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Abstract 

The utilization of carbon dioxide as chemical substrate has become a popular 

strategy from an environmental and economic perspective to mitigate CO2 

emissions to the atmosphere and, at the same time, reduce the petroleum 

dependency to provide carbon based substrates. The activation of carbon 

dioxide is not a straightforward process. Actually, high internal energy 

substrates are required to compensate its thermodynamic stability, and also, 

efficient catalysts are crucial to overcome the high kinetic barrier of activation. 

In this line, homogeneous catalysis has become an interesting technique to 

achieve such purpose due to its versatility, flexibility and chemoselectivity. 

Therefore, we aim to improve our understanding on CO2 fixation processes, 

in order to design new catalysts that present higher activity and selectivity, 

thus contributing to scale up the CO2 fixation processes at the industrial level. 

The design of new catalysts is a complex task that requires the combination 

of several experimental and theoretical techniques. One of the most relevant 

is molecular modelling, which allow to describe the system in detail and to 

understand how the system behaves or how a reaction mechanism takes 

place. Nowadays, the combination of two factors, being the increase of the 

computational power and the improved efficiency of the theoretical 

algorithms, enable computational chemists to study large systems at a 

reasonable level of accuracy, to mimic the experimental conditions, and 

consequently, obtain crucial information on the studied system. 

In this Thesis we study computationally the reaction of carbon dioxide and 

epoxides catalyzed by a binary catalytic system formed by a halide and an 

aluminum aminotriphenolate complex. 

The first chapter contains a summary of the effect of CO2 excess in the 

atmosphere, as well as the difficulties of activating CO2, together with several 

reported catalytic systems used nowadays that achieved relevant 

performances on CO2 fixation. Then, there is a brief description of the 
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catalyst and the particularities of epoxides. Finally, we detail the main goals 

of each chapter of the Thesis. 

In Chapter 2, we explain the theoretical background of the methodology used 

in this Thesis. We summarize the main aspects of Density Functional Theory 

and the different families of functionals, we depict the solvation models and 

entropic corrections used in the calculations presented in the next chapters, 

and finally, we explain the characteristics and details of adaptive multiscale 

metadynamics used in the last chapter of the Thesis. 

The first chapter that collects results is related to the formation of cyclic 

carbonates. The chapter is divided in two parts. In the first one, we present a 

quantitative evaluation of the catalytic activity of the binary system used in 

the reaction between 1,2-epoxyhexane and CO2. We evaluate different 

aspects that affect the calculated Gibbs free-energy, like solvation, 

translational entropy and the chosen DFT functional. In the second part of 

the chapter we investigate the reaction mechanism of functionalized 

epoxides, considering glycidol as a model of epoxy-alcohols. A detailed 

mechanistic study is presented, explaining the reaction order of the catalyst, 

the regioselectivity and the enantioselectivity observed in the experiments. 

Chapter 4 is not related directly on CO2 fixation but the utilization of cyclic 

carbonates, which are the products of the reaction studied in the previous 

chapter, to produce high-value chemicals. In this case, we elucidate the 

reaction mechanism between cyclic carbonates and arylamines, catalyzed by 

a guanidine based organocompound, to selectively produce N-aryl 

carbamates. 

The reaction between CO2 and epoxides may lead to polycarbonates, which 

are the alternative product to cyclic carbonates. In the fifth chapter we 

investigate the copolymerization mechanism of internal epoxides considering 

several active species of the catalyst. In this part, we compare the catalytic 

activity of a single complex with two separated complexes, and even a non-

covalent dimeric ensemble of the catalyst. We also modify the catalytic system 

to computationally benchmark its activity. The second part of the chapter is 

a more specific study, related to the mechanism elucidation of limonene oxide 
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copolymerization with carbon dioxide. Limonene oxide is a biorenewable 

substrate with a complex structure that presents three stereocenters. 

Consequently, we pay special attention on the stereoregularity of the obtained 

copolymer, considering multiple reaction pathways and evaluating its 

feasibility.  

The last chapter where we present our results is not based on DFT methods. 

We move to adaptive multiscale metadynamics to evaluate the effect of CO2 

pressure in the free-energy barrier of two different reactions of cyclic 

carbonates: decarboxylation and racemization. In the last chapter of the 

Thesis, the most relevant conclusions of each chapter can be found.
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Chapter 1 

 

"Scientists do not coddle ideas. They 

crash test them. They run them into a 

brick wall at sixty miles per hour and 

examine the pieces. If the idea is sound, 

the pieces will be that of the wall." 

Anonymous

General Introduction 

1.1 Climate Change and Carbon Dioxide Utilization 

World population has experienced a continuous growth since the Great 

Plague in 1350 (at that time, around 370 million people lived on the planet). 

However, the highest growth rates occurred between 1955 and 1975, 

increasing the word population above 1.8% per year. In 1960, 3 billion people 

lived on the planet. Nowadays, more than 7.4 billion people share the natural 

resources of the Earth.[1] Food production was one the first problems due to 

this demographic increase, which was mitigated in the first half of the 20th 

century by the Haber-Bosch process that allowed the chemical fixation of 

nitrogen in the form of ammonia to easily produce fertilizers, thus increasing 

the efficiency of our crops.[2]  

A second concern is the continuous increase of energy consumption due to 

both the increase of population and a higher energy demand in our society. 
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Currently, energy consumption increases faster than population. According 

to the “World Energy Outlook 2016” report of the International Energy 

Agency, in the 2000-2014 period world population growth was 26%, whereas 

the increase in energy demand was 56%. This energy dependence situation is 

worsened by the current energy production processes based on burning fossil 

fuels, which first, are not renewable and second, generate large amounts of 

polluting waste like carbon dioxide (CO2). 

In 2015, CO2 levels in the atmosphere surpassed 400ppm for the first time in 

history. In June 2018, the CO2 concentration in volume was around 

408.47ppm (see Figure 1.1).[3]   

 

Figure 1.1 CO2 concentration in the atmosphere 
measured at Mauna Loa Observatory, Hawaii. Historical 
levels (top) and a detailed evolution of CO2 levels in 
recent years (bottom). 

Carbon dioxide (CO2) is the main sub-product of many human activities such 

as logging and combustion of fossil fuels.[4] Moreover, CO2 is also released 

through natural chemical processes like respiration, decomposition of organic 
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materials and volcanic eruptions. According to the “State of the Climate in 

2016” report from the National Oceanic and Atmospheric Administration 

(NOAA) and the American Meteorological Society, the amount by which 

atmospheric carbon dioxide increases each year has roughly quadrupled since 

the 1960s. In fact, the global growth rate of atmospheric CO2 has risen from 

0.6 ± 0.1 ppm per year in the early 1960s to an average of 2.3 ± 0.6 ppm per 

year during the past ten years. Moreover, the increase in global annual mean 

CO2 from 2015 to 2016 was 3.5 ± 0.1 ppm (0.88% ± 0.03%), the largest 

annual increase observed in the 58-year atmospheric measurement record.[5] 

Carbon dioxide is an important heat-trapping (greenhouse) gas. Actually, CO2 

warms the lower part of atmosphere, hence the increase in atmospheric 

concentrations of CO2 and other greenhouse gases such as methane, nitrous 

oxide and ozone have caused the rise in the average global temperature since 

the 20th century. In Figure 1.2, we present the change in global surface 

temperature in the 1880-2017 period. The maximum increase was observed 

in 2016, when there was a 1ºC increase respect the historic average. Carbon 

dioxide is of greatest concern because it causes a larger overall warming 

influence than all of these other gases combined and because it has a long 

atmospheric lifetime due to its high thermodynamic and kinetic stability.  

 

Figure 1.2 Global surface temperature evolution (ºC) from 
1880 to 2017. The year 2016 ranks as the warmest in the 
records.  

The increase of global surface temperature leads to many ecological problems 

like the decrease in arctic ice surface (13.2% per decade) or decrease in the 
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global mass of ice sheets (127 ± 37 Gt per year). Consequently, the sea level 

has increased 3.2 mm per year since 1880.[6] 

Two different strategies have arisen to mitigate CO2 emissions to the 

atmosphere.[7] The first strategy is CO2 capture and storage[7c] through 

different techniques like chemical absorption (ethanolamine, diethanolamine, 

potassium or sodium hydroxide, etc.), adsorption (alumina, zeolites, etc.), 

cryogenics (dry ice formation at low temperatures), polymer-based 

membranes (polyphenylene oxide, polyionic liquids, etc.), inorganic 

membranes like zeolites or ceramic membranes, and using algal or microbial 

systems.[8] Carbon dioxide processed in different physical forms has many 

applications such as additive in foods and beverages, inert gas, fire 

extinguisher, or as supercritical solvent.[9] 

Alternatively, the second strategy is the chemical fixation of CO2 into 

molecules, thus using CO2 as carbon feedstock.[10] This approach tackles both 

problems mentioned above: reduce the dependence on petroleum as carbon 

source and store energy chemically in molecules.[10c] Actually, CO2 utilization 

as C1 building block presents a major challenge due to the high 

thermodynamic and kinetic stability of CO2. In order to overcome such 

limitation, the scientific community has invested many efforts in the design 

of efficient catalytic systems to transform CO2 into value-added products in 

combination with high internal energy substrates that compensate the high 

stability of CO2. Currently, several catalysts are robust enough to convert CO2 

obtained directly from several industrial processes, still maintaining the high 

activity of the catalyst. Additionally, the high chemoselectivity showed by 

some catalytic systems prevents obtaining undesired side-products in CO2 

fixation processes. Consequently, several economic analysis draw attention to 

the good economic perspective of chemical fixation of CO2 in the industry.[11] 

Nowadays, around 115 million tons of CO2 are used annually by the global 

chemical industry. However, this is a tiny amount compared to the 24 billion 

tons of annual anthropogenic CO2 emissions.[8] Consequently, we cannot 

exclude any of the two strategies presented above to mitigate CO2 emissions 

and reduce CO2 concentration in the atmosphere. Both technologies have to 
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be improved in order to become more efficient, therefore more widely 

used.[12] In the work summarized in this Thesis I aim to contribute to 

improving the efficiency of several CO2 fixation processes via the chemical 

reaction of CO2 with epoxides, proposing new routes to produce valuable 

products that are nowadays produced in the industry using conventional 

synthetic processes.  

1.2 Carbon Dioxide as Carbon Building Block 

The chemical utilization of CO2 as carbon feedstock is motivated by the 

reduction of the CO2 emission into the atmosphere. An example of a chemical 

reaction where CO2 may be used as reagent is the formation of cyclic 

carbonates (CyCs) from epoxides. In fact, CyCs are interesting molecules that 

may be used as polar aprotic solvents or as precursors of polycarbonates and 

pharmaceuticals among other high-value products.  

 

Figure 1.3 Reaction routes to obtain ethylene carbonate from ethylene. A: Oxidation to 
ethylene oxide and CO2 addition. B: Chlorination with hydrochloric acid (phosgene 
route). C: Hydrolysis of ethylene oxide (phosgene route). Relation of tons of CO2 
emitted respect tons of ethylene carbonate produced for each process is showed. 
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As an example, two conventional processes to produce ethylene carbonate 

from ethane are depicted in Figure 1.3.[10a] Additionally, the synthetic route 

labeled A is also showed, which is based on the oxidation of ethane to 

produce ethylene oxide and followed by CO2 coupling towards ethylene 

carbonate through a catalyzed reaction at mild reaction conditions. The two 

conventional routes (B and C) are based on phosgene reaction with ethylene 

glycol. 

In the B pathway, ethylene is chlorinated by hypochlorous acid forming 2-

chloroethanol, which is then hydrolyzed to ethylene glycol. The third 

synthetic route (C) is based on the hydrolysis of ethylene oxide to ethylene 

glycol to produce ethylene carbonate. The ratio of tones of CO2 emitted over 

tons of ethylene carbonate produced for the three processes is showed in the 

bottom of Figure 1.3. As it can be seen, route A where CO2 is used as carbon 

feedstock presents a considerably lower CO2 emission than conventional 

phosgene-based routes. 

Nowadays, a wide variety of chemical reactions using CO2 as substrate have 

been reported. Activation of CO2 may be overcome by using different types 

of catalysts and reactants, each according to CO2 reactivity. Carbon dioxide 

presents one electrophilic center, which is the carbon atom, and two different 

nucleophilic targets, which are the two oxygen atoms and the  system of the 

two double bonds between carbon and oxygen atoms (see Figure 1.4).  

 

Figure 1.4 Five chelating modes of CO2 to a generic metal complex illustrating the 
different reactive sites of the substrate. Standard Gibbs free-energy of formation of 
CO2 and CO are depicted below to compare their relative stability. 

In addition, in Figure 1.4 we show the standard Gibbs free-energy of 

formation of CO2 and CO. Carbon monoxide is used in many carbonylation 
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reactions, like Fischer-Tropsch, due to its high reactivity. Contrarily, carbon 

dioxide is more stable, which is the main motivation to design efficient 

catalytic systems for CO2 fixation. 

Taking into consideration the different reactive sites of the CO2 molecule, 

several synthetic strategies have been reported to activate CO2. The reduction 

of CO2 to produce CHxOy moieties is one of the most investigated processes 

in CO2 fixation.[13] Actually, the CO2/H2 coupling to produce formic acid, 

formaldehyde or methanol is a challenging and motivating catalytic reaction 

that has been explored by using both molecular complexes, supramolecular 

structures and solid surfaces as catalysts.[14] Reduction of CO2 using H2 is 

crucial to produce fuels from a renewable carbon source such as CO2.
[15] 

 

Figure 1.5 Schematic representation of the main transformations of CO2 to high-value 
chemicals. The two CO2 reactions with epoxides are investigated in this Thesis. 
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As alternative to fuel production, there are other processes where CO2 is used 

as substrate that have been industrialized. For example, the production of 

urea or CyCs, which are interesting monomers for polyurethanes and 

polyureas or polycarbonates, respectively.[16] Many other reactions using CO2 

are studied (see Figure 1.5) and some of these are already being implemented 

in alternative industrial processes to the conventional routes, which are more 

pollutant and less atomic efficient than CO2 based.[10c, 16] 

The formation of salicylic acid (the precursor to aspirin) was reported by 

Hermann Kolbe and Rudolf Schmidtt at the end of the 19th century.[17] The 

Kolbe-Schmidtt process is a carboxylation reaction of sodium phenoxide with 

CO2 under 100 atm of pressure and 125 ºC to produce salicylic acid after 

treating sodium salicylate with sulfuric acid. This process as well as sodium 

bicarbonate formation from sodium hydroxide and CO2 are some of the first 

examples of chemical reactions where CO2 is used as substrate. Nowadays, 

more complex products can be formed using other substrates like dienes,[18] 

alkynes,[19] epoxides, amines[20] or alkenes [19b] and CO2. 

In this Thesis I focus on the computational study of reaction mechanisms of 

formation of cyclic carbonates and polycarbonates, as well as other related 

reactions involving these two important products. 

1.3 Al-Catalyzed Reaction of CO2 and Epoxides towards 

Polycarbonates and Cyclic Carbonates 

As we pointed out in the previous section, the high thermodynamic stability 

of CO2 has to be compensated by high internal energy substrates. We have 

considered epoxides as substrate due to their versatility, availability and easy 

handling.  

Cyclic ethers that form a three-atom ring, also known as epoxides or oxiranes, 

have been widely used in synthetic chemistry. Ethylene oxide, was first 

synthesized by Charles-Adolphe Wurtz in 1859.[21] An alternative method to 

produce epoxides is the direct oxidation by air using a silver catalyst, which 
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was patented in 1931 by Lefort and six years later was industrialized by Union 

Carbide. Nowadays, Shell has improved this methodology, which currently 

accounts for the majority of ethylene oxide production worldwide. 

Unfortunately, direct oxidation is limited to ethylene and does not work for 

other alkenes. Consequently, alternative techniques have been developed for 

epoxide synthesis (see Figure 1.6). 

Epoxides are ideal substrates for CO2 chemical fixation. The most used 

nowadays are the simplest ones: ethylene oxide and propylene oxide. 

Nevertheless, cyclohexene oxide and other internal epoxides are also 

employed both in polycarbonate or CyC synthesis. More complex epoxides 

like limonene oxide present a greater challenge due to their structural 

complexity. In fact, they arouse great interest in the scientific community 

because some epoxides like limonene oxide may be obtained from renewable 

sources. For example, limonene oxide is synthesized from limonene, which is 

the major component in the oil of citrus fruits.  

 

Figure 1.6 Synthetic routes for the epoxidation of alkenes. 

The reaction of CO2 and epoxides may lead to two different products, cyclic 

carbonates or polycarbonates, depending on the catalytic system and the 

reaction conditions (see Figure 1.7). On one hand, CyCs are useful organic 

compounds as monomers for polycarbonate production, but are also used as 

intermediate in fine chemicals industry. Additionally, CyCs are also used as 

polar aprotic solvents or as high permittivity component of electrolytes in 

lithium batteries.  
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On the other hand, the direct copolymerization of epoxides and CO2 towards 

polycarbonates may also take place. Polycarbonates are widely produced in 

the polymer industry and may be used in electronic components, as 

automotive, aircraft, railway and security components, in niche and medical 

applications, in mobile phones or as construction materials. Actually, 

polycarbonates used in engineering are strong and resistant transparent 

materials. They are thermoplastic polymers that can be easily manipulated, 

molded and thermoformed.  

 

Figure 1.7 Schematic representation of a tentative CO2 reaction mechanism with 
epoxides to produce either polycarbonates or cyclic carbonates. The reaction may be 
catalyzed by an electron withdrawing actor like a Lewis acid (A) and a nucleophilic co-
catalyst (X).  

In recent years, the interest of the scientific community in the design of active 

and selective catalysts for the reaction of CO2 and epoxides is constantly 

growing. Actually, the designed catalysts have to guarantee different aspects 

like decreasing the reaction time, increasing the chemoselectivity between 

polycarbonate and cyclic carbonate, and increasing the enantioselectivity for 

enantiomeric epoxides.  

In order to accomplish such requirements, homogeneous catalysts based on 

transition metals[22] like cobalt,[23] chromium,[24] iron[25] or zinc[26] have gained 

much attention in the community. Nevertheless, many catalysts based on 

magnesium[27] or aluminum[28] have also been reported to show great 

performance. In combination with these metals, many different ligands have 

been designed to improve their catalytic efficiency. The most popular catalysts 

both for CyC and polycarbonate formation have been collected in Figure 1.8. 
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It is worth mentioning the first reported catalyst by Inoue et al. in 1983 that 

was used initially for cyclic carbonate synthesis but later on in 1986 also 

proved to be active catalyzing copolymerization reactions.[29] The catalyst was 

based on a porphyrin ligand and aluminum as metal center. Several 

modifications of this catalyst improved its performance. Sometimes the first 

reported ligand is not the most popular one. Actually, in this case, the most 

widely used and studied is the salen ligand. The reaction mechanism and 

catalytic performance of Cr-salen and Co-salen catalysts have been 

investigated in detail by Darensbourg et al. among others.[30] However, zinc 

or magnesium have also been used as metal centers for salen complexes. 

 

Figure 1.8 Popular reported metal complexes to catalyze the reaction between 
CO2 and epoxides to produce either cyclic carbonates or polycarbonates.  

In this Thesis we study the reaction mechanism of CO2 fixation reactions with 

epoxides catalyzed by an Al-based complex. This Al complex is easily 
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synthesized combining the aminotriphenolate ligand with trimethylaluminum 

(see Figure 1.9). The aminotriphenolate ligand was first synthesized in 1922 

by Zemplén and Kunz.[31] However, aminotriphenolate started being used as 

a ligand in coordination complexes just 20 years ago.[32] One of the main 

differences between aminotriphenolate complex with other widely used 

complexes based on salen or porphyrins ligands is that the salen and 

porphyrin-based metal complexes adopt a planar conformation, while the 

aminotriphenolate ligand forms trigonal bipyramid complexes with 

aluminum. 

 

Figure 1.9 Two-step synthetic route to Al-aminotriphenolate complex from phenol 
derivatives, methenamine and trimethylaluminum.  

Kleij et al. have reported high catalytic activity of this complex in 

epoxide/CO2 coupling reaction to produce both cyclic carbonates and 

polycarbonates.[33] 

1.4 Aims and Objectives 

The main goal in this Thesis is to investigate computationally the mechanistic 

pathways of CO2 fixation reactions. In fact, computational chemistry has 

become a crucial tool for mechanism elucidation in recent years.[30c, 34] In this 

Thesis we complement our computational results with the experimental data 

provided by Kleij’s group. In Chapters 3, 4 and 5 our results are presented 

with theirs, thus enhancing the comprehension of both and corroborating the 

proposed mechanisms. The collaboration between our groups has been 

fruitful and efficient because we mutually benefit in a symbiotic manner, 

hence improving the catalytic system using the mechanistic studies and at the 

same time, facilitating the mechanism elucidation using the characterization 

UNIVERSITAT ROVIRA I VIRGILI 
Computational Design of Catalysts for Carbon Dioxide Recycling 
Joan González Fabra 



and kinetic experiments. This strategy has proved to be effective in many 

other reported studies that lead to a better comprehension of complex 

systems.[24a, 27b, 35] Next, we will summarize the contents and objectives of each 

chapter of the Thesis. 

In Chapter 2 we present the theoretical background of the methodology 

employed in the next chapters. We mainly used Density Functional Theory 

(DFT) based methods, which are the most used methodology in 

homogeneous catalysis modelling due to its high accuracy describing reactive 

events and low computational time. We also describe the entropic corrections 

that we consider in the calculations showed during the Thesis. These entropic 

corrections are analyzed in detail in Chapter 3. Additionally, we explain the 

theoretical background of adaptive multiscale metadynamics that we use in 

Chapter 6. 

Chapter 3 is organized in two parts, both regarding the study of cyclic 

carbonates formation. In the first part, we present a general investigation on 

the i) effects of solvation, ii) the accounting of entropy and iii) the used DFT 

functional on the Gibbs free-energy profile obtained for the carboxylation of 

1,2-epoxyhexane to produce the corresponding cyclic carbonate. In the 

second part we detail the elucidation of the glycidol reaction mechanism to 

form glycidol carbonate from CO2. Our results are complemented with 

experiments to determine the reaction order of the catalyst, as well as the 

regioselectivity and enantioselectivity of the process.  

In Chapter 4 we do not present a reaction mechanism involving CO2 fixation 

but the utilization of a cyclic carbonate as substrate, which has been produced 

using the epoxide/CO2 coupling described in the previous chapter. The 

reaction is based on the aminolysis of a simple cyclic carbonate to produce 

N-aryl carbamates in mild conditions using arylamines and catalyzed by 1,5,7-

triazabicyclodec-5-ene (TBD), which is an inexpensive organocatalyst. 

Chapter 5 is also divided into two parts like Chapter 3, but in this case 

regarding the mechanism elucidation of polycarbonate formation. Keeping 

the same format as in Chapter 3, the first part of the chapter is a general 

investigation on the reaction mechanism of copolymerization of internal 
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epoxides and CO2 catalyzed by Al aminotriphenolate complex. The main 

purpose in this section is to determine how many aluminum complexes are 

involved in the reaction mechanism and in which form. In the second part of 

the chapter, a more particular case is studied. The reaction mechanism of the 

copolymerization of the renewable substrates limonene oxide and CO2 is 

elucidated, taking into consideration the stereoselectivity of the process due 

to the high complexity of limonene oxide, since it has three stereocenters in 

its structure. 

The last chapter that collects results is Chapter 6 where no static DFT based 

methods are used. Instead, a metadynamic study is presented using multiscale 

methods (semi-empirical and molecular mechanics) to study the reaction 

mechanism of racemization of glycidol carbonate, the formation mechanism 

from glycidol and CO2 of which is investigated in Chapter 3. By using 

metadynamics we have been able to include explicitly the solvent and 

determine its role in the reaction mechanism. Additionally, we studied the 

decarboxylation of glycidol carbonate, which is the opposite reaction to CO2 

insertion to epoxides. Both reactions are evaluated at different pressures of 

CO2 in the system, in order to determine its effect in the activation energy of 

the reaction.
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Chapter 2 

 

"All science is either physics or stamp 

collecting." Ernest Rutheford

Computational Methods 

2.1 Quantum Mechanics 

Physics (phusis) in ancient Greek means nature or natural. An etymologic 

interpretation of physics is “knowledge of nature”. Indeed, in our times 

physics is understood as the scientific discipline that studies how matter 

behaves. During centuries classical mechanics has been the milestone of 

physics, enabling the comprehension and explanation of physical 

phenomena. However, classical mechanics fails at describing the 

microscopic world at the so-called quantum realm, which refers to the size 

scales where quantum mechanical effects become important. 

Consequently, in the beginning of XX century, some theories were 

proposed trying to explain observations that cannot conceal with classical 

mechanics. Actually, classical mechanics and quantum mechanics are not 

opposed theories but classical mechanics is just an approximation of 
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quantum mechanics for large systems (correspondence principle). Therefore, 

the study of a large system within the classical limit, gives the same answers 

through classical or quantum mechanics. 

The quantization is one of the reasons that makes quantum and classical 

mechanics to differ. Magnitudes like energy or momentum, among 

others, have to be restricted to discrete values. A second variation is the 

wave-particle duality, which states that objects have characteristics of both 

particles and waves. Finally, the precision to determine quantities is 

limited, as states the uncertainty principle postulated by Werner Heisenberg 

in 1927 (Eq. 2.1). 

𝛥𝑥𝛥𝑝 ≥
ℏ

2
       Eq. 2.1 

Thus, the more precisely one property is determined, the less precisely 

the other can be measured. Accordingly, quantum mechanics is limited to 

calculate a range of probabilities of position and momentum for a given 

particle. This range of probabilities named quantum state is described by 

the wavefunction. The Schrödinger equation describes the evolution in time 

of the wavefunction (Eq. 2.2). 

𝑖ℏ
𝜕

𝜕𝑡
𝛹(𝑥, 𝑡) = Ĥ𝛹(𝑥, 𝑡)     Eq. 2.2 

In Eq. 2.2 Ĥ is the Hamiltonian operator that generates the time 

evolution of quantum states and provides the value for the energy of the 

system. The Ĥ operator is expressed as the sum of two other operators: 

kinetic and potential operators. If we assume that the Hamiltonian does 

not contain time, hence the total energy of the system is constant, the 

space and time dependency of Ψ can be separated obtaining the time-

independent Schrödinger equation (Eq. 2.3). 

Ĥ𝛹(𝑥) = 𝐸𝛹(𝑥)        Eq. 2.3 
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Quantum chemistry aims at solving this time-independent Schrödinger 

equation using ab initio (“from the beginning”) methods. As we know 

from the lines above, Ĥ is the Hamiltonian operator, E is the total energy 

of the quantum system that we want to study and Ψ is the wavefunction 

defined by x that contains the nuclear and electronic coordinates of the 

system. The Hamiltonian operator can be split in terms of attraction or 

repulsion energies: the kinetic energies of the electrons and nuclei, the 

coulombic attraction of the electrons to the nuclei and the coulombic 

repulsions between electrons and between nuclei. Considering the Born-

Oppenheimer approximation the kinetic energy of nuclei can be 

neglected respect to the kinetic energy of electrons because nuclei 

velocities are much lower than electrons due to nuclei mass its much 

higher than electrons. Moreover, the repulsion between nuclei can be 

considered constant because the distance between nuclei can be 

considered constant also. The resultant Schrödinger equation to be solved 

is showed in Eq. 2.4. 

(𝑇𝑒𝑙 + 𝑉)𝛹𝑒𝑙(𝑥, 𝑦) = 𝑈𝑛(𝑥)𝛹𝑒𝑙(𝑥, 𝑦)    Eq. 2.4 

where Tel stands for the kinetic energy of electrons, V stands for the sum 

of coulombic interactions between electrons, nuclei and electrons and 

nuclei. Un is the sum of the electronic and the potential energy of the 

nuclei for fixed nuclear coordinates. By solving the Schrödinger equation 

one would obtain Un for a set of nuclear coordinates, which actually is the 

Potential Energy Surface of the system. 

Despite the mentioned approximations, the exact solution of this 

electronic time-independent Schrödinger equation is only possible to be 

obtained for a one-electron system. For many-electron systems like 

molecules, which are the systems that we are interested in, it is 

compulsory to take into account more approximations in addition to 

Born-Oppenheimer. The reason why we cannot calculate the electron-

electron interactions is that we cannot solve a problem of N-electrons as 

a sum of N one-electron. In order to overcome this limitation, several 
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methods have been developed. Despite the fact that in this thesis Density 

Functional Theory (DFT) will be explained below, since has been the 

theoretical base used to obtain the presented results in this manuscript, it 

is worth mentioning the importance of Hartree-Fock (HF) method. Most 

of the so-called post-HF methods are based on corrections or 

improvements of HF, even DFT-based methods take into account HF 

exchange for the definition of hybrid functionals, as it will be explained 

in the corresponding part of this chapter. The ab initio methods aim to 

solve the electronic Schrödinger equation leading to the computation of 

the wavefunction for a given nuclear coordinates, which is a function of 

3N coordinates and N spin variables, being N the number of electrons of 

the system. Therefore, computing the wavefunction for a small organic 

system of 40 atoms is already highly expensive, not to mention that larger 

systems with metals like coordination complexes become unaffordable. 

2.2 Density Functional Theory 

There is an alternative to the methods based on the wavefunction. The 

Density Functional Theory (DFT) is based on the Hohenberg-Kohn 

theorem,[36] which postulates that the ground-state electronic energy and 

other properties of a molecule are determined by its electron density 

function 𝜌(𝑟) that depends only on three spatial coordinates, 

independently of the number of electrons of the studied system, thus 

simplifying considerably the mathematical problem (see Eq. 2.5). 

𝜌(𝑟) = 𝑁 ∫ … ∫ |𝜓(𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑛)|2 𝑑𝑠1𝑑𝑥⃗2 … 𝑑𝑥⃗𝑁      Eq. 2.5 
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As it can be seen in Eq. 2.5, the electron density function is defined as 

the multiple integral over the spin variables of all the electrons and over 

all but one of the spatial coordinates. The electronic energy is expressed 

as: 

𝐸0 = 𝐸[𝜌0] = ∫ 𝜌0(𝑟)𝑉𝑛𝑒(𝑟)𝑑𝑟 + 𝐹[𝜌0(𝑟)]    Eq. 2.6 

where 𝑉𝑛𝑒(𝑟) is the potential energy obtained from the nucleus-electron 

interaction and 𝐹[𝜌0(𝑟)] is the functional of the electron density. The 

first Hohenberg-Kohn theorem states the relation between a functional 

and the energy of the system (existence theorem), but does not describe how 

to find this functional. The functional of the electron density can be 

expressed as a sum of several independent terms showed in Eq. 2.7. 

𝐹[𝜌0(𝑟)] = 𝑇𝑠[𝜌0(𝑟)] + 𝐽[𝜌0(𝑟)] + 𝐸𝑁𝑒[𝜌0(𝑟)] + 𝐸𝑋𝐶[𝜌0(𝑟)] Eq. 2.6 

In Eq. 2.6, 𝑇𝑠[𝜌0(𝑟)] is the kinetic energy of the non-interacting 

electrons, 𝐽[𝜌0(𝑟)] is the classical Coulomb electron-electron repulsion, 

𝐸𝑁𝑒[𝜌0(𝑟)] is the electron-nucleus interaction and 𝐸𝑋𝐶[𝜌0(𝑟)] is the 

exchange-correlation energy, which is the unknown term that includes the 

kinetic energy of the interacting electrons, the exchange energy and the 

correlation energy. In order to describe this exchange-correlation energy 

in the most accurate way, many approximations have been proposed, 

leading to the wide variety of DFT functionals available nowadays in the 

literature.  

Kohn and Sham in 1965 developed the first method to calculate the 

electronic state using the theoretical basis of the Hohenberg-Kohn 

theorems.[37] Their basic idea was to obtain from a single Slater 

determinant the exact kinetic energy of a non-interacting reference system 

that has the same electronic density as the studied system. A Slater 

determinant is an antisymmetrized product of N one-electron 

wavefunctions. This determinant contains the one-electron 

wavefunctions in the columns and the electron coordinates are collected 
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along the rows. Furthermore, the system of non-interacting N-electrons 

can be described as the summation of one-electron Hamiltonians. The 

resulting equation is showed in Eq. 2.7. 

ℎ𝑖
𝐾𝑆𝜑𝑖

𝐾𝑆 = 𝜀𝑖𝜑𝑖
𝐾𝑆    Eq. 2.7 

In Eq. 2.7, ℎ𝑖
𝐾𝑆 is the one-electron Kohn-Sham Hamiltonian, 𝜑𝑖

𝐾𝑆 

represents the KS spin-orbitals and 𝜀𝑖 is the KS orbital energy. 

Regrouping the non-interacting term and building the electronic density 

from a set of orbitals allowed to use the DFT for calculations of real 

systems. Due to the Hamiltonian depends on the electronic density, a trial 

electronic density function is considered as initial guess. Therefore, in 

order to solve Eq. 2.7, an iterative self-consistent approach (SCF) is 

considered, similar to the used in the Hartree-Fock method (see Figure 

2.1). 

 

Figure 2.1 Kohn-Sham iterative flow chart to calculate the KS energy. 

The second theorem postulated by Hohenberg and Kohn stays that the 

electronic density obeys a variation principle. Therefore, they state that 

any electronic density function will give an energy higher (or equal) to the 

exact ground-state energy. Consequently, using the HK theorems and KS 

method a wide variety of functionals have been designed to find the 

closest energy to the exact one for the studied system. In particular, the 

efforts have been focused on describing the exchange-correlation energy, 

which is the unknown part of Eq. 2.6. John P. Perdew proposed in 2009 

a schematic way to organize the so-called “soup of functionals”. The DFT 

Jacob’s ladder connects the “Hartree world” with the “Heaven of 

Chemical Accuracy”. Below I briefly describe the simplest approximation 

to calculate 𝐸𝑋𝐶[𝜌0(𝑟)] followed by more complex approximations that 
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constitute the families of functionals available nowadays. Special 

emphasis will be put on the functionals used in this Thesis. 

2.2.1 Functionals of the electron density 

The simplest approach is the Local Density Approximation (LDA), which 

assumes that the density can be treated locally as a uniform electron gas. 

The exchange part is obtained from the Thomas-Fermi-Dirac method 

and the correlation term from highly accurate Monte-Carlo simulations 

of the uniform electron gas. Despite this method describes solids rather 

well, fails in situations where the electronic density changes rapidly. An 

example of this situation are molecules, which is the case that we are 

interested in. Therefore, we should move forward to a more complex 

description of the electronic density. 

The Generalized Gradient Approximation (GGA) does not depend solely 

on the electronic density but on its gradient, both in the exchange and 

correlation functionals (see Eq. 2.8). 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌] = ∫ 𝜌(𝑟)𝜀𝑋𝐶 [𝜌(𝑟), ∇𝜌(𝑟)]𝑑𝑟      Eq. 2.8 

 There are two possible approaches regarding the development of GGA 

exchange functionals. On one hand, some functionals like B or B88 

developed by Becke,[38] are based on parameters obtained from high-

accurate quantum calculations or experimental data. On the other hand, 

other functionals like PBE developed by Perdew are designed from 

quantum mechanical principles.[39] The correlation part is calculated from 

analytical equations. Some relevant examples are P86[39] or LYP[40] 

functionals. The combination of exchange and correlation functionals 

lead to the highly popular functionals used nowadays in computational 

chemistry like BP86, BLYP or PBEPBE.  

In all the DFT-based studies collected in Chapters 3, 4 and 5 of this 

Thesis, we use B97-D3 functional. The B97D functional is a 

semiempirical GGA-type based on Becke’s that was developed by Stefan 
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Grimme in 2006.[41] A new damping function of the dispersion correction 

(see next section for dispersion corrections) was proposed also by 

Grimme in 2010, constituting the new series of D3-BJ dispersion 

corrections.[42] 

The next generation of electron density functional approximations are the 

Meta Generalized Gradient Approximation (m-GGA), which do not only 

account the derivative of the density but the second derivative 

(Laplacian, ∇2). This type of functionals were not used in this Thesis 

because their minor improvement of the accuracy in the studied systems 

did not compensate their higher computational cost in comparison to 

GGA functionals. 

The exchange part of the exchange-correlation energy may be obtained 

from HF theory. Actually, the combination of GGA methods with a 

certain percentage of HF exchange lead to significant improvements in 

terms of accuracy in real chemical systems. These type of functionals are 

the so-called Hybrid-GGA (H-GGA). The most popular example of this 

type of functionals is the well-known B3LYP functional, obtained from 

the combination of B88 exchange and LYP correlation functionals.[40, 43] 

In addition to B88 and LYP, three parameters are included in the equation 

of the exchange-correlation energy (see Eq. 2.9), which one of them is 

the amount of HF exchange (20%) and the other two are the weight of 

LDA exchange-correlation and GGA exchange-correlation (B88-LYP). 

𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 = (1 − 𝑎)𝐸𝑋

𝐿𝐷𝐴 + 𝑎𝐸𝑋
𝐻𝐹 + 𝑏𝐸𝑋

𝐵88 + (1 − 𝑐)𝐸𝐶
𝐿𝐷𝐴 + 𝑐𝐸𝐶

𝐿𝑌𝑃 Eq. 2.9 

The B3LYP functional is used in Chapter 3 of this Thesis, as well as 

B97XD, which is a long-range corrected hybrid functional developed 

by Head-Gordon[44] that we employed in the calculations reported in 

Chapters 3 and 5 of this Thesis. 

There is still another family of DFT functionals based on the combination 

of m-GGA and H-GGA, which are the so-called meta-hybrid GGA 

functionals, which use the first and second derivative of the density and 
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also a certain contribution of HF exchange. The most popular example 

of these functionals are the Minnesota suite of functionals (M06, M06-L, 

M06-2X and M06-HF, depending on the HF contribution to the 

exchange energy). In this Thesis we used M06-2X (57% of HF exchange) 

in Chapters 3 and 6.[45] 

2.2.2 Including dispersion interactions into DFT calculations 

The applicability of DFT based methods in elucidating chemical reaction 

mechanisms and other important parameters of reactivity is far from any 

doubt. Nowadays, DFT is the most widely used theoretical approach due 

to its high accuracy and low computational cost. Actually, the description 

of short-range interactions like chemical bonds are usually well described 

by the exchange-correlation effects accounted in DFT functionals. 

However, the medium-range and long-range interactions like van der 

Waals interactions or hydrogen bonds are not properly described in some 

cases. This limitation becomes relevant when weak interactions, also 

named dispersion interactions, play a crucial role in the chemical system 

aimed to study, which is the case of this Thesis. In order to overcome this 

problem, Truhlar and Grimme postulated two different methods. In this 

Thesis, we mainly used the second approach reported by Grimme but we 

briefly describe Truhlar’s methodology down below. 

The M06 functionals created by Truhlar et al. have shown high 

correlation between experimental data and calculations. Indeed, these 

functionals are extensively used nowadays to computationally study a 

wide variety of chemical systems.[45-46] The M06 functionals are developed 

fitting their parameters to experimental data, hence including implicitly 

the contribution of dispersion interactions. 

Alternatively, Grimme included the dispersion interactions into DFT 

explicitly adding an energy term 𝐸𝐷 to the calculated DFT energy (see 

Eq. 2.10).[47] 

𝐸𝐷𝐹𝑇−𝐷 = 𝐸𝐷𝐹𝑇−𝐾𝑆 + 𝐸𝐷           Eq. 2.10 
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The mathematical expression of 𝐸𝐷 is depicted in Eq. 2.11, where 𝑆6 is a 

scaling factor that depends on the functional used, 𝑁 is the number of 

atoms and 𝐶6
𝑖𝑗

 is the dispersion coefficient for the two atoms 𝑖𝑗, which 

are separated by 𝑅𝑖𝑗 . The dispersion coefficient depends on the van der 

Waals radii of the atom. The last term 𝑓𝑑𝑚𝑝 is a damping function (see 

Eq. 2.12) that rapidly decays at small 𝑅𝑖𝑗 , hence the regular bonds are not 

included in 𝐸𝐷. 

𝐸𝐷 = − 𝑆6 ∑ ∑
𝐶6

𝑖𝑗

𝑅𝑖𝑗
6

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 𝑓𝑑𝑚𝑝(𝑅𝑖𝑗)      Eq. 2.11 

𝑓𝑑𝑚𝑝(𝑅) =
1

1+𝑒
−𝛼(

𝑅
𝑅0

−1)
        Eq. 2.12 

In 2010, Grimme et al. reported a new refined methodology to account 

dispersion interactions into DFT functionals.[48] This new approach 

named DFT-D3, after DFT-D2 published at 2006,[49] is an improved 

method that includes an additional term 𝑆𝑛 (𝑛 = 6, 8), as it can be seen 

in Eq. 2.13. The related damping function is showed in Eq. 2.14 below. 

𝐸𝐷3 = ∑ 𝑆𝑛𝑛=6,8  ∑
𝐶𝑖𝑗

𝑅𝑖𝑗
𝑛

𝑁
𝑖,𝑗>1 𝑓𝑑𝑚𝑝(𝑅𝑖𝑗)      Eq. 2.13 

𝑓𝑑𝑚𝑝(𝑅) =
1

1+6(
𝑅𝑖𝑗

𝑠𝑟,𝑛𝑅0
𝑖𝑗)−𝛼𝑛

        Eq. 2.14 

Recently, Grimme and coworkers reported a new damping function for 

the DFT-D3 named D3BJ (see Eq. 2.15 and Eq. 2.16).[42]
 

𝐸𝐷3𝐵𝐽 = ∑ 𝑆𝑛𝑛=6,8  ∑
𝐶𝑖𝑗

𝑅𝑖𝑗
𝑛 +(𝑓𝑑𝑚𝑝)𝑛

𝑁
𝑖,𝑗>1       Eq. 2.15 
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𝑓𝑑𝑚𝑝(𝑅) = 𝛼1√
𝐶8

𝑖𝑗

𝐶8
𝑖𝑗 + 𝛼2        Eq. 2.16 

In this Thesis, both D3 and D3BJ corrections have been used, since are 

included in the B97XD and B97-D3 functionals, respectively. In 

Chapter 3 and 6, we also used M06-2X that accounts the dispersion 

interactions implicitly. 

2.3 Solvation Models 

Solvation is crucial in the kinetics of many chemical reactions. Actually, 

only changing the polarity of the solvent, the obtained product may 

change due to the enhancement or undermining of an alternative 

mechanistic pathway. Therefore, accounting the solvent in an accurate 

manner is crucial in order to describe chemical reactivity, especially in 

homogeneous catalysis. There are two methodologies to include solvation 

effects in computational chemistry. The first one is by including explicitly 

a certain amount of molecules of the solvent in the calculation. This 

method allows us to describe the solute-solvent interaction, which may 

be determinant in some cases. However, adding enough solvent 

molecules to the system to mimic the real concentration of solute into the 

solvent it is unaffordable when using DFT based methods because the 

system becomes too large. The second approach, which is the implicit 

solvation model, is usually considered in the DFT calculations where 

solvation has to be included. The implicit solvation model is based in the 

formation of a cavity in a continuum medium that its dielectric constant 

is the same that of the solvent. The solute is placed into the cavity, which 

its shape is based on the solute structure. Then, the dielectric medium 

produces an electrostatic interaction with the solute and vice versa. This 

process takes place iteratively until the mutual polarization reaches the 

self-consistency (Self-Consistent Reaction Field, SCRF).[50]  
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The mathematical expression to calculate the solvation Gibbs free-energy 

when SCRF method is used is showed in Eq. 2.17, 

∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑐𝑎𝑣 + ∆𝐺𝑑𝑖𝑠𝑝 + ∆𝐺𝑟𝑒𝑝 + ∆𝐺𝑒𝑙       Eq. 2.17 

where ∆𝐺𝑐𝑎𝑣 is the energy required to create the cavity for the solute and 

∆𝐺𝑑𝑖𝑠𝑝 is the energy related to the exergonic interaction between the 

solute and the solvent. Contrarily, the ∆𝐺𝑟𝑒𝑝 term is the repulsive energy 

between the solute and the solvent. Finally, ∆𝐺𝑒𝑙 is a stabilizing term that 

corresponds to the electrostatic interactions of the solute molecules in the 

solvent and vice versa. 

In this Thesis we use two different continuum models. On one hand, the 

traditional Polarized Continuum Model (PCM).[51] On the other hand, the 

Solvation Model based on Density (SMD).[52] The PCM model is based 

on the Poisson-Boltzmann equation, while SMD is based on the 

generalized Born equation, which is an approximation of Poisson’s 

equation for cavity shapes. Therefore, both models are rather similar. The 

major difference between them is SMD uses a set of specifically 

parametrized radii to create the cavity. 

2.4 Translational Entropy Corrections 

The ideal gas model is considered in the DFT calculations to obtain the 

molecular partition functions (see Eq. 2.18). Therefore, the equations 

used in the electronic calculations are based on a hypothetical ideal gas, 

where the concentrations are equivalent to standard state (P = 1 atm). 

This presents an important limitation when a considerable change of 

entropy takes place in solution.  

𝑞𝑡𝑟𝑎𝑛𝑠 = (
2𝜋𝑚𝑅𝑇

ℎ2
)3/2 𝑅𝑇

𝑃
       Eq. 2.18 
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Actually, in the systems studied in this Thesis we may observe the 

formation of one entity from four independent bodies, thus implying a 

strong entropy penalty.[53] In order to overcome this limitation, several 

corrections have been reported to adjust the translational entropy in 

solution to a more realistic situation. 

We have evaluated three different methods in a specific system in Chapter 

3, although we use a specific correction proposed by Martin in almost all 

the DFT calculations reported in this Thesis. 

The simplest approach was reported by Morokuma et al.[34a] They propose 

to neglect the translational entropy term in solution. Thus only 

accounting the electronic, vibrational and rotational entropy in the 

system. 

The second approach is postulated by Wertz[54] and Ziegler[55] in 1980 and 

2002, respectively. This approach is separated into three parts. In the first 

part of this method, the solute considered as an ideal gas is compressed 

from standard conditions to the standard volume of the solvent. Then, 

the compressed solute is transferred to the solvent. The resulting solution 

presents the intermolecular interactions of a dilute solution. In this step, 

the entropy lost by the solute is the same as the solvent would lose going 

from gas to liquid. This entropy loss labeled as  is calculated by using 

Eq. 2.19. 

𝛼 =
𝑆𝑙𝑖𝑞

0 −(𝑆𝑔𝑎𝑠
0 +𝑅 ln 

𝑉𝑚,𝑙𝑖𝑞

𝑉𝑚,𝑔𝑎𝑠
)

𝑆𝑔𝑎𝑠
0 +ln 

𝑉𝑚,𝑙𝑖𝑞

𝑉𝑚,𝑔𝑎𝑠

       Eq. 2.19 

As it can be seen in Eq. 2.19, the entropy loss can be determined from 

the absolute entropies of the solvent in its gas (𝑆𝑔𝑎𝑠
0 ) and liquid (𝑆𝑙𝑖𝑞

0 ) 

phases.  

In the third part of the process the solute is expanded again to the 

concentration of the desired solution. The change of entropy of the solute 

related to the first and third steps can be calculated by Eq. 2.20, where 
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𝑉𝑚,𝑓 is the final solute molar volume and 𝑉𝑚,𝑖 is the initial solute molar 

volume. 

∆𝑆 = 𝑅 ln (
𝑉𝑚,𝑓

𝑉𝑚,𝑖
)     Eq. 2.19 

Considering the entropy loss of the second part , and the entropy 

difference of the first and third steps, we can calculate the entropy of 

solvation using Eq. 2.20 showed below. 

∆𝑆𝑠𝑜𝑙𝑣 = 𝑅 ln 
𝑉𝑚,𝑙𝑖𝑞

𝑉𝑚,𝑔𝑎𝑠
− 𝛼 (𝑆𝑔𝑎𝑠 − 𝑅 ln 

𝑉𝑚,𝑙𝑖𝑞

𝑉𝑚,𝑔𝑎𝑠
) + 𝑅 ln 

𝑉𝑚
0

𝑉𝑚,𝑔𝑎𝑠
  Eq. 2.20 

The last approximation proposed by Martin and coworkers in 1998[56] 

determines the applicable pressure (P = n/V RT) at the concentration of 

the solvent from its experimental density. Then, the higher is the density 

of the solvent, the higher is the pressure applied at the system to model 

the solvation. 

Taking liquid water as example, which has a density of = 997.02 kg∙m-

3, requires a pressure of 1354 atm to correct the aqueous solution 

concentration. The actual concentration (1354 atm/RT) is incorporated 

to the calculation of the translational partition function in Eq. 2.18. This 

approximation is used for adjusting the solvent concentration of the gas‐

phase entropy in the whole Thesis. 

2.5 Adaptive QM/MM Metadynamics Simulations 

2.5.1 Metadynamics 

The study of reaction mechanisms using static standard DFT methods 

presents several limitations regarding the effect of solvation, or 

accounting thermodynamic parameters like pressure or temperature. 

These limitations can be overcome using alternative theoretical 
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methodologies. One of these alternative methods is metadynamics, which 

in recent years have increased its popularity due to its flexibility and 

efficiency gathering information of the studied system. Metadynamics is 

a method proposed by Alessandro Laio and Michele Parrinello in 2002[57] 

that has been applied mainly in three different fields: solid-state physics,[58] 

biomolecules[59] and chemical reactions.[60] In our case, we focused on the 

latter case.  

Metadynamics simulations is a modification of molecular dynamics, 

which has become a standard tool not only in chemistry, but in many 

areas of science. By using molecular dynamics, we can understand 

complex processes like protein folding or the interaction between 

molecules (ligand docking). However, molecular dynamics is not an 

appropriate method to study processes where two states are separated by 

a high free-energy barrier. Actually, we need long simulations to visit all 

the energetically relevant configurations, which makes computationally 

unfeasible to study such situations. For example, the isomerization 

between two conformations of a molecule could have a high energetic 

barrier, so would be difficult to observe the isomerization. Another case 

are chemical reactions, which is the field that we are interested in.[61] 

Additionally, in chemical reactions bonds are formed and broken, hence 

cannot be studied properly by Molecular Mechanics, which is the 

methodology usually used in conformational studies. We will address this 

limitation in the next section of this chapter. 

Regarding the unfeasibility of studying slow processes using molecular 

dynamics, several enhanced sampling techniques have been reported in 

recent years. Such techniques allow us to consider not the whole period 

of time that the studied process needs, but a representative period of such 

event. An example of this methodology is umbrella sampling, suggested 

by Torrie and Valleau in 1977,[62] which considers several states of the 

chemical process that are related to the consequent periods of time of the 

reaction. By preventing the evolution of these states towards the next or 

the previous ones, we can evaluate independently all these representative 
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states of the process. In our case, metadynamics facilitates the sampling 

of the process by the introduction of a biased force that is applied to a 

selected number of degrees of freedom called collective variables (CVs). 

Metadynamics is able to reconstruct the free-energy surface at the same 

time it enhances sampling towards the selected CVs.[63] Thus, is a 

powerful technique to obtain a lot of information from the studied 

system. 

The history-dependent external force (or potential) used in metadynamics 

to bias the system is a function of the CVs. This force that can be 

expressed as a sum of Gaussian functions is added to the Hamiltonian 

(Ĥ) of the system. These Gaussians are deposited along the system 

trajectory in the space of the selected CVs to prevent the system from 

going back to already visited configurations that have already been 

sampled.  

In order to understand how this technique works, we can imagine a 

situation where someone is located inside a swimming pool of unknown 

shape and depth. This subject has its eyes covered and the only way to 

escape from the pool is placing bags of sand along the 3D surface of the 

swimming pool and climbing them. By counting the bags of sand and 

knowing its size, the shape and depth of the swimming pool can be 

determined. The narrower and shallower the bags, the better prediction 

would be done, but also, more bags have to be placed to map the surface.  

In the reality, when metadynamics is applied to chemistry, the bags of 

sand of the imaginary example are Gaussian functions. The height of 

these functions determine the height of the free-energy barrier, while the 

width of the functions allow us to describe the shape of the surface. As 

always, we have to reach a compromise between accuracy and 

computational time. If we use too small functions, we would never scape 

from the minima. Nevertheless, choosing the size of the Gaussian 

functions is not the most complex part of metadynamics.  

As I mentioned before, we have to choose a set of degrees of freedom 

(CVs) that will be biased by an external force. These CVs are crucial to 
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reach the desired product because if inappropriate CVs are chosen one 

would obtain a different product or would follow a pathway higher in 

energy than the most suitable, thus describing erroneously the reaction 

pathway. We explain in Chapter 6 of this Thesis, how to choose the 

correct CVs and how to validate them. 

2.5.2 Adaptive multiscale methods 

In the previous section we already pointed out the two main 

inconveniences of using molecular dynamics to study chemical reactions. 

On one hand, the need of populating the convenient energy states 

towards the product of the reaction. This limitation is overcome by 

sampling methods like metadynamics. On the other hand, the bond 

forming and bond breaking processes cannot be properly described by 

using molecular mechanics. Moreover, we cannot afford the description 

of the whole system by QM methods because we are including explicit 

solvent and we need to run a significant amount of simulation time.  

In recent years, multiscale methods have become a popular approach to 

solve this dilemma. In the hypothetical case of studying a catalyzed 

chemical reaction, we have to describe by QM methods the section of the 

system where the reaction takes place. For example, the catalyst, 

substrates and the first sphere of solvation may be involved in the 

reaction mechanism, which would be the molecules described by QM 

methods. Consequently, we would compute the rest of the system 

(environment), which is usually the solvent, using molecular mechanics.  

The QM/MM approach was first introduced by Warshel and Levitt in 

1976,[64] which earned them the 2013 Nobel Prize in Chemistry together 

with Martin Karplus. The energy computed by QM/MM methods is 

defined by Eq. 2.21: 

𝐸𝑇𝑜𝑡𝑎𝑙
𝑄𝑀/𝑀𝑀

= 𝐸𝐴𝑐𝑡
𝑄𝑀 + 𝐸𝐸𝑛𝑣

𝑀𝑀 + 𝐸𝐴𝑐𝑡/𝐸𝑛𝑣
𝑄𝑀/𝑀𝑀

     Eq. 2.21 
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where 𝐸𝐴𝑐𝑡
𝑄𝑀

is the energy of the active section computed at the QM level, 

𝐸𝐸𝑛𝑣
𝑀𝑀 is the energy of the environment computed at the MM level and 

𝐸𝐴𝑆/𝐸𝑆
𝑄𝑀/𝑀𝑀

 is the energy related to the interaction between the two sections. 

There are many methods to calculate this latter term. Actually, treating 

the charge near the boundary between regions is not straightforward. 

Depending on the treatment of the electrostatic interaction between the 

Act and Env, the QM/MM methods can be separated into two groups: 

mechanical or electric embedding. Mechanical embedding treats the 

interactions between the Act and Env at the MM level. The Integrated 

Molecular-Orbital Molecular-Mechanics (IMOMM) scheme reported by 

Morokuma and Maseras,[65] which is the method that we considered in 

this Thesis, is a mechanical embedding scheme.  

As we mentioned before, in some cases we may need to describe not only 

the catalyst and substrates at the QM level, but also the first sphere of 

solvation of these molecules. Actually, if we want to study the role of the 

solvent in the reaction mechanism, which is one of the limitations of static 

DFT methods, we have to compute the solvent around the active site at 

the QM level. Considering a static calculation there is no problem, but 

when we run a dynamic simulation the diffusive nature of the solvent 

causes that the molecules considered in the first sphere of solvation of 

the active site move away from the substrate and catalyst, replacing those 

for other solvent molecules considered at the MM level. In order to solve 

this problem, adaptive QM/MM methods have been proposed where 

instead of choosing discrete molecules to be treated at the QM level, a 

continuum volume around the active site is set. Thus, we define a sphere 

of a certain diameter where all molecules within this region are described 

QM and the molecules outside this region are computed at MM level. 

Bulo and coworkers reported in 2009[66] an efficient and accurate adaptive 

multiscale molecular dynamics method that enable the detailed study of 

large molecular systems. In Chapter 6 of this Thesis we used FlexMD, 

which is the program developed by Bulo et al.,[67] to study two different 

reactions in solvent mimicking the experimental conditions.  
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Chapter 3 

 

"The proper use of science is not to 

conquer nature but to live in it." 

Barry Commoner

Cyclic Carbonates 

3.1 Introduction 

One of the main challenges that scientific community is facing in 21st 

century is global warming.[4-6, 12, 68] The problematic depends on two 

correlated factors, being the dependence on pollutant and limited fossil 

fuels (coal, oil, and natural gas) and the high concentration of greenhouse 

gases in the atmosphere. The most abundant and problematic greenhouse 

gas is carbon dioxide (CO2) mainly produced as sub-product of many 

industrial processes like combustion of fossil fuels or large scale oxidation 

processes.[7-8, 69] Therefore, the capture and utilization of CO2 from 

industrial processes is a straightforward solution to mitigate greenhouse 

gases emission and consequently, climate change,[10a, 10c, 16, 22, 70] while at the 

same time presents interesting economic opportunities.[11] 

The synthesis of cyclic carbonates is one of the most popular and widely 

investigated catalytic strategies to chemically fixate CO2.
[71] Cyclic 

carbonates (CyCs) are valuable intermediates for many chemical reactions 

in the pharmaceutical industry or as raw materials for polymers. 
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Alternatively, CyCs are also used as polar aprotic solvents[72] or as high 

permittivity component of electrolytes in lithium batteries.  

The obsolete industrial synthetic route to obtain CyCs used phosgene, 

which produces hydrogen chloride as waste.[73] Considering instead the 

catalyzed reaction of epoxides with CO2 no waste is generated and CO2 

is chemically stored into the product. Epoxides are ideal substrates for 

this reaction due to its high internal energy that compensate the high 

thermodynamic stability of CO2. The activation of CO2 is an energetically 

demanding process due to its kinetic stability, thus a catalyst is required 

to speed-up the process.  

 

Figure 3.1 Several reported catalysts for the formation of cyclic carbonates from 
oxiranes using CO2 as carbon feedstock.  

Several types of catalysts have been considered for this purpose, such as 

ionic liquids,[74] nanoparticles,[75] alkali metal halides,[76] quaternary 
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ammonium salts,[77] organocatalysts,[78] transition metal complexes[24a, 26b, 

71c, 79] or aluminum and magnesium coordination complexes.[27b, 28b, 71a, b, 80] 

The first catalytic system being able to trap CO2 and transform it to CyC 

was the metalloporphyrin (TPP)AlOMe complex (see Figure 3.1) 

reported by Inoue and co-workers in 1983.[29a] In later years several 

metalloporphyrin catalysts were reported improving the activity of 

(TTP)AlOMe, like a cobalt based catalyst reported by Jing et al. in 2007.[81] 

More recently in 2012, Sakai and coworkers proposed a highly active 

bifunctional magnesium-porphyrin complex[82] that combines in the same 

complex an organocatalytic group (Ph-NBu3Br) and the metal ion (MgII) 

acting as Lewis acid. This binary catalytic system reported high turnover 

number (TON = 103,000) under neat conditions. Alternatively, Nguyen 

and coworkers reported in 2001 an active and commercially available 

Cr(III)-salen complex to obtain CyC under mild temperatures and 

pressures.[83] 

The evolution of salen ligand to salphen by placing an aromatic ring in 

the N-bridge (R3, R4 in Figure 3.1) proposed by Kleij et al. (2011) allowed 

the utilization of non-pressurized CO2 to efficiently produce CyC.[79a] In 

the same direction, North and coworkers reported a dimeric Al(salen) 

complex able to undergo CyC at room temperature and 1 bar of CO2.
[71b] 

The catalytic system studied in this thesis depicted in Figure 3.2 was 

reported by Kleij et al. in 2013,[33a] which is constituted by an Al 

aminotriphenolate complex [AlR] acting as Lewis acid and a nitrogen 

based nucleophile named tetrabutylamonium iodide (NBu4I). The 

aromatic substituents in orto and para positions of the ligand change the 

activity and chemoselectivity of the ligand, leading to dimerization (n=2) 

when protons or tert-butyls and nitro groups are considered. The 

remarkably catalytic activity presented by this binary system exceeded 

TONs of 100,000 with TOFs as high as 36,000 h-1. 

In this chapter we present our results regarding mechanistic aspects of 

the catalyzed reaction of CO2 and epoxides to produce cyclic carbonates. 
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Figure 3.2 Schematic representation of the reaction and the catalytic system. Several 
aromatic substituents can be considered in the orto/para positions of the ligand, 
which can lead to the dimerization of the Al complex. 

In the first part, we will consider a quantitative approach to analyze the 

main factors that influence the Gibbs free-energy values obtained 

computationally, hence aiming to improve the accuracy of our 

calculations for this system or similar. In the second part we will consider 

a functionalized epoxide that may present different reactivity towards 

CO2 fixation. Our computational results will be presented in parallel with 

the experimental data provided by Kleij and coworkers. 

3.1.1 Previous Mechanistic Studies 

The rapid development of catalytically active coordination complexes to 

transform CO2 to CyC lead to many questions regarding the mechanistic 

insights of the process. Due to the kinetic stability of CO2, the knowledge 

on the reaction mechanism becomes crucial to improve the catalytic 

efficiency of the system. Moreover, modern and efficient DFT-based 

methods enable us to compute entire catalytic systems with reasonable 

accuracy and affordable times. Consequently, a number of mechanistic 

proposals for several catalytic routes have been reported in the recent 

years.[24a, 27b, 76, 78a, 84]  

It is worth mentioning the work of North and coworkers in the detailed 

study of the catalyzed reaction mechanism using the Al(salen)-O-

Al(salen)/Bu4NX binary catalyst system.[71a] 

In our group we studied in detail the reaction mechanism catalyzed by the 

Zn(salphen) and the Al aminotriphenolate complex in collaboration with 
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Kleij’s group.[79b, 80d] The proposed mechanism by our group is similar for 

both Zn and Al catalytic systems, hence a single scheme considering [AlR] 

is depicted in Figure 3.3. 

 

Figure 3.3 Catalytic cycle for the ring-expansion addition of CO2 to 
epoxides catalyzed by Zn(salphen) or Al aminotriphenolate complexes 
and co-catalyzed by a generic halide (X-). All intermediates and transition 

states are illustrated. 

The reaction mechanism starts with the coordination of the epoxide to 

the axial position of the catalytic complex (after decoordination of THF 

in the Al case). This intermediate constitutes the most stable assembly of 

the entire mechanism, therefore is the resting state of the reaction. The 

nucleophilic attack of a halide to open the epoxide is a fast process 
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because the high reactivity of the substrates and the stabilization of the 

formed alkoxide by the metal. Noteworthy, the major oxophilicity of 

aluminum leads to major stabilization of the formed alkoxide in 

comparison with zinc complex. After alkoxide formation, CO2 is 

activated through the nucleophilic interaction with the alkoxide. 

Additionally, the resulting chelating fashion carbonate is stabilized by the 

coordination of one oxygen of the CO2 moiety to the metal center 

conforming a stable octahedral geometry. Via an isomerization process, 

the chelate carbonate evolves to a linear hemi-carbonate that presents a 

more suitable conformation to facilitate the nucleophilic ring-closing step 

where the carbonyl oxygen expulses the halide generating the CyC 

coordinated to the metal center by the carbonyl oxygen of the product. 

The reaction of CO2 with epoxides to obtain CyC is not a high exergonic 

process due to the high thermodynamic stability of CO2, hence a high 

internal energy substrate like epoxides is required to compensate this 

important inconvenient.  

3.2 Quantitative Evaluation of the Catalytic Activity 

3.2.1 Goals and Motivation 

As we introduced in the previous section, the reaction of CO2 with 

epoxides to produce cyclic carbonates has been widely investigated. 

However, only in some cases the used catalytic systems present high 

activity indicated by high turnover frequencies (TOFs). Kleij and 

coworkers have shown that Al aminotriphenolate complex [AlR] 

combined with NBu4I (TBAI), form an efficient binary catalyst for the 

coupling of CO2 with epoxides accounting high activity with TOFs up to 

36,000 h-1 using a wide scope of substrates. 

In addition to the interest of this reaction because its relevance in terms 

of sustainability, the multicomponent nature of the reaction provides the 

opportunity to explore the contribution of the translational entropy in the 
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Gibbs free-energy reaction profile. Note that the chemical process we aim 

to study implies a reactive event in which four bodies must encounter. 

This implies a strong entropy penalty, which is not properly accounted 

when considering the ideal gas equations model. 

Thus, we investigated the mechanism for the formation of cyclic 

carbonates from CO2 and 1,2-epoxyhexane catalyzed by an Al 

complex/NBu4I binary system. The outcome of this catalytic cycle is 

examined in terms of the energetic span model (δE) developed by 

Kozuch and Shaik.[85] We considered all the factors that affect the Gibbs 

free-energy and consequently the TOF: the solvation model, the changes 

in entropies in solution, and the use of hybrid, meta-hybrid and 

dispersion-corrected DFT functionals. We analyzed in detail how the 

different terms affected the Gibbs free-energy barriers and TOFs. This 

analysis provides a guideline to identify those factors really relevant to 

obtain quantitative results. 

3.2.2 Computational Details 

All calculations in this study were performed by using the Gaussian 09 

package.[86] The hybrid B3LYP functional,[40, 43] B97XD[44] and B97-D3[87] 

dispersion-corrected functionals and the parametrized with implicit 

dispersion corrections M06-2X[88] functional were employed. The Pople 

6-311G(d,p) basis set[89] was used to describe H, C, N and O atoms. The 

LANL2DZ[90] basis set and the associated relativistic effective core 

pseudopotential were used for Al, Cl, and I atoms.  Full geometry 

optimizations were performed without constrains. All stationary points 

were characterized either as minima or transition state by means of 

harmonic vibrational frequencies analysis. Gibbs free-energies were 

initially calculated at standard conditions (T=298.15 K, P=1 atm).  

Solvent effects were accounted for gas-phase optimized structures by 

using the polarizable continuum model (PCM). Also, optimized 

geometries in gas phase were re-optimized using the SMD solvation 

model. The reaction takes place in neat condition, hence the solvent of 
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the reaction is the 1,2-epoxyhexane itself. The dielectric constant () of 

the simplest epoxide, ethylene oxide, is =12.42,[91] hence we choose the 

parameters for 1-hexanol solvent (=12.51), as implemented in the 

Gaussian09 package.  

Many authors have suggested that translation entropies computed in the 

gas phase must be corrected when they are applied to reactions in solution. 

Note that solvation free-energies do not account for the loss of molar 

entropy of a liquid with respect to a gas. Since there is no well-defined 

standard approach to evaluate entropies in solution accurately, we applied 

here three approaches from literature: i) neglecting the translational-

entropy terms in the calculation of the entropy in solution,[34a] ii) the 

approach proposed by Martin and coworkers,[56] and iii) the method 

described by Wertz[54] and used by Cooper and Ziegler[55, 92] that is based 

on a ratio related to the molar entropy lost by the solvent. The Turnover 

Frequency (TOF) values were calculated at 363.15 K (90oC) by applying 

the equations of the energetic span model as implemented in the user-

friendly AUTOF program.[85, 93] In the energetic span model defined by 

Kozuch et al. the entire Gibbs free-energy profile, thus all the 

intermediates and transition states in the reaction pathway, are accounted 

in the TOF calculation. This approach is not equivalent to Eyring’s 

equation, which only considers the absolute Gibbs free-energy barrier. 

3.2.3 Results and Discussion 

3.2.3.a Reaction mechanism of cyclic carbonate formation 

from CO2 and 1,2-epoxyhexane 

The reaction mechanism of the formation of cyclic carbonates from CO2 

and terminal epoxides catalyzed by the Al aminotriphenolate/NBu4X was 

previously reported by our group.[80d] In this section we will present the 

reaction mechanism of the same reaction with minor changes that will be 

crucial to reproduce the kinetic results obtained experimentally (see 

Figure 3.4). The reaction mechanism involves 1,2-epoxyhexane as 
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epoxide, tetrabutylammonium iodide (TBAI) is used as co-catalyst and 

the [AlCl] complex is used as Lewis acid, having chlorides as aromatic 

substituents in the phenolate ligand. 

 

Figure 3.4 Schematic representation of cyclic carbonate formation from 
1,2-epoxyhexane and CO2 catalyzed by [AlCl] and TBAI.  

The obtained free-energy profile taking into account the conditions 

indicated in Figure 3.4 will be considered to analyze the effect of several 

factors like solvation, entropy or the chosen DFT functional. These 

factors will be analyzed by comparing the calculated TOF from the 

obtained Gibbs free-energy with the experimentally obtained TOF 

(36,000 h-1). First, we evaluated the effect of the solvation in the Gibbs 

free-energy profile. 

Initially, we considered two scenarios regarding how we compute the 

geometry optimization of all intermediates and transition states. In the 

first case we carried out the geometry optimization in gas phase without 

any implicit solvation. Then, using the optimized geometry we calculate 

the potential energy using implicit solvation. Finally, we obtain the 

solvation energy calculating the energy difference of both potential 

energies as it can be seen in Eq. 3.1. After obtaining the solvation energy, 

by adding it the Gibbs free-energy term computed in the gas phase, we 

obtain the Gibbs free-energy in solution (see Eq. 3.2.). 

∆𝐸𝑠𝑜𝑙𝑣 = 𝐸𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐸𝑔𝑎𝑠             Eq. 3.1 

∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐸𝑠𝑜𝑙𝑣 + 𝐺𝑔𝑎𝑠           Eq. 3.2 
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The second methodology is based on computing the geometry 

optimization and the vibrational frequencies in solution, obtaining ∆𝐺𝑠𝑜𝑙𝑣 

directly. The main difference between these two approaches is the 

obtained structure after geometry optimization, since in the first case is 

optimized neglecting the dielectric effect of the solvent around the 

molecule. Therefore, in the case of high polar or charged molecules, 

major differences will be observed between the two methods. The 

reaction energy profile for the target reaction obtained using both 

methodologies is illustrated below in Figure 3.5. 

Initially, we will describe the reaction mechanism using the Opt Gas 

profile, related to the first methodology described above. The first step 

of the reaction is the exergonic (-8.9 kcal·mol-1) coordination of the 

epoxide to the axial position of the [AlCl] complex, decoordinating the 

THF located in that position.  

 

Figure 3.5 Gibbs free-energy profile for the cyclic carbonate formation from CO2 and 
1,2-epoxyhexane catalyzed by the [AlCl]/TBAI binary system, calculated at the B3LYP 
level. Energy profile for optimized geometries in solvent is depicted in dashed line. 
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The activation of the epoxide is crucial to facilitate the ring-opening 

process via the nucleophilic attack of iodide. The Gibbs free-energy 

relative barrier of this step is 11.4 kcal·mol-1, which has been computed 

as the free-energy difference from TS1 to Int1. The formed intermediate 

from TS1 is Int2, which is an alkoxide stabilized by the [AlCl] complex, 

but less stable than Int1. The nucleophilicity of Int2 enhances the 

activation and insertion of CO2, generating the C-O bond through TS2 

(16.1 kcal·mol-1) leading to a meta-stable octahedral carbonate named 

Int3 (12.8 kcal·mol-1). The insertion of CO2 to the alkoxide intermediate 

presents a relative barrier of 22.5 kcal·mol-1. After Int3 is formed, an 

isomerization process takes place, forming a linear hemi-carbonate (Int4) 

via TS3, which presents a Gibbs free-energy value of 16.2 kcal·mol-1, 

similar to TS2. The conformation of Int4 facilitates the ring-closing step 

via the nucleophilic attack of the carbonyl oxygen to the electrophilic 

carbon bonded to the iodide substituent. This process occurs rapidly via 

TS4, which constitutes a relative barrier of 10.4 kcal·mol-1 and leads to 

the final product still coordinated to [AlCl] (Int5) with a Gibbs free-energy 

of -9.7 kcal·mol-1. Using iodide as nucleophile it is important because 

iodide is a good leaving group in comparison to other halides. 

Consequently, if we would consider bromide or chloride the ring-closing 

process would be more energetically demanding. The used halide can play 

a role in the chemoselectivity of the process, since using the same catalytic 

system we can obtain both the cyclic carbonate and the polycarbonate. 

We will discuss the chemoselectivity when the halide is changed in section 

5.2 of this Thesis.  

The last step after cyclic carbonate formation is the decoordination of the 

product through an endergonic process of 7.7 kcal·mol-1, indicating the 

high oxophilicity of aluminum already observed in the high stabilization 

of Int1. Therefore, the Gibbs free-energy of the reaction, computed as 

the energy difference between products and reactants, is -2.0 kcal·mol-1, 

indicating the minor stabilization of the formed product respect to the 

reactant. This low reaction energy observed is caused by the high 

thermodynamic stability of CO2 that compensates the high internal 
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energy of the epoxide. The kinetic stability of CO2 is also an important 

drawback to tackle in CO2 fixation. In this mechanism, the insertion and 

isomerization steps are the most energetically demanding of the whole 

mechanism, hence constituting the TDTS. The absolute Gibbs free-

energy of the reaction is computed as the energy difference from the TS 

with highest energy to the Int with lowest energy. In this case, TS3 is the 

most energetically demanding TS, named TOF Determining Transition 

State (TDTS) and Int1 is the most stable Int, named TOF Determining 

Intermediate (TDI), hence the absolute barrier of the reaction is 25.1 

kcal·mol-1. 

Considering the obtained Gibbs free-energy profile we would obtain a 

Turn-Over Frequency (TOF) of 7.12h-1, which is four orders of 

magnitude lower than the experimental TOF (3.6x104h-1). After 

discounting other mechanistic possibilities, we considered some factors 

that may change the obtained Gibbs free-energy. First one was how we 

take into account the solvation effects in the Gibbs free-energy.  

As we introduced previously, we considered an alternative approach to 

account the contribution of solvation to the Gibbs free-energy of the 

system, which consists in including implicit solvation to the molecule 

when we compute the geometry optimization calculation. Hence we will 

observe major differences respect the first method in charged 

intermediates or structures with high polarity. The obtained reaction 

energy profile is included in Figure 3.5 (dashed line), where we can 

observe only major differences in the first step regarding epoxide ring-

opening by the nucleophilic attack of iodide. As we expected, in this step 

where free iodide is incorporated to the system, the relative barrier 

increases by 5.3 kcal·mol-1, with respect to the previously calculated 

because we overestimate the stabilization of bonding free iodide during 

the geometry optimization in gas phase. This energy difference is only 

slightly observed in CO2 insertion where the relative barrier decreases by 

3.4 kcal·mol-1 respect the previous methodology because the minor 

stabilization of Int2. If we compare both methodologies in other steps 
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like cyclic carbonate ring-closing, we see minor differences respect 

relative barriers, being the Opt-Solv barrier only 0.6 kcal·mol-1 lower than 

Opt-Gas. Despite all we mentioned until now regarding the comparative 

between relative barriers, the absolute barrier of both reaction energy 

profiles is very similar, being 25.1 kcal·mol-1 for Opt-Gas and 25.7 

kcal·mol-1 for Opt-Solv. Though Opt-Gas barrier is slightly lower than Opt-

Solv, when we calculate the TOF using the AUTOF program, we obtain 

a higher TOF for Opt-Solv methodology, being 7.24h-1 for Opt-Solv in 

comparison with 7.12h-1 for Opt-Gas. We would not expect this inverse 

trend when using Eyring’s equation because we would consider 

exclusively the absolute barrier. As we mentioned, using Opt-Solv 

methodology we obtained intermediates with higher Gibbs free-energy 

values, constituting lower relative barriers. Therefore, the “kinetic 

resistance” decreases, thus increasing the TOF value. Despite the 

variation between the two TOFs is not considerable, it is worth 

mentioning an example where it can be easily seen that the entire profile 

affects the resulting TOF, and not only the absolute barrier of the 

reaction.  

In conclusion, how solvation contribution is included into the system it 

is not crucial in this case, observing minor differences in the shape of the 

Gibb free-energy profile and, consequently, in the calculated TOF. In 

order to enhance comprehension, all the results presented in this chapter 

will consider the Opt-Solv methodology. 

3.2.3.b Evaluation of different DFT functionals. The key role 

of dispersion corrections 

The major advance that DFT based-methods meant for computational 

chemistry in terms of accuracy ratio versus affordability are undeniable. 

However, choosing the proper DFT functional is always under discussion 

in the community because we can observe significant differences when 

we use different DFT functionals. In this case we considered four DFT 

functionals, being B3LYP, B97XD, M06-2X and B97-D3. As we 

detailed in section 3.2.2, these four functionals are representative of 

UNIVERSITAT ROVIRA I VIRGILI 
Computational Design of Catalysts for Carbon Dioxide Recycling 
Joan González Fabra 



different groups commonly employed by the computational chemistry 

community. The resulting Gibbs free-energy profiles calculated for all 

DFT functionals are showed below in Figure 3.6.  

The reaction profile related to B3LYP was already described in the 

previous section. The first trend that can be easily observed in Figure 3.6 

is the lower Gibbs free-energies accounted for all the other DFT 

functionals that include dispersion parameters to describe properly the 

van der Waals forces. In our system, these interactions are important 

because several reasons. First, the aminotriphenolate ligand of the [AlCl] 

complex is stabilized by -stacking between the aromatic rings. Second, 

there is a significant interaction between the organic tail of the 1,2-

epoxyhexane and the ligand of the Al complex. And last but not least, 

when the carbonate is formed after inserting the CO2 to the alkoxide 

(TS2), the system is more crowded around the catalyst, observing a major 

interaction between the coordinated moiety and the ligand, thus 

observing a stabilization when dispersion parameters are included. The 

insertion step was the TDTS in the previously presented results. If this 

step is stabilized respect B3LYP, we should expect lower absolute barriers 

for the functionals that include the attractive London interactions. 

Indeed, this is the trend observed that we will describe more in detail for 

each DFT functional.  

 

Figure 3.6 Gibbs free-energy profile for the cyclic carbonate formation from CO2 and 
1,2-epoxyhexane catalyzed by the [AlCl]/TBAI binary system, calculated at the B3LYP 

(black trace), B97XD (red trace), M06-2X (blue trace) and B97-D3 (green trace) level. 
All reaction energy profiles depicted are computed by Opt-Solv methodology. 
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The relative barriers for all steps are collected in Table 3.1, in order to 

facilitate its visualization. The absolute barrier for all three dispersion-

corrected functionals is 4 or 5 kcal·mol-1 below B3LYP, which leads to 

higher TOFs. On the other hand, CO2 insertion is the only relative barrier 

higher for B3LYP in comparison to dispersion-corrected functionals. We 

can see in these results that the more attractive we consider the van der 

Waals interactions, the more the absolute barrier decreases. The B97-D3 

functional with Grimme’s dispersion, presents the lowest absolute barrier 

and also considerably low relative barriers. On the other hand, using 

B97XD and M06-2X, we obtained very similar results regarding 

absolute and relative barriers. Nevertheless, the trend for all functionals 

is very similar, being the isomerization the fastest process and CO2 

insertion and ring-closing the more energetically demanding. We can 

confirm this trend by analyzing which are the TDI and TDTS for each 

functional. In all cases, Int1 is the lowest energy intermediate, thus 

constituting the resting state of the reaction (TDI). On the other hand, 

TDTS changes among each functional. For B3LYP, the TDTS is TS2, 

for B97XD and M06-2X is TS3 and for B97-D3 is TS4. The similar 

energy between TS2, TS3 and TS4 impede to determine which step is 

rate-determining of the reaction.  

Table 3.1 Relative and absolute barriers (G) for the Al-catalyzed formation of cyclic 

carbonate from CO2 and 1,2-epoxyhexane at B3LYP, B97XD, M06-2X and B97-D3 
level. TOF Determining Intermediate (TDI) and TOF Determining Transition State 
(TDTS) and the resulting TOF are indicated in the last columns. The experimental TOF 
is highlighted in bold. 

DFT 

Functional 
TS1 TS2 TS3 TS4 Product G

‡
 TDI-TDTS 

TOF 

(h-1) 

B3LYP 16.7 19.1 3.1 9.8 5.9 25.7 Int1-TS2 7.24 

B97XD 17.0 13.0 8.2 15.0 11.7 21.8 Int1-TS4 2.0x103 

M06-2X 17.6 10.0 7.6 19.9 15.0 21.0 Int1-TS4 4.6x103 

B97-D3 11.8 11.6 7.9 9.5 9.9 20.2 Int1-TS3 1.6x104 

        3.6 x 104 
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Finally, if we compare the computationally obtained TOF with the 

experimental one, we determine that B3LYP is the less accurate method 

for this system, while B97-D3 computed TOF is the closest to the 

experimental reference (1.6x104 h-1).  

The hybrid long-range corrected B97XD (2.0x103 h-1) and the 

parametrized M06-2X (4.6x103 h-1) functionals presented more accurate 

results than B3LYP but less accurate than B97-D3. 

3.2.3.c Realistic approximations to account the translational 

entropy in solution 

Solvent-solvent and solute-solvent interactions play an important role in 

homogeneous catalysis.[53b, 94] An issue that has received much attention is 

the loss of translational entropy associated with the formation of one 

moiety from two molecules in solution. Normally, gas phase calculations 

overestimate translational entropy contributions in solution. Approaches 

for including entropy corrections have been proposed by several authors, 

which have been detailed in Chapter 2 of this Thesis. The simplest of 

these methods accounts only the vibrational and rotational terms in the 

calculation of the total entropy in solution, i.e., it neglects the translational 

entropy terms from the calculation of the gas-phase total entropy. The 

other two approaches employed in the present study are based on the fact 

that the equations used for calculating the thermodynamics of the 

reactions are applicable to a hypothetical ideal gas at concentrations 

(1/24.5 M) equivalent to standard state P=1 atm and T=298.15 K. 

However, concentration in our experiments is not 1/24.5 M, and 

therefore corrections are necessary to obtain results that can be applicable 

at the concentration of the system under study. Martin, Wertz and Cooper 

and Ziegler introduced some empirical method to correct such 

overestimation to the entropy in solution.  

Taking into account these methodologies, we included entropy 

corrections for all the free-energy values in the reaction energy profile and 
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for the B3LYP, B97XD, M06-2X and B97-D3 functionals. The results 

for B3LYP functional are shown in Figure 3.7. 

 

Figure 3.7 Gibbs free-energy profile for the cyclic carbonate formation from CO2 and 
1,2-epoxyhexane catalyzed by the [AlCl]/TBAI binary system, calculated at the B3LYP 
level (black trace). The orange line stands for the pathway including only the vibrational 
and rotational terms in the calculation of the total entropy in solution. Corrections by 
Martin, and Wertz/Ziegler appear in green and purple, respectively. All reaction energy 
profiles depicted are computed by Opt-Solv methodology. 

Both Martin and Wertz/Ziegler (W/Z) corrections reduce moderately all 

relative Gibbs free-energy values. Alternatively, by neglecting the 

translational entropy (St) we observe a much larger decrease. However, as 

we expected, the initial trend remains constant after accounting the 

entropic corrections except for St approximation, which will be described 

first due to its particularity. When neglecting the translational entropy to 

the Gibbs free-energy, we are overestimating the stabilizing effect of 

forming one body from two independent entities. Thus, we observe a 

very large stabilization after TS2 when four independent bodies 

considered initially ([AlCl], iodide, epoxide and CO2) are forming only one 

complex. This behavior leads to unusual results like TS1 being the most 

energetically demanding step meanwhile in all other approximations, 

including the non-corrected results, the ring-opening of the epoxide is 

always the least energetically demanding step of the reaction profile. 
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Another significant difference is the TDI and TDTS of the Gibbs free-

energy profile. Since taking away molecular bodies is so many disfavored, 

the rate-determining step is the decoordination of the cyclic carbonate 

from [AlCl]. The results obtained using this approximation proves the 

importance of taking care on the translational entropy when a significant 

number of entities are bonded or separated.  

Table 3.2 Relative and absolute barriers (G) for the Al-catalyzed formation of cyclic 
carbonate from CO2 and 1,2-epoxyhexane considering no entropic corrections and 
using Martin, W/Z and St corrections. TOF Determining Intermediate (TDI) and TOF 
Determining Transition State (TDTS) and the resulting TOF are indicated in the last 
columns. The experimental TOF is highlighted in bold. 

B3LYP TS1 TS2 TS3 TS4 Product G
‡
 TDI-TDTS 

TOF 

(h-1) 

Uncorrected 16.7 19.1 3.1 9.8 5.9 25.7 Int1-TS2 7.24 

Martin 13.6 16.0 3.2 9.8 9.1 19.5 Int1-TS2 3.9x104 

W/Z 13.9 15.4 3.2 10.1 9.7 19.2 Int1-TS2 5.8x104 

St 4.8 8.0 3.1 9.8 9.8 17.8 Int5-Product 2.6x105 

        3.6 x 104 

Using both Martin and W/Z corrections we obtained more realistic 

results than using St approximation. First, it is worth mentioning that 

despite both approximation tackle the problematic of correcting the 

translational entropy in solution from different mathematic perspectives, 

the obtained results are practically identical for all the employed DFT 

functionals.  

In Figure 3.7 it can be seen such similarity and also, the identical trend 

obtained comparing with the uncorrected profile. All the relative barriers, 

the TDI and TDTS with the absolute barrier and the consequent TOFs 

are collected above in Table 3.2, where we can observe also the different 

trend when considering St approximation. 

Nevertheless, it is worth mentioning the relative barrier of St profile 

related to TS3, which is similar to the other reaction profiles because 
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there is no variation in the number of bodies involved in the previous and 

next step, hence maintaining the same translational entropy in the system. 

Consequently, the relative barrier for this step is identical to the other 

profiles, confirming the overestimation of the effect when neglecting the 

translational entropy. On the other hand, the absolute barrier and relative 

barriers for Martin and W/Z corrections are very similar, hence obtaining 

very similar TOFs. Both TOFs obtained with Martin and W/Z profiles 

present high correlation with the experimental reference, confirming the 

importance of including these entropic corrections when describing 

multicomponent systems in solution.  

The absolute barriers and the related TOFs for all the considered DFT 

functionals and entropic corrections considering Opt-Solv methodology 

are collected in Table 3.3 in the next page.  
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Table 3.3 Absolute barriers (G) and TOFs for the Al-catalyzed formation of 
cyclic carbonate from CO2 and 1,2-epoxyhexane considering no entropic 
corrections and using Martin, W/Z and St corrections. TOF Determining 
Intermediate (TDI) and TOF Determining Transition State (TDTS) are indicated 
in the last columns. The experimental TOF and the consequent barrier computed 
using Eyring’s equation are highlighted in bold in the last row. 

DFT 

Functional 
G

‡
 (kcal·mol-1) TOF (h-1) TDI TDTS 

B3LYP 25.7 7.24 Int1 TS2 

B3LYP (St) 17.8 2.6 x 105 Int5 Product 

B3LYP (M) 19.4 3.9 x 104 Int1 TS2 

B3LYP (W/Z) 19.1 5.8 x 104 Int1 TS2 

B97XD 21.8 2.0 x 103 Int1 TS4 

B97XD (St) 23.6 79.0 Int5 Product 

B97XD (M) 15.5 4.9 x 106 Int1 TS4 

B97XD (W/Z) 15.7 3.4 x 106 Int5 Product 

M06-2X 21.1 4.6 x 103 Int1 TS3 

M06-2X (St) 28.0 0.15 Int4 Product 

M06-2X (M) 19.9 2.4 x 104 Int4 TS4 

M06-2X (W/Z) 19.2 4.0 x 104 Int4 TS4 

B97-D3 20.2 1.6 x 104 Int1 TS3 

B97-D3 (St) 23.8 59 Int4 Product 

B97-D3 (M) 14.4 2.9 x 107 Int2 TS3 

B97-D3 (W/Z) 14.2 2.7 x 107 Int5 Product 

Experimental 19.7 3.6 x 104   

As we already commented in the previous section when we compared the 

DFT functionals, the general trend is maintained for all functionals with 

the main difference observed between B3LYP and dispersion-corrected 
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functionals. After including the three entropic corrections, we can 

confirm the underestimation of Gibbs free-energy values for St 

approximation. In all cases, the decoordination step is rate-determining 

in the reaction profile obtaining irregular absolute barriers and TOFs.  

Regarding Martin and W/Z corrections, we can see excessively low 

barriers for B97XD and B97-D3 functionals, obtaining too high TOFs 

in comparison with the experimental reference. On the other hand, when 

M06-2X functional is considered, both Martin and W/Z TOFs correlate 

with the experimental value. In some cases like B97XD and B97-D3 

functionals accounting W/Z functional, the decoordination step was also 

rate-determining. Alternatively, more realistic results are obtained using 

Martin’s approximation for all cases. 

3.2.4 Conclusions 

The formation of cyclic carbonate from CO2 and 1,2-epoxyhexane 

mediated by the [AlCl]/TBAI binary system was studied using several 

DFT functionals, solvation methodologies and entropic corrections. 

M06-2X, B97XD and B97-D3 significantly reduced the values of the 

relative free-energy differences in comparison to those obtained at the 

B3LYP level. The ring-closing reaction is rate-determining for B97XD 

dispersion-included free-energy profile, whereas the CO2 insertion step 

was found to be the rate-determining step with the hybrid B3LYP 

functional. Alternatively, the carbonate isomerization was the most 

energetically demanding step for M06-2X and B97-D3 functionals. 

Different approaches for correcting entropies in solution were considered 

and showed dramatic effects on the free-energy values, which worth full 

determination and evaluation. Enthalpy and, consequently internal energy 

remains constant, so Gibbs free-energy changes because translational 

entropy correction. This free-energy variation was quantified for Martin 

correction as 3.15 kcal·mol-1 by each bond formed between two bodies. 
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No definitive conclusions arise by neglecting the translational entropy 

contributions completely. For B3LYP cases, energy barriers are 

overestimated. Turnover frequencies for the reaction were estimated 

using the energetic span model. Compared to B3LYP results, a 

remarkable increment of three orders of magnitude in the TOF value was 

observed using the M06-2X and B97XD functionals and four order of 

magnitude using B97-D3, thus in better agreement with the experiments. 

TOFs lying in the same order of magnitude as the optimal experiments 

were predicted for B3LYP, M06-2X and B97XD profiles obtained 

using the Martin approach to entropy corrections in solution. The use of 

entropic corrections by the Wertz and Ziegler methodology leads to 

TOFs exceeding the highest value obtained experimentally.  

The results from the current studies suggest that a proper combination of 

DFT and entropic corrections provide a method of great predictive use 

in catalyst selection and design, thus for contributing to advance the field 

of CO2 catalysis more efficiently. 

3.3 Epoxy-Alcohols as Building Blocks for 

Functionalized Cyclic Carbonates 

3.3.1 Goals and Motivation 

The formation of cyclic carbonates from CO2 and epoxides is discussed 

in many contributions of several groups. Moreover, the elucidation of the 

reaction mechanism catalyzed by the binary [AlR]/TBAI system was 

already published by our group and described in detail from a quantitative 

perspective in the previous section of this chapter. However, the use of 

functionalized substrates, and specifically alcohol- and amine-substituted 

epoxides present an interesting mechanistic change in CO2 fixation 

processes. In particular, using our [AlR] catalyst and glycidol (GL) as 

substrate we observe high yields for glycidol carbonate (GC) without 

using the nucleophilic co-catalyst required in the previously studied 

UNIVERSITAT ROVIRA I VIRGILI 
Computational Design of Catalysts for Carbon Dioxide Recycling 
Joan González Fabra 



systems. In this case, the basicity of the phenolate ligand of [AlR] leads to 

an acid-base reaction with the acidic proton of the alcohol group, hence 

forming a positively charged complex ([AlR]-H+) and an alkoxide moiety 

that can initiate the CO2 fixation reaction. This new reactivity presents 

many aspects to be defined, which have been summarized in a schematic 

representation of the reaction (see Figure 3.8). In this case, methyl 

groups are present in the phenolate group of the ligand, increasing its 

basic character, which is a crucial feature in this mechanism.  

 

Figure 3.8 Schematic representation of glycidol carbonate formation from 
glycidol and CO2 catalyzed by the Al aminotriphenolate complex. 

The first factor that will be studied is the reaction order of the catalyst. 

Two reactive oxygen atoms are present in the system, epoxide and 

alcohol, so we could observe a 2:1 ([Al]:GL) dependence, leading to a 

kinetic order of reaction of 2 for the catalyst respect to the substrate. The 

second factor to be considered is regioselectivity. The difference between 

the new reaction mechanism involving the functional group included to 

the epoxide and the previously reported mechanism via epoxide ring-

opening process is the first aspect to be defined. The kinetic competition 

between these two mechanisms determines the regioselectivity of CO2 

insertion. 

Finally, GL and also glycidol derivatives are chiral substrates with at least 

one enantiomeric center, which has been highlighted in orange in Figure 

3.8. Consequently, the elucidated mechanism has to explain the 
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experimentally obtained enantioselectivity. We have experimental 

evidence provided by Kleij and coworkers that facilitates the analysis of 

these mentioned mechanistic aspects by comparing the experimental and 

computational results. Consequently, during the description and 

discussion of our results, we will comment also the experimental data in 

parallel with our results. 

3.3.2 Computational Details 

All calculations in this study were carried out by using Gaussian 09 

package.[86] Two type of dispersion-corrected DFT functionals were used 

to optimize geometries and evaluate energies: the B97XD[44] and the 

B97-D3.[87b, 95] Noteworthy, both functionals give fully equivalent results 

in most of the cases, although for some weakly bound structures the 

different treatment of dispersion effects makes a difference. The standard 

6-311G(d,p) basis set[89] was used to describe all atoms. Full geometry 

optimizations were performed without any constrain. The nature of the 

encountered stationary points was characterized either as minima or 

transition states by means of harmonic vibrational frequency analysis. 

Gibbs free-energies were calculated at experimental conditions 

(T=323.15 K, P=1 atm). Entropic corrections were included for all 

calculations in order to model the translational entropy in solvation.[56] 

For the sake of comparison with experimentally measured infrared 

spectra, several DFT functionals were used: B97XD with scaling factor 

0.957,[96] B3PW91[43, 97] with scaling factor 0.963,[96] and BP86[38] unscaled.  

Solvent effects were accounted for in all calculations by using the 

Solvation Model based on Density (SMD) as implemented in Gaussian. 

The dielectric constant () of the polarizable medium was set to the value 

reported for butanone (=18.246), which is the solvent used in the 

experiments.[91]  
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3.3.3 Results and Discussion 

3.3.3.a Catalyst reaction order  

Glycidol (GL) contains two oxygen atoms in its structure, the epoxide 

oxygen (OEp) and the hydroxyl oxygen (OOH). This difference with the 

typically studied epoxides that present only one oxygen atom leads to the 

possibility of having a double coordination of [AlMe] to GL, hence having 

one Al bonded to OOH and another Al bonded to OEp. Consequently, the 

reaction could occur through a monometallic or a bimetallic mechanism. 

In this section we will present the reaction mechanism related to the 

insertion of CO2 to the alcohol group considering one and two [AlMe] (see 

Figure 3.9). 

 

Figure 3.9 Gibbs free-energy profile (kcal·mol-1) of the monometallic (black line) and 
bimetallic (orange line) mechanisms for GC formation. 

The first step of the reaction is the coordination of GL to [AlMe] through 

the alcohol group, forming a stable intermediate at (-10.5 kcal·mol-1). The 

coordination via OEp is energetically similar (-10.2 kcal·mol-1). Therefore, 

both conformations may take place simultaneously. However, Int1, 
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where GL is bonded to Al metal from OOH, has been isolated and 

characterized by X-Ray crystallography, hence confirming this 

intermediate as resting state of the mechanism. The activation of the 

alcohol group facilitates the proton transfer from the substrate to the 

ligand of the catalyst through TS1, constituting a relative barrier of 11.0 

kcal·mol-1.  

The obtained alkoxide is energetically close to TS1, although is stabilized 

by [AlMe] (4.2 kcal·mol-1). An alkoxide intermediate, as we showed in the 

mechanism described in the previous section, is a reactive moiety for CO2 

insertion. Thus, after forming a meta-stable ensemble (Int2-CO2), the 

insertion reaction takes place via TS2. The relative barrier of this process 

is 4.5 kcal·mol-1, computed from Int2. 

The formation of Int3 is stabilized by the interaction of the carbonyl 

oxygen of the carbonate with Al metal, forming a chelate moiety that 

constitutes an [AlMe] octahedral structure. This carbonate intermediate 

may evolve towards ring-closing process through a monometallic route 

via TS3 (36.0 kcal·mol-1) or following a bimetallic pathway forming first 

Int3-2Al (9.8 kcal·mol-1) to then overcome a more favourable TS of 17.7 

kcal·mol-1. For both cases TS3 constitutes the rate-determining step of 

the reaction, leading to a 46.5 and 28.2 kcal·mol-1 absolute barrier for 

monometallic and bimetallic mechanisms, respectively. The large 

difference (18.3 kcal·mol-1) between absolute barriers of monometallic 

and bimetallic mechanisms is due to the activation of the epoxide moiety 

when [AlMe] is bonded to OEp. The second Al metal bonded to GL 

stabilizes the formed alkoxide after the ring-closing step, hence having a 

more stable Int4 when two Al are considered. After ring-closing step, the 

proton is rapidly transferred back to the substrate via TS4, leading to the 

desired product still bonded to [AlMe]. The obtained Gibbs free-energy of 

the reaction is -19.8 kcal·mol-1, constituting an exergonic reaction.  

Considering the previous results, we could expect that two Al centres are 

crucial to facilitate the ring-closing step, so decreasing the absolute barrier 

of the reaction.  
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3.3.3.b Determination of CO2 insertion selectivity  

Considering a bimetallic mechanism, we studied an alternative reaction 

mechanism to the already presented in the previous section. In this case, 

Int2 evolves through the nucleophilic attack to a coordinated epoxide, 

forming a new alkoxide. This step is described by TS2’ in Figure 3.10. In 

this reaction pathway, Int2 is used as a nucleophilic catalytic species, 

mimicking the iodide role in the mechanism described in section 3.2.3.a 

of this chapter. The main difference between the two presented 

mechanisms is where CO2 is inserted (OEp or OOH). In the mechanism 

previously depicted in Figure 3.9, CO2 is inserted to OOH, while in this 

new mechanism CO2 binds to OEp of Int3’. Therefore, opposite 

regioselectivity concerning CO2 insertion is observed between these 

mechanistic pathways.  

 

Figure 3.10 Gibbs energy profile (kcal·mol-1) of the bimetallic mechanisms of GC 

formation concerning CO2 insertion to OOH (purple line) and OEp (green line). 

After CO2 insertion takes place through TS3’, Int4’ is formed and the 

new reaction mechanism follows the same steps of isomerization towards 

hemi-carbonate and then ring-closing step, forming the cyclic carbonate 

as we presented above in the previously studied mechanism. As it can be 

seen in Figure 3.10, the ring-closing process (TS5 and TS5’) is rate-
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determining for both cases. The absolute barrier is also similar for both 

cases, being 28.2 kcal·mol-1 for CO2 insertion to OOH and 27.7 kcal·mol-1 

for CO2 insertion to OEp, so the presented mechanisms are kinetically 

competitive. 

Summarizing, the reaction mechanism could take place through a 

bimetallic mechanism with an absolute barrier of approximately 28 

kcal·mol-1, obtaining a mixture of CO2 insertion to OOH and OEp. 

However, the experimental results show a different trend respect our 

computational results. 

First, as we show in Figure 3.11, by using deuterated GL we observe 

exclusively the formation of GC with CO2 inserted to OOH. Moreover, a 

kinetic study determined the absolute barrier at 23.3 kcal·mol-1, which is 

considerably lower than the computationally obtained. Finally, the [AlMe] 

reaction order obtained by kinetic studies was one, thus the reaction 

mechanism should take place through a monometallic mechanism.  

 

Figure 3.11 Schematic representation of experimental results using 
deuterated GL to study the regioselectivity of CO2 insertion. 

The disconnection between computational and experimental results 

prompted us to explore other mechanistic possibilities considering only 

one [AlMe] and CO2 insertion to hydroxyl group. The crucial role of the 

second [AlMe] activating the epoxide of GL was taken into account to look 

for a more favourable monometallic mechanism than the already studied. 

3.3.3.c Revealing the crucial role of water as proton shuttle  

The importance of including an additional [AlMe] is to activate both 

oxygen atoms present in the substrate. In literature there are many 

examples where this effect could be also accounted by other species 
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through hydrogen bonding (HB) interactions.[98] In our case, GL contains 

a hydroxyl group that is a potential HB actor. Moreover, there are high 

possibilities that small amounts of water are present in our system because 

the high solubility of water in glycidol and butanone. Actually, water can 

hydrolyze epoxides at relatively high temperatures forming diols or even 

triols when epoxy alcohols are considered. Nevertheless, no hydrolysis 

has been observed in our system at the given conditions. 

Intermolecular HB interactions between glycidol, water and [AlMe] 

structure could be crucial in the reaction mechanism, particularly in the 

ring-closing process described by TS3. The water molecule can activate 

OEp through HB while at the same time interacting with the proton 

attached to the phenolate of [AlMe]. Consequently, water would act equally 

as a co-catalyst activating the epoxide and as proton shuttle facilitating 

the protonation of the oxygen after ring-closing of GC. The computed 

mechanism using water is depicted below in Figure 3.12. 

 

Figure 3.12 Gibbs energy profile (kcal·mol-1) of the SN1 type mechanism (blue lines) 
and SN2 type mechanism (black line) for the GC formation co-catalyzed by water. An 
unfeasible process regarding protonation of OEp is illustrated in Int3-H (red line). 

Until Int3, the presented mechanism is identical to the mechanism 

already showed in Figure 3.9. Incorporating a water molecule to the 

system, the Gibbs free-energy of Int3 dramatically decreases from 8.3 

kcal·mol-1 to -3.2 kcal·mol-1 (Int3-H2O) because the stabilizing effect of 
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two HB interactions between the water molecule and both OEp and the 

proton bonded to the phenolate ligand. The resulting TS3 after Int3-

H2O is 13.0 kcal·mol-1 lower than TS3 of Figure 3.9, hence confirming 

the importance of activating OEp. Another significant difference is TS3 

leads directly to the formation of GC bonded to the catalyst (Int4), since 

the protonation of OEp occurs in parallel to ring-closing process in a 

concerted TS. 

An alternative reaction mechanism can take place through the 

isomerization of Int3 to a linear hemi-carbonate (Int3-Isom) similar to 

Int5’ in Figure 3.10. This isomerization increases the flexibility of the 

coordinated moiety, allowing a SN1 type reaction mechanism. Therefore, 

through this reaction pathway depicted in Figure 3.12, we could obtain 

both enantiomers depending on the orientation of the nucleophilic attack 

of the carbonate to the epoxide. The obtained absolute barrier (35.1 or 

35.5 kcal·mol-1) is close to the absolute barrier of the enantioselective 

mechanism presented before (33.5 kcal·mol-1). Consequently, one would 

expect that both reaction mechanisms, SN2 type and SN1 type, could occur 

simultaneously leading to low enantioselectivity. Actually, the 

experimentally obtained enantiomeric excess is approximately 50%, 

which means a 75:25 ratio between the enantiomers of GC. These 

experimental results coincide with the elucidated mechanisms because 

SN2 type mechanism leads to full inversion after TS3, while SN1 type path 

forms both enantiomers in the same proportion.  

The role of water as co-catalyst indicated by these computational findings 

was later on reaffirmed by experiments carried out in anhydrous 

conditions. Using the same experimental conditions of catalyst loading, 

time of reaction, temperature and CO2 pressure, half of the yield was 

obtained respect to normal conditions when the solvent and the substrate 

were dried. Conversion is observed because GL can also play the same 

role as water does. Therefore, the reaction could be autocatalyzed by the 

substrate. Though [AlMe] reaction order, regioselectivity and 

enantioselectivity coincide with the experimental data, the Gibbs free-
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energy barrier for these mechanisms is too high for a reaction that occurs 

at mild conditions of temperature and CO2 pressure. Actually, as we 

indicated above, the activation energy obtained from the kinetic 

experiments is 23.3 kcal·mol-1, which is 11.2 kcal·mol-1 lower than SN2 

type mechanism. 

3.3.3.d CO2 insertion and ring-closing in one step 

The high barrier of the reaction mechanism presented above prompted 

us to look for a new mechanistic pathway keeping water as co-catalyst of 

the process. The reaction mechanism presented below in Figure 3.13 

allowed us to explain the first order dependence on both reactant and 

catalyst, the regioselectivity of CO2 insertion towards OEp and the 

enantioselectivity observed experimentally.  

 

Figure 3.13 Gibbs free-energy profile for the concerted (dashed line) and stepwise (solid 
line) mechanisms of GC formation from GL and CO2 catalyzed by [AlMe]. 

A concerted mechanism regarding CO2 insertion and ring-closing step 

occurring at the same time was elucidated using B97-D3 functional. The 

different treatment of dispersion interactions with respect to the 

previously used B97XD functional, led to a different TS3 (named TS2-

3) with longer bond distance between the carbon atom of CO2 moiety 
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and OOH of the substrate, thus having the CO2 insertion and the 

nucleophilic attack of the oxygen of CO2 to the epoxide at the same time.  

Another important difference between the two mechanisms in Figure 

3.13 is the distance between OEp and the proton of water that it is 

transferred to GC. In the concerted mechanism, OEp-H distance is 

shorter, facilitating the epoxide opening process because the oxygen atom 

of CO2 is less nucleophilic than the same oxygen when the CO2 moiety is 

bonded to the substrate forming a carbonate. 

The resulting absolute barrier of the concerted mechanism is 24.6 

kcal·mol-1, which is 8.9 kcal·mol-1 lower than stepwise barrier. Moreover, 

the concerted mechanism barrier is closer to the experimentally 

determined (23.3 kcal·mol-1), which reaffirms its feasibility. One could 

wonder how this reaction mechanism describes the obtained 

enantiomeric excess in the experiments, since it should be expected an 

absolute enantioselectivity for the opposite enantiomer to the initial GL 

substrate, as occurs in the SN2 type mechanism. We discussed this issue 

in the next section of this chapter. 

Despite the complete description of the reaction mechanism supported 

by experimental data, we could not consider both reaction mechanisms 

using the same DFT functional. This matter prompted us to compute the 

intermediate and TS involved in the absolute barrier using different DFT 

functionals and different dispersion corrections. The obtained results for 

eleven different DFT functionals are collected in Table 3.4. 

As it can be seen in the table depicted in the next page, a general trend in 

favour of the concerted mechanism is observed. Nevertheless, different 

absolute barriers and structural parameters regarding angle of CO2, CCO2-

OOH distance and epoxide distance were obtained for the considered DFT 

functionals. Therefore, we moved forward to higher level of theory in 

order to shed some light to the mechanism elucidation. 
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Table 3.4 DFT functional benchmark regarding TS3 of GC formation from GL and 
CO2 catalyzed by [AlMe]. Structure parameters are collected for TS3 like CO2 angle, 
distance between C of CO2 and O of GL and angle of epoxide functional group of GL. 
The absolute Gibbs free-energy barrier is included with a clarification about the nature 
of TS3 regarding concerted or stepwise mechanism. 

DFT 

Functional 
 CO2 d(CCO2-OOH)  Epox 

G‡ 

(kcal·mol-1) 

Concerted 

vs Stepwise 

B97-D3BJ 150 1.9 90 24.7 Concerted 

B97-D3 151 2 91 25.3 Concerted 

B3LYP-D3BJ 139 1.6 80 26.2 Concerted 

B3LYP-D3 140 1.6 80 27.5 Concerted 

PBE 142 1.7 78 31.1 Concerted 

BP86 145 1.8 81 33.7 Concerted 

BP86-D3 140 1.7 80 18.3 Concerted 

M06 160 2.2 101 31.5 Concerted 

M06-2X 136 1.5 76 32.0 Stepwise 

B97XD 136 1.5 74 33.5 Stepwise 

B2PLYP 139 1.6 79 28.0 Concerted 

Double-hybrid DFT methods that include MP2 correlation factors were 

used to recalculate the intermediate and TS responsible of the absolute 

barrier of the mechanism. Therefore, B2PLYP functional with Grimme’s 

dispersion correction was used for this purpose. The obtained TS was 

TS2-3 (concerted mechanism) and the calculated barrier was 28.0 

kcal·mol-1 (see last row of Table 3.4). These very similar results to 

B3LYP-D3 or B3LYP-D3BJ indicate that hybrid DFT functionals 

describe accurately the studied system.  

In conclusion, an unusual concerted mechanism is observed for epoxy-

alcohol reaction with CO2. It is worth mentioning the double reactive 

character of CO2 in the very same step. On one hand, electrophilic 

character of the carbon atom interacts with the nucleophilic oxygen of 
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the alkoxide. On the other hand, one oxygen of CO2 undergoes 

nucleophilic addition to the epoxide group. 

3.3.3.e Racemization of Glycidol Carbonate 

The enantioselectivity of the process has been studied computationally to 

shed light on the enantiomeric excess obtained experimentally. The ring-

opening of the epoxide by the nucleophilic attack of the carbonate (TS3) 

is the reaction step that determines the enantioselectivity. An SN1 type 

mechanism leads to racemization and SN2 type mechanism to inversion 

of the configuration. Our computational results show a small difference 

between SN2 (black line) and SN1 (blue lines) absolute barriers in Figure 

3.12, which agrees with the experimental enantiomeric excess. However, 

the experimental conditions are too mild to overcome the high absolute 

barriers of both processes. Consequently, the enantiomeric excess could 

not be explained by those results. 

 

Figure 3.14 Gibbs free-energy profile of the acid-base racemization mechanism 

computed with B97-D3 (dashed line) and B97XD (solid line).  

The characterization of the product carried out by the experimentalists to 

determine the enantioselectivity goes through an aminolysis reaction to 

produce a chiral amide. The amine used to open the cyclic carbonate can 

also deprotonate the alcohol group present in the product through TS1 

(12.8 kcal·mol-1 for dashed line) depicted in Figure 3.14. After the 

alkoxide is obtained (Int1-Al), it can rapidly go through TS2 to a stable 
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symmetric intermediate (Int1). Due to the described process is 

symmetric, the same TS2 leads to the final product (S-GC), which could 

invert or retain the configuration. 

A detailed study on this racemization process is carried out by QM/MM 

metadynamic simulations in Chapter 6 of this Thesis. 

3.3.3.f Vibrational Frequencies Analysis: IR in operando 

IR in operando is a complex characterization technique that our 

collaborators, Urakawa et. al, used to identify crucial intermediates of the 

reaction mechanism by observing how particular IR signals where 

appearing and disappearing during the reaction. By adding sequentially 

CO2 and the catalyst to the system they detected how specific IR signs 

were changing after the additions.  

Table 3.5 DFT-computed structures for several intermediates, carbonate C=O 
vibrational frequency, and relative Gibbs free-energy. Experimental observed structures 

are highlighted in bold. Calculated vibrational frequency for B3PW91 and B97XD are 
scaled by 0.963 and 0.957, respectively. 

IR 

  
   

BP86 (cm-1) 1779 1783 1758 1835 1805 

B3PW91 (cm-1) 1770 1792 1765 1825 1812 

B97XD (cm-1) 1777 1805 1795 1830 1825 

G
‡
 (kcal·mol-1) 1.3 2.2 4.6 -3.2 -19.8 

Experiment (cm-1) 1837 1790 

Aimed at identifying species responsible of the infrared signal 

experimentally observed at 1837 cm-1, we considered several candidates 

and computed the harmonic vibrational frequencies using some DFT 

methods. CO2 interacts with the glycidol alkoxide as well as with the 

aluminum metal center, forming a stable intermediate with a relative 

Gibbs energy of -3.2 kcal·mol-1. This species highlighted in bold in 
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Table3.5 presents a vibration corresponding to the carbonate C=O 

stretching in the closest agreement with the experimental value. The 

vibration of C=O for GC is also included in Table 3.5 as a reference. 

3.3.4 Conclusions 

Elucidating and describing in detail the mechanistic aspects of CO2 

fixation to form cyclic carbonates is crucial to improve the activity of the 

catalytic systems used for this important process. In this section, we 

elucidated the reaction mechanism of CO2 fixation using functionalized 

epoxides, particularly epoxy alcohols. The singular reactivity of epoxy 

alcohols led to a complex reaction mechanism based on hydrogen bond 

interactions. 

First, we studied the catalyst reaction order considering monometallic and 

bimetallic mechanisms. The bimetallic mechanism was found more 

favorable because the stabilizing effect of the second aluminum to the 

oxygen of the epoxide, thus facilitating the ring-closing process to form 

the cyclic carbonate. 

Second, we compared two bimetallic mechanisms with opposite 

regioselectivity towards CO2 fixation. In one hand, the already presented 

mechanism where CO2 is inserted to the hydroxyl oxygen. On the other 

hand, the conventional mechanism with CO2 insertion to the epoxide 

group. Both mechanisms were found kinetically similar. 

We substituted the effect of the second Al complex of bimetallic systems 

by a water molecule, which additionally facilitated the recovery of the 

proton from the phenolate ligand. Hence, water was involved as co-

catalyst playing a crucial role in the insertion of CO2 and the cyclic 

carbonate closing process and as proton-shuttle to protonate the formed 

alkoxide after epoxide is opened. 

The insertion of CO2 happening at the same time with the nucleophilic 

attack to open the epoxide group and the protonation of the epoxide 

oxygen is rate-determining of the glycidol carbonate formation with an 

UNIVERSITAT ROVIRA I VIRGILI 
Computational Design of Catalysts for Carbon Dioxide Recycling 
Joan González Fabra 



absolute barrier of 24.6 kcal·mol-1, close to the experimental reference 

(23.3 kcal·mol-1). We confirmed the preference of the concerted 

mechanism over the stepwise mechanism using a double-hybrid 

functional. 

The experimentally observed enantioselectivity was explained by a 

racemization process that occurs after glycidol carbonate is formed.  

Experimental procedures like IR in operando, X-ray crystallography, 

deuterium labelling or kinetic experiments were combined with DFT 

based methods to confirm key aspects of the mechanism, hence we 

present a detailed study of the system that may be extrapolated to similar 

processes for the formation of heterocyclic products. 
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Chapter 4 

 

"Everything should be made as 

simple as possible, but not simpler." 

Albert Einstein

N-Aryl Carbamates 

4.1 Organocatalyzed N-Aryl Carbamates from Cyclic 

Carbonates 

4.1.1 Introduction 

The valorization of CO2 is important to create value from waste material. 

Currently efforts have already shown great potential towards the use of 

CO2 to store energy,[14-15] and as a synthon for the creation of new 

polymers[33b, 99] and fine-chemicals.[20c, 100] Regarding the synthesis of fine-

chemicals, cyclic carbonates (CyCs) present interesting versatility on its 

reactivity towards many high value products.[101] In the previous chapter 

of this Thesis we presented two computational studies regarding the 

elucidation of reaction mechanisms to create CyCs from CO2 fixation 

with epoxides. In this chapter we focus on aminolysis of CyCs, which is 

one of the most representative reactions of CyCs due to its flexibility, high 
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activity and selectivity.[102] Nevertheless, in Figure 4.1 we show other 

reactions based on the electrophilic character of CyCs. As it can be seen, 

a wide variety of nucleophilic reactants can transform CyCs to 

functionalized moieties that present high potential as polymerization 

blocks or synthons for complex molecular structures. Aminolysis reaction 

using aromatic substrates is highlighted in green in Figure 4.1. The 

aminolysis of CyCs using aromatic amines leads to decarboxylation 

processes because harsh reaction conditions are used to overcome the 

high kinetic barrier. Alternatively to aromatic amines, aliphatic amines can 

lead to the formation of N-alkyl carbamates due to its higher nucleophilic 

character. Consequently, milder reaction conditions can be used, hence 

preventing the decarboxylation of the carbonate. 

 

Figure 4.1 Summary of CyC reactivity regarding nucleophilic attack to carbonyl carbon 

or -carbon to carbonate group.  

The reaction mechanism of aminolysis of CyCs using aliphatic amines is 

depicted in detail in Figure 4.2. The nucleophilic attack of the amine 

usually occurs in a regioselective manner to the carbonyl carbon of the 
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substrate. The nitrogen atom of the amine has a high electron density, 

which attacks preferably (Pearson theory) to the hard electrophilic center 

of CyC, which is the carbonyl carbon. After the amine is bonded to the 

carbonyl carbon a zwitterionic intermediate is formed, which is 

deprotonated by an external amine forming an anionic structure 

(alkoxide) and an ammonium cation. Then, the alkoxide can evolve to 

two different paths depending which C-O bond is broken to open the 

five-member ring. Both possible pathways, which lead to different 

isomers, are illustrated in Figure 4.2. The last step of aminolysis is the 

protonation of the alkoxide, by the ammonium previously formed, to 

generate the corresponding alcohol. 

 

Figure 4.2 Schematic representation of the aminolysis reaction mechanism considering 
an aliphatic amine and a generic CyC.  

The aminolysis reaction can lead to multiple products when changing the 

nucleophilic character of the amine, the functional groups present in the 

CyC or even the reaction conditions. As it can be seen below in Figure 

4.3, using a functionalized CyC we can observe a double aminolysis 

reaction (A and B pathways) after the first amine addition. The amine can 

attack the ester group (A) or the carbamate group (B) forming a 

carbamate and an amide (A) or an ester and urea (B), respectively. In both 
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cases, alcohol groups are formed after the protonation of the generated 

alkoxide, as we described above. 

An alternative pathway is the thermal decomposition of the carbamate 

(C) forming a five-member cyclic carbamate (oxazolidinone). 

Oxazolidinones are useful substrates in chiral synthesis as Evans 

auxiliaries in aldol reactions.[103] 

The last route depicted in Figure 4.3 (D) is already presented in Figure 

4.1 for aromatic amines, where nucleophilic attack takes places at the -

carbon to the carbonate group. After nucleophilic attack to -carbon, 

CO2 and an amine are formed. The formed amine can react with the 

carbonyl carbon of the first amine, or even with itself, thus forming a 

wide variety of amides. Consequently, constituting a process with very 

low chemoselectivity, which is one of the main issues to tackle when 

designing new catalysts for aminolysis. 

 

Figure 4.3 Schematic representation of cyclic carbonate aminolysis reactions. A: amide 
and carbamate formation (purple). B: urea formation (black). C: thermal decomposition 
to produce oxazolidinones (red). D: decarboxylative aminolysis (orange). 

As we mentioned previously, CyCs are widely used as precursors for 

polymer synthesis,[104] particularly in polyurethane production via 

aminolysis reaction. In Figure 4.4, we show a synthetic route to produce 

polyhydroxyurethanes using CyCs, amines and methacrylic anhydride.[105]  
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Figure 4.4 Reaction of CyC, amines and methacrylic anhydride to form 
polyhydroxyurethane via aminolysis reaction. 

Three different moieties are incorporated to the highly functionalized 

polymer using this technology that enable us to start from waste (CO2) 

and easily accessible substrates (epoxides and amines) to produce high 

valuable polymers. 

Herein, we report a computational study on the reaction mechanism of 

arylamines with CyCs to produce chemoselectively N-aryl carbamates 

(ACs) using triazabicyclodecene (TBD) as catalyst.  

 

Figure 4.5. Reaction manifold of CyC with amines and new reactivity 
towards AC formation under mild conditions. 

TBD is an organic and cheap strong guanidine base (see Figure 4.5). 

Guanidine based catalyst are used in many base-mediated organic 

reactions like Michael,[106] Wittig,[107] nitroaldol reactions[108] or ring 

opening polymerization (ROP) of cyclic esters.[109] While the formation of 

organic carbamates from aliphatic amines is well defined, it still remains 

highly challenging to selectively prepare ACs through a site-specific 

aminolysis reaction using aromatic amines under mild reaction 

conditions. These AC compounds are particularly attractive scaffolds as 

they are key moieties of some pharmaceutical compounds such as 
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Efavirenz[110] and Retigabine[111] (see Figure 4.5). This interesting reaction 

has been previously accomplished in a chemoselective manner using 

metal-based catalysts that require harsh reaction conditions[112] or the 

conventional synthetic route using isocyanates.[113]  

Also, thermolysis of ACs offers a useful, phosgene-free route towards aryl 

isocyanates which are key reagents in the synthesis of polyurethane 

polymers.[114] Inspired by this unresolved challenge, we explored the 

reaction mechanism towards ACs through hydrogen-bond activation of 

CyCs, which could offer a viable substrate conversion strategy as recently 

demonstrated for aminolysis reactions involving alkylamines.[112a]  

4.1.2 Goals 

The organocatalyzed reaction mechanism for aminolysis of CyC using 

arylamines is still unknown. In this chapter we aim to elucidate such 

reaction mechanism catalyzed by guanidine based organocatalysts. 

Aiming at unravel the mechanism of the organocatalyzed reaction, we will 

study firstly the uncatalyzed reaction of aliphatic and aromatic amines to 

produce alkyl and aryl amines. We expect that the reaction will be 

facilitated by HB agents like water, which we will study later together with 

the true organocatalyst TBD. 

We will evaluate the description of this organic system by DFT based 

methods considering a post-HF method like CCSD(T) as reference. The 

detailed computational study in the description accuracy of the system 

corroborates the viability of the proposed catalyzed mechanism. 

Finally, the activity of arylamines and alkylamines will be compared for all 

mechanistic situations, contrasting our computational results with the 

experimental observations, thus corroborating both evidence. 

4.1.3 Computational Details 

All calculations reported in the manuscript were carried out by using the 

Gaussian 09 package.[115] The Becke gradient corrected hybrid exchange-
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correlation functional[116] was used with the inclusion of Grimme’s[41-42] 

third generation empirical dispersion energy corrections (B97-D3). The 

Pople[117] 6-311G(d,p) standard basis set was used to describe the whole 

system where all geometries were fully optimized without constrains. 

Moreover, stationary points were characterized as minima or transition 

states through the calculation of harmonic vibrational frequencies. Gibbs 

free-energies were computed at standard conditions of temperature 

(T=298.15 K) and pressure (P=1 atm). Entropic corrections have been 

used following the model of Martin and coworkers[56] in order to account 

for the effects of solvent pressure on the entropy of the system. All 

geometries have been optimized with a polarizable continuum solvent 

using SMD model developed by Truhlar et. al.[52] The default dielectric 

constants () were employed in the calculation using the reactants 

butylamine (=4.62) and aniline (=6.89) as the implicit solvent media in 

their respective reactions, since the reaction occurs in neat condition. [91] 

The Coupled cluster[118] post-HF method was employed including single, 

double and non-iterative triple excitations[119] on the stationary points 

obtained using DFT based methods. The same basis set was used (6-

311G(d,p)) as in the DFT based calculations. Free-energy estimates were 

then computed adding the vibrational, rotational and translational 

contributions obtained from the previous B97-D3 runs. 

4.1.4 Results and Discussion 

4.1.4.a Uncatalyzed Reaction Mechanism 

Before we study the catalyzed reaction mechanism for ACs formation we 

elucidated the uncatalyzed mechanism in order to have better insight on 

the system. In this first section we present our results about propene 

cyclic carbonate (PC) reaction with two different amines; aniline and 

butylamine. As we introduced before, butylamine is an aliphatic amine, so 

a more nucleophilic reagent than aniline, which is an aromatic amine. 

Consequently, we should observe lower kinetic barriers towards 
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aminolysis when butylamine is considered. The obtained Gibbs free-

energy profiles are depicted in Figure 4.6. The first step of the reaction 

is the ensemble of PC and the amine (Int0) through the hydrogen-

interaction of a proton of the amine with the carbonyl oxygen of PC.  

 

Figure 4.6 Gibbs free-energy profiles for aniline (solid black 
line) and butylamine (dashed black line) attack on PC to form 
AC products. For all profiles, B97D3/6-311G(d,p) was used 
whereas CCSD(T)/6-311G(d,p) - B97D3/6-311G(d,p) (green 
dashed line) was applied only for the non-catalyzed reaction 
with butylamine. 

This slightly endergonic process leads to the TS of the reaction, where a 

proton of the amine is transferred to a carbonate oxygen while C-N bond 

is formed in a concerted manner. The obtained product is more stable 

than the reactant for butylamine but not for aniline, in agreement with 

experimental observations. Nevertheless, this is not a highly exergonic 

process. In the case of butylamine Gr is -4.3 kcal·mol-1. As we expected, 

the activation energy of aniline profile (solid black line) is considerably 

higher than butylamine (dashed black line) by 8.5 kcal·mol-1. Still, both 

reactions are kinetically unfavorable and unfeasible at room temperature.  
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In order to confirm the accuracy of DFT based methods describing this 

system, we computed the potential energy of all the optimized structures 

using the reference method CCSD(T). The Gibbs free-energy 

contribution obtained by DFT was used to calculate the final Gibbs free-

energy indicated in the green dashed line in Figure 4.6. The obtained 

barrier using CCSD(T) is 41.5 kcal·mol-1, which is slightly higher than 

DFT but observing the same trend in the Gibbs free-energy profile and 

also similar relative values. Consequently, we can confirm that DFT based 

methods present appropriate accuracy describing this system.  

 

Figure 4.7 Gibbs free-energy profiles for aniline (solid lines) and butylamine (dashed 
lines) attack on PC to form AC products. Two mechanisms were considered: direct 
nucleophilic attack (red lines) and a water catalyzed pathway (blue lines). For all profiles, 
B97D3/6-311G(d,p) (red and blue) was used, whereas CCSD(T)/6-311G(d,p) -
B97D3/6-311G(d,p) was applied only for the non-catalyzed (dashed green line) and 
water-catalyzed (dashed purple line) reaction with butylamine. 
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The presented calculations point out that a direct butylamine attack is not 

kinetically favored at room temperature. Therefore, our results do not 

explain the high yield observed experimentally when aliphatic amines are 

used in aminolysis reaction. As we already proved in the previous chapter 

of this Thesis, water can be present in the reaction media forming HB 

interactions that facilitate the proton transfer process. The presence of 

water acting as a proton-relay catalyst was considered as the reactions are 

not performed under anhydrous conditions. The obtained results, in 

conjunction with the previously presented, are depicted above in Figure 

4.7.  

This new mechanism indeed decreases significantly the barrier for the 

aniline pathway from 40.9 to 33.9 kcal mol-1, though this value still 

remains considerably high for the reaction to occur under ambient 

conditions. For the butylamine case, the barrier was also effectively 

lowered to 24.2 kcal mol-1 confirming the experimental observation that 

the reaction proceeds smoothly at room temperature. The obtained 

absolute barrier using water as co-catalyst was determined at 35.0 kcal 

mol-1 by means of CCSD(T) (dashed purple line), decreasing the energetic 

span by 6.5 kcal·mol-1 respect non-catalyzed barrier, thereby 

unequivocally demonstrating that the presence of water is crucial for the 

process to occur and also revealing that B97-D3 functional, at most, only 

slightly underestimates the barriers. 

4.1.4.b N-aryl carbamate formation catalyzed by TBD 

The detailed study on the uncatalyzed and water-catalyzed mechanism 

presented in the previous section provides crucial information to facilitate 

the TBD-catalyzed mechanism elucidation. The key role of water acting 

as proton-shuttle was established. In particular, two water molecules 

improved the carbamate formation due to a more relaxed structure in 

comparison to a one-water transition state. The conformation of the TS 

when two water molecules are used is similar to TBD, which presents also 

two nitrogen atoms that can bind one proton each.  
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The results for the TBD-mediated reactions (depicted in Figure 4.8) 

show that the mechanism for the transformation of butylamine and 

aniline involves several steps. Both reactions have remarkably similar 

barriers, 18.1 and 17.5 kcal·mol-1 for aniline and butylamine, respectively. 

These values are consistent with the reactions taking place at room 

temperature. Noteworthy, both are very similar, thus the nucleophilic 

character of the used amine is no longer of any importance when TBD is 

used as catalyst.  

 

Figure 4.8 Gibbs free-energy profile for the TBD-catalyzed reaction mechanism of PC 
with aniline (solid line) and butylamine (dashed line). The proton relay is highlighted as 
the original TBD proton (orange) adds formally to the carbonate structure, and the 

amine proton (green) is incorporated into the catalyst structure. 

The mechanistic pathways are slightly different for each substrate. The 

first intermediate (Int0) could only be optimized for the butylamine 

pathway. In this step, the amine approaches the carbonate group, with 

the carbon center adopting a tetrahedral geometry. Next, TS1 is a mutual 

step and rate-determining for both reaction pathways. This transition 

state constitutes an ion pair comprising of a protonated TBDH+ and an 
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alkoxide (Int1). The formation of Int2 is characterized by an elongated 

CO bond (1.66 Å) in the cyclic species and is stabilized by two hydrogen 

bonds with the TBDH+ species. In the subsequent step, Int3 is produced 

and the substrate is now linear, retaining still an alkoxide character. The 

final step is the proton transfer from TBDH+ to the substrate through 

TS2.  

Compared with the reaction assisted by water, TBD is a much more 

effective proton-relay catalyst providing significantly lower kinetic 

barriers. Also, when MTBD (methylated TBD) was used, much poorer 

catalysis behavior was noted (26% conversion for MTBD, 75% 

conversion for TBD) clearly indicating that H-bonding stabilization is 

also crucial in this reaction.  

4.1.5 Conclusions 

Herein, we present a detailed study on the uncatalyzed reaction of CyC 

aminolysis and the reaction mechanism of a new and highly attractive 

route towards the challenging formation of N-aryl carbamates from CyCs 

that can be obtained by CO2 addition to epoxides, and aromatic amines 

under solvent-free and metal-free conditions.  

TBD is shown to be an effective organocatalyst for the site-selective and 

chemo-selective formation of the N-aryl carbamate products. Our 

computational results demonstrated the inefficient aminolysis 

considering the direct amine attack to the CyC, which is overtook by 

water effect acting as proton-relay. Nevertheless, water-catalyzed process 

is not efficient enough to overcome the low nucleophilic character of 

aniline, hence obtaining a kinetic barrier too high for ambient conditions. 

Last but not least, CCSD(T) methods were used to validate DFT based 

methods in this system, proving the good accuracy-affordability 

compromise of DFT based methods, despite barriers were slightly 

underestimated in comparison to CCSD(T). 

 

UNIVERSITAT ROVIRA I VIRGILI 
Computational Design of Catalysts for Carbon Dioxide Recycling 
Joan González Fabra 



 

Chapter 5 

 

"Nature works with five polymers. 

Only five polymers. In the natural 

world, life builds from the bottom up, 

and it builds in resilience and 

multiple uses." Janine Benyus

Polycarbonates 

5.1 Introduction 

The chemical fixation of carbon dioxide (CO2) to reduce the expulsion of 

CO2 to the atmosphere may be accomplished by many chemical routes 

that need catalytic strategies to overcome the high kinetic and 

thermodynamic stability of CO2.
[8, 69c, 69e] According to this goal, in this 

Thesis we presented a detailed study on the transformation of CO2 to 

cyclic carbonates (CyC), which is a widely studied process in the 

community because its versatility and the high value of the obtained 

product.[71c, 79b, 80d, 84b] Nevertheless, the copolymerization of CO2 with 

epoxides using similar catalysts and synthetic strategies than those used 

for CyC synthesis has been extensively investigated[29b, 30a, 30c, 120] because 

its importance in industrial processes to substitute phosgene, which is a 

toxic and hazardous reagent, for CO2. 
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Aliphatic polycarbonates formed from CO2 and oxiranes are 

biodegradable and renewable polymers with useful properties that might 

become a potential alternative to conventional polymers. Moreover, the 

wide variety of epoxides that can be used in the copolymerization with 

CO2 can lead to the formation of functionalized polycarbonates, which 

are used to build nanostructures or high value functionalized polymers 

from biorenewable substrates.[121] 

Polycarbonates can be synthesized either from dienes or epoxides. 

Regarding diene copolymerization, the first process was based on lactone 

synthesis by telomerization of butadiene including CO2 published by 

Braunstein in 1988.[122] The formation of a lactone may lead through Ring-

Opening Polymerization (ROP) to the formation of alternating 

copolymers incorporating CO2 to its structure.[120b] In this line, many 

authors have designed catalytically active Lewis acid complexes based on 

zinc,[123] sodium,[124] aluminum or titanium.[125] In addition, some examples 

of metal-free ROP processes have been investigated too.[126] One of the 

most relevant advances in the ROP of dienes and CO2 was achieved by 

Nozaki et al. in 2014 using a mixture of two catalysts based on palladium 

and vanadium in a one-pot/two-step process where polycarbonate was 

formed directly from butadiene and CO2 via a lactone intermediate.[126b] 

On the other hand, polycarbonates can be formed by alternating 

copolymerization of epoxides and CO2, using similar catalytic systems as 

in CyC synthesis, and consequently, following similar reaction 

mechanisms to already presented in Chapter 3 of this Thesis.  

In Figure 5.1 we collected the most relevant catalytic systems for 

copolymerization between epoxides and CO2. As it can be seen in Figure 

5.1, all catalysts have metals that present low electronic density, thus 

acting as Lewis acids that activate the epoxide and CO2. The first example 

of a metal-complex catalytically active towards CO2 copolymerization 

with epoxides was reported by Inoue in 1986, which is an Al-

metalloporphyrin complex that enabled the formation of polycarbonate 

from propylene oxide and CO2.
[29b, 127]  

UNIVERSITAT ROVIRA I VIRGILI 
Computational Design of Catalysts for Carbon Dioxide Recycling 
Joan González Fabra 



After this achievement many other catalysts based on a metalloporphyrin-

type structure but changing Al by other metals have been investigated.[23a, 

25a, 128] Later on, the so called salen ligand, also used in CyC synthesis, is 

probably the most widely used ligand to design catalysts for 

polycarbonate formation from epoxides and CO2. Salen ligand is used in 

combination with many metals, but is usually combined with chromium 

or cobalt and present high catalytic activities and chemoselectivites.[129] 

 

Figure 5.1 Several reported catalysts for the copolymerization of epoxides and 
CO2 to produce polycarbonates. 

The reaction mechanism catalyzed by the Cr-salen system was reported 

by Darensbourg et al. in 2002[30b] and studied in detail by many authors 

considering several modifications in the catalyst structure, the used 

epoxide or the reaction conditions. Darensbourg and coworkers have 

exhaustively investigated the activity and selectivity of different salen 

complexes via the elucidation of the reaction mechanism using 

computational and experimental techniques.[99b, 130] In addition, they have 
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also contributed to study the variation in chemoselectivity when different 

epoxides are used.[131] In this line, Rieger et al. have investigated, from an 

experimental and computational point of view, the resulting selectivity 

and activity when a wide scope of epoxides are used,[132] focusing in the 

differences of propylene oxide and cyclohexene oxide (CHO),[133] which 

are the most commonly used epoxides in this process. Additionally, 

Nozaki et al. proposed a predictive method to estimate the performance 

of coordination complexes to be used as catalysts for propylene oxide 

copolymerization without the need of computing the TSs of the reaction 

mechanism.[134] 

Many other catalysts have been used in copolymerization of epoxides and 

CO2, like Zn-azephenol by Wang et al.,[135] Cr-hydroxyquinoline by Müller 

et al.,[24b] Co-salcy by Coates et al.[136] or Co with a Schiff-base ligand by 

Niu et al.,[137] presenting all these structures very high catalytic activities. 

However, it is worth mentioning the remarkable results obtained using 

the combination of Zn with nitrogenated ligands. The dimeric Robson-

type[138] complex used by Williams et al. showed extraordinary catalytic 

performance in the copolymerization of CHO and CO2.
[26a] The reaction 

mechanism elucidated by Williams and Rzepa demonstrated that having 

two metal centers in the catalytic system is crucial to overcome the high 

kinetic barriers and consequently design efficient catalytic systems for 

CO2 copolymerization. Having a bimetallic system, a pendulum-type 

mechanism is enhanced, where CO2 and CHO monomers are 

incorporated sequentially to the copolymer chain.[35a] Williams and 

coworkers have also reported the synthesis of polyols from CHO and 

CO2 using a Mg-based catalyst with similar structure to the presented in 

Figure 5.1.[27a]  

Another example of highly active dimeric Zn-based catalyst is reported 

by Rieger et al. in 2013. Rieger and coworkers used a dimeric -

diketiminato zinc catalyst (see Figure 5.1) that presented the highest 

activity at the moment for the copolymerization of CHO and CO2.
[139]  

Rieger and coworkers elucidated by means of DFT-based methods the 
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reaction mechanism using their dimeric Zn catalyst, which confirmed the 

pendulum-type mechanism reported by Williams et al. in 2012.[35b]   

Some of the complexes catalytically active for CO2 copolymerization with 

epoxides are also used in other copolymerization processes where 

different cyclic ethers in combination with lactones or cyclic anhydrides 

are used to perform alternating copolymerization reactions.[140] The -

diiminate zinc complex is an example of these systems that present high 

catalytic activity in multiple reactions regarding epoxide 

copolymerization.[120a] Coates et al. reported the high activity presented by 

-diiminate Zn complex in the copolymerization of CO2 with internal 

epoxides like CHO or limonene oxide.[141]  

In our group, we have studied computationally the reaction mechanism 

of copolymerization of CO2 with CHO[142] or LO[33b] catalyzed by the Al-

aminotriphenolate complex [AlR] reported by Kleij et al. as highly active 

catalyst for CO2 fixation with epoxides.[25b] 

 

Figure 5.2 Schematic representation of the reaction catalyzed by the Al-
aminotriphenolate complex. The aromatic positions of the aminotriphenolate ligand 
may include different substituents in the orto/para positions of the phenol, which 
may lead to the dimerization of the Al complex. A ball-and-stick model of the dimeric 
structure is depicted. 

The well-known reaction mechanism for CyC synthesis from epoxides 

and CO2 catalyzed by [AlR] facilitated us the elucidation of the reaction 

mechanism for polycarbonate formation using CHO and LO and 
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considering either mono- or bimetallic structures (see Figure 5.2). The 

reaction is catalyzed by the [AlR]/PPNX binary system that presented 

high activity and selectivity in the experiments carried out by Kleij et al. 

In this chapter, we divided our results in two parts, presenting first a 

general and exhaustive mechanistic study using CHO as epoxide and 

considering several mechanistic pathways. Noteworthy the Al-complex 

can dimerize in situ forming the first reported non-covalent dimeric 

structure that may present catalytic activity towards copolymerization of 

epoxides and CO2. We also focused on the origin of the chemoselectivity 

by comparing the rate of CyC formation respect the copolymerization 

rate. Finally, we explore computationally two key modifications on the 

binary catalytic system to improve the catalytic efficiency for 

copolymerization reaction. 

In the second part of this chapter we present our results for a particular 

reaction studied in collaboration with Kleij and coworkers. We elucidated 

the reaction mechanism of LO copolymerization with CO2 catalyzed by 

the [AlMe]/PPNCl binary system. We focused on unraveling 

computationally the origin of the stereoselectivity. In addition, we have 

also compared the kinetic profile of the copolymerization of LO and CO2 

with the limonene CyC formation mechanism.  

5.1.1 Previous Mechanistic Studies 

In our previous studies concerning the [AlCl]/TBAI (tetrabutyl-

ammonium iodide) mediated conversion of CO2 and epoxides to CyCs, 

we elucidated the reaction mechanism by using DFT-based methods. The 

first mechanistic steps of the CyC formation and the copolymerization 

reaction have found to be the same. These common steps, which are 

related to the epoxide ring-opening and the CO2 insertion have been 

highlighted in a dashed box in Figure 5.3, which showed below. 

The reaction mechanism starts with the coordination of the epoxide to 

the axial position of the catalytic complex (after decoordination of THF). 
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This intermediate may not be the most stable assembly of the entire 

copolymerization mechanism, unlike CyC mechanism where the epoxide 

coordinated to [AlR] is always the resting state of the reaction. The 

nucleophilic attack of a halide to open the epoxide towards an alkoxide 

moiety is identical to CyC mechanism, constituting a fast process because 

the high reactivity of both substrates and the stabilization of the formed 

alkoxide by the aluminum center.  

 

Figure 5.3 Catalytic cycle for the ring-expansion addition 
of CO2 to epoxides catalyzed by Al-aminotriphenolate 
complex and co-catalyzed by a halide. All intermediates and 
transition states are illustrated. The steps in common 
between CyC and copolymerization mechanisms are 
collected within a dashed box. 

The formation of the linear hemi-carbonate, firstly through CO2 insertion 

and secondly through isomerization, occurs identically to the CyC 

mechanism. In the next step lies the difference between CyCs and 

polycarbonates mechanisms. In CyC reaction mechanism the carbonyl 
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oxygen binds to the electrophilic carbon bonded to the halide, expulsing 

the halide and constituting the ring-closing step. Alternatively, in the 

copolymerization reaction mechanism, the carbonate does not undergo 

intramolecular nucleophilic attack but intermolecular nucleophilic attack 

to a new epoxide forming an alkoxide.  

This new epoxide may be coordinated to a second [AlR] (bimetallic 

mechanism) or not (monometallic mechanism). After the new alkoxide is 

formed, the first [AlR] initially bonded to the carbonate group is liberated, 

generating a coordinative vacancy in the Al center that will be saturated 

by a new epoxide. Therefore, the propagation step of copolymerization 

is constituted by two sub-steps: CO2 insertion to the alkoxide forming a 

carbonate, and after that, the nucleophilic attack of the carbonate to a 

new epoxide generating again an alkoxide moiety. 

It is worth mentioning the different role of the halide in the 

copolymerization and the cyclic carbonate mechanisms. In CyC 

mechanism the halide was recovered after ring-closing step, hence acting 

as a co-catalyst of the reaction. Alternatively, in the copolymerization 

mechanism, the halide is included into the structure in the first step of the 

reaction where the epoxide is opened and remains in the same position 

during the propagation of the polymer chain. Consequently, the halide is 

the initiator of the polymerization process that facilitates the formation 

of the first alkoxide. 
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5.2 Mechanistic Study on Copolymerization Reactions 

5.2.1 Goals and Motivation 

The reaction mechanism for CHO copolymerization with CO2 catalyzed 

by the [AlCl]/TBAI was previously elucidated by our group.  

The characterization of a non-covalent dimeric structure of the catalyst 

generated in situ in the reaction media, combined with the intrinsic 

complexity of copolymerization mechanisms prompted us to carry out a 

more exhaustive mechanistic study considering the non-covalent dimeric 

structure of the Al-aminotriphenolate complex as potential catalytically 

active species taking into account the previous studies carried out by 

Williams and Rzepa[35a] and Rieger.[35b] 

Moreover, a detailed comparison between the Gibbs free-energy profiles 

of cyclic carbonates and copolymerization was an unresolved matter 

when identical systems were considered.  

In addition, we aim to study the effect of changing the aromatic 

substituents of the aminotriphenolate ligand in the activity and selectivity 

of the catalytic system. We are also interested in describing the variation 

in the kinetics when changing the halide in the nucleophilic initiator. 

Consequently, we present an exhaustive mechanistic study on the 

copolymerization reaction between CHO and CO2 catalyzed by the 

binary catalytic system [AlCl]/TBAI, which will be modified after 

elucidating the most feasible mechanism, to predict higher activity and 

selectivity. 

5.2.2 Computational Details 

All calculations in this study were performed by using the Gaussian 09 

package.[86] The B97-D3 dispersion-corrected functional[87b, 97] was 

employed. The standard 6-311G(d,p) basis set[89] was used to describe the 

H, C, N and O atoms. The LANL2DZ[90] basis sets and associated 
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relativistic effective core pseudopotential were used for Al, Cl, and I 

atoms. Full geometry optimizations were performed without constrains. 

The nature of the encountered stationary points was characterized either 

as minima or transition states by means of harmonic vibrational 

frequencies analysis. Gibbs free-energies were calculated at standard 

conditions (T=298.15 K, P=1 atm). 

Solvent effects were accounted for the gas-phase optimized structures by 

using the polarizable continuum model (PCM). Solvent effects have been 

included during the optimization of the structures using the PCM model 

in the last part of our results regarding the modification of the catalyst. 

The dielectric constant () of the polarizable medium was set to the value 

reported for the simplest epoxide, ethylene oxide (=12.42),[91] as the 

reaction takes place in epoxide rich phase. Parameters for 1-hexanol were 

used for this purpose (=12.51), as implemented in the Gaussian09 

package. 

5.2.3 Results and Discussion 

5.2.3.a Initiation of polymerization and CO2 insertion 

Herein, the reaction mechanism of copolymerization between CO2 and 

CHO catalyzed by [AlCl]/TBAI has been investigated. We first considered 

this binary catalytic system because we aimed to compare the new 

findings presented in this chapter with previous results obtained by our 

group regarding copolymerization of CHO and CO2. The first 

mechanistic steps of the CyC formation and the copolymerization 

reaction regarding ring-opening of CHO and CO2 insertion have found 

to be the same (see Figure 5.4).  

These first steps start with the coordination of CHO to [AlCl] leading to 

a stable intermediate (Int1) with a relative free-energy of -16.5 kcal·mol-1. 

After the formation of Int1, the nucleophilic initiator (TBAI) attacks the 

electrophilic carbon center of the epoxide through a ring-opening step, 

which leads to a metal alkoxide (Int2) that is more stable than the 
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previous intermediate by 1.8 kcal·mol-1. This process is the initiation step 

of the copolymerization, which has to overcome a transition state (TS1) 

that constitutes a Gibbs free-energy barrier of 7.7 kcal·mol-1 computed 

from Int1. 

After the initiation step, a CO2 molecule is inserted into the Al-O bond 

forming a chelating carbonate (Int3) bonded to the Al center with a 

relative free-energy of 0.8 kcal·mol-1. This step presents a relative barrier 

of 21.1 kcal·mol-1, since the computed Gibbs free-energy of TS2 is 2.8 

kcal·mol-1. As it occurs in CyC mechanism, the second part of the CO2 

insertion is the isomerization of the chelate carbonate to form a linear 

hemi-carbonate (Int4) through a relatively high energy demanding 

transition state (TS3 at 11.3 kcal·mol-1). From Int4 (-2.2 kcal·mol-1), 

different reaction pathways may emerge, which have been illustrated in 

Figure 5.4.  

 

Figure 5.4 Schematic representation of the reaction mechanism 
CO2 and CHO until the formation of the hemi-carbonate, which 
can go through several mechanistic possibilities. 

On one hand, to produce cyclic carbonate the O[2] atom attacks the 

electrophilic carbon bonded to the iodide. On the other hand, the 

propagation of the polymer occurs by the nucleophilic attack of O[1] or 

O[2] to a new epoxide.  

The copolymerization pathway can take place directly from Int4 

involving only one [AlCl] (monometallic mechanism) or two [AlCl] 

(bimetallic mechanism). Furthermore, in the case of a bimetallic 
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mechanism, both O[1] and O[2] oxygen atoms of the carbonate may be 

involved in the attack onto the second epoxide monomer.  

An alternative mechanistic pathway is based on a dimeric species 

previously characterized by Kleij et al.,[80d, 142] the potential catalytic activity 

of that arises from the dimerization of two [AlCl] through two -oxo 

bridges. Therefore, we have computed the Gibbs free-energy profiles of 

all these mono- and bimetallic pathways. 

5.2.3.b The propagation step through bimetallic mechanisms 

Multiple reaction pathways may take place after Int4. In order to compare 

all of them, we present the Gibbs free-energy profiles of all the considered 

reaction mechanisms in Figure 5.5 depicted below. Moreover, in Figure 

5.6 a detailed comparison between the bimetallic and dimeric 

mechanisms is illustrated. 

As we explained in Chapter 3 of this Thesis, the reaction pathway related 

to the formation of CyCs (orange) goes through the nucleophilic attack 

of O[2] to the electrophilic carbon center bonded to the iodide. This step 

has to overcome a relative barrier of 11.0 kcal·mol-1 associated to the 

difference between Int4 (-2.2 kcal·mol-1) and TS4-cc (8.8 kcal·mol-1). 

Hereafter, a stable intermediate named Int6-cc is formed (-11.0 kcal·mol-

1), which has the CyC still bonded to [AlCl] through O[1]. Finally, the 

product is released and a new CHO molecule coordinates to [AlCl]. This 

final step presents a relative free-energy of -16.5 kcal·mol-1, which is 

effectively the Gibbs free-energy of the formation of the CyC (ΔGr). 

The least favorable copolymerization pathway is the monometallic 

mechanism (red profile in Figure 5.5) that has to overcome an absolute 

barrier of 46.8 kcal·mol-1. This mechanism starts with the coordination of 

CHO to a penta-coordinated Al species (Int5-p) occupying an equatorial 

coordination site, leading to an octahedral structure with a relative energy 

of 0.8 kcal·mol-1. Thus, the coordination of an extra epoxide to the already 

saturated coordination sphere of Al is not a favorable process. Then, the 

coordinated linear carbonate attacks the CHO through a transition state 
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(TS4-p), with a high relative barrier of 27.7 kcal·mol-1 with respect to the 

intermediate Int5-p. Once passing through TS5-p, the obtained alkoxide 

coordinated to the equatorial position of the catalyst (Int6-p) has a 

relative free-energy of 3.8 kcal·mol-1.  

 

Figure 5.5 Gibbs free-energy profiles for the four copolymerization mechanisms and 
the cyclic carbonate formation (orange trace). The copolymerization reaction catalyzed 
by one [AlCl] is depicted in red after Int3. The dark and light blue traces refer to the 
propagation steps of the free-energy profiles for the different bimetallic mechanisms 
when O[1] and O[2] act as nucleophilic centers. The green profile represents the Gibbs 
free-energy pathway for the dimeric structure of [AlCl]. 

The next step is a barrierless and exergonic isomerization through TS6-

p (2.9 kcal·mol-1) to obtain an alkoxide coordinated to the axial position 

of [AlCl] (-1.8 kcal·mol-1) that can continue propagation towards a 

polycarbonate by alternating CHO coordination and CO2 insertion. 

As an alternative to the monometallic mechanism, the second CHO 

monomer could be coordinated to an extra [AlCl], the same way as occurs 

in Int1. Therefore, we have Int1 and Int4 together, constituting a stable 

intermediate named Int5-p (-23.8 kcal·mol-1). This would imply two 

aluminum complexes, one in the form of Int1, which activates a second 
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CHO molecule, and the other complex stabilizing the growing chain 

(Int4). This combination of events is related to a bimetallic mechanism 

similar to the bimetallic mechanism presented in glycidol carbonate (GC) 

formation in Chapter 3 where two oxygen centers had to be activated. 

Once Int5-p is formed, both oxygen atoms of the carbonate group (O[1] 

and O[2], see Figure 5.4) can open the CHO monomer coordinated to 

the second [AlCl]. In case of O[1] attack, the TS4-p is 2.0 kcal·mol-1 higher 

in energy (-2.4 kcal·mol-1) than the transition state obtained by O[2] attack 

(-4.4 kcal·mol-1). After TS4-p, a new alkoxide species is formed (Int6-p) 

having a relative free-energy of -7.4 kcal·mol-1 and -12.4 kcal·mol-1 for the 

O[1] and O[2] pathways, respectively. 

The origin of the difference in stability between the nucleophilic attack 

through O[1] and O[2] relies in the larger steric hindrance generated by 

the aminotriphenolate ligand of [AlCl] in the pathway through O[1] attack, 

being the O[2] attack a more favorable process to open the CHO. After 

the alkoxide is formed, the first [AlCl] is separated from the carbonate 

group through a barrierless process that leads to an alkoxide bonded to a 

single [AlCl] (Prop).  

In Figure 5.6 it can be visualized that Prop is the active species that 

enables the continuation of the propagation cycle by the insertion of a 

new CO2 molecule forming a new carbonate moiety. The difference in 

stability between Prop intermediates of the two bimetallic pathways 

becomes even larger compared to the energy difference observed for 

Int6-p. The reason is the less hindered conformation of Prop for O[2] (-

7.3 kcal·mol-1) route respect the O[1].  

In addition to the bimetallic pathways presented above, there is yet 

another possible mechanistic description to the CHO/CO2 

copolymerization process. This alternative route is made feasible by the 

formation of a non-covalent dimeric Al complex (Figure 5.2). This 

dimerization process occurs in situ and has been previously studied 

experimentally for aluminum and iron aminotriphenolate complexes.[25b]  
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The dimerization of [AlCl] is an exergonic process by -20.4 kcal·mol-1 

(Figure 5.5), thus providing high stabilization with respect to two 

monomeric [AlCl]. Therefore, the energy reference of the dimeric profile 

is 20.4 kcal·mol-1 lower than the zero set for the previous profiles. The 

spontaneous formation of this dimer can be a huge advantage in new 

catalyst design if it allows for an energetically more favorable 

copolymerization pathway. Therefore, we also computed the free-energy 

profile of this latter pathway represented in green in Figure 5.5. 

The mechanistic steps for the dimer-mediated pathway are very similar to 

the already presented above for the bimetallic mechanism. First, a CHO 

molecule is bonded to the axial position of one of the two aluminum 

centers of the dimer forming Int1 with a relative free-energy of -24.5 

kcal·mol-1. The epoxide ring-opening step is also similar, which is 

represented by TS1 and has a low relative barrier of 3.5 kcal·mol-1. The 

structure of TS1 evolves into Int2, constituting the most stable 

intermediate (-31.2 kcal·mol-1) of the entire reaction pathway. Once this 

alkoxide is generated, the CO2 insertion takes place through TS2, having 

a relative free-energy of -21.5 kcal·mol-1 establishing a relative Gibbs free-

energy barrier of 9.7 kcal·mol-1.  

The barrier for the CO2 insertion step is 11.4 kcal·mol-1 lower than that 

computed in the bimetallic mechanism (black trace in Figure 5.5). Hence, 

the insertion process is much faster when considering the non-covalent 

dimer. 

The next intermediate in the energy profile of the dimeric catalyst is a 

chelated carbonate, whose structure shows a slight structural difference 

with those of the other mechanisms where only one [AlCl] was present 

during the insertion of CO2 (see Figure 5.6). In the bimetallic cases where 

only one Al center was involved in the CO2 insertion, the chelated 

carbonate comprises two Al-O bonds involving the same Al center. 

Instead, in the Int3 of the dimer-mediated mechanism one oxygen atom 

is bonded to each Al center, observing a stabilizing effect. After Int3, an 

isomerization process takes place with a relative free-energy (TS3) of  
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-14.6 kcal·mol-1 resulting in a linear hemi-carbonate species (Int4) with a 

free-energy of -26.7 kcal·mol-1. 

 

Figure 5.6 Catalytic cycles showing the relative Gibbs free-energy values for the 
bimetallic and dimer-mediated copolymerization pathways. The absolute barrier of both 
the bimetallic (O[2] attack) and dimer-mediated pathway are shown in bold beside a 
dashed arrow connecting the most stable intermediate and the highest energy TS. The 
formation energy of the dimer is shown at the top in the pre-equilibrium box. Below, a 
table collecting all TSs and the respective relative barriers for each step of both 
mechanisms is presented.  
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The coordination of a new CHO monomer to the free Al center is 

endergonic (Int5-p at -23.6 kcal·mol-1) with respect to Int4. This pre-

organization allows the carbonate to attack the coordinated CHO unit 

through TS4-p related to the propagation step of the process, which is 

the rate-determining step in this mechanism with a barrier of 22.9 

kcal·mol-1, computed from Int2. The intermediate formed after TS4-p 

(Int6-p) with each oxygen atom of the carbonate and epoxide moieties 

bonded to each Al of the dimer has a relative free-energy of -27.3 

kcal·mol-1. 

Afterward, the alkoxide (Prop at -27.0 kcal·mol-1) is finally generated and 

the propagation cycle can continue through repeating CO2 insertion, the 

coordination of a new CHO monomer to the other Al center and attack 

of the linear carbonate onto the activated CHO monomer. 

The lowest absolute barrier is found in the dimeric mechanism with a 

value of 22.9 kcal·mol-1, and the only mechanism that seems unlikely is 

the monometallic one since the absolute barrier is too high 

(46.8 kcal·mol-1). The key transition states, their relative energies and 

relative barriers with respect to the preceding intermediates are collected 

in a table in the lower part of Figure 5.6 for both the bimetallic (O[2] 

pathway) and the dimer-mediated copolymerization mechanisms. These 

mechanisms appear to be very similar, but the dimer-mediated pathway 

shows significantly lower relative barriers (see Figure 5.7). 

 

Figure 5.7 Relative and absolute Gibbs free-energy barriers for the 
bimetallic (gray) and dimer-mediated (green) mechanisms. 
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The absolute barrier of the dimeric mechanism, up to formation of the 

intermediate Prop that is the starting point for further propagation, is 6.7 

kcal·mol-1 lower than the bimetallic one. Additionally, all the relative 

barriers are also significantly lower, particularly the CO2 insertion. Thus, 

the copolymerization catalyzed by the dimeric complex is favored over 

the bimetallic one. 

5.2.3.c Evaluation of the catalytic activity via modification of 

the ligand  

After having determined that the dimeric species enables the 

copolymerization of CHO and CO2 most efficiently than two separated 

[AlCl], we explored the effect of several variations in the structure of the 

binary catalytic system. Our efforts focused on two variables: the 

peripheral substituents of the aminotriphenolate ligand and the type of 

halide used as nucleophilic agent. We chose different aromatic 

substituents and nucleophiles, which were used in other studies by Kleij 

et al.  

The obtained reaction free-energy profiles are collected in Figure 5.8, in 

which the results for the system already calculated ([AlCl]/TBAI) are the 

reference profile (green trace). However, for these calculations we have 

included the solvent effects in the geometry optimization of the 

structures. Therefore, the results for the reference profile in Figure 5.8 

are different from the results presented in Figure 5.5. Moreover, in 

Figure 5.8 the dimeric structure of [AlR], in conjunction with all the other 

actors of the reaction, are considered in the energy zero. Consequently, 

all Gibbs free-energy values are shifted approximately twenty kcal·mol-1 

upwards.  

The highest free-energy profile depicted in purple corresponds to the 

pathway using the [AlMe]/TBAI binary catalyst, where both the most 

stable intermediate (Int2) and the highest transition state structures (TS4-

p) are found to be the same as those computed for the reference profile. 

The copolymerization pathway mediated by [AlMe]/TBAI is endergonic 
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by 12.5 kcal·mol-1 (non-spontaneous) and the absolute barrier of this 

pathway is the highest observed (34.1 kcal·mol-1) being 14.0 kcal·mol-1 

higher than observed for the reference system [AlCl]/TBAI (20.1 

kcal·mol-1). This means that the catalytic system [AlMe]/TBAI is the least 

efficient among the five considered here. 

 

Figure 5.8 Gibbs free-energy profiles for the copolymerization reaction of CHO and 
CO2 catalyzed by binary catalysts derived from [AlR] and either using TBACl or TBAI 
as nucleophilic additive. Schematic representations of the TS structures related to all 

steps of the mechanism are shown below. 

For the binary system composed of [AlMe]/TBACl, similar trends to the 

previous case are observed but with lower relative free-energies for 

intermediates and TSs. The absolute barrier compared to the reference 

system [AlCl]/TBAI is moderately higher by 5.4 kcal·mol-1, but much 

lower than for the [AlMe]/TBAI catalyst (25.5 versus 34.1 kcal·mol-1). The 

reaction free-energy also decreases with respect to the [AlMe]/TBAI by 
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13.6 kcal·mol-1 but higher than noted for the reference catalyst by 7.9 

kcal·mol-1. Therefore, when considering electron-donating methyl groups 

in [AlR] ligands, the copolymerization efficiency of the binary catalyst 

decreases. On the other hand, when considering the same peripheral 

substituents but different halide (iodide vs chloride), we observe a higher 

stabilization of the growing chain when a worse leaving group like 

chloride is considered. Additionally, a good leaving group like iodide 

favors the cyclic carbonate formation path because the ring-closing step 

is enhanced.  

Replacing the methyl groups for hydrogen atoms ([AlH]) maintaining 

iodide as nucleophile (TBAI) gives a binary system with slightly higher 

absolute barrier (2.3 kcal·mol-1) and a Gibbs free-energy reaction 4.9 

kcal·mol-1 higher than computed for the reference system [AlCl]/TBAI. 

The [AlCl]/TBACl catalyst system shows the lowest relative energy values, 

which suggests that it should be the most efficient binary combination. 

However, the absolute barrier is slightly higher than the reference system 

by 1.8 kcal·mol-1 but, on the other hand, the reaction free-energy (-16.0 

kcal·mol-1) is 7.0 kcal·mol-1 lower. Hence, while the kinetic resistance 

observed for the catalyst [AlCl]/TBACl is comparable to the reference, the 

thermodynamic driving force is more significant, making [AlCl]/TBACl 

combination the most efficient binary catalyst for CHO/CO2 

copolymerization among the investigated systems. 

5.2.4 Conclusions 

In this study we have analyzed several possible reaction mechanisms for 

the copolymerization reaction of CHO and CO2, catalyzed by binary 

[AlR]/TBAX systems. The mechanism involving a dimeric [AlR]2 species, 

which is able to be formed in situ in the reaction media, was found to give 

the most efficient copolymerization route among all the mono-metallic 

and bimetallic mechanistic routes. This complex is the first non-covalent 

bimetallic complex catalytically active for the copolymerization reaction 

between epoxides and CO2. This dimeric complex facilitates the 
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formation of an initial carbonate complex through relative low energetic 

barriers and faster overall reaction rates compared to the other bimetallic 

pathways. The computed mechanism involving this dimer species is 

compatible with the chemoselectivity of the process towards 

polycarbonate, since is kinetically and thermodynamically favored over 

the cyclic carbonate pathway. 

The effects of the substituents in the ligand and the nucleophile on the 

catalytic activity were analyzed, showing that the electron-withdrawing 

groups in the aminotriphenolate ligand (AlR: R = Cl) increase the Lewis 

acidity of the Al complex and the potential to activate the epoxide. On 

the other hand, when using nucleophiles with poorer leaving group 

character, the stability of the formed carbonate species (Int5-p) increases, 

enhancing the probability of the attack onto a coordinated CHO 

monomer to the second Al center, and increasing the stability of the 

resultant alkoxide. The use of TBACl also decreases the probability of 

CyC formation. The intramolecular ring-closing of the carbonate group 

is suppressed, in line with the good chemoselectivity towards the 

copolymer observed experimentally when chloride is used.  
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5.3 Origin of the Stereoregularity of Poly(limonene)-

carbonate 

5.3.1 Goals and Motivation 

In this section of the Thesis we aim to study the reaction mechanism of 

copolymerization between CO2 and limonene oxide (LO) catalyzed by the 

[AlMe]/PPNX binary system. 

Limonene oxide, which is the monomer of the copolymerization reaction, 

presents several stereocenters in its structure, which leads to multiple 

routes obtaining different conformations of the produced polycarbonate. 

Therefore, the main goal that we set in this study is determining the 

stereoselectivity of the copolymerization process analyzing key steps in 

the course of the reaction mechanism. 

The nucleophilic attack to the epoxide can occur on two different carbon 

centers of the epoxide, inverting the conformation when a stereogenic 

center is attacked. However, the stereoselectivity determining part of the 

copolymerization is the propagation step. Consequently, we will study 

exhaustively the thermodynamic stability of the formed growing-chain 

and the kinetic barriers of the propagation process in order to determine 

the most plausible conformations. 

5.3.2 Computational Details 

All calculations were carried out by using the Gaussian 09 package.[86] The 

B97D3[97] functional was employed, which includes empirical dispersion 

energy corrections as introduced by Grimme.[87b] The standard 6-

311G(d,p) basis set was used to describe the H, C, N and O atoms.[89] The 

relativistic effective core pseudo potential LANL2DZ[90] was used for Al, 

Br and Cl atoms together with its associated basis set. Full geometry 

optimizations were performed without constrains. All stationary points 

were characterized either as minima or transition states by means of 

harmonic vibrational frequencies analysis. Gibbs free-energies were 
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calculated at standard conditions (T298.15 K, P1 atm). In order to 

introduce solvent effects, single point calculations were performed on the 

gas-phase optimized structures by using the polarizable continuum model 

(PCM). The dielectric constant () of the polarizable medium was set to 

the value reported for the simplest epoxide, ethylene oxide (12.42)[91] 

as the reaction takes place in the limonene oxide rich phase. The 1-

hexanol solvent was used for this purpose (12.51), as implemented in 

Gaussian. 

5.3.3 Results and Discussion 

5.3.3.a The effect of the nucleophile in the initiation step 

The copolymerization reaction of CO2 and LO presented in this section 

is an interesting process from an environmental, economic and academic 

perspective. First, the used monomers for the copolymerization reaction 

are CO2 and LO, which both can be obtained from renewable routes. 

Limonene oxide is produced from the oxidation of limonene, which is a 

natural terpene extracted from citric fruits.[143] Additionally, both 

substrates and the catalytic system are cheap and easily accessible. Last 

but not least, LO presents a complex structure with three different chiral 

centers. As it can be seen below in Figure 5.9, the epoxide group of LO 

has two differently substituted carbon centers, a methyl-substituted () 

and a hydrogen-substituted ().  Noteworthy, when the -carbon 

undergoes nucleophilic attack by PPNX, through a SN2-type route, the 

cis/trans conformation respect the isobutylene group is inverted from trans 

to cis and vice versa.  

As we introduced in section 5.1.2, the copolymerization mechanism starts 

similarly to the CyC formation via the nucleophilic attack of a co-catalyst 

(in copolymerization named initiator) to convert the epoxide to an 

alkoxide.  
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Figure 5.9 Schematic structures of the (R)-LO trans and cis isomers, the 
initiator PPN-X and the aminotriphenolate metal complex [AlMe] used in this 
work. A schematic model of the obtained copolymer is also included to show 
different trans/cis like conformations. 

The ring opening of the trans and cis (R)-LO was first evaluated using 

chloride or bromide as nucleophiles (see Table 5.1). This ring-opening 

step involves a concerted transition state (TS1 in Figure 5.10) 

characterized by the breaking of the C-O epoxide bond and the 

simultaneous formation of a C-Cl/Br, leading to the formation of an 

alkoxide intermediate (Int2). The nucleophilic attack can occur at the  

carbon (most substituted carbon) or the  carbon (least substituted 

carbon) atoms of the cis/trans LO, and therefore eight possible ways of 

epoxide ring-opening should be considered. The fourth and fifth columns 

of Table 5.1 collect the relative Gibbs free-energy barriers calculated for 

this step.  

Consequently, the nucleophile is crucial to determine the regioselectivity 

of the initiation step, since two different active carbon centers are present 

in the epoxide moiety. When -carbon is attacked, the conformation of 

the alkoxide would be the same that previous to the ring-opening. 

Alternatively, if nucleophilic attack to -carbon is preferred over the  

one, the obtained moiety would undergo inversion of configuration. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
Computational Design of Catalysts for Carbon Dioxide Recycling 
Joan González Fabra 



Table 5.1 NBO population analysis for  and  carbon atoms of LO. 
The charge of both centers is showed when LO is bonded to [AlMe] 
(in parenthesis) and when is free. The activation Gibbs free-energies 
(in kcal·mol-1) for the epoxide ring-opening step using chloride and 
bromide are showed in the last column. 

Substrate Carbon 
NBO population 

analysis 

TS ring-opening 

Cl- Br- 

 

 0.27 (0.31) 2.8 8.9 

 0.10 (0.12) 4.7 10.2 

 

 0.27 (0.31) 0.7 6.1 

 0.11 (0.13) 3.8 9.1 

In general, the relative barriers for the nucleophilic attack when chloride 

anion is considered are much lower than those obtained for the bromide 

attack. In all the cases, the  attack is favored over the  one, as supported 

by the NBO population analysis included in Table 5.1, which shows 

higher electrophilic character for the most substituted carbon center. It is 

commonly thought that the most substituted carbon ( is less reactive 

than the least hindered because of the electronic and steric effects induced 

by the methyl group. In contrast, the  attack was found to be more 

feasible, with the cis conformation being the preferred way over the trans 

substrate by 2.1 kcal·mol-1. Alternatively, for the  attack, this energy 

difference is less marked (0.9 kcal·mol-1) although the cis isomer still 

remains favored over the trans. Because of the better results obtained 

using chloride, this species was selected as initiator for the alternating 

copolymerization, and thus decreasing the number of possible pathways 

to study.  

5.3.3.b Insertion of CO2 and ring-closing to LO-CyC 

In Figure 5.10, we illustrate the Gibbs free-energy profiles for the 

[AlMe]/Cl catalyzed initiation of the copolymerization of cis/trans-(R)-LO 

and CO2, taking into account the nucleophilic attack by chloride on  and 
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 positions of both epoxides. In addition, the insertion of CO2 and the 

following cyclization of the carbonate are also included in the profile, in 

order to compare the relative and absolute barriers of cyclization 

mechanism and the copolymerization mechanism. 

 

Figure 5.10 Gibbs free-energy profiles for the copolymerization reaction of cis/trans-
LO and CO2 catalyzed by [AlMe] and initiated by PPNCl. The CyC reaction mechanism 
is showed in dashed lines after Int4. Schematic representations of the intermediates and 

TS structures related all steps of the -trans mechanism are shown.  

First, LO is coordinated to the Al center of [AlMe], activating the epoxide 

and yielding to two different Int1 (cis and trans). This process is exergonic 

by 9.7 kcal·mol-1 for the cis-coordinated (green line) complex and 11.0 

kcal·mol-1 for the trans one (purple line), showing a slight preference 

towards the formation of the trans Int1. 

The ring-opening step leads to formation of the alkoxide Int2. It can be 

observed that the intermediates obtained by nucleophilic attack on the  

position (green and orange lines) are energetically more stable than those 
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involving the  attack because the  carbon is more electrophilic than the 

 one, as explained before by the NBO population analysis collected in 

Table 5.1. It is worth noting that the  carbon is a stereogenic center, 

thus the nucleophilic attack of chloride on this carbon center evolves with 

inversion of configuration. Hence, the cis-coordinated epoxide evolves 

into the most stable trans-product Int2 (trace in green) and the trans 

substrate is converted into the cis intermediate (trace in orange). For the 

 attack, retention of configuration occurs because the nucleophilic attack 

does not involve a stereocenter. 

After epoxide ring-opening by chloride, CO2 is inserted into the Al-O 

alkoxide bond of Int2 via transition state TS2. The intermolecular CO2 

insertion was located to be less energetically demanding for the -trans 

and -cis pathways, with relative Gibbs free-energy values for TS2 of 1.7 

and 2.9 kcal·mol-1, respectively. Nevertheless, -trans and -cis relative 

barriers depend on the stabilization of Int2, hence obtaining relative 

barriers of 10.0 and 19.5 kcal·mol-1, respectively. The highest barrier was 

calculated for the -trans pathway, having an activation energy of 24.6 

kcal·mol-1.  

The CO2 insertion step leads to the chelate carbonate Int3, which is 

coordinated by two oxygen atoms to the Al center. This intermediate 

follows the same stability trend as the preceding TS2, and could suffer 

isomerization (through TS3) to form the linear hemi-carbonate Int4. In 

this case, the -trans and -cis pathways still lead to the most stable 

intermediates. The isomerization of Int3 is rate-determining for the -

trans, -cis and -cis profiles, with activation barriers (calculated from the 

Int2) of 29.5, 23.1 and 25.5 kcal·mol-1, respectively. In the case of the -

trans profile, this is valid if the reaction is evaluated only until the 

formation of Int4 (rather than taking into account the subsequent 

backbiting reaction) involving an activation barrier of 13.7 kcal·mol-1, 

which is calculated from the most stable state (Int1). 
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When Int4 is formed, two possible routes can be followed by this 

intermediate. On one side, the hemi-carbonate oxygen of Int4 can attack 

the electrophilic carbon bonded to chloride (backbiting step) to produce 

the already known CyC, which is the undesired product in this case. On 

the other side, the consecutive addition of new epoxide and CO2 

monomers lead to the formation of polycarbonate through the 

propagation step. The backbiting step shown in Figure 5.10 goes through 

TS4-cc, leading to the CyC already coordinated to [AlMe] (Int5-cc). This 

step requires slightly lower barriers than the involved in the isomerization 

reaction, with the -trans profile being the only exception with a relative 

barrier of 3.8 kcal·mol-1. The alternating propagation reaction is separately 

discussed in the next section where we will explain why there is a 

preference for polycarbonate from LO and CO2 catalyzed by 

[AlMe]/PPNCl. 

5.3.3.c Propagation of the LO-CO2 copolymer 

Once the linear hemi-carbonate Int4 is formed in the initiation process, 

several propagation routes can be followed. The carbonyl oxygen of the 

four resulting Int4 species acts as nucleophile attacking two different 

epoxides (cis or trans) on two different carbon atoms ( or ). This 

situation generates sixteen possible profiles to investigate. In order to 

decrease the computational efforts, we decided to study the most feasible 

pathways, based on the previous results on the initiation step.  

Therefore, the number of pathways was reduced to four by considering 

the attack by the most stable hemi-carbonates (-cis and -trans) on the  

carbon of the cis and trans epoxides. The Gibbs free-energy profiles for 

the alternating propagation step of cis/trans-(R)-LO and CO2, taking into 

account the previous considerations, are illustrated in Figure 5.11. 

The propagation process, as we proved in the previous section and other 

groups have also reported, requires two aluminum centers (bimetallic 

mechanism) to be feasible.[35]  
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Figure 5.11 Gibbs free-energy profiles for the propagation step of the copolymerization 

reaction of -cis (green lines) and -trans (purple lines) routes, catalyzed by [AlMe] and 
initiated by PPNCl. Both cis (solid lines) and trans (dashed lines) epoxides were 
considered as monomers in the propagation process. Schematic representations of the 

intermediates and TS structures related to all steps of the -cis-trans mechanism (green 
dashed line) are shown. 

In this reaction, it can be firstly observed the formation of a very stable 

ensemble (Int5-p) between Int4 and the complex having a new epoxide 

substrate coordinated to another [AlMe] (Int1). Natural bond orbital 

(NBO) population analysis on this complex shows small difference in the 

value of the charge assigned to the oxygen atoms of the carbonate group 

of Int4. The oxygen atom labeled O[1] bound to the Al center in Figure 

5.11 exhibits a charge of -0.83; whereas for the carbonyl oxygen (O[2]), a 

value of -0.69 was obtained. Although the oxygen O[1] is slightly more 

nucleophilic than the carbonyl oxygen O[2], when the reaction goes 

through O[1] leads to higher barriers of the free-energy profile (see 

Figure 5.12 in page 135).  
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This stabilization of O[2] attack over O[1] is due to a less steric hindrance 

between the Int1 and Int4 moieties that constitute Int5-p and TS4-p. 

When O[1] is considered the two [AlMe] are closer, obstructing the 

nucleophilic attack of the carbonate to the epoxide. 

In all cases, lower relative energy values were found between the formed 

Int5-p and the transition state of the backbiting reaction (TS4-cc; Figure 

5.10 and grey traces in Figure 5.11). For instance, the resulting Int5-p 

from -cis Int4 considering both cis and trans LO (-cis-cis and -cis-trans 

in Figure 5.10) were found to be more stable than their corresponding 

TS4-cc (7.4 kcal·mol-1) by 14.8 and 22.0 kcal·mol-1, respectively. In the 

case of the -trans Int4 forming an initial ensemble with each coordinated 

substrate attached to a second [AlMe], this energy difference becomes  

15.7 kcal·mol-1 combining with the cis-epoxide (-trans-cis) and 20.3 

kcal·mol-1 with the trans one (-trans-trans). 

Following the reaction coordinate, the next step is the epoxide ring-

opening, which is undertaken by nucleophilic attack of the carbonyl 

oxygen labeled O[2] on the most substituted carbon () of each epoxide 

isomer (trans or cis) bound to [AlMe] in Int5-p. Similar as for the initiation 

process, in the propagation reaction the epoxide ring-opening is 

characterized by a concerted transition state TS4-p. The -cis-cis profile 

shows the highest activation barrier being 20.9 kcal·mol-1 (having a 

relative energy of 4.3 kcal·mol-1), calculated from the most stable 

intermediate of the initiation process Int2 with a relative energy of -16.6 

kcal·mol-1 (see Figure 5.10). In contrast, the TS4-p for the -trans-cis 

pathway involves an activation barrier of only 6.9 kcal·mol-1 (calculated 

from Int5-p). In the case of the -trans-trans and -cis-trans profiles, these 

barriers were obtained in a similar way as described for the previous 

pathways, and lead to values of 19.1 and 14.0 kcal·mol-1, respectively. 
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Figure 5.12 Gibbs free-energy profiles for the propagation step of the copolymerization 

reaction of -cis moiety catalyzed by [AlMe] and initiated by PPNCl. Both cis (green lines) 
and trans (blue lines) epoxides were considered as monomers in the propagation process. 
A comparative of the relative Gibbs free-energy considering both O[1] (dashed lines) 
and O[2] (solid lines) is illustrated. Schematic representations of the intermediates and 

TS structures related all steps of the -cis-trans [1] mechanism (blue dashed line) are 
shown. 

After passing through the TS4-p barrier, the formation of the 

intermediate Int5-p occurs. This intermediate has both [AlMe] still 

coordinated. However, the strength of interaction between the oxygen 

from the alkoxide moiety and the Al center is much stronger than that 

observed for the oxygen O[1] of the coordinated carbonate and the Al 

center from Int4. Hence, it is proposed that Int5-p can evolve into Int6-

p by releasing the Al complex from the carbonate and allowing for 

coordination of a new trans-(R)-LO monomer to the generated 

coordinative vacancy. This reaction is endergonic by 2.6 kcal·mol-1 for the 

-cis-trans profile. The remaining processes are slightly exergonic, with a 
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release of -1.5, -5.6 and -6.5 kcal·mol-1 in the case of the -trans-trans, -

trans-cis and -cis-cis pathways, respectively. Interestingly, both the 

energetically most stable Int6-p resulting from the -trans-cis and -cis-cis 

profiles will contain exclusively trans units in the growing chain, which is 

in line with the experimental findings. The current catalytic process based 

on [AlMe]/PPNCl shows two main features. First, a clear preference for 

the faster conversion of cis-LO, and secondly, the resulting copolymers 

contain a significant higher amount of trans versus cis units (up to 98:2 in 

the experimental results) where the use of pure cis-limonene oxide will 

result in the formation of a nearly stereo-regular trans polycarbonate. 

5.3.4 Conclusions 

Herein, we report the elucidation of the LO-CO2 copolymerization 

mechanism catalyzed by the Al-aminotriphenolate/PPNCl system. The 

study on the stereoregularity of the obtained polycarbonate has been the 

main goal set in this project because the high number of reactive centers 

and possible conformations presented by LO. 

In order to tackle this problematic, we studied both the thermodynamic 

stability of the growing chain and the kinetic preference of the 

nucleophilic attack to the two different carbon centers of the epoxide 

scaffold.  

First, a detailed investigation on the initiation step was carried out, 

analyzing the preference of the nucleophilic attack of chloride over 

bromide to the most substituted respect least substituted carbon centers 

of the epoxide. An NBO population analysis was also included in the 

results in order to confirm the higher electrophilic character of  in 

comparison to  carbon.  

Using the results obtained in the first part we selected the most feasible 

routes to study the mechanistic insights of the propagation process. We 

confirmed the preference of the carbonyl oxygen to act as nucleophile, in 

comparison to the other oxygen of the carbonate group bonded to the Al 
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center, due to steric effects. Moreover, we observed a higher stabilization 

for those growing chains with trans conformation, being the nucleophilic 

attack to the  carbon of a cis epoxide the most favorable route from both 

a kinetic and thermodynamic point of view. The copolymerization 

pathway was found to be more feasible than the cyclization route for all 

cases using the [AlMe]/PPNCl binary system, which is in line with the 

experimental findings. 
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Chapter 6 

 

“Our nature consists in motion; 

complete rest is death.” Blaise Pascal

Effect of CO2 Pressure 

6.1 Multiscale Metadynamics as Exploring Tool for 

Reactivity 

6.1.1 Introduction 

In the previous chapters of this Thesis, the main goal was to elucidate 

mechanistic routes to describe the formation of valuable products 

through the fixation of CO2. In this chapter we focus on the study of the 

reverse process to investigate the stability of the formed carbonates, and 

more interestingly, the effect of CO2 pressure towards decarboxylation or 

isomerization of carbonates. The reaction of isomerization of carbonates 

was first studied through static standard DFT-based methods in section 

3.3 of this Thesis. The racemization of cyclic carbonates is particularly 

relevant for those obtained from substituted glycidol derivatives that 

present an enantiomeric center. On the other hand, the decarboxylation 

reaction is an important counter-process of CO2 fixation that should be 

taken into account. Moreover, decarboxylation of carboxylic acids and 
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organic carbonates is an interesting tool in many synthetic routes to 

obtain valuable products. In Figure 6.1 we collected some representative 

reactions of decarboxylation of carboxylic acids. In recent years, the 

catalyzed photochemical decarboxylation reaction has been widely 

investigated due to its wide scope of reactivity and selectivity. The high 

stability of CO2 drives the reaction towards no thermodynamically 

favored products when starting from relatively stable reactants. However, 

in order to overcome the kinetic barrier of the reaction it is necessary to 

use a catalytic active species, usually a transition metal complex based on 

silver,[144] palladium,[145] ruthenium[146] or nickel.[147] By using different 

conditions, reagents and catalysts, decarboxylation can lead to a wide 

variety of chemical transformations from very similar reagents, thus 

constituting a very powerful synthetic tool. 

 

Figure 6.1 Several representative examples of carboxylic acid decarboxylation reactions. 
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Figure 6.2 Several representative examples of organic carbonates decarboxylation 
reactions. 

In addition to decarboxylation of carboxylic acids, which is the most usual 

reactant, decarboxylation process can take place using organic carbonates 

as well. In this chapter we are mainly interested in these transformations, 

which some examples are illustrated above in Figure 6.2. The first 

example of carbonates decarboxylation catalyzed by palladium was 

proposed by Trost,[148] and later on, developed by Tsuji.[149] The reaction 

mechanism is based in the palladium-allylic intermediate showed within 

brackets in the first reaction of Figure 6.2. The allylic intermediate 

reactivity is versatile and flexible because its zwitterionic character. Many 

variations of the Tsuji-Trost reaction have been developed in recent 

years,[150] like the formation of cyclic carbonates from linear acetylenic 

carbonates through CO2 relaxation.[151] An example of CO2 relaxation is 

showed in the second reaction of Figure 6.2, where a CO2 moiety is 

expulsed from the substrate to later on be inserted again in a different 

position forming a different product. In this example an aryl substituent 
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has been included in the carboxylic position forming an aromatic ester 

from an aliphatic ester. CO2 relaxation is an interesting strategy to 

reorganize a molecule that contains several functional groups, opening 

the possibility to include additional moieties to the product. The last 

example presented by Kleij and coworkers,[102d, 152] involves cyclic 

carbonates. In the first case, secondary aromatic or aliphatic amines can 

generate tri- and tetrasubstituted allylic amines from cyclic vinyl 

carbonates with high stereoselectivity.[102d] In the next case, after 

generating the palladium-allylic intermediate, two examples of different 

reactivity are showed. First, the allylic amination using primary amines to 

form α,α-disubstituted allylic N-arylamines. It is worth noting that 

different regioselectivity is obtained respect the previous example.[152a] 

The last reaction using water as nucleophile leads to the formation of (Z)-

1,4-but-2-ene diols with high stereoselectivity.[152b] 

Summarizing, decarboxylation of carboxylic acids and organic carbonates 

presents high interest to study it in detail because two reasons. First, we 

can use decarboxylation as synthetic tool for many products, hence it is 

important to know in detail what factors, like CO2 pressure, can interfere 

in the reaction mechanism. Second, aiming to improve the efficiency of 

CO2 fixation reactions we want to prevent decarboxylation to guarantee 

high activity and selectivity. 

The partial pressure of CO2 applied at the system is one of the main 

factors of carbonate stability towards decarboxylation or isomerization 

via CO2 relaxation. In order to study this effect in the reaction, we aim to 

use QM/MM metadynamics simulation[57, 61, 153] to elucidate the reaction 

mechanism of decarboxylation and racemization of cyclic carbonates 

obtained from glycidol and CO2. This multiscale approach has been used 

in many reaction mechanisms like propagation and termination steps of 

polymerization reactions[154] or enantioselective palladium-catalyzed 

hydrosilylation,[155] among other reaction catalyzed by homogeneous 

catalysts.[156] Metadynamics simulations have been also used to study 

chemical reactions using heterogeneous catalysts,[58]  biological 
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processes[59, 157] or even decarboxylation reactions catalyzed by 

enzymes.[158] By using adaptive QM/MM metadynamics simulations, we 

can modify the size of the active site computed at QM level on the fly by 

defining a region of a given size around the reactive moieties. 

Consequently, the amount of molecules within the QM region will change 

while the molecules diffuse inside and outside the defined QM region. 

Considering the region around the reactive event at the QM level is crucial 

in many catalyzed reaction where the solvent plays a key role in the 

mechanism.[66, 159]  

Herein, we report a detailed QM/MM adaptive metadynamics study on 

the effect of the partial pressure of CO2 to the decarboxylation and 

racemization reactions of cyclic carbonates.  

6.1.2 Goals 

Our main goal in this chapter is to elucidate the reaction mechanism of 

racemization of glycidol carbonate and the decarboxylation of cyclic 

carbonates by using molecular metadynamics simulations. Then, we plan 

to unravel the effect of CO2 pressure in the rate of these two different 

reactions. Racemization reaction do not generate CO2 or any other sub-

product. On the other hand, cyclic carbonate decarboxylation reaction 

produces the original epoxide and CO2. Hence, we hypothesize that we 

will observe the rate affected in a different way when pressure changes. 

In order to tackle this investigation, a molecular metadynamics simulation 

method seems an adequate approach, since it allows simulating a realistic 

system including the relative concentrations of all species and the total 

pressure applied to the system. Standard static DFT-based methods used 

in the previous studies of this Thesis are not appropriate to describe in 

detail the effect of CO2 pressure. By changing the pressure of CO2, we 

change both the solubility and the total pressure of the system. Therefore, 

the ratio of CO2 molecules per molecule of solvent and reactant increases 

by increasing the CO2 pressure. Instead, the simulation box size decreases 

by increasing the total pressure.  
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Summarizing, we plan to evaluate the effect of the CO2 partial pressure 

in the rate of decarboxylation and racemization reactions of cyclic 

carbonates produced from CO2 fixation. 

6.1.3 Computational Details 

All calculations have been carried out by using the FlexMD module 

included in ADF package (https://www.scm.com).[67, 159b, 160] FlexMD is a 

python library for flexible multiscale (IMOM-type [65]) molecular 

dynamics simulations.[161] The QM region was described using the 

semiempirical PM6-DH+[160] Hamiltonian, which includes empirical 

dispersion corrections, as implemented in MOPAC program.[162] The 

force field for the MM region was CHARMM-TIP3P[163], and we used 

NAMD [164] for computing the classical energy and gradients. The model 

system for the reaction media is a periodic simulation box that contains 

86 molecules of solvent (butanone), 8 molecules of trimethylamine 

(TMA), 8 molecules of water, 8 molecules of glycidol carbonate and n 

(n=1, 14, 28, 74) additional molecules of CO2 depending on the CO2 

pressure (P=1, 10, 20, 50 bar). The periodic simulation box oscillates 

between 25Å and 28Å also depending on the CO2 pressure. Independent 

metadynamics simulations runs of 100ps long (0.5 fs/step, up to 5 runs) 

were considered for each trajectory, which were initiated using different 

initial velocity seeds. All these simulations included one or two Collective 

Variables (CVs) to explore the reaction energy surface, depending on the 

studied reaction: 1 CV for the decarboxylation and 2 CVs for the 

racemization. The chosen CVs will be presented in more detail in the next 

section. These CVs have been explored placing Gaussian functions of 1.0 

kcal·mol-1 height and 0.1 Å width, thus guaranteeing the affordability of 

the calculation and ensuring the required precision to map the free-energy 

surface. One Gaussian function has been added each 500 steps of 

simulation, hence safeguarding the stability of the simulation. A region of 

4Å around each one of the two QM-centers has been set to describe, at 

QM level, all the nearby molecules. No transition region has been set 

between the QM and the MM regions. Quadratic walls have been used to 
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constrain some coordinates in order to facilitate the description of the 

reaction avoiding unreactive conformers. A Langevin thermostat has 

been used at 300 K with a friction of 0.5 ps-1 to control the temperature. 

6.1.4 Groundwork 

Before start running molecular dynamics simulations and obtaining 

trustworthy results, some care has to be taken for preparing data and 

building the system. Therefore, in this first section we plan to expose what 

elements do we need to run the metadynamics with FlexMD and how do 

we prepare it.  

First, it is worth noticing that FlexMD serves as a wrapper for several 

molecular program packages, each providing the required QM or MM 

energies and forces. In this project we used MOPAC to calculate the QM 

region and NAMD for the MM region. FlexMD uses the Atomistic 

Simulation Environment (ASE) as propagator for the molecular 

dynamics. FlexMD defines the geometry of the molecular system using 

either PDB or XYZ files. After calculating the energies of both QM and 

MM regions, by MOPAC and NAMD respectively, the resulting forces 

are used by ASE to perform the dynamics step. Internally, the propagator 

sets up the required ASE objects, passes the forces to them, and retrieves 

the new positions and velocities. An additional protagonist, a manager 

class instance, coordinates the MD simulation by running the MD steps 

with the ASE propagator and writing trajectory information. 

We considered a periodic system as depicted schematically in Figure 6.3, 

with two regions named active (A) and environment (E). First one, which 

is usually the smallest, is calculated by QM methods, and second one by 

MM methods. It is possible to include an intermediate transition region 

(T) between QM and MM. The molecules located in T region are 

calculated by both QM and MM methods. Then, the QM-MM ratio is 

pondered depending on the distance to QM region. The closer to QM 

region, the higher will be the QM contribution. In this project we did not 
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consider a transition region, since it was not necessary because the 

transition between QM and MM was smooth enough.  

 

Figure 6.3 Model representation of a QM calculated 
water molecule (blue) surrounded by QM calculated water 
molecules (A-region). The other solvent molecules (E-
region) are calculated by MM methods. This figure is 
adapted from J. Chem. Theory Comput. 2016, 12, 
3441−3448. 

The total energy of this model system can be calculated using Eq. 6.1 

showed below. 

𝐸𝑄𝑀/𝑀𝑀 = 𝐸𝐴
𝑄𝑀 + 𝐸𝐴+𝐸

𝑀𝑀 − 𝐸𝐴
𝑀𝑀   Eq. 6.1 

As it can be seen in the equation, the entire system is calculated by MM 

methods, so we need a force field to describe the entire system and not 

only the MM region exclusively. In our system, formed by organic 

molecules, the CHARMM-TIP3P force field includes all parameters 

required to calculate the entire system at the MM level. Consequently, the 

initial set-up for the system was carried out using exclusively the 

CHARMM-TIP3P force field with NAMD program.  

The first step was building the periodic simulation box using the Packmol 

program[165] with a tolerance (minimum distance) of 2Å between each 

molecule. Using this initial simulation box an energy minimization 

calculation was run for 100,000 steps including periodic boundary 
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conditions. After taking the resulting structure, we run a NPT simulation 

of 250ps to optimize the box size according to the number of atoms 

included in the simulation box and the total pressure applied to the 

system. In this NPT simulation, the temperature was increased by 5K 

each 1000 steps from 0K to 300K. The resulting box size is maintained 

fixed during the next simulation step, which is a NVT of 500ps to 

equilibrate the system. In the case of the racemization reaction, which will 

be explained in section 6.1.5.a, a reactive conformer previously optimized 

by DFT-based methods, was constrained during all these preparatory 

simulations.  

The optimized and equilibrated structure by MM methods was then used 

as initial structure for a QM/MM molecular dynamics to equilibrate the 

system using the multiscale methodology indicated in the previous 

section. We noticed that this additional equilibration is not necessary 

because we observed minor variations in the structure with respect to the 

full MM simulation. Therefore, the description by the force field is 

accurate enough to describe our system in an unreactive scenario. 

6.1.5 Results and Discussion 

6.1.5.a Racemization of Cyclic Carbonates 

The thermodynamic stability of a molecule is usually measured as the 

difference in Gibbs free-energy between its resting state and the product 

of a degradation or a reverse reaction. We can also study the stability of a 

molecule towards its isomerization. In the case of enantiomerically pure 

species, racemization is an important process to take into account, since 

one reaction mechanism can be 100% enantioselective but a favorable 

side-reaction could lead to racemization of the product, thus producing a 

racemic mixture. A particular case of racemization regarding cyclic 

carbonates obtained from epoxy alcohols and CO2 is illustrated below in 

Figure 6.4, and it was presented in Chapter 3 of this Thesis. 

UNIVERSITAT ROVIRA I VIRGILI 
Computational Design of Catalysts for Carbon Dioxide Recycling 
Joan González Fabra 



 

Figure 6.4 Schematic representation of glycidol carbonate formation from glycidol 
and its consecutive racemization catalyzed by N,N-dimethylbenzylamine. 

The racemization process of glycidol carbonate (GC) is based in an acid-

base reaction between GC and a base. The base used by the 

experimentalists to characterize the GC was N,N-dimethylbenzylamine. 

Note that the phenolate groups in the ligand of the aluminum catalyst 

present in the solution can also catalyze the racemization reaction. 

Actually, this reaction was studied by means of DFT-based methods and 

presented in section 3.3 of this Thesis. We elucidated the reaction 

mechanism considering one phenolate of [AlMe] as the basic center to 

undergo deprotonation and initiate the racemization reaction (see Figure 

6.5).  

 

Figure 6.5 Gibbs free-energy profile for racemization of GC catalyzed by the phenolate 
group present in the ligand of [AlMe] catalyst.  

The proposed mechanism presents an activation barrier of 12.8  

kcal·mol-1, leading to an equilibrium between both enantiomers. It is 

worth mentioning that the most energetically demanding step is the 

deprotonation of GC to generate an alkoxide (Int1-Al). After 
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deprotonation step, the reaction moves forward almost spontaneously to 

the GC enantiomer via a symmetric meta-stable intermediate (Int1). We 

expect to spot that intermediate in the course of the metadynamics 

simulation.  

The previous static study eased the selection of the Collective Variables 

(CVs), which is not a straight-forward procedure in metadynamics 

simulations.[166] It is worth noticing that we choose an amine base for this 

study in order to reduce the size of the system and, consequently, the 

computational cost of the calculations. Instead of using the entire 

aluminum coordination complex, we considered trimethylamine (TMA) 

as a model of the N,N-dimethylbenzylamine. Additionally, the periodic 

simulation box contained CO2, water, GC and butanone, which is the 

solvent of the reaction. All these molecules were present in the simulation 

box and no glycidol at all because we considered a 100% conversion 

scenario of the GC formation from glycidol and CO2. The reaction occurs 

involving two molecules: GC and TMA. GC is both the reactant and 

product, while TMA acts as a catalyst, which consequently is recovered 

after the reaction finishes (see Figure 6.6). Therefore, CO2, water and 

butanone were not actively involved in the reaction, a priori. It is worth 

mentioning that 8 GCs and 8 TMAs were included in the simulation box 

but we considered only one of each to study the reaction, hence the other 

7 GCs and TMAs molecules remained in the environment region acting 

as spectators. 

 

Figure 6.6 Schematic representation of glycidol carbonate racemization reaction 
catalyzed by trimethylamine. A tentative structure of the transition state is included. 

The CVs have to describe the reaction pathway from reactants to 

products. Therefore, chemical intuition is probably the most important 
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requirement to choose the correct set of CVs. Taking into account the 

DFT based results showed previously, the goal of the CVs should be 

describing the deprotonation process, thus forming the Int1-Al 

intermediate, which is the most energetically demanding process. After 

reaching Int1-Al intermediate, the reaction will evolve to the desired 

product. Then, one CV has to describe the formation of N-H bond and 

consequently, O1-H bond breaking. Another bond that has to be formed 

is C-O1, breaking simultaneously the C-O2 bond. One would think that 4 

CVs are required, one CV for each bond. On the contrary, many 

processes like bond breaking and forming are not independent, so we can 

select the CV thinking on how “filling” a coordinate will affect to others. 

In an ideal situation one would consider only one CV, which reduces the 

simulation time in comparison to use two or three CVs. However, more 

than one CV is compulsory to explore the reaction sometimes. In Figure 

6.7 depicted below we show all the side-products that could be obtained 

by using either inadequate CVs or excluding one of the two CVs used in 

the metadynamics simulations. See Table 6.1 for the definition of the 

CVs. 

 

Figure 6.7 Schematic representation of all side-reactions observed 
when choosing the CVs to obtain the reaction. Racemization reaction 
is highlighted in bold. Decarboxylation to epoxide will be studied in 
the next section. 
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The three distances C-O1, O1-H and N-H have been considered in the 

CVs. C-O1 and N-H have to decrease, forming the new bonds necessary 

to form Int1-Al, while H-O1-H has to increase, thus deprotonating the 

alcohol. Once the intermediate is formed, C-O1 and O1-H have to keep 

the same trend: C-O1 has to decrease and O1-H has to increase, but H-N 

has to invert its trend, now increasing to deprotonate TMA and 

consequently, protonate the new alcohol forming O2-H bond. This 

behavior is the reason of using two CVs instead of one. If we used just 

CV1, we would not describe N-H distance, which is a crucial coordinate 

to obtain the alkoxide. On the other hand, if we just consider CV2, we 

would not describe C-O1 bond that is required to obtain the final product. 

Finally, O1-H has to be included in both CVs.  

Table 6.1 Definition of the CVs used for metadynamics simulations. Both CVs are 
obtained from the difference of atom distances (D1, D2 and D3) that are indicated in the 
first rows for both enantiomers, being (R)-GC the reactant and (S)-GC the product, and 
the Int1-Al intermediate. The two CVs used to explore the reaction are highlighted in 
bold. 

 (R)-GC 

(Reactant) 

Int1-Al 

(Alkoxide) 

(S)-GC 

(Product) 

 

D1: d(C-O1) 2.5 2.0 1.5 D1: d(C-O1) 

D2: d(O1-H) 1.0 2.5 3.0 D2: d(O1-H) 

D3: d(N-H) 2.0 1.0 2.0 D3: d(N-H) 

CV1: D1-D2 1.5 -0.5 -1.5 CV1: D1-D2 

CV2: D3-D2 1.0 -1.5 -1.0 CV2: D3-D2 

After choosing the proper set of CVs, another crucial aspect that had to 

be taken into account was the C-O1 orientation, which has to facilitate the 

bond formation by rotating a dihedral angle  (O1-C-C-O) to face O1 with 

C, as depicted in Figure 6.8. The most stable conformer of GC is A, 

which has a dihedral angle  of 180º. On the other hand, the reactive 

conformer is B, which has a  of 40º. Therefore, we optimized by DFT 

based-methods conformer B including constraints to prevent it to be 

back to A. The optimized structure B is constrained during the set-up 
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defined in section 6.1.4. Finally, we placed a quadratic wall to prevent C-

O1 distance to become larger than 2.5Å, so preventing the formation of 

conformer A. A second quadratic wall is necessary in the metadynamics 

simulation because there is a low probability of encountering TMA and 

GC within the simulation box. Additionally, the solvent of the reaction 

(butanone) can interact with GC via hydrogen bonding. The reactive 

proton of the alcohol group of GC interacts with the carbonylic oxygen 

of MEK blocking the interaction with TMA, which is the required 

interaction previous to GC deprotonation. Consequently, we placed a 

quadratic wall on the O1-N distance to avoid becoming larger than 2.5Å. 

In conclusion, we facilitated the formation of the optimal conformer to 

undergo the racemization reaction. Both quadratic walls were crucial to 

obtain the reaction in reasonable simulation times.  

 

Figure 6.8 Schematic representation of 
two structural conformers of GC by 

rotating dihedral angle  (O1-C-C-O). 

In all metadynamics simulations, the reaction took place in 70-90ps 

depending on two factors: the orientation of GC and TMA and the 

number of Gaussian functions placed into the free-energy well. Hence, 

the more steps we run, the more Gaussian functions we place, and so the 

more probable is a reactive conformer of GC to escape from the free-

energy well. A detailed tracking of the significant bond lengths in the 

reaction is shown in Figure 6.9, which plots the time evolution of the C-

O1, N-H, C-O2 and O2-H distances. As it can be seen in Figure 6.9, N-

H (blue line) is the first distance that suffers a big change at 87.2ps. In 

this moment the deprotonation takes place, N-H distance increases till 

1Å at 89.25ps, when the proton is transferred to O2. The O2-H distance 
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(green line), which initially is the largest one (2.5Å), gradually decreases 

until 1.5Å at 88.7ps when the product is formed. Additionally, C-O1 (red 

line) distance starts at 2.2Å and smoothly decreases until 1.4 Å, at the 

same time that O1 is deprotonated first by TMA, and later the proton is 

transferred to O2. Finally, the C-O2 (orange line) distance is kept constant 

until 89.25ps when the reaction takes place, and rapidly O2 goes away 

from C, indicating the formation of the (S)-GC enantiomer. 

 

Figure 6.9 Bond distance evolution of C-O1 (red trace), N-H (blue trace), C-O2 (orange 
trace) and O2-H (green trace) during 4ps of the metadynamics simulation.  

The resulting free-energy surface is illustrated in Figure 6.10. The initial 

free-energy of GC before the simulation starts amounts -17kcal·mol-1 

with respect the saddle point or Transition State (TS) situated at 0 

kcal·mol-1, hence the activation free-energy for the racemization of GC is 

17 kcal·mol-1. Comparing this Gibbs free-energy barrier value with the 

previously obtained (12.8 kcal·mol-1) by DFT based-methods, we confirm 
[167] that semi-empirical methods like PM6-DH+ combined with explicit 

solvation described by CHARMM/TIP3P can describe this type of 

organocatalyzed reactions. Additionally, aiming to reaffirm the 

correlation between DFT and PM6-DH+/CHARMM we studied the 

racemization reaction using TMA as co-catalyst instead of the Al catalyst. 
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Using M06-2X functional, which is particularly recommended for organic 

systems, we observed a stepwise mechanism similar to the metadynamic 

simulation, where deprotonation by TMA occurs first, followed by C-O2 

cleavage and protonation of O2. The computed absolute barrier for M06-

2X is 23.1 kcal·mol-1. Moreover, in order to analyze the effect of 

QM/MM methods we also studied the system using static PM6 where the 

same mechanism is observed and a similar barrier of 19.3 kcal·mol-1. 

Therefore, PM6-DH+/CHARMM is an excellent method to study this 

kind of organic systems involving many bond breaking-forming processes 

with good accuracy comparing it to DFT based-methods.  

Analyzing the 3D plot of the free-energy surface we can see two wells of 

equal energy (17 kcal·mol-1) and the same value of CV1, hence related to 

two equally stable isomers of GC interacting with TMA. Both energy 

minima are located at 1.5 of CV1 and at 0.75 and 1.25 of CV2 as it can be 

seen in the topographic cut of Figure 6.10. The reactive event can be 

visualized by decreasing CV2 until -0.5. This value is lower than the 

initially postulated (-1.0) in Table 6.1.  

 

Figure 6.10 Gibbs free-energy surface for CV1 and CV2 describing the racemization 
reaction of (R)-GC to (S)-GC. 
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It is worth noticing the importance of CV1 because at first sight one could 

think that only considering CV2 we could describe the reaction, but when 

approaching to the saddle point, CV1 changes from 1.5 to 0. Therefore, 

both CVs are required to study this reaction by metadynamics simulation. 

Other important information that could be obtained from the free-energy 

surface is the number of stable conformers. We observe several local 

minima at relatively low energies. If we would remove the quadratic walls 

that we placed to confine the reaction, we would observe a more extended 

free-energy surface with more conformers, but as we stated before, we 

would not observe any reaction until much longer simulations times. 

We studied the reaction mechanism of racemization by metadynamics 

simulation using a correct set of CVs and we analyzed the resulting free-

energy surface. After doing this, we proceeded to study the effect of CO2 

on the activation barrier of the reaction. We considered three values for 

the CO2 pressure: 1, 10 and 50 bar. When we increase the pressure of 

CO2 we increase both the total pressure on the system and the 

concentration of CO2 in the solution.[168] Therefore, in Table 6.2 we 

collected the number of CO2 molecules included in the simulation and 

also the calculated activation barrier. 

Table 6.2 Range of CO2 pressure considered for racemization 
reaction indicating the number of CO2 molecules within the periodic 
simulation box (second column) and the corresponding activation 
energy and standard deviation. 

Pressure (bar) n CO2 G‡ Standard Dev 

1 1 18 ± 2 

10 14 17 ± 1 

50 74 16 ± 2 

We did not observe major variations in the Gibbs free-energy barrier but 

we can see a decreasing trend regarding activation barrier when pressure 

increases. We considered several values of pressure for decarboxylation 

reaction too, which will be presented and discussed together with these 

results in the next section of this chapter. 
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Racemization reaction of GC catalyzed by TMA has been successfully 

studied by QM/MM metadynamics simulations. The resulting free-

energy surface proved the necessity to use two CVs to describe this 

reaction mechanism that involves many bond forming and breaking 

processes. Moreover, we determined the most active conformer of GC 

to overcome the reaction by facing O1 to the carbonylic carbon of GC. 

Finally, we could determine the absolute and relative free-energy barriers 

of the process. During the simulations we could observe first the 

deprotonation of GC by TMA to form a meta-stable alkoxide 

intermediate that evolves to the GC racemic product. Several pressure 

values have been considered observing a decrease of the activation energy 

when pressure increases. 

6.1.5.b Decarboxylation  

The chemical fixation of CO2 using epoxides could go back through 

decarboxylation reaction expelling CO2 from the just formed carbonate. 

This back-reaction can lead to lower activity and selectivity in CO2 

fixation processes. In this section we present and discuss the results 

obtained in the study of the uncatalyzed decarboxylation reaction of GC 

by QM/MM metadynamics simulations, using the same procedure 

presented in the previous section regarding racemization of GC. 

Uncatalyzed decarboxylation reaction mechanism is simpler than 

racemization of GC. First, we did not need to consider any catalyst since 

only GC is involved in the reaction. Therefore, the uncatalyzed reaction 

is a high energy demanding process but mechanistically simpler, probably 

constituted by one step only. Finally, just one CV may be necessary to 

study the reaction, simplifying the selection of CVs and reducing the 

simulation time.  

Decarboxylation reaction is illustrated below in Figure 6.11. The reaction 

occurs by breaking the C1-O1 and C2-O2 bonds and forming the O1-C2 

bond, hence forming an epoxy-alcohol and CO2. This reaction could be 

catalyzed by transition metals complexes as we presented in the 

introduction section. Nevertheless, in this study we considered the 
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uncatalyzed reaction because we were mainly interested in evaluating the 

effect of CO2 pressure in the rate of the reaction. 

 

Figure 6.11 Schematic representation of uncatalyzed glycidol carbonate 
decarboxylation. A tentative structure of the transition state is included. 

In this case the selection of the CVs is an easier task. However, there is 

one aspect to take into account. By definition, the carbonylic carbon (C1) 

in all cyclic carbonates is connected to three oxygen atoms. Two of these 

oxygen atoms are bonded each one of it to another carbon. Therefore, 

one could think that we could decarboxylate forming CO2 as O-C1-O1 or 

O-C1-O2, and the resulting epoxide would contain O2-C2 or O1-C2 

respectively. We considered both possibilities when running the 

metadynamics simulations. However, when we tried to break C1-O2 bond 

through the corresponding CV, we did not obtain the desired product but 

other side-products already showed in Figure 6.5 above. Therefore, the 

reaction occurred exclusively forming the O-C bond with the less 

substituted carbon (O1-C2). Consequently, the CV used to study the 

reaction is presented below in Table 6.3. 

Table 6.3 Definition of the CV used for metadynamics simulations. The 
CV is obtained from the difference of atom distances (D1 and D2) that 
are indicated in the first rows for (R)-GC, which is the reactant and (R)-
GL and CO2, which are the products. The CV used to explore the 
reaction is highlighted in bold. 

 (R)-GC 

(Reactant) 

(R)-GL+CO2 

(Product)  

D1: d(C1-O1) 1.5 3.0 D1: d(C-O1) 

D2: d(C2-O1) 2.5 1.5 D2: d(H-O1) 

CV1: D2- D1 1.0 -1.5 CV1: D2- D1 

We used the same methodology as in the previous section so two 

distances were included in one CV. We know that C1-O1 distance has to 
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increase while C2-O1 has to decrease, thus breaking C1-O1 bond and 

forming C2-O1 bond. Consequently, CV1 formed by D2-D1 has to 

decrease. 

We tracked the distances modified during 1ps of simulation time, 

precisely between 86.5 and 87.5ps, as plotted in Figure 6.12. Also, we 

interested in the value of O-C1-O2 angle, which is the angle of the CO2 

molecule. The CO2 angle facilitates the visualization of the product 

formation because the typical angle of a carbonate is approximately 130º 

and a free CO2 molecule has an angle of 180º according to its linearity. In 

CO2 fixation, this angle is a simple parameter to notice if CO2 is free 

(180º), activated (~150º) or included in the target molecule (120-130º).  

 

Figure 6.12 Graphic representation of C1-O1 (red), C2-O2 (orange) and C2-O1 (green) 
bond length variation during 1ps of the metadynamics simulation related to the reactive 
event. The angle formed by O-C1-O2 (blue) is also included (right axis). 

As it can be seen in Figure 6.12, this reaction mechanism shows a single 

step at simulation time 86.95ps. The angle formed by O-C1-O2 starts 

oscillating at 86.75ps, at the same time that C2-O2 distance starts to 

increase. If C2-O2 is the first coordinate to change, we could think that a 

good catalytic strategy to facilitate decarboxylation would be to activate 

this C2-O2 bond breaking. For example, coordinating a Lewis acid 

decreasing the nucleophilicity of oxygen atom O2. In the case that we aim 

to prevent decarboxylation, we should do the opposite: increase the 

stability of C2-O2 bond. After O-C1-O2 angle reaches 140º and C2-O2 
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reaches 2.2Å, C1-O1 and C2-O1 change rapidly indicating the formation of 

the product. First, C2-O1 distance decreases, forming the C2-O1 bond, and 

C1-O1 distance increases rapidly, indicating C1-O1 bond breaking. When 

C1-O1 and C2-O2 increase, also increase O-C1-O2, confirming the 

formation of CO2.  

In decarboxylation reaction we considered only one CV. Additionally, the 

reaction is not catalyzed, leading to a simple parabola function with a 

minimum at 71 kcal·mol-1 of CV1 equal to 1, indicating the activation 

barrier for this reaction. While in the racemization reaction the energy of 

reactant and product is the same, in the decarboxylation energy of 

reactants and products is distinct. The calculated Gibbs free-energy of the 

reaction is 14 kcal·mol-1, indicating the higher stability of GC in 

comparison to the sum of the epoxide and CO2.  Therefore, uncatalyzed 

decarboxylation of cyclic carbonates is an unfeasible process even at high 

temperatures. In order to determine the kinetic competition between CO2 

fixation and decarboxylation, we would have to consider decarboxylation 

reaction catalyzed by the same catalyst as CO2 fixation. Decarboxylation 

reaction of carbonates or carboxylic acids, should also be considered with 

the respective catalytic species to determine the viability of the reaction. 

These mechanistic studies could also be carried out using standard static 

methods with implicit solvent as we did in the previous section. 

We did not focus in the study of the kinetic competition between 

decarboxylation and CO2 fixation but on the effect of the CO2 pressure 

on the activation barrier. The higher we increase CO2 pressure, the higher 

solubility of CO2 in the reaction media and also, the higher total pressure 

applied to the entire system. Therefore, we considered three different 

states: 10, 20 and 50 bar, increasing CO2 solubility accordingly to each 

pressure.[168] In all cases, we used the same CV as indicated above in the 

initial results, where 10 bar of CO2 pressure were considered. The 

obtained results are collected in Table 6.4. 

The value for the Gibbs free-energy barrier that we obtain by 

metadynamics simulation slightly increases when pressure of CO2 
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increases. This behavior is the opposite that we observed in the previous 

section regarding GC racemization where G‡ decreased when pressure 

increased.  

Table 6.4 Range of CO2 pressure considered for decarboxylation 
reaction indicating the number of CO2 molecules within the periodic 
simulation box (second column) and the corresponding activation 
energy and standard deviation. 

Pressure (bar) n CO2 G‡ Standard Dev 

10 14 71 ± 2 

20 28 72 ± 2 

50 74 76 ± 2 

This different trend in the two reactions is due to the variation in the total 

number of particles in the system. In the case that we change from one 

body to two bodies (decarboxylation reaction), when we increase the 

pressure we difficult the reaction. On the other hand, in racemization 

reaction, we need two bodies being brought together (TMA and GC) to 

form the reaction, hence the reaction is enhanced when the pressure 

increases. 

6.1.6 Conclusions 

QM/MM metadynamics simulation is a powerful tool to study complex 

reaction mechanisms in detail. First, we can describe the interaction of 

the reactant with the catalyst or the solvent. Next, we can track the 

variation of geometrical parameters during the reaction, facilitating the 

visualization of interactions between molecules, isomerization or bond 

breaking and forming processes. Finally, by inverting the Gaussian 

functions added during the metadynamics simulation, we can map the 

free-energy surface of the reaction, determining how the energy changes 

among the set of coordinates. By choosing different CVs we can study 

how the reaction takes place through alternative reaction paths and then, 

we can compare them. 
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Herein, we used QM/MM metadynamics to unravel the racemization 

reaction of GC, discovering the crucial effect of the catalyst carrying the 

proton from one oxygen to another and also, the importance of the C-O 

dihedral conformation to facilitate the nucleophilic attack of the 

deprotonated oxygen to the carbonylic carbon. We mapped the free-

energy surface for two CVs that allowed us to efficiently describe the 

reaction. Exploring this free-energy surface we can differentiate all 

conformers (local minima) and transition states (saddle points) of the 

reaction.  

We studied also the uncatalyzed decarboxylation reaction of GC to 

produce GL and CO2. We kept the same procedure as in the previous 

study of racemization reaction, hence analyzing the structural changes 

during the simulation and determining the activation energy of the 

reaction. Finally, we aimed to investigate the effect of CO2 pressure on 

the rate of both reactions. We observed that we only can take into account 

the effect of the pressure on the system, since the concentration of the 

CO2 requires a more complex simulation involving the equilibrium of the 

reaction. The observed trend when increasing the pressure is the opposite 

for the two reactions. The more we increase the pressure to the system, 

the more the rate increases in the racemization reaction and alternatively, 

the more decreases the rate in decarboxylation reaction. 
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Chapter 7 

 

“Research is what I’m doing when I 

don’t know what I’m doing.” 

Wernher von Braun

Conclusions 

In this Thesis we studied computationally several reactions where carbon 

dioxide was used as substrate. We described in detail the reaction 

mechanism for all cases, taking into consideration the experimental 

results provided by our collaborators. The results collected in this Thesis 

contribute to understand better how important CO2 fixation reactions 

work and consequently, these results may help in the rational design of 

new and more active catalysts for this type of reactions involving CO2 or 

substrates of similar properties. 

Below we summarize the most relevant conclusions for each chapter of 

this Thesis. A more detailed description can be found in the last section 

of each chapter.  

Chapter 3: Cyclic carbonates 

In the first part of this chapter we analyzed the influence of i) solvation, 

ii) translational entropy and iii) the DFT functional in the calculated 

Gibbs free-energy profile for the reaction of 1,2-epoxyhexane and CO2. 

Different approaches for correcting the entropy in solution have been 
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evaluated. The corrections proposed by Martin and Wertz and Ziegler 

lead to similar results in correlation with the experimental reference. 

Accounting dispersions corrections have found to be crucial, although 

when considering the entropy corrections, the description of the system 

by B3LYP have found to be reasonable.  

In the second part of the Chapter we elucidated the reaction mechanism 

of CO2 and epoxy-alcohols catalyzed only by an aluminum 

aminotriphenolate complex. Several mechanistic pathways were 

compared in order to determine the reaction order of the catalyst and 

explain the regioselectivity and enantioselectivity observed 

experimentally. The reaction mechanism catalyzed by one Al-complex 

and co-catalyzed by a water molecule was found to be the most feasible 

one. This reaction mechanism occurs in a concerted manner where the 

CO2 insertion and the ring-closing step take place at the same time. This 

type of mechanism was not observed previously in similar systems when 

simple epoxides were used instead of functionalized epoxides. Moreover, 

the experimentally observed enantioselectivity was explained by a 

racemization process that occurs during the characterization of the 

product. 

The results collected in this chapter advocate that a proper combination 

of DFT and entropic corrections may be combined with experimental 

characterization to study in detail a complex system and therefore, design 

new catalysts to contribute in the field of CO2 fixation with efficient 

processes. 

Chapter 4: N-Aryl Carbamates 

In this chapter we elucidated by DFT methods the organocatalyzed 

reaction mechanism of cyclic carbonates and arylamines to efficiently and 

selectively produce N-aryl carbamates. We compared the catalytic activity 

of TBD with water, demonstrating the high efficiency of the chosen 

organocatalyst. Additionally, we also analyzed the reaction mechanism of 

alkylamines and arylamines. As expected, we observed higher reactivity 
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for alkylamines for the uncatalyzed reaction. Nevertheless, when TBD is 

used, similar both substrates present similar reactivity. 

Chapter 5: Polycarbonates 

This chapter is divided in two parts. In the first part, we investigated in 

detail the reaction mechanism of cyclohexene and CO2 to produce 

polycarbonates. We compared several mechanistic routes including a 

monometallic route that was found to be unfeasible, and two bimetallic 

pathways considering two Al-complexes separated or forming a non-

covalent dimer. Also, we raised two different carbonyl attacks in the 

propagation step to explain the regioselectivity of the process. The 

dimeric structure was the most catalytically active species, thus leading to 

the most energetically favorable pathway. In order to evaluate the effect 

of the nucleophilic co-catalyst and the aromatic substituents of the ligand 

of the catalyst, we tested different binary catalytic systems, observing that 

using chloride as nucleophile and aromatic substituent of the ligand the 

absolute barrier of the process decreased compared to the system using 

iodide as nucleophile or the ligand of the catalyst with methyl groups in 

the aromatic positions. 

The second part of the chapter reports our findings on the reaction 

mechanism between limonene oxide and CO2 to form a renewable and 

bio-based polycarbonate. We pay special attention in the stereoregularity 

of the obtained polymer due to the complexity of limonene oxide, which 

presents three stereocenters in its structure. Therefore, we compared the 

relative barrier of the epoxide ring-opening process when using chloride 

or bromide and also when attacking both carbon atoms of the epoxide, 

observing a non-expected preference for the most substituted one. Then, 

we considered the most energetically plausible pathways to produce 

polycarbonate, proving the preference for the formation of trans 

polycarbonate from cis epoxide, hence observing inversion of 

configuration when the most substituted carbon was attacked through an 

SN2 type reaction mechanism. Our computational results were found to 

be in full agreement with the experimental observations. 
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Chapter 6: Effect of CO2 Pressure 

The last chapter of the Thesis collects our results regarding the study of 

the effect of CO2 pressure in two different reactions. In this chapter we 

used multiscale metadynamics to map the free-energy surface of the 

racemization and decarboxylation reactions of glycidol carbonate, which 

is the product of the reaction studied in Chapter 3. Additionally, we also 

determined the Gibbs free-energy barrier of both processes, in agreement 

with our static DFT calculations. Also, we proved that the pressure of the 

system plays an important role in the absolute barrier of the process.  If 

we consider a dissociation reaction like decarboxylation, the reaction rate 

decreases when increasing the pressure. Alternatively, when an associative 

mechanism like racemization is studied, the reaction rate is accelerated 

when increasing the pressure in the system. 
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