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“[...] L’amour des Lettres, qui est un mérite chez nos voisins, n’est encore à la vérité qu’une
mode parmi nous, & ne sera peut-être jamais autre chose; mais quelque dangereuse que soit
cette mode, qui pour un Mécene éclairé produit cent Amateurs ignorans & orgueilleux, peut-
être lui sommes-nous redevables de n’être pas encore tombés dans la barbarie où une foule de
circonstances tendent à nous précipiter.

On peut regarder comme une des principales, cet amour du faux bel esprit, qui protege
l’ignorance, qui s’en fait honneur, & qui la répandra universellement tôt ou tard. Elle sera
le fruit & le terme du mauvais goût; j’ajoûte qu’elle en sera le remede. Car tout a des révolu-
tions reglées, & l’obscurité se terminera par un nouveau siecle de lumiere. Nous serons plus
frappés du grand jour, après avoir été quelque tems dans les ténebres. Elles seront comme une
espece d’anarchie très-funeste par elle-même, mais quelquefois utile par ses suites. Gardons-
nous pourtant de souhaiter une révolution si redoutable; la barbarie dure des siecles, il semble
que ce soit notre élément; la raison & le bon goût ne font que passer. [...]”

“[...] El amor a las letras, que es un mérito entre nuestros vecinos, entre nosotros no es aún
más que una moda, y acaso no sea nunca otra cosa; pero por muy peligrosa que sea esta moda,
que, por un Mecenas inteligente produce cien aficionados ignorantes y orgullosos, quizá le
debemos el no haber caído todavía en la barbarie a que tienden a precipitarnos multitud de
circunstancias.

Se puede considerar como una de las principales ese amor al falso ingenio que protege
a la ignorancia, que presume de él y que la difundirá universalmente más tarde o más tem-
prano. Será el fruto y el término del mal gusto; añado que será su remedio. Pues todo tiene
revoluciones previstas, y la oscuridad terminará en un nuevo siglo de luz. La claridad nos
impresionará más después de haber permanecido algún tiempo en las tinieblas. Será como
una especie de anarquía muy funesta en sí, pero útil en sus consecuencias. Librémonos,
sin embargo, de desear una revolución tan temible; la barbarie dura siglos, y parece que es
nuestro elemento; la razón y el buen gusto son pasajeros. [...]”

Jean le Rond d’Alembert. Prólogo a la Encyclopédie, ou Dictionnaire raisonné des
sciences, des arts et des métiers. (1751–1772).
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Humans depend on vision to gather information about their surroundings. How-
ever, our sight sense is very limited: we cannot see very distant or small objects,
and we can only sense light inside the visible spectra. To tackle these limitations, we
have been developing optical sensing tools for more than four centuries now. How-
ever, even though nowadays we can even see objects at the nanometric scale, or very
distant galaxies, there are still fundamental limitations that physical systems cannot
bypass.

In this thesis, I will show you how to obtain images with information about
multiple dimensions of light (polarization, phase, wavelength) using novel sensing
paradigms based on single-pixel detection and signal processing techniques. Us-
ing detectors without spatial resolution makes it possible to easily work in exotic
spectral ranges, in low light level scenarios, or to build very compact and efficient
multidimensional imaging systems. Moreover, the presence of a fast spatial light
modulator in all of these systems allows to implement modern recovery techniques
based on algorithmic approaches, such as compressive sensing or matrix comple-
tion. In doing so, these computational imaging systems can obtain more information
than a traditional system, but in a faster and inexpensive manner.
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Chapter 1

Introduction

1.1 Looking for answers

Observation is one of the pillars of the scientific method. Whether for proving the ex-
istence of gravitational waves or for understanding the inner procedures of how our
brain works, scientists need to use precise and reproducible sensing mechanisms.

The most immediate way to perform a physical observation is to use any of our
senses. However, as any thermodynamics student would tell, it is does not seem a
very smart idea to measure the temperature of an oven by using your sense of touch
(it could be a one-time measurement!). Furthermore, it is not very practical to say
to your colleagues that water boils at “a high temperature”. Anyone wondering the
temperature of a system can use a thermometer to precisely (quantitatively) deter-
mine it. The act of sensing can be understood as a question-answer process. Maybe
you just want to know which is the mass of some apples. In that case, you “ask”
the apples what their weight is (using a scale), and after some physical process, the
apples “respond” the value. Even if this may seem simplistic, it is useful to interpret
sensing processes as questions, as we will see along this thesis.

As science advances and we develop new questions about nature, observation
methods also get more and more sophisticated. For example, balances were used
since ancient times to compare the masses between objects (see Fig. 1.1). However,
when you want to measure Earth’s mass, you need something more complex than a
bunch of sticks and strings.

FIGURE 1.1: Anubis weighing the heart of Hunefer. Dated from
1300 BC, this painting depicts the use of a balance to determine if
Hunefer’s heart was heavier than a feather. Extracted from Papyrus of
Hunefer.

Optical sensing is a very good example of how sensing has become more and
more elaborated. In the beginning, we used our eyes to watch the world around us.
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To share that information, we simply told or drew what we saw. Again, this way of
understanding our surroundings is very simplistic. First, our sight is limited in both
range and detail. We neither can see very distant nor very small objects. Moreover,
every observation based on human perception is inherently flawed, and, even in the
exceptional case of seeing an event in the exact way it happened, our descriptions,
either artistic or linguistic, cannot represent reality as it truly is.

In order to overcome the limitations of human vision, we started using optical
instruments. Simple combinations of lenses were used at the end of the 16th cen-
tury in the Netherlands to build the first optical telescopes and microscopes. These
inventions allowed us to study both the most distant and the smallest objects of the
known universe at the time. Whereas telescopes were the main tool used to lay the
foundations of modern astronomy, microscopes have been a key device for almost
all the development of life sciences.

However, there was still the problem of human representation. In order to pro-
duce accurate images, scientists needed to develop keen eyes and steady hands.
There is a long list of scientists-artists that were key for the scientific advance of their
disciplines (see Fig. 1.2). However, that was a temporary period: after the discovery
of photography, everything became easier. Photographic cameras have always been
better at depicting reality than humans: they do not have personal preferences, or get
tired, after all. Once cameras became sophisticated enough, natural sciences rapidly
adopted photography as their standard to communicate and store visual informa-
tion (Fig. 1.2). Nevertheless, photography (as lots of other techniques just by them-
selves) cannot provide enough information for cutting edge applications in modern
industry and science. During the last four decades, researchers have switched from
just counting photons to simultaneously count them and their physical properties.

FIGURE 1.2: Galapagos finches. On the left we can see a John Gould
depiction of the morphology of the animals in the Galapagos Islands,
that were the foundations of the theory of evolution by natural selec-
tion. On the right, we see a modern photography of Camarhynchus
pauper, taken by using a long distance photographic objective and a
digital sensor. Pictures adapted from [1] and [2].



1.2. Making the right questions: multidimensional imaging 3

1.2 Making the right questions: multidimensional imaging

Nowadays, when you take a photograph with your camera, the question you are
formulating is “how many photons are coming from every point of the scene I want to
study?”. If we take a look at the digital file of a picture, we can see a numerical
value for each pixel of the image. This number is proportional to the amount of
photons that arrived to that pixel of the sensor, or, if your sensor is good enough (i.e.
expensive enough), the exact number of photons that arrived, excluding some small
amount of noise.

Counting photons is good, but measuring other parameters can provide addi-
tional useful information (see Fig. 1.3). Imagine a doctor that wants to track your
health. Of course, your health records contain your name and address, making it
easy to identify and distinguish you from other patients. However, tracking your
weight, your blood type and the proportions of its contents, and also a record of
your past illnesses, provides an excellent way to identify present and possible fu-
ture health problems, making doctor’s work both easier and more efficient. These
additional parameters (or dimensions) can be used in combination to produce re-
sults that none of them could provide individually.

In the case of light, changing “how many” for “when” provides temporal resolu-
tion to your system. Now you can measure both the spatial distribution of photons
and their arrival timestamps. With this information you can easily discern depth in
your pictures. Each physical property is a good candidate to ask about. By looking
at the polarization, the stress distribution of a windscreen can be obtained. Wave-
length provides information about the maturity of crops. The direction of light com-
ing from distant stars is perturbed by our sky, and measuring those changes is key
to obtain good astronomical pictures. Obtaining the spatial distribution of these pa-
rameters in addition to just the intensity distribution of light is what we know as
multidimensional imaging.

As of today, we can capture images that represent almost any physical quantity
you can name: energy, wavelength, polarization, phase, temperature, or pressure,
to name a few. In fact, the list has been growing non-stop since the development of
digital photography. This capability has been key to the development of industry
and science. Nowadays, all the leading industries use some kind of multidimen-
sional image system in quality control or in their safety systems. To name just a few,
polarization imaging is widely used to check the stress and defects of transparent
objects, such as glass or plastics [5]. Multispectral imaging is commonly used in
the food industry to check both maturity and defects of fruits [6]. Augmented real-
ity systems are starting to be a used as an everyday tool in medicine and industry,
facilitating the work of operators, and therefore increasing efficiency and reducing
costs [7]. Phase imaging systems are key in the development of many optical de-
vices, for example in the design and test of ophthalmic lenses [8]. In the case of
science, maybe the best example resides in life sciences. As scientists went deeper in
the understanding of the human body, it was clear that providing just images of the
amount of light going through a sample was not going to be enough. Information
about the polarization and the spectrum of light is currently being used to diagnose
biological tissue [9]. Phase and spectral information is utilized to study the working
principles of neural networks in emerging fields like Optogenetics [10]. Moreover,
real-time three-dimensional images help on visualizing and understanding physi-
cians not only the underlying structures of organs, but also their inner functioning.
In short, any task were humans need to make a decision is liable to be enhanced by
providing extra information.
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FIGURE 1.3: Multidimensional imaging examples. Three examples
of additional dimensions added to a two-dimensional picture. In the
top inset, spectral information from a satellite orbiting earth (picture
from NASA Terra satellite). In the middle inset, we can see polariza-
tion fringes and colors caused by the present stress in a pair of con-
ventional eyeglasses (winer picture from OSA 2008 Photo Contest, by
Osvaldo Buccafusca [3]). In the lower inset we can see a group of
cells imaged by using differential interference contrast microscopy,
extracted from [4].

Nevertheless, to obtain this information, optical systems are required to be built
accordingly. Standard digital sensors, such as charge coupled devices (CCD) or
complementary metal-oxide semiconductor (CMOS) just provide information about
the irradiance distribution of photons (they can only ask a simple question). For
example, in order to measure wavelength or polarization, you need to add addi-
tional optical elements, such as diffraction gratings and polarizers. During the last
decades, great advances have been made in this direction, and nowadays it is pos-
sible to buy commercial systems that allow users to obtain spectral and polarization
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FIGURE 1.4: Computational imaging examples. On the left, an ex-
ample of STORM microscopy, where multiple fluorophores are acti-
vated and imaged sequentially. After all the acquisitions are done,
an algorithm provides the final image (shown on the bottom row)
with enhanced spatial resolution. On the right, we can see a three-
dimensional image of a mouse embryo obtained with computerized
tomography. After illuminating the sample with x-rays from different
incidence angles, multiple slices of the sample can be obtained. From
that, an algorithm provides a three-dimensional representation of the
sample. Images adapted from [11, 12].

images. However, there is a price to pay when obtaining this supplemental infor-
mation. Adding optical elements makes the system more complex, which usually
entails bigger, slower, and more expensive devices. In the case of both multispectral
and polarization imaging, available systems tend to suffer from low temporal and
spatial resolution. Also, having access to bigger amounts of data is very useful, but
it compels electronics and computer systems to being able to process and store all
this information in an efficient way.

There is a lot of research being done to improve and cheapen the hardware re-
lated to multidimensional imaging systems. Advances in electronics and manufac-
turing have made possible to buy cost-efficient sensors with millions of pixels under
the size of a coin. Also, both raw computing power and electronic storage capacity
keep growing every day. Yet the increase in the amount of information has outpaced
those improvements. In order to tackle this problem, there are novel approaches that
rely not only on the hardware but also on intangible elements. Physics, mathematics,
and computer algorithms are merging with the hardware to make novel questions
to nature and get information in a way that has never been possible before. We will
see how next.

1.3 Welcome to the world of tomorrow: computational imag-
ing

How can you take a picture of something transparent? What about something that is
hidden by living tissue or behind a corner? How do you get a three-dimensional im-
age of an object? Photons travelling through a transparent object will not suffer from
absorption, and thus optical sensors will not serve for imaging that object. Light rays
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will deviate in all directions when travelling through a scattering medium, disabling
traditional optical systems ability to provide images. Light coming from different
planes in your scene will merge at your detector, making it impossible to discern
depth. If you want to tackle those problems using classical optics, you need to per-
turb your scene in some way. For example, you can stain your cell samples, making
them opaque. You can also chemically treat a tissue to make it transparent [13].
Last, you can make very thin slices of your object and image each one at a time.
All of these solutions share the fact that they are invasive, and thus not good for
lots of applications, such as biological imaging, remote sensing, or cultural heritage
imaging.

Computational imaging techniques obtain information in an indirect way. Com-
ing back to the doctor analogy, if you go to the clinic because your head hurts, the
traditional imaging way would be to open you and see what is inside (or take a sam-
ple). A “computational doctor” would check your temperature, look at your eyes
and ears, and then make a diagnosis based on all the information and an underlying
scientific model. The fundamental idea in our case is, starting from measurements
obtained with an optical system, to combine them using computer algorithms to
obtain the desired information. The algorithms need to be based on the existing
relation between the information contained in the measurements and the desired
information to be obtained (in the same way that pupil dilation is related to brain
damage). This mathematical relation is where physics gets involved.

Take, for example, the case of obtaining information about a transparent sample.
You can solve that problem by using phase shifting interferometry. In this technique,
light coming from the sample under study and a reference beam interferes at the
sensor. This interference causes the obtained image to present a characteristic fringe
pattern, that depends on both the phase introduced by the sample (which is not
known), and the phase of the reference beam (which can be controlled). By changing
the phase of the reference beam several times, multiple images with different fringe
patterns are acquired, and then a simple algorithm that takes into account the laws
of wave interference provides an amplitude and phase image of the scene.

As in the case of hardware design, each experimental condition will determine
both the optical system and the algorithm used. Knowing which is the information
you can obtain from your system and how to go from that to the things you want to
measure is what computational imaging tries to accomplish. At first, computational
imaging systems were based on capturing images using traditional optical systems
with little variations. For example, in the example of imaging a transparent sample,
introducing an additional light beam and some phase retardations. However, nowa-
days it is possible to control light in ways that were unimaginable some decades ago.
Spatial light modulators (SLM) have established as a fundamental tool in optics lab-
oratories all over the world to control both amplitude and phase of a light beam at
will. By doing so, scientists stopped to just looking at light beams, and started in-
teracting with them in the same way as musicians play with their instruments. This
taming of light has led to an apparent paradox: there are a lot of scenarios where
the best way to obtain an image of a sample is not to image it with a conventional
camera. This has opened the door to imaging systems where detection is not done
with CCD or CMOS sensors, but with more exotic detectors, such as spectrometers,
beam polarimeters, or photon counting detectors. In doing so, some of the hardware
limitations we saw in the last section can be solved, as we will see in the following
pages.

Computational imaging has allowed researchers to understand the imaging pro-
cess in a completely different way. Once you introduce computer science concepts
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onto your sensing mechanisms, new ways of retrieving information never stop to
appear. Before, we used to ask our systems “simple” questions, such as how many
photons?, when did they arrive?, or what is their spectral distribution? Now, we are start-
ing to make questions that do not even need to be formulated in human language.
We can obtain images by illuminating scenes with structured patterns and minimiz-
ing mathematical functions [14]. We can capture the shadows projected by our scene
to obtain its three-dimensional profile [15]. We can even toy around physical limita-
tions, like the resolution limit of an optical system or the rate at which information
can be acquired [16, 17]. Of course, there are some limitations. First and most impor-
tant, you can came up with almost infinite algorithms to perform a task, but most
of them will not be fast enough to be useful. In most practical scenarios, imaging
systems need to provide images in real time and with high spatial resolution. Com-
puting power has been increasing non-stop since the invention of computers, but it
is not an infinite resource. The design of efficient and fast computational techniques
is one of the main research areas of the field. There is also the problem of storage.
A biology lab can generate terabytes of images every few minutes. Handling all this
information (storing, labelling, and making it possible to access all data to process
it) has proved to be a headache for researchers, and the amount of pictures being
taken keeps getting bigger every day. Historically, the main solution used to tackle
this problem has been to compress your data after acquisition, thus reducing stor-
age needs. However, the novel field of signal processing has changed the traditional
sensing paradigms. Now, instead of compressing information after acquisition, you
can directly measure a limited amount of data in the first place, and then use com-
puter algorithms to “fill in” the missing parts in a clever way. This reduces storage
demands, but also provides faster ways to measure (as only the “relevant” parts of
information are typically acquired) and reduces bandwidth requirements.

1.4 A drop in the ocean

During my PhD, I have focused on the study of multidimensional imaging systems
in combination with computational imaging techniques. However, given the broad
range of possibilities of both fields, to just say that is to say nothing. More precisely,
I have worked on the development of systems based on an specific kind of technol-
ogy: the single-pixel camera (SPC). Single-pixel imaging (SPI), also known as com-
putational ghost imaging (CGI), is a computational imaging technique that stands
out by obtaining images using detectors without spatial resolution (i.e., using detec-
tors with only one pixel). In order to obtain spatial information, typical single-pixel
cameras use SLMs to generate structured patterns that can be used to illuminate
your sample. After that, light coming from the scene is collected and measured with
the bucket detector. The measured signal, in combination with the knowledge of the
patterns that are generated onto the SLM, allows the user to recover the image of the
object by solving a simple matrix inversion problem.

This way of obtaining images is beneficial in multiple scenarios. First, single-
pixel detectors can be easily built in a wide range of spectral ranges, whereas tra-
ditional pixelated sensors outside the visible spectral range have prohibitive costs
or are just simply impossible to assemble. This simple fact has led to multiple SPC
applications in the infrared [18–22], terahertz [23–27], and X and gamma rays [28–
31] regions of the electromagnetic spectrum. Also, there are harsh experimental sce-
narios that can also benefit from bucket detection. When working with very low
amounts of light, SPCs can be built using extremely sensitive detectors, such as
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Avalanche Photo-Diodes (APD) or Single-Photon Avalanche Diodes (SPAD) [32–34].
Even though it is possible to build arrays of very sensitive sensors, their costs are
much higher than their single-pixel counterparts. SPI systems have also been used
to provide images in biological scenarios where light scattering hinders the capa-
bility of conventional imaging systems to provide good results [35, 36] or to obtain
additional morpholgical information [37]. Additionally, SPI-based systems have also
been proved to be a viable tool to transmit information in a secure way [38, 39]. Last,
given the simple nature of SPI detection systems, they have demonstrated to be a
good candidate when designing multidimensional imaging systems, as it is easy to
build spectral [40, 41], polarization [42, 43], depth [44–46], and phase [47–49] sensi-
tive systems using this sensing paradigm.

During this thesis, I will show several experiments that demonstrate how to ob-
tain spectral [50], polarization [50, 51] and phase [52] information using SPI tech-
niques. However, SPCs still have some drawbacks. The main one is that the patterns
are generated onto a SLM in a sequential manner, and thus the capture process time
increases. In a traditional camera, images are acquired in one shot. In a SPC, to get
an image consisting of N pixels, you need to generate N different patterns onto the
SLM. This drawback hinders the capability of SPI systems to work in real time with
high spatial resolution.

In order to tackle this problem, the SPI systems used here were based on digital
micromirror devices (DMD). DMDs are binary spatial light modulators with refresh
rates in the range of tens of kilohertz. Given their speed, their easy polarization
characterization, and the fact that they can operate in wide spectral ranges, they
have proven themselves to be and excellent choice to work in single-pixel multi-
dimensional applications. Also, the fast control of light they provide has been ex-
ploited to further increase the capabilities of our SPCs. Using signal processing
techniques, such as compressive sensing (CS), adaptive algorithms, and matrix com-
pletion (MC) procedures, it is possible to build systems that surpass the Shannon-
Nyquist sampling theorem, increasing the overall acquisition and post-processing
speed [53–55], and reducing the information throughput and storage limitations of
multi-dimensional systems. These applications will also be explained thorough the
text.
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Chapter 2

Theoretical fundamentals: the
pieces of the puzzle

During this chapter, I am going to show all the fundamental aspects of the tech-
niques I have been using along the thesis. I will start with an introduction to Single-
Pixel Imaging, showing both the fundamentals in relation to its hardware (the Dig-
ital Micromirror Device and its characteristics). I will continue with the associated
signal processing techniques I have used (matrix inversion, compressive sensing,
and matrix completion). Finally, I will describe a way to improve the design of
single-pixel cameras: the use of a balanced detection scheme to leverage the opera-
tion principle of the DMD and increase both the acquisition speed and the SNR of a
SPC.

2.1 Single-pixel imaging

The term megapixel has recently become common in our daily lives. With the advent
of digital consumer photography, manufacturers started advertising their cameras
using whatever means they had available to attract people. Bright colors, camera
size, ease of use... and sensor size. Even though common people usually do not
know what are the benefits or drawbacks of having more or less pixels in your sen-
sor, the common reasoning has been “the bigger, the better”. An thus marketing cam-
paigns started using the number of megapixels as a key element to take into account
when buying a digital camera. This worked quite well, as can be seen in Fig. 2.1. As
search metrics indicate, buyers started worrying about the number of pixels on their
future sensors. Even though some time has passed and sensor size has lost some in-
terest, there still exists a trend on manufacturers about creating sensors with higher
and higher number of pixels (see Fig. 2.2).

However, when someone asks me the question “how many megapixels does your
camera have?”, I can answer “10−6 megapixels”. After saying that, I usually start
explaining how can a SPC work. Obviously, the main difference between a conven-
tional camera and a SPC is the sensor. Whereas conventional CCD or CMOS sensors
use millions of pixels to measure light coming from a scene, a SPC concentrates all
the light in just a pixel1. Its basic operation principle can be seen in Fig. 2.3.

Conventional cameras create a one-to-one map between the regions of the scene
that you want to capture and the regions (pixels) of your sensor by using an optical
system (i.e., they create an image of the scene into the sensor plane, where pixels
measure the corresponding amount of light for each region). As each zone of the

1When talking about single-pixel detectors, it is important to have in mind that, even though the
sensor only has one pixel, we do not necessarily refer to a point-detector (its size can be arbitrary big).
This is why these kind of sensors are also usually labelled as “bucket” detectors.



10 Chapter 2. Theoretical fundamentals: the pieces of the puzzle

FIGURE 2.1: Search trend for the keyword “megapixel” since 2004.
In the graph, we can see a representation of the relevance of the term,
given by the number of searches in Google Search. The vertical axis
goes from 0 to 100, 0 meaning minimum number of searches and 100
meaning maximum number of searches over the full period of time
(from 2004 to 2018). We can clearly see several spikes, spaced roughly
twelve months apart, and corresponding to the months of November
and December, where Christmas shopping season occurs. Data ex-
tracted from Google Trends.

FIGURE 2.2: Evolution of pixel count in digital sensors. In less than
50 years, the number of pixels in digital cameras has grown in more
than three orders of magnitude.

scene gets measured by a different set of pixels, the whole image can be acquired
in a single exposure (Fig. 2.3.a). Great advances in semiconductor manufacturing
technologies, which have entailed miniaturization of both physical size and price of
the sensors, have made CCD and CMOS cameras the go-to solution when one wants
to capture a digital image.

However, there are other ways of obtaining a picture. Instead of lightning the
whole scene at the same time, you can illuminate just one small region, for example,
by using a small bright point generated with a laser beam (Fig. 2.3.b). Then, you
can measure the light coming from that point with your sensor. By moving the
point along the scene, you can measure the light reflected by the object for each
position, thus obtaining the same image as before. This is usually known as raster
scanning (RS). In a RS setup, you do not need to use an array detector for measuring
all the information. However, now the image is not acquired in a single exposure,
as you need to scan the scene with your bright spot in a sequential manner. You
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FIGURE 2.3: Single-Pixel Imaging fundamentals. a) Conventional
image acquisition using a pixelated detector. The scene is imaged
onto the sensor plane with an optical system, and each pixel of the
detector measures the amount of photons coming from each region
of the scene. b) Raster scanning image acquisition. A bright spot
moves along the whole scene, and the light reflected is collected with
an optical system onto a bucket detector. The image is digitally re-
covered after the spot has scanned the whole scene. c) Single-pixel
imaging setup. Instead of scanning the scene with a small point, the
whole scene is illuminated with wide-field structured patterns. Light
reflected by the scene is collected and measured with a bucket detec-
tor. After the full scan is completed, the image is digitally recovered.

might be asking “why would I like to obtain an image in that way?”. After all, pixelated
sensors are cheap and fast. The answer is quite simple: there are circumstances
where a sensor array is neither cheap, nor fast. Moreover, there are cases where
even if you have access to a good pixelated detector, their single-pixel counterpart
offers better specifications. In my opinion, the paramount example of this is the
confocal microscope.

In a conventional wide-field fluorescence microscope, the whole sample is illu-
minated with a light source (as in a conventional camera setup). All the fluorescent
regions of the sample are excited at the same time, and the signal is measured with
an array detector. This is problematic because samples are three-dimensional, and
light from several depths is mixed in the detector plane. This makes images present
a “blurry” aspect, making analysis harder (see Fig. 2.4). In the case of confocal
microscopy, the sample is illuminated in a RS fashion (usually by using a set of gal-
vanometer mirrors), where the scanning bright point is optically conjugated with
a pinhole that selects light coming from only one depth of the sample. By doing
this, the background caused by light coming from different depths is eliminated,
and noise-free images can be obtained, as can be seen in Fig. 2.4. So, why is this
is a good example of the use of SPI? First, the optical setup used to remove back-
ground signal makes the technique work in a RS way. In doing so, the detector does
not need to be a camera any more. In fact, in fluorescence experiments signals tend
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to be very dim (both caused by fluorescence efficiency and by the light levels re-
quired to prevent biological damage), and in order to have a good signal-to-noise
ratio (SNR), very sensitive detectors need to be used. Even though it is possible to
buy CCD and CMOS sensors able to work in this low light level scenarios, the go-
to solution for confocal microscopes usually is a photomultiplier tube (PMT) or an
avalanche photodiode (APD), both of them in the family of single-pixel detectors.
Using single-pixel detectors makes it possible to work with the required high sensi-
tivities, in a wide spectral band (covering the visible and near infra-red), and with a
very fast response (in the range of MHz), which is crucial to obtain images of living
samples.

FIGURE 2.4: Wide-field fluorescence versus confocal fluorescence
microscopy. At the top we can see an image of a Convallaria rhizome
slice acquired by using a conventional microscope (using a pixelated
detector). At the bottom, the same sample but imaged using a raster
scan (RS) approach with a confocal microscope. It can be clearly seen
that the RS system removes the characteristic halo produced by light
scattered when travelling through biological tissues. Images kindly
provided by E. Irles.

Nevertheless, confocal microscopists do not say that they work with a SPC. This
is because the common definition of a SPC is a little bit different. The process of
acquiring an image can be easily formulated in the following way. Suppose a pix-
elated object, x, each one of its pixels containing an unknown intensity, x(i). Each
measurement consists of measuring the total intensity coming from the overlap of
the object and a spatial light mask (that represents a mathematical function). The
whole measurement process can be expressed in matrix form as

y = S · x, (2.1)

where y is the vector containing all the measured intensities; x is the object, ex-
pressed in vector form; and S is a matrix where the rows contain the masks that are
used experimentally.

It is easy to see that the RS approach (Fig. 2.3.b) can be mathematically under-
stood as a measurement of the object into the canonical (or pixel) basis. In this case,
the matrix S is equal to the identity matrix, I, and each one of our measurements
corresponds to the intensity of one of the pixels of the object, x. After measuring all
the pixels, recovering the object is straightforward.
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However, once we have introduced this formulation, we can go further and use
any orthonormal set of functions as our sensing matrix, not just the identity. Given
an object with dimension N pixels, you just need to pick a mathematical basis of
the N-dimensional space as your sensing basis. This can be the canonical basis, but
also Hadamard, discrete cosine, or wavelet basis, to name just a few. All of these
basis share two features. First, each one of the measurements takes information
about several regions of the sample at the same time. Instead of asking about the
intensity of one pixel, now we ask about several pixels at the same time (Fig. 2.3.c).
This increases the SNR of our measurements. Second, the traditional way to recover
the object is to solve the equation system given by Eq. 2.1. To do so, you calculate
the inverse of the sensing matrix, and then perform the operation: x = S−1 · y. As
any computer science expert can tell, calculating the inverse of a matrix with a big
number of entries is quite inefficient, and if you want to work with high resolution
images, you will soon start suffering from memory and speed limitations. Never-
theless, using these mathematical functions makes it possible to recover the object
by utilizing fast digital transforms instead of calculating inverse matrices, providing
a fast an efficient way of obtaining the final image. Last, and most important, the
use of structured patterns allows the use of advanced signal processing techniques,
such as CS, that greatly boost the performance of SPI systems, as we will see in the
following sections.

This structured illumination scheme is what we usually name as a SPC2. An ex-
ample scheme of a SPC can be seen in Fig. 2.5. The main difference from a RS setup is
the way of illuminating the scene. In a RS setup, you can use a pair of galvanometer
mirrors to rapidly scan your scene (with speeds over tens of kHz). However, when
performing structured illumination, more complex systems need to be used. This is
where SLMs come into play. Instead of just scanning the scene, now the procedure
entails the generation of all the functions of S with the SLM (Fig. 2.3.c). This process
is usually known as basis scan (BS), and can be done with phase-only or amplitude
SLMs, depending on the kind of functions (complex or real) that you want to imple-
ment. In our experiments, we adopted DMDs for several reasons. First, their high
refresh rates make it possible to build SPI systems with frame-rates comparable to
the ones achieved by RS systems, which is crucial for practical applications (more
information about how DMD technology works can be read on Appendix A). Also,
as we will see in the following sections, fast BSs make it possible to take advan-
tage of signal processing techniques that boost the acquisition speed of SPCs while
maintaining a very affordable budget.

2.2 Going beyond matrix inversion

As we saw in the previous section, the process of obtaining an image in a SPC is
quite straightforward. You choose your basis of functions (the rows of matrix S).
Then, you generate those functions with your SLM (a DMD in our case). After that,
you either project those functions to the scene under study, or make an image of your
scene into the SLM plane. In this process, both the functions and the scene overlap,

2Although here I am describing the SPC as a structured illumination system, there is an analogous
design that does not project structured patterns onto the scene. As can be seen on Fig. 2.3.c, both
the patterns and the sample need to physically overlap before collecting the resulting intensity value.
However, this overlap can be done in different planes. Depending on the experimental conditions,
sometimes it is very practical to image the scene onto the SLM plane, and make the superposition there.
These two approaches are usually labelled as “structured illumination” and “structured detection”.
During this thesis we will see examples of both.
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FIGURE 2.5: Single-pixel camera setup. Left: a digital light projector
(usually a DMD) generates a set of masks that are projected onto the
scene. The light either transmitted or reflected by the object is col-
lected onto a single-pixel detector. After that, the electrical signal is
digitized and stored. Using the sequence of patterns projected by the
SLM and the measured signal, the final image can be easily recovered.
Right: reconstructions obtained with both a CCD camera and a SPC.
Images adapted from [53].

and then you measure the corresponding light intensity with your bucket detector.
To recover the object, you solve Eq. 2.1, for example, by inverting S.

Without considering numerical problems (which can appear when the image size
gets bigger or measurements are highly affected by noise), this method still presents
a big challenge. Take, for example, the recovery of an image with a modest size
(at least for today standards) of ∼1 megapixel (i.e. 10242 pixels). To recover such
an image, you need to generate a set of 10242 functions in your SLM. In our case,
using a high-speed DMD module with a refresh rate of 22.7 kHz, this would take
10242/22700 ' 46 seconds, which obviously is not fast enough for real-time appli-
cations. In fact, primordial SPC systems usually worked with low-resolution images,
with sizes between 162 and 642 pixels.

So, it is evident that there is a trade-off between the number of pixels and the
acquisition speed when getting an image using a SPC. However, there are some
workarounds that allow us to recover a picture with a lower number of measure-
ments, thus decreasing the measurement time. In this new case, the mathematical
problem to solve will be

ŷ = Ŝ · x, (2.2)

where Ŝ is now a rectangular matrix, with less rows than columns. This measure-
ment process entails a dimension reduction, given that the size of our measurement
vector, ŷ, is lower than the size of our object, x. This dimension mismatch means
that the algebraic problem at hand is ill-posed, and thus it has an infinite number of
solutions.

So, how can we retrieve our image in that scenario? Even though it may seem
strange, ill-posed problems are quite common in both engineering and physics. For
example, any first year physics student is quite used to obtain the trajectory that a
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ball would follow when kicked by a football player (Fig. 2.6.a). To do so, they use
Newton’s laws of motion and a set of initial conditions such as the kick angle or
the ball initial speed. This is an example of a direct problem. Using your model
(Kinematics) and some parameters (speed, kick angle), you predict the effects (tra-
jectory) of an event (the player kicked the ball). However, there is another interesting
problem, maybe not so common among first year students, which is to find those pa-
rameters (initial speed, kick angle) from a set of positions of the ball trajectory. This
inverse problem can be either ill-posed or well-posed, depending on the number of
known positions of the ball. For example, if only the initial and final position are
given, there is an infinite number of combinations of kick angles and initial speeds
that would produce different trajectories with the same starting and ending posi-
tions (see Fig. 2.6.b). However, when adding additional ball positions the problem
becomes well-posed (Fig. 2.6.c) and it is quite easy to find the right solution. As
a rule-of-thumb, we classify problems as ill-posed when they have more than one
possible solution (the more rigourous definition by Hadamard can be found in [56]).

FIGURE 2.6: Examples of well-posed and ill-posed problems. a)
If friction is neglected, knowing the initial speed and the kick angle
provides enough information to calculate the full trajectory of a ball
kicked by a player (solid line). b) If only the initial and final positions
are provided, there is an infinite number of combinations of initial
speeds and kick angles that make the ball go from the starting to the
ending position (dotted lines). c) If, in addition to the initial and final
locations of the ball, the highest altitude point is given, the full path
and the initial parameters can be deduced. d) Last, in the case of
only knowing starting and ending positions, if we incorporate some
assumptions about kick angles (around 45 degrees), we can discard
some of the trajectories, obtaining a set of approximate solutions.

This family of ill-posed problems appears in mechanics, but also in optics, acous-
tics, information theory, astronomy, and medical imaging, among other fields. There
are several strategies to overcome the obstacles they provoke. First, you can add
additional measurements to make the problem well-posed, but this approach is of-
ten discarded if you do not have access to additional experimental data (because it
was measured in the past) or it is quite expensive to acquire it (for example, when
a patient stays on a computerized tomography scanner). Even if no more data is
available, there is still a lot we can do to solve ill-posed problems.

Let’s take the two-position-only football problem and think a little bit. Among
all the possible speeds and angles, there are some that are quite more probable than
others. For example, professional players can kick a ball at around 100 km/h. Then,
it becomes evident that solutions with initial speeds much higher than that will be



16 Chapter 2. Theoretical fundamentals: the pieces of the puzzle

probably wrong, and thus we can penalize (or directly discard) them. Also, if we
know the total distance the ball travelled, we can also favour initial angles that make
more sense. A very long shot will probably have initial angles around 45 degrees,
which we know its the angle that provides longer travel distances with a given initial
speed (Fig. 2.6.d).

This method of favouring some solutions and penalizing others using some ex-
tra information is mathematically known as regularization. In the following sections
we will see some examples of how to retrieve images with a SPC using a reduced
amount of measurements, regularization, similar approaches involving adaptive al-
gorithms, and ideas extracted from recommendation algorithms used in media plat-
forms such as Netflix.

2.2.1 Compressive sensing

Imagine you are playing a game of “Guess who?” (Fig. 2.7). For the ones not familiar
with its mechanics, two players play against each other in turns, and the goal of the
game is to guess a person the opponent chose from a pool of 24 people with different
names. To do so, you asks yes/no questions to your rival, gathering the information
you need to win. Of course, there are several strategies you can choose when playing
this game. Probably the most naive one is to ask directly the name of a person to you
opponent. In this scenario, you have a probability of guessing right of 1/24 on your
first try, then 1/23, and so on. On average, using this strategy gets you the correct
name with 24/2 = 12 questions (N/2 for a pool of N people). However, there is a
much better strategy that any kid would use from the start: instead of asking about
one person, you can make generic questions that remove more than one person from
the full pool of people. For example, if you play with a moderately modern version
of the game, asking if the person you are looking for is a male will remove 12 people
(either male or female) in just one question. You can follow up this with questions
about skin or eyes color, removing more than one possible person each time. If you
remove half the remaining people with each one of your questions, you need to
make either 4 or 5 questions to end the game (log2N for a pool of N people).

FIGURE 2.7: Guess who? Tabletop game where two players try to
guess a person by formulating yes/no questions to each other. After
each question, the player can eliminate subjects that do not match the
answer provided by the opponent.

At first glance, this may seem counter-intuitive. How can we find the solution
of a 24-dimensional problem with only 4 or 5 equations (questions)? The answer is
simple. Even though we are only measuring (asking) a few times (lower than the
dimension of our problem), we have a lot of additional information. First, there is



2.2. Going beyond matrix inversion 17

only one possible solution. We also know that we are guessing people, and people
have their own characteristic facial features we can use to produce very good ques-
tions (that remove half the pool of possible people each time). All of these concepts
are at the heart of compressive sensing (CS) techniques.

For simplicity, imagine a “Guess Who?” game with only three people, each one
with their unique name (Xavier, Yuri, and Zeno). In this case, we can say that our
problem resides in a three-dimensional space, which I am going to call the name-
space (see Fig. 2.8). This space can be visually represented using three orthogonal
axis (x, y, and z), each one representing one name (or dimension). The solution we
are looking for is a point in this three-dimensional space, with a position given by
a vector, r. For example, if we were trying to guess for Yuri, the solution will be
(0, 1, 0). In this space, the vector representing Yuri only has one non-zero element
(the corresponding to its name axis). However, we can define other different spaces.
Let’s define one axis that represents if the person is a male, another one that corre-
sponds to the person hair length, and the last one representing height. So, tall people
will lay on the positive axis of the height axis, people with hair on the positive part
of the hair axis, etc. In this body-space, Yuri will be represented by the point (1, 1, 1)
because he was a tall man with nice hair.

FIGURE 2.8: Vector sparsity in different bases. In the left, each char-
acter (defined by its name) lies along one of the three axes. In the
right, the same people does not have such a sparse representation,
even though the information content is the same.

This shows a very useful property of data. Depending on the space we choose to
work, the amount of information we need to use to define a person changes. In the
name-space, we only need one number to define Yuri, whereas in the body-space we
need three. This is commonly known as sparsity (we say that Yuri is sparse in the
name-space). This idea is at the heart of compression techniques: if you want to store
any data, express it in a space where it is very sparse, and then you will only need
to store a reduced number of elements of your vector.

However, during the last decade, a small group of mathematicians (mainly Can-
dès, Donoho, Romberg and Tao) made a good reasoning. The conventional process
of obtaining and storing information is as follows. First, you acquire your data.
Then, you choose a mathematical basis (space) to compress what you measured. Af-
ter that, you transform your initial data into this basis, where it is sparse, and you
only store the relevant parts (the most significant elements of your vector in this new
space). Coming back to the last example, the process will be to measure in the body-
space, transform your vectors to the name-space, and only store the non-zero elements
of each person. When you want to reproduce your data, you can easily go back to
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the original space, as going from one space to another entails just a linear operation.
But, why doing it in this way? In order to compress something, first you need to
measure all the information, and then you just throw away almost everything you
measured. Why not measure the relevant data in the first place? This efficiency is
what CS tries to accomplish [57, 58].

Recovering the formulation presented at the beginning of the chapter, our mea-
surements can be expressed as

y = S · x = S ·R · α. (2.3)

The first equality is the same we saw on Eq. 2.1, but now with an additional rela-
tion. Here I supposed that our object under study, x, can be expressed in a different
basis, R (usually called recovery basis), where it has an sparse representation (i.e., a
lot of the elements of α will be zero or very close to zero). CS shows that, if you make
enough measurements, you can use an optimization algorithm to recover your object
[14, 17, 59]. The number of measurements needs to fulfil that m > O[Q · log(N/Q)],
where N is the dimension of your object and Q the number of non-zero elements of
α. The fundamental idea is to find the sparsest object, α∗, compatible with your mea-
surements. To do so, the most basic procedure consists of a regularization problem
based on the minimization of the l1 norm:

α∗ = arg min‖α‖l1 subject to S ·R · α = y, (2.4)

where the l1 norm is defined as ‖x‖l1 = ∑i=N
i=1 |xi|. It is clear that, for vectors with

a lot of entries set to zero, the l1 norm will be low, so using this as a regularization
function will favour solutions that are sparse. If you are wondering why choosing
the l1 instead of the l0 norm (that would be the one giving the most sparse possi-
ble solution), the answer is that l0-minimization is a NP-hard problem, whereas l1-
minimization is a linear problem that can be quickly solved [17, 59]. Once we have
the result of the minimization problem, the object can be simply recovered with the
expression

x∗ = R · α∗. (2.5)

So, by using CS, we just need to make enough measurements (always lower than
the total number of dimensions of our object), and then run a minimization algo-
rithm. To obtain the best results, CS establishes that you need to choose the recovery
space wisely (i.e., choosing a space where our object is very sparse), and also to mea-
sure using a basis which is incoherent with the recovery basis. The first condition is
easy to meet, as natural data tends to be sparse. For example, natural images (which
is the kind of data we are going to work with) are very sparse in many common
mathematical bases, such as discrete cosines, Hadamard, or wavelets. Regarding
incoherence, it is also easy to achieve. Incoherence can be understood as a measure
of dissimilarity between the elements of each basis (any interested reader can go to
[59] for a more rigorous definition). For example, in two dimensions, the canonical
or pixel basis (formed by delta functions) is extremely incoherent with Hadamard
functions (which seem like checker-board patterns). The same can be said for bases
formed by random functions. The underlying idea of this incoherence requisite is
the same that we saw in the “Guess Who?” example. In that case, we are looking for
only one person, which is a solution extremely sparse in the name-space (represented
by a vector with only one element different from zero). If we ask for one specific per-
son, we only obtain information about one dimension of the whole name-space each
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time. By measuring in another different incoherent space (making broad questions
that eliminate half the pool of people), we get information about the full name-space
in every measurement, and this helps obtaining a solution with a reduced number
of measurements.

FIGURE 2.9: Compressive sensing by l1-minimization. Top left:
ground truth object used in the simulation and its expansion coef-
ficients in the Hadamard basis. It can be clearly seen that a great
portion of the 1282 coefficients have values very close to zero. Bottom
left: Measurement process. The superposition of the object and a set
of random functions provides the measurement vector shown in the
graph, that can be used for recovery using the CS algorithm. Right:
compressive recovery using a 50% compression ratio. It can be seen
that we recover a very similar coefficient expansion, but with a higher
number of elements set to zero due to the regularization process.

We can see a simple example of how this works when recovering an image in Fig.
2.9. In this case, the object under study is a binary Pacman representation with a size
of 1282 pixels. As the object is sparse on the Hadamard domain, we use random
functions to obtain our set of measurements (50% of the total, in this case). In this
way, we assure the incoherence between the basis where the object is sparse and our
measurement basis. After the l1 minimization is done, we get an image of our object
with very good quality. The code used here was extracted from the l1-magic package
[60], and it is one of the most simple strategies we can use to obtain images in a
compressive sensing way. Even though this procedure gives good results, it presents
several drawbacks, the main one being long reconstruction times. In the Pacman
example, the recovery process took around one minute with a personal computer.
For applications where real-time image acquisition is a must, other strategies can be
explored [19, 33, 53, 61, 62]. Next, we will see two of them.

2.2.2 Adaptive strategies

As we saw in the last section, CS allows us to recover an object with a reduced num-
ber of measurements. In doing so, it recovers the sparsest object compatible with our
measurements using iterative algorithms to solve a mathematically ill-posed prob-
lem. Even though this approach works well, those iterative algorithms require big
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amounts of raw computing power. Also, it is quite common for these kind of algo-
rithms to take longer times to run than the time it takes to make the measurements,
which hinders their application in real-time scenarios. This problem also gets worse
as image size grows (either by an increase in the number of pixels or by adding
additional dimensions, such as wavelength or polarization).

In these scenarios, there is a trend to substitute those optimization problems by
fast algorithms that can provide real-time reconstructions. For example, it is possi-
ble to sample the scene using orthogonal functions (Fourier, Hadamard, etc.) and
recover the image by just adding each function weighted by the measured intensity
(coefficient). This is very intuitive, as you get your image as a weighted sum of a
basis of the two-dimensional space: patterns similar to your scene will have very
big weights, and patterns different from it will have very low weights. An example
of this can be seen in Fig. 2.10, where I simulated the measurement process of the
Pacman’s image using the first 25% of Hadamard functions (ordered by spatial fre-
quency), and recovered the image by doing their weighted sum, which can be done
on-the-fly even in low-end computers.

FIGURE 2.10: Undersampled recovery by weighted addition. Left:
ground truth object. Right: recovery by only measuring the 25%
lowest Hadamard frequencies and adding them weighted by the ob-
tained intensity.

However, the problem when using this approach is choosing a good subset of
the entire basis to measure. As we do not know which are the most relevant func-
tions, when we perform the subsampling we always lose information (that is why
such a simple image as the Pacman in Fig. 2.10 looks pixelated). Other approaches
try to use some a priori knowledge about the object we are measuring. For example,
one can take an image of the scene, and in subsequent frames, use the knowledge
about the coefficient expansion of the scene to measure using only the most relevant
functions [19, 26, 32]. In a work developed in 2015, we went a step further. Instead
of capturing an image in a traditional way (i.e. measuring all the coefficients), and
then using the spatial information to speed-up following acquisitions, we designed
an adaptive algorithm that learns about the spatial content of the scene during its
acquisition [53]. In order to learn those features, the algorithm uses wavelet trans-
forms to locate regions of the scene with high density of borders, and assumes those
regions are the ones where the relevant features are. This is nice for two main rea-
sons: first, it does not need any a priori knowledge about the spatial features of the
scene; and second, it only uses fast mathematical operations to retrieve the image
(fast wavelet transforms and weighted sums). Before going through its operation
principle, let me introduce a few relevant characteristics of wavelet transforms.
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A wavelet transform can be intuitively understood as a sequence of filters. For a
given N2-pixel image, we apply four filters to it. The first one is a low-pass filter in
both dimensions (which we name LL). The next two are low-pass in one dimension
and high-pass on the other (LH and HL). Last filter is a high-pass filter in both di-
mensions (HH). In this process we generate four images which size is one fourth of
the original image, as can be seen in Fig. 2.11.

FIGURE 2.11: Wavelet transform definition as spatial filters. In the
top we see the initial image (Steam logo image, property of Valve Cor-
poration). In the bottom row, we can see the four images that result
from applying four band-pass filters. This process can be repeated
again to the low-pass filtered image (LL), generating a characteristic
tree structure.

After the filtering process is done, it is common to generate the transformed im-
age grouping all the levels in one image with the same size as the original one, as
can be seen in Fig. 2.12. In this case we can see both the two-level and three-level
wavelet transforms. There it is easy to see one of the most relevant characteristics
of this transform. In the quadrants labelled H, V, and D we can see that the high-
pass filter allows us to retrieve information about edges in the original scene. Also,
regions where the scene is flat tend to be zero. This means that for images with a
reduced number of edges, their wavelet expansion will be very sparse. Moreover,
the pixel values will also give us information about the relevance of the edges in the
picture, which we can use as a metric to discern between the most relevant regions
of our object.

So, by using wavelet transforms we can locate the positions of the borders of a
scene, but, how can this help reduce the number of measurements we need to take?
The key resides in the tree structure of the transform. If you take a look, for exam-
ple, at the three-level transform in Fig. 2.12, you can see that each level mimics the
previous one. If we have a region where the coefficients are zero at the first level
(painted blue), they will also be zero in the next levels (red an green). This property
is used in compression algorithms based on wavelet transforms. First, a full trans-
form of the object is done. After that, an algorithm goes along all the coefficients,
and when their value goes beyond a predefined threshold, that coefficient and all
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FIGURE 2.12: Wavelet transform examples. Left: Image sample
(Steam logo image, property of Valve Corporation). Center: two-
level wavelet transform. High values on the transform correspond
to edges on the original object. Additional lines are shown to ease
visualization of each one of the quadrants, that can be identified with
horizontal, vertical and diagonal edges (H, V and D). Right: three-
level wavelet transform. In this representation we can see the tree
structure of wavelet transforms (red, green, and blue branches). At
each level (also coloured), we get information with higher and higher
spatial resolution (doubling it each time). The number of possible
levels is delimited by the size of the original image.

their children coefficients (i.e., coefficients in the next levels that contain information
about the same spatial region of the scene) are discarded. Then, only a handful of
coefficients needs to be stored. Our adaptive algorithm is very similar in nature, but
instead of starting from the full resolution scene, it starts from the low resolution
image located the lowest level of the wavelet transform. Lets see how it works with
an example.

We are going to simulate a measurement of the object shown in Fig. 2.13.a, which
has a size of 256× 256 pixels. The first step of our measurement process consists of
obtaining a low resolution version of our object. We can choose any resolution we
want, and this will determine the number of steps we need to follow to get our
final image. In this example, we use the Hadamard basis of the 64× 64 space. In
order to measure, we resize all our patterns to fit the extent of the scene (256× 256
pixels). In this stage we use the complete low-resolution set (642) of patterns. After
this measurement, we get the coarse picture shown in Fig. 2.13.b. Once we have
this coarse image, we calculate its one-level wavelet transform, as can be seen in Fig.
2.13.c. Then we inspect this transform to search for interesting regions. To do so, we
divide each one of the three quadrants with the border information into four regions,
and we add the absolute value of all the coefficients contained in each region (Fig.
2.13.d). This measurement defines the metric we will use to evaluate the information
content of each spatial region. For regions with high density of borders, the sum of
coefficients will be high. In contrast, flat regions will be populated with zero-valued
coefficients. To classify regions in relevant or not, we just use a threshold defined as
a percentage of the total energy of the scene. By doing this we can easily identify
regions of the scene which are relevant (Fig. 2.13.e). In this case, in our first iteration
we can discard one of the quadrants, so no more patterns will be projected in that
spatial region again.

Next, we repeat this process for the regions that we still consider relevant (the
three green quadrants in Fig. 2.13.e). In this second step, we get the full set of 642

Hadamard patterns and resize them to 128× 128 pixels. After that, we get coarse
pictures of the three relevant quadrants we classified on the first step, and repeat
the process of looking for relevant regions with the aid of a wavelet transform (Fig.
2.14).
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FIGURE 2.13: Initial step of the adaptive recovery process. a) Scene
under study, a sample of Fasciola hepatica with a size of 256× 256 pix-
els. b) Initial coarse observation of the scene, obtained with a set of
64 × 64 Hadamard patterns. c) One-level wavelet transform of the
coarse image. Here, it is possible to see three quadrants that con-
tain the border information of the scene. d) Border inspection on the
wavelet transform. Each one of the quadrants has been divided into
four zones (coloured). Each color is linked to the same spatial region
of the scene. By adding the values of the coefficients in each region,
the amount of borders can be calculated, and then each zone can be
defined as relevant or not. e) After the transform inspection, the algo-
rithm locates three quadrants (green) with relevant information, and
one without. The three relevant zones will be further sampled in the
next steps of the algorithm, while the remaining one will stay with
the current sampling level.

FIGURE 2.14: Second step of the adaptive recovery process. With the
information we gathered on the initial step, now we measure in the
three remaining relevant regions (coloured). For each one, we acquire
a coarse image and, again, compute its one-level wavelet transform.
Then, the process of dividing the border quadrants into four regions
is repeated, and the total amount of borders is computed. This refines
the location of the relevant parts of the scene.
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This provides us the last set of relevant regions. In the last step of our algorithm,
we use the 642 Hadamard patterns (now without resizing) to sample the last batch
of zones of interest (the six green regions highlighted in Fig. 2.14). After that, we
can compose a full three-level wavelet transform (Fig. 2.15) with all the information
we have acquired. By doing a simple inverse transform we retrieve our 2562 pixel
image. In this case, the total number of measurements was 10× 642 = 40960, which
is roughly a 62% of the total number of pixels of the scene (2562). In addition to this
reduction in the number of measurements, the only mathematical operations needed
to recover the object are matrix multiplication, addition, and wavelet transforms. As
all those operations can be computed extremely fast, the recovery process can be
performed on the fly, as opposed to conventional CS approaches.

FIGURE 2.15: Final step of the adaptive recovery algorithm. After
all the relevant regions have been measured, the full set of wavelet
transforms can be composed into a three-level wavelet transform. By
doing a simple inverse transform, the final image is retrieved. It can
be seen that with only a number of measurements equal to 62% of the
number of pixels, the quality achieved is perfect on the regions were
the cells are located, while it is lower on the background.

Different sampling pattern sizes an number of levels can be chosen, depending
on the target spatial resolution and size of the final image. In that case, the second
step of our example is repeated over and over until the pixel size of the patterns we
use to sample the scene is equal to the pixel size of the scene. As an experimental
proof of the technique, we performed an experiment with a SPC as the one presented
in Fig. 2.5. To test the compression gains of our proposal, we imaged two different
objects: a LEGOr minifig and an USAF resolution target. We acquired images of
256× 256 and 512× 512 pixels, with variable compression rates. In both cases, the
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finest details of the scenes could be achieved with undersampling, and the recovery
process was practically instant.

FIGURE 2.16: Adaptive recovery experimental results. Top row:
256× 256 LEGOr Ned Flanders image (left) and the recovery with
the adaptive strategy using a number of measurements equal to the
88% of the number of pixels. Bottom row: 512× 512 USAF1951 test
(left) and the recovery using the adaptive approach. In this case, the
number of measurements was 55% of the total number of pixels. Fig-
ure extracted from [53].

This adaptive approach presents several benefits. First, it presents real-time re-
covery. Second, and more important, given the initial parameters, it adaptively de-
cides the total number of measurements (as opposed to a more democratic CS ap-
proach, that treats all scenes equally). Those two characteristics make it a very good
approach when trying to recover information at video rates. However, the technique
presented here was only based on the spatial features of the scene. When one wants
to acquire multidimensional information, for example in the case of multispectral
imaging, other approaches that play with the sparsity in the additional dimensions
can be explored. We will see an example next.

2.2.3 Matrix completion

The rise of streaming media platforms has been fuelled by a high number of techno-
logical advances. For example, even though movies and TV shows were a common
pastime for lots of people decades ago, building an accessible database for millions
of users with tens of thousands of titles required both storage and bandwidth capac-
ities that could not be met until recently. The same can be said in the case of music,
where even if each song requires very little storage, the huge amount of tunes pro-
duced every day makes it very difficult to create such a platform. Reducing the
storage needs of each item (whether it be a movie or a song) by using compres-
sion techniques (everyone today is familiar with formats such as mp3 or avi) and the
tremendous increase of available bandwidth have made possible to build platforms
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Die
Hard

Mad
Max

Commando
Blade

Runner
Moon Primer

User #1 5 - 5 1 2 -
User #2 1 2 - 5 5 -
User #3 5 - 5 - - 3
User #4 3 3 3 5 - 1

TABLE 2.1: Film rating examples for a small group of users. For each
film, ratings can go from 1 (bad) to 5 (very good). Not watched films
are marked with a "-". The first three films could be classified inside
the action genre, while the rest could be considered science-fiction.

such as Netflix or Spotify, where you are just a click away of watching or listening
whatever you like.

However, even if the theme seems to suit this chapter nicely, we are not going to
talk about storage or transmission problems. There is another interesting aspect of
streaming platforms that some of you may have experienced. As a big fan of Queen,
some time ago I went looking for Fat Bottomed Girls. After hearing it in Spotify, I
listened to several more Queen songs. Some days later, the software gave me a list of
songs that maybe I would like. Among others, the list contained songs from Boston,
Led Zeppelin, and Deep Purple. I like all of these bands, so I listened to the playlist,
skipping the songs I did not like. Days passed by and I got new recommendations.
This time I got songs from a lot of bands (both known and unknown), and the num-
ber of songs I did not like was much lower. This kept on going, and I have used this
feature every week for a long time to discover music I enjoy listening to.

How can Spotify make good recommendations to its users? In fact, all the stream-
ing services I know do these kind of recommendations. How do they do it? In the
past, people relied on suggestions by other people to discover new things. You got
books from your friends or your local book store. You went to the movies when
someone told you that a film was good. The same with music. Of course, if you
like the same music your friends listen, their recommendations will suit you well.
After all, they know you and your tastes. However, how do you get an algorithm to
provide good recommendations?

This problem was popularized by Netflix some years ago. They wanted to build
the best recommendation system possible for their platform, so they offered a one
million dollar prize to anyone who could produce a system with better performance
than theirs. The Netflix problem became extremely well known, and teams from all
over the world competed generating better and better algorithms.

In order to build a system like this, we have to understand how the information
is stored and what relations it holds. Let’s start with a simple example with some
film titles and a short list of people (see Table 2.1).

There are several patterns any cinema aficionado can see there. To start, we can
clearly divide the films into two main genres: action and science-fiction. Also, we can
classify users here with regard to their preferences. Some will be action fans, and
thus will tend to rate those films high (as user #1). Some other may be science-fiction
fans (user #2). Others may be a mix of both, liking or disliking both genres. Adding
more users and film titles will expand the categories shown here (adding genres and
combination possibilities for different user types), but the basic idea is clear: there is
an underlying structure on the ratings that can be used to reduce the dimensionality
of the dataset.
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For example, we know that user #1 likes action films, and Mad Max is shown as
not watched. If we recommend that film, there is a high chance that the rating will
be high. Also, we can see that the ratings of Blade Runner and Moon are low, so we
should not recommend Primer. Similar predictions can be done for the rest of users.
The bigger the database we can get, the better predictions we should be able to do.
Moreover, in this example films are just divided into genres, but nothing prevents us
to divide into other categories, such as “the film has classical music in its soundtrack”
or “the film has a female lead”, which could be patterns some users like/dislike.

The thing is that, in this example, the ratings are predicted based on my experi-
ence and the theory that users like films of the same genre. However, lots of ques-
tions can be made about this election. What are good categories to divide users into?
The example is based on genres, but is that better than “female lead”? Should we
use both at the same time? One can clearly see that as soon as we start refining our
method by increasing the number of parameters to take into account, this becomes
an impossible task for a human. Matrix completion (MC) techniques try to solve this
kind of problem in a computational way.

Of course, the problem of filling matrix entries is ill-posed, as there is no a priori
relation between its elements. However, if the rank of the matrix is known, the
problem can be solved if we know enough entries of the matrix, as can be seen on
Fig. 2.17.

FIGURE 2.17: Matrix completion of an incomplete rank one matrix.
As we know the matrix rank is one, all the rows of the matrix can
be easily related, and even though not all the entries are known, it is
trivial to fill in the gaps.

Even in the case of unknown rank, it can be demonstrated that we can retrieve a
good approximation of the matrix if it is low rank and some assumptions are done
[63–65]. This is known as low-rank matrix completion (LRMC), and its one of the
most common techniques to solve the recommendation problem we saw before, be-
cause user preferences can usually be described with just a few parameters, or in
other words, the complete matrix without missing ratings is either low-rank or can
be well approximated by a low-rank matrix.

However, if the topic of this thesis is not recommender systems, why did we
start to talk about them in the first place? The answer is simple: we can easily take
advantage of the techniques developed in MC problems to obtain multidimensional
images in a fast way. The reason behind this is easy to understand. In the case of
films, MC works because the true dimensionality of the dataset is lower than the
one we see at first glance. This is also true in many practical scenarios of multidi-
mensional imaging. Let’s see show it works with a simple example in multispectral
imaging.
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FIGURE 2.18: Redundancy example in multispectral imaging. a)
Spontaneous Raman image of a polystyrene bead and a silicone oil
droplet suspended in water (pseudocolored), with their respective
spectral signatures. b) Hyperspectral cube expressed in matrix form.
Each spatial position corresponds to a row of the matrix, and the
columns contain the spectra for each pixel. It can be clearly seen that
a high number of rows are similar in structure, given the fact that
several spatial positions contain the same chemical species. This be-
comes evident when the SVD of the matrix is done. In this case, the
singular values after the first three ones are almost negligible.

Consider a multispectral image as the one depicted in Fig. 2.18. In this case,
the data was acquired using a spontaneus Raman microscope [66], and the full hy-
perspectral cube has a dimension of 32× 32× 128 voxels (32× 32 spatial positions
and 128 spectral channels). If we take the full datacube and rearrange it so the spec-
trum of each spatial position is a row of a matrix, we get the matrix shown in Fig.
2.18.b. What it is interesting here is that, if we perform the Singular Value Decom-
position (SVD) of this matrix (see Appendix B for more information about SVD), we
can clearly see that the singular values rapidly decay. The physical meaning of this
distribution is that there is a reduced number of distinguishable spectral species in
our sample (three in our case). So, for each spatial position, we either have one of
the present species in the sample, or a combination of them (as in the first example
with film ratings). Given this big redundancy, we can just sample a small amount
of entries of the matrix, and use MC techniques to recover the full spectral cube, in-
creasing our measurement speed. In Fig. 2.19.a we can see the reconstruction we get
when measuring a random 50% of the entries of the spectral matrix and using MC
techniques to fill in the missing values.

In this example, we are using a simple MC algorithm based on the thresholding
of the SVD of a matrix, developed by Candès et al. [64]. One of the benefits of this
kind of approach is that, as the tools were developed with big datasets in mind, they
are quite efficient from the computational point of view and, what is better, really
fast for big datasets. This is a real advantage, as the datasets acquired in multi-
spectral imaging (that typically have thousands of spatial positions and hundreds of
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FIGURE 2.19: Multispectral imaging via matrix completion. For the
same polystyrene and silicon sample, here we can see the image re-
covered by only measuring half of the entries of the hyperspectral
cube using MC.

spectral channels) are quite hard to tackle with CS approaches [67]. Also, the output
of the algorithm is directly the representation of the data in a low dimension repre-
sentation (the matrices U, V, and Σ from the SVD of our spectral matrix), which is
very useful in imaging spectroscopy, where this representation naturally provides
the information about the chemical species present in the sample.

With this, we have seen the three main computational techniques I have used
along the thesis to improve the performance of SPI systems. However, it is also
possible to play with the experimental configuration of a SPC to measure faster and
with a better signal-to-noise ratio in challenging scenarios. We will see how next.

2.3 Coping with the limitations of single-pixel imaging sys-
tems

In the previous section, we saw the fundamentals of the SPC and some of the com-
putational techniques that can be used to boost its performance. However, software
improvements are not the only way to improve a SPC. Of course, SPI systems are
subject to improvements in both single-pixel detectors and SLMs. By creating faster
and more sensitive sensors, the amount of time spent measuring decreases. In the
same way, using faster SLMs naturally increases the frame rate of SPCs.

One of the choices you make when designing a SPC is the SLM. In our case,
we work with DMDs because they are fast and cheap. However, they have some
limitations. The main one is that they are binary intensity-only modulators. As de-
scribed before, in order to get an image with a SPC we need to generate a set of
functions with our SLM. So, by choosing a DMD we are inherently subject to mea-
sure in binary real bases. The binary limitation can by-passed using either spatial or
temporal multiplexing (see Appendix A). In order to measure with negative-valued
functions, temporal multiplexing can also be used. Take, for example, the case of a
Hadamard matrix (that is one of the most used sets in SPI). Hadamard matrices are
binary square matrices valued either +1 or−1. Their rows form an orthogonal basis
in which we can measure the projections of our object, which provides the experi-
mental benefits stated in Sec. 2.2.2. In order to codify negative values, we can take
into account that the measurement process:

y = H · x, (2.6)
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is linear, and thus can be expressed as a linear combination of two measurements.
Also, given the properties of Hadamard matrices, we can write

H = H+ −H−; (2.7a)

H+ =
1
2
(I + H); (2.7b)

H− =
1
2
(I−H); (2.7c)

where I is a matrix with all its elements set to 1. It can be clearly seen that both H+

and H− entries are just 1 or 0. By doing this, we can describe the measurement as
a two-step process: y = H+ · x−H− · x. To measure one coefficient (y(i)), first you
project one Hadamard pattern (one row of H+), and then its complementary (the
corresponding row of H−, switching ones by zeros). After acquiring the electrical sig-
nal and converting it into a digital value, you make the subtraction in your computer
and get the Hadamard coefficient. This process has been widely used in SPI systems
to increase the quality of recovered images [19, 36, 50, 54, 68, 69].

However, it is possible to perform this kind of measurements without reducing
your acquisition speed by a factor of two. In a work developed in 2016, we imple-
mented this measurement procedure taking advantage of the dual nature of DMDs
and the performance boost that balanced detection provides [54]. The main idea be-
hind this work is to simultaneously use both reflection arms of the DMD to measure
the H+ and H− projections. Also, as the relevant information we want to acquire
is located in the difference between those two measurements, a balanced detector
provides that exact value with a higher dynamic range and sensitivity that a con-
ventional SPI system.

The experimental setup can be seen in Fig. 2.20. It is a typical SPC working in a
structured detection mode, i.e., imaging the scene onto the DMD, where the patterns
are generated, and measuring the reflected light with a photodiode. The twist here is
to use both reflection directions of the DMD. For each arm, we get the superposition
of the scene with one pattern and its complementary one. Now, instead of using
two different photodiodes to get both signals and performing the subtraction after
the digitization phase, we introduced a balanced detection scheme to increase the
performance of the system.

Balanced detection has been widely used in optics to remove background signal
and suppress random intensity variations, enabling the measurement in shot-noise
limited conditions [70–73]. The fundamental idea behind this implementation is that
any signal from a SPI experiment can be divided into two parts: a DC and an AC
term. The DC term will be constant, and in our case is related tot the total amount
of light coming from the scene. On top of this DC term, we can distinguish an AC
term that will be caused by the small oscillations of the signal that will be caused
when we change the pattern on the DMD and different parts of the object overlap
with the bright regions of the patterns. The key here is that the relevant information
to obtain an image is contained in the AC term. When using a single photodiode,
you convert the whole (DC+AC) signal to digital, and then inspect the signal using a
computer. Here, we are using two photodetectors connected in such a way that their
photocurrents cancel each other. This directly removes the DC term, and after this
difference is done (in the electrical domain), the differential signal can be amplified
and digitized using the whole dynamic range of our analog-to-digital converter. By
doing this we get a superior SNR, improve the frame rate of our system in a factor of
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FIGURE 2.20: Single-pixel imaging using balanced detection. A
white light lamp (WLS) illuminates the object under study (USAF
test), which is imaged into the DMD plane by using a single lens (L1).
The DMD generates the Hadamard patterns, and light is collected in
both reflection directions using two collecting lenses (CL) and two
optical fibers, that guide the light into the entrance of a balanced pho-
todetector (BPD). After amplification, the signal is digitized with an
analog-to-digital converter (ADC) and stored in the computer (PC),
which controls all the process. An additional light source (ALS) is
used to introduce ambient light into the system in a controlled way
using a beam splitter. Figure adapted from [54].

two, and also make it immune to temporal oscillations of the light source or parasite
signals such as ambient light.

We can see an example of this in Fig. 2.21. In this experiment we used the setup
shown in 2.20 to acquire a set of images using two different configurations. First,
we acquired them using balanced detection (Fig. 2.21.a). To show its benefits, we
introduced parasite light using an additional light source into our system. It can be
clearly seen that even when the signal level is much dimmer (by a factor of two) than
the parasite signal we can clearly recover our object. Also, the difference between
measuring with this parasite light source is minimal. When using a traditional SPI
system with only one photodetector (Fig. 2.21.b), we see that artefacts are present in
all signal levels, reducing the capability of the system to obtain a good image. Also,
even when the parasite lamp is turned off, the reduced dynamic range of the system
causes the quality of the images to be generally lower than their balanced detection
counterparts.

With this example we end with the tools I have worked with to improve the
general performance of SPI systems, whether it be on the computational or on the
hardware side. In the following chapter we will go through the multidimensional
systems that can be developed using these tools to obtain images with information
about wavelength, polarization and phase.
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FIGURE 2.21: Single-pixel imaging with parasite light. Group of
images with different illumination conditions for a balanced detec-
tion (a) and a single detection (b) setup. While mantaining the power
level for the ambient light source shown in Fig. 2.20, multiple im-
ages are acquired with different illumination levels over the object.
We also show the images acquired without introducing parasite light
into the system (marked as “lamp OFF”). Figure adapted from [54].
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Chapter 3

Experimental results: putting it
together

After introducing both the computational and hardware fundamentals of our sys-
tems in the previous chapter, we are ready to see some of the applications I have
worked on during the last years. I will start with a SPC where the detector is a fibre
spectrometer [50]. This allows to obtain multispectral images. After that, adding
several polarimetric elements to that design makes it possible to obtain both spec-
tral and polarimetric information simultaneously [51]. With the development of
a different detection scheme and using MC techniques, it is also possible to per-
form multispetral imaging in a Raman microspectroscopy environment. Last, I will
demonstrate how to obtain phase information using a lateral position detector as a
single-pixel detector [52].

3.1 Spectropolarimetric imaging using a single-pixel camera

Multispectral images are of paramount interest when studying the chemical struc-
ture of objects. For example, as can be seen at the beginning of this thesis, this tech-
nique can be used to study cellular biology [74], to identify the components of soils
by means of aerial imagery [75], or as a tool to measure temperature [76], among
others. There are quite a few different approaches when tackling the problem of
obtaining multispectral images (an interested reader can go to [77] for a detailed re-
view), but almost all of them struggle in a couple of points. First, using a single array
detector in the visible (VIS) region of the spectra is usually quite easy, but when try-
ing to recover information over a wide spectral region, for example in the infrared
(IR), costs can be prohibitive or detectors can just be unavailable. Also, when both
spatial and spectral resolution start to grow, the size of the datasets increases in such
a fast way that both transmission and storage problems start to limit system perfor-
mance.

To solve these problems, SPI systems offer two main solutions. First, using
bucket detectors greatly simplifies the problem of detecting over a wide spectral
range, as photodiodes can easily work in the full VIS, IR range, and even in other
exotic regions such as THz or X-ray [25, 30, 78, 79]. Also, their size and simplicity
makes it even possible to combine multiple detectors for different spectral ranges
without needing very complicated systems [21, 26]. Second, the use of SLMs makes
it possible to use signal processing techniques, such as CS or MC, to reduce the size
of acquired datasets, alleviating both storage and transmission problems.

In a work developed in 2013 [50], we built a simple multispectral system using a
fibre spectrometer as a bucket detector. The device is depicted in Fig. 3.1.a. In this
case, a white-light lamp illuminates the scene, which is imaged onto the surface of
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the DMD. In this plane, we codify the patterns that are used in the SPI reconstruc-
tion process (as explained in Chapter 2). After this, an optical fibre guides the light
to a beam spectrometer, where its spectrum can be analysed. In this way, we can
measure the spatial projections of our scene into our measurement basis for several
wavelengths at the same time.

FIGURE 3.1: Single-pixel multispectral camera. A white-light source
illuminates the scene, which is imaged onto the plane of the DMD.
After the structured patterns are generated onto the DMD, the light
reflected is concentrated into the entrance of a fiber spectrometer, thus
obtaining spectral information (a). If light goes through an analyser
and a fiber spectrometer, both polarization and spectral data is gath-
ered (b). Adapted from [51].

By doing this, instead of measuring a single vector y as in Equation 2.1, we get
as many vectors as spectral bands are measured by our spectrometer. Then, we can
solve an equation system for each spectral band, obtaining the images composing
the spectral cube. Of course, signal processing techniques can be applied to this
problem to improve both speed, storage, and bandwith needs. In a first experiment,
we acquired the spectral cube shown in Fig. 3.2 using CS. For a spectral cube with a
total size of 256× 256× 15 elements, we only used a 10% of the full set of Hadamard
functions to sub sample the spatial features of our scene. The object, a couple of
cherry tomatoes in two different maturation stages, clearly shows different spectral
information along the field of view in both the VIS and NIR region.

FIGURE 3.2: Multispectral imaging using a SPC. Cherry tomatoes
in two different maturation stages in fifteen different spectral bands
going from the VIS to the NIR. Adapted from [50].

In addition to spectral information, it has been demonstrated that adding polari-
metric data improves the capability to perform biological analysis of living samples
[80, 81] and the results of remote sensing [82, 83], among others. As a first approach
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to the problem, a simple linear polarizer can be added to the system to act as an anal-
yser. The modified setup is shown in Fig. 3.1.b., where the polarizer was added just
in front of the optical fiber of the spectrometer. The scene under study consisted of
two small capacitors (one yellow and one blue), each one illuminated with a differ-
ent (horizontal or vertical) linear state of polarization (SoP). Now, for four different
orientations of the analyzer, a set of spectral images can be acquired. In this case, it
is straightforward to derive the spatial distribution of three Stokes parameters (S0,
S1, and S2).

FIGURE 3.3: Preliminary polarization analysis of multispectral im-
agery obtained with a SPC. Multispectral data of a scene for four dif-
ferent orientations of a linear polarizer. With this simple procedure,
the Stokes parameters S0, S1, and S2 can be easily deduced. Extracted
from [50].

However, this setup has limited capabilities. To start with, in order to get polar-
ization information you need to physically rotate the analyser. The presence of this
moving element is detrimental in ranged detection systems, and basically in any
setup which purpose is to be used in a real-life sceario. Also, by rotating a simple
analyser you only get partial information about the SoP of light (you miss the in-
formation contained in the Stokes parameter S3). In order to solve these problems,
we developed a new system with a more sophisticated detection stage [51]. Now,
instead of just using a simple analyser, we also added two electronically-controlled
liquid crystal variable retarders (see Fig. 3.4).

The setup is basically the same as the one in Fig. 3.1, but now the light passes
through a fixed linear polarizer with its transmission axis at 45o placed after two
additional polarizing elements: two variable retarder plates with their slow axes
oriented at 45o and 0o, respectively. By using Mueller calculus it is easy to prove that
the SoP at the entrance of the fiber (S′) can be related to the SoP before the LCVR
plates (S) by:

S′ =A · LCVR1 · LCVR2 · S,
S′0
S′1
S′2
S′3

 =
1
2


1 sin 2δ1 sin 2δ2 cos 2δ2 − cos 2δ1 sin 2δ2
0 0 0 0
1 sin 2δ1 sin 2δ2 cos 2δ2 − cos 2δ1 sin 2δ2
0 0 0 0

 ·


S0
S1
S2
S3

 ,
(3.1)
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FIGURE 3.4: Single-pixel multispectral Stokes imager. A white light
source illuminates the object (a stressed piece of polystyrene), which
is imaged by a relay system onto the surface of the DMD. Light re-
flected by the DMD goes through the LCVR plates and the analyser,
and is collected onto the entrance of a fiber spectrometer.

where 2δ1 and 2δ2 are the phase retardances introduced by the LCVR plates. As both
δ1 and δ2 are wavelength dependent, a previous voltage-to-retardance calibration
along the full spectral needs to be done. After the SP reconstruction, we obtain the
distribution of irradiance of the scene (S0), and we can relate it with the full Stokes
distribution of the object using Eq. 3.1:

S′0(2δ1, 2δ2) =
1
2
[S0 + sin(2δ1) sin(2δ2)S1 + cos(2δ2)S2 − cos(2δ2) sin(2δ2)S3]. (3.2)

Using four different retardance combinations ({2δi
1, 2δi

2}i=1,...,4), we acquire four
different images for a given spectral band. After that, we can use the following
equation system to obtain the full Stokes information for each spatial position of the
scene:


S′10
S′20
S′30
S′40

 =
1
2


1 sin 2δ1

1 sin 2δ1
2 cos 2δ1

2 − cos 2δ1
1 sin 2δ1

2
1 sin 2δ2

1 sin 2δ2
2 cos 2δ2

2 − cos 2δ2
1 sin 2δ2

2
1 sin 2δ3

1 sin 2δ3
2 cos 2δ3

2 − cos 2δ3
1 sin 2δ3

2
1 sin 2δ4

1 sin 2δ4
2 cos 2δ4

2 − cos 2δ4
1 sin 2δ4

2

 ·


S0
S1
S2
S3

 ,

S′0 =M · S,

(3.3)

and repeating this procedure for all the spectral bands, we acquire the full spectro-
polarimetric dataset.

As an example of the procedure, we measured the spectral Stokes distribution of
a stressed piece of polystyrene. The stress is generated in the process of fabrication,
as the plastic is shaped in a predefined form. This stress causes the plastic to present
a spatial distribution of birefringence that can be easily seen when the piece is placed
between two crossed linear polarizers and illuminated with white light (see Fig. 3.4).
In this case, we used a 20% of the total set of 128 × 128 Hadamard patterns and
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CS recovery to obtain the spatial Stokes distribution for eight spectral bands with a
width of 20 nm. The results can be seen in Fig. 3.5.

FIGURE 3.5: Imaging the spectral Stokes distribution of an object
using a SPC. For a small stressed polystyrene piece, the spatial dis-
tribution of the Stokes parameters over eight spectral bands can be
deduced using a detector built by combining a fibre spectrometer, a
linear polarizer, and two LCVR plates. Adapted from [51].

3.2 Computational Raman microspectroscopy

In the previous section, we saw how to use a SPC to obtain multispectral and polari-
metric information. In those experiments, a DMD is used to sample the spatial fea-
tures of the scene under study, while different detection schemes provide the spectral
and polarimetric information. However, this way of obtaining multidimensional in-
formation is not unique. In this section, we will see a different approach (but with
a lot of similarities) to obtain multispectral images in a Raman microspectrometry
setup.

FIGURE 3.6: Dye microscopy examples. On the left, a microscopic
view of a sample of human lung tissue, stained with hematoxylin
and eosin (image extracted from [84]). On the right, a composed view
of human cheek cells when viewed in a wide-field microscope or by
using the fluorescence signal generated when staining the cells with
carbon nanoparticles (image adapted from [85]).

When studying biological organisms, it is crucial to obtain images where the
internal structure and components of the sample can be easily distinguished. In
common scenarios, the specimens under study tend to be transparent, which com-
plicates the imaging process. One of the most common ways of solving this problem
is to artificially label the samples to make them easily visible by a traditional opti-
cal system, in a process commonly known as staining. By using different dyes and
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adequate procedures, it is possible to attach different dyes to different regions of
the sample, enhancing image contrast. This process can also be applied using fluo-
rescent dyes, which enhances the depth penetration of microscopy techniques (see
Fig. 3.6). However, this methodology has several limitations. First, it is invasive,
as the dyes need to physically attach to different structures. The protocols used for
dye fixation can damage or sometimes even kill the specimens, limiting the num-
ber of applications of the procedure [86]. Second, the number of available dyes is
limited, and there are quite a lot of biological structures that do not have known
usable dyes. Even though current research is being done in both the fixation proce-
dures and the dye generation, working with techniques without needing to label the
samples would make everything easier.

FIGURE 3.7: Raman effect fundamentals. a) Energy levels involved
in several scattering processes. If the photon interacting with the
media maintains its energy, we say that the scattering was elastic
(Rayleigh scattering). However, when the photon energy changes,
we have inelastic (Raman) scattering. In this case, the photon can in-
crease its energy (anti Stokes scattering) or decrease it (Stokes scatter-
ing). b) Typical Raman spectrum for an interaction between a photon
and a molecule. The central peak that goes off the chart corresponds
to the wavelength of the incident photons and the ones that suffer
from Rayleigh scattering. We can also clearly see that several peaks at
different wavelengths appear, which positions depend on the energy
level structure of the molecule.

This is where Raman microspectroscopy (RMS) comes into play. RMS is based
on the spontaneous Raman effect. When light arrives to an atom or molecule, it
can either be absorbed or scattered. Among the scattered photons, most will retain
their original energy (Rayleigh scattering), but a small fraction will suffer from in-
elastic scattering, thus varying its energy (Stokes and anti-Stokes Raman scattering).
The energy exchange between the photon and the atom excites the latter, usually to
a vibrational level (see the Stokes peaks in Fig. 3.7.b). This is interesting from an
imaging point of view: as the chemical species present in a biological sample have
different structures, their vibrational energy levels will be distinct, and thus also
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their Raman spectra. Given the structural complexity of chemical components, this
spectrum is, indeed, a molecular fingerprint that can be used to naturally label any
sample. This is a strong point for RMS, as there is no need to generate dyes or to
prepare the specimens for imaging. However, the small probability of Raman scat-
tering events (only around one photon in ten million suffers from Raman scattering)
hinders its application in real-life scenarios due to very low signal levels. To tackle
this, Raman imaging systems usually require high excitation powers, but even in
this case the imaging speeds tend to be low [86, 87]. This limits the application of
RMS in the study of live biological samples. Also, given the multispectral nature of
the technique, data storage and bandwidth bottlenecks are common problems that
need to be faced. Even though much stronger Raman signals can be obtained using
non-linear processes (as in Coherent Anti-Stokes Raman Spectroscopy, CARS) [87],
some novel computational tools have started to be used as a way to increase RMS
performance.

In a recent series of works, it has been demonstrated that using a single-pixel
computational spectrometer instead of a traditional one using an array detector pro-
vides additional flexibility in the acquisition and post-processing stages without a
big sacrifice in complexity [66, 88]. Moreover, using a single-pixel detector in combi-
nation with a DMD results in an inexpensive setup that enhances sensitivity at low
signal levels.

FIGURE 3.8: Computational Raman microspectroscopy setup. Light
from a laser is focused onto a sample, generating a characteristic Ra-
man spectrum. The sample can be moved using a 3D stage, thus
obtaining spatial information. The spectral signal is measured us-
ing a computational spectrometer based on a DMD and a PMT. Cap-
tions: LS: 532 nm laser source, LLF: laser line filter, NF: notch filter,
Di: dichroic mirror. Image adapted from [66].

In contrast with the single-pixel architectures presented before, in this applica-
tion the DMD is not used to sample the spatial features of our sample, but its spec-
tral content. The setup of the system can be seen in Fig. 3.8. A green laser beam
(λ = 532 nm) is focused onto the sample using a microscope objective. The sample
can be displaced in three dimensions using a motorized stage (see Fig. 3.9.a). After



40 Chapter 3. Experimental results: putting it together

illumination, the generated Raman signal goes through a grating, separating all its
spectral components. The diffracted light is guided to the surface of a DMD, where
it can be either reflected onto the surface of a single-pixel detector or in a non-guided
direction. By doing this, the system is able to obtain spectral information in differ-
ent modes. First, the DMD can act as a programmable slit, thus measuring a single
different wavelength at a time. After all the wavelengths have been measured, the
Raman spectrum can be recovered by simple numerical methods (at the expense of
a reduced light efficiency). However, the signal level at the detector can be increased
by measuring multiple wavelengths at the same time by coding spatial masks on the
DMD (Fig. 3.9.b). In this case, the measurement would be analogous to the one in a
Hadamard transform spectrometer [89, 90].

FIGURE 3.9: Sampling fundamentals of a computational Raman mi-
crospectroscope. a) The spatial information of the sample is obtained
by raster scanning the scene. For each spatial position, a focal spot
generated by a microscope objective excites the sample to generate
the Raman spectrum, that is measured with a computational spec-
trometer. b) The Raman signal passes through a grating, so each
wavelength is mapped to a different spatial position in the DMD.
Then, the DMD is used to sample the spectrum, either by acting as
a simple moving slit (like in a monochromator) or by implementing
structured masks (as is done in the spatial domain with Hadamard
functions, for example) and measuring with a single-pixel detector
(for example a PMT or a SPAD).

All the sampling fundamentals introduced in the previous sections for the spa-
tial domain can be translated to the measurement of spectral information. In this
way, raster scan, basis scan, and also advanced signal processing techniques can be
used to obtain the spectral data, while the spatial raster scan provides the features
of the sample in two or three dimensions. Recently, this computational approach to
Raman microspectroscopy has sparkled some interest as a way of increasing acquisi-
tion speed and soften the bandwith requirements for in vivo Raman imaging of bio-
logical samples by using CS [66, 83], or combining CS with some a priori knowledge
of the sample [88]. Usually, the pure CS approach entails long post-processing times,
which limits its application in real-time situations. Also, there are scenarios where
there is no a priori information about the sample. As a way to achieve real-time ac-
quisition, with no a priori information, novel algorithmic approaches are starting to
be used [91]. In a work we have been developing over the last year [92], we intro-
duce the methodology of MC into a single-pixel Raman microspectroscope. Given
the technical design of this kind of microscope, the sampling procedure it performs
can be directly related to the matrix formalism shown in Sec. 2.2. For each spatial
position (a fixed position of the translation stage), the Raman signal is measured by
the DMD and the SPD, obtaining a vector which entries correspond to the energies
for each wavelength. This process is repeated for all the spatial positions, forming
a matrix where each row corresponds to a spatial position, and each column to a
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spectral channel. As was described in Sec. 2.2, when a high number of rows of the
matrix are linear combinations of a few independent rows, the problem of recover-
ing its missing entries can be solved using MC techniques. Given that the number
of different chemical species in a Raman experiment tends to be quite low (dozens,
at the most), this computational approach seems very promising as a way to reduce
both acquisition and post-processing times.

FIGURE 3.10: Computational Raman microspectroscopy. a) Top:
group of polystyrene beads (green) suspended in water (red). Bot-
tom: Raman spectra of the two present species. In this case, the im-
ages were acquired with a measurement ratio of 44%. b) Top: Raman
microspectroscopy of brain tissue. In this case, both lipids and pro-
teins can be distinguished from the Raman spectra (bottom) analysis.
In the inset we highlight the differences between the lipid-rich and
protein-rich regions of the sample, that was sampled using a mea-
surement ratio of 56%. In both cases, the eigenimages (only shown
for the brain sample), output of the MC algorithm, can be merged to
generate the pseudocolored final result.

Using the setup described in Fig. 3.8, we acquired an image of a group of beads
made of polystyrene. In Fig. 3.10.a, we can clearly distinguish between the polymer
beads (coloured green) in the water suspension (red). From the hyperspectral recon-
struction, it is also possible to distinguish the characteristic peaks of the polystyrene
vibrational spectrum, together with the water one. In this case, the image size was
199× 135 pixels, with 127 spectral channels. The effective pixel dwell time for the
acquisition was 8 ms, which is almost one order of magntiude shorter than the tradi-
tional approaches [86]. The images shown here were obtained by using only 44% of
the total number of entries of the hyperspectral matrix, and the recovery process was
done at a rate of 11 ms/pixel (spatial) using a laptop computer and a MC algorithm
based on singular value thresholding [64]. To test the procedure in a more challeng-
ing scenario, we also obtained images of brain slices, as can be seen in Fig. 3.10.b.
In this case, we can distinguish between tubular structures, which correspond to
myelins made of lipids (coloured green), and non-tubular structures, which corre-
spond to the axons, rich in proteins (coloured red). For a 215× 170 pixels and 127
spectral channels dataset, we only measured a 58% of the total number of entries of
the hyperspectral matrix, thus obtaining an effective pixel dwell time of 19.6 ms. The
recovery process, using a MC procedure based on non-negative matrix factorization
[93] was done at a rate of 8 ms/pixel (spatial) using a laptop computer [92].
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These results clearly show the capability of MC to obtain multispectral infor-
mation in a Raman microspectroscopy setup. This is relevant for several reasons.
First, the experimental design of computational Raman microspectroscopes can be
naturally done with the working principles of MC in mind, which makes its imple-
mentation straightforward. Second, using this kind of technique allows us to obtain
images with reconstruction rates equal or even lower to the acquisition time, which
is crucial when working in biological scenarios. Last, this presents an unsupervised
(i.e., without needing a priori information) approach to Raman microspectroscopy.
However, it can also be used as a fast way of obtaining information about a sample,
and then using this information to speed-up acquisition processes of future acquisi-
tions, similar to the adaptive procedures that were introduced in SPI in the spatial
domain in Chapter 2.

3.3 Phase imaging using a single-pixel camera

In the previous sections we have seen several examples of how to obtain both po-
larization and spectral information, but those are just two examples of interesting
dimensions to measure. In such diverse fields as biomedical imaging, visual optics,
astronomy, and three-dimensional imaging, to name just a few, phase is probably the
most relevant dimension to add to a conventional imaging system. With the ability
to obtain phase information you can see transparent samples, measure thickness and
depth, and correct aberrated images.

Obtaining phase information efficiently with a SPC is not trivial. After all, both
the detector and the SLM we use in our systems are not sensitive to phase. In the
case of SPC based on phase SLMs, although this process is quite straightforward,
the systems developed tend to be very slow [47, 94, 95]. However, there are several
workarounds that allow us to obtain phase information using a DMD and conven-
tional detectors, such as photodiodes [49, 94, 96]. In a work developed during 2017,
we used a lateral position detector and a DMD to build a phase imaging system
based on the working principles of Shack-Hartmann wavefron sensors (SHWS) [52].
Let’s see how it works.

In a SHWS, an array of lenslets is placed between the wavefront that one wants
to measure and a pixelated detector. As the distance between the detector and the
lenslet array equals the focal length of the lenslets, a set of foci is generated onto the
detector plane. The pixelated sensor is divided in equally sized regions so that each
one tracks the position of a focal spot. If the wavefront is plane, you get an ordered
array of foci, as can be seen on Fig. 3.11a.

On the contrary, if the wavefront arriving at the SHWS presents some aberra-
tions, the focal spots generated by the lenslet array will be displaced (Fig. 3.11b). It
can be easily demonstrated that the displacement of each focal spot is related to the
derivative of the phase at each aperture (defined by each lenslet) by the expression:

−→
∆ = (∆x, ∆y) =

λ f
2π

−→∇ ϕ, (3.4)

where λ is the wavelength of the wavefront, f is the focal length of each lenslet,
and ϕ is the phase of the wavefront at each aperture (supposing that the phase is
constant over the whole aperture) [52]. After measuring the displacements with the
aid of the pixelated sensor, it is very easy to recover the phase distribution by direct
integration. However, this method presents several limitations. First, manufactur-
ing processes limit the lenslets size, which tend to vary around a hundred microns.
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FIGURE 3.11: Shack Hartmann wavefront sensing principles. a) For
a plane wavefront, the lenslet array generates a grid of equally spaced
focal spots on the sensor. b) When an aberrated wavefront arrives at
the sensor, the focal spots move around, and the new positions are
related to the local phase of the wavefront at each lenslet. Adequate
tracking of this position, along with numerical integration, provides
the phase distribution arriving at the sensor.

This limits the spatial resolution you can achieve and, given the finite size of the
wavefront cross-section, the number of spatial positions you can measure. More-
over, when reducing lenslet size, the amount of light arriving to each region of the
sensor decreases, thus reducing signal-to-noise ratio. Second, if the wavefront aber-
ration is big enough, the focal spot generated by one lenslet can move a distance
bigger than the region of the sensor delimited to track its displacement, going inside
a neighbouring region. This causes a section of the sensor to contain multiple focal
spots, generating a cross-talk scenario where it is not easy at all to assign a given dis-
placement to a lenslet (see Fig. 3.12.a) [97]. A manner of tackling this problem is by
changing the focal spot of the lenslet array, but there is a tradeoff between sensitivity
in the phase measurement and dynamic range that cannot be physically bypassed
(although there exist diverse computational methods that try to solve it [97–100]).

In order to solve these problems, one simple approach could be to just block the
light from all lenslets except one (see Fig. 3.12.b). In this case, only one focal spot
is generated onto the sensor surface, and the displacement can be as big as the full
sensor size allows. Then, one would just need to measure sequentially with only
one lenslet at a time to recover the full displacement information. In this scenario, it
would be possible to just use a lens and an aperture instead of an array of lenslets
(Fig. 3.12.c), which would simplify manufacturing and would improve spatial res-
olution (as apertures can be easily fabricated with arbitrary small sizes). However,
the tradeoff between spatial resolution and sensitivity would still be present, as re-
ducing aperture size also reduces the amount of photons arriving to the sensor.

As a way to tackle this tradeoff, it is possible to use coded apertures generated
with a DMD. Now, instead of just using a small aperture and performing a scan over
the wavefront cross-section, a coded aperture is used to sample the full wavefront
in each measurement (Fig. 3.12.d). This fast way of measuring uses the full sensor
size and also greatly increases the signal level. After a set of coded apertures are
generated, the displacement map can be easily acquired, and again, direct integra-
tion provides the phase of the wavefront (see Fig. 3.13 for a comparison of the three
methods).
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FIGURE 3.12: Shack Hartmann tradeoffs and possible
workarounds. a) When a strongly aberrated wavefront arrives
to the sensor, the focal spot generated by one lenslet can lie into the
region of the detector associated to a different lenslet, generating a
cross-talk problem. b) If all the lenslets are blocked, the cross talk
problem disappears, and the maximum displacement measurable is
greatly increased. c) Instead of using a blocked array of lenslets, the
same result can be obtained by using a single lens and an aperture.
d) In order to increase light efficiency, it is also possible to implement
a coded aperture. Now, the sensor is used to measure the resulting
centroid of the superposition of the wavefront and the known
aperture.

Our experimental proposal can be seen in Fig. 3.14. Light coming from a laser
source is collimated and directed to the DMD, where the coded apertures (Hadamard
patterns in this case) are generated. Using a 4-f system, an image of the DMD plane
is projected onto the object under study. Light diffracted by the object goes through
a thin lens, and the energy and centroid position of the generated light distribution
is measured with a lateral position detector. It has to be noted that, even though the
traditional way of measuring these quantities would be to use a pixelated detector,
that would yield extreme low frame rates in this sequential system. Using a lateral
position detector, which can detect small displacements at speeds of tens of kHz,
makes the system able to work at frame rates comparable with the ones of a conven-
tional SHWS, but with increased dynamic range (a factor of 2 when compared to a
commercial SHWS) and spatial resolution [52].

A sample of the results that can be obtained with this system is shown in Fig.
3.15. In this case, we imaged a plate simulating a typical coma aberration of a human
eye (Fig.3.15.a) with a resolution of 64× 64 pixels. Using CS techniques, we were
able to recover a very good estimation of the aberration with a 90% compression
ratio. Using a fast lateral position detector and the DMD at its full frame rate (∼ 20
kHz) would allow us to perform real-time aberrometry with acquisition times of 20
ms. We also show the spherical phase introduced to a wavefront by a spherical lens
(Fig. 3.15.b). Last, as a way of testing the enhanced spatial resolution of the system,
we imaged a small sample consisting of a photoresin layer with some bubbles (Fig.
3.15.c). This time the spatial resolution of the images was 128× 128 pixels, with a
pixel pitch of 41.04 µm. Both the number of pixels and the pixel pitch are clearly
superior to the ones usually found in conventional SHWS, where the number of
lenslets lies around a thousand, and the minimum lenslet size tends to be around
one hundred microns.
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FIGURE 3.13: Comparison of different wavefront sensing strategies.
a) Shack-Hartmann wavefront sensing. The aberrated wavefront is
focused by the lenslet array onto the surface of a pixelated detector.
The position of each focal spot is related to the phase of the wavefront
at each aperture. By measuring the whole displacement distribution,
the phase can be recovered by direct integration. b) Raster scan-
ning wavefront sensing. Instead of using a lenslet array, now only
a small part of the wavefront is measured each time. A small aper-
ture is moved along the transverse direction of the wavefront, and
the resulting centroid position is measured. When all the positions
have been measured, an analogous map of centroid distributions can
be generated, and the phase is obtained by numerical integration. c)
Coded aperture wavefront sensing. Instead of using a small aperture,
the same information can be obtained by using coded apertures that
occupy the whole wavefront cross-section, increasing signal-to-noise
ratio in the process. Image extracted from [52].

FIGURE 3.14: Experimental setup of a phase imaging SPC. Captions:
laser source (LS), thin lenses (L1, L2, and L3), object (OBJ), cosensing
lens (CL), lateral position detector (PD). Image adapted from [52].
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FIGURE 3.15: Phase imaging using a SPC. a) 3D representation of the
phase distribution of a coma aberration. b) A spherical lens (left), and
the 3D representation of the phase distribution it generates. c) Phase
image of a photoresist layer placed on a transparent plate. On the left
we show a picture of the photoresist layer. The black square marks
the region to be imaged. On the right we can see the phase image and
its 3D representation. Images adapted from [52].
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Chapter 4

So long, and thanks for all the fish1

Along this thesis, we have seen how SPI systems are perfect candidates to obtain
multidimensional information using computational imaging techniques. This is due
to two main reasons. First, the simple detectors used in a SPC make it possible to
work in almost all the electromagnetic spectrum in an inexpensive and straightfor-
ward way. While conventional cameras are quite superior in the VIS spectral range,
they fail to provide efficient solutions outside of it. Second, a SLM lies at the heart of
every SPC, its purpose being to spatially sample one or more of the dimensions that
one wants to acquire. The sequential way of measuring information of SPI systems
is usually a drawback, as lengthy acquisitions are the norm. However, the presence
of the SLM brings an asset to any optical system that cannot be ignored: once you in-
troduce an SLM to your system, it is possible to mold light in almost any imaginable
way. This control over light makes it possible, for example, to implement optical
aberration corrections, to deal with scattering in biological scenarios, or as we saw
along this text, to introduce computational techniques to improve the quality of the
obtained images, reduce post-processing times, and increase the acquisition speed
of your system.

The main contributions of this thesis can be divided into three main branches.
First, I have worked on the development of several procedures on the computational
(or software) field of SPI systems. After the introduction of the main algorithmic ap-
proaches of SPCs (matrix inversion and CS), I have shown an adaptive approach to
SPI, based on wavelet transforms and structured illumination that only uses high
resolution sampling in the regions of the scene where there is relevant information.
This sampling approach presents two main benefits: a reduction in the total number
of required measurements, and very low recovery times. I have also tackled the im-
plementation of novel signal processing techniques, such as MC, into SPI systems.
In this direction, I have introduced a first approach in the field of Raman microspec-
troscopy. In this application, the use of a photon counting detector makes it possible
to work in extreme low light level conditions, with high SNR, and with low mea-
surement times. This allows to obtain images in a fast way (with pixel dwell times
almost one order of magnitude lower than the conventional approaches based on
pixelated detectors), and with even shorter reconstruction times, paving the way to
obtain structural chemical analysis of biological samples in vivo.

In a second group of applications, I have progressed on the hardware develop-
ment of SPI systems. In the second chapter I described a SPC using the sensing
principles of balanced detection. This novel configuration benefits from increased

1“[...] on the planet Earth, man had always assumed that he was more intelligent than dolphins because he
had achieved so much –the wheel, New York, wars and so on– whilst all the dolphins had ever done was muck
about in the water having a good time. But conversely, the dolphins had always believed that they were far more
intelligent than man—for precisely the same reasons. [...]” – Douglas Adams, The Hitchhiker’s Guide to the
Galaxy.
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acquisition speed (by a factor of two when compared to a conventional SPI system)
and higher SNR due to the balanced detection configuration, which also solves a
problem in light efficiency of SPC systems based on DMDs (as half the light is typi-
cally lost after reflection on the DMD surface). This advantages, in combination with
CS techniques, allows to obtain a video feed using a SPC.

Finally, I have described multiple contributions in the field of multidimensional
imaging. Using a detection system formed by a fibre spectrometer and several po-
larizing elements, I showed the capability of SPI systems to obtain combined po-
larimetric and multispectral information in the VIS and NIR spectral range (450–750
nm). Also, I presented a robust, fast, and flexible procedure to obtain phase infor-
mation using a lateral position detector and a DMD, merging the fundamentals of
Shack-Hartmann wavefront sensing with SPI ideas. Using this system, it is possible
to double the phase dynamic range obtained with a traditional SHWS. Also, given
the spatial sampling procedure based on a DMD, the spatial resolution of the system
is not limited any more by manufacturing processes of small lenslets. In a proof-of-
principle system, the spatial resolution was one order of magnitude higher than the
one of a commercial SHWS, which made possible to obtain phase images of thick
samples with spatial resolutions under 100 microns, that could be further improved
by using microscopy systems.

Listing the technological applications of the systems developed here would be
impossible due to space limitations. Just to name a few, multispectral systems are
widely used in industry, as a control tool in manufacturing processes, to provide
extra information in metrology systems, weather forecast, plague control and soil
identification. Polarization information is of paramount interest when studying
surface characteristics, and thus is very used while searching defects in optical el-
ements, windscreens, or when detecting water surfaces in aerospatial imagery. In
the case of phase imaging, probably the most relevant applications are in the field of
biomedical imaging, as many of the structures that need to be studied only produce
phase changes to the light that goes through them. In this same field, the capability
of SPI systems to easily work in the IR spectral range opens up a whole realm of
possibilities, given the existence of a NIR penetration window in biological tissues.
During the last decades, researchers have started to use this spectral window to
see inside living tissues with non-ionizing radiation, learn about them, and develop
novel medical treatments. However, current optical systems still suffer from limited
spatial and temporal resolution when trying to see objects at big depths inside liv-
ing specimens. The techniques explained here, both in the hardware and software
side, make a promising starting point to tackle this challenge, given their benefits
in price, their flexibility in optical design, and the additional information they can
provide (phase, wavelength, polarization or even non-invasive chemical labelling).

Last, another interesting aspect is the strong computational charge present in ev-
ery SPI system. Data inversion, compressive sensing, matrix completion, and mul-
tiple flavours of artificial intelligence (AI) have been or are starting to be explored
in SPI systems as a way to increase their performance. In the following decades, it
is foreseen that the use of computational systems based on AI will be extended in
almost every aspect we can imagine of our lives: automated driving cars, face recog-
nition systems, optical encryption, entertainment, medical diagnosis, etc. To reach
that level of technological development, scientists will need to learn these ideas, and
SPI systems form a simple, confined, and controllable experimental playground to
explore them from an academical point of view.
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Appendix A

Taming light: Digital Micromirror
Devices

When you go to the movies, or watch a presentation at your university, there is a
very high chance that you are seeing the work of a DMD. The first DMD was de-
veloped by Larry J. Hornbeck (and others) in 1987, while working at Texas Instru-
ments. Since then, DMDs have been extensively used in metrology, head-mounted
displays, and digital cinema projection, to name just a few applications. They have a
very high spatial resolution, having millions of very small pixels. This, coupled with
their physical specifications (very fast refresh rates and and high light power dam-
age thresholds), make them a very good choice in audiovisual applications, where
generating bright, high quality images is key to a good user experience. Also, they
have also benefited from the advances in semiconductor manufacturing processes.
This has cheapen their production costs, and made them an established solution in
the fields I mentioned earlier.

The basic idea behind a DMD is to build a reflective SLM that uses small mirrors
(with current sizes in the order of ten microns) to either reflect or block light in one
direction. To do so, each mirror is placed on top of a yoke, that allows the mirrors
to move (see Fig. A.1.a). Two electrodes are placed under the mirror-yoke structure.
These electrodes are connected to a CMOS memory cell, where two possible states
can be stored (1 or 0). Both states correspond to the two possible micromirror po-
sitions (±∼10o, the total angle depending on the DMD model), and are generated
by applying either zero or a determined bias voltage to the structure. Releasing the
mirror is done by removing the bias voltage.

With these characteristics in mind, it is easy to see some of the benefits of DMDs
over other types of SLMs. Their working principle is based on semiconductor tech-
nologies, providing very high refresh rates (∼22 kHz) when compared, for example,
to SLMs based on liquid crystals, which were the standard technology at the time
for video projection systems. Also, given that each pixel is made from metal (typi-
cally aluminium), it is quite easy to work with very low power losses over the whole
visible spectrum (and also the IR range).

However, DMDs still present drawbacks for some applications. First, given that
each micromirror only has two possible positions, light can be either reflected or
not, providing binary light modulation only (Fig. A.1.b). In multimedia applications
this is not very problematic, as human eye limitations can be used to generate gray
levels easily. For each frame to be displayed, mirrors can be a different amount of
time in the bright/dark states, and the brain will integrate all the information as
a single image with different light levels for each pixel. If you want to generate
a 30 fps video, each frame will be displayed 1/30 of a second. At 22 kHz, you
can achieve 22000/30 ' 733 gray levels (more than a 9-bit depth). Modern DLP
projectors in cinemas use a combination of three DMDs (each one with a different
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FIGURE A.1: Fundamentals of a DMD and DMD-based video pro-
jector. a) Exploded view of a DMD pixel. Each micromirror is placed
on top of a CMOS memory cell that controls its movement by apply-
ing different voltages. b) In a video projector, a light source illumi-
nates the DMD screen. Bright pixels reflect light into the screen direc-
tion, where the image is formed by using an optical system. Dark pix-
els direct light to a stop. Figures adapted from US Patent No. 7518781
B2 (Apr. 14, 2009).

light source color) to generate gigantic color gamuts. Moreover, there is a different
solution that, instead of trading temporal resolution for gray levels, does the same
by giving away spatial resolution. By grouping several micromirrors it is possible to
generate a “superpixel” and, by putting a different number of mirrors in the bright
state, project pixels with different brightness levels [101–103].

Also, given their nature, DMDs are amplitude-only SLMs. Nevertheless, there
are workarounds to control both the amplitude and phase of a light beam using
a DMD, which is extremely useful in biological imaging scenarios. To do so, you
can generate binary holograms in the DMD screen, which after propagation and
correct spatial filtering generate arbitrary complex light distributions [104–106]. This
is interesting because is a really fast method of obtaining phase control over a light
beam, but comes at the cost of losing both spatial resolution and power efficiency.
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Appendix B

Singular Value Decomposition

The Singular Value Decomposition (SVD) of an m× n matrix M provides a triplet of
matrices, U, Σ, and V that hold:

M = U · Σ ·V†, (B.1)

where U is an m×m unitary matrix; Σ is a m× n diagonal matrix with only non-
negative real numbers in its diagonal (σi), sorted in descending order; and V is an
n× n unitary matrix with conjugate transpose V†. The elements on the diagonal of Σ

are known as the singular values of M. Moreover, the number of non-zero singular
values is equal to the rank of M.

There are several intuitive interpretations of the meaning of the SVD of a matrix
(as rotating and scaling matrices, geometrical, etc.). In our case, the most practical
one for us is to understand the SVD as a decomposition of M into a weighted sum
of separable matrices. It can be demonstrated that we can write

M = ∑
i

σi ·Ui ⊗V†
i = ∑

i
Ai, (B.2)

where Ui and V†
i are the i-th columns of U and V†, and ⊗ is the outer product

of two column vectors (u⊗ v = u · v>). This is interesting because we can divide
any operator (M) into two separate operators (U and V). For example, an image
filter can be divided into horizontal and vertical filters. Also, if a multispectral cube
is expressed in matrix form, where each row contains the spectrum of one spatial
position, the columns of U and V contain the spatial features of the scene and the
spectral signatures of each element present, respectively.

One interesting use of the SVD decomposition is that it can be easily used to
compress images. Take, for example, the sample picture from the Eiffel Tower in
Fig. B.1.a. If we calculate its SVD, we can clearly see that almost all its singular
values are negligible. To compress the image, we can eliminate the lowest singular
values of the decomposition, and then recover the image using

M′ = U · Σ′ ·V†, (B.3)

where Σ′ is the diagonal matrix with only a subset of the biggest singular values of
M. In the example, I just used the first 200 singular values of the original image, and
set the rest of the elements to zero (Fig. B.1.b). It can be clearly seen that with this
compression level (∼ 80%), we still get a very good quality image.
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FIGURE B.1: Image compression by SVD. a) Original image and its
singular values. From a rough inspection, we easily identify that most
of the information of the picture is stored in a reduced number of
singular values. b) Compressed image recovered by using only the
first 200 singular values.
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Abstract We present an optical system that performs

polarimetric spectral imaging with a detector with no

spatial resolution. This fact is possible by applying the

theory of compressive sampling to the data acquired by a

sensor composed of an analyzer followed by a commercial

fiber spectrometer. The key element in the measurement

process is a digital micromirror device, which sequentially

generates a set of intensity light patterns to sample the

object image. For different configurations of the analyzer,

we obtain polarimetric images that provide information

about the spatial distribution of light polarization at several

spectral channels. Experimental results for colorful objects

are presented in a spectral range that covers the visible

spectrum and a part of the NIR range. The performance of

the proposed technique is discussed in detail, and further

improvements are suggested.

1 Introduction

Multispectral imaging (MI) is a useful optical technique that

provides two-dimensional images of an object for a set of

specific wavelengths within a selected spectral range.

Dispersive elements (as prisms or gratings), filter wheels or

tunable band-pass filters are typical components used in MI

systems to acquire image spectral content [1]. In certain

applications, MI can be improved by adding spatially

resolved information about the light polarization. Multi-

spectral polarimetric imaging facilitates the analysis and

identification of soils [2], plants [3] and surfaces contami-

nated with chemical agents [4]. In the field of biomedical

optics, multispectral polarimetric imaging has been applied

to the characterization of human colon cancer [5] or the

pathological analysis of skin [6]. In many cases, polari-

metric analysis can be performed by just including a linear

polarizer in an imaging system to record images for various

selected orientations of its transmission axis [6, 7]. A simple

configuration that includes two orthogonal polarizers inte-

grated in a spectral system has been used for noninvasively

imaging of the microcirculation through mucus membranes

and on the surface of solid organs [7]. An illustrative

example of a spectral camera with polarimetric capability is

a system that combines an acousto-optic tunable filter with a

liquid–crystal-based polarization analyzer [8].

In an apparently different context, compressive sam-

pling (CS) has emerged in recent years as a novel sensing

theory that goes beyond the Shannon–Nyquist limit [9]. In

the field of imaging, CS states that an N-pixel image of an

object can be reconstructed from M \ N linear measure-

ments. This sub-Nyquist condition is achieved by exploit-

ing the ‘‘sparsity’’ of natural images. According to this

property, when images are expressed in a proper function

basis, most terms are negligible or zero-valued. CS theory

ensures that it is possible to reconstruct the object images

from a relatively small collection of well-chosen mea-

surements, typically by an iterative acquisition process.

The object reconstruction is obtained from experimental

data by solving a convex optimization program.
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One of the most outstanding applications of CS is the

design of a single-pixel camera [10, 11], which offers

promising benefits at spectral regions where image sensors

are impractical or inexistent [12]. In contrast to conven-

tional image sensors, which typically perform intensity

measurements, single-pixel detectors can provide infor-

mation about other properties of an incoming light field, as

its spectrum or its polarization. The substitution of the

photodiode of a CS single-pixel camera by a spectrometer

without spatial resolution permits to perform hyperspectral

imaging [13, 14]. In the same way, single-pixel polari-

metric imaging has been demonstrated with a CS camera

that includes a commercial beam polarimeter [15]. CS has

also been applied to biological fluorescence microscopy

[16]. In this case, the CS fluorescence microscope includes

a photomultiplier tube as a point detector, since biological

samples often have low fluorescence.

In this work, we present a CS imaging system able to

provide spatially resolved information about the spectrum

and the polarization of the light reflected by an object. As a

detector, we use a polarization analyzer followed by a fiber

spectrometer with no spatial resolution. The key element of

our system is a digital micromirror device (DMD), which

makes possible the CS acquisition process. To this end, a

set of binary intensity patterns is sequentially generated by

the DMD to sample the image of an object of interest. The

experimental data are subsequently processed to obtain a

set of multispectral data cubes, one for each selected

configuration of the analyzer. For a given spectral channel,

the corresponding polarimetric images can be linearly

combined to derive the spatial distribution of the Stokes

parameters of light [8, 15]. In this sense, the single pixel

described in this paper is a first step toward the realization

of an imaging Stokes polarimeter like in Ref. [15], but with

the ability of performing polarization analysis for a large

variety of wavelengths.

2 Outline of compressive sampling

The basis of single-pixel imaging by CS can be briefly

presented as follows. Let us consider a sample object,

whose N-pixel image is arranged in an N 9 1 column x.

This image is supposed to be compressible when it is

expressed in terms of a basis of functions, W = {Wl}

(l = 1,…, N). From a mathematical point of view, x can be

written as x ¼ Ws, where W is a N 9 N matrix that has the

vectors Wlf g as columns and s is the N 9 1 vector com-

posed of the expansion coefficients. The assumed sparsity

of the image implies that only a small group of these

coefficients is nonzero. In order to determine x, we

implement an experimental system able to measure the

projections of the object image on a basis of M intensity

patterns um(m = 1, …, M) of N-pixel resolution. This

acquisition process can be written as

y ¼ U x ¼ U Wsð Þ ¼ Hs; ð1Þ

where y is the M 9 1 column formed by the measured

projections, and U is the M 9 N sensing matrix. Each row

of U is an intensity pattern um, and the product of U and W
gives the M 9 N matrix H acting on s. The underlying

mathematical formalism of CS states that there is a high

probability of reconstructing x from a random subset of

coefficients M\Nð Þ in the W domain. Equation (1)

constitutes an underdetermined matrix relation, so it must

be resolved by means of a proper reconstruction algorithm.

The best strategy to perform this step is based on the

minimization of the l1-norm of s subjected to the restriction

given by Eq. (1). As the measurements {ym} are affected by

noise, the CS recovery process is usually reformulated with

inequality constrains [9, 10]. In this case, the proposed

reconstruction x� is given by x� ¼ Ws�, where s� is the

solution of the optimization program

min s0k kl1
such that y�Hs0k kl2

\e; ð2Þ

where e is an upper bound of the noise magnitude and the

l2-norm is used to express the measurement restriction.

3 Description of the polarimetric imaging spectrometer

3.1 Optical system

The scheme of our polarimetric spectral camera is shown in

Fig. 1a. A white light source illuminates a sample object,

and a CCD camera lens images the object on a DMD,

which is a reflective spatial light modulator that selectively

redirects parts of an input light beam [17]. A DMD consists

of an array of electronically controlled micromirrors that

can rotate about a hinge, as is schematically depicted in

Fig. 1b. Every micromirror is positioned over a CMOS

memory cell. The angular position of a specific micro-

mirror admits two possible states (?12� and -12� respect

to a common direction), depending on the binary state

(logic 0 or 1) of the corresponding CMOS memory cell

contents. In this way, the light can be reflected at two

angles depending on the signal applied to the mirror. The

DMD of our system is a Texas Instrument device (DLP

Discovery 4100) with a resolution of 1,920 9 1,080 mi-

cromirrors and a panel size of 0.9500. The mirror pitch is

10.8 lm, and the fill factor is greater than 0.91. The optical

system 1 has its optical axis forming an angle respect to the

orthogonal direction to the DMD panel that approximately

corresponds to twice the tilt angle of the device mirrors

(24�). As is shown in Fig. 1c, in such a configuration, a

micromirror oriented at ?12� orthogonally reflects the light
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into the next part of the system, appearing as a bright pixel

(ON state). In their turn, micromirrors oriented at -12�
result to be dark pixels (OFF state). The light emerging

from the bright pixels of the DMD is collected by a second

lens system similar to the first one (optical system 2 in

Fig. 1a). This lens system couples the light into a silica

multimode fiber with a diameter of 1,000 lm and a spectral

range of 220–1,100 nm, which is connected to a com-

mercial concave grating spectrometer (Black Comet CXR-

SR from StellarNet). The wavelength resolution of this

spectrometer is 8 nm (with a slit of 200 lm), and the

maximum signal-to-noise ratio (SNR) is 1,000:1. Just

before the fiber, the light passes through a configurable

polarization analyzer. In our camera, this analyzer consists

of a film polarizer mounted in a rotating holder.

3.2 Operation principle

The CS single-pixel camera shown in Fig. 1a performs the

iterative acquisition process synthesized in Eq. (1). The

DMD sequentially produces the set of M irradiance pat-

terns of N-pixel resolution that composes the sensing

matrix U. The collected data consist of a succession of

spectra, one for each pattern sent to the DMD. The

M irradiances measured by the spectrometer for each

spectrum channel form the vector y of Eq. (1). As spectrum

channels have a prefixed bandwidth, the quantities {yi} that

feed the CS algorithm are actually an average of the

measured irradiances within the considered range.

For the practical implementation of the CS acquisition

process, it is essential to determine which incoherent basis

should be selected (when no prior information on the object

is accessible). A suitable choice for image basis results to

be the Hadamard–Walsh functions, which constitute a basis

known to be incoherent with the Dirac basis [10]. Had-

amard matrices are square arrays of plus and minus ones,

whose rows (and columns) are orthogonal relative to one

another. Each row of a Hadamard matrix can be interpreted

as a rectangular wave ranging from ±1 (Walsh function).

In this context, the Hadamard matrix performs the

decomposition of a function by a set of rectangular

waveforms, instead of the usual harmonic waveforms

associated with the Fourier transform [18]. From an

experimental point of view, a CS acquisition process using

the Hadamard–Walsh basis can be carried out by generat-

ing a collection of binary intensity patterns, easily

imprinted on a DMD. To represent a Hadamard function H

on the DMD, we use two binary patterns H? = (J ? H)/2

and H- = (J - H)/2 that are related by H = H? - H-.

Here, J is the matrix consisting of all 1s. Generating H?

Fig. 1 a Setup for single-pixel

polarimetric multispectral

imaging, b transverse view of an

individual DMD micromirror

showing its two possible

orientations and c scheme of the

DMD operation mode
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and H- sequentially and subtracting the measured inten-

sities, we obtain the one that corresponds to H. In principle,

when the total light intensity is known, the acquisition

process can be performed by using only one of the above

sequences of binary patterns, taking a unique measurement

for every Hadamard function. This would lead to a

reduction in the acquisition time by a factor two. However,

this procedure is sensitive to the existence of source

intensity fluctuations. In such a common situation, the

method based on two successive measurements increases

the signal-to-noise ratio (SNR) of the acquired data.

The sequential measurement process requires the syn-

chronization between the DMD and the fiber spectrometer

with the aid of a computer (not shown in Fig. 1). For each

intensity pattern generated by the DMD, the spectrum of

the light coming from the object is measured by the

spectrometer, configured with an integration time that

ensures an acceptable SNR for the acquired data. The

minimum integration time provided by our spectrometer

(1 ms) represents the main limiting factor on the mea-

surement rate of our device, since DMDs are modulators

that can work at relatively high frequencies (upper than

1 kHz). For a given acquisition frequency, the total time

required to take image data increases with the number of

measurements, which is, in accordance with the CS theory,

a pre-established fraction of the image resolution. There-

fore, a single-pixel camera shows a trade-off between

image resolution and image acquisition time.

In our experimental setup, the measurement process is

executed and controlled by means of custom software

written with LabVIEW. The programming code used in the

off-line CS reconstruction is called l1eq-pd, which solves

the standard basis pursuit problem using a primal–dual

algorithm [19]. This code includes a collection of MAT-

LAB routines and is a well-tested algorithm for CS prob-

lems. However, other selections are possible and, in fact,

the search of improved CS algorithms (more robust to data

noise, with lower computation time, etc.) is currently an

active area in the field of convex optimization (e.g., see

Ref. [20]).

4 Experimental results

4.1 Numerical analysis

The aim of CS is to provide an accurate reconstruction of an

object from an undersampled signal, but the exact number

of measurements that allows attaining it is not a priori

known. In addition, this number strongly depends on the

features of the object under consideration. For this reason,

when CS single-pixel imaging is attempted, it is useful to

begin with relatively low-resolution reconstructions to

estimate the parameters of the acquisition process. In

accordance with this approach, and also to evaluate the

image quality achievable with our camera, we performed

multispectral imaging sending to the modulator Hadamard–

Walsh patterns of 64 9 64 unit cells (N = 4,096), each one

composed of 8 9 8 DMD pixels. The covered square

window on the modulator panel had a width of *5.5 mm.

As a sample object, we used two square capacitors with a

width of 7 mm. The illumination source was a Xenon white

light lamp, and the polarization analyzer was removed. The

number of measurements was M = 4,096, which

allowed us to fulfill the Nyquist criterion. Eight central

wavelengths k0 were selected in the visible spectrum. The

bandwidth of the corresponding spectral channels was

20 nm k0 � 10 nmð Þ. In order to determine the object

spectral reflectance, a spectrum was taken from a white

reference (Spectralon diffuse 99 % reflectance target from

Labsphere, Inc.) to normalize the measured spectra during

the CS acquisition process. The integration time of the

spectrometer was set at 300 ms.

For each spectral channel, we resolved the off-line CS

algorithm with the complete set of measurements (M = N).

After a suitable filtering, the recovered matrix served as a

reference (lossless) image Iref(i, j), where (i, j) indicates the

location of an arbitrary image pixel. The reconstruction

process was then repeated using decreasing fractions of the

total number of pixels. Concretely, the value of M was

varied from 5 to 90 % of N. The fidelity of the recon-

structed images was estimated by calculating the mean

square error (MSE), given by

MSE ¼ 1

N

X

i

X

j

Iði; jÞ � Irefði; jÞ½ �2; ð3Þ

where I(i, j) is the noisy image obtained for a given value

of M. We used another metric to evaluate the quality of the

reconstruction, the so-called peak signal-to-noise ratio

(PSNR), which is defined as the ratio between the

maximum possible power of a signal and the power of

the noise that affects the fidelity of its representation. In

mathematical terms, [21]

PSNR ¼ 10 log
I2
max

MSE

� �
¼ 20 log Imaxð Þ � 10 log MSEð Þ:

ð4Þ

Here, Imax is the maximum possible pixel value of the

reference image. For each spectral channel, the reference

images were represented by 28 gray-levels, so Imax = 255.

Figure 2a, b shows the curves for the MSE and the PSNR

versus M for the different values of k0. As is expected, both

figures point out that the image quality improves as the

number of measurements grows and approximates to the

Nyquist limit. However, when M C 0.4 N, the slope of
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both curves becomes visibly smoother for all spectral

channels. In the case, for instance, of k0 = 610 nm,

MSE = 0.13 (Imax)2 and PSNR = 28.72 dB for

M = 0.4 N (the PSNR for 0.9 N is only somewhat

greater, 29.10 dB).

If images of higher resolution are considered, the pri-

ority is to minimize the value of M, since even small

fractions of N can imply a huge volume of data feeding the

CS algorithm, which, in addition, operates with higher

dimensional matrices. The consequence is a dramatic

increase in the total computation time. In our system, it is

possible to change the SNR of the reconstructed image (for

a given value of M) by controlling the spectrometer inte-

gration time, since the noise of the data used in the CS

algorithm considerably depends on this parameter. To

illustrate this point, the whole CS acquisition process was

repeated for different values of the integration time. The

number of measurements in all series was M = 0.2 N. The

resulting curves for the PSNR versus k0 are shown in

Fig. 3. As can be observed, the PSNR is incremented in

approximately 8 dB when the integration time is varied

from 50 to 300 ms.

4.2 Multispectral imaging

As a first application of our camera, we performed multi-

spectral imaging of a sample object composed of an unripe

cherry tomato together with a red one. The Walsh–Had-

amard patterns addressed to the DMD had a resolution of

256 9 256 unit cells (N = 65,536). Each unit cell was

composed of 2 9 2 DMD pixels. With this resolution, in

accordance with the discussion of the previous section, the

number of measurements was chosen to be M = 812,

which corresponds to *10 % of N (i.e., a compression rate

of 10:1). The integration time of each spectrometer mea-

surement was 300 ms.

The object spectral reflectance was determined by

means of the white reference used in Sect. 4.1. In the case

of plants, this magnitude has been used, for example, to

investigate the chlorophyll content in leaves [22, 23]. The

noisy data collected by the spectrometer for wavelengths

lower than 500 nm imposed an inferior boundary to the

useable spectral range. The results of the CS reconstruction

for 15 spectral channels are shown in Fig. 4. The selected

central wavelengths k0 in the visible spectrum (VIS) range

from 510 to 680 nm. The bandwidth of each spectrum

channel was 10 nm k0 � 5 nmð Þ. The recovered images

were pseudo-colored, and the color assignment (the

wavelength to RGB transform) was carried out with the aid

of standard XYZ color-matching functions [24].

In the near-infrared spectrum, the CS algorithm pro-

vided an acceptable reconstruction around 860 nm, which

is presented by means of a gray-level image. Figure 4 also

includes a colorful image of the object obtained from the

combination of the conventional three RGB channels.

4.3 Polarimetric multispectral imaging

In this case, the sample object was the same as that used in

Sect. 4.1, but the light emerging from each element of the

scene had different linear polarizations. This effect was

achieved by locating a linear polarizer after the object with

its area split in two parts, each of which had its transmis-

sion axis oriented at orthogonal directions (0� and 90�,
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Fig. 2 Image quality of the CS reconstructions. a MSE and b PSNR

of recovered images versus the number of measurements. Each curve
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respectively). The resolution of the patterns addressed to

the DMD was 128 9 128 unit cells (N = 16,384) com-

posed of 4 9 4 DMD pixels. The number of measurements

was M = 572, which corresponds to *20 % of N (i.e., a

compression rate of 5:1). As the source light was in prin-

ciple unpolarized, half of light was lost after the object

polarizer, so the integration time of the spectrometer was

increased until 500 ms. The white reference of Sect. 4.1

was employed again to normalize the measured spectra.

Eight central wavelengths k0 were selected in the VIS

spectrum. The bandwidth of the channels was 20 nm

k0 � 10 nmð Þ. Aside from the channels at the boundaries of

the spectral range, the values of k0 correspond to the peak

emissions of commercial light-emitting diodes. For each

channel, four orientations of the polarization analyzer were

sequentially considered in separated measurement series.

To simplify data display, image reconstructions are arran-

ged in a table, as can be observed in Fig. 5. Each column

corresponds to a spectral channel, and each row shows the

results for a given orientation of the analyzer. As shown in

Fig. 4, a colorful image of the object is also presented. This

RGB image was made up from the data taken for the

second configuration of the analyzer (45�). The result for

680 nm is presented by means of a gray-level image due to

its proximity to the near-infrared range.

5 Discussion and conclusions

We have performed polarimetric multispectral imaging by

using a detector with no spatial resolution, which is com-

posed of a configurable polarization analyzer and a com-

mercial spectrometer. This single-pixel camera employs a

DMD that generates a collection of binary intensity pat-

terns that samples the image of the object under study. For

a given analyzer configuration, a succession of spectra is

sequentially acquired (one for each DMD realization).

From this data, the object spectral image cube is recovered

off-line by means of a CS algorithm, which makes possible

to achieve a sub-Nyquist limit, that is, the total number of

measurements is a fraction of the number of image pixels.

In contrast to cameras based on tunable band-pass filters,

which carry out a wavelength sweep to measure the spectral

content, our system collects the spectral information of all

Fig. 4 Multispectral image cube reconstructed by means of the CS

algorithm. In the VIS spectrum, the reflectance for each spectral

channel is a 256 9 256 pseudo-colored image. A gray-scale repre-

sentation is used for the CS reconstruction in the NIR spectrum range.

A colorful image of the scene made up from the conventional RGB

channels is also included

Fig. 5 Multispectral image

cube for different configurations

of the polarization analyzer. The

RGB image of the object is also

included. Except for the

wavelength closer to the NIR

spectrum, all channels in the

VIS range are represented by

pseudo-colored images
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channels at once (albeit at the expense of sequentially

acquiring the spatial information). As a result, the number of

channels, their spectral resolution and the total wavelength

range are those provided by the spectrometer integrated in the

system. This fact facilitates to exploit the high performance of

commercial devices. Our spectral system can in principle

cover the whole VIS spectrum and part of the NIR range (up to

1.1 microns). In the infrared region, conventional multispec-

tral systems require pixelated sensors specifically designed for

that wavelength range (like InGaAs cameras).

As in other multispectral systems, the illumination is a

main question to ensure a minimum signal along the

selected spectral range. We have used a high-power Xe arc

lamp, which produces a continuous and roughly uniform

spectrum across the VIS region and a complex line spec-

trum in the 750–1,000 nm region of the NIR range.

However, the decreasing source irradiance at the ‘‘blue’’

side of the VIS spectrum, as well as the low reflectance of

samples at that region, limited our spectral range to

wavelengths higher than 470 nm.

As is discussed in the previous section, our single-pixel

camera presents a trade-off between image resolution and

total acquisition time. Increasing the illumination level or

reducing the spectral resolution (which permits lower

integration times) could make the acquisition time to drop

in at least one order of magnitude. A comparable drawback

can be found in cameras that employ acousto-optic or liquid

crystal tunable filters. In such systems, the higher spectral

resolution (number of channels), the longer acquisition

time, with a strong dependence on the exposure time of the

pixelated sensor used as a detector. For image resolutions

similar to those presented in this work, a hyperspectral

camera (i.e., with more than 100 spectral channels) can take

a few minutes in acquiring a data cube [25].

The single-pixel spectral system presented here also

provides spatially resolved information about light polari-

zation. To this end, the camera detector includes a polar-

izing film mounted in a rotating holder. This element limits

the total spectral range, since the optical behavior of

polarizing films is wavelength dependent. As a conse-

quence, when the polarimetric multispectral imaging is

carried out, the upper boundary of the spectral range is

*700 nm. The use of high-grade crystalline polarizers can

resolve this limitation. For the successive configurations of

the analyzer, a separated series of measurements must be

taken. From the polarimetric images recovered for each

spectral channel, it is possible to obtain information about

the spatial distribution of the Stokes parameters of light, Si

(i = 0, …, 3). If a linear polarizer is used as analyzer, the

spatial distribution of S1 and S2 can be straightforward

derived. A full Stokes polarization analysis should be

performed by means of a rotating circular (or elliptic)

polarizer. It is also possible to avoid mobile polarization

elements by using an analyzer that combines voltage-con-

trolled linear retarders (as those based on liquid crystal

technology) with linear polarizers [8]. In that case, all

polarimetric information could be acquired in a unique

series of measurement, changing sequentially the configu-

ration of the variable retarders for each DMD realization.
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16.1 Chapter Overview

The information that the human eye can provide is limited. Although we are able to see
in a wide range of distances, under different light conditions, and in a relatively broad
spectral range, in many applications it is necessary to acquire information far beyond the
limits imposed by the human eye. To this end, a great variety of image techniques have
been developed [1]. As an archetypical example, microscopy, which is essential in fields
like biology or medicine, provides a tool for obtaining high-resolution images of very close
objects [2]. Many of these imaging techniques share a common feature: they measure the
intensity of the light coming from the scene under consideration. However, it is sometimes
required to measure other physical quantities, like the phase of the optical field, its spectral
content, or its polarization state. The spectral content of a sample is normally used to obtain
information about its material components. Polarization, that is, the knowledge of the vector
nature of light, gives information about surface features such as shape, shading, and roughness
of an object [3]. Advanced imaging techniques make it possible to acquire multi-dimensional
images, which provide information not only about the spatial distribution of intensity
but also about the previously mentioned primary physical quantities associated with an
optical field.

Multi-dimensional Imaging, First Edition. Edited by Bahram Javidi, Enrique Tajahuerce and Pedro Andrés.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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In general, the measurement of multi-dimensional images involves the acquisition of a huge
amount of information, which causes both storage and transmission difficulties [4]. In addition,
techniques such as multispectral or hyperspectral imaging, require a sequential acquisition of
images in the spectral domain, leading to a dramatic increase in measurement time. A recent
approach to hyperspectral and polarimetric imaging is based on the use, respectively, of minia-
turized spectral and polarimetric filters [5,6] that are incorporated to each pixel of the sensor,
which allows acquiring multi-dimensional images in one shot. However, the development of
such systems implies the use of high-end micro-optical components.

In this chapter, we describe several single-pixel multi-dimensional imaging systems based on
compressive sensing (CS), a new sampling paradigm that has revolutionized data acquisition
protocols, enabling us to start the signal compression at the measurement stage. In Section 16.2
we show how single-pixel imaging techniques work and how CS can boost their performance.
In Sections 16.3 to 16.5 we describe single-pixel architectures that use off-the-shelf compo-
nents in the fields of polarimetry, multispectral imaging, and spectropolarimetry.

16.2 Single-Pixel Imaging and Compressive Sensing

The operation principle of single-pixel imaging can be briefly described as follows. Let us
consider a sample object, whose N-pixel image is arranged in an N × 1 column vector, x.
That image can be expressed in terms of a basis of functions, 𝚿 = {𝚿𝓁} (𝓁=1,… , N). In
mathematical terms, x = 𝚿 ⋅ s, where𝚿 is a N × N matrix that has the vectors {𝚿𝓁} as columns
and s is the N × 1 vector which contains the expansion coefficients of x in the chosen basis.
Single-pixel cameras exploit the fact that those coefficients can be measured by using detectors
with no spatial resolution. The acquisition process is governed by a spatial light modulator
(SLM), which generates a set of patterns directly related to the selected basis. The irradiance
corresponding to the inner product between the patterns and the object provides the coefficients
of the image expansion.

In recent years, the introduction of CS has dramatically improved the performance of these
single-pixel architectures. CS exploits the fact that natural images tend to be sparse, that is,
only a small set of the expansion coefficients is nonzero when a suitable basis is chosen [7].
In this way, images can be retrieved without measuring all the projections of the object on the
chosen basis. The mathematical formulation behind CS ensures that the object under study, x,
can be reconstructed from just a random subset of the expansion coefficients that make up s.
To this end, we randomly choose M different functions of the basis (M < N) and measure the
projections of the object. This process can be expressed in matrix form as

y = 𝚽 ⋅ x = 𝚽(𝚿 ⋅ s) = 𝚯 ⋅ s, (16.1)

where y is a M × 1 vector which contains the measured projections and 𝚽 is a M × N matrix
called sensing matrix. Each row of 𝚽 is a function of 𝚿 chosen randomly, and the product
of 𝚽 and 𝚿 gives the matrix 𝚯 acting on s. If the chosen basis is orthonormal, every row of
𝚯 randomly selects a unique element of s. As M < N, the underdetermined matrix relation
obtained after the measurement process is resolved through an off-line algorithm. The best
approach to recover the object is based on the minimization of the 𝓁1-norm of s subjected to
the constrain given by Eq. (16.1), that is, that the solution given by the algorithm has to be
compatible with the performed measurements. In this case, the proposed reconstruction x∗ is
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given by the optimization program

min
x∗

‖𝚿−1x∗‖𝓁1
subject to 𝚽x∗ = y. (16.2)

In the experiments described in this paper, the chosen basis is a family of binary intensity
patterns derived from the Walsh–Hadamard basis. This basis has proved to be suitable for
single-pixel architectures due to being easily implemented on a SLM. A Walsh–Hadamard
matrix of order N (HN) is a N × N matrix with ±1 entries that satisfies HT

NHN = N ⋅ IN , where
IN is the identity matrix and HT

N denotes transposed matrix. Walsh–Hadamard matrices form
an orthonormal basis that was first proposed in image coding and transmission techniques [8].
By shifting and rescaling the different HN , it is possible to generate binary waveforms taking
values 0 or 1 that can be simply encoded onto the SLM as an intensity modulation.

A suitable SLM for a single-pixel camera is a display formed by voltage-controlled liquid-
crystal (LC) cells, such as those found in video projection systems [9]. Another option is
a digital micromirror device (DMD), composed of an array of micromirrors that can rotate
between two positions. In this way, only selected portions of the incoming light beam are
reflected in a given direction [10]. Both devices are used in the different optical systems
described in the following sections. Regarding detection, in general, a photodiode is used as
single-pixel camera, which measures the irradiance of the light coming from an object for
each pattern generated by the SLM. In the optical systems described in this chapter other
single-pixel detectors, such as a beam polarimeter or a fiber spectrometer, are used.

16.3 Single-Pixel Polarimetric Imaging

Polarimetric imaging (PI) has the aim of measuring spatially resolved polarization properties
of a light field, an object, or an optical system [11]. These properties are usually the Stokes
parameters of light (passive imaging polarimeters) or the Mueller matrix that characterizes
a sample or a system (active imaging polarimeters). The use of PI includes a great variety of
optical applications, like scene analysis, target detection [3], polarization-sensitive microscopy
[12], or segmentation of rough surfaces [13], among others. Polarimetric techniques have been
used in the field of biomedical imaging for enhanced visualization of biological samples at
different depths [14], as well as in vivo detection and diagnosis of cancerous tumors in tissues
[15,16]. PI can be also combined with optical coherence tomography [17] and ophthalmic
adaptive optics [18].

In this chapter, we describe how the concept of single-pixel imaging by CS has been extended
to the design of a passive polarimetric camera. In particular, we describe a PI system able to
measure spatially resolved Stokes parameters by means of a commercial beam polarimeter
[19]. This commercial beam polarimeter is designed for free-space and fiber-based measure-
ments, and provides the state of polarization (SOP) of an optical beam as a whole; that is,
without spatial resolution. The PI system exhibits high dynamic range (up to 70 dB), broad
wavelength range, and high accuracy on the Poincaré sphere, thanks to the use of the beam
polarimeter. This fact simplifies the design and optimization procedures of current polarimet-
ric cameras based on pixelated image sensors [16,20]. A programmable SLM is at the heart
of this imaging polarimeter. This modulator controls the time-multiplexed acquisition process
required by a single-pixel imaging scheme. The amount of acquired data is minimized by the
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application of a CS algorithm, which implies a proper selection of light patterns generated by
the SLM, in accordance with the theory briefly described in Section 16.2.

A Stokes polarimeter (SP) is a device that measures the irradiance of a light beam whose
SOP is modulated by a polarization state analyzer (PSA). In the commercial SP used here,
which is sketched in Fig. 16.1, the PSA is formed by two voltage-controlled liquid-crystal
variable retarders (LCVR1 and LCVR2) and a polarizing beam splitter (PBS). Two photodiodes
(PD1 and PD2) are respectively located at the output ports of the PBS. The sum of the signals
of PD1 and PD2 gives the total irradiance I0 impinging onto the SP, despite of slight (and
measurable) losses. The application of the Stokes–Mueller formalism allows obtaining the
SOP of the input light, which is given by the Stokes vector (I0, S1, S2, S3)T . If the retardances of
LCVR1 and LCVR2 are 𝛿1 and 𝛿2, respectively, the irradiance IPD measured by one photodiode
is given by

IPD(𝛿1, 𝛿2) = m00(𝛿1, 𝛿2)I0 +
3∑

i=1

m0i(𝛿1, 𝛿2)Si. (16.3)

In this expression m0k(k = 0, … , 3) are the voltage-dependent elements of the first row of
the PSA Mueller matrix. A proper calibration process, usually performed by the manufacturer,
can be used to determine these elements. The description of such a process is out of the scope
of the present study [21]. By a sequential reconfiguration of the PSA, the SOP of the incom-
ing light is derived through the measurement of at least three values of IPD, together with the
irradiance I0. In commercial devices, the LCVRs perform a wide retardance sweep. In this
way, the input SOP is obtained through a least-squares fitting routine to minimize measure-
ment errors [22]. The quantities registered by the SP are usually the normalized version of
the Stokes parameters, σi = Si∕I0(i = 1, … , 3). It should be noted that the retardance of the
LCVRs strongly depends on the light frequency, so the device calibration is valid for a given
wavelength and must be repeated if the light source spectrum is changed.

Laser source

Lens

LCVR

LCVR

PBS PD

PD

Figure 16.1 Scheme of the Stokes polarimeter acting as a single-pixel detector
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A polarimetric detector with no spatial structure, such as the SP detector in Fig. 16.1, can be
adapted to perform PI with the aid of the single-pixel architecture discussed on Section 16.2.
The idea is simple: the problem of measuring a spatial-dependent Stokes vector is equivalent
to resolving three times the CS algorithm of single-pixel imaging. This is possible because the
linearity of Eq. (16.3) implies that each Stokes parameter SSP

i provided by the SP is the sum of
the values taken by Si at each point of the input light beam. As a consequence, the measurement
process expressed by Eq. (16.1) can be separately applied to each Stokes parameter whose
spatial distribution (described by an N-pixel matrix) is recovered using M < N polarimetric
measurements. A layout of the PI system is depicted in Fig. 16.2. A collimated (unpolarized)
laser beam passes through an LC-SLM, programmed to generate a set of intensity patterns. Just
after the modulator there is a polarization object (PO), which produces a space-variant Stokes
vector. As an LC-SLM is a polarization-dependent device; it is sandwiched between properly
oriented linear polarizers (P1 and P2), so the object is illuminated with linearly polarized light.
The light emerging from the object is guided to the SP by means of an afocal optical system,
like an inverted beam expander, which fits the beam width to the typically small entrance
window of the SP. This coupling optic ensures that all the light emerging from the object is
collected by the SP and it preserves the normal incidence, which contributes to the optimal
performance of the polarimeter.

The light source used in this experiment was an He-Ne laser emitting at 632.8 nm. The
LC-SLM was a transmissive twisted nematic LCD (TNLCD) with SVGA resolution (800 ×
600 pixels) and a pixel pitch of 32 μm. To reach an intensity modulation regime, the LC-SLM
was sandwiched between two linear polarizers, respectively oriented parallel and normal to
the input molecular director of the TNLCD, which was previously determined by a polarimet-
ric technique [23]. In this configuration, the LC-SLM worked as a spatial intensity modulator.
Pixels were individually addressed by sending gray-level images to the TNLCD. Each gray
level corresponded to a transmitted intensity level, ranging from the dark state (extinction) to
the bright state (maximum transmission).

Laser
Spatial

filter Lens
Polarizer

Polarizer

Spatial light
modulator

Object

Lens

Lens

Beam
polarimeter

Figure 16.2 Experimental setup for the polarimetric single-pixel camera. One of the binary intensity
patterns displayed by the SLM is also shown
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Table 16.1 Technical specifications of the polarimetric camera

Wavelength 632.8 nm
Image resolution 64 × 64 pixels
Compression ratio 3:1
Pixel pitch 64 μm

In order to perform CS, the Walsh–Hadamard functions were chosen as the reconstruction
basis 𝚿. This election was particularly useful because the intensity patterns {Φm} generated
by the TNLCD were binary masks (see Fig. 16.2). The corresponding images addressed to
the display had a resolution of 64 × 64 cells, and the cell pitch was 64 μm. The number of
binary patterns displayed onto the TNLCD was 1225, which represents ∼30% of the Nyquist
criterion. Custom software written with LabVIEW was used to synchronize the SP with the
modulator. These technical specifications are summarized in Table 16.1. For each realization,
the values of the Stokes parameters {SSP

i }(i = 1, … , 3), as well as the signals of PD1 and PD2,
are measured. The maximum measurement rate of the SP (10 Stokes vectors per second) was
the speed limiting factor, since the refreshing frequency of the TNLCD was 60 Hz.

The selected object, shown in Fig. 16.3(a), was a cellophane film, acting as linear retarder,
attached to an amplitude mask, which reproduces the logotype of the university UJI. Linearly
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Figure 16.3 (a) High-resolution representation of the object under study, which is an amplitude mask
representing the logo of the university UJI, with a cellophane film over the letter in gray shading (was
yellow). Pseudocolored pictures showing the distribution of the Stokes parameters are shown in (b),
(c), and (d). Source: V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis 2012,
Figure 3. Reproduced with permission from The Optical Society
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polarized light emerging from the polarizer P2 illuminated the object. An inhomogeneous
polarization distribution was generated by covering just the capital letter J with cellophane.
With the introduction of this element, the polarization of the light coming from this letter
was approximately rotated by the cellophane film. The parameters of the polarization ellipse
(the azimuth α and the ellipticity e) of the light passing through the J were measured by the
SP (blocking the light emerging from the other part of the object). For this measurement,
the TNLCD was configured in its bright state. The results were 𝛼J = 8.62∘ and eJ = −0.07.
Repeating the process for letters U and I, the measured parameters were 𝛼U,I = 42.22∘ and
eU,I = 0.003.

Figures 16.3(b)–N.3(d) show pseudocolor plots for the normalized Stokes parameters.
These images exhibit a clear uniformity within the different parts of the object. The spatial
distributions for 𝛼 and e were calculated from the Stokes parameters through conventional
expressions (see, for example, [24]). The mean values of the ellipse parameters for each
part of the object were (⟨𝛼J⟩ = 2.5∘ ± 1.4∘, ⟨eJ⟩ = −0.08 ± 0.02) and (⟨𝛼U,I⟩ = 43.6∘ ± 1.1∘,⟨eU,I⟩ = −0.01 ± 0.04). The assigned uncertainties were the standard deviations of each
distribution. These results were in good agreement with the values previously measured by
the SP. The major discrepancy was found for 𝛼J(∼6∘), which only represents ∼3% of the total
range of values (from −90∘ to 90∘) that can be taken by the azimuth.

These results demonstrate the possibility of performing spatially resolved Stokes polarimetry
with the aid of CS. In particular, the system described here converts a commercial beam SP into
a polarimetric imager. Although this system is based on liquid crystal elements, the method
is valid for other types of polarimeters, provided that the selected device is itself spatially
homogeneous, and the relationship between the measured signals and the Stokes parameters
is linear, as in Eq. (16.3). Concerning the acquisition process, a TNLCD is used to project
the intensity patterns over the object. Another possibility is to employ SLMs insensitive to
polarization, like a DMD, as is done in the optical systems described in the following sections.
The combination of DMDs with fast SPs may lead to the design of PI systems working at very
high frequencies (∼1 KHz), opening the door to near-real-time applications.

16.4 Single-Pixel Multispectral Imaging

Multispectral imaging (MI) is a useful optical technique that provides two-dimensional images
of an object for a set of specific wavelengths within a selected spectral range [1]. Dispersive
elements (prisms or gratings), filter wheels, or tunable band-pass filters, are typical components
used in MI systems to acquire image spectral content [25]. Multispectral imaging provides both
spatial and spectral information of an object and represents a powerful analysis tool in different
scientific fields as medicine [26], pharmaceutics [27], astronomy [28], and agriculture [29]. In
industry, new techniques have emerged that use VIS and NIR imaging to make quality and
safety control, for example, in the detection of surface properties on fruits [30].

The second optical system described in this chapter is a CS imaging system able to provide
spatially resolved information about the spectrum of the light reflected by an object [31]. A
fiber spectrometer with no spatial resolution is used as a single-pixel detector. Now, the key
element of the system that makes possible the CS acquisition process, is a digital micromir-
ror device (DMD). The modulator sequentially generates a set of binary intensity patterns
that sample the image of the object under consideration. The acquired data is subsequently
processed to obtain a multispectral data cube.
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A layout of the spectral camera is shown in Fig. 16.4(a). A white-light source illuminates
a sample and a CCD camera lens images the object on a DMD, which is a reflective spatial
light modulator that selectively redirects parts of an input light beam [32]. The DMD con-
sists of an array of electronically controlled micromirrors, positioned over a CMOS memory
cell, which can rotate about a hinge, as is schematically depicted in Fig. 16.4(b). The angular
position of each micromirror admits two possible states (+12∘ and −12∘ respect to a common
direction), depending on the binary state (logic 0 or 1) of the corresponding CMOS memory
cell contents. As a consequence, light can be reflected at two angles depending on the signal
applied to the mirror. The DMD used in this system is a Texas Instrument device (DLP Dis-
covery 4100) with a resolution of 1920 × 1080 micromirrors, the panel size of the display is
0.95′′, the mirror pitch is 10.8 μm and the fill factor is greater than 0.91. The optical axis of
the “optical system 1” forms an angle with respect to the orthogonal direction to the DMD
panel that approximately corresponds to twice the tilt angle of the device mirrors (24∘). As is
shown in Fig. 16.4(c), a micromirror oriented at +12∘ orthogonally reflects the light, appear-
ing as a bright pixel (ON state). In their turn, micromirrors oriented at −12∘ work as dark
pixels (OFF state). The light emerging from the bright pixels of the DMD is collected by “the
optical system 2” (see Fig. 16.4a). This lens system couples the light into a silica multimode
fiber with a diameter of 1000 μm, which is connected to a commercial concave grating spec-
trometer (Black Comet CXR-SR from Stellarnet). The spectral range of the fiber ranges from
220–1100 nm. The wavelength resolution of this spectrometer is 8 nm (with a slit of 200 μm)
and the maximum signal-to-noise ratio (SNR) is 1000:1. Technical specifications for this setup
are summarized in Table 16.2.

An example of spectral image with resolution 256 × 256 pixels was performed with a sam-
ple object composed of an unripe cherry tomato together with a red one. The illumination
source was a xenon white light lamp. The Walsh–Hadamard patterns addressed to the DMD
had N = 65536 unit cells. Each unit cell was composed of 2 × 2 DMD pixels. With this res-
olution, the number of measurements was chosen to be M = 6561, which corresponds to a
compression rate of 10:1 (M ≈ 0.1N). The integration time of each spectrometer measurement
was 300 ms.

In order to determine the object spectral reflectance, a spectrum was taken from a white
reference (Spectralon diffuse 99% reflectance target from Labsphere, Inc.) to normalize the
measured spectra during the CS acquisition process. In the case of plants, the chlorophyll
content in leaves can be recovered from the spectral reflectance [33,34]. The data collected
by the spectrometer for wavelengths lower than 500 nm, clearly affected by noise, imposed
an inferior boundary to the usable spectral range. The results of the CS reconstruction for 15
spectral channels are shown in Fig. 16.5 (Plate 26). The selected central wavelengths 𝜆0 in the
visible spectrum (VIS) range from 510–680 nm. The bandwidth of each spectrum channel was
10 nm (𝜆0 ± 5 nm). The recovered images were pseudo-colored and the color assignment (the
wavelength to RGB transform) was carried out with the aid of standard XYZ Color-Matching
Functions [35]. The CS algorithm provided an acceptable reconstruction in the near-infrared
spectrum, around 860 nm. This is presented by means of a gray-level image. Figure 16.5 also
includes a RGB image of the object.

The quality of the images obtained with the single-pixel camera in Fig. 16.4(a) is evaluated
by performing a multispectral imaging experiment, by sending Walsh–Hadamard patterns of
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Table 16.2 Technical specifications of the multispectral camera

Wavelength range 505–865 nm
Number of channels 15
Image resolution 256 × 256 pixels
Compression ratio 10:1
Integration time 300 ms
Pixel pitch 21.6 μm

510 nm 520 nm 530 nm 540 nm

550 nm 560 nm 570 nm 620 nm

630 nm 640 nm 650 nm 660 nm

670 nm 680 nm 860 nm RGB

Figure 16.5 (Plate 26) Multispectral data cube reconstructed using CS. In the VIS band, the reflectance
for each spectral channel is represented by means of a 256 × 256 pseudo-color image. In the NIR band
we show a gray-scale representation. A colorful image of the scene made up from the conventional RGB
channels is also included. Source: F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso,
E. Tajahuerce, and J. Lancis 2013, Figure 4. Reproduced with permission from Springer. See plate section
for the color version
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64 × 64 unit cells (N = 4096) to the modulator, each one composed of 8 × 8 DMD pixels. In
this case, the sample scene is constituted by two small square color objects. The number of
measurements was M = 4096 (M = N), which allowed us to fulfill the Nyquist criterion. Eight
central wavelengths, 𝜆0, were selected in the visible spectrum. The bandwidth of the corre-
sponding spectral channels was 20 nm (𝜆0 ± 10 nm). Aside from the channels at the boundaries
of the spectral range under consideration, the values of 𝜆0 correspond to peak emissions of
commercial light-emitting diodes. The object spectral reflectance was determined again by
means of the previously used white reference. The integration time of the spectrometer was
set at 300 ms.

For each spectral channel, the off-line CS algorithm was resolved with the complete set of
measurements. After a suitable filtering, the recovered matrix served as a reference (lossless)
image Iref(i, j), where (i, j) indicates the location of an arbitrary image pixel. The reconstruction
process was then repeated using decreasing fractions of the total number of pixels. In particular,
the value of M was varied from 5 to 90% of N, and the fidelity of the reconstructed images was
estimated by calculating the mean square error (MSE), given by

MSE = 1
N

∑
i

∑
j

[
I (i, j) − Iref (i, j)

]2
, (16.4)

where I(i, j) is the noisy image obtained for a given value of M. The peak signal-to-noise ratio
(PSNR) was used to evaluate the quality of the reconstruction. It is defined as the ratio between
the maximum possible power of a signal and the power of the noise that affects the fidelity of
its representation. In mathematical terms, [36]

PSNR = 10 log

(
I2
max

MSE

)
= 20 log(Imax) − 10 log(MSE) (16.5)

Here, Imax is the maximum pixel value of the reference image. For each spectral channel, the
reference images were represented by 28 gray-levels, so Imax = 255. Figures 16.6(a) and (b)
show the curves for the MSE and the PSNR versus M for the different values of 𝜆0. Both
figures point out that the image quality improves as the number of measurements grows and
approximates to the Nyquist limit. However, it should be noted that the slope of both curves
becomes visibly smoother for all spectral channels when M ≥ 0.4N. In the case, for instance,
of 𝜆0 = 610 nm, MSE = 0.13I2

max and PSNR = 28.72 dB for M = 0.4N (the PSNR for 0.9N is
only somewhat greater, 29.10 dB).

Although this single-pixel camera acquires sequentially the spatial information of the input
object, it allows collection of all the spectral content at once, in contrast to those cameras based
on tunable band-pass filters, which perform a wavelength sweep to measure the spectral infor-
mation. In addition, the number of channels, their spectral resolution, and the total wavelength
range of the single-pixel system are those provided by the spectrometer working as detector.
This fact makes possible to exploit the high performance of commercially available devices.
Thus, the spectral system can, in principle, cover the whole VIS spectrum and part of the NIR
range (up to 1.1 microns), while conventional multispectral systems require pixelated sensors
specifically designed for the infrared range (like InGaAs cameras).

Apart from the detector, the illumination is another key element to ensure a minimum signal
along the selected spectral range. The use of a high power Xe arc lamp provides a continuous
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Figure 16.6 (a) MSE and (b) PSNR of the recovered images versus the number of measurements.
Each curve corresponds to a spectral channel. Source: F. Soldevila, E. Irles, V. Durán, P. Clemente,
M. Fernández-Alonso, E. Tajahuerce, and J. Lancis 2013, Figure 2. Reproduced with permission from
Springer

and roughly uniform spectrum across the VIS region. However, the decreasing source irradi-
ance at the “blue” side of the VIS spectrum, as well as the low reflectance of samples at that
region, limits the spectral range to wavelengths higher than 500 nm.

This single-pixel multispectral camera presents a trade-off between image resolution and
acquisition time. Increasing the illumination level or considering lower integration times (by a
reduction of the spectral resolution) can make the acquisition time to drop by at least one order
of magnitude. A comparable trade-off can be found in cameras based on acousto-optic or liquid
crystal tunable filters, where the higher spectral resolution (number of channels), the longer
acquisition time, with a strong dependence on the exposure time of the pixelated sensor used
as a detector. A hyperspectral camera (i.e., a camera with more than 100 spectral channels) can
take a few minutes in acquiring a data cube for image resolutions similar to those presented in
this work [37].

16.5 Single-Pixel Spectropolarimetric Imaging

In certain applications, MI can be improved by adding spatially resolved information about the
light polarization. Multispectral polarimetric imaging facilitates the analysis and identification
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of soils [38], plants [39], and surfaces contaminated with chemical agents [40]. In the field of
biomedical optics, multispectral polarimetric imaging has been applied to the characterization
of human colon cancer [41] or the pathological analysis of skin [42]. In many cases, polari-
metric analysis can be performed by just including a linear polarizer in an imaging system
to record images for various selected orientations of its transmission axis [42,43]. A simple
configuration that includes two orthogonal polarizers integrated in a spectral system has been
used for noninvasively imaging of the microcirculation through mucus membranes and on the
surface of solid organs [43]. An illustrative example of a spectral camera with polarimetric
capability is a system that combines an acousto-optic tunable filter with a liquid-crystal based
polarization analyzer [44].

In this section we describe two different optical architectures for spectropolarimetric imag-
ing. In the first one, polarimetry is performed by using a rotating linear analyzer in front of the
detector, which leads to a linear polarization spectral imager. In the second one, the optical sys-
tem is constituted by a fixed polarizer and two voltage-controlled variable retarders to spatially
resolve the circular polarization component of light. In this way, this single-pixel multispectral
system works as an imaging full-Stokes meter for each spectral channel.

16.5.1 Multispectral Linear Polarimetric Camera

A scheme of the multispectral linear polarimetric camera is depicted in Fig. 16.7. The optical
system is similar to that described in the previous section, see Fig. 16.4(a), but now includes a
linear polarizer. The sample scene is constituted by two square capacitors with a width of 7 mm.
A xenon white light lamp is used again as illumination source. The light emerging from each
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Figure 16.7 Optical system to obtain polarimetric multispectral imaging by using a single-pixel
detector
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Table 16.3 Technical specifications of the multispectral linear
polarimetric camera

Wavelength range 470–700 nm
Number of channels 8
Image resolution 128 × 128 pixels
Compression ratio 5:1
Integration time 500 ms
Pixel pitch 43.2 μm

element of the scene had a different linear polarization. This spatial distribution of polarization
was achieved by means of a linear polarizer located after the object, which had its area split in
two parts, each of which with its transmission axis oriented at orthogonal directions (0 and 90∘,
respectively). The resolution of the patterns generated by the DMD was 128 × 128 unit cells
(N = 16384) composed of 4 × 4 DMD pixels. The number of measurements was M = 3249,
which corresponds to ∼20% of N (i.e., a compression rate of 5:1). The integration time of
the spectrometer was fixed to 500 ms. Eight central wavelengths 𝜆0 were selected in the VIS
spectrum. The bandwidth of the channels was 20 nm (𝜆0 ± 10 nm). For each channel, four ori-
entations of the polarization analyzer were sequentially considered in separated measurement
series. The technical specifications of this camera are outlined in Table 16.3.

Figure 16.8 (Plate 27) shows the image reconstructions with the optical system in Fig. 16.7.
Each column of the figure corresponds to a spectral channel and each row shows the results for
a given orientation of the analyzer. A colorful image of the object is also shown (see Plate 27
in the plate section). This RGB image was made up from the data taken for the second con-
figuration of the analyzer (45∘). The result for 680 nm is presented by means of a gray-level
image due to its proximity to the near infrared range.

The polarizer included in the single-pixel optical system in Fig. 16.7 limits the total spectral
range, since the optical behavior of polarizing films is wavelength dependent. As a conse-
quence, the upper boundary of the spectral range is ∼700 nm. However, the use of high grade
crystalline polarizers can solve this limitation.

16.5.2 Multispectral Full-Stokes Imaging Polarimeter

In principle, it is possible to obtain information about the spatial distribution of the Stokes
parameters of light, Si (i = 0,… , 3) from polarimetric images recovered for each spectral
channel. In the previous optical system, as a linear polarizer is used as analyzer, the spatial dis-
tribution of S0, S1, and S2 can be straightforwardly derived. However, a full Stokes polarimeter
requires adding at least a linear retarder.

The scheme of a full-Stokes polarimeter is shown in Fig. 16.9. A white light beam generated
by a xenon lamp is collimated by a lens and illuminates a sample object, whose image is
formed on a digital micromirror device (DMD) by a pair of lenses. The light emerging from
the DMD is guided to a single-pixel detector with the aid of a fourth lens. In order to achieve
both polarimetric and spectral information, the single-pixel detector consists of two liquid
crystal variable retarders (LCVR) (liquid crystal variable retarder from Meadowlark) with
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their slow axis oriented at 45∘ and 0∘, followed by a linear analyzer with its transmission axis
oriented at 45∘ and a commercial fiber spectrometer (Black Comet CXRSR from StellarNet).
Each LCVR is precalibrated to introduce controlled retardances in each chromatic channel of
interest. The commercial fiber spectrometer is the same used in the preceding section.

By acquiring four images for different retardances of the LCVRs, it is possible to compute
the Stokes parameters of each pixel of the scene. The CS algorithm provides an intensity map
for the scene, which corresponds to the spatial distribution of the Stokes parameter S′0. By
using Stokes–Mueller calculus, it is possible to relate, for each pixel, the value of the Stokes
vector with the measured irradiance S′0. From the Mueller matrix expressions of a retarder wave
plate and a linear polarizer, it is possible to show that the relationship between the recovered
irradiance and the original Stokes parameters is

S′0(2𝛿1, 2𝛿2) =
1
2

S0 +
1
2

sin(2𝛿1) sin(2𝛿2)S1

+ 1
2

cos (2𝛿2)S2 −
1
2

cos (2𝛿1) sin(2𝛿2)S3, (16.6)

where 2𝛿1 and 2𝛿2 are the phase retardances introduced, respectively, by the two LCVRs.
Equation 16.6 establishes an undetermined system with four unknown quantities (the Stokes
parameters of the incident light). In order to solve that system, a minimum of four pairs of
phase retardances must be applied to the two LCVRs. After the off-line reconstructions, the
Stokes vector in each point of the scene is given by S′𝟎 =M ⋅ S, where

M = 1
2

⎛⎜⎜⎜⎜⎜⎜⎝

1 sin(2𝛿(1)1 ) sin(2𝛿(1)2 ) cos(2𝛿(1)2 ) − cos(2𝛿(1)1 ) sin(2𝛿(1)2 )

1 sin(2𝛿(2)1 ) sin(2𝛿(2)2 ) cos(2𝛿(2)2 ) − cos(2𝛿(2)1 ) sin(2𝛿(2)2 )

1 sin(2𝛿(3)1 ) sin(2𝛿(3)2 ) cos(2𝛿(3)2 ) − cos(2𝛿(3)1 ) sin(2𝛿(3)2 )

1 sin(2𝛿(4)1 ) sin(2𝛿(4)2 ) cos(2𝛿(4)2 ) − cos(2𝛿(4)1 ) sin(2𝛿(4)2 )

⎞⎟⎟⎟⎟⎟⎟⎠

. (16.7)

The subscripts in the elements of M relate to each one of the LCVRs and the superscripts
denote each one of the four acquisitions. The solution of this linear system provides the spatial
distribution of the Stokes parameters.

As a direct application of the single-pixel spectral Stokes polarimeter, a photoelasticity
measurement on a piece of polystyrene was carried out. In the process of fabrication, the
piece of polystyrene is shaped in a certain form. Due to this, the material presents stresses
that cause a spatial distribution of birefringence. This distribution can be seen when the piece
is placed between crossed linear polarizers and illuminated with white light, as can be seen in
Fig. 16.10.

The Walsh–Hadamard patterns addressed to the DMD had a resolution of 128 × 128
unit cells (N = 16384). Each unit cell was composed of 4 × 4 DMD pixels. The number of
measurements was chosen to be M = 3249, which corresponds to ∼20% of N (a measurement
rate of 5:1). The integration time of each spectrometer measurement was set to 20 ms. These
technical specifications of the camera shown in Fig. 16.9 are summarized in Table 16.4. In
Fig. 16.11 (Plate 28) we show the experimental results of the distribution of the normalized
Stokes parameters for eight chromatic channels, each one with 20 nm width (𝜆0 ± 10 nm). To
simplify data display, image reconstructions are arranged in a table. Each column corresponds
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Figure 16.10 Color picture of the polystyrene sample. It is placed between two crossed linear polarizers
and illuminated with white light. Color fringes are a consequence of the different states of polarization
produced by the stress in the piece. The square indicates the region of interest imaged by the spectral
camera

Table 16.4 Technical specifications of the multispectral
full-Stokes imaging polarimeter

Wavelength range 450–730 nm
Number of channels 8
Image resolution 128 × 128 pixels
Compression ratio 5:1
Integration time 20 ms
Pixel pitch 43.2 μm
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Figure 16.11 (Plate 28) Spatial distribution of the Stokes parameters of the polystyrene piece. Each
distribution is represented by a pseudo-colored 128× 128 pixels picture. The values range from−1 (blue)
to 1 (red). See plate section for the color version
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to a spectral channel and each row shows the spatial distribution of a normalized Stokes
parameter.

To simplify data display, image reconstructions are arranged in a table. Each column cor-
responds to a spectral channel and each row shows the spatial distribution of a normalized
Stokes parameter.

As can be seen in Fig. 16.11, the expected fringe distribution of the Stokes parameters is
recovered, if we compare this result with that in Fig. 16.10. For wavelengths near the IR,
reconstructions are a bit noisy. This is caused by the low amount of light the source emits in
this zone of the spectrum, which causes the reconstructions on these channels to have lower
SNR. This problem can be solved by increasing the integration time of the spectrometer, but
this makes measurement times much greater and the reconstructions on the channels in the
visible region of the spectrum do not improve their SNRs. Using a light source with a flatter
spectrum will solve the quality drop near the IR region.

16.6 Conclusion

We have described several multi-dimensional single-pixel imaging techniques providing the
spatial distribution of multiple optical properties of an input scene. In all cases, the key element
of the optical system is a SLM that sequentially generates a set of intensity light patterns to
sample the input scene. In this way, it is possible to apply the theory of compressive sampling to
data acquired with a single-pixel sensor. In particular, we have described a single-pixel hyper-
spectral imaging polarimeter. This system is able to provide spatially resolved measurements
of Stokes parameters for different spectral channels. In this case the spatial light modulator is
a digital micromirror device, and the sensor is composed by polarizing elements followed by a
commercial fiber spectrometer. Experimental results for color objects with an inhomogeneous
polarization distribution show the ability of the method to measure the spatial distribution of
the Stokes parameters for multiple spectral components.

Acknowledgments

This work has been partly funded by the Spanish Ministry of Education (project
FIS2010-15746) and the Excellence Net from the Generalitat Valenciana about Medi-
cal Imaging (project ISIC/2012/013). Also funding from Generalitat Valenciana through
Prometeo Excellence Programme (project PROMETEO/2012/021) is acknowledged.

References

[1] Brady D., Optical Imaging and Spectroscopy, 1st edn. John Wiley & Sons, Ltd, 2009.
[2] Weissleder R. and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature, vol. 452,

no. 7187, pp. 580–589, Apr. 2008.
[3] Tyo J. S., D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry

for remote sensing applications.,” Appl. Opt., vol. 45, no. 22, pp. 5453–5469, Aug. 2006.
[4] Brady D. J., M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, et al., “Multiscale

gigapixel photography,” Nature, vol. 486, no. 7403, pp. 386–389, Jun. 2012.
[5] Geelen B., N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled

filters and optical duplication,” pp. 861314–861313, 2013.



Spectropolarimetric Imaging Techniques 389

[6] Zhao X. and F. Boussaid, “Thin photo-patterned micropolarizer array for CMOS image sensors,”
Photonics Technol., vol. 21, no. 12, pp. 805–807, 2009.

[7] Candès E. and M. Wakin, “An introduction to compressive sampling,” Signal Process. Mag. IEEE,
no. March 2008, pp. 21–30, 2008.

[8] Pratt W., J. Kane, and H. Andrews, “Hadamard transform image coding,” Proc. IEEE, vol. 57, no. 1,
1969.

[9] Magalhães F., F. M. Araújo, M. V. Correia, M. Abolbashari, and F. Farahi, “Active illumina-
tion single-pixel camera based on compressive sensing,” Appl. Opt., vol. 50, no. 4, pp. 405–414,
Feb. 2011.

[10] Duarte M. and M. Davenport, “Single-pixel imaging via compressive sampling,” Signal Process.,
March 2008, pp. 83–91, 2008.

[11] Solomon J. E., “Polarization imaging,” Appl. Opt., vol. 20, no. 9, pp. 1537–1544, May 1981.
[12] Oldenbourg R., “A new view on polarization microscopy,” Nature, vol. 381, no. 6585, pp. 811–82,

Jun. 1996.
[13] Terrier P., V. Devlaminck, and J. M. Charbois, “Segmentation of rough surfaces using a polarization

imaging system,” J. Opt. Soc. Am. A. Opt. Image Sci. Vis., vol. 25, no. 2, pp. 423–430, Mar. 2008.
[14] Demos S. G. and R. R. Alfano, “Optical polarization imaging,” Appl. Opt., vol. 36, no. 1,

pp. 150–155, Jan. 1997.
[15] Baba J. S., J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Coté, “Development and

calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt., vol. 7,
no. 3, pp. 341–349, Jul. 2002.

[16] Laude-Boulesteix B., A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging
system with liquid crystals,” Appl. Opt., vol. 43, no. 14, pp. 2824–2832, May 2004.

[17] de Boer J. F. and T. E. Milner, “Review of polarization sensitive optical coherence tomography and
Stokes vector determination,” J. Biomed. Opt., vol. 7, no. 3, pp. 359–371, Jul. 2002.

[18] Song H., Y. Zhao, X. Qi, Y. T. Chui, and S. A. Burns, “Stokes vector analysis of adaptive optics
images of the retina,” Opt. Lett., vol. 33, no. 2, pp. 137–139, Jan. 2008.

[19] Durán V., P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polari-
metric imaging,” Opt. Lett., vol. 37, no. 5, pp. 824–826, Mar. 2012.

[20] Sabatke D. S., M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Op-
timization of retardance for a complete Stokes polarimeter.,” Opt. Lett., vol. 25, no. 11, pp. 802–4,
Jun. 2000.

[21] Meadowlark Optics. Liquid Crystal Polarimeter User Manual. Available at www.meadowlark
.com/store/PMI_Users_Manual_2.10.pdf, 2012.

[22] Davis S., R. Uberna, and R. Herke, “Retardance sweep polarimeter and method,” US Pat. 6,744,509,
vol. 2, no. 12, 2004.

[23] Durán V., J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a
twisted-nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys., vol. 97,
no. 4, p. 043101, 2005.

[24] Brosseau C., Fundamentals of Polarized Light: A Statistical Optics Approach, 1st edn. John
Wiley & Sons, Inc., 1998.

[25] Boreman G. D., “Classification of imaging spectrometers for remote sensing applications,”
Opt. Eng., vol. 44, no. 1, p. 013602, Jan. 2005.

[26] Stamatas G. N., M. Southall, and N. Kollias, “In vivo monitoring of cutaneous edema using spec-
tral imaging in the visible and near infrared,” J. Invest. Dermatol., vol. 126, no. 8, pp. 1753–60,
Aug. 2006.

[27] Hamilton S. J. and R. A. Lodder, “Hyperspectral imaging technology for pharmaceutical analysis,”
in Proc. SPIE 4626, Biomedical Nanotechnology Architectures and Applications, pp. 136–147,
2002.

[28] Scholl J. F., E. K. Hege, M. Hart, D. O’Connell, and E. L. Dereniak, “Flash hyper-
spectral imaging of non-stellar astronomical objects,” in Proc. SPIE 7075, Mathematics of



390 Multi-dimensional Imaging

Data/Image Pattern Recognition, Compression, and Encryption with Applications XI, vol. 7075,
p. 70750H–70750H–12, 2008.

[29] Dale L. M., A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspec-
tral imaging applications in agriculture and agro-food product quality and safety control: a review,”
Appl. Spectrosc. Rev., vol. 48, no. 2, pp. 142–159, Mar. 2013.

[30] Mehl P. M., Y.-R. Chen, M. S. Kim, and D. E. Chan, “Development of hyperspectral imaging
technique for the detection of apple surface defects and contaminations,” J. Food Eng., vol. 61,
no. 1, pp. 67–81, Jan. 2004.

[31] Soldevila F., E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis,
“Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B, vol. 113,
no. 4, pp. 551–558,2013.

[32] Sampsell J. B., “Digital micromirror device and its application to projection displays,” J. Vac. Sci.
Technol. B Microelectron. Nanom. Struct., vol. 12, no. 6, p. 3242, Nov. 1994.

[33] Vila-Francés J., J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E.
Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an
acousto-optic tunable filter,” Rev. Sci. Instrum., vol. 77, no. 7, p. 073108, 2006.

[34] Zou X., J. Shi, L. Hao, J. Zhao, H. Mao, Z. Chen, et al., “In vivo noninvasive detection of chlorophyll
distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging,”
Anal. Chim. Acta, vol. 706, no. 1, pp. 105–112, Nov. 2011.

[35] Mather J., “Spectral and XYZ color functions,” 2005. [Online]. Available at: www.mathworks.com/
matlabcentral/fileexchange/7021-spectral-and-xyz-color-functions (accessed December 6, 2013).

[36] Pratt W. K., Digital Image Processing, 4th edn. John Wiley & Sons, Inc., 2007.
[37] Zuzak K. J., M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral

imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal.
Chem., vol. 74, no. 9, pp. 2021–2028, May 2002.

[38] Coulson K. L., “Effects of reflection properties of natural surfaces in aerial reconnaissance,” Appl.
Opt., vol. 5, no. 6, pp. 905–917, Jun. 1966.

[39] Vanderbilt V. C., L. Grant, L. L. Biehl, and B. F. Robinson, “Specular, diffuse, and polarized light
scattered by two wheat canopies,” Appl. Opt., vol. 24, no. 15, pp. 2408–2418, Aug. 1985.

[40] Haugland S. M., E. Bahar, and A. H. Carrieri, “Identification of contaminant coatings over rough
surfaces using polarized infrared scattering,” Appl. Opt., vol. 31, no. 19, pp. 3847–3852, Jul. 1992.

[41] Pierangelo A., A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino,
“Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express,
vol. 19, no. 2, pp. 1582–1593, Jan. 2011.

[42] Zhao Y., L. Zhang, and Q. Pan, “Spectropolarimetric imaging for pathological analysis of skin,”
Appl. Opt., vol. 48, no. 10, pp. D236–246, Apr. 2009.

[43] Groner W., J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau,
“Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat.
Med., vol. 10, no. 10, pp. 1209–1212, 1999.

[44] Gupta N. and D. R. Suhre, “Acousto-optic tunable filter imaging spectrometer with full Stokes
polarimetric capability,” Appl. Opt., vol. 46, no. 14, pp. 2632–2637, May 2007.



1Scientific Reports | 5:14300 | DOI: 10.1038/srep14300

www.nature.com/scientificreports

High-resolution adaptive imaging 
with a single photodiode
F. Soldevila1,2,*, E. Salvador-Balaguer1,2,*, P. Clemente1,2,3, E. Tajahuerce1,2 & J. Lancis1,2

During the past few years, the emergence of spatial light modulators operating at the tens of kHz 
has enabled new imaging modalities based on single-pixel photodetectors. The nature of single-pixel 
imaging enforces a reciprocal relationship between frame rate and image size. Compressive imaging 
methods allow images to be reconstructed from a number of projections that is only a fraction of the 
number of pixels. In microscopy, single-pixel imaging is capable of producing images with a moderate 
size of 128 × 128 pixels at frame rates under one Hz. Recently, there has been considerable interest 
in the development of advanced techniques for high-resolution real-time operation in applications 
such as biological microscopy. Here, we introduce an adaptive compressive technique based on 
wavelet trees within this framework. In our adaptive approach, the resolution of the projecting 
patterns remains deliberately small, which is crucial to avoid the demanding memory requirements 
of compressive sensing algorithms. At pattern projection rates of 22.7 kHz, our technique would 
enable to obtain 128 × 128 pixel images at frame rates around 3 Hz. In our experiments, we have 
demonstrated a cost-effective solution employing a commercial projection display.

In the latter years, single-pixel imaging (SPI) has been established as a suitable tool in life sciences. 
One of the main characteristics of the technique is that it uses very simple sensors (bucket detectors 
such as photodiodes or photomultiplier tubes) and mathematical algorithms to recover an image1. This 
reduction in complexity on the sensing device gives these systems the capability to work efficiently in 
conditions where light is scarce2. Furthermore, single-pixel cameras have been demonstrated to obtain 
images at shallow depth overcoming the scattering problem3–5. There are also several approaches that 
exploit the simplicity of the detectors in order to acquire multidimensional information, such as 3D, 
polarization and spectral images6–10. However, this complexity reduction in the sensor entails an increase 
of computational time to recover an image when compared to conventional techniques. In the visible 
region of the spectrum, where pixelated sensors have acquired very high performances with low costs, 
this may not seem like a good trade-off. Nevertheless, in other regions of the spectra, such as infrared 
and terahertz, where pixelated sensors do not have such good specifications, this technique can provide 
huge benefits11–14.

To recover an image, SPI needs to overlap a set of masks onto the scene under study and recover the 
total intensity of light transmitted or reflected by the scene. The size of this set depends on the desired 
resolution of the image. Even for low resolution images of 64 ×  64 pixels, this requires a huge amount 
of projections (642). In spite of the fact that fast spatial light modulators (digital micromirror devices, or 
DMD) are usually used in these single-pixel camera architectures, this limits the speed of the acquisition 
process.

In order to solve this problem, compressive sensing (CS) techniques provide a method to recover the 
images with a number of measurements lower than the total number of pixels. This is possible because 
natural images tend to be sparse (i.e. only a small fraction of these projections have relevant informa-
tion) in some basis of functions15. Despite lowering the total number of projections, the reconstruction 
algorithms require high computational power, which also limits the technique to low resolution images if 
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the user wants high speed acquisition and high-speed display in real-time. Some other techniques tackle 
this problem by using temporal sparsity16,17.

Recently, a technique has been reported operating at sub-Hz rates with image sizes up to 128 ×  128 
pixels18. The key element of the technique is to project only the functions of the basis that have most of 
the information about the scene and recover the picture without using CS algorithms, thus speeding-up 
the display stage. Even though this approach solves the problem of the reconstruction time of the CS 
algorithms, to project only the important masks one must know beforehand which ones have the rele-
vant information about the scene. Moreover, if the scene changes quickly, the a priori information of the 
relevant functions is rapidly lost. In order to achieve real time frame rates, it would be preferable to have 
a technique that does not use a priori information about the scene maintaining the benefits discussed 
above.

Here we propose an adaptive method for SPI that recovers images with a number of measurements 
lower than the number of pixels of the scene, with finer details than CS techniques (given the same 
number of measurements) and lower reconstruction times. This approach does not need to have a pri-
ori knowledge of the object and only collects information about the relevant parts of the scene in an 
adaptive way. It is based on smart sampling of the scene with a small set of masks. These masks are 
adaptively resized when the part of the scene needs to be recorded with higher resolution. The image 
is finally recovered by using fast wavelet transforms. Similar ideas have been proposed to improve the 
performance of ghost and dual photography imaging systems19–21. This method is very suitable when the 
user wants to capture big size images for two main reasons. One, even though the size of the final image 
can be big (in our experiments, 2048 ×  2048 pixels), the number of projected masks remains small due 
to the nature of the adaptive algorithm. And two, even if this number cannot be reduced due to object 
characteristics (i.e. objects with very complex spatial features or texture-like images), with this approach 
only a low resolution set of masks needs to be stored. This characteristic is very suitable from the com-
putational point of view, as small deterministic matrices require low amounts of memory to be stored 
and can be easily used in fast mathematical operations, providing massive computational gains22,23. For 
example, in the recovery stage of the aforementioned image classical SPI techniques would have to store 
20482 different masks with 20482 elements each. Nevertheless, with the adaptive approach we are able to 
recover the image operating with a set of 1282 masks with 1282 elements each. With these characteristics 
in mind, we have been able to design a high-resolution fast-operation SPI system with an off-the-shelf 
DMD and a mid-range laptop. This kind of system can be easily coupled with available commercial 
microscopes to take advantage from the SPI benefits discussed above.

Results
Adaptive Compressive Imaging (ACI).  To better understand the ACI algorithm one has to figure 
out how the 2D wavelet transform technique works. The process is depicted in Fig. 1. Given an N ×  N 
image, the wavelet transform consists of applying four bandpass filters to the image. As a result, four 
N/2 ×  N/2 quadrants are obtained; a low resolution version of the image and three more quadrants with 
the information of the horizontal, vertical and diagonal edges. This process can be applied again to the 
low resolution version of the image, giving the tree-structured image shown in the right image of Fig. 1 
where the upper left quadrant (the low resolution image) has been replaced by its wavelet transform. This 
procedure can be repeated up to N  times, when the pixel in the upper left corner contains the total 
energy of the scene and the rest of the image has the information about the edges of the scene. As it can 
be seen, the number of pixels containing information of sharp edges is scarce thus few coefficients are 
enough to get an image similar to the original one. Wavelet compression algorithms choose a number of 
iterations (levels) and only store the coefficients with values higher than a predetermined threshold, 

Figure 1.  Spirogyra algae image (512 × 512 pixels), its first level and third level wavelet transforms, 
respectively. The bright pixels on the wavelet transform represent the edges of the scene. In the wavelet 
representation, a region of the scene is represented by a set of wavelet coefficients arranged in a tree 
structure, as shown in the right panel.
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reducing in this way the size of the digital file without a significant loss in quality. As the operations 
needed to calculate this transform are linear, they are an excellent option for fast algorithms because they 
require low computational power and memory usage.

The idea behind the ACI technique is to reduce the number of masks needed to reconstruct an image, 
using high resolution masks only on the high resolution regions of the image. To that end, we first sample 
the scene with a low resolution set of masks and only continue sampling with higher resolution masks 
the parts of the image with regions of interest (i.e. the regions with high density of sharp edges). If the 
algorithm detects a zone in the scene with no borders, it does not project patterns again on this region, 
as more resolution is not needed. This process is repeated until we arrive at the final desired resolution. 
As a demonstration of the technique, in Fig. 2 we show a simulation done with a real microscopy image.

In this case, the goal is to recover an image of 256 ×  256 pixels of a group of cells. The set of masks 
chosen is the 2D Hadamard basis of 64 ×  64 pixels. In the first stage, the algorithm acquires a coarse pic-
ture of the full scene with our set of masks (resizing the 64 ×  64 Hadamard patterns to 256 ×  256 pixels). 
Once the image is recovered, it calculates its level one wavelet transform and searches for the quadrants 
with higher density of borders. If one of the quadrants has a number of borders below a predefined 
threshold, it will be discarded on the next stages, thus reducing the total number of masks projected. 
Once this step is complete, the second stage of the algorithm starts. Now, the 64 ×  64 patterns are resized 
to 128 ×  128 pixels, therefore occupying a quarter of the original scene. If none of the quadrants has been 
discarded in the previous stage, here the algorithm takes four more pictures, recovering then the scene 
with finer details. If one or more of the quadrants were discarded on the previous stage, the algorithm 
does not project the set of patterns in the discarded quadrants. In this stage, the algorithm repeats the 
level one wavelet transformations to each image in order to search again for new zones with no borders. 
As the algorithm goes on, the search zones get smaller and smaller, and the following sets of smaller 
masks are only projected on the high spatial resolution zones of the scene. In the last stage, masks are 

Figure 2.  Adaptive Compressive Imaging operation scheme. Object: 256 ×  256 Fasciola hepatica cells 
image captured with a commercial microscope. Stage 1: Coarse picture and its level one wavelet transform 
inspection. As the fourth quadrant has no relevant information, it is discarded. Stage 2: Higher resolution 
images of the non-discarded zones with their level one wavelet transforms inspection. In this stage, six 
regions are discarded. Stage 3: Highest resolution images of the non-discarded zones and their level 
one wavelet transforms. As this is the last stage, no more zones will be discarded so there is no wavelet 
inspection process. Using all the level one wavelet transforms, the algorithm builds the level three wavelet 
transform. By doing its inverse wavelet transform, the reconstruction of the scene is acquired. In this 
example, the total number of measurements to recover the scene was 62% of the 2562 measurements 
established by the Nyquist criterion.
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projected onto the regions with finer details of the scene. Once all the regions have been measured with 
the required resolutions, all the wavelet transforms are used to build the third level wavelet transform 
shown in Fig. 2. The final 256 ×  256 image is recovered via inverse wavelet transform. In contrast with 
traditional CS techniques, which usually require off-line reconstruction, this step is not computationally 
consuming. As it will be further discussed in the text, when using ACI this process can be done on the 
fly with low end computers.

The ACI approach has several remarkable benefits when compared with the traditional SPI-CS 
approach. These can be grouped into three categories: image size, resolution and temporal benefits. In 
order to prove those benefits, throughout this paper, we will compare our technique with the GPSR-Basic 
algorithm by Figuereido et al.24. First, we will discuss the image size benefits. As stated before, to recover 
a N ×  N picture, SPI needs to project M =  N2 masks. When using CS techniques, those M projections 
are reduced (typical compression ratios tend to be between 10% and 40% without a significant quality 
loss). However, this reduction entails the use of convex optimization algorithms to recover the image. The 
memory and time requirements of the algorithms increase with the size of the image and the number 
of measurements made. Even if speed is not a crucial requirement for some applications, the memory 
requirements limit the maximum size of the images recovered. In our experiments, carried on a com-
puter with 24GB of RAM and a Intel Xeon Processor X5690 at 3.47 GHz, the maximum image size that 
can be reconstructed due to memory limitations with CS algorithms is 256 ×  256 pixels, with compres-
sion ratios around 50%. When using the ACI algorithm, only a small set of masks of low resolution and 
the measurements vector need to be stored. In practice, we did simulations of images with sizes up to 4 
Megapixel (MP), even though this is not the limit of our equipment. As can be seen in Fig. 3, the regions 
of interest of the scene are recovered with perfect resemblance, and the zones with no information have 
lower detail.

When dealing with higher resolutions like the one shown above, the reconstruction time starts to be 
a crucial factor to be reckoned. A general approach made by researchers is to sacrifice some quality in 
their reconstructions in order to achieve higher frame rates. This can be made by applying high com-
pression rates or by novel approaches like the one proposed by Radwell et al.18. This procedures either 
aren't fast enough to achieve high resolution real time imaging or need a priori information about the 
scene to speed-up the reconstruction process. In SPI systems, the image acquisition time, ta, depends on 
the number of projected masks, M, which is determined by the size of the image. Defining the projection 
rate of the SLM as RSLM, the image acquisition time is given by = ⋅ ( / + ) +t M R t t1a SLM int P, where tP 
is the post-processing time to recover the picture from the measurements made, M, and tint is the inte-
gration time of the bucket detector. Ideally, both M an tp should be as low as possible. As single-pixel 
detectors work at higher frequencies than SLM,s, tint is negligible in all the scenarios considered here 
where lighting conditions are not extreme. Whereas traditional single pixel imaging requires M to be 
equal to the number of pixels of the image, N2, and has negligible tp, CS techniques reduce M but increase 
tp. Furthermore, CS techniques need to solve a convex optimization problem to recover an image, which 
requires high amounts of memory. Adaptive imaging techniques are known to reduce M while keeping 
negligible tp

19,20. Nevertheless, due to the nature of ACI, increasing the size of the scene does not neces-
sarily imply increasing memory requirements. If there is a memory limitation, the number of stages to 
reconstruct a scene will be increased, and consequently the size of the masks reduced.

In Fig. 4 we show two comparisons between CS and ACI algorithms. We have verified the PSNR and 
reconstruction time to behave similar for several biological images. To carry out the simulation we have 
used three different biological test images (shown in Fig.  5), with a size of 128 ×  128 pixels. The ACI 
algorithm number of stages was set to three, thus using the 32 ×  32 Hadamard masks. The first graph 

Figure 3.  Fasciola hepatica 4 MP image (left panel) and its ACI reconstruction (right panel). The ACI 
reconstruction is acquired with roughly a 25% of the 20482 measurements stablished by the Nyquist ratio.
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Figure 4.  Full frame quality and time comparison between CS and ACI techniques. The full scene 
resemblance is measured with the PSNR comparison in the top graph. Given the same amount of 
measurements, the quality is similar in both methods. However, the time comparison shows that the ACI 
technique outspeeds the traditional CS technique.

Figure 5.  ROI quality comparison between CS and ACI techniques. Three biological samples are selected 
for the analysis. In each sample, one ROI is studied. Due to the adaptive nature of the ACI approach, its 
PSNR curves present a steplike behaviour, acquiring higher resemblance than the traditional CS technique. 
In order to ease the visualization, the CS curve is the average of the three ROI's, as the results were almost 
equal in all the images.
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shows the average of the PSNR versus number of measurements for ACI and CS algorithms when the 
reconstructions are compared with the original images. In the second graph we show a time comparison 
between both methods. The time includes not only the CS and ACI algorithm computational time but 
also the masks projecting time. Even though the quality is similar, it is clear by watching at the lower 
graph, that the ACI technique has a great benefit in reconstruction times. As can be deduced from the 
results, high quality pictures can be achieved with sub-Nyquist measurement rates around 50%. With 
those measuerement ratios and state-of-the-art DMD,s, images of 128 ×  128 pixels can be acquired at 
frame rates around 3 Hz (~8000 measurements at 22.7 kHz). Similar tests were made with higher res-
olutions with results even more favorable to the ACI technique. Images with a resolution of 256 ×  256 
pixels are reconstructed in less than a minute with the ACI algorithm in comparison with several days 
with the GPSR routine. Higher resolution images could not be compared as our equipment is not able 
to reconstruct images with resolutions above 256 ×  256 pixels using CS.

Another huge benefit of the technique is that it recovers the regions of interest at high resolution 
using sub-Nyquist measurement rates. In Fig. 5 we show an example with three biological samples. For 
each sample, we chose a region of interest and we compare the PSNR of that region when using both 
techniques. As CS projects masks covering the entire scene, the quality of the whole image gradually 
improves with the number of projected masks, independently of the region of interest chosen. However, 
this does not happen with the ACI algorithm because masks are sent to different regions of the scene. In 
this case, the ACI curves have a steplike behaviour, where each step corresponds to a stage of the algo-
rithm. If there are few regions of interest in the scene, steps are concentrated in the initial measurements 
(see green curve), while if the scene is plenty of sharp edges, the highest quality of the region is achieved 
later (see orange curve). In microscopy setups, where the samples usually lay onto specific regions of a 
slide, this characteristic can be used to recover specimens with very low number of measurements or to 
locate regions of interest in a fast way. Once those regions are located, the amplification of the system 
can be changed so the sample fills the full field of view of the system.

Experimental results.  In order to test those ideas, we conducted a proof of concept experiment with 
a projector and a mid-range laptop. The experimental setup is shown in Fig.  6. It consists of a digital 
light projector, a photodiode, an analog-to-digital converter and a computer. The DLP sends the set of 
masks onto different regions of the object, resizing them when needed. Each set of resized masks is pre-
computed, and custom software written in Labview chooses the suitable one for each stage of the algo-
rithm. As the number of pixels of each mask remains the same in all stages (the only change is the pixel 
size), the reconstruction algorithm computational charge is alleviated. By means of an optical collecting 
system, light reflected by the object is measured with the photodiode. Being the quantum efficiency of 

Figure 6.  Experimental setup used for ACI reconstructions. The digital projector sends a predefined set of 
masks to different parts of the object. The light reflected from the object is measured with a bucket detector. 
The signal is digitalized and used to recover an image of the scene.
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photodetectors higher than CCD/CMOS sensors and given that more photons reach the detector at each 
measurement, signals acquired suffer less distortion from dark and read-out noise1. The analog-to-digital 
converter digitalizes the signal, and the computer reconstructs the images with custom code written in 
Matlab. The experimental process of projecting the patterns and measuring the electrical signal is con-
trolled by custom software written in Labview.

In Fig. 7, two experimental reconstructions are shown. The first scene reconstructed is a small LEGO‚ 
object. We start the ACI algorithm with 64 ×  64 Hadamard patterns and the number of stages is set to 3. 
Then, the final resolution achieved is 256 ×  256 pixels. Unlike standard CS techniques the time needed to 
reconstruct the scene only depends on the SLM refresh rate and not on the compressive strategy. For this 
particular reconstruction we have sent 88% of the total 2562 measurements established by the Nyquist 
criterion. In our experiments, we use a DLP LightCrafter 4500 from Texas Instruments. Even though the 
maximum refresh rate of this device is 4225 Hz, when the number of patterns to be projected gets higher, 
memory limitations arise. Then, the patterns have to be sent using the video input of the device instead 
of being preloaded on the internal memory. The speed of this video input is limited to 120 Hz. By encod-
ing 24 different binary patterns in each video frame as a 24-bit image, the maximum speed acquired is 
2880 Hz25. Bearing that in mind, the acquisition time with our equipment was 20.02 seconds. If state of 
the art SLM,s are used, with refresh rates around 22.7 kHz and high capacity internal memory, these 
limitations can be avoided, and reconstruction times of 2.54 seconds can be attained with this method.

As stated before, ACI stands out when capturing big resolution images. Due to the DLP specifications, 
the biggest square masks that can be projected have a size of 512 ×  512 pixels. In the second row of Fig. 7, 
we show a reconstruction of an USAF test with that resolution. In order to achieve this resolution, four 
stages of the ACI algorithm were used. As the picture gets bigger, the number of discarded regions tends 
to get higher, so greater compression ratios are achieved while maintaining good resemblance with the 
scene. In particular, for this second example we only used 55% of measurements of the 5122 stablished 

Figure 7.  ACI experimental results. In the upper row, we show a 256 ×  256 pixels LEGO‚ Ned Flanders 
picture (left) and its reconstruction via the ACI technique (right). The ACI reconstruction was acquired 
by using 88% of measurements of the total number of pixels. In the lower row, we show a 512 ×  512 pixels 
USAF1951 test (left) and its ACI reconstruction (right). In this case, the reconstruction was acquired with a 
55% of measurements of the total number of pixels. The only post-processing made to the ACI images was 
white balance correction.
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by the Nyquist criterion. With our setup, we acquired the image in 50.06 seconds. By using high-end 
DMD,s, acquisition times of 6.35 seconds could be achieved.

Discussion
We have designed an ACI algorithm that allows recovering high resolution images at low time costs by 
using SPI. Compared to traditional CS approaches, we acquire images with equivalent quality in much 
lower times1,3. In fact, with the same number of measurements, CS needs post-processing to recover 
the image while ACI can do it live. Novel approaches like multi-diode design cameras or adaptive ghost 
imaging have also tackled the speed-resolution limitation with success20,26. However, our approach main-
tains the use of a single photodetector, which improves the SNR of the measurements when working on 
low-light level scenarios, such as biological environments. Furthermore, by using deterministic matrices 
as the basis of our masks, the method is better suited for fast mathematical operations or even using CS 
in each stage of the acquisition process22. We have also computationally demonstrated the effectiveness 
of the technique to perfectly recover the regions of interest of an image at sub-Nyquist measurement 
rates. For the scenes investigated here, containing relatively few regions of intereset, ACI has been shown 
to provide higher quality reconstructions in less time than the GPSR-Basic CS approach. Compared to 
other single-pixel techniques, we do not need a priory knowledge of the scene to achieve this speed18.

Huge technological efforts are focused on increasing resolution of optical devices. Up to now, SPI 
has failed to provide high resolution images due to time restrictions. The only limiting factor of ACI 
technique lies in the SLM refresh rate, enabling us to present high resolution experimental images with 
dimensions comparable to the SLM number of pixels, without needing stitching techniques and using a 
single photodiode as a detector.

It has to be also noted that ACI is a very flexible technique. For example, we can use traditional 
compressive techniques in each ACI stage to reduce even more the number of measurements needed. 
ACI can also be used to improve the performance of single-pixel cameras working in different regions 
of the visible, infrared and terahertz spectrum3,4,11. Future work in the ACI technique should be directed 
towards improving the adaptive scheme. This will involve searching edges in a more intelligent way. 
Instead of inspecting quadrants regularly placed in the scene, we could freely situate them on high 
density border zones to gather the information more efficiently. This will improve the quality of the 
recovered images at even lower measurement rates.

Methods
The DLP used in the experiments is a DLP LightCrafter 4500 from Texas Instruments. It contains a 
DMD and three coloured light sources (red, green and blue). A built-in optical system is used to project 
the patterns onto the scene. The photodetector used is PDA36A-EC from Thorlabs, and the electrical 
signal is digitalized with NI USB-6001 DAQ. All the experimental results were acquired with a Lenovo 
ThinkPad E531 laptop with 12GB of RAM and an Intel Core i7 2.20 GHz processor. The biological images 
used in the simulations correspond to different samples from two slide sets from Carolina (#292148A 
and #293708).

ACI algorithm.  Here we attach the pseudo-code of the ACI algorithm used in the experimental setup.

Algorithm 1 ACI

Input:  L ←  number of stages 

           R ←  final image resolution

           Q ←  Hadamard patterns of resolution: −
R

L2 1

Output:  finalImg ← R ×  R image of the scene

  for  i =  L to 1  do

    Divide the scene into 4L−i quadrants.

    for  j =  1 to 4L−i  do

        if  i ≠ L and quadrantRelevance(j) <  threshold

            childrenQuadrantRelevance(j) ←  Set to 0 the quadrantRelevance of all its children

            quadrantImg(j) ←  Use the information of its father to recover the image of quadrant j.

        else

          quadrantImg(j) ←  Use patterns Q to sample the quadrant j of the scene and recover its image.

        end if

        quadrantWavelet(j) ←  perform one-level wavelet transform of quadrantImg(j)

Continued
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        childrenQuadrantRelevance(j) ←  borders information extracted from quadrantWavelet(j).

    end for

    stageWavelet(i) ←  compose the wavelet transform of stage i.

  end for

  finalWavelet ←  use the information of all stageWavelet to recover the L-wavelet transform information of the scene.

  finalImg ←  Perform a L-level inverse wavelet transform to recover the R ×  R image of the scene.
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Computational imaging with a 
balanced detector
F. Soldevila1, P. Clemente2, E. Tajahuerce1, N. Uribe-Patarroyo3, P. Andrés4 & J. Lancis1

Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad 
regions of the electromagnetic spectrum and through scattering media. However, there still exist 
several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging 
in the presence of ambient light. In this work we introduce balanced detection in combination with 
simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire 
information even when the power of the parasite signal is higher than the signal itself. Furthermore, 
this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the system. 
By means of a fast digital micromirror device together with a low numerical aperture collecting system, 
we are able to produce a live-feed video with a resolution of 64 × 64 pixels at 5 Hz. With advanced 
undersampling techniques, such as compressive sensing, we can acquire information at rates of 25 Hz. 
By using this strategy, we foresee real-time biological imaging with large area detectors in conditions 
where array sensors are unable to operate properly, such as infrared imaging and dealing with objects 
embedded in turbid media.

Over the past decade, single-pixel imaging (SPI) has demonstrated its viability in scenarios where traditional 
imaging techniques struggle to provide images with acceptable quality in practicable times and reasonable costs. 
Examples of this can be found in exotic regions of the light spectrum, such as infrared1, terahertz2 or X-rays3. 
Moreover, single-pixel setups have also been proposed in challenging frameworks such as photon-counting 
regimes4, imaging in scattering media5,6, multidimensional imaging7–11, two-photon microscopy12, photoacoustic 
imaging13,14, and spatial entanglement imaging15.

In SPI, the resolving power of the system is shifted from the sensor to a set of microstructured spatial masks 
that are codified onto a programmable spatial light modulator (SLM). The masks are optically projected onto the 
sample and the whole intensity is collected onto a bucket (single-pixel) sensor. The photodetector provides an 
electrical signal, proportional to the total amount of light that leaves the object. Measurements are sequentially 
made by changing the spatial mask. If many different masks are used, their shapes and the electrical signal can be 
combined to retrieve the sample16.

However, SPI still has several limitations inherent to the technique. If unmodulated light arrives to the 
object and it is collected, the signal provided by the detector is corrupted and the recovered image gets affected. 
Depending on the quantity of ambient light, recovery can be unattainable. Furthermore, the use of SLMs to meas-
ure the projections of the scene onto a set of spatial masks places an upper bound to the acquisition speed of the 
devices. The nature of SPI enforces a reciprocal relationship between the frame rate and the image size as the time 
required to capture an image scales with the number of pixels in the image. As a matter of fact, SPI usually relies 
on the use of fast SLMs such digital micromirror devices (DMDs) to codify the projecting masks. DMDs permit 
highly flexible codification of binary masks at frame rates above 20 kHz. For images about 128 ×​ 128 pixels, typical 
acquisition times tend to be around one frame per second1.

Two different approaches can be employed to overcome the above issue. On the one hand, given some rea-
sonable assumptions about the sparsity of the signal, compressive sensing (CS) dramatically reduces the number 
of measurements needed well below the number of pixels of the sample17–19. What is remarkable here is that with 
the only assumption that the signal is sparse, it is possible to avoid the measurement of the full-length signal, 
saving measurement time. More recently, adaptive sensing has been introduced as a way to circumvent the com-
putational complexity in convex optimization or greedy algorithms used in CS1,20,21. The idea is to make some 
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preliminary low-resolution measurements, and take advantage of the obtained information to avoid irrelevant 
acquisitions in further measurements. In this way, high resolution images can be obtained in a fast and compu-
tationally efficient way.

When dealing with light coming from the surroundings, measuring directly in the Fourier space and compu-
tationally filtering the frequencies of the ambient light has been proven to increase the quality of the images even 
when the ambient light has more power than the signal itself 22. Moreover, the use of complementary (or differ-
ential) measurements, which has been reported in several works1,9,23–25, also increases the signal-to-noise ratio of 
the system, helping the devices in this type of unfavorable environmental conditions.

 Here we present a novel approach, using complementary measurements and a single balanced detector. By 
using balanced detection, we improve the frame rate of the complementary measurement architectures by a factor 
of two, and we make use of all the photons arriving from the object. Furthermore, the use of a balanced detec-
tor provides environmental light immunity to the method. The key to success is the use of both reflecting arms 
provided by the DMD simultaneously, via the two sensors in the balanced detector. In addition to this, balanced 
detection also improves the signal digitization process. When we consider a single detector the detected light 
will be, on average, half the energy of the object with oscillations caused by the overlapping of each pattern with 
the object intensity distribution. The electrical signal as a function of time can be visualized as a DC term, which 
depends on the total energy of the object, and the AC term caused by the varying overlap of the patterns with 
the object. There are situations where using this approach causes loss of information because the sensitivity and 
dynamic range of both detectors and digitization systems are limited6. When using balanced detection, the DC 
term can be eliminated, and the full dynamic range of the detection system can be used to measure the small 
oscillations that are of interest to recover the image. This is another example of SPI taking advantage of the use of 
dedicated sensors that are difficult to implement in an array8,9,26.

Results
Experimental setup.  Our single-pixel camera can be seen in Fig. 1. The system resembles a conventional 
camera but the object is imaged over an array of micromirrors as opposed to the traditional array of photosensors. 
The object is illuminated by a white-light lamp (Thorlabs HPLS200). Then, the image is created onto the DMD 
surface (DLP Discovery 4100 V–7000 from ViALUX). A DMD consists of an array of electronically controlled 
micromirrors that can rotate about a hinge. The angular position of a specific micromirror admits two possible 
states (+​12° and −​12° respect to a common direction which will be referred ON and OFF respectively). In this 
way, the light can be reflected in two different directions depending on the signal applied to the mirror. If one 
looks at the DMD from one reflection direction, only the mirrors in the ON state will reflect light, and the mirrors 
in the OFF state will appear dark. In the other reflection direction there will be a complementary illumination 
pattern, as previous OFF mirrors will reflect light, whereas previous ON mirrors will not. A sequence of sampling 
patterns is codified onto the DMD and the irradiance striking the large-area single-pixel photodetector is stored. 
In one reflection direction, we have the superposition of one pattern with the object. In the other direction, we 
have the superposition of the complementary pattern and the object. Light is collected by two identical colli-
mating lenses (Thorlabs F810SMA-635), and enters two optical fibers (Thorlabs FT200EMT). The output of the 
balanced photodetector (Thorlabs PDB210A/M) corresponds to the subtraction of the two signals in the analog 
domain, amplified before the analog-to-digital conversion made by our digital acquisition system (National 
Instruments NI6251). In order to introduce ambient light in a controlled way, we used a commercial halogen 

Figure 1.  Single-pixel balanced detection camera. The object illuminated with incoherent light is imaged onto 
the surface of the DMD via a lens. Light reflected in both directions by the DMD is gathered by two collecting 
lenses and focused onto the entrance of two optical fibers, which are connected to the balanced photodetector. 
The signal is digitized and stored in the computer, which controls all the process. An external light source is 
used to introduce ambient light to the system in a controlled way with the aid of a beam splitter. ALS: ambient 
light source (halogen lamp), WLS: white-light source, OBJ: object, BS: beam splitter, L1: lens, CL: collecting 
lens, DMD: digital micromirror device, BPD: balanced photodetector, ADC: analog-to-digital converter, PC: 
computer.
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lamp. Custom software written in LabVIEW controls both the generation of the patterns in the DMD and the 
digitization process of the analog-to-digital converter (ADC).

Concerning the measurement patterns, various matrices can be employed. For instance, raster-scan style 
masks stem from the well-known raster-scan technique in which spatial pixels are measured sequentially. 
Random matrices can also be used in which each mask has a random distribution of binary values. On the other 
hand, Hadamard matrices provide a convenient codification framework because binary non-negative elements 
can easily be displayed onto the DMD (see Supplementary Information). Structured matrices avoid the need to 
store entire matrices as the entries can be computed on the fly and permit the use of recovery algorithms with a 
lower computational penalty than random matrices. Note that operation at video rates is of paramount signifi-
cance in potential applications of SPI like optical microscopy.

One important feature of the setup is the light collecting system. In our setup, light reflected by the DMD is 
collected using two identical optical fiber collimating systems. Those systems are coupled to two identical optical 
fibers. As both the optical fibers and the collimating systems have low numerical aperture (0.39 and 0.25 NA, 
respectively), light coming from directions other than the object is partially removed from the system before 
arriving to the detector. Even though this is a good feature and improves the quality of the presented images, it is 
not possible to reduce the NA of the system arbitrarily. A lower NA will decrease the field of view of the system, 
and also the total quantity of light at the detector, decreasing the overall quality of the reconstructions.

The other key element of our setup is the balanced detector. The use of balanced detection in optical exper-
iments dates from the late 60’s27. The simplest way of doing balanced detection consists of connecting two pho-
toreceptors in a way that their photocurrents cancel. If one is able to equalize the optical power arriving at each 
sensor, the effective photocurrent generated by the pair will be zero. Changes in the optical signal between both 
photoreceptors will unbalance the detector, generating a signal at the detector output. In this way, even if the opti-
cal power arriving at the detector is high, the output signal will only depend on the intensity of the fluctuations. 
This is of paramount usefulness when the information that one wants to measure relies in the light fluctuations, 
and not in the absolute value of the signals. Several optical techniques that require high signal-to-noise ratio have 
been using the principles of balanced detection for decades now. Examples range from microstructure metrol-
ogy28, light scattering microscopy29, high sensitive measurements using noisy sources30, and what may be the 
most well-known optical technique using balanced detection, optical coherence tomography31.

In our technique, the information about the object is encoded in the difference between two signals (see 
Methods). In one reflection direction of the DMD, we have the result of overlapping the object and one set of 
patterns. On the other reflection arm, we have the result of overlapping the object and the complementary set of 
patterns (switching white parts by black parts and vice versa). The difference between these two signals provides 
the mathematical projection of the object in our basis of functions: measuring this difference using balanced 
detection is straightforward. Using this idea, not only we capture all the photons reflected by the object and meas-
ure both signals at the same time (reducing acquisition time), but we also use the full dynamic range of our ADC. 
In a traditional SPI scheme (whether using complementary illumination or not), electrical signals provided by 
detectors will always be positive. ADC systems use a determined number of bits in order to digitize the signal. 
Once the voltage range is set, the number of quantization bits determines the possible digitized voltage levels and 
their precision. As voltage signals have both positive and negative values, using any ADC to measure an always 
positive electrical signal implies losing half the number of quantization values. However, in our setup we work 
directly with the subtraction of two signals, which will have both positive and negative values depending on the 
patterns generated in the DMD. The use of both reflection arms of the DMD improves the signal strength because 
we utilize the full flux of photons coming from the scene, in contrast with the classical single-pixel approach, 
which loses, on average, half of the photons. 

Lastly, the adoption of balanced detection also increases the ambient light immunity of the optical system. 
Since both sensors of the balanced detector work at the same time, temporal fluctuations of the signal are sub-
tracted automatically. This is very relevant in experimental conditions where light coming from unstable sources 
can corrupt the signal, making unfeasible the recovery of the object. This is illustrated in Fig. 2. We show several 
snapshots of the electrical signal when using balanced detection or single detection and switching ON or OFF an 
ambient halogen light source with intensity fluctuations at 100 Hz. In all four images, we see the temporal square 
signal generated by the DMD when switching between two different Walsh-Hadamard patterns at a low rate 
(around 10 Hz). When we turn on the halogen lamp, an undesirable ripple appears in the signal, with a frequency 
of 100 Hz. When using balanced detection, as the oscillating signal introduced by the halogen lamp is the same in 
both sensing arms, it does not contribute to the balanced signal. However, in the single detection case, this ripple 
persists. Using the corrupted signal to recover an object via SPI techniques would provide low quality images, as 
we will see in the following section.

Experimental results.  As a proof-of-concept, we used the experimental setup shown in Fig. 1 to record a set 
of images with different illumination conditions. The results are shown in Fig. 3. For a given fixed power of the 
halogen lamp, we changed the intensity of the light illuminating the sample object (a small part of an USAF reso-
lution test chart with 3.6 lines/mm) and acquired an image both using balanced detection (Fig. 3(a)) and only 
with one sensor (Fig. 3(b)). In both cases, we also took images with the halogen lamp turned off. The images have 
a size of 64 ×​ 64 pixels, and each pixel was arranged by grouping 4 DMD mirrors, with 13.68 μm width each. In 
order to acquire the images, the full set of 4096 (642) Walsh-Hadamard patterns was generated in the DMD. To 
ease visualization, all the images were normalized between 0 and 255 = ⋅−

−( )I 255norm
I I

I I
min( )

max( ) min( )
.

It is clear, even when the halogen lamp is much dimmer than the object source, that the non-balanced image 
has much lower quality. One can see a checkerboard-like artifact at the top of the images. This is caused by the 
temporal oscillation of the signal at a frequency of 100 Hz. As the sampling rate of the ADC is known, one could 
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digitally filter the 100 Hz component of the signal in the Fourier domain, go back to the time domain and recover 
the object suppressing this checkerboard pattern. However, this requires a priori knowledge of the power spec-
trum of the ambient and parasitic light sources. Balanced detection makes this post-processing of the electrical 
signal unnecessary. This is advantageous as post-processing procedures are time consuming, decreasing the total 
acquisition speed of the system.

Readers may observe a reduction in the quality of the images as the WLS power decreases while that of the 
halogen lamp remains constant. Here we point out two different effects. On the one hand, we have the effect of 
taking an image using a small quantity of light. On the other hand, we identify the effect of varying the power 
ratio between the two sources. For the first effect, we can look at both the second and fourth rows of Fig. 3. In 
this case, the halogen lamp is turned off and we take images decreasing the power of the lamp illuminating the 
object. We can see that as illumination decreases, noise starts to appear covering the image. This is due to the 
signal power approaching the level of the technical noise of the setup, which ultimately limits the working range 
of illumination powers in which the camera can acquire images. In order to work at different illumination levels 
or other regions of the electromagnetic spectrum, sensors can be exchanged with high sensitive photodiodes (or 
avalanche photodiodes) or even detectors with different spectral sensitivities (outside the visible region). The 
second effect depends on the ratio between the power of the two light sources. As we stated before, the halogen 
lamp produces a checkerboard-like pattern on top of the image when measuring using only one detector. If one 
compares this pattern in the third row of pictures, it is clear that decreasing the power of the lamp illuminating 
the object also increases the weight of the checkerboard pattern in the recovered image. So, with ambient lights 
much dimmer than the light coming from the object, one can recover an image which resembles the object with 
a small artifact coming from the ambient light. However, if the signal coming from the object decreases, artifacts 
will hide the object under study. This does not happen in the balanced detection case, as the sensor eliminates the 
fluctuating signal coming from the halogen lamp. Due to this, all the recovered images present similar quality, no 
matter whether the halogen lamp was turned on or off.

At this point, it is interesting to compare the results of both complementary single-pixel imaging as has been 
reported1,9,20,23,32 and our approach using balanced photodetection. Some previous work on complementary 
measurements worked with only one reflection arm of the DMD1,9,20,32, which entails the generation of each pat-
tern and its complementary sequentially. In addition of doubling the acquisition time of the system, if the scene 
changes between a pair of complementary patterns, the coefficient associated with that pair will be corrupted. 
Even in the case of using both reflection arms of the DMD and two detectors23, measuring in a non-balanced 

Figure 2.  Electrical signals in presence of ambient light. Four snapshots from the oscilloscope with different 
illumination and sensing conditions. In order to acquire the signals, two different Walsh-Hadamard patterns 
were generated periodically onto the DMD surface, thus giving a low frequency square wave. The first row of 
pictures corresponds to balanced detection with the halogen lamp ON (a) and OFF (b). It is clear that no fast 
variations appear in any case. The second row of pictures corresponds to sensing with only one of the detectors 
when the lamp is ON (c) or OFF (d). It can be seen that a ripple at a frequency of 100 Hz appears in (c). If one 
needs to measure the difference between the two intensity levels, this oscillation can corrupt the measurement, 
and thus decrease the quality of the recovered image.
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scheme introduces both electrical and quantization errors in the process. As the complementary measurements 
are made at the exact same time using the balanced detector, the technique presents a natural double frame 
rate and temporal immunity when compared to the sequential complementary approach. Furthermore, the SNR 
increase stated in the previous section also improves the quality of the recovered images. We show a comparison 
between non-complementary, sequential, and simultaneous complementary imaging in Fig. 4.

Images shown in Fig. 4 have a size of 64 ×​ 64 pixels. The total number of projections onto the Walsh-Hadamard 
basis established by the Nyquist-Shannon criterion is 4096. In order to take the single-pixel traditional 
image, we generate the 4096 patterns by placing white and black pixels onto the +​1 s and −​1 s entries of the 
Walsh-Hadamard matrix (shifting and rescaling approach, see Methods). In the sequential case, we generate 8192 
patterns and measure the projections only by using one of the reflection arms of our setup. In the balanced setup, 
the first set of 4096 patterns already generates the full set of 8192 projections by using both reflection arms of the 
DMD. It is clear that, as stated on the published reports, the complementary approach improves the SNR of the 
images23. Both sequential and balanced approaches provide very similar results, but the balanced approach works 
at double frame rate and it is insensitive to temporal oscillations caused by ambient and parasitic light.

Up to this point, we have remarked the improvement in quality produced by the use of balanced detection. 
However, there is another key feature of the technique, and it is the increased acquisition speed of the system. 
By using both reflection arms of the DMD in conjunction with the balanced detector, one can carry out comple-
mentary measurements at the same speed as single measurements. By doing this, we gather more information 
about the object at every pattern generated on the DMD, without decreasing the overall frame rate of the system. 
To show this benefit, we acquired a video of a moving scene with our setup (see Supplementary Information). 
We show some of the frames in Fig. 5. In this case, the scene consists of a moving Pac-Man eating a pellet. Every 
frame of the video is a 64 ×​ 64 pixel image. We show both SPI and CS acquisitions. The total number of patterns 
needed to recover a frame is 4096 (642), as stated by the Nyquist-Shannon criterion. As our DMD is working at a 
frequency of 20 kHz, roughly 200 ms are needed to acquire a frame. By doing this, we can achieve loss-less frame 
rates of 5 Hz.

If more speed is needed, there are several approaches that can boost the frame rate at expense of some qual-
ity loss. Here we show two more acquisitions by using undersampling and a CS approach. In order to capture a 
frame, a subset of the total Walsh-Hadamard basis with low spatial frequencies was generated on the DMD. In 

Figure 3.  Single-pixel imaging in presence of ambient light. Series of measurements using balanced detection 
(a), and a single sensor (b). For each experiment, both measurements with the halogen lamp turned on and off 
are shown. Each column represents a different power level of the source illuminating the object, as the power of 
the halogen lamp is either fixed (lamp on) or zero (lamp off). In order to ease visualization, all images have been 
normalized between 0 and 255.
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this case, we used 20% of the total number of patterns. By doing this, we can achieve frame rates of 25 Hz (second 
row of Fig. 5). It can be seen that even though the quality decreases, the objects can still be clearly identified. The 
benefit of this approach is that no post-processing is needed, so the image can be displayed in real time. This is 
a good approach for using the camera in a microscopy-like setup, where the user wants to search for zones of 
interest in a sample in a fast way. It is possible to perform real-time visualization at 25 Hz, and once the region of 
interest is in the field of view of the system, perform a loss-less acquisition at 5 Hz. There also exist several ways of 
getting high frame rates without losing so much quality in the process. In the third row of Fig. 5, we show several 
frames acquired with the same subset of patterns (a 20% of the total set) but recovered by means of CS. Even 
though the acquisition speed is 25 Hz, the post-processing time needed to use the CS algorithm hinders the live 
visualization of the scene.

Lastly, in Fig. 6 we show a comparison between the quality obtained by CS techniques whether performing 
balanced or non-balanced detection. In order to quantify the faithfulness of the undersampled images, we use the 
correlation coefficient of each undersampled acquisition with the lossless image (see Methods). The comparison 
between balanced and non-balanced imaging can be seen in Fig. 6(a). Even though both curves have the same 
behavior, it is clear that the balanced scheme improves the fidelity of the recovered images. For example, if one 
looks at the vertical dotted line in the graph, for the same compression ratio, the non-balanced acquisition pre-
sents lower correlation coefficients. Watching to the horizontal dotted line, it can be seen that in order to acquire 
the same correlation coefficient, the non-balanced approach needs to perform a higher number of measurements. 
In Fig. 6(b) we show both the balanced and non-balanced reference images and three of the undersampled images 
recovered by CS.

Here we have shown a CS approach, but several adaptive techniques can be used, with the benefits of both 
increased frame rate and also real time visualization, as they need negligible post-processing times1,21. As balanced 
detection works on the technical side of the camera (i.e. in the experimental setup), those adaptive approaches can 
directly benefit from this approach, doubling their frame rates and increasing the SNR of their measurements. In 
the Supplementary Information, we show the video comparison of the Pac-Man scene in the three cases explained 
here. With reduced resolutions of 32 ×​ 32 pixels, we could achieve frame rates of 20 Hz without undersampling. 
With measurement ratios about 20%, which are common in the literature, we could perform live video at frame 
rates of 100 Hz, enabling the capture of low-resolution live biological processes.

Discussion
We have implemented balanced photodetection in a single-pixel architecture for the first time. In conjunction 
with proper collecting optics and complementary single-pixel imaging techniques, we have studied the bene-
fits of the setup when imaging in presence of ambient light. Similar techniques based on single-pixel detection 

Figure 4.  Single-pixel imaging and complementary single-pixel imaging comparison. In the first row, we 
show images acquired when light coming from the object has 5 times more power than the ambient light.  
(a) Single-pixel image, (b) sequential complementary single-pixel image, and (c) simultaneous complementary 
image. In the second row, we present the same experiment but with images acquired when the light coming 
from the object has the same power as the ambient light. Note that even though second and third columns have 
very similar quality, the simultaneous complementary image is acquired in half the time.
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have tackled the same problem with good results22. However, the presented method does not require neither 
post-processing of the signal nor any a priori knowledge of the nature of the ambient light to work. We anticipate 
that this immunity to parasitic light will be of paramount interest in low-light-level scenarios or when an object 
is hidden inside a scattering medium, where single-pixel approaches have already started to be used4–6. The use 
of complementary measurements allows us to increase the signal-to-noise ratio of our measurements. Although 
similar proposals have been reported previously1,9,20,23,32,33, the implementation shown here increases the frame 
rate of the devices by a factor of two. We have been able to obtain 64 ×​ 64 images at a frame rate of 5 Hz without 
using advanced undersampling techniques. As the proposed technique only requires technical adaptation of the 
experimental setups, novel digital approaches, ranging from CS to adaptive techniques1,20,21, can benefit from 
both the SNR and speed boost presented here. Lastly, this kind of setup can be easily adapted to different spectral 
zones. For instance, inexpensive single-pixel detectors are already available in the infrared region. Therefore, we 
expect that SPI techniques will be able to provide full real-time imaging feedback for both medicine and indus-
trial applications in the near future.

Methods
Single-pixel and complementary single-pixel imaging.  Consider an object represented by a N-pixel 
image. This image can be arranged in a N ×​ 1 column vector x. We can express this vector in an orthonormal basis 
of functions Ψ = Ψ =

��
{ }l l

N
1. We can represent this in matrix form as α= Ψ ⋅� ��x , where Ψ​ is a N ×​ N matrix that has 

the vectors Ψ
��

{ }l  as columns and α�� is the N ×​ 1 vector with the expansion coefficients of x in our chosen basis. To 
acquire an image, SPI techniques carry out those N projections using an SLM, and recover the image of the object 
by multiplexing the acquired information. In our experiments, we work with the Walsh-Hadamard basis. The 
basis is conformed by orthogonal discrete square waves, with values either +​1 or −​1. As our SLM is binary and 
works by reflection, positive and negative reflection values cannot be readily implemented. To address this, two 
approaches can be used. The first one consists of shifting and rescaling the Walsh-Hadamard matrices so all their 
entries consist of either 1 or 0 values7. The second one, which we call complementary sensing, consists of gener-
ating a pair of matrices, related to the Walsh-Hadamard matrix by a subtraction operation. It has been reported 
that the complementary scheme improves the signal-to-noise ratio of the measurements and its better suited to 
use CS strategies23.

The process goes as follows. We have a Walsh-Hadamard matrix, H, whose entries are either 1 or −​1. We cre-
ate the complementary pair H± =​ (E ±​ H)/2, where E represents a matrix with all entries equal to 1. By doing this, 

Figure 5.  Balanced single-pixel video imaging. We show multiple frames of a live video taken with our single-
pixel camera. In the top row, we show the frames acquired without using subsampling techniques. As the images 
consist of 64 ×​ 64 pixels, the 4096 measurements required to take a frame were performed in roughly 200 ms. In 
the middle row we show frames of the same scene acquired by subsampling the scene. In this case, we used 820 
patterns, which correspond to a 20% compression ratio. Each frame was acquired in 40 ms. In the lower row we 
show a CS reconstruction of the frames obtained before. In this case, the quality drop is almost negligible and 
we still can record a video at 25 Hz. The numbers shown correspond to the frame number inside the video.
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we have one matrix H+ where the original 1 entries preserve their value, but the −​1 entries become zero valued. 
In the other matrix H−, unity-valued entries will become zero valued, and −​1 entries will have a value of 1. It is 
trivial to prove that all three matrices are related by H =​ H+ −​ H−. As the SPI measuring process is linear, one can 
acquire the projection of the object under the Walsh-Hadamard basis by measuring the projections under H+ and 
H− and calculating the difference between them.

This procedure reduces the noise introduced by light coming from outside the scene under study. Consider an 
object, X, expressed as a square matrix. Under homogeneous illumination (P0), and considering the parasite light as 
homogeneous additive noise (N) added after object illumination, the light distribution in the DMD plane will be given 
by F =​ X · P0 +​ N · E. Here the products are done element-wise. The measured intensities will be I± =​ P0 · X · H± +​ N · E · H±. 
Given the nature of the Hadamard matrices, E · H =​ 0, and by using this property it is easy to prove that the subtraction 
of the two signals is given by ∆ = − = ⋅ ⋅ − + − = ⋅ ⋅+ − + −I I I P X H H P X H( ) N N

0 2 2 0 .

Compressive Sensing.  CS provides a method to acquire a picture with M <​ N measurements, with quality 
determined by the measurement ratio M

N
. By choosing a measurement basis Φ =

��
{ }m m

M
1, we can express the measure-

ment process as

= Φ ⋅ �
��y x, (1)

where ��y is a M ×​ 1 vector containing the measured projections and Φ​ is a M ×​ N matrix called sensing matrix. As 
the transformation from x to ��y entails a dimension reduction, there is loss of information in the process. Given 
that M <​ N, there exist infinite ′x  that satisfy Φ ⋅ ′ =� ��x y. CS theory demonstrates that it is possible to recover an 
approximation to x17.

To recover the image x one needs to solve the underdetermined matrix relation obtained after the measure-
ment process. There are several methods to solve this problem, such as basis pursuit or Dantzig Selector34. When 
working with images, it is also possible to use a model based on the gradient sparsity. Once the discrete gradient 
of the image is estimated, it is possible to minimize the total variation (TV), which works as a merit function of 
the gradient, and recover the approximated object. In our experiments, we use the Min-TV with equality con-
straints algorithm35, that solves the following problem

Figure 6.  Balanced detection compressive imaging. (a) comparison between the correlation coefficient 
of several images with a reference lossless image in both balanced and non-balanced approaches. Vertical 
and horizontal dotted lines are included to ease the comparison between both approaches. For the same 
compression ratio, the balanced approach provides higher fidelity. In order to get the same quality, the non-
balanced approach needs to perform more acquisitions. In (b) we show both reference images for balanced and 
non-balanced imaging, and different undersampled images (with 10%, 50% and 90% compression ratios).
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′ Φ ⋅ ′ = .� � ��x x ymin TV( ) subject to (2)

Image comparison by correlation coefficient.  In order to compare image acquisitions, we have used 
the correlation coefficient of the undersampled images with a reference image. This coefficient ranges from zero 
to one, depending on the resemblance of both images. Our reference image is always the image acquired without 
undersampling (i.e. measuring at the Nyquist-Shannon criterion). The correlation coefficient is calculated with 
the corr2 Matlab function

= ∑ ∑ − ⋅ −

∑ ∑ − ⋅ ∑ ∑ −
r

A A B B

A A B B

( ) ( )

( ) ( ( ) ) (3)

m n mn mn

m n mn m n mn
2 2

where A and B are the image matrices with indexes m and n. A, B represent the mean of the elements in A and B.
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Phase-imaging techniques extract the optical path length information of a scene, whereas wavefront sensors provide
the shape of an optical wavefront. Since these two applications have different technical requirements, they have de-
veloped their own specific technologies. Here we show how to perform phase imaging combining wavefront sampling
using a reconfigurable spatial light modulator with a beam position detector. The result is a time-multiplexed
detection scheme, capable of being shortened considerably by compressive sensing. This robust referenceless method
does not require the phase-unwrapping algorithms demanded by conventional interferometry, and its lenslet-free
nature removes trade-offs usually found in Shack–Hartmann sensors. © 2018 Optical Society of America under the terms

of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Even though the physical nature of light has been fully under-
stood for more than a century, there are still no available detectors
capable of directly imaging both the amplitude and phase of a
wavefront [Fig. 1(a)]. Information about those two quantities
is of capital interest when trying to perform biomedical imaging
[1,2], aberration measurement and correction in visual optics
[3,4], and three-dimensional imaging [5], among other applica-
tions. The limitation in performing optical measurements ulti-
mately arises from the extremely fast oscillations of the optical
fields, which current electronics are unable to resolve. As detectors
only capture light irradiance, several approaches have been pro-
posed over time to tackle the phase problem. Historically, Gabor
suggested in 1949 the first quantitative technique, which used
interferometric information to recover the complex optical field
[6], establishing the basis of modern holography and paving the
way for applications such as quantitative phase microscopy [7]. In
parallel, phase information plays a fundamental role in adaptive
optics, a technique that intends to measure and correct optical
aberrations in real time [8]. Although adaptive optics was initially
conceived for circumventing atmospheric turbulences in
astronomy, its simple operation principle has found applications
in other areas, such as visual optics [3,4], microscopy [9,10], and
biomedical imaging [11,12].

Two main groups of techniques have emerged to tackle the
problem of recovering the complex amplitude of the light field.
The first one includes interferometric approaches, which measure
the interference between light coming from the object and a

reference beam [Fig. 1(b)]. Although they are extremely powerful
for conducting precise phase measurements, their high sensitivity
to environmental perturbations (such as mechanical vibrations
and changes in temperature) and the need of a reference beam
(not always attainable) hinder the implementation of portable
and compact interferometric imaging systems in many applica-
tions. As an alternative, a second group of techniques has
emerged, whose objective is to recover the same information with-
out the need of a reference beam. These non-interferometric ap-
proaches rely on several assumptions about the object beam and
use mathematical algorithms to infer the wavefront information
[13]. Examples of these kinds of techniques are Fourier ptychog-
raphy [14], coherent diffractive imaging [15,16], phase imaging
based on the transport-of-intensity equation [17], and phase
imaging with randomized illumination [18]. By eliminating
the need for a reference beam, simpler and more robust devices
can be designed. Furthermore, computational approaches also
enable us to extend the physical capabilities of imaging systems,
providing increased field of view [19], optical sectioning [20], or
superresolution [21,22]. However, the recovery algorithms used
in those techniques usually entail high post-processing times or
multiple data acquisitions to recover one image.

Among the non-interferometric techniques, Shack–Hartmann
(SH) wavefront sensors [23] are currently the most frequently em-
ployed for measuring optical aberrations. SH wavefront sensors
combine a lenslet array with a pixelated detector, like a charge-
coupled device (CCD) or a CMOS camera. By placing the
detector at the focal plane of the lenslet array, the positions of
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the foci generated by each lenslet can be linked to the phase of the
wavefront in each region [Fig. 1(c)]. In other words, each lenslet
samples the phase information of a region of the wavefront. This
method provides a very compact system that is easy to use and
align and that requires no complex post-processing stages. For
these reasons, SH sensors are used in manifold scientific fields
[4,24–27]. However, the number of lenslets, their focal length,
and their diameter limit the spatial resolution, dynamic range,
and sensibility of SH wavefront sensing. Although multiple
solutions have been proposed to manage the several trade-offs
between the above magnitudes [28–36], manufacturing processes
still place a boundary on the size and curvature of available lens-
lets, constraining the attainable spatial resolution of commercial
SH sensors. Quadriwave lateral shearing interferometry [37], also
known as a modified Hartmann mask technique, makes it pos-
sible to increase the SH spatial resolution by a factor four [38].
Alternatively, phase imaging can be performed using pyramid
wavefront sensors, which employ a four-sided refractive pyramid
to split the Fourier plane into four parts, each one generating a
phase gradient image on a pixelated detector [39]. Further devel-
opments replace the pyramid by a quadri-foil lens [40] or a liquid
crystal display [41]. Despite the benefits of this approach in terms
of spatial resolution, the illumination numerical aperture deter-
mines the detectable dynamic range, so in practice only relatively
smooth phase gradients can be precisely recorded [42].

Here, we perform phase imaging using an alternative non-
interferometric approach to measure the complex amplitude of
a wavefront. We overcome the inherent limitations in spatial res-
olution, optical efficiency, and dynamic range that are found
in SH wavefront sensing. We sample the wavefront by using a
set of binary amplitude masks generated by a high-speed SLM.
A single focusing lens forms a time-dependent light distribution
on its focal plane, where an irradiance detector is placed.
Measuring the changes of the total irradiance and the centroid
position of that distribution, both the amplitude and phase of
the wavefront can be recovered [Fig. 1(d)]. One advantage of this

time-multiplexed detection scheme is that it can be implemented
using compressive sensing (CS), allowing us to go beyond the
Shannon–Nyquist condition, with the subsequent reduction
in acquisition time [43,44]. Unlike previous phase-retrieval
methods based on SH wavefront sensors or wavefront modulation
[45–49], our approach is lenslet-free and relies neither on any
kind of iterative algorithm nor interferometric measurements.
Moreover, the use of phase-unwrapping algorithms is not re-
quired, such as those employed in some interferometric tech-
niques due to their limited phase unambiguity range [50]. As
a proof of concept, we perform aberration sensing as well as
phase imaging of a low-contrast sample with variable optical
thickness. The corresponding results are compared, respectively,
with Shack–Hartmann wavefront sensing and phase-shifting
interferometry.

2. OPERATION PRINCIPLE

The basic idea of our technique is to use the relationship between
the amplitude and phase of a wavefront and the statistical mo-
ments of its Fourier irradiance distribution. This idea is also at
the heart of current SH sensors, as they sample a wavefront by
means of an array of lenslets and measure the centroid position
(the first-order statistical moment) of the Fourier distribution cre-
ated by each lenslet, allowing one to derive the local slope of the
wavefront. By placing a pixelated detector (typically a CCD) at
the focal plane of the lenslet array, SH sensors fully map the local
slopes of the wavefront. After that measurement, numerical inte-
gration provides the phase of the wavefront at each lenslet
position [51] [see Fig. 2(a)].

Several tradeoffs arise from the SH configuration. First, the
spatial resolution of the measurement is determined by the total
number of lenslets and their size. In order to increase the spatial
resolution, arrays with higher density of lenslets can be built.
However, reducing the size of each lenslet also decreases
the amount of light at each region of the detector. If the

Fig. 1. Complex amplitude retrieval using spatial wavefront sampling compared to current imaging and wavefront sensing techniques. (a) In a conven-
tional imaging system, the phase information carried by the light coming from an object (for example, a biological sample) is completely lost, as the object
image is formed onto a detector that simply measures the light irradiance. (b) Digital holography captures the interference between the light coming from
the object and a reference beam, allowing one to retrieve the complex amplitude of the object from irradiance measurements. (c) Shack–Hartmann sensors
measure the displacements of different foci generated by an array of lenslets. From those displacements, the wavefront impinging onto the lenslet plane can
be reconstructed, providing information about the phase variations introduced by the object. (d) Our technique uses a sequence of illumination amplitude
patterns and a single focusing lens. The object’s complex amplitude can be obtained from the statistical properties of the irradiance distribution measured
in the Fourier plane of the lens. The same operation principle can be applied if, instead of the configuration shown in the figure, the light coming from an
object is modulated by a set of patterns generated on a spatial light modulator (SLM).

Research Article Vol. 5, No. 2 / February 2018 / Optica 165



signal-to-noise ratio of the measurement is low, the accuracy of
the centroid position detection is greatly reduced, which hinders
a reliable wavefront reconstruction. Even if the detector can work
in low-light-level scenarios, building large arrays of lenslets with a
diameter below 100 μm and an accurate curvature is technologi-
cally challenging [52]. Moreover, centroid displacement and
wavefront slope are related via the lenslet focal length, so, for
a given slope, the higher the focal length is, the larger the centroid
displacements that are measured. This brings about a second
trade-off, since a strongly aberrated wavefront may produce cent-
roid displacements larger than the size of the detection area allo-
cated to every lenslet on the sensor. The result is crosstalk between
nearby spots that produces errors in the reconstructed phase, lim-
iting the attainable dynamic range of the sensor. This problem can
be circumvented (without sacrificing sensitivity) by a number of
techniques that track the real spot location or infer it by using
computational techniques [29]. Instead of trying to expand the
dynamic range of a sensor by increasing its hardware and/or
software complexity, an alternative approach is to implement a
reconfigurable (adaptive) SH sensor that includes an array of
diffractive lenslets programmed onto a SLM [28,33]. The lenslet
characteristics can be then chosen to match the requirements
of a specific application optimally, albeit the tradeoff between

sensitivity and dynamic range still remains. Another aspect of
SH sensors that is usually not considered is the fact that the total
amount of light arriving at each detector region provides a mea-
surement of the light power at the corresponding lenslet position.
Using that information, one can map the irradiance of the light
coming from an object. However, due to the relatively poor spatial
resolution of SH sensors (usually around a thousand lenslets),
they barely can compete with interferometric systems to measure
the complex amplitude of an object with high spatial frequency
content.

Another approach for measuring the local slope of a wavefront
is the use of a small scanning aperture and a single lens rather than
an array of lenslets [Fig. 2(b)]. For each position of the aperture,
only light from a region of the wavefront will be focused by the
lens. This light will generate a focal spot on the Fourier plane of
the lens where the detector is placed. For a small enough aperture,
the wavefront can be locally approximated by a plane wave, and it
can be demonstrated (see Methods) that the position of the
centroid of the distribution is related to the gradient of the phase
inside the aperture by the equation

~Δ � �Δx;Δy� � λf
2π

~∇φ; (1)

Fig. 2. Operation principle of different wavefront sensing approaches. (a) Shack–Hartmann wavefront sensing. A wavefront coming from an object
passes through an array of lenslets, which produce a distribution of focal spots on the detector. The position of each spot is linked to the local slope of the
wavefront on every lenslet. Numerical integration of the slope data provides the phase of the wavefront. (b) Raster scanning wavefront sensing. A small
amplitude aperture is moved over the wavefront plane and, for each consecutive scanning position, the Fourier distribution of the emerging light is
recorded. The total irradiance of that distribution at each aperture position can be used to recover the amplitude image of the object. Additionally, the
centroid relative location of each Fourier distribution provides the local slope of the wavefront at each scanning position, which allows one to obtain the
phase image of the object. (c) Spatial wavefront sampling. Instead of using a small scanning aperture, the wavefront coming from the object is sampled by a
set of amplitude masks (reconstruction basis). Now, from the irradiance of each Fourier distribution generated on the detector plane, one can measure the
mathematical projection of the object amplitude into the reconstruction basis. By demultiplexing that information, the object amplitude is spatially
resolved. In the same way, demultiplexing the data concerning the centroid locations provides the slope map of the wavefront and then, after numerical
integration, the object phase image.
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where ~∇ � �∂∕∂x î; ∂∕∂y ĵ� represents the gradient operator in two
dimensions, λ is the light wavelength, and f is the focal length of
the focusing lens. One can see the combination of this small aper-
ture and the single lens as one of the lenslets of a SH array. By
scanning the wavefront with the aperture, the phase can be easily
recovered by numerical integration. Furthermore, calculating the
zero-order moment of the light distribution (i.e., its total irradi-
ance) provides a measurement of the wavefront amplitude in the
position of the aperture, leading to the recovery of an amplitude
image. Although this approach would solve the spatial resolution
problem of SH sensors, given that it is easier to generate small
apertures than small lenslets, it still presents a trade-off between
the spatial resolution and the amount of light at each area of the
detector plane, unless the scanning is performed with a laser
combined with a galvanometric mirror.

Our technique uses 2D structured illumination patterns as an
alternative to a small aperture. As can be seen in Fig. 2(c), instead
of just selecting a small region of the wavefront, a time-variable
mask (a sequence of programmed patterns) simultaneously selects
several regions of the wavefront. This procedure resembles those
used in structured illumination microscopy or in single-pixel
imaging [44,53,54]. Different single-pixel approaches have been
recently proposed to obtain phase information using two-beam
[55,56], and common path [57] interferometry. However, our
approach is non-interferometric and uses a simpler geometric for-
mulation similar to the one found in Shack–Hartmann sensors.
Also, it can be extended to work with partially coherent light, and
the detector in use makes it relatively easy to operate in different
regions, such as infrared or terahertz (THz). It must be noted that,
as in single-pixel imaging, the technique presented here can work
in two different configurations: the object (or wavefront) under
study can be imaged onto the SLM, or the codified patterns can
be projected onto the object plane [58–61]. The key factor that
has to be accomplished is that both the mask and the object wave-
front overlap in one plane. Even though the irradiance distribu-
tion generated by the focusing lens results from the contribution
of light coming from different areas of the sampling plane, the
amplitude and phase information can be still retrieved, provided
that the sequence of sampling patterns is known (see Methods).
Now, the amount of light arriving at the detector for every pattern
has been greatly increased in comparison to the scanning-aperture
scheme. This fact is commonly known as the multiplex or
Fellgett’s advantage, and has been extensively exploited to increase
the signal-to-noise ratio of optical measurements over the last dec-
ades [54,62–64]. In our proposal, the set of masks used are a
shifted and rescaled version of the Walsh–Hadamard functions
[65], since this election provides several benefits. First, Walsh–
Hadamard functions are binary, so they are a good choice when
working with binary amplitude modulators, as is the case of dig-
ital micromirror devices (DMDs), which reach very high refresh
rates (around 22 kHz). Second, the sampling patterns have the
same number of absorbing and transmitting (or reflecting) areas,
no matter the size of those areas. This fact is important, because
once the window size on the modulator has been fixed, increasing
or decreasing the spatial resolution of the masks does not change
the total amount of light transmitted or reflected by the device.
Then, irrespective of the chosen spatial resolution, each measure-
ment always works with the same number of incident photons,
unlike the wavefront sensing approaches described above.
Furthermore, since in every measurement only a single spatial

light distribution is detected, the crosstalk errors that limit the
dynamic range in a SH sensor are not present here. However,
there is also a drawback. When operating with Hadamard func-
tions, the number of photons used per measurement decreases by
a factor two, since only half of the DMD mirrors are used to
illuminate the sample. Nevertheless, this approach makes it pos-
sible to use compressive sensing measurements, considerably
increasing the acquisition speed.

In order to recover the amplitude and phase information of a
wavefront, our method requires the measurement of the zero- and
first-order statistical moments of the spatial distribution of light,
i.e., its total irradiance and the position of its centroid. The
classical approach to measure those quantities is to place a pixe-
lated sensor in the Fourier plane of the lens to acquire a digital
image, and then calculate them computationally. However, other
experimental approaches can be explored. Here we have chosen a
lateral position detector instead of a camera. The benefit of using
this detector lies in its capability to provide the information about
the power of the beam and the position of its centroid at speeds in
the order of several kilohertz (kHz) without the need of computa-
tional procedures. Despite digital cameras offering better sensitiv-
ity and accuracy in the detection of the centroid, we have opted
for a simpler design to demonstrate the feasibility of our approach.

3. RESULTS

A. Experimental Verification

To demonstrate our method, we present the experimental device
shown in Fig. 3(a). Light coming from a laser (Oxxius slim-532)
emitting at 532 nm is collimated with a lens (L1) and impinges
onto a DMD (DLP Discovery 4100 V-7000 from ViALUX). By
using a 4f system formed by lenses L2 and L3, light is projected
onto an object, which modifies the wavefront phase. After going
through it, light passes through a condensing lens (CL), with a
focal length of 150 mm. In its Fourier plane, the lateral position
detector (Thorlabs PDP90A) measures the irradiance of the beam
and the position of its centroid. To retrieve the amplitude and

Fig. 3. Experimental verification of the proposed technique.
(a) Schematics of the system. Captions: LS, laser source; L1, L2, and
L3, lenses; OBJ, object; CL, condensing lens; PD, position detector.
(b) Image of the detector used in our experiments. It includes four elec-
trodes connected to a metallic surface, whose voltage measurements pro-
vide both the irradiance of the light beam and the position of its centroid.
(c) Experimental results for a plate simulating a coma aberration. As the
sample is transparent, the amplitude image provides no information
about the object. In the phase image, the object information is clearly
recovered. (d) 3D view of the recovered phase.
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phase information of the object, a full set of Hadamard patterns is
projected. The size of this set depends on the pixel size of the
image one wants to obtain. Then, for an N × N image, N 2

patterns must be sent (see Methods). This sequential acquisition
represents a limitation of our technique. Whereas a SH sensor
captures all the information in a single shot, our technique relies
on the sequential sampling of the wavefront to work.

As a first example, we show the results for a photoresist plate
representing a typical coma aberration [Figs. 3(c) and 3(d)]. In
this case, the spatial resolution was set to 64 × 64 pixels with a
pixel pitch of 82.08 μm. For this size, the total acquisition time
was roughly 1 s. This is not caused by the refresh rate of our
DMD (that would need roughly 200 ms to project 642 patterns),
but by the limited bandwidth of our detector [Fig. 3(b)]. Faster
lateral position sensing detectors, which are commercially avail-
able, would speed up the acquisition process. A comparison of
this result with those obtained by other wavefront sensing
techniques (using a SH sensor and through an interferometric
measurement) can be found in Supplement 1.

B. Comparison with Shack–Hartmann Wavefront
Sensing

To test the capabilities of the proposed technique, we have com-
pared it with a commercial SH wavefront sensor (Thorlabs
WFS150-5C) in several scenarios. As a first object, we employ
a spherical lens [Fig. 4(a)] with a focal length of 500 mm aligned
with the optical axis. This simple choice facilitates the comparison
of both methods quantitatively, since we expect to recover the
phase of a spherical wavefront. The object plane is imaged onto
the lenslet array plane of the SH wavefront sensor by using a 4f
system. The focal spots produced by the lenslet array can be seen
in Fig. 4(b). Using the displacements of each focal spot with
respect to a reference position (previously determined by a
calibration measurement), the 3D view of the wavefront can

be recovered by direct integration. To ease the visualization, we
also present a wrapped view of the wavefront phase [Fig. 4(c)].

Using the optical setup shown in Fig. 3(a), we reconstruct the
wavefront phase by using spatial wavefront sampling. A small re-
gion of the full measured 64 × 64 map of centroid displacements
is shown in Fig. 4(d). The modulo-2π phase reconstructed from
those displacements can be observed in Fig. 4(e). The total phase
change over the aperture is 9.67λ, a value that differs in 0.06λ
from that obtained using the SH sensor.

As a second experiment, we move the lens away from the
optical axis, thus producing a larger phase gradient. Given the
technical specifications of our SH sensor, the maximum measur-
able total phase change over the aperture of the sensor is around
100λ. When the phase gradient introduced by the off-axis lens
produces a higher phase variation, the focal spots move so much
in one direction that crosstalk appears and the sensor is not able to
provide reliable results.

In the top row of Fig. 5, we show the result obtained by using
the SH sensor at the limit of its dynamic range (here we show a
wrapped view of the phase to ease visualization). This limit can be
considerably overcome using the setup shown in Fig. 3(a). As can
be seen in the bottom row of Fig. 5, spatial wavefront sampling
allows us to measure a total gradient phase of 217λ. The above
improvement in the dynamic range is due to the relative increase
in the size of the detector area attained by our technique. In a SH
sensor, the detector is divided into a number of regions equal to
the number of lenslets in the array. Each region, containing a
small number of pixels, is used to map the position of each focal
spot and sets a limit to the maximum spot displacement. As was
mentioned before, walking off beyond that limit causes several
focal spots to share the same region of the detector, leading to
significant errors in the reconstructed phase. Since in our tech-
nique we sequentially detect the light distribution as a whole,
the full size of the sensor can be used in every consecutive

Fig. 4. Reconstruction of a spherical wavefront and comparison with a commercial Shack–Hartmann sensor. (a) Caption of the lens used as a phase
object. (b) Spot map generated by the SH lenslet array. By comparing the position of each spot to a reference value, the spot displacements can be
calculated. From those data, a 3D view of the phase can be recovered. (c) Wrapped phase of the lens. (d). Small region of the full displacement map for our
system. Those displacements can be related to the gradient of the phase. Numerical integration of those gradients provides the phase of the object, and
after decomposition in the Zernike basis, a high-resolution 3D view of the phase can be displayed (plot on the right). (e) Wrapped phase of the lens
obtained using the proposed technique.
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measurement. As a result, the crosstalk penalty typically found in
a SH sensor is not present anymore. In the same way as in the
design stage of SH sensors, fine tuning of the focal length of the
condenser lens used in our setup, as well as a proper selection of
the size of the detector, will provide bigger or smaller dynamic
ranges and sensitivities in the phase detection.

C. Use of Compressive Sensing

Given the similarities between our technique and single-pixel
imaging, some advanced undersampling approaches can be used
to improve both the acquisition speed and the light efficiency of
our method.

CS provides a recovery framework for signals sampled below
the limit imposed by the Shannon–Nyquist theorem [43]. For a
sequential signal sampling, this implies a reduction in measure-
ment time. Once the signal has been sampled, an optimization
algorithm provides an estimation of the original signal. This
estimation is usually based on sparsity constraints and provides
a high-fidelity reconstruction (see Methods).

In our experiments, we have used standard CS algorithms
(l1- magic package [66]) to recover the coma aberration presented
in Fig. 3. The results are shown in Fig. 6.

As can be seen, for relatively smooth aberrations, estimations
with fidelity higher than 90% can be recovered by using 10% of
the total number of measurements established by the Shannon–
Nyquist criterion. Figure 6 includes two insets that show individ-
ual reconstructions for compression ratios corresponding to
correlation coefficients over 0.9 and 0.99, respectively (points
A and B in the fidelity plot). As in our commercial Shack–
Hartmann sensor, the recovered wavefronts are expressed in
the Zernike basis, and high-resolution images are generated from
that expansion (see Supplement 1 for details). By taking this into

account, high-resolution images with acquisition times of 20 ms
could be achieved operating at the full frame rate of the DMD
(∼20 kHz), allowing us to perform real-time aberrometry. This
could be very useful in ophthalmic scenarios, where the patient
needs to stand still while the eye aberrations are measured. Also,
using patterned illumination could be beneficial in biological sce-
narios, where photodamage thresholds can limit the amount of
light that can be used at each region of the sample when working
on a reflection configuration [67,68]. By using this CS-based pro-
cedure, one would be able to increase the measured signal level
without causing photodamage.

D. Complex Amplitude Retrieval and Comparison with
Phase-Shifting Interferometry

Our technique offers the possibility of reconstructing not only the
phase distribution of a wavefront coming from an object but also
its amplitude. For the set of illumination patterns, the light power
measured by the detector provides the projections of the wave-
front amplitude into the basis of Hadamard functions. By meas-
uring all the successive projections, the object amplitude image
can be recovered offline, following the operation principle of
single-pixel imaging [44] (see Methods). A simple example with
an object composed of an amplitude mask attached to the lens
used in the previous section can be seen in Supplement 1.

In principle, the complex amplitude of a wavefront can be re-
trieved by means of a SH sensor, but with a relatively poor spatial
resolution (given by the lenslet diameter and the lens fill factor).
As a consequence, spatial features smaller than a few hundreds of
micrometers are lost in the recovery process. Even though high-
resolution SH sensors are being developed and can be used to
perform phase imaging, the trade-offs between dynamic range
and sensitivity are still present [69]. In our technique, the limit
in the spatial resolution is ultimately given by the modulator pixel
size (typically ∼10 μm) and the magnification of the projecting
system. In our setup, this supposes an increment in the resolution
of one order of magnitude with respect to a typical SH sensor.

To demonstrate this improvement, we use as a sample a thin
layer of a photoresist material. We placed the photoresist over a
transparent plate, creating an object with different regions with

Fig. 5. High dynamic-range measurement and comparison with a
commercial SH sensor. In the top row, we show the wrapped phase mea-
sured with the aid of a SH sensor when the lens shown in Fig. 4(a) is
placed in an off-axis position. The maximum phase gradient measurable
by the commercial sensor is 100λ. A zoomed region, marked in red, is
shown in the right part of the figure. In the bottom row, we show the
results for the same object obtained with the system shown in Fig. 3(a).
In this case, the lens has been displaced a bigger distance from the optical
axis. The phase gradient measured is 217λ. A zoomed region, marked in
blue, is shown in the right part of the figure. Given the small size of both
figures, some Moiré artifacts appear in the images on the left that are not
part of the fringe pattern of a spherical phase gradient (see Supplement 1).

Fig. 6. Evolution of reconstruction quality when CS is used for wave-
front recovery. For different values of the compression ratio (k∕N 2, k
being the number of projected patterns), we present the correlation co-
efficient between the CS estimation and the recovery without using
undersampling. Here, the images have a resolution of 64 × 64 pixels,
so N 2 � 4096. The points represent the median of the correlation co-
efficient for 100 different realizations of the algorithm (each realization
corresponds to a different subset of random measurements).
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and without material, as can be seen in Fig. 7(a). Due to the dif-
ference of refractive index between the photoresist and the air, an
impinging wavefront acquires a spatial phase distribution when it
passes through the object. By using the setup shown in Fig. 3(a),
the amplitude and phase information of the sample are recovered
[Fig. 7(b)]. A 3D visualization of the phase information is
shown in Fig. 7(c). The images have a spatial resolution of
128 × 128 pixels with a pixel pitch of 41.04 μm. Since both the
photoresist and the transparent plate present a similar absorption
in the green region of the spectra, the amplitude image presents
low quality. However, fine details of the sample are recovered in
the phase image, such as the small holes (with a diameter of
around 80 μm) present in the photoresist stripes produced by
air bubbles in the manufacturing process. These small spatial fea-
tures cannot be retrieved by our SH sensor, as the diameter of
each lenslet is 150 μm. Additionally, due to the low number
of lenslets �39 × 31 � 1209�, the SH sensor would only provide
an image clearly “pixelated.” An additional recovery of the same
object, using CS techniques, can be seen in Supplement 1.

In order to check the validity of our results, we resort to phase-
shifting interferometry. This technique uses a pixelated detector,
which makes it possible to exploit the high spatial resolution of a
commercial CCD (in our experiment, the pixel size is 6.5 μm).
The recovered phase is shown in Fig. 7(d). Unlike our wavefront
sensing technique, phase-shifting interferometry only provides
modulo-2πmappings [see the vertical scale in Fig. 6(d)], requiring
the use of unwrapping algorithms to reconstruct a continuous
phase like the one shown in Fig. 7(b). We focus our attention
on the small region between the two air bubbles in one of the
photoresist stripes. After zooming in, it can be seen that the phase
difference between the top of the strip and the substrate is 22.7
radians. In our measurements with structured illumination,
this difference is 23 radians, showing a very good agreement
with the previous value. We also performed a thickness measure-
ment of the region of interest with a mechanical profilometer

(Dektak 6, Veeco). By using the strip height provided by the
profilometer (3.8 μm), the refractive index of the photoresist
layer can be estimated from the optical path length, �L �
λΔφ∕2πΔn�. In both phase-shifting holography and our tech-
nique, the index estimation is 1.51, which is in good agreement
with the nominal value of the photoresist material.

E. Discussion

We have introduced a wavefront sensor based on patterned illu-
mination produced by an amplitude SLM. Instead of resorting to
an array of lenslets, as in SH wavefront sensing, the spatial infor-
mation is captured by illuminating the object with binary ampli-
tude masks generated with a DMD. The sensor is a simple
position-sensitive photodetector. This provides several benefits.
First, we eliminate the spatial resolution constraints of traditional
SH wavefront sensors. Second, by using the full size of the
detector in each measurement, the dynamic range is greatly ex-
tended and the crosstalk problem is eliminated. Last, the use of
Hadamard functions makes the method robust when changing
the spatial dimension (number of pixels) to be obtained. The total
number of photons used by the system will be determined only by
the window size used on the DMD. This is due to the fact that
Hadamard patterns always have half of their pixels on each binary
value, regardless of the function dimension. Then, increasing or
decreasing their spatial dimension does not necessarily change the
total bright area displayed by the DMD. This is not the case when
working with SH wavefront sensing, as increasing spatial resolu-
tion entails decreasing the size of the lenslets, and this reduces the
number of photons arriving to each part of the sensor. This, in
combination with the multiplex advantage, makes us think that
the technique is well suited to work at low-light-level scenarios,
where similar approaches have already been proposed to obtain
amplitude information [70]. Additionally, we have exploited
the high spatial resolution offered by commercial DMDs to
perform phase imaging with a pixel size of tens of micrometers.

Fig. 7. Comparison with phase-shifting interferometry. (a) Photograph of the photoresist layer used for the experiment. The black square represents the
region that will be imaged, consisting of zones with and without photoresist material. (b) Amplitude and phase images obtained with the proposed
technique. Due to the absorption properties of the object, the amplitude image presents poor quality. However, in the phase image, fine details of
the sample can be observed. (c) 3D representation of the obtained phase. (d) Phase image obtained with phase-shifting interferometry for the same
region of the object. In the inset, we show the region between the two small holes present in one of the photoresist bars. (e) Physical profile of the
photoresist strip between the two holes obtained with an optical profilometer (Sensofar Plμ 2300).
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To this end, we have imaged a photoresist sample and calculated
its local refraction index. These results have been demonstrated to
be comparable with those provided by phase-shifting interferom-
etry, a well-established interferometric technique.

A distinctive feature of our technique is the fact that the spatial
resolution is fixed by the SLM and the projecting optics, while the
other optical elements included in the sensor, the focusing lens
and the light detector, set the attainable sensitivity and dynamic
range. By calculating several statistical moments of the light dis-
tribution at the detector plane (its irradiance and the position of
its centroid), the method provides both amplitude and phase
information. This enables the technique to produce results that
are closer to the conventional phase-imaging approaches, but still
retaining some of the benefits of the SH approach. These benefits
are the referenceless nature of SH wavefront sensing, and the fact
that the recovery process does not require phase-unwrapping or
iterative algorithms. In addition, the easy implementation of
our system also offers the possibility of being used as an add-
on module of a conventional microscope [20,71], thus allowing
us to carry out quantitative phase imaging with sub-micrometric
spatial resolutions.

Due to the temporal multiplexing nature of the technique,
there is a trade-off between spatial resolution and image acquis-
ition time. Here, we have shown results with resolutions between
64 × 64 and 128 × 128 pixels, which take seconds to be acquired.
Using faster, already available detectors will allow image capturing
at video frame rates. However, the greater the resolution, the
slower the acquisition will be. This drawback can be considerably
alleviated using CS [72] or adaptive approaches [73,74]. The
feasibility of applying CS has been shown in Section 3, where
a typical ocular aberration has been reconstructed with high com-
pression ratios. In particular, acquisitions times of around 20 ms
could be achieved operating at the full frame rate of the DMD,
which would open up the door to perform real-time aberrometry
with our system. Last, given the technological challenge of manu-
facturing both arrays of lenslets and pixelated sensors that work
outside the visible spectrum, the technique proposed here is a
good candidate to operate in regions such as IR and THz, where
similar approaches have already been used to obtain amplitude
images [54,75].

4. METHODS

A. Phase Measurement from Centroid Position

Let us assume a light distribution, at position z � 0, with the
form: U 1�x; y� � A�x; y�eiφ�x;y�. If a thin lens, with a focal length
f , is placed at the position z � f , the complex amplitude
distribution at the position z � 2f , using Fresnel propagation,
will be U 2�x; y� � 1

jλf Ũ 1� x
λf ;

y
λf �, where Ũ 1 denotes the

Fourier transform of U 1. The irradiance of this light distribution
will be given by I2 � jU 2�x; y�j2 � 1

�λf �2 jŨ 1� x
λf ;

y
λf �j2. Our

technique is based on the calculus of several statistical moments
of I2. In particular, we will use the energy, S, and the centroid
position, ~Δ � �Δx;Δy�. Those quantities will be given by

S �
Z Z

∞

−∞
I 2�x; y�dxdy; (2)

~Δ �
�
Δx
Δy

�
� 1

S

�RR
∞
−∞ x · I 2�x; y�dxdyRR∞
−∞ y · I 2�x; y�dxdy

�
: (3)

By using Parseval’s theorem, it is easy to prove that
S � jU 2�x; y�j2 � jU 1�x; y�j2, and the first measurement pro-
vides the energy of the wavefront. Using the Moment’s theorem
of Fourier transformations and some algebra (see Supplement 1),
it can be proved that the position of the centroid at the measure-
ment plane and the phase of the object at the origin position are
related by

~Δ � �Δx;Δy� � λf
2πS

Z Z
∞

−∞
A2�x; y� ~∇φ�x; y�dxdy: (4)

For a small square aperture with lateral size L, placed at
position �a; b�, the amplitude of the field can be described as

A�x; y� � K · rect
�
x − a
L

�
· rect

�
y − b
L

�
; (5)

where K is a constant. Introducing this into Eq. (4), we get

Δx � λf K 2

2πS

Z
y�b�L∕2

y�b−L∕2

Z
x�a�L∕2

x�a−L∕2
∂x �φ�x; y��dxdy;

Δy � λf K 2

2πS

Z
y�b�L∕2

y�b−L∕2

Z
x�a�L∕2

x�a−L∕2
∂y�φ�x; y��dxdy: (6)

If the square aperture is small enough, the gradients of the
phase can be considered constant over the integration domain.
Then, the centroid positions results,

~Δ � �Δx;Δy� � K 2λf
2π

L2

S
~∇a;bφ�x; y�; (7)

where ~∇a;b � �∂∕∂x î; ∂∕∂y ĵ�jx�a;y�b represents the bidimensional
gradient evaluated at point x � a; y � b. By combining Eqs. (5)
and (2), it is easy to prove that S � K 2L2, and thus the centroid
of the distribution and the phase of the object are related by

~Δ � �Δx;Δy� � λf
2π

~∇a;bφ�x; y�: (8)

It is clear that, for a small region of the wavefront, the centroid
of the resulting distribution provides information about the gra-
dient of the phase in that region. If the small square aperture is
displaced, one can measure the correspondent centroid positions
and then estimate the gradient map of the wavefront. After that,
numerical integration provides the wavefront at the original
position. If multiple square masks are used at the same time,
it is also possible to relate the measurements with the phase at
each one of the mask positions. Then, it is possible to understand
Hadamard illumination as a particular case of this procedure, and
the phase recovery can be performed while illuminating the full
scene with a set of Hadamard patterns (see Supplement 1).

B. Object Recovery by Multiplexing with Hadamard
Patterns

Every measurement can be mathematically described by the
equation

~y � M~x; (9)

where the object to be measured is described by the object vector
~x, the measurements made are represented by the vector ~y, and the
measurement process is carried out by the sensing operator, rep-
resented by the matrix M . Once the measurements have been
done, one just needs to solve the algebraic problem presented
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by Eq. (9) to recover the object. The structure of the sensing op-
erator will be determined by both the nature of the object under
study and the system used to recover an image. For a traditional
camera setup, matrix M is just the identity matrix, and each
element of ~x is proportional to the energy of a given area of
the object. By placing a detector at the image plane, the energies
of each zone are measured and the object is recovered. Usually this
is done with a sensor array, like a CCD camera, and all the mea-
surements are done at the same time. However, there are scenar-
ios, such as confocal microscopy, where this process is conducted
by a bucket detector, usually a photomultiplier tube. In this
case, the measurement process is sequential. It is possible to
exploit Eq. (9) to increase the capabilities of an optical setup.
In our approach, instead of just using the identity matrix as
the sensing operator, each row of the matrix M contains a
Hadamard function. Now, the measurement process consists of
making the superposition between the object and each one of
the Hadamard functions. After that, the energy of that superpo-
sition is measured by the detector. This process can be performed
by projecting the functions onto the object with a SLM, as is done
in our phase-imaging system. When using this approach, each
measurement contains light coming from several regions of the
object. This increases the amount of light at each measurement,
and thus the signal-to-noise ratio. As Hadamard functions con-
form an orthonormal basis, Eq. (9) can be easily solved.

Once this way of measuring has been introduced, it is easy to
see that it is possible to recover an image of different physical
parameters, provided that the measurement process can be
described by Eq. (9). It can be noted that our centroid measure-
ments can be arranged in matrix form as

~Δ � λf
2π

M ~∇φ
�!

: (10)

Here, ~Δ is the vector containing the measured positions of the
centroids, and now the object is the spatial gradient distribution,

expressed as a vector, ~∇φ
�!

(each element of this vector is a gradient
for a given illumination pattern). Again, in our experiments we
used the Hadamard functions as rows of the sensing matrix. For
each Hadamard function projected onto the object, the energy of
the distribution and the position of its centroid are measured with
the position sensing detector. Then, Eq. (10) is solved and the
gradient of the phase is obtained. After that, numerical integration
provides the phase of the wavefront, φ�x; y�.
C. Compressive Sensing

Solving the problem given by Eq. (9) is easy when sampling the
object at the Shannon–Nyquist ratio. However, for k < N
measurements, the equation system presents infinite solutions.
The fundamental idea of CS is to use the fact that most of
the signals found in nature are sparse in some basis of functions,
i.e., they have a representation in some basis where most of the
expansion coefficients are zero, so only a small number of them
contain relevant information. This fact can be used to provide a
solution for the above-mentioned underdetermined equation sys-
tem. We can express the measurements as ~y � M~x � MΨ~α �
Φ~α, where we have represented the object in a given basis of
functions �~x � Ψ~α�. Then, CS algorithms provide a solution
to the l 1-norm minimization problem,

~α � arg min kα 0!k1 such thatΦα0! � ~y: (11)

In order to find a good solution, some premises need to be
fulfilled [76]. First, the number of measurements cannot be
arbitrarily low. Depending on the sparsity of the object (which
depends on the chosen recovery basis), a higher or lower number
of measurements is needed to obtain good results. Second, the
basis pair (measurement and recovery) need to be incoherent.
In practice, it is usually easy to find pairs of basis that fulfill
this principle. Usually, the measurement basis is chosen for its
ease of generation in a SLM, and once one has been picked
up, the user selects a recovery basis that fulfills the incoherence
constraint and where the object is sparse. Last, a sensing strategy
needs to be defined. Initially, it was proposed that randomly
choosing a subset of elements in the measurement basis was
enough to obtain good results [43]. Soon after that, other strategies
were defined to reduce the number of measurements maintaining
the image quality. For example, it is known that natural scenes
tend to have a power spectrum centered around low frequencies,
so mixed sampling strategies have been used with very good
results [63].

In our experiments, M represents the shifted and rescaled
Hadamard basis (the elements of which are either 0 or 1), easily
generated on aDMD, andΨ is chosen to be theHaar wavelet basis,
where most images tend to be sparse. The measurements have
been performed following the mixed approach: fixing the number
of samples, k, we chose the lowest frequency k∕2 Hadamard pat-
terns, and then we select k∕2 randomHadamard patterns from the
remaining elements of the complete basis.

D. Phase-Shifting Holography Measurements

For the measurements using phase-shifting digital holography, we
used an interferometer in a Mach–Zehnder configuration. A col-
limated laser (Oxxius slim-532) was divided by a beam splitter
into the object and the reference beam. The first one illuminated
the object while the second traveled directly towards the camera
(Allied Stingray F-145). The object, a layer of photoresist spin
coated onto a transparent plate, was imaged onto the camera
by an optical system in a 4f configuration. The phase shifts were
generated by shifting a grating codified onto a DMD (DLP
Discovery 4100) and filtering the first diffraction order in the
Fourier plane of a 4f optical configuration located before the ob-
ject plane [77]. The camera recorded four interferograms with a
phase shift interval equal to π∕2 and a standard phase-shifting
algebraic operation [78] was used to measure the amplitude
and phase at the object plane.
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