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Of course there are worlds. Millions of them!
Every star you see has worlds, and most of those you don’t see.

— Isaac Asimov, Pebble in the Sky

Go then, there are other worlds than these.

— Stephen King, The Gunslinger
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than face all the ages of this world alone.
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R E S U M E N

Desde la primera detección confirmada de varios exoplane-
tas de masa terrestre orbitando el púlsar PSR B125712 (Wolszc-
zan y Frail, 1992; Wolszczan, 1994), el interés por estos objetos
no ha hecho más que crecer. El descubrimiento del exoplaneta
gigante 51 Pegasi b (Mayor y Queloz, 1995), mediante el méto-
do de las velocidades radiales, promovió el desarrollo de una
nueva técnica de detección basada en la alta probabilidad de
que un planeta similar pudiera cruzar su estrella anfitriona en
la línea de visión del observador. Esta técnica, conocida como
el método del tránsito, detecta planetas extrasolares midiendo
el pequeño oscurecimiento del flujo estelar cuando el planeta
pasa entre la estrella y el observador. El método del tránsito
es, actualmente, el modo más eficiente y sensible para detectar
planetas extrasolares. Además, dada la posibilidad de escanear
simultáneamente amplias regiones de cielo que contienen milla-
res de estrellas, las observaciones dedicadas a tránsitos puede
detectar más exoplanetas que otros métodos. Muchas misiones
han seguido este modo de observación, aquellas basadas en
tierra, como MEarth (Irwin y col., 2009), SuperWASP (Pollac-
co y col., 2006), KELT (Pepper y col., 2007), HAT-South (Bakos
y col., 2008), TFRM-PSES (Fors y col., 2013), NGTS (Wheatley
y col., 2013) o el Evryscope (Law y col., 2014; Law y col., 2015);
así como aquellas misiones espaciales como COnvection RO-
tation and planetary Transits (CoRoT) (Fridlund y col., 2006),
Kepler (Borucki y col., 2010), la recientemente lanzada, TESS
(Ricker, 2014) y la futura misión PLATO (Rauer, 2013).

Los tránsitos pueden aportar información sobre las caracte-
rísticas de los planetas que orbitan su estrella anfitriona. Dado
que la caída en el flujo proveniente de la estrella es proporcio-
nal al tamaño del planeta y, dado que el tamaño de las estrellas
puede conocerse con suficiente precisión, el radio del planeta
puede determinarse directamente de la profundidad del tránsi-
to. Combinado con observaciones en velocidades radiales, tam-
bién puede ofrecer una buena estimación de la masa del planeta
y, por lo tanto, también de la densidad. Además, el método del
tránsito también permite estudiar la atmósfera del planeta me-
diante espectrografía del alta resolución, así como su albedo, su
temperatura (Charbonneau y col., 2005; Deming y col., 2005) e
incluso, detectar la presencia (Kreidberg y col., 2014) o ausencia
(Nikolov y col., 2018) de nubes en su atmósfera.
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El número total de exoplanetas confirmados hasta la fecha (2
de agosto, 2018) es de 3,774 de los cuales, 2,951 han sido detec-
tados mediante el método del tránsito. En particular, la misión
Kepler de la NASA ha detectado 2,327 planetas confirmados y
más de 2,000 candidatos. Su misión extendida K2, actualmente
ha confirmado 323 planetas y ha detectado más de 400 candi-
datos.

A parte de los tránsitos exoplanetarios, hay otras fuentes de
variabilidad estelar que son detectadas por estas misiones. Es-
tas variaciones pueden ser debidas a cambios físicos en la estre-
lla (como es el caso de las estrellas pulsantes, eruptivas, cataclís-
micas o emisoras de rayos X) o, debidas al eclipse de la estrella
por otra estrella en el sistema o por efectos de rotación estelar
(estrellas eclipsantes, rotantes o eventos de microlensing). La
primera estrella variable fue identificada en 1638 cuando Johan-
nes Holwarda (1640) detectó que Omicron Ceti pulsaba cíclica-
mente cada 11 meses. Desde entonces, el número de estrellas
variables ha ido creciendo rápidamente, especialmente desde
1890 cuando se hizo posible identificarlas a partir de placas fo-
tográficas y, más adelante, a partir de instrumentos electrónicos
como las CCDs. Actualmente, el General Catalogue of Variable
Stars (GCVS) cuenta con 52,011 objectos variables descubiertos y
catalogados (Samus’ y col., 2017). De igual manera, el Variable
Star Index (VSX) cuenta con un catálogo de 541,955 estrellas va-
riables.

La precisión fotométrica y la exactitud conseguida por una
misión es un factor clave en la detección y caracterización de
una señal correspondiente a un tránsito o a cualquier otro tipo
de variabilidad. Muchas de los efectos sistemáticos que afectan
a una curva de luz de una estrella son compartidos por otras
estrellas en el mismo conjunto de datos. Para eliminarlos, uno
puede identificar aquellos objetos que comparten las mismas
variaciones sistemáticas que la curva de luz objetivo y, a partir
de ellos, construir algún tipo de filtro para corregirla.

Las wavelets tienen unas propiedades que las hacen ideales
para analizar señales de naturaleza no estacionaria. A diferen-
cia de la transformada de Fourier, la transformada wavelet des-
compone una señal en sus wavelets, es decir, impulsos altamen-
te localizados obtenidos de escalar y desplazar la función wa-
velet madre. Estas operaciones de escalado y desplazamiento
permiten calcular los coeficientes wavelet, que representan la
correlación entre la wavelet y una sección localizada de la señal.
La forma irregular de las wavelets permite analizar señales con
discontinuidades, singularidades o cambios bruscos mientras
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que su naturaleza compacta permite la localización temporal
de las características de la señal.

A lo largo del texto desarrollamos el marco de trabajo a par-
tir del cual presentar la principal contribución de esta tesis, el
Wavelet-based Trend Filtering Algorithm (TFAW). TFAW es un
algoritmo totalmente genérico, desarrollado y paralelizado en
Python basado en el Trend Filtering Algorithm (TFA) desarro-
llado por Kovács, Bakos y Noyes (2005). El algoritmo es útil
para mejorar el rendimiento en la detección, reconstrucción y
caracterización de señales astrofísicas. TFAW difiere de otros
métodos de filtrado de ruido basados en wavelets en que no
requiere ningún modelo de ajuste paramétrico o cualquier otro
método computacional. TFAW estima la contribución de ruido
de la señal a partir de su Stationary Wavelet Transform (SWT)
y el filtrado se realiza eliminando esta contribución de la señal.
Además, TFAW es capaz de hacer el filtrado de la señal sin mo-
dificar ninguna de sus características intrínsecas a diferencia de
otros métodos como los umbrales calibrados de los coeficientes
wavelet que pueden dar lugar a distorsiones de la señal o in-
troducir oscilaciones o perturbaciones artificiales alrededor de
discontinuidades.

En el Capítulo 2 hacemos una breve descripción de cómo se
desarrolló y en qué consiste la teoría wavelet. En el Capítulo 3

explicamos cómo pueden usarse las wavelets para filtrar ruido
en curvas de luz fotométricas. También presentamos un méto-
do hecho a medida para este trabajo para la eliminación de
valores atípicos en series temporales. De igual modo, también
introducimos uno de los puntos clave en la aplicación del algo-
ritmo TFAW: el criterio de selección de los denominados signal y
noise level. En el Capítulo 4 hacemos una descripción extensiva
del algoritmo y estudiamos su rendimiento sobre curvas de luz
simuladas usando una batería de tests. El Capítulo 5 describe
las misiones de tierra y espaciales usadas para validar el algo-
ritmo y, el Capítulo 6 presenta los resultados de aplicar TFAW
a curvas reales provenientes de dichas misiones. Finalmente el
Capítulo 7 presenta las conclusiones de esta tesis.
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1
I N T R O D U C T I O N

Since the times of the ancient Greek atomists (Leucippus (5th
cent. BCE), Democritus (circa 460-370 B.C.) or Epicurus (circa
341-270 B.C.)), humanity has theorized on the existence of worlds
other than our own. Though the work of Aristotle did much to
overshadow the advancement on this subject, the introduction
of the heliocentric theory by Copernicus (Copernicus, 1543),
supposed a paradigm shift. Philosophers, like Giordano Bruno
(Bruno, 1584), or scientists, like Christiaan Huygens (Huygens,
1698), speculated that planets orbiting stars other than the Sun
existed. However, there was no way of knowing how common
they were or if they had any similarities to the planets of our
Solar System. Some of the first detection claims, dating back
as far as the nineteenth century involving the binary star 70

Ophiuchi (Jacob, 1855) or, in the mid-twentieth century, with
Barnard’s Star (van de Kamp, 1963), were all eventually rejected
by astronomers. Some time had to pass until, in 1988, claims
of an exoplanet around Gamma Cephei were presented based
on Radial Velocity (RV) observations (Campbell, Walker, and
Yang, 1988) (although the exoplanet was not confirmed until
2003 (Hatzes et al., 2003)). In 1989, the first claim of a sub-
stellar companion orbiting the star HD114762 was published
(Latham et al., 1989). The first confirmed detection came in
1992, with the discovery of several terrestrial-mass planets or-
biting the pulsar PSR B125712 (Wolszczan and Frail (1992) &
Wolszczan (1994)).

Figure 1: Orbital motion of the first discovered exoplanet 51 Peg b by Mayor
and Queloz, 1995.
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2 introduction

The first confirmed detection of an exoplanet orbiting a main-
sequence star was made in 1995, when a giant planet was found
by RV measurements in a four-day orbit around the nearby star
51 Pegasi (Mayor and Queloz, 1995). This detection, together
with others of giant exoplanets with orbital periods of less than
10 days, defined a new class of planets called Hot Jupiters. The
finding of the giant exoplanet 51 Pegasi b, encouraged the de-
velopment of another search method based on the high prob-
ability that such planet would cross its host star in the line of
sight of the observer. This method, known as transit method de-
tects distant planets by measuring the small darkening of a star
light curve as an orbiting planet passes between it and the Earth.
The first to mention the possibility of observing exoplanetary
transits was astronomer Struve (1952). He assumed the possi-
bility of a giant planet (bigger than Jupiter) orbiting in a very
small orbit (∼1/5 AU) around its host star. This, and taking a
mean planetary density of 5× that of the star, resulted in an
observed loss of 0.02 magnitudes in the stellar light curve. The
first detailed methodology was devised by Rosenblatt (1971).
He calculated the color changes that happen during the transit
and proposed a 3-wide field telescopes system located at three
different sites to monitor stars for brightness variations. Ma-
jor refinements to the method were done later by Borucki et al.
(2010) and Hale and Doyle (1994). Starting in 1994, the Transits
of Extrasolar Planets (TEP) program observed the eclipsing bi-
nary CM Draconis until 2002 with a network of 10 telescopes
(with sizes ranging from 0.6m to 1.2m) placed in 6 countries
(Deeg et al., 1998). Six small-amplitude candidate events were
recorded, but all of them were ruled out by follow-up observa-
tions. The first detection of a transiting exoplanet, HD 209458

b, in 1999 by (Charbonneau et al., 2000) and (Henry et al., 1999)
and the discoveries obtained for this planet during follow-up
observations (first planet with a detectable atmosphere contain-
ing oxygen and carbon, first detection of an evaporating hydro-
gen atmosphere and being one of the first two exoplanets to
be directly observed spectroscopically) demonstrated the high
scientific potential of planets discovered with this method.

The first discovered exoplanet based on photometry (Udalski
et al., 2002) and confirmed by RV measurements (Konacki et al.,
2003) was OGLE-TR-56 b; observed during the 2001 observa-
tional campaign of the 1.2m OGLE-III telescope (Udalski et al.,
2002). Its orbital period of 1.21 days was the shortest until the
discovery of WASP-12 b (Hebb et al., 2009). Since then, thou-
sands of exoplanet detections have been confirmed (see Figure
3) presenting a richer scenario than what could be guessed
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Figure 2: Photometric time series, corrected for gray and color-dependent
extinction, of the planet HD 209458 b as shown in (Charbonneau
et al., 2000).

from our Solar System, some examples are: the detection of
the first circumbinary and also, the oldest to date, exoplanet
(PSR B1620-26 b (Sigurdsson et al., 2003)); TrES-2 b the darkest
(with a geometric albedo of 0.04%) known exoplanet has been
detected (O’Donovan et al. (2006); Kipping and Spiegel (2011));
Formalhault b became the first exoplanet directly imaged by
an optical telescope (Kalas et al., 2008); several multiplanetary
systems have been detected (625 confirmed1) and the first one
has been directly imaged (Marois et al., 2008); super-Earths like
GJ1214b, have been detected (Charbonneau et al., 2009); a num-
ber of potential ocean planets, like Kepler-22 b, the first Kepler
mission transiting planet orbiting the Habitable Zone (HZ) of a
Sun-like star (Borucki et al., 2012), have been observed; in 2016

the Pale Red Dot2 campaign announced the discovery of Prox-
ima b, an Earth-sized exoplanet in the HZ of the closest star
to the Sun, Proxima Centauri, was detected (Anglada-Escudé
et al., 2016); in 2017, the discovery of seven potentially habit-
able exoplanets orbiting TRAPPIST-1 was announced (Gillon et
al., 2017) and planets like K2-141 b (Malavolta et al., 2018) form
part of the Ultra-short Period class (planets with orbital periods
shorter than one day).

Transit photometry is currently the most effective and sensi-
tive method for detecting extrasolar planets. In addition, by
scanning large areas of the sky containing thousands of stars,
transit surveys can find more extrasolar planets than other meth-
ods (like the RV one). Several surveys have taken this wide-FoV
approach, such as the ground-based MEarth (Irwin et al., 2009),
SuperWASP (Pollacco et al., 2006), KELT (Pepper et al., 2007),
HAT-South (Bakos et al., 2008), TFRM-PSES (Fors et al., 2013),

1 https://exoplanetarchive.ipac.caltech.edu

2 https://palereddot.org/es/

https://exoplanetarchive.ipac.caltech.edu
https://palereddot.org/es/
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NGTS (Wheatley et al., 2013) or the Evryscope (Law et al., 2014),
as well as the space-based CoRoT (Fridlund et al., 2006), Kepler
(Borucki et al., 2010), the recently commissioned, TESS (Ricker,
2014) and the future PLATO (Rauer, 2013) missions.

Transits can also provide information about the planets orbit-
ing their hosts stars. The main advantage of the transit method
comes from the fact that the drop in a star’s flux during transit
is proportional to the size of the planet. Due to the fact that the
star’s size can be known with some accuracy, the planet’s size
can thus be directly deduced from the transit depth. Combined
with RV, it can also provide a good estimate of the planet’s mass
as the transiting planet necessarily has to be in the line-of-sight
of the observer. Taken together, the planet’s size and mass pro-
vide the planet’s density. The second advantage of the transit
method is that it also allows to study the atmosphere of the tran-
siting planet. When the planet transits the host star, light from
the star passes through the upper atmosphere of the planet.
Using high-resolution stellar spectrum, the elements present
in the planet’s atmosphere can be detected by recreating the
absorption spectrum. Another way of detecting exoplanetary
atmospheres consist on measuring the polarization of the host
star’s light as it passes through or is reflected by the planet’s at-
mosphere. In addition, the secondary eclipse provides a direct
measurement of the planet’s radiation. It allows to measure the
planet’s temperature (Charbonneau et al., 2005; Deming et al.,
2005) and even to detect the presence of clouds (Kreidberg et
al., 2014) or their absence (Nikolov et al., 2018).

The total number of confirmed exoplanets to date (August 2,
2018) is 3,774 of which 2,951 have been detected by the transit
method. In particular, the Kepler mission, so far the most suc-
cessful one, has detected 2,327 confirmed exoplanets and other
2,244 candidates, its extended K2 mission currently holds 323

confirmed exoplanets and 479 candidates3.
Apart from exoplanetary transits, there are other sources of

stellar variability. This variation may be caused by a change in
emitted light or by something partly blocking the light. Thus,
variable stars are classified in intrinsic variables if their variation
is due to physical changes in the star or stellar system (pulsat-
ing, eruptive, cataclysmic or X-ray stars) and extrinsic variables
if their variability is due to eclipse of one star by another or the
effect of stellar rotation (eclipsing, rotating stars and microlens-
ing events). The first variable star was identified in 1638 when
Johannes Holwarda (1640) noticed that Omicron Ceti pulsated
in a cycle taking 11 months; the star had previously been de-

3 https://exoplanetarchive.ipac.caltech.edu

https://exoplanetarchive.ipac.caltech.edu
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Figure 3: Confirmed exoplanets statistics updated to August 2, 2018. Left:
Cumulative exoplanet detection per year and detection method.
Right: Mass-orbital period diagram for all confirmed exoplanets.
Credit: NASA Exoplanet Archive

scribed as a nova by David Fabricius in 1596 (Bolt et al., 2007).
This discovery, combined with supernovae observed in 1572

and 1604, proved that the starry sky was not eternally invari-
able as Aristotle and other ancient philosophers had taught. In
this way, the discovery of variable stars contributed to the as-
tronomical revolution of the sixteenth and early seventeenth
centuries. The second variable star to be described was the
eclipsing variable Algol, by Geminiano Montanari in 1669 (Bolt
et al., 2007); John Goodricke gave the correct explanation of its
variability in 1784 (Bolt et al., 2007). Chi Cygni was identified
in 1686 by Gottfried Kirch, then R Hydrae in 1704 by Giovanni
Domenico Maraldi (Bolt et al., 2007). By 1786 ten variable stars
were known. John Goodricke himself discovered Delta Cephei
and Beta Lyrae (Bolt et al., 2007). Since 1850 the number of
known variable stars has increased rapidly, especially after 1890

when it became possible to identify variable stars by means
of photography. Currently, the General Catalogue of Variable
Stars (GCVS) contains data for 52,011 individual variable objects
discovered and cataloged as variable stars by 2015 and located
mainly in the Milky Way galaxy (Samus’ et al., 2017). Similarly,
The International VSX4 currently holds a catalog of 541,955 vari-
able stars.

1.0.1 Motivation and overview of the thesis

The photometric precision and accuracy achieved by an as-
tronomical survey is a key factor in detecting a transiting sig-
nal or any other kind of variability. Many of the systematic
variations in a given light curve are shared by light curves of
other stars in the same data set. In order to remove those sys-

4 https://www.aavso.org/vsx/index.php

https://www.aavso.org/vsx/index.php
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tematics, one can identify the objects in the field that suffer
from the same kind of variations as the target (correlated noise)
and then build and apply a filter based on the light curves of
these comparison stars. The Trend Filtering Algorithm (TFA)
(Kovács, Bakos, and Noyes, 2005) and SysRem (Tamuz, Mazeh,
and Zucker, 2005) are often applied to remove systematic vari-
ations in time-domain surveys, in particular for wide FoV ones.

Wavelets have unique properties that make them an ideal
tool for analyzing signals of non-stationary nature. Unlike the
Fourier transform, the wavelet transform decomposes a given
time series into its wavelets, i.e., highly localized impulses ob-
tained from scaling and shifting the mother wavelet function.
These scaling and shifting operations allow us to calculate the
wavelet coefficients, which represent the correlation between
the wavelet and a localized section of the signal. The wavelet
coefficients are calculated for each wavelet segment, giving a
time-series function measuring the wavelets’ correlation to the
signal. In comparison to the sine wave used in the Fourier
transform, which is smooth and of infinite length, the wavelet
is irregular in shape and compactly supported. Their irregu-
lar shape allows to analyze signals with discontinuities, tran-
sients, singularities and sharp changes, while their compactly
supported nature allows temporal localization of the signal’s
features.

Along this thesis we will lay out the framework from which
the main goal of this thesis, the Wavelet-based Trend Filtering
Algorithm (TFAW), will be built from. In Chapter 2 we will do
a brief review of how wavelet theory was developed as well
as give a summarized introduction to wavelet theory itself. In
Chapter 3 we will explain how wavelets can be used to filter
noise and present a custom-made method for this thesis to re-
move signal outliers. Also, we will introduce one of the key
points in the application of TFAW, the signal and noise level selec-
tion criteria. In Chapter 4 we fully describe the TFAW algorithm
and assess its performance over simulated light curves using
a battery of tests. Chapter 5 describes the ground- and space-
based surveys used to validate the algorithm and, Chapter 6

presents the results of applying TFAW to real light curves com-
ing from these surveys. Finally, in Chapter 7 we present the
overall conclusions of this thesis and briefly comment on some
future perspectives.



Part I

WAV E L E T T H E O RY





2
WAV E L E T S

Fourier Transforms (FTs) have been long used for signal anal-
ysis. Although Fourier representations have perfect compact
support in the frequency domain, they lack the capability of
preserving time information and, as a result, they cannot be
used to approximate signals of a non-stationary nature. In the
late 1970’s, Jean Morlet, a geophysical engineer working at the
Elf Acquitaine oil company developed an alternative for the
FT. Morlet wanted to analyze seismic signals with different fea-
tures in time and frequency which he wanted to decouple. In
order to gain time resolution for the high frequency transients
and good frequency resolution for the low frequency compo-
nents, Morlet generated transform functions taking a Gaussian-
windowed cosine wave and compressed or spread it to obtain
different frequency functions. These functions were shifted also
in time to study what happened at different times. He then
would take the inner product of the target signal with all these
transform functions. The word wavelet was already being used
in other contexts in geophysics; Morlet decided to name his
transform functions wavelets of constant shape. Morlet looked
for help to give a mathematically rigorous basis to his wavelet
transform. He contacted Alex Grossman, a theoretical physicist
working on quantum mechanics. Together, they constructed
an exact inversion formula and explored several applications
of the wavelet transform leading to the formalization of the
wavelet transform (Grossmann and Morlet, 1984).

In 1985, Yves Meyer, a mathematician based at the Ecole Poly-
technique of Paris, heard about the work of Grossmann and
Morlet. He realized that their wavelet analysis was a redis-
covery of a formula that Alberto Calderón had introduced in
numerical analysis (Calderón, 1964). He also noticed that there
was redundancy in the choice of the wavelet families done by
Morlet. Meyer started working on developing wavelets with
better time-frequency localization and ended up building an
orthogonal wavelet basis. In 1986, Stephane Mallat, at that
time a graduate student at the University of Pennsylvania, con-
ceived a layered structure for wavelet expansions. Together
with Meyer, they developed all the mathematical details of the
Multi-Resolution Analysis (MRA). It led to a simple and recur-

9
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sive filtering algorithm to compute the wavelet decomposition
of a function from its finest scale approximation (Mallat, 1989).

Also in 1986, during her guest-research stay at the Courant In-
stitute of Mathematical Sciences, Ingrid Daubechies constructed
compactly supported continuous wavelets based on quadrature
mirror filter-technology. These wavelets would require only a fi-
nite amount of processing, enabling wavelet theory to enter the
digital signal processing field. In addition, in 1988 she devel-
oped the orthonormal bases of compactly supported wavelets
(Daubechies, 1988). The works of Mallat and Daubechies set the
foundations of the Discrete Wavelet Transform (DWT) analysis.
Some years later, Cohen, Daubechies, and Feauveau (1992) de-
veloped the compactly supported biorthogonal wavelets which
allowed for symmetric wavelets to be built thus increasing the
number of applications of the wavelet theory. Holschneider
et al. (1989) and later on Shensa (1992), developed the à trous
algorithm also know as Stationary Wavelet Transform (SWT) in
order to overcome the lack of translation invariance of the DWT.

Since then, wavelets have been used in several fields of knowl-
edge with different applications. They have been very success-
ful in image and data compression. Some implementations in-
clude the JPEG2000 (Taubman and Marcellin, 2002) for still im-
ages, or the Wavelet Scalar Quantization, a wavelet-based com-
pression algorithm developed by the FBI used for gray-scale
fingerprint images (Jain, Pankanti, and Archives, 2001). They
can also be used for data denoising through the removal of
the wavelet coefficients associated to noise through some kind
of smart thresholding (Donoho and Johnstone (1994b), Donoho
and Johnstone (1994a), Donoho (1995), and Starck and Murtagh
(1994) and others). There has been also applications of wavelets
to biomedical data and imaging, financial analysis, data min-
ing, remote sensing, image fusion, time series classification or
anomaly and singularity detection.

In astronomy, they have been used for astronomical signal
processing (Starck and Murtagh, 1994; Núñez and Otazu, 1996;
Starck, Murtagh, and Bijaoui, 1998); redshift spectra study (Machado
et al., 2013); Cosmic Microwave Background (Moudden et al.,
2005), Baryon Acoustic Oscillation analysis (Arnalte-Mur et al.,
2012) and galaxy distribution morphology (Martinez, Paredes,
and Saar, 1993; Martínez et al., 2005; Antoja et al., 2008; Antoja
et al., 2012; Kushniruk, Schirmer, and Bensby, 2017); solar ac-
tivity (Aschwanden et al., 1998; Giménez de Castro et al., 2001);
stellar activity, pulsation and rotation analysis (de Freitas et al.,
2010; Bravo et al., 2014); signal detection (Szatmary, Vinko, and
Gal, 1994; Otazu et al., 2002; Fors et al., 2008) and light curve
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noise analysis (Cubillos et al., 2017) and filtering (Carter and
Winn, 2009; Waldmann, 2014; Grziwa, Korth, and Pätzold, 2014;
Grziwa et al., 2016) or del Ser, Fors, and Núñez (2018).

2.1 introduction to wavelet theory

2.1.1 Fourier Transform (FT)

A Fourier series consists in the expansion of a periodic func-
tion f(t) in terms of an infinite sum of sines and cosines:

f(t) =
1

2
a0 +

∞∑
n=1

ancos(nt) +

∞∑
n=1

bnsin(nt) (1)

where:

an =
1

π

∫π
−π
f(t)cos(nt)dt

bn =
1

π

∫π
−π
f(t)sin(nt)dt

(2)

We can also extend the Fourier series to complex coefficients:

f(t) =

∞∑
n=−∞Ane

int (3)

where:

An =
1

2π

∫π
−π
f(t)e−intdt (4)

which for a periodic function in [-T/2,T/2] becomes:

f(t) =

∞∑
n=−∞Ane

i(2πnt/T)

An =
1

T

∫T/2
−T/2

f(t)e−i(2πnt/T)dt

(5)

The FT is a generalization of the complex Fourier series. The
FT and its inverse are defined by:

F(ω) =

∫∞
−∞ f(t)e−2πiωtdt

f(t) =
1

2π

∫∞
−∞ F(ω)e2πiωtdω

(6)
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A discretized version of the FT can also be defined. Consider
a discrete function f(tk) where tk = k∆ with k = 0, ...,N − 1.
The Discrete Fourier Transform (DFT) can be then defined as:

Fn =

N−1∑
k=0

f(tk)e
−2πink/N (7)

and its inverse:

f(tk) =
1

N

N−1∑
k=0

Fne
2πikn/N (8)

DFT are used because they can reveal periodicities in the input
signal as well as the strength of any periodic component. How-
ever, while the FT has perfect frequency resolution, it retains no
time information. This limits the usefulness of the FT for ana-
lyzing signals that are localized in time, notably transients, or
any signal of finite extent. Cooley and Tukey (1965) developed
a general version of the Fast Fourier Transform (FFT) allowing
to reduce the computational cost of the DFT by reducing the
number of operations involved from O(N2) to O(N logN).

2.1.2 Wavelet Definition

A wavelet is a highly localized impulse obtained from shift-
ing and scaling a function, ψ, called mother wavelet. Unlike
Fourier bases, which only preserve the frequency information
of a signal, wavelet bases are able to preserve both the fre-
quency information and their temporal distribution.

Figure 4: Mother Wavelet for the Daubechies 5 basis

Alfred Haar (Haar, 1910) introduced a piecewise constant
function known as the Haar sequence. Haar used these func-
tions to give an example of an orthonormal system for the
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space of square-integrable functions on the unit interval [0, 1].
Though the name wavelet came much later, the Haar sequence
is also the simplest possible wavelet:

ψ(t) =


1 if 0 6 t < 1/2

−1 if 1/2 6 t < 1

0 otherwise

(9)

the dilations and translations of which, generate an orthonor-
mal basis:

{
ψj,k(t) =

1√
2−j
ψ

(
t− 2−jk

2−j

)}
(j,k)∈Z2

(10)

In a more general form, Equation 10 can be written as:

{
ψu,v(t) =

1√
v
ψ

(
t− u

v

)}
(u,v)∈Z2

(11)

with v and u representing the scale and translation parame-
ters respectively and ψ, the mother wavelet. The scale param-
eter is related to the frequency information and either dilates
or compresses the signal f. Small scales (related to high fre-
quencies), compress the signal and provide detailed informa-
tion while large scales (low frequencies) dilate the signal and
provide global information. The collection {ψu,v} forms an or-
thogonal basis of the Hilbert space L2(R) of signals with a finite
energy:

‖ f ‖2=
∫∞
−∞ | f(t) |2 dt < +∞ (12)

A wavelet dictionary can be built from a mother wavelet. A
function ψ(t) is called a mother wavelet if it satisfies the follow-
ing properties (Meyer, 1992):

ψ(t) and all its derivatives decrease rapidly as x→ ±∞.

ψ(t) has zero average:∫∞
−∞ψ(t)dt = 0 (13)

The collection {ψu,v} forms an orthogonal basis of L2(R)
and is built through equation 10.
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2.1.3 Wavelet Transform

Let us define the inner product in L2(R) as:

〈f,g〉 =
∫∞
−∞ f(t)g?(t)dt (14)

The wavelet transform of a signal f can thus be defined as the
inner product of f with the scaled and translated versions of
the mother wavelet:

Wu,v = 〈f,ψu,v〉 =
∫∞
−∞ f(t)ψ?

u,v(t)dt (15)

The coefficientsWu,v are called wavelet coefficients of signal f(t).
The latter can be recovered by summing them in the wavelet
orthonormal basis:

f =

+∞∑
u=−∞

+∞∑
v=−∞〈f,ψu,v〉ψu,v (16)

2.2 continuous wavelet transform (cwt)

In 1946, physicist Dennis Gabor, applying ideas from quan-
tum physics, introduced Gaussian-windowed sinusoids for time-
frequency decomposition and to provide the best trade-off be-
tween spatial and frequency resolution (Gabor, 1946).

In the late 70s Jean Morlet, was trying to develop a method to
study waveforms in reflection seismology. Looking to give a rig-
orous basis to his method, Morlet approached Alexander Gross-
mann, leading to the formalization of the Continuous Wavelet
Transform (CWT) (Grossmann and Morlet, 1984).

The CWT of a function f(t) at any scale v > 0 and position u is
the projection of f on the corresponding wavelet:

Wu,v = 〈f,ψu,v〉 =
∫∞
−∞ f(t)

1√
v
ψ?

(
t− u

v

)
dt (17)

Grossmann and Morlet proof that the Inverse Continuous
Wavelet Transform (ICWT) can be computed through:

f(t) =
1

Cψ

∫∞
−∞
∫∞
−∞Wu,v

1√
v
ψ̃

(
t− u

v

)
du
dv

v2
(18)
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where ψ̃ is the dual function of ψ and Cψ is the admissible
constant which for wavelets becomes:

Cψ =

∫∞
−∞

| ψ̂(ω) |2

| ω |
dω (19)

where ψ̂(ω) represents the Fourier spectrum of signal ψ(t).
A wavelet whose admissible constant satisfies that 0 < Cψ <∞
is called an admissible wavelet. Also, given the presence ofω at
the denominator, an admissible wavelet implies that ψ̂(0) = 0

thus, and admissible wavelet must integrate to zero:

∫∞
−∞ψ(t)dt = 0 (20)

These conditions imply that wavelets must have a band-pass
like spectrum and be of oscillatory nature. In addition, wavelets
should decrease quickly with decreasing scale. The regularity
conditions (given by the vanishing moments theory) state that
a wavelet should be smooth and localized in frequency and
time domains (Daubechies, 1992). In summary, admissibility
gives us the wave while regularity gives us the decay rate at
decreasing scales and, together, give us the wavelet.

2.3 discrete wavelet transform (dwt)

2.3.1 Dyadic Wavelets

In order to obtain the Discrete Wavelet Transform (DWT), the
translation and scale parameters (u, v) have to be discretized.
Daubechies 1992 showed that for a given ψ, the collection {ψu,v}

forms and orthogonal basis by means of dyadic translations
and dilations of u = k2−j and v = 2−j. This way, equation 11

becomes:

{
ψj,k(t) =

1√
2−j
ψ

(
t− 2−jk

2−j

)}
(j,k)∈Z2

→ ψj,k(t) = 2
j/2ψ

(
2jt− k

)
(21)

The previous collection forms an orthonormal base first, if
under the inner product (equation 14) it satisfies:

〈ψj,k,ψl,m〉 =
∫∞
−∞ψj,k(t)ψ?

l,m(t)dt = δj,lδk,m (22)
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where δj,l, is the Kronecker delta and, second, if every func-
tion f(t) ∈ L2(R) can be written as:

f =

+∞∑
j=−∞

+∞∑
k=−∞Wj,kψj,k (23)

where the wavelet coefficients Wj,k are given by the inner
products:

Wj,k = 〈f,ψj,k〉 = 2j/2
∫∞
−∞ f(t)ψ?

(
2jt− k

)
dt (24)

It is worth noting that equations 9 and 21 are the same. Thus,
the Haar wavelet can be considered the first, compact, dyadic
and orthonormal wavelet.

2.3.2 Scaling Function and Multi Resolution Analysis

We have already seen in Section 2.2 that one wavelet can be
seen as a band-pass filter. Then, a series of dilated wavelets can
be described as a filter bank. A filter bank is an array of band-pass
filters that separates the input signal into multiple components,
each one carrying a single frequency sub-band of the original
signal.

We have also stated that the signal f(t) should have finite en-
ergy (equation 12). This allows us to cover its frequency spec-
trum and its time duration using wavelets. However, given
that dyadic wavelets stretch the frequency spectrum and shift
the frequency components by a factor of two, we would need
an infinite number of wavelets to cover the entire spectrum. In
order to solve this, Mallat (1989) introduced the scaling function
which basically works as a low-pass spectrum signal. Taking
this property of being a signal with a low-pass spectrum, we
can decompose it in wavelet components:

φ(t) =

+∞∑
j=−∞

+∞∑
k=−∞Wj,kψj,k (25)

Now, φ(t) can be used together with the wavelets to cover all
the spectrum. It can be built in such a way that it covers all the
frequency spectrum from −∞ up to a given scale j while the
rest is covered by the wavelets. The scaling function together
with the mother wavelet form what is called a Multi Resolution
Analysis (MRA) for the Hilbert space L2(R).



2.3 discrete wavelet transform (dwt) 17

The MRA, introduced by Mallat (1989) in the wavelet con-
text, is the design method of most of the DWTs. If we consider
the wavelet transform as a filter bank, then, transforming a sig-
nal f(t) through wavelets, would consist on passing it through
this filter bank. The wavelets would provide a band-pass filter
while the scaling function would work as a low-pass filter. The
outputs of the different filter stages would give us the wavelet
and scaling transform coefficients.

2.3.3 The Discrete Wavelet Transform (DWT)

The DWT introduced by Mallat (1989) is an efficient method to
calculate the wavelet transform of a signal. It uses MRA to com-
pute the wavelet coefficients by successively passing the signal
through a set of low-pass, {hk}, and high-pass, {gk}, filters.

In the previous section we built the scaling function in such
a way that it would cover the frequency spectrum from −∞ up
to a given scale j. Taking into account that the scaling function
can be described with wavelets (see equation 25), using mul-
tiresolution formulation (Burrus, Gopinath, and Guo, 1998), we
can express the scaling function at scale j in terms of the scaling
function at scale j+ 1:

φ
(
2jt
)
=
∑
k

hj+1(k)φ(2
j+1t− k) (26)

Given that the scaling function at scale j replaced a set of
wavelets, we can also express the wavelets in this set in terms
of the scaling function at scale j+ 1:

ψ
(
2jt
)
=
∑
k

gj+1(k)φ(2
j+1t− k) (27)

Also, given that our signal f(t) could be expressed as a com-
bination of dilated and translated wavelets up to scale j− 1, we
can express it in terms of dilated and translated scaling func-
tions at scale j:

f(t) =
∑
k

λj(k)φ(2
jt− k) (28)
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If in this equation we set up a scale j− 1, in order to keep the
same level of detail, we have to add wavelets so the signal f(t)
can be expressed as:

f(t) =
∑
k

λj−1(k)φ(2
j−1t− k) +

∑
k

γj−1(k)ψ(2
j−1t− k) (29)

Given that the scaling function φj,k and the wavelet ψj,k are
orthonormal, the coefficients λj−1(k) and γj−1(k) can be found
using the inner products:

λj−1(k) =
〈
f(t),φj,k(t)

〉
γj−1(k) =

〈
f(t),ψj,k(t)

〉 (30)

By replacing 2jt for t in equations 26 and 27 and substituting
in the previous inner products we find:

λj−1(t) =
∑
k

h(k− 2t)λj(k) (31)

γj−1(t) =
∑
k

g(k− 2t)γj(k) (32)

These two equations establish that the wavelet and scaling
coefficients on a certain scale can be found by calculating a
weighted sum of the scaling coefficients of the previous scale.
Since the λj(t) coefficients come from the low-pass part of the
signal spectrum the, h(t) weights must form a low-pass filter.
On the other hand, since the γj(t) coefficients come from the
high-pass part of the signal spectrum, then the g(t) coefficients
must form a high-pass filter. λj(t) and γj(t) are know as approxi-
mation coefficients and detail coefficients respectively (hereafter cA
and cD). It is worth mentioning that our signal f(t) would be
equal to λ(t) at the largest scale.

The low-pass filter is assumed to satisfy the internal orthogo-
nality relation and to have sum of squares equal to one (Nason
and Silverman, 1995). The high-pass filter can then be defined
as a n-element sequence that satisfies:

g(k) = (−1)kh(N− 1− k), ∀n (33)

with N being the total number of samples in λ(k). Filters
constructed this way are called quadrature mirror filters (Croisier,
Esteban, and Galand, 1976).
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An alternative formulation for the DWT is to construct an or-
thogonal matrix A associated to the filters of the wavelet basis
of choice. This way, the DWT can be defined as the product of
matrix A with the signal vector ~f(t):

Matrix of coefficients = A~f(t) (34)

To summarize, the DWT of a signal is computed by succes-
sively passing it through a set of low- and high-pass filters
(h(t) and g(t)) that produce the approximation and detail coef-
ficients at each decomposition level. These filters down-sample
the signal by a factor two at each level due to the step-size of
two in equations 31 and 32. This decomposition and filtering
can be repeated to increase the frequency resolution. In the
usual approach, the approximation coefficients, cA, are decom-
posed and downsampled while the detail, cD, ones remain un-
touched. This generates a tree known as Mallat’s decomposition
tree representing the DWT filter bank (see Figure 5). This decom-
position scheme can be done up to a maximum decomposition
level/scale given by log2N where N is the length of the signal.

Figure 5: DWT filter bank example.

In this case, equations 31 and 32 would become:

cAj−1(t) =
∑
k

h(k− 2t)cAj(k) (35)

cDj−1(t) =
∑
k

g(k− 2t)cAj(k) (36)

The original signal can then be recovered through the Inverse
Discrete Wavelet Transform (IDWT). Starting from the approxi-
mation and detail coefficients at scale j, the IDWT reconstructs
cAj−1(t) inverting the decomposition step by inserting zeros
and convolving the results with the reconstruction filters.
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2.3.4 Example of the DWT

In Section 2.1.2 we have already introduced the first and sim-
plest of all wavelet basis, the Haar wavelet (Haar, 1910):

ψ(t) =


1 if 0 6 t < 1/2

−1 if 1/2 6 t < 1

0 otherwise

(37)

Its scaling function is given by:

φ(t) =

1 if 0 6 t < 1

0 otherwise
(38)

(a) (b)

Figure 6: a) Haar Mother Wavelet and b) Scaling Function. Credit: Py-
Wavelets

The family of filters for the Haar wavelet is:

{h} = (h(0),h(1)) =
(
1/
√
2, 1/
√
2
)

and h(i) = 0 ∀i 6= {0, 1}

{g} = (g(0),g(1)) =
(
−1/
√
2, 1/
√
2
)

and g(i) = 0 ∀i 6= {0, 1}

(39)

Consider a time series of length N = 8:

S = (6, 8, 32, 6, 10, 4, 5, 21)

Taking into account that the number of maximum decompo-
sition levels is given by log2N, S can be decomposed up to level
3. Using equations 31, 32 and 39 the DWT of the first decompo-
sition level is given by:
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cA2 =



cA2,0 = 6× 1/
√
2+ 8× 1/

√
2 = 7

√
2

cA2,1 = 32× 1/
√
2+ 6× 1/

√
2 = 19

√
2

cA2,2 = 10× 1/
√
2+ 4× 1/

√
2 = 7

√
2

cA2,3 = 5× 1/
√
2+ 21× 1/

√
2 = 13

√
2

cD2 =



cD2,0 = −6× 1/
√
2+ 8× 1/

√
2 = −

√
2

cD2,1 = −32× 1/
√
2+ 6× 1/

√
2 = 13

√
2

cD2,2 = −10× 1/
√
2+ 4× 1/

√
2 = 3

√
2

cD2,3 = −5× 1/
√
2+ 21× 1/

√
2 = −8

√
2

Where cAj−1,t ≡ λj−1(t) and cDj−1,t ≡ γj−1(t). Just for clarifi-
cation purposes, the matrix representation of the above is given
by equation 34 as follows:



cA2,0

cA2,1

cA2,2

cA2,3

cD2,0

cD2,1

cD2,2

cD2,3


=



1/
√
2 1/

√
2 0 0 0 0 0 0

0 0 1/
√
2 1/

√
2 0 0 0 0

0 0 0 0 1/
√
2 1/

√
2 0 0

0 0 0 0 0 0 1/
√
2 1/

√
2

−1/
√
2 1/

√
2 0 0 0 0 0 0

0 0 −1/
√
2 1/

√
2 0 0 0 0

0 0 0 0 −1/
√
2 1/

√
2 0 0

0 0 0 0 0 0 −1/
√
2 1/

√
2


=



6

8

32

6

10

4

5

21


Using the filter bank scheme shown in Figure 5, the approxi-

mation and details coefficients of the next decomposition level are
given by the DWT of cA2:

cA1 =

cA1,0 = 7
√
2× 1/

√
2+ 19

√
2× 1/

√
2 = 26

cA1,1 = 7
√
2× 1/

√
2+ 13

√
2× 1/

√
2 = 20

cD1 =

cD1,0 = −7
√
2× 1/

√
2+ 19

√
2× 1/

√
2 = −12

cD1,1 = −7
√
2× 1/

√
2+ 13

√
2× 1/

√
2 = −6

We can apply the Haar wavelet function one last time to cA1
to obtain the coefficients for the last decomposition level:

cA0 = {cA0,0 = 26× 1/
√
2+ 20× 1/

√
2 = 23

√
2

cD0 = {cD0,1 = −26× 1/
√
2+ 20× 1/

√
2 = 6

√
2

Given the approximation coefficient of the last level, cA2, the
detail coefficients of every level and the wavelet function, the
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original signal can be easily reconstructed using the inverse
Haar wavelet transform through its reconstruction filters:

{hr} = (h0,h1) =
(
1/
√
2, 1/
√
2
)

{gr} = (g0,g1) =
(
1/
√
2,−1/

√
2
) (40)

2.4 the stationary wavelet transform (swt)

The DWT is not a time-invariant transform and is therefore
very sensitive to the alignment of the signal in time. Due to the
fact that the DWT downsamples the signal at each decomposi-
tion level, a shift in the input signal might not necessarily man-
ifest itself as an equivalent shift in the DWT coefficients at all
levels. The SWT also know as Undecimated Wavelet Transform
or à trous algorithm (Holschneider et al., 1989; Shensa, 1992) is
a wavelet transform algorithm designed to overcome the lack of
translation-invariance of the DWT. As with the DWT, high and
low pass filters are applied to the signal at each level. However,
in order to achieve translation-invariance, the downsamplers
and upsamplers are removed and the filter coefficients are up-
sampled by a factor of 2(j−1) in the jth decomposition level. By
padding the filters at each level with zeros, the two new se-
quences at each level have the same length as the original time
series. Following the notation of Nason and Silverman (1995),
the padding is done in the following way.

Given a sequence S = (x1, x2, ...xi, ..., x2J), let Z be the op-
erator that alternates that sequence with zeroes so that:
∀i ∈ Z, (Zx)2i = xi and (Zx)2i+1 = 0.

Define a new set of filters H[j] and G[j] with weights Z[j]h

and Z[j]g respectively.

Thus the filter H[j] has weights h[j]
2ji

= hi and h[j]k = 0 if k is
not a multiple of 2j. The filter H[j] is obtained by inserting
a zero between each adjacent pair of elements of the filter
H[j−1], and similarly for G[j].

This way, considering a filter bank as in Figure 5, equations
31 and 32 would become:

λj−1 = H[J−j]λj (41)
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γj−1 = G[J−j]λj (42)

With this new set of filters we are able to not decimate the
data resulting in the two new sequences at each level having
the same length as the original signal. The H[j] and G[j] however,
do not have an orthogonality property, so to obtain it, two extra
decimation operators are needed:

(D0x)i = x2i

(D1x)i = x2i+1
(43)

Applying
(
D0H

(J−j),D0G(J−j)
)

and
(
D1H

(J−j),D1G(J−j)
)

to the
signal, we obtain the even and odd elements of the wavelet co-
efficients λj−1 and γj−1, respectively through the following pro-
cess (Nason and Silverman, 1995):

(
λj−1

)
2i
= D0H

(J−j)λj(
λj−1

)
2i+1

= D1H
(J−j)λj(

γj−1
)
2i
= D0G

(J−j)λj(
γj−1

)
2i+1

= D1G
(J−j)λj

(44)

By applying the filter twice at the even and odd position for
each decomposition level, shifts do not affect the transforma-
tion results, meaning that the SWT is time-invariant.

2.4.1 The Inverse Stationary Wavelet Transform (ISWT)

Basically, the SWT can be understood as an overdetermined
representation of the original signal compared to the DWT one
(Nason and Silverman, 1995).

The first approach to compute the ISWT takes into account
that the coefficients of the DWT are also present in the SWT ones.
The idea is to build some sequence of zeros and ones that al-
lows to select these coefficients and then use them to perform
the reconstruction. This approach is called ε-basis inverse of the
SWT (Nason and Silverman, 1995).

The second approach, called average basis inverse, consists on
finding the ε-basis inverse for each ε and average the result. For
a 2J-length series, there are 2J possible values of ε. For any
particular scale j, we have seen in the previous section that
the decimated transforms

(
D0H

(j),D0G(j)
)

are each orthogonal



24 wavelets

and that allow us to obtain the odd and even elements of the
wavelet coefficients λj−1 and γj−1. Following Nason and Silver-
man notation, we can denote the inverses of these two trans-
formations by R

(j)
0 and R

(j)
1 respectively. Thus, we can define a

reconstruction operator as:

R̄(j) = 1/2
(
R
(j)
0 +R

(j)
1 )
)

(45)

The original data can be then obtained by recursively evalu-
ating:

λj = R̄(J−j)(λj−1,γj−1) (46)

2.4.2 An example of the SWT signal characterization capabilities

An example of a MRA using the SWT is shown in Figure 7.
Our test signal is a combination of two sinusoidal signals, one
of high frequency and another of low frequency. They both
have the same amplitude and are affected by Gaussian random
noise. As can be seen in Figure 7, SWT is able to decouple each
of these signal contributions at different decomposition levels.
High-frequency noise has been separated from the sinusoidal
signals, appearing as an extra contribution to the lower decom-
position levels. In this example, noise can be fairly represented
by the combination of the first two decomposition levels (j=1

and j=2). The high frequency sinusoidal signal can be recov-
ered by summing the third and fourth decomposition levels
while the low frequency one would be recovered through the
combination of the remaining levels. Crucially, the wavelet de-
composition allows the signal characteristics to change through
the time series, while retrieving both time and frequency infor-
mation from the original signal. As we have already mentioned,
other techniques such as the discrete Fourier Transform convert
data from time into frequency domain but in doing so, time in-
formation is lost.

2.5 biorthogonal wavelet bases

Except for the particular case of the Haar wavelet basis (Haar,
1910), it is impossible to construct symmetric orthogonal wavelets.
However, biorthogonal formulation allows to build smooth sym-
metric or antisymmetric wavelet basis of compact support (Co-
hen, Daubechies, and Feauveau, 1992).
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Figure 7: SWT decomposition of a test signal. The uppermost plot shows
the test signal as described in Section 2.4.2, consisting of two si-
nusoidal signals and Gaussian random noise. The following plots
represent the ISWT transform of the signal at each SWT decompo-
sition level (j = 1,...,11).
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2.5.1 Biorthogonal Bases of L2(Z)

The decomposition of a signal in a filter bank can be inter-
preted as an expansion in a basis of L2(Z). Equations 35 and
36 can be rewritten as inner products in this basis:

cAj−1(t) =
∑
k

h(k− 2t)cAj(k) =
〈
h(k− 2t), cAj(k)

〉
(47)

cDj−1(t) =
∑
k

g(k− 2t)cAj(k) =
〈
g(k− 2t), cAj(k)

〉
(48)

The signal recovered using the reconstruction filters can be
expressed as:

cAj =
∑
t

cAj−1h̃(k− 2t) +
∑
t

cDj−1g̃(k− 2t) (49)

Given the filters h, g, h̃ and g̃, if their Fourier transforms
are bounded, then the families

{
h̃(k− 2t), g̃(k− 2t)

}
t∈Z

and
{h(k− 2t),g(k− 2t)}t∈Z are biorthogonal bases of L2(Z) (Mal-
lat, 2008).

2.5.2 Construction of Biorthogonal Wavelet Bases

A set of filters (h,g) and (h̃, g̃) yield two scaling and two
wavelet functions that satisfy (Cohen, Daubechies, and Feau-
veau, 1992):

φ(t) =
√
2
∑
k

h(k)φ(2t−k), φ̃(t) =
√
2
∑
k

h̃(k)φ̃(2t−k) (50)

ψ(t) =
√
2
∑
k

g(k)φ(2t−k), ψ̃(t) =
√
2
∑
k

g̃(k)φ̃(2t−k) (51)

Where φ and φ̃ satisfy biorthogonal relations:

〈
φ(t), φ̃(t− k)

〉
= δ(k) (52)

and the two wavelet families {ψj,k}(j,k)∈Z2 , {ψ̃j,k}(j,k)∈Z2 are
biorthogonal bases of L2(Z) that satisfy the biorthogonality
condition:

〈
ψj,k, ψ̃j ′,k ′

〉
= δ(k− k ′)δ(j− j ′) (53)
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Any function f ∈ L2(Z) has two possible decomposition in
these bases:

f =
∑
k

∑
j

〈
f,ψj,k

〉
ψ̃j ′,k ′ =

∑
k

∑
j

〈
f, ψ̃j,k

〉
ψj,k (54)

The number of vanishing moments, the regularity, the wavelet
ordering and the symmetry of the biorthogonal wavelets is con-
trolled with an appropriate design of the filters. Since ψ and
ψ̃ might not have the same regularity and number of vanish-
ing moments, the two formulas in equation 54 are not equiv-
alent. The decomposition using the left hand side equation is
obtained with filters (h,g) and the reconstruction with (h̃, g̃).
The right hand side one corresponds to the opposite case. Usu-
ally the decomposition should be done using the wavelet with
the maximum number of vanishing moments while the recon-
struction should be done with the other one (Mallat, 2008). An
example of a biorthogonal wavelet basis is shown in Figure 8.

(a) Decomposition scaling function. (b) Decomposition wavelet function.

(c) Reconstruction scaling function. (d) Reconstruction wavelet function.

Figure 8: Biorthogonal 3.9 mother wavelet and scaling functions. Credit: Py-
Wavelets

2.6 wavelet power spectrum

The wavelet transform converts signal f into a series of wavelet
coefficients Wj(t). Each of these coefficients represents the am-
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plitude of the wavelet function at a particular location within
the signal at a particular wavelet scale. A useful way to de-
termine the distribution of energy within the signal is to com-
pute the Wavelet Power Spectrum (WPS). The local WPS at a
particular decomposition level j is calculated by summing up
the squares of wavelet coefficients for that level (Torrence and
Compo, 1998):

WPS(j) =
∑
t

|Wj(t) |
2 (55)

Following Liu, San Liang, and Weisberg, 2007 we can define
a more robust power spectrum taking into account a correcting
factor related to the scale j:

WPS(j) =
∑
t

2j |Wj(t) |
2 (56)

Two sine waves, with 0.08 and 0.1 amplitudes and periods
of 1 and 10 days, respectively, are summed together to form a
simulated signal as shown in Figure 9 a). The sample interval
is 512 seconds, and the length of the signal is 8192 data points
(approximately 50 days). Figure 9 b) and c) show the power
spectrum map (squared wavelet coefficients at each decomposi-
tion level) and local power spectrum, respectively, of the CWT of
the signal using the order 6 Morlet mother wavelet. In the case
of the CWT we can easily compute a relationship between the
scale and the corresponding frequency/period. Following the
method of Meyers, Kelly, and O’Brien (1993), the relationship
between the equivalent Fourier period and the wavelet scale
can be derived analytically for a particular wavelet function, ψ,
by substituting a cosine wave of a known frequency into the
convolution of the mother wavelet with the DFT (Torrence and
Compo, 1998). As can be seen in Figure 9 c), the peaks of the
power spectrum allow to recover the period of both sine waves
composing our signal. The use of the CWT power spectrum as a
way to detect periodicities and study other astrophysical prop-
erties such as pulsation and rotation has already been studied
by de Freitas et al., 2010 and Bravo et al. (2014).

Figure 9 d) and c) show the power spectrum map and local
power spectrum for the SWT of the signal using the Biorthog-
onal 3.9 mother wavelet. As in the case of the CWT we re-
cover two peaks at different scales corresponding to the low
and high frequency sine waves. In this case though, the re-
lationship between the scale and the frequency cannot be so
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Figure 9: a) Original signal. b) CWT power spectrum map. c) CWT local
power spectrum. d) SWT power spectrum map. e) SWT local power
spectrum. Morlet wavelet of order 6 was used to compute the CWT

power spectrum and Biorthogonal 3.9 wavelet to compute the SWT

one.

easily computed as the signal energy can be distributed among
different scales (as seen in Figure 9 d)). However, the fact that
the SWT power spectra presents peaks will be part of the signal
detection method used in Chapter 4.
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3
WAV E L E T- B A S E D D E N O I S I N G

3.1 introduction

The limiting factor for most planetary transit surveys, spe-
cially for ground-based ones, is the presence of correlated noise
(systematics) resulting from non-astrophysical sources (Pont,
Zucker, and Queloz, 2006) more than pure Gaussian noise. The
precision that can be obtained with a ground-based photomet-
ric survey depends on several factors such as the atmosphere
conditions, the instrument, the number of non-distorted stellar
PSFs that can be imaged on the CCD, the reduction pipeline and
the photometric errors of the measurements. Detectors with
wide Field-of-view (FoV) often suffer from additional issues
such as under-sampled PSFs, atmospheric extinction, source blend-
ing and optical distortion at the edges of the detector. On the
other hand, space-based surveys such as CoRoT or Kepler bene-
fit from their stable and non-atmosphere affected environments.
However, their on-board instruments are not perfect and their
light curves are affected by effects that hinder transit detection.
Some of these effects go from spacecraft jitter and maneuvers,
CCD long-term aging or residuals coming from the orbital peri-
ods of the spacecraft or sudden changes in magnitude due to
high energetic particle fluxes. These and other effects increase
the noise of the light curves and also introduce systematic vari-
ations that decrease the detection probability of any periodic
signal in the data.

3.2 wavelet denoising by thresholding

The idea of signal denoising using wavelets was first intro-
duced by Donoho and Johnstone (1994b). If a signal is well
represented by a small number of wavelet dimensions/scales,
its associated coefficients will be relatively large compared to
any other signal or noise that has its energy spread over sev-
eral coefficients. This allows to threshold the wavelet transform
coefficients removing the noise or any undesired signal in the
wavelet domain. The inverse wavelet transform would then re-
trieve the original signal with minimal loss of detail.

33
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Assume a signal yi with additive noise of the form:

yi = si +ni, i = 1, ...,n (57)

where si is the signal of interest and ni represents indepen-
dent and identically distributed zero mean, white Gaussian
noise with standard deviation σ. Using Donoho and John-
stone’s notation, we can rewrite the previous equation in the
wavelet transform domain as:

yi[B] = si[B] +ni[B] (58)

where the suffix [B] denotes the transform of the indicated
vector into the wavelet orthonormal basis.

The signal si[B] can be estimated by transforming the noisy
data yi[B] with a given operator D:

ŝ[B] = Dyi[B] (59)

where the mean-squared error or risk of estimator ŝ is given
by:

R(ŝ, s) = E ‖ ŝ− s ‖22 (60)

Consider a diagonal estimator in the basis B:

D = diag(δ1, ..., δN), δi ∈ {0, 1} (61)

thus, the estimate ŝ is obtained by keeping or zeroing the
individual wavelet coefficients.

To summarize, the scheme Donoho and Johnstone proposes
to denoise the signal basically consists on computing the wavelet
transform of signal yi, perform some kind of thresholding in
the wavelet domain and then compute the inverse wavelet trans-
form to retrieve the denoised estimate ŝ of the signal.

3.2.1 Thresholding Estimation

In an orthogonal basis B = gi, equation 59 can be rewritten
as (Mallat, 2008):

ŝ = Dyi[B] =

N−1∑
i=0

ai(yi[B])yi[B]gi (62)
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A hard-thresholding estimator can be implemented using:

ŝ =

N−1∑
i=0

ρT (yi[B])gi (63)

where the hard-thresholding function ρt is defined by:

ρT (x) =

x if | x |> T

0 if | x |6 T
(64)

where T is the threshold of choice.
In the case of soft-thresholding, the amplitude of all the coef-

ficients is slightly decreased in order to reduce the added noise.
The estimator can be written again as in equation 63 but, in the
new thresholding function is given by:

ρT (x) =


x− T if x > T

x+ T if x 6 −T

0 if | x |6 T

(65)

Although the previously mentioned thresholding functions
are the most commonly used, there have been several efforts to
create improved ones such as the Non-negative Garrote threshold-
ing (Breiman, 1995). Or the ones taking into account not only
Gaussian noise but also correlated noise (Johnstone and Silver-
man, 1997).

3.2.2 Threshold Selection Criteria

The threshold T is generally chosen so that it is just above the
maximum level of the wavelet coefficients associated to noise
ni[B]. Given that a wavelet basis has been selected in which
large coefficients are created by the signal si, reducing the am-
plitude of all noise coefficients by T ensures that the estimation
restores a signal that is at least as regular as the original (Mallat,
2008).

Several threshold selection criteria have been developed, here
we are going to briefly discuss some of the most widely used
ones. For a more detailed review of these criteria see Mallat
(2008) and Abramovich, Bailey, and Sapatinas (2000).

Universal Threshold: proposed by Donoho and Johnstone
(1994b). Given that ni[B] is a vector of N independent
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Gaussian random variables of variance σ2, it can be proved
that the maximum amplitude of the noise has a high prob-
ability of being below:

T = σ
√
2 logeN (66)

To improve the finite sample properties of the universal
threshold, Donoho and Johnstone (1994b) suggested that
the wavelet approximation coefficients of the first levels
should be kept as they are even if they do not pass the
threshold. For example, Hall and Patil (1996) and Efro-
movich (1999) suggest to start thresholding from the scale
given by log2(n)/(2r+ 1) where r is the regularity of the
mother wavelet.

SURE: The thresholding risk is often reduced by using
a threshold smaller than the one given by the Universal
threshold. A threshold adapted to the data can be calcu-
lated by minimizing an estimation of the risk. The SURE
threshold chooser was proposed by Donoho and Johnstone
(1995a) based on Stein’s Unbiased Risk Estimate (Stein,
1981) and called SureShrink (Donoho and Johnstone, 1995b).
The SURE threshold is the one that minimizes the SURE
estimator:

Sure(yi[B], T) =
N−1∑
i=0

C(yi[B]) (67)

with:

C(x) =

x2 − σ2 if x 6 T

σ2 + T2 if x > T
(68)

In order to efficiently remove all the noise in the cases
when the signal energy is small relative to the noise en-
ergy, one must impose the Universal threshold. The result-
ing SURE threshold is given by:

T =

σ
√
2 logeN if ‖ yi[B] ‖2 −Nσ2 6 εN

argminSure(yi[B], T) if ‖ yi[B] ‖2 −Nσ2 > εN
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(69)

Where εN is given by:

εN = σ2N1/2(logeN)3/2 (70)

At each decomposition scale j, SureShrink computes a SURE
threshold Tj using equation 69. A soft-thresholding is
then applied at each scale using the previously computed
threshold.

Cross-validation approaches: these methods consist on
minimizing the prediction error generated by comparing
a prediction based on a subset of the data and compare it
with the rest of the data in order to find an optimal thresh-
old value (see Nason (1996) and Weyrich and Warhola
(1995)).

Bayesian approaches: various Bayesian thresholding ap-
proaches have been proposed. In the Bayesian approach,
a prior distribution is imposed on the wavelet coefficients.
Then the function is estimated by applying a suitable Bayesian
rule to the resulting wavelet coefficients. Different choices
of loss function lead to different Bayesian rules and thus
to different thresholding solutions. See Abramovich, Bai-
ley, and Sapatinas (2000) for a comprehensive review and
reference list of different Bayesian approaches.

3.2.3 Noise Variance Estimation

The noise level σ needed by all the previously listed thresh-
olding methods is not usually a priori known and has to be
estimated from the data. To estimate the variance of the noise
ni one needs to suppress the influence of the signal si. Donoho
and Johnstone (1994b) state that a robust estimator can be cal-
culated from the Median Absolute Deviation (MAD) of the J
finest-scale wavelet coefficients divided by 0.6745:

MAD = median(| cDJ,i −median(cDJ)) |)/0.6475 (71)

the MAD is a robust statistic, more resilient to outliers than
the standard deviation in which the distances from the mean
are squared leading to outliers being weighted more heavily.
The constant factor standardizes the MAD in order to make it
consistent with the standard deviation of a normal distribution.
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3.2.4 Performance of Wavelet Thresholding

Although simple, the thresholding of the wavelet coefficients
can introduce distortions in the filtered signal. For example,
thresholding DWT coefficients can create small ripples or os-
cillations around discontinuities due to the decimation related
to orthogonal wavelet transforms (Mallat, 2008). One way of
diminishing these artifacts is to use the à trous algorithm or
SWT which does not decimate the data (Mallat, 2008; Starck,
Murtagh, and Bijaoui, 1998). Moreover, in order to avoid the
modification of the signal of interest, both the threshold value
and the thresholding function have to be carefully selected. Ne-
glecting this could cause the signal to retain some noise features
or have some shape distortion or discontinuities introduced. As
stated before, Donoho and Johnstone suggest that not all the
wavelet transform coefficients should be thresholded and that
some decomposition levels should be kept as they are. The
correct selection of the wavelet family could also diminish the
chance of perturbing the signal once the thresholding has been
applied.

Figure 10 shows an example of the effects caused by a poorly
selected threshold when applying soft-thresholding. Using batman1

(Kreidberg, 2015) we simulate a Mandel & Agol planetary tran-
sit model (Mandel and Agol, 2002) to which a combination
of Gaussian and one point to the next correlated noise has
been added. Figure 10 b) is obtained by a soft-thresholding
of the SWT coefficients (Biorthogonal 3.9 mother wavelet) using
a global threshold value computed through equation 66 (fol-
lowing Mallat (2008) criteria) estimating σ at the finest scale.
As can be seen, the noise contribution has been diminished
and the shape of the signal has been kept almost undisturbed.
However, the depth of the signal has slightly decreased and
the wings coming from the convolution of the reconstruction
wavelet function with the signal start to appear in the ingress
and egress of the transit. Figure 10 c) also uses a soft-thresholding
but, with a threshold two times the one given by equation 66.
In this case, the noise contribution has completely disappeared
but the shape and depth of the signal have been clearly modi-
fied. It has to be said, that it is possible to use more complex
methods (i.e. SURE estimator, scale-dependent threshold, ...)
to better compute an almost optimal threshold value. The ex-
ample in Figure 10 just wants to show how a bad threshold
estimation can lead to distorted signals and the appearance of
unwanted artifacts.

1 https://www.cfa.harvard.edu/~lkreidberg/batman

https://www.cfa.harvard.edu/~lkreidberg/batman


3.3 signal and noise characterization using the swt 39

In this work we follow a different approach. The algorithm
presented in Chapter 4 combines the Trend Filtering Algorithm
(TFA) (Kovács, Bakos, and Noyes, 2005) detrending and system-
atics removal capabilities with the wavelet transform’s signal
decoupling and denoising potential. However, in this case,
instead of filtering the noise through the thresholding of the
wavelet coefficients, the SWT is used to estimate the noise- and
trend-free signal as well as the noise contribution. The former
will be used to reconstruct the signal while the latter will be
removed during TFA’s signal reconstruction iterative process.

3.3 signal and noise characterization using the

swt

Section 2.4.2 showed an example of the SWT applied to a com-
bination of a high-frequency sinusoidal plus a low-frequency
one affected by random Gaussian noise (see Figure 7). At each
decomposition level we set all the detail coefficients, cD, and ap-
proximation coefficients, cA, computed through the SWT of the
original signal, to zero except the ones corresponding to that
level. Then, by computing the ISWT at each decomposition level,
one could separate the contributions of both sine waves from
the high-frequency noise. Using the SWT decoupling capabil-
ities, we could then define some kind of threshold level that
allows to separate those scales corresponding to the noise from
those representing the target signal.

Following the previous idea, we define two thresholds: noise
level and signal level. The objective is to obtain the best noise es-
timation by summing the ISWTs from the lowest/finest decom-
position level up to noise level. The same line of thought would
allow to recover the underlying noise-free signal by summing
the ISWTs from signal level to the highest decomposition level.
The maximum number of allowed SWT decomposition levels
for any signal is given by:

max level = b
log( n

l−1)

log 2
c, (72)

where n is the signal length and l is the wavelet filter length.

3.3.1 Signal and noise level selection criteria

The selection of the signal level and noise level thresholds must
be carefully performed. As described above, high-frequency
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Figure 10: Wavelet soft-thresholding comparison for a simulated planetary
transit (the red line in all plots corresponds to the noise-free sim-
ulated transit). a) Original signal. b) Soft-thresholded signal with
fair threshold estimation. c) Soft-thresholded signal with bad
threshold estimation.
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noise appears as an extra contribution to the lower SWT decom-
position levels. However, depending on the number of levels
in which the original signal can be decomposed, some high-
frequency signal contributions hidden within the data (i.e. sec-
ond order sinusoidal modulations, etc...) could be total or par-
tially present in the levels in which the noise is also present.
One way of solving this issue would be to increase the num-
ber of data points to a higher order of two in order to increase
the number of allowed decomposition levels. The greater the
number of decomposition levels, the easier it is to separate the
noise contribution from any high-frequency signals. In most of
the cases, just setting the noise level to the finest decomposition
level is enough to give a good estimation of the noise.

Regarding the signal level, it would suffice to take the sum
of the ISWTs from noise level to the lowest one. However, as it
has been stated before, depending on the selection of the noise
level there might still be some noise contribution in the final
signal. We could then set the signal level to, for example, a value
around half of the maximum SWT decomposition level value in
order to ensure the removal of most of the noise contributions
but also to diminish both the chance of modifying the shape or
removing part of the target signal.

The correct selection of the signal level will be critical when
applying the wavelet-based modification of the TFA (see Chap-
ter 4). Instead of using a global signal level for all the signals
(light curves) in our sample, we can define it for each individ-
ual time series using the WPS defined in Section 2.6. We know
that the WPS determines the distribution of energy within the
signal and that, using the CWT, it allows to determine the peri-
ods of any significant signal within the time series (see Figure
9 b) and c)). In the case of the SWT, it allows to determine the
decomposition levels at which the correlation between the sig-
nal and the wavelet transform at that scale is higher. We can
use this to our advantage in order to determine the signal level.

Figure 11 shows the way to find the signal level for a non-
multiperiodic signal. A sine wave of 0.1 amplitude and 2 day
period plus a random Gaussian and correlated noise contribu-
tion is simulated as shown in Figure 11 a). The length of the
time series is 8192 points allowing 13 decomposition levels. In
Figure 11 b) and c), the wavelet power spectrum map and local
power spectrum are computed following the method described
in Section 2.6. As can be seen from the local power spectrum
there is a clear peak at scale 8 corresponding to the sine wave.
This would define the signal level for this time series and the
wavelet noise-free signal would be recovered by summing the
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ISWTs from scale 8 up to scale 13. However, it has to be noticed
that there is a wing of the local power spectrum at scale 7 and
some signal contribution can be seen in the power spectrum
map at that scale. The signal level is set to also consider this
previous scale in order to avoid losing that signal contribution.
With this signal level we can then reconstruct the noise-free sig-
nal as explained before by summing the corresponding ISWTs.
Figure 11 d) shows the noise-free signal plotted over the noisy
one. As can be seen, with these method the signal can be recov-
ered without modifying its shape, phase or amplitude.
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Figure 11: Signal level selection example using a simulated sinusoidal signal.
a) Original signal. b) SWT wavelet power spectrum map. c) SWT

local power spectrum. d) Original signal (black) and wavelet-
recovered noise-free signal (red).

In a more general scenario, given that our signals could be
of multi-periodic nature, resulting in WPS’ peaks of diverse am-
plitudes at different scales, the peak at the lowest scale (i.e.
highest frequency) is used to define the signal level. In addition,
given the discrete nature of the SWT and, also depending on
the number of decomposition levels, the energy of our signal
can be distributed within more than one scale. Thus, as stated
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before, the signal level is always set to also consider the previ-
ous scale in order to avoid losing as less signal contributions
as possible. In general, the signal level should consider at most
max level - noise level scales except when the scale corresponding
to the maximum value of the WPS is the lowest decomposition
level. This means that the signal (whether it is significant or not)
has a very high frequency and is still partially or totally mixed
with the noise for the available decomposition levels (given by
equation 72). In this case, the signal level is set to be the lowest
decomposition level (i.e. returning the original light curve).

3.4 outliers removal using wavelets

In statistics, an outlier can be defined as an observation point
that is distant from the norm of the sample. Their origin can
be diverse, but the presence of outliers in a data sample leads
to effects in the mean which can display a bias toward the out-
lier value. Also, depending on their nature, they may impact
the time series analysis with respect to modeling, estimation
or forecasting. There are several methods for outlier detection:
model-based ones such as the Peirce’s criterion (Peirce, 1852) or
Grubbs’ test (Grubbs, 1950); interquartile range methods such
as Tukey’s test (Tukey, 1949); distance-based methods (Knorr,
Ng, and Tucakov, 2000) and wavelet-based methods (Mallat and
Hwang, 1992; Bilen and Huzurbazar, 2002; Grané and Veiga,
2010).

One way of detecting outliers is through wavelet threshold-
ing (Bilen and Huzurbazar, 2002). First, the wavelet transform
of the target signal is computed. Then, a threshold value is
computed at each decomposition level by means of any of the
methods presented in Section 3.2.2. Any wavelet coefficient
that exceeds the threshold value corresponding to that scale
can be considered a potential outlier. Once the outliers have
been detected, their associated coefficients are set to zero and
the inverse wavelet transform is computed. However, we have
already stated in Section 3.2.4 that this approach can create rip-
ples around outliers and discontinuities and also, if the thresh-
old is not correctly computed, modifications to the signal shape
can result.

The outlier detection and removal approach developed for
this work is a distance-based method that relies on an estimated
signal computed from the signal level of the target light curve.
As stated in Section 3.3, a noise-free signal can be obtained
using the sum of the ISWTs for those levels from the signal level
to the last decomposition level. Instead of using a pre-set signal
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level, we can define it using the WPS defined in Section 2.6. With
this signal level we can then reconstruct the estimated signal. A
threshold can then be built in such a way that, given a point
in the time series, if its distance to the estimated signal is above
the threshold, then, it is considered an outlier and removed
(or replaced by any given value). In this work, the threshold
value is computed using the Universal Threshold (see equation
66) where σ is computed by the MAD of the original signal. Any
data point exceeding 5 times this value is then replaced by the
mean value of the raw time series. Once the target light curve is
free of outliers, the estimated signal is recomputed. Except in the
case of a very high frequency signal (for which the WPS peak at
the lowest scale could coincide with the scale characterizing the
noise), this final estimated signal represents an outlier-free and
de-noised approximation to our target signal.

Figure 12 shows two examples of the outlier removal capabil-
ities of the method. Figure 12 a) corresponds to the detrended
light curve of EPIC 201245637 a suspected variable (Armstrong
et al., 2015) from the K2 mission (see Chapter 5 for details). The
light curve presents large outliers that affect the estimated sig-
nal obtained using the signal level as seen in the peak around
phase 0.65. However, we can use this signal estimation to
threshold the data following our distance-based method. Once
the threshold value has been estimated as explained above, the
algorithm is able to effectively remove any outlier as seen in
Figure 12 b). In addition, the new signal estimation is free of
any distortion caused by the presence of outliers as becomes
clear from the disappearance of the small peak mentioned be-
fore around phase 0.65. In order to test whether this outlier
removal method could somehow affect other type of variables
not as smooth as EPIC 201245637 one, we test it on the multi
planetary system K2-3. We apply it by phase folding the light
curve to the K2-3 b period (see Figure 12 b) and c)). As can
be seen, if the signal level has been correctly estimated, one can
remove any outlier without modifying the signal of interest.
In the case of K2-3 b it is clear that neither the shape or the
depth of the transit has been modified once the outlier removal
method has been applied.
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Figure 12: Two outlier removal examples. a) EPIC 201245637 detrended and
phase folded light curve with outliers. Red line corresponds to
the estimated signal obtained from the signal level. b) Same light
curve without outliers. Red line corresponds to the new estimated
signal after outliers have been removed. c) K2-3 detrended light
curve phase folded to K2-3 b period of 10.054 days. Again, the red
line corresponds to the estimated signal obtained from the signal
level. d) Same light curve without outliers. Depth and shape
of the transit has remained unchanged after outlier removal. As
before, red line corresponds to the new estimated signal.





4
T H E WAV E L E T- B A S E D T R E N D A N D N O I S E
F I LT E R I N G A L G O R I T H M ( T FAW )

4.1 introduction

Algorithms such as the Trend Filtering Algorithm (TFA) (Kovács,
Bakos, and Noyes, 2005) or SysRem (Tamuz, Mazeh, and Zucker,
2005) are usually applied to remove systematic variations to
most time domain astronomy surveys. These comprise the ones
sensitive to day-or-longer events timescales, like PTF (Law et
al., 2009), Pan-STARRS (Kaiser et al., 2010), SkyMapper (Keller
et al., 2007), CRTS (Djorgovski et al., 2011) or ATLAS (Tonry,
2011), that repeatedly observe few-degree-wide fields, using
large apertures to achieve deep imaging, and tiling their obser-
vations across the sky; wide FoV and/or multi-telescope tran-
siting exoplanetary surveys, such as SuperWASP (Pollacco et
al., 2006), MEarth (Irwin et al., 2009), HAT-South (Bakos et al.,
2008), TFRM-PSES (Fors et al., 2013) or NGTS (Wheatley et al.,
2013), all-sky ones such as The Evryscope (Law et al., 2014; Law
et al., 2015; Law et al., 2016) or even space-based ones such as
CoRoT (using SARS (Ofir et al., 2010) a modified SysRem ver-
sion).

4.2 the trend filtering algorithm (tfa)

4.2.1 Introduction

The central idea behind the Trend Filtering Algorithm (TFA)
is that many of the systematic effects present in a given photo-
metric light curve are also present in the light curves of other
stars in the same data set. To remove these systematics, one
could select those objects in the field that suffer from the same
kind of variations as the target star in order to build and apply
some kind of filter. The filter is based on the light curves of this
template of comparison stars under the assumption that they
are representative of all the possible systematics. Given that
no a priori knowledge on the functional form of the systemat-
ics is available, the algorithm uses a linear combination of the
template stars to build the filter.

TFA can be applied to two types of situations. The first appli-
cation, called frequency analysis, can be used to eliminate trends

47
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from trend- and noise-dominated time series in order to en-
hance the probability of detecting weak signals (periodic or
non-periodic). The second one, called signal reconstruction, can
be used to iteratively reconstruct the shape of that signal if
a significant period has been detected. The following subsec-
tions briefly summarize TFA’s basics and formulation; for more
details on the algorithm and its performance, we point to the
original article (Kovács, Bakos, and Noyes, 2005).

4.2.2 Mathematical Formulation

Given a N-point target light curve and a set of M zero-averaged
template stars {Xj(i);i = 1, 2, ...,N;j = 1, 2, ...,M} sampled in the
same moments and with the same length as the target, the filter
is defined as:

F(i) =

M∑
j=1

cjXj(i) (73)

The set of coefficients {cj} is determined by minimizing the
following expression:

D =

N∑
i=1

[Y(i) −A(i) − F(i)]2 (74)

Where {Y(i)} represents the target light curve and {A(i)} is
either constant in the case of the frequency analysis step of the
algorithm or the best representation of the trend- and noise-
free signal to be found in the iterative signal reconstruction step.
Once the filter has been computed, the corrected light curve is
defined by:

Ŷ(i) = Y(i) −

M∑
j=1

cjXj(i) (75)

At a more technical level, TFA main steps are the following:

Select M template stars distributed as uniformly as possi-
ble in the full field of the detector. Given that there is no
a priori knowledge of which stars are variable, the selec-
tion is almost random, just those stars with high standard
deviation or low brightness are discarded.
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Define the time base to be used by the filter and target
time series. In our application we select the time-base cor-
responding to the target time series. If there are any miss-
ing points in the template light curves, they are replaced
by the mean value of that light curve.

Remove outliers and compute zero-averaged template light
curves.

Compute the normal matrix of the template:

gj,k =

N∑
i=1

Xj(i)Xk(i); j,k = 1, 2, ...,M (76)

and compute its inverse
{
Gj,k
}

.

For each template light curve, compute its scalar product
with the target light curve:

hj =

N∑
i=1

Ỹ(i)Xj(i) (77)

where Ỹ(i) = Y(i) − A(i) is also assumed to be free of
outliers.

Compute the set of coefficients:

cj =

M∑
k=1

Gj,khk (78)

Compute the corrected light curve using equation 75.

4.2.3 Frequency analysis

Given that there is no a priori knowledge of whether there
is any periodic (or aperiodic) signal in our target light curve,
TFA assumes that it is dominated by systematics and noise.
Thus, {A(i)} is set to be equal to the average of the target light
curve. From this {A(i)}, the filter F(i) is computed and the cor-
rected light curve Ỹ(i) is obtained. The latter representing a
systematic- and trend-free version of the original light curve.
Now, with this corrected light curve variability detection algo-
rithms, such as the Box Least Square (BLS) (Kovács, Zucker, and
Mazeh, 2002) or Lomb-Scargle (LS) (Scargle, 1982), can be used
to search for any periodicity. TFA is able to suppress most of
the trends present in the light curve while simultaneously pre-
serving the periodic signal component leading to significantly
higher detection rates (Kovács, Bakos, and Noyes, 2005).
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4.2.4 Signal Reconstruction

When TFA’s frequency analysis step for signal detection is ap-
plied, the algorithm assumes that the light curve is trend- and
noise-dominated, therefore the use of a constant {A(i)} is jus-
tified. However, as a consequence, the detrended signal will
suffer from some level of distortion. This is due to the require-
ment of minimum variance for the signal that is assumed to
be constant while periodic signals by definition, are not. Given
that for non-periodic signals no reasonable initial guess of the
original shape can be done, TFA’s signal reconstruction step can
only be applied to periodic signals.

The objective of the signal reconstruction is to iteratively ap-
proximate the trend- and noise-free signal {A(i)}. Once a peri-
odic signal has been found in the data, the filtered time series
(equation 75) is phase folded and binned, then re-mapped to the
original time base to give a new estimate of {A(i)}. This new
estimate of the trend- and noise-free signal is then passed to
equation 74 to compute a new set of filter coefficients cj. This
new filter leads to a better determination of {A(i)}, and the itera-
tion continues until the relative difference between the standard
deviations of the residuals (see equation 79) becomes under a
certain limit.

σ̂2 = D/(N−M) (79)

It is important to find a good method to estimate {A(i)} at
each iteration step. Kovács, Bakos, and Noyes use the bin aver-
age method to derive the updated set of A(i) through a fixed
number of bins depending on the data length. This ensures
statistical stability and allows to obtain a reasonable noise aver-
aging.

4.2.5 Application of TFA to Multi-periodic Data

In Kovacs and Bakos (2008) they present the extension of TFA
to multiperiodic signals. For signals for which the Fourier rep-
resentation is adequate, the reconstruction can be done without
iteration substituting equation 73 by:

F(i) =

M∑
j=1

cjXj(i) +

2L∑
k=1

akSk(i) (80)

where Sk(i);k = 1, 2, ..., 2L; i = 1, 2, ...,N are the Fourier com-
ponents with L different frequencies and ak phase-dependent
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amplitudes. The Fourier frequencies are determined from the
analysis of the detrended signal obtained after the frequency
analysis step has been applied (i.e. assuming A(i) constant). If
these frequencies approximate the ones representing the noise-
and trend-free signal, equation 80 can yield an exact solution of
signals with the form trend plus Fourier components plus noise.
However, the authors point out that if the signal has extra com-
ponents that cannot be well-represented by finite Fourier sums
such as transients or transits, a more complicated model and
the iterative reconstruction process should be used to obtain
approximations for the signal components. In addition, the it-
erative reconstruction should also be employed even if the non-
sinusoidal components are absent because, as stated before, we
have assumed a constant noise- and trend-free signal as a start-
ing model.

4.3 the wavelet-based trend and noise filtering

algorithm (tfaw)

4.3.1 Preliminaries

As explained before, in the original version of TFA, once a
significant periodic signal has been found in the target time se-
ries during the frequency analysis step, the phase-folded light
curve is used to iteratively estimate {A(i)} (the noise-free signal).
Kovács, Bakos, and Noyes (2005) employ the simple bin aver-
age method, using a fixed number of bins (100 for ∼3000 data
points) to ensure statistical stability and to obtain a reasonable
noise averaging. They point out, however, that more accurate
methods can be used to approximate {A(i)}. Once the signal
shape is more accurately determined by the general method,
it is possible to use this information to derive a more specific
model. For example, in the case of planetary transits, one could
use a Mandel and Agol (2002) model fit to get a more precise
estimation of the noise- and trend-free signal. They emphasize
that this second level of filtering can be used only if the general
method supports the signal shape assumption otherwise, the
output will be biased.

The Wavelet-based Trend Filtering Algorithm (TFAW) (del Ser,
Fors, and Núñez, 2018) is a totally generic, Python-based, par-
allelized algorithm useful for any kind of survey which seeks
to improve the performance of signal detection, reconstruction
and characterization, leading to an overall SNR improvement
without alteration of the signal’s time sampling or astrophysi-
cal characteristics. TFAW introduces a wavelet filter in order to 1)
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remove outliers using a wavelet-inferred estimation of the sig-
nal, 2) search for periods in this outlier-free and de-noised esti-
mated signal during the frequency analysis step, 3) use the SWT
to estimate the shape of the trend- and noise-free phase folded
signal and 4) iteratively de-noise the trend-free light curve dur-
ing the signal reconstruction process. TFAW combines TFA de-
trending and systematics removal capabilities with the wavelet
transform’s signal decoupling and de-noising potential. The fil-
ter is built using the SWT or à trous algorithm (Holschneider et
al., 1989). TFAW differs from other wavelet-based noise-filtering
algorithms in that it does not require any parametric model
fitting as in Carter and Winn (2009) nor any extra computa-
tional method (Waldmann, 2014). Also, the noise contribution
of the signal is estimated directly from its SWT at each itera-
tion step and the de-noising is done through the subtraction of
this contribution from the signal. This allows TFAW to de-noise
the signal without modifying any of its intrinsic properties in
contrast to wavelet coefficient thresholding (Grziwa, Korth, and
Pätzold, 2014; Grziwa et al., 2016) that can lead to distortions of
the signal and introduce artificial oscillations or ripples around
discontinuities (Mallat, 2008).

4.3.2 Mother wavelet selection criteria

There are several mother wavelets with different analytic prop-
erties that can be used for signal decomposition. For our ap-
plication of the SWT-modified version of TFA we use the non-
orthogonal, symmetric base of the biorthogonal (bior) wavelet
family, first constructed by Cohen, Daubechies, and Feauveau
(1992). More specifically, we used the pre-computed values of
the bior 3.9 wavelet included in the PyWavelets module1. We
selected this wavelet family for TFAW as it allows the construc-
tion of symmetrical wavelet functions and because the shape of
the reconstruction scaling function is very similar to the charac-
teristic shape of a planetary transit (searches for other types of
astrophysical variability may benefit from other wavelet shapes).

4.3.3 TFAW Frequency Analysis

In TFAW we follow a similar approach to the original TFA.
First, an initial filter is computed using {A(i)} = 〈Y〉 and equa-
tions 73 and 74. The resulting filtered light curve (given by
equation 75) is almost free of trends and systematics. Although,

1 https://pywavelets.readthedocs.io

https://pywavelets.readthedocs.io
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as mentioned above (see Section 4.2.3), some perturbation might
have been introduced by assuming a constant A(i), TFA pre-
serves the periodic signal components. In order to search for
periodic signals in this first filtered TFAW light curve, the SWT
and WPS of the filtered data Ŷ(i) = Y(i) − {A(i)} are computed.
Using the method explained in Section 3.4 outliers are removed
and an estimated signal is obtained. The latter is then used to
run Box Least Square (BLS) (Kovács, Zucker, and Mazeh, 2002)
(or Lomb-Scargle (LS) (Scargle, 1982)) to search for any periodic
signal in our target light curve.

4.3.4 TFAW Signal Reconstruction

Once BLS (or LS) has been applied during TFAW frequency
analysis step, if any significant signal is found, the light curve
is phase folded to its corresponding period. Instead of using
a bin average, {A(i)} is estimated using the SWT of the phase
folded signal. We decompose the phase folded light curve up
to a SWT decomposition level given by equation 72.

At each decomposition level, we set all the detail coefficients
and approximation coefficients to zero except the ones correspond-
ing to that level. Then, the ISWT is computed for each level sep-
arately (as seen in Figure 7). In order to estimate the shape of
the noise- and trend-free signal we set a threshold decomposi-
tion level or signal level (see details in Section 3.3.1). {A(i)} is
then computed as the sum of the ISWTs of those levels from sig-
nal level to the last decomposition level. In this way we ensure
that our signal’s estimate is separated from the high frequency
noise while preserving the high-frequency shape of the signal
(unlike normal binning; see Section 4.4.4 for details in SWT sig-
nal approximation versus bin averaging): the high frequency
noise components are better characterized by the lower decom-
position levels as they have higher frequency resolution.

This new signal estimate, {A(i)}, can then be used to compute
a new set of {cj} coefficients by means of equation 74. The new
filter obtained from this set of coefficients gives us the new cor-
rected light curve at each step of iteration through equation 75.
We set an additional filter at each iteration given by the SWT of
the phase folded light curve. In this case, instead of using those
decomposition levels above signal level to reconstruct the noise-
less signal, we set a noise level so that the noise is characterized
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by the sum of the ISWTs of those levels below it (see Section
3.3.1). Thus equation 75 at each iteration step becomes:

Ŷ ′(i) = Ŷ(i) − ISWT( ˆY(i), noise level), (81)

The iteration of the algorithm stops when the relative differ-
ence between the standard deviations of the residuals in the
successive iterations falls under a certain limit. As with the
original TFA algorithm, we set the limit at 10−3.

To summarize, the main steps of TFAW are the following:

1. An initial filter is computed using {A(i)} = 〈Y〉 as with the
original TFA to remove trends and other systematics.

2. The SWT and WPS are computed from the filtered light
curve obtained in 1.

3. Outliers are removed and an outlier-free and de-noised
estimated signal is obtained.

4. The estimated signal is used to search for periodicities.

5. If a significant period is found, the signal is phase folded
to run the iterative signal reconstruction. Otherwise, no
reconstruction is performed.

6. Using the SWT a new signal estimation {A(i)} is computed
by means of the signal level of the phase folded light curve.
The noise contribution of the light curve is estimated using
the noise level.

7. The new {A(i)} and noise contribution are used to com-
pute the new filtered signal Ŷ ′(i).

8. Iteration continues until the convergence criterion is met.

4.4 tfaw performance

In Kovács, Bakos, and Noyes (2005) several tests are pre-
sented demonstrating the signal detection and reconstruction
capabilities of TFA. We want to explore how the inclusion of
the SWT filter in TFAW can improve the detection of variable
signals, assess whether the use of the estimated signal has any
impact on the frequency power spectra and study the effects on
the Signal-to-noise Ratio (SNR) of the light curves. Also we com-
pare the use of the SWT to compute the signal approximation
against bin averaging, test the likeness of the final TFAW recon-
structed light curve to the inserted variable signal and compare
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the results with the ones obtained using the original TFA. For
all the simulated light curves hereafter we have used 2048 data
points and set the noise and signal levels to the lower decompo-
sition level and the one given by the WPS peak as explained in
Section 3.3.1 and 3.4.

4.4.1 TFAW vs TFA transit detection efficiency

In order to assess the transit detection capabilities of BLS dur-
ing TFAW and TFA frequency analysis step, we generate a set of
5,000 time series with different random combinations of Gaus-
sian and correlated noises. We also introduce linear and expo-
nential trends (i.e. to simulate changes in airmass, changes in
the CCD position of the object, etc), as well as gaps and jumps
in the data. We use a set of 250 simulated template stars suf-
fering from the same jumps, gaps and trends as the target time
series, affected by random distributions of σw and σr combina-
tions. To each of these light curves, we add the transit signal
given by the parameters of planets 1 and 2 in Table 1 separately.
We use batman (Kreidberg, 2015) package to simulate a Mandel
and Agol (2002) planetary transit model. The total noise con-
tribution for each light curve ranges from 0.005 to 0.2 mag for
planet 1 and from 0.005 to 0.1 mag for planet 2.

Table 1: Planet parameters used for TFAW simulations

Planet RP (RJ) MP (MJ) M∗ (M�) R∗ (R�) P (d)

1 1.98 1.40 1.36 1.23 0.8468

2 1.23 1.10 1.36 1.23 0.4842

We want to compare the detection rates obtained with TFA
and TFAW light curves. First, we define the Signal Detection Ef-
ficiency (SDE) (Alcock et al., 2000; Kovács, Zucker, and Mazeh,
2002):

SDE =
SRpeak − 〈SR〉
sd (SR)

(82)

where SRpeak is the power spectrum value at the highest peak,
langleSR〉 is the average and sd (SR) is the standard deviation
of the power spectrum over the frequency band being used.
The SDE can be used to define a threshold above which, a signal
can be considered significant or reliable. The selection criteria
for this threshold is arbitrary and should be a compromise be-
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tween losing too many true detected signals and too high false
alarm rates.

We use the same two criteria as Kovács, Bakos, and Noyes
(2005) and define a detection as the following:

The highest peak in the BLS power spectrum must have a
frequency between [fp − 0.001, fp + 0.001], where fp is the
frequency of the simulated planetary transit.

The SDE of the highest peak in the power spectrum must
be greater than 6.

We run BLS using 100 bins and 99,000 frequency steps to ensure
statistical stability (Kovács, Zucker, and Mazeh, 2002). The
transit search is done in the (0.01, 12) days range. We count the
number of times the signal is detected in the TFAW light curves
but not detected in the TFA ones. By performing this and the
opposite test using a template sample of 250 stars, we obtain
the results shown in Table 2.

Table 2: Mutually exclusive detections and mean SDE values for simulated
planetary transits 1 and 2 as shown in Table 1. NTFA: not detected
using TFAW light curves, but detected using TFA data. NTFAW: de-
tected using TFAW light curves, but not detected using TFA data.
Nmut: simultaneous detections with TFA and TFAW. SDETFA: mean
TFA SDE. SDETFAW: mean TFAW SDE. Percentage values in parenthe-
sis are with respect to the 5,000 tested transits.

Planet NTFA NTFAW Nmut SDETFA SDETFAW

1 265 784 561 16.99 17.86

(5.3%) (15.7%) (11.2%)

2 79 503 612 14.61 15.92

(1.58%) (10.1%) (12.2%)

Table 3: Detection distributions for simulated planetary transits 1 and 2 as
shown in Table 1 for three bins of total noise contributions.

σ < 0.01 0.01− 0.04 > 0.04

NTFA NTFAW Nmut NTFA NTFAW Nmut NTFA NTFAW Nmut

Planet 1 - - 75 76 131 318 189 653 167

NTFA NTFAW Nmut NTFA NTFAW Nmut NTFA NTFAW Nmut

Planet 2 10 41 107 67 393 491 2 69 14

The example shown in Table 2 shows that the number of non-
simultaneous detections (both in absolute and percentage) is
always higher (a factor ∼3× for planet 1 and ∼6× for planet
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Figure 13: TFA vs TFAW detections. Left: SDEs of detections for planet 1 in
Table 1 versus signal noise for TFA (black dots) and TFAW (red
dots). Right: Same but for planet 2 in Table 1.

2) in the case of TFAW light curves for both planetary transits.
Also the mean SDE values are higher for TFAW than for TFA.
As can be seen in Figure 13 the SDE improvement for a given
light curve can be up to a factor ∼2.5× for low SNR signals.
Table 3 shows the distribution of the TFA and TFAW detections
in three total noise contribution bins. In the high-SNR regime
both TFA and TFAW behave in a similar way. TFAW performs
better than TFA in detecting the transit signal in the mid-SNR
regime (σ=0.01-0.04) by a factor ∼1.16× for planet 1 and a factor
∼1.6× for planet 2. In the low-SNR case (σ >0.04), TFAW detects
the transit in ∼2.3× more light curves than TFA for Planet 1

and in ∼5.2× for Planet 2. Taking into account the whole noise
range, TFAW improves the detection rate by a factor ∼1.6× for
both planetary transits. Figure 14 shows two examples of the
increase in the SDE of the BLS power spectrum peaks for Planet
1 in Table 1 in the low SNR regime. Top two panels correspond
to a simultaneous detection for which TFAW yields an increased
SDE for the true period of 11.2 versus 6.2 for TFA. The bottom
two panels present the power spectrum for a TFAW mutually
exclusive detection. In this case, TFA is not able to detect the
transit as the peak corresponding to the true period is hidden
within the noise peaks of the power spectrum with a SDE of
∼3.9 (below the detection threshold defined above). For TFAW,
the peak can easily be identified and has a SDE of ∼8.3 (a factor
∼2.1× higher than for TFA). In addition, TFAW is able to detect
the planetary signals, with a SDE above 6, up to a total noise
of ∼0.19 mag for planet 1 and up to ∼0.07 mag for planet 2

whereas TFA is able to detect them up to ∼0.1 and ∼0.045 mag
respectively.
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Figure 14: TFA vs TFAW BLS power spectrum examples for planet 1 in Ta-
ble 1. Top: TFA BLS power spectrum (left) vs TFAW BLS power
spectrum (right) for a simultaneous detection as defined in Sec-
tion 4.4.1. Red dots mark the true period of the transit. Bottom:
Same but for a TFAW mutually exclusive detection.

It is worth noting, that, the SDE as defined by Kovács, Zucker,
and Mazeh (2002) may be biased depending on the frequency
range used. BLS power spectra tend to have higher values to-
wards low frequencies. Also, the SDE relies on the mean and
standard deviation (which are not robust estimators in front of
outliers). Thus, if the frequency range is cut at low frequencies,
there is not enough floor to give a robust SDE value. This is
something that is noted in Kovács, Zucker, and Mazeh (2002)
where they state: “Because in the practical computation of SDE
one uses all available spectral points, in the presence of peri-
odic signal, the actual value of SDE also depends on the time
spanned by the data and on the lengths and position of the fre-
quency band of the analysis. If all other parameters are kept
constant, increasing time span or frequency band leads to an
increase in SDE for signals containing periodic component(s).”
The use of the median and/or the MAD could yield more stable
results. We have also done tests using the generalized SDE de-
fined in Ofir (2014) that uses a median filter to remove the trend
towards low frequencies in the BLS power spectrum. Again, in
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these tests, TFAW performs better than TFA in giving increased
SDE values and yields somehow more robust results regardless
of the frequency range used.

4.4.2 TFAW vs TFA signal reconstruction

To illustrate the noise and trend filtering efficiency of the
TFAW method during the iterative signal reconstruction step, we
generate a sinusoidal signal affected by a combination of differ-
ent levels of simulated Gaussian, σw, and correlated, σr noises.
As in Section 4.4.1 we also introduce linear and exponential
trends, as well as gaps and jumps in the data. The period
of the simulated signal is 0.63 days and 0.03 mag amplitude.
Again, we use a template of 250 simulated template stars suf-
fering from the same trends and systematics as the target star,
each of them affected by a random distribution of σw and σr
combinations (see Table 4 for details).

Table 4: Noise parameters for the simulated light curves

Signal type SNR σw (mag) σr (mag)

Sinusoidal High 0.01 0.005

Sinusoidal Low 0.1 0.005

Transit High 0.01 0.005

Transit Low 0.04 0.005

Figure 15 shows the noise filtering capabilities of TFAW com-
pared to TFA for a simulated target star with a sinusoidal mod-
ulation. While the noise dispersion is clearly diminished, there
is no modification to either the amplitude or the phase of the
signal, and the sampling timescale of the signal remains un-
changed (unlike in simple binning). We also show the LS power
spectrum obtained in the frequency analysis step. As can be
seen the height and amplitude of the peaks for the TFAW case
have a higher power value compared to the TFA ones though
the SDEs in both cases are very similar.

In Figure 16, the same sinusoidal signal is simulated but with
lower SNR. As before, the noise dispersion is also significantly
diminished while the period and amplitude of the signal re-
mains unchanged. In this case, the LS power spectrum is im-
proved by a greater factor than the one for the high SNR case.
However, as in the previous case, although the amplitude of the
power spectrum peaks is greater in the case of TFAW, the SDE
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Figure 15: Noise filtering comparison of a simulated sinusoidal signal. The
same number of template stars and LS parameters were used for
TFA and TFAW. Top left: TFA-detrended and reconstructed phase
folded signal. Red line corresponds to the simulated signal. Top
right: The same phase folded signal but TFAW-detrended, recon-
structed and de-noised. Bottom left: LS power spectrum of TFA

frequency analysis step. Bottom right: LS power spectrum of
TFAW frequency analysis step.

values for both TFA and TFAW are very similar (10.55 and 10.6,
respectively) due to the low LS continuum.

Figure 17 simulates a planetary transit. We use batman, with
the parameters of planet 1 in Table 1 to simulate a Mandel and
Agol (2002) planetary transit model, and the noise parameters
in Table 4. The high-frequency noise is filtered by TFAW during
the iterative reconstruction step, resulting in a better defined
transit without modifying its shape and depth. This result
overcomes the artificial ripples and transit depth modification
introduced in Figure 6 of Grziwa et al. (2016) due to wavelet
coefficient thresholding.

The TFAW BLS power spectrum for this high SNR planetary
transit remains almost unchanged with respect to the TFA ver-
sion (with a lower noise floor), because the BLS power spectrum
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Figure 16: Noise filtering comparison of a simulated sinusoidal signal with
lower SNR. Same notation, TFA and TFAW parameters as Figure 15.

is not primarily limited by high-frequency random noise. The
SDE values for this case are also very similar; 23.6 for TFA and
24.5 for TFAW.

Figure 18 shows the same transit but with a much larger noise
component (see Table 4). As in the case of the simulated sinu-
soidal with low SNR (see Figure 16), TFAW improves the char-
acterization of the signal’s shape while diminishing the noise,
recovers the correct period and transit depth, and improves the
detectability of the transit signal in the BLS periodogram (with
and SDE of 17.8 for TFAW and 13.3 for TFA).
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Figure 17: Noise filtering comparison of a simulated box-shaped transit
(planet 1 in Table 1). Same notation, TFA and TFAW parameters
as Figure 15.
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Figure 18: Noise filtering comparison of the same simulated box-shaped
transit as in Figure 17 with lower SNR. Same notation, TFA and
TFAW parameters as Figure 15.
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4.4.3 Application to multiperiodic signals

Kovacs and Bakos (2008) presents a variation of TFA to ex-
tend its application to multiperiodic signals using their Fourier
representation (for the cases in which such representation is
adequate). However, they state that if the signal has addi-
tional components such as transients or planetary transits, a
more complicated model should be used to approximate each
of those extra signals present in the light curve. TFAW can be
used to separate the different signal contributions directly from
the signal after TFA’s frequency analysis step (provided that the
periods of each of the signals have been previously and cor-
rectly determined using BLS or another method). As a first
example, we simulate the same high SNR-type sinusoidal sig-
nal as in Figure 15 and Figure 16 modulated with a 0.1438-day
sinusoid with an amplitude of 0.006 mag, and with noise pa-
rameters according the first row of Table 4. As can be seen in
Figure 19, if we are able to find the correct frequency of the
secondary signal (notice the peak around 6.9 d−1 in the corre-
sponding LS periodogram), we can fully recover it by applying
TFAW directly (i.e. with no need of subtracting the primary
signal) to the raw data without modifying the amplitude and
shape of any of the underlying signals.

The second example in Figure 20 shows the results of apply-
ing TFAW to a high SNR-type light curve affected by two plan-
etary transits simulated with batman using the parameters of
planets 1 and 2 in Table 1, and noise parameters according the
second-to-last row of Table 4. Again, if we are able to find the
period of the secondary transit after the frequency analysis step,
we can separate the secondary transit from the primary simply
by phase folding the raw light curve and applying TFAW. As in
the other examples, we are also able to improve the SNR of both
the primary and secondary signals.
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Figure 19: Example of the signal recovery for a multi-periodic sinusoidal
signal. Red line corresponds to simulated signal. Top: LS power
spectra of the signal after TFAW frequency analysis step (notice the
small peak around 6.9 d−1 corresponding to the secondary sig-
nal). Middle left: TFA-detrended and reconstructed phase-folded
low frequency signal. Middle right: Same TFAW-filtered phase
folded low frequency signal. Bottom left: TFA-detrended and re-
constructed secondary signal. Bottom right: TFAW phase-folded
secondary signal.
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Figure 20: Example of the signal recovery in a multi-transit light curve. Red
line corresponds to simulated signal. Top: BLS power spectra of
the signal after TFAW frequency analysis step. Check the peak
around 2 d−1 corresponding to the secondary transit. Middle
left: TFA-detrended and reconstructed phase-folded planet 1 sig-
nal. Middle right: Same TFAW-filtered phase folded planet 1 sig-
nal. Bottom left: TFA-detrended and reconstructed planet 2 signal.
Bottom right: TFAW phase-folded planet 2 signal.
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4.4.4 Wavelet versus bin average signal approximation

In order to test the likeness of the signal approximation, {A(i)},
to the inserted signal TFAW compared to the bin averaging used
by TFA, we use planet 1 in Table 1. We inject it in 500 light
curves, using batman and a Mandel and Agol (2002) planetary
transit model, for increasing values of noise contribution (i.e.
lower transit depth). For each simulation, we compute the sig-
nal estimation given by the SWT and bin averaging with 100

bins and obtain their deviation with respect to the simulated
input signal. Figure 21 shows that, in general, the estimation
of the transit shape given by the sum of the ISWTs defined by
signal level provides a better representation than the one given
by the TFA bin average method. This is especially true for low
σsignal, with up to a factor of ∼2× of improvement.
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Figure 21: Wavelet signal approximation versus bin average comparison.
Comparison of the standard deviations of the estimated signals
obtained by the sum of the ISWTs given by signal level (red) and
the one given by bin averaging (black) for Planet 1 in Table 1 for
decreasing transit depth.

In the case of planetary transits, as can be seen in Figure 22,
the improvement in the signal approximation is due to the
fact that the wavelet reconstruction of the signal better fits the
ingress and egress profiles of the transit even in the cases of
low signal-to-noise ratios compared to the bin average method.

4.4.5 Comparison of TFA and TFAW transit parameters fit values and un-
certainties

We want to compare TFA vs. TFAW performance in terms of
assessing the bias of the fitted transit parameters values and
their uncertainties. To quantify those, a low SNR-type plane-
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Figure 22: Wavelet signal approximation versus bin average comparison for
Planet 1 in Table 1. Top: Planetary transit with high SNR. Blue
line corresponds to the input Mandel and Agol (2002) model, red
line represents the wavelet approximation of the signal, and yel-
low line is the bin average approximation. Bottom: Difference
between the planetary model, and the wavelet and bin average
approximations (same color notation).

tary transit of the planet 1 according Table 1 and last row of
Table 4 was considered. This was modeled with batman, follow-
ing a Mandel and Agol (2002) analytic transit model. We used
the Markov chain Monte Carlo (MCMC) sampler provided by
emcee2 (Foreman-Mackey et al., 2013) to sample the posterior
distribution of the 6 transit parameters (a, q, i, per, p, l). Keep-
ing the eccentricity fixed, we consider a uniform distribution
for the priors and run the sampler with 200 chains and 5,000

iterations with a burn-in phase of 1,000 iterations.
Figure 23 shows the 1-D and 2-D projections of the posterior

probability distributions of the 6 MCMC fitted parameters for
the TFA and TFAW detrended light curves. Similarly, at top panel
of Table 5 we compare the injected transit parameters values
with the ones obtained through MCMC for TFA and TFAW pos-
terior probability distributions. MCMC parameter values corre-
spond to the 50% quantile while the uncertainties are computed

2 http://dfm.io/emcee

http://dfm.io/emcee
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from the 25% and 75% quantiles as the upper and lower errors.
In the case of TFA, while some of the distributions are fairly be-
haved, for parameters a, q and p, they present wider features
either characterized by larger uncertainties (a, q) and/or larger
biases (a, p). On the other hand, for TFAW light curves, the bi-
ases with respect to the initial parameters values are strongly
diminished compared to TFA ones. As for the uncertainties,
they are, in general, smaller for TFAW than for TFA. In some
parameters, such as i, l and a, they are largely decreased. At
the bottom panel of Table 5, the 95% confidence highest proba-
bility density credibility intervals for both TFA and TFAW MCMC
cases, are shown. The width of the credibility intervals is ∼10×
narrower (except for the period which is better determined) in
the case of TFAW compared to the TFA ones.
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Figure 23: 1-D and 2-D projections of the posterior probability distributions
of the 6 MCMC fitted parameters for the TFA (top) and TFAW (bot-
tom) detrended light curves. The injected values for (a, q, i, P,
p, l) are marked in solid blue. The 25%, 50%, 75% quantiles, are
displayed in dash vertical lines on the 1-D histograms.
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5.1 ground-based telescopes

5.1.1 The Telescope Fabra-ROA at Montsec (TFRM)

5.1.1.1 Project Overview

The launch of Sputnik I, the first artificial Earth satellite, on
October 4, 1957 and of other satellites a few months later, marked
the beginning of the early Space Age. As a solution for op-
tically tracking these satellites, the Smithsonian Institution de-
signed and built a new kind of telescope: the Baker-Nunn Cam-
era (BNC) (Henize, 1957), named after James Baker and Joseph
Nunn, its optical and mechanic designers respectively. These
wide-field f/1, 0.5m aperture, 30º x 5º field-of-view (FoV), pho-
tographic telescopes were manufactured by Perkin-Elmer (op-
tics) and Boller & Chivens (mechanics) with the highest quality
specifications. As a result, the BNC was able to achieve satellite
positional measurements with a typical accuracy of ∼2" for one
single station.

In order to maximize the satellite coverage and minimize the
positional measurement error, a family of 21 BNCs were manu-
factured and placed all over the world spanning in longitude.
In 1958 one of them was installed at the Real Instituto y Ob-
servatorio de la Armada (ROA), in San Fernando (Cádiz), Spain.
Later on, during the 80s the BNC program became obsolete with
the appearance of new technologies (such as laser, radar and
CCD) and the BNC in San Fernando was donated to ROA where
it remained inactive but in excellent state of conservation.

The TFRM project consists in the refurbishment of ROA’s BNC
for robotic CCD surveying purposes (Fors et al., 2013). It is a
joint collaboration between the Reial Acadèmia de Ciències i
Arts de Barcelona (RACAB) and ROA which counts with the par-
ticipation of several members of the Dept. de Física Quàntica i
Astrofísica, Institut de Ciències del Cosmos (ICCUB) at Univer-
sity of Barcelona. Currently, the BNC is installed at the summit
of the Montsec d’Ares (Lleida, Spain) as part of the Observa-
tori Astronòmic del Montsec (see http://www.am.ub.edu/bnc
for more details).

75
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Figure 24: Baker-Nunn Camera (BNC) at ROA in 1958 (left) and at its present
location at Observatori Astronòmic del Montsec (right).

5.1.1.2 Optical Specifications

Due to the original BNC’s 30° × 5° FoV, a curved focal surface
was necessary. However, commercial CCD detectors require a
flat focal plane. During the refurbishment project, the man-
ufacture of three new elements was mandatory to achieve it:
a biconvex field flattening lens, a meniscus lens, and a plano-
plano colour filter. Both the outermost surface of the telescope
objective lens and the primary mirror had also to be repolished
and recoated respectively to achieve maximum throughput of
the system. As a result, this corrected design yielded an f/0.96

BNC system with a 4.4º × 4.4º FoV. In summary, the refurbished
optical layout of the TFRM’s BNC consists on a field flattener cor-
rective lens close to the CCD and a meniscus lens (positioned
slightly farther from the focus) that provides correction for the
astigmatism introduced by the former and for barrel distortions.
All technical specifications of the retrofitted BNC are summa-
rized in Table 6.

Table 6: Optical Specifications of the TFRM refurbished BNC

Aperture Focal Ratio Mirror φ Sensor Scale FoV

0.5 m f/0.96 0.78 m KAF-16803E 3.9"/pix 4.4 deg2

Given the many observational programs carried out by the
TFRM project, the use of a filter was found to be desirable. John-
son/Cousin filters were promptly discarded as the chromatic
aberration caused by the great incidence angle of the f/0.96

beam was unavoidable. Since the BNC optics were not opti-



5.1 ground-based telescopes 77

mized for blue wavelengths and due to the KAF-16803E lower
quantum efficiency in this part of the visible spectrum, finally,
a Schott GG475 yellow colored filter with a cut-off frequency of
475 nm was chosen.

5.1.1.3 The TFRM-Preselected Super-Earth Survey (TFRM-PSES)

The TFRM-PSES is an ongoing systematic search for super-
Earth planets orbiting M-dwarf stars following a similar ap-
proach as the MEarth-North survey (Irwin et al., 2009). Due
to the very low luminosities (relative to the ones of solar type
stars) of M-dwarf stars they are very favorable targets to search
for super-Earth planets in the HZ of their host stars (Charbon-
neau and Deming, 2007). Just as an example (Irwin et al., 2009),
assume a M5-dwarf star (approximately 0.25M� and 0.25R�)
orbited by a planet of 7M⊕ and 2R⊕. In this scenario, the M-
dwarf has a luminosity of approximately 1/200 that of the Sun
and, consequently, a planet receiving the same stellar insolation
as the Earth would lie at 0.074AU, corresponding to an orbital
period of 14.8 days. Moreover, the geometric transit probabil-
ity is 1.6% compared to that of the Earth-Sun system (∼0.5%).
In addition, the small radii of M-dwarf stars results in deeper
transits (∼0.5% for a M5-dwarf star, compared to the 0.03% for
a solar type host) and, the combination of a smaller stellar mass
and shorter orbital period, increases the semi-amplitude of the
radial velocity measurements.

In order to maximize the probability of detecting a rocky
super-Earth planet in the HZ, MEarth-North (Irwin et al., 2009)
is photometrically monitoring a preselected sample of 2000 M-
type stars compiled from the LSPM-North catalog (Lépine and
Shara, 2005). MEarth-North operates 8, f/9, Ritchey-Chretien
telescopes with a 25’x25’ FoV each. Due to this limited FoV, this
project can only monitor a single star per telescope at a time.

In comparison, the 19.4 deg2 FoV of the TFRM combined with
the fact that a 17-second exposure typically contains ∼15,000

stars with a SNR greater than 5 (for stars with magnitude V<15.5
mag) and a photometric precision better than 10 milimagni-
tudes (3-4 milimagnitudes for V down to 13-13.5 mag), make
the TFRM an excellent instrument to detect new exoplanets through
the transit technique.

Since December 2011 the TFRM began to survey a selected
set of fields from an input catalog of 556 M-type stars result-
ing from the crossmatch of the Palomar/Michigan State Uni-
versity Survey (Reid, Hawley, and Gizis, 1995) and a photo-
metric catalog of bright M-dwarfs (Lépine and Gaidos, 2011).
The TFRM-PSES is a able to monitor multiple fields per night,
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each one containing typically around 20 M-type cataloged stars,
mainly in the range of 9.0 mag < V < 15.5 mag. The cataloged
TFRM fields and their current coverage status are plotted in Fig-
ure 25.

Figure 25: TFRM-PSES cataloged fields (top) and observed fields up to Septem-
ber 2018 (bottom).

5.1.1.4 TFRM-PSES Pipeline and Data Reduction

The astrometric and photometric data of the TFRM-PSES light
curves are measured using the Apex II reduction pipeline (De-
vyatkin et al., 2010). The pipeline has been optimized to de-
tect planetary transit signatures and consist on the following
Python-based scripts:

1. apex_superdark.py: It generates combined master dark and
bias frames from a set of individual frames. The script
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divides all available dark frames into groups with identi-
cal characteristics (integration time, detector temperature
and frame size) and processes each of them separately. For
each group, a combined master dark is created and saved
into a file containing all relevant frame parameters.

2. apex_superflat.py: It generates a combined master flat frame
from a set of individual flat field frames. It also searches
appropriate master dark frames for dark calibration. Given
the big FoV of the TFRM, at the beginning of the TFRM-PSES
survey sky flat frames were taken using the so-called "an-
tisolar point" during the civil dawn and dusk (when the
geometric center of the Sun is 6° below the horizon). The
effects of the sky gradient present in the flat fields was
minimized carefully combining a set of frames taken at
dawn and dusk. Later on, in 2015, a flat field box was
built to more accurately obtain gradient-free flat frames
as well as to characterize the shutter map and the CCD
pixel non-linearity.

3. apex_epphot.py: It is the main photometric reduction script
of the pipeline. First, the script corrects all pixels from
their intrinsic non-linearity using the following equation:

Fcorrected = F+ b · F+ c · F2 (83)

where b and c are the matrices used for the non-linearity
correction and F is the flux of the star in units of ADU.

Then, the script does bias, dark, shutter map and flat cal-
ibration of all input frames and computes the fluxes of
all detections above a given SNR threshold for each frame.
The photometric fluxes can be computed using the classi-
cal aperture photometry setting the Kron aperture and the
inner and outer aperture radii. Otherwise, a background
estimation can be used setting the Kron aperture, the de-
fault seeing and the kernel factor. The product of these last
two denotes the characteristic non-uniformity scale of the
background thus, features smaller than the size given by
this product will belong to the background.

The script can discard some of the frames by a preliminary
quality control that considers the minimum number of de-
tections, the maximum allowed seeing, the minimum and
maximum average intensity and the maximum ellipticity
of the stars (defined as η = major axis

minor axis ) to retain a frame.
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Likewise, this script is also able to apply deblending cor-
rection to the frames. In crowded star fields, a large num-
ber of PSFs of neighboring stars can be overlapped and
thus be detected as single objects. The deblending algo-
rithm implemented in this script follows the same idea as
the one in SExtractor (Bertin and Arnouts, 1996) introduc-
ing n intensity threshold levels to determine if the blended
objects can be separated. This can be done using the mask
option in which the flux from the brightest blended object
is subtracted by means of an square mask centered at the
source centroid. The flux subtraction on the surrounding
blended objects is done using the same approach. Other-
wise, a 2D-Gaussian fitting algorithm can be used instead
of the square mask.

Finally, the script produces a catalog file for each input
frame that contains the UTC epoch of mid-exposure and a
list of detections with their corresponding (X,Y) pixel co-
ordinates in the frame and their instrumental magnitudes.

4. apex_epmatch.py: This script deals with the source match-
ing and astrometric reduction. A set of field stars is first
crossmatched with a reference catalog (in our case, the
UCAC4 catalog, see http://www.usno.navy.mil/USNO/astrometry/
optical-IR-prod/ucac for more details). Then, their coor-
dinates are first transformed and projected onto the frame
and through their (X,Y) coordinates, the parameters of the
chosen reduction model are determined. These parame-
ters are then applied to the other objects in the frame and
an inverse transformation is done to obtain their coordi-
nates in the reference system of the catalog (Devyatkin et
al., 2010).

In addition, the script conducts a more exhaustive quality
control by computing the magnitude zero point of each
frame. This is done taking a set of reference stars and
computing the median value of their magnitudes for each
frame. This way, the script is able to discard those frames
affected by bad atmospheric conditions, the passage of
clouds or shutter malfunctions.

On output the script produces a file which contains the
raw magnitude light curves of all detections found by
apex_epphot.py crossmatched and with their reference cata-
log coordinates.

5. apex_epfind.py: Last step of the calibration pipeline. The
script produces a final file that contains the differential

http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/ucac
http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/ucac
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magnitude (in instrumental system) light curves of all de-
tections using the BESTRED algorithm (Voss, 2006) which,
on a nightly basis, uses a set of the brightest, non-saturated
and low RMS reference stars to compute the light curve
correction. Once this algorithm has been applied, the
magnitude residuals of each star are fit with a position-
dependent polynomial and the magnitudes corrected ac-
cordingly.

The TFRM-PSES data calibration pipeline has been fully paral-
lelized so that several frames can be calibrated, their sources
detected and their raw instrumental magnitudes corrected at
the same time thus reducing the CPU execution time to 60-120

minutes per night (depending on the number of frames and the
crowding of the fields).

5.1.2 The Evryscope

5.1.2.1 Project Overview

The Evryscope (“wide-seer”) (Law et al., 2014; Law et al.,
2015; Law et al., 2016; Ratzloff et al., 2016) consists of a single
hemisphere containing 24 (expandable to 27) 61mm-aperture
telescopes simultaneously imaging the sky with a two minute
cadence. The telescopes each use a rectangular 28.8 MPix KAI-
29050 interline-transfer CCD and each telescope assembly ro-
tates in a circular arc around the pole facing camera as the hemi-
spherical housing tracks the sky. The Evryscope is designed to
be sensitive to exoplanetary transits and other short timescale
events not discernible from existing large-sky-area astronomi-
cal surveys. The Evryscope, tracks the sky on a standard Ger-
man Equatorial mount, imaging a 691 MPix instantaneous 8,000

sq. deg. FoV, in two hour sections, ratcheting back after each
section to cover a new sky area (with 75% overlap with the
previous area). The system takes an exposure in g-band ev-
ery 2 min exposure with 97% duty cycle efficiency, reaching
a limiting magnitude of g∼16, and co-adds over hours each
night to monitor fainter objects. The Evryscope is located at
Cerro Tololo Inter-American Observatory (CTIO), covering de-
clinations between −90º and +10º.

The Evryscope operates fully robotically and it is stream-
ing imaging data each night at 104MBit/sec, generating 50-
100 TB/year of calibrated images. It is delivering multi-year
1%-precision 2-minute-cadence light curves for ∼35,000 obser-
vations of every star brighter than g∼16 and milimagnitude pre-
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Figure 26: The Evryscope deployed at CTIO. The main dome is 6 feet in
diameter. The system is mounted inside an AstroHaven dome
maintained as part of the PROMPT telescope network.

cision 16-minute-cadence light curves for every object brighter
than g∼12.

Currently, the Evryscope has the largest ètendue of any ground-
based survey. For bright-stars high-cadence regime, it is the
only survey within 10% of the enormous planned Large Synop-
tic Survey Telescope (LSST) ètendue.

A Northern-Hemisphere Evryscope is to be deployed during
2018 in collaboration with Mount Laguna Observatory and San
Diego State University. Together, the two Evryscope systems
will provide true all-sky, high-cadence and multiband coverage
of bright targets.

5.1.2.2 Evryscope’s Science Plans

The Evryscope opens a new parameter space in optical as-
tronomy providing short cadence and high precision coverage
of the entire accessible sky. In addition, the telescope design
provides limiting magnitudes that allow both galactic and ex-
tragalactic events to be detected. The Evryscope’s dataset will
thus enable real time transient detection, variable phenomena
and wide-field transiting exoplanet characterization.

Given that the Evryscope has an order-of-magnitude more
FoV than the next-largest exoplanet surveys, four transiting planet
projects are currently being developed and conducted:
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1. White-dwarf survey for transiting asteroid-size exoplan-
ets.

2. Transiting rocky exoplanets search in the habitable zone
of nearby M-dwarfs.

3. Transiting exoplanets search around nearby, bright stars.

4. Monitor large populations of eclipsing binaries and detec-
tion of eclipse timing variations induced by orbiting plan-
ets.

5. Monitoring nearby stars for microlensing events.

6. Transiting Exoplanet Survey Satellite (TESS) precursor ob-
servation providing long-term monitoring of TESS targets.
The Evryscope will also increase TESS long period giant
planet yield by recovering multiple transits from objects
detected as single events in the TESS 27-day search period.

7. Monitoring of flares in active stars hosting planets.

In addition, the Evryscope will monitor the fluxes of mil-
lions of stars with a two-minute-cadence, building a multi-year
database that will allow the detection and characterization on
a huge number of variable stars and variability types.

Given that all the observed data is recorded into the database,
the Evryscope will be able to provide pre-, in- and post-explosion
optical counterpart data for rapid transients such as novae, su-
pernovae, gamma-ray bursts, fast radio bursts, and gravitational
waves counterparts.

5.1.2.3 Evryscope Pipeline and Data Reduction

The 0.8 GB/min of raw images generated by the Evryscope
are reduced in real time using a fully parallelized framework
written in Python backed by a PostgreSQL 9.5 database server
(Law et al., 2016; Corbett et al., 2016). Each science frame is
corrected from pixel non-linearity and a mask for bad-pixels is
applied. Then they are masterdark and masterflat calibrated
and then checked by a Data Quality Daemon (DQD) that takes
into account the integrity of each 28.8 MPix FITS per camera
file, the Sun elevation, the effective CCD calibration, the mini-
mum and maximum median value of the pixels, the minimum
number of detected stars in the frame, the median of the de-
tected stars elongation, and others. Those frames that pass the
DQD are astrometrically calibrated with a custom-made solver
(Law et al., 2016). This consist on a third-order distortion poly-
nomial solution (in x, y and radial terms) represented as a TPV
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convention (Shupe et al., 2012). After careful background mod-
eling and subtraction, forced-aperture undetrended photome-
try is extracted based on known source positions in a refer-
ence catalog, such as APASS-DR9 (Henden et al., 2009; Hen-
den et al., 2010; Smith, Henden, and Terrell, 2010; Henden et
al., 2016). Light curves are then generated for approximately
15 million sources across the Southern sky by differential pho-
tometry in small sky regions using carefully-selected reference
stars and a range of apertures. These equal-area sky regions are
DR9 indexed with PostgreSQL’s Q3C (Koposov and Bartunov,
2006) and partitioned with HEALPix (Górski et al., 2005). In ex-
tremely crowded fields the pipeline is run for particular targets,
optimizing the aperture sizes to avoid nearby stars.

The database can be queried to return a target light curve and
a set of reference stars around it. The differential photometry
calibration procedure for these light curves first rejects frames
with very low number detections or with anomalous magni-
tude zero points. In order to correct atmospheric extinction
and other systematics, all light curves have differential photom-
etry applied using the BESTRED algorithm (Voss, 2006) in per
two hour ratchet, per night, and per whole light curve time-
base basis. Once the differential photometry has been applied,
the magnitude residuals of the reference stars are fit with a sec-
ond order polynomial to account for slowly-varying position-
dependent effects.

5.2 space telescopes

5.2.1 CoRoT Space Observatory

5.2.1.1 Project Overview

The COnvection ROtation and planetary Transits (CoRoT) space
mission (Fridlund et al., 2006) was the first space project de-
signed for exoplanet research. The mission was led by the
Centre National d’études Spatiales (CNES) together with the
European Space Agency (ESA) and other international collabo-
rators. Its two main objectives were the study of stellar seismol-
ogy, detecting and measuring star vibrations, and the search
for exoplanets (specially terrestrial ones). The spacecraft was
launched on December 27, 2006 from the Baikonur Cosmod-
rome in Kazakhstan, Russia, atop a Soyuz 2.1b rocket. It began
collecting science data on February 2007 beginning its 2.5 year
mission. Although its operations were extended up to 2013, on
November 2012 CoRoT suffered a computer failure that made it
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impossible to retrieve data from the telescope. After some re-
pair attempts it was announced that CoRoT would be retired and
decommissioned. Finally, it was de-orbited on June 17, 2014.

During this period, CoRoT photometrically monitored 163,665

targets distributed over two opposite regions in the Galactic
plane in 26 fields.

Figure 27: Artist’s view of the CoRoT satellite. Credit: CNES - Mai 2004/Il-
lus. D. Ducros

5.2.1.2 The CoRoT exoplanet mission

The CoRoT exoplanet program aimed at detecting the pres-
ence of extrasolar planets when they transit in front of their par-
ent star. CoRoT was equipped with four CCDs with a 1.3× 1.3º
FoV. Given the nature of the CoRoT objectives, two of them
were dedicated to the astroseismology observations and, the
other two, to the exoplanet mission. In the case of the exo-
planet channel, the satellite’s processing capacities allowed for
the observation of ∼6,000 stars per CCD. For each star, a pixel-
lised photometric aperture was assigned at the start of each run
to optimize the SNR of the integrated flux (Llebaria and Guter-
man, 2006). For these stars, all the photometry was done on
board the satellite and only the light curves were downloaded
to Earth. The targets in the exoplanet channel have magnitudes
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11 6 r 6 16 though brighter ones were also observed. In ad-
dition, a prism was located in the optical path of CoRoT’s ex-
oplanet channel to obtain a spectrum on the focal plane. The
photometric apertures for stars brighter than r = 15 were di-
vided into three regions that approximately coincided with the
red, green and blue parts of the spectrum resulting in three-
color light curves being transmitted to Earth. For fainter stars,
only white light curves are available.

The fields accessible to CoRoT, known as the CoRoT contin-
uous viewing zones (CVZs), were two circles of ∼10º located
in the ecliptic plane and centered at zero declination and RA
6h50m and 18h50m, respectively. The telescope switched from
one zone to the other twice a year allowing the CVZs to be ob-
served continuously during approximately six months. The po-
sition in the sky of all the 26 CoRoT fields observed for the exo-
planet mission is shown in Figure 28. As can be seen, some tar-
gets were observed more than once due to the overlapping that
existed between successive fields. The targets observed in these
fields were selected to maximize the number of main-sequence
stars with spectral types F or later. Thus, the spectral type and
luminosity class of all CoRoT targets in the magnitude range
11 6 r 6 16 needed to be estimated. The spectral classification
used ground-based multi-colour photometric observations that
were carried out prior to the instrument launch. The Exo-Dat
database was built in order to provide as much stellar informa-
tion as possible in the FoV of the CoRoT’s exoplanetary science
program (Deleuil et al., 2009).

Figure 28: Position of the fields observed by CoRoT for the exoplanet mission
in the direction of the Galactic anti-center (left) and center (right)
as seen in Deleuil et al. (2018).

At first, the observations consisted on one, 140 days, long
run (LR) and a shorter one (SR), lasting 20 to 30 days, every 6

months. The duration and number of pointings per year were
flexible and evolved to take into account the scientific require-
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ments of the exoplanet and astroseismology missions. In March
2009, one of the Data Processing Units broke down causing the
loss of one CCD in each of the exoplanet and seismology chan-
nels. Since then, the observation strategy changed to a two
intermediate-duration runs per half year. Apart from compen-
sating the loss of star counts per pointing, it also allowed to
observe again the same field after some time. The possibility
of re-observing the fields allowed, for example, to more pre-
cisely determine the planetary parameters of some of the CoRoT
confirmed exoplanets by scheduling simultaneous observations
with other instruments like HARPS (Barros, S. C. C. et al., 2014)
or Spitzer (Bonomo et al., 2017). For more information about
the fields, runs and the CoRoT mission itself, the author points to
Fridlund et al. (2006), the "CoRoT Legacy Book" (CoRot Team,
2016), Deleuil et al. (2018) and the CoRoT data archives1 for a
more extensive review.

5.2.1.3 CoRoT data reduction pipeline

In CoRoT, there was no official pipeline at mission level for
transit detection and light curve analysis. Once the light curves
of a given run were released, their analysis was done in parallel
by different teams, using different algorithms. Given that the
transit search was performed as soon as the runs were released,
the transit detection algorithms evolved significantly from the
first to the last run. Erikson, A. et al. (2012) summarizes all
the transit search methods implemented for the CoRoT runs. In
addition, several ways of improving the pre-filtering and de-
trending of the light curves have been proposed. For example,
SARS (Ofir et al., 2010): a modification of the Sysrem algorithm
(Tamuz, Mazeh, and Zucker, 2005); EXOTRANS (Grziwa, Pät-
zold, and Carone, 2012): a BLS-based algorithm; a detrending
method based on a wavelet coefficient thresholding (Grziwa,
Korth, and Pätzold, 2014), and the one from Bonomo et al.
(2012).

5.2.2 Kepler Space Observatory

5.2.2.1 Project Overview

Kepler is a space observatory launched on March 7, 2009 into
an Earth-trailing heliocentric orbit. The Kepler mission was de-
signed to detect transits of Earth-size planets in the HZ of F
through M type dwarf stars with magnitudes in the 9<mv<15

1 https://corot.cnes.fr/en/data-archives

https://corot.cnes.fr/en/data-archives


88 instrumentation and surveys

range (E. and A, 2016). Kepler had a fixed FoV in the constel-
lations Cygnus and Lyra (see Figure 29) centered on (α, δ) =
(19:22:40, +44:30:00) (l = 76.32º, b = +13.5º). Kepler’s sole scien-
tific instrument is a photometer that continually monitors the
brightness of ∼150,000 stars. This photometer, a 0.95 m aperture
Schmidt telescope feeds the 94.6 million pixel, 42 CCD, 21 mod-
ules detector array containing both science and Fine Guidance
Sensor CCDs. Each 50x25 mm CCD has 2 outputs and 2200x1024

pixels and a pixel scale of 3.98 arcseconds. The half-maximum
bandpass is 435 to 845 nm. Kepler’s FoV has a diameter of
16.1º, of which 115.6 square degrees are covered with active
pixels. The four Fine Guidance Sensors are mounted in the cor-
ners of the science array and were used to attain the <0.009 arc-
sec pointing stability on >15 min scales. The interval between
reads of a given pixel of a CCD is composed of an exposure
time of 6.02 seconds and a fixed readout time of 0.52 seconds.
For each integration, all pixels were read-out and temporally
coadded in the Science Data Accumulator (SDA). The data vol-
ume was reduced as target lists determined which target and
calibration pixels were read-out of the SDA and transmitted to
the Solid State Recorder (SSR) for later down link. Kepler ac-
quired data at 29.424-minute intervals (270 integrations) for all
target stars called long cadence (LC) targets. A set of 512 bright,
non-saturated, relatively isolated stars were observed at 1-min
intervals (9 integrations) and called short cadence (SC) targets.
The resulting flux time series for both LC and SC targets were
typically >90% complete. The observations were organized into
seventeen 93-day “quarters” allowing the telescope to rotate by
90º to keep the Sun on the solar panels and the radiator pointed
to deep space (Haas et al., 2010).

There were three main components of the Kepler observing
program:

Planetary transit search: measuring the flux of ∼150,000

stars to identify candidates for planetary transits using
precision photometry.

Characterization of transiting systems: to confirm the na-
ture of the transit, additional analysis of the candidate sys-
tem and its neighborhood need to be conducted including:
precise centroiding, high spatial resolution imaging from
ground- and space-based telescopes, precise stellar radii
determination or measurement of stellar variability.

Guest observers: some targets in Kepler’s FoV were se-
lected for guest observers.
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Figure 29: Kepler FoV in the constellations Cygnus and Lyra. Squares denote
the outlines of individual CCD modules projected on the sky.

The Kepler mission lasted four years between May 2009 and
May 2013. Light curves of target stars observed during this pe-
riod have yielded 2,327 confirmed exoplanets so far and, more
than 2,000 candidates remain to be confirmed(2). Kepler dis-
coveries comprises among others, the discovery of Kepler-10 b,
the first confirmed terrestrial planet outside the Solar System
(Batalha et al., 2011); Kepler-16 b, the first, unambiguous detec-
tion of a circumbinary planet (Doyle et al., 2011) or Kepler-37

b, the smallest, almost Moon-size exoplanet orbiting a main-
sequence star (Barclay et al., 2013). For more information re-
garding the Kepler mission, the instrument itself and the Ke-
pler archive, the author refers to Borucki et al. (2010), E. and A

2 https://exoplanetarchive.ipac.caltech.edu

https://exoplanetarchive.ipac.caltech.edu


90 instrumentation and surveys

Figure 30: Artist’s concept of NASA’s Kepler space telescope. Image Credit:
NASA.

(2016), J. E. Van Cleve and Zamudio (2016) and Thompson S. E.
and A. (2016).

5.2.2.2 The K2 Mission

The initial planned lifetime for the Kepler mission was 3

years. In 2012, the mission was to be extended until 2016 but,
on July 14, 2012, one of the spacecraft’s four reaction wheels
stopped turning. In order to ensure the pointing accuracy and
thus, meeting the mission objectives, the remaining reaction
wheels needed to keep working. On May 11, 2013, a second re-
action wheel failed ending the primary mission data collection
and threatening the continuation of the mission. Developed in
the months following this failure, the K2 mission (Howell et
al., 2014), represented a new concept for Kepler’s operations
given the spacecraft’s ability to maintain pointing in all three
axes with only two reaction wheels. This operation mode, that
started in October 2013 and became fully operational in May
2014, provides enough fuel for an extended 2-3 year mission.
K2 began a series of sequential campaigns observing a set of
independent target fields distributed around the ecliptic plane.
This way, K2 minimizes the torque exerted on the spacecraft by
solar wind pressure, reducing the pointing drift and achieving
a photometric precision close to the original for the Kepler mis-
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sion (Vanderburg, 2014; Vanderburg and Johnson, 2014). The
duration of each observing campaign is limited by solar illumi-
nation to a duration of about 75 days.

Figure 31: K2 campaigns 0 to 20 FoVs centered around the ecliptic plane.
Image Credit: NASA.

The K2 mission observes ∼10000 targets per FoV collecting
data at 30-minute and 1-minute cadences (Howell et al., 2014).
Due to its multi-field, ecliptic-pointed operation mode, it ex-
panded Kepler’s opportunities for new discoveries in Galactic
regions not previously observed. K2 is a community-driven
mission were all targets are peer-reviewed proposals done by
the community through the Guest Observer program. Given
that there is no predefined set or type of targets, the mission
science goals are diverse; some of them are listed below3 (How-
ell et al., 2014):

Observation of extrasolar planets around bright stars: K2

inherits Kepler’s mains objective to measure the occur-
rence rate of planets around Sun-like stars. More specifi-
cally, the detection of transits of hot planets around bright
stars to enable precise Doppler spectroscopy to provide
planetary masses and densities and to facilitate improve-
ments in the characterization of exoplanet atmospheres.

Observation of extrasolar planets around low-mass stars:
identify characteristics of potentially-habitable planets around
bright M-dwarfs in the solar neighborhood for approxi-
mately 4,000 M dwarfs brighter than mv=16 per K2 field.

Observation of open clusters: study of the incidence of
large and small planets and to discover and characterize
binary stars within open clusters and stellar associations.

Asteroseismology to advance in the understanding of stel-
lar evolution, stellar interiors and stellar populations.

3 https://keplerscience.arc.nasa.gov/objectives.html

https://keplerscience.arc.nasa.gov/objectives.html


92 instrumentation and surveys

Observation of variable extragalactic sources: observe in
statistically significant numbers bright AGNs to provide
robust testing of current models or to identify the progen-
itors of Type Ia supernovae.

Micro-lensing observations: combined with ground-based
observations to obtain host and planet masses from the
measured parallaxes.

The difference between an exoplanet candidate and a con-
firmed exoplanet is very important. During the Kepler mis-
sion, an exoplanet candidate was a any transit signal that had
passed a set of astrophysical false-positive and instrumental
false-alarm tests. In K2, a candidate is any signal that a given
team has identified as a possible planet. A validated planet is a
candidate that has been vetted with follow-up observations and
determined quantitatively to be more likely an exoplanet than
a false positive. Validated planets, are more promising targets
than planet candidates for follow-up observations, characteriza-
tion, and eventual confirmation. Confirmation is more rigorous
than validation and is usually attained through a reliable mass
determination using RV observations (Mayo et al., 2018).

On December 18, 2014, the K2 mission detected its first con-
firmed exoplanet, a super-Earth named HIP 116454 b or K2-2 b
(Vanderburg et al., 2015). Since then, the K2 mission has found
325 exoplanets and 493 candidates are yet to be confirmed.

5.2.2.3 K2 data reduction pipeline

The data recorded by Kepler on orbit is downlinked, archived
and ends up at he Space Science Division of NASA’s Ames
Research Center. All science data is processed and calibrated
by means of the Kepler Science Pipeline. The main elements of
the pipeline are summarized below (Jenkins et al., 2010):

Pixel calibration (CAL): the first step in the Kepler pipeline
is performed by the CAL module (Jenkins et al., 2010;
Quintana et al., 2010). It corrects the raw Kepler photo-
metric data into calibrated pixels prior to the extraction of
photometry and astrometry. CAL module is responsible
of bias level, dark current, smear (caused by the lack of
shutter in Kepler’s photometer), nonlinearity, undershoot-
ing and flat field corrections as well as cosmic ray removal
in the bias and smear measurements.

Photometric Analysis (PA): this module (Bryson et al., 2010)
delivers photometric light curves from the calibrated pix-
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els defined to contain the optimal aperture and its asso-
ciated background pixels. The optimal apertures crite-
ria tries to maximize the signal-to-noise ratio of the light
curves and, also takes into account the pixel response func-
tion across the focal plane. PA module performs barycen-
tric time correction, "Argabrightening" event (transient in-
creases in the background flux due to an unknown source,
probably due to small dust particles (Jenkins et al., 2010))
detection, cosmic ray cleaning and background signal re-
moval. It is also responsible of the aperture photometry,
detecting the photocenter of each source as well as provid-
ing the astrometric solution for each pixel.

Pre-search Data Conditioning (PDC): the PDC’s task (Twicken
et al., 2010) is to examine the light curves produced by PA
and remove systematic errors from them. These systemat-
ics include pointing errors, focus changes and thermal ef-
fects on the instruments. The "Pre-search" keyword refers
to conditioning the light curves before executing a tran-
sit search. PDC conducts data anomaly flagging, identi-
fies and corrects of discontinuities, identifies variable stars
and astrophysical events, corrects target excess flux com-
ing from nearby sources and performs systematic error
correction for quiet and variable stars.

Once the data is processed, it is formated into FITS files and
exported to the MAST archive4 at the Space Telescope Science
Institute. The archived data includes the raw and calibrated
pixel values for all sources, background pixels, calibrated and
corrected light curves, and related engineering data.

In the case of K2, a part from the PDC module, several de-
trending and systematic removal algorithms have been devel-
oped: Gaussian process-based ones like K2SC (Aigrain, Parvi-
ainen, and Pope, 2016); correlation-based like K2SFF (Vander-
burg and Johnson, 2014), and EVEREST 2.05 (Luger et al., 2016;
Luger et al., 2017). The latter is the most accurate algorithm
for removing instrumental systematics from K2 light curves.
EVEREST 2.0 is an open-source pipeline that uses a combina-
tion of pixel-level decorrelations to remove spacecraft pointing
errors and Gaussian processes to capture astrophysical variabil-
ity. The corrected light curves have a precision comparable to
the original Kepler mission for targets brighter than Kp = 13,
and within a factor of 2 for fainter targets .

4 https://archive.stsci.edu/index.html

5 https://github.com/rodluger/everest

https://archive.stsci.edu/index.html
https://github.com/rodluger/everest
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6.1 ground-based data

6.1.1 TFRM Data

6.1.1.1 Data description

The data from the TFRM-PSES survey used for the TFAW perfor-
mance assessment comprises 2,048 data points from 30 nights
observed during 2013, 2014 and 2015 for a field centered at
(α, δ) = (10:14:44, +48:30:00). All light curves in the data set
have been observed with a 475 nm cutoff frequency glass filter
(Schott GG475), 17 sec exposure time and an altitude above 50

◦.
The light curves were generated with the APEX-2 reduction
pipeline (Devyatkin et al., 2010). The pipeline includes aper-
ture photometry, atmospheric extinction correction, differential
photometry (using the BESTRED algorithm from Voss (2006))
and astrometric calibration (as explained in Section 5.1.1.3).

6.1.1.2 Results

In Figure 32 and Figure 33 we present two examples obtained
from the TFRM-PSES data. Figure 32, 2MASS J10144313+5018191,
is a newly-discovered variable star, detected both with TFA and
TFAW, probably a δ-Scuti star with a 0.1592-day period. As
can be seen, after TFAW is applied, the noise contribution de-
creases significantly and outliers are efficiently removed. The
LS power spectrum during the frequency analysis step greatly im-
proves with respect the TFA one presenting higher power of the
peaks and an increase in the SDE (10.1 for TFAW in front of 9.8
for TFA). The one in Figure 33, a W Ursae Majoris-type vari-
able star with a 0.371018-day period (the maximum peak in the
LS power spectrum corresponds half the cataloged period) is
cataloged as NSVS 4921994 (Woźniak et al., 2004). As in the
previous case, the SNR of the signal is improved and the correct
period is recovered from the TFAW LS power spectrum. Also, the
power spectrum itself presents higher peaks and an increased
SDE (10.31 for TFAW in front of 10.1 for TFA).

95
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The small increase in the SDEs of both example light curves
for TFAW compared to TFA is to be expected from Figure 13 as
they are in the high SNR regime.
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Figure 32: Example of the TFAW filtering capabilities on the observed
TFRM-PSES light curve of 2MASS J10144313+5018191, a newly-
discovered variable star. Same notation and TFAW parameters as
Figure 15.

6.1.1.3 TFAW quantitative performance over TFRM light curves

Tests made on real light curves show that after TFAW is ap-
plied, signals affected by systematics and noise are recovered
with no shape and period distortion. Top panel of Figure 34

shows the TFRM-PSES photometric precision (standard deviation
σ) vs. R magnitude for both TFA and TFAW light curves. The
set of 6,485 displayed light curves correspond to the same field,
observed over three years. TFAW photometric performance is
not only consistently better than TFA over all the R magnitude
range, but also shows a closer fit with the expected blue-lined
trend-free stochastic noises performance, especially the faint
end. Figure 34 bottom panel shows, similarly to Figure 5 in Kovács,
Bakos, and Noyes (2005), the decrease in the standard devia-



6.1 ground-based data 97

0.0 0.2 0.4 0.6 0.8 1.0
Phase

14.2

14.3

14.4

14.5

R
(m
a
g

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

14.2

14.3

14.4

14.5

0 1 2 3 4 5 6
Freq. (d−1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ow
er

0 1 2 3 4 5 6
Freq. (d−1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 33: Example of the TFAW filtering capabilities on the observed
TFRM-PSES light curve of NSVS 4921994. Same notation and TFAW

parameters as Figure 15.

tions of the same sample of 6485 TFAW-filtered TFRM-PSES light
curves compared to the original TFA ones. It can be seen, that
for almost all the TFA standard deviation range (conversely
brighter to fainter magnitudes), the standard deviations of TFAW
light curves is ∼40% better than that for TFA light curves. In the
case of low standard deviations (i.e. bright stars), the improve-
ment is smaller because the noise contribution is also smaller.
The presence of real variable stars in the sample could also ex-
plain a fraction of such TFA and TFAW with similar standard de-
viations, as their intrinsic variabilities dominate the noise con-
tribution (see Figure 33 as an example).

The results presented in Section 6.1.1.2 in the LS power spec-
tra demonstrate that TFAW does not introduce false periodicities
or eliminate any of the signal peaks during the frequency anal-
ysis step. For the examples presented before as well as for the
rest of TFRM-PSES light curves analyzed, TFAW outlier removal
and frequency analysis step results in an overall improvement
of the power spectrum and of the SDEs.
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Figure 34: Top: Standard deviation vs. R magnitude for TFA (black dots) and
TFAW (red dots) of a set of 6,485 TFRM-PSES light curves. Blue line
corresponds to the sum of the scintillation, photon, background
and read-out noises. Bottom: Decrease of the standard deviations
for the same set of light curves due to the application of TFAW

compared to TFA. Both TFA and TFAW results were obtained using
250 template stars. Red line corresponds to the zero correction
level.

Regarding the number of template stars, tests run both with
simulated and real light curves show that using 250 template
stars gives the best results. TFAW can also be run with less
stars (<10 stars). However, the noise filtering is less efficient
and some trends and systematics could still be present in the
filtered data. As with the original TFA, it is not necessary to
compute the template matrix for each target star, only in the
cases in which the latter accidentally coincides with one of the
template ones.

6.1.1.4 TFAW computing performance for TFRM data

The algorithm has been fully implemented and parallelized
in Python for the TFRM-PSES dataset. The CPU time needed for
a 2,048 data points, single light curve TFAW analysis using 250

template stars is typically around 60 seconds and about 100 it-
erations. A full run of the TFAW on 6,485 TFRM-PSES light curves
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with 2,048 points per time series, 250 template stars and 90,000

BLS frequency steps takes 7.5 hours of 24 × CPUs @ 2.00 GHz.
As a comparison, TFA runs the same set of light curves with the
same parameters and hardware capabilities in 0.5 hours, i.e.,
15× less than TFAW. The main reason for this performance loss
is the extra time in the computation of the SWT and the ISWT
at each iteration step. The current PyWavelets implementation
we are using for these transforms is coded in Cython. Future
effort is planned in order to significantly speed up TFAW.

6.1.2 Evryscope Data

6.1.2.1 Data description

The Evryscope data used for TFAW performance assessment
comprises 10,240 data points observed from January 10, 2016

to February 26, 2016 with one of The Evryscope telescopes cen-
tered around the South Celestial Pole. Prior to the TFA and
TFAW analysis of the data, all target light curves have been pro-
cessed using the pipeline and data reduction method described
in Section 5.1.2.3. To build the set of 250 stars template stars
needed by TFA and TFAW we selected those light curves with
low standard deviations and small Stetson’s L (Stetson, 1996)
indexes. In addition, although the pipeline fills any missing
value from the light curves to ensure that all of them have the
same time-base, only those stars with less than 10% initial miss-
ing values are selected as possible template stars.

6.1.2.2 Results

2MASS J13190996-8347115, located at (α, δ) = (13:19:09.9669,
-83:47:11.5332) (Gaia Collaboration, 2018), is a semi-detached
contact binary of the W Ursae Majoris-type with a 0.658-day
period. It was detected during visual inspection of the pipeline-
processed Evryscope light curves in 2017. At that moment, the
target was not classified as variable in the VSX or GCVS. Its
period and variability type was later confirmed by the ASAS-
SN survey in Jayasinghe et al. (2018). TFA and TFAW recover the
variability period reported by Jayasinghe et al. (2018) during
the frequency analysis step. After the signal has been iteratively
reconstructed, the TFAW-filtered light curve is significantly less
noisy than the TFA one and has its outliers efficiently removed.
The shape and depth of the signal has not been modified after
applying TFAW’s SWT-based iterative filtering.
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Figure 35: Top: TFA’s BLS power spectrum for eclipsing binary 2MASS
J13190996-8347115 observed with The Evryscope. Bottom: TFAW’s
BLS power spectrum. The peak at ∼1.52 d−1 in both plots corre-
sponds to the spin period reported by Barstow et al. (1995).
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Figure 36: TFAW noise and systematics filtering capabilities for eclipsing bi-
nary 2MASS J13190996-8347115. Top left: Normalized raw (black
dots) and TFA-filtered (red dots) light curves of 2MASS J13190996-
8347115. Top right: Normalized raw (black dots) and TFAW-
filtered (red dots) light curves of 2MASS J13190996-8347115. Bot-
tom left: Phase folded, to twice the period, TFA-filtered light
curve of 2MASS J13190996-8347115. Red line corresponds to the
300 binned phase folded light curve. Bottom right: Phase folded,
to twice the period, TFAW-filtered light curve of 2MASS J13190996-
8347115. Red line corresponds to the 300 binned phase folded
light curve.

RE J0317-853, located at (α, δ) = (03:17:15.8452, -85:32:25.5611)
(Gaia Collaboration, 2018), is one of the four spotted white
dwarfs with rotation periods shorter than 1 hr (Hermes et al.,
2017). This star spins every 725 sec, with 0.2 mag peak-to-peak
photometric variations (Barstow et al. (1995), Ferrario et al. (1997),
Vennes et al. (2003)). Along with spots, this target exhibits a
strong magnetic field (340-450 MG) (Kilic et al., 2015), the latter
suggesting a binary merger origin (García-Berro et al., 2012).

The brightness of this white dwarf is close to The Evryscope
two-minute cadence limiting magnitude, with expected photon-
limited photometric around 10%. In any case, both TFA and
TFAW find the spin period reported by Barstow et al. (1995) dur-
ing their frequency analysis steps (see Figure 37). Given that we
had an a priori knowledge of the sinusoidal nature of RE J0317-
853’s variability, we have employed LS (Scargle, 1982) to run
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the period search. For the TFAW’s iterative reconstruction step,
we set the noise level to the lowest SWT decomposition scale of
the phase folded light curve and, compute the signal level using
the method explained in Section 3.3.1. Figure 38 shows a com-
parison between TFA and TFAW reconstructed signals. TFAW has
been able to greatly improve (by a factor ∼3×) the SNR of the
sinusoidal variability by filtering the high frequency noise and
removing most of the outliers present in the light curve.
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Figure 37: Top: TFA’s LS power spectrum for white dwarf RE J0317-853 ob-
served with the Evryscope. Bottom: TFAW’s LS power spectrum.
The peak at ∼120 d−1 in both plots corresponds to the spin period
reported by Barstow et al. (1995).

A large fraction of magnetic white dwarfs studied with Ke-
pler (Hermes et al., 2017) have shown optical variations on the
hour-to-day timescales, at least in the range of (60-2,000 ppm).
A larger sample of these ultra short period spotted white dwarfs
could be detected with The Evryscope thanks to its larger foot-
print, using a longer cadence survey (16-32 minutes), and tak-
ing advantage of the improvement in the SNR of the light curves
obtained by TFAW.
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Figure 38: TFAW noise and systematics filtering capabilities for white dwarf
RE J0317-853. Top left: Normalized raw (black dots) and TFA-
filtered (red dots) light curves of RE J0317-853. Top right: Nor-
malized raw (black dots) and TFAW-filtered (red dots) light curves
of RE J0317-853. Bottom left: TFA-filtered light curve of RE J0317-
853 phase folded to twice the period reported by Barstow et al.
(1995). Red line corresponds to the 300 binned phase folded light
curve. Bottom right: TFAW-filtered light curve of RE J0317-853

phase folded to twice the period reported by Barstow et al. (1995).
Red line corresponds to the 300 binned phase folded light curve.

6.1.2.3 TFAW quantitative performance over Evryscope light curves

As in the case of the TFRM data (see Section 6.1.1.3), we wanted
to check the photometric performance of TFAW applied to the
Evryscope dataset. Top panel of Figure 39 shows The Evryscope’s
photometric precision (standard deviation σ) vs. The Evryscope
magnitude for 965 TFA- and TFAW-corrected light curves with
SDEs>15 (i.e. above the median value of the significances for
the Evryscope’s data sample and that can be considered bona
fide variables) observed in the field considered for this work.

Again, TFAW photometric performance is much better than
the one provided by TFA. Bottom panel of Figure 39 shows the
decrease in the standard deviations of the 965 sample of TFAW-
filtered light curves compared to the TFA ones. It can be seen,
that for almost all the standard deviation range, TFAW yields an
∼67% better final photometric precision than TFA.
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Figure 39: Top: Standard deviation vs. R magnitude for TFA (black dots)
and TFAW (red dots) of a set of 965 The Evryscope light curves.
Bottom: Decrease of the standard deviations for the same set of
light curves due to the application of TFAW compared to TFA. Both
TFA and TFAW results were obtained using 250 template stars. Red
line corresponds to the zero correction level.

Regarding the power spectra, we have shown that TFAW does
not introduce any fake periodicity in The Evryscope light curves.
Even more, we have demonstrated that a careful selection of the
signal level during TFAW’s frequency analysis step, can recover
high frequency signals like the one for white dwarf RE J0317-
853. In addition, a correct signal level for the phase folded light
curve preserves the high frequency signal’s shape while at the
same time, efficiently de-noising and removing most of the out-
liers.
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6.2 space telescope data

6.2.1 CoRoT Data

6.2.1.1 Data description

We downloaded the IRa01 and LRa01 runs from the N2 legacy
data official IAS CoRoT Public Archive1. We consider the faint
star (exoplanet) channel EN2_STAR, which comprises stars with
magnitude between 10 and 16. The two data sets, classified as
level 2 and versions 4.5 and 4.4, respectively, both include chro-
matic and monochromatic light curves. For this work we focus
on those white flux light curves which have a uniform sampling
of 512s of cadence. The observation windows, pointing coordi-
nates and the number of light curves of these runs are shown
in Table 7.

6.2.1.2 CoRoT 102886012 and CoRoT 102881832: a binary candidate
and a false positive planetary candidate

In any extrasolar planet survey, once a transit feature has
been identified, the possibility of it being caused by a binary
system has to be ruled out. In the case of CoRoT (and also Ke-
pler), transit features in the target light curve could be caused
by a real exoplanet, a real eclipsing binary or, a Background
Eclipsing Binary (BEB) (fainter background eclipsing binary con-
tained in the target photometric aperture). In addition, some
configurations of diluted eclipsing binaries or transiting plan-
ets can mimic the photometric transit of an real exoplanet (San-
terne et al., 2013). For the CoRoT data set, Almenara, J. M. et al.
(2009) found that the main types of false positives are eclipsing
binaries that are observed directly (“undiluted binaries”), and
those whose light is diluted by a nearby third star (which might
be physically related or not to the system). Typically, the third
star is brighter than the binary and corresponds to the target,
while the binary is a faint background system. In some low-
amplitude candidates, a transiting system consisting of a star
and a giant planet has also to be considered (Léger, A. et al.,
2009). Among the undiluted binaries, planet-like eclipses may
be caused by grazing eclipsing binaries and the central eclipses
of two stellar components with large ratios in area or surface
brightness. Clear eclipsing binaries can be detected directly
from light curves that exhibit secondary eclipses, out-of-transit
photometric modulations or transits too deep to be caused by

1 http://idoc-corot.ias.u-psud.fr/sitools/client-user/COROT_N2_PUBLIC_

DATA/project-index.html

http://idoc-corot.ias.u-psud.fr/sitools/client-user/COROT_N2_PUBLIC_DATA/project-index.html
http://idoc-corot.ias.u-psud.fr/sitools/client-user/COROT_N2_PUBLIC_DATA/project-index.html
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planets. Also, planetary transits usually have a u-shape while
binaries are more v-shaped. (Carpano, S. et al., 2009). How-
ever, this rule-out criteria can only be used for light curves
with high SNRs. CoRoT has an extra tool that can help decide
whether a transit is caused by a planet or eclipsing binary. For
stars brighter than r=15, CoRoT provides photometry in 3 dif-
ferent colors that can be used to reject planet candidates (see
Section 5.2.1.2 for more details). The chromatic information
is helpful to distinguish between achromatic planetary tran-
sits and chromatic eclipsing binaries and also to identify false
alarms from diluted background binaries. If a transit happens
in all three filters, then the chances of it being a real plane-
tary transit increase. If it is only observed in one or two filters
at a time, then the transit might be due to a contaminating
eclipsing binary (Carone, L. et al., 2012). For the rest of sce-
narios, complementary observations are needed to discard or
not the eclipsing binary nature of the transits. This observa-
tions include the search for photometric variations on nearby
stars during the target transit; deep, high-angular resolution
observations for fainter and close contaminating stars (Deeg,
H. J. et al., 2009; Law et al., 2014; Ziegler et al., 2016) ; cen-
troid measurement (Bryson et al., 2013); high-resolution spec-
troscopy; infrared spectroscopy (Guenther, E. W. and Tal-Or,
L., 2010), to search for low-mass companions; and, precise RV
measurements to estimate the mass of the transiting object (e.g.
Léger, A. et al. (2009), Pätzold, M. et al. (2012), and Santerne
et al. (2013)).

We want to check if TFAW is able to help in ruling-out tran-
sits caused by binary systems by improving their characteriza-
tion or by directly detecting secondary transits. TFAW does so
increasing the SNR of the target light curves by means of the
SWT-based signal estimation and noise removal (see Chapter 4

for more details). As test light curves we have selected CoRoT’s
IRa01 binary candidate CoRoT 102886012 and the false positive
planetary candidate CoRoT 102881832 (Carpano, S. et al., 2009).

CoRoT 102886012 is a star of magnitude V=16.34 located at
(α, δ) = (06:48:13.0, -01:36:54) listed as an eclipsing binary can-
didate by Carpano, S. et al. (2009) with a period of 1.58466±0.00025

days. It was observed by CoRoT during the Initial Run (IRa01)
from January to April 2007. We use 8,192 data points in our
light curve extracted from the monochromatic white flux of the
N2, version 4.5 legacy data for CoRoT 102886012. The target
was observed in the E1R CCD with CoRoT’s long cadence of 512s.
To run TFA and TFAW we build or sample of template stars by se-
lecting 200 stars randomly distributed in the target’s CCD. In or-
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der to minimize any bias or introducing correlated periodicities
in the target light curve coming from the template light curves,
only those stars with low standard deviation (<0.006 mags) and
with a small (<-0.6) L variability index are selected as template
stars. During TFA and TFAW’s frequency analysis steps (see Sec-
tions 4.2.3 and 4.3.3), the period of the primary transit is found
as seen in Figure 40 (though the half period has slightly higher
significance). Once the period has been found, we run the it-
erative reconstruction step (see Sections 4.4.2 and 4.3.4) with TFA
and TFAW. For the latter, the signal level has been chosen follow-
ing the method explained in Section 3.3.1 and the noise level has
been set to the lowest (i.e. highest frequency) SWT’s decompo-
sition scale.
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Figure 40: Top: TFA’s BLS power spectrum for CoRoT’s IRa01 eclipsing binary
candidate CoRoT 102886102. Bottom: TFAW’s BLS power spectrum.
Dashed lines denote the 1.58466-day period reported by Carpano,
S. et al. (2009).

Figure 41 shows the reconstructed signals for TFA and TFAW
for CoRoT 102886012. As can be seen, TFAW efficiently removes
the high frequency noise preserving the underlying signal’s
shape and depth for the primary transit. The high frequency
noise removal achieved by TFAW leads to a better signal SNR
than for TFA’s light curve. Specially for the secondary transit
whose profile is better defined after TFAW has been applied.
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Figure 41: Top left: Normalized raw (black dots) and TFA-filtered (red dots)
light curves of CoRoT 102886012. Top right: Normalized raw
(black dots) and TFAW-filtered (red dots) light curves of CoRoT
102886012. Bottom left: Phase folded TFA-filtered light curve of
CoRoT 102886012. Red line corresponds to the 300 binned phase
folded light curve. Bottom right: Phase folded TFAW-filtered
light curve of CoRoT 102886012. Red line corresponds to the
300 binned phase folded light curve. The arrows mark the phase
position of the secondary transit.

CoRoT 102881832 is a V=15.273 (Zacharias et al., 2012) star
located at (α, δ) = (06:48:07.5462, -00:47:09.0765) (Gaia Collabo-
ration, 2018). It is listed as one of the 50 transit candidates in
Carpano, S. et al. (2009) but it is not mentioned in the follow-up
paper of Moutou, C. et al. (2009). The transit period reported by
Carpano, S. et al. (2009) is 2.16638±0.000087 days. As the pre-
vious example, CoRoT 102881832 was observed during CoRoT’s
Initial Run (IRa01) but, this time, by the E1L CCD. Again, we
use 8,192 data points from the white flux light curve provided
by CoRoT’s legacy data and build the TFA and TFAW template
samples following the same method as before. Both TFA and
TFAW’s frequency analysis steps recover the period reported by
Carpano, S. et al. (2009) as can be seen in Figure 42.

As before, once the period has been found, we run TFA and
TFAW’s iterative reconstruction steps. For TFAW, we set the noise
level to the lowest decomposition scale and the signal level has
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Figure 42: Top: TFA’s BLS power spectrum for CoRoT’s IRa01 planetary transit
candidate CoRoT 102881832. Bottom: TFAW’s BLS power spectrum.
Dashed lines denote the 2.16638-day period reported by Carpano,
S. et al. (2009).

been selected using the method in Section 3.3.1. Figure 43

shows TFA and TFAW’s reconstructed signals for CoRoT 102881832.
TFAW has adequately denoised the signal and removed the out-
liers present in the light curve. Moreover, in both light curves,
but, clearer in TFAW’s one, a shallow faint transit can be seen
at phase ∼0.9 (primary transit’s phase plus 0.5) suggesting an
eclipsing binary origin for the transit. Effectively, planetary
transit candidate CoRoT 10288132 was later classified as an
eclipsing binary by the "Automated supervised classification
of variable stars" developed by Debosscher, J. et al. (2007) and
applied to CoRoT’s data in Debosscher, J. et al. (2009). This tran-
sit candidate was also given low chances of being of planetary
origin by Nefs, S. V., Snellen, I. A. G., and de Mooij, E. J. W.
(2012). Based on the fact that "the v-shaped light curves of near-
grazing planet systems are strongly degenerate with blended
eclipsing binary systems and can therefore not be distinguished
from each other", Nefs, S. V., Snellen, I. A. G., and de Mooij,
E. J. W. (2012) apply a cut in the impact parameter, b <0.85,
to minimize the number of candidate systems that would be as-
signed follow-up observations. They find an impact parameter
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of b=1.12 for CoRoT 102881832. It also appears an eclipsing bi-
nary system in the "Unofficial CoRoT Eclipsing Binary Catalog"
of Jonathan Devor2 with a radius ratio, p=0.660±0.053 and a
mass ratio, M2/M1=0.31±0.23. CoRoT 102881832 spectral type
is A5V according to EXODAT. Assuming that the primary is a
main-sequence star and has an approximate radius of 1.8R�
and mass of 2M� the fit parameters found by Jonathan Devor
yield a radius of ∼1.18R� and mass of ∼0.62M� for the transit-
ing object.
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Figure 43: Top left: Normalized raw (black dots) and TFA-filtered (red dots)
light curves of CoRoT 102881832. Top right: Normalized raw
(black dots) and TFAW-filtered (red dots) light curves of CoRoT
102881832 for a noise level equal to the lowest decomposition
scale. Bottom left: Phase folded TFA-filtered light curve of CoRoT
102886012. Red line corresponds to the 300 binned phase folded
light curve. Bottom right: Phase folded TFAW-filtered light curve
of CoRoT 102881832. Red line corresponds to the 300 binned
phase folded light curve. Arrows point to the shallow secondary
transit.

Given that there does not seem to be any significant high
frequency signals neither in the BLS power spectrum (see Figure
42) or the phase folded light curve (see Figure 43), we can still
improve the SNR of the secondary transit by increasing the noise
level. We run again TFAW’s iterative signal reconstruction step but,

2 http://www.astro.tau.ac.il/~jdevor/CoRoT_catalog/catalog.html

http://www.astro.tau.ac.il/~jdevor/CoRoT_catalog/catalog.html
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this time considering the three lowest decomposition scales of
the phase folded light curve as noise levels. The signal level is
computed as before through the method explained in Section
3.3.1. Figure 44 shows the new TFAW’s reconstructed signal.
As can be seen, the signal has been greatly denoised and the
shallow secondary transit at phase ∼0.9 has its SNR improved.
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Figure 44: Top left: Normalized raw (black dots) and TFA-filtered (red dots)
light curves of CoRoT 102881832. Top right: Normalized raw
(black dots) and TFAW-filtered (red dots) light curves of CoRoT
102881832 for a noise level equal to the three lowest decomposi-
tion scales. Bottom left: Phase folded TFA-filtered light curve of
CoRoT 102886012. Red line corresponds to the 300 binned phase
folded light curve. Bottom right: Phase folded TFAW-filtered
light curve of CoRoT 102881832. Red line corresponds to the
300 binned phase folded light curve. Arrows point to the shallow
secondary transit.

6.2.1.3 CoRoT-21 b: a test case

CoRoT-21 is a F8IV star of magnitude V=15.84 mag (Zacharias
et al., 2012) located in the Monoceros constellation at (α, δ)
= (06:44:12.6302, -00:17:56.987) (Gaia Collaboration, 2018). It
was observed by the CoRoT mission during the Long Run 01

(LRa01) from October 2007 to March 2008. CoRoT-21 b, CoRoT
ID 102725122, was not discovered, in contrast to all other CoRoT
planets up to that moment, by its alarm mode, but by six de-
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tection teams that processed the raw light curves for the LRa01

run (Carone, L. et al., 2012). Candidate 102725122 received a
low priority for follow-up observations due to the long tran-
sit duration (4.8 h) for a G2 star (CoRoT-21 was classified as
such in the Exo-Dat database at that time (see Section 5.2.1.2 for
more details on the Exo-Dat)). Later on, CoRoT-21 was given
a higher priority and follow-up observations were performed
with HARPS in November 2009, and with the HIRES instru-
ment at Keck in December 2009, January 2010 and January 2011

(Pätzold, M. et al., 2012).
A transit with a period of 2.72482 days was detected using the

EXOTRANS package (Grziwa, Pätzold, and Carone, 2012) and BLS.
The possibility of the system being a binary was ruled out by
means of the DEBiL package (Devor, 2005) and by later HARPS
and HIRES follow-up observations. The raw, the EXOTRANS-
corrected and the binned and phase folded light curves ob-
tained by Pätzold, M. et al. (2012) are shown in Figure 45.

To characterize the transit Pätzold, M. et al. (2012), fitted a
Mandel and Agol (2002) model to the phase-folded light curve
using the Genetic Algorithm developed by Kim, Geem, and
Kim (2001). Assuming a circular orbit (i.e. e=0), they fitted the
transit epoch T0, the semi-major axis a (R∗), the planet to star
radius ratio p, the impact parameter b = acosi/R∗ and the com-
binations u+ = q1 + q2 and u− = q1 − q2 where q1 and q2 are
the quadratic limb-darkening coefficients. RV and spectroscopy
follow-up observations of CoRoT-21 were performed with the
HARPS and the HIRES spectrographs. This RV data was used to
estimate the mass of the planet and the spectroscopy was used
to estimate the star radius, mass and age through the mean stel-
lar density, the effective temperature and metallicity. The stellar
and planetary parameters obtained through the EXOTRANS light
curve and the RV and spectroscopic observations are summa-
rized in Table 8.

We want to compare TFA and TFAW performance for a light
curve of a confirmed CoRoT exoplanet. We use 16,384 data
points (allowing 14 SWT decomposition levels) to build our tar-
get light curve from the monochromatic white flux of the N2,
version 4.4 legacy data provided by the CoRoT mission for CoRoT-
21 b. Our target was observed with the E2L CCD with and ex-
posure time of 512s. To build our sample of template stars, we
use 200 stars randomly distributed in the E2L CCD FoV. To min-
imize any biasing of our target light curve after applying TFA
and TFAW, only stars with low standard deviation (<0.006) and
with a small (<-0.6) L Stetson’s variability index are selected.
The resulting TFA and TFAW corrected light curves are shown
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Figure 45: CoRoT-21 b light curves as seen in (Pätzold, M. et al., 2012). Top:
Normalized raw light curve of CoRoT-21. Middle: EXOTRANS-
corrected light curve. Bottom: Phase folded light curve. The
phase is divided into 300 bins with mean flux and standard devi-
ation displayed for each bin.
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Table 8: Stellar and planetary parameters obtained for CoRoT-21 b by Pät-
zold, M. et al. (2012).

CoRoT ID 102725122

Transit parameters

Period P (days) 2.72474± 0.00014
Transit epoch T0 (JD - 2450000) 4399.0282± 0.0009
Transit duration (hours) 4.76

Eccentricity e 0 (fixed)

Radius ratio p 0.067± 0.0018
u+ 0.66± 0.09
u− 0.13± 0.11
Impact parameter b 0.25± 0.17
Scaled semi-major axis a (R∗) 4.60± 0.26
Inclination i (º) 86.8± 2.1
RV parameters

Stellar rotational velocity (km s−1) 11± 1.0
System velocity Γ (m s−1) 101

Half-amplitude K (m s−1) 274± 35
Stellar parameters

Stellar radius R∗ (R�) 1.95± 0.21
Stellar mass M∗ (M�) 1.29± 0.09
Age (Gyr) 4.1+0.1

−0.5

Effective temperature (K) 6200± 100
Surface gravity log g (dex) 3.7± 0.1
Metallicity [Fe/H] 0.0± 0.1
Spectral Type F8IV

Planetary parameters

Planetary radius Rp (RJ) 1.30± 0.14
Planetary mass Mp (MJ) 2.26± 0.31
Planetary bulk density 〈ρ〉 (103 kg/m3) 1.36± 0.48
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in Figure 47 and the BLS power spectra for their corresponding
frequency analysis steps (see Sections 4.2.3 and 4.3.3) are shown
in Figure 46. As can be seen, after TFAW is applied, the noise
contribution decreases significantly and outliers are efficiently
removed. Regarding the power spectra, TFAW’s frequency analy-
sis step obtains a very similar result compared to TFA.
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Figure 46: Top: TFA’s BLS power spectrum for confirmed exoplanet CoRoT-21

b. Bottom: TFAW’s BLS power spectrum for confirmed exoplanet
CoRoT-21 b.

To characterize the transit, we model the fit with the batman
package using a Mandel and Agol (2002) analytic transit model.
We used the MCMC sampler provided by emcee (Foreman-Mackey
et al., 2013) to solve for 5 transit parameters: the transit epoch
T0, the inclination of the orbit i, the ratio between the plane-
tary radius and the stellar radius p, the period P and the semi-
major axis of the orbit a. Given the faint magnitude of CoRot-
21, the correct determination of the limb-darkening coefficients
is difficult to obtain. Thus, we have fixed the quadratic limb
darkening coefficients to their theoretical values taken from the
tables by Sing, D. K. (2010). For a Teff=6200K, log g=3.7 dex,
[Fe/H]=0.0 star this values are l=0.395 and q=0.265. As in Pät-
zold, M. et al. (2012), we have also considered a circular orbit
(i.e. e=0). For the MCMC fit, we have considered a uniform
distribution of the priors and run the sampler with 200 chains
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and 10,000 iterations with a burn-in phase of 2,000 iterations.
This way we ensure that the chains run for more than 50 au-
tocorrelation times for each parameter and that the mean ac-
ceptance fraction is between 0.25 and 0.5 (Bernardo et al., 1996

and Foreman-Mackey et al., 2013). Also, we have started the
walkers for each parameter in a tight ball around the values ob-
tained by Pätzold, M. et al. (2012). In Table 9 we compare the
transit parameters obtained by Pätzold, M. et al. (2012) with the
ones obtained through the MCMC fit for TFA and TFAW posterior
probability distributions. The fitted MCMC parameter values
correspond to the 50% quantile while the upper and lower er-
rors are computed from the 25% and 75% quantiles.
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Figure 47: TFAW noise and systematics filtering capabilities for confirmed ex-
oplanet CoRoT-21 b. Top left: Normalized raw (black dots) and
TFA-filtered (red dots) light curves of CoRoT-21 b. Top right: Nor-
malized raw (black dots) and TFAW-filtered (red dots) light curves
of CoRoT-21 b. Bottom left: Phase folded TFA-filtered light curve
of CoRoT-21 b. Red line corresponds to the 300 binned phase
folded light curve. Bottom right: Phase folded TFAW-filtered light
curve of CoRoT-21 b. Red line corresponds to the 300 binned
phase folded light curve.

For the best fit, we find both for TFA and TFAW that the time
of inferior conjunction, T0, lies somewhere around 4,399.03 (JD-
2450000). This is approximately 8s later than the one reported
by Pätzold, M. et al. (2012) but within the error of the tran-
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sit epoch. Regarding the semi-major axis of the orbit, a, TFA
yields a slightly lower value than the one reported by Pätzold,
M. et al. (2012) and TFAW a higher one but both compatible
with the measured value of 4.60±0.26R∗. For the impact param-
eter, b, and the orbital inclination, i, TFA returns 0.44

+0.76
−0.64 and

84.24669
+0.0751
−0.03465º while TFAW returns 0.0±0.62 and 89.9979

+0.0751
−0.03465º

which are compatible within the errors with the values given
by Pätzold, M. et al. (2012). The difference in the uncertainties
for the impact parameter with respect the one in the literature
is due to the fact that we fit the orbital inclination and from
it derive b while Pätzold, M. et al. (2012) do it reversely. For
the planetary to star radius ratio, p, both TFA and TFAW obtain
smaller values (∼1.11×) than the one reported by Pätzold, M.
et al. (2012). However, they would be compatible with a bigger
star radius than the reference value of R∗=1.95±0.21R� (around
2.2 R�) assuming a planet radius of 1.30±0.14 RJ. This differ-
ence in the transit depth for both TFA and TFAW with respect the
literature values could probably be understood taking into ac-
count the main difference between Pätzold, M. et al. (2012) and
this work. The TFA implementation used by EXOTRANS (Grziwa,
Pätzold, and Carone, 2012) does not run the signal reconstruc-
tion step described in Section 4.4.2. As explained in Kovács,
Bakos, and Noyes (2005), this can lead to a biased or distorted
light curve as the signal is assumed to be constant during the
frequency analysis step. With the best fit parameters, both TFA
and TFAW obtain a mean planetary radius slightly above that
of Jupiter (1.11±0.12 for TFA and 1.15±0.13 for TFAW). Using
the same RV results for the half-amplitude, K, as in Pätzold, M.
et al. (2012), the mass of CoRoT-21 b for TFA is 2.21±0.31 and
2.26±0.31 for TFAW; compatible with the literature value. Fi-
nally, the bulk density 〈ρ〉, is 1.97±0.46 and 1.85±0.43 for TFA
and TFAW respectively. The larger values for this parameter
compared to the one in (Pätzold, M. et al., 2012), is easily ex-
plained by the smaller radii obtained in this work. Figure 48

shows the best fit obtained for TFA and TFAW over-plotted to
their corresponding phase folded light curves.

As seen in Section 4.4.5, TFAW yields a closer representation
of the real transit than TFA and with less uncertainties. For
CoRoT-21 b, although the planetary radii obtained with TFA
and TFAW are smaller (which as explained above could be due
to signal reconstruction step missing in EXOTRANS), all transit and
derived parameters are compatible with the ones given by Pät-
zold, M. et al. (2012). Using CoRoT-21 b light curve, we have
confirmed the correct performance of TFAW when applied to a
real, confirmed exoplanet scenario.
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Figure 48: Left: Phase folded TFA light curve for CoRoT-21 b. The solid red
line corresponds to the best fit given by the parameters in Table 9.
Right: Phase folded TFAW light curve for CoRoT-21 b. As before,
the solid red line corresponds to the best fit for TFAW following
the parameters in Table 9.

6.2.1.4 CoRoT 102588881: a planetary candidate

CoRoT 102588881 is a K2V star (Guenther, E. W. et al., 2013)
(originally classified as a G2IV star by EXODAT) of magnitude
V=16.08 (Carone, L. et al., 2012) located at (α, δ) = (06:41:07.805,
+00:34:15.26) (Cutri et al., 2003). It was observed by the CoRoT
mission during the Long Run 01 (LRa01) from October 2007 to
March 2008. A 1.52% deep transit with a period of 27.29 days
was detected by Carone, L. et al. (2012). Observations done
with the IAC80 Telescope3 excluded contaminating eclipsing
binaries. In addition Guenther, E. W. et al. (2013) through
high-resolution spectroscopy excluded a companion star with
spectral type earlier than M3.5V and the presence of a com-
panion of similar brightness as the target within 2 arcsec. The
Gaia mission (Gaia Collaboration, 2018) does not detect any
other source within this distance. RV observations with HARPS
showed variations of 84ms−1 that were comparable with the er-
rors (∼70 ms−1). Carone, L. et al. (2012) assuming a stellar mass
M∗=1M�, discarded the presence of a Jupiter-mass planet in
this 27.29 days orbit as it would produce peak-to-peak RV varia-
tions of ∼120 ms−1. Although Carone, L. et al. (2012) state that
more HARPS measurements are required to assess the nature
of the transit and that follow-up observations were ongoing, no
more info is found on this target since (Guenther, E. W. et al.,
2013).

3 http://vivaldi.ll.iac.es/OOCC/iac-managed-telescopes/iac80/

http://vivaldi.ll.iac.es/OOCC/iac-managed-telescopes/iac80/
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Table 10: Stellar and planetary parameters used to initialize the MCMC fit for
transit candidate 102588881.

CoRoT ID 102588881

Transit parameters

Period P (days) 27.2881± 0.0012†

Transit epoch T0 (JD - 2450000) 4409.3616± 0.00340†

Transit duration (hours) 2.64
†

Eccentricity e 0.5

Radius ratio p 0.1148

u+ 0.5715

u− 0.1368

Scaled semi-major axis a (R∗) 37.39

Inclination i (º) 87.7

RV parameters

Half-amplitude K (m s−1) 84± 35†

Stellar parameters

Stellar radius R∗ (R�) 1.02

Stellar mass M∗ (M�) 0.7

Effective temperature (K) 5000

Surface gravity log g (dex) 4.3

Metallicity [Fe/H] 0.0

Spectral Type K2V

Planetary parameters

Planetary radius Rp (RJ) 1.14

Planetary mass Mp (MJ) 1.1
† denote values taken from Carone, L. et al. (2012).
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As with CoRoT-21 b, we want to compare the detrending and
de-noising performance of TFA and TFAW. We use 16,384 data
points to build CoRoT 102588881 light curve obtained from the
monochromatic white flux of the N2, version 4.4 legacy data.
This CoRoT target was observed with the E1L CCD with a ca-
dence of 512s. We use the same method employed with CoRoT-
21 b (see Section 6.2.1.3 for more details) to build our sample of
template stars. Although the transit is discernible from the raw
light curve, and during TFA and TFAW’s frequency analysis step
the 27.29 days period is detected in the BLS power spectrum (see
Figure 49), the corresponding peak is not the most significant
one. Thus to run the signal reconstruction step, we had to man-
ually force the period to phase fold the light curve. As in the
previous examples, the noise level is set to the lowest SWT’s de-
composition scale and the signal level of the phase folded light
curve is chosen using the method explained in Sect 3.3.1.
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Figure 49: Top: TFA’s BLS power spectrum for planetary candidate CoRoT
102588881. Bottom: TFAW’s BLS power spectrum for planet candi-
date CoRoT 102588881. The dashed vertical line marks the tran-
sit’s period as reported by Carone, L. et al. (2012).

Figure 50 shows CoRoT 102588881 reconstructed light curves
for TFA and TFAW. As in the previous cases, the final TFAW-
filtered light curve presents a higher SNR than the TFA one
thanks to the SWT-based denoising and outlier removal.
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Figure 50: TFAW noise and systematics filtering capabilities for planetary can-
didate CoRoT 102588881. Top left: Normalized raw (black dots)
and TFA-filtered (red dots) light curves of CoRoT 102588881. Top
right: Normalized raw (black dots) and TFAW-filtered (red dots)
light curves of CoRoT 102588881. Bottom left: Phase folded TFA-
filtered light curve of CoRoT-21 b. Red line corresponds to the
300 binned phase folded light curve. Bottom right: Phase folded
TFAW-filtered light curve of CoRoT 102588881. Red line corre-
sponds to the 300 binned phase folded light curve.

Following the example of CoRoT-21 b, to characterize the
transit we employ the batman package and a Mandel and Agol
(2002) analytic model. To fit the transit we use the MCMC sam-
pler provided by the emcee Python module. Initial tests run on
the transit showed a great correlation between the transit’s or-
bital inclination, i, and eccentricity, e. Thus, for CoRoT 102588881,
we solve the fit for 6 transit parameters: the transit epoch, T0;
the inclination and eccentricity of the orbit, i and e, respectively;
the ration between the planetary and stellar radii, p; the period,
per and the semi-major axis of the orbit, a. Also, as happened
with CoRoT-21 b, given the faint magnitude of the stars, we
have fixed the quadratic limb darkening coefficients to the the-
oretical values taken from the tables provided by Sing, D. K.
(2010). Assuming a Teff=5000K, log g=4.3 dex and [Fe/H]=0.0
(i.e. similar to those for the K2V star Epsilon Eridani (Kov-
tyukh et al., 2003; Gonzalez, Carlson, and Tobin, 2010) this val-
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ues are l=0.5715 and q=0.1368. Given that there are no precise
measurements of the star’s mass and radius, we have assumed
M∗=0.7M� and R∗=1.02R� as the stellar parameters to initialize
the transit model. In addition, the RV measurements indicate
that if the transit is due to a planet, its mass should be smaller
than 1MJ. However, given that Carone, L. et al. (2012) assume
that the star is of spectral type G2IV (from EXODAT), whereas
more recent observations (Guenther, E. W. et al., 2013) point
towards a smaller K2V star, we assume as initial values for the
planet mass and radius: 1.1MJ and 1.14RJ respectively. The
mass value is compatible with the RV measurements done by
Carone, L. et al. (2012) for an object in an orbit of 27.29 days
around a K2V star of 0.7M�. For the MCMC fit we have consid-
ered a uniform distribution of the priors and run the sampler
with 200 chains and 10,000 iterations with a burn-in phase of
2000 iterations. As explained in Section 6.2.1.3, this way we try
to ensure that the chains run for more than 50 autocorrelation
times for each parameter and that the mean acceptance fraction
lays between 0.25 and 0.5. The walkers start from a tight ball
around the transit parameters in Table 10.

In Table 11 we compare the results obtained through the
MCMC fit for TFA and TFAW’s posterior probability distributions.
The fitted values correspond to the 50% quantile while the up-
per and lower errors are computed from the 25% and 75% quan-
tiles.

In this case, as can be seen from the posterior probability
distributions in Figure 51, the best fit yields a high correlation
between the semi-major axis, a, the orbit inclination, i, and its
eccentricity, e. This leads to higher uncertainties for these pa-
rameters as shown in Table 11. Even though, TFAW obtains nar-
rower probability distributions for these transit parameters (as
well as for the other three) than TFA. In Figure 51, notice that
for a, i and e the axis ranges of the probability distributions
are the same for TFA and TFAW. For T0 and the period, though
centered at different values, the axis ranges are also the same.
For the semi-major axis of the orbit, a, both TFA and TFAW find
compatible values around 38R∗; though the one for TFAW has
lower uncertainties (∼1.8-2×). For the orbit inclination, i, TFA
returns 86.13844

+0.99118
−1.31648º and, TFAW, 87.40814

+0.36779
−0.46681º. Again,

both values could be compatible with each other within the
errors, and TFAW yields lower (∼3×) uncertainties than TFA. For
the orbit eccentricity, e, TFA returns 0.50055

+0.08575
−0.09559 and TFAW

0.47384
+0.04982
−0.04997. As in the previous parameters, both values are

compatible within the errors with TFAW returning lower uncer-
tainties. Given the fitted eccentricity, it would mean that the
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Figure 51: 1-D and 2-D projections of the posterior probability distributions
of the 6 MCMC fitted parameters (a, e, i, T0, p, P) for CoRoT
102588881 TFA (top) and TFAW (bottom) detrended light curves.
The 25%, 50%, 75% quantiles, are displayed in dash vertical lines
on the 1-D histograms.
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candidate planet orbiting CoRoT 102588881 would have an ec-
centricity higher than that of Mercury (0.2056; https://nssdc.
gsfc.nasa.gov/planetary/factsheet/mercuryfact.html) but still
far from the highest eccentricity for a confirmed exoplanet (0.97±0.01

for HD 20782 (O’Toole et al., 2009; Stassun, Collins, and Gaudi,
2017). Regarding the time of inferior conjunction, T0, both
TFA and TFAW find very similar values but, the transit happens
slightly sooner (within two 512s exposures) than the value re-
ported by Carone, L. et al. (2012). For the period, p, the fit
values obtained for TFA and TFAW are compatible with the one
in Carone, L. et al. (2012). Nevertheless, TFAW uncertainties for
these parameters are lower than the ones reported by Carone, L.
et al. (2012) and the ones returned by the fit of the TFA-filtered
light curve. The main difference between TFA’s MCMC fit and
TFAW’s one is the planet to stellar radii ratio, p. TFA finds a
bigger (a factor ∼3×) value than the one for TFAW’s fit. This dif-
ference will be reflected in the planetary radii Rp obtained for
both light curves. The planetary radius and mass obtained for
TFA are 3.72±1.49RJ and 0.99±0.43MJ, respectively. Although
the planetary mass is compatible with the RV measurements
obtained by Carone, L. et al. (2012) and, considering a K2V
star, the planet radius seems to be rather unrealistic when com-
pared to the planet mass. In addition, the inferred bulk density
of 0.023±0.019 seems to be too small. On the contrary, TFAW
obtains a planetary mass of 0.98±0.42MJ, compatible with the
RV, and a planet radius of 1.20±0.28RJ which seem to yield a
more realistic scenario for the planetary transit candidate. The
inferred bulk density of 0.70±0.41 would be compatible with
those of other confirmed Jupiter-mass exoplanets. In total, for
CoRoT 102588881, TFAW yields closer results to a real exoplanet
candidate than TFA and provides smaller uncertainties for the
Mandel and Agol (2002) fit parameters. However, due to the
still high uncertainties in the semi-major axis, a, and the RV
measurements, some derived parameters like the impact pa-
rameter, b, and the planet’s bulk density, 〈ρ〉, still return high
uncertainties. The latter could be improved, for example, with
better RV measurements that would yield smaller errors in the
planet mass. Figure 52 shows the best fit obtained for TFA and
TFAW over-plotted to their corresponding phase folded light
curves.

In summary, as in the test case of confirmed planet CoRoT-21

b, TFAW yields a closer, with less uncertainties and more realis-
tic result than TFA for planet transit candidate CoRoT 102588881.
Though in this case, some parameters (the impact parameter, b
and the bulk density 〈ρ〉) still have high uncertainties, we have

https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html
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Figure 52: Left: Phase folded TFA light curve for CoRoT 102588881. The
solid red line corresponds to the best fit given by the parameters
in Table 11. Right: Phase folded TFAW light curve for CoRoT
102588881. As before, the solid red line corresponds to the best
fit for TFAW following the parameters in Table 11.

demonstrated TFAW’s potential to improve the characterization
of potential planetary transit candidate signals.

6.2.1.5 CoRoT 102850921: a multi-periodic example

CoRoT 102850921 is a A6V star (Sebastian et al., 2012) of mag-
nitude V=12.98 mag (Zacharias et al., 2012) located at (α, δ)
= (06:47:23.8631, -03:08:32.3797) (Gaia Collaboration, 2018). It
was observed by the CoRoT mission during the Initial Run 01

(IRa01) from January to April 2007. CoRoT 102850921 appears
as a planet transit candidate with a period of 0.61161 days in
Carpano, S. et al. (2009) but it is not mentioned in the follow-
up paper of Moutou, C. et al. (2009). Nefs, S. V., Snellen, I.
A. G., and de Mooij, E. J. W. (2012) classify this target as a
blended eclipsing binary system. For CoRoT 102850921 they
find a fitted impact parameter of b=1.18>0.85 thus minimizing
the chances of the transit being of planetary origin.

We use 8,192 data points to build our target light curve from
the monochromatic white flux of the N2, version 4.5 legacy data
provided by the CoRoT mission for the IRa01 run. Our target
was observed with the E2R CCD with an exposure time of 512s.
As in the previous examples, we build our sample of template
stars, using 200 stars randomly distributed in the CCD FoV. As
before, to minimize any biasing of our target light curve after
applying TFA and TFAW, only stars with low standard deviation
(<0.006) and with a small (<-0.6) L Stetson’s variability index
are selected.
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After running TFA and TFAW frequency analysis step, we an-
alyzed the BLS power spectrum of the detrended light curve
(see top panel in Figure 54). We find two clear signals at peri-
ods 0.1193 and 0.6116 days corresponding to a sinusoidal mod-
ulation and the transit, respectively. The 0.1193-day variabil-
ity hints towards a δ-Scuti nature for this A-type star (Balona,
2011). In addition, we removed the contribution of these two
signals and found two extra semi-sinusoidal contributions at
periods 0.0951 and 0.1588 days (see second to fourth panels
in Figure 54). Neither of them correspond to the orbital pe-
riod of the satellite (1.7 h) (Affer et al., 2012). Running a LS
search, two clear extra signals appear at periods of 17.95 and
16.25 mins (see Figure 53). These last two frequencies, not de-
tected in other stars in the field, are not pure harmonics of the
dominant mode of 0.1193 days (a factor ∼10.56× and ∼9.56×,
respectively), or of the other semi-sinusoidal modes, and could
hint towards CoRoT 102850921 being a roAp star (Kurtz, 1982;
Balona, 2011; Balona et al., 2012) or being affected by other ro-
tational variabilities. Also, the excess flux in the transit egress
could be due to tidal distortions of the binary system (Kumar,
Ao, and Quataert, 1995; Thompson et al., 2012; Hambleton et
al., 2018) (determining the nature of the star is beyond the scope
of this work).

0 20 40 60 80 100 120
Freq. (d−1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ow
er

Figure 53: LS power spectrum for CoRoT 102850921 showing the two clear
signals at 80.22 d−1 (17.95 min) and 88.61 d−1 (16.25 min).

Once the different signals have been detected during the fre-
quency analysis steps, we run their iterative reconstruction with
TFA and TFAW. Result are shown in Figure 54. As can be seen,
if the signal period is correctly found, TFAW is able to directly
(i.e. without pre-whitening) decouple the phase folded signal
from the other signal contributions better than TFA and increase
their SNR. Also, as demonstrated in Section 4.4.3, TFAW ensures
that the signal shape is preserved.
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Figure 54: Top panel shows TFAW’s BLS power spectrum for transit candidate
CoRoT 102850921. The three dashed vertical lines mark the peri-
ods of the three sinusoidal signals described in Section 6.2.1.5.
The solid vertical line corresponds to the transit period. The
following plots show TFA’s (left plots) and TFAW’s signal recon-
structions at the periods described in Section 6.2.1.5. Red lines
correspond to the 100 binned phase folded light curve.
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As explained in Section 3.3.1, the method developed to select
the signal level and noise level has in mind the fact that all signal
components (specially low frequency ones) present in the target
light curve should be preserved. In the case of multiperiodic
signals, if the noise level is selected to be the first decomposition
scale (i.e. highest frequency), almost all the signal contribu-
tions (except those with the highest frequencies still coupled
with the noise) will be conserved in the signal estimation and
the frequency analysis step. If one is only interested in the low
frequencies, one way of getting rid of the higher ones would be
to increase the noise level to consider more of the lower decom-
position scales. This way, during the frequency analysis step the
low frequencies will no longer play a part and the signal esti-
mation will be almost free of high frequency components. In
order to preserve the shape of the low frequency signal, the sig-
nal level should still be selected following the method described
in Section 3.3.1.

For CoRoT 102850921, we are interested in the low frequency
transit. We can use the method explained before to remove the
presence of the high frequency signals in order to: first, get
a cleaner BLS power spectrum during the frequency analysis step
and, second, to improve the signal characterization by diminish-
ing the noise contribution and the effects of the high frequency
components. Following Section 4.3.3, for CoRoT 102850921’s
frequency analysis step we have selected the signal level follow-
ing the method described in Section 3.3.1 while the noise level
has been set to consider the lowest three decomposition scales.
Once the 0.6116 period has been recovered, the phase folded
light curve is used to estimate a new signal level as per Section
4.3.4 and, again, the noise level has been selected to be the low-
est three scales. Top panel in Figure 55 shows the BLS power
spectrum once the high frequencies have been removed during
the frequency analysis step. Comparing it with the top panel in
Figure 54, it is clear that TFAW has efficiently removed all traces
of the high frequency signal components while preserving the
transit period. Bottom two plots in Figure 55 show TFAW light
curves for noise levels equal to one (left) and three (right). As
can be seen, the noise contribution is highly diminished for the
second case compared to first one all the while, returning the
correct transit shape thanks to the correct signal estimation (as
explained in Section 4.3.4).
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Figure 55: Top panel shows TFAW’s BLS power spectrum for transit candidate
CoRoT 102850921 after the high frequency signals have been re-
moved as explained in 6.2.1.5. The three dashed vertical lines
mark the periods of the three high frequency sinusoidal signals
and the solid vertical one corresponds to the transit period. The
bottom left plot shows TFAW’s reconstructed signal for noise level
equal to the lowest decomposition scale. Bottom right plot shows
TFAW’s reconstructed signal for noise level equal to the three low-
est decomposition scales as described in 6.2.1.5. Red lines corre-
spond to the 100 binned phase folded light curve.

6.2.2 Kepler Data

6.2.2.1 Data description and objectives

We downloaded the K2 mission monitoring campaign 1, K2-
C1, Data Release 14 data from the MAST archive4 (see Sec-
tion 5.2.2.2 for more details). This field centered at (α, δ) =
(11:35:45.51, 01:25:02.27) was observed between May 30 and
Aug 21, 2014. During that time, Kepler observed 21,732 tar-
gets using the long cadence (LC) mode and 56 in short cadence
(SC) (see Figure 56) as well as the trans-Neptunian Object 2002

GV31. Campaign C1 was the first full length observing cam-

4 https://archive.stsci.edu/pub/k2/lightcurves/

https://archive.stsci.edu/pub/k2/lightcurves/
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paign for the K2 mission where the targets were selected by
peer reviewed proposals. For this work, we focus on the LC
light curves of this campaign as the number of available tem-
plate stars per CCD module is greater than for the SC data. We
use the PDC-corrected (see Section 5.2.2.3 for more details) flux
as starting point for our TFA and TFAW analysis.

K2-C1 comprises 41 confirmed planets in 32 planetary sys-
tems. We want to compare the photometric precision obtained
with TFA and TFAW with that achieved by the EVEREST pipeline
(Luger et al., 2016; Luger et al., 2017) for some of these objects.

Figure 56: Schematic of K2’s monitoring campaign C1 FoV with selected tar-
gets denoted by purple dots. Image credit: NASA.

6.2.2.2 K2-44: a confirmed planet example

K2-44 (EPIC201295312) is a V=12.19±0.12 mag (Zacharias et
al., 2012) located at (α, δ) = (11:36:02.79194, -02:31:15.16788)
(Gaia Collaboration, 2018). It was observed by the K2 mission
during the K2-C1 monitoring campaign from May 30 to Aug
21, 2014. K2-44 was first reported as a planetary hosting can-
didate by Montet et al. (2015). Doppler spectroscopy (Eylen
et al., 2016) constrained the planet mass to < 12M⊕. K2-35

was validated by Crossfield et al. (2016) as Teff=5912±51 K,
log g = 4.101±0.063, 1.58±0.15R� star orbited by a planet of
2.72±0.32R⊕ at 0.06511±0.011 AU with a period of 5.65688±0.00059

days. To characterize the host star they used Keck/HIRES opti-
cal spectra and applied the SpecMatch (Yee, Petigura, and von
Braun, 2017) software (see Table 12 for more details). A com-
panion star located 8" away from K2-44 was observed by Cross-
field et al. (2016) with NIRC2

5 and PHARO (Hayward et al.,

5 https://www2.keck.hawaii.edu/inst/nirc2/ObserversManual.html

https://www2.keck.hawaii.edu/inst/nirc2/ObserversManual.html
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2001) on the Keck and Palomar 200 inch telescopes, respec-
tively. Evans et al. (2018) observed the star in 2016 using the
Two Colour Instrument on the Danish 1.54 m telescope (Skot-
tfelt, J. et al., 2015). Combining their observations with mea-
surements from 2MASS, Gaia DR1 and URAT1, they determine
that the two stars are unassociated. The system was later re-
analyzed by Mayo et al. (2018). They find a 2.392±0.262R⊕
planet orbiting the star at a distance of 9.3775

+0.9217
−2.266163R∗ with

a 5.6563±0.0003 period.

Table 12: Stellar and planetary parameters obtained for K2-44 b by Cross-
field et al. (2016).

K2 ID EPIC201295312

Transit parameters

Period P (days) 5.65688± 0.00059
Transit epoch T0 (BJD - 2454833) 1978.7176± 0.0044
Transit duration (hours) 4.36

Eccentricity e 0 (fixed)

Radius ratio p 0.0156± 0.0012
u+ 0.3480± 0.09†

u− 0.2892± 0.11†

Scaled semi-major axis a (R∗) 8.856± 1.49?

Scaled semi-major axis a (AU) 0.0651± 0.011
Inclination i (º) 87.3543+1.8561

−3.3003
?

Stellar parameters

Stellar radius R∗ (R�) 1.58± 0.15
Stellar mass M∗ (M�) 1.15± 0.06
Effective temperature (K) 5912± 51
Surface gravity log g (dex) 4.101± 0.063
Metallicity [Fe/H] 0.0 (assumed)

Spectral Type -

Planetary parameters

Planetary radius Rp (R⊕) 2.72± 0.32
Planetary mass Mp (MJ) -

Planetary bulk density 〈ρ〉 (103 kg/m3) -
† denote values taken from Sing, D. K. (2010) assuming a 0.0 [Fe/H] metallicity.
? denote values taken from Mayo et al. (2018).

We want to compare the performance of TFA and TFAW ap-
plied to K2-44 b light curves with the EVEREST corrected one.
We use 3,072 (i.e. yielding 10 decomposition scales) data points
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obtained from the K2-C1, Data Release 14, PDC-corrected flux
to build K2-44’s light curve. K2-44 was observed with CCD
channel 39 using K2’s long cadence (LC) mode. To build TFA
and TFAW’s sample of template stars we compute the Stetson’s
L variability index for all the stars in the CCD channel. Looking
at the distribution of L indexes for this CCD channel, we then se-
lect those (∼300 stars) with a value <10 to avoid the inclusion of
bona-fide variable stars in the sample. As can be seen in Figure
57, both TFA and TFAW find the period reported by Crossfield
et al. (2016) for K2-44 b during their frequency analysis steps.
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Figure 57: Top: TFA’s BLS power spectrum for planet hosting star K2-44. Bot-
tom: TFAW’s BLS power spectrum for planet hosting star K2-44.
The solid vertical line marks the planet period of 5.65688 as re-
ported by Crossfield et al. (2016).

We then run the signal reconstruction setting the noise level to
the lowest decomposition scale and the signal level to the scale
determined by the method explained in Section 3.3.1 for the
phase folded light curve of K2-44 b. Figure 60 shows the TFA-
and TFAW-reconstructed light curves for K2-44 b compared to
the EVEREST one. As can be seen, TFA is able to efficiently
detrend and remove the star variability from the light curve
but achieves a worse photometric precision (∼1.4× worse) than
EVEREST. As for TFAW, it is also able to detrend the light curve
as TFA but, the SWT-based filter yields a better (∼1.5×) photo-
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metric precision than EVEREST. Also, the presence of outliers is
highly diminished. Figure 58 shows a comparison of the phase
folded light curves obtained for TFA and TFAW with the EVEREST
one. For the latter, we have employed the method described in
Luger et al. (2017) and have applied a Gaussian Process (GP) to
detrend it before being phase folded (see Fig. 61 for a compari-
son between the GP-corrected EVEREST light curve and TFA and
TFAW ones).
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Figure 58: Top left: EVEREST light curve phase folded to the period of K2-
44 b as reported by Crossfield et al. (2016). Top right: TFA-
reconstructed and phase folded light curve for planet K2-44 b.
Bottom left: EVEREST light curve phase folded for K2-44 b. Bot-
tom right TFAW-reconstructed light curve for planet K2-44 b. The
EVEREST light curve has been detrended applying the GP used by
Luger et al. (2017) prior to the phase folding.

As in the case of the CoRoT light curves (see Sect. 6.2.1),
we want to check whether the improved photometric precision
yielded by TFAW results in a better characterization of the tran-
siting signal or not. To do so, we analyze TFA and TFAW cor-
rected light curves for confirmed exoplanet K2-44 b and com-
pare the fitted parameters with the ones obtained by (Crossfield
et al., 2016) (see Table 12). Again, to model the transit, we run a
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MCMC fit using the sampler provided by emcee and the Mandel
and Agol (2002) analytic model provided by the batman pack-
age. We solve for 5 transit parameters: the transit epoch, T0, the
inclination of the orbit, i, the planetary radius to stellar radius
ratio, p, the semi-major axis of the orbit, a and the period, P.
In addition, we have fixed the quadratic limb darkening coeffi-
cients to their theoretical values taken from the tables by Sing,
D. K. (2010). Using the stellar parameters provided by Cross-
field et al. (2016) (see Table 12) and, assuming a metallicity of
[Fe/H]=0.0, this values are l=0.3480 and q=0.2892. We also con-
sider a circular orbit (i.e e=0) and assumed a longitude of the
periastron of ω=90º. We run the MCMC fit using a uniform dis-
tribution of the priors and run the sampler with 200 chains and
10,000 iterations with a burn-in phase of 2,000 iterations. As
in the CoRoT exoplanet transits, we do this to ensure that the
chains run for enough autocorrelation times and that the final
mean acceptance fraction is between 0.25 and 0.5. In Table 13

we compare the transit parameters obtained by Crossfield et al.
(2016) with the ones obtained for TFA and TFAW posterior prob-
ability distributions. The fitted parameter values are obtained
from the 50% quantile and their upper and lower errors are
computed from the 25% and 75% quantiles respectively.

For the best fit, the time of inferior conjunction, T0, for TFA
and TFAW is compatible with the one reported by Crossfield et
al. (2016), though for TFAW, the uncertainties are much lower
than for the other two (∼5× for TFA and ∼20× compared to
Crossfield et al. (2016)). For the semi-major axis of the or-
bit, a, TFA returns a slightly lower value and, TFAW an even
lower one than the one by Mayo et al. (2018). However, both of
them are compatible within the errors with the reported value
of 8.856±1.49R∗. In addition, TFAW returns smaller uncertain-
ties for this parameter. For the orbit inclination, i, both TFA
and TFAW yield values compatible with the reported value of
87.3543

+1.8561
−3.3003 (Mayo et al., 2018). Though, again, TFAW returns

smaller uncertainties. Regarding the planetary to star radius ra-
tio, p, both TFA and TFAW obtain slightly bigger values than the
validated value of 0.0156±0.0012. Nonetheless, TFAW gives a
compatible value within errors with the Crossfield et al. (2016)
one and, again with a smaller uncertainty. Finally, for the pe-
riod, P, the values found are compatible within the errors with
the one in Crossfield et al. (2016). With the best fit parame-
ters, TFA obtains a mean planetary radius of 3.014

+0.292
−0.289 R⊕ and

TFAW 2.867
+0.272
−0.289 R⊕, slightly above the 2.72±0.32 R⊕ reported

by Crossfield et al. (2016) but still, compatible within the errors.
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Taking into account the results obtained for simulated light
curves in Sect. 4.4.5, the TFAW fit for the semi-major axis of the
orbit, the inclination and the planet to star radius ratio, should
yield a closer representation to the real transit parameters. For
K2-44 b, all transit parameters and the derived mean plane-
tary radius are compatible with the ones given by Crossfield
et al. (2016) and Mayo et al. (2018) but the results yielded by
TFAW present lower uncertainties and, as discussed before, the
parameters should be closer to the real ones. As in the case
of CoRoT-21 b, we have confirmed the correct performance of
TFAW’s de-noising and signal reconstruction applied to a con-
firmed exoplanet of the K2 survey. Figure 59 shows the best fit
obtained for TFA and TFAW over-plotted to their corresponding
phase folded light curves.
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Figure 59: Left: Phase folded TFA light curve for planet K2-44 b. The solid
red line corresponds to the best fit given by the parameters in
Table 13. Right: Phase folded TFAW light curve for K2-44 b. As
before, the solid red line corresponds to the best fit for TFAW fol-
lowing the parameters in Table 13.
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Figure 60: Top: EVEREST light curve for planet hosting star K2-44. Middle:
TFA-reconstructed light curve for planet hosting star K2-44. Bot-
tom: TFAW-reconstructed light curve for planet hosting star K2-44.
Notice that the EVEREST light curve has a longer time base than
the ones for TFA and TFAW due to 3,072 data points selected to run
the SWT-based filter.
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Figure 61: Same as Fig. 60 but, this time, showing the GP-corrected light
curve EVEREST in top panel as per Luger et al. (2017).



6.2 space telescope data 141

Ta
bl

e
1

3
:T

op
ta

bl
e:

K
2
-4

4
b

pa
ra

m
et

er
s

fr
om

C
ro

ss
fie

ld
et

al
.(

2
0

1
6

).
Po

st
er

io
r

tr
an

si
t

pa
ra

m
et

er
s

va
lu

es
an

d
th

ei
r

un
ce

rt
ai

nt
ie

s
(w

it
h

th
e

2
5
%

an
d

7
5
%

qu
an

ti
le

as
th

e
up

pe
r

an
d

lo
w

er
er

ro
rs

)
fo

r
TF

A
an

d
TF

A
W

’s
M

C
M

C
fit

s.
M

id
dl

e
ta

bl
e:

9
5

%
co

nfi
de

nc
e

in
te

rv
al

s
of

th
e

hi
gh

es
t

pr
ob

ab
ili

ty
de

ns
it

y
fo

r
K

2
-4

4
b

tr
an

si
t

pa
ra

m
et

er
s

TF
A

an
d

TF
A

W
’s

M
C

M
C

fit
s.

Bo
tt

om
ta

bl
e:

D
er

iv
ed

pl
an

et
ar

y
pa

ra
m

et
er

s
fo

r
T

FA
an

d
T

FA
W

.

Pa
ra

m
et

er
s

T
0

(B
JD

-2
4
5
4
8
3
3
)

P
(d

ay
s)

a
(R
∗)

p
i(

º)

C
ro

ss
fie

ld
et

al
.(

2
0
1
6

)
1
,9

7
8
.7

1
7
6
±

0
.0

0
4
4

5
.6

5
6
8
8
±

0
.0

0
0
5
9

8
.8

5
6
±

1
.4

9
?

0
.0

1
5
6
±

0
.0

0
1
2

8
7

.3
5
4
3
+
1

.8
5
6
1

−
3

.3
0
0
3

?

TF
A

M
C

M
C

1
,9

7
8
.7

2
5
4
+
0

.0
0
0
9

−
0

.0
0
1
1

5
.6

5
5
2
9
±

0
.0

0
0
1
4

8
.3

7
3
1
3
+
0

.5
7
3
4
8

−
0

.7
1
7
9
8

0
.0

1
7
4
8
+
0

.0
0
0
3
5

−
0

.0
0
0
2
8

8
6
.3

6
9
5
4
+
0

.9
2
3
5
8

−
1

.1
1
3
1
9

TF
A

W
M

C
M

C
1
,9

7
8
.7

1
9
2
±

0
.0

0
0
2

5
.6

5
6
6
2
±

0
.0

0
0
0
3

7
.3

7
1
2
5
+
0

.1
4
6
0
2

−
0

.1
5
1
2
1

0
.0

1
6
6
3
±

0
.0

0
0
0
9

8
4
.8

4
7
2
7
+
0

.2
3
4
3
0

−
0

.2
4
6
6
4

9
5
%

co
nfi

de
nc

e
in

te
rv

al
s

of
th

e
hi

gh
es

t
po

st
er

io
r

de
ns

it
y

TF
A

M
C

M
C

1
,9

7
8
.7

1
1
8

-
1
9
7
8
.7

2
7
5

5
.6

5
4
9
8

-
5

.6
5
6
9
4

7
.1

4
0
2
1

-
9

.1
9
9
8
5

0
.0

1
7
0
0

-
0

.0
1
8
1
7

8
4
.3

2
2
8
5

-
8
7

.7
9
3
4
4

TF
A

W
M

C
M

C
1
,9

7
8
.7

1
9
5

-
1
9
7
8
.7

2
0
3

5
.6

5
6
5
6

-
5

.6
5
6
6
8

7
.0

6
8
5
3

-
7

.6
6
8
4
5

0
.0

1
6
4
7

-
0

.0
1
6
8
0

8
4
.3

4
8
4
2

-
8
5
.3

2
2
4
7

Sy
st

em
pa

ra
m

et
er

s
R
p

(R
⊕

)
b

C
ro

ss
fie

ld
et

al
.(

2
0
1
6
)

2
.7

2
±

0
.3

2
-

TF
A

3
.0

1
4
+
0

.2
9
2

−
0

.2
8
9

0
.5

3
+
7

.7
1

−
9

.2
9

TF
A

W
2
.8

6
7
+
0

.2
7
2

−
0

.2
8
9

0
.6

6
+
1

.7
2

−
1

.8
1



142 application of tfaw to astronomical data

6.2.2.3 K2-35: a multiplanetary example

K2-35 (EPIC201549860) is a V=14.35±0.06 mag (Henden et
al., 2016) K4V star (Dressing et al., 2017a) located at (α, δ)
= (11:20:24.74009, +01:17:09.42617) (Gaia Collaboration, 2018).
It was observed by the K2 mission during the K2-C1 moni-
toring campaign from May 30 to Aug 21, 2014. K2-35 hosts
two confirmed close-in super-Earths. The outer planet, orbit-
ing with a period of 5.6 days, was reported as a planet candi-
date by Foreman-Mackey et al. (2015) and Montet et al. (2015).
This, and the inner one, orbiting with 2.4 days, were listed as
planet candidates by Vanderburg et al. (2016). The system was
validated by Sinukoff et al. (2016) as a ∼K4, Teff=4680±60 K,
0.72±0.04 R� star orbited by an inner planet of 1.40±0.17 R⊕
and an outer planet of 2.09

+0.43
−0.31 R⊕. To characterize the host

star they used Keck/HIRES optical spectra and applied the
SpecMatch (Yee, Petigura, and von Braun, 2017) and isochrones
(Morton, 2015) packages. Sinukoff et al. (2016) also confirmed,
using Pan-STARRS1 3π survey (Kaiser et al., 2010), that no
other sources fall within the 12" K2 photometry aperture to a
limiting magnitude of rP1=22 mag. Dressing et al. (2017a), us-
ing SpeX NIR spectra classify the host star as a K4V star with
a Teff=4402

+96
−93 K and a radius of 0.62±0.03 R�. Dressing et al.

(2017b) refitted the transit photometry to these new values and
obtained a revised planetary radii of 1.32±0.08 R⊕ for the inner
planet and 1.93

+0.13
−0.11 R⊕ for the outer one.

As in the case of K2-44 b (see Section 6.2.2.2), we want to
check the performance of TFA and TFAW applied to K2-35 b and
K2-35 c light curves and compare them with the EVEREST ones.
We also use 3,072 data points obtained from the K2-C1, Data Re-
lease 14, PDC-corrected flux to build K2-35’s light curve. This
K2 target was observed with CCD channel 63 using K2’s long
cadence (LC) mode. To build TFA and TFAW’s sample of tem-
plate stars we compute the Stetson’s L variability index of all
the stars in the CCD channel. We then select those with a value
<10 to avoid the inclusion of bona-fide variable stars in the sam-
ple. During TFA and TFAW’s frequency analysis steps, both pe-
riods are found in the BLS power spectrum; being the one for
the outer planet the most significant one (see Figure 62). Once
both periods have been detected, we run their signal reconstruc-
tion steps with TFA and TFAW. The signal level for both phase
folded light curves have been set using the method explained
in Section 3.3.1. The noise level has been set to the lowest de-
composition level for both transits. Figure 63 shows K2-35 light
curves for TFA and TFAW after the iterative signal reconstruction
has been applied to the phase folded light curve of the outer
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planet compared to the EVEREST one. As can be seen, though
TFA efficiently detrends the light curve, the final photometric
precision is worse (∼1.6×) than the one achieved by EVEREST.
On the other hand, TFAW uses TFA’s capabilities to detrend the
light curve while, at the same time, use the SWT-based filter
to minimize the effects of the high frequency noise yielding
an improved precision (∼1.5×) with respect the EVEREST light
curve. In addition, TFAW has been able to remove almost all
the outliers thanks to the method explained in Section 3.4. Do-
ing the same but applying the iterative signal reconstruction for
the phase folded light curve of the inner transit yields simi-
lar results in terms of the photometric precision achieved both
with TFA (∼1.5× worse) and TFAW (∼1.8× better) compared to
EVEREST. Figures 65 and 66 show a comparison of the phase
folded TFA and TFAW light curves for K2-35 b and K2-35 c, re-
spectively, with the phase folded EVEREST ones. As for the K2-
44 EVEREST light curve, the GP method described in Luger et al.
(2017) has been applied to detrend it before being phase folded
(see Fig. 64 for a comparison between the GP-corrected EVEREST
light curve and TFA and TFAW ones).
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Figure 62: Top: TFA’s BLS power spectrum for planet hosting star K2-35. Bot-
tom: TFAW’s BLS power spectrum for planet hosting star K2-35.
The solid vertical line marks the outer planet period of 5.60835

days while the dashed vertical line marks the inner planet period
of 2.39996 days as reported by Dressing et al. (2017b).
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Figure 63: Top: EVEREST light curve for planet hosting star K2-35. Middle:
TFA-reconstructed light curve for planet hosting star K2-35. Bot-
tom: TFAW-reconstructed light curve for planet hosting star K2-35.
Notice that the EVEREST light curve has a longer time base than
the ones for TFA and TFAW due to 3,072 data points selected to run
the SWT-based filter.
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Figure 64: Same as Fig. 63 but, this time, showing the GP-corrected light
curve EVEREST in top panel as per Luger et al. (2017).
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Figure 65: Top left: EVEREST light curve phase folded to the period of K2-
35 b as reported by Dressing et al. (2017b). Top right: TFA-
reconstructed and phase folded light curve for planet K2-35 b.
Bottom left: EVEREST light curve phase folded for K2-35 b. Bot-
tom right TFAW-reconstructed light curve for planet K2-35 b. The
EVEREST light curve has been median filtered to detrend it prior
to the phase folding.
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Figure 66: Top left: EVEREST light curve phase folded to the period of K2-
35 c as reported by Dressing et al. (2017b). Top right: TFA-
reconstructed and phase folded light curve for planet K2-35 c.
Bottom left: EVEREST light curve phase folded for K2-35 c. Bot-
tom right TFAW-reconstructed light curve for planet K2-35 c. The
EVEREST light curve has been median filtered to detrend it prior
to the phase folding.
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7
C O N C L U S I O N S

We began this PhD thesis with a brief review of the history
of exoplanets and variable stars and their current discovery
status. We also introduced the several limiting factors that af-
fect most planetary transit and/or variability detection surveys.
We presented wavelets as a perfect tool to analyze signals of
non-stationary nature affected by singularities and noise thanks
to their irregular shape and their compactly supported nature.
With this we set up the framework in which to present the main
contribution of this work, the Wavelet-based Trend Filtering Al-
gorithm (TFAW), a Stationary Wavelet Transform (SWT)-based
modification of the Trend Filtering Algorithm (TFA) (Kovács,
Bakos, and Noyes, 2005). In this chapter we briefly summarize
the main characteristics of the algorithm as well as list the most
relevant results obtained from its application to simulated and
real light curves.

7.0.1 TFAW summary

TFAW is a totally generic, Python-based, parallelized algo-
rithm useful to improve the performance of signal detec-
tion, reconstruction and characterization, provided that a
set of comparison light curves sharing the same systemat-
ics and trends as the target time series is available.

TFAW differs from other wavelet-based noise-filtering algo-
rithms in that it does not require any parametric model fit-
ting or any extra computational method. TFAW estimates
the noise contribution of the signal from its SWT at each
iteration step and the de-noising is done through the sub-
traction of this contribution from the signal. TFAW de-
noises the signal without modifying any of its intrinsic
properties contrary to wavelet coefficient thresholding that
can lead to distortions of the signal and introduce artificial
oscillations or ripples around discontinuities.

TFAW needs an even number of data points to work. The
length of the target light curve will depend on the num-
ber of levels in which the signal wants to be decomposed
(ideally, the length of the time series should be a power of
two). The higher the available number of decomposition
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levels, the better the different signal and noise contribu-
tions can be separated in the SWT decomposition of the
signal. As future work we will study different ways of
signal padding (like zero-, smooth-, or periodic-padding)
and its effects to extend the original signal up to its closest
power of two.

TFAW modifies TFA’s frequency analysis step to improve the
detection of periodic variabilities in the target light curves.
This improvement is achieved by the application of a SWT-
based outlier-removal tool as well as the search of periods
over a detrended and SWT-filtered version of the original
light curve (i.e. the estimated signal).

Once a significant period is found, the light curve is phase
folded. A more accurate and precise estimation of the
variable signal’s shape is obtained through the SWT than
with bin averaging.

The algorithm decouples a large component of the noise
contribution from the original signal, making use of a
modified version of the original TFA’s iterative signal recon-
struction step. This de-noising is based on the SWT esti-
mation of the noise at each iteration step, leading to an
overall SNR improvement without alteration of the signal’s
time sampling or astrophysical characteristics.

Compared to the original TFA, TFAW requires fewer refer-
ence stars to create the template used for the signal re-
construction and the noise filtering. Kovács, Bakos, and
Noyes (2005) suggests the use of ∼600 template stars, while
TFAW operates stably with 200-300 template stars.

7.0.2 Outlier detection

A custom distance-based outlier detection and removal
method has been developed for this work.

It uses the estimated signal computed from the SWT of the
target light curve and the signal level.

A threshold value can the be selected in such a way that
any point in the time series whose distance to the estimated
signal exceeds it is considered as an outlier and removed.

We have proved that this method can be effectively used
to remove any outlier without modifying the signal of in-
terest.
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7.0.3 TFAW’s performance summary: simulated data

Tests conducted on simulated TFAW-filtered light curves
show an improvement of ∼40% (although it can be higher)
in their standard deviations with respect to the ones de-
trended with TFA, leading to a better characterization of
the signal, without modifying its features (i.e. amplitude,
phase, shape or depth).

Results obtained for the frequency analysis step show that
TFAW does not introduce any false periodicity, and that it
can improve the overall power spectra of non-multiperiodic
signals and the SDE of the peaks.

In the case of simulated transits, TFAW’s frequency analysis
step improves the transit detection rate a factor ∼2-5× for
the low SNR signals with respect TFA and increases the
SDEs up to a factor ∼2.5×. In addition, TFAW is able to
detect the transits for signals with ∼2× higher standard
deviation.

We show that the SWT signal approximation provides a
closer representation of the underlying signal with respect
to bin averaging. In the case of planetary transits, this
improvement is due to a better fit of the ingress and egress
profiles.

We demonstrate that the TFAW-filtered light curve yields
better MCMC posterior distributions, diminishes the bias
in the fitted transit parameters and their uncertainties and
narrows the credibility intervals up to a factor ∼10× for
simulated transits.

We show that TFAW is able to isolate the different underly-
ing signals within a light curve with multiple periodic sig-
nals, such as multi-transit signals, transients, modulations
or other kinds of stellar variabilities. As for single-period
light curves, the SNR of each signal contribution improves
due to the noise filtering capabilities of TFAW.

7.0.4 TFAW’s performance summary: real light curves

We have applied TFAW to two different ground-based sur-
vey data-sets (TFRM-PSES and The Evryscope) and two space-
based surveys (CoRoT and Kepler). Each of them affected
by different kinds of systematic effects and sources of noise.
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For all these, TFAW is able to, first, detrend and, second, ef-
ficiently remove outliers and de-noise the light curves.

As with the simulated light curves, TFAW-filtered light
curves show an improvement of ∼40% (although it can
be higher) in their standard deviations with respect to the
ones detrended with TFA.

We have demonstrated TFAW’s capability of de-noising dif-
ferent variabilities coming from diverse astrophysical sources
ranging from δ-Scuti stars, fast rotating white dwarfs, eclips-
ing binaries or planetary transits. As in the case of simu-
lated light curves, TFAW neither introduces any false signal
or modifies the features of the variable signal.

We have also shown TFAW’s potential to improve the char-
acterization and classification of variable signals. The ex-
ample of CoRoT 102881832 shows how TFAW can help
discriminate between a possible transit candidate and an
eclipsing binary by increasing the SNR of shallow secondary
transits. Also, the example of CoRoT 102588881, shows
that TFAW-filtered light curves can yield more realistic plan-
etary scenarios than TFA.

We demonstrate that the TFAW-filtered real light curves
yield better MCMC posterior distributions, diminish the
bias in the fitted transit parameters and their uncertain-
ties and narrow the credibility intervals.

We have shown TFAW’s capabilities of decoupling the dif-
ferent signal contributions in multiperiodic light curves
both for CoRoT (CoRoT 102850921) and K2 (K2-35).

For K2 light curves, we have demonstrated that TFAW can
yield better photometric precision than EVEREST one of
the most successful pipelines for this mission while at the
same time, correctly detrending the light curve.

7.0.5 Other results

We present 2MASS J10144313+5018191, a non-cataloged
possible δ-Scuti star with a 0.1592-day period.

We present 2MASS J13190996-8347115, a semi-detached
contact binary of the W Ursae Majoris-type with a 0.658-
day period. Detected during visual inspection of The Evryscope’s
light curves it was not cataloged in 2017 but was later con-
firmed by the ASAS-SN survey.
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We reinforce CoRoT 102881832 eclipsing binary nature by
increasing the SNR of its shallow secondary transit.

We obtain more realistic planetary parameters for CoRoT
102588881. A high orbital eccentricity, e=0.47384

+0.04982
−0.04997,

planet of 1.20±0.28 RJ and 0.98±0.42 MJ in agreement
with the RV observations.

We study the multiperiodic nature of CoRoT 102850921 de-
tecting three semi-sinusoidal components, the transit sig-
nal and two extra very high frequency signals that could
hint towards the possible roAp nature of the host star. In
addition, possible tidal distortions are observed during
the transit egress.

We study K2’s confirmed planetary system K2-44 b and
confirmed multiplanetary system K2-35, and demonstrate
that TFAW yields better photometric precision than EVEREST.





Part V

A P P E N D I X





A
O T H E R O B S E RVAT I O N A L R E S U LT S

The observational results presented on this thesis have been
focused on a few examples of each described exoplanet sur-
vey. However, as a by-product, many other objects have been
analyzed by the TFAW. The main objective of this appendix is
to provide an overview of some of the extra observational re-
sults obtained in the context of this thesis for objects showing
some kind of variability in the TFRM-PSES and The Evryscope
data sets. For a detailed description of the variability types pre-
sented in the following tables, we point out to the VSX descrip-
tion file available at https://www.aavso.org/vsx/index.php?
view=about.vartypes and Samus’ et al. (2017).

Figure 67: Classification diagram of stellar variabilities. Credit:
©Commonwealth Scientific and Industrial Research Organi-
sation, 2015-2017
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a.1 tfrm-pses variables

Here we present the variables detected in the TFRM-PSES dataset.
We have studied three of the TFRM-PSES fields centered at (α, δ)
= (10:14:44, +48:30:00), (15:55:59, +35:04:00) and (10:18:51, +55:20:00),
respectively. The light curves consist on 2,048 points coming
from 30 nights observed during 2013, 2014 and 2015. As in
the examples shown in Sect. 6.1.1.1, the light curves were gen-
erated with the APEX-2 reduction pipeline (Devyatkin et al.,
2010) and had differential photometry applied prior to the ap-
plication of TFA and TFAW. After visual inspection of those light
curves with a SDE>6, 30 bona-fide variables were detected.

Of those, 24 (80%) were previously cataloged stars of differ-
ent variability types. They are listed in Table 15 with more
information regarding their coordinates, their TFAW periods,
their cataloged periods, magnitude variations and variability
types and the corresponding literature references. Their TFA
and TFAW processed light curves are shown in Fig. 75 to 98.

Of the remaining 6 (20%) non-cataloged stars, 3 present sinu-
soidal like variabilities, 1 presents irregular sinusoidal features,
1 is an X-ray emitting star with irregular variability and the re-
maining one presents a transit like feature. They are listed in
Table 14 alongside information about their TFAW periods, their
positions in the sky and some notes regarding their variability
nature. Their TFA and TFAW light curves are shown in Fig. 69

to 74.

Figure 68: Artist’s impression of an eclipsing binary system. Credit: ESO/L.
Calçada
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Figure 69: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable TYC 3437-773-1.
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Figure 70: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable Gaia ID 847832561481232000.
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Figure 71: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable Gaia ID 822363194960911104.
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Figure 72: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable Gaia ID 823735110594461824.
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Figure 73: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable SDSS J155651.09+351646.3.
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Figure 74: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable 1RXS J101342.0+571451.
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Figure 75: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable NSVS 4922327.
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Figure 76: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable LINEAR 22079148.
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Figure 77: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable TSVSC1 TN-N232123120-15-67-2.
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Figure 78: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable NSVS 4924202.
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Figure 79: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable V0337 UMa.

0.0 0.2 0.4 0.6 0.8 1.0
Phase

13.5

14.0

14.5

15.0

15.5

16.0

R
(m
a
g

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

Figure 80: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable NSVS 4922773.



A.1 tfrm-pses variables 167

0.0 0.2 0.4 0.6 0.8 1.0
Phase

13.8

14.0

14.2

14.4

14.6

R
(m
a
g

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

Figure 81: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable NSVS 4921994.
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Figure 82: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable NSVS 4925836.
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Figure 83: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable CSS_J102005.7+463141.
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Figure 84: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable TSVSC1 TN-N232123120-15-67-2.

0.0 0.2 0.4 0.6 0.8 1.0
Phase

15.2

15.4

15.6

15.8

16.0

R
(m
a
g

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

Figure 85: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable CSS_J100854.4+494928.
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Figure 86: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable CSS_J102002.9+472330.
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Figure 87: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable AC CrB.
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Figure 88: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable USNO-A2.0 1200-07693323.
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Figure 89: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable BQ CrB.
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Figure 90: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable BP CrB.
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Figure 91: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable CSS_J154849+370609.
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Figure 92: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable CSS_J154612.8+343539.
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Figure 93: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable T-CrB0-05430.
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Figure 94: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable T-CrB0-07279.
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Figure 95: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable CSS_J155029.2+360217.
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Figure 96: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable CSS_J100616.9+531608.
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Figure 97: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable NSVS 2536063.
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Figure 98: Phase folded TFA (left) and TFAW (right) light curves for cataloged
variable LINEAR 22117001.
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a.2 the evryscope variables

Here we present the variables detected in The Evryscope
data sample for five, ∼3º × 3º regions (i.e ∼0.6% of the total
Evryscope’s FoV) of the camera pointed towards the South Ce-
lestial Pole. As the examples shown in Sect. 6.1.2, each light
curve comprises 10,240 data points observed from January 10,
2016 to February 26, 2016. After visual inspection of those light
curves with a SDE>15, 43 bona-fide variables were detected.

Of those, 24 (55.81%) were previously cataloged variables
of different variability types. They are presented in Table 17

along with more information regarding their positions in the
sky, their periods, their cataloged magnitude variations and
variability types and their bibliographic references. Their TFA
and TFAW light curves are shown in Fig. 119 to 142. Light
curves without TFAW period are variables with periods longer
than the analyzed time-base.

Of the remaining 19 (44.19%) non-cataloged stars, 6 present
transit-like features, 1 is most probably an eclipsing binary and
the others are either sinusoidal-like variables or long period
variables. They are presented in Table 16 with information
about their TFAW periods, their coordinates and some notes re-
garding their possible variability origin. Their TFA and TFAW
light curves are shown in Fig. 100 to 118.

Figure 99: 1% of The Evryscope’s FoV.
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Figure 100: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18974388.
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Figure 101: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18964795.
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Figure 102: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18978076.
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Figure 103: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 19021806.
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Figure 104: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 19018247.
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Figure 105: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 19010070.
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Figure 106: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 63578985.
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Figure 107: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 63729238.



178 other observational results

0.0 0.2 0.4 0.6 0.8 1.0
Phase

11.0

11.5

12.0

12.5

13.0

M
a
g
.

(g
−
ba
n
d

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

Figure 108: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18964242.
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Figure 109: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18964916.
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Figure 110: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18978271.
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Figure 111: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18978962.
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Figure 112: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18979330.
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Figure 113: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18979819.
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Figure 114: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18979915.
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Figure 115: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 63583325.
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Figure 116: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18975059.
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Figure 117: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18975147.

0.0 0.2 0.4 0.6 0.8 1.0
Phase

11.6

11.8

12.0

12.2

12.4

M
a
g
.

(g
−
ba
n
d

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

Figure 118: Phase folded TFA (left) and TFAW (right) light curves for non-
cataloged variable Evryscope ID 18975965.
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Figure 119: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable NSV6086.
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Figure 120: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable U Oct.
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Figure 121: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J132837-8405.6.
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Figure 122: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable TX Oct.
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Figure 123: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J033718-8516.7.

0.0 0.2 0.4 0.6 0.8 1.0
Phase

11.5

12.0

12.5

13.0

13.5

14.0

M
a
g
.

(g
−
ba
n
d

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

Figure 124: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J164514-8545.8.
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Figure 125: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J171002-8524.5.
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Figure 126: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J162726-8602.7.
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Figure 127: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASASSN-V J164326.8-861144.8.
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Figure 128: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable EQ Oct.
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Figure 129: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable FO Oct.
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Figure 130: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASASSN-V J173520.26-865008.5.
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Figure 131: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable Z Oct.

0.0 0.2 0.4 0.6 0.8 1.0
Phase

10.5

11.0

11.5

12.0

12.5

13.0

M
a
g
.

(g
−
ba
n
d

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

Figure 132: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J174554-8654.5.
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Figure 133: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASASSN-V J163423.01-841701.7.
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Figure 134: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASASSN-V J165050.25-843635.3.
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Figure 135: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J165834-8458.6.
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Figure 136: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J130015-8520.2.
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Figure 137: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J130710-8509.0.
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Figure 138: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J130807-8503.5.
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Figure 139: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J121332-8646.7.
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Figure 140: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASASSN-V J121952.08-861641.8.
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Figure 141: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASAS J121332-8646.7.

0.0 0.2 0.4 0.6 0.8 1.0
Phase

11.5

12.0

12.5

13.0

M
a
g
.

(g
−
ba
n
d

)

0.0 0.2 0.4 0.6 0.8 1.0
Phase

Figure 142: Phase folded TFA (left) and TFAW (right) light curves for cata-
loged variable ASASSN-V J134322.05-845650.8.
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Woźniak, P. R. et al. 2004, Northern Sky Variability Survey: Public
Data Release. AJ 127, pp. 2436–2449. doi: 10.1086/382719. eprint:
astro-ph/0401217 (cit. on p. 95).

Yee, S. W., E. A. Petigura, and K. von Braun 2017, Precision Stellar
Characterization of FGKM Stars using an Empirical Spectral Li-
brary. ApJ 836, 77, p. 77. doi: 10.3847/1538- 4357/836/1/77.
arXiv: 1701.00922 [astro-ph.SR] (cit. on pp. 133, 142).

Zacharias, N., C. T. Finch, T. M. Girard, A. Henden, J. L. Bartlett, D.
G. Monet, and M. I. Zacharias 2012, VizieR Online Data Catalog:
UCAC4 Catalogue (Zacharias+, 2012). VizieR Online Data Cata-
log, I/322A, I/322A (cit. on pp. 109, 112, 128, 133).

Ziegler, C., N. M. Law, C. Baranec, T. Morton, R. Riddle, D. Atkin-
son, and L. Nofi 2016, The Robo-AO KOI survey: laser adaptive
optics imaging of every Kepler exoplanet candidate. Adaptive
Optics Systems V. Vol. 9909. Proc. SPIE, 99095U. doi: 10.1117/
12.2231185. arXiv: 1608.00575 [astro-ph.EP] (cit. on p. 107).

de Freitas, D. B., I. d. C. Leão, B. L. Canto Martins, and J. R. De
Medeiros 2010, Wavelet analysis of stellar rotation and other peri-
odicities. ArXiv e-prints. arXiv: 1009.5090 [astro-ph.SR] (cit. on
pp. 10, 28).

del Ser, D., O. Fors, and J. Núñez 2018, TFAW: wavelet-based signal
reconstruction to reduce photometric noise in time-domain sur-
veys. Accepted in A&A. arXiv: 1702.06547v2 [astro-ph.IM] (cit.
on pp. 11, 51, 235).

del Ser, D., O. Fors, J. Núñez, H. Voss, A. Rosich, and V. Kouprianov
2015, Detrending Algorithms in Large Time Series: Application to
TFRM-PSES Data. Living Together: Planets, Host Stars and Bina-
ries. Ed. by S. M. Rucinski, G. Torres, and M. Zejda. Vol. 496. As-
tronomical Society of the Pacific Conference Series, p. 301. arXiv:
1411.5320 [astro-ph.IM] (cit. on p. 236).

van de Kamp, P. 1963, Astrometric study of Barnard’s star from plates
taken with the 24-inch Sproul refractor. AJ 68, pp. 515–521. doi:
10.1086/109001 (cit. on p. 1).

http://dx.doi.org/10.1038/355145a0
http://dx.doi.org/10.1086/382719
astro-ph/0401217
http://dx.doi.org/10.3847/1538-4357/836/1/77
http://arxiv.org/abs/1701.00922
http://dx.doi.org/10.1117/12.2231185
http://dx.doi.org/10.1117/12.2231185
http://arxiv.org/abs/1608.00575
http://arxiv.org/abs/1009.5090
http://arxiv.org/abs/1702.06547v2
http://arxiv.org/abs/1411.5320
http://dx.doi.org/10.1086/109001




P U B L I C AT I O N S

Directly related to this thesis

1. D. del Ser, O. Fors, and J. Núñez 2018, TFAW: wavelet-
based signal reconstruction to reduce photometric noise
in time-domain surveys. Accepted in A&A. arXiv: 1702.
06547v2 [astro-ph.IM]

Other contributions

1. W. S. Howard et al. 2018c, The First Naked-eye Superflare
Detected from Proxima Centauri. ApJ 860, L30, p. L30.
doi: 10.3847/2041- 8213/aacaf3. arXiv: 1804.02001
[astro-ph.EP]

2. W. S. Howard et al. 2018b, Stellar activity for every TESS
star in the Southern sky. American Astronomical Society
Meeting Abstracts #231. Vol. 231. American Astronomical
Society Meeting Abstracts, p. 310.03

3. W. S. Howard et al. 2018a, Evryscope Detection of the
First Proxima Superflare: Impacts on the Atmosphere and
Habitability of Proxima b. LPI Contributions 2065, 2039,
p. 2039

4. H. Corbett et al. 2018, Pre-Discovery Detection of ASASSN-
18fv by Evryscope. The Astronomer’s Telegram 11467

5. O. Fors et al. 2017, Engaging AAVSO members in Stel-
lar Astrophysics Follow-up from The Evryscope Data (Ab-
stract). Journal of the American Association of Variable
Star Observers (JAAVSO) 45, p. 129

6. W. Howard et al. 2017, EvryFlare: Flare rates and intensi-
ties for every 10 < g < 15 solar-type and red dwarf star in
the Southern sky. Radio Exploration of Planetary Habit-
ability (AASTCS5). Vol. 49, p. 202.05

7. N. M. Law et al. 2016, The Evryscope: design and perfor-
mance of the first full-sky gigapixel-scale telescope. So-
ciety of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series. Vol. 9906. Proc. SPIE, p. 99061M. doi:
10.1117/12.2233349

8. J. K. Ratzloff et al. 2016, Evryscope Robotilter automated
camera / ccd alignment system. Society of Photo-Optical

235

http://arxiv.org/abs/1702.06547v2
http://arxiv.org/abs/1702.06547v2
http://dx.doi.org/10.3847/2041-8213/aacaf3
http://arxiv.org/abs/1804.02001
http://arxiv.org/abs/1804.02001
http://dx.doi.org/10.1117/12.2233349


236 Bibliography

Instrumentation Engineers (SPIE) Conference Series. Vol. 9908.
Proc. SPIE, 99080W. doi: 10.1117/12.2233384

9. D. del Ser et al. 2015, Detrending Algorithms in Large
Time Series: Application to TFRM-PSES Data. Living To-
gether: Planets, Host Stars and Binaries. Ed. by S. M.
Rucinski, G. Torres, and M. Zejda. Vol. 496. Astronomi-
cal Society of the Pacific Conference Series, p. 301. arXiv:
1411.5320 [astro-ph.IM]

10. O. Fors et al. 2015b, The Evryscope and extrasolar planets.
IAU General Assembly 22, 2258237, p. 2258237

11. O. Fors et al. 2015a, Evrystats for Evryplanets: planets
from the first all-sky gigapixel scale telescope. IAU Gen-
eral Assembly 22, 2253010, p. 2253010

12. N. M. Law et al. 2015, Evryscope Science: Exploring the
Potential of All-Sky Gigapixel-Scale Telescopes. PASP 127,
pp. 234–249. doi: 10.1086/680521. arXiv: 1501.03162
[astro-ph.IM]

http://dx.doi.org/10.1117/12.2233384
http://arxiv.org/abs/1411.5320
http://dx.doi.org/10.1086/680521
http://arxiv.org/abs/1501.03162
http://arxiv.org/abs/1501.03162


colophon

This document was typeset using the typographical look-and-
feel classicthesis developed by André Miede. The style was
inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”.

funding acknowledgments

The author acknowledges financial support from the RACAB
and the Universitat de Barcelona. The TFRM project is sup-
ported, in part, by the Departament d’Empresa i Coneixement
de la Generalitat de Catalunya. We also acknowledge sup-
port by the Spanish Ministerio de Economía y Competitividad
(MINECO/ FEDER, UE) under grants AYA2013-47447-C3-1-P,
AYA2016-76012-C3-1-P, MDM-2014-0369 of ICCUB (Unidad de
Excelencia ’María de Maeztu’), and the Catalan DEC grant 2014

SGR 86. The Evryscope project is supported by the National
Science Foundation CAREER grant 1555175, and the Research
Corporation Scialog grants 23782 and 23822.


	DdSB_COVER
	TFAW Noise filtering through the use of the wavelet transform in astronomy photometric data
	Dedication
	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.0.1 Motivation and overview of the thesis

	Wavelet Theory
	2 Wavelets
	2.1 Introduction to Wavelet Theory
	2.1.1 Fourier Transform (FT)
	2.1.2 Wavelet Definition
	2.1.3 Wavelet Transform

	2.2 Continuous Wavelet Transform (CWT)
	2.3 Discrete Wavelet Transform (DWT)
	2.3.1 Dyadic Wavelets
	2.3.2 Scaling Function and Multi Resolution Analysis
	2.3.3 The Discrete Wavelet Transform (DWT)
	2.3.4 Example of the DWT

	2.4 The Stationary Wavelet Transform (SWT)
	2.4.1 The Inverse Stationary Wavelet Transform (ISWT)
	2.4.2 An example of the SWT signal characterization capabilities

	2.5 Biorthogonal Wavelet Bases
	2.5.1 Biorthogonal Bases of L2(Z)
	2.5.2 Construction of Biorthogonal Wavelet Bases

	2.6 Wavelet Power Spectrum


	Wavelets and Noise: the TFAW algorithm
	3 Wavelet-based Denoising
	3.1 Introduction
	3.2 Wavelet Denoising by Thresholding
	3.2.1 Thresholding Estimation
	3.2.2 Threshold Selection Criteria
	3.2.3 Noise Variance Estimation
	3.2.4 Performance of Wavelet Thresholding

	3.3 Signal and Noise Characterization Using the SWT
	3.3.1 Signal and noise level selection criteria

	3.4 Outliers Removal Using Wavelets

	4 The Wavelet-based Trend and Noise Filtering Algorithm (TFAW)
	4.1 Introduction
	4.2 The Trend Filtering Algorithm (TFA)
	4.2.1 Introduction
	4.2.2 Mathematical Formulation
	4.2.3 Frequency analysis
	4.2.4 Signal Reconstruction
	4.2.5 Application of TFA to Multi-periodic Data

	4.3 The Wavelet-based Trend and Noise Filtering Algorithm (TFAW)
	4.3.1 Preliminaries
	4.3.2 Mother wavelet selection criteria
	4.3.3 TFAW Frequency Analysis
	4.3.4 TFAW Signal Reconstruction

	4.4 TFAW performance
	4.4.1 TFAW vs TFA transit detection efficiency
	4.4.2 TFAW vs TFA signal reconstruction
	4.4.3 Application to multiperiodic signals
	4.4.4 Wavelet versus bin average signal approximation
	4.4.5 Comparison of TFA and TFAW transit parameters fit values and uncertainties



	Wavelets and Photometry: application of the TFAW algorithm to real survey data
	5 Instrumentation and Surveys
	5.1 Ground-based Telescopes
	5.1.1 The Telescope Fabra-ROA at Montsec (TFRM)
	5.1.1.1 Project Overview
	5.1.1.2 Optical Specifications
	5.1.1.3 The TFRM-Preselected Super-Earth Survey (TFRM-PSES)
	5.1.1.4 TFRM-PSES Pipeline and Data Reduction

	5.1.2 The Evryscope
	5.1.2.1 Project Overview
	5.1.2.2 Evryscope's Science Plans
	5.1.2.3 Evryscope Pipeline and Data Reduction


	5.2 Space Telescopes
	5.2.1 CoRoT Space Observatory
	5.2.1.1 Project Overview
	5.2.1.2 The CoRoT exoplanet mission
	5.2.1.3 CoRoT data reduction pipeline

	5.2.2 Kepler Space Observatory
	5.2.2.1 Project Overview
	5.2.2.2 The K2 Mission
	5.2.2.3 K2 data reduction pipeline



	6 Application of TFAW to astronomical data
	6.1 Ground-based Data
	6.1.1 TFRM Data
	6.1.1.1 Data description
	6.1.1.2 Results
	6.1.1.3 TFAW quantitative performance over TFRM light curves
	6.1.1.4 TFAW computing performance for TFRM data

	6.1.2 Evryscope Data
	6.1.2.1 Data description
	6.1.2.2 Results
	6.1.2.3 TFAW quantitative performance over Evryscope light curves


	6.2 Space Telescope Data
	6.2.1 CoRoT Data
	6.2.1.1 Data description
	6.2.1.2 CoRoT 102886012 and CoRoT 102881832: a binary candidate and a false positive planetary candidate
	6.2.1.3 CoRoT-21 b: a test case
	6.2.1.4 CoRoT 102588881: a planetary candidate
	6.2.1.5 CoRoT 102850921: a multi-periodic example

	6.2.2 Kepler Data
	6.2.2.1 Data description and objectives
	6.2.2.2 K2-44: a confirmed planet example
	6.2.2.3 K2-35: a multiplanetary example




	Conclusions
	7 Conclusions
	7.0.1 TFAW summary
	7.0.2 Outlier detection
	7.0.3 TFAW's performance summary: simulated data
	7.0.4 TFAW's performance summary: real light curves
	7.0.5 Other results



	Appendix
	A Other observational results
	A.1 TFRM-PSES variables
	A.2 The Evryscope variables
	List of Figures
	List of Tables
	Acronyms

	Bibliography
	Publications

	Colophon



