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2,4-D: 2,4 dichlorophenoxyacetic acid 

2,4,5-T: 2,4,5- trichlorophenoxyacetic acid 

ABTS: 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) 

ALP: alkaline phosphatase 

Chi: chitosan 

CNO: carbon nano-onion 

CNO-ox: oxidized Carbon nano-onion 
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HRP: horseradish peroxidase 

HRTEM: high-resolution transmission microscopy 

GOX: glucose oxidase 

L-DOPA: L-3,4-dihydroxyphenylalanine 

PBS: phosphate buffered saline 

pNPP: p-nitrophenyl phosphate 

SPE- screen printed electrode 

TEM: transmission electron microscopy 

TGA: thermogravimetric analysis 

TMB: 3,3’,5,5’-tetramethylbenzidine 

TYR: tyrosinase 
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Summary 

The overall objective of this thesis is to study the mechanism of interaction of 

different pesticides with peroxidase and tyrosinase enzymes, with the aim to 

develop biosensors for pesticide detection based on CNO-modified electrodes.  

Chapter 1 is a general introduction and literature review, which covers the 

general information on global challenges associated to pesticide use, methods 

for pesticide detection, enzymatic biosensors for pesticide detection and CNO 

properties and applications. This chapter also describes the objectives of the 

thesis.  

Chapter 2 investigates the inhibitory effects of 2,4,5-T, 2,4-D and glyphosate on 

the activity of free and immobilized peroxidase. The pesticides inhibit the 

catalytic activity of the free and immobilized enzymes by a competitive 

mechanism, following the order 2,4,5-T > 2,4-D > glyphosate according to 

Lineweaver-Burk kinetic analysis. Inhibitory effects of the pesticides on the free 

and immobilized enzymes are nearly the same according inhibition constants (KI).  

In Chapter 3, the inhibitory effects of 2,4,5-T, 2,4-D and glyphosate on the 

diphonolase activity of mushroom tyrosinase are studied. 2,4,5-T and 2,4-D were 

found to be competitive inhibitors, while glyphosate is a mixed inhibitor 

according to Lineweaver-Burk kinetic analysis. The inhibitory activity follows the 

order glyphosate > 2,4,5-T > 2,4-D. Interactions of the pesticides with the enzyme 

were demonstrated by fluorescence quenching and computational docking 

analysis.   

In Chapter 4, carbon nano-onions  were used as supports to immobilize ALP, HRP 

and GOX by amidation reactions. The CNO-enzyme conjugates were 

characterized TEM and Raman spectroscopy. Thermogravimetric analysis 
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revealed high enzyme loads. The conjugates retained the same optimum pH and 

temperature as compared with the native enzymes, with a slight improvement of 

their activities and are stable for longer periods of time after storage at 37ºC.  

Finally, in Chapter 5 we have explored the possibility to use CNO-modified 

electrodes for the construction of amperometric enzyme biosensors based on 

cross-linked and covalent immobilization of enzymes with CNO and chitosan. This 

combination allowed the development of highly sensitive biosensors for 

glyphosate and 2,4,5-T based on the inhibition of tyrosinase and HRP activities, 

respectively. Our results demonstrate the feasibility of using 

chitosan/CNO/enzyme composites for the development of sensitive biosensors 

based on activity inhibition.  

This thesis is thus a contribution to a rapidly growing field related with the 

development of new classes of nanomaterial-based detection systems applied, in 

our case, to solve a challenging environmental problem of present times.  
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Chapter 1 

Introduction 

1.1 Global challenges associated to pesticide use 

Today the World’s population continues to grow albeit more slowly than in the 

recent past. Ten years ago, the global population was growing by 1.24% per year. 

Nowadays the growth rate is 1.10% per year, yielding an additional 83 million 

people annually. The World’s population is projected to increase by slightly more 

than one billion people over the next 13 years, reaching 8.6 billion in 2030, and 

to increase further to 9.8 billion in 2050 and 11.2 billion by 2100. More than one 

half of the anticipated growth in global population between now and 2050 is 

expected to occur in Africa. Of the additional 2.2 billion people to born between 

2017 and 2050, 1.3 billion will be natural of African countries. Asia is expected to 

be the second largest contributor to this future growth, adding just over 750 

million people between 2017 and 2050. Africa and Asia will be followed by Latin 

America and the Caribbean, North America and Oceania, where growth is 

projected to be much more modest.  In the medium-variant projection, Europe is 

the only region with a smaller population in 2050 than in 2017 and beyond 2050, 

Africa will be the main contributor to global population growth.  

Although the World’s population is expected to continue growing until the end 

of the 21st century, the rate at which this growth will occur is expected to 

continue to fall. In recent years, the population of Africa has had the fastest 

growth among all regions, increasing at a rate of 2.6 per cent annually in 2010- 

2015, however, this rate is beginning to fall and is projected to reach 1.8% in 

2045-20500 and 0.66% in 2095-2100 (1). 
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More disturbingly, the Food and Agriculture Organization of the United Nations 

(FAO) estimates for 2016 indicated that the global prevalence of 

undernourishment in 2016 may have actually risen to 11%, implying a return to 

the level reached in 2012 and suggesting a possible reversal of the downward 

trend sustained over recent decades.  Sub-Saharan Africa also remains the region 

with the highest Prevalence of Undernourishment (PoU), affecting an alarming 

22.7% of the population in 2016. The situation is especially urgent in Eastern 

Africa, where PoU increased from 31.1% in 2015 to 33.9% in 2016. The Caribbean 

and Asia continue to show a high PoU of 17.7% and 11.7%, respectively, while 

PoU levels remain relatively low in Latin America (2). 

The absolute number of people in the world affected by chronic food deprivation 

began to rise in 2014 going from 775 million to 777 million people in 2015 and is 

now estimated to have increased further, to 815 million in 2016. Although 

progress continues in the fight against hunger, yet an unacceptably large number 

of people still lack the food they need for an active and healthy life. Globally, 108 

million people in 2016 were reported to be facing crisis level food insecurity or 

worse. This represents 35% increase compared to 2015 when the figure was 

almost 80 million. Natural disasters and extreme weather events were also a 

primary driver of food insecurity in 2016, particularly for countries with 

inadequate capacities to respond to shocks and with populations characterized 

by low resilience (3). 

A possibility to counteract the current undernourishment of many populations 

and feed global population growth is to increase the agricultural production per 

capita which could be obtained by several means such as increasing the area of 

agricultural land, enhancing the yielding of crops through the use of 

agrochemicals, organic fertilizers, biological controls, and an improved soil and 

water management.  
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To increase the area of agriculture land does not look like an easy task due to the 

decrease of agricultural land (hectares per inhabitant) in all regions of the globe 

which is partly due to population growth. There is also a net loss of agricultural 

land due to erosion, reduction of fertility, salinization and desertification of soils. 

However, the land should be found only at the cost of sacrificing the forest areas, 

most of them classified as ecological reserves and natural parks (4). Accordingly, 

an immediate response to the need for increasing production of food seem to be 

a more intensive use of agrochemicals. The chemical fertilizers are one of 

agrochemicals which have been used increasingly in recent years to fertilize the 

soil and control agricultural productivity and quality, specially to increase the 

yield of agricultural production. With excessive use, fertilizers contaminate the 

environment, especially water resources (5).  

Pesticides are another group of agrochemicals covering a wide range of 

compounds others produced globally (Figure 1.1). They have been an integral 

part of the process by reducing losses due to weeds, diseases, insects and other 

natural factors that can damage the amount of harvestable production and 

agricultural product qualities. However, only a very small percentage of the 

administered pesticides reach their actual targets with the rest being dispersed 

into the environment, making them harmful for the ecosystems including human 

beings (Figure 1.2).  

 

Figure 1.1. Types of pesticides and percentage of production in 2016. 
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Pesticides can produce a direct impact on humans when the people are exposed 

to them (Figure 2). Low-dose exposure is increasingly linked to human health 

effects such as immune suppression, hormone disruption, diminished 

intelligence, reproductive abnormalities and cancer. Food stuffs can be 

contaminated by pesticides, then transferred to people and animals. The 

contamination by pesticides of surface water (rivers, lakes, etc.) is mainly through 

runoff from treated fields, while ground water contamination comes from 

leaching of the pesticide though the soil. In India, for example, a study showed 

that 58% of drinking water samples drawn from various hand pumps and wells 

were contaminated by pesticides. On the other hand, pesticides not only 

contaminate soil but also cause a decline in populations of beneficial 

microorganisms producing negative effects on soil fertility by disrupting 

mineralization of the nutrients. Lastly, pesticides can directly hit non-target 

vegetation and wild fauna including the intoxication of birds, fish, freshwater 

animals, beneficial insects and other animals who use the treated fields as their 

dairy habitat (6).  

A logical consequence of the increase of pesticide use for agricultural production 

is an increase in environmental contamination so the hazard of pesticide 

utilization makes essential to have accurate and reliable methods of monitoring 

their levels for safety purposes.  
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Figure 1.2. The pesticide cycle: main absorption and degradation pathways.  

 

1.2 Pesticide definition and classification 

According to FAO, pesticides are defined as substances intended for preventing, 

destroying, attracting, repelling or controlling any pest, included unwanted 

species of plants or animals, during the production, storage, transport, 

distribution and processing of food, agricultural commodities or animal feeds, for 

use as a plant growth regulator, defoliant, desiccant, fruit thinning agent or 

sprouting inhibitor and substances applied as the components of a formulation 

responsible. The active molecules, defined as the components of a formulation 

responsible for the direct or indirect biological activity against pests and diseases, 

or in regulating metabolism, growth etc. (7) 

The pesticides can be classified in different ways (8). The main classification is as 

follows:  
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 by chemical nature: auxins, carbamates, organochlorine and 

organophosphorous compounds, phosphoramides, and many others. 

 by target species: insecticides, acaricides, herbicides, fungicides, 

miticides, molluscicides, nematicides and others. 

 by hazard: divided into 4 groups including Ia (extremely hazardous), Ib 

(highly hazardous), II (moderately hazardous) and III (slightly hazardous) 

and U (unlikely to present acute hazard) (9). 

Another important classification is by mode of action (MoA), that is, how the 

pesticides affect a specific target site within an organism. For example: The 

Insecticide Resistance Action Committee (IRAC) classified the insecticides into the 

4 main groups and each group has its subgroups such as nerve and muscle target 

group (i.e. acetylcholinesterase inhibitors), growth and development target 

group (i.e. hormone receptor agonists), non-specific (multi-site) inhibitors and 

unknown or uncertain MoA group (10). Herbicides are also divided by their mode 

of action into many groups such as acetyl coenzyme A carboxylase (ACCase) 

inhibitors, root growth inhibitors, plant growth regulators, etc. Finally, according 

to (11), the classification of fungicides by MoA was never attempted before so he 

classified the fungicides based on their effects on the organisms such as effects 

on the synthesis of lipids, sterol, and other membrane components, effects on 

amino acids and protein synthesis, effects on signal transduction, etc.  

These classifications are mainly useful for biochemists studying the biochemical 

consequences of pesticide action upon their targets and environment.  

1.2 Methods for pesticide detection 

According to (12), the main methods for pesticide detection include: 

 chromatographic techniques such as thin layer chromatography, liquid 

chromatography and gas chromatography 
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 flow injection analysis 

 capillary electrophoresis  

 enzyme linked immunosorbent assay and other bioassays for pesticide 

detection 

 spectrophotometry 

 electroanalytical techniques like potentiometry, conductometry and 

voltammetry 

 biosensors 

Chromatographic techniques were the first implemented and validated of all of 

the above mentioned techniques. Flow injection analysis and capillary 

electrophoresis are also useful alternatives for use by regulatory authorities. 

These techniques are sensitive and reliable, however, they have limitations like 

complex procedures, time consuming sample treatment, need of highly trained 

technicians, inability to perform on site detection, requirement of expensive 

equipment etc. Thus, researchers have been investigating alternative methods of 

detection and screening that are cheaper, easier and more user friendly.  

1.3 Biosensors for pesticide detection 

Biosensors have emerged as field deployable analytical methods being able to 

provide simple, rapid, sensitive, selective, low cost and reliable detection of 

pesticide at low concentrations (7) and (13).  

A biosensor can be defined as a self-contained integrated device, which is capable 

of providing specific quantitative or semi-quantitative analytical information 

using biological recognition element (biochemical receptor) which is retained in 

direct spatial contact with a physico-chemical transduction element. The 

biochemical receptor is responsible for recognizing the analyte by biological 

reaction which detected by the transducer, converted into a signal and 
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transferred to the detection system. The result is an electronic response which is 

proportional to a single analyte or a group of analytes (Figure 1.3). Depending on 

the specificity on the analytes, the biological recognition element can be an 

enzyme, a nucleic acid, a tissue, a cell, antibody or microorganism (14).   

 

Figure 1.3. Main components of a biosensor.  

Biosensors may be divided in two groups based on the interaction and reaction 

of their biological recognition elements with analytes. Bio-affinity sensors use 

antibodies or DNA as bioreceptors, while bio-catalytic sensors use enzymes. In 

both cases the specific recognition of an analyte by the biorecognition receptor 

is vital to develop a biosensor.  

Hence, the specific biochemical targets of the pesticides can be used as the 

biorecognition receptor.  Several biological recognition elements such as 

enzymes, antibodies, nucleic acids, etc. have been used in developing biosensors 

to detect pesticides in different mediums (15-17). 

1.3.1 Main types of biosensor transducer technologies 

The transducer is responsible for converting the information of the biological 

interaction between the analyte and the biological receptor into a signal (Figure 

1.4). Therefore,  transducer selection is very important in order to have a 

sensitive, robust, and cost-effective system (18-19). 
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Figure 1.4. Main transducer technologies in biosensing.  

1.3.1.1 Electrochemical transducers  

Electrochemical biosensors are based on changes in the electrical properties of 

the transducer. The biological reaction would either generate a measurable 

current (amperometry), a potential change or charge accumulation 

(potenciometry) or alter the conductivity of a medium between electrodes 

(conductimetry). Other electrochemical detection techniques are also usable, 

such as impedimetric, which measures impedance (resistance) variations and 

field-effect transistor, which uses transistor technology to measure current as a 

result of a potential change at the gate of a semiconductor electrode (20). These 

type of biosensors are typically highly sensitive, cheap and easy to fabricate and 

miniaturize, which makes them very attractive for many applications, including 

pesticide detection (21-29).   

1.3.1.2 Optical transducers 

In optical biosensors, an optical signal is generated either as a result of the 

formation of biorecognition component-analyte complex (as in surface plasmon 
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resonance biosensors) or, most commonly, due to a reaction that produces a 

color or fluorescent signal from a chromophore or fluorophore present in the 

medium. The biological recognition element is immobilized onto the surface of 

the transducer and optical signals are collected by a photodetector and 

converted into electrical signals by the electronic device (30-31). 

These biosensors usually involve a relatively complex instrumentation but have 

the advantage of possessing a high sensitivity. Apart from classical biomedical 

applications, there have been many recent advances in applications related to 

pesticide detection such as food quality and safety assurance (32-33).   

1.3.1.3 Piezoelectric transducers 

Piezoelectric transducers, also called mass-sensitive transducers, are capable of 

transforming the mass change at a specially modified surface into the change of 

a property of the support material. Quartz crystals are utilized as materials that 

resonate under the application of an external alternating electrical field. The mass 

changes caused by the formation of analyte-bioreceptor complex can be 

measured by means of piezoelectric transducers such as quartz crystal 

microbalances (QCM) and micro-cantilevers (34). Although less sensitive than 

electrochemical and optical biosensors, piezoelectric transducers have the 

advantage of direct detection in real time output and can be designed without 

the need of expensive or hazardous labels. Organophosphate and carbamate 

pesticides have been detected using this technique (35). 

1.3.2 Biomolecule immobilization strategies  

Immobilization of biological recognition element onto the transducer is a key step 

for achieving a biosensor with high sensitivity and stability. The activity and 

specificity of the biological recognition elements can be retained depending on 

the appropriate immobilization method after their binding to a transducer (Figure 
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1.5). Physical adsorption, covalent attachment and bio-affinity methods are the 

most useful for the development of biosensors based on either enzymes, 

antibodies, DNA or aptamers (36-38).  

Physical methods such as adsorption or entrapment in a tridimensional matrix 

involve weak interactions such as electrostatic forces, hydrogen bonding and 

hydrophobic interaction between the biomolecule and the support. They are 

simple and easy to accomplish, and reversible but sometimes could lack stability. 

It is suited for enzymatic biosensor development due to the robustness of these 

biocatalysts.  

 

Figure 1.5. Some biomolecule immobilization strategies in biosensing.  

BIOMOLECULE
IMMOBILIZATION

STRATEGIES

Physical

adsorption matrix entrapment

Chemical

covalent attachment cross-linkingaffinity-based
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Covalent immobilization refers to the binding of the biological recognition 

element on the transducer surface by initial activation of the surface using 

multifunctional reagents. Cross-linking is usually utilized to immobilize enzymes 

in which the biomolecules are randomly cross-linked with each other or in the 

presence of a functionally inert protein such as albumin. Affinity immobilization 

utilizes additional molecules to orient the biological recognition elements on the 

transducers to promote site-directed biological recognition elements. The 

biotin/(strept)avidin and protein A systems are the best known examples.  

The versatility of these methods is evidenced in the development of 

acetylcholinesterase-based biosensors utilizing physical adsorption (39), cross-

linking (40), covalent immobilization (41), entrapment (42), and affinity (43), as 

immobilization methods for pesticide detection.  

These methods have also been widely used in pesticide immunosensing. For 

example, (44) developed an amperometric competitive immunosensor for 2,4-D 

detection in which the analyte was covalently immobilized on a silanized surface, 

while (45) relied on a high density aminodextran matrix to immobilize antibodies 

against the same analyte at the transducer surface with fluorescent detection. 

Affinity immobilization based on using protein A for antibody for atrazine 

detection has also been reported (46). 

1.4 Enzymes as biorecognition element for pesticide detection 

1.4.1 Overview of enzyme kinetics  

Enzyme are biological catalysts which increase the rate of a reaction without itself 

being consumed by the process. The reactant and product concentrations are 

usually higher than the enzyme concentration in typical enzyme-catalyzed 

reactions. Consequently, each enzyme molecule catalyzes the conversion to 

product of many reactant molecules which are commonly known as substrates.  
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Enzyme mechanisms can be explained considering the dependence of the initial 

rate of enzyme-catalyzed reactions on substrate concentration (Michaelis-

Menten kinetics). This analysis gives a series of kinetic parameters such as the 

initial rate (V0), substrate concentration at half maximum rate (KM), maximum 

rate (Vmax), and catalytic constant of the enzyme kcat (Equation 1, Figure 1.6).   

V଴ = ୚ౣ౗౮[ୗ]୏౉ା[ୗ] = 	 ୩ౙ౗౪	[୉]	[ୗ]୏౉ା[ୗ]        Equation (1) 

V଴

[S]K୑

V୫ୟ୶
V୫ୟ୶2

1V଴ Slope	= 	 ୏౉୚ౣ౗౮[ୗ]1V୫ୟ୶
1	[S]

െ ଵ୏౉ 0

Figure 1.6. (A) Typical Michaelis-Menten plot (graphical analysis of reaction rate 

V0 versus substrate concentration [S]). (B) Lineweaver-Burk plot of 1/ V0 versus 

1/[S] 

In practice the plot of V0 versus [S] is not very useful in determining the value of 

Vmax because locating the asymptotic value Vmax at very high substrate 

concentration is often difficult (Figure 1.6a). A more satisfactory approach, 

suggested by the American biochemists Lineweaver and Burk, employ the 

double-reciprocal plot of 1/V0 versus 1/[S] (Figure 1.6b). Equation 1 can thus be 

written as: 

ଵ௏బ = 	 ௄ಾ௏೘ೌೣ[ௌ] +	 ଵ௏೘ೌೣ    Equation (2) 
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In this case, the substrate concentration is much larger than enzyme 

concentration which makes enzymes saturated. The period in which the enzymes 

remain saturated is called steady state (V0 = Vmax).  

1.4.2 Kinetics of enzyme inhibition  

Several substances might cause reduction of catalytic rate of enzyme-catalyzed 

reaction such as cyanide, heavy metals, polychlorinated bisphenols and other 

well-known inhibitors. The inhibitors can cause the enzymes inactivated 

reversibly and irreversibly. Pesticides are very important enzyme inhibitors, both 

in vitro and in vivo, and, as we will present later, they are the subject of intensive 

research.  

Irreversible inhibitors cause an inactivating, covalent modification of enzyme 

structure. The irreversible inhibitors start forming a reversible non-covalent 

complex with the enzyme (EI) and then continue reacting to produce the 

covalently modified “dead-end complex” (EI’) (Scheme 1A). 

In reversible inhibitors, the enzyme activity is regenerated when the inhibitor 

concentration drops. The EI complex is created only by the similarity of enzyme 

and inhibitor shapes without chemical modification and the inhibitor maintains a 

reversible equilibrium with the enzyme. Reversible inhibitors might be divided 

into competitive, non-competitive, uncompetitive and mixed inhibitors. In 

competitive inhibition both the substrate and inhibitor compete for the same 

active site (Scheme 1B). The EI complex does not react with S to form a product. 

Increasing substrate concentration can displace all competitive inhibitors bound 

to active sites and consequently, Vmax is unchanged. Non-competitive inhibition 

takes place when the inhibitor binds to the enzyme at a site distinct from the 

active site so it can bind to both the free enzyme and the ES complex. This has no 

effect on the substrate binding, and vice versa (Scheme 1C). Neither EI nor EIS 
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complexes form a product thus inhibition might not be reversed by increasing the 

substrate concentration. In uncompetitive inhibition the inhibitor does not bind 

to the free enzyme but to the ES complex to form an inactive EIS complex 

(Scheme 1D). The EIS complex does not form a product. The inhibitor does not 

interfere with the formation of ES and uncompetitive inhibition cannot be 

reversed by increasing the substrate concentration. Finally, mixed-type inhibition 

is similar to non-competitive inhibition but the EI and EIS affinities are different. 

KI

KSI

 

Scheme 1. Types of enzymatic inhibition mechanisms. 

In practice, the type of reversible inhibition can be easily identified by 

constructing Lineweaver-Burk plots at different inhibitor concentrations. Thus, 

competitive inhibition has graphics with a common intercept in the y-axis (Figure 

1.7A), non-competitive inhibition has graphics with a common intercept in the x-
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axis (Figure 1.7B), uncompetitive inhibition gives a series of parallel lines (Figure 

1.7C) and mixed inhibition is, as the name indicates, an intermediate case 

between competitive and non-competitive mechanisms (Figure 1.7D). 

1V଴
1[S]

െ ଵ୏౉ ሺ ୏౅୏౅ା[୍]) ଵ୚ౣ౗౮0
[I]	=	0

[I]	
1V଴

1	[S]
െ 1K୑ 1V୫ୟ୶ 1 + IK୍0

[I]	=	0[I]	

1V଴

1[S]
െ ଵ୏౉ 1+ ୏୍౅ 1V୫ୟ୶ 1 + IK୍0

[I]	=	0[I]	 1V଴

1	[S]0
[I]	=	0

[I]	
1V୫ୟ୶ 1 + IK୍′

Figure 1.7. Lineweaver-Burk plots of (A) competitive inhibition, (B) non-

competitive inhibition, (C) uncompetitive inhibition and (D) mixed inhibition 

1.4.3 Pesticide biosensors based on enzyme activity inhibition  

As mentioned above in the mode of action of pesticides, most of the pesticides 

have inhibition effects on enzymatic targets. In biosensors based on enzyme 

inhibition, the measurement of the target analyte is carried out by measuring the 

enzyme activity before and after exposure of the biosensor at the target analyte. 
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The percentage of inhibition is correlated to the concentration of target analyte, 

so it is possible to evaluate the unknown concentration analyte (18). The 

percentage of inhibition can be calculated by the following equation:  

A0
I%

(A0 - Ai) *100
I% percentage of inhibition

A0 Enzyme activities before exposure at the analyte

Ai  Enzyme activities after exposure at the analyte
 

These biosensors can operate in two main ways (Figure 1.8). In the first case, the 

inhibitor is added to the same solution of substrate after measuring the initial 

activity for a period of time. This protocol is useful when the interaction is very 

fast. In the second protocol, the sensor is removed after measuring A0, incubated 

with the pesticide and rinsed, and then Ai is measured.  

 

Figure 1.8. One-step (a) and two-step (b) protocols for biosensors based on 

enzyme inhibition.
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There are several examples in the literature of biosensors based on enzyme 

inhibition. Table 1 collects the main enzymes used, their reaction mechanism and 

the most used methods for activity measurement (colorimetric and 

electrochemical).  

Table 1. Example of enzymes used in pesticide detection. 

C: colorimetric, EC: electrochemical. 

Enzyme Enzymatic reaction 
Main methods for 

activity 
measurement 

Acetyl 
cholines-
terase 

C: Ellman’s reagent 
with thiocholine as 
substrate 

EC: potentiometric 
(pH sensor) 

 Tyrosinase 

 

C: Detection of DOPA 
quinone at 475 nm 

EC:   Amperometric 
detection of DOPA 
quinone. 

 Peroxidase  

 C: Detection of 
oxidised TMB at 650 
nm 

EC:   Amperometric 
detection of  oxidised 
TMB . 

 Alkaline 
phospha-
tase   

 C: Detection of p-
nitrophenolate at 
405 nm. 

EC:   Amperometric 
detection of p-
aminophenol. 

N
+

CH3

CH3
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Acetylcholinesterase (AChE, EC 3.1.1.7) is the most used enzyme for pesticide 

detection. Its main biological role is the termination of the impulse transmission 

at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine. 

AChE is typically synthesized in nerve, muscle and certain hematopoietic cells. 

Targeting on this enzyme, organophosphorus and carbamate insecticides were 

synthesized to eradicate insects in agricultural fields because of their powerful 

irreversible inhibition on the AChE catalytic activity.  As result of the AChE 

inhibition acetylcholine neurotransmitter accumulates in the body which 

interferes with the muscular responses and leads to respiratory problems and 

finally produces insect death. Consequently, AChE and other cholinesterases 

have been used as biological recognition elements to develop biosensors for 

carbamate and organophosphorus insecticides (47-54).  

Peroxidase (EC 1.11.1.7) is a heme-containing enzyme that utilizes peroxides such 

as hydrogen peroxide to oxidize a wide variety of organic and inorganic 

compounds such as phenolic compounds and its activity has been identified in 

plants, microorganisms and animals. On the basis of MoA of pesticides, 

peroxidase has not been reported as a target of any pesticide. However, several 

biosensors for pesticide detection based on peroxidase inhibition have been 

reported to detect glyphosate and glufosinate (55), glyphosate (56-57) and 

Thiocarb (58). 

Tyrosinase (EC 1.14.18.1), is a multifunctional copper containing enzyme 

belonging to the oxidase family, distributed in microorganisms, animals, plants 

and humans. The enzyme plays a crucial role in melanogenesis by catalyzing two 

important steps of the synthesis of melanin. Several tyrosinase inhibitors have 

been discovered and synthesized to control the overproduction of melanin, 

which causes skin disorders (59). Research on biosensor development for 

pesticide detection has also been based on tyrosinase inhibition to detect, for 
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example, chlorophenol, dithiocarbamate and atrazine (60), dichlorvos (61), 

methyl parathion, carbofuran, diazinon and carbaryl (62), dimethyl- and 

diethyldithiocarbamates (63), thiocarb (64), diuron and atrazine (65), triazine 

pesticides (66), phenolic compounds (67), carbamate pesticides (68).  

Finally, alkaline phosphatases (EC 3.1.3.1) are plasma membrane-bound 

glycoproteins widely distributed in nature, including prokaryotes and higher 

eukaryotes with exception of some higher plants. Its function is to hydrolyze 

various monophosphate esters at high pH with release of inorganic phosphate 

with the following reaction (69). Inhibition of ALP activity by different compounds 

has been reported and thus the enzyme has been used as bioreceptor to detect 

the inhibitors in several cases. Mazzei et al reported about successful 

development of biosensor using ALP to detect malathion and 2,4-

dichlorophenoxyacid (2,4-D) using phenyl phosphate and ascorbate-2-phosphate 

as substrates (70). Paraoxon and methyl parathion have also been detected using 

phenyl phosphate (71). Sánchez et al found that ALP is inhibited by tetradifon, 

metham-sodium and fenitrothion during the enzyme catalysis of 1-naphthyl 

phosphate. A bienzymatic biosensor for 2,4-D detection was developed using ALP 

as biosensing element coupled with glucose oxidase (72). ALP catalyzes glucose-

6-phosphate releasing glucose and then this product is oxidized by glucose 

oxidase (73). This biosensor mechanism was also developed by Mazzei (74) using 

acid phosphatase instead of alkaline phosphatase to detect methyl parathion, 

paraoxon, malathion and aldicarb.  

Other enzymes have been also used as biological recognition element such as 

lipase to detect methyl-parathion and tributyrin (75), urease to detect atrazine 

(76), aldehyde dehydrogenase to detect dithicarbamate fungicides by coupling 

this enzyme with diaphorase (77), acetolactate synthase to detect sulfonylurea 
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herbicides (78), ascorbate oxidase to detect ethyl paraoxon (79) and glucose 

oxidase to detect atrazine (80).  

1.5 Carbon nano-onions: a class of carbon nanomaterials  

Carbon atoms, with their unique ability to form long chains, give rise to molecules 

capable of creating new materials or even life through Mother Nature. Diamond 

and graphite are produced by natural reactions (81) and together with 

amorphous carbon were considered for a long time as the only allotropes of 

carbon available. With the advent of nanotechnology, scientists turned their 

attention to the possibility to produce carbon-based nanostructures. The first of 

these nanomaterials, called nanodiamond, was produced in the laboratory by 

detonation and its properties and applications have been recently reviewed (82). 

The research for other carbon nanomaterials became of wider interest after the 

discovery of new carbon forms such as fullerenes, carbon nanotubes (CNT), 

graphene and carbon nano-onions (CNOs) (81) and (83). These materials possess 

carbon atoms linked through sp2 hybrid bonds and are, in a way, structurally 

derived from graphite (Figure 1.9).  

 

 Figure 1.9. Carbon nanomaterials structurally derived from graphite. 
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Graphene is formed by a single graphitic layer and holds unique two-dimensional 

structure and properties including a zero-gap band structure, high electron 

mobility, and high electrical and thermal conductivity (84). Due to its high 

conductivity and surface area respect to volume ratio, graphene has been applied 

in high-speed electronic devices and sensor respectively (85). Fullerene have the 

form of spherical or semi-spherical carbon clusters, while CNTs are cylindrical 

structures that can be formed by one of more graphitic layers. Both materials also 

have interesting structural and properties and have been applied in many fields 

such as biological and environmental technology, electronics, optoelectrics and 

chemical sensors (86-89).  

1.5.1 Synthesis and properties of carbon nano-onions 

Carbon nano-onions were first discovered by Ugarte in 1992, by exposing an 

electron bean on amorphous carbon, which graphitized and curled up to form a 

spherical cluster (90). Four years later, Qin and his group followed this method to 

synthesize CNOs using a different substrate, i. e. diamond crystals (91-92). 

Afterwards, other methods for their synthesis have been reported. Arc-discharge 

was used by Sano and his group (93) to synthesize CNOs in water and obtaining 

high-quality spherical CNOs in large quantity. CNO synthesis was also achieved in 

different media such as distilled water and liquid nitrogen using this method (94). 

Heat treatment can also be used to synthesize CNO by converting nanodiamonds 

into graphitic CNOs (95-96).  

Borgohain et al. optimized arc-discharge method for CNO production by 

designing an in-house automated underwater apparatus to control the arc 

plasma which produce homogeneous CNOs, followed by efficient purification 

method. CNO growth and purification were investigated using thermogravimetric 
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analysis (TGA), high resolution transmission electron microscopy (HRTEM), 

Raman spectroscopy and X-ray diffraction (XRD). The electrochemical properties 

of the synthesized CNO were also tested by cyclic voltammetry based on the 

redox peak separations and heterogenous electron transfer rate of the 

electroactive species. Faster and higher electrochemical performance were 

found in comparison with the bare electrode (97). 

Chemical vapor deposition was also able to synthesize CNOs using precursor 

gases and a metallic substrate (Fe, Co, Ni and/or their combination) as catalyst. 

The produced materials contained catalyst metals encapsulated inside (98) and 

(99). Lately, this method was optimized with some modifications to synthesize 

hollow CNOs with controllable size (100). Carbon ion implantation was utilized to 

prepare large size CNOs with diameters close to the micrometer (101). The same 

author tried to optimize this method to reduce the CNO size (3-30 nm) by varying 

the synthesis conditions (102-104), demonstrating the versatility of the method.  

Radio frequency and microwave plasma were reported as the technique for CNO 

synthesis. The CNOs synthesized by microwave plasma from C2H2, carbon black 

and ferrocene displayed a clear polyhedral or spherical morphology with cores 

and waving layers (105). This technique was also used to synthesize hollow CNOs 

with high purity and 10-35 nm diameter from coal (106).  

Thermolysis is also a heating technique which was developed for CNO synthesis 

without catalyst participation. The process was based on a thermolysis of a NaN3-

C6Cl6 mixture and the obtained nanoparticles displayed a diameter from 30 to 

100 nm (107). Thermal reduction of a mixture of glycerin and magnesium was 

also used to produce CNOs with a diameter of 60-90 nm (108). A large quantity 

of CNOs were easily produced by continuous explosion of naphthalene with a 

diameter of 50-56 nm (109).  
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Recently, our group successfully synthesized CNOs by annealing of commercially 

available nanodiamond and further functionalization with a radio frequency 

Ar/O2 plasma was explored. Under heat treatment at 12000C, nanodiamonds 

were transformed into a small spherical carbon nano-onions particles of 3-4 nm 

diameter and 5-6 graphitic shells. Synthesized CNOs were characterized using 

HRTEM, XRD, Raman spectroscopy (110).  

1.5.2 Characterization carbon nano-onions 

High-Resolution Transmission Electron Microscopy (HRTEM) has been employed 

to characterize the produced CNOs, which is able to visualize their structural 

properties and follow their formation (Figure 1.10a). Raman spectroscopy is a 

technique to distinguish the graphitic structure of CNOs (Figure 1.10b). The 

presence of the D-band at around 1350 cm-1 indicates the structural disorder on 

the surface the particle due to the presence of sp3 carbons and the presence of 

the G-band at around 1580 cm-1 indicates the presence of the graphitic layer of 

the surface or sp2-hybridized carbon networks (111-112). X-ray diffraction (XRD) 

is another technique to study the gradual transformation of diamond 

nanoparticles with sp3 bonds into spherical CNOs (113)(110). 

 

Figure 1.10. a) HRTEM image of CNOs obtained by nanodiamond annealing. b) 
Raman spectrum of the CNOs shown in a). (110). 

UNIVERSITAT ROVIRA I VIRGILI 
AMPEROMETRIC ENZYME-BASED DETECTION OF AGRICULTURALPESTICIDES ON NOVEL CARBON NANO-ONION COMPOSITES 
Vibol Sok 
 



Vibol Sok – Doctoral Thesis 

 

27 
 

The electrical properties of CNOs have been found to be between those of 

graphite and single-shell fullerenes using ultrahigh vacuum atomic force 

microscopy and scanning tunneling microscopy (114). The electronic structure of 

CNOs was investigated by core-level and valence-band photoemission 

spectroscopy by intercalation of CNOs with potassium (115). In addition, the 

optical properties have been analyzed by several techniques (116-119). 

1.5.3 Functionalization of CNOs. 

Due to the aggregation promoted by strong intermolecular interactions such as 

van-der Waals forces, CNOs are highly hydrophobic like any other carbon 

nanomaterial and insoluble in most solvents, which hinders many applications of 

these materials (120). To overcome this problem, surface functionalization is the 

method of choice to increase the solubility and improve other properties (Figure 

1.11).     

 

Figure 1.11. Covalent functionalization of CNOs (120) 
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A decade after their discovery, the first functionalization of CNOs was reported 

in which arc-discharge produced CNO was heated with an amino acid and 

paraformaldehyde in toluene. NMR spectroscopy, MALDI mass spectroscopy and 

UV-vis-NIR spectroscopy were used to analyze the successful functionalization of 

CNOs with N-alkyl groups. The functionalized CNOs was soluble in common 

organic solvents (121).  Three years later, other CNO functionalization strategies 

were reported such as the 1,3-dipolar cycloaddition using a reaction mixture of 

purified CNOs, N-ethylglycine and dodecanal under heating. The other two types 

of functionalization started with oxidation of purified CNOs by heating under 

reflux in HNO3 solution followed by reactions of the introduced carboxylate 

groups with diamine-terminated poly(ethyleneglycol) and octadecylamine, 

respectively (122). The reactivity of A-CNOs (15-20nm) and N-CNOs (5 nm) 

prepared from arc-discharge and annealing, respectively, was compared. [2+1] 

Bingel-Hirsch cyclopropanation, free-radical addition using benzoyl peroxide as 

radical source and oxidation in different acid solutions was successful only in 

smaller N-CNOs. A-CNOs could only be oxidized using the very strong oxidizing 

mixture of H2SO4/HNO3 (50/50 v/v) while N-CNOs were destroyed. The authors 

concluded that the smaller CNOs are much more reactive for covalent 

functionalization, presumably due to the higher curvature of the surface (123).  

[2+1] cycloaddition reactions on CNOs have been reported using different nitrene 

derivatives. CNOs were reacted with 2-azidoethanol, producing OH-

functionalized CNOs (CNO-OH) while 2-bromo-2-methylpropanoate yielded Br-

functionalized CNOs (CNO-Br). Both functionalized CNOs were characterized 

using TGA, XPS, TEM and Raman spectroscopy. Interestingly, CNO-OH emitted 

fluorescence while CNO-Br did not. The functionalized CNOs were further 

decorated with different polymer additions (124).   
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CNOs were covalently reacted with in situ generated diazonium compounds and 

thus introducing a variety of functional groups, such as bromides, benzoic acids, 

tert-butyl groups, nitro groups, methyl esters and trimethylsilyl (TMS) acetylene. 

In next step, the use of “click” chemistry was proposed in which the CNO-TMS 

acetylide composite was first deprotected and then coupled with zinc triphenyl 

azidophenyl porphyrin (125), fluoresceinamide-based fluorophores (126) or NIR-

emitting aza-boron-dipyrromethenes (127-128)). Using an in situ chemical 

oxidative polymerization, polyaniline (PANI) was attached on the surface of 

benzoic acid/CNO (129). Fluorination on the surface of CNOs was carried out in a 

custom-built reactor at different temperatures. The fluorinate CNOs were 

characterized using FTIR, SEM/EDX, XRD, XPS, TGA, TEM, Raman and UV-Vis 

spectroscopy (130). Oxidation of CNOs using ozonolysis was investigated, the 

ozonized CNOs displayed high hydrophilicity, conductivity, and wettability (131). 

Finally, CNOs have also been functionalized via amidation reaction aminothiols to 

attach -CONH-(CH2)n-SH)m and the electric conductivity properties of the product 

were investigated (132).  

Alkylation is another important reaction tested on CNOs. Reduction of CNOs with 

a solution of Na-K alloy in 1,2-dimethoxyethane (DME) followed by alkylation with 

the addition of 1-bromohexadecane has been reported. The synthesized CNO-C16 

showed high solubility in organic solvents and was analyzed by 1H-NMR. To 

support the successful functionalization, the product was characterized using 

FTIR, HRTEM and Raman spectroscopy (133).  

Non-covalent functionalization is also a useful method to incorporate CNOs in 

composite materials to explore their inherent properties in the solid state and 

their possible applications. Kuzhir and his group studied the electromagnetic 

absorbing properties in microwave frequency range of a CNO composite made 

using binding matrices such as polymethylmetacrylate (PMMA) and 
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polydimethylsiloxane (PDMS) (134). Preparation of composites made of CNOs 

with poly (diallyldimethylammonium chloride) (PDDA) or chitosan (Chit) was 

reported and their mechanical and electrochemical properties were investigated 

(135). Other polymers used to fabricate CNO-based composites include poly(3,4-

ethylenedioxythiophene):poly(styrene sulfonate) (136), conductive polymers 

such as polyaniline (137-139). These materials showed interesting capacitive 

properties and may be used in energy storage devices such as batteries and 

supercapacitors.  

Our group recently made progress in this area by preparing highly solubilized 

cyclodextrin-modified CNOs by supramolecular interactions in aqueous solution. 

After oxidation of CNOs followed by amidation with aminated β-cyclodextrin a 

CNO/ β-CD derivative was prepared and self-assembled with a ferrocene-

appended dextran (Fc-Dex) polymer by host-guest interactions. The resulting 

dispersion was stable for several weeks in water (140).  

1.5.4 Applications of CNOs 

The modification and incorporation of moieties on the surface of CNOs enable 

strategies for their application in different fields such as materials chemistry, 

environmental technology, energy storage devices and analytical applications 

(Figure 1.12).  

 

Figure 1.12. Main applications of CNOs. 
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1.5.4.1 Biological applications 

To verify toxicity and biocompatibility of this carbon nanomaterial, several 

biological applications were reported. Carboxylated CNOs prepared by pyrolysis 

of wood were used for imaging the life cycle of Drosophila melanogaster. The 

combination of carboxylic groups with the defective nature of these polygonal 

CNOs displayed fluorescence property which were observed in the visible and NIR 

(141). Fluorescent CNOs were also employed to study E. coli and C. elegans (142). 

Boron difluoride azadipyrromethene fluorophores covalently attached to CNOs 

was utilized for cellular imaging and they found low cytotoxicity (143-144).  

CNOs produced from arc-discharged showed less adverse effects on human skin 

fibroblast as compared with MWCNTs (145). Afterwards, CNOs synthesized by 

the same method were tested for potential toxic effects on cardiovascular 

system. On the basis of the experimental results, unmodified CNOs can induce 

DNA damage and apoptosis in human umbilical vein endothelial cells due to the 

generation of reactive oxygen species (146). Small CNOs, produced by annealing 

of nanodiamonds, were covalently modified with biomolecules. Biocompatibility 

tests of oxidized CNOs and biomolecule-CNO composites (PEGylated CNOs) on 

fibroblasts showed that no cytotoxic effect of these carbon nanomaterials (147).  

1.5.4.2 Electronic/electrochemical applications 

Due to their structure and high electric conductivity CNOs are good candidates 

for electronic applications. The first study on using CNOs as electrode materials 

in electrical double layer capacitors (EDLC) with an organic electrolyte indicate 

excellent capacitance retention and high discharge rate of the CNO-modified 

devices due to increase in conductivity. Therefore, small resistance and the 

modification steps that cause defects in the surface of CNOs improved the ion 

transport and capacitance (148). Bushueva and his group investigated the 
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electrochemical performance of CNO-modified capacitors with aqueous 

electrolyte. CNOs utilized to modify working electrodes were synthesized by 

vacuum annealing of nanodiamonds and polytetrafluoroethylene (PTFE). Charge-

discharge measurements exhibited a dependence of the specific capacitance of 

CNOs on the degree of graphitization and defectness of particle surfaces (149). 

Afterward, micrometer-sized supercapacitors were developed by depositing 

CNOs on interdigital gold electrodes utilizing an electrophoretic deposition 

technique (EPD) which the CNO-based microsupercapacitors exhibited 

capacitance 4 times higher than that of electrocatalytic capacitors and the 

discharged rates 3 times higher than conventional supercapacitors (150).  

The influencing factors on performance of supercapacitors like structure, physical 

and electrical properties of CNOs and nature of electrolytes were studied using 

molecular dynamics (MD) simulations of CNOs in organic electrolytes for better 

understanding of the interactions and migration of ions in the surface of CNOs. 

In general, CNOs capacitive performance is superior to other carbon 

nanomaterials at high charge/discharge rate (151).  

A high surface porosity of CNOs is obtained by chemical activation using KOH, 

which increases the specific area for ion-accessible outer shells. The 

hydrophilicity of activated CNOs is also improved with a high charge/discharge 

rates as compared to non-activated CNOs (152). On other hand, composite of 

CNOs attached with RuO2 are able to increase the capacitance of the elelctrodes 

as compared to the pure CNO materials (153). Furthermore, different composites 

were synthesized with CNOs as improved capacitance performance materials for 

application of rechargeable lithium batteries (154-157). 
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1.5.4.3 Detection systems 

There are only a few reports on the use of CNOs in detection systems. The first 

report on the use of CNOs for the modification of sensor surfaces described the 

covalent attachment of oxidized CNOs (containing COOH groups) onto a self-

assembled monolayer of cysteamine on gold by amidation, followed by biotin 

immobilization on the CNO surface to develop a complete layer of Au/thiol/ox-

CNOs/biotin. This synthesized layer was utilized to monitor the interaction of 

immobilized biotin and avidin (158). Later a CNO/poly(diallydimethylammonium 

chloride) (PDDA) composite was synthesized for dopamine detection. 

Electrochemical properties of the composite were examined and the results 

exhibited good selectivity and sensitivity for dopamine due to the combined 

effect of the CNOs and the cationic polymer (159).  

Our research group recently utilized CNOs to modify electrodes for 

electrochemical detection of nitrite and ascorbic acid. Glassy carbon electrodes 

were first modified with small carbon nano-onions and functionalized either by 

electrografting ortho-aminophenol (oAP) groups or by physical adsorption of 

thionine to give electroactive surfaces which were able to electrochemically 

detect presence of nitrite and ascorbic acid with higher sensitivity and lower 

detection limit as compared to the non-CNO  electrodes (160). We have also 

developed a DNA biosensor for detection of human papillomavirus oncogene 

based on surface modification with CNOs. The surface of glassy carbon electrodes 

was modified with small nano-onions and activated by electrografting of 

diazonium salts bearing terminal carboxylic acid and maleimide groups. DNA 

recognition sequences wereimmobilized by amidation or thiol-maleimide 

reactions and used in a sandwich-type assay to detect synthetic and PCR 

amplified HPV targets with enhanced sensibility (161).  

UNIVERSITAT ROVIRA I VIRGILI 
AMPEROMETRIC ENZYME-BASED DETECTION OF AGRICULTURALPESTICIDES ON NOVEL CARBON NANO-ONION COMPOSITES 
Vibol Sok 
 



Vibol Sok – Doctoral Thesis 

 

34 
 

In these examples, the presence of CNOs on the surface enhanced the sensitivity 

and lowered the limits of detection of amperometric assays with respect to the 

GC-only electrodes. This was explained considering the larger surface area 

achieved in the presence of CNO, which allows a much higher number of 

recognition units to be immobilized on the surface, and a faster electron transfer 

rate on the CNO-modified surface ascribed to the semi-metal properties and to 

the presence of structural defects on the CNOs that enhance electron transfer 

properties. Thus, the combination of the unique morphological and electronic 

properties provided by the CNOs opens the way for further applications of CNO-

based surfaces in (bio)analytical devices. 

1.6 Objectives of the thesis 

As described in the preceding sections, there is currently a strong concern on the 

use of pesticides in agriculture and their possible side effects. This makes the 

development of sensitive and robust detection systems an important step in this 

direction. We have also seen that CNOs are very attractive and promising 

materials with defined structures and remarkable electrochemical properties 

that have been scarcely studied in biosensing.   

The overall objective of this thesis is to study the interaction of different 

pesticides with peroxidase and tyrosinase with the aim to develop biosensors for 

pesticide detection based on CNO-modified electrodes (Figure 1.13).  

To achieve this general objective, the following aspects have been focused on: 

1. The inhibition of peroxidase and tyrosinase activities by three of the most 

used pesticides (2,4-D, 2,4,5-T and glyphosate)  Chapters 2 and 3 

2. The use of oxidized CNOs as supports for the immobilization of enzymes 

and a study of the activity and stability of the immobilized enzymes  

Chapter 4 
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3. The development of electrochemical biosensors for pesticide detection 

based on the prepared CNO-enzyme modified electrodes  Chapter 5. 

This thesis is thus a contribution to a rapidly growing field related with the 

development of new classes of carbon nano-onion based nanomaterials that 

aims at expanding their current applications in the construction of novel 

detection systems with improved performances. 

 

Figure 1.13. Conceptual map of the present thesis. 
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Chapter 2 

Enzyme kinetics study on the inhibition of free and immobilized horseradish 

peroxidase by 2,4,5-T, 2,4-D and glyphosate 

 

Abstract  

The inhibitory effect of 2,4,5-T, 2,4-D, glyphosate and paraquat on H2O2-catalyzed 
activity of free and immobilized horseradish peroxidase for oxidation of 3,3’,5,5’-
Tetramethylbenzidine (TMB) has been investigated by kinetic measurements 
using spectrophotometry analysis. 2,4,5-T, 2,4-D and glyphosate inhibit the H2O2-
catalyzed activity of the enzyme following a competitive mechanism, while 
paraquat does not have effect according to Lineweaver-Burk kinetic analysis. The 
inhibitory effect on free horseradish peroxidase follows the order 2,4,5-T > 2,4-D 
> glyphosate with KI values of 211, 555 and 889 µM, while on immobilized 
horseradish peroxidase follow the same other with nearly the same of KI values 
of 213, 558 and 890 respectively. The result suggests that these pesticides 
interact with the active site of the enzyme competing with substrate H2O2 and 
inhibiting the enzyme activity even after being immobilized.  

 

Keywords: peroxidase; herbicides; enzyme inhibition; spectroscopy. 
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2.1. Introduction 

As described in Chapter 1, agricultural pesticides are defined as substances 

intended for controlling any pest, including unwanted plant or animal species 

during the production, distribution and processing of agricultural products or 

animal feeds. These substances are components of a formulation responsible for 

some direct or indirect biological activity against pests and diseases or for 

regulating the metabolism and/or growth of crops [1]. Pesticides are toxic 

substances that affect ecosystems and can cause several health problems such 

as neurological and bone marrow disorders, immunological diseases, etc. when 

they enter the food chain.  

Among the many existing pesticides, 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 

2,4-dichlorophenoxyacetic acid (2,4-D) and N-(phosphonomethyl)glycine 

(glyphosate) are some of the most common herbicides used in the agricultural 

industry. The phenoxy herbicides, either as acid, amine salt or ester, are used as 

weed control to defoliate broad-leafed plants [2]. On the other hand, glyphosate 

is an organophosphorous compound that blocks the activity of the enzyme 

enolpyruvylshikimate-3-phosphate synthase and is the most frequently used 

herbicide worldwide to date [3]. 

Peroxidases (EC 1.11.1.X) are hydrogen peroxide (H2O2) catalyzing enzymes 

naturally associated with the oxidation of wide range of phenolic as well as non-

phenolic substrates. These enzymes found in all living organisms including 

bacteria, fungi, algae, plants and animals. The plant peroxidases, belonging to the 

class III peroxidase, are involved in various vital processes of plant growth and 

development throughout the plant life cycle including cell wall metabolism, 

lignification, suberization, reactive oxygen species metabolism, auxin 

metabolism, fruit growth and ripening, defense against pathogens etc.  

Peroxidases have used in several applications such as development of analytical 
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and diagnostic kits, de-colorization of industrial dyes, bioremediation of phenolic 

compounds, pulp and paper industry, hair dyeing, immunoassays, organic 

polymer synthesis and grafting, elimination of odorous compounds and 

biosensor. In biosensor application, peroxidases were also used as biorecognition 

element and labeling enzyme for biosensor development [4,5].  

Sensing of peroxidases toward analytes can rely on catalysis of the analytes by 

the enzyme and inhibitory effect of the analytes on the catalytic activity of the 

enzyme. Based on analyte catalysis, peroxidase from horseradish has been widely 

used for developing enzymatic biosensors [6,7] to detect a wide variety of 

catalyzable compounds such as phenol and related aromatic compounds [8], 

antioxidants (butylated hydroxyanisole and propyl gallate) [9] and polyphenol 

[10], and inhibitors such as glyphosate [11-15], copper (II) ions [16], nitric oxide 

[17], sulfide [18], zinc ions [19] and thiodicarb [20]. Glyphosate was found to be 

non-competitive inhibitor on horseradish peroxidase immobilized 

electrochemically on sulfonated polymer matrix using H2O2 as substrate [11].  

In this chapter, we compare the inhibitory effects of 2,4,5-T, 2,4-D, paraquat and 

glyphosate (Figure 2.1) on the reaction reduction activity of free and immobilized 

HRP using H2O2 and fixed TMB as substrates. The kinetic parameters and 

inhibition constants were measured, and an inhibition mechanism is proposed on 

the basis of the kinetic results.  

 

Figure 2.1. Structures of the studied pesticides. 
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2.2. Experimental 

2.2.1 Materials 

All chemicals were used as received without any further purification. Peroxidase 

from Horseradish (442.5 mg containing 113 purpurogallin units/mg), viologen 

dichloride hydrate (paraquat), glyphosate, 2,4-D, tyrosinase from mushroom (9.3 

mg containing 2687 units/mg), biotinamidocaproyl labeled peroxidase (prepared 

from type VI horseradish peroxidase containing biotin content 2.6 mol/mol and 

250 units/mg of protein), Phosphate Buffered Saline (containing 0.138 M NaCl 

and 0.0027 M KCl), 3,3’,5,5’-tetramethylbenzidine (>99% for assay in 100 mg 

glass bottle) and 3,3’,5,5’- tetramethylbenzidine (TMB) Liquid Substrate System 

for ELISA were purchased from Sigma-Aldrich. 2,4,5-T was purchased from Tokyo 

Chemical Industry Co. Ltd. (TCI).  

96-well microtiter plates (plat form, individually wrapped) and Thermo 

Scientific™ Pierce™ High Binding Streptavidin Coated Plates were purchased from 

Fisher Scientific. Water was purified using a Milli-Q water purification system 

(Millipore) to a resistivity of 18.2 MΩ⋅cm.  

2.2.2 Immobilization of biotinylated peroxidase on Streptavidin Coated Plates 

Biotinylated peroxidase was immobilized on streptavidin coated plates based on 

affinity interaction of labeling biotin on the enzyme molecules with streptavidin 

immobilized on the coated plates (see Scheme 2.1) using a similar method as 

previously reported [21]. 100 µL of solution of biotinylated HRP (1 mg/ml) in 0.01 

M Phosphate Buffered Saline (PBS) were added into every well of streptavidin 

coated plate for 3 hours of incubation. After recovering the biotinylated HRP 

solution, the wells were washed with PBS Tween 4 times, then stored in the fridge 

when not in use. 
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2.2.3 HRP activity and pesticide inhibition assays 

Absorbances were recorded spectrophotometrically on a SpectraMax 340PC 

Microplate Reader at 650 nm on 96-well microplates at 25ºC. All measurements 

were performed in 4 replicates in 0.01 M phosphate buffer pH 6.5 containing 

0.138 M NaCl and 0.0027 M KCl.  

HRP activities were measured at 650 nm based on the change of solution color of 

oxidized TMB for 2 min at 10 s intervals employing 0.07 mM and 0.9 mM of 

TMB:H2O2 (1:1) for free HRP and immobilized HRP, respectively, in the absence 

and presence of different concentrations of pesticides at different incubation 

times. The final concentrations of free and immobilized enzymes were 0.22583 

nM and 0.25078 nM, respectively. Each well was estimated to have 0.06 pmol of 

immobilized enzyme. All measurements were done in triplicate. 

To study the inhibition mechanism, HRP concentrations were varied from 0.0415 

to 0.167 μg/mL. The kinetic parameters such as the Michaelis-Menten constant 

(Km) and maximal velocity (Vmax) of each pesticide were determined through 

Lineweaver-Burk plot analysis using various concentrations of H2O2 (0.0225 - 0.05 

mM) and fixed TMB (0.08 mM) as substrates. The inhibition constants (KI, KIS) 

were determined from the slope of the linear dependence of the slopes and 

intercepts, respectively, of the Lineweaver-Burk plots versus the pesticide 

concentration (the so-called ‘secondary plots’, see Figures 2.5 and 2.7 for free 

and immobilized HRP, respectively).  

2.3. Results and Discussion 

2.3.1 Concentration effect of pesticides on the activity of free HRP 

Figure 2.2 shows the effects of 2,4,5-T, 2,4-D, glyphosate and paraquat in range 

of concentrations from 0 µM to 0.4 mM on the redox reaction of horseradish 
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peroxidase after 1 and 30 minutes of incubation, respectively. From both figures, 

it can be seen that paraquat has no effect on the enzyme activity of peroxidase 

with the employed substrate, even after 1 hour of incubation. In contrast, 2,4,5-

T, 2,4-D and glyphosate have a strong inhibitory effect on the enzyme activity that 

increases with incubation time. The percentage of inhibition increases with 

increasing concentrations of the pesticides. It can be seen from the figure, 2,4,5-

T is the most potent inhibitor of the studied pesticides and the only one reached 

IC50 with 211 µM.  This result is the first report of comparison of inhibitory effects 

of these most used herbicides on the catalytic activity of HRP. 

 

Figure 2.2. Effects of 2,4,5-T, 2,4-D, glyphosate and paraquat on the activity of 
free horseradish peroxidase a) after 1 min incubation, b) after 30 min of 
incubation. Conditions: 10 mM phosphate buffered saline pH 6.5, 25°C. 

2.3.2 Concentration effect of pesticides on the activity of immobilized HRP 

To study the inhibition of immobilized HRP, the biotinylated enzyme was 

immobilized on streptavidin-coated microtiter plates. After incubation with the 

pesticide inhibitor, the activity was measured using TMB (Scheme 2.1) 
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Scheme 2.1. Schematic representation of affinity immobilization of biotinylated 
HRP on streptavidin-coated plates. 

Figure 2.3 shows the effect of 2,4,5-T, 2,4-D, glyphosate and paraquat in range of 

concentrations from 0 µM to 0.4 mM on the activity of immobilized horseradish 

peroxidase after 1 and 30 minutes of incubation, respectively. From both figures, 

it can be seen that paraquat has also no effect on the enzyme activity of 

peroxidase with the employed substrate, even after 1 hour of incubation. In 

contrast, 2,4,5-T, 2,4-D and glyphosate have a strong inhibitory effect on the 

enzyme activity that increases with incubation time. The percentage of inhibition 

increases with increasing concentrations of the pesticides. It can be seen from 

the figure, 2,4,5-T is the most potent inhibitor of the studied pesticides.  

However, none of these herbicides reached the IC50, the difference of inhibition 

degree between free and immobilized horseradish peroxidase might be caused 

by several factors, such as heterogeneity of the enzyme/inhibitor interface, 

substrate concentrations and enzyme concentrations.  

HRP

HRP

TMBred TMBox

biotinylated
HRP

PESTICIDE

= streptavidin
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According to Arduini [22], in the case of reversible inhibition using free enzyme 

in solution, the enzyme concentration does not affect the degree of inhibition if 

the enzyme concentration is lower than the concentration of the inhibitor. The 

free enzyme in solution is well distributed in the solution compared to the 

immobilized enzyme which is attached to the microplate in a way that its contact 

with the solution environment is notably less efficient than for the free enzyme 

in solution. Other factors should be employed to accelerate contact between 

enzyme and inhibition including stirring. On the other hand, substrate 

concentration is another factor which affects the inhibition degree and the 

highest inhibition can be obtained using substrate at a concentration lower than 

that of the inhibitor. It can also be seen in the formula of the figure 1.7A that the 

inhibition degree decreases with increased concentration of substrate for the 

same concentration of the enzyme. The above results thus suggest the 

occurrence of competitive inhibition, which was verified in the next step.  

 

Figure 2.3. Effects of 2,4,5-T, 2,4-D, glyphosate and paraquat on the activity of 
the immobilized horseradish peroxidase for redox reactions of TMB:H2O2 (1:1) a) 
after 1 min incubation, b) after 30 min of incubation. Condition 10 mM phosphate 
buffered saline pH 6.5, 25°C. 
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2.3.3 Inhibition mechanism of 2,4,5-T, 2,4-D and glyphosate on the activity of free 

HRP 

Reversible inhibitors bind noncovalently to the enzyme, while irreversible 

inhibitors commonly form covalent bonds with the enzyme or react with residues 

involved in catalysis to modify chemically the active site, as explained in Chapter 

1. To investigate the inhibition mechanism, the dependence of the enzyme 

activity versus enzyme concentration in the presence of increasing 

concentrations of the pesticides was determined, in which a family of straight 

lines were obtained as seen in Figure 2.4. As a consequence of the inhibition, a 

decrease in the slope of the straight line with increasing of concentration of 

pesticides was observed, which suggested that the enzyme undergoes a 

reversible inhibition [23].  

The reversible inhibitors can be classified in 4 groups (competitive, 

uncompetitive, noncompetitive and mixed-type inhibitors) [24].  The kinetic 

behavior of horseradish peroxidase during the catalysis of TMB:H2O2 in the 

presence of the pesticides was studied using the Lineweaver-Burk plots (Figure 

2.5) to identify the type of inhibitor to which each pesticide belongs to and the 

corresponding inhibition parameters. As can be seen, 2,4,5-T, 2,4-D, and 

glyphosate gave a family of lines with different slopes and the same intercept, 

indicating a competitive inhibition mechanism. This means that the three studied 

pesticides are bound to the free enzyme but not to the enzyme-substrate 

complex. This results in an increase of Km of peroxidase without changing Vmax.  

The inhibitor constant (KI) for the binding of these pesticides with the free 

enzyme were estimated from the slope of the of apparent Michaelis-Menten 

constant (ܭ௠௔௣௣) versus inhibitor concentration to be 0.889, 0.555 and 0.211 mM 

for glyphosate, 2,4-D and 2,4,5-T, respectively (Figure 2.5, insets). 
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Figure 2.4. Effect of glyphosate (a), 2,4-D (b) and 2,4,5-T (c) on the activity of 
Horseradish peroxidase at different enzyme concentrations. Condition: 10 mM 
phosphate buffered saline pH 6.5, 25°C.  

This inhibition constant corresponds to the degree of dissociation of the enzyme-

inhibitor complex and the affinity of the inhibitors for the enzyme at 50% of 

inhibition so the smaller KI the more potent the inhibitor is. Consequently, the 

inhibitory affinity of the studied pesticides follows the order 2,4,5-T > 2,4-D > 

glyphosate.  

Based on the inhibitory effect of the pesticides, horseradish peroxidase biosensor 

is more sensitive toward 2,4,5-T comparison to 2,4-D and glyphosate.  
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Figure 2.5. Lineweaver-Burk plots for the inhibition of glyphosate (a), 2,4-D and 
2,4,5-T on horseradish peroxidase at different concentrations of pesticides. 
Insects: secondary plots (slope vs. concentration) used for the determination of 
inhibition constants. Condition phosphate buffered saline pH 6.5, 25°C.  
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2.3.4 Inhibition mechanism of 2,4,5-T, 2,4-D and glyphosate on the activity of 

immobilized HRP  

The kinetic behavior of immobilized horseradish peroxidase during the catalysis 

of TMB:H2O2 in the presence of the pesticides was studied using the Michaelis-

Burk plots (Figure 2.6) to identify type of inhibitor which each pesticide belongs 

to and degree of its inhibition on the enzyme activity.  

As can be seen, 2,4,5-T, 2,4-D, and glyphosate gave a family of lines with different 

slopes and the same intercept indicating a competitive inhibition mechanism 

meaning that the 3 studied pesticides are also bound to active size of the 

immobilized enzyme but not to the enzyme-substrate complex. This results in an 

increase of Km of peroxidase without changing Vmax. The inhibitor constant (KI) for 

the binding of these pesticides with the immobilized enzyme were estimated 

from the slope of the of apparent Michaelis-Menten constant (ܭ௠௔௣௣) versus 

inhibitor concentration to be 0.890, 0.558 and 0.214 mM for glyphosate, 2,4-D 

and 2,4,5-T respectively (Figure 2.7, inset and table 1).  

Based on this result, the HRP immobilization via affinity binding between biotin 

linked with enzyme and streptavidin coated plate does not change significantly 

the conformation of the enzyme structure, and, consequently, the kinetic 

parameters. This follows the principle of affinity binding exploits for application 

in enzyme immobilization in which the remarkable selectivity of the interaction, 

control orientation of immobilized enzyme and minimal conformational changes 

caused by this type [25].  
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Figure 2.6. Lineweaver-Burk plots for the inhibition of glyphosate (a), 2,4-D and 
2,4,5-T on immobilized horseradish peroxidase at different concentrations of 
pesticides. Insets: secondary plots (slope vs. concentration) used for the 
determination of inhibition constants. Condition phosphate buffered saline pH 
6.5, 25°C.  
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Table.2.1. Constants and mechanism of inhibition of the studied pesticides on 

catalytic activity of free and immobilized HRP.  

 

 

Pesticide 

KI (µM) Inhibition mechanism 

Free HRP 
Immobilized 

HRP 
Free HRP 

Immobilized 
HRP 

2,4,5-T 211 ± 3 214 ± 4 Competitive Competitive 

2,4-D 555 ± 4 558 ± 5 Competitive Competitive 

Glyphosate 889 ± 7 890 ± 2 Competitive Competitive 

 

2.5 Conclusions  

In this Chapter we have studied for the first-time comparison of the inhibitory 

activity of 2,4,5-T, 2,4-D and glyphosate on the activity of free and immobilized 

horseradish peroxidase. The results illustrate that 2,4,5-T, 2,4-D and glyphosate 

inhibit both free and immobilized enzyme following a competitive mechanism 

according to Lineweaver-Burk kinetic analysis. 

The inhibitory effect follows the order 2,4,5-T > 2,4-D > glyphosate for both 

enzyme forms. The results suggest that these pesticides interact with the active 

site of the enzyme, hindering the access of the substrate to the active site even 

after being immobilized. The fact that the inhibition of immobilized HRP does not 

reach 100% may hinder the sensitivity of a pesticide biodetection system. 

However, this possible disadvantage could be overcomed using innovative 

immobilization strategies. Work in this direction will be presented in Chapter 5. 
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Chapter 3 

Kinetic, spectroscopic and computational docking study of the inhibitory effect of 

the pesticides 2,4,5-T, 2,4-D and glyphosate on the diphenolase activity of 

mushroom tyrosinase1 

 

Abstract 

The inhibitory effect of 2,4,5-T, 2,4-D, glyphosate and paraquat on the 
diphenolase activity of mushroom tyrosinase for oxidation of L-DOPA has been 
investigated by kinetic measurements, fluorescence spectroscopy and 
computational docking analysis. 2,4,5-T and 2,4-D inhibit the diphenolase activity 
of the enzyme following a competitive mechanism, while glyphosate is a mixed 
inhibitor according to Lineweaver-Burk kinetic analysis. The inhibitory activity 
follows the order glyphosate > 2,4,5-T > 2,4-D with IC50 values of 65, 90 and 106 
µM, respectively. Intrinsic tyrosinase fluorescence quenching and computational 
docking analysis suggest that 2,4,5-T and 2,4-D interact with the active site of the 
enzyme through hydrophobic interactions, while glyphosate interacts with the 
external lysine and arginine residues of the enzyme by hydrogen bonding and 
hydrophilic interactions inducing conformational changes in the protein 
structure.  

 

Keywords: tyrosinase; herbicides; enzyme inhibition; fluorescence spectroscopy: 
computational docking analysis 

 

  

                                                            
1 Part of this Chapter has been published in V. Sok, A. Fragoso, International 
Journal of Biological Macromolecules 2018, 48, 136-143. 
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3.1. Introduction 

As described in Chapter 1, agricultural pesticides are defined as substances 

intended for controlling any pest, including unwanted plant or animal species 

during the production, distribution and processing of agricultural products or 

animal feeds. These substances are components of a formulation responsible for 

some direct or indirect biological activity against pests and diseases or for 

regulating the metabolism and/or growth of crops [1]. Pesticides are toxic 

substances that affect ecosystems and can cause several health problems such 

as neurological and bone marrow disorders, immunological diseases, etc. when 

they enter the food chain.  

Among the many existing pesticides, 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 

2,4-dichlorophenoxyacetic acid (2,4-D) and N-(phosphonomethyl)glycine 

(glyphosate) are some of the most common herbicides used in the agricultural 

industry. The phenoxy herbicides, either as acid, amine salt or ester, are used as 

weed control to defoliate broad-leafed plants [2]. On the other hand, glyphosate 

is an organophosphorous compound that blocks the activity of the enzyme 

enolpyruvylshikimate-3-phosphate synthase and is the most frequently used 

herbicide worldwide to date [3]. 

Tyrosinase (EC. 1.14.18.1), is a multifunctional copper containing enzyme 

belonging to oxidase family, distributed in microorganisms, animals, plants and 

humans. This enzyme plays a crucial role in melanogenesis by catalyzing two 

important steps of the synthesis. First, it oxidizes monophenols by o-

hydroxylation to a diphenol followed by oxidation of the corresponding product 

to o-quinone (diphenolase activity) [4,5]. Ultraviolet irradiation stimulates 

tyrosinase-catalyzed melanogenesis in the skin, which offer the opportunity for 

novel therapeutic approaches by minimizing acute and chronic photodamage in 

human skin [6]. Tyrosinase is also responsible for enzymatic browning of fresh 
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horticultural products following bruising, cutting or other damage to the cell [7]. 

Several families of compounds are known to effectively inhibit monophenolase 

and diphenolase tyrosinase activities such as kojic acid, polyphenols, flavonoids, 

benzaldehyde/benzoate derivatives, steroids, etc. [8] and there is an intense 

interest in the investigation of new tyrosinase inhibitors for biomedical [9], food 

[10] and cosmetic [11] industries.  

The tyrosinase inhibitory effect of pesticides was first reported by Chen and 

Polatnick after studying the influence of glyphosate and 2,4-D on root induction 

in mung bean [12]. The growth inhibition was related with the effect of both 

herbicides on peroxidase and tyrosinase activities but the inhibition kinetics and 

mechanism were not reported. Since then, tyrosinase has been widely used as 

biorecognition element for developing enzymatic biosensors to detect a wide 

variety of pesticides [13] such as 2,4-D [14-16], atrazine [17-19] organophosphate 

[20] and carbamate pesticides [21,22]. Metal dithiocarbamates (Ziram®, Diram® 

and zinc diethyldithiocarbamate) were found to be competitive, mixed and non-

competitive inhibitors, respectively, using phenol as substrate [22]. Inhibition of 

catechol oxidation by tyrosinase in the presence of atrazine is competitive [23] as 

well as in the presence of methyl-parathion and carbofuran [24] while diazinon 

and carbaryl are mixed inhibitors. The vast majority of these reports have focused 

mainly on the determination of analytical parameters and analysis of samples 

with very little emphasis on the mechanism of inhibition.  

In this Chapter, we compare the inhibitory effects of 2,4,5-T, 2,4-D, paraquat and 

glyphosate (Figure 3.1) on the diphenolase activity of mushroom tyrosinase using 

L-DOPA as substrate. The kinetic parameters and inhibition constants were 

measured and a inhibition mechanism is proposed on the basis of intrinsic 

tyrosinase fluorescence measurements and computational docking analysis.  
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Figure 3.1. Structures of the studied pesticides. 

 

3.2. Experimental 

3.2.1 Materials 

All chemicals were used as received without any further purification. Viologen 

dichloride hydrate (paraquat), glyphosate, 2,4-D, tyrosinase from mushroom (9.3 

mg containing 2687 units/mg), Phosphate Buffered Saline (containing 0.138 M 

NaCl and 0.0027 M KCl) and 3,4-dihydroxy-L-phenylalanine (L-DOPA) were 

purchased from Sigma-Aldrich. 2,4,5-T was purchased from Tokyo Chemical 

Industry Co. Ltd. (TCI).  

96-well microtiter plates (plat form, individually wrapped) were purchased from 

Fisher Scientific. Water was purified using a Milli-Q water purification system 

(Millipore) to a resistivity of 18.2 MΩ⋅cm.  

3.2.2 Tyrosinase activity and pesticide inhibition assays 

Absorbances were recorded spectrophotometrically on a SpectraMax 340PC 

Microplate Reader at 475 nm on 96-well microplates at 25ºC. All measurements 
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were performed in 4 replicates in 0.01 M phosphate buffer pH 6.5 containing 

0.138 M NaCl and 0.0027 M KCl.  

Mushroom tyrosinase activities were measured at 475 nm based on the change 

of solution color of oxidized L-DOPA (1 mM) for 2 min at 2 s intervals in the 

absence and presence of different concentrations of pesticides at different 

incubation times. The final concentration of enzyme was 0.7 μg/mL. All 

measurements were done in triplicate. 

To study the inhibition mechanism, tyrosinase concentrations were varied from 

0.2 to 0.85 μg/mL. The kinetic parameters such as the Michaelis-Menten constant 

(Km) and maximal velocity (Vmax) of each pesticide were determined through 

Lineweaver-Burk plot analysis using various concentrations of L-DOPA (0.1 - 0.75 

mM) as substrate. The inhibition constants (KI, KIS) were determined from the 

slope of the linear dependence of the slopes and intercepts, respectively, of the 

Lineweaver-Burk plots versus the pesticide concentration (the so-called 

‘secondary plots’, see Figure 3.4) [8] 

3.2.3 Fluorescence studies 

The fluorescence experiments were performed at 25ºC and 37ºC in a Cary Eclipse 

spectrofluorimeter equipped with a Peltier temperature control. The excitation 

wavelength was set at 280 nm. The spectra were recorded in 1-cm quartz cells in 

the wavelength interval of 290-400 nm at 1 nm intervals with excitation and 

emission slits of 10 nm and a scan rate of 240 nm/min. All measurements were 

carried out in triplicate and the average value of the fluorescence changes was 

used in the calculations. The total volume was corrected for the dilution effect 

due to the aliquot additions. The quartz cell was previously cleaned with 

concentrated nitric acid for 10 min, followed by extensive rinsing with ultrapure 

water and dried with nitrogen before the measurements. The enzyme 
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concentration used was 4 μM and measurements were made in the same buffer 

used for the kinetic studies, which was used to record the blank signal.  

3.2.4 Computational docking study 

The tyrosinase/pesticide structures were simulated using the crystal structure of 

Agaricus bisporus tyrosinase (PDB ID: 2Y9X) as .pdb file. Tropolone was removed 

from the active site and the enzyme was modeled using units A and E of the 

crystal structure in order to reduce the search area on the protein.  

2,4,5-T and 2,4-D (deprotonated forms) were first energy-minimized at the PM3 

level using Hyperchem 7.0 (Hypercube, Inc.), transformed to .mol2 files using 

Open Babel 2.4.1 [25] and used as input structures of the pesticides. Blind docking 

structures were generated using the free online tool MTiAutoDock 1.0 [26] that 

uses an AutoDock 4.2.6 algorithm to generate orientations/conformations of the 

protein/ligand structure [27].  

For the docking of fully deprotonated glyphosate, the structure of the ligand was 

taken from the PDB structure with code 2AAY. A grid box of 40×40×40 points 

centered in the Cu1 atom with 0.375 Å spacing was used for the calculation. 

Protein/ligand interactions and structure visualization were carried out using 

BIOVIA Discovery Studio 2017 (Accelrys).  

3.3. Results and Discussion 

3.3.1 Concentration effect of pesticides on the diphenolase activity of tyrosinase 

Figure 3.2 shows the effects of 2,4,5-T, 2,4-D, glyphosate and paraquat in range 

of concentrations from 0 µM to 200 µM on the oxidation of L-DOPA by mushroom 

tyrosinase after 1 and 30 minutes of incubation, respectively. From both figures, 

it can be seen that paraquat has no effect on the diphenolase activity of 

tyrosinase with the employed substrate, even after 1 hour of incubation. In 
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contrast, 2,4,5-T, 2,4-D and glyphosate have a strong inhibitory effect on the 

enzyme activity that increases with incubation time. The percentage of inhibition 

increases with increasing concentrations of the pesticides. As can be seen from 

Table 1, glyphosate is the most potent inhibitor of the studied pesticides with an 

IC50 of 65 μM. This value is similar to that reported for kojic acid, an inhibitor 

commonly used as reference by many investigators [28].  

 

 

Figure 3.2. Effect of 2,4,5-T, 2,4-D, glyphosate and paraquat on the activity of 
mushroom tyrosinase for the oxidation of L-DOPA: a) after 1 min incubation, b) 
after 30 minutes of incubation. Conditions: 0.1 M phosphate buffer pH 6.5, 25ºC.  

3.3.2 Inhibition mechanism of 2,4,5-T, 2,4-D and glyphosate on the activity of 

tyrosinase 

The dependence of the enzyme activity versus enzyme concentration in the 

presence of increasing concentrations of the pesticides gave a family of straight 

lines (Figure 3.3) with intercepts essentially equal to zero. This indicates a 

reversible inhibition since increasing inhibitor concentrations resulted in a 

decrease in the slopes of the lines.  

The kinetic behavior of mushroom tyrosinase during the oxidation of L-DOPA in 

the presence of the pesticides was studied using the Michaelis-Menten formalism 
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by constructing double-reciprocal Lineweaver-Burk plots (Figure 3.4). As can be 

seen, 2,4,5-T and 2,4-D gave a family of lines with different slopes and the same 

intercept indicating a competitive inhibition mechanism meaning that they are 

bound to free enzyme but not to the enzyme-substrate complex. This results in 

an increase of Km of tyrosinase without changing Vmax. The inhibitor constant (KI) 

for the binding of these pesticides with the free enzyme were estimated from the 

slope of the of apparent Michaelis-Menten constant (Km app) versus inhibitor 

concentration to be 44 and 77 μM for 2,4,5-T and 2,4-D, respectively (Figure 3.4, 

inset and Table 3.1).  

 

Figure 3.3. Effect of 2,4,5-T (a), 2,4-D (b) and glyphosate (c) on the activity of 
mushroom tyrosinase at different enzyme concentrations. Conditions: 0.1 M 
phosphate buffer pH 6.5, 25ºC. 
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Figure 3.4. Lineweaver-Burk plots for the inhibition of 2,4,5-T (a), 2,4-D (b) and 
glyphosate (c) on mushroom tyrosinase at different concentrations of pesticide. 
Insets: Secondary plots (slope vs. concentration and intercept vs. concentration) 
used for the determination of inhibition constants. Conditions: 0.1 M phosphate 
buffer pH 6.5, 25ºC.  

Table 3.1. IC50 values and inhibition constants for the inhibition of mushroom 
tyrosinase by the studied pesticide. 

Pesticide IC50 (μM) KI (μM) KIS (μM) Inhibition mechanism 

2,4,5-T 90 ± 4 40 ± 1 - competitive 

2,4-D 106 ± 7 77 ± 4 - competitive 

Glyphosate 65 ± 3 33 ± 2 183 ± 4 mixed 
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In the case of glyphosate, it can be seen that the Lineweaver-Burk plots gave a 

family of lines with different slopes and different Y-axis intercepts, indicating that 

glyphosate is a mixed-type inhibitor. This means that glyphosate not only binds 

with the free enzyme but also with the enzyme-substrate complex resulting in an 

increase of Km and a decrease of Vmax. The inhibitor constant (KI) for glyphosate 

was 33 μM and the inhibitor constant of enzyme-substrate complex (KIS), 

obtained from the vertical intercepts versus glyphosate concentration, was found 

to be 183 μM. This means that glyphosate interacts stronger with the free 

enzyme than with the enzyme-substrate complex. The KI value is slightly lower 

than that recently reported for kojic acid (36 μM) [29] and demonstrates that 

glyphosate it a potent tyrosinase inhibitor.  

3.3.3 Fluorescence studies 

The kinetic results on the inhibitory activity of 2,4,5-T, 2,4-D and glyphosate on 

tyrosinase indicates that there is a direct interaction between the pesticides and 

the enzyme. Fluorescence quenching is a common method to study 

protein/ligand interactions since it is sensitive conformational changes induced 

by the quencher [30]. In particular, tryptophan residues are responsible of the 

fluorescence of the enzyme at 330 nm when excited at 282 nm (Figure 3.5a). 

Addition of 2,4,5-T and 2,4-D in the concentration range of 0.5 to 20 μM induced 

a gradual quenching of the tyrosinase fluorescence with negligible changes in the 

peak maximum (see Figure 3.5b for 2,4,5-T). This suggests that these pesticides 

interact with tyrosinase but not change the overall conformation of tyrosinase. 

Conversely, fluorescence quenching in the presence of glyphosate induced a 7 

nm red shift in the emission maximum, indicating a slight change in the 

conformation of the enzyme (Figure 3.5c). 
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Figure 3.5: a) Absorption (⋅⋅⋅⋅⋅⋅⋅) and emission (⎯⎯) spectra of tyrosinase excited 
at 280 nm. b) Emission spectra of tyrosinase in the presence of different 
concentrations of 2,4,5-T. c) Emission spectra of tyrosinase in the presence of 
different concentrations of glyphosate. The spectra were recorded in phosphate 
buffer pH 6.5 at 25ºC.  

 

The fluorescence quenching was analyzed using the Stern-Volmer equation:  

[ ] [ ]Q1QK1
F
F

0SV
0 τκ q+=+=

 

where F0 and F are the fluorescence intensities before and after the addition of 

the pesticide (quencher), respectively, [Q] is the molar concentration of the 

quencher, KSV is the Stern-Volmer constant, κq is the intermolecular quenching 

rate constant and τ0 is the fluorescence lifetime (10 ns for most biological 

macromolecules [31]). A linear dependence of F0/F on the quencher 
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concentration was observed (Figure 3.6a), indicating that the tryptophan 

residues are equally accessible to interaction with the pesticide. The obtained KSV 

constants were in the order of or close to 105 M-1, indicating a strong 

intermolecular interaction (Table 3.2).  

It is known that linear Stern-Volmer plots can be originated from dynamic or static 

quenching mechanisms. Dynamic quenching occurs by interaction of the 

quencher with the excited state of the fluorophore that causes no alteration in 

the conformation of the protein. On the other hand, a static quenching 

mechanism is an indication of the formation of a molecular complex between the 

protein and the quencher. The values of κq were significantly higher than 2 × 1010 

M-1 s-1, which is considered the high-limit collisional quenching rate constant for 

biomolecules [31]. This indicates an essentially static quenching mechanism.   

In the case of static quenching, the modified Stern-Volmer equation allows to 

calculate the number of binding sites (n) in the protein: 

log[Q]logK
F

FFlog 0
 na +=






 −

 

where Ka is the static protein quencher association constant (Table 3.2). The 

values of n were close to 1 in all cases with high Ka values, indicating a strong 

static interaction of these pesticides with tyrosinase. Both KSV and Ka values 

followed the trend glyphosate > 2,4,5-T > 2,4-D, in agreement with the inhibition 

kinetic results (Figure 3.6b).  
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Figure 3.6: Stern-Volmer (a) and modified Stern-Volmer (b) plots for the 
tyrosinase fluorescence quenching caused by 2,4,5-T (■), 2,4-D (▲) and 
glyphosate (●).  

Table 3.2. Stern-Volmer parameters for the quenching of tyrosinase fluorescence 
by the studied pesticides. 

Pesticide KSV (M-1) κq (M-1 s-1) Ka (M-1) n 

2,4,5-T 1.9 × 105 1.9 × 1013 8.1 × 104 0.94 

2,4-D 8.6 × 104 8.6 × 1012 1.5 × 104 0.90 

Glyphosate 2.0 × 105 2.0 × 1013 1.5 × 105 1.08 
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To further clarify the binding mechanism, the KSV values were measured at higher 

temperature. At 37ºC the KSV for 2,4,5-T and 2,4-D increased slightly to 2.1 × 105 

and 8.8 × 104 M-1, while KSV for glyphosate decreased by almost 40% until 8.3 × 

104 M-1. These results suggest that the interactions between the aromatic 

pesticides on one side, and glyphosate on the other seem to be of a different 

nature. 2,4,5-T and 2,4-D mainly interact through hydrophobic interactions while 

glyphosate, which is a dianion at the studied pH and is markedly hydrophilic, 

appears to interact via hydrogen bonds with polar residues in the protein.  

3.3.4 Molecular docking analysis 

To understand the inhibition mechanism of mushroom tyrosinase by 2,4,5-T, 2,4-

D and glyphosate, the docking modes of the pesticides were examined using in 

the X-ray crystal structure of tyrosinase from Agaricus bisporus (PDB code 2Y9W) 

and fully deprotonated ligands.  

With 2,4,5-T, the ligand is oriented with the carboxylate group pointing toward 

the inside of the cavity interacting with the pair of copper atoms of the active site 

(Figure 3.7a). There is a complex set of hydrophobic and π interactions involving 

a T-shaped π−π interaction between the 2-Cl atom and His-263, 4-Cl with His-244 

and 5-Cl with Phe-264. There is also a favorable π−σ interaction between the 

aromatic ring of 2,4,5-T and Val-283. The ligand is deeply buried in the active site 

(Figure 3.7b), exposing the 4-Cl and 5-Cl atoms to the solvent.  
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Figure 3.7: Docking study of 2,4,5-T with tyrosinase: a) Calculated 3D structure 
for the interaction of 2,4,5-T with the active site of tyrosinase. b) Tertiary 
structure of tyrosinase with 2,4,5-T bounded to the active site. 

 

On the other hand, 2,4-D has a less complex interaction pattern with the active 

site of tyrosinase due to the presence of a smaller hydrogen atom in position 5 
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(Figure 3.8a). As in 2,4,5-T, the carboxylate group interacts with the copper 

atoms. The hydrophobic interactions involving the 2-Cl and 4-Cl atoms are similar 

to 2,4,5-T, as well as the π−σ interaction between the aromatic ring of 2,4-D and 

Val-283. This simpler interaction pattern is consistent with the lower inhibition 

constant of 2,4-D with respect to 2,4,5-T. In both cases, the carboxylate group 

acts as a bridge between the two copper atoms, each of which presents a 

distorted tetrahedral coordination geometry (Figure 3.8b).   

 

Figure 3.8: Docking study of 2,4,-D with tyrosinase: a) Calculated 3D structure for 
the interaction of 2,4-D with the active site of tyrosinase. b) Binding motif of the 
carboxylate group of 2,4,-D with the dicopper center of tyrosinase. 

In the case of glyphosate, we found two poses with similar scoring functions. In 

one case, the ligand is located inside the active site in a geometry resembling that 

of 2,4,5-T with respect to the interaction of the carboxylate group with the 

dicopper center (Figure 3.9a). An oxygen atom of the phosphate group interacts 

via a σ−π bond with His-263, while the adjacent methylene group forms a CH-π 

bond with the C=O group of Asn-260. In this configuration, the phosphate group 

is exposed to the solvent (Figure 3.9b). In the other solution, the glyphosate 
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molecule resides outside the active site, twisted ~90º with respect to the previous 

configuration (Figure 3.9c). The structure is stabilized by interactions between 

the carboxylate and phosphate groups with His-244 and Asn-81, respectively. 

Although we could not simulate the interaction of glyphosate with a tyrosinase/L-

DOPA complex, these results may explain the mixed inhibition mechanism of 

glyphosate, in which the pesticide can interact with both the free enzyme and the 

enzyme-substrate complex.  

 

Figure 3.9: Docking study of glyphosate with tyrosinase: a) Calculated 3D 
structure for the interaction of glyphosate with the active site of tyrosinase. b) 
and c) Tertiary structure of tyrosinase with glyphosate inside (b) and outside (c) 
of the active site. 
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3.4 Conclusions 

The inhibition of enzyme activity by pesticides is one of their most common 

mechanism of action as well as a strategy for constructing enzyme-based 

detection systems. In this chapter we have studied for the first time the inhibitory 

activity of 2,4,5-T, 2,4-D and glyphosate on the diphenolase activity of mushroom 

tyrosinase. Our results demonstrate that 2,4,5-T and 2,4-D inhibit the enzyme 

following a competitive mechanism, while glyphosate is a mixed inhibitor 

according to Lineweaver-Burk kinetic analysis. The inhibitory activity follows the 

order glyphosate > 2,4,5-T > 2,4-D. Intrinsic tyrosinase fluorescence quenching 

and computational docking analysis suggest that these pesticides interact with 

the active site of the enzyme, hindering the access of the substrate to the active 

site. These results could be useful in the construction of improved pesticide 

biodetection systems. In particular, the strong inhibition exhibited by glyphosate 

combined with the good stability of tyrosinase seems suitable for developing 

novel electrochemical biosensors for in-field use. This will be the subject of 

Chapter 5. 
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Chapter 4 

Preparation and characterization of alkaline phosphatase, horseradish peroxidase 

and glucose oxidase conjugates with carboxylated carbon nano-onions2 

 

Abstract 

Carbon nanomaterials have emerged as suitable supports for enzyme 
immobilization and stabilization due to their inherently large surface area, high 
electrical conductivity, chemical stability and mechanical strength. In this paper, 
carbon nano-onions (CNOs) were used as supports to immobilize alkaline 
phosphatase, horseradish peroxidase and glucose oxidase. CNOs were first 
functionalized by oxidation to generate carboxylic groups on the surface followed 
by the covalent linking of the using a soluble carbodiimide as coupling agent. The 
CNO-enzyme conjugates were characterized by TEM and Raman spectroscopy. 
Thermogravimetric analysis revealed a specific enzyme load of ~0.5 mg of protein 
per milligram of CNO. The immobilized enzymes showed enhanced storage 
stability without altering the optimum pH and temperatures. These properties 
make the prepared nanobiocatalyst of potential interest in biosensing and other 
biotechnological applications.   

 

 

 

 

                                                            
2 This chapter has been published in V. Sok, A. Fragoso, Preparative Biochemistry 
and Biotechnology 2018, 48, 136-143. 
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4.1 Introduction 

Enzyme immobilization allows the reuse of the protein for an extended period of 

time and enables easier separation of the catalyst from the product. In most 

cases, immobilization improves many properties of the enzymes such as 

performance in organic solvents, pH tolerance, heat stability or functional 

stability, increasing the structural rigidity of the protein which prevents 

dissociation-related inactivation [1]. The improvement of enzyme properties by 

immobilization can be carried out using non-covalent or covalent techniques [2]. 

Covalent immobilization have some advantages over non-covalent 

immobilization, including enhanced stability and minimization of the leakage of 

the enzyme [3]. The selection of the optimum support material can affect the 

immobilization process whereby properties of both the enzyme and support 

material will determine the properties of the supported enzyme preparation [4].  

Among the several existing supports, nanomaterials have been recently reported 

for enzyme immobilization and stabilization giving an inherently large surface 

area, which leads to high enzyme loading and consequently high volumetric 

enzyme activity [5]. This, combined with a high electrical conductivity, chemical 

stability and strong mechanical strength makes carbon nanomaterials excellent 

candidates for enzyme immobilization [6]. In particular, carbon nanotubes (CTNs) 

have been the most explored carbon nanomaterial for this application as they are 

readily available and can be easily functionalized. In this sense, examples of direct 

physical adsorption or assisted by polymers and/or surfactants, layer-by-layer 

deposition and covalent linking can be found in the literature [7].  

Carbon nano-onions (CNOs) are a relatively unexplored form of carbon 

discovered by Ugarte in 1992 [8] and formed by concentric fullerene-like layers. 

Similarly to CNTs, CNOs are insoluble in organic and inorganic solvents and hence 

a number reactions have been explored to improve their solubility and 
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biocompatibility such as cycloaddition, oxidation with mineral acids, 

cyclopropanation and radical addition, among others [9] Modified CNOs have 

also shown low cytotoxicity and biocompatibility [10] in vitro and in vivo. Other 

reported applications of CNOs include biological imaging, environmental 

remediation, etc. [11] 

We have recently shown that CNOs can enhance the sensitivity of amperometric 

biosensors in DNA sensing [12]. The CNO layer can be used as support to 

immobilize a biorecognition element and, due to their large surface area and 

electronic properties, the resulting sensing platform shows enhanced 

performance as compared to systems not containing these nanomaterials. This 

has prompted us to study the immobilization of enzymes on CNOs with the aim 

to develop enzymatic biosensors for pesticides, an application that to the best of 

our knowledge has not been reported yet. For this, we have selected alkaline 

phosphatase (ALP, EC 3.1.3.1), horseradish peroxidase (HRP, EC 1.11.1.7) and 

glucose oxidase (GOX, EC 1.1.3.4). These enzymes are widely used in different 

fields such as immunoassays and electrochemical biosensors, biocatalysis and 

food industry, etc. [13]  

4.2. Experimental Section 

4.2.1 Materials 

All chemicals and solvents were used as received. NaOH (2 M) was purchased 

from Scharlau. HCl (1 M) and GOX from Aspergillus niger (~200 U/mg) were 

purchased from Fluka. Tris(hydroxymethyl) aminomethane hydrochloride (Tris 

HCl), ALP from bovine intestinal mucosa (10 DEA units/mg), Alkaline Phosphatase 

Yellow (pNPP) Liquid Substrate System for ELISA, magnesium chloride, D-(+)-

glucose, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)  

and Phosphate Buffered Saline (0.138 M NaCl and 0.0027 M KCl) were purchased 
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from Sigma. 96-well microtiter plates were purchased from Fisher Scientific. o-

Dianisidine dihydrochloride was purchased from Alfa Aesar. 2,2′-Azino-bis(3-

ethylbenzthiazoline-6-sulfonic acid) (ABTS) purchased from Thermo Fisher 

Scientific. Horseradish Peroxidase Type IV (~60 U/mg) was purchased from 

Biozyme Laboratories. All solutions were prepared with water purified using a 

Milli-Q purification system (Millipore, 18.2 MΩ⋅cm).  

4.2.2 Instrumentation 

Raman spectra were recorded in a RENISHAW inVia instrument equipped with a 

514 nm excitation laser at 1 mW. A glass slide was used to hold the samples, 

which were lyophilized before analysis. The ID/IG ratio was calculated by dividing 

the areas of D-band and G-band peaks after background subtraction. 

Transmission Electron Microscopy images were recorded using an FEI TecnaiTM 

transmission electron microscope on Cu grids. Thermogravimetric analysis (TGA) 

was performed on a TGA/DSC analyzer from Mettler Toledo using a heating rate 

of 10°C/min until 1000°C. All samples (~ 1 mg) were measured in alumina 

crucibles. Samples were lyophilized in a Labconco NativeZone 1 Liter Benchtop 

Nativeze Dry system. Absorbances were recorded on a SpectraMax 340PC 

Microplate Reader on 96-well microplates at room temperature.  

4.2.3 Preparation of oxidized CNOs 

Small CNOs were obtained as recently reported [14] by annealing of 

nanodiamonds (5 nm nominal particle size) at 1200°C for 6 hours under argon 

atmosphere to afford small spherical carbon nano-onion particles of 3–4 nm 

diameter and 5–6 graphitic shells. The prepared CNOs were oxidized with a 

mixture of sulfuric and nitric acid (3:1, v/v) for one hour to give CNO-ox [15]. 

4.2.4 Covalent immobilization of HRP, ALP and GOX on CNO-ox 
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CNO-enzyme conjugates were prepared by amidation of CNO-ox carboxylic acid 

groups with the amino groups of the enzymes using EDC as coupling agent (Figure 

4.1). For this, 10 mg of CNO-ox were suspended in 10 mL of 0.1 M acetate buffer 

pH 5 and sonicated for 1 hour. The solution was cooled down in an ice bath for 

30 minutes then 20 mg of EDC were added. The solution was stirred for 3 hours, 

then 20 mg of the corresponding enzyme were added into the solution and 

further stirred for 4 hours maintaining the solution at 4°C. The reaction mixture 

was centrifuged at 4000 rpm for 10 minutes and washed several times with Tris 

buffer pH 7. The CNO-enzyme conjugates were dried by lyophilization for 5 hours 

and stored at -20ºC until use. Three batches of CNO-enzyme conjugates were 

prepared using this procedure. 

OH

O

OH

O

NH−Enz

O

56

56-x

x

CNO                                               CNO-ox

CNO-enzyme

i

ii, iii

(Enz: ALP, HRP or GOX)
 

Figure 4.1: Preparation of CNO-enzyme conjugates. i) HNO3/H2SO4 (3:1), ii) EDC, 
acetate buffer pH 5, iii) ALP, HRP or GOX.  
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4.2.5 Kinetic assays  

The activity of native ALP and CNO-ALP were measured spectrophotometrically 

at 405 nm based on the change of solution color of p-nitrophenyl groups 

generated by the ALP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) 

using Alkaline Phosphatase Yellow (pNPP) Liquid Substrate System for ELISA 

(Sigma). The assays were carried out at pH 6-12 and at temperatures between 

20°C and 70°C in 0.1 M Tris buffer containing 0.02 M MgCl2 pH 9 using the 

protocol reported by Walter and Schutt [16].  

The activity of native HRP and CNO-HRP were measured spectrophotometrically 

at 405 nm based on the change of solution color resulting from the oxidation of 

ABTS by HRP in the presence of hydrogen peroxide using 1-Step™ ABTS Substrate 

Solution (Thermo Fisher Scientific). The assays were carried out at pH 2-8 and at 

temperatures between 20°C and 70°C in 0.01 M Phosphate Buffered Saline pH 7 

(containing 0.138 M NaCl and 0.0027M KCl) [17]. 

The activity of native GOX and CNO-GOX were measured spectrophotometrically 

at 500 nm based on the change of solution color resulting from the HRP-catalyzed 

oxidation of o-dianisidine dihydrochloride by hydrogen peroxide produced by the 

oxidation of glucose by oxygen-saturated GOX. The assays were carried out at pH 

4-9 and at temperatures between 20°C and 70°C in 0.01 M Phosphate Buffered 

Saline pH 7 (containing 0.138 M NaCl and 0.0027M KCl) [18].  

For the six systems, the absorbance values were measured for 10 minutes in 10 

s intervals using a microplate reader. Activities were calculated from the slope of 

the absorbance vs. time plots taking into account the extinction coefficient of the 

products formed in each reaction. In all cases, the highest activity (at optimum 

pH or temperature) was taken as 100%. All experiments were carried out in 
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triplicate. In experiments comparing native with immobilized enzymes, the same 

amount of both enzyme forms was used in the assays. 

4.2.6 Storage stability of native and CNO-enzyme conjugates 

The storage stability of native and CNO-enzyme conjugates was determined in 

terms of the loss of enzyme activity after incubation of buffered solutions at 37°C 

in the same buffers used to measure the enzyme activity (see section 2.5). After 

incubation for determined periods of time, the residual activity of enzymes was 

measured as described above. The initial activity was considered as 100%.  

4.3 Results and Discussion 

4.3.1 Preparation and physicochemical characterization of CNO-enzyme 

conjugates 

Figure 4.1 shows the overall procedure for the immobilization of ALP, HRP and 

GOX on CNOs. The first step involved an oxidation reaction to generate carboxylic 

groups on the graphitic shell of the CNOs to obtain CNO-ox. The carboxylic groups 

of CNO-ox were then linked covalently with the amino groups of the enzymes by 

amidation in the presence of a water soluble carbodiimide (EDC), which activates 

the COOH group to form a labile ester group that is further displaced by 

nucleophilic attack of an amino group of the enzyme to afford the corresponding 

CNO-enzyme conjugates (CNO-ALP, CNO-HRP and CNO-GOX). Since a large 

excess of both EDC and enzymes is used, enzyme self-crosslinking can occur, 

although most of this material is removed during the purification phase by 

centrifugation. The CNO conjugates formed stable suspensions when dispersed 

in water or buffer that did not precipitate for several days. 
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Figure 4.2 shows TEM images of the precursor CNOs and CNO-HRP. This 

conjugate forms small aggregates of 10-20 nm size that precipitate with time. 

Similar behavior was observed for CNO-ALP and CNO-GOX.  

 

 

Figure 4.2: a) HRTEM image of the precursor CNOs. b) TEM image of CNO-HRP 
suspended in water. 
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The TGA profiles of the CNO conjugates is strongly dependent on the amount of 

immobilized enzyme. This allowed the determination of the degree of 

functionalization of CNO-ox and CNO-enzyme conjugates by TGA analysis under 

an inert atmosphere from 30°C until 1000°C using pristine CNOs as reference 

under the same conditions (Figure 4.3). From the TGA curves it can be seen that 

CNO decomposition starts at 500°C and continues decomposing until 750°C while 

CNO-ox exhibit two different thermal stages with a total mass loss of 3.7% 

between 150ºC and 450ºC, corresponding to the loss of the carboxylic groups 

from the surface of the CNOs with a further decomposition starting at 460°C.  

 

Figure 4.3: TGA curves of CNOs, CNO-ox and CNO-enzyme conjugates (a-c) and 
first derivative curves (d).  

According to HRTEM images (Figure 4.2a), the starting CNOs have an average of 

six graphitic shells [14]. Considering the core is a C60 fullerene, the number of 

carbon atoms in each shell is estimated as 60 × n2 where n is the shell number, 
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so the first shell contains 60 × 12= 60 carbon atoms, the second shell 60 × 22 = 

240 carbon atoms, and so on. Thus, the total number of carbon atoms in one CNO 

containing 6 shells is 5460 with a molecular weight of 5460 × 12 g/mol = 65 520 

g/mol. The loss of weight of about 3.7% in CNO-ox indicates that there are ~56 

COOH groups per CNO (~1 per  

every 38 carbons of the outer shell). This value is smaller than the result reported 

previously by our group [15] due to a lower oxidation time used to avoid the 

generation of a large number of defects on the surface of the CNOs.  

The CNO-ALP, CNO-HRP and CNO-GOX conjugates exhibit two main different 

thermal stages below 520°C with a total mass loss of 35%, 50% and 33%, 

respectively, corresponding to the decomposition of the proteins immobilized on 

the surface of the CNOs. In these cases, the decomposition of the carbon 

nanostructure takes place at temperatures ~100ºC lower than that of pristine 

CNOs. This behavior is typical for modified carbon nanostructures. It is also 

noteworthy that the immobilized enzymes show, in general, a higher thermal 

stability that their native counterparts which decompose completely below 

460ºC, further confirming the covalent immobilization of the enzymes on the 

CNO surface and a positive effect of the conjugation on the stability of the 

enzymes. 

From the results of the TGA analysis, the enzyme/CNO ratios were calculated 

taking into account the mass loss below 500ºC and the molecular weight of the 

enzymes (Table 4.1). For ALP and GOX (M = 160 kDa) the results indicate that 

there are, on average, 5 CNO particles per enzyme, while for HRP (M = 44 kDa) 

three enzyme molecules are covalently linked with 2 CNOs (Table 4.1).  
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Table 4.1. Average composition and specific enzyme load for the prepared CNO-
enzyme conjugates (ENZ = ALP, HRP or GOX). 

 

The Raman spectra at 514 nm of CNO-ALP, CNO-HRP and CNO-GOX conjugates 

(Figure 4.4) show the typical D (~1340 cm-1) and G (~1580 cm-1) bands 

characteristic of the graphitic layers of the fullerene structure of CNOs. The 2D 

band is also visible at ~2700 cm-1. In all cases, the ID/IG ratio remains essentially 

unaltered with respect to CNO-ox (~1.0), indicating that the conjugation of the 

enzymes does not induce further defects in the CNO structure. The presence of 

the enzymes in the conjugates is visible by the appearance of new broad bands 

around 1100 cm-1 (C-N modes) and 2900 cm-1 (C-H modes), while weak bands 

corresponding to the amide bonds appear at ~1440 cm-1 overlapped in part 

between the D and G bands [19].   

Conjugate 

Molar composition 

(CNO)x(ENZ)y 
Specific enzyme load 

(mg/mg CNO) 
x y 

CNO-ALP 5 1 0.49 

CNO-HRP 2 3 0.44 

CNO-GOX 5 1 0.49 
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Figure 4.4: Raman spectra (514 nm) CNO-ox (a), CNO-ALP (b), CNO-HRP (c) and 
CNO-GOX (d).  

 

4.2 Enzymatic activity of native enzymes and CNO-enzyme conjugates 

Table 4.2 reports the catalytic properties of natives and CNO-conjugated 

enzymes. The CNO-ALP and CNO-GOx conjugates retained 71 and 78% of the 

catalytic activity of the native enzyme, while CNO-HRP kept up to 60%. This 

reduction could be originated from some steric hindrance produced by the 

attachment of the enzymes to the CNO matrix which could hinder in part the 

access of substrate to the active site of trypsin. Other causes could be the 

conditions used in the coupling reaction (pH 5, long conjugation time). However, 

the reduction in enzymatic activity in the CNO-enzyme conjugates was 

compensated by the improved stability properties, as demonstrated in the 
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following sections. Meanwhile, the catalytic efficiency (kcat/Km) was not markedly 

affected by the conjugation.  

Table 4.2. Catalytic properties of native and CNO-enzyme conjugates. 

Enzyme 
form 

Vmax  

(nM/s) 

kcat  

(s-1) 

Km  

(M) 

kcat/Km  

(M-1 s-1) 

ALP 151 ± 2 20.1 ± 0.2 (2.7 ± 0.3)×10-5 7.3×105 

CNO-ALP 120 ± 2 13.1 ± 0.1 (2.5 ± 0.2)×10-5 5.1×105 

HRP 87 ± 1 15.0 ± 0.6 (6.9 ± 0.4)×10-5 2.2×105 

CNO-HRP 50 ± 1 6.4 ± 0.2 (3.3 ± 0.2)×10-5 1.9×105 

GOX 134 ± 2 530 ± 5 (4.3 ± 0.1)×10-2 1.2×104 

CNO-GOX 96 ± 1 305 ± 3 (3.6 ± 0.2)×10-2 8.5×103 

 

4.3 Effect of pH and temperature on the catalytic activity of native enzymes and 

CNO-enzyme conjugates 

Solution pH is one of the most important factors in enzyme activity. The effect of 

pH on catalytic activities of native ALP and CNO-ALP is shown in Figure 4.5a, which 

shows that both CNO-ALP and native ALP reached the maximum activity at the 

optimum pH 9 and also the same activity at pH 8 with 95% of the maximum 

activity. Hence, the immobilization did not affect the optimum pH of alkaline 

phosphatase. For pH values lower than 8, the activities of both enzyme forms are 

very similar. Interestingly, CNO-ALP shows a higher activity at pH higher than the 

optimum pH with 12-15% of enhancement between pH 10 and 11. This behavior 

of immobilized ALP is similar to that reported by Hanachi et al. [20] who 

covalently immobilized ALP on collagen fiber using EDC as coupling agent and 

may be due to the presence of unmodified carboxylate groups in the surface of 
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the CNOs that could act as a kind of a buffer system extending the pH range of 

activity of the enzyme.    

In the case of native HRP and CNO-HRP (Figure 4.5b), both forms reach the 

maximum activities at the same value of pH 3 meaning that the immobilization 

did not affect the optimum pH of the enzyme. Between pH 3 and 6, the activity 

of the CNO-HRP conjugate remained above 85% of the maximum activity, in 

agreement with other reports on HRP covalently immobilized on MWCTNs [21] 

using 1-pyrenebutanoic acid succinimidyl ester as a coupling agent. Figure 4.5c 

shows the effect of pH on catalytic activities of native GOX and CNO-GOX. Both 

native GOX and CNO-GOX reach their maximum activity at pH 6 and the activity 

of both enzymes is essentially the same in the studied pH range. This behavior 

has also been found for the conjugation of GOX with other supports such as 

polymer membranes [22] or silica foams [23].  

 

Figure 4.5. Activity vs. pH profile for native and CNO-conjugated enzymes. 
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4.4 Effect of temperature on the catalytic activity of native enzymes and CNO-

enzyme conjugates 

Temperature is another of the most important factors in enzyme activity. The 

effect of the temperature on the catalytic activities of native ALP and CNO-ALP is 

shown in the Figure 4.6a. Both native ALP and CNO-ALP reach the maximum 

activity at the same optimum temperature of 50°C. CNO-ALP shows between 10% 

and 20% higher activity than native ALP in the whole interval of temperatures, 

indicating that CNOs have the ability to enhance the activity of ALP when they are 

conjugated without altering the optimum temperature. This is in contrast to the 

results reported by Hanachi et al. [20] who found a lower optimum temperature 

for ALP immobilized on collagen fibers (40ºC).  

In the case of CNO-HRP and CNO-GOX, the activity vs. temperature profiles are 

very similar to those of the native enzymes (Figure 4.6b,c). The optimum 

temperature was found at 40ºC in both cases, with no alteration with respect to 

the native enzyme. Conjugation to the CNOs affords more stable conjugates, 

especially in the case of HRP, which retains more than 50% of its initial activity at 

60ºC. For CNO-GOX, the conjugate retained more than 70% of activity even at 

70ºC, indicating that it can be effectively used in a wide temperature range as 

compared to GOX. 
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Figure 4.6. Activity vs. temperature profile for native and CNO-conjugated 

enzymes. 

4.5 Storage stability of CNO-enzyme conjugates 

The storage stability was studied for conjugates stored in buffer solution at 37ºC 

for a given period of time and the kinetic measurements were carried out at the 

optimum pH and temperature for each system at room temperature. These 

conditions were selected as it is common to study the storage properties of 

biomolecules in so called “accelerated” conditions at relatively high 

temperatures in the absence of stabilizers. 

As shown in Figure 4.7a, the results of thermal stability studies of native ALP and 

CNO-ALP incubated in Tris buffer pH 9 indicate a slight improvement of the 

stability of ALP immobilized on CNOs. The native ALP lost 67% of its initial activity 

whereas CNO-ALP lost 40% of its initial activity after one day. After one week, the 
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native ALP was completely inactivated while CNO-ALP retained 18% of its initial 

activity, which is equivalent to the activity of native ALP after being incubated for 

two days.  

From the results of the thermal stability studies of native HRP and CNO-HRP 

stored PBS buffer at pH 6 and 37°C (Figure 4.7b), it is clearly evident that the 

thermal stability of the HRP immobilized on CNO was strongly improved 

compared to the native HRP. The native HRP lost 95% of its initial activity after a 

5-day storage while CNO-HRP retained 50% of activity. It is interesting to note 

that the stability profile of CNO-HRP is similar to that of HRP conjugated to an 

antibody [24] 

In the case of GOX, this is a thermally more stable enzyme and hence its storage 

stability could be studied for a longer period of time. As shown in Figure 4.7c, the 

results of the thermal stability studies of native GOX and CNO-GOX stored in PBS 

buffer at pH 6 and 37°C indicate that GOX immobilized on CNO retained ~90% of 

activity even after six weeks of storage, while native GOX lost 50% of its initial 

activity.  

In all cases, the conjugates stored in buffer at 4ºC retained more than 95% of 

activity after several weeks of storage. On the other hand, the CNO-HRP 

conjugate was more resistant to denaturation in the presence of 2 M urea (21% 

activity loss) than native HRP (40% activity loss). The increased stability observed 

for the immobilized enzymes on CNOs might be attributed to a reduction in the 

enzyme structure mobility due to the anchorage to the support and subsequent 

translation of the rigidity to the enzyme structure thus shielding it from the 

denaturing effects of the environment. 
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Figure 4.7. Residual enzymatic activity of native and CNO-conjugated enzymes 
stored in buffer solution at 37ºC (see text for details). 

4.4 Conclusions 

ALP, HRP and GOX have been successfully immobilized on COOH-containing CNOs 

by amidation reactions and characterized by TEM and Raman spectroscopy. TGA 

analysis indicate a specific immobilization load of ~0.5 mg of protein per mg of 

CNOs. The conjugates retained the same optimum pH and temperature as 

compared with the native enzymes, with a slight improvement of their activities 

and are stable for longer periods of time after storage at 37ºC. These properties 

make the prepared nanobiocatalyst of potential interest in biosensing and other 

biotechnological applications.   
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Chapter 5 

Amperometric enzymatic biosensors based on CNO-modified surfaces for 

pesticide detection 

 

Abstract 

In this chapter, we have explored the possibility to use CNO-modified electrodes 
for the construction of amperometric enzyme biosensors based on the covalent 
immobilization of two enzymes on a chitosan/CNO matrix. This combination 
allowed the development of highly sensitive biosensors for glyphosate and 2,4,5-
T based on the inhibition of tyrosinase and HRP activities, respectively. The 
incorporation of CNO into chitosan-enzyme composites had a positive effect in 
enhancing the biosensor sensitivity due to the large surface area combined with 
enhanced electron transfer properties of the CNO-modified electrodes. CNOs 
also proved beneficial to improve their stability and repeatability and the 
developed biosensors were tested in spiked river water samples. Our results 
demonstrate the feasibility of using chitosan/CNO/enzyme composites for the 
development of sensitive biosensors based on activity inhibition. It could be 
expected that this strategy can be extended to other systems.  
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5.1 Introduction 

The immobilization of enzymes has become the subject of considerable interest 

due to their excellent functional properties such as reusability and cost-

effectiveness. Enzyme immobilization is widely used in many fields such as 

industrial processes, medical diagnostics, therapy, food industry, bioenergy, etc. 

(1). In bioanalysis, immobilization of enzymes on the transducer surface is a 

necessary and critical step in the design of biosensors. Different immobilization 

techniques were developed to fulfill the demands for each case, including 

classical adsorption, covalent bonding, entrapment, cross-linking or affinity as 

well as combinations of them. The most common nanomaterials such as 

conducting polymer nanowires, carbon nanotubes or nanoparticles have been 

reported. The choice of the immobilization methods represents an important 

parameter that affects biosensor performances, mainly in terms of sensitivity, 

selectivity and stability, by influencing enzyme orientation, loading, mobility, 

stability, structure and biological activity (2). 

Based on their properties, some polymers were taken in attention to entrap 

enzymes for biosensor development including sol-gel in HRP- (3) and 

acetylcholinesterase (AChE) biosensors (4), Nafion® (5), polythiophene (6), 

photo-crosslinkable polymers (7) and chitosan (8), among others.    

In the case of pesticide biosensors, simple adsorption has been used to develop 

enzymatic biosensors for organophosphorous pesticides (9), thiodicarb (10), and 

dimethyl-and diethyldithiocarbamates (11). These biosensors were easy to 

fabricate but did not present a high stability.  

For covalent immobilization, the most common reagent used is N-ethyl-N′-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC). Kim and his team 

immobilized tyrosinase on the surface of gold nanoparticle modified electrodes 
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via covalent bonding to develop an atrazine detection biosensor (12). 

Glutaraldehyde served as cross-linking agent between support and 

biorecognition elements for development of pesticide detection biosensors. 

Nafion cross-linked with butyrylcholinesterase (ChE) was used to develop 

organophosphorus insecticide biosensor (13). Another strategy involved bovine 

serum albumin (BSA) cross-linked with TYR to detect diuron, atrazine and other 

pesticides (14) as well as methyl parathion, carbofuran, diazinon and carbaryl 

(15). Finally, the capacity of enzyme entrapment and cross-linkability of chitosan 

makes this material especially suitable for enzymatic biosensor development. 

This polymer was employed as support for enzyme entrapment and being cross-

linked with enzymes to develop an AChE-based biosensor for organophosphates 

(16), a TYR biosensor for thiodicarb detection (17) and an amperometric 

hydrogen peroxide biosensor (18).  

Shi and co-workers made a comparison of different strategies for improving 

biosensor performance using different nanomaterials. Sol-gel encapsulation 

approaches and glutaraldehyde cross-linking strategies were applied to develop 

amperometric glucose biosensors based on commonly applied enzyme 

immobilization approaches in which carbon nanotubes were used to compare 

enhancement and compatibility with the enzyme and the nanomaterials (19). 

MWCNT was added into support composites of AChE biosensor, its presence 

improved electron transfer from the enzyme molecules to electrode surface and 

insure rapid biosensor response (20).  MWNT was used as co-immobilization 

matrix to improve performance of an HRP biosensor (21). Graphite, graphene, 

and multiwalled carbon nanotubes were used to optimize the performance of a 

pesticide biosensor containing TYR on SPE with different immobilization 

techniques (22,23).  Moyo and his group also utilized MWCNT in maize tassel to 

create a composite on glassy carbon electrode (GCE) for HRP biosensor 
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optimization (24) and other examples of CNT-based biosensors have been 

reported (25).  

As mentioned in Chapter 3, since the discovery of the inhibitory effect of 

pesticides on tyrosinase activity, this enzyme has been widely used as 

biorecognition element for developing enzymatic biosensors to detect a wide 

variety of pesticides. Different supports and immobilization strategies were 

applied to develop biosensors based on tyrosinase for atrazine detection with 

different detection limits reported. Guan et al. immobilized the enzyme on 

electropolymerized poly-L-DOPA, reaching a LOD of 10 µg/L, (26) and polypyrrole 

with 0.1 ppm detection limit (27). Other examples include immobilizing the 

enzyme on vertically growth TiO2 nanotubes (28), adsorption on a gel-like disk of 

the polysaccharide κ-carrageenan with 0.5 nM detection limit for atrazine (29) 

and gold nanoparticles electrodeposited on GCE (12). A TYR biosensor was 

developed based on immobilizing the enzyme in different composites to detect 

dichlorvos and atrazine resulting in low detection limits for each of pesticides 

(30). Other reported examples demonstrate the versatility of this enzyme in 

pesticide detection (31-35). 

On the other hand, peroxidases catalyze the oxidation of various hydrogen donor 

compounds in the presence of peroxides. Several biosensors based on 

peroxidases were reported for pesticide detection, although this enzyme has 

been less applied than TYR. In the work of Oliveira and his team, peroxidase 

isolated from the atemoya fruit was immobilized in montmorillonite clay on the 

surface of a carbon paste electrode modified with carbon nanotubes. The 

enzymatic activity was measured using hydroquinone as substrate, its activity 

decreased in presence of glyphosate using Square Wave Voltammetry. The limit 

of detection of the herbicide was 30 µg/l and the biosensor accuracy was proven 

by the good recovery values in spiked water samples (23). Songa developed a 
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biosensor by electrochemically depositing poly-(2,5-dimethoxyaniline) (PDMA) 

doped with poly(4-styrenesulfonic acid) (PSS) onto the surface of a gold electrode 

followed by electrostatic attachment of horseradish peroxidase onto the PDMA-

PSS nanocomposite film. The developed biosensor was applied to detect 

glyphosate and its metabolite (AMPA) in the water samples using peroxide as 

substrate with a limit of detection of 0.16 µg/L and 1.0 µg/L, respectively (36). 

Later, a similar biosensor was developed to detect glyphosate and glufosinate in 

spiked corn samples (37) and (38) with the same limit of detection. In the work 

of Zhang et al, an electrochemiluminescence (ECL) biosensor for glyphosate 

detection based on enzyme-assisted in situ generation of ZnS quantum dots 

(QDs) on ordered mesoporous carbons (OMC) substrate was developed. The HRP 

was introduced to expedite the generation of ZnS QDs via accelerating the 

reduction of Na2S2O3 with H2O2 to yield H2S that reacted Zn2+ ions, applied in 

glyphosate detection based on inhibitory effect of the herbicide on HRP activity 

(39).  

As described previously, the possible application of carbon nano-onions (CNO) in 

biosensor development is still in its infancy, with many possible new 

developments still to come (40-42). In Chapters 2 and 3, we have seen that the 

inhibition constant of 2,4,5-T on HRP was the highest among the studied 

pesticides, while glyphosate was the best inhibitor of tyrosinase activity. We have 

thus selected these two systems to evaluate the performances of biosensors 

developed in the absence and presence of CNO on the surfaces, immobilizing the 

enzymes into a chitosan matrix to form a composite material that was 

immobilized on SPE electrodes.  
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5.2 Experimental 

5.2.1 Materials and reagents 

All chemicals and solvents were used as received. ox-CNO were prepared as 

reported in Chapter 3. NaOH (2M) was purchased from Scharlau. HCl (1 M) was 

purchased from Fluka. N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC) and Phosphate Buffered Saline (0.138 M NaCl and 0.0027 M 

KCl), potassium ferricyanide (III) 99%, horseradish peroxidase salt free 

(lyophilized powder, 300 units/mg), chitosan from shrimp shells (50-190 kDa), 

glyphosate, 2,4-D, tyrosinase from mushroom (1000 units/mg), 3,3’,5,5’-

tetramethylbenzidine (TMB) Liquid Substrate for ELISA, and 3,4-dihydroxy-L-

phenylalanine (L-DOPA) were purchased from Sigma-Aldrich. 2,4,5-T was 

purchased from Tokyo Chemical Industry Co. Ltd. (TCI). Acetic acid glacial 

(synthesis grade) was purchased from Scharlau.  

Screen-printed electrodes were purchased from DropSens. All solutions were 

prepared with water purified using a Milli-Q water purification system (Millipore) 

to a resistivity of 18.2 MΩ⋅cm.  

5.2.2. Instrumentation 

Environmental Scanning Electron Microscopy (ESEM) was recorded in a Quanta 

600 microscope (FEI Company Inc.) under high vacuum at 25 kV. All 

electrochemical measurements were carried out using an Autolab model PGSTAT 

10 potentiostat/galvanostat controlled with the general purpose electrochemical 

systems (GPES) software (Eco Chemie, the Netherlands), equipped with a cable 

connector for screen-printed electrode (DRP-CAC, from DropSens). Cyclic 

voltammetry studies were conducted in degassed buffers at a scan rate of 100 

mV/s.  
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5.2.3 Preparation of HRP biosensors 

Prior to modification, the bare screen-printed electrodes were cleaned/activated 

with 1M H2SO4 using cyclic voltammetry in the potential range (-1 to 1 V) for 10 

cycles. Chitosan solution (1%) was prepared in 0.8% acetic acid with 3 h stirring 

at room temperature. The coating solutions were prepared as follows: 100 U of 

HRP and 0.25 mg of ox-CNO were mixed with 1 mg EDC in 200 μL phosphate 

buffer pH 6 and stirred at 4ºC for 1h. This solution was then mixed with 200 μL of 

1% chitosan and stirred overnight at 4ºC. 1.5 μL of this solution were dropped on 

the surface of the SPEs and dried under vacuum for 2 h (SPE/Chi/CNO/HRP 

electrodes). The SPE/Chi/HRP electrodes were prepared in a similar way but 

without CNOs. The electrodes were stored in 20 mM PBS in the fridge to be 

utilized for measurements.   

5.2.4 Preparation of TYR biosensors 

In this case, the coating solutions were prepared as described above but using 

100 U of tyrosinase instead of HRP. Then, the SPE/Chi/TYR and SPE/Chi/CNO/TYR 

electrodes were stored in 20 mM PBS in the fridge when not in use.  

5.2.5 Biosensor characterization and detection procedures 

The electrochemical behavior of the developed biosensors and bare SPE was 

investigated by cyclic voltammetry (CV) in the potential range of -0.3 to +0.6V 

with scan rate 100 mV/s in 20 mM PBS pH 7 and 1 mM K3[Fe(CN)6] in 0.1 mM KCl. 

SPE/Chi/HRP and SPE/Chi/CNO/HRP were investigated by CV with the same 

configuration in the presence of TMB and H2O2 (1:1) 0.5 mM. SPE/Chi/TYR and 

SPE/Chi/CNO/TYR were investigated by CV in the presence of 10 mM of L-DOPA 

in 20 mM of PBS pH 7.  
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Pesticide inhibition measurements were carried out in a two-step process 

(Scheme 5.1). The initial response of the non-inhibited biosensor was first 

recorded using solution A (A0 in Scheme 5.1), followed by incubation in the 

presence of the pesticide. Two solutions of the same concentration of pesticides 

were prepared, one without substrate for biosensor incubation (solution B) and 

another one with substrate for the amperometric measurements after sample 

incubation (solution C). On basis of amperometric response of biosensors to the 

substrate, the steady-state currents produced were recorded. After rinsing, the 

residual activity (Ai in Scheme 5.1) was then measured and the % of inhibition was 

calculated. 

 

Scheme 5.1. General protocol used for biosensor measurements. 

The DC amperometric measurements were carried out in stirred electrolytes (425 

rpm) at an applied potential of 0.0 V for HRP biosensors and -0.20 V for TYR (vs. 

Ag/AgCl). According to CV, at these potentials the electrochemical reduction of 

the enzyme-oxidized substrates takes place. Substrate concentrations were 

0.065 mM of TMB:H2O2 (1:1) for HRP biosensors and 1.5 mM of L-DOPA for TYR 

biosensors (Scheme 5.2) 
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Scheme 5.2. Amperometric measurement protocol used to measure A0 and Ai. 
The measurements are done firstly in the absence of inhibitor (A0), then after 
interaction with the pesticide (Ai). 

 

With the responses of the biosensors, the corresponding calibration curves were 

built. SPE/Chi/CNO/HRP and SPE/Chi/CNO/TYR were also used to measure the 

presence of glyphosate and 2,4,5-T in spiked samples of water collected from the 

Francolí river (Tarragona city). The sample was collected on 27th June 2018 at the 

coordinates 41°07'12.0"N+1°14'07.8"E and filtered using a syringe filter (0.22 

μm) before use.   

The stability of the biosensors stored in the fridge in PBS at 4ºC was studied for 

30 days by measuring the inhibition of enzyme activities (1 μM glyphosate on 

TYR, 3 μM 2,4,5-T on HRP). Repeatability was studied until the signal decreased 

by 10% with respect to the original signal for the above concentrations.  

5.3 Results and Discussion 

5.3.1 Electrochemical and physical properties of the modified electrodes 

Chitosan is a natural polyaminosaccharide that has been widely used as a 

platform for enzyme immobilization in industrial and biosensing applications 

(43,44). It forms permeable membranes and is chemically reactive due to the 

many amino groups present in the structure. We thus selected this polymer as a 
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matrix to immobilize the enzymes (HRP or TYR) and CNO using a crosslinker that 

was drop-casted in a SPE to develop the pesticide biosensor (Scheme 5.2) 

 

Scheme 5.2. Preparation of chitosan/enzyme/CNO composite. 

After SPE modification, the surfaces of the electrodes were imaged by 

environmental scanning electron microscopy (ESEM) to distinguish the 

morphologies. Figure 5.1 shows the ESEM analysis of bare and modified SPEs. As 

shown in the images, the surface of the SPE/Chi/TYR and SPE/Chi/HRP electrodes 

consists of superimposed thin layers corresponding to the chitosan membrane. 

In the presence of CNOs, the surfaces have a markedly rough morphology due to 

the presence of CNO aggregates. In all cases, the composites appear to 

completely cover the electrode surface and evidence the successful modification 

of the GCE electrodes.  
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Figure 5.1. ESEM images of SPE (a), SPE/Chi/TYR (b), SPE/Chi/CNO/TYR (c), 
SPE/Chi/HRP (d), SPE/Chi/CNO/HRP (e). Images (a), (b) and (d) are taken at 5000X, 
images (c) and (e) at 2000X. 

Figures 5.2 and 5.3 show the cyclic voltammograms of bare and modified 

electrodes using PBS as supporting electrolyte. The rectangular shape of the CVs 

of the modified eletrodes is indicative of the deposition of the chitosan layer, that 

behaves as a pseudocapacitor due to its polyelectrolyte nature. This effect is 

increased upon incorporation of the CNOs, as recently reported for other CNO-

modified surfaces (40-42).  
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Figure 5.2. Cyclic voltammograms at SPE, SPE/Chi/CNO/TYR and SPE/Chi/TYR 
with scan rate 100 mV/s in the presence of 20 mM PBS, pH 7.  

 

Figure 5.3. Cyclic voltammograms at SPE, SPE/Chi/CNO/HRP and SPE/Chi/HRP 
with scan rate 100 mV/s in the presence of 20 mM PBS, pH 7.  

Figure 5.4 shows the CVs of SPE, SPE/Chi/TYR and SPE/Chi/CNO/TYR using 

[Fe(CN)6]3- in KCl as electroactive marker. SPE/Chi/CNO/TYR showed a notably 

higher peak current signal as compared to SPE/Chi/TYR and SPE. The electroactive 
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area of the mentioned electrodes accessible to the redox probe was determined 

using the Randles-Sevcik equation:  

ip = 2.69 × 105 A D ½ n 3/2 v1/2 c 

Where ip is the peak current, A is the electroactive surface (cm2), D is the diffusion 

coefficient of [Fe(CN)6]3- in dilute aqueous solution, n is the number of transferred 

electrons by [Fe(CN)6]3-/4- (n=1), v is the scan rat in V s-1 and c is the concentration 

of the marker. Based on this equation, by plotting the values of ip versus v1/2, the 

calculated electroactive surface of SPE/Chi/CNO/TYR is 0.775 cm2 where SPE and 

SPE/Chi/TYR have surface areas 0. 509 cm2 and 0.656 cm2, respectively.  

Similarly, figure 5.5 depicts the CVs of SPE/Chi/HRP and SPE/Chi/CNO/HRP. The 

calculated electroactive surfaces are 0.681 cm2 and 0.587 cm2 for 

SPE/Chi/CNO/HRP and SPE/Chi/HRP, respectively. These results indicate that the 

presence of both, the chitosan/enzyme composite and the CNOs in the surface 

coating improves the active surface of the electrodes thus enhancing the 

electrochemical properties of the surface. Interestingly, the prepared biosensors 

exhibited a good mechanical stability in aqueous solution. Treatments such a 

repetitive washing with water and immersion in aqueous solutions for a long time 

did not cause the removal of the deposited composites from the surface of SPE 

as revealed by inspection under an optical microscope.    
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Figure 5.4. Cyclic voltammograms at SPE, SPE/Chi/CNO/TYR and SPE/Chi/TYR with 
scan rate 100 mV/s in the presence of 1 mM K3[Fe(CN)6] and 0.1 mM KCl, pH 7.  

 

 

Figure 5.5. Cyclic voltammograms at SPE, SPE/Chi/CNO/HRP and SPE/Chi/HRP 
with scan rate 100 mV/s in the presence of 1 mM K3[Fe(CN)6] and 0.1 mM KCl, pH 
7. 
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Figure 5.6 shows the CVs of SPE, SPE/Chi/TYR and SPE/Chi/CNO/TYR using L-DOPA 

in PBS as electroactive marker. In the range of studied potentials, two peak 

currents appeared in both oxidation and reduction sweeps. At the bare electrode, 

these pairs of peaks are well resolved while in the modified electrodes the peaks 

are broad. The intensity of the peaks decreases in the order SPE/Chi/CNO/TYR > 

SPE/Chi/TYR > SPE and the peak potentials in the reduction sweep are displaced 

to more positive potentials, making the redox process slightly more reversible. All 

these features indicate that both composites are permeable to the enzyme 

substrate and its electroactive properties are favored with respect to the bare 

electrode, presumably due to an interfacial accumulation mechanism. These 

observations are even more evident in the case of the HRP composites using TMB 

as substrate. In both cases the presence of the CNOs in the surface enhanced the 

electroactive properties of both substrates. From these results, we selected -0.2 

V and 0.0 V vs. Ag/AgCl for the amperometric measurements of TYR and HRP 

biosensors, respectively. 

 

Figure 5.6. Cyclic voltammograms at SPE, SPE/Chi/CNO/TYR and SPE/Chi/TYR with 
scan rate 100 mV/s in the presence of 10 mM L-DOPA, pH 7.  
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Figure 5.7. Cyclic voltammograms at SPE, SPE/Chi/CNO/HRP and SPE/Chi/HRP 
with scan rate 100 mV/s in the presence of 0.5 mM TMB and H2O2 1:1, pH 6.5.  
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for a given time and the reduction current of the product was measured at a fixed 
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both TYR biosensors.  Above this concentration, L-DOPA started to saturate the 

active enzymes on the biosensors to reach maximum activity, as expected for a 

Michaelis-Menten kinetics. Assuming that the current response is proportional to 

-0.4 -0.2 0.0 0.2 0.4 0.6
-75

-50

-25

0

25

50

75

100

 

C
u

rr
en

t 
(µ

A
)

Potential (V)

 SPE
 SPE/Chitosan/HRP
 SPE/Chitosan/CNO/HRP

UNIVERSITAT ROVIRA I VIRGILI 
AMPEROMETRIC ENZYME-BASED DETECTION OF AGRICULTURALPESTICIDES ON NOVEL CARBON NANO-ONION COMPOSITES 
Vibol Sok 
 



Vibol Sok – Doctoral Thesis 

 

125 
 

the enzyme activity, the Km value of the immobilized tyrosinase was estimated to 

be 0.55 mM, which is lower than the value reported for the free enzyme (0.78 

mM) (45). This means that the affinity of the enzyme for the substrate is improved 

upon immobilization.  The same trend in the apparent Km values was observed 

for the immobilized HRP (0.02 mM) as compared with the free enzyme (0.057 

mM) (46) (Figure 5.9). In this case, saturation was achieved at 0.06 mM TMB. 

Interestingly, the calculated affinity values did not depend on the presence of 

CNOs in the composite. 

 

Figure 5.8. Amperometric response of SPE/Chi/CNO/TYR and SPE/Chi/TYR 
biosensors with different concentrations of L-DOPA in 20 mM PBS pH 7 and 2 min 
incubation. 
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Figure 5.9. Amperometric responses of SPE/Chi/CNO/HRP and SPE/Chi/HRP 
biosensors with different concentrations of TMB in 10 mM PBS pH 6.5 and 2 min 
incubation. 
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(step 3 in Scheme 5.3). 

 

0.00 0.02 0.04 0.06 0.08
0

6

12

18

 

C
u

rr
en

t 
(µ

A
)

[TMB] (mM)

 SPE/Chitosan/CNO/HPR
 SPE/Chitosan/HRP

UNIVERSITAT ROVIRA I VIRGILI 
AMPEROMETRIC ENZYME-BASED DETECTION OF AGRICULTURALPESTICIDES ON NOVEL CARBON NANO-ONION COMPOSITES 
Vibol Sok 
 



Vibol Sok – Doctoral Thesis 

 

127 
 

 

Figure 5.10. Amperometric responses of SPE/Chi/CNO/TYR to 0 and 0.5 μM of 
glyphosate at 425 rpm of stirring in 20 mM PBS, pH 7. 

 

Figure 5.11. Amperometric responses of SPE/Chi/CNO/HRP to 0 and 3.7 µM of 
2,4,5-T at 425 rpm of stirring in 10 mM PBS, pH 6.5. 
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Another important parameter to optimize in this type of systems is the time the 

biosensors are kept in contact with the inhibitors. In reversible competitive 

inhibition (as in the case of TYR and HRP with the studied pesticides), the inhibitor 

and substrate compete for the active site of the enzyme and for a constant 

substrate concentration the activity decreases with increasing inhibitor 

concentration. In solution this process is typically very fast but with immobilized 

enzymes in a rather complex matrix some time is needed to complete the 

diffusion of the reagents. Figures 5.12 and 5.13 show the current loss at 

increasing pesticide incubation times using 3.4 µM glyphosate for SPE/Chi/TYR 

and SPE/Chi/CNO/TYR and 2.5 µM 2,4,5-T for SPE/Chi/HRP and 

SPE/Chi/CNO/HRP, respectively. As seen in the figures, the biosensors need 10 

and 12 minutes to achieve maximum inhibition.  

 

Figure 5.12. Current variations of SPE/Chi/CNO/TYR and SPE/Chi/TYR in 3.4 µM of 
glyphosate at different incubation times. Conditions as in Fig. 5.10. 
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Figure 5.13. Current variations of SPE/Chi/CNO/HRP and SPE/Chi/HRP in 2.5 µM 
of glyphosate at different incubation times. Conditions as in Fig. 5.11. 
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measuring the amperometric response of the biosensors in the absence and 

presence of the pesticides it was possible to construct the corresponding 

calibration plots based on percentage of signal inhibition.  

5.3.3.1 Amperometric detection of glyphosate on SPE/Chi/CNO/HRP and 

SPE/Chi/TYR 

Figure 5.14 shows the calibration curves of inhibition of glyphosate on L-DOPA 

response for SPE/Chi/CNO/TYR and SPE/Chi/TYR biosensors. The plots show that 

the inhibition percent increases almost linearly with pesticide concentration for 

both biosensors and then tends slowly to saturation, with the %I values not 

reaching 100%. A linear relationship was found up to 0.12 µM for both 

biosensors. The detection limits were 0.0065 µM (1.1 µg/L) for SPE/Chi/CNO/TYR 

and 0.009 µM (1.27 µg/L) for SPE/Chi/TYR. In the range of studied concentrations 

of glyphosate, the sensitivity of the SPE/Chi/CNO/TYR biosensor (taken as the 

slope of the linear part) is higher in comparison to SPE/Chi/TYR.  

The inhibition of this pesticide on TYR in solution was found to be of a mixed type 

with the affinity constant of glyphosate for the enzyme ܭூ= 33 µM and the affinity 

of glyphosate for the enzyme-L-DOPA complex ܭூௌ= 183 µM. The ܭூ value 

suggest that the enzyme presents high affinity to glyphosate. The enhanced 

sensitivity of SPE/Chi/CNO/TYR over SPE/Chi/TYR might depend on the efficiency 

to maintain the bioelectrocatalytic cycle and factors such as measurement 

protocol, immobilization, enzyme loading, incubation time and substrate 

concentration. The measurement protocol and incubation times were identical 

for SPE/Chi/CNO/TYR and SPE/Chi/TYR, so these factors could not make the 

difference. In the case of reversible inhibition using free enzyme in solution, the 

enzyme concentration does not affect the degree of inhibition if the enzyme 

concentration is lower than the inhibitor concentration. In our case, the 

SPE/Chi/CNO/TYR contained the enzyme loaded in a CNO-containing composite 
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which might have enhanced electron transfer of the electroactive products, in a 

similar mechanism to other nanoparticles such as carbon nanotubes, carbon 

black, and gold nanoparticles (34,39). On other hand, the SPE/Chi/CNO/TYR has 

higher surface area compared to SPE/Chi/TYR, in which the enzyme might be well 

distributed on the sensor making enzyme with higher capability of sensing toward 

substrate as well as inhibitors.  

 

Figure 5.14. Calibration curves for biosensors SPE/Chi/CNO/TYR and SPE/Chi/TYR 
to different glyphosate concentrations. 
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5.3.3.2 Amperometric detection of 2,4,5-T on SPE/Chi/CNO/HRP and SPE/Chi/HRP 

Figure 5.15 shows the calibration curves of inhibition of 2,4,5-T on HRP for 

SPE/Chi/CNO/HRP and SPE/Chi/HRP biosensors. Similarly to the TYR biosensor, 

the inhibition percent increases almost linearly with pesticide concentration then 

tends slowly to saturation, with the %I values reaching ~35% for 12 µM of 2,4,5-

T. Linear relationships were found (0.0112-0.345 µM for SPE/Chi/CNO/HRP and 

0.015-0.425 µM for SPE/Chi/HRP). The obtained detection limits were 0.010 µM 

for SPE/Chi/CNO/HRP and 0.017 µM for SPE/Chi/HRP. As seen in the graph, in the 

range of studied concentrations of 2,4,5-T, the sensitivity of SPE/Chi/CNO/HRP 

was higher than that of SPE/Chi/HRP, although in this case the difference is less 

pronounced than that of SPE/Chi/HRP.    

In chapter 2, we found that 2,4,5-T was a competitive inhibitor of HRP with ܭூ= 

211 µM, which corresponds to the degree of dissociation of the enzyme-2,4,5-T 

complex. The pesticide thus competes with H2O2 for the active side of the enzyme 

with no effect on the enzyme-H2O2 complex. This difference in inhibition 

mechanism with TYR/glyphosate may account for the differences in sensitivity 

between the TYR and HRP biosensors. In the first case, the pesticide is capable to 

inhibit both E and E-S complex, while 2,4,5-T only inhibits E. The role of CNOs in 

the HRP biosensor is slightly more prominent in this case with respect to the 

analytical parameters obtained.  

The analytical data of the prepared biosensors is collected in Table 5.1.  
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Figure 5.15. Calibration curves for biosensors SPE/Chi/CNO/HRP and SPE/Chi/HRP 
to different 2,4,5-T concentrations. 
 

Table 5.1 Analytical data of the prepared biosensors (n = 3).  

Pesticide Biosensor LOD (nM) Sensitivity (μM-1) 

Glyphosate 
SPE/Chi/CNO/TYR 6.5 ± 0.4 51.5 

SPE/Chi /TYR 9.0 ± 0.5 23.4 

2,4,5-T 
SPE/Chi/CNO/HRP 10 ± 1 12.2 

SPE/Chi/HRP 17 ± 2 6.9 

 

5.3.4 Analysis of spiked river water samples 

Due to the impossibility to obtain real samples contaminated with glyphosate or 

2,4,5-T, the CNO modified biosensors were tested in river water samples 

collected  from the Francolí river in Tarragona and spiked with both pesticides 

0 3 6
0

10

20

30

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6
 

 SPE/Chi/CNO/HRP
 SPE/Chi/HRP

In
h

ib
it

io
n

 (
%

)
[2,4,5-T] (μM)

 SPE/Chi/CNO/HRP
 SPE/Chi/HRP

In
h

ib
it

io
n

 (
%

)

[2,4,5-T] (µM)

UNIVERSITAT ROVIRA I VIRGILI 
AMPEROMETRIC ENZYME-BASED DETECTION OF AGRICULTURALPESTICIDES ON NOVEL CARBON NANO-ONION COMPOSITES 
Vibol Sok 
 



Vibol Sok – Doctoral Thesis 

 

134 
 

(Figure 5.16). As can be seen in Table 5.2, the recovery signals obtained for both 

biosensors are between 95 and 108%, demonstrating the suitability of the 

developed surface chemistry for pesticide detection in complex samples. 

 

Figure 5.16 Collection site of the river water samples. 

Table 5.2 Results obtained in spiked river water samples. 

Pesticide Biosensor 
Concentration 

added (μM) 
Concentration 

found (μM) 
% 

Recovery 

Glyphosate SPE/Chi/CNO/TYR 1.0 1.08 ± 0.08 108 

2,4,5-T SPE/Chi/CNO/HRP 3.0 2.85 ± 0.05 95 

 

5.3.5 Stability and repeatability of the developed biosensors 

The long-term stability and repeatability of the biosensors were examined. Figure 

5.17 and 5.18 show the residual activities of the immobilized enzymes on the TYR 

and HRP biosensors by monitoring the amperometric responses at the optimal 

substrate concentrations as explained above in 4-day intervals over a period of 4 

weeks. As seen in figure 5.17, after one week of storage SPE/Chi/CNO/TYR and 
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SPE/Chi/TYR maintain 96% and 77% respectively and then decreased gradually to 

62% and 38% after 4 weeks. In general, from the results of the stability studies of 

SPE/Chi/CNO/TYR and SPE/Chi/TYR stored in PBS buffer at pH 6.5 and 4ºC it is 

evident that the presence of CNO in the composite of SPE/Chi/CNO/TYR 

biosensor significantly enhanced the stability of the biosensors compared to 

SPE/Chi/TYR. A similar trend was observed for HRP. Figure 5.18 illustrates that 

after the first week of storage, SPE/Chi/CNO/HRP and SPE/Chit/HRP maintain 

96.5% and 85% respectively and then decreased to 77% and 64% after 4 weeks 

of storage. As seen, the presence of CNO covalently coupled with chitosan and 

HRP on the surface electrode has positively improved the stability of 

SPE/Chi/CNO/HRP compared to SPE/Chi/HRP. In general, HRP biosensors were 

more stable with time than tyrosinase.  

The increased stability demonstrated for the enzymatic biosensors covalently 

coupled with CNO might be attributed to Van der Waals interactions between the 

carbon nanoparticles and the enzyme resulting in a reduction in the enzyme 

mobility due to the anchorage to the support, thus shielding it from the 

denaturing effects of the environment. Interestingly, these results agree with the 

improved stability observed for CNO-enzyme conjugates in solution as explained 

in Chapter 4.   

Regarding repeatability, the SPE/Chi/CNO/TYR biosensor maintains stable steady-

state current after 65 measurements while SPE/Chi/TYR only after 50 

measurements. In case of HRP biosensors, SPE/Chi/CNO/HRP is stable for 58 

measurements while SPE/Chi/HRP for 49 measurements. These results can also 

be explained based on the stability of the enzyme composites with CNO and the 

presence of the chitosan matrix.  
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Figure 5.17. Residual activities of SPE/Chi/CNO/TYR and SPE/Chi/TYR biosensors 
stored in 20 mM PBS, pH 6.5 at 4°C. 

 

Figure 5.18. Residual activities of SPE/Chi/CNO/HRP and SPE/Chi/HRP biosensors 
stored in 20 mM PBS, pH 6.5 at 4°C.   
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5.4 Conclusions 

In this chapter, we have explored the possibility to use CNO-modified electrodes 

for the construction of amperometric enzyme biosensors based on cross-linked 

and covalent immobilization of enzymes with CNO and chitosan. This 

combination allowed the development of highly sensitive biosensors for 

glyphosate and 2,4,5-T based on the inhibition of tyrosinase and HRP activities, 

respectively. The incorporation of CNO into chitosan-enzyme composites for 

biosensor development had a positive effect in enhancing the sensitivity due to 

the large surface area combined with enhanced electron transfer properties of 

the CNO-modified electrodes. CNOs also proved beneficial to improve their 

stability and repeatability.  

Although we could not validate our results by comparison with standard 

methods, the simplicity of preparation, good analytical behavior and stability and 

ability to detect the pesticides in relatively complex samples such as river water 

demonstrate the feasibility of using chitosan/CNO/enzyme composites for the 

development of sensitive biosensors based on activity inhibition. It could thus be 

expected that this strategy can be further extended to develop portable pesticide 

detection systems for in-field agricultural or environmental applications.   
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Conclusions and Future Work 
 

As we have demonstrated in the preceding Chapters, there is currently a strong 

concern on the use of pesticides in agriculture and their possible side effects, 

which justifies the need for sensitive and robust detection systems as an 

important step in this direction. The overall objective of this thesis was to study 

the interaction of different pesticides with peroxidase and tyrosinase with the 

aim to develop biosensors for pesticide detection based on CNO-modified 

electrodes.  

In the first part of this thesis, we determined that the inhibition of peroxidase and 

tyrosinase activities by three of the most used pesticides (2,4-D, 2,4,5-T and 

glyphosate) follows a reversible mechanism. This conditioned to a certain extent 

the immobilization and measurement strategies of the developed biosensors in 

order to obtain the maximum possible sensitivity. We later showed that oxidized 

CNOs can be used as supports for the immobilization of enzymes, retaining most 

of their catalytic and functional properties and enhancing the stability of the 

immobilized enzymes. Finally, we combined the previous studies in a novel 

composite material based on a chitosan matrix containing the immobilized 

enzymes and CNO to develop electrochemical biosensors to detect glyphosate, 

based in tyrosinase inhibition, and 2,4,5-T, based on peroxidase activity. The 

incorporation of CNOs into chitosan-enzyme composites had a positive effect in 

enhancing the sensitivity of the biosensors and proving to be beneficial to 

improve their stability and repeatability. 

This thesis has thus been a contribution to a rapidly growing field related with the 

development of new classes of nanomaterial-based detection systems applied, in 

our case, to solve a challenging environmental problem of present times. 

UNIVERSITAT ROVIRA I VIRGILI 
AMPEROMETRIC ENZYME-BASED DETECTION OF AGRICULTURALPESTICIDES ON NOVEL CARBON NANO-ONION COMPOSITES 
Vibol Sok 
 



Vibol Sok – Doctoral Thesis 

 

144 
 

Although some of the biosensor platforms developed in this work were not fully 

optimized and could not be compared with standard methods, it is clear that the 

use in biosensing of carbon nano-onions combined with enzymes has many 

promising advantages over other nanomaterials. It also seems evident that there 

is a possibility to apply these materials to detect other contaminants. We thus 

recommend to continue the research work in this direction.  
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