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Abstract

The human microbiome is involved in many essential functions, such as food

digestion and immune system maintenance. Alterations in its composition

may have important effects on human health and they have been associated

to high impact diseases such as obesity, asthma, cancer or cardiovascular

disease among others.

This thesis is focused on the study of the link between the gut microbiome

and HIV infection. The interest arises because of the important damages

that the virus causes in the gut epithelium, which houses most of our

immune system. Because of this damage, HIV patients present systemic

and chronic inflammation responsible of an increase in their risk of having

non-AIDS related diseases. Thus, understanding how gut microbiome

alterations after HIV infection are related to immune dysregulation is of

major importance.

The analysis of microbiome data is challenging. Since microbiome abun-

dances are obtained from high-throughput DNA sequencing techniques, the
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total number of reads per sample is constrained by the maximum number of

sequence reads that the DNA sequencer can provide. This total count con-

straint induces strong dependencies among the abundances of the different

taxa and confers the compositional nature of microbiome data. This means

that the abundance values are not informative by themselves and that the

relevant information is contained in the ratios of abundances between the

different taxa. Ignoring the compositional nature of microbiome data may

have important negative effects, such as spurious correlations, subcomposi-

tional incoherences, and the increase of type I error. In this context, we

have proposed two novel statistical methods for microbiome analysis that

preserve the principles of compositional data analysis: MiRKAT-CoDA

(weighted and unweighted) and selbal algorithm.

MiRKAT-CoDA algorithm is a distance-based method for testing the

overall association between microbial composition and a response variable

of interest. It extends Kernel machine regression to compositional data

analysis by considering a subcompositional dominant distance, such as

Aitchison distance. The weighted version of MiRKAT-CoDA provides a

measure of the contribution of each taxon to the global association with

the response variable.

selbal algorithm is a new approach for the identification of microbial

signatures associated to an outcome. The approach is innovative because,

instead of defining the microbial signature as a linear combination of a set

of taxa abundances, it is defined as a balance between two groups of taxa,
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a mathematical notion that preserves the principles of compositional data

analysis.

In summary, the major contributions of this thesis are two new method-

ological strategies: MiRKAT-CoDA (weighted and unweighted) and selbal

algorithm, for microbiome association testing and for the identification of

microbiome signatures, respectively. Moreover, the results of this thesis

have helped to advance the study of the role of the gut microbiome in HIV

infection.
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Resumen

El microbioma humano participa en muchas funciones esenciales como

la digestión de alimentos y el mantenimiento del sistema inmunitario.

Alteraciones en su composición pueden afectar a la salud del individuo,

habiendo sido relacionados cambios en el microbioma con enfermedades

tales como obesidad, asma, cáncer o enfermedades cardiovasculares entre

otras.

Esta tesis está centrada en el estudio de la relación entre el microbioma

intestinal y la infección por VIH. Este interés surge debido al importante

daño que el VIH produce sobre el epitelio intestinal, el cuál contiene la

mayor parte del sistema inmunitario. Debido a este daño, los pacientes

infectados por VIH presentan una inflamación sistémica y crónica, respon-

sable del incremento del riesgo de padecer enfermedades no relacionadas

directamente con el SIDA. Aśı pues, resulta importante entender las al-

teraciones en el microbioma intestinal asociadas a la infección y patogénesis

del VIH.
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El análisis de los datos de microbioma resulta todo un desaf́ıo desde el punto

de vista estad́ıstico. Dado que los datos de abundancia del microbioma

se obtienen por técnicas de secuenciación del ADN, el número total de

reads por muestra viene limitado por el número máximo de secuencias

que puede proporcionar el secuenciador. Esta limitación en el número de

reads genera fuertes dependencias entre las abundancias de las diferentes

taxas y define la naturaleza composicional de este tipo de datos. Este

hecho supone que los valores de abundancia no son informativos en śı

mismos, sino que la información la proporcionan realmente los ratios entre

distintas componentes. De ignorar la composicionalidad de los datos de

abundancia microbiana, los resultados obtenidos pueden ser confusos e

incoherentes. Aśı, pueden aparecer correlaciones espurias, incoherencias

subcomposicionales o incluso un incremento de los falsos positivos a la

hora de definir las diferencias entre distintos grupos de individuos. En este

contexto, presentamos dos nuevas propuestas para el estudio del microbioma

que preservan los principios del análisis de datos composicionales: los

algoritmos MiRKAT-CoDA (ponderada y sin ponderar) y selbal.

El algoritmo MiRKAT-CoDA es un método basado en distancias que per-

mite evaluar si existe una asociación global entre la composición microbiana

y una variable respuesta de interés. Este método es una extensión de la

Kernel machine regression dentro del ámbito del análisis de datos composi-

cionales, considerando una distancia subcomposicionalmente dominante

como es la distancia de Atichison. La versión ponderada de MiRKAT-

CoDA proporciona para cada variable un valor que mide la contribución
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de cada una de las taxas en la asociación global con la variable respuesta.

Por otra parte, el algoritmo selbal es una nueva propuesta focalizada en la

identificación de firmas microbianas asociadas a una variable de interés. El

método es novedoso debido a que en lugar de definir la firma microbiana

como una combinación lineal de un conjunto de variables, se define como

un balance entre dos grupos de taxas, una noción matemática que preserva

los principios del análisis de datos composiconales.

En resumen, las mayores aportaciones de esta tesis son dos estrategias

metodológicas diferentes: MiRKAT-CoDA (ponderada y sin ponderar) y

selbal. Estas propuestas resultan útiles para evaluar la asociación entre

microbioma y variable respuesta aśı como identificar firmas microbianas,

respectivamente. Además, los resultados de esta tesis han contribuido al

avance en el estudio del papel que desempeña el microbioma intestinal en

la infección por VIH.
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Resum

El microbioma humà participa en diverses activitats essencials per a l’hoste,

com ara els processos de digestió i el manteniment del sistema immunitari.

Alteracions en la seva composició poden tenir efectes importants en la

salut humana i fins avui s’han associat a diverses malalties d’alt impacte

com ara la obesitat, l’asma, el càncer i les malalties cardiovasculars, entre

d’altres.

Aquesta tesis està centrada en l’estudi de la interacció entre el microbioma

intestinal i la infecció per VIH. La infecció per VIH causa danys importants

en l’epiteli i la mucosa intestinal, la qual acull gran part del nostre sistema

immunitari. En relació a la pèrdua de l’homeòstasi intestinal, els individus

amb infecció per VIH-1 solen presentar una inflamació sistèmica i crònica,

malgrat l’administració de tractament antiretroviral, que sol associar-se a

major risc de partir diverses malalties, associades o no, a la SIDA. Per això,

és important entendre la relació entre aquestes alteracions del microbioma

intestinal associades a la infecció i la patogènesis del VIH.
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Malgrat els avenços dels últims anys, l’anàlisi del microbioma segueix

essent tot un repte. Donat que les mesures d’abundància del microbioma

deriven de dades de seqüenciació massiva, el número total de seqüències

per mostra està cenyit al màxim número de seqüències que el seqüenciador

pot generar. Aix́ı doncs, aquest limitació numèrica condiciona el càlcul de

les abundàncies relatives dels diferents taxons detectats i confereix una

natura composicional a les dades generades. Això significa que els valors

d’abundància no són informatius per ells mateixos, i que la informació

important està lligada al rati entre les abundàncies de diferents taxons.

Ignorar la natura composicional de les dades de microbioma pot tenir

significants efectes negatius importants com ara correlacions espúries,

incoherències subcomposicionals i major presència de falsos positius. En

aquest context, hem proposat 2 nous mètodes estad́ıstics per a l’anàlisi de

dades de microbioma que mantenen els principis de les dades composicionals:

MiRKAT-CoDA (ponderada i no ponderada) i l’algoritme selbal.

L’algoritme MiRKAT-CoDA és un mètode basat en distàncies dissenyat

per testar l’associació entre la composició del microbioma i alguna variable

resposta d’interès. Aix́ı doncs, el MiRKAT-CoDA aplica la Kernel machine

regression a l’anàlisi de dades composicionals considerant una distància

dominant subcomposicional, com ara és la distància de Aitchison. La versió

ponderada de MiRKAT-CoDA proporciona, a més a més, una mesura de

la contribució de cada taxó a la associació global amb la variable resposta.

Per altra banda, l’algoritme selbal és una nova aproximació per a la identi-
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ficació de signatures microbianes associades a una determinada observació

(i.e. variable resposta). Aquesta aproximació és innovadora perquè, enlloc

de definir una signatura microbiana com una combinació lineal d’una sèrie

de taxons, es defineix com un balanç entre dos grups de taxons, una noció

matemàtica que preserva els principis de les dades d’origen composicional.

En resum, les contribucions més significatives d’aquesta tesis són dues noves

estratègies metodològiques, el MiRKAT-CoDA (ponderada i no ponderada)

i selbal, útils per a testar associacions i identificar signatures en dades de

microbioma, respectivament. A més a més, els resultats d’aquesta tesis

han ajudat a avançar en l’estudi del paper del microbioma intestinal en la

infecció per VIH.
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CHAPTER 1

Introduction

The study of the microbes that live in our body and their involvement

in human health is nowadays one of the most active research topics in

biomedicine. The terms human microbiota and human microbiome are

commonly used indistinctly to name the collection of all the microorgan-

isms living in association with the human body. This includes eukaryotic

microorganisms, archaea, bacteria and viruses. Although a recent study

suggests that the number of microorganisms in the human body is approx-

imately equal to the number of human cells (Sender et al., 2016), a ratio

10:1 between microorganisms and host cells is more commonly accepted.

Anyhow, the human microbiome accounts for about 1 to 3 percent of total

body mass (MacDougall, 2012), a significant proportion of a human.

The human microbiome is involved in a large number of essential func-

tions, like food digestion and immune system maintenance. Alterations

in microbiota may have important effects on human health. They have
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32 Chapter 1. Introduction

been associated to high impact diseases such as obesity, type 2 diabetes,

asthma, irritable bowel syndrome, inflammatory bowel disease, cardiovas-

cular disease, cancer and other disorders.

The human microbiome displays considerable diversity in different body

locations and several microbial projects have been launched to characterize

the microbiome in different body sites. However, the gut microbiome is

by far the most studied one. The great interest generated by the gut

microbiota stems from its important role in the host’s nutrient metabolism,

xenobiotic and drug metabolism, maintenance of structural integrity of the

gut mucosal barrier, immunomodulation and protection against pathogens

(Thursby and Juge, 2017; Jandhyala et al., 2015). The gut microbiome

has been studied in projects focusing on a wide range of illnesses, such as

inflammatory bowel disease , obesity, cardiovascular disease or even anxiety

(Hold et al., 2014; Davis, 2016; Wilson Tang and Hazen, 2017; Lach et al.,

2018).

Although the human microbiome has long been known to influence human

health and disease, until recently, its composition and properties were

largely unknown, since studies were limited to in-vitro cultivation of some

specific microorganisms. Currently, high-throughput DNA sequencing

technologies have revolutionized this field, allowing us to study the genomes

of all microorganisms of a given environment. Metagenomics is the massive

study of genomes of microorganisms and represents a breakthrough in the

study of the relationship between the human microbiome and our health.
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Microbiome studies are based on microbial DNA sequencing through two

main approaches: amplicon sequencing (16S rRNA gene for both bacteria

and archaea) and whole metagenomics DNA shotgun sequencing. Both,

amplicon and shotgun sequencing allows the study of the microbial diversity

and composition but, because of its higher resolution and sensitivity,

shotgun sequencing provides more reliable abundance estimations and, in

addition, it allows for the functional profiling of the microbial community.

Amplicon sequencing relies on sequencing a phylogenetic marker gene

after Polymerase chain reaction (PCR) amplification. For bacteria and

archaea, the marker gene is the 16S ribosomal RNA gene that encodes

the RNA component of the small ribosomal subunit. The 16S rRNA gene

contains both highly conserved areas and hypervariable sites denoted as

V1-V9 (Figure 1.1). The conserved regions can be targeted with PCR

primers while the hypervariable regions are specific to each microbial

species and make possible to distinguish the different microbes. The V1-V3

and V4 regions are most commonly targeted. PCR amplification creates

thousands to millions of copies (amplicons) of the DNA target region. PCR

amplicons are then sequenced using high-throughput sequencing platforms

and multiple nucleotide sequences, also known as reads, are obtained. After

preprocessing and quality control filtering, the sequences are grouped by

their similarity into clusters that define Operational Taxonomic Units

(OTUs); that is, groups of sequences, usually with at least a 97% of

similarity between them. Each OTU is represented by a consensus sequence

which is compared against a reference database, such as, GreenGenes
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(DeSantis et al., 2006), myRDP (Cole et al., 2007) or SILVA (Pruesse et al.,

2007), for taxonomic assignment to different taxonomic ranks. Figure 1.2

shows, as an example, the hierarchy defined for Escherichia coli. As we

descend in rank, we gain in resolution with a more specific classification.

16S rRNA gene sequencing generally allows you to determine up to the

genus rank. As a result of all this process, an OTU abundance table is

obtained containing the number of sequences for each sample associated to

each OTU. Since OTU tables are usually extremely sparse, they are often

merged into abundance tables at higher taxonomic groups or taxa.

V1 V2 V3 V4 V5 V6 V7 V8 V9

Variable region
Conserved region

16S rRNA gene

Figure 1.1: Conserved and variable regions of 16S rRNA gen.

The second alternative is shotgun metagenomics sequencing which involves

sequencing the total microbial DNA of a sample, instead of just a particular

marker gene. With this technique, we can infer the relative abundance of

every microbial gene and quantify specific metabolic pathways to predict

the potential functionality of the entire community. This is achieved by

mapping the obtained sequences against a database such as KEGG (Kane-
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DOMAIN

KINGDOM

PHYLUM

CLASS

ORDER

FAMILY

GENUS

SPECIES

Eubacteria

Proteobacteria

Gammaproteobacteria

Enterobacteriales

Escherichia

E. Coli

Enterobacteriaceae

Bacteria

Figure 1.2: Taxonomic ranks defined for Escherichia coli bacteria.

hisa, 2002). An abundance matrix resulting from this type of functional

study provides the number of sequences associated to a particular function

for each sample. Figure 1.3 summarizes the procedure followed by both

16S rRNA sequencing and shotgun metagenome sequencing approaches.

From a statistical perspective, the output of both microbiome approaches,

amplicon and shotgun sequencing, is similar: an abundance table of counts

representing the number of sequences (reads) per sample for a specific taxon

or a particular gene function. Throughout this dissertation, we illustrate

the methodologies with data from 16S rRNA amplicon sequencing but

most approaches also apply for microbiome shotgun metagenomics.

There are many reasons why the analysis of microbiome data is so challeng-

ing. On one hand, we face the usual challenges of count data analysis, i.e.,

skewed distribution, zero inflation and overdispersion. Because of the exper-

imental process and quality control filtering, the total number of counts per
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sample is highly variable, which requires some normalization prior to the

analysis so that the microbiome abundances among the different samples

are comparable. Moreover, the total number of counts per sample is con-

strained by the maximum number of sequence reads that the sequencer can

provide. This total count constraint induces strong dependencies among

the abundances of the different taxa characterizing microbiome data as

compositional data. How to deal properly with microbiome compositional

data is the main focus of this work.

This thesis is the result of my participation in a partnership between

the Microbial Genomics group (IrsiCaixa AIDS research institute) and

the Research Group in Bioinformatics and Medical Statistics (UVic-UCC,

University of Vic, Central University of Catalonia). One of the main areas

of research of the Microbial Genomics group is to understand the role of

the gut microbiome in human health and disease and, in particular, its

involvement in HIV-1 infection. On the other hand, the Research Group

in Bioinformatics and Medical Statistics is focused on the development of

new statistical methods for the analysis of omics data, in particular, for

microbiome data.

Supervised by Dr. Marc Noguera at IrsiCaixa, I have taken part in several

microbiome projects in which the Microbial Genomics group is involved.

This has given me the opportunity to learn the most relevant questions in

HIV-microbiome studies, to understand the difficulties of this research area,

and to contribute to the improvement of the field. In turn, Prof. M. Luz
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Calle at UVic-UCC has guided me in the mathematical and methodological

part of the thesis. This includes the identification of the limitations of

the standard methods for microbiome analysis, my immersion in a largely

unknown mathematical domain of compositional data analysis, and the

development of new approaches for microbiome analysis in this area.

Thus, this thesis is motivated by the need for a rigorous mathematically

approach to answer different questions arisen in microbiome studies. More

specifically, the main goals of this thesis are, on one hand, to contribute to

the understanding of the role of the gut microbiome in HIV-1 infection,

and on the other hand, to improve microbiome analysis by proposing

novel statistical methods that preserve the principles of compositional data

analysis.

The different chapters of this dissertation mainly describe the methodologi-

cal part of my work, that is, the proposal of two new statistical approaches

for microbiome analysis in the context of compositional data analysis, one

of which has already been published and is available in the Appendix

(Rivera-Pinto et al., 2018). The more applied part of my thesis, as a result

of my participation in the HIV-microbiome studies conducted at IrsiCaixa,

is not written as specific chapters of this manuscript but it is reflected on

three published papers added to the Appendix (Rivera-Pinto et al., 2017;

Vesterbacka et al., 2017; Rivera-Pinto et al., 2018).

This thesis is organized as follows. At the end of this first introductory

chapter we add two sections, one to explain the importance and interest
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of the study of the gut microbiome in HIV-AIDS research, and the other

section to describe the most common procedures for microbiome analysis

and discuss their limitations.

The second chapter explores the mathematical characteristics of micro-

biome data emphasizing its compositional nature, and introduces the main

concepts of Compositional Data Analysis (CoDA). Some recent publica-

tions warn of the possible issues that may arise if standard tools are used

for compositional datasets (Gloor et al., 2016; Weiss et al., 2017). We illus-

trate how incoherent results or an increase of type I error can result from

the use of statistical tools that are not designed for constrained datasets.

We introduce different transformations based on log-ratio analysis, such

as alr, clr and ilr transformations, that offer the possibility of using dif-

ferent standard statistical approaches without having to worry about the

aforementioned issues. We also discuss different ways of dealing with zeros

and evaluate the impact of zero abundance on the most common distances

used in microbiology.

In chapter 3 we propose the Kernel machine regression for microbiome

compositional data, a distance-based regression method for testing the

overall association between microbial composition and a response variable

of interest. By applying the subcompositional dominant Aitchison dis-

tance we adapt Kernel machine regression to compositional data analysis.

Additionally, we develop a weighted version using the recently defined

weighted Aitchison distance (Egozcue and Pawlowsky-Glahn, 2016), which
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provides a measure of the contribution of each taxon to the global asso-

ciation with the response variable. The algorithms for implementing the

methodology are publicly available as an R package named MiRKAT-CoDA

at https://github.com/UVic-omics/MiRKAT-CoDA.

Chapter 4 presents selbal, a new algorithm for the identification of

microbial signatures associated to an outcome, that is, groups of micro-

bial taxa that are predictive of a phenotype of interest. These microbial

signatures can be used for diagnosis, prognosis or prediction of therapeu-

tic response based on an individual’s specific microbiota (Knight et al.,

2018). This approach is particularly innovative since, instead of defining a

microbial signature as a linear combination of a set of taxa abundances,

we define a microbial signature as a balance between two groups of taxa.

The mathematical notion of balance, a special kind of log-contrast function,

preserves the principles of compositional data analysis. selbal performs

forward variable selection and identifies two groups of taxa whose balance

or relative abundance is most associated with the response variable of

interest. The new method is published in a peer-reviewed scientific paper

(Rivera-Pinto et al., 2018) and the algorithm is publicly available as an R

package named selbal at https://github.com/UVic-omics/selbal.

In summary, the major contributions of this thesis are two new methodolog-

ical strategies: MiRKAT-CoDA (weighted and unweighted) and selbal

algorithm, for microbiome association testing and for the identification of

microbiome signatures, respectively. Moreover, the results of this thesis

https://github.com/UVic-omics/MiRKAT-CoDA
https://github.com/UVic-omics/selbal
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have helped to advance the study of the role of the gut microbiome in HIV

infection.

1.1 Microbiome and HIV infection

The acquired immunodeficiency syndrome (AIDS) is the set of symptoms

caused by the infection of the human immunodeficiency virus (HIV). HIV

infection affects over 36 million people worldwide, mainly in Africa, which

accounts for about seventy percent of the global HIV-positive individuals.

Since the pandemic began, HIV has been responsible of more than 35

million deaths (UNAIDS, 2017). Figure 1.4 shows the HIV/AIDS epidemic

statistics for the last three decades. Concurrently with the increase in

social awareness and the intensive research efforts that have given rise to

the development and roll-out of new antiretroviral therapies (ART), the

number of new HIV infections has steadily decreased since 1990s. These

improvements have had a direct impact on the number of HIV-related

deaths that has experienced an important decline in the last decade. In

2014, the number of deaths was almost half of those occurred ten years

before. However, an estimated 1.8 million individuals worldwide became

newly infected with HIV in 2017, about 5000 new infections per day

(UNAIDS, 2017). Thus, still additional research is needed to prevent more

infections and to help the millions of people living with HIV.

The most important HIV/AIDS research areas are focused on the immune

response to the disease, on how to prevent and eradicate the disease and, on
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the development of new therapies for providing better life conditions. This

thesis is focused on one of the main interests of the Microbial Genomics

group, to understand the role of the gut microbiome and HIV infection

(http://www.irsicaixa.es/en/microbial-genomics). Specifically, the current

microbiome-HIV projects at IrsiCaixa are mainly devoted to:

1. Analyse how the gut microbiome influences the ability of HIV-1 in-

fected individuals to achieve adequate immune reconstitution, control

HIV-1 replication and limit chronic inflammation.

2. Characterize the co-evolution of the gut microbiome and inflamma-

tory response after acute HIV-1 infection.

3. Understand how the human microbiome can influence the AIDS

vaccine response and vice versa, that is, how vaccines and other

strategies for eliminating HIV-1 affect the human microbiome.

The interest on studying the link between the gut microbiome and HIV

infection arises because of the important changes and damages in the gut

epithelium caused since the beginning of the infection by the virus. The

gut houses most of our immune cells responsible of the defense against

pathogens and blocking the pass of harmful bacteria into the blood. On

the other hand, the gut microbiota plays an important role in regulating

immune homoeostasis, that is, the balance between immune response to

pathogens and self-tolerance to avoid autoimmunity. Since the beginning

of the infection, HIV damages the gut associated lymphoid tissue (GALT)

http://www.irsicaixa.es/en/microbial-genomics
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causing a depletion of immune cells and greatly reducing the intestinal

barrier function. This results in bacterial translocation which triggers

inflammation processes. Inflammation persists even under HIV treatment

and, hence, HIV patients present systemic and chronic inflammation re-

sponsible of an increase in their risk of having non-AIDS related diseases,

such as, cardiovascular disease, cancer, kidney disease, liver disease, neuro-

logic disease, and bone diseases (Phillips et al., 2008). Thus, understanding

how gut microbiome alterations after HIV infection are related to immune

dysregulation is of major importance. In this framework, IrsiCaixa is inves-

tigating how we can act on the microbiome to help people living with HIV

recover immunity, and to strengthen the immune response of a therapeutic

or preventive vaccine (http://www.irsicaixa.es/en/microbial-genomics).

We highlight two different projects led by Dr. Roger Paredes in the

Microbial Genomics group.

The first project is a transversal study in collaboration with the Karolin-

ska Institutet (Sweden) that includes two independent cohorts of HIV-

1-infected subjects and HIV-1-negative controls in Barcelona (n = 156)

and Stockholm (n = 84). The objective of this project is to study the

association between microbiome and HIV infection and to elucidate some

contradictory associations reported in different studies. In recent years

shifts from Bacteroides to Prevotella predominance have been described in

HIV-1 infection (Lozupone et al., 2013; Vázquez-Castellanos et al., 2014),

however, these shifts have not been found in previous works including

studies with animal models. These results may be easily confounded by

http://www.irsicaixa.es/en/microbial-genomics
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other factors such as environmental factors, long term dietary patterns

or exercise (Modi et al., 2014; Sommer and Bäckhed, 2013). This project

takes into account these important variables in order to evaluate their

impact on the microbial composition.

Here we briefly describe the Barcelona cohort since we will use it to illustrate

the methods proposed in this thesis. We will refer to it as the IrsiCaixa

HIV study. The Barcelona cohort is composed of 156 individuals, most

of them males (79.5%), enrolled in Barcelona, Catalonia, Spain, between

January and December 2014. The cohort consists of 127 HIV-1 positive

individuals (HIV+) and 29 HIV-negative controls (HIV-). Three HIV-1

risk groups were defined: heterosexual (hts), men who have sex with men

(msm), and people who inject drugs (pwid). More details can be found in

(Noguera-Julian et al., 2016).

The second project is a longitudinal study focused on the changes in gut

microbiome composition in the very early stages of HIV-1 infection. For

this propose, a group of 49 Mozambican subjects diagnosed with recent

HIV-1 infection and 54 HIV-1-negative controls were followed for 9-18

months. Comparing them with 98 chronically HIV-1-infected subjects,

the study tries to elucidate which are the microbial changes due to the

infection.

Several papers have been published from these two projects, and some

others are still ongoing or under revision. I add in the appendix the three

papers where my participation was more relevant (Rivera-Pinto et al., 2017;
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Vesterbacka et al., 2017; Rivera-Pinto et al., 2018).

1.2 Standard microbiome statistical analysis

From a statistical and mathematical point of view the main element of

a microbiome study is the microbiome abundance table that is usually

expressed as a matrix of counts, denoted by X, with k columns (taxa) and

n rows (samples). Each entry xij of X is the number of sequences (reads)

corresponding to taxon j in sample i.

X =


x11 x12 . . . x1k

x21 x22 . . . x2k
...

...
...

...

xn1 xn2 . . . xnk



xij ∈ N ∪ {0}, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}

The sum of the counts in each row of X provides the total number of counts

per sample, a concept that in the context of DNA sequencing technologies

is known as the sampling depth, the library size or sequencing depth.

Though there is no standardized protocol for microbiome analysis, there

are some procedures that are commonly performed and that can be divided

into four different steps: normalization, diversity analysis, ordination and
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differential abundance testing. Without trying to be comprehensive, we

briefly describe the most important procedures in the following subsections.

1.2.1 Normalization

The large variability of the total counts per sample, prevents meaningful

comparisons of raw abundances between individuals with very different

total counts. This is usually addressed through normalization of raw counts

before the analysis. The literature offers a wide range of normalization

methods, among which the most frequently used are the transformation to

relative abundances, dividing each cell by the total number of counts per

sample; rarefaction, which consists on subsampling the same number of

reads for all the samples from their initial compositions, and some additional

percentile transformations or more complex techniques implemented in

R packages developed for RNA-seq analysis, such as, {DESeq} (Anders

and Huber, 2010) or {edgeR} (Robinson et al., 2009). See Weiss et al.

(2017) and McMurdie et al. (2014) for a comparison and discussion on the

performance of different normalization methods for microbiome analysis

(McMurdie and Holmes, 2014; Weiss et al., 2017).

1.2.2 Diversity analysis

As in any ecological system, the diversity of the microbiome community is

an important indicator of the good or bad conditions of the environment,

with larger microbiome diversity being usually associated to better health
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status. Microbiome diversity can be assessed through multiple ecological

indices that can be separated into two kind of measures, alpha and beta

diversity. Alpha diversity measures the variability of species within a

sample while beta diversity accounts for the differences in composition

between samples.

Alpha diversity. Richness and evenness

The most important measure of alpha diversity is richness, the number of

different species present in an environment. Richness is estimated by the

observed richness, Robs, that is the number of different species observed

in the sample. Because of the sequencing is limited to the sample being

analyzed and to the sequencing depth, the observed richness tends to

underestimate the real richness in the environment, where the less frequent

species are likely to be undetected. There are different indices that adjust

for this and try to estimate the hidden part that has not been detected.

One of the most extended is Chao1 index defined as

RChao1 = Robs +
f1(f1 − 1)

2(f2 + 1)

where f1 is the number of species observed only once, and f2 is the number

of species observed only twice.

Another important indicator of alpha diversity is evenness, which measures

the homogeneity in abundance of the different species in a sample. In a

composition of k different taxa, the maximum evenness is achieved when

the abundances are uniformly distributed, that is, each of taxa has a
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relative abundance of 1
k . On the other hand, the evenness is very low when

only few taxa accounts for most of the relative abundance in the sample.

A commonly used measure of evennes is the Shannon index defined as

RShannon = −
k∑
i=1

pi log(pi)

where pi represents the relative abundances of the i -th taxon.

Beta diversity. Distance

Beta diversity measures the differences in microbiome composition between

samples. The usual Euclidean distance is not a good measure of beta

diversity since it does not behave as a good ecological distance is expected,

i.e., for samples that share most of their species, the distance should be

small and when samples have few species in common, the distance should

be large. There is a wide range of ecological distances or dissimilarities for

measuring how close are two microbial compositions. While some of them

only consider the presence or absence of each species in the sample, some

others take the relative abundance into account. There is also a family

of measures including in their definition the phylogenetic relationship

between taxa. Here, we define the main measures that can be found in

the literature for microbiome analysis, namely Bray-Curtis, UniFrac and

weighted UniFrac distances.

Let p1 = (p11, . . . , p1k) and p2 = (p21, . . . , p2k) denote the microbiome

relative abundance of two different samples.
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Bray-Curtis distance

Bray-Curtis is probably the most extended measure in microbiome studies

and is defined as follows:

dBC(p1,p2) =

k∑
i=1
| p1i − p2i |

k∑
i=1

(p1i + p2i)

(1.1)

UniFrac family of distances

UniFrac family of distances, unlike Bray-Curtis distance, consider the

phylogenetic tree that represents the evolutionary relationships among the

different taxa. For a tree with r branches, let b = (b1, . . . , br) represent

the length of the different branches in the phylogenetic tree, and q1 =

(q11, . . . , q1r), and q2 = (q21, . . . , q2r) the relative abundances associated to

each branch for the first and the second sample, respectively. According

to these values, we can compute the weighted, unweighted and generalized

versions of the UniFrac distance.

The unweighted UniFrac distance (Lozupone and Knight, 2005) defined

in Equation 1.2 with I(·) denoting the indicator function, measures the

relative length of those branches that lead exclusively to species present in

only one of the two samples with respect to the total length of all branches

in the tree.

dU (b,q1,q2) =

r∑
i=1

bi | I(q1i > 0)− I(q2i > 0) |
r∑
i=1

bi (I(q1i + q2i > 0)

(1.2)
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The unweighted UniFrac distance only takes into account the presence

or absence of the taxa but Lozupone et al. also introduced the weighted

UniFrac distance that includes information on the relative abundance of

each taxa and is defined as follows

dW (b,q1,q2) =

r∑
i=1

bi | q1i − q2i |
r∑
i=1

bi (q1i + q2i)

(1.3)

1.2.3 Ordination

After computing pairwise distances, it is common to represent samples

into a plot to visualize the beta diversity and to identify possible data

structures.

The goal of ordination plots is to represent graphically the multidimen-

sional data into two or three orthogonal axes, preserving the main trends

of the data as well as possible. A distance matrix D usually defines

the information to represent in these graphical representations. While

Principal Components Analysis (PCA) preserves Euclidean distance, in

microbiology other alternatives are required since Euclidean distance is not

appropriate for microbiome abundance tables. We highlight two different

approaches for the graphical representation: the Principal Coordinates

Analysis (PCoA), also known as Multidimensional Scaling (MDS), and the

Non-Metric Multidimensional Scaling (NMDS).
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PCoA is based on eigenvalue decomposition of Dc
′Dc where Dc = D(I−

1
n11′) is the centred distance matrix. When D is defined by the Euclidean

distance, PCoA results exactly the same as PCA. Nevertheless, as ecological

distances are more informative for microbiome data, other alternatives are

often used. Care must be taken with PCoA if the selected distance is not

metric, because some eigenvalues may be negative and then, the graphical

representation will not be exactly a perfect representation of D.

In order to avoid this problem NMDS is more commonly used. Also

based on the distance matrix D, NMDS maximizes rank-based correlation

between original distances and those shown in the new ordination space,

meaning that for a particular sample, its closest neighbour in the graphic

is also the closest sample in D. The positions of samples in the graphic

are computed in an iterative procedure where, starting with a random

configuration, they are modified so that the discrepancy between the rank

defined from D and the resulted for the plot is minimized. This discrepancy

is measured through a parameter known as stress.

1.2.4 Differential abundance testing

Graphical representations of the microbiome abundance matrix may sug-

gest differences between groups of samples. Sometimes these groups are

established before starting the analysis (for example HIV-positive and

HIV-negative individuals), and other times they are defined by the user

from ordination plots. Differences in composition can be evaluated glob-
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ally (multivariate) or analyzing each particular taxon (univariate). Each

approach answers a different question, the multivariate approach tests the

global association between the microbiome and the output of interest while

the univariate approach tests which specific taxon are associated with the

outcome.

Different proposals are available to test for global differences between two

groups of samples. On the one hand, there are distance-based methods such

as PERMANOVA (Anderson, 2001), Analysis of Similarity (ANOSIM)

(Clarke, 1993) and Kernel machine regression (Zhao et al., 2015) that use a

distance matrix D to measure the significance of differences in composition.

On the other hand, there are model-based methods, like LaRosa et al. that

consider the Dirichlet-Multinomial distribution for modelling the whole

composition and test for global associations (la Rosa et al., 2012). If

significant global differences are detected between two groups, it results

interesting to deepen in the analysis and specify which particular taxa are

mainly making the difference. While Poisson is the main distribution for

modelling counts, the mean-variance equality it assumes differs from the

characteristics present in microbiome abundance tables. So, the Negative

Binomial (NB) distribution, as an extension of the Poisson distribution

allowing differences between mean and variance, is considered to model

the counts by some authors (Robinson et al., 2009; Anders and Huber,

2010; Love et al., 2014). Based on NB distribution we highlight {edgeR}

(Robinson et al., 2009) and {DESeq2} (Love et al., 2014) R packages,

which by a Generalized Linear Model they test if taxon’s distribution can
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be considered significantly different. Although the NB distribution is the

most used for the analysis of individual taxa, there are other alternatives

in the literature. For example, for datasets with many zeros, the Zero

Inflated family of distributions is proposed to model better the shape of

each feature (Paulson et al., 2013; Xu et al., 2015; Zhang et al., 2016).
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Figure 1.3: Scheme of 16S rRNA sequencing and shotgun sequencing for

extracting the microbiological content of a sample.
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Figure 1.4: Global number of AIDS-related deaths, new HIV infections,

and people living with HIV in 1990-2014 period.



CHAPTER 2

Compositional data and microbiome analysis

As introduced before, we denote the microbiome abundance table as a

matrix X with n rows, each of them associated to a particular sample, and

k columns referred to the different taxa or bacteria included in the study.

Each entry xij represents the number of sequences (reads) corresponding

to taxon j in sample i. The characteristics of such microbiome abundance

matrices give rise to different problems for their analysis. We highlight

three of them:

1. The total number of counts per sample is highly variable along

individuals.

2. The total number of counts per sample is constrained by the maximum

number of sequence reads of the DNA sequencer.

3. Abundance tables typically contain a large proportion of zeros.

55
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The first issue, i.e., the large variability of the total counts per sample, is

usually addressed through normalization of raw counts before the analysis

and was already discussed in the introduction.

The second issue arises because the total number of counts per sample

is constrained by the maximum number of sequence reads that the DNA

sequencer can provide. This total count constraint induces strong de-

pendencies among the abundances of the different taxa: an increase in

abundance of one taxon requires the decrease of the observed number of

counts for some others so that the total number of counts does not exceed

the specified sequencing depth. This constraint induces the compositional

nature of microbiome data.

Finally, the third issue is related to the sparsity of abundance tables, that

is, the large proportion of zeros in them.

In this chapter, we focus on the second and third issues, how to properly

analyze microbiome compositional data and how to deal with zeros in the

context of compositional data analysis (CoDA). As we will see, in a proper

compositional data analysis the first issue is no longer relevant and no

normalization of the data is needed before the analysis.

In the following sections we first introduce the notion of compositional data

and describe three important effects of ignoring the compositional nature

of microbiome abundance matrices: spurious correlations, subcompositional

incoherences, and the increase of type I error. Then, we present the three
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most common transformations for compositional data analysis: alr, clr

and ilr -transformations. Finally, we discuss some issues on the treatment

of zeros for CoDA.

2.1 Principles of Compositional Data Analysis

The challenges of dealing with compositional data were already advised

by Karl Pearson in 1897, who remarked the problem of spurious correla-

tions. In 1986, J. Aitchison introduced the log-ratio approach and laid the

foundations of Compositional Data Analysis (CoDA).

A compositional vector, or simply a composition, is a vector of k strictly

positive components or parts

x = (x1, . . . , xk) ; xi > 0, i ∈ {1, . . . , k} (2.1)

with a constrained or noninformative total sum
∑
xi.

In a composition the value of each component is not informative by it-

self and the relevant information is contained in the ratios between the

components or parts. Mathematically, the assertion that the relevant

information is contained in the ratios between the components implies that

two proportional compositions are equally informative in terms of CoDA.

Accordingly, an equivalence relation is defined in order to agglomerate

vectors carrying the same information.

Two vectors x1 = (x11, . . . , x1k) and x2 = (x21, . . . , x2k) are composition-
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ally equivalent (denoted by =a), if they are proportional, that is:

x1 =a x2 ⇐⇒ ∃p > 0, x1 = px2 (2.2)

Each equivalence class has a representative in the unit simplex defined as:

Sk = {x = (x1, . . . , xk) , xi > 0,

k∑
i=1

xi = 1} (2.3)

We adopt the unit simplex for simplicity though any other constant con-

straint for the total sum can be considered. Representatives in the unit

simplex are obtained by means of the so-called closure operation which

consists on dividing each component by the sum of the components, thus

scaling the vector to the constant sum 1. Formally, given a composition

x = (x1, . . . , xk) the closure of x is defined as

C (x) =

(
x1/

k∑
i=1

xi, . . . , xk/
k∑

i=1

xi

)
.

In microbiome analysis, for example, both the raw counts and their trans-

formation into relative abundances or proportions belong to the same

equivalence class and they carry the same relative information.

The simplex is thus the sample space of compositional data. Further-

more, the simplex has a Euclidean structure when the so-called Aitchison

geometry in the simplex is considered (Section 2.3).

Three important conditions should be fulfilled for a proper analysis of

compositions (Aitchison, 1986): permutation invariance, scale invariance

and subcompositional coherence.
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• Permutation invariance: a change in the order of the parts in the

composition should not affect the results.

• Scale invariance: any function f used for the analysis of compositional

data must be invariant for any element of the same compositionally

equivalent class; that is,

f(x1) = f(x2), ∀x1,x2, x1 =a x2

• Subcompositional coherence: the results that are obtained when a

subset of components is analyzed should not contradict those obtained

when analyzing the whole composition. In the context of microbiome

analysis this principle is important because we usually work with

subcompositions, obtained after filtering out the most low-abundant

taxa.

2.2 Issues when the compositionality is ignored

As already discussed in the introduction of this chapter, microbiome data

is compositional because the information that abundance tables contain

(number of DNA sequences) is relative: the total counts per sample is

constrained to the sequencing depth and thus they do not represent the true

microbiome abundance in the sample. However, many microbiome analyses

are performed using standard statistical methods. So, a natural question

to be asked is: what are the implications of ignoring the compositional

nature of the data in microbiome studies?
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In this section we describe three main problems that may arise when

ignoring the compositionality of microbiome data: spurious correlations,

subcompositional incoherences, and increase of type I error.

2.2.1 Spurious correlations

A consequence of the total sum constraint that characterizes compositional

data is that, necessarily, the correlation between some of the components

will be negative, regardless of the underlying relationship of the components.

This kind of artificial or spurious correlation was already highlighted by

Pearson in 1896 (Pearson, 1896). For simplicity we illustrate the problem

for a composition X = (X1, . . . , Xk) constrained to a constant sum equal

to 1. On one hand we have:

cov(X1,
k∑
i=1

Xi) = cov(X1, 1) = 0

On the other hand:

cov(X1,

k∑
i=1

Xi) = cov(X1, X1) + · · ·+ cov(X1, Xk)

Thus,

cov(X1, X1) + · · ·+ cov(X1, Xk) = 0

which implies that

−var(X1) = cov(X1, X2) + · · ·+ cov(X1, Xk)

The left hand side of the last equation is negative (except in the particular

case that the first component is constant). Thus, at least one of the

covariances on the right side is enforced to be negative.
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The presence of spurious correlations have important implications since

correlations are the basis of many statistical analyses, as important as,

linear regression or principal components analysis. Thus, if we know for

sure that artificial correlations arise, how could we trust the results of

analysis based on correlations?

2.2.2 Subcompositional incoherences

Given a composition x, a subcomposition is a vector obtained from a subset

of the parts of x or, equivalently, by removing some of its components.

One of the principles for a proper analysis of compositions is subcomposi-

tional coherence, defined as the agreement between the results obtained for

the whole composition and those obtained for a subcomposition. Standard

tools cannot ensure this agreement and incoherences arise specially when

working with correlations and distances, as we describe below. The problem

in microbiome analysis is that we usually work with subcompositions since

the whole composition is rarely available.

Subcompositional incoherences of correlations

When standard Pearson correlations are computed on a subcomposition, not

only size differences, but also changes in the sign of the association can be

found with respect to the correlations obtained with the whole composition.

This is illustrated in Table 2.1 with a small example involving four taxa.
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The table on the left in the first row represents the whole composition,

while the table on the right in the same row is the subcomposition when

the fourth component has not been considered and the proportions have

been recalculated. The second row contains the correlation matrices for

the whole composition (left) and for the subcomposition (right). Pearson

correlation between T1 and T2 is equal to 1 for the whole composition while

is almost zero (−0.03) for the subcomposition, which is a large difference

in correlation value and a change in the association sign. Similarly, we

can observe important differences in the correlations between T1 and T3,

being initially −0.5, and −0.91 when the fourth component is omitted

from the study. This toy example illustrates the erratic results that may

be obtained when computing correlations in the whole composition and in

a subcomposition. This makes the results based on correlation analysis

highly unreliable.

Subcompositional incoherences of distances

Many methods for microbiome analysis involve the computation of dis-

tances. However, most commonly used distances in microbiome analysis

are not subcompositionally coherent because do not fulfill the condition of

subcompositional dominance, an important property for the reliability of

the results in any distance-based analysis.

Let d be a distance or dissimilarity measure, x1 and x2 two compositions

and sx1 and sx2 two subcompositions with the same number of components.
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T1 T2 T3 T4

Sample 1 0.1 0.2 0.1 0.6

Sample 2 0.1 0.2 0.2 0.5

Sample 3 0.3 0.3 0.1 0.3

T1 T2 T3

Sample 1 0.25 0.5 0.25

Sample 2 0.2 0.4 0.4

Sample 3 0.43 0.43 0.14

T1 T2 T3 T4

T1 1 1 -0.5 -0.945

T2 1 -0.5 -0.945

T3 1 0.189

T4 1

T1 T2 T3

T1 1 -0.03 -0.91

T2 1 -0.37

T3 1

Table 2.1: On the top: the whole composition relative abundances (left)

and the subcomposition relative abundances calculated after removing the

fourth component (right). Below, the corresponding correlation matrices.

We say d is subcompositionally dominant if d(sx1 , sx2) ≤ d(x1,x2), for any

possible subcomposition sx1 and sx2 of x1 and x2, respectively. Intuitively,

this property can be explained as the condition that the distance between

two points in a multi-dimensional space should always be larger than their

distance when projected in a lower dimensional space (subcomposition).

Distances such as Bray-Curtis or weighted UniFrac do not comply this

property. This is a problem because the distribution of the points in the

projected space do not represent the distribution of points in the original

space.
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In Table 2.2 we present a small example for illustrating this. The two

tables of counts in the first row show the whole composition (left) and the

subcomposition obtained by removing the fourth component (right) for two

different samples. The two tables in the second row represent their respec-

tive proportions (down). If we compute the Bray-Curtis distance between

the two samples, we obtain a value of 0.42 for the whole composition and

a value of 0.44 for the subcomposition. Thus, subcompositional dominance

is not fulfilled which may affect the interpretation of the analysis.

T1 T2 T3 T4

Sample 1 20 15 1 2

Sample 2 3 17 6 3

T1 T2 T3

Sample 1 20 15 1

Sample 2 3 17 6

T1 T2 T3 T4

Sample 1 0.53 0.39 0.03 0.05

Sample 2 0.10 0.59 0.20 0.11

T1 T2 T3

Sample 1 0.56 0.42 0.02

Sample 2 0.12 0.65 0.23

Table 2.2: On the top: raw counts for the whole composition (left) and

for the subcomposition obtained by removing the fourth component (right).

Below, the corresponding proportion matrices.

2.2.3 Increase of type I error

Differential abundance testing, i.e., the search of microbial taxa presenting

different abundances between groups of samples, is highly affected when the

compositional nature of microbiome datasets is not acknowledged. More
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concretely, ignoring the compositionality of the data results in an increase

of false-positive findings.
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Figure 2.1: On the left, changes in raw counts only for the first taxon.

On the right, how it affects proportions.

We illustrate this fact with a small toy example (Figure 2.1) involving

a microbiome composition with four parts and two conditions, before

and after a disease that causes the increase in the abundance of Taxon

1. This example is inspired in what happens in the gastric microbiota

when it is invaded by Helicobacter pylori. In this example we assume for

simplicity that before the disease all taxa are equally abundant, presenting

around 1250 reads each one. Then, we assume that the disease modifies

the microbiome in such a way that the first taxon increases its abundance

to 6250 reads while the other taxa remain with 1250 reads. The barplot on
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the left of Figure 2.1, shows that Taxon 1 is the unique taxon presenting a

change in raw reads before and after the disease. However, when reads are

transformed into proportions, changes all over the four taxa are observed

before and after the disease (right side of Figure 2.1) So, though the

increment in Taxon 1 has been the unique change (emulating the behaviour

of Helicobacter Pylori), the normalization of raw values induces changes

in the relative abundance of the other components and all 4 taxa will be

identified as differentially abundant.

In general, the constraint that characterizes compositional data causes

that changes in one or several taxa induce changes into some others, thus

incrementing the type I error in many differential abundance analyses.

2.3 The Aitchison geometry and the

representation in coordinates

2.3.1 The log-ratio approach

In 1986, J. Aitchison put the basis of Compositional Data Analysis (CoDA)

by introducing what is now called the Aitchison’s log-ratio approach. The

log-ratio analysis was introduced in order to meet the principle of scale

invariance; as stated by Aitchison ”any meaningful (scale-invariant) func-

tion of a composition can be expressed in terms of ratios of its components”

(Aitchison, 1986). Because the logarithmic transformation makes ratios

mathematically more tractable, the simplest invariant function is given by
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the log-ratio between two components, that is:

f(x) = log

(
xi
xj

)
, i, j ∈ {1, . . . , k},

whose generalization is named a logcontrast function, that is, a linear

combination of logarithms of the components with the restriction that the

sum of the coefficients is equal to 0:

f(x) =
k∑
i=1

ai log(xi);
k∑
i=1

ai = 0.

There are two operations in the k-dimensional simplex which give it a

vector space structure. These two operations are the perturbation and

powering.

Given two compositions x,y ∈ Sk, the perturbation of x by y is given as

x⊕ y = C (x1y1, x2y2, . . . , xkyk)

and the power transformation or powering of the composition x by a

constant α ∈ R is defined as

α� x = C (xα1 , x
α
2 , . . . , x

α
k ) .

Moreover, we can talk about an Euclidean vector space, taking the following

inner product and the associated norm and distance.

The inner product of x and y is given by

〈x,y〉a =
1

2k

k∑
i=1

k∑
j=1

log
xi
xj

log
yi
yj
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Thus, the norm of x is given by

‖ x ‖a:= 〈x,x〉a =

√√√√ 1

2k

k∑
i=1

k∑
j=1

(
log

xi
xj

)
.

And the distance between x and y compositions, known as Aitchison

distance is the norm of the difference between them, that is,

da (x,y) =‖ x	 y ‖a=

√√√√ 1

2k

k∑
i=1

k∑
j=1

(
log

xi
xj
− log

yi
yj

)2

.

2.3.2 Coordinate representation

An alternative to perform the analysis of compositional data within the

simplex is to transform the compositions so that the transformed obser-

vations belong to the real space and classical statistical analysis could be

applied. Several data transformations have been proposed that fulfil the

principles of compositional data analysis. All them are based on log-ratios

between components. We highlight the alr, clr and ilr transformations

described below.

The additive log-ratio transformation (alr) is the first proposal introduced

by Aitchison (Aitchison, 1986). Taking one part as the reference, for

instance xk, the alr transformation is defined as:

alr : Sk → Rk−1

x = (x1, . . . , xk)→
(
log

(
x1
xk

)
, . . . , log

(
xk−1
xk

)) (2.4)
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alr -transformation returns a new vector with (k − 1)-components, one less

than the initial composition without any restriction for the sum of the new

components and with each coordinate taking values all over the real line.

Unconstrained multivariate analyses can be applied on the transformed

values.

Aitchison also defined the centered log-ratio transformation (clr) to treat

the parts symmetrically. The clr transformation is given by:

clr : Sk → U ⊂ Rk

x = (x1, . . . , xk)→
(
log

(
x1
g(x)

)
, . . . , log

(
xk
g(x)

)) (2.5)

where U = {z ∈ Rk :
k∑
i=1

zi = 0} defines a subspace of the k-dimensional

real space and g(x) = (
k∏
i=1

xi)
1
k represents the geometric mean of the

composition x.

One characteristic of the clr transformation is that the transformed com-

ponents are restricted to have a sum equal to zero:

k∑
i=1

clr(x)i =

k∑
i=1

log

(
xi
g(x)

)
= log

(
k∏
i=1

xi
g(x)

)
=

= log

(
1

g(x)k

k∏
i=1

xi

)
= log(1) = 0.

This constant sum of zero restriction of the clr -transformed coordinates

implies that some common statistical analyses can not be applied after the
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clr transformation because of a singular covariance matrix (det(clr(X)) =

0). Aitchison distance, introduced in the previous section, can be ex-

pressed in terms of the clr-transformation. Given two compositions

x1 = (x11, . . . , x1k) and x2 = (x21, . . . , x2k), Aitchison distance is the

Euclidean distance between the clr -transformed vectors of x1 and x2:

da(x1,x2) =

√√√√ k∑
i=1

(clr(x1)− clr(x2))2 (2.6)

The third alternative is named isometric log-ratio transformation (ilr)

and consists on the the representation of a composition given a particular

orthonormal basis in Sk (Egozcue et al., 2003). It overcomes the problem

of the singular covariance matrix present in the clr -transformation. The

ilr -transformation can be defined as:

ilr : Sk → Rk−1

x = (x1, . . . , xk)→ (ilr1, . . . , ilrk−1)
(2.7)

The formula given in Equation 2.7 is not explicit because multiple orthonor-

mal basis can be defined in Sk. One way to define one of them is to link

the basis to a sequential binary partition (SBP), that is, a hierarchy selec-

tion of the parts of a composition (Egozcue and Pawlowsky-Glahn, 2006).

The process consists on (k − 1) steps where first, the whole composition

is divided into two groups of features. The membership of each part is

expressed with a +1 or a −1 depending on the group. In the remaining

steps, each group of parts previously defined is subdivided into two sets

until no additional subdivision is possible because the subset only contains
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one component. As a result, a ((k − 1)× k)-dimensional matrix S defines

the binary partition, where each row characterizes the groups defined at

that step through a codification where +1, −1 and 0 specify if the feature

is included in one group, the other one, or none of them, respectively. S

matrix is used to define Ψ ∈M(k−1,k), a matrix including the vectors for

the orthonormal basis associated to the SBP. Each cell in Ψ is defined

from S as:

ψij = 0 if sij = 0

ψij =
1

ki+

√
ki+k

i
−

ki+ + ki−
if sij = 1

ψij = − 1

ki−

√
ki+k

i
−

ki+ + ki−
if sij = −1

(2.8)

where ki+ and ki− represent the number of +1 and −1 values in the i-th

row of S, respectively. Hence, each ilr - coordinate is defined from the

corresponding row of Ψ as:

ilri =
k∑
j=1

ψij log xj (2.9)

Rewriting Equation 2.9 we obtain:

ilri =

√
ki+ · ki−
ki+ + ki−

log


(∏

l∈Ii+
xl

)1/ki
+

(∏
j∈Ii−

xj

)1/ki
−

 (2.10)

where Ii+ and Ii− are the sets of indices of those components codified with

a +1 and a −1 in the i-th row of S, respectively. Each ilr -coordinate

is also known as a normalised balance or simply a balance. Expanding

Equation 2.10, a simpler expression is obtained as given in Equation 2.11,
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resulting on a value proportional to the difference between the means of

two log-transformed set of variables.

ilri =

√
ki+ · ki−
ki+ + ki−

 1

ki+

∑
l∈Ii+

log xl −
1

ki−

∑
j∈Ii−

log xj

 (2.11)

This concept of balance will be important in the fourth chapter of this

thesis where we define microbial signatures as balances between two groups

of taxa and propose a method for obtaining the balance that is most

associated with the response variable of interest.

These three transformations of compositional data, especially the centered

log-ratio and the isometric log-ratio, are the most extended in CoDA follow-

ing a common procedure that involves these steps: first, the compositional

problem is formulated in terms of its components; then, the corresponding

data transformation is implemented and the appropriate standard multi-

variate statistical method is applied for finally, translate back the results

into terms of initial compositions. (Pawlowsky-Glahn and Buccianti, 2011).

2.4 Zeros in microbiome data analysis

The presence of zeros in microbiome abundance tables makes difficult the

application of compositional data analysis which, based on log-ratios, is

not defined when zeros are included in the denominator. In this section we

first define the different kind of zeros that can be found in a microbiome

study and introduce two different ways of modifying abundance matrices
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in order to avoid the zeros and make possible the use of log-ratio analysis.

2.4.1 Different kinds of zeros

When a microbiome count, xij , in a microbiome abundance table is equal

to zero, this means that no sequences of the j -th taxon have been found

for the i-th sample. Depending on the particular study and the method

used for measuring the information, we can distinguish between three

different types of zeros: count zeros, rounded zeros, or essential zeros

(Pawlowsky-Glahn and Buccianti, 2011).

Count zeros appear in sampling studies involving counts. They arise in

processes that may be compared with a multinomial experiment. Thus, we

consider the presence of all the categories (taxa) with a positive probability

of appearing in a sample, but some of them in such a low proportion that

depending on the sample size, they are more or less probable to appear.

When count zeros are present in a dataset, they are usually replaced by

small positive values.

Rounded zeros, also known as values below detection limit, are those null

values resulted because its real abundance is below the maximum round-off

error or detection limit. Similarly to count zeros, null values considered as

rounded zeros are usually replaced by small quantities.

Essential zeros are null values representing the total absence of the taxon

in sample’s environment. For these type of zeros, the sampling process and
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sequencing depth are not important, because although increasing the total

number of reads, we would not find any read associated to that taxon. So,

in this case the observed zeros represent the true content and it does not

make sense to replace them by a low positive value. This situation requires

a special analysis (see (Mart́ın-Ferńandez et al., 2011) for more details).

Since, in general, we do not have enough information for ensuring the

complete absence of a bacteria in the environment of a sample, in what

follows we consider all null values as count zeros. That is, we assume that

any microbial taxa can be present in any sample, though, some of them

in such a small proportion that they might not be detected during the

sequencing process.

2.4.2 Dealing with count zeros

As already emphasized in previous chapters, microbiome abundance tables

are sparse, that is, they contain many zeros. This should be properly

addressed before compositional data methods are applied.

In microbiome analysis this problem has not been treated in depth and

the most common way to tackle this issue is by adding a pseudo-count

to the whole matrix. We discuss in the following paragraphs some of the

approaches that have been proposed in the last decade about the proper

treatment of rounded or count zeros in compositional data sets.
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Substitution by a pseudo-count

This method consists on overcoming the problem of zeros by adding a

constant value to the abundance matrix. Here, we describe two different

approaches used in the most recently CoDA literature.

The most extended way of avoiding zeros is by adding one to all the cells

in the abundance matrix, independently of their initial value. For instance,

Silverman et al. (2017) and Morton et al. (2017) include this replacement

before their compositional analysis (Silverman et al., 2017; Morton et al.,

2017).

The second alternative is to replace zeros by the 65% of the detection

limit. Since a microbiome abundance table is defined by counts, the lowest

non-zero value that can be found is 1. Thus, in this case the method

consists on replacing zeros by a pseudo-count equal to 0.65. This idea is

supported by Mart́ın-Fernández et al. (2015) when zeros do not represent

more than the 10% of the total number of cells in the abundance matrix.

Washburne et al. (2017) apply this technique in their CoDA proposal for

identifying the phylogenetic factors driving patterns in the composition of

microbial community (Washburne et al., 2017).

It is important to highlight that even though these two alternatives are

similar, they affect log-ratio analysis in a different way. While replacing

zeros by the 65% of the detection limit preserves constant the log-ratio

between non-zero parts, by adding one count to all the cells in the table,
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these log-ratios are modified.

Bayesian-Multiplicative treatment

Instead of replacing zeros by a pseudo-count or adding a constant value

to the matrix, Mart́ın-Fernández et al. (2015) propose the Bayesian-

Multiplicative (BM) treatment, a replacement involving a Bayesian inference

on the zero values, and a multiplicative modification of non-zero values in

the composition (Mart́ın-Fernández et al., 2015).

BM-replacement modifies both zero and non-zero values of each composition

xi by another composition ri = (ri1, . . . , rik), so that the original ratios

between parts without zeros are preserved, that is:

rij
rik

=
xij
xik

, xij 6= 0 , xik 6= 0. (2.12)

Additional information about the BM-replacement is detailed in (Mart́ın-

Fernández et al., 2015). There, they consider several prior distributions

for the Bayesian inference in the BM-replacement, concluding that the

Geometric Bayesian Multiplicative (GBM) replacement is the one providing

best results. GBM replaces xi by ri, whose components are given by:

rij =



m̂ij

gi
∑
xi + 1

if xij = 0

xij

(
1−

∑
k|xik=0

m̂ik

gi
∑
xi + 1

)
if xij > 0

(2.13)
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where

αij =
n∑
r=1
r 6=i

xrj is the sum of counts for a particular taxa without

considering the i -th sample

m̂ij =
αij
k∑
l=1

αil

is a particular estimation for the prior

gi =

(
k∏
j=1

m̂ij

)1/k

is the geometric mean of the vector m̂i

(2.14)

Based on the study of Mart́ın Fernández et al. (2015), we set in our

proposals the GBM replacement as the default zero replacement procedure

prior to the analysis. GBM replacement is appropriate since it preserves

the log-ratio values between non-zero components allowing the use of prior

information for a better zero replacement. However, we also include in our

algorithms the option of adding one count to the whole abundance matrix

due to its extended use.

Depending of the degree of sparsity of the microbiome abundance matrix,

zero-replacement conducted for the use of compositional tools may have

an important effect on the results. If the proportion of zeros is high,

the matrix requires the replacement of many cells which may represent

an important change of the initial dataset. We have implemented some

small simulations in order to explore the robustness of results when zero

replacement is performed. The simulations evaluated how consistent was

Aitchison distance depending on the zero replacement method, the addition

of a constant equal to 1 to all cells in the abundance table and the Bayesian-
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multiplicative zero replacement. We compare Aitchison distance between

samples for the initial dataset with Aitchison distance as sparsity of the

matrix increased. This increase in the proportion of zeros was introduced

through the rarefaction (subsampling) of the initial dataset. The results

suggest that the Aitchison is very robust to zero replacements and that

both zero replacement methods have similar performance.
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Kernel machine regression for

microbial compositional data analysis

One of the first and principal questions to tackle in a microbiome study is

whether there is any relationship between the microbiome and a response

variable of interest such as disease status or another phenotype. This

global question is addressed with multivariate methods that can broadly be

divided into two groups: model-based methods and distance-based methods.

In this chapter, we briefly describe the most common multivariate proposals

for microbiome analysis, both, model-based and distance-based, but we

focus mainly on a specially interesting approach: Kernel machine regression

(KMR) and a particular variant for microbiome data analysis proposed

by Zhao et al. (Zhao et al., 2015). Since this approach does not take

into consideration the compositional nature of microbiome data, their

results may be questioned. In this work we suggest how to adapt Kernel

machine regression to compositional data analysis through the use of a

79
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subcompositionally dominant distance. Moreover, we define a method that,

using a weighted version of KMR, provides a measure of the contribution

of each taxon in the global association between the microbiome and the

response variable.

3.1 Model-based multivariate methods for

microbiome analysis

Most model-based multivariate methods for microbiome analysis assume

that microbiome abundances follow a Dirichlet-Multinomial (DM) distribu-

tion. Raw counts for each sample in abundance tables can be interpreted as

a particular essay from a multinomial experiment. However, the variability

present in raw counts is usually larger than the determined by the multino-

mial model. This is due to the fixed underlying proportions assumed by the

multinomial distribution, which does not fit with the heterogeneity present

in microbiome samples. This overdispersion in microbiome abundance

tables is accounted considering each proportion as a random variable and

assuming a Dirichlet distribution.

Thus, given a set of k taxa X = (X1, . . . , Xk) and a particular vector of

counts x = (x1, . . . , xk), the Dirichlet-Multinomial distribution (DM) is

defined as in Equation 3.1. Γ(·) denotes the Gamma function in Equation

3.1 and γ = (γ1, . . . , γk) is a vector of positive parameters proportional to

the expected mean for each taxon. x+ and γ+ denote the sum of x and γ,
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respectively, where γ+ controls the dispersion. Higher values of γ+ indicate

a lower overdispersion and probability values closer to the expected mean.

P (X = x; γ) =
x+!

x1! · · ·xk!
Γ(x+ + 1)Γ(γ+)

Γ(x+ + γ+)

k∏
j=1

Γ(xj + γj)

Γ(γj)Γ(xj + 1)
(3.1)

Based on DM distribution, we highlight two different approaches. The first

one is introduced as an alternative to non-parametric models (la Rosa et al.,

2012). After a proper estimation of the parameters of the distribution,

they propose different tests for: determining if the overdispersion is high

enough to justify the DM model instead of the multinomial distribution, if

the expected frequencies for each taxon are equal to a given vector, or if

several groups of samples share a common vector of expected frequencies.

The second approach, proposed by Chen et al. (2013), considers that

the parameters γj in the DM-model (Equation 3.1) depend on a set of

covariates Z = (Z1, . . . , Zr) via the regression model in Equation 3.2 (Chen

and Li, 2013). zi represents the covariates for the i-th sample and βjl the

coefficient referent to the j-th taxon with respect to l-th covariate, whose

sign and magnitude measure the effect of the l-th covariate on the j-th

taxon.

γj(z
i) = exp

(
r∑
l=1

βjlzil

)
(3.2)

The method includes a penalized likelihood approach to estimate the

regression parameters and to select only the relevant associations, thus

overcoming the possible loss of power that the high-dimensionality of the

problem may induce.



82 Chapter 3. Kernel machine regression for microbial compositional data analysis

We implemented this methodology in the context of the HIV-microbiome

studies with the aim of characterizing dietary and gut microbiome associa-

tion in HIV-1 positive individuals (Rivera-Pinto et al., 2017).

3.2 Distance-based multivariate methods for

microbiome analysis

Distance-based methods are more extended than model-based methods

in microbiome studies. This type of analyses are focused on a distance

or dissimilarity matrix D that summarizes differences between samples

with respect to the abundance of multiple microorganisms. The good

performance of distance-based approaches strongly relies on the selected

distance or dissimilarity measure. The Euclidean distance is not a good

measure to describe the dissimilarity of two ecosystems (Beals, 1984).

Though there are many different measures derived from the ecology field,

the most extended distances in microbiology are Bray-Curtis and UniFrac

family of distances.

As already introduced in previous chapters, distances are computed at

first steps of the analysis and are used for graphical representation of the

individuals in a non-metric multidimensional scaling plot (NMDS). This

type of representations may be useful to identify possible data structures

or groups of samples with a similar composition. As an example, Figure 3.1

represents Bray-Curtis distances between samples included in the IrsiCaixa
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HIV study conducted at IrsiCaixa (Noguera-Julian et al., 2016) that, as

described in previous chapters, consists of 156 samples (127 HIV-1 positive

individuals (HIV+) and 29 HIV-negative controls (HIV-) divided into three

risk groups: hts (heterosexual males and females), msm (men who have

sex with men) and pwid (people who inject drugs). A clear difference in

the distribution of individuals in the MSM group is manifest in Figure

3.1, suggesting that this group presents a different microbial composition

than the other risk groups. In other words, MSM is a confounder that

should be adjusted for in microbiome studies. This was one of the main

findings in Noguera et al. (2016) since it has important implications for

future HIV-microbiome studies and for the validity of previous ones. Some

tests are available in the literature for measuring the significance of the

differences between groups observed in a NMDS plot. Most of them are

permutational tests, which evaluate if the centroids and dispersion of

each group of samples is the same. Figure 3.2 shows an example where

two pre-defined groups of samples are represented in a NMDS and the

samples are linked to the centroid of the group through a line. The null

hypothesis of distance-based tests specifies that there are no differences

in composition among groups of samples, what in graphical terms means

that all the groups have the same center of mass. In this framework,

two popular tests are the Analysis of similarity (Clarke, 1993) and the

Permutational analysis of variance (PERMANOVA) (Anderson, 2001),

implemented in the anosim() and adonis() functions of the {vegan}

R library, respectively. While the analysis of similarity takes a rank-based
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statistic to evaluate differences in the center of gravity of the different

groups, PERMANOVA evaluates an score similar to the Firsher’s F-ratio

that, in the same way as ANOVA, compares the variability within groups

(SSW) against the variability between groups (SSA), but partition of sums-

of-squares (SS) is applied directly to dissimilarities. Equation 3.3 defines

the F-statistic, where g is the number of groups considered in the study

and n the total number of samples.

F =
SSA/(g − 1)

SSW/(n− g)
(3.3)

The total sum of squares (SS) is computed as expressed in Equation 3.4,

where dij represents the distance between i -th and j -th samples, and n is

the total number of samples.

SS =
1

n

n−1∑
i=1

n∑
j=i+1

d2ij (3.4)

The variability within groups (SSW) is computed as defined in Equation

3.5, where εij is defined as a 1 if i -th and j -th samples belong to the same

group and 0 otherwise.

SSW =
1

n

n−1∑
i=1

n∑
j=i+1

d2ijεij (3.5)

Finally, because SS = SSA+ SSW , the variability between groups can

be easily computed as the difference between SS and SSW.

In the same way that the linear regression model is an extension of the

ANOVA that allows the adjustment for covariates, there is also a method-

ology that extends PERMANOVA to a regression model approach: Kernel
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machine regression (KMR). In the next section we will describe in more

detail this powerful distance-based regression model.

3.3 Kernel machine regression for microbiome

analysis

Kernel machine regression is a semi-parametric regression model that

includes a non-parametric component to associate a set of covariates X, for

instance microbiome abundances, with a response variable of interest Y. It

compares pairwise similarity in the outcome variable to pairwise similarity

in the microbiome profile. The model allows the adjustment for additional

covariates Z. Kernel machine regression is expressed according to Equation

3.6a when the response variable is continuous, and to Equation 3.6b for a

dichotomous outcome.

Yi = β0 + β′Zi + h(Xi) + εi (3.6a)

logit(Yi) = β0 + β′Zi + h(Xi) (3.6b)

Equation 3.6a corresponds to a linear regression model with a non-parametric

component given by h(·), and Equation 3.6b to a logistic regression model

also with a non-parametric part. β0 denotes the intercept, β is the vector

of the regression coefficients for the covariate adjustment, and εi is an

error term with mean 0 and variance σ2. The non-parametric component

h(X) measures the relationship between the microbiome composition and

the outcome. This association can be tested according to the following
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hypothesis:

H0 : h(X) = 0

H1 : h(X) 6= 0
(3.7)

where the null hypothesis represents no association between microbiome

composition and Y. The non-parametric component h(X) is related to

a positive definite Kernel function K(·, ·) that measures the dissimilarity

between the composition of two individuals. Depending on the complexity

of the selected Kernel function, the user can obtain a measure that includes

information about non-linear relationships or taxa interactions, among

others. There are many ways of defining a Kernel matrix K, but the most

natural is to define it from a given distance matrix D, as follows:

K = −1

2

(
I− 11T

n

)
D2

(
I− 11T

n

)
(3.8)

where I denotes the identity matrix and 1 corresponds to a vector of ones

(Pan, 2011).

Kernel machine regression is a special kind of mixed model (Liu et al.,

2007, 2008; Gianola and van Kaam, 2008) where h(X) is a subject-specific

random effect that follows a normal distribution with mean 0 and variance

τK, that is, h(X) ∼ N(0, τK). Thus, the association test defined in

Equation 3.7 can be rewritten as

H0 : τ = 0

H1 : τ 6= 0
(3.9)

Making use of the methodology developed for mixed models, the test in
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Equation 3.9 can be evaluated through the statistic Q

Q =
1

2φ
(Y − Ŷ0)

′K(Y − Ŷ0) (3.10)

where Ŷ0 is the predicted mean of Y under the null hypothesis, that

is, when we remove h(Xi) from equation 3.6a or equation 3.6b. φ is the

dispersion parameter which is defined as 1 for the logistic regression, and

the variance in the sample for linear regression. Under the null hypothesis,

the statistic Q asymptotically follows a mixture of chi-squared distributions

and the p-value can be obtained in different ways (Liu et al., 2008; Duchesne

and Lafaye de Micheaux, 2010). Zhao et al. (2015) consider this test to

be very conservative and, based on a previous work (Chen et al., 2016),

they propose and implement some adjustments in the so called MiRKAT

algorithm, a microbiome regression-based kernel association test available

as an R package with the same name {MiRKAT} (Zhao et al., 2015).

Zhao et al. (2015) discuss how the power of the test may be affected by the

selection of a good Kernel function. In order to choose the best distance-

based kernel, they evaluate a collection of dissimilarities including the

weighted UniFrac distance, unweighted UniFrac distance, Bray-Curtis dis-

similarity or the generalized UniFrac distance. Since the subcompositional

dominance of these measures cannot be guaranteed, none of them prevents

from incoherences between distances based on the global composition and

those based on a subset of the features. In the next section, we introduce a

methodology which adapts the Kernel machine regression to compositional

data analysis with the aim of overcoming subcompositional problems.
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3.4 Kernel machine regression for microbiome

compositional data

We name MiRKAT-CoDA the extension of Kernel machine regression

for compositional data analysis through the use of the subcompositional

dominant Aitchison distance (Aitchison, 1986). Given two compositions

denoted by x1 = (x11, . . . , x1k) and x2 = (x21, . . . , x2k), Aitchison distance

between x1 and x2 is defined as

dA(x1,x2) =

√√√√ k∑
i=1

(
clr(x1)i − clr(x2)i

)2
(3.11)

where clr(x1) and clr(x2) are the clr -transformed values of x1 and x2,

respectively, that is, clr(xi) =
(
log( xi1

g(xi)
), . . . , log( xi2

g(xi)
)
)

, for i = 1, 2,

being g(·) operator the geometric mean of a vector. Aitchison distance is

just the Euclidean distance between the clr -transformed coordinates of the

initial abundances. It can also be computed as the Euclidean distance of

any ilr -transformed coordinates.

We propose to adapt Kernel machine regression for compositional data

analysis by using Aitchison distance. Thus, the model can be expressed

as in Equation 3.12a for a continuous response variable or as in Equation

3.12b for a dichotomous outcome, both including h(clr(X)), which denotes

the non-parametric component applied to the clr -transformed values of X.

Yi = β0 + β′Z + h(clr(Xi)) + εi (3.12a)

logit(Yi) = β0 + β′Z + h(clr(Xi)) (3.12b)
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The association between the microbiome and the response variable is tested

through the following hypothesis

H0 : h(clr(X)) = 0

H1 : h(clr(X)) 6= 0
(3.13)

The non-parametric component h(·) is assumed to follow a normal distri-

bution N(0, τKA), with τ a real value and KA the Kernel matrix that,

similarly to Equation 3.8, is given by

KA = −1

2

(
I− 11T

n

)
DA

2

(
I− 11T

n

)
(3.14)

where DA denotes Aitchison distance matrix.

3.4.1 Global association between microbiome and HIV

infection with MiRKAT-CoDA

We can implement MiRKAT-CoDA by making use of the available functions

in MiRKAT package with some previous transformations of the microbiome

data. The process is described in the following steps:

1. Replacement of zeros: we use the Geometric Bayesian Multiplica-

tive (GBM) replacement (Mart́ın-Fernández et al., 2015) to avoid

zeros in the microbiome abundance matrix X, replacing them by a

small value obtained with a proper Bayesian imputation.

2. Compute Aitchison distance matrix: once the count matrix

does not contain zeros, the clr() function of {compositions}
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package is used to compute the centered log-ratio transformed values.

Then, Euclidean distance is calculated for this clr -transformed scores,

thus getting Aitchison distance matrix.

3. Obtain the Kernel matrix: we use D2K() function available in

the {MiRKAT} package. It transforms the distance matrix DA into

a Kernel matrix KA according to Equation 3.14.

4. Implement Kernel machine regression: we run MiRKAT()

function, available in {MiRKAT} package where we specify the re-

sponse variable, the Kernel matrix and the covariate adjustment.

The output of this process is a p-value for the null hypothesis of no as-

sociation between X and Y adjusted by Z. Here we illustrate the use of

MiRKAT-CoDA for exploring the global association between microbiome

abundance and HIV infection for the IrsiCaixa HIV study (Noguera-Julian

et al., 2016). We evaluate the association between microbiome composi-

tion and HIV-Status (HIV+ or HIV-) using the logistic Kernel machine

regression given in Equation 3.12b, where the response variable Y is HIV-

Status, X contains microbiome abundances at genus level, and Z are the

adjustment covariates. As concluded by Noguera et al., sexual practice is a

possible confounding variable when studying the microbiome composition

in an HIV study. We implement the analysis with and without adjustment

by including sexual practice in Z as a dichotomous variable defined as

MSM for those men who have sex with men, and non-MSM for the rest of

individuals. The result of running this algorithm to the HIV-study, is a
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p-value of 0.00215 if we do not adjust by MSM, and a p-value of 0.084 after

adjusting for sexual practice. Though near the usual significance level of

0.05, the result is inconclusive and does not allow to confirm a significant

association between microbiome composition and HIV-Status.

3.5 Weighted Kernel machine regression for

compositional data

Kernel machine regression as implemented in the previous section provides

a global answer about the relationship between the response variable and

microbiome composition as a whole. If this global test results significant,

it is reasonable to think that not all taxa but only few of them are respon-

sible of the association. In this sense, we present a new proposal in order

to rank each variable according to its contribution to the global associ-

ation with the phenotype. The method uses Kernel machine regression

together with the recently defined weighted Aitchison distance (Egozcue

and Pawlowsky-Glahn, 2016) and provides a score for each variable measur-

ing its contribution to the microbiome-outcome association. Furthermore,

the method can also be applied to a particular group of variables instead

of to just one component.

The weighted Aitchison distance is the generalization of Aitchison distance

where each component is weighted according to a vector w. Given two

compositions denoted by x1 = (x11, . . . , x1k) and x2 = (x21, . . . , x2k), and

a vector of weights w = (w1, . . . , wk), the weighted Aitchison distance
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(Egozcue and Pawlowsky-Glahn, 2016) between x1 and x2 is defined as

follows

dw(x1,x2) =

√√√√ k∑
i=1

wi

(
log

y1i
gw(y1)

− log
y2i

gw(y2)

)2

(3.15)

where y1 and y2 are the initial compositions x1 and x2 divided by w

yi =
xi

w
=

(
xi1
w1

, . . . ,
xik
wk

)
, (3.16)

and gw(·) denotes the weighted geometric mean as defined in Equation

3.17, where the sw =
k∑
i=1

wi is the total sum of the weights

gw(y) = exp

(
1

sw

k∑
i=1

wi log(yi)

)
. (3.17)

Each vector of weights w provides a different weighted Aitchison distance.

In order to evaluate the contribution of a particular taxon (or a group

of taxa) we explore how the global association between the microbiome

and the response variable changes as we modify the weight of the taxon

of interest. If a particular taxon is important in the association, as we

increase its weight we expect the global association to also improve and get

a more significant result of the Kernel machine regression, that is, a smaller

p-value. Based on this idea, we consider a sequence of weights and we

analyse how the global p-value changes as different weights are considered.

As described below, we summarize the contribution of a taxon to the global

association as the slope of the linear regression model between the different

weights and − log(p). This proposal named weighted MiRKAT-CoDA is

implemented as an algorithm defined by the following steps:
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1. Zero replacement: a replacement of zeros is required before com-

positional data analysis can be performed. Although we consider the

GBM replacement as the default option, there are other alternatives

like adding one count to all the cells in the abundance matrix.

2. MiRKAT-CoDA with weights: given a composition (X1, . . . , Xk),

the analysis of the contribution of component Xi in the global

association is implemented by considering a sequence of weights

S = {s1, . . . , sq}. Thus, for each component Xi , i ∈ {1, . . . , k} and

for each particular value sr ∈ S, the components of w = (w1, . . . , wk)

are defined as:  wj = 1 ∀j 6= i

wi = sr , sr ∈ S
This idea can also be extended for measuring the contribution of a

set of features indexed by I, defining the vector w as wj = 1 ∀j /∈ I

wl = sr , ∀l ∈ I, sr ∈ S

Using the response vector Y and the weighted Aitchison distance ma-

trix Dw for a particular vector of weights w, we implement MiRKAT()

function, which returns a p-value measuring the significance of the

association between the response and the microbiome. Once the

kernel regression model has been run for each combination of taxon

and weight value, a table similar to Table 3.1 summarizes the results:

3. Linear regression: the contribution of each taxon is summarized

by the slope of the linear regression model between the weights S
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Weight Taxon 1 Taxon 2 . . . Taxon k

w = s1 p11 p12 . . . p1k

w = s2 p21 p22 . . . p2k

. . . . . . . . . . . . . . .

w = sq pq1 pq2 . . . pqk

Table 3.1: Structure of p-values obtained after the evaluation of the

contribution of each taxon for each weight.

and minus the logarithm of the p-values obtained for each different

weight. The larger the slope, the larger is the contribution of the

variable to the global association.

4. Slope ranking: once the contribution of each taxon has been es-

timated they can be ranked in a decreasing order so that the most

important features appear on the top of the list.

3.5.1 Weighted MiRKAT-CoDA for microbiome-HIV

association

We use weighted MiRKAT-CoDA algorithm to the IrsiCaixa HIV study

in order to measure the individual contribution of each feature to the

global microbiome-HIV association. Though this global association is

not significant, we use this data to illustrate weighted MiRKAT-CoDA
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algorithm. Using the default set of weights S = (.1, .4, .7, 1, 2, 3, 4, 5), we

obtain the Table 3.2, where each p-value measures the association between

microbiome and HIV-Status when the weight in the corresponding row is

assigned to the taxon in the corresponding column. A linear regression

model is implemented for each taxon being S the explanatory variable, and

minus log-transformed p-values the response. Figure 3.3 presents the result

for two different taxa: g Prevotella presenting a decrease of the response

variable as the weight is increased, and g Bacteroides, with a positive

relationship between the weight and the significance. From these results

we can infer that g Prevotella is not relevant to the global microbiome-

HIV association since when we increase its weight the significance of the

association decreases (negative slope). Instead, g Bacteroides is shown to be

important in the global microbiome-HIV association since the significance

increases as we increase its weight (positive slope).

Finally, we represent in Figure 3.4 the top 10 taxa that most contribute to

the joint microbiome-HIV association.

3.6 Discussion

There are different methods to answer if there is an association between

microbial composition and an outcome of interest. In this chapter we

describe the Kernel machine regression (KMR) as a distance-based method

to answer this question. Defined for microbiome studies, MiRKAT R package

implements KMR methodology for different distances. As none of them is
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Weight g Prevotella g Bacteroides . . . g Solobacterium

w = 0.1 0.076 0.120 . . . 0.077

. . . . . . . . . . . . . . .

w = 1 0.084 0.084 . . . 0.084

. . . . . . . . . . . . . . .

w = 5 0.146 0.027 . . . 0.125

Table 3.2: Matrix with the p-values for the corresponding taxon (column)

obtained after using the weight indicated in the Weight column.

subcompositionally dominant, we introduce an adaptation of the method

including Aitchison distance as the measure used for building the Kernel

matrix in KMR. Because of its subcompositional dominance, we use this

distance in order to avoid the possible incoherences resulted with some

others.

Moreover, we define another new method based on KMR which uses the

weighted Aitchison distance. Modifying the weight of the different taxa

they can be ranked according to their importance in the global association

with the outcome. This approach, although useful for pointing the most

important microorganisms, presents some limitations. The first limitation

is that the set of weights S considered may result uninformative. Variability

in the p-values is required to compute the contribution of each taxon, so

weights should be defined to ensure this fluctuation. The second limitation

is that if the reference global p-value (when no weights are considered)
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is very small or zero, the weighting method is not very informative since

changing the weight of just one taxon can hardly modify the global p-value,

remaining equal to zero in most cases.
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Figure 3.1: Non-metric multidimensional scalling (NMDS) representation

of an HIV cohort labelling samples according to their HIV-Status and Risk

group.



3.6. Discussion 99

●

●

●

●

●

●

● ●

NMDS − representation

●

●

●

●

● ●
●

●

Figure 3.2: NMDS-representation of samples of two pre-defined groups.

Squares denote their centroids, with which they are linked.
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Figure 3.3: Slopes for two different bacteria. g Prevotella with a negative

slope and g Bacteroides with a positive slope.
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Figure 3.4: Top 10 taxa contribution in the microbiome - HIV association.



CHAPTER 4

Identification of microbial signatures with selbal

Most of the methods proposed for microbiome analysis are intended to

answer two main questions: first, whether there is a global association

between the microbiome and a phenotype of interest, and second, which

specific taxa are associated with the outcome. Multivariate methods

like PERMANOVA (Anderson, 2001), implemented in the adonis()

function of the R {vegan} package (Oksanen, 2015), or MiRKAT (Zhao

et al., 2015) answer the first question. The second one is approached

with univariate methods where each taxa is tested for association with

the outcome. When the response variable is dichotomous, this is known

as differential abundance testing and methods specifically developed for

RNA-Seq data, such as DESeq2 (Love et al., 2014) and edgeR (Robinson

et al., 2009), are commonly used. Other methods have also been proposed,

such as ANCOM (Mandal et al., 2015) and ALDEX (Fernandes et al., 2013),

that acknowledge the compositionality of microbiome data.

101
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In this chapter, we focus on a different question. Here, we propose a

methodology whose goal is the identification of microbial signatures, that

is, groups of microbial taxa that are predictive of a phenotype of interest.

These microbial signatures can be used for diagnosis, prognosis or predic-

tion of therapeutic response based on an individual’s specific microbiota

(Knight et al., 2018). The identification of microbial signatures involves

both, modeling and variable selection: modeling the response variable

and identifying the smallest number of taxa with the highest prediction

or classification accuracy. In this context, we propose selbal, a model

selection procedure that searches a sparse model that adequately explains

the response variable of interest. Similarly to forward stepwise linear re-

gression, selbal performs multiple regressions a number of times, adding

a new taxon to the model at every step. Unlike linear regression, the

raw variables in selbal are not included in a linear equation, but as

part of what is called a balance in compositional data analysis literature.

The method proposed in this chapter has already been published and is

available in Appendix D (Rivera-Pinto et al., 2018).

Introduced in Chapter 2 with the general name of an ilr -coordinate, we

redefine the concept of balance. Let X = (X1, · · · , Xk) be a composition

with k parts. Given two disjoint subsets of components in X, denoted by

X+ and X−, indexed by I+ and I−, and composed by k+ and k− parts,

respectively; the balance between X+ and X− is defined as the normalized
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log-ratio of the geometric mean of the two groups of components:

B(X+,X−) =

√
k+ · k−
k+ + k−

log

(∏
i∈I+ Xi

)1/k+

(∏
j∈I− Xj

)1/k−
(4.1)

Equation 4.1 can be expanded as in Equation 4.2 for easier interpretation.

This formulation expresses a balance as a value proportional to the differ-

ence between the means of the log-transformed variables of the two groups

of components.

B(X+,X−) ∝ 1

k+

∑
i∈I+

logXi −
1

k−

∑
j∈I−

logXj (4.2)

With the expression in Equation 4.2, it is clear that a compositional balance

is a particular case of a log-contrast, defined as a linear combination of

the log-transformed components of a composition with the restriction that

the coefficients of the linear function add-up to zero (Pawlowsky-Glahn

et al., 2015). The importance of working with balances or in general

with log-contrasts, when analyzing compositional data is that this kind of

functions preserve scale invariance, one of the principles that should be

fulfilled in CoDA (Aitchison, 1986; Pawlowsky-Glahn et al., 2015).

selbal, the algorithm we propose for balance selection, starts with a

thorough search of the two taxa whose balance, or log-ratio, is most asso-

ciated with the response. Once the first two-taxa balance is selected, the

algorithm performs a forward selection process where, at each step, a new

taxon is added to the existing balance, so that the specified optimization

criterion is improved (Area Under the ROC Curve (AUC) for dichotomous
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responses or Mean Squared Error (MSE) for continuous outcomes). The

algorithm stops when there is no additional variable that improves the

current optimization parameter, or when the maximum number of compo-

nents to include in the balance is achieved. This number is established with

a cross-validation procedure, which is also used to explore the robustness

of the identified balance.

The idea of model selection for microbial signature identification can also

be performed in two separate steps: first, variable selection, and next,

model building with the selected variables. When the outcome variable is

dichotomous, variable selection can be obtained with differential abundance

testing methods such as DESeq2 (Love et al., 2014), edgeR (Robinson

et al., 2009), or, in the context of compositional data analysis, ANCOM

(Mandal et al., 2015) or ALDEx2 (Fernandes et al., 2013). However, it is

not clear how to combine the selected variables to obtain the best joint

sparse model. This is specially challenging for microbiome analysis, where

the compositional nature of microbiome data induces spurious correlations

among the variables (Gloor et al., 2016). We think that a joint proce-

dure that involves both modelling and variable selection, as performed in

selbal, is more appropriate in this context.

Other authors (Silverman et al., 2017; Washburne et al., 2017; Morton et al.,

2017) have previously proposed the use of balances for microbiome analysis

regarding the construction of an isometric log-ratio (ilr) transformation

(Egozcue et al., 2003), that allows compositional data to be represented in
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a real Euclidean space where standard statistical methods can be applied.

Silvermann et al. (2017) and Washburne et al. (2017) propose methods

that use microbial phylogenetic information to guide the sequential binary

partition in the construction of a particular ilr -transformation. This

phylogenetically driven ilr -transformation would help to detect relevant

evolutionary factors or phylogenetically associated bacterial groups related

to host-microbiome interactions (Silverman et al., 2017; Washburne et al.,

2017). In the method proposed by Morton et al. (2016), instead of using

phylogenetic information, they use the response variable to define the

binary sequential partitions of the ilr -transformation (Morton et al., 2017).

selbal is different from these methods: first, in selbal only one balance

is considered and not a sequence of balances, and second, the purpose of the

selected balance is classification or prediction and not a new representation

of the data.

4.1 selbal algorithm

The main goal of selbal algorithm is to find the best balance for prediction

of a variable of interest. So, given a numeric or dichotomous response

variable Y, a composition X = (X1, . . . , Xk), and additional covariates Z =

(Z1, . . . , Zr), the goal of the algorithm is to determine two subcompositions

of X, X+ and X−, whose balance B(X+,X−) is highly associated with

Y after adjustment for covariates Z. Depending on the nature of the

dependent variable, the association can be defined in several ways. For
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a continuous response, the optimization criterion is the minimization of

the mean squared error (MSE) of the linear regression model defined in

Equation 4.3.

Y = β0 + β1B(X+,X−) + γ′Z (4.3)

Similarly, for a dichotomous outcome Y, we consider the logistic regression

model in Equation 4.4, and three possible optimization criteria corre-

sponding to the maximization of the area under the ROC curve, the

maximization of the explained variance (Mittlböck and Schemper, 1996),

or the discrimination coefficient (Tjur, 2009).

logit(Y) = β0 + β1B(X+,X−) + γ′Z (4.4)

The search of the optimal balance is hard because there are multiple possible

candidates. As we increase the number of components k, the number of

possibilities increases exponentially. For instance, for k = 10, we need

to consider 57002 possible balances, whereas working in a common range

of between 50 and 100 features, to evaluate all the balances implies the

analysis of between 7.17 · 1023 and 5.15 · 1047 alternatives. The evaluation

of such a huge quantity of balances is infeasible in terms of computational

time. As an alternative, we propose a greedy-forward selection algorithm

defined by the following steps:

1. Zero replacement: compositional techniques are defined for vectors

with strictly positive values. As microbiome datasets present zeros,

they require a modification in order to use CoDA. There are several

alternatives to solve the zero problem. The default option we consider
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uses the Geometric Bayesian Multiplicative (GBM) replacement

(Mart́ın-Fernández et al., 2015) implemented in the cmuultRepl()

function of the {zCompositions} R package (Palarea-Albaladejo

and Mart́ın-Fernández, 2015). We also provide the option of adding

one count to all values in the dataset in order to avoid zeros, which

is a very extended practice.

2. Optimal balance between two components: once zeros have

been replaced in X, in the next step the algorithm evaluates exhaus-

tively all the possible balances composed by only two components;

that is, all balances of the form:

Bij = B(Xi, Xj) =

√
1

2

(
log(Xi)−log(Xj)

)
for i, j ∈ {1, · · · , k}, i 6= j

(4.5)

Each two component balance Bij is tested for association with the

response variable Y with the linear regression model in Equation

4.6a if Y is continuous, and the logistic regression model in Equation

4.6b if Y is dichotomous.

Y = β0 + β1Bij + γ′Z (4.6a)

logit(Y) = β0 + β1Bij + γ′Z (4.6b)

The balance that maximizes the optimization criteria (MSE or AUC)

is selected and denoted by B(1).

It is important to remark that B(Xi, Xj) and B(Xj , Xi) only differ

in their sign and they present the same association value with the
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response variable. The algorithm returns the one whose regression

coefficient β1 is positive.

3. Optimal balance adding a new component: for s > 1 and until

the stop criterion is fulfilled, let B(s−1) be the balance defined in the

previous step (s− 1) given by:

B(s−1) ∝ 1

k
(s−1)
+

∑
i∈I(s−1)

+

log(Xi)−
1

k
(s−1)
−

∑
j∈I(s−1)

−

log(Xj) (4.7)

Equation 4.7 is defined by I
(s−1)
+ and I

(s−1)
− , which are two disjoint

subsets of indices in {1, · · · , k} with k
(s−1)
+ and k

(s−1)
− elements,

respectively.

For each of the remaining variables, Xp not yet included in the

balance, p /∈
(
I
(s−1)
+ ∪ I(s−1)−

)
, the algorithm considers the balance

that is obtained by adding log(Xp) to the positive part of B(s−1)

(Equation 4.8a), or to its negative part (Equation 4.8b):

B
(s+)
p ∝ 1

k
(s−1)
+ + 1

( ∑
i∈I(s−1)

+

log(Xi) + log(Xp)
)
− 1

k
(s−1)
−

∑
j∈I(s−1)

−

log(Xj)

(4.8a)

B
(s−)
p ∝ 1

k
(s−1)
+

∑
i∈I(s−1)

+

log(Xi)−
1

k
(s−1)
− + 1

( ∑
j∈I(s−1)

−

log(Xj) + log(Xp)
)

(4.8b)

Each of these pairs of balances, B
(s+)
p and B

(s−)
p , for each of the

remaining variables, Xp, is tested for association with the response
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variable through one of the regression models in Equation 4.9a and

Equation 4.9b , where B represents the tested balance.

Y = β0 + β1B + γ′Z (4.9a)

logit(Y) = β0 + β1B + γ′Z (4.9b)

The balance that maximizes the optimization criterion, defines the

new balance B(s) for the s-th step.

4. STOP criterion: there are two stopping rules: the iterative algo-

rithm stops when the improvement of the optimization parameter

is lower than a specified threshold (default equal to 0) or, when the

specified maximum number of components has been included in the

balance (default equal to 20).

These previous steps define the main function for the search of a microbial

signature. In addition, we implement an iterative cross-validation (CV)

procedure with two goals: (a) to identify the optimal number of compo-

nents to include in the balance, and (b) to explore the robustness of the

global balance identified with the whole dataset.

Cross-validation

Let T be the number of iterations (default T = 10), F the number of folds

in the cross-validation (default F = 5), and C the maximum number of
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variables or components included in a balance (default C = 20). At each

iteration t ∈ {1, · · · , T}, the data is divided into F folds {Dt
1, · · · , Dt

F }.

Then, for each f ∈ {1, · · · , F} the main algorithm of selbal is applied to

the training dataset
⋃
j 6=f D

t
j , and the optimal balance with C variables is

obtained, Bt
f (C). Actually, since algorithm is a forward selection process

where variables are included sequentially at each step, we have a sequence

of balances including from 2 to C variables: Bt
f (2), Bt

f (3), · · · , Bt
f (C).

The classification accuracy (MSE or AUC) of these balances is measured

on the test dataset, Dt
f , giving a sequence of accuracy measures for each

number of variables included in the balance. For each iteration-fold pair

of values, if the response variable is continuous, a set of values as in

Equation 4.10a is obtained, and a sequence like in Equation 4.10b when Y

is dichotomous. We have denoted it as AUCtf , but analogous scores are

obtained for other accuracy measures.

MSEtf (2), MSEtf (3), · · · , MSEtf (C) (4.10a)

AUCtf (2), AUCtf (3), · · · , AUCtf (C) (4.10b)

For each number of components c ∈ {2, · · · , C} we have F ×T measures of

accuracy. The mean and the standard error are computed an represented

in a plot, as shown in Figure 4.1 or Figure 4.4.

Similarly to the cross-validation process in LASSO for finding the optimal

penalization parameter lambda (Hastie and Tibshirani. . . , 2009), we follow

the 1se strategy and define the optimal number of variables (kopt) to be
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included in the balance as the lowest number whose mean MSE is within 1

standard error of the minimum mean MSE (or whose mean AUC is within

1 standard error of the maximum mean AUC). Usually, the 1se strategy

provides sparser models than taking the minimum mean MSE (or maximum

AUC), with very similar accuracy. This 1se strategy is the default option

in selbal, but there is also the possibility of determining the optimal

number of variables as the value reaching the optimum (minimum mean

MSE or maximum mean AUC).

Once the optimal number of variables kopt has been determined, we obtain

the global balance, that is, we apply the main algorithm to the whole

dataset X with the specification that the maximum number of components

in the balance is kopt. We use the cross-validation results to explore

the robustness of the global balance. We retrieve all the balances with

kopt components obtained in the cross-validation process Bt
f (kopt), f ∈

{1, · · · , F}, t ∈ {1, · · · , T} and compare them with the global balance.

We summarize these cross-validation balances in two different ways, per

balance and per variable. We provide the relative frequency of the different

balances obtained in the CV process and the proportion of times that each

taxon has been included into a balance. This information is summarized

in a table as shown in Figure 4.3 or Figure 4.6.

The cross-validation process is also used to obtain the cross-validation

accuracy, defined as the mean MSE or mean AUC of the balances obtained

in the CV process that have the same number of variables as the global
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balance, that is, meant,f

(
MSEtf (kopt)

)
or meant,f

(
AUCtf (kopt)

)
.

All this methodology including the search of the optimal balance and

the cross-validation process for measuring the robustness of the result

is included in an R package named {selbal} which can be found in

https://github.com/UVic-omics/selbal.

4.2 Applications

We illustrate how {selbal} package can be useful for obtaining microbial

signatures associated either with continuous or dichotomous variables.

We first consider a Crohn’s disease study where the goal is to to find a

microbiome biomarker able to differentiate patients with and without the

disease. The second analysis is focused on the search of a balance linked

with a continuous inflammation marker of interest in HIV infection.

4.2.1 Microbiome and Crohn’s disease

Crohn’s disease (CD) is an inflammatory bowel disease that has been

linked to microbial alterations in the gut (Ren et al., 2015; Øyri et al.,

2015) . We use data from a large pediatric CD cohort study (Ren et al.,

2015) to illustrate the proposed methodology for the identification of a

microbial signature. Microbiome data from 16S rRNA gene sequencing

and QIIME 1.7.0 bioinformatics processing are downloaded from Qiita

https://github.com/UVic-omics/selbal
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(https://qiita.ucsd.edu, study identifier [ID]: 1939). Only patients with

Crohn’s disease (n = 662) and those without any symptom (n = 313) are

included in the analysis. Agglomerating OTUs to genus level, it results a

matrix with 48 genera and 975 samples.

The goal of the analysis with selbal is to identify a microbial signature for

Crohn’s disease which discriminates between CD and non CD individuals.

We first run a cross-validation process (through selbal.cv() function

included in {selbal}) in order to determine the optimal number of taxa

to consider in the balance. Figure 4.1 provides the mean AUC and standard

error of the balances obtained in the CV process as a function of the number

of taxa. In this case, and following the 1se rule, the optimal number of

components is twelve. Once the number of taxa is determined, the main

function selbal() is applied to the whole dataset specifying that the

number of desired taxa to include is twelve. Thus, the global balance is

defined by

X+ = {g Roseburia, o Clostridiales g , g Bacteroides,

f Peptostreptococcaceae g }

X− = {g Dialister, g Dorea, o Lactobacillales g , g Eggerthella,

g Adlercreutzia, g Streptococcus, g Oscillospira}.

Figure 4.2 describes the distribution of the values for the microbial signature

both for CD and non CD individuals. Cases with Crohn’s disease present

lower balance scores than controls, which means lower relative abundances

https://qiita.ucsd.edu
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of taxa in group X+ with respect to taxa in group X−. Despite differences

in the interpretation of the results, we highlight that Bacteroides and

Clostridiales have been previously identified as less abundant in cases than

in controls (Ren et al., 2015).

The discrimination value of the identified balance is important, with

an apparent AUC of 0.838. However, this apparent AUC is known to

overestimate the discrimination value of the microbial signature, since it

has been measured on the same dataset that was used to build the model.

A more accurate estimation is obtained from the CV process that provides

a cv-AUC of 0.819, which is also a very good discrimination value.

Cross-validation can also be helpful to assess the robustness of the proposed

global balance. In Figure 4.3 we summarize the different balances with

twelve taxa obtained in the CV process. On one hand, we have the

frequency of the different CV balances and, on the other, the frequency

of selection of each taxon. Rows represent the most frequent taxa with

their percentage of selection given in the second column; the third column

represents the global balance, and the last three columns show the three

most frequent balances selected in the CV procedure. Colored rectangles

indicate whether the taxon is in the numerator of the balance (red), in

the denominator (blue) or not included (white). The last row provides the

proportion of times each balance has been selected as optimal in the CV

procedure. From Figure 4.3 it follows that the identified global balance

for Crohn’s disease is very robust: it coincides with the most frequently
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selected one in the CV process, which turns out to be the optimal a 36%

of times. Moreover, the taxa which form the global balance are also those

most frequently selected in the CV procedure.
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Figure 4.1: AUC values for different number of components in the balance

for the association of Crohn’s disease status with proposed balances.
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Figure 4.2: Boxplot for the scores of the proposed balance in order to

differentiate samples from patients with Crohn’s disease (CD) and patients

without the disease (no).

4.2.2 Microbiome and sCD14 inflammation marker

Acute and chronic inflammation typically occur after HIV infection. Even

patients under antiretroviral medications and undetectable viral load

present chronic inflammation, which may cause tissue damage and is

associated with many chronic diseases (Brenchley et al., 2006). In this

context, there is a great interest in defining possible interventions involving

modifications of the gut bacterial environment, which may reduce inflam-
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Figure 4.3: Table with the global balance and those most frequent in the

CV-procedure for Crohn’s disease study.

mation in HIV patients (Klatt et al., 2013; D’Ettorre et al., 2015). This

requires a good understanding of the association between gut microbial

composition and several inflammation markers. In this case, we focus on

an inmune-marker related to the chronic inflamation, the levels of soluble

CD14 (sCD14), which is measured for a subset of samples (n = 151) of

the IrsiCaixa HIV study. We apply selbal to search for a microbial

signature that is predictive of sCD14 inflammation marker. According

to the cross-validated mean squared error (cv-MSE), the optimal number

of components to include in the model is four (Figure 4.4). The balance
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identified as the most associated with sCD14 is composed by

X+ = {g Subdoligranulum , f Lachnospiraceae g Incertae Sedis}

X− = { f Lachnospiraceae g unclassified , g Collinsella}

The association is moderate, with a correlation coefficient R = 0.53. Since

sCD14 is continuous, we represent the result with a scatter plot of balance

scores and sCD14 values. We observe in Figure 4.5 that higher values

are associated with higher amounts of sCD14. The robustness of the

selected balance can be evaluated through the results of the CV procedure.

Thus, in Figure 4.6 we appreciate that the proposed global balance is also

the one that has been the most selected in the CV, a 34% of the times.

The four taxa defining the global balance correspond to the top 4 most

frequently selected in the cross-validation, so that these results emphasize

the robustness of the global balance.

Despite selbal does not explore the whole balance space, as it is shown

in these examples, it can be a useful tool in CoDA framework for defining

biomarkers in order to differentiate groups of samples and to associate the

microbiome with a continuous response.

4.3 selbal against other methods

Although differential abundance tests are not designed for the identification

of microbial signatures, they can be adapted in order to predict a response
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variable. Thus, using the Crohn’s disease dataset, we compare the clas-

sification accuracy of some of the most extended differential abundances

tests against selbal. We follow a two-steps strategy: first, a variable

selection, and next, model building. For the variable selection step we

consider DESeq2, edgeR, ANCOM and ALDEx2. Then, a model or micro-

bial signature is built with the selected variables. For DESeq, edgeR and

ANCOM the model is a linear combination of the selected variables while

for ALDEx2 the model is defined as a linear combination of the selected

clr-transformed variables (Fernandes et al., 2013).

selbal cannot be compared with these methods in terms of false discovery

rate (FDR) and power because its goal is not to identify all taxa that are

associated with the response, but to obtain the best sparse model to predict

the response. So, in a cross-validation process implemented for the Crohn’s

disease dataset, we measure the test prediction accuracy and sparsity of the

models (microbial signatures) obtained with each method. The results are

given in Table 4.1, and in Figure 4.7 we can see the variability of cv-AUC

for the different methods.

selbal and ALDEx2 are the methods with the best classification accuracy,

but selbal is more parsimonious, which is also a desirable feature of micro-

bial signatures. With only 12 taxa, selbal obtains similar discrimination

accuracy than ALDEx2 with 31 taxa. DESeq2 and edgeR provide similar

results: large number of selected taxa but lower classification accuracy.

This suggests that among the selected variables by DESeq2 and edgeR
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METHOD Median number of taxa Mean cv-AUC

selbal 12 0.8196

DESeq2 33 0.7752

edgeR 34 0.7721

ANCOM 5 0.7125

ALDEx2 31 0.8156

Table 4.1: Mean cv-AUC and median of the number of taxa considered

both for selbal and each of the differential abundance methods included

in the study for classification.

there are some false positives. ANCOM is the best in terms of parsimony,

it selects the smallest number of variables with a classification accuracy

comparable to DESeq2 and edgeR. This is in accordance to previous

simulation studies (Weiss et al., 2017) that reports that ANCOM has very

low FDR and comparable power to other methods. These results cannot

be generalized since they only reflect the behaviour of the methods on one

specific dataset. A more general conclusion would require a comprehensive

simulation study.

4.4 Discussion

As an alternative for the differential abundance tests available in the

literature and far from the increase of false positives that many of them
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may present working with normalized counts, we introduce selbal, an

algorithm framed in the compositional data theory. In this context, selbal

looks for the best balance in terms of association with a response variable of

interest. The association is measured through a regression model, allowing

covariate adjustment, which is interesting since some confounders may

affect the analysis.

selbal is a useful tool for defining biomarkers both to differentiate groups

of samples or to associate the microbiome with a continuous response.

Comparing it with other alternatives based on the most extended differen-

tial abundance tests used in microbiology, selbal offers the best results

including higher accuracy and lower number of taxa included in the balance.

However, as a forward stepwise algorithm, it does not cover all the possible

balances defined from a set of k taxa and the result could be suboptimal.

Because the evaluation of all the possibilities is extremely computationally

demanding, future research should be focused on the search of optimal

balances through alternative approaches such as penalized regression con-

veniently adapted to fulfill the restrictions imposed by on the coefficients

of a balance.
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the balance for the association of sCD14 with proposed balances
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Figure 4.5: Representation of the score for the proposed balance (X-axis)

with the sCD14 values (Y-axis). Additionally, the regression line and the

squared correlation coefficient.
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CHAPTER 5

Conclusions

What we have learned about microbiome and HIV infection

One of the main clinical problems of people living with HIV in areas with

adequate healthcare standards and continued antiretroviral therapy (ART)

supply is chronic inflammation related to structural or metabolic perturba-

tions of the gut microbiota. This chronic inflammation is responsible of

an increased risk of presenting non-AIDS related diseases and premature

aging.

HIV-1 infection causes severe gut and systemic immune damage but its

effects on the gut microbiome remain unclear. Previous results indicating

a clear shift from Bacteroides to Prevotella in HIV-1 infection should

be revised accounting for possible confounders, such as HIV risk factors,

exercise or diet. The most evident hallmark of HIV infection on the gut

microbiome is a reduction in bacterial richness. However, this is not specific

of HIV infection but it is characteristic of other intestinal inflammatory

127
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diseases. The lowest bacterial richness was observed in subjects with a

poor response to antiretroviral therapy.

Patients who spontaneously maintain sustained control of HIV, elite con-

trollers (EC), have different microbiota from individuals with progressive

infection and more similar to HIV negative individuals. EC have richer gut

microbiota than untreated HIV patients, with unique bacterial signatures

and a distinct metabolic profile. Composition and functional capacity of

gut microbiota in EC may be one of the factors contributing to control

of HIV-infection in absence treatment. This microbiota related control of

HIV infection in EC, if confirmed, supports the search for new microbiota

intervention strategies for HIV patients.

Though diet is known to have an important effect on gut microbiome

composition in healthy individuals, measuring its effects on HIV infection

is difficult because of the lack of extensive and reliable information at this

level.

New approaches for the analysis of microbiome

compositional data

Microbiome abundance data is compositional since the total counts per

sample is constrained by the maximum number of sequence reads that the

DNA sequencer can provide. This constraint induces strong dependencies
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among the abundances of the different taxa.

The use of standard statistical methods that ignore the compositional

nature of microbiome data can lead to important adverse implications,

such as, spurious correlations, subcompositional incoherences and the

increase of type I error.

Distance-based multivariate methods, such as Kernel machine regression,

are convenient for exploring patterns in microbiome data. However, most

distances used in microbiome research do not fulfil the principles of com-

positional data analysis.

Kernel machine regression applied to a sub-compositional dominant dis-

tance, for example, Aitchison distance, provides a powerful framework for

testing global associations between microbiome and a response variable

of interest, while preserving from possible incoherences that may arise if

non-subcompositional dominant distances are used.

Weighted Kernel machine regression, that is, Kernel machine regression

applied to a weighted Aitchison distance, provides a measure of the contri-

bution of each taxon to the joint microbiome association with the outcome.

Further research is needed to define how to select the most informative set

of weights in each application.

The identification of microbial signatures for diagnosis prognosis or predic-

tion of therapeutic response is of primar interest for translating microbiome

research to clinical practice. Hoewever, the decision of which taxa have
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to be included in the microbial signature is challenging because of the

compositional nature of microbiome data.

Defining a microbiome signature as a compositional balance between two

groups of taxa is innovative and preserves the principles of compositional

data analysis. The search of microbial signatures with selbal is a powerful

approach for defining biomarkers that could be used to differentiate groups

of samples or to identify associations between the microbiome and a

continuous response. selbal performs forward variable selection and,

since not all possible balances are explored, the result could be suboptimal.

Future research may be focused on alternative approaches to find the

optimal balance.
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C., Carrillo, J., Mothe, B., Coll, J., Bravo, I., Estany, C., Herrero, C.,

Saz, J., Sirera, G., Torrela, A., Navarro, J., Crespo, M., Brander, C.,

Negredo, E., Blanco, J., Guarner, F., Calle, M. L., Bork, P., Sönnerborg,



Bibliography 137

A., Clotet, B., and Paredes, R. (2016). Gut Microbiota Linked to Sexual

Preference and HIV Infection. EBioMedicine, 5:135–146.

Oksanen, J. (2015). Multivariate Analysis of Ecological Communities in R.

Øyri, S. F., Muzes, G., and Sipos, F. (2015). Dysbiotic gut microbiome: A

key element of Crohn’s disease.

Palarea-Albaladejo, J. and Mart́ın-Fernández, J. A. (2015). ZCompositions

- R package for multivariate imputation of left-censored data under

a compositional approach. Chemometrics and Intelligent Laboratory

Systems, 143:85–96.

Pan, W. (2011). Relationship between genomic distance-based regres-

sion and kernel machine regression for multi-marker association testing.

Genetic Epidemiology, 35(4):211–216.

Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M. (2013). Differential

abundance analysis for microbial marker-gene surveys. Nature methods,

10(12):1200–2.

Pawlowsky-Glahn, V. and Buccianti, A. (2011). Compositional Data

Analysis: Theory and Applications.

Pawlowsky-Glahn, V., Egozcue, J. J., and Tolosana-Delgado, R. (2015).

Modeling and Analysis of Compositional Data.

Pearson, K. (1896). Mathematical Contributions to the Theory of

Evolution.–On a Form of Spurious Correlation Which May Arise When



138 Bibliography

Indices Are Used in the Measurement of Organs. Proceedings of the

Royal Society of London (1854-1905), 60(1):489–498.

Phillips, A. N., Neaton, J., and Lundgren, J. D. (2008). The Role of

HIV in Serious Diseases Other than AIDS. AIDS (London, England),

22(18):2409–2418.

Pruesse, E., Quast, C., Knittel, K., Fuchs, B., and Ludwig, W. (2007).

SILVA: a comprehensive online resource for quality checked and aligned

ribosomal RNA sequence data . . . . Nucleic Acids Research, 35(21):7188–

7196.

Ren, B., Schwager, E., Knights, D., Song, S. J., Yassour, M., Haberman,

Y., Walters, T., Baker, S., and Rosh, J. (2015). The treatment-näıve
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The precise effects of HIV-1 on the gut microbiome are unclear. Initial cross-sectional studies provided
contradictory associations between microbial richness and HIV serostatus and suggested shifts from Bacteroides
to Prevotella predominance following HIV-1 infection, which have not been found in animal models or in studies
matched for HIV-1 transmission groups. In two independent cohorts of HIV-1-infected subjects and HIV-1-
negative controls in Barcelona (n=156) and Stockholm (n=84),menwho have sexwithmen (MSM) predom-
inantly belonged to the Prevotella-rich enterotypewhereasmost non-MSMsubjectswere enriched in Bacteroides,
independently of HIV-1 status, and with only a limited contribution of diet effects. Moreover, MSM had a signif-
icantly richer and more diverse fecal microbiota than non-MSM individuals. After stratifying for sexual orienta-
tion, there was no solid evidence of an HIV-specific dysbiosis. However, HIV-1 infection remained consistently
associated with reduced bacterial richness, the lowest bacterial richness being observed in subjects with a
virological-immune discordant response to antiretroviral therapy. Our findings indicate that HIV gutmicrobiome
studies must control for HIV risk factors and suggest interventions on gut bacterial richness as possible novel
avenues to improve HIV-1-associated immune dysfunction.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The main clinical problems of people living with HIV (PLWH)
in areas with adequate healthcare standards and continued antire-
troviral therapy (ART) supply are increasingly related to premature
aging (Paiardini and Müller-Trutwin, 2013). That is, a precocious

development of type 2 diabetes, dislipidemia, cardiovascular diseases,
osteoporosis and frailty syndrome. Such diseases have been related to
structural or metabolic perturbations in the gut microbiota of non-
HIV-infected subjects (Claesson et al., 2012; Koeth et al., 2013; Le
Chatelier et al., 2013; Tang et al., 2013) whereas, in PLWH, have been
linked to chronic inflammation, immune activation and endotoxemia
(Brenchley et al., 2006; Douek, 2003; Sandler and Douek, 2012). Thus
there is considerable interest in understanding the role of the human
gut microbiome in HIV pathogenesis and, in particular, its ability to
perpetuate chronic inflammation and foster immune senescence. This
has immediate clinical implications because, in theory, it might be
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Table 1
Baseline chacteristics of subjects in the Barcelona test dataset (BCN0).

Full dataset HIV-1 positive HIV-1 negative p-Value

No. of subjects 156 129 27

Age (years)a 43 (35, 51) 44 (36, 52) 37 (34, 44) 0.021
Gender Male 124 (79.5%) 101 (78.3%) 23 (85.2%) 0.076 0.600

Female 31 (19.9%) 28 (21.7%) 3 (11.1%) 0.291
Transgender 1 (0.6%) 0 1 (3.7%) 0.173

Ethnicity Asiatic 1 (0.6%) 1 (0.8%) 0 0.900 1
Caucasian 124 (79.5%) 101 (78.3%) 23 (85.2%) 0.600
Hispanic–Latino 28 (18%) 24 (18.6%) 4 (14.8%) 0.786
Others 3 (1.9%) 3 (2.3%) 0 1

Risk group HTS 41 (26.3%) 37 (28.7%) 4 (14.8%) 0.027 0.156
MSM 100 (64.1%) 77 (59.7%) 23 (85.2%) 0.014
PWID 15 (9.6%) 15 (11.6%) 0 0.075

Residency Barcelona 51 (32.7%) 36 (27.9%) 15 (55.6%) 0.058 0.007
BCN Met 56 (35.8%) 50 (38.8%) 6 (22.2%) 0.125
Outside BCN Met 38 (24.4%) 33 (25.6%) 5 (18.5%) 0.622
na 11 (7.1%) 10 (7.7%) 1 (3.7%) 0.691

Profile Late presenter 11 (7.1%) 11 (8.5%) 0 – –
Discordant 18 (11.5%) 18 (14%) 0 –
Concordant 53 (34%) 53 (41.1%) 0 –
Early-treated 13 (8.3%) 13 (10.1%) 0 –
Naïve 15 (9.6%) 15 (11.6%) 0 –
Viremic control 11 (7.1%) 11 (8.5%) 0 –
Elite control 8 (5.1%) 8 (6.2%) 0 –
HIV-1 negative 27 (17.3%) 0 27 (100%) –

BMI (kg/m2)a 23.8 (22, 26) 23.8 (22, 26) 24.9 (22, 27) 0.469
Allergy No 122 (78.2%) 101 (78.3%) 21 (77.8%) 0.205 1

Yes 30 (19.2%) 26 (20.2%) 4 (14.8%) 0.603
na 4 (2.6%) 2 (1.5%) 2 (7.4%) 0.138

ATB during the previous
3–6 months

35 (22.4%) 32 (24%) 4 (14.8%) 0.446

Fecal consistency Hard 56 (35.9%) 44 (34.1%) 12 (44.4%) 0.535 0.378
Soft 91 (58.3%) 77 (59.7%) 14 (51.9%) 0.521
Liquid 5 (3.2%) 5 (3.9%) 0 0.588
na 4 (2.6%) 3 (2.3%) 1 (3.7%) 0.536

Abdominal transit alterations Yes 23 (14.7%) 22 (17.1%) 1 (3.7%) 0.089 0.134
No 127 (81.4%) 103 (79.8%) 24 (88.9%) 0.414
na 6 (3.9%) 4 (3.1%) 2 (7.4%) 0.277

Defecation frequency (per day) 1 88 (56.4%) 70 (54.3%) 18 (66.7%) 0.669 0.288
2 47 (30.1%) 40 (31%) 7 (25.9%) 0.653
3 12 (7.7%) 11 (8.5%) 1 (3.7%) 0.692
4 5 (3.2%) 5 (3.9%) 0 0.588
na 4 (2.6%) 3 (2.3%) 1 (3.7%) 0.536

HBV co-infection Positive 19 (12.2%) 19 (14.7%) 0 0.054 0.045
Negative 112 (71.8%) 91 (70.6%) 21 (77.8%) 0.638
na 25 (16%) 19 (14.7%) 6 (22.2%) 0.386

HCV co-infection Positive 24 (15.4%) 24 (18.6%) 0 0.013 0.015
Negative 120 (76.9%) 94 (72.9%) 26 (96.3%) 0.005
na 12 (7.7%) 11 (8.5%) 1 (3.7%) 0.692

Syphilis serology Positive 21 (13.5%) 20 (15.5%) 1 (3.7%) 0.262 0.128
Negative 116 (74.3%) 93 (72.1%) 23 (85.2%) 0.225
na 19 (12.2%) 16 (12.4%) 3 (11.1%) 1

PCR Chlamydia trachomatis Positive 9 (5.8%) 9 (7.0%) 0 0.161 0.360
Negative 115 (73.7%) 91 (70.5%) 24 (88.9%) 0.055
na 32 (20.5%) 29 (22.5%) 3 (11.1%) 0.293

PCR Neisseria gonorrhoeae Positive 0 0 0 0.109
Negative 125 (80.1%) 100 (77.5%) 25 (92.6%)
na 31 (19.9%) 29 (22.5%) 2 (7.4%)

PCR human papilloma virus Yes 72 (46.2%) 61 (47.3%) 11 (40.7%) 0.613 0.671
No 83 (53.2%) 67 (51.9%) 16 (59.3%) 0.530
na 1 (0.6%) 1 (0.8%) 0 1

Anal cytology ASCUS 22 (14.1%) 17 (13.2%) 5 (18.5%) 0.664 0.542
HSIL 7 (4.5%) 7 (5.4%) 0 0.605
LSIL 30 (19.2%) 26 (20.2%) 4 (14.8%) 0.603
Normal 80 (51.3%) 64 (49.6%) 16 (59.3%) 0.402
na 17 (10.9%) 15 (11.6%) 2 (7.4%) 0.738

CD4+ T-cell count (cells/mm3)a All – 700 (462, 860) – – –
Late presenters – 100 (33, 189) – –
Discordant – 263 (223, 287) – –
Concordant – 761 (640, 932) – –
Early-treated – 785 (506, 930) – –
ART naive – 701 (564, 813) – –
Viremic control – 783 (525, 920) – –
Elite control – 940 (821, 1009) – –

Lymphocytes (×10×9/L)a 2 (1.7, 2.5) 2 (1.6, 2.5) 2.1 (1.8, 2.3) 0.438
Leukocytes (×10×9/L)a 5.8 (4.8, 7.2) 5.6 (4.8, 6.7) 7.1 (5.2, 8.4) 0.011
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possible to gear the gut microbiota towards “healthier” equilibrium
states with the host, which might allow, for example, to achieve
faster immune reconstitution, improve vaccine responses or reduce
HIV reservoirs.

However, although expectations are high, the HIV microbiome
science is still at its early stages, andmuch remains to be known. Simple
questions such as whether there is a consistent HIV-specific dysbiosis
pattern, or which factors are relevant in shaping the microbiome in
PLWH remain unanswered. Initial cross-sectional studies in humans
have provided contradictory associations between microbial richness
and HIV serostatus, and suggested shifts from Bacteroides to Prevotella
predominance following HIV-1 infection (Lozupone et al., 2013;
Vázquez-Castellano et al., 2015). Such shifts, however, have neither
been found in animal models (Handley et al., 2012) nor in studies
matching for HIV-1 risk groups (Yu et al., 2013). Conversely, large inter-
national studies in healthy populations have shown that at least in
resource-rich countries, the gut microbiome forms a composition land-
scape with density peaks that can stratify the human population into
enterotypes dominated by Bacteroides, Prevotella and Ruminococcus,
respectively (Arumugam et al., 2011; Koren et al., 2013). The origin
and clinical significance of such enterotypes is uncertain, but they
have been linked to genetic (Goodrich et al., 2014), as well as to lifestyle
(Clarke et al., 2014; David et al., 2013;Wu et al., 2011) and environmen-
tal factors (Modi et al., 2014; Sommer and Bäckhed, 2013), including
long-term dietary patterns and exercise. Thereby, associations between
Prevotella or Bacteroides and HIV infection might be easily confounded
by other factors. Obtaining reliable information at this level is critical
to advance our understanding of HIV pathogenesis, as well as to define
the specific targets of novel therapeutic interventions on the human
gut microbiome.

2. Methods

2.1. Study Design

This was a cross-sectional study in two independent European
cohorts of HIV-1-infected subjects and HIV-negative controls. The
study included one test cohort, one internal validation cohort and one
external validation cohort (Supplementary Fig. 1).

The test cohort (BCN0) was enrolled in Barcelona, Catalonia,
Spain, between January and December 2014. HIV-1 infected patients
were recruited from HIV Clinics at the University Hospitals Germans
Trias i Pujol and Vall d'Hebrón. HIV-1-negative controls were mainly
recruited from an ongoing prospective cohort of HIV-negative MSM
at risk of becoming infected by HIV-1 (Coll et al., 2015), who attend
quarterly medical and counseling visits including HIV-1 testing
(Alere Determine™ HIV-1/2 Ag/Ab Combo, Orlando, FL) at a
community-based center for MSM in Barcelona (Meulbroek et al.,
2013). Additional controls were HIV-1-negative partners from HIV-1-
infected subjects attending the HIV clinics.

The inclusion criteria were: age within 18 and 60 years and body
mass index (BMI) within 18.5 and 30. Exclusion criteria were: (a) any
gross dietary deviation from a regular diet, or any specific regular diet,

i.e., vegetarian, low-carb, etc.; (b) antibiotic use during the previous
3 months (with the exception of late presenters, who could receive an-
tibiotics to treat opportunistic infections); (c) pregnancy or willingness
to become pregnant; (d) current drug consumption or alcohol abuse;
(e) any chronic digestive disease such as peptic ulcer, Crohn's disease,
ulcerative colitis or coeliac disease; (f) any surgical resection of the
intestines except for appendectomy; (g) any autoimmune disease;
and (h) any symptomatic chronic liver disease or presence of hepatic
insufficiency defined as a Child–Pugh C score. In addition, HIV-infected
subjects were classified as elite controllers, viremic controllers,
ART-naïve, early treated, late presenters, immune concordant or
immune discordant (Supplementary methods).

The internal validation cohort (cohort BCN1) included individuals
from BCN0 who provided a second fecal sample one month later.

Observations in Barcelona were externally validated in an inde-
pendent observational cohort recruited at the HIV outpatient clinic,
Karolinska University Hospital, Stockholm, Sweden (cohort STK).
All HIV-1-infected patients in cohort STK were at least 18 years old,
had been diagnosed with HIV-1 between one and 25 years earlier
and were ART-naïve at the time of fecal sampling. Controls were
healthy HIV-1-negative individuals matched by sex and age. Neither
patients nor controls had been prescribed antibiotics or probiotics, or
had had infectious diarrhea during the preceding two months.

2.2. Data Collection

Clinical and laboratory data fromBCN0 and BCN1were collected in a
centralized database specifically designed for this study (OpenClinica™,
© 2015OpenClinica, LLC). The clinical evaluationwasperformed follow-
ing a standardized questionnaire including: a checklist for fulfillment of
inclusion and exclusion criteria, anthropometric data, age at study
entry, age at HIV diagnosis, gender, ethnicity, city of residence, HIV
risk group, history of allergies, antibiotic intake between 3 and 6months
before inclusion, frequency and consistency of feces, history of medical
or surgical problems or interventions, present and previous ART,
history of AIDS- and non-AIDS-related diseases, nadir and most recent
CD4+ T-cell counts, HIV-1 RNA levels, history of sexually transmitted
diseases and infection by the human papillomavirus (HPV), hepatitis B
(HBV) or hepatitis C (HCV).

HIV-1 risk categories in our study were mutually excluding: male
study participants who reported being MSM or referred insertive or
receptive anal intercourse with other men were included in the MSM
category, even if they also reported intravenous drug use or sex with
women. Females andmales not included in theMSM category reporting
past intravenous drug use were classified as PWID. Heterosexual males
or females not included in any of the previous 2 categories were
classified as HTS. None of our study participants belonged to any other
HIV-1 transmission category.

Study participants in Barcelona received a thorough dietary and
nutritional assessment by a specialized dietitian/nutritionist using two
standardized and validated questionnaires, i.e.: (a) a prospective dietary
nutrient survey aimed at recording, as precisely as possible, any food,
supplement or liquid intake during 3 to 5 consecutive days, including

Table 1 (continued)

Full dataset HIV-1 positive HIV-1 negative p-Value

No. of subjects 156 129 27

HIV-1 RNA (copies/mL)a Late presenters – 178,500 (61,880, 340,300) – –
Discordant – b40 (b40, b40) – –
Concordant – b40 (b40, b40) – –
Early-treated – b40 (b40, b40) – –
ART naive – 13,900 (6867, 43,410) – –
Viremic control – 794 (243, 1360) – –
Elite control – b40 (b40, b40) – –

HTS, heterosexual; MSM, men who have sex with men; PWID, people who inject drugs; ATB, antibiotic; BCN Met, Barcelona Metropolitan Area; na, not available.
a Median (IQR), p-values for continuous and discrete variables were calculated with the Wilcoxon rank sum and Fisher's tests, respectively.
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at least one weekend day, and (b) a recall of food portions taken per
week, on average, during the last year.

Participants also went through a proctology evaluation by a special-
ized HIV physician/proctologist. In addition to visual inspection for anal
or perianal lesions, HPV-related or not, the physician performed a rectal
swab to rule out Chlamydia trachomatis andNeisseria gonorrhoeae infec-
tion using real-time PCR and an anal cytology. If the anal cytology
reported an abnormal result, such as ASCUS (atypical squamous cells
of undetermined significance), LSIL (low-grade squamous intraepithelial
lesion) or HSIL (high-grade squamous intraepithelial lesion), the subject
was properly treated and PCR typing of HPV was performed. No cases of
anal cancer were detected.

In all study participants, we produced MiSeq™ 16S rRNA sequence
data on fecal microbiomes and measured soluble plasma markers
of enterocyte damage (intestinal fatty acid-binding protein, IFABP), mi-
crobial translocation [soluble CD14 (sCD14) and lipopolysaccharide
binding protein (LBP)] and systemic inflammation [interleukin-6
(IL-6), C-reactive protein (CRP) and interferon-gamma-inducible
protein-10 (IP-10)].

Study participants collected fecal samples in sterile fecal collec-
tion tubes the same day or the day before their clinical appointment,
before the proctology exam, and following instructions pre-specified
on standard operating procedures. If required, samples were stored
at 4 °C overnight until DNA extraction. All samples collected in
Barcelona were immediately extracted upon arrival to the laborato-
ry. Additional aliquots were cryopreserved at−80 °C for future stud-
ies. Samples collected in Stockholm were cryopreserved at −80 °C
and shipped on dry ice in batch to the IrsiCaixa AIDS Research Insti-
tute, where they were extracted, amplified, sequenced and analyzed
using the exact same procedures applied to the Barcelona samples.
The lag times to freezing were always b36 h and no particular
chemical stabilizers were added to samples used for the analyses
presented here. Fecal sample collection procedures were the same
for cases and controls.

Detailed descriptions of the wet-lab procedures and the ecological
and statistical analyses of the microbiome, soluble plasma markers
and the nutritional assessment are available in the Supplementary
methods section.

2.3. Ethics & Community Involvement

The study was reviewed and approved by the Institutional Review
Boards of the Hospital Universitari Germans Trias i Pujol (reference
PI-13-046) and the Hospital Vall d'Hebrón (reference PR(AG)109/2014).
The Stockholm study cohort was approved by the Regional Ethical
Committee (Stockholm, Sweden, Dnr 2009-1485-31-3). All participants
provided written informed consent in accordance with the World
Medical Association Declaration of Helsinki. The study concept, design,
patient information and results were discussed with the IrsiCaixa's
Community Advisory Committee, who also provided input on the
presentation and dissemination of study results (Supplementary
methods).

2.4. Sequence and Data Availability

Raw Illumina MiSeq sequences and study metadata were deposited
in the National Center for Biotechnology Information— NCBI repository
(Bioproject accession number: PRJNA307231, SRA accession number:
SRP068240).

2.5. Financial Support and Role of the Funding Sources

This study was mainly funded through philanthropy and private
donations, which had no influence on its contents. Fundswere obtained
from a personal donation fromMr. Rafael Punter, the Gala contra la SIDA
2013 and 2014 editions, and the Nit per la Recerca a la Catalunya Central
2015 edition. M.R. is funded through a FI-DGR grant (FI-B00184) from
Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) at the
Secretaria d'Universitats i Recerca del Departament d'Economia i
Coneixement de la Generalitat de Catalunya. Y.G. is supported through a
post-doctoral grant from the Fundación Paideia Galiza. M.C. is funded
through the Red de Investigación en SIDA, RD12/0017/0002 as part
of the Plan Nacional R + D + I and cofinanced by the Instituto de
Salud Carlos III (ISCIII)-Subdirección General de Evaluación y el Fondo
Europeo de Desarrollo Regional (FEDER). J.R. is supported through a
grant for doctoral studies from Noel Alimentaria to the University
of Vic (UVic-UCC). B.M. is a Joan Rodés investigator from the ISCIII

Table 2
Baseline chacteristics of subjects in the Stockholm validation dataset (STK).

Full dataset HIV-1 positive HIV-1 negative p-Value

No. of subjects 84 77 7

Age (years) 40 (32, 48) 38 (32, 49) 44 (38, 47) 0.615
Gender Male 51 (60.7%) 46 (59.7%) 5 (71.4%) 0.699

Female 33 (39.3%) 31 (40.3%) 2 (28.6%)
Risk group HTS 55 (66.5%) 48 (62.3%) 7 (100%) 0.214

MSM 19 (22.6%) 19 (24.7%) 0
PWID 10 (11.9%) 10 (13.0%) 0

Ethnicity Asian 2 (2.4%) 2 (2.6%) 0 1
Black 28 (33.3%) 26 (33.8%) 2 (28.6%)
Caucasian 52 (61.9%) 47 (61.0%) 5 (71.4%)
Hispanic–Latino 2 (2.4%) 2 (2.6%) 0

Country of origin Sweden 39 (46.4%) 34 (43.4%) 5 (71.4%) 0.069
Kenya 5 (5.9%) 5 (6.5%) 0
Finland 4 (4.8%) 4 (5.2%) 0
Ethiopia 3 (3.6%) 1 (1.3%) 2 (28.6%)
Eritrea 3 (3.6%) 3 (3.9%) 0
Nigeria 3 (3.6%) 3 (3.9%) 0
Uganda 3 (3.6%) 3 (3.9%) 0
Other 24 (28.5%) 24 (31.2%) 0

CD4+ T-cell count (cells/mm3)a – 480 (380, 630) – –
CD4+ T-cell count (%)a – 26 (20, 32) – –
CD8+ T-cell count (cells/mm3)a – 970 (660, 1290) – –
CD8+ T-cell count (%)a – 51 (44, 59) – –
HIV-1 RNA copies/mLa – 19,100 (1590, 69,900) – –

a Median (IQR), p-values for continuous and discrete variables were calculated with the Wilcoxon rank sum and Fisher's tests, respectively.
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Fig. 2. Alpha diversity by HIV-1 phenotype. HIV-1-infected subjects with an immune discordant phenotype (i.e. those who do not recover CD4+ counts N300 cells/mm3 despite at
least 2 years of effective antiretroviral therapy) had the lowest microbiome richness of all HIV-1 phenotypes. Individuals with an immune concordant phenotype (i.e., those achieving
CD4+count reconstitution N500 cells/mm3 on antiretroviral therapy) also had lowermicrobiome richness thanHIV-1-negative individuals, but not as low as immune discordant subjects.
“Simpson” refers to 1-Simpson index. The remaining ecological index names are self-explanatory. Comparisons were done using a Kruskal–Wallis test including post-hoc pairwise
analyses. Benjamini–Hochberg-adjusted p-values are shown at the top of each index; for post-hoc pairwise comparisons: *p b 0.1, **p b 0.05, ***p b 0.001.

Fig. 1. Both HIV transmission group and HIV-1 infection are linked to the human fecal microbiome richness and diversity. a) The highest richness and diversity in human fecal microbiota
were observed in men who have sex with men (MSM). There were no differences between heterosexual subjects (HTS) and people who acquired HIV-1 infection through intravenous
drug use (PWID). Kruskal–Wallis p-values in a were adjusted for multiple comparisons using the Benjamini–Hochberg method. b) HIV-1 infection was associated with significant
reductions in fecal human microbiome richness after stratifying for sexual preference. Comparisons were made with the Wilcoxon rank sum test with continuity correction. All alpha
diversity findings were consistent in Barcelona (test cohort, month 0) (BCN0) and Stockhom (STK). Identical results were found in BCN at month 1 (Supplementary Fig. 2) and when
using an independent sequence analysis pipeline (Supplementary Fig. 14). Note: “Simpson” refers to 1-Simpson index. The remaining ecological index names are self-explanatory.
*p b 0.1, **p b 0.05, ***p b 0.001.
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(JR13/00024), Madrid, Spain. M.L.C. is funded through the
grant MTM2012-38067-C02-02, Spanish Ministry of Economy and
Competitiveness, Spain. PB, FH and GZ are supported by the European
Molecular Biology Laboratory. F.H. was funded from the European
Union's Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement no. 600375. P.B. acknowl-
edges the European Research Council grant Cancerbiome, reference
268985. The sponsors of the study had no role in study design, data
collection, data analysis, data interpretation, or writing of the report.
The corresponding author had full access to all study data, and had
final responsibility for the decision to submit for publication.

3. Results

3.1. Study Subjects

The study included 240 individuals, 156 in Barcelona (Table 1) and
84 in Stockholm (Table 2). The test cohort BCN0 comprised 129
(82.7%) HIV-1-infected and 27 (17.3%)HIV-negative subjects. The inter-
nal validation cohort BCN1 included 110 individuals, 87 HIV-1-infected
(79.1%) and 23 non-HIV-infected (20.9%). The external validation
cohort STK had 77 HIV-1-infected (91.6%) and 7 non-HIV-infected
individuals (8.4%). In Barcelona, the median age of study participants

Fig. 3. Spearman correlation by genus abundance. Only significant values (Holm's-corrected p b 0.05) are shown. The plot confirms previous observations, i.e.: a) strong positive
correlations between Bacteroides, Parabacteroides, Barnesiella, Alistipes and Odoribacter, b) strong positive correlations between Prevotella, Alloprevotella, Mitsuokella and Intestinimonas,
among others, and c, strong inverse correlations between the groups including Prevotella and Bacteroides.

Fig. 4. The bacterial genus composition of the human fecal microbiome is mainly linked to HIV transmission group. a) The bacterial genus composition of the fecal microbiota in the
Barcelona test dataset (BCN0) was largely determined by HIV transmission group, with MSM being enriched in the Prevotella cluster and non-MSM in the Bacteroides cluster. Genera
with mean abundance of at least 2% across all samples are represented in colors; those with b2% abundance are grouped into the category “Others”. Each column represents one
individual. A similar plot for the Stockholm cohort is shown in Supplementary Fig. 12. b) Non-metric multidimensional scaling (NMDS) ordination plots of Bray–Curtis distances showing
thatmicrobiomes in theBCN0, BCN1and STKdatasetsmainly cluster byHIV transmission group (MSMvs. non-MSM) rather thanbyHIV serostatus. Ellipses include 95% of samples. Similar
plots using other distances are shown in Supplementary Figs. 8 to 10. c) Partitioning aroundmedoids (PAM) analysis of the BCN0dataset showing this population structure in this dataset is
better explained by 2 rather thanmore clusters, with reasonable Silhouette support. This informationwas used to define the Bacteroides and Prevotella clusters in our study. d) Abundance
box plots showing thatMSMwere enriched in Prevotella andnon-MSM(HTS or PWID)were enriched inBacteroides. ComparisonsbetweenMSMand thenon-MSMcategorieswere always
highly significant (p b 0.001) after adjusting for multiple comparisons using the Benjamini–Hochberg method. Plots of all genera showing significant differences betweenMSM and non-
MSM categories are shown in the Supplementary Figs. 13 to 15.
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was 43 years and their median body mass index was 23.8 kg/m2.
Eighty percent of subjects were men, mostly from Caucasian ethnicity.
Sixty-four percent of all subjects were MSM, 26% HTS and 10% PWID.
There were 8 (5.1%) elite controllers, 11 (7.1%) viremic controllers,
15 (9.6%) ART-naïve, 13 (8.3%) early-treated, 53 (34.1%) immune con-
cordant, 18 (11.5%) immune discordant, and 11 (7.1%) late presenters.
HIV-1-infected subjects were slightly older and were more likely to be
HBV and HCV positive than HIV-negative controls. Groups were
well balanced in all other factors. In Stockholm, 60% of subjects
were men; 23% were MSM, 66% HTS and 11% PWID. Only half were
nationals from Scandinavian countries; 62% individuals were Caucasian
and 33% were Black.

3.2. Richness and Diversity of the Fecal Microbiota

The fecal microbiota was significantly richer and more diverse in
MSM than non-MSM individuals in both cities, also after correcting
for multiple comparisons (Fig. 1, Supplementary Figs. 2 and 14). This
indicated that the measurement of the effect of HIV-1 on gut microbial

richness and diversity had to take HIV transmission group into account.
After stratifying for MSM vs. non-MSM, HIV-1 infection remained con-
sistently associated with reduced bacterial richness (15% to 30%
reduction relative to HIV-negative individuals) in both groups and
both cities (Fig. 1, Supplementary Figs. 2 and 14). In the Barcelona
cohort, the lowest microbial richness and diversity was observed
among HIV-1-infected individuals with an immune-virological dis-
cordant phenotype (Fig. 2). Subjects with an immune-virological
concordant phenotype had higher microbial richness than immune
discordant individuals, but, nevertheless, still showed reduced
microbial richness relative to HIV-negative controls, suggesting
that despite adequate immune recovery [median (IQR) CD4+ T-cell
counts: 761 (640, 932) cells/mm3] at the time of testing, ART had not
been able to fully normalize microbial richness.

3.3. Bacterial Composition of the Fecal Microbiota

Clustering of the fecal microbiomes in BCN0 and STK using
a partitioning around medoids (PAM) algorithm suggested the

Fig. 5. Global microbiota classifier by sexual preference group and HIV-1 status. A and C) Relative abundances of 28 gut microbial genera collectively associated with MSM and HIV-1
infection, respectively, are displayed as heatmap of log-abundance z-scores with the direction of association indicated to the left. To avoid confounding by sexual preference, the HIV-1
classifier only includes MSM subjects. The mean contribution of each marker species to the classification is shown to the left (bars correspond to log-odds ratio in logistic regression).
Below each heatmap the classification score of the microbial signature from cross-validation is shown as gray scale. HIV-1 status and HIV-1 risk group are color-coded below the first
heatmap (see color key). B and D) Cross-validation accuracy of the microbiota classifier is depicted as receiver–operator-characteristic (ROC) curve summarizing mean test predictions
made in ten times resampled tenfold cross-validation with the area under the curve (AUC) indicated inside each plot. As shown, there was a strong association between the global
microbiome genus composition and sexual orientation, whereas the association with HIV-1 infection was much weaker and of uncertain significance.
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presence of at least 2 clusters of fecal microbiomes in both cities
(Fig. 4c). Such clusters were enriched either in Bacteroides or
Prevotella, and had a similar bacterial composition to the corresponding
previously described enterotypes (Arumugam et al., 2011; Koren et al.,
2013) (Supplementary Fig. 3). As expected from previous work on gut
enterotypes, there were strong positive correlations between the genus
Bacteroides and Parabacteroides, Barnesiella, Alistipes and Odoribacter,
as well as between Prevotella and Alloprevotella, Catenibacterium,
Mitsuokella and Intestinimonas, among others (Fig. 3), highlighting that
differences between the groups extended beyond a single genus. The

genera correlating with Prevotella were negatively correlated with
Bacteroides and vice versa. Moreover, themicrobiomes of the Bacteroides
and Prevotella clusters showed remarkably different functional profiles
(Supplementary Figs. 4 and 5), also in agreement with previous
enterotype descriptions (Arumugam et al., 2011).

3.4. Factors Associated With the Fecal Microbiota Composition

Weexplored variables potentially influencing the composition of the
fecal microbiomes, according to a univariate ADONIS test of ecological

Fig. 6. Limited effect of diet on the composition of the microbiome. a) Subjects belonging to the Prevotella cluster and men who had sex with men (MSM) had significantly higher total
energy intake. Therefore, all subsequent nutritional analyses were normalized for this factor. b) Main associations between bacterial genera, normalized amounts of nutrients (left)
and food portions (right), according to a Dirichlet multinomial regression model. Positive and negative associations are shown in red and blue, respectively. Line thickness is
proportional to the strength of the association. c) Of all links identified by the Dirichlet approach, the only significant differences between groups after adjusting for multiple
comparisons (Benjamini–Hochberg FDR b 0.1) were increased consumption of meat in the cluster Bacteroides and increased intake of dietary water in MSM. d) Spearman correlations
between normalized amounts of nutrients and Bray–Curtis distance to the furthest subject in the opposite cluster. Negative correlations imply increased amounts of nutrient with
shorter distance to each cluster. Therefore, values in red and blue represent increased and decreased amounts of nutrients within each cluster, respectively. Although, in general,
the direction of the correlations was concordant with previous publications, note the small effect sizes (R2 below the color key). None of the comparisons were statistically significant
after correction for multiple comparisons (Benjamini–Hochberg FDR b 0.1); Permanova p = 0.20 for overall differences between clusters. e, f) Mean and 95% confidence intervals for
the differences between clusters in consumption of nutrients (e) and portions of food (f). Comparisons were significant if the 95 confidence interval did not cross 0 (dashed red line).
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distance and found possible effects of HIV-1 risk group, gender, feces
consistency, place of residency, ethnicity, HIV-1 serostatus and altered
abdominal transit (Supplementary Table 1). However, only the HIV-1
risk group retained statistical significance in a multivariate ADONIS
analysis with terms added sequentially (R2: 0.373, p b 0.001).

Fecal microbiomes in BCN0, BCN1 and STK clustered by HIV trans-
mission group rather than by HIV-1 serostatus, using either Bray–Curtis
(Fig. 4b) or other ecological distances (Supplementary Figs. 6 to 8).
Although a few individuals showed marked differences between the
two time points, fecal microbiota ordination was highly concordant be-
tween BCN0 and BCN1 (Procrustes m2 = 0.3475, PROTEST p = 0.001)
(Supplementary Fig. 9), indicating that differences in microbial ordina-
tion were not due to random variation. The fecal microbiota composi-
tion in both BCN0 and STK significantly differed by HIV transmission
group, with MSM and non-MSM subjects mostly belonging to the
Prevotella and Bacteroides clusters, respectively (Fig. 4a and 4d and
Supplementary Figs. 10 to 14). Alpha and beta diversity and genus
abundance analyses were reproducible using a different analysis
pipeline (Hildebrand et al., 2014) (Supplementary Fig. 14 and
Supplementary methods).

In an analysis accounting for the potential interdependency of sexual
preference andHIV-1 serostatus (LEfSe) (Segata et al., 2011), therewere
consistent differences in both cities only by sexual preference group,
with enrichment of Prevotella, Alloprevotella, Succinvibrio, Dorea,
RC 9 gut group, Desulfovibrio, Phascolarctobacterium and unclassified
Bacteroidales inMSM, and enrichment in Bacteroides, Odoribacter and
Barnesiella in non-MSM individuals (Supplementary Fig. 15).

3.5. Strength of the Associations

To quantify the strength of the association between HIV transmis-
sion group, HIV serostatus and global fecal microbiota composition,
we applied a previously validated global microbiota classification con-
cept based on LASSO regression (Zeller et al., 2014) to our BCN0 dataset.
Cross-validation accuracy was extraordinarily high for sexual prefer-
ence group (mean AUC= 95%), confirming a different fecal microbiota
composition in MSM and non-MSM individuals (Fig. 5). In contrast,
HIV-1 status was not associated with consistent changes in the global
fecal microbiota composition at the genus level, suggesting that the
reduction in microbial richness observed in HIV-infected individuals
was not genus-specific.

Relative to non-MSM subjects, MSMwere younger, weremore likely
to live in Barcelona City, reported softer fecal consistency, andwere less
likely to be infected with HBV and HCV (Supplementary Table 2).
However, none of these factors among others were likely to confound
the previous LASSO models (Supplementary Fig. 16). Although long-
term dietary patterns have been linked to alternative enterotype states
(Wu et al., 2011), the effect of diet on microbiota composition was
limited in our setting (Fig. 6 and Supplementary Fig. 17) and none of
the diet components was selected by multivariate LASSO regression as
a consistent predictor of microbiota clustering.

3.6. Consequences on Enterocyte Damage, Microbial Translocation and
Systemic Inflammation

Markers of enterocyte damage, microbial translocation and systemic
inflammation followed an overall predictable response across different
HIV phenotypes (Brenchley and Douek, 2012), being generally higher
in immune discordant and late presenters (Supplementary Figs. 18
and 19). However, they did not differ between the Bacteroides or
Prevotella clusters or between MSM and non-MSM individuals.

4. Discussion

In two independent European cohorts with different ethnic and
cultural background, the fecal microbiota of MSM was consistently

richer and more diverse than that of non-MSM subjects, and was
systematically enriched in genera from the Prevotella enterotype. The
strength of such association was unusually high, reaching 95% accuracy
in a microbial composition-based classifier. These findings have impor-
tant implications for HIV microbiome science. To our knowledge, this is
the first evidence that, in addition to genetic (Goodrich et al., 2014),
lifestyle (Clarke et al., 2014; David et al., 2013; Wu et al., 2011) and
environmental factors (Modi et al., 2014; Sommer and Bäckhed,
2013), factors related with sexual preference might also affect the gut
microbiota composition.

Based on our findings, previous associations between HIV infection
and Prevotellamight be explained by enrichment of HIV-infected groups
by MSM relative to HIV-negative controls selected from hospital or
research staff, gut biopsy donors, or college students (Lozupone et al.,
2013;Mutlu et al., 2014; Vázquez-Castellano et al., 2015). Contradictory
associations between HIV infection andmicrobial richness could also be
affected by unbalances in the proportion of MSM between groups.
Of note, a selection bias as such could also affect the interpretation of
in silico inferences on bacterialmetabolism, or even directmetabolomic
or metatranscriptomic measurements, which also rely on bacterial
composition.

In concordancewith data from animal models (Handley et al., 2012)
and studies matching for HIV risk factors (Yu et al., 2013), we were
unable to identify a consistent HIV-specific fecal dysbiosis pattern
after stratifying for HIV transmission group. Yet, HIV-1 infection
remained associated with reduced bacterial richness independently of
sexual orientation, indicating that the most evident hallmark of HIV in-
fection on the gut microbiome is, like in other intestinal inflammatory
diseases (Manichanh et al., 2012), a reduction in bacterial richness. In
line with previous observations linking bacterial richness with immune
dysfunction (Nowak et al., 2015), the lowest bacterial richness was
found in immune discordant subjects, followed by immune concordant
individuals with adequate immune recovery on ART. Conversely,
bacterial richness was conserved in subjects initiating ART during the
first 6 months of HIV infection, as well as in ART-naïve individuals
with N500 CD4+ counts/mm3, suggesting that early ART initiation
might help to preserve gut microbial richness.

The strong epidemiological association of fecal microbiota composi-
tionwith sexual orientation in two independent cities is yet to be trans-
lated into specific mechanisms. We ruled out multiple confounders and
only found a limited effect of diet in our setting.We did not collect infor-
mation on exercise, but exercise has been linked to fecal microbiota
composition in athletes (Clarke et al., 2014) and even in them diet
plays an important role. A formal assessment of the socioeconomic
status of our patients was out of the scope of this work, although
based on our findings, rigorous studies assessing the role of socioeco-
nomic status in the fecal microbiota composition are needed.
Non-MSM subjects in our study were older and more likely to be
co-infected with HBV and HCV than MSM, reflecting current trends
of the HIV epidemic in Europe, i.e.: most new HIV-1 infections
occur in youngMSMwho rarely use intravenous drugs. Fecal consisten-
cy was also softer in MSM than in non-MSM subjects, which, indirectly,
might reflect better overall health habits, including a healthier diet,
higher water consumption and physical activity. However, none
of these factors, nor ethnicity, achieved a significant weight in
LASSO models.

Further studies are needed to evaluate the existence of ecological ad-
aptations of commensal bacteria to changes in gut mucosa induced by
sexual practices. Populations of commensal bacteria are controlled by
substrate competition and glycan availability (Koropatkin et al., 2012)
and several factors might affect distal colorectal mucosa, including
hyperosmolar substances like semen or certain lubricants (Fuchs et al.,
2007;McGowan, 2012), colorectal cleansing or use of sexual toys. Longi-
tudinal studies should also clarify if the observed association is stable
over time, and if it varies according to the number of sexual partners
(i.e., long-term single relationships versus frequent partner exchange)
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or by insertive versus receptive anal sex. It is also important to clarify if
the observed association remains in heterosexual women who engage
in receptive anal sex and if increased microbiota richness can be related
to person-to-person transmission of commensal bacteria. Future studies
should also investigate if the observed association has implications for
transmission of infectious agents, including HIV-1. We did not find an
association between fecal microbiome and HBV, HCV, syphillis or rectal
HPV, C. trachomatis or N. gonorrhoeae infections, but did not evaluate
HSV-2 infection. In our study, the observed association between sexual
orientation and microbiota composition did not translate into gross dif-
ferences in terms of systemic inflammation or microbial translocation.
Shotgun metagenomic analyses of bacterial species and richness, as
well as the virome and perhaps the mycobiome, in clinical trials
balanced by HIV risk factors might provide novel clues as to the impact
of HIV infection on the gut microbiome.

In conclusion, the fecal microbiota of gay men in Europe is richer
and has a distinct composition. However, HIV-1 infection remains
independently associated with reduced bacterial richness. This offers
new avenues for therapeutic interventions on the gut microbiome
which might improve HIV-associated immune dysfunction.
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Statistical Challenges for Human
Microbiome Analysis

Javier Rivera-Pinto, Carla Estany, Roger Paredes, M.Luz Calle,
Marc Noguera-Julián and the MetaHIV-Pheno Study Group

Abstract DNA sequencing technologies have revolutionized microbiome studies.
In this work we analyze microbiome data from an HIV study focused on the char-
acterization of microbiome composition in HIV-1 infected patients. A 155 cohort of
HIV infected and non-infected individuals is analyzed to characterize dietary and gut
microbiome association in this group of patients. A penalized Dirichlet Multinomial
regression model has been considered. The assumed underlying Dirichlet distrib-
ution in this modelization provides additional flexibility to the multinomial model
which results in a better fit of the typically overdispersed microbiome data.

1 Introduction

Until recently, the composition and properties of the humanmicrobiomewere largely
unknown, since the study was limited to in vitro cultivation of some specificmicroor-
ganisms. Currently, high-throughput DNA sequencing technologies have revolution-
ized this field, allowing the study of the genomes of all microorganisms of a given
environment. Metagenomics is the massive study of the genomes of the microorgan-
isms and represents a breakthrough in the study of the relationship between the human
microbiome and our health. The data from these studies provide valuable information
about the composition and functional properties of microbial communities.

However, microbiome data analysis poses important statistical challenges. After
DNA sequencing data analysis, microbiome data consists of a count matrix repre-
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senting the number of sequences corresponding to a specific bacterial taxa for each
individual. Statistical techniques assuming the normal distribution are usually not
appropriate. Instead, specific distributions for count data are required. An additional
important feature of microbiome data is zero inflation (a large proportion of zero
counts corresponding to taxa that are only present in some subjects) and the overdis-
persion in the rest of values. Since the total number of counts is not equal for every
subject, there is the possibility of working with compositional data by dividing each
count by the total number of counts giving the proportion that each taxa represents
for each individual. In this case, appropriate methods for compositional data analysis
are required.

In this work we analyze microbiome data from an HIV study focused on the char-
acterization of microbiome composition along the different inflammatory profiles in
healthy individuals and HIV-1 infected patients. HIV-linked chronic inflammation
is associated with metabolic disorders, cardiovascular disease, immune senescence,
premature aging and other inflammatory diseases. The role of the intestinal micro-
biome in these inflammatory processes has shown to be relevant. Interestingly, HIV
infection clinical course, evenwhen treated, is accompanied by an increase in gut per-
meability, bacterial translocation and low-level chronic inflammation. However, the
precise effects of HIV-1 and related factor on the human gut microbiome are not well
understood. It has been shown that diet has an important effect on gut microbiome
composition; see [2, 6]. Therefore, it was important to characterize dietary-gutmicro-
biome associations in this cohort. Available information was obtained from IrsiCaixa
retrovirology laboratory, where microbiome and dietary information was collected
from healthy and HIV infected patients showing different immune and inflammatory
profiles and clinical outcomes.

First results of this project have been published in Noguera-Julián et al. [4].

2 Methods

Microbiome information was derived from 16s gene next generation sequencing
from fecal samples of 155 subjects. Each one of them fulfilled both a nutrient and
food portion independent diet questionnaires whose information was standardized
(see Willet–Howe–Kushi [5]) to have total energy intake into account and apply the
analysis over energy-relative information and not over raw data which could lead to
erroneous conclusions. The standardization was made taking the residuals of a linear
regression over total energy intake as new variable values.

The analysis of dietary-gut microbiome associations involves multivariate multi-
ple regression between twomatrices:X, of size n × p, andY, of size n × q. MatrixX
contains dietary information for p different nutrient andY themicrobiome abundance
(count data) for q bacterial taxa, being n the total number of individuals.
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The previously proposed penalizedDirichlet-Multinomial (DM) regressionmodel
(see [3]) was used to analyze the associations. This regression model addresses the
overdispersion present in microbiome data by considering the DM distribution, with
density function

fDM(y1, y2, . . . , yq; γ) =
(
y+
y

)
!(y+ + 1)!(y+)

!(y+ + γ+)

q∏

j=1

!(y j + γ j )

!(γ j )!(y j + 1)
, (1)

where (y1, . . . , yq) represents the counts for each genus, y+ = ∑q
j=1 y j , γ =

(γ1, . . . , γq) are parameters associated with the mean and variance of each genus,
and γ+ = ∑q

j=1 γ j is controling the degree of overdispersion, with a larger value
indicating less overdispersion. In this modelization, the counts of the different taxa
are assumed to follow a Dirichlet Multinomial distribution (see [1, 3]), which cor-
responds to a multinomial distribution

fM(y1, y2, . . . , yq ,π) =
(
y+
y

) q∏

j=1

π
y j
j , (2)

with random underlying probability vectors following a Dirichlet distribution

fD(π1,π2, . . . ,πq; γ) =
!(γ+)
q∏
j=1

!(γ j )

q∏

j=1

π
γ j−1
j , (3)

where π = (π1, . . . ,πq) are the probabilities for a certain count to belong to the
corresponding genus (

∑q
i=1 πi = 1).

Penalizedmaximum likelihood estimation jointly performsmodel fitting and vari-
able selection. As a result, the algorithm returns a matrix C of size p × q, where ci j
represents the association between the i-th nutrient and the j-th genus. The penal-
ization used in DM-regression assings zeroes to some coefficients selecting only the
strongest associations.

3 Results

DM-regression provides the strongest associations between nutritional and genus
composition information as a first step for deeper analysis. In the analyzed cohort,
both Prevotella and Bacteroides are the genus with the strongest associations with
nutrition parameters but in an inverse way. Prevotella is positively linked specially
with water and iron and negatively associated with saturated fat. In the other hand,
Bacteroides is negatively associated with water and iron (Fig. 1).
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Fig. 1 Results with DM-regression model after penalization both for Nutrients (left) and Portions
(right). Red lines represent positive relationship, while blues negative associations

4 Conclusions

DM-regression model allows to link two multivariate data matrices, one of them a
count matrix. In this analysis those matrices where composed by genus counts after
16s rRNA sequencing and by the nutritional information of the individuals. DM
distribution over the counts, has the overdispersion into account and links better with
the nature of the data. In the other hand, the penalization included in the regression
model selects only the strongest associations between genus and nutrients, allowing
to the user to get more interpretable results.
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Richer gut microbiota with distinct 
metabolic profile in HIV infected 
Elite Controllers
Jan Vesterbacka1, Javier Rivera2, Kajsa Noyan3, Mariona Parera2, Ujjwal Neogi3, Malu Calle4, 
Roger Paredes  2,4,5,6, Anders Sönnerborg1,3, Marc Noguera-Julian  2,4 & Piotr Nowak1

Gut microbiota dysbiosis features progressive HIV infection and is a potential target for intervention. 
Herein, we explored the microbiome of 16 elite controllers (EC), 32 antiretroviral therapy naive 
progressors and 16 HIV negative controls. We found that the number of observed genera and richness 
indices in fecal microbiota were significantly higher in EC versus naive. Genera Succinivibrio, Sutterella, 
Rhizobium, Delftia, Anaerofilum and Oscillospira were more abundant in EC, whereas Blautia and 
Anaerostipes were depleted. Additionally, carbohydrate metabolism and secondary bile acid synthesis 
pathway related genes were less represented in EC. Conversely, fatty acid metabolism, PPAR-signalling 
and lipid biosynthesis proteins pathways were enriched in EC vs naive. The kynurenine pathway of 
tryptophan metabolism was altered during progressive HIV infection, and inversely associated with 
microbiota richness. In conclusion, EC have richer gut microbiota than untreated HIV patients, with 
unique bacterial signatures and a distinct metabolic profile which may contribute to control of HIV.

Progressive HIV-1 infection is characterized by depletion of CD4+ T cells in gut-associated lymphoid tissue, 
followed by immune activation, gut microbiota dysbiosis, and microbial translocation1–3. Elite controllers 
(EC) constitute less than 1% of the HIV-infected population4, and have sustained viral suppression in absence 
of antiretroviral therapy (ART). Due to definitional bias, a high rate of heterogeneity is observed among EC 
cohorts5. It appears that host genetic rather than demographic factors contribute to the viral controlling proper-
ties, e.g. with an increased rate of HLA B*5701 allele positivity. Also, unique immunological cellular responses 
against HIV-1 have been proposed as a mechanism for viral control6. Despite spontaneous suppressed plasma 
viremia, microbial translocation and immune activation are present in EC7.

The gut microbial composition in EC has not been extensively explored, with only three studies (with low 
numbers of subjects) investigating their gut microbiome8–11. In a previous work, differences in the bacterial com-
position of gut microbiota between ART naive HIV patients and EC were observed at the phylum level, with an 
enrichment of Bacteroidetes and a reduction of Actinobacteria in EC9. It was also found that the EC had lower 
beta-diversity (i.e. inter-individual variation in the gut microbiota) than the viremic patients, and principal coor-
dinate analysis (PCoA) revealed that EC clustered separately, indicating a different gut microbiome compared to 
other HIV-infected individuals.

Use of metagenomic techniques has illuminated the complex interactions between the host metabolic activ-
ities and gut microbial species in several diseases12. Thus, alterations in the catabolism of tryptophan have been 
linked to progressive HIV-infection, and correlated with a pathological shift in the gut microbiota10. In depth, 
tryptophan degradation products have been linked to loss of Th17/regulatory T cell balance fueling the chronic 
inflammation in progressive HIV disease13. Whether the gut microbiota in EC differently influences the tryp-
tophan metabolism has not been explored, but markers of tryptophan catabolism were not elevated in EC as 
compared to healthy subjects11.
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In the current work, we investigated if HIV infection differently affects the gut microbiome in patients with 
progressive HIV infection and EC. We also explored the link between the composition, inferred functionality of 
gut microbiome and systemic inflammatory, immunological and metabolic markers in these patients.

Material and Methods
Study design. This was a cross-sectional study including both HIV seropositive and seronegative 
participants.

Patients. Detailed characteristics are presented in Table 1. Totally, 48 study subjects were recruited from 
the out-patient HIV clinic at Karolinska University Hospital, Stockholm, Sweden. Additionally we included 16 
HIV negative controls (negative). Inclusion criteria were age >18 years, HIV positive for at least 6 months and 
no ongoing HIV-related complications. All viremic progressors had to be ART naive (naive). Exclusion criteria 
were inflammatory bowel disease or infectious gastroenteritis within the last four weeks. EC were defined by: 
(I) HIV positive for ≥1 year and with ≥3 consecutive viral loads (VLs) <75 c/ml over one year with all previous 
VLs < 1000 c/m, or (II) HIV positive for ≥10 years, with ≥2 VLs and ≥90% of all VLs < 400 c/ml. Four female EC 
had been on short time ART due to pregnancy (three for 3.5 months, one for 14 days), all more than four years 
before study entry. The study subjects were categorized into three groups (EC: n = 16; naive: n = 32; negative: 
n = 16) and were matched by Body Mass Index (BMI), age, gender and sexual practice. All participants gave 
written informed consent. All the work and experiments were performed in accordance with relevant guidelines, 
regulations and with the Declaration of Helsinki. The study was approved by the Regional Ethics Committee at 
Karolinska University Hospital, Stockholm (2009/1485-31, 2013/1944-31/4, 2014/920-3).

Blood Sample Collection and Isolation of Peripheral Blood Mononuclear Cells. Plasma, isolated 
from EDTA-treated peripheral blood, and serum samples were stored at −80 °C until analyses. Peripheral blood 
mononuclear cells (PBMCs) were isolated from EDTA-treated blood using Hypaque-Ficoll (GE Healthcare) den-
sity gradient centrifugation, counted with Nucleocounter® and then cryopreserved at −150 °C in fetal bovine 
serum (Sigma-Aldrich) containing 10% DMSO (Sigma-Aldrich), at a concentration of 106 cells/ml of cryopres-
ervation media. Soluble markers of inflammation and microbial translocation, and metabolites of tryptophan 
catabolism pathway were analyzed in plasma by ELISA (hs-CRP (Abcam, UK), sCD14 (R&D, Minnesota, USA), 

EC Naive Negative p-value

Number of individuals 16 32 16

Age (years, median (IQR))* 47 (40.3–54.3) 43.5 (37.3–50.5) 49 (44–52.8) ns

Gender (n, male/female)† 9/7 16/16 8/8 ns

Ethnicity (n)

 Black 9 13 0

 Caucasian 6 17 15

 Latin 1 1 0

 Oriental 0 1 1

Mode of transmission (n)

 Heterosexually 8 21

NA

 MSM 4 8

 IVDU 1 3

 Blood transfusion 2 0

 Unknown 1 0

Sexual practice†

 Heterosex 12 24 12
ns

 MSM 4 8 4

Time since diagnosis (years, median (IQR))* 8.55 (5.0–18.0) 3 (0.7–6.9) NA 0.0008

Body Mass Index (BMI) (score (IQR))* 26.4 (24.1–32.2) 25 (23.0–30.0) 24.2 (22.9–25.6) ns

CD4+ T-cell count (median (IQR)* 806 (676–1049) 390 (298–475) NA <0.0001

CD8+ T-cell count (median (IQR)* 705 (541–904) 995 (678–1373) NA 0.02

CD4/CD8+ T-cell ratio (median (IQR)* 1.41 (0.74–1.55) 0.38 (0.27–0.51) NA <0.0001

CD4+ T-reg cells (FoxP3+CD25+) % (median (IQR)* 4.91 (4.13–5.66) NA 5.88 (4.77–7.28) ns

CD4+ HLA-DR+ CD38+ T cells % (median (IQR))* 0.44 (0.34–0.75) 7.78 (5.34–14.8) 0.53 (0.39–0.61) <0.0001

CD8+ HLA-DR+ CD38+ T cells % (median (IQR))* 1.16 (0.77–1.6) 36.9 (23.6–44.9) 0.71 (0.52–1.71) <0.0001

Table 1. Cohort demographics and cellular immune activation markers at baseline. EC = elite controllers. 
Naive = viral progressors. Negative = negative controls. *Kruskal-Wallis test was used for comparison between 
three groups, and Dunn’s Multiple Comparison Test was adapted for “post hoc” testing. Mann-Whitney 
was applied for comparisons between two groups. †Chi-square test was applied. NA (not available). ns (non 
significant) indicates p-value > 0.05.
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IL-6 (R&D), LBP (Hycult Biotech, The Netherlands)) or HPLC (http://bevital.no), respectively, according to man-
ufacturer’s instructions.

Flow Cytometry, Immunophenotyping, and Viral Load. Quantification of CD4+ and CD8+ T-cells 
and plasma HIV-1 RNA were performed as part of the clinical routine with flow cytometry and Cobas Amplicor 
(Roche Molecular Systems Inc., Branchburg, New Jersey, USA), respectively. At the day of analysis, cryopreserved 
PBMCs were thawed and stained for HLA-DR and CD38 as markers of immune activation of CD4+ and CD8+ 
T- cells, and FoxP3 and CD25 as markers of CD4+ T-regulatory cells14. HIV negative samples were not analyzed 
by routine flow cytometry, which is mirrored by the lack of CD4+ and CD8+ T-cell total counts in that group 
(Table 1).

Fecal Sample Collection. A sterile tube for fecal sampling without preservation media was used when par-
ticipants were able to donate feces adjacent to their study visit at the clinic. The sample was frozen and stored 
at −80 °C within 24 hours. PSP® Spin Stool DNA sampling tube (Stratec Biomedical) was used for participants 
who submitted feces at home. The stool samples were delivered to the out-patient clinic by the participant, or 
instantly sent by post and stored at −70 °C according to the manufacturer’s instructions15. All participants were 
asked to complete a standardized questionnaire, collecting data about recent use of antibiotics (last 3 months) 
and probiotics, current medication, alcohol use, smoking, chronic diseases, recent infectious gastroenteritis (last 
4 weeks), special diet (vegan/vegetarian/gluten-/lactose- free), colectomy, recent travelling abroad (>4 weeks last 
12 months) and time since arrival in Sweden for non-natives.

DNA extraction, 16s rRNA gene amplification and Sequencing. DNA extraction was performed 
using the PowerSoil DNA Extraction Kit (MO BIO Laboratories, Carlsbad, CA, US). To amplify the variable 
region V3-V4 from the 16S rRNA gene (amplicon size expected ~460 bp), we used the primer pair described in 
the MiSeq rRNA Amplicon Sequencing protocol which already have the Illumina adapter overhang nucleotide 
sequences added to the 16S rRNA V3-V4 specific-primers, i.e.: 16S_F 5′-(TCG TCG GCA GCG TCA GAT GTG 
TAT AAG AGA CAG CCT ACG GGN GGC WGC AG)-3′ and 16S_R 5′-(GTC TCG TGG GCT CGG AGA TGT 
GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C)-3′.

Amplifications were performed in triplicate 25 μL reactions, each containing 2.5 μL of non-diluted DNA 
template, 12.5 μL of KAPA HiFi HotStart Ready Mix (containing KAPA HiFi HotStart DNA Polymerase, buffer, 
MgCl2, and dNTPs, KAPA Biosystems Inc., Wilmington, MA, USA), and 5 μL of each primer at 1 μM. Thermal 
cycling conditions consisted of an initial denaturation step (3 min at 95 °C), followed by 30 cycles of denatura-
tion (30 sec at 95 °C), annealing (30 sec at 55 °C) and extension (30 sec at 72 °C). These were followed by a final 
extension step of 10 min at 72 °C. Once the desired amplicon was confirmed in 1% agarose gel electrophoresis, all 
three replicates were pooled and stored at −30 °C until sequencing library preparation. Amplified DNA templates 
were cleaned-up for non-DNA molecules and Illumina sequencing adapters and dual indices were attached using 
Nextera XT Index Kit (Illumina, Inc.) followed by the corresponding PCR amplification program as described in 
the MiSeq 16S rRNA Amplicon Sequencing protocol. After a second round of cleanup, amplicons were quantified 
using Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen, Carlsbad, MA, USA) and diluted in equimolar con-
centrations (4 nM) for further pooling. Sequencing was performed on an Illumina MiSeqTM platform according 
to the manufacturer’s specifications to generate paired-end reads of 300 base-length in each direction.

Data Analysis. Sequencing data was processed using Mothur16 phylotype approach. Briefly, paired-end data 
were merged and quality filtered and all reads not matching the used V3-V4 amplicon design were discarded. 
Chimeric sequences were filtered using Mothur Uchime17 implementation. Sequences were classified using RDP 
algorithm18 in combination with 16s rRNA Silva database19. Obtained sequences from five subjects (one EC, three 
naive and one negative) were of poor quality and were excluded from further analyses. To assess alpha diversity, 
richness (Chao1 and ACE) and diversity (Shannon and Simpson) indices were computed using R/vegan library20, 21  
selecting a subsample of ten thousand counts for each individual.

Bacterial genera count table were normalized to relative abundance measures. These were used to compute 
Bray – Curtis22 dissimilarity between each pair of individuals, which was used as input ordination analysis using 
non-metric multidimensional scaling (NMDS). Correlation between NMDS plot axis coordinates and inflam-
mation parameters were tested by applying Spearman test. Additionally, a PERMANOVA (adonis) test was per-
formed on this distance matrix to partition different sources of variation using R/vegan package.

Microbiome function was inferred using PICRUSt23 on GreenGenesDB24 classified phylotypes. Counts were 
normalized by considering 16s rRNA gene copy number. To infer the gene content, the normalized phylotype 
abundances were multiplied by the respective set of gene abundances, represented by Kyoto Encyclopedia of 
Genes and Genomes (KEGG) identifiers estimated for each taxon.

Statistics. Multiple group differences in diversity indices, inflammation and activation markers and bacte-
rial abundances were analyzed via Kruskal–Wallis rank-based test. Benjamini–Hochberg25 correction was used 
to correct for multiple testing. Two-tailed Mann-Whitney U-test was applied for comparisons of inflammation 
markers between two groups.

Inflammation indices were associated both with genus and functional composition using Spearman corre-
lation. Associations with a Benjamini–Hochberg adjusted p-value lower than 0.01 were considered as relevant 
and inflammation parameters associated with less than two bacteria were discarded when plotting the heatmap. 
Bacterial genus and functions were ordered in the heatmap according to a clustering between them using Ward 
hierarchical clustering.
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With the aim of evaluating the power of the classification of individuals according to their microbiome com-
position profile, a LASSO penalized logistic regression model as proposed in the bibliography26 was computed 
for each pair of profiles. LiblineaR and pROC libraries were used to obtain the regression models, represent ROC 
curves and estimate model accuracy using AUC.

Data Availability. Metagenomics raw sequencing data along with sample level metadata have been deposited 
using the NCBI/SRA Web service and compliance to MIMARKS standard. Data can be accessed using BioProject 
accession number PRJNA354863.

Results
This was a cross-sectional study including 64 participants (Table 1). The groups were balanced by age, gender, 
sexual practice and BMI. The heterosexual transmission route was slightly more common in the naive (65.6 vs 
50.0%), whilst the rate of the MSM transmission route was the same in both groups. Two naive patients had 
chronic hepatitis B infection, whereas two EC and two naive had chronic hepatitis C infection. Use of antibiotics 
within three months before inclusion was declared from 2 EC, 6 naive and 2 negative. One EC was vegetarian, one 
EC and one negative were on lactose/gluten-free diet (Supplementary Table 1). The median viral load (copies/mL) 
of EC was <20 (75% percentile 30.25), of naive 31700 (IQR 4430-100250).

Comparable T-cell activation in Elite Controllers and Negative. As expected, BL CD4+ T-cell count 
was lower and CD8+ T-cell count significantly higher in naive vs EC. Proportions of CD4+ T-regulatory cells 
tended to be higher in negative compared to EC (p = 0.07). The level of immune activation of CD4+ and CD8+ 
T-cells in blood (CD4/8+ T-cell ratio and by expression of HLA-DR+ CD38+) was similar in EC and negative 
but significantly lower compared to naive group (Table 1).

Richness, diversity and composition of fecal microbiota. Overall, the fecal microbiota was richer 
and more diverse in EC as compared to naives and similar to negative. Thus, the number of observed taxa in 
fecal microbiota was higher in EC vs naive (Δ 19.8; p = 0.0001), and not different compared to negative (Δ 
8.3; p = 0.14) (Fig. 1a). Similarly, naive patients had decreased estimated richness indices Chao 1 (EC-naive: 
Δ 19.6; p = 0.0002, EC-negative: Δ 10.4; p = 0.07, naive-negative Δ −9.2; p = 0.007) and ACE (EC-naive: Δ 
20.5; p = 0.0001, EC-negative: Δ 9.7; p = 0.09, naive-negative Δ − 10.8; p = 0.03); (Fig. 1b,c). The Shannon index 
was increased in negative group as compared to naive (Δ − 13.5; p = 0.01) (Fig. 1d) suggesting HIV induced 
changes in alpha diversity in the latter group. To further characterize the inter-individual differences between 
groups (beta-diversity) at group level, non-metric multidimensional scaling (NMDS) and LASSO regression anal-
ysis with ROC curve and AUC were performed. NMDS analysis revealed separation and clustering of EC along 
NMDS1 axis, whilst naive tended to cluster along NMDS2 (Fig. 2a). The lowest accuracy of LASSO regression 
was found when using microbiome composition to classify EC vs negative patients (AUC = 0.77), confirming 
that the gut microbiota composition was least different among these individuals. Additionally, LASSO clas-
sification was more accurate when classifying naive vs either EC (AUC = 0.88) and negative (0.87) (Fig. 2b). 
Furthermore, PERMANOVA (adonis) test yielded that the bacterial composition varied between the groups 
(R2 = 0.12; p = 0.001). The groups differed significantly in abundance of 17 bacterial taxa at the genus level (Fig. 2 
and Supplementary material Figure S1). We found that genera of Succinivibrio and Sutterella were enriched in 
EC only. Additionally, Rhizobium, Delftia, Anaerofilum and Oscillospira genera were more abundant in EC than 
in naive, but not significantly different from negative. Moreover, genus Blautia and Anaerostipes were enriched in 
naive as compared to EC and negative (Fig. 3). We also found significant differences in abundance of unclassified 
genera at higher taxonomic levels between the groups (Supplementary material Figure S1).

Inferred gut microbiota functionality. The PICRUSt analysis, predicting the metagenomic functional 
content of gut microbiota, revealed several significant differences between the groups at both KEGG level II and 
III. Hence, at the KEGG level II, we found that the predicted pathway of carbohydrate metabolism was signifi-
cantly reduced in the gut bacterial metagenome of EC as compared to both naive and negative patients. Instead, 
genes encoding cardiovascular diseases and circulatory system pathways were enriched in EC as compared to 
naive, but were not significantly different as compared to negative (Fig. 4a). Moreover, several pathways related 
to the metabolism of carbohydrates were decreased in EC in relation to naive and negative at KEGG level III. 
Thus, galactose metabolism, pentose-glucoronate interconversions, pyruvate metabolism and pentose-phosphate 
pathway (PPP) were predicted to have a lower abundance in EC vs naive. PPP was significantly reduced in EC as 
compared to all other groups, and both galactose and PPP were significantly more abundant in naive vs negative 
(Fig. 4b). Pathways related to lipid metabolism were differentially distributed in the metagenome of the cohort. 
Those involved in metabolism of fatty acids and lipid biosynthesis proteins were significantly reduced in naive as 
compared to the other groups. Conversely, the essential fatty acid linoleic acid metabolism pathway was more rep-
resented in naive. The metagenomic proportion of secondary bile acid biosynthesis metabolism pathway, which 
has a key function in cholesterol homeostasis, was significantly reduced in EC, but present at similar level in naive 
and negative (Fig. 4c). We also found that the PPAR (peroxisome proliferator-activated receptors)-signaling path-
way, which plays an essential role in metabolism of carbohydrates, lipids and proteins, was significantly reduced 
in naive. Additionally, pathways related to synthesis and degradation of ketone bodies were reduced in naive, 
whereas significantly enriched in EC, also when compared to negative. Tryptophan metabolism related genes 
were decreased in naive vs negative. In contrast, proportions of phenylalanine, tyrosine and tryptophan biosyn-
thesis pathway were enriched in naive (Fig. 4d). Additional functional pathways with different distribution in the 
cohort are presented in supplementary material (Figure S2).
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Plasma levels of soluble markers of inflammation and tryptophan catabolism metabolites.  
Plasma levels of soluble markers of inflammation, immune activation and metabolites related to the kynurenine 
pathway of tryptophan degradation are presented in Table 2. We found that EC had higher levels of IL-6 and 
hs-CRP than negative; however levels of soluble immune activation marker sCD14 were not different among 
groups. Levels of LBP, commonly used as a marker of microbial translocation, were significantly increased in 
naive group as compared to others.

Tryptophan levels in plasma were reduced in naive as compared to both EC and negative. Additionally, the 
naive group had several divergent levels of metabolites. Thus, xanthurenic and kynurenic acid levels were lower 
in naive as compared to negative; in contrary anthralinic acid levels and kynurenine/tryptophan (K/T)-ratio 
were increased in naive vs EC/negative. K/T-ratio was correlated to the number of observed genera (r = −0.47, 
p = 0.0009), richness indices: Chao-1 (r = −0.53, p = 0.0002) and ACE (r = −0.44, p = 0.002), but not to 
alpha-diversity indices. Significant correlations between levels of tryptophan, xanthurenic acid, K/T-ratio and 
NMDS2 axis were found (Table 3), mirroring a separation of naive from EC and negative in this axis (Fig. 5).

Factors associated with the composition and functionality of gut microbiota. We observed a 
distinct pattern of correlations between gut microbial composition, immunological markers and tryptophan 
catabolism (Fig. 6a). Interestingly, nadir and BL CD4+ T-cell counts, CD4/8+ T-cell ratio and tryptophan 
levels were strongly correlated to the abundance of genus Sutterella, whilst BL CD4+ correlated to Rhizobium 
and Butyricimonas. Moreover, CD4/8+ T-cell ratio was positively correlated to Oscillopira and Butyricimonas. 

Figure 1. Similar richness and diversity of fecal microbiota in EC and negative controls. Number of observed 
bacterial genera was significantly lower in naive patients as compared to the other groups (a). Richness indices 
Chao-1 (b) and ACE (c) were reduced in naive, but no significant differences were observed between EC and 
negative. Alpha-diversity, assessed by Shannon index was lower in naive as compared to negative (d), whereas 
Simpson index was similar in all groups (e). Comparisons between groups were obtained via Kruskal-Wallis 
rank based test including Dunn’s post-hoc pairwise analyses. Benjamini-Hochberg method was used for 
correction of multiple testing. A p-value < 0.05 was considered significant. Box plots represent median (black 
horizontal line), 25th and 75th quartiles (edge of boxes), upper and lower extremes (whiskers). Outliers are 
represented by a single data point.
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Genera of Sutterella, Oscillospira, Rhizobium, Anaerofilum, Alistipes, Anaerotruncus and Odirobacter had all at 
least two inverse correlations with some of the cellular immune activation markers (CD38, HLA-DR). In contrary, 
abundance of Blautia was positively associated with immune activation (CD4+ CD38+, CD8+ CD38+, CD4+ 
CD38+ HLA-DR+ and VL). Additionally, unclassified genera of Burkholderiales, Bacteriodales, Proteobacteria, 
Betaproteobacteria and Rhizobiaceae were also positively correlated to BL CD4+ T-cell count. Inversely, there 
was a strong negative correlation between all of these taxa, unclassified genera of family Porphyromonadaceae, 
and most of the cellular immune activation markers. Only one of the identified genera, Rhizobium, was sig-
nificantly inversely associated with K/T-ratio (Fig. 6a). There was an inverse correlation between BL CD4+ 
T-cell count, CD4/8+ T-cell ratio and several pathways related to carbohydrate metabolism, as also the essential 
omega-6 fatty acid linoleic acid. Conversely, alpha-linoleic acid (an essential n–3 fatty acid) metabolism was 
negatively associated to these markers. Furthermore, positive correlations were found between BL CD4+ T-cell 
count and synthesis and degradation of ketone bodies and lipid biosynthesis proteins pathways, both involved in 
lipid metabolism (Fig. 6b). CD4/8+ T-cell ratio was positively correlated to degradation of amino acids valine, 
leucine and isoleucine.

Cellular immune activation correlated with several pathways. Proportions of CD4/8+ (CD38+) T-cells were 
positively associated to carbohydrate metabolism, pentose-phosphate pathway (PPP) and also to overall metab-
olism of lipids and linoleic acid, whereas both fatty acid and alpha-linoleic acid metabolism were negatively cor-
related. Further inverse correlations were found between cellular immune activation and pathways involved in 
PPAR-signaling, steroid biosynthesis, adipocytokine signaling, citrate (TCA) cycle, degradation of amino acids, 
diabetes mellitus type I and tryptophan metabolism. Most of these associations were both significant for CD4+ 
and CD8+ (HLA-DR+/CD38+) T-cells. Only a few associations between soluble plasma markers sCD14 and 
LBP and microbiota function were found at the significance level of 0.01 (Fig. 6b), though additional correlations 
were observed at level 0.05 (Supplementary material Figure S3).

Discussion
It has been widely accepted that HIV-infection is accompanied by immune activation, microbial translocation2, 27–31  
and gut microbiota dysbiosis8–10, 32. Our study provides important observations concerning these pathogenic 
events in patients who spontaneously maintain sustained control of HIV, the elite controllers (EC). Thus, we pres-
ent that their microbiota is richer and differs in predicted functionality from treatment naive HIV progressors, 
resembling the microbiota of HIV negative controls. We also confirm that the level of systemic immune activation 
and plasma markers of tryptophan catabolism pathway in EC are similar to uninfected individuals. Additionally 
we show that the microbiota richness is inversely correlated to K/T-ratio, a surrogate marker of IDO-1 activity, 
the rate limiting enzyme of systemic tryptophan catabolism.

To date, the mechanisms behind the viral control in EC are not fully understood. It has been postulated that 
more potent HIV-specific CD8+ T-cell responses, expression of restriction factors like APOBEC3 family proteins 
and enrichment of specific NK-cell receptors contribute to this persistent control of HIV33. Even if these indi-
viduals can suppress the virus, microbial translocation and chronic immune activation still feature the course of 
HIV-infection also in EC7.

Figure 2. Separation between EC and naive patients in inter-individual (ß-diversity) analyses. Non-metric 
multidimensional scaling (NMDS) analysis was performed to characterize inter-individual differences between 
groups, revealing clustering of EC at NMDS axis 1 and naive at axis 2. The separations between groups at each 
axis are presented in respective box-plot. Box plots represent median (black horizontal line), 25th and 75th 
quartiles (edge of boxes), upper and lower extremes (whiskers). Outliers are represented by a single data point 
(a). LASSO regression analysis with AUROC (ROC curves; AUC used for estimation of model accuracy) curve 
was used for classification of gut microbiota composition between groups, and lowest accuracy was found 
between EC and negative patients (AUC 0.77, suggesting that the similarity of microbiota composition was 
highest between these groups) (b).
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The dysbiosis in progressive HIV infection has been described in several studies30, 34, 35. Albeit, even if only 
handful of EC has been included in these cohorts8–10, their microbiome diversity and composition have differed 
from HIV progressors. Our current study, which included the so far highest number of EC, confirms and expands 
the previous observations. We found that several ecological indices of EC microbiota (including richness and 
number of observed species) were significantly higher in EC as compared to naive and not different from matched 
negative controls. Additionally LASSO analysis showed a higher similarity between the microbiota of EC and 
negatives than that of viremic HIV infected individuals. Furthermore, we found that EC had a unique bacterial 
signature at genus level with 17 genera that were significantly differently distributed between the groups. Hence, 
Succinivibrio, Sutterella, Rhizobium, Delftia, Anaerofilum and Oscillospira were more abundant, whereas Blautia 
and Anaerostipes were depleted in EC.

In a previous work, initiation of ART was followed by higher abundance of Succinivibrio9. Interestingly, the 
metabolic properties of Succinivibrionaceae family members have been associated with ART related immune 
recovery36. The study suggested that bacteria of this family have anti-inflammatory capacity by accumulating 
molecules involved in reduction of viral infections and inflammation.

Members of Sutterella genus are prevalent commensals in the GI-tract with mild pro-inflammatory capacity, 
except for Sutterella wadsworthensis whose pathogenic properties have been described recently37. The authors 
proposed that members of Sutterella may have different immunomodulatory roles, as Sutterella spp. except from 
S. wadsworthensis may elicit TH-17 differentiation by adhering to intestinal epithelial cells. Additionally, lower 
abundance of Sutterella has been found in the gut microbiome of patients with multiple sclerosis, and in Hodgkin 
lymphoma patients after allogenic hematopoetic stem cell transplantation38, 39. In our study, we present increased 
abundance of Sutterella in EC with several correlations to immune markers (positive with BL CD4+ T-cell counts 
and negative to markers of cellular activation). Thus, our findings warrant further characterization of Sutterella 
genus at species level to determine its involvement in the modulation of the immune system.

Similar to us, Mutlu et al. found decreased abundance of Oscillospira in HIV positive patients with progressive 
infection32. The strong positive correlation between the Oscillosipira and CD4/CD8 ratio suggests that this genus 
was associated with lower systemic inflammation in our cohort, which has also been shown in patients with 
Crohn disease and obesity40.

Figure 3. Compositional differences in fecal microbiota between groups. Several differences in bacterial 
abundance were observed between the groups at genus level. Comparisons of taxa abundances were performed 
via Kruskal -Wallis rank based test and Benjamini-Hochberg method was used for correction of multiple 
testing. Adjusted p-value < 0.01 was considered significant for Kruskal-Wallis. Dunn’s post-hoc pairwise 
analyses: *p < 0.05, **p < 0.01, ***p < 0.001. Box plots represent median (black horizontal line), 25th and 75th 
quartiles (edge of boxes), upper and lower extremes (whiskers). Outliers are represented by a single data point.
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Conversely, depletion of Blautia and Anaerostipes has been described in patients with HIV infection31, 32, but 
instead we now report enrichment of Blautia and Anaerostipes in naive patients, linked to cellular immune activa-
tion. Additionally, we found increased abundance of genus Rhizobium in EC, with positive correlation to BL-CD4 
counts and inverse to viral load, cellular immune activation markers and K/T-ratio. This bacterium, belonging to 
phylum Proteobacteria, has been attributed to nitrogen fixing properties in plants41. Interestingly, the K/T-ratio 
correlated only with genus Rhizobium, suggesting that this particular taxa may play a role in the bacterial metabo-
lism of tryptophan. Moreover, similar to a previous study42, we found that the proportions of tryptophan metabo-
lism related bacterial genes were depleted in naive as compared to both negative and EC. This probably reflects the 
loss of intraluminal commensal bacteria involved in tryptophan catabolism, like Lactobacillus spp43. Based on our 
results, we speculate that Rhizobium genus may be a factor orchestrating tryptophan degradation as Rhizobium 
members are able to convert tryptophan to indole-3-acetic acid44. The reduced ability of gut microbiota to pro-
duce tryptophan derived indole metabolites related to dysbiosis in progressive HIV-infection is known to affect 
the production of IL-22 by innate lymphoid cells which together with loss of TH-17 cells increase the disruption 
of the epithelial barrier and exacerbate overgrowth of pathogenic bacteria43, 45, 46. These events in the gut were 
mirrored by signs of increased microbial translocation and immune activation in naive group.

The metabolism of tryptophan along the kynurenine pathway in peripheral tissues (including skeletal muscle, 
liver and white blood cells) is mediated by several enzymes, but the main inducible and rate-limiting enzyme is 
Indolamine-2,3-Dioxygenase 1 (IDO-1)47. During HIV-infection, the IDO-1 activity is induced in dendritic cells 

Figure 4. Inferred functional content of gut microbiota. The metagenomic functional content of gut microbiota 
was predicted by inferred PICRUSt analysis. Abundance of pathways involved in carbohydrate metabolism, 
cardiovascular diseases and circulatory system at KEGG level II (a), or level III (b–d). Pathways involved in 
carbohydrate metabolism, galactose metabolism, pentose and glucoranate interconversions, pentose-phosphate 
pathway and pyrovate metabolism (b). Pathways related to metabolism of lipids and fatty acids and biosynthesis 
of secondary bile acids (c). Bacterial tryptophan metabolism, PPAR signaling, phenylalanine, tyrosine and 
tryptophan biosynthesis and synthesis and degradation of ketone bodies pathways (d). Kruskal – Wallis rank-
based test was applied, and Benjamini – Hochberg method was used to correct for multiple testing. Adjusted 
p-value < 0.01 was considered significant for Kruskal-Wallis. Dunn’s post-hoc pairwaise analyses: *p < 0.05, 
**p < 0.01, ***p < 0.001. Box plots represent median (black horizontal line), 25th and 75th quartiles (edge of 
boxes), upper and lower extremes (whiskers). Outliers are represented by a single data point.
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by microbial products, and higher proportions of mucosal adherent bacteria possessing IDO homologs have been 
found in HIV-infected individuals10. Several tryptophan catabolites, e.g. 3-hydroxyanthranilic acid, influence 
T-cell activation and contribute to the loss of gut resident Th17+ T-cells and to alterations in the ratio between 
Th17 and regulatory T-cells13. Additionally, kynurenine has been found to impair the survival of memory CD4+ 
T-cells by inhibition of IL-2 signaling48. In concordance with results from other studies10, 13, 49, our data confirm 
that tryptophan metabolism in plasma is increased in progressive HIV-infection, but not in EC. Furthermore, 
IDO-1 activity (measured by K/T-ratio) correlated with NMDS2 axis, separating naive patients from the other 
groups, supporting that the gut microbiota composition affects systemic metabolism of tryptophan through 
kynurenine pathway. To our knowledge, we present the novel finding that IDO-1 activity is inversely correlated to 
the richness of gut microbiota, alike CD4/8 T-cell activation (data not shown). Up to now, most studies on probi-
otics supplementation have focused on suspension with single or very few bacterial species50–54. Our observation 
indicates that alternative therapeutic interventions modulating gut microbiota richness and not only composition 
are warranted in order to reduce HIV-related inflammation.

As illuminated by Moya and Ferrer55, not only the bacterial composition is important in a given microbiota. 
Other factors like stability, resistance, resilience, and redundancy contribute to the functional properties of the 
microbiome. During HIV-infection, shifts in gut microbiota have been associated with alterations of metabolites 
involved in epithelial barrier integrity, hepatic function, viral infectivity and inflammation, influencing the recov-
ery and activation of T-lymphocytes.

EC Naive Negative p-value*
Soluble marker: median(IQR)

LBP (ng/ml) 3727 (2206–15123) 6805 (5984–8031) 2862 (1956–3705) 0.0004

sCD14 (pg/ml) 1.7 × 106 (1.53–1.95 × 106) 1.47 × 106 (1.46–1.71 × 106) 1.5 × 106 (1.44–1.65 × 106) ns

IL-6 (pg/ml) 1.73 (1.18–3.20) NA 0.84 (0.67–1.78) 0.035

hs-CRP (pg/ml) 1.37 × 106 (0.76–2.7 × 106) NA 635419 (378718–941463) 0.005

Tryptophan catabolism:

Tryptophan (umol/L) 53.1 (51.4–60.5) 46.2 (40.5–50.8) 66.1 (60.3–73.1) <0.0001

Kynurenine (umol/L) 1.4 (1.3–1.6) 1.65 (1.3–2) 1.7 (1.4–1.9) ns

Anthralinic acid (nmol/L) 12.2 (10.1–16.2) 21.6 (16.3–28.8) 15.3 (11.6–20.6) 0.0007

Kynurenic acid (nmol/L) 40.5 (36.2–50.6) 30.3 (17.6–48.9) 54.2 (48.9–70.2) 0.0015

3-Hydroxykunrenin (nmol/L) 45.9 (33.8–59.6) 35.1 (29.5–48.7) 41.9 (33.1–53.1) ns

Xanthurenic acid (nmol/L) 11.8 (8.4–19.5) 9.2 (3.4–14.5) 19.9 (15–27.8) 0.0013

3-Hydroxyantralinic acid (nmol/L) 27.2 (22.5–35.5) 31.6 (20–47.7) 31.5 (23.4–41.1) ns

Quinilonic acid (nmol/L) 349 (262.3–448.5) 474.4 (352.2–669.2) 359 (304–425) 0.039

K/T ratio 24.8 (21.2–30.8) 34.8 (31.2–46.9) 24.6 (20.8–28.9) 0.0001

Table 2. Soluble markers of inflammation and metabolites of kynurenine/tryptophan catabolism in plasma. 
*Kruskal-Wallis test was used for comparison between three groups, and Dunn’s Multiple Comparison Test 
for post-hoc pairwise analyses. Two-tailed Mann-Whitney U-test was applied for comparisons between two 
groups. NA (not available). ns (non significant) indicates p-value > 0.05.

NMDS1 NMDS2

R2 R2

hs-CRP (pg/ml) −0.22 −0.06

LBP (ng/ml) 0.18 0.27

sCD14 (pg/ml) −0.09 −0.29

Tryptophan (umol/L) −0.20 −0.46*
Kynurenine (umol/L) 0.12 0.07

Anthralinic acid (nmol/L) 0.08 0.39

Kynurenic.acid (nmol/L) −0.11 −0.18

3-Hydroxykynurenin (nmol/L) 0.05 −0.10

Xanthurenic acid (nmol/L) −0.11 −0.29**
3-Hydroxyantralinic acid (nmol/L) −0.08 0.02

Quinilonic acid (nmol/L) 0.08 0.28

K/T ratio 0.17 0.43*

Table 3. Correlation strengths (R2) for each NMDS axis/marker. *Indicates p-value < 0.01. **Indicates 
p-value < 0.05.
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Up till now, only a few studies included functional analysis of gut microbiota in HIV patients10, 34, 36. In our 
cohort, inferred functional analysis of microbiota revealed interesting changes of gene abundance between the 
groups. We found lower abundance of genes involved in metabolism of carbohydrates; instead lipid metabolism 
related genes were enriched in EC. These differences were observed at both KEGG levels. Obviously, intracellular 
metabolic pathways involved in carbohydrate and lipid metabolism (like glycolysis, PPP, oxidation and synthesis 
of fatty acids, amino acid metabolism) are major players regulating both innate and adaptive immune cells56. 
Given that the vast majority of immune cells are located in the gut, the availability of nutrients for the gut-resident 
immune cells and the local metabolic milieu may influence the immunometabolism in gut compartment, subse-
quently tuning the immunological architecture and response to microbial stimuli. For instance, the short-chain 
fatty acid butyrate, derived from commensal microbiota, has been found to preferentially induce differentiation 
of colonic regulatory T-cells by expression of Foxp3 gene, mediated by butyrate driven epigenetic modifications 
promoting inhibition of histone deacetylases (HDACs)57. Also long chain omega 3- polyunsaturated fatty acids 
(PUFA), e.g. alpha-lineolic acid which in our study correlated positively to BL CD4+ T-cell count and negatively 
to immune activation, have immunomodulatory properties involved in activation, differentiation and signal-
ing of CD4+ T-cells58. Additionally, improved gut microbiota composition and positive immunomodulatory 
effects have been associated with oral supplementation of the nutritional mixture including several prebiotic 
oligosaccharides and omega-3/6 fatty acids in ART naive HIV-infected subjects59, 60. Based upon these findings, 

Figure 5. Correlations between tryptophan catabolism metabolites and NMDS 2 axis reveal clustering of naive 
patients. Significant correlations between NMDS 2 axis and tryptophan (a), xanthurenic acid (b) and K/T ratio 
(c) were observed, separating naive patients from EC and negative controls. The gray area defines the 95% 
confidence interval for the linear regression coefficients. The different groups are represented by different colors 
(EC-red, naive-blue, negative-yellow). Spearman’s correlation was applied for testing correlations between 
metabolites and NMDS plot axis coordinates.
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we hypothesize that the composition and functional capacity of gut microbiota in EC may be one of the factors 
contributing to virological and immunological control of the HIV-infection in absence of ART. Even if the EC 
group was very similar to negative subjects at both compositional and inferred functionality analyses, there were 
still significant differences present between the Elite controllers and negative subjects.

We acknowledge the lack of extensive dietary data, which could bias our analysis. Additionally, gene func-
tional profiles were inferred from 16S sequences. While inferred function has shown to be robust, particularly 
for gut microbiome23, they should be interpreted with caution. Our study was not designed to provide the answer 
about the association between the HIV progression and microbiota changes, which could be addressed in pop-
ulation studies with longitudinal design. On the other hand, our study was carefully designed regarding pos-
sible confounding and to our knowledge, we analyzed the microbiome of the largest cohort of EC described. 
Additionally, we cautiously report only correlations data which had a significance level <0.01, providing further 
strength to our results and conclusions.

In summary, we report that the microbiota of EC is different from individuals with progressive infection and 
more similar to HIV negative individuals. The differences are robust, present both in number of observed species, 
richness, composition and inferred functionality. Our data suggest the concept of microbiota related control of 
HIV infection in EC, presumably at metabolomics level. If confirmed by metabolomics studies, new intervention 
strategies to control HIV can be considered.
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ABSTRACT High-throughput sequencing technologies have revolutionized micro-
biome research by allowing the relative quantification of microbiome composition
and function in different environments. In this work we focus on the identification
of microbial signatures, groups of microbial taxa that are predictive of a phenotype
of interest. We do this by acknowledging the compositional nature of the micro-
biome and the fact that it carries relative information. Thus, instead of defining a mi-
crobial signature as a linear combination in real space corresponding to the abun-
dances of a group of taxa, we consider microbial signatures given by the geometric
means of data from two groups of taxa whose relative abundances, or balance, are
associated with the response variable of interest. In this work we present selbal, a
greedy stepwise algorithm for selection of balances or microbial signatures that pre-
serves the principles of compositional data analysis. We illustrate the algorithm with
16S rRNA abundance data from a Crohn’s microbiome study and an HIV microbiome
study.

IMPORTANCE We propose a new algorithm for the identification of microbial signa-
tures. These microbial signatures can be used for diagnosis, prognosis, or prediction
of therapeutic response based on an individual’s specific microbiota.

KEYWORDS balances, compositional data, microbiome

Human microbiome research, focused on the study of the microorganisms that live
throughout the human body and their role in health and disease, has experienced

significant growth in the last few years. High-throughput sequencing technologies
have revolutionized this field by allowing the quantification of microbiome composi-
tion and function in different environments. Large-scale projects, such as the Human
Microbiome Project (1, 2) or MetaHIT (metagenomics of the human intestinal tract),
have established standardized protocols for creating, processing, and interpreting
metagenomics data (3). However, analysis of microbiome data is still challenging due
to, among other reasons, their inherently compositional nature.

High-throughput DNA sequencing generates thousands of sequence reads that,
after bioinformatics preprocessing and quality control, are annotated to different
microbial species or taxa. An abundance table of counts summarizes the number of
sequences per sample of each taxon. The total number of counts per sample, also
known as sequencing depth or library size, is highly variable and constrained by the
maximum number of sequence reads of the instrument. This total count constraint
induces strong dependencies among the abundances of the different taxa; an increase
in the abundance of one taxon requires the decrease of the observed number of counts
for some of the other taxa so that the total number of counts does not exceed the
specified sequencing depth. Moreover, observed raw abundances and the total number
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of reads per sample are noninformative since they represent only a fraction or random
sample of the original DNA content in the environment. These characteristics of
microbiome abundance data clearly fall into the notion of compositional data. Com-
positional data are defined as a vector of strictly positive real numbers with an
unknown or uninformative total. Compositional data carry relative information, i.e.,
information contained in the ratios between components, and the numerical value of
each component by itself is irrelevant (4). Except for the fact that microbiome abun-
dance tables contain many zeros, microbiome data fit the definition of compositional
data and, as already acknowledged by many authors (5, 6), their analysis requires the
use of a proper mathematical theory (7).

Most of the methods proposed for microbiome analysis are intended to address two
main issues: first, whether there is a global association between the microbiome and a
phenotype of interest; second, which specific taxa are associated with the outcome.
Multivariate methods such as PERMANOVA (8, 9), implemented in the Adonis() function
of the R package vegan (10), and MiRKAT (11) address the first issue. The second issue
is approached with univariate methods where each taxon is tested for association with
the outcome. When the response variable is dichotomous, the testing method is known
as differential abundance testing and methods specifically developed for transcriptome
sequencing (RNA-Seq) data, such as DESeq2 (12) and edgeR (13), are commonly used.
Other methods, such as ANCOM (14) and ALDEx2 (15), have been proposed that
acknowledge the compositionality of microbiome data. See a previous report by Weiss
et al. for a comprehensive comparison of methods for microbiome differential abun-
dance testing (16).

In this paper we focus on a different issue. The goal of the proposed methodology
is to identify microbial signatures, that is, groups of microbial taxa that are predictive
of a phenotype of interest. These microbial signatures can be used for diagnosis,
prognosis, or prediction of therapeutic response based on an individual’s specific
microbiota (17). The identification of microbial signatures involves both modeling and
variable selection: modeling the response variable and identifying the smallest number
of taxa with the highest prediction or classification accuracy. We present selbal, a model
selection procedure that searches for a sparse model that adequately explains the
response variable of interest. Similarly to forward stepwise linear regression, selbal
performs multiple regressions a number of times, each time adding a new taxon to the
model. Unlike linear regression, the raw variables in selbal are not included in a linear
equation in real space but are added as part of what is called a “balance” in the
compositional data analysis literature, i.e., as part of a particular type of log-contrast.

Mathematically, a compositional balance is defined as follows. Let X � (X1, X2, . . ., Xk)
be a composition with k components or parts. Given two disjoint subsets of compo-
nents in X, denoted by X� and X�, indexed by I� and I�, and composed of k� and k�

parts, respectively, the balance between X� and X� is defined as the normalized log
ratio of the geometric mean of the values for the two groups of components as follows:

B�X�, X�� � � k� · k�

k� � k�

log
��i�I�

Xi�1⁄k�

��j�I�
Xj�1⁄k�

Expanding the logarithm, we obtain a more usual expression of a balance that is
proportional to the difference between the means of the log-transformed variables of
the two groups of components as follows:

B�X�, X�� �
1

k�
�

i�I�

log Xi �
1

k�
�

j�I�

log Xj

A compositional balance is a special kind of a log-contrast, defined as a linear
combination of the log-transformed components of a composition with the restriction
that the coefficients of the linear function add up to zero (4). The importance of
working with log-contrast functions or, in particular, with balances, in analyzing com-
positional data is that this kind of function preserves scale invariance, one of the
principles that should be fulfilled in compositional data analysis (4, 7).
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Our algorithm for balance selection, selbal, starts with a first thorough search of the
two taxa whose balance, or log ratio, is most closely associated with the response. Once
the first two-taxon balance is selected, the algorithm performs a forward selection
process where, at each step, a new taxon is added to the existing balance such that the
specified criterion is improved (area under the receiver operating characteristic [ROC]
curve [AUC] or mean squared error [MSE]). The algorithm stops when there is no
additional variable that improves the current optimization parameter or when the
maximum number of components to be included in the balance is achieved. This
number is established with a cross-validation (CV) procedure, which is also used to
explore the robustness of the identified balance. A more detailed description of the
algorithm is given in Materials and Methods.

selbal is different from other modeling approaches for microbiome analysis such as
MiRKAT (11), which performs an overall association test comparing the microbiome and
the phenotype but does not perform model selection.

Model selection for microbial signature identification can also be performed in two
separate steps: first, variable selection; second, model building with the selected variables.
When the outcome variable is dichotomous, variable selection can be obtained with
methods for microbiome differential abundance testing mentioned before, such as DESeq2
(12), edgeR (13), or, in the context of compositional data analysis, ANCOM (14) or ALDEx2
(15). However, it is not clear how to combine the selected variables to obtain the best joint
sparse model. This is specially challenging for microbiome analysis, where the composi-
tional nature of microbiome data induces spurious correlations among the variables. We
think that a joint procedure that involves both modeling and variable selection, as per-
formed in selbal, is more appropriate in this context.

Other authors (18–20) have previously proposed the use of balances for microbiome
analysis regarding the construction of an isometric log ratio (ILR) transformation (21),
which allows compositional data to be represented in a real Euclidean space, where
standard statistical methods can be applied. Silverman et al. (18) and Washburne et al.
(19) proposed methods that use microbial phylogenetic information to guide the
sequential binary partition in the construction of a particular ILR transformation. This
phylogenetically driven ILR transformation would help to detect relevant evolutionary
factors or phylogenetically related bacterial groups (clades) related to host-microbiome
interactions (18, 19). In the method proposed by Morton et al. (20), instead of using
phylogenetic information, they use the response variable to define the binary sequen-
tial partitions of the ILR transformation. selbal is different from these methods in the
following ways: first, only one balance is considered and not a sequence of balances in
selbal; second, the purpose of the selected balance is classification or prediction and
not a new representation of the data.

As with any other compositional data method, one important issue that selbal
addresses before the searching algorithm can be applied is that of how to deal with the
large amount of zeros that are typically present in microbiome data sets. Their
treatment is different depending on whether they represent essential or rounded zeros
(22). In microbiome analysis, an essential or structural zero represents the absolute
absence of a taxon in a sample, e.g., because the microbe is unable to live in that
environment. In dealing with essential zeros, samples are considered to belong to two
distinct subpopulations according to the presence or absence of a zero. On the other
hand, rounded zeros arise because of insufficient sampling depth: they correspond to
taxa in such a small proportion in the sample that they were not picked during the
sequencing process. The common practice for the treatment of rounded zeros is their
replacement by a small positive value. This replacement can be implemented in
different ways, including replacing the zeros by a constant, adding a constant to all
values in the data set, and using more-sophisticated methods for zero replacement that
are designed to preserve as much as possible the covariance structure of the initial
data. Though the user can perform other zero replacements before using selbal (18, 20),
the default option in selbal is geometric Bayesian multiplicative replacement (GBM) (23)
(described in more detail in Materials and Methods).
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Another important issue in microbiome analysis is sampling variance. As discussed
by Gloor et al. (24), microbiome data, as with any other kind of high-throughput
sequencing data, are subject to high levels of variability or uncertainty that should be
conveniently treated. The number of reads obtained in an experiment represents just
an instance from a random sample of the true microbial composition in the environ-
ment of interest. The same protocol applied twice to the same sample would provide
different microbial compositions. This imprecision, which arises during the library
preparation and sequencing process, is larger for taxa of low abundance and should be
taken into account when dealing with observed zeros. One way to handle this vari-
ability is by modeling the read counts per sample as multinomial or negative binomial,
which implies that the vectors of relative abundances of the different taxa follow approx-
imately a Dirichlet distribution. Then, using a Dirichlet Monte Carlo sampling approach, we
can obtain multiple instances of the posterior distribution of the relative abundances
determined for each sample (25). By multiplying the relative abundances of each sample by
the observed total number of counts, we obtain multiple abundance tables which can be
analyzed with selbal. The comparison of the microbial signatures obtained from these new
Monte Carlo abundance tables to the microbial signature obtained with the initial table can
be used to evaluate the robustness of the initial result.

The remainder of this paper is organized as follows. In the next section, we illustrate
the proposed algorithm with a Crohn’s disease (CD) microbiome study and an HIV
microbiome study. Some discussions and suggestions for future work are provided in
the Discussion. In Materials and Methods, we present the detailed description of the
algorithm. selbal is accessible as an R package in GitHub (https://github.com/UVic
-omics/selbal), where the data sets and scripts to reproduce this work are also available.

RESULTS

We illustrate the proposed methodology for use with microbiome compositions at
the genus level for a Crohn’s disease study (26) and an HIV microbiome study (27). We
did not perform the bioinformatics processing of the sequences (with Mothur or Qiime)
but took the processed operational taxonomic unit (OTU) tables available in Qiita and
Bioproject repositories (accession numbers provided below). We performed additional
filtering and agglomeration steps to obtain the abundance tables at the genus level.
The scripts to obtain those genus-level abundance tables are available at GitHub.

Microbiome and Crohn’s disease. Crohn’s disease (CD) is an inflammatory bowel
disease that has been linked to microbial alterations in the gut (26, 28). We use data
from a large pediatric CD cohort study (26) to illustrate the proposed methodology for
identification of microbial signatures. Microbiome data from 16S rRNA gene sequenc-
ing and QIIME 1.7.0 bioinformatics processing were downloaded from Qiita https://
qiita.ucsd.edu (study identifier [ID]: 1939). Only patients with Crohn’s disease (n � 662)
and those without any symptoms (n � 313) were analyzed. The OTU table was
agglomerated to the genus level, resulting in a matrix with 48 genera and 975 samples.

The goal of selbal analysis is to identify a microbial signature for Crohn’s disease that
is able to discriminate between CD and non-CD individuals. This microbial signature is
defined by two groups of taxa whose relative abundances, or balance, are associated
with Crohn’s disease status.

As explained in Materials and Methods, we first ran a cross-validation (CV) process
with the function selbal.cv() that helped us to determine the optimal number of taxa to
be included in the balance. Figure 1 provides the mean AUC and standard error of the
balances obtained in the CV process as a function of the number of taxa. In this case,
and following the 1se rule, the optimal number of taxa is 12.

Once the number of taxa is determined, we apply the main function selbal() to the
whole data set, with the number of taxa C � 12, and obtain what we call the �global
balance.�

The two groups of taxa defining the global balance, or microbial signature, for
Crohn’s disease are X� � {g_Roseburia, o_Clostridiales_g_, g_Bacteroides, f_Peptostrep-
tococcaceae_g_} and X� � {g_Dialister, g_Dorea, o_Lactobacillales_g_, g_Eggerthella,
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g_Aggregatibacter, g_Adlercreutzia, g_Streptococcus, g_Oscillospira}. Figure 2 presents
the distribution of the microbial signature values for CD and non-CD individuals.
Patients with Crohn’s disease have lower balance scores than controls, which means
that there are lower relative abundances of taxa in group X� than in group X�.
Bacteroides and Clostridiales have also been previously identified as less abundant in
Crohn’s disease individuals than in controls (26). The discrimination value of the
identified balance is important, with an apparent AUC value of 0.838. However, this
apparent AUC is known to overestimate the discrimination value of the microbial
signature, since it has been measured on the same data set that was used to build the
model. A more accurate estimation is obtained from the CV process, which provides a
cv-AUC of 0.819, a very good discrimination value.

Robustness of the selected global balance. CV can also help us to assess the
robustness of the proposed global balance. In Fig. 3, we summarize the different
balances obtained with 12 taxa in the CV process. On the one hand, we have the
frequency of the different CV balances and, on the other, the frequency of selection of
each taxon. Rows represent the most frequent taxa, with their percentage of selection
given in the second column; the third column represents the global balance, that is, the
balance obtained using all the samples; and the last three columns represent the three
most frequent balances selected in the CV procedure. Colored rectangles indicate
whether the taxon is in the numerator of the balance (red) or in the denominator (blue)
or not included (white). The last row indicates the proportion of times each balance has
been selected as optimal in the CV procedure. From the data presented in Fig. 3, it
follows that the identified global balance for Crohn’s disease is very robust; the global
balance coincides with the balance most frequently found in the CV process, which
turned out to be the optimal balance 36% of the time. Moreover, the taxa which form
the global balance are also those most frequently selected in the CV procedure.

An alternative approach for exploring the robustness of the selected global balance
is by implementing Monte Carlo sampling from a Dirichlet distribution prior to micro-
biome signature identification with selbal. This process returns a set of different
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FIG 1 Mean area under the ROC curve (AUC) as a function of the number of components included in
the balance in the cross-validation process for Crohn’s disease. The optimal number of components
according to the “1se rule” is highlighted with a vertical dashed line.
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microbiome signatures that can be compared with the global balance. We performed
this strategy with Crohn’s microbiome data with 100 sampling iterations and obtained
balances highly concordant with the proposed global balance (see Fig. S1 in the
supplemental material). Similar results were obtained with two zero replacement
strategies, a constant of 1 added to all values, and geometric Bayesian multiplicative
replacement (GBM) (23).

Comparison with other approaches. Using the Crohn’s disease data set, we
compared the classification accuracy of selbal with that of strategies employing two
steps: first, variable selection; second, model building. For the variable-selection step,
we considered DESeq2, edgeR, ANCOM, and ALDEx2, and then we built a model or
microbial signature with the selected variables. The model is a linear combination of
the selected variables for DESeq2, edgeR, and ANCOM, whereas for ALDEx2 the model is
defined as a linear combination of the selected variables, previously transformed
according to the centered log-ratio transformation (15). selbal cannot be compared
with these methods in terms of false-discovery rate (FDR) and power because the goal
of selbal is not to identify all taxa that are associated with the response but to obtain
the best sparse model to predict the response. In a cross-validation process, we
measured the test prediction accuracy and sparsity of the models (microbial signatures)
obtained with each method. The results are given in Table 1, and in Fig. S2 we can see
the variability of cv-AUC for the different methods.

selbal and ALDEx2 are the methods with the best classification accuracy, but selbal
is more parsimonious, which is also a desirable feature of microbial signatures. selbal
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FIG 2 Description of the global balance for Crohn’s disease. The two groups of taxa that form the global balance are specified at the top of the plot. The box
plot represents the distribution of the balance scores for CD and non-CD individuals. The right part of the figure contains the ROC curve with its AUC value
(0.838) and the density curve for each group.
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obtains discrimination accuracy with only 12 taxa that is similar to that obtained with
ALDEx2 with 31 taxa. DESeq2 and edgeR provide similar results: high numbers of
selected taxa but lower classification accuracy. This suggests that among the variables
selected by DESeq2 and edgeR, there are some false positives. ANCOM is the best in
terms of parsimony; it selects the smallest number of variables, with classification
accuracy comparable to that of DESeq2 and edgeR. This is in accordance with previous
simulation studies (16) that indicated that ANCOM has very low FDR and comparable
power to other methods. These results cannot be generalized since they reflect the
behavior of the methods with only one specific data set. A more general conclusion
would require a comprehensive simulation study.

Microbiome and HIV infection. Understanding the role of the gut microbiome in
HIV-1 infection may help to design novel interventions to improve HIV-1-associated
immune dysfunction. We considered a cross-sectional HIV microbiome study con-
ducted in Barcelona, Spain, that included both HIV-infected subjects and HIV-negative
controls (27). Microbiome data were obtained from a MiSeq 16S rRNA sequence
and bioinformatically processed with Mothur (29) and are available at BioProject
(PRJNA307231). After applying abundance filters and agglomerating taxa to the genus
level, microbiome abundance data are summarized in a matrix of raw abundances for
155 samples and 60 different genera.

The main goal of this analysis is to find a microbial signature for HIV status, that is,
two groups of taxa whose relative abundance or balance data are able to discriminate

g__Dialister

g__Roseburia

o__Clostridiales_g__

g__Bacteroides

g__Dorea

o__Lactobacillales_g__
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FIG 3 Cross-validation (CV) results for Crohn’s disease study: most frequent taxa and most frequent
balances selected in the CV procedure compared to the global balance obtained with the whole data set.
Colored rectangles indicate if the component is in the numerator of the balance (BAL) (red), in the
denominator (blue), or not included (white). FREQ, frequency.

TABLE 1 Comparison of model complexity and discrimination accuracy of microbial
signatures for Crohn’s disease statusa

Method Median no. of taxa Mean cv-AUC

selbal 12 0.8196
DESeq2 33 0.7752
edgeR 34 0.7721
ANCOM 5 0.7125
ALDEx2 31 0.8156
aFor each method, the table indicates the median number of taxa included in the model and the mean cv-
AUC for 10 iterations of a 5-fold cross-validation process.
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between HIV-positive and HIV-negative individuals. As reported by Noguera-Julian et al.
(27), a possible confounder in HIV microbiome studies is the HIV risk factor MSM (men
who have sex with men versus non-MSM). selbal algorithm implements a regression
model which allows adjustment for other variables. Thus, we applied the algorithm to
Y � HIV status and X � microbiome abundance at the genus level, adjusted by Z �

MSM factor.
According to the cross-validation (CV) procedure implemented with function sel-

bal.cv(), the optimal number of components to be included in the balance is 2 (Fig. S3).
The microbiome signature for HIV status identified with selbal is given by the log ratio
between the abundance of a taxon of the family Erysipelotrichaceae and of unknown
genus and a taxon of the family Ruminococcaceae and of unknown genus (Fig. S4).
HIV-negative individuals are associated with lower balance values, most of them negative,
that is, with larger relative abundances of Ruminococcaceae than of Erysipelotrichaceae,
while HIV-positive individuals have heterogeneous balance values. The discrimination
accuracy of this balance is moderate, with an AUC of 0.786 on the whole sample and a
mean cross-validation AUC of 0.674 measured on the test data sets given MSM status.
Figure S5 shows the result of the cross-validation procedure. The balance identified with
the whole data set is that most frequently identified in the cross-validation procedure,
appearing 44% of the time, an indicator of robustness for the proposed global balance.

Microbiome and soluble CD14 inflammation marker. Acute inflammation and
chronic inflammation typically occur after HIV infection. Even patients administered
antiretroviral medications and with an undetectable viral load present with chronic
inflammation, which may cause tissue damage and is associated with many chronic
diseases (30). In this context, there is great interest in defining possible interventions
involving modifications of the gut bacterial environment which may reduce inflamma-
tion in HIV patients (31, 32). This requires a good understanding of the association
between gut microbial composition and several inflammation markers. In this case, we
focus on immune markers related to chronic inflammation: the levels of soluble CD14
(sCD14), which was measured for a subset of samples (n � 151). We apply selbal to
search for a microbial signature that is predictive of an sCD14 inflammation marker.
According to the cv-MSE (Fig. S6), the optimal number of components to be included
in the model is four. The balance that is identified as that most closely associated with
sCD14 is composed of two taxa in the numerator, X� � {g_Subdoligranulum, f_Lach-
nospiraceae_g_Incertae_Sedis}, and two in the denominator, X� � {f_Lachnospiraceae_
g_unclassified, g_Collinsella}. The association is moderate, with R � 0.53. Since sCD14
data are continuous, we represent the result with a scatter plot of the balance values
and sCD14 values. We observe that higher balance scores are associated with higher
sCD14 values (Fig. S7). The robustness of the selected balance can be evaluated
through the results of the CV procedure (Fig. S8). We see that the proposed global
balance is also the one that has been the most frequently (34% of the time) selected
in the CV. The four taxa defining the global balance correspond to the top 4 most
frequently selected in the cross-validation. These results emphasize the robustness of
the selected global balance.

DISCUSSION

The identification of microbial signatures that are predictive of a variable of interest is
an essential step toward the translation of microbiome research to clinical practice. In this
work, we present selbal, a greedy stepwise algorithm for the identification of microbial
signatures consisting of two groups of taxa whose relative abundances, or balance, are
predictive of the outcome. Working with balances and, in general, with log-contrast
functions preserves the scale-invariant principle for compositional data analysis.

In the Crohn’s disease study considered in this work, selbal outperformed methods
commonly used in microbiome analysis, such as DESeq2 and edgeR, in terms of
discrimination accuracy. With respect to methods for compositional data, selbal per-
forms much better than ANCOM and similarly to ALDEx2 in terms of classification
accuracy, but selbal is more parsimonious.
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selbal overcomes the problem of differences in sample size that is usually accom-
modated with different methods based on count normalization, rarefaction, or trans-
formation into proportions. These normalization techniques are controversial since they
may have an important impact on the analysis (16, 33, 34). The only way in which data
are altered in selbal is at the zero imputation stage, which is required because of the use
of logarithms and ratios in the definition of balances. This replacement of zeros by
positive numbers is performed under the assumption that the observed zeros represent
rounded zeros, that is, that all taxa are present in all the samples but some of them are
not detected because of low abundance and insufficient sampling depth. However, it
is not clear how the imputation method and the presence of structural zeros (absence
of the taxa in the sample) may influence the results. Future research will focus on the
treatment of zeros, with the aim of more precisely evaluating if zeros are rounded or
structural, and on selecting the best replacement method.

The technical variability of microbiome sequencing data should be taken in con-
sideration. The effects of this uncertainty on the results of selbal can be explored
through Monte Carlo sampling from a Dirichlet distribution (25) prior to microbiome
signature identification with selbal.

A limitation of selbal is that the greedy algorithm does not guarantee that the global
optimum will be found. Due to the computational cost, selbal does not explore the
whole balance space; the method for selecting the optimal balance is suboptimal and
may be improved. In this respect, the iterative CV process included in the selbal
algorithm is useful for exploring the robustness of the result. The degree of concor-
dance between the balances obtained in the CV process and the global balance can
provide reasonable evidence to support the optimality of the global balance. Exploring
possible alternative approaches in the search of the optimal balance is another topic of
future research.

MATERIALS AND METHODS
Let X � (X1, X2, . . ., Xk) be a composition, that is, a vector of strictly positive real numbers that carry

relative information. Given two disjoint subsets of components in X, denoted by X� and X�, indexed
by I� and I�, and composed of k� and k� features, respectively, the balance between X� and X� is
defined as the normalized log ratio of the geometric mean of the two groups of components as
follows:

B�X�, X�� � � k� · k�

k� � k�

log
��i�I�

Xi�1⁄k�

��j�I�
Xj�1⁄k�

Expanding the logarithm, we obtain the result that a balance is proportional to the difference
between the arithmetic means of the log-transformed variables of the two groups of components as
follows:

B�X�, X�� �
1

k�
�
i�I�

log Xi �
1

k�
�
j�I�

log Xj

The second expression is preferable from a computational point of view and is the one implemented
in the proposed algorithm.

Given Y, a response variable, which can be either numeric or dichotomous, a composition X �
(X1, X2, . . ., Xk), and additional covariates Z � (Z1, Z2, . . ., Zr), the goal of the algorithm is to determine two
subcompositions of X, X� and X�, indexed by I� � {1, 2,. . ., k} and I� � {1, 2,. . ., k}, respectively, so that
the balance B(X�, X�) between X� and X� is highly associated with Y after adjustment for covariates Z.
Depending on the nature of the dependent variable, the association can be defined in several ways.

For a continuous variable Y, the optimization criterion is defined as minimization of the MSE of the
linear regression model as follows:

Y � �0 � �1B�X�, X�� � �'Z

For a dichotomous variable Y, we fit the logistic regression model as follows:

logit�Y� � �0 � �1B�X�, X�� � �'Z

In this case, we consider three possible optimization criteria corresponding to the maximization of
the area under the ROC curve (default option), the maximization of the explained variance (35), or the
discrimination coefficient (36).

Main function: selbal(). The main function of the proposed algorithm to detect the most closely
associated balance is called selbal() and employs the following three steps.

Step 0: zero replacement. The initial matrix of counts in a microbiome study, denoted X̃, typically
contains many zeros that must be treated prior to using selbal algorithm. Though the user can perform
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other zero replacements before using selbal (18, 20), the default option in selbal is geometric Bayesian
multiplicative replacement (GBM) (23) as implemented in the cmultRepl() function of the R package
zCompositions (37). GBM performs Bayesian estimation of the zero values, assuming a Dirichlet model
and a multiplicative modification of the nonzero values, so that both the ratios between parts and the
total sum of the initial vector before the replacement are preserved. GBM performs better than other
Bayesian multiplicative replacements assuming a Dirichlet distribution (23). selbal also provides the
option of adding a value of 1 to all values in the data set. The resulting matrix with zeros replaced by
positive values is denoted by X.

Step 1: optimal balance between two components. The algorithm evaluates exhaustively all
possible balances composed of only two components, that is, all balances of the following form:

Bij � �1

2
�log�Xi� � log�Xj�� for i, j � �1 , . . ., k	, i 	 j

Each two-component balance (Bij) is tested for association with the response variable Y with one of
these regression models as follows:

Y � �0 � �1Bij � �'Z, for a continuous response, or

logit�Y� � �0 � �1Bij � �'Z, for a dichotomous variable Y.

The balance that maximizes the optimization criteria (MSE or AUC) is selected and denoted by B1.
Note that in defining a balance for a pair of components (Xi, Xj), there are two options that differ only

in their signs but provide the same association with the response:

Bij � �1

2
�log�Xi� � log�Xj�� and Bji � �1

2
�log�Xj� � log�Xi��

selbal returns the balance whose regression coefficient is positive.
Step s: optimal balance—adding a new component. For s � �1 and until the stop criterion is

fulfilled, let B(s � 1) be the balance defined in the previous step:

B�s�1� �
1

k�
�s�1� �

i�I�
�s�1�

log�Xi� �
1

k�
�s�1� �

j�I�
�s�1�

log�Xj�

where I�
�s�1� and I�

�s�1� are two disjoint subsets of indices in (1, . . ., k), with k�
�s�1� and k�

�s�1� elements,
respectively.

For each of the remaining variables, Xp, not yet included in the balance, p � �I�
�s�1� � I�

�s�1��, the
algorithm considers the balance that is obtained by adding log�Xp�to the positive part of the previous
balance B(s�1)

Bp
�s�� � 
 1

k�
�s�1� � 1� �

i�I�
�s�1�

log�Xi� � log�Xp���
1

k�
�s�1� �

j�I�
�s�1�

log�Xj�
and the balance that is obtained by adding log�Xp� to the negative part of B(s�1)

Bp
�s�� � 
 1

k�
�s�1� �

i�I�
�s�1�

log�Xi� �
1

k�
�s�1� � 1� �

j�I�
�s�1�

log�Xj� � log�Xp��
Each of these pairs of balances, Bp

�s�� and Bp
�s��, for each of the remaining variables, Xp, is tested for

association with the response variable through one of these two regression models, where B denotes the
balance tested:

Y � �0 � �1B � �'Z, for a continuous response, or

logit�Y� � �0 � �1B � �'Z, for a dichotomous variable Y.

The balance that maximizes the optimization criterion defines the new balance B(s).
Stop criteria. There are two stopping rules: the iterative algorithm stops when value corresponding

to the the improvement of the optimization parameter is lower than a specified threshold th.imp (default
th.imp � 0) or when the specified maximum number of components, C, has been included in the balance
(default C � 20).

Iterative cross-validation: selbal.cv(). An iterative cross-validation procedure is implemented in
selbal.cv() function with two goals: (i) to identify the optimal number of components to be included
in the balance and (ii) to explore the robustness of the global balance identified with the whole data
set.

Let M be the number of iterations (default M � 10), K the number of folds in the cross-validation
(default K � 5), and C the maximum number of variables or components included in a balance (default
C � 20).

At each iteration of m � {1, . . ., M}, the data are divided into K folds, D1
m, . . ., DK

m.
For each k � {1, . . ., K}, selbal() is applied to the training data set, Uj	kDj

m, and the optimal balance
with C � 20 variables is obtained, Bk

m�20�. Since selbal() is a forward selection process where variables are
included sequentially at every step, we have a sequence of balances, including from C � 2 to C � 20
variables:

Bk
m�2�, Bk

m�3�, . . . ,Bk
m�20�

The classification accuracy (MSE or AUC) of these balances is measured on the test data set, Dk
m,

giving a sequence of accuracy measures for each number of variables included in the balance:
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MSEk
m�2�, MSEk

m�3�, . . ., MSEk
m�20�

and similarly for AUC.
Optimal number of components. For each number of components c � �2, . . ., C	 we have K 
 M

measures of accuracy, MSE or AUC. The mean and the standard error are computed and are represented
in a plot (Fig. 1).

Similarly to the cross-validation process in LASSO for finding the optimal penalization parameter
lambda (38), we follow the �1se strategy� and define the optimal number of variables included in the
balance (kopt) as the lowest number whose mean MSE is within 1 standard error of the minimum mean
MSE (or whose mean AUC is within 1 standard error of the maximum mean AUC). Usually, the 1se
strategy provides sparser models than taking the minimum mean MSE (or maximum mean AUC), with
very similar accuracy. This 1se strategy is the default option in selbal, but there is also the possibility of
determining the optimal number of variables as the value reaching the optimum (minimum mean MSE
or maximum mean AUC).

Global balance. Once the optimal number of components kopt has been determined, we apply the
main function selbal() to the whole dataset, with the number of taxa C � kopt, and obtain what we call
the global balance.

Robustness of the result. Any method that requires variable selection may result in overfitting.
In order to explore the robustness of the global balance and the variables that form it, we retrieve
all the balances with kopt components obtained in the cross-validation process Bk

m�kopt�, k �

�1, . . ., K	, m � �1, . . ., M	 and compare them with the global balance. We summarize these cross-
validation balances in two different ways: per balance and per variable. We provide the relative
frequencies of the different balances and the proportion of times that each taxon has been included into
a balance. This information, available in the output of selbal.cv(), is summarized in a table such as that
shown in Fig. 3.

This cross-validation process can also be used to obtain the cross-validation accuracy, defined as the
mean MSE or mean AUC of the balances obtained in the CV process that have the same number of
variables as the global balance: mean

k,m
�MSEk

m�kopt�� or mean
k,m

�AUCk
m�kopt��.

Data availability. selbal is accessible as an R package in Github (https://github.com/UVic-omics/
selbal), where the data sets and scripts to reproduce this work are also available. Microbiome data were
obtained from a MiSeq 16S rRNA sequence and bioinformatically processed with Mothur (29) and are
available at BioProject (https://www.ncbi.nlm.nih.gov/bioproject/) (accession number PRJNA307231; SRA
accession number SRP068240).
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dirección. Aśı mismo, agradezco a Noel Alimentaria su apuesta por la

ciencia y más concretamente la beca que crearon junto con IrsiCaixa y que

me ha permitido ser parte de todo esto. En este momento de agradecimien-

to a los directores de tesis, me gustaŕıa resaltar todo el tiempo que tanto

Malu como Marc han dedicado a la corrección de art́ıculos, presentaciones,

pósters, caṕıtulos de esta tesis, ... cosa que agradezco enormemente ya

que me ha permitido mejorar todo lo que he hecho. Además, tenerlos

como tutores me ha servido para ver el trabajo desde dos puntos de vista

diferentes: el más teórico y el práctico; lo cuál ha sido muy enriquecedor

para mı́.

Por otro lado quisiera agradecer a las dos instituciones de las que he

formado parte estos cuatro años. Tanto IrsiCaixa como la UVic-UCC

me han facilitado la asistencia a muchos congresos y seminarios a nivel

nacional e internacional, aśı como la colaboración con cient́ıficos de otras

instituciones. Poder asistir al CROI en Boston, participar en el CoDaWork

o relizar la estancia en BioSS, han sido algunas de las cosas que sin su

ayuda habŕıa resultado dif́ıcil llevar a cabo. También me gustaŕıa destacar

la posibilidad que tanto la UVic-UCC como Malu me han dado de impartir

clases en la universidad; lo cierto es que me ha permitido disfrutar mucho y

quién sabe si también descubrir a lo que me quiero dedicar en los próximos

años, ...

Como advert́ı al inicio, en estos agradecimientos el orden de los factores
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resulta irrelevante. Y lo cierto es que estos años me ha sido tan importante

tener un apoyo a nivel profesional como a nivel personal. Y es aqúı donde

quisiera detenerme un poco más, porque hasta en los párrafos anteriores

cuando hablaba de instituciones o empresas, en el fondo todo se reduce a

las personas que las componen. Volviendo un poco a la parte más cient́ıfica,

aunque no existe una fórmula consenso para describir la felicidad, creo

que de existir no se podŕıa negar que en ella interviene una componente

referente a la familia. Una famila que podŕıamos definir como una función

monótona creciente y dependiente del tiempo; y es que, quien entra a formar

parte de la familia, una vez lo hace, por mucho que esté lejos o no volvamos

a verle más, nunca dejará de formar parte de ella.

El primer término de esta función familia es el más importante: el inter-

cepto. Su importancia radica en que tiene un valor fijo desde el primer

instante y nada ni nadie lo puede modificar. Queda determinado desde

el mismo momento en que uno nace y, ... ¡qué suerte tengo de que el

intercepto de mi ecuación sea positivo y taaaaan grande! Casi treinta

años lleva establecido en mi fórmula manteniendo el valor que teńıa el

primer d́ıa. Entiendo que hacer una metáfora matemática pueda resultar

un poco complejo, aśı que por si acaso, ... ¡mamá, papá, abuelos (estéis

donde estéis haciendo de guardianes invisibles) y demás familia ... ¡muchas

gracias por ser un intercepto tan valioso! Andoni, tú no eres parte de

este intercepto, te recuerdo que es el valor que toma la función cuando la

variable independiente (en este caso el tiempo t) es 0, y tú no apareces

hasta t = 6. Por si lo hab́ıas olvidado, yo soy el hermano mayor, no el más
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alto, pero śı el mayor.

Y en cuanto a la parte dependiente del tiempo, quisiera hacer un break en

t = 25, que es cuando vine a Badalona y comencé el doctorado. Previo a

este tiempo quiero destacar a quienes a través de la enseñanza hicieron que

mi interés por las matemáticas creciese hasta llegar al punto de decidirme

por estudiar la licenciatura. También a quienes ya dentro de la universidad,

de una forma u otra me animaron a hacer el máster en estad́ıstica que

me permitió llegar hasta aqúı. ¡Cómo no!, acordarme por supuesto de la

cuadrilla de Ermua, con la que he compartido y espero compartir muchos

momentos de diversión y alegŕıa. Y, ... (ahora śı Andoni), mencionar por

supuesto a mi hermano, con quien al llevar casi siete años lejos de Ermua,

no he podido compartir tantos momentos como hubiese querido, pero al

que agradezco que me haya hecho compañ́ıa desde la distancia todo este

tiempo.

¡Y qué decir de los últimos cuatro años! Cuando pasas tanto tiempo en

un sitio trabajando, de forma natural surgen v́ınculos afectivos con las

personas con las que compartes lloc de feina. Cierto es que no empecé

con buen pie, ocupando el sitio en el que se colocaba la comida de los

cumpleaños, ... pero poco a poco eso ha ido quedando en el olvido (¿no?).

Es muy gratificante venir a trabajar sabiendo que formas parte de un grupo

en el que si tienes cualquier duda de bioloǵıa siempre habrá alguien que te

dedique de su tiempo para aclarar un concepto determinado, pese a que

seas un poco cansino, y tengas que preguntarlo varias veces porque no lo
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has entendido a la primera. Dı́a tras d́ıa yo li ándoles con preguntas y más

preguntas, ... aunque también espero haber podido responder a algunas

de las que ellos han tenido. También resulta divertido saber que llega la

hora de comer y que vas a poder desconectar un poco y pasar un rato

entretenido hablando sobre un tema aleatorio que alguien propone: los

planes para el fin de semana, la última peĺıcula vista, lo bueno que es el

jengibre (pa tó), ... y sino, pues igual toca prepararse, armarse de fuerza y

aguantar que te metan caña durante toda la comida; eso śı, siempre desde

el cariño (¿no?).

Gratificante ha sido también poder exponer resultados o presentar art́ıculos

y ver cómo te atienden y preguntan independientemente de que el tema

tratado no sea muy de su interés. Por supuesto que ha sido muy positivo

también poder compartir momentos con algunos compañeros fuera del

trabajo: destacar las quedadas con otros PreDoc survivors para tomar

algo, los momentos en congresos fuera de la parte cient́ıfica, alguna que

otra cursa realizada en este tiempo, las cenas de Navidad (y lo que las

sigue, ...), tardes jugando ganando al volley, ...

Pero sobre todo, ... ¡qué agradable es darse cuenta de que has conocido

gente con la que conectas rápidamente!, personas con las que hay tan buena

sintońıa, que está clara su incorporación a la ecuación de la familia para

quedarse por siempre.

Por todo lo dicho y lo que queda en el tintero ...

¡Muchas gracias! Moltes gràcies! Eskerrik asko!
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