings that report an attempt to model thin ply
laminates computationally [116, 117] in order to overcome the limitations of
analytical approaches. Olsson et al. [117] modeled TeXtreme R© 100 g/m2

cross - ply laminates as layered continuum shell elements, where each ply
in the laminate was modeled as two perpendicular UD layers. The models
under-predicted among 12.5 % to 25 % the energy dissipation. The authors
attributed the disagreement with the experimental data to the fact that de-
lamination was not considered in the model. Later, Olsson et al. [116] mod-
eled the same quasi-isotropic laminate (i.e. TeXtreme R© 80 g/m2) from [115].
Olsson et al. [116] simulated the LVI and tensile after impact with the same
previous approach [117]. However, some interfaces for delaminations were
included (i.e. 2, 4 and 8). Nevertheless, the impact results still deviated with
the consideration of some interfaces for delamination. Olsson et al. [116] con-
cluded that both in-plane damage and delaminations needed to be included
in the model and future work should focus on how this interaction can be ac-
counted for in a sufficiently accurate and computationally efficient manner.

Therefore, thin ply laminates represent a modeling and computational
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challenge due to the large number of plies and interfaces involved.

2.3 LVI and CAI on large composite structures

The literature on LVI and CAI simulation of large composite panels, which
is certainly interesting from an industrial point of view, is much less exten-
sive than at the coupon level. Probably, the computational effort is a limiting
factor. Nevertheless, some peer reviewed works can be found on the LVI sim-
ulation of composite laminate structural components [59,87,134,150] but not
on the sequential CAI. To the author’s knowledge, there is only the reported
work from Psarras et al. [131] on LVI and the sequential CAI simulation of
large composite structures.

Johnson et al. [87] performed LVI on WR E-glass/Derakane 8084 vinyl -
ester marine composite panels. The simulated impact energies ranged from
195 to 7200 J, which fall within the range of VID. Three different plates were
simulated: 228.6 × 177.8 × 6.35 mm3, 1073.2 × 768.4 × 19 mm3 and 1370 ×
1370 × 38 mm3. Solid elements were used with a CDM model inspired in the
plane stress model from Williams et al. [167], which was extended to account
for transverse shear damage. The damage model was fed with data obtained
from cyclic tests. The damage variable was limited to 0.9 without element
deletion and no mesh regularization algorithm was mentioned to be used.
The element sizes employed were 1.6 and 3.2 mm for the smallest and the
largest plates, respectively. Delamination was modeled by means of cohesive
elements but not all the interfaces for delamination were considered for the
medium and large panels. The stiffness and the dissipated energy were not
well captured. However, it should be acknowledged the modeling challenge
due to the panel dimensions and the impact energies, which involved large
numerical models with a large amount of fiber breakage and delamination.

Faggiani and Falzon [59] simulated a LVI of 15 J on a 450 mm by 375
mm Carbon Fiber Reinforced Polymer (CFRP) panel with three I-stiffeners
previously investigated by Greenhalgh et al. [69]. Fig. 2.9 sketches the mod-
eling strategy used. The impact was located in between two stiffeners. A
refined mesh region at the impact location with all the plies and interfaces
for delamination was modeled with reduced integration 3-D solid elements
and zero-thickness cohesive elements. The remaining of the panel was dis-
cretized with a single continuum shell element through the thickness (i.e.
no delamination) which was coupled to the refined region through tie con-
straints. The element sizes used in the model were not reported. The CDM
model from Donadon et al. [53] and the CZM from Camanho et al. [33] were
used to model the intralaminar and interlaminar damage, respectively. A
friction value of 0.5 was assumed for the ply-to-ply contact while 0.3 for the
skin to impactor contact. The damage variables were limited to a maximum
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value of 0.99 without element deletion to avoid excessive element distortion
issues and the crack band model was used [26] for mesh regularization. De-
lamination was the main damage mechanism and only small amount of fiber
breakage was predicted due to the low impact energy. The dissipated energy
was under-predicted approximately about 12% but the projected delamina-
tion area and the overall force - time response were in good agreement with
the experimental ones.

Fig. 2.9: Modeling strategy employed in Faggiani and Falzon [59] (source: Faggiani and Falzon
[59]).

Riccio et al. [134] published a numerical study on a 246 mm by 368 mm
stiffened composite panel with two omega shaped stringers together with
experimental results. The impact was located close to a stiffener. The sim-
ulated impact energies were 15 J and 25 J. Continuum shell elements were
used with Hashin CDM model [1] together with the crack band model [26].
The element size employed was not reported. Finite thickness (i.e. 0.01 mm)
cohesive elements with quadratic nominal stress initiation criterion and a
power law energy based propagation criterion were used to model delami-
nation. The elements were deleted even though the criteria employed was
not reported. A friction value of 0.5 was assumed for all contact pairs. The
overall force - time response was captured. However, the energy dissipated
was over-predicted by 20 % and 50 % in the 15 J and 25 J impact, respectively.

Psarras et al. [131] investigated the compressive residual strength of large
curved stiffened panels after multi-site impacts. Two different laminate thick-
nesses and six multi-site impact scenarios were considered. The panel size
was 1200 mm by 800 mm and the material used was T800/M21. The impact
energies ranged from 25 to 58 J. Continuum shell elements with the plane
stress intralaminar damage model proposed by Iannucci et al. [80] were used.
Cohesive elements were placed among sublaminates to account for interlam-
inar damage. No more details on the model definitions such as the element
size or element deletion were reported. The numerical predictions of the CAI
strength were in good agreement for the thinnest panels (i.e. 1 - 3 %) while
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the strength was over-predicted for the thickest ones (i.e. 19 - 32 %). The ex-
periments demonstrated the influence of impact energy, location and number
of multi-site impacts on the compressive residual strength.

Fig. 2.10: Modeling strategy employed in Sun and Hallett [150] (source: Sun and Hallett [150]).

Recently, Sun and Hallett [150] performed a 15 J LVI simulation on a 450
mm by 375 mm stiffened panel made of HTA/6176C. The plies were modeled
with reduced integration solid elements and cohesive elements were inserted
vertically in each ply to model matrix cracking. Cohesive elements were also
used to model delamination while fiber breakage was neglected. A shell to
solid coupling, which is sketched in Fig. 2.10, was used to model the impact
region in detail with all the plies and interfaces while single conventional
shell elements through the thickness were used out of the impact region for
the sake of computational efficiency. The element size was 0.2 mm in the re-
fined region. The modeling approach was firstly validated with experimental
data and compared with a full 3-D numerical model for ASTM standard spec-
imens [16]. Computational time savings up to 50 % were reported with the
shell to solid coupling approach in comparison with the full 3-D model even
though the results yield to larger contact times and suffer more oscillations.
However, the only reported output of the stiffened panel was the force-time
response with the solid/shell approach, which was in agreement with exper-
imental data.

2.4 Summary

Based on the literature review, it can be concluded that there exists an exten-
sive number of investigations support the CDM and the CZM as frameworks
to model LVI and the sequential CAI test. They mostly use explicit solvers to
circumvent numerical difficulties due to the non-linear nature of the problem.
In general, those studies have successfully reproduced experimental results
at the coupon level by modeling the meso-scale of composite laminates.

32



2.4. Summary

Different modeling strategies with different finite element types and co-
hesive interaction technologies are present in the literature. However, it lacks
a study that compares their accuracy and computational performance. Cohe-
sive elements are preferred over cohesive surfaces to model the interlaminar
behaviour due to their computational benefits. Nevertheless, it is not clear
the definition of some numerical parameters that affect the model accuracy
and computational performance such as the surface density and the penalty
stiffness of zero-thickness cohesive elements. Solid elements are the prefered
option over other finite element types. In fact, conventional shell elements
have not been used to perform both LVI and the sequential CAI simulation
of composite laminates.

The damage evolution of the intralaminar and interlaminar damage mod-
els is generally assumed. However, some studies highlight the importance of
the shape evolution when the FPZ is not negligible.

There is agreement on the definition of the continuum finite elements dis-
cretization to accurately dissipate the intralaminar energy but less attention
is paid on the interlaminar discretization. In fact, numerical investigations
highlight that the existent formula over-predict the actual interlaminar FPZ
of composites undergoing delamination.

Excessive element distortion issues are reported on LVI and CAI simula-
tions. Nonetheless, different criterion are found in the literature without any
clear consensus.

Finally, scarce studies have been found on the LVI and sequential CAI on
thin ply laminates and large composite structures which are computationally
challenging and certainly of clear interest.
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Chapter 3

Failure process zone in
composites delamination

3.1 Introduction

Delamination is one of the damage mechanisms that might occur in polymer-
based laminated composite materials. FPZ development occurs during de-
lamination, where dissipation mechanisms take place. Within a numerical
framework, a fine discretization is needed along the interlaminar FPZ (CZL)
to accurately capture the non-linear stress distribution [155]. Knowing the
CZL beforehand is important for an optimum mesh discretization. Numeri-
cal investigations [73, 157] showed that there is a wide range of situations in
which the CZL cannot be predicted by the existent analytic bounding solu-
tions from Eqs. (2.8) - (2.11). Consequently, it is of interest to determine their
range of applicability.

This chapter studies the range of applicability of the bound solutions in
a parametric manner, which is based on the two governing variables from
Eqs. (2.8) - (2.11); the material characteristic length (lch) and arm thickness
(h). Also, novel empirical formulas are proposed to predict the CZL of ho-
mogeneous orthotropic materials with a crack growing under pure mode I or
pure mode II.

The material characteristic length (lchi) for orthotropic materials defined
by Eqs. (2.6) - (2.7) depends on the equivalent elastic modulus, the critical
energy release rate and the strength. The material characteristic length is
defined accordingly to the fracture mode (i = I, II). The equivalent elastic
modulus (E′i) comes from the relation between the energy release rate and the
stress intensity factor derived by Sih et al. [146] while investigating cracks in
anisotropic bodies. For a crack such as the one in Fig. 2.1 with the principal
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axis (1, 2) coinciding with the coordinate axis (x, y), the equivalent elastic
modulus for mode I and mode II are respectively defined as:

E′I = E1λ3/4

√
2

1 + ρ
(3.1)

E′I I = E1λ1/4

√
2

1 + ρ
(3.2)

where E1 is the Young modulus in the principal direction of the material
(see Fig.2.1), and λ and ρ are two dimensionless elastic parameters used by
Suo [151]. The dimensionless parameters are used here to study the degree
of orthotropy effect on the CZL in a parametric manner. The dimensionless
parameters, λ and ρ, are defined in terms of the engineering elastic constants
[151]:

λ =
E2

E1
ρ =

√
E1E2

2G12
−
√

ν12ν21 (3.3)

The equivalent elastic modulus depends on the stress state. For plane strain
problems, the elastic constants (i.e. E1, E2, ν12, ν21) should be replaced in Eqs.
(3.1) - (3.3) by:

E′1 =
E1

1− ν13ν31
ν′12 =

ν12 + ν13ν32

1− ν13ν31

E′2 =
E2

1− ν23ν32
ν′21 =

ν21 + ν23ν31

1− ν23ν32

(3.4)

3.2 Methodology

3.2.1 Description of the numerical analysis

A numerical investigation was carried out to determine the range of applica-
bility of the CZL analytic bounds defined by Eqs. (2.8) - (2.11). The analytic
Eqs. (2.8) - (2.11) demonstrate that the CZL is governed by the characteristic
length of the material (lchi) and the specimen thickness (h). Therefore, the
numerical analyses were done in a parametric manner in order to investigate
a wide range of scenarios. The CZL was normalized (lczi/lchi) and the scaling
parameter to study was (h/lchi). First of all, isotropic cases were studied. Fi-
nally, the degree of orthotropy was also studied parametrically to determine
the applicability of the current formula to orthotropic materials. This was
done through the dimensionless elastic parameters λ and ρ.

The numerical study is restricted to cohesive laws with linear softening
such as in Fig. 2.7b. Its compromise among accuracy and computational
efficiency [5] has made it widely used to model delamination in composites.
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On the one hand, a total of 75 numerical DCB test were carried out to
check the CZL under pure mode I loading (lczI) and linear softening. A wide
range of degrees of orthotropy (0.08 < λ < 2 and 1 < ρ < 20), specimen
thickness (0.25 < h < 40 mm), and characteristic length (1.6 < lchI < 44 mm)
were considered as Table 3.1 shows.

lchI λ ρ h [mm]

16.92 1 1 1, 2, 4, 7, 10, 25, 40

22.56 1 1 0.5, 1, 2, 5, 10, 15, 30

26.33 1 1 1, 4, 10

33.84 1 1 1, 2, 7, 15, 25, 40

43.43 1 10 0.25, 2, 5, 10, 40

3.13 1 20 0.5, 2, 5, 10, 40

14.64 0.1 1.86 0.5, 1, 2, 5, 10, 40

7.44 0.1 10 0.25, 0.5, 1, 2, 5, 10

5.48 0.1 20 0.5, 1, 2, 5, 10, 40

2.81 0.5 1 0.5, 2, 7, 15

3.19 0.5 10 0.5, 2, 7, 15

3.55 2 1 0.5, 2, 7, 15

2.9 2 10 2, 7, 15

11.42 1.22 0.782 0.25, 1, 10, 40

1.66 0.086 3.5 0.25, 1, 2, 5, 10

Table 3.1: Material properties and specimen thickness used in the parametric study for pure
mode I.

On the other hand, 75 numerical C-ELS test were done to check the CZL
under pure mode II loading (lczI I) and linear softening. Also, a wide range
of degrees of orthotropy (0.08 < λ < 2 and 1 < ρ < 20), specimen thickness
(0.1 < h < 40 mm) and characteristic length (2.2 < lchI I < 30 mm) were
considered as Table 3.2 shows.

The numerical analyses were carried out through the built-in cohesive
surfaces from Abaqus/Standard [1]. They are based on the CZM approach and
contact pair algorithm.

The cohesive surfaces use cohesive laws such as the ones shown in Fig.
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lchI I λ ρ h [mm]

16.97 1 1 0.1, 0.2, 0.3, 0.5, 1, 4, 7, 10, 15, 25, 40

29.71 1 1 0.25, 0.5, 1, 2, 8, 20

12.66 1 10 0.25, 0.5, 1, 2, 8, 20

9.16 1 20 0.25, 0.5, 1, 2, 8, 20

19.97 0.1 1 0.25, 0.5, 1, 2, 8, 20

6.28 0.1 10 0.25, 0.5, 1, 2, 8, 20

8.97 0.1 10 0.25, 0.5, 1, 2, 8, 20

6.61 0.1 20 0.25, 0.5, 1, 2, 8, 20

6.82 0.5 1 1, 2, 5, 10, 20

2.81 0.5 10 1, 2, 5, 10, 20

5.82 2 1 1, 2, 5

2.22 2 10 1, 2, 5, 10, 20

14.65 0.086 3.5 2, 4, 10, 20

Table 3.2: Material properties and specimen thickness used in the parametric study for pure
mode II.

2.7. Damage onset is related to the onset COD (δi0), which depends on the
interface strength (τic) and the penalty stiffness (i.e. δi0 = Kcohτic). A new
crack surface is created when the fracture toughness (Gic) is reached. In
other words, the surface does not transfer stresses any more when the critical
COD (δic) is reached. No damage is considered under compression.

The material is perfectly bonded before crack initiation. Thus, the penalty
stiffness value should be as large as possible so as to not contribute to the
global compliance of the structure. However, it should not be too large to
avoid spurious oscillations [139]. The value adopted for all the analyses pre-
sented here was Kcoh = 106 N/mm3.

The built-in CPE4I element from Abaqus/Standard was used [1]. It is
a plane strain element type with incompatible modes that allow to better
capture bending. A fine discretization is needed to correctly obtain the CZL.
A minimum of ten elements through-the-thickness and along the CZL were
guaranteed for all the analyses presented here.
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3.2. Methodology

3.2.2 Cohesive zone length expression

The present work proposes to use an asymptotic function to interpolate the
intermediate scenarios from the infinite limit Eq. (2.8) to the slender limit
Eq. (2.10) for mode I as follows:

lczI =
(

l0
czI
−nI + l∞

czI
−nI
)− 1

nI (3.5)

where nI is a fitting parameter for a given cohesive law type. The dimension-
less Mj

I value (j = 0, ∞) for Eqs. (2.8) and (2.10) should be defined according
to the cohesive law employed. For a linear cohesive law, M0

I = 1 and M∞
I =

0.731.
Similarly, an asymptotic function to interpolate the intermediate scenarios

from the infinite limit Eq. (2.9) to the slender limit Eq. (2.11) for mode II is
proposed:

lczI I =
(

l0
czI I
−nI I + l∞

czI I
−nI I

)− 1
nII (3.6)

where nI I is a fitting parameter for a given cohesive law type. The dimension-
less Mj

I I value (j = 0, ∞) should be defined in Eqs. (2.9) and (2.11) according
to the cohesive law employed. For a linear cohesive law, M0

I I = 1 and M∞
I I =

9π/32.

3.2.3 Numerical cohesive zone length determination

The numerical CZL is defined as the length from the first node which has
reached the interface strength to the first node with zero stress. Fig. 3.1a
and Fig. 3.1b show the stress distribution along the crack path in a DCB and
C-ELS test, respectively.
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Fig. 3.1: (a) Normal and (b) shear stress distribution along the crack path of a DCB and C-ELS
test, respectively.
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The simulated material is T300/977-2 carbon fiber reinforced epoxy lam-
inate [158]. The material properties are defined in Table 3.3 and the arm
thickness (h) was 1.98 mm. The mesh size employed was 0.05 mm and 0.1
mm for the DCB and C-ELS, respectively. A linear cohesive law was used.
The boundary conditions for the DCB and C-ELS are sketched in Figs. 3.2a
- 3.2b , respectively. The predicted CZL by the DCB and C-ELS numerical
model was 0.75 mm and 5.1 mm, respectively.
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u/2

2h

u/2

l
cz I

(a)

L
a

l
cz II

u

2h

0

(b)

Fig. 3.2: (a) DCB and (b) C-ELS boundary conditions, respectively.

3.3 Results and discussion

3.3.1 Cohesive zone length under pure mode I loading

The solutions from Smith [149] and Planas and Elices [84] were used to feed
Eq. (3.5). The exponent nI from Eq. (3.5) was obtained by least-square fit
from the 75 numerical simulations under pure mode I loading. For a linear
cohesive law, nI = 0.9204. Thus, Eq. (3.5) for pure mode I becomes:

lczI
lchI

=

(( h
lchI

)3/4
)−0.9204

+ 0.731−0.9204

− 1
0.9204

(3.7)

The numerical results are compared in Fig. 3.3 with the proposed Eq.
(3.7), the slender limit Eq. (2.10) from Smith [149] and the infinite limit Eq.
(2.8) from Planas and Elices [84]. The results are presented in a dimensionless
form lczI/lchI vs. h/lchI for the sake of clarity. The CZL is mainly controlled
by the ratio h/lchI . The degree of orthotropy effect on the CZL is properly
taken into account by the characteristic length Eq. (2.6) through the equiva-
lent elastic modulus (E′I) defined in Eq. (3.1).
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Fig. 3.3: Comparison of the numerical results for pure mode I with Eq. (3.7), Smith’s expression
[149] and Planas and Elices’s expression [84].

As pointed out by previous numerical investigations [73, 157], both an-
alytic bounds overestimate the numerical results. Furthermore, there is a
wide range of cases which fall among the two analytic limits. Nevertheless,
the proposed Eq. (3.7) is able to predict with good agreement the whole
considered range. The relative errors of the normalized CZL from Smith’s
solution [149], Planas and Elices’s solution [84] and Eq. (3.7) are shown in
Fig. 3.4.

The relative errors of the analytic bounds are large and controlled by the
ratio h/lchI (Figs. 3.4a - 3.4b). For the studied cases, relative errors below
50 % are found when the ratio h/lchI is larger than 2 and smaller than 0.15
for the infinite and slender case, respectively. Therefore, the existing analytic
formulas for mode I (Eqs. (2.8) and (2.10)) have relative errors larger than 50
% for 0.15 < h/lchI < 2. The proposed Eq. (3.7) always keep the relative error
below 23 %. The average relative error is 8.7 % with a standard deviation of
6.6 %. For the studied cases, the relative errors from Eq. (3.7) are always lower
than those obtained from Smith’s solution and Planas and Elices’s solution.
The degree of orthotropy effect does not show a clear influence on the relative
error.
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Fig. 3.4: Relative error on the CZL prediction for pure mode I with (a) Smith’s expression [149],
(b) Planas and Elices’s expression [84] and (c) Eq. (3.7).

3.3.2 Cohesive zone length under pure mode II loading

The solutions from Massabò and Cox [107] and Palmer and Rice [124] are
used in Eq. (3.6). The exponent nI I from Eq. (3.6) was obtained by least-
square fit from the 75 numerical simulations under pure mode II loading.
For a linear cohesive law, nI I = 1.1587. Thus, Eq. (3.6) can be written as:

lczI I
lchI I

=



√√√√ h

lchI I

√
1 + ρ

2
√

λ

−1.1587

+

(
9π

32

)−1.1587

− 1

1.1587

(3.8)

Based on the numerical results, it has been observed that for orthotropic
materials under mode II loading the normalized CZL (lczI I/lchI I) scales with
(h
√

1 + ρ / lchI I
√

2λ1/2). This essentially means that the mode II equivalent
elastic modulus (E′I I) in the slender limit is equal to the principal one (E1) of
the material (see Eq. (3.2)).
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Fig. 3.5 compares the numerical results with the proposed Eq. (3.8), the
slender limit Eq. (2.11) from Massabò and Cox [107] and the infinite limit
Eq. (2.9) from Palmer and Rice [124]. As in the previous section, the results
are presented in a dimensionless form lczI I/lchI I vs. (h

√
1 + ρ / lchI I

√
2λ1/2)

for the sake of clarity. The degree of orthotropy effect is properly taken into
account by the characteristic length Eq. (2.7) through the equivalent elastic
modulus (E′I I) defined in Eq. (3.2).
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Fig. 3.5: Comparison of the numerical results for pure mode II with Eq. (3.8), Massabò and
Cox’s expression [107] and Palmer and Rice’s expression [124].

The relative errors of the normalized CZL obtained from Massabò and
Cox’s solution [107], Palmer and Rice’s solution [124] and Eq. (3.8) are shown
in Fig. 3.6. Both analytic bounds overestimate the numerical results as found
for mode I and by other authors [73, 157].

The relative errors of the analytic limits are large and they are controlled
by the ratio (h

√
1 + ρ / lchI I

√
2λ1/2). For the studied cases, relative errors

below 50 % are found when the ratio (h
√

1 + ρ / lchI I
√

2λ1/2) is smaller than
0.35 and larger than 0.8 for the slender and the infinite case, respectively.

For the studied cases, the relative errors of the proposed Eq. (3.8) are
always below 11 %. For the studied cases, the average relative error is 2.9
% with a standard deviation of 2.6 %. The relative errors from Eq. (3.8)
are always lower than Massabò and Cox’s [107] and Palmer and Rice’s [124]
solutions.
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Fig. 3.6: Relative error on the CZL prediction for pure mode II with (a) Massabò and Cox’s
expression, (b) Palmer and Rice’s expression [124] and (c) Eq. (3.8).

3.3.3 CZL and interface strength modification

The CZL of a crack propagating in a homogeneous specimen with a linear
softening cohesive law under a pure fracture mode can be estimated by Eqs.
(3.7) and (3.8). Under these hypothesis, it is possible to know beforehand an
optimum mesh when using the CZM within the FEM framework.

An application case of the proposed Eqs. (3.7) - (3.8) is done through a
DCB and C-ELS simulation tests. The simulated material is an unidirectional
T300/977-2 carbon fibre reinforced epoxy laminate from Morais et al. [51],
which was previously simulated by Turon et al. [158]. The DCB specimen
was 150 mm long, with two 1.98 mm thick arms, and it had an initial crack
length of 55 mm. While the C-ELS specimen had the same dimensions with
an initial crack size of 85 mm. The material properties are in Table 3.3.

Based on Eq. (3.7), the CZL for the DCB test with material properties
from Table 3.3 and 1.98 mm arm thickness is 0.681 mm. The CZL numeri-
cally obtained with a mesh size of 0.05 mm is 0.75 mm. In the case of mode
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E1 E2 = E3 G12 = G13 G23 ν12 = ν13 ν23 GIc GI Ic τIc τI Ic

150 GPa 11 GPa 6 GPa 3.7 GPa 0.25 0.45 0.352 N/mm 1.45 N/mm 60 MPa 80 MPa

Table 3.3: Mechanical and interface material properties of T300/977-2 [51].

II, Eq. (3.8) predicts a CZL of 5.133 mm for a C-ELS test with material prop-
erties from Table 3.3 and 1.98 mm arm thickness, while the CZL numerically
obtained with a mesh size of 0.1 mm is 5.1 mm.

The CZL scales with the material characteristic length. Based on this,
Turon et al. [158] proposed an engineering solution for the use of coarse
meshes on delamination which consists of reducing the material interface
strength so as to enlarge the CZL. However, the interface strength only scales
linearly at the infinite limit. Consequently, the scaled interface strength is
overestimated out of the infinite limit range of applicability what leads to
incorrect results and convergence issues.

As sketched in Fig. 3.7 for a C-ELS test, the CZL within a FEM framework
is defined as:

lcz = Nele (3.9)

where Ne and le are the number of damaging elements and their size, respec-
tively.
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Fig. 3.7: C-ELS specimen. Detail of shear stress distribution along the CZL with damaging
cohesive elements. Linear softening cohesive law.

To properly apply the engineering solution proposed by Turon et al. [158]
for any specimen size and material characteristic length Eqs. (3.7) and (3.8)
should be used. A modified cohesive zone length (lczim) is defined according
to the desired number and size of damaging elements. The modified interface
strength (τim) is obtained according to Eqs. (3.7) and (3.8) iteratively. Alter-
natively, it can be used Fig. 3.8, where a strength reduction factor (τim/τic)
is given as a function of the ratio between the specimen thickness and the
original characteristic length (h/lchi) and the desired CZL factor (lczi/lczim).

Fig. 3.9a compares the load displacement curve from the analytic so-
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Fig. 3.8: Strength reduction factor vs. CZL factor for different h
lchi

under (a) pure mode I and (b)
pure mode II.

lution (LEFM) with the numerically obtained using different element mesh
sizes. The stress distribution at the vicinity of the crack tip is not correctly
captured because there are less than three elements along the CZL what leads
to incorrect damage onset and propagation. Furthermore, it is difficult to get
a converged solution. The case with an element size of 5 mm converged be-
cause damping was included. Fig. 3.9b shows the load displacement curve
from the analytic solution (LEFM) and the numerically obtained with mod-
ified interface strength (τim). The interface strength was modified in order
to distribute the damage along three elements (Ne = 3) for different element
sizes (le = 0.25, 0.5, 1, 2, 3, 5 mm).
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Fig. 3.9: DCB test. Load-displacement curves for different element sizes (le) (a) without and (b)
with interface strength modification according to the element size (le) and number of elements
(Ne=3) within the CZL.
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Fig. 3.10: C-ELS test. Load-displacement curves for different element sizes (le) (a) without and
(b) with interface strength modification of interface strength according to the element size (le)
and number of elements (Ne = 3) within the CZL.

As long as the increase of the CZL is not very large, the crack initiation can
still be reasonably predicted. However, this strategy guarantees correct crack
propagation as shown in Fig. 3.9b. The proposed Eq. (3.7) also ensures and
appropriate use of the engineering solution from Turon et al. [155] without
convergence issues.

The same was done for mode II loading. Fig. 3.10a compares the analytic
(LEFM) load displacement response with the numerically obtained without
interface strength modification. Fig. 3.10b compares the response when mod-
ified interface strength is used according to Eq. (3.8). The interface strength
was modified in order to distribute the damage along three elements (Ne =
3) for different element sizes (le = 0.5, 2, 3, 5, 7 mm).

3.4 Conclusions

Numerical analyses were conducted to investigate the range of applicabil-
ity of the existent analytic solutions for the CZL determination, which were
found to be small. Based on the numerical investigation, novel empirical for-
mulas have been proposed to predict the CZL of a delamination growing at
the mid-plane of an homogeneous orthotropic laminate under pure fracture
mode I and mode II for linear softening cohesive laws.

The cohesive zone length for delamination depends on the fracture mode,
the specimen size and the cohesive law shape. The cohesive law shape modi-
fies the dimensionless scalar Mj

i value. Therefore, an appropriate dimension-

less Mj
i value as well as the exponent ni should be used when considering

other cohesive law shapes.
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The conducted numerical study confirms that the structural response is
affected if less than three elements along the CZL are used. The proposed
expressions predict with accuracy the CZL for any characteristic length, spec-
imen thickness, and a wide range of degrees of orthotropy. The estimation
of the CZL allows an efficient mesh discretization within the FEM and CZM
framework. Furthermore, the proposed expressions lead to accurate results
without convergence issues when adopting strategies for the use of coarse
meshes such as interface strength modification.
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Chapter 4

LVI and CAI simulation
methodology

4.1 Introduction

During an impact event both intralaminar (i.e. matrix cracking, fiber break-
age) and interlaminar (i.e. delamination) damage mechanisms take place.
Several studies from the literature support that the meso-scale provides
enough detail of the stress field for LVI and CAI predictions of composite
plates. The literature review done in Chapter 2 showed that there is agree-
ment in using CDM and CZM as frameworks to model intralaminar and in-
terlaminar, respectively. Explicit schemes are generally used in the literature
to avoid some of the numerical difficulties from implicit solvers. However,
impact numerical models require to define many other parameters that affect
the robustness, efficiency, accuracy and objectivity of the numerical models,
which sometimes are not clearly reported.

This chapter aims to propose a modeling methodology in which the rele-
vant definitions are described concisely paying especial attention towards the
computational efficiency. Furthermore, the chapter covers a gap found in the
literature, which is the use of conventional shell elements for the simulation
of LVI and CAI of composite laminates and the comparison among different
finite element types and cohesive interaction technologies commonly used in
the literature.

A numerical benchmark with the proposed methodology is applied in
the UD pre-preg AS4/8552 carbon-epoxy previously studied by González et
al. [65]. González et al. [65] used solid elements with finite thickness cohesive
elements. Abaqus/ Explicit [1] is used to perform the simulations in the
present work.
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4.2 Virtual test set-up

The model reproduces the experimental drop weight impact test from
González et al. [65] according to the ASTM D7136 standard [16] using a
CEAST Fractovis Plus instrumented drop-weight tower with an automatic
anti-rebound impactor system while the CAI tests were performed accord-
ing to the standard ASTM D7137 [17] on a MTS InsightTM Electromechanical
tester with a 300 kN load cell.

4.2.1 Geometry and boundary conditions

The geometry and boundary conditions of the LVI model are shown in Fig.
4.1. The hemispherical impactor of 16 mm diameter and 5 kg is modeled with
rigid elements (R3D4) with a minimum element size of 0.5 mm. An initial
velocity in the out-of-plane direction is assigned to the impactor according
to the impact energy tested. The remaining degrees of freedom are fixed.
The rectangular specimens with a size of 100 × 150 mm2 are placed over a
flat support with a 125 × 75 mm2 rectangular cut-out. The support, which
have all the degrees of freedom fixed, is modeled with rigid elements (R3D4)
that have a maximum element size of 2.5 mm. The specimen is restrained
during the impact by means of four clamps which are cylinder-shaped with
a diameter of 14 mm. They are modeled with rigid elements (R3D4) and all
the degrees of freedom are fixed as in [65] . The maximum element size is of
1 mm.

Fig. 4.1: Sketch of the LVI numerical model boundary conditions.

The geometry and boundary conditions of the CAI model are sketched
in Fig. 4.2. The specimen fixture assembly was placed between plates and
end-loaded under compression until specimen failure. A set of nodes are
defined to represent the experimental set-up, which restrain the out-of plane
and the lateral movement at the knife edges and side clamping zones of the
specimen.
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Fixture top BC

Fine mesh

Coarse mesh

Knife edge BC

Fixture right BC

Fixture bottom BC

Displacement BC

Fig. 4.2: Sketch of the CAI numerical model boundary conditions.

4.2.2 Contact and friction

Contact is simulated by means of the general contact algorithm from
Abaqus/ Explicit [1]. Any possible new contact throughout the simulation
is taken into account. The efficiency of the contact algorithm is improved
by defining the contact pairs known beforehand (i.e. ply by ply). Cohesive
elements are excluded from the contact algorithm because normal contact is
already guaranteed by continuum elements that model the plies. The con-
tact penalty method is used, where the contact stiffness value (Kn) is defined
equal to the penalty stiffness of the cohesive elements (Kcoh) in order to con-
trol the model STI. A sensitivity analysis is carried out to select the optimum
penalty stiffness value in terms of accuracy (i.e. not affecting laminate com-
pliance) and computational performance.

Normal pressures allow frictional forces to arise during an LVI event. Fric-
tion is introduced between all the contacting surfaces through the Abaqus/
Explicit [1] built-in Coulomb friction model. The same friction coefficients
employed in [65] are used: 0.5 between plies and 0.3 between impactor and
plies.

4.3 Plate modeling

The studied case is the 19.3 J impact on the [454/04/ − 454/904]s laminate
with a cured thickness of 5.8 mm from [65]. The plate is modeled at the
mesoscale level, which considers every ply as a homogenized material and all
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the interfaces susceptible for delamination. However, ply clustering is mod-
eled as one ply because experimental evidence shows that delamination does
not occur within ply clusters [65]. The selected laminate with an unusual ply
thickness due to ply clustering is an interesting scenario to assess possible
limitations of plane stress based finite elements, which are recognized as less
accurate due to neglecting out-of-plane stresses and poorer accuracy in the
transverse shear stresses.

A mesh refined region with regular elements, which ensures correct en-
ergy dissipation, is only defined at the impact site to reduce the computa-
tional effort. The models used in the benchmark do not have the elements
oriented according to the fiber direction because they were not sensitive to
finite element mesh orientation (see Section 4.4.4). The refined region has a
size of 84 × 90 mm2 to allow the damage progression during the LVI and
CAI simulation (see Figs. 4.1 - 4.2).

4.3.1 Modeling strategy

Different finite element and interaction technologies are possible in FEA.
Solid elements with reduced integration finite elements are mostly used
[32, 53, 59, 61, 65, 87, 98, 99, 132, 136, 154] while continuum shell elements have
been used as an efficient alternative to solid elements [3,36,116,117,131,134].
Conversely to solid elements, conventional shell elements do not accurately
account for out-of-plane stresses and transverse damage mechanisms are ne-
glected. On the other hand, the plane stress condition makes the constitutive
model simpler than a full 3-D constitutive model required by solid elements.

It is important to take into account the effect of the modeling strategy on
the model STI for the sake of computational efficiency. Conventional shell
elements do not penalize the element STI (Eq. (2.1)) due their element thick-
ness which is usually small in composite laminates in Abaqus/Explicit [1].
Similarly, zero-thickness cohesive elements or cohesive surfaces do not penal-
ize the cohesive STI (Eq. (2.2)) due to element thickness while finite thickness
cohesive elements do penalize it (Eq. (2.1)).

Despite the argued computational benefits from conventional shell ele-
ments, scarce studies are found in the literature to model LVI [86] and non
on the sequential CAI simulation of composite laminates. One possible rea-
son could stem in the reported contact related issues and poor kinematic
description to account for delamination when stacking several conventional
shell elements over each other [31, 48].

These issues can be circumvented by using tie constraints between shell
and Surface Elements (SFM) (Fig. 4.3a) and between shell and cohesive ele-
ments (Fig. 4.3b) [67]. SFM from Abaqus/Explicit [1] allow to create a sheet
of nodes without structural behaviour that allow to use conventional shell el-
ements with cohesive surfaces. However, they require a mass definition (i.e.
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density by unit surface) because in a dynamics system all the nodes need
inertia and mass terms. In fact, its definition is analogous to zero-thickness
cohesive elements.

Surface elements or zero-thickness cohesive elements are placed at the
interface locations and then linked by means of tie constraints to the shell
elements in order to ensure correct kinematic description at the interfaces for
delamination. Surface to surface discretization is used for the tie constraints
and the master surfaces always belong to the shell element surfaces. Shell
elements are defined at the mid-plane, without offset. Both modeling strate-
gies allow mismatching meshes which avoids mesh bias effects [63, 97] and
they allow to account for friction effects by means of tangential contact from
Abaqus/Explicit [1].

Tie
S4R

S4R
Tie

SFM
SFM

(a)

Tie
S4R

COH

S4R
Tie

(b)

Fig. 4.3: (a) Modeling strategy with conventional shell elements (S4R) linked with surface el-
ements (SFM) or (b) zero-thickness cohesive elements (COH3D8) through tie constraints for
correct kinematic description of delamination.

Another aspect to consider when using conventional shell elements is
the shell contact thickness. For instance, the general contact algorithm from
Abaqus/Explicit [1] scales back the contact thickness automatically when a
certain fraction of the surface facet edge length to thickness is exceeded. This
fraction generally varies from 20 % to 60 % based on the geometry of the
element [1]. This is not an issue for the case of Fig. 4.3a because SFM ensure
contact (Fig. 4.4a). However, the reduction of the shell contact thickness
might lead to interpenetration or inaccurate contacts in case of using cohesive
elements when they are deleted (Fig. 4.3b). This can be avoided by using SFM
as shown in Fig. 4.4b to ensure normal contact when the cohesive element
are deleted.

Tie
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SFM

S4R
Tie

SFM

contact thickness

(a)

Tie
S4R

SFM

S4R Tie

SFM
COH

contact thickness
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Fig. 4.4: (a) Sketch of modeling strategy with conventional shell elements (S4R) linked with sur-
face elements (SFM) or (b) zero-thickness cohesive elements (COH3D8) through tie constraints
for correct kinematic description of delamination when contact thickness reduction occurs.
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The finite element type and the cohesive interaction technologies consid-
ered in the benchmark are summarized in Table 4.1. Abaqus built-in finite
element (i.e. solid, continuum shell and conventional shell) and cohesive
interaction technologies (i.e. zero-thickness cohesive elements and cohesive
surfaces). SFM are used in the case S4R CON exactly as done in González
et al. [67] in which it is recommended to leave a small gap (i.e. 1% of ply
thickness) between SFM elements to allow better contact description. This is
actually a recommendation that improves contact description to any contact
problem, especially when using conforming meshes.

For the selected element size, which is discussed in Section 4.3.4, the gen-
eral contact algorithm scales shell contact thickness due to the in-plane size
(i.e. 0.5 mm) to thickness (i.e. 0.725 mm) ratio used. Thus, SFM are needed in
the S4R COH case to guarantee correct contact when the cohesive elements
are deleted.

Case FE type Interaction type Strategy

SC8R CON Continuum shell (SC8R) Cohesive surfaces Fig. 2.3c
SC8R COH Continuum shell (SC8R) Zero-thickness cohesive Fig. 2.3b

elements (COH3D8)

C3D8R CON Solid (C3D8R) Cohesive surfaces Fig. 2.3c
C3D8R COH Solid (C3D8R) Zero-thickness cohesive Fig. 2.3b

elements (COH3D8)

S4R CON Conventional shell (S4R) Cohesive surfaces Fig. 4.4a
S4R COH Conventional shell (S4R) Zero-thickness cohesive Fig. 4.4b

elements (COH3D8)

Table 4.1: Modeling strategies studied in the numerical benchmark.

4.3.2 Intralaminar damage modeling

The CDM model proposed by Maimí et al. [101, 102] is used to model the
intralaminar damage. It is a thermodynamic consistent model with phys-
ically based damage activation functions [49] that is fed from experimen-
tal tests at the lamina level. The model assumes plane stress conditions
and its predictive capability has been proved under different loading con-
ditions [65, 98, 102]. In-plane isotropic plasticity with linear hardening has
been included as shown in Fig. 4.5 to take into account the matrix dominant
behaviour under shear loading. In addition, the fiber damage evolution can
be defined based on the fiber traction or compression separation law (see Fig.
4.6).

The model is used through a user-written subroutine (VUMAT) in
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Fig. 4.5: In-plane shear stress - strain constitutive response with uncoupled linear hardening
and linear softening damage. The parameters G12, SL, SLP, KP, GSL and l∗ are the shear elastic
modulus, the shear strength, the yield stress, the hardening plastic parameter, the shear fracture
toughness and the characteristic element length, respectively.

Abaqus/ Explicit [1]. Four surfaces for damage activation are defined as
FN = φN − rN 6 0. Each damage activation function (FN) accounts for one
damage mechanism: longitudinal (N = XT) and transverse (N = YT) tension,
longitudinal (N = XC) and transverse compression (N = YC). The loading
functions (φN) depend on the effective stresses and material properties. The
internal variables (rN) set the maximum value that the loading functions can
achieve before damage propagation. They are equal to one while the mate-
rial is undamaged. When the loading functions are larger than one, damage
begins and the internal variables are updated to the new damage threshold.
Additionally, the yield function to account for plasticity under shear loading
is defined by FP = |γe

12| − KPγi
12 − SLP/G12 6 0, where γe

12, SLP, G12, KP,
γi

12 are the elastic shear strain, the yield stress, the shear elastic modulus, a
plastic parameter and the isotropic hardening variable, respectively.

The damage activation functions are based on the LARC03 failure criteria
[49] but neglecting the out-of-plane stresses, which are assumed small to
induce damage. The in situ strengths for transverse tensile and compression
are approximated by the analytical expressions from Camanho et al. [34] and
Maimí et al. [103], respectively. The in situ shear strengths from [34] were
adapted to the linear elasto-plastic behaviour considered in the constitutive
model for the sake of consistency. Eqs. (4.1) - (4.3) are the in situ shear
strength for a thick ply (Sis

Lthick
), for a thin ply (Sis

Lthin
) and for an outer thin ply

(Sis
Lout

), respectively.

Sis
Lthick

=

√
(KP + 1)(2S2

LKP + 2S2
L − S2

LP)

KP + 1
(4.1)

Sis
Lthin

=

√
hply(KP + 1)(πS2

LPhply + 8G12GSLKP)

(KP + 1)hply
√

π
(4.2)
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Sis
Lout

=

√
hply(KP + 1)(πS2

LPhply + 4G12GSLKP)

(KP + 1)hply
√

π
(4.3)

where hply is the ply thickness. The in situ strength of an embedded ply
(Sis

Lemb
) is the maximum of Eqs. (4.1) - (4.2).

A benchmark is done with different finite element and interaction tech-
nologies to compare their performance in which 3-D solid elements are used.
The constitutive model is adapted to be used with 3-D solid elements through
defining the damage variables d3, d4 and d5 as a function of other damage
variables as done in previous works [65, 98, 99]:

d3(rXC, rYC) = 1− [1− d1(rXC)][1− d2(rYC)] (4.4)

d4(rYT) = d6(rYT) (4.5)

d5(rXT) = d1(rXT) (4.6)

The damage variables (dN) depend on the elastic and fracture properties as
well as on the traction separation law shape. Dávila et al. [50] found that a
linear traction separation for fiber damage was insufficient to predict the ini-
tiation and propagation of damage in cross-ply Compact Tension (CT) spec-
imens. Multiple damage mechanisms occur during the fracture of a com-
posite laminate (e.g. fiber - bridging, fiber pull - out), which are embedded
within the traction separation law at the macro-scale level. Matrix related
damage mechanisms usually have a relatively small FPZ in comparison with
the specimen size in conventional composite laminates, while the FPZ related
to fiber damage mechanisms can span several millimeters [37, 39]. For these
reasons, the model assumes bi-linear softening for the longitudinal directions
and linear softening for the transverse and shear directions (see Fig. 4.6). The
damage evolution is controlled by the traction separation law shape parame-
ters fXM and HXM (see Fig. 4.6) together with the strengths (i.e. XM, YM, SL)
and fracture toughness (i.e. GXM , GYM , GSL). The traction separation law can
be obtained from CT and Compact Compression (CC) tests according to the
method from [121, 122]. Alternatively, it can be approximated by fitting the
shape to the load displacement curve of the CT and CC test through FEA.

The intralaminar properties of the AS4/8552 carbon-epoxy UD pre-preg
used in González et al. [65] are summarized in Table 4.2. González et al. [65]
tested the ply elastic properties (i.e. E1; E2; G12; ν12; ν23) and ply strengths
(i.e. XT ; YT ; SL) with the same pre-preg roll of the specimens used for the
experimental LVI and CAI tests according to test standard from the ASTM
[15, 18, 19]. The remaining strength properties (i.e. YC; XC) were taken from
Lopes et al. [98] in which the same material system was used. The fracture
toughness properties (i.e. GXT ; GXC ;GYT ; GYC ; GSL ) were not tested and
they were taken from IM7/8552 data [35]. Camanho et al. [35] used inter-
laminar tests to determine mode I fracture toughness (GYT =GIc) [21] and
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Fig. 4.6: Sketch of the bi-linear traction separation law shape used for (a) fiber tension, (b) fiber
compression and (c) transverse and shear damage evolution where M = T, C. Stress vs. opening
displacement.

mode II (GSL =GI Ic) [105] while the proposed test methods (i.e. CC and CT)
by Pinho et al. [129] were used to obtain the fiber fracture toughness. The
expoxy resin Hexply 8552 tested was the same in [35] but not the carbon
fibers. The energy dissipated through fiber breakage in the considered LVI
test should be small compared to other damage mechansims. Thus, the fact
that the fiber fracture toughness was taken from another material system
should have a small effect. No plasticity was considered as in González et
al. [65]. No experimental data was available to feed the fiber traction sep-
aration law shape. Thus, the longitudinal tensile law was selected so as to
resemble the linear-exponential damage evolution used in González et al. [65]
while the longitudinal compression was a bi-linear law with a plateau that
represents the experimentally observed crushing stress as proposed by other
authors [53, 59, 77, 136]. The compression fracture toughness before crushing
is GXC = 106.3 N/mm, which is the area beneath the first branch of Fig. 4.6b.

Density 1.59 × 10−9 t/mm3

Elastic properties E1 = 128000 MPa ; E2 = E3 = 7630 MPa
G12 = 4358 MPa ; ν12 = 0.35 ; ν23 = 0.45

Strength XT = 2300 MPa ; XC = 1531 MPa
YT = 26 MPa ; YC = 199.8 MPa
SL = 78.4 MPa

Fracture toughness GXT = 81.5 N/mm ; GXC = 106.3 N/mm
GYT = 0.28 N/mm ; GYC = 1.31 N/mm
GSL = 0.79 N/mm

Traction separation law parameters fXT = 0.1 ; fXC = 0.1
HXT = 48681 N/mm3; HXC = 9922.7 N/mm3

Table 4.2: Material properties and model parameters of Hexply AS4/8552 used [65] for the
intralaminar damage model.

The in situ strength are summarized in Table 4.3. They are defined accord-
ing to [34,103], Eqs. (4.1) - (4.3) and the material properties from Table 4.2. It
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is worth noting that the formula are meant for lamina that are perpendicular
to each other. A different mismatch angle between plies affects the actual in
situ effect and the formulae do not account for that.

Ply location hply [mm] Yis
T [MPa] Yis

C [MPa] Sis
L [MPa]

Outer plies 0.725 38.75 199.8 78.4
Embedded plies 0.725 61.23 199.8 78.4

Embedded (symmetry) plies 1.45 43.32 199.8 78.4

Table 4.3: In situ strength for the intralaminar damage model.

4.3.3 Interlaminar damage modeling

The built-in CZM from Abaqus/Explicit [1] is used here as interlaminar dam-
age model. It allows to compare the performance of both cohesive interaction
technologies considered in the numerical benchmark using exactly the same
CZM implementation. The model has an unilateral behaviour for mode I
crack propagation in order to account for crack closure and a scalar damage
variable is used to ensure irreversibility of the damage process. The dam-
age evolution is controlled through the cohesive law shape which is assumed
with linear softening. It is considered a quadratic traction criterion for dam-
age initiation and the Benzeggagh-Kenane (B-K) criterion [27] for damage
propagation, which are generally accepted criteria under mixed mode load-
ing.

Turon et al. [156] demonstrated that changes in the local mode ratio dur-
ing the evolution of damage under mixed-mode loading might cause errors
in the energy dissipation calculation. To solve this issue, it was proposed a
relationship between interlaminar strengths and fracture toughness. How-
ever, this relationship cannot be derived for the used CZM due to the lack of
details on the employed formulation.

The interlaminar material properties used from González et al. [65] are
summarized in Table 4.4.

GIc [N/mm] GI Ic [N/mm] τIc [MPa] τI Ic [MPa] η

0.28 0.79 26 78.4 1.45

Table 4.4: Interface material properties of Hexply AS4/8552 [65].

Penalty stiffness

Cohesive elements or cohesive surfaces are commonly used to model de-
lamination. The thickness of the cohesive element should be fairly small
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to represent the actual resin reach interface where delamination takes place
among plies. In fact, it is typically assumed to be negligible. This assumption
is very convenient for explicit analyses to avoid affecting the STI. However,
zero-thickness cohesive element or cohesive surface lead to the definition of a
penalty stiffness value. The penalty stiffness can affect the accuracy but also
the computational performance through the STI (see Eq. (2.2)).

The penalty stiffness could be seen as spring series in which the equiva-
lent stiffness of the system is:

1
Ecoh

eq
=

nplies

∑
n=1

hi
Ei

+
nint

∑
n=1

1
Ki

(4.7)

and Ecoh
eq should approach to the equivalent stiffness of the system without

cohesive elements Eeq:

1
Eeq

=

nplies

∑
n=1

hi
Ei

(4.8)
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Fig. 4.7: a) System without cohesive elements and b) with cohesive elements.

The penalty stiffness value depends on the number of interfaces consid-
ered, the elastic properties of the surrounding plies but also on the loading
conditions. The loading conditions make difficult to have a general closed-
form expression for the penalty stiffness value. Instead, a sensitivity analysis
can be done in the elastic regime to choose the minimum penalty stiffness
value that converges to the same elastic response. Thus, compliance is not
added into the model while the detrimental effect on the STI is mittigated. It
is also worth noting that the penalty stiffness should have the same value for
mode I and mode II to avoid changes in the local mode ratio under mixed-
mode conditions unless a consistent formulation is used [159].
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A sensitivity analysis on the effect of the penalty stiffness value was done
to obtain an optimum value. Fig.4.8 shows little effect on the elastic response
for penalty stiffness values larger than 2.5×104 N/mm3.
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Fig. 4.8: Sensitivity analysis of the penalty stiffness (K = Kn = Kcoh) value on the elastic response.

SFM surface density

The strategy described in Fig. 4.3a (Section 4.3.1) that combines conventional
shell elements with cohesive surfaces by means of SFM requires the defini-
tion of a density by unit surface (ρ̄s f m). Their mass can not be zero within
an explicit FEM framework because in a dynamics system all the nodes need
inertia and mass terms. SFM surface density (ρ̄s f m) can be defined by dis-
tributing the mass of the laminate through the elements in order to maximize
the STI of the model while keeping its mass.

The density by unit surface (ρ̄s f m) of SFM is defined as:

ρ̄s f m =
fs f mρhlam

2(nint + 1)
(4.9)

where 0 < fs f m < 1, ρ is the actual material density, nint is the number of
interfaces for delamination modeled and hlam is the laminate thickness.

The density of conventional shell elements is modified (ρmod) to keep the
total mass of the system:

ρmod = ρ(1− fs f m) (4.10)

The optimum mass distribution factor ( fs f m) in case of using continuum
and SFM elements is obtained by equaling Eqs. (2.1) - (2.2):

4telem

4tcoh
int
' 1 (4.11)

Nevertheless, contact can also occur between SFM and shell elements un-
less shell contact thickness is scaled down. Thus, the model STI can be also
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controlled by the contact STI (4tcon
int ). In that case, the optimum mass distri-

bution factor ( fs f m) should be obtained by equaling Eqs. (2.2) - (2.3):

4tcon
int

4tcoh
int
' 1 (4.12)

The factor ( fs f m) which maximizes the STI using the same cohesive and
contact penalty stiffness values (K = Kcoh = Kn) is the lowest fs f m obtained
from Eqs. (4.11) - (4.12).

fs f m = min

(
2(nint + 1)K(l∗α)2

2(nint + 1)K(l∗α)2 + Ehlam
,

2(nint + 1)hmin
elem

2(nint + 1)hmin
elem + hlam

)
(4.13)

where E is the maximum component of the constitutive tensor, and α =√
1 + ζ2 − ζ with ζ being the fraction of critical damping that prevent fi-

nite elements from ringing or even collapsing in the highest element fre-
quency [1]. l∗ is the characteristic element length, which is related to the
shortest finite element length. nint is the number of interfaces for delamina-
tion modeled, hmin

elem the minimum element thickness modeled and hlam is the
laminate thickness.

It is worth to keep in mind that SFM are not needed for volumetric el-
ements. In case of using SFM in combination with zero-thickness cohesive
elements due to shell contact thickness reduction see Eqs. (4.17) - (4.20).

Zero-thickness cohesive elements surface density

Similarly to SFM, zero-thickness cohesive elements have no volume but
within an explicit FEM all the nodes need inertia and mass terms. Zero-
thickness cohesive elements surface density (ρ̄) is also defined by distributing
the mass of the laminate through the elements (i.e. continuum and cohesive
elements) in order to maximize the STI of the model while keeping its mass.
It is worth noting that this can be applied to any kind of continuum element
such as solid and continuum shell elements.

The density by unit surface (ρ̄coh) of the zero-thickness cohesive elements
is defined as:

ρ̄coh =
fcohρhlam

nint
(4.14)

where 0 < fcoh < 1, ρ is the actual material density, nint is the number of
interfaces for delamination modeled and hlam is the laminate thickness.

The modified continuum element density (ρmod) is defined to keep the
total mass of the system as:

ρmod = ρ(1− fcoh) (4.15)
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The optimum mass distribution factor ( fcoh) in case of using continuum
and zero-thickness cohesive elements is obtained from Eq. (4.11).

Nevertheless, contact is also considered in LVI simulations to avoid in-
terpenetration and to account for friction effects. Thus, the model STI can
be controlled by the contact STI (4tcon

int ). In that case, the optimum mass
distribution factor ( fcoh) should be obtained from Eq. (4.12).

The factor ( fcoh) which maximizes the STI with same penalty stiffness
values (K = Kcoh = Kn) is the lowest fcoh obtained from Eqs. (4.11) - (4.12).

fcoh = min

(
nintK(l∗α)2

nintK(l∗α)2 + Ehlam
,

ninthmin
elem

ninthmin
elem + hlam

)
(4.16)

elements from ringing or even collapsing in the highest element frequency
[1]. l∗ is the characteristic element length, which is related to the shortest
finite element length. nint is the number of interfaces for delamination mod-
eled, hmin

elem the minimum element thickness modeled and hlam is the laminate
thickness.

In the strategy from Fig. 4.4b the mass distribution is among cohesive
elements, SFM and continuum elements. The modified continuum element
density (ρmod) is defined to keep the total mass of the system as:

ρmod = ρ(1− fcoh − fs f m) (4.17)

fs f m =
2(ninter + 1)(1− fs4r)

3ninter + 2
(4.18)

fs4r =
Ehlam

2K(l∗α)2(ninter + 1) + Kninter(l∗α)2 + Ehlam
(4.19)

fcoh =
nint fs f m

2(nint + 1)
(4.20)

The density by unit surface of the cohesive elements (ρ̄coh) and SFM (ρ̄s f m)
are defined by Eq. (4.14) and Eq. (4.9), respectively.

Table 4.5 summarizes the densities employed for all the cases considered
in the numerical benchmark.

4.3.4 Element size

The element size of the model is important to ensure correct intralaminar and
interlaminar energy dissipation.

CDM should avoid snap-back at the element level for correct intralaminar
energy dissipation even though a mesh regularization algorithm is used as
previously done by some authors [65,67,98,99,154]. In fact, snap-back should
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Case ρmod [t/mm3] ρ̄s f m [t/mm2] ρ̄coh [t/mm2]

SC8R CON 1.59 ×10−9 - -
SC8R COH 1.52 ×10−9 - 6.42 ×10−11

C3D8R CON 1.59 ×10−9 - -
C3D8R COH 1.52 ×10−9 - 6.42 ×10−11

S4R CON 1.44 ×10−9 6.08 ×10−11 -
S4R COH 1.38 ×10−9 5.85 ×10−11 5.85 ×10−11

Table 4.5: Optimized densities employed in the numerical benchmark.

be avoided within the first branch of the traction separation law because of
its importance on the structural strength [88,89,104]. The maximum element
size is assessed for each damage mechanism (N) to avoid snap-back within
the first branch of the traction separation law by Eq. (4.21) [106].

l∗ 6
EN
HN

(4.21)

where l∗, EN and HN are the characteristic element length, the elastic mod-
ulus, and the first branch slope of the traction separation law for a given
damage mechanism (N), respectively. In the case of a linear softening law
HN = X2

N/2GN .
The interlaminar mesh discretization has to be chosen according to the

interlaminar FPZ size. In Chapter 3 was shown that the damage initiation
and propagation are not correctly computed if the FPZ is not properly dis-
cretized. It was confirmed that 3 elements along the FPZ are enough for
correct interlaminar damage predictions. Some LVI studies [65, 87, 154] used
the formula proposed by Rice [135] to estimate the interlaminar FPZ. Nev-
ertheless, the expression was derived for infinite specimens under mode II
fracture mode. Thus, it can provide an over-prediction of the actual FPZ. A
conservative estimation of the interlaminar FPZ can be obtained by using the
Eqs. (3.7) - (3.8) from Chapter 3 and considering the smallest ply thickness
modeled.

Table 4.6 shows the maximum element size for each damage mechanism
based on Eq. (4.21). Based on the properties from Table 4.4 and considering
a ply thickness of 0.725 mm the interlaminar FPZ for pure fracture mode I
and mode II are 0.73 mm and 2.06 mm according to Eqs. (3.7) - (3.8), re-
spectively. The actual interlaminar FPZ measured in the LVI and CAI models
were approximately 2 mm and 1.5 mm, respectively. LVI is mainly governed
by mode II delamination while CAI has mode mixity what reduces the inter-
laminar FPZ in comparison of LVI.
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Damage mechanism Maximum element size [mm]

XT 2.63
XC 12.9
YT 1.14
YC 0.5
SL 1.1

Table 4.6: Maximum intralaminar element size for each damage mechanism.

The chosen element size for the coarse region is 5 mm while 0.5 mm for
the refined region was 0.5 mm. Thus, correct intralaminar and interlaminar
energy dissipation is ensured.

4.3.5 Element deletion criterion

Excessive element distortion issues, which can eventually abort the simula-
tion, are common in FEA that involve severe damage as LVI, CAI or crash
simulations. This aspect can compromise the accuracy and robustness of the
numerical models.

The damage variable usually depends on the material properties, the trac-
tion separation law shape and the element size in case of using a regulariza-
tion procedure such as the crack band model [26]. Therefore, special attention
must be paid on the selected damage variable for element deletion because
the energy dissipated could be far from the actual material fracture tough-
ness. If the element is not deleted but the damage variable is limited to grow
to a too low value the global response can be affected because the remaining
element stiffness absorbs elastic energy. Furthermore, the residual stresses
actually translate into a permanent bridging mechanism behind the crack tip
which affects the crack progression.

In the numerical benchmark, the continuum elements are deleted when
the fiber damage variable is equal to one in order to dissipate the total frac-
ture energy. The cohesive elements are also deleted when the damage vari-
able is equal to one. However, matrix degradation has to be controlled to
avoid element distortion issues. Different approaches were considered with-
out success (i.e. maximum strains, strain rate, strain gradient). Finally, the
criterion adopted is to define a residual stiffness for the matrix (Er). The ma-
trix damage variables are limited (i.e. d2=0.987 , d6=0.977) so that the matrix
never has a stiffness lower than 100 MPa (e.g. Er = (1− d2)E2 = 100 MPa).
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4.4 Results and discussion

The most relevant numerical results from the LVI and CAI numerical bench-
mark are presented in this section. They are presented together with the
experimental data. Furthermore, sensitivity analyses are presented to study
the effect of the mass distribution for STI optimization and the matrix dam-
age variable threshold.

4.4.1 LVI and CAI results

The force - displacement and the energy absorbed by the plate is compared
among the different finite element types and cohesive interaction technolo-
gies with the experimental results in Figs. 4.9 - 4.10, respectively. Table 4.7
compares the numerical results with the experimental ones in terms of de-
lamination threshold (Fd), maximum force (Fmax), maximum displacement
(Umax), energy dissipated (Edis), projected delamination area (Ad) and CAI
strength (FCAI).
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Fig. 4.9: Comparison of the force - displacement response for different finite element types and
cohesive interaction technologies.

The elastic regime and delamination threshold is well predicted by all the
cases with relative differences below 5 %. However, conventional shell el-
ements show a stiffer response when compared with solid and continuum
shell elements because they do not account for out-of-plane compliance. The
maximum displacement is close to the experimental one for all the cases with
differences below 3 %. However, larger differences in the prediction of the
maximum force are found. All the models tend to over-predict the maxi-
mum force about 10 %. Differences among modeling strategies are found
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for the predicted dissipated energy and projected delamination area. These
predictions are more influenced for the chosen element type rather than the
cohesive interaction technology. For instance, conventional shell elements
under-predict the dissipated energy about 27.3 % while solid elements 15.8
%. This could be due to the fact that conventional shell elements do not ac-
count for out-of-plane stresses, which is more relevant for thick plies than in
standard ply thickness. The continuum shell element suffered from numeri-
cal issues which stopped prematurely the simulations regardless the interac-
tion technology. Only for large residual stiffness values (i.e. Er = (1− d2)E2
= 400 MPa) the simulations could be finished.
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Fig. 4.10: Comparison of the energy absorbed among different finite element types and cohesive
interaction technologies.

The projected delamination area obtained using zero-thickness cohesive
elements and cohesive surfaces are shown in Figs. 4.11 - 4.12, respectively.
Conventional shell elements over-predict the projected delamination area by
25 % (i.e. S4R CON) and 14 % (i.e. S4R COH) while solid elements are in
better agreement with the experimentally obtained (i.e. 3 %). However, it is
worth noting that the S4R CON was able to predict the largest delamination
that occurred in the 45o direction at the back - face. This could be explained
by the fact that conventional shell elements correctly capture bending with
only one element per ply and cohesive surfaces are able to better capture
large displacements than cohesive elements.

The CAI experimental test used the displacement measurement from the
machine. Thus, the CAI set-up added some compliance, which was corrected
as done in [50]. The CAI force - displacement response is shown in Fig.
4.13. All the modeling strategies considered predict rather accurately the
experimental CAI strength. Relative errors of -3.6 %, 2.2 %, -3.6 % and -1.9
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(a)

4016.54 mm
2

(b)

Fig. 4.11: (a) Projected delamination area of conventional shells and (b) solid elements with
zero-thickness cohesive elements. The experimental projected delamination area is the dashed
line.
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3924.71 mm
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Fig. 4.12: (a) Projected delamination area of conventional shells and (b) solid elements with
cohesive contact surfaces. The experimental projected delamination area is the dashed line

% were obtained for S4R COH, S4R CON, C3D8R COH and C3D8R CON,
respectively. The initial stiffness is well captured for all the cases. However,
solid elements show a loss of stiffness before failure due to delamination
propagation.

The computational times for each finite element type and cohesive in-
teraction technology during the LVI and CAI simulation are summarized in
Table 4.8. The theoretical STI and the actually computed STI by Abaqus are
very close. However, it can be seen that there is a small knock-down factor
used by the software. The features of the computer used are: two socket
work station (ASUS Z10PE-D16WS Motherboard), with two CPU Intel Xeon
Processor E5-2687Wv3 with 3.1 GHz CPU frequency (10 cores, 160W power,
and 2133 DDR4 type memory); solid-state disc of 512 GB and 32 GB RAM for
each CPU. All the simulations were computed using 20 CPU’s.

The LVI simulation time of conventional shell elements with zero-
thickness cohesive elements were 1.54 times faster than using them with cohe-
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Fig. 4.13: Comparison of the force - displacement CAI results for different finite element types
and interaction technologies.

Case Fd [kN] Fmax [kN] Umax [mm] Edis [J] Ad [mm2] FCAI [kN]

Experimental 4.41 7.74 3.72 12.03 3898.3 105.32

S4R CON 4.41 8.66 3.66 8.58 4885.19 107.7
S4R COH 4.46 8.65 3.64 8.87 4455.36 101.54

C3D8R CON 4.2 8.65 3.81 10.23 3924.71 103.29
C3D8R COH 4.2 8.34 3.81 9.99 4016.54 101.51

SC8R CON 4.15 - - - - -
SC8R COH 4.25 - - - - -

Table 4.7: Comparison of experimental and numerical results in terms of delamination threshold
(Fd), maximum force (Fmax), maximum displacement (Umax), energy dissipated (Edis), projected
delamination area (Ad) and CAI strength (FCAI ) for the studied cases.

sive surfaces. Similarly, solid elements with zero-thickness cohesive elements
were 1.3 times faster than using them with cohesive surfaces. Nevertheless,
larger differences in the computational time are found depending on the el-
ement type. Conventional shell elements were up 3.3 times faster than solid
elements in the case of using zero-thickness cohesive elements. In fact, the
simulation time difference between solid elements and conventional shells
should be larger because selective element mass scaling was applied for STI
lower than 1 × 10−8 s in order to finish the simulations of solid elements in
a reasonable time (see Fig. 4.14).

Table 4.8 shows that solid and continuum shell elements have a larger
initial STI than conventional shell elements. However, the computational
time of conventional shell elements is the lowest. Conventional shell elements
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Case Theoretical initial Computed initial LVI CPU time [h] CAI CPU time [h]
STI [s] STI [s]

S4R COH 4.79 ×10−8 4.51 ×10−8 13 5.5
S4R CON 4.9 ×10−8 4.75 ×10−8 20 13

C3D8R COH 5.07 ×10−8 4.73 ×10−8 43 23
C3D8R CON 5.18 ×10−8 5.01 ×10−8 56 28

SC8R COH 5.07 ×10−8 4.73 ×10−8 Not finished Not done
SC8R CON 5.18 ×10−8 4.99 ×10−8 Not finished Not done

Table 4.8: Comparison of the initial STI and computational time required for the LVI and CAI
numerical simulation for different finite element types and cohesive interaction technologies.

were also faster than continuum shell elements before the simulation aborted.
This happens because they have a simpler constitutive behaviour but also
because their STI is less affected during the simulation. Volumetric finite
elements suffer more element distortion than plane elements as shown in Fig.
4.14. It is worth noting that in the studied case the element STI was controlled
by the in-plane finite element size while for standard ply thickness the STI
is often controlled by the ply thickness. Thus, the computational benefit of
using conventional shell elements in situations where the element thickness
is controlling the model STI will be larger.
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Fig. 4.14: Comparison of the STI evolution during the LVI among different finite element types
and cohesive interaction technologies.
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4.4.2 Effect of mass distribution for STI optimization

The effect of the mass distribution effect for STI optimization is analyzed
in terms of accuracy and computational effort. Different mass distributions
could affect the inertia of the system. However, the results are not affected
because the actual mass of the system is always kept and composite thickness
is usually small. The S4R CON case is analyzed for three different mass
distribution factors ( fs f m); the optimum one (i.e. 0.094), 0.5 and 0.9. Fig. 4.15
compares the force-displacement and the force-time response.
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Fig. 4.15: (a) Mass distribution effect on the force-displacement and b) force-time response pre-
diction. S4R CON.

Table 4.9 compares the initial STI and the computational time for the dif-
ferent studied cases.

Case fs f m ρmod [t/mm3] ρ̄s f m [t/mm2] Computed initial STI [s] LVI CPU time [h]

S4R CON 01 0.094 1.44 10−9 6.08 10−11 4.51 10−8 29
S4R CON 05 0.5 7.95 10−10 2.88 10−10 3.52 10−8 41.5

S4R CON 09 0.9 1.59 10−10 5.19 10−10 1.58 10−8 157.5

Table 4.9: Comparison of the initial STI, modified density and computational time required for
the case S4R CON depending on the mass distribution factor (fs f m).

4.4.3 Effect of element deletion criterion

Fig. 4.16 shows the effect of the residual stiffness for the matrix value (Er) on
the LVI and CAI response.

The results from Figs. 4.16 - 4.17 are for the S4R COH case. It can be
seen that for a residual stiffness for the matrix lower than 200 MPa the LVI
and CAI results converge to similar results. Fig. 4.17 shows the STI evolution
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Fig. 4.16: (a) Effect of the residual stiffness for the matrix on the LVI and b) CAI force - displace-
ment response. S4R COH.

during the LVI simulation depending on the matrix residual stiffness. The
lower the residual stiffness the lower the STI during the LVI due to element
distortion. In fact, the STI for Er = 500 MPa is fairly constant throughout the
LVI simulation due to the low element distortion allowed.
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Fig. 4.17: Effect of the residual stiffness for the matrix on the STI evolution during the LVI
simulation. S4R COH.

4.4.4 Effect of mesh orientation

As mentioned before, the models were not sensitive to finite element mesh
orientation. Fig. 4.18 shows that there is no effect due to mesh orientation on
the force-displacement response. Delamination is the main damage mech-
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anism here. Probably, mesh orientation effect would be more noticeable if
fiber breakage was present. Fiber damage ususally involves more energy dis-
sipation than matrix cracking or delamination. Thus, it could be expected
that little differences due to mesh orientation could have a larger impact on
the results.
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Fig. 4.18: Mesh orientation effect on the force-displacement prediction.

4.5 Conclusions

A methodology to perform LVI and the sequential CAI was proposed. Nu-
merical impact models require the definition of several parameters that affect
their efficiency, accuracy, robustness and objectivity. The key parameters were
described concisely and the selected values have been well justified as well
as their sensitivity discussed. Especial attention has been devoted towards
definitions that affect the computational performance such as the penalty
stiffness, the surface density of cohesive interactions, the finite element type,
and the cohesive interaction technology.

The methodology was applied at the coupon level for an impact energy
that falls within the range of BVID with the aim to systematically study the
computational performance and numerical predictions among different fi-
nite element types and cohesive interaction technologies. A laminate with
unusually thick plies was selected to highlight possible limitations of plane
stress based finite elements. The use of conventional shell elements together
with zero-thickness cohesive elements proved to be the fastest approach with
relative errors on the CAI strength below 4 %. However, conventional shell el-
ements were less accurate in the LVI energy dissipation prediction than solid
elements. They neglect the of out-of-plane stress, which are important for
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damage predictions in thick ply laminates, and they have poorer transverse
shear description.

Furthermore, it was discussed the importance of the element deletion cri-
terion. It is an aspect that can affect the accuracy, computational performance
and robustness of the models. Element distortions are mainly controlled by
matrix damage which easily lead to large element distortion during impact
simulations. For this reason, the criterion adopted is based on leaving a resid-
ual stiffness for the matrix to avoid undesired matrix excessive deformations
that eventually abort the simulations. Indeed, conventional shell elements
proved to be the most robust finite element for the studied case allowing
residual matrix stifness of 1 MPa. This is related to the fact that they suffer
less element distortions.
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Chapter 5

LVI and CAI of thin ply
laminates

5.1 Introduction

Spread-tow thin-ply technology [90] allows to commercially produce unidirec-
tional and fabric thin ply laminae. The use of thinner laminae is aimed to pro-
duce thinner and lighter laminates but also with improved fiber orientation
and uniformity, smoother ply drops and reduced crimp. It is also motivated
by the enhancement of the damage resistance due to the in situ effect [34,56],
which gains importance when reducing the ply thickness in multidirectional
laminates. The in situ effect on conventional UD ply laminates has been
demonstrated experimentally [30, 40, 125, 143] and numerically [11, 14].

A disadvantage of traditional fabric reinforced composites is the waviness
of the fibers and resin rich pockets in the crimps, which results in lower in-
plane stiffness and strength [28, 165]. Spread-tow fabrics plies can have thin-
ner and wider fiber bundles. These lead to a flatter fabric with lower crimp
frequency and significantly smaller crimp angles. Thus, the void content and
resin rich areas are considerably reduced and the mechanical properties im-
proved in comparison with traditional fabric reinforced composites [58]. Tex-
tile based fiber reinforcements possess important features for their applica-
tion in the aerospace and automotive industry. They have excellent drape that
allows faster manufacturing process as liquid molding techniques and they
offer cheaper manufacturing than UD conventional pre-impregnated plies be-
cause of their simpler handling and storage [10]. Furthermore, some authors
recognizes textile fabrics with better impact [23,91] and delamination growth
than conventional UD composites [6, 91].

Thin ply laminates generally have better damage resistance and fatigue
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life than conventional laminates because sub-critical damage mechanisms
(e.g. matrix cracking, delamination) occurrence prior to ultimate laminate
failure are reduced or delayed in many situations [8, 10, 147, 172]. How-
ever, it is known that they have a more brittle failure which can lead to
earlier unstable failure in notched specimens under tensile loads (e.g. open
hole tension) [10, 147]. Experimental evidence shows that laminates with
thinner plies behave differently than those with thicker ones under impact
loads [8, 137, 173] and indentation tests [163, 164]. In thin ply laminates,
fiber breakage becomes more relevant while matrix cracking is reduced. It
is thought that interlaminar stresses and fiber breakage induce delamina-
tion [137,164]. These observations are reported either for UD [137] and fabric
thin ply laminates [164].

Numerical simulations can help in the understanding of the damage
sequence of polymer based composite laminates during an impact event,
which is a difficult experimental task when dealing with a large number
of plies. Some works attempted to model thin ply laminates computation-
ally [116,117]. However, they did not succeed in capturing the damage mech-
anisms to reproduce the experimental data. Olsson et al. [116,117] attributed
the disagreement to the fact that only few interfaces for delamination were
considered in the models. Olsson et al. [116,117] concluded that further work
should focus on how the interaction between intralaminar and interlaminar
damage can be accounted for in a sufficiently accurate and computationally
efficient manner.

The aim of this chapter is to develop an efficient numerical model based
on the methodology described in Chapter 4 to better understand the dam-
age mechanisms and their sequence during the LVI and the CAI test of the
experimentally tested spread-tow fabric composite material trademarked as
TeXtreme R© produced by Oxeon. Besides the impact and CAI tests, an ex-
tensive experimental campaign was conducted to characterize the material at
the ply level.

5.2 Virtual test set-up

The models aim to reproduce the performed experimental LVI and CAI tests
on TeXtreme R© 80 g/m2. The experimental drop weight impact tests were
according to ASTM D7136 standard [16]. The tests were performed using a
CEAST Fractovis Plus instrumented drop-weight tower, with a hemispherical
impactor of 16 mm diameter and 5 kg, equipped with an automatic anti-
rebound impactor system. The CAI tests were performed according to the
standard ASTM D7137 [17] on a MTS InsightTM Electromechanical tester with
a 300 kN load cell. All the impacted specimens failed successfully during the
CAI tests because they collapsed at the impacted zone.
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5.2.1 Geometry and boundary conditions

The geometry and boundary conditions of the LVI model were previously
sketched in Fig. 4.1. All the plies and interfaces were needed to be mod-
eled for accurate results. Double symmetry boundary conditions could be
considered to reduce the computational effort because the plies are modeled
as homogeneous ply weave. However, some vibration and buckling modes
would be omitted what was found to especially affect the CAI predictions.

The hemispherical impactor of 16 mm diameter and 5 kg is modeled with
rigid elements (R3D4) with a maximum element size of 0.75 mm. An initial
velocity in the out-of-plane direction is assigned to the impactor according
to the impact energy tested. All the degrees of freedom are fixed with the
exception of the out-of-plane displacement.

The specimen, which measures 150 x 100 mm2, is placed over a flat sup-
port with a 125 mm by 75 mm rectangular cut-out. The support, which has
all the degrees of freedom fixed, is modeled with rigid elements (R3D4) with
a maximum element size of 2.5 mm.

The LVI clamping system is based on ASTM D7136 [16]. The specimen is
restrained during the impact by means of four rubber-tipped clamps, which
are placed outside of the rectangular cut-out (see Fig. 4.1). They are modeled
with rigid elements (R3D4) as in [65] with a maximum element size of 1 mm.
No model sensitivity was found due to the element type used for the rubbers.
The rubbers are cylinder-shaped with a diameter of 14 mm and they have all
the degrees of freedom fixed.

The geometry and boundary conditions of the CAI model were previ-
ously sketched in Fig. 4.2. Sets of nodes are defined to apply the boundary
conditions of the CAI test, which mimic the experimental ones (e.g. knife
edges, clamping).

5.2.2 Contact and friction

As described in Section 4.2.2, the general contact algorithm from
Abaqus/Explicit [1] is used. The contact pairs known beforehand (i.e. ply
by ply) are defined and the cohesive elements are excluded from the contact
algorithm. The contact stiffness value (Kn) is defined equal to the penalty
stiffness of the cohesive elements (Kcoh) in order to control the STI and a sen-
sitivity analysis is carried out to select the optimum penalty stiffness value.

Friction is introduced between all the contacting surfaces through the
Abaqus/Explicit [1] built-in Coulomb friction model. The friction coefficient
depends on the materials in contact and on the surface quality [93, 140] but
also on the interface angle [140]. A friction coefficient of 0.1 for all contacts
was chosen based on the sensitivity analysis from Section 5.4.5.
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5.3 Plate modeling

Fiber breakage and, especially, delamination might spread over the specimen
width during the CAI test. A mesh refined region at the impact area was
used to reduce the computational effort. The size of the refined region was
42 x 60 mm2, which was sufficient to allow delamination growth during the
LVI and CAI tests.

Significant fiber breakage was observed experimentally. Thus, the con-
tinuum finite elements of the numerical models are regular and oriented
according to the fiber orientation at the refined region to accurately com-
pute the characteristic element length used for mesh regularization of the
smeared damage model while avoiding mesh orientation bias effect during
crack propagation [63, 97].

5.3.1 Modeling strategy

In Chapter 4 was shown that conventional shell elements were less accurate
in the prediction of the energy dissipated during the LVI. It was attributed
to the fact in thick ply laminates matrix cracking is dominant which requires
accurate transverse stress fields that plane stress based elements cannot fully
capture because they neglect out-of-plane stresses. However, matrix cracking
is delayed or even suppressed in thin ply laminates. On the other hand,
the least computational demanding finite element were conventional shells.
Furthermore, within an explicit FEA framework, conventional shell elements
do not penalize the element STI (4telem) due their element thickness which
can be very small in thin ply laminates.

The Abaqus/Explicit [1] built-in conventional shell elements with reduced
integration (S4R) and zero-thickness cohesive elements (COH3D8) are used
in the present work. In Chapter 4 was shown that the use of conventional
shell elements with zero-thickness cohesive elements correspond to a good
balance between accuracy and computational efficiency. The zero-thickness
cohesive elements are placed at the interface location while the conventional
shell elements with middle surface reference are placed at the mid-ply loca-
tion. Cohesive elements are tied with shell elements to ensure correct kine-
matic description for delamination as sketched in Fig. 5.1. The use of tie
constraints allows non-conforming meshes to orient the finite elements along
the fiber direction. Surface to surface discretization is used for the tie con-
straints in which the shell surfaces are always the master ones.

An element size of 0.5 and 5 mm are used for the refined and the coarse
region, respectively. The element size criterion to ensure correct energy dis-
sipation in the refined region is described in Section 4.3.4. In this case shell
contact thickness reduction does not occur because of the in-plane element
size (i.e. 0.5 mm) to thickness (i.e. 0.08 mm) ratio used. Therefore, SFM are
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not needed to ensure normal contact.

Tie constraints

S4R

COH3D8

S4R

Fig. 5.1: Sketch of the modeling strategy with conventional shell elements (S4R) with zero-
thickness cohesive elements (COH3D8) through tie constraints for correct kinematic description
of delamination.

5.3.2 Intralaminar damage modeling

TeXtreme R© is modeled as a homogeneous fabric-reinforced ply with the po-
tential to sustain progressive stiffness degradation due to fiber breakage and
in-plane plastic deformation under shear loading.

The continuum damage model proposed by Martin-Santos et al. [106] is
used to model the mechanical behaviour of the plies. It was implemented
through a user-written (i.e. VUMAT) subroutine for Abaqus/Explicit [1].

The model considers plane-stress conditions and four damage mecha-
nisms. The surfaces for damage activation are generally defined as FN =
φN − rN 6 0. Each damage activation function (FN) accounts for one damage
mechanism: longitudinal (N = 1T) and transverse (N = 2T) tension, longitu-
dinal (N = 1C) and transverse compression (N = 2C). The loading functions
(φN) depend on the effective stresses and material properties. The internal
variables (rN) set the maximum value that the loading functions can achieve
before damage propagation, which are equal to unity while the material is
undamaged. The internal variables are updated to the new damage threshold
when the loading functions are larger than one.

The damage variables (dN) are adjusted to smear a bi-linear traction sep-
aration law (see Fig. 4.6) for each damage mechanism in the continuum
element following the crack band model [26]. For tension damage (Fig. 4.6a),
a bi-linear law with a large drop of stresses due to fiber breakage is followed
by a large tail that is related to fiber pull-out. For compression damage (Fig.
4.6b), a first drop of stresses defines the kink-band onset that is followed by a
constant residual stresses related to kink-band broadening [122]. Details on
the implementation of the model can be found in Ref. [106].

A maximum stress criterion is adopted for damage initiation criterion
based on the mechanical characterization of TeXtreme R© 160 g/m2 and 240
g/m2 performed by Arteiro et al. [13]. It was found that a maximum stress
failure criterion was suitable to approximate the failure envelopes.

The carbon fiber type used in this study was Tenax R© HTS45 with 12K
filament yarn. The matrix was HexFlow R© RTM 6 mono-component epoxy
system, supplied by Hexcel R©. The plies were 80 g/m2 plain weave with 20
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mm wide yarn fabrics produced by Oxeon and trademarked as TeXtreme R©

with a ply weave thickness of 0.08 mm. The sudied stacking sequence is
[(45/− 45)/(0/90)]14S with a nominal thickness of 4.48 mm. The measured
fiber volume fraction according to EN2564 [160] was 56.1 %. The plies were
manufactured with spread-tow technology [90] in which conventional fila-
ment tows are thinned by increasing the tow width. The laminates were
manufactured through Resin Transfer Molding (RTM) process. The repeata-
bility for each impact configuration was quite good despite the difficulties
found on the RTM manufacturing process. The high fiber volume fraction
of the plies, together with the specimen thickness with a large amount of
plies at different orientations, lead to difficulties in the selection of the in-
jection pressure of the resin which should be admissibly low to avoid fiber
wash-out, but high enough to fill the mould before the resin starts curing. Af-
ter some trials, a good compromise was found but some fiber wash-out and
manufacturing voids appeared in the specimens. This could explain some
experimental scatter, which was larger for the 30 J impact than the 20 J.

The fabric - reinforced material was characterized through an extensive
experimental campaign. The material properties and parameters to feed the
intralaminar damage model are summarized in Table 5.1. Most of them were
obtained from tests at the ply level. The values taken to feed the material
models from Table 5.1 are the average values obtained from each test. Five
specimens were used for every test. The standard deviation values were
below 10% with the exception of the interlaminar mode II fracture tough-
ness, the fiber fracture toughness and compression strength. The compres-
sion strength was found to be large (i.e. 728 MPa). The scatter on the com-
pression strength data lead to calibrate the fiber compression strength with
the pristine test. In fact, the employed compression strength value is closer to
reported values by other authors [13]. The density was measured according
to UNE-EN ISO 1183-1 [161]. The tensile elastic and strength properties were
obtained through tensile tests according to ASTM D3039M [18] while the
compression elastic and strength properties were obtained from compression
tests according to EN 2850 [52].

The shear response of fabric-reinforced composites is dominated by the
non-linear behavior of the matrix, which includes both plasticity and stiff-
ness degradation due to matrix micro-cracking. Plasticity with non-linear
isotropic hardening is accounted for in the model under in-plane shear load-
ing. Also, a maximum shear stress (SL) in which the material eventually fails.
The shear strength (SL) is the average failure stress of the in-plane shear tests
performed on 6 samples according to ASTM D3518-13 [19]. The plastic model
parameters SLP, ζE, ζT

E and ζL were obtained through least squares fit from
the averaged in-plane shear experimental response as shown in Fig. 5.2. The
shear strength was a key parameter to define for successful LVI simulations.

Wagih et al. [164] observed little matrix cracking in TeXtreme R© 80 g/m2
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Density 1.5 x 10−9 t/mm3

Elastic properties E1 = E2 = 61400 MPa ; G12 = 3782 MPa ;
ν12 = 0.042

Strength X1T = X2T = 975.4 MPa ; X1C = X2C = 550 MPa ;
SL = 85.9 MPa

Plastic model parameters SLP = 30 MPa ; ζE = 34.5 MPa ; ζT
E = 141.5 ; ζL = 335.1 MPa

Fracture toughness G1T = G2T = 65.4 N/mm ; G1C = G2C = 34.9 N/mm
Traction separation law parameters fX1T = fX2T = 0.1 ; fX1C = fX2C = 0.1 ;

HX1T = HX2T = 14435 N/mm3 ;
HX1C = HX2C = 3903 N/mm3

Table 5.1: TeXtreme R© 80 g/m2 material properties and parameters used for the continuum
damage model.

during quasi-static indentation tests while delamination and fiber breakage
were the governing damage mechanisms of the laminate. The small ply thick-
ness together with the fabric structure of the laminate could explain the small
amount of matrix cracking. For this reason, matrix cracking was assumed
negligible in the model. Thus, fiber fracture was the only intralaminar dam-
age mechanism accounted for in the longitudinal and transverse direction of
the model. The fiber fracture toughness under compression before crushing
and tensile were obtained through CC and CT tests [129], respectively.

Fig. 5.3 shows that an intralaminar traction separation law with lin-
ear softening is insufficient to reproduce the experimental CT test response,
which is in agreement with the findings from Dávila et al. [50] and Ortega
et al. [122]. The intralaminar model parameters ( fXN and HN) that define
the fiber traction separation law shape for tensile and compression loading
should be adjusted to the best fit of the CT and CC load displacement curve
on cross-ply laminates through FEA, respectively. It is worth noting that a bi-
linear law with a plateau that represents the constant residual stresses related
to kink-band broadening [122] is again considered. The compression fracture
toughness before crushing is GXC = 34.9 N/mm, which is the measured fiber
compression fracture toughness of the ply weave. The fiber traction separa-
tion laws were of paramount importance to successfully reproduce the LVI
simulations.

The model does not consider strain rate effects. It is generally accepted
that in LVI the velocity is low enough to assume a static response of the
structure [145, 148, 171]. Furthermore, in the studied case indentation tests
and LVI tests could be compared and the difference among them is attributed
to the dynamic loading (Fig. 5.4).
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Fig. 5.2: Least squares fit of the plastic parameters for the in-plane shear behaviour of the con-
stitutive model and a failed sample at the end of the test.

5.3.3 Interlaminar damage modeling

All the interfaces for delamination were considered for accurate predictions
because the damage propagation can be altered by allowing delamination
to occur only at a pre-defined number and location of interfaces as al-
ready reported in [116, 117]. Delamination was modeled by means of zero-
thickness cohesive elements with the thermodynamically consistent CZM
from González et al. [66]. It was implemented in a VUMAT user-written
subroutine for Abaqus/ Explicit [1].

A scalar damage variable is used to ensure irreversibility of the damage
process. The model has an unilateral behaviour for mode I crack propagation
in order to account for crack closure and symmetric behaviour for shear prop-
agation modes. The damage initiation and propagation criteria are based on
the B-K criterion [27] while the damage evolution is controlled through the
cohesive law shape, which is assumed linear.

The input parameters required to define the CZM are summarized in
Table 5.2: τIc and τI Ic, interface strengths for pure mode I and for pure shear
modes (II and III), respectively; GIc and GI Ic, interface fracture toughness
for pure mode I and for pure shear modes (II and III) respectively; η, is the
mixed-mode interaction parameter used in the B-K criterion [27], which is
obtained through least squares fit from interlaminar mixed mode tests.

The interlaminar mode I and mode II fracture toughness were obtained
through DCB [21] and C-ELS [83], respectively. MMB tests [22] for 25 %, 50
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Fig. 5.3: Effect of the tensile constitutive law shape on the force - displacement response of a
cross-ply CT test.

% and 75 % mixed mode ratios were performed to adjust the mixed-mode
interaction parameter (η). The mode II interface strength was obtained from
the in-plane shear test.

GIc [N/mm] GI Ic [N/mm] τIc [MPa] τI Ic [MPa] η

0.59 1.08 58.76 76.5 3.1

Table 5.2: TeXtreme R© 80 g/m2 interface material properties used for the CZM.

The mode I interface strength was not characterized. However, Turon
et al. [156] demonstrated that changes in the local mode ratio during the
evolution of damage under mixed-mode loading might cause errors in the
energy dissipation, which can lead to inaccurate predictions of the global re-
sponse. To solve this issue a relationship was proposed between interlaminar
strengths and fracture toughness. The mode I interlaminar strength is ob-
tained based on Eq. (5.1) [156], which is close to the experimentally obtained
in [67] for the same resin.

τIc = τI Ic

√
GIc
GI Ic

(5.1)

In addition, the CZM requires two numerical parameters: the penalty
stiffness and the surface density (ρ̄coh) of the zero-thickness cohesive ele-
ments.
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Fig. 5.4: Comparison of indentation tests from Wagih et al. 2016 [164] and the LVI tests at a) 20
J and b) 30 J.

Penalty stiffness

The penalty stiffness should not be neither too large to avoid spurious oscil-
lations [139] and detrimentally affect the STI (see Eq. (2.2)) nor too low to
add compliance at the system.

A sensitivity analysis on the effect of the penalty stiffness value was done
to obtain the optimum value in terms of accuracy and computational perfor-
mance as Fig. 5.5 and Table 5.3 show.
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Fig. 5.5: Penalty stiffness effect (K) on the elastic force - displacement response of the 20 J LVI.

The same penalty stiffness value (K) was considered for the normal con-
tact (Kn) and the cohesive elements (Kcoh). The selected penalty stiffness value
K = 2 x 105 N/mm3 converged the numerical elastic regime to the experimen-
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tal one.

K [N/mm3] Computed initial STI [s] Computational time [h] Step [ms]
1 x 105 2.46 x 10−8 9.8 0.75
2 x 105 1.73 x 10−8 14 0.75
3 x 105 1.42 x 10−8 15.3 0.75

Table 5.3: Effect of the penalty stiffness value on the initial STI and computational time during
the elastic regime of the 20 J LVI.

Zero-thickness cohesive elements surface density

The zero-thickness cohesive elements surface density is defined by distribut-
ing the mass of the laminate through the elements (i.e. continuum and cohe-
sive elements) in order to maximize the STI of the model while keeping its
mass. The factor ( fcoh) which maximizes the STI with same penalty stiffness
values (K = Kcoh = Kn) is obtained from Eq. (4.16).

Table 5.4 shows the density values used for the simulations presented in
Section 5.4.

ρmod [t/mm3] ¯ρcoh [t/mm2] nint hlam [mm] K [N/mm3]
7.57 x 10 −10 6.05 x 10 −11 55 4.48 2 x 105

Table 5.4: Optimum density for the continuum elements (ρmod) and the zero-thickness cohesive
elements (ρ̄).

5.3.4 Element size

The maximum element size to avoid snap-back at the element level within
the first branch of the intralaminar traction separation law is determined by
Eq. (4.21) [106]. Accordingly, the maximum element size with the properties
from Table 5.1 is 4.25 mm.

A conservative estimation of the interlaminar FPZ can be obtained by
using the expressions from Chapter 3 and considering the smallest ply thick-
ness modeled (i.e. 0.08 mm). The estimated interlaminar FPZ for pure frac-
ture mode I and mode II are 0.21 mm and 0.8 mm in the studied material,
respectively. Nevertheless, the actual interlaminar FPZ was measured in pre-
liminary simulations in order to use a coarser element size. The actual inter-
laminar FPZ in the LVI simulation was about 2 mm and delamination was
growing predominantly under mode II. The difference between the predicted
and the actual interlaminar FPZ is due to the fact that only some interfaces
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delaminated. The actual interlaminar FPZ of the CAI simulation was not
possible to measure due to sudden damage growth (e.g. failure).

The chosen element size for both continuum and cohesive elements was
0.5 x 0.5 mm2 at the mesh refined region for all the numerical models pre-
sented in Section 5.4. It ensured more than three elements along the inter-
laminar FPZ and no snap-back at the element level within the first branch of
the intralaminar traction separation law. The element size at the coarse mesh
region was 5 mm.

5.3.5 Element deletion criterion

In Chapter 4 was shown that special attention should be paid on the selected
damage variable value. For the simulation of TeXtreme R© both cohesive and
continuum elements were initially deleted when the damage variable was
equal to one or the shear strength was reached. Despite obtaining good
agreement with the experimental tests, the simulations aborted due to contact
issues (see Fig. 5.16). It is thought that the large number of plies modeled
together with a significant number of elements deleted during the simulation
(e.g. delamination and fiber breakage) led to the generation of many new
contacts causing numerical difficulties.

Finally, the cohesive elements were deleted when the damage variable
was equal to one while the continuum elements were not deleted to avoid
the contact issues. The continuum elements were degraded up to a damage
variable value (i.e. 0.99998371) that left a residual stiffness of 1 MPa. Also,
the elastic properties were set equal to 1 MPa when the shear strength (SL)
was reached (see Fig. 5.2). The selected value allowed the simulations to be
finished with correct dissipation of most fracture energy without adding stiff-
ness into the model. Fig. 5.6 shows the effect of the selected maximum fiber
damage variable value (d1, d2) or residual stiffness (Er) without element dele-
tion on the stress - strain response (Fig. 5.6a) and on the energy dissipated
(Fig. 5.6b) for the studied material.

5.4 Results and discussion

The most relevant numerical results from the LVI and CAI simulations are
presented in this section. They are presented together with the experimental
data. Furthermore, sensitivity analyses are presented to study the effect of the
mesh orientation, friction coefficient value, the effect of the fiber constitutive
law shape and the number of interfaces for delamination.
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Fig. 5.6: Effect of the maximum fiber damage variable value (d1) on (a) the stress-strain response
and on (b) the energy dissipated. Tensile loading on a 1 x 1 mm2 finite element with 1 mm
thickness and the material properties from Table 5.1.

5.4.1 Low velocity impact results

Figs. 5.7 - 5.8 show the force - time and force - displacement response of the
plate for a 20 J impact. The numerical results fall within the experimental
scatter. The dynamic response and the damage initiation are perfectly cap-
tured. Also, the maximum force and displacement as well as the two load
drops in the force - displacement curve (Fig. 5.8) are predicted.
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Fig. 5.7: Comparison of experimental and numerical force - time response for a 20 J impact. The
circles are selected points to show the laminate damage state in Fig. 5.10.

Table 5.5 compares the numerical data with the experimental ones for the
20 J case.
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Case Fmax [kN] Umax [mm] Edis [J] Ad [mm2] FCAI [kN]

Numerical 8.17 4.13 10.64 926.38 122.78

Specimen 1 7.08 4.16 10.65 959.13 115.58

Specimen 2 7.93 4.10 9.39 851.36 119.26
Specimen 3 7.36 4.19 11.67 1194.39 115.41

Table 5.5: Comparison of experimental and numerical results for the 20 J case in terms of maxi-
mum force (Fmax), maximum displacement (Umax), energy dissipated (Edis), projected delamina-
tion area (Ad) and CAI strength (FCAI ) for the studied cases.
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Fig. 5.8: Comparison of experimental and numerical force - displacement response for a 20 J
impact. The circles are selected points to show the laminate damage state in Fig. 5.10.

Based on the dissipated energy evolution for the intralaminar and inter-
laminar failure mechanisms shown in Fig. 5.9, the first drop (after point A)
observed in Fig. 5.8 is associated with delamination while the second one
(after point B) is related to fiber damage and delamination.

Fig. 5.10 shows the interlaminar and intralaminar damage at every inter-
face and ply of the laminate at some impact instants in which changes in the
force - displacement (Fig. 5.8) and dissipated energy evolution are observed
(Fig. 5.9).

There is no damage up to 4.5 kN. Then, some damage in the form of de-
lamination and fiber breakage is initiated until 6.5 kN (point A). Fig. 5.10
shows that fiber damage is located at the top and the back-face plies due to
compressive and tensile stresses, respectively. Point A and B are followed by
two clear load drops in Fig. 5.8. The first load drop (A - B) is mainly due
to delamination which is in agreement with Wagih’s observations [164] even
though fiber breakage is also present as Fig. 5.9 indicates. Fig. 5.10 shows
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that in the first load drop delamination occurs at interfaces 5, 10, 16, 22, 26,
30, 31, 35, 41, 45, 47 and 49 while fiber breakage mainly occurs at the bottom
half of the laminate. The damage initiation before point A seems to occur
from the impacted side to the back - face while the propagation after point A
occurs in the following sequence: 22, 16, 35, 41, 10, 26, 47,45, 49, 30, 31 and 5.
Nevertheless, delaminations grow suddenly which makes it difficult to judge
the sequence even with the numerical model. Fiber damage occurs above de-
lamination in some plies (i.e. 11, 17, 23, 27, 36, 42 and 48). Thus, it seems that
fiber damage could reduced in case of improving delamination resistance. In
fact, delamination splits the laminate into sublaminates. More fiber damage
is present at the bottom plies of these sublaminates due to larger bending
stresses. The second load drop (B - C) is mainly due to damaged plies from
the bottom half laminate as shown in Fig. 5.10 even though damage growth
of existing delaminations also occurs. Finally, from point D to F, the existent
delaminations grow a bit more but significant fiber breakage occurs through-
out all the laminate thickness during this stage. It is worth noting that plies
oriented at 45/-45 suffer more damage than those oriented in 0/90.
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Fig. 5.9: Comparison of the experimental and numerical absorbed energy evolution of the plate
for a 20 J impact.

Olsson et al. [116] mapped the fiber crack lengths through the thickness of
the same laminate and material considered in the present study. An uniform
damage width with an increase towards the back - face is reported. Olsson
et al. [116] attributed this damage pattern to fiber failure due to membrane
stresses and delamination preceding fiber fracture. The current model is able
to reproduce the aforementioned experimentally observed damage pattern
while confirming Olsson’s arguments.

Wagih et al. [164] performed indentation tests to the same impacted ma-
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terial with the same configuration. Under the equivalent displacement in-
dentation (i.e. 4 mm) of the 20 J LVI, 7 delaminations were observed through
C-scan inspections. Nevertheless, it was reported that smaller delamination
could be hidden by larger ones. Wagih et al. [164] observed several delamina-
tions to appear without shear matrix cracks what leaded to the interpretation
that bending loads were the source of those delaminations.
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Fig. 5.10: Through the thickness (left) interlaminar (right) and intralaminar damage growth for
the 20 J impact simulation at different impact times. Ply-56 is at the impacted side.

Fig. 5.11 shows the numerically obtained projected delamination area
and the experimental ones. The numerical projected delamination area is
fairly well captured. It under-predicts the average experimental projected
delamination area (Ād) but it falls within the experimental scatter. Despite
being deleted and not considered in the calculations, they are still visible
which allows to obtain the projected delamination area from d = 0.9 to d = 1
during the post-process.
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Fig. 5.11: Comparison of average experimental (Ād = 1001.72 mm2) and numerical (Ad = 926.38
mm2) projected delamination area for the 20 J impact. The projected delamination area from the
numerical model takes the cohesive elements with d = 0.9 up to fully damage.

Fig. 5.12 shows a cross - section with the fiber damage variable field out-
put at 2.5 ms of the 20 J LVI. Fiber breakage is present through the thickness
but especially at the back - face of the specimen where elements are rather
distortioned. Delaminations from Fig. 5.10 can be well identified.

Fig. 5.12: Cross - section along the specimen length of the 20 J LVI at 2.5 ms. Fiber damage
variable field output (SDV16).

The force - time and force - displacement response for the 30 J impact
simulation are shown in Figs. 5.13 - 5.14, respectively. Fig. 5.15 depicts the
absorbed energy evolution of the plate and the dissipated energy through
friction, interlaminar and intralaminar damage. The force - displacement
response and the absorbed energy evolution are in good agreement with the
experimental results. The elastic regime and the two load drops in Fig. 5.14
are well captured. The first drop of the numerical model occurs around
6.5 kN as in the 20 J impact case, which is a slightly lower force than the
experimentally obtained. However, it is accepted that this load threshold is
independent of the impact energy [63]. The predicted maximum force and
displacement fall within the experimental scatter.
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Fig. 5.13: Comparison of experimental and numerical force - time response for a 30 J impact.

Table 5.6 compares the numerical data with the experimental ones.

Case Fmax [kN] Umax [mm] Edis [J] Ad [mm2] FCAI [kN]

Numerical 8.21 5.58 18.83 1396.40 93.79

Specimen 1 7.05 5.92 22.74 1879.83 96.2

Specimen 2 7.68 5.61 19.30 1938.65 80.29
Specimen 3 7.23 5.73 17.94 1083.65 89.76

Table 5.6: Comparison of experimental and numerical results for the 30 J case in terms of maxi-
mum force (Fmax), maximum displacement (Umax), energy dissipated (Edis), projected delamina-
tion area (Ad) and CAI strength (FCAI ) for the studied cases.
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Fig. 5.14: Comparison of experimental and numerical force - displacement response for a 30 J
impact.

The damage mechanism which dissipated more energy in the 20 J impact
was delamination (Fig. 5.9) while fiber breakage became the most important
one in the 30 J case (Fig. 5.15).
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Fig. 5.15: Comparison of the experimental and numerical absorbed energy evolution of the plate
for a 30 J impact.

The damage sequence in the 30 J LVI is similar to the 20 J impact case.
There is an almost elastic regime up to the first load drop from Fig. 5.14 in
which damage propagates mainly due to delamination (i.e. 6.5 kN) and fiber
damage occurs at the top and bottom plies because of compressive and tensile
loads, respectively. The predicted delamination are due to interlaminar shear
stresses which splits the laminate within sublaminates, which suffer larger
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fiber damage at the bottom plies due to larger bending stresses. The second
load drop is due to a sudden growth of exiting delamination and especially
fiber damage at the bottom plies of the laminate. Finally, there is a stage
mainly governed by fiber breakage. The third load drop, which is associated
with fiber breakage, is not so well captured as the two previous ones.
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Fig. 5.16: Effect of continuum element deletion on the force - time response for the a) 20 J LVI
and b) 30 J LVI.

Fig. 5.17 shows the numerically obtained projected delamination area
and the experimental ones. The projected delamination area of the numerical
model is smaller than the averaged experimental one (Ād) but it falls within
the experimental scatter as it happened for the 20 J impact. The models tend
to under-estimate the projected delamination area which could stem in the
fact that matrix cracking is neglected. The continuum elements were not
deleted in order to finish the simulation and a remaining stiffness of 1 MPa
was left. Despite the remaining stiffness being very low, it affects the inter-
action between intralaminar and interlaminar damage as shown in Fig. 5.16.
This effect is more noticeable for the case of 30 J in Fig. 5.16b, which partially
explains the under-estimation of the predicted projected delamination area
in the 30 J case.
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Fig. 5.17: Comparison of average experimental (Ād = 1634.04 mm2) and numerical (Ad = 1396.34
mm2) projected delamination area for the 30 J impact. The projected delamination area from the
numerical model takes the cohesive elements with d = 0.9 up to fully damage.

The maximum fiber damage variable (i.e. 0.99998371) was reached in
the 30 J LVI numerical model. Figs. 5.18 - 5.19 compares the experimental
observations with the numerical results. Indentation and fiber breakage was
observed at the impacted side and back - face of the specimens, respectively.
The model predicts some fiber damage due to compression stresses at the
impacted side and fully damaged fiber at the back-face.

(a) (b)

Fig. 5.18: Front - face view (30 J) at (a) specimen and (b) numerical model. Field output of fiber
damage variable (SDV16) with applied translucency.
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(a) (b)

Fig. 5.19: Back - face view (30 J) at (a) specimen and (b) numerical model. Field output of fiber
damage variable (SDV16) with applied translucency.

Table 5.7 shows the computational time together with the maximum and
minimum STI achieved during the simulation for each numerical model. The
maximum STI is very close to the estimated one in Table 5.8 with the calcu-
lated optimum densities from Table 5.4. The minimum STI for the 30 J impact
is much lower than for the 20 J because the larger impact energy the larger
finite element distortion, which detrimentally affects the STI. The simulations
were computed using 20 CPU’s with the same computer described in Section
4.4.

Impact energy [J] Step [ms] Computational time [h] Max. STI [s] Min. STI [s]
20 5.5 121 1.71 x 10−8 1.16 x 10−8

30 6.6 144 1.71 x 10−8 8.46 x 10−9

Table 5.7: Computational time and STI achieved during the LVI simulations.

The large number of plies and interfaces modeled together with signif-
icant element distortion due to damage led to a large computational time.
Table 5.8 shows the initial STI and the optimum densities which would re-
quire a simulation with volumetric finite elements and zero-thickness cohe-
sive elements. The small ply thickness modeled (i.e. 0.08 mm) would have
led to an initial STI 44 % smaller if volumetric finite elements (i.e. continuum
shells or solid elements) had been used. Furthermore, volumetric elements
suffer more element distortion than conventional shell elements as shown in
Chapter 4.

Finite element type Initial STI [s] ninter hlam [mm] K [N/mm3] helem [mm] Le [mm]
Conventional shell 1.73 x 10−8 55 4.48 2 x 105 0.08 0.5

Volumetric 9.66 x 10−9 55 4.48 2 x 105 0.08 0.08

Table 5.8: Initial STI as a function of the finite element type chosen.
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5.4.2 Compression after impact results

The force - displacement response of the CAI simulation for the 20 J and 30
J impact cases are shown in Figs. 5.20 and 5.23, respectively. The displace-
ments during the CAI tests were only measured with the cross-head tester
and the set-up was adding compliance into the system. The actual specimen
compliance was obtained from the pristine test data and a numerical model
as similarly done in [50]. The compliance obtained (4 x 10−6 mm/N) was
subtracted to the displacements of all CAI experimental results (i.e. 20 J and
30 J).
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Fig. 5.20: Comparison of experimental and numerical CAI force - displacement response for the
20 J case. The circles are selected displacements to show the laminate damage state in Fig. 5.25.

Fig. 5.21 shows the front - face and back - face of the CAI simulation at 20
J. A crack crossing the whole specimen width can be seen at the front - face.

(a) (b)

Fig. 5.21: a) Front - face and b) back - face view of the CAI simulation at 20 J. Field output of
fiber damage variable (SDV16) with applied translucency.
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Fig. 5.22 shows a cross - section along the specimen length of the CAI
20 J. Existent delaminations created during the impact (see Figs. 5.10 and
5.12) further progressed during the CAI simulation. Only interface 9 and 21
propagated during CAI and not during the LVI.

(a)

Fig. 5.22: Cross - section along the specimen length of the CAI 20 J just after failure. Fiber
damage variable field output (SDV16).
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Fig. 5.23: Comparison of experimental and numerical CAI force - displacement response for the
30 J case.

The models predicted the CAI stiffness correctly for both studied cases. In
fact, the damage due to impact hardly influenced the global in-plane stiffness
of the panel as shown in Fig. 5.24.

102



5.4. Results and discussion

Displacement [mm]
0 0.25 0.5 0.75 1 1.25 1.5

Fo
rc

e 
[k

N
]

0

25

50

75

100

125

150

175

200
Pristine
CAI 20J
CAI 30 J

Fig. 5.24: Averaged force - displacement response comparison of pristine and CAI experimental
tests.

The CAI strength were fairly well predicted. The averaged experimental
CAI strength were over-predicted by 5.16 % and 5.68 % for the 20 J case and 30
J case, respectively. The model did not account for any kind of defect from the
manufacturing process or residual deflections. The projected delamination
area were under-predicted for both cases which could explain the slight over-
prediction of the CAI strength.

Fig. 5.25 shows the energy dissipated at every ply and interface of the 20
J impacted laminate during the CAI simulation. Four different instants of the
force - displacement curve from Fig. 5.20 are plotted in Fig. 5.25. The CAI
tests of thin ply laminates show a more brittle behaviour than the results from
thick plies (Chapter 4). Based on the numerical predictions, there is small
damage growth during stage A for the amount of applied displacement. An
increase of damage growth is predicted from point B up to reaching the CAI
strength at point C, which only occurs at the larger existent delaminations
from the LVI and the plies close to the impacted side. Finally, sudden damage
growth occurs at point D due to specimen collapse. The predicted damage
sequence for the 20 J CAI was similar for the 30 J CAI simulation.
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Fig. 5.25: Through the thickness (left) interlaminar and (right) intralaminar damage growth
during the CAI (20 J) simulation at different displacements. Ply-56 is at the impacted side.
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5.4.3 Mesh orientation effect

As mentioned, the continuum finite elements were regular and oriented ac-
cording to the fiber orientation at the refined region to accurately compute
the characteristic element length used in the crack band model [26] while
avoiding mesh bias effects during crack propagation [63, 97].
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Fig. 5.26: a) Effect of orienting the mesh along the fiber direction on on the force - displacement
and b) energy absorbed prediction for the 20 J LVI.

The effect of whether orienting or not the mesh according to the fiber
direction is shown in Fig. 5.26. Fig. 5.26 does not show big difference in terms
of global force - displacement response and plate energy dissipated due to
orienting the mesh along the fiber direction. However, less fiber breakage and
more delamination is predicted by the non-oriented mesh, which is translated
in a less accurate capture of the two load drops from Fig. 5.26a. The impact of
orienting the finite elements along the fiber direction depends on the amount
of damage and the element size. For impacts with BVID the effect of orienting
the mesh will be lower than for cases with VID. Also, fine meshes will allow
easier orientation of crack localization than in coarser meshes.
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5.4.4 Effect of the number of interfaces for delamination

The effect of the number of interfaces considered in the model was studied
for the 20 J case. It was considered a case with 6, 13 and 55 interfaces for
delamination. The interfaces for delamination were equally spaced through
the laminate thickness. The three models had the same mesh refinement for
the sake of comparison.
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Fig. 5.27: Effect of the interface for delamination considered on the predicted force - displace-
ment response for the 20 J LVI.

Fig. 5.27 shows that the structural response is rather affected by the num-
ber and location of the interfaces for delamination. The damage initiates
similarly at 4.5 kN but the propagation is rather different in every case. Con-
sequently, the projected delamination area is affected as shown in Fig. 5.28.
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2

Fig. 5.28: Effect of the number of interfaces considered for delamination on the projected delam-
ination area for the 20 J impact. Contour plot of the cohesive elements with d = 0.9 up to fully
damage.

Fig. 5.29 shows the evolution of the interlaminar and intralaminar dis-
sipated energy of the models. It highlights the need of considering all the
interfaces for accurate impact predictions because the damage evolution is
modified due to the number and location of the interfaces.
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Fig. 5.29: Effect of the interface for delaminaton considered on the predicted (a) interlaminar
and (b) intralaminar dissipated energy evolution for the 20 J LVI.

The CAI strength showed to be also dependent on the number and loca-
tion of the interfaces for delamination as shown in Fig. 5.30. The case with
13 interfaces has the lowest CAI strength which could be related to the fact
that larger delamination was predicted while the case with 6 interfaces has
the largest CAI strength due to a lower amount of fiber damage.
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Fig. 5.30: Effect of the interface for delamination considered on the predicted force - displace-
ment on the CAI response of the 20 J impact case.
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5.4.5 Effect of the friction coefficient

A sensitivity analysis was carried out on the friction coefficient of TeXtreme R©

80 g/m2 due to the lack of information of this material property.
Through the thickness compressive stresses increases the mode II inter-

laminar strength and fracture toughness as Catalanotti et al. [38] investigated.
The friction coefficient can play a role for LVI simulations. Fig. 5.31 shows
the effect of the friction coefficient on the LVI response for a 20 J impact en-
ergy. The larger the friction coefficient, the larger the damage initiation force
and the lower the maximum displacement. However, the results were not
very sensitive unless friction-less contact was considered. Thus, the friction
coefficient adopted was 0.1 which yielded good results either in the damage
initiation and the damage propagation.

It is a low value in comparison with reported experimental values [93,140]
and previous LVI numerical studies [61, 65, 98, 99, 154]. Schön et al. [140]
discussed that the effective friction coefficient depends on the amount of
load being carried in matrix/matrix, fiber/matrix and fiber/fiber contacts.
Fiber/fiber contacts have a lower coefficient of friction. TeXtreme R© 80 g/m2

is a thin ply weave where more fiber/fiber contacts are likely to occur than
in conventional UD pre-preg [61, 65, 98, 99, 154]. This could explain a lower
coefficient of friction. Furthermore, in the recent experimental and numerical
investigation from Catalanotti et al. [38] a friction coefficient of 0.1 was also
adopted for the IM7/8552.
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Fig. 5.31: Effect of the coefficient of friction value (µ) on the force - displacement response for a
20 J impact.
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5.4.6 Effect of the fiber tensile traction separation law

The numerical predictions shown in Sections 5.4.1 - 5.4.2 were in good agree-
ment with the experimental data. The previous results for the 20 J impact
case are compared with those obtained using a linear tensile traction sep-
aration law. Fig. 5.32a compares the force - displacement response of the
experimental data with the numerical predictions obtained with the two con-
stitutive law shapes. The damage initiation is similar in both cases because it
is mainly controlled by delamination as was previously discussed. However,
the response clearly differs when fiber breakage becomes important after the
two load drops.
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Fig. 5.32: a) Effect of the fiber tensile traction separation law shape on the predicted force -
displacement and b) on absorbed energy evolution for the 20 J impact.

In fact, the damage evolution is modified as Fig. 5.32b shows in com-
parison with Fig. 5.9. More energy is dissipated through delamination and
much less through fiber damage. As a consequence, the dissipated energy is
under-predicted.
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Fig. 5.33: Effect of the fiber tensile traction separation law shape on the CAI (20 J) force - dis-
placement response.

The obtained projected delamination area is 1509.1 mm2, which is much
larger than the obtained experimentally (i.e. 1001.72 mm2) and numerically
(i.e. 926.38 mm2) with the bi-linear law.

Fig. 5.33 shows that the CAI response is also affected. The model with the
intralaminar linear softening shows a less brittle behaviour. The CAI strength
is under-predicted and a loss of stiffness before reaching the CAI strength
takes place due to propagation of delamination. Conversely, there was almost
no loss of stiffness prior to failure in the experimental and numerical model
with an intralaminar bi-linear law.

5.5 Conclusions

The methodology described in Chapter 3, which uses conventional shell ele-
ments together with zero-thickness cohesive elements, proved to be a feasible
strategy for the simulation of LVI and CAI of the large number of plies and
interfaces of the thin ply laminate TeXtreme R© 80 g/m2. It has been demon-
strated that all the interfaces for delamination must be modeled to accurately
predict the coupling between intralaminar and interlaminar damage.

All the material properties to feed the constitutive models were obtained
from experimental coupon tests at the ply level with the exception of the
friction coefficient, which is difficult to characterize. A sensitivity analysis
was performed to choose a suitable value. Some material properties such as
interlaminar mode II fracture toughness and fiber fracture properties are of
paramount importance to predict LVI and CAI tests. It is recommended to
check the test data and to make sure that the deviations on the measured
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data are not big enough to influence the model results. It is also a good ex-
ercise to reproduce the available tests at the laminate level before performing
the LVI and CAI simulation (i.e. shear, pristine, CT and CC). The numerical
study indicates that matrix cracking effects can be assumed negligible for the
studied thin ply laminate. However, it has been highlighted the importance
of the fiber traction separation law for accurate predictions. The fiber trac-
tion separation law shape was obtained from CT and CC tests on cross-ply
laminates as proposed by some authors in the literature.

The predicted damage sequence during the LVI was similar for the two
impact energies simulated. There was an initial elastic response until delami-
nation started at about 4.5 kN. Delamination slightly progressed until 6.5 kN
when a load drop, which was perfectly captured, occurred due to delamina-
tion propagation. A second load drop took place due to fiber breakage at the
vicinity of delaminated interfaces. Afterwards, delamination and especially
fiber breakage propagated in a steady state manner. The CAI showed a brit-
tle behaviour. There was almost no damage propagation until final failure.
Damage was initiated at the plies located close to the impact side as well as
some progression of existent delamination occurred before final collapse. The
predicted CAI strength was over-predicted by less than 6 % for both studied
impact energies.

The presented model was efficient and accurate in the predictions but
it lacked of robustness when the finite elements were deleted. It was not
possible to finish the simulations despite obtaining good predictions. This is
attributed to the large number of plies and interfaces modeled which led to
contact numerical issues. The problem was circumvented by not deleting the
elements but leaving them with a very small stiffness (i.e. 1 MPa). However,
it would be desirable to delete them in some scenarios such as impactor
perforation.
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Chapter 6

LVI and CAI of composite
stiffened panels

6.1 Introduction

LVI events are a major concern in the design of aerospace structures made
of composite laminates because they might cause BVID while the residual
strength of a structural component and its buckling load limit can be signifi-
cantly reduced.

Physical testing of components requires extensive experimental cam-
paigns that are time-consuming and costly. Numerical approaches are avail-
able in the literature to address coupon-level LVI and CAI that are compu-
tationally expensive and not practical for larger structures. For this reason,
only few studies are found in the literature dealing with LVI simulation of
structural components [59,87,134,150]. To the author’s knowledge, Psarras et
al. [131] is the only reported work on LVI and the sequential CAI simulation
of large composite structures.

The present thesis aims to define an efficient methodology that enables
analyses at larger scales than the coupon level, hence allowing industrial
scalability. In this chapter, it is investigated the predictive capabilities of the
methodology described in Chapter 4 when applied to structural components.
The most relevant experimental and numerical results from the LVI and the
sequential CAI test of a composite laminate sub-component are presented.

6.2 Geometry and boundary conditions

The geometry of the composite panel is shown in Fig. 6.1. All the plies
and interfaces for delamination were modeled in order to avoid affecting the
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damage sequence due to pre-definied potential interfaces for delamination
as shown in Section 5.4.4. Also, all the plies and interfaces were modeled in
the stringers because they could especially play a role in the CAI simulation.
The ply clustering at the mid-plane was modeled with one element through
the thickness as done in other studies [65, 98, 154].

250 m
m

500 m
m

3.05 mm

(a)

stringer web

skin

stringer base

250 mm

150 mm

(b)

Fig. 6.1: (a) Dimension of the stiffened panel and (b) its section.

The clamping system used aluminium blocks bonded to the specimen
ends by means of the Hysol R© EA 9394 (epoxy paste) structural adhesive
from Henkel R©. The aluminium blocks were joined to the high stiffness steel
frame of the impact tester using two bolts at each end. Each aluminium
block covered the whole width and 40 mm length of the panel (i.e. potting).
The specimen was impacted after the aluminium blocks were bonded and
cured. No damage before testing was observed by visual inspection, neither
at the interface between the aluminium blocks and the specimen nor inside
the specimen.

Neither the structural adhesive nor the aluminium blocks were consid-
ered in the model for the sake of simplicity. The boundary conditions were
applied through node sets at the panel instead of modeling the whole set-up
and taking into account contacts. Fully clamped boundary conditions were
considered at the edges of the panel while the rest of the pottings had all the
degrees of freedom fixed with the exception of the longitudinal one in order
to account for some compliance added by the adhesive in a simple manner.

The bonded aluminium blocks used for clamping the specimens during
the LVI tests were also used for the CAI tests. Once the blocks were installed,
the specimens were milled to achieve a tolerance of 0.1 mm in parallelism
between faces. Additionally, anti-buckling side clamps were applied along
the lateral edges to avoid global instability which could trigger compression
failure as shown in Fig. 6.3.

Fig. 6.4 shows the CAI boundary conditions, which were introduced

114



6.2. Geometry and boundary conditions

Fine mesh

Coarse mesh

Clamping BC

Impactor BC

Fig. 6.2: Panel model assembly and boundary conditions for the LVI.

Fig. 6.3: View of the CAI set-up with the anti-buckling clamps highlighted in red.

through node sets that represent the anti-buckling side clamps.
Table 6.1 shows the impact test configuration. The panel was impacted at

the center as shown in Fig. 6.2.

Impact side Impactor mass [kg] Impactor diameter [mm] Impact energy [J]
Panel center 12.5 25.4 136

Table 6.1: Impact test configuration.

6.2.1 Contact and friction

As described in Section 4.2.2, the general contact algorithm from
Abaqus/Explicit [1] is used and contact pairs known beforehand are defined
(i.e. ply by ply) while cohesive elements are excluded from the contact algo-
rithm. The contact stiffness value (Kn) is defined equal to the penalty stiffness
of the cohesive elements (Kcoh) in order to control the STI and a sensitivity
analysis is carried out to select the optimum penalty stiffness value.

Friction is introduced between all the contacting surfaces through the
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Fixture top BC

Fine mesh

Coarse mesh

Knife edge BC

Fixture right BC

Fig. 6.4: Sketch of the CAI model and boundary conditions.

Abaqus/Explicit [1] built-in Coulomb friction model. A friction coefficient
value of 0.3 was used. The model was not sensitive for friction coefficients
larger than 0.1 prior impactor penetration.

6.3 Modeling strategy

Conventional shell elements with zero-thickness cohesive elements is the
modeling strategy employed as in Chapter 5 because it proved to be the
least computationally demanding in Chapter 4. In this case, surface elements
are not needed to ensure contact because the in-plane finite element size (i.e.
1 mm) to thickness (i.e. 0.1905 mm) ratio was not scaling the shell contact
thickness. Contact is guaranteed by conventional shell elements.

Fig. 6.2 shows the boundary conditions of the LVI model. Two element
sizes were considered in the model: a finer mesh region (i.e. 1 mm) and a
coarser mesh region (i.e. 5 mm). The refined mesh region had a size of 50 ×
240 mm2 to correctly capture the damage resulting from the LVI and CAI. The
panel was meshed with regular finite elements. The results from Chapter 5,
which involved significant amount of damage, were not very sensitive to the
finite element orientation but the intralaminar and interlaminar interaction
was better captured when the finite elements were oriented according to the
fiber direction. The considered impact energy in this chapter also lead to a
large amount of damage with impactor penetration. Thus, the finite elements
were aligned along the fiber direction to avoid any mesh bias effect.
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6.4 Intralaminar damage modeling

The composite material used is an intermediate modulus carbon/epoxy pre-
preg typically used in aerospace applications, with a nominal ply thickness of
0.1905 mm. The continuum damage model described in Section 4.3.2 is used
to model the UD plies. Unfortunately, the experimental test campaign was
limited at the sub-component level. A detailed material characterization as
the one performed in Chapter 5 was not done. Thus, the material properties
to feed the models were taken from previous experimental campaigns and
similar material systems.

Table 6.2 shows the panel stacking sequence. The skin stacking sequence
is according to the reference system from Fig. 6.1a while the web stacking
sequence is sketched in Fig. 6.5a. The manufacturing process assured the
stacking sequence symmetry in the web. It is worth noting that the filler
plies were not modeled.

Part Stacking sequence
Skin [45/90/− 45/0/45/90/− 45/0]s
Web [45/0/− 45/90/45/90/− 45/0/0/− 45/90/45]s

Base right [45/0/− 45/90/45/90/− 45/0/0/− 45/90/45/90/− 45/0/45]
Base left [45/0/− 45/90/− 45/90/45/0/0/45/90/− 45/90/45/0/− 45]

Table 6.2: Panel stacking sequence.

Filler plies

64 mm

33.5 mm

45º

Ply orientations

R = 4 mm

(a) (b)

Fig. 6.5: a) Sketch of stringer lay-up and b) FE model cross-section.

The corresponding UD ply material properties used to feed the intralam-
inar damage model are listed in Table 6.3 in a dimensionless form for confi-
dential reasons.

Fig. 6.6 shows a graphical respresentation of the in situ effect with the
material properties from Table 6.3. The in situ properties were calculated
according to [34, 103] and Eqs. (4.1) - (4.3).
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Density 1.59 × 10−9 t/mm3

Elastic properties E1/E2 = 15.78 ; E2 = E3

G12/E2 = 0.478 ; ν12/ν23 = 0.88
Strength XT/XC = 1.6

YT/YC = 0.2
YT/SL = 0.59

Fracture toughness GXT /GXC = 1.33
GYT /GYC = 0.1
GYT /GSL = 0.17

Traction separation law parameters fXT = 0.4 ; fXC = 0.2
HXT /HXC = 1.6

Table 6.3: Dimensionless material properties and parameters used for the intralaminar damage
model.
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Fig. 6.6: Graphical representation of the tensile and shear in situ strength of the material. Circles
are located at the studied ply thickness.

6.5 Interlaminar damage modeling

The CZM described in Section 4.3.3 is used to model delamination. The cor-
responding material properties used to feed the interlaminar damage model
are also listed in Table 6.3 in a dimensionless form due to confidential rea-
sons.

A penalty stiffness value of 5 x 104 N/mm3 was enough to avoid adding
compliance in the system as shown in Fig. 6.7.
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GIc/GI Ic τIc/τI Ic η K [N/mm3]
0.17 0.59 1.9 5 × 104

Table 6.4: Dimensionless material properties and parameters used for the interlaminar damage
model.
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Fig. 6.7: Penalty stiffness effect (K) on the elastic force - displacement response of the panel.

6.6 Element size

Table 6.5 summarizes the maximum intralaminar element size for each dam-
age mechanism according to Eq. (4.21). The interlaminar FPZ using the
expressions from Chapter 3 and considering the smallest ply thickness mod-
eled (i.e. 0.1905 mm) are 0.25 and 2.3 mm for pure mode I and mode II,
respectively. However, the actual interlaminar FPZ was measured in prelimi-
nary simulations in order to use a less conservative element size, which was
about 3 mm. An element size of 1 mm was selected and Eq. 2.5 was applied
at YT to ensure correct energy dissipation.

6.7 Element deletion criterion

The element deletion criteria used here is the same described in Section 4.3.5.
The elements are deleted when the fiber damage variable reaches a value
equal to unity while matrix degradation is limited (i.e. d2, d6) to leave a
minimum stiffness in order to avoid element distortion issues. The cohesive
elements are also deleted when the damage variable is equal to unity too.
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Damage mechanisms Maximum element size [mm]

XT 10.9
XC 17.2
YT 0.3
YC 0.95
SL 1.12

Table 6.5: Maximum intralaminar element size for each damage mechanism to avoid snap-back
at element level.

6.8 Low velocity impact results

The machine used for the calculation of the composite panel LVI was the
same as for the numerical benchmark from Chapter 4. The model had 11.45
million degrees of freedom and the computational time was of 69 hours using
20 CPU’s. The impact time was 7 milliseconds.

The force - displacement response from the numerical model is compared
with the experimental one in Fig. 6.8. The overall response is well predicted
taking into account the complexity of the test and the large impact energy,
which lead to a large amount of damage (VID). In fact, there was skin perfo-
ration.
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Fig. 6.8: Comparison of the numerical force - displacement impact response with the experimen-
tal one.

The elastic response (point A) and damage initiation (point B) are fairly
well captured. The maximum force is reasonably well captured but the nu-
merical model predicts the load drop at a much lower displacement (Point

120



6.8. Low velocity impact results

C). It is worth noting that there was only one panel tested so it is not known
the possible experimental scatter. Furthermore, the material properties were
taken from similar materials systems because an experimental characteriza-
tion at the ply level was not performed. The numerical model predicts a load
drop that it is mainly due to fiber breakage rather than delamination. After-
wards, there is a stage of damage growth in which the model significantly
under-predicts the force. The model has lower energy dissipation.

The residual stiffness for the matrix (Er) should be the lowest possible but
element distortion issues aborted the simulation for Er < 50 MPa. Initially, Er
= 100 MPa was taken. However, an important effect on the force prediction
was observed after the load drop as Fig. 6.9 highlights. Finally, a residual
stiffness for the matrix of 50 MPa was used which allowed to finish the LVI
simulation and to perform the sequential CAI simulation.
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Fig. 6.9: Effect of the residual stiffness for the matrix (Er) on the LVI simulation.

The complexity of LVI simulations with VID [87] is larger than with
BVID [59, 131, 134] because they suffer much more damage, especially in the
form of fiber breakage. It becomes very important to capture the interac-
tion among damage mechanisms for accurate results. For instance, the fiber
traction separation law shape is an important property to account for as dis-
cussed in Chapter 5. Unfortunately, the sub-component experimental test
campaign was not accompained with a material characterization what makes
difficult to indentify the discrepancies between the model and the experimen-
tal test. Furthermore, LVI simulations with VID are numerically challenging
because they suffer severe element distortion that can abort the analysis. The
model accuracy and robustness can be sensitive to the element deletion cri-
terion. In Chapter 5 was reported a sensitivity of the results even for very
low values of the residual stiffness when there was extensive damage. Some
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authors [32, 150] use cohesive elements to model matrix cracking. This ap-
proach could circumvent numerical issues related to element distortion even
though other aspects arise (e.g. mesh bias effects, discretization criterion and
computational time).

Fig. 6.10: Zoomed view from the impacted side after the LVI. The white dashed area is the
experimental projected delamination area (Ad = 1575 mm2) while the dark dashed line is the
contour of the numerical projected delamination area (Ad = 1246 mm2).

Fig. 6.10 shows the experimental projected delamination area of the panel
(Ad = 1575 mm2) together with the numerical one (Ad =1246 mm2). The
projected delamination area is under-predicted by 20.9 %. The model pre-
dicts that the largest delamination appears at the back - face. However, the
model is not able to capture the extension of the delamination that appear
diagonally at the back-face of the tested panel.

In Chapter 4 was already seen that it is difficult to capture the back-face
delaminations. Only the S4R CON case was able to predict the largest de-
lamination, which occurred at the back - face in the 45o direction. Thus, the
under-prediction of the stripes and delamination could be due to the model-
ing strategy that affects the interaction between interlaminar and intralaminar
damage mechanisms. However, the fiber traction separation law, which was
not characterized, can also affect the interaction between interlaminar and
intralaminar damage but the discrepancies seem to be large to only attribute
them to the modeling approach. The material properties should be tested,
especially those material properties related to fracture propagation.

Fig. 6.11 shows the contour area of deleted elements due to fiber damage
with the perforated skin region. The perforated area is smaller to the area
with deleted elements due to fiber damage.

Fig. 6.12 shows a view of the LVI simulation with the fiber damage field
output where it can be seen impactor penetration through the skin of the
composite panel.
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Fig. 6.11: Zoomed view from the impacted side. The dark line represents the contour area of
deleted elements due to fiber breakage (d1 =1).

Fig. 6.12: View of impactor penetration through composite skin at instant u/umax = 0.8. Field
output of the fiber damage variable (SDV8).

6.9 Compression after impact results

In this section, the CAI test is shown together with a pristine test that was
performed to a panel with the same configuration. Fig. 6.13 compares the
numerical results with the experimental ones from both pristine and CAI
tests. The displacements in the CAI test were measured through LVDT. Thus,
no compliance calibration is needed as in Chapters 4 and 5 in which the
displacements were measured from the machine.

The pristine panel failed at the middle down section as shown in Fig.
6.14. The pristine model had the same model definitions described for the
CAI model but the mesh refined region was located at middle down section
to capture the experimentally observed failure location.
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Fig. 6.13: Comparison among experimental and numerical results of the force - displacement
response of the pristine and CAI tests.

Fig. 6.14: Front view of failed pristine specimen.

The pristine simulation captures the stiffness up to F/Fmax = 0.6. After-
wards, the pristine test shows a loss of stiffness, which could be attributed
to damage propagation from some defects, that the model does not cap-
ture. However, the pristine model only under-predicts the strength by 6.2
%. On the other hand, the CAI test failed successfully at the impacted re-
gion. Fig. 6.15 shows the experimental and numerical failed CAI specimens,
respectively. Fiber failure can be observed across the stringers width of the
numerical model as well as in the tested panel. A fracture that crosses the
whole width is not seen in the numerical model. Nervertheless, it is worth
mentioning that the CAI model eventually aborts.
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Fig. 6.15: a) Back - face image of the experimentally tested CAI panel and b) the numerical
model.

The CAI numerical model is able to predict the stiffness even the dam-
age progression prior to failure with fairly good agremeent. The numerical
model under-predicts the CAI strengt by 5.36 % in the first load drop (i.e.
u/umax=0.6). Both pristine and CAI strength under-predictions are of simi-
lar magnitude what it could be attributed to some discrepancy on the used
fiber compression properties. Despite having important differences in the
predicted projected delamination area during the impact, the CAI strength
is fairly well predicted. The final failure was governed by compression fiber
breakage at the stringers which could explain that the results were less de-
pendent on the damage produced by the impact.

6.10 Conclusions

In this chapter the methodology described in Chapter 4 was applied for the
prediction of the LVI and the sequential CAI of a composite stiffened panel.

Conventional shell elements together with cohesive elements were used
in order to make feasibly the simulation of the LVI and CAI of the sub-
component. It represented a challenging case not only by the structure size
and complexity but also for the impact energy considered, which involved
impactor penetration and severe damage (VID). The fracture material proper-
ties should be characterized to identify the sources of discrepancies between
the numerical and experimental data. The relative error in the compression
strength prediction of the undamaged and damaged panel were -6.2 % and
-5.36 % (i.e. first load drop), respectively. From the modeling point of view,
the element deletion criterion proved to be a limitation in terms of model
robustness when there is extensive damage. Nonetheless, it was shown the
potential of the employed techniques and modeling methodology to address
problems of industrial interest such as the compression strength prediction
of both undamaged and damaged stiffened panels.

Further work is required to improve the FEA robustness of LVI and CAI
simulations when there is VID. It is thought that discrete approaches (e.g.
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smoothed particle hydrodynamics) could circumvent the reported limitations
related to element distortion. Improvements on the model efficiency are fea-
sible. For instance, it could be done by embedding the finer region within a
single shell element region tied through pure shell to shell coupling or the
use of sub-cycling tecniques.

126



Part IV

Concluding remarks
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Chapter 7

Conclusions

An efficient methodology that allowed to study the damage initiation and the
damage propagation during LVI and the sequential CAI of challenging cases
with scientific and industrial interest was proposed. The methodology was
applied under different scenarios and it was always compared with experi-
mental data. Numerical models require definition of several parameters that
affect their efficiency, accuracy, robustness and objectivity. The key param-
eters have been described concisely and the selected values have been well
justified and their sensitivity discussed.

At the coupon level, modeling strategies with different finite element
types (i.e. conventional shells, continuum shells, solid elements) and cohesive
interaction technologies (i.e. cohesive elements and cohesive surfaces) were
systematically assessed in a numerical benchamrk. From the pre-processing
point of view, strategies involving conventional shell elements are more te-
dious due to tie constraint definitions that ensure correct contact and kine-
matic description at the interfaces. Similarly, cohesive elements definitions
are more tedious than cohesive surfaces for pre-processing. Conventional
shell elements proved to suffer less element distortion than volumetric finite
elements (i.e. solid and continuum shell elements). Cohesive surfaces do not
suffer element distortion as it can happen with cohesive elements because
they are not a topological entity. Element distortions are not desired because
they detrimentally affect the simulation time through the model stable time
increment. Furthermore, element distortions have an impact on the model
robustness because they can eventually abort the simulation. Conventional
shell elements were the least computationally demanding finite elements (i.e.
about three times faster than solid elements) because of their simpler consti-
tutive behaviour while zero-thickness cohesive elements were about 1.5 times
faster than cohesive surfaces. Cohesive surfaces need a contact tracking al-
gorithm that penalizes their efficiency. A laminate with an unusually thick
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plies was selected to highlight possible limitations of plane stress based fi-
nite elements. The use of conventional shell elements together with cohesive
elements proved to be the fastest approach with relative errors on the CAI
strength below 4%. In fact, all the assessed modeling strategies that finished
the simulations tend to under-predict the CAI strength with relative errors
below 4%. However, conventional shell elements were less accurate than
solid elements in the predicted energy dissipated during the LVI because of
a poorer transverse shear description and they neglect of out-of-plane stress,
which are important for damage predictions in thick ply laminates. Small
differences between cohesive surfaces and zero-thickness cohesive elements
in terms of accuracy were found. However, cohesive surfaces could be more
appropiate to predict large delaminations than cohesive elements.

The adopted finite element size criterion that guarantees no snap-back
within the first branch of the traction separation law as well as three ele-
ments along the interlaminar failure process zone proved to yield good re-
sults. Novel empirical formulas have been proposed to predict the interlam-
inar FPZ of a delamination growing at the mid-plane of an homogeneous
orthotropic laminate under pure fracture mode I and mode II for linear soft-
ening cohesive laws. The formulae were used to estimate the interlaminar
FPZ of the studied impact cases. A conservative estimation of the interlam-
inar FPZ is obtained by using the formulae from Chapter 3 and considering
the smallest ply thickness modeled. However, some limitations are worth to
remark. The number of delaminated interfaces due to a LVI is not known
beforehand and the use of the proposed formula assuming that all the inter-
faces can delaminate lead to conservative element sizes as in Chapter 5 where
12 out of 55 interfaces actually delaminate. Also, the geometry and boundary
conditions can be far from a crack growing at the mid-plane of a laminate un-
der pure fracture mode as in Chapter 6. A recommendation on this regard,
which was actually used here, is to choose the element size in order to have
three elements along the interlaminar FPZ according to the formula for mode
II. Then, to perform the simulation and measure of the actual interlaminar
FPZ in the impact model to use an optimum mesh size that ensures correct
energy dissipation (i.e. three elements along the interlaminar FPZ and avoid
snap-back at the element level).

The penalty stiffness and surface density of cohesive interactions have an
important impact in the simulation time through the model STI. They are
both numerical parameters that have been defined for the sake of computa-
tional efficiency while not affecting the results. The optimum penalty stiff-
ness was obtained by performing sensitivity analyses of the elastic regime to
ensure no effect on the system compliance. The surface density of cohesive
interactions was obtained by equaling the STI definition of continuum and
cohesive interactions.

The sensitivity to the finite element orientation was low for the studied
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cases. However, it is thought that this effect was of minor importance in the
studied cases because the element sizes were fairly small. For larger element
sizes the role of mesh orientation could be more important.

The element deletion criterion proved to control the model robustness but
it can also affect the results when there is extensive damage. It is important
to ensure the dissipation of the fracture toughness. Element distortion issues
mainly come from matrix damage which easily lead to large element distor-
tion during impact simulations. The employed modeling strategy was not
sensitive in the BVID regime but no general criterion that perfectly works
was found for VID.

The techniques and methodology proposed were applied to novel appli-
cations such as the prediction of the LVI and sequential CAI test of thin ply
laminates at the coupon-level and to a sub-component composite stiffened
panel. An extensive experimental campaign was conducted on the thin-ply
weave laminate TeXtreme R© 80 g/m2 while it was not possible to characterize
the fracture properties of the material used for the sub-component composite
stiffened panel. Some material properties such as interlaminar mode II frac-
ture toughness and fiber fracture properties are of paramount importance to
accurately predict LVI and CAI tests. Therefore, it is strongly recommended
to have reliable material test data. Otherwise, it is difficult to indentify possi-
ble limitations of the models. Also, it is recommended to check the test data
and to make sure that the deviations on the measured data are not big enough
to influence the model results. A good exercise is to reproduce the available
tests at the laminate level before performing the LVI and CAI simulation (i.e.
shear, pristine, CT and CC).

The use of conventional shell elements together with zero-thickness co-
hesive elements was a feasible strategy to model the large number of plies
and interfaces for delamination of the thin-ply weave laminate TeXtreme R©

80 g/m2. An experimental campaign was carried out on TeXtreme R© 80
g/m2 from which all the material properties to feed the constitutive models
were characterized with the exception of the friction coefficient. A sensitiv-
ity analysis was performed to choose a suitable value. The numerical study
highlighted the importance of having reliable material data. Otherwise, it
is difficult to judge and identify the limitations of the model. Also, it was
highlighted the importance to account for the actual fiber traction separation
law and all the interfaces for delamination to accurately predict the coupling
between intralaminar and interlaminar damage. Conversely, matrix cracking
coulb be neglected in the models. The numerical models over-predicted the
CAI strength with relative errors below 6%. The fiber traction separation law
shape was obtained from CT and CC tests on cross-ply laminates as proposed
by some authors in the literature. All the remaining material properties were
characterized at the ply level.

Finally, the same methodology was applied at the sub-compoenent level.
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Unfortunately, the experimental test campaign was limited at the sub-
component level and the material was not characterized at the ply level. This
made difficult to judge whether the discrepancies of the impact model such
as the smaller predicted projected delamination area were coming from the
material properties used or some modeling limitation. It represented a chal-
lenging scenario not only by the structure size and complexity but also for the
impact energy considered, which involved impactor penetration and severe
damage. The element deletion criterion and the associated element distortion
issues compromised the robustness of the model. However, the potential of
the employed numerical tools and material models to address the strength
prediction of both undamaged and damaged stiffened panels was shown.
The relative error in the compression strength prediction of the undamaged
and damaged panel were -6.2 % and -5.4 % (i.e. first load drop), respectively.
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Chapter 8

Suggestions for future work

The methodology proposed with the employed tecniques in this thesis en-
ables LVI and CAI analyses at larger scales with immediate applicability,
hence allowing industrial scalability. However, there exist limitations yet to
be solved.

The projected delamination pattern has not been generally captured with
the selected modeling approach. Further research on simpler and more con-
trolled cases should be done to understand the causes of it. This should allow
to identify whether it is due to the modeling methodology or due to scatter
on material properties that do not allow an accurate interaction between in-
terlaminar and intralaminar damage. On the one hand, it should be assessed
the effect of the employed cohesive interaction technology with further cases.
Also, it should be assessed if modeling matrix cracking with discrete ap-
proaches, which actually models a discontinuity, lead to better delamination
predictions. On the other hand, numerical models rely on material proper-
ties. Experimental testing always involves certain scatter and some tests more
than others due to limitations on testing procedures and data reduction meth-
ods (i.e. interlaminar mode II fracture toughness, fiber compression fracture
toughness, traction separation law shape determination). For instance, inter-
laminar mode II fracture properties certainly controls delamination during
an impact. In the present work, all the interfaces were fed with the same
material properties obtained from 0o/0o interlaminar tests. Also, it should
be assessed the predictions sensitivity to certain material properties and, if
necessary, to include this uncertainity in the models. Design of experiments
methods could help to systematically treat and identify the most sensitive
material properties in LVI and CAI tests. In this line, parametric optimiza-
tion could also help in determining what material properties and how much
should be improved to improve the damage resistance and damage tolerance
of composite laminates.
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Chapter 8. Suggestions for future work

The selected modeling approach proved to be robust for LVI with BVID.
In fact, the use of conventional shell elements perform better than volumetric
elements in terms of model robustness. However, model robustness issues
were found due to element distortion in situations with extensive damage
(VID). Different element deletion criteria were used without success. It is
thought that the use of discrete approaches (e.g. smoothed particle hydro-
dynamics) should be explored becaue they could circumvent the reported
limitations.

Further improvements on the models efficiency at the sub-component
level can be done by means of sub-cycling and by embedding the finer re-
gion within a single shell element region tied through pure shell to shell
coupling. However, it should be studied the dynamic effects derived from
the use of this coupling.

If it is unfeasible the mesh size criteria described in 4.3.4 for engineering
applications. Snap-back at the element level can be avoided by reducing the
corresponding strength by means of Eq. 2.5 [26]. In fact, the subroutines
used for the intralaminar damage models automatically reduces the strength
if Eq. (4.21) is not fulfilled. Similarly, as proposed by Turon et al. [158] and
done in Section 3.3.3, it can be done if the mesh size prescribed by Eqs. (3.7)
- (3.8) is unfeasible. Despite ensuring correct energy dissipation, the damage
initiation predictions are affected. Thus, this should be carefully studied.
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