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Summary

Pre-dispersal seed predation (PDSP, hereafter) significantly reduces plant reproductive output. The negative
effects on plant fitness have triggered the development of different strategies to protect the seeds and/or reduce
the impact of PDSP. These strategies, in turn, have promoted insect trophic specialization by means of
morphological, physiological and behavioral adaptations. The close relationship between specialist insects and
their host plants conditions insect community assemblage and population dynamics. Specialization would
favour multi-species co-occurrence according to the Competitive Exclusion Principle, as different species
cannot use the same limited resources. At the same time, specificity makes these species strongly dependent on
a particular trophic resource, so that host plant population dynamics may lead to bottom-up forces influencing
insect numbers. In this Thesis, | have studied the consequences of trophic specialization on species assemblage
and demography in the most prevalent pre-dispersal predators of oak Quercus spp., chestnuts Castanea sativa
and hazelnut Corylus avellana seeds, namely the weevils of the genus Curculio (Coleoptera: Curculionidae).
Using DNA barcoding I could identify larvae infesting the seeds to the species level and hence assess resource
partitioning among Curculio spp. in oak-hazelnut mixed forests. These forests were distributed along a
latitudinal gradient in which the degree of overlap in the timing of seeding between the two species differed.
The results showed that there was a strict host-based segregation, as the species found in hazelnuts was never
recorded on oak acorns and vice versa. Contrary to other studies, segregation of seed parasites was not driven
by seed size, as the seeds of both plants were large enough to host the larvae of any species. Rather, co-existence
was more likely modulated by the combination of time partitioning, and probably by dissimilarities in dispersal-
dormancy strategies among weevils. The timing of oogenesis differs among Curculio spp. and does the timing
of seeding between oaks and hazelnuts. Early maturing hazelnuts are thus exploited only by Curculio nucum,
as its eggs mature earlier too. Such specialization on a patchily distributed host plant conditioned its population
genetics, as gene-flow between populations showed restrictions undetected in the other Curculio spp. that fed
on the widespread oaks. Regarding the bottom-up effects of food availability on insect numbers we assessed
that, as expected, irregular seed crops (masting) conditions weevil population dynamics and certainly help
reducing acorn predation in Mediterranean oaks. However, we found that the effects of rainfall stochasticity on
the success of weevil emergence from the soil (i.e. rain is needed to soften the soil) contributed to decrease seed
predation in a similar magnitude to masting. The present Thesis stresses the need of introducing the
time/phenology component (i. e. egg maturation, timing of seeding) to assess the mechanisms underlying host
plant-specialist insect associations. Also, it shows that, despite their specificity, other environmental variables
apart from food availability condition weevil numbers. This result must be considered in further studies on the
significance of oak masting as a strategy to reduce pre-dispersal seed predation. Lastly, the results provide an
insight into the potential consequences of Global Change on the communities of these specialist insects linked
to oaks. The populations of a narrow specialist like the hazelnut feeding C. nucum will be very vulnerable to
forest fragmentation, which will reduce more severely inter-population gene-flow and lead to population
bottlenecks. In turn, climate change (e.g. temperature rising, rainfall decrease) could disrupt the matching
phenologies of insects and their host plants and reduce insect population size.



Resumen

La depredacién de semillas predispersion (PDSP, de aqui en adelante) reduce significativamente el desempefio
reproductivo de las plantas. Los efectos negativos han desencadenado el desarrollo de diferentes estrategias
para proteger las semillas y/o reducir el impacto de PDSP. Estas estrategias, han promovido la especializacion
tréfica de insectos a través de adaptaciones morfoldgicas, fisioldgicas y de comportamiento. La estrecha
relacién entre los insectos especialistas y sus plantas hospedantes condiciona el ensamblaje de las comunidades
de insectos y la dinamica poblacional. La especializacion favoreceria la coexistencia de multiples especies de
acuerdo con el Principio de Exclusion Competitiva, ya que estas no pueden usar los mismos recursos limitados.
Al mismo tiempo, la especificidad hace que estas especies dependan fuertemente de un recurso tréfico
particular, de modo que la dinamica poblacional de plantas hospedadoras puede conllevar a que las fuerzas
“bottom-up” influyan en el nimero de insectos. En esta Tesis, he estudiado las consecuencias de la
especializacion tréfica en el ensamblaje de especies y la demografia en los depredadores pre-dispersion mas
prevalentes de Quercus spp., castafias Castanea sativa y avellanas Corylus avellana, principalmente los
gorgojos del género Curculio (Coleoptera: Curculionidae). Usando técnicas de secuenciacion de ADN pude
identificar las larvas que parasitan las semillas a nivel de especie y, por lo tanto, evaluar la segregacion de
recursos entre especies de Curculio spp. en bosques mixtos de roble y avellana. Estos bosques se distribuyeron
a lo largo de un gradiente latitudinal en el cual el grado de superposicion de su distribucién espacial diferia
entre las dos especies hospederas. Los resultados mostraron que hubo una estricta segregacion basada en el
hospedador, ya que la especie encontrada en avellanas nunca se registrd en bellotas de roble y viceversa.
Contrariamente a otros estudios, la segregacion de los parasitos de las semillas no se debid al tamafio de la
semilla, ya que las semillas de ambas plantas eran lo suficientemente grandes como para albergar las larvas de
cualquier especie. Por el contrario, la coexistencia fue modulado con mayor probabilidad por la combinacién
de la particion de tiempo, y las diferencias en las estrategias de latencia y dispersién entre los gorgojos. El
periodo de oogénesis de Curculio spp difiere con el periodo produccién de semillas en robles y avellanas. Las
avellanas de maduracién temprana son explotadas solo por Curculio nucum, ya que sus huevos también
maduran antes. Dicha especializacion en una planta hospedera distribuida en forma dispersa condicion6 su
genética poblacional, ya que el flujo genético entre poblaciones mostro restricciones no detectadas en las otras
especies de Curculio spp. que se alimentaban de los robles con distribucion continua. Con respecto a los efectos
“bottom-up” de la disponibilidad de alimentos sobre el nimero de insectos, evaluamos que, como era de esperar,
la produccidn irregular de semillas (masting) condicionan la dindmica poblacional de los gorgojos y ciertamente
contribuyen a reducir la depredacion de las bellotas en los robles del Mediterraneo. Sin embargo, encontramos
que los efectos de la estocasticidad de las lluvias sobre el éxito de la emergencia del gorgojo desde el suelo (la
lluvia es necesaria para ablandar el suelo) contribuyeron a disminuir la depredacion de semillas en una magnitud
similar a la del masting. La presente Tesis enfatiza la necesidad de introducir el componente tiempo/fenologia
(es decir, la maduracién del 6vulo, el momento produccion de semillas) para evaluar los mecanismos que
subyacen a las asociaciones de insectos especialistas en plantas hospederas. Ademas, muestra que, a pesar de
su especificidad, otras variables ambientales aparte de la disponibilidad de alimentos condicionan el nimero de
gorgojos. Este resultado debe considerarse en estudios posteriores sobre la importancia de la produccién
irregular de semillas de roble como una estrategia para reducir la depredacion de semillas pre-dispersién. Por
ultimo, los resultados proporcionan una idea de las posibles consecuencias del cambio global en las
comunidades de estos insectos especializados vinculados a los robles. Las poblaciones de un especialista, como
C. nucum que se alimenta de la avellana, serd muy vulnerables a la fragmentacion de los bosques, lo que reducira
el flujo genético entre las poblaciones y provocara cuellos de botella en la poblacion. A su vez, el cambio
climatico (por ejemplo, aumento de la temperatura, disminucion de las precipitaciones) podria alterar las
coincidentes fenologias de los insectos y sus plantas hospederas y reducir el tamafio de la poblacion de insectos.



eneral
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Interactions between plants and insects are amazingly
diverse and complex and reach over numerous
environments.
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Plant-insect interactions: predispersal seed predation.

Granivory (i.e. seed predation) significantly reduces plant fitness by decreasing plant
effective reproductive output and natural recruitment (Janzen 1971, Hulme & Benkman
2009, Schoonhoven et al. 2005, Bonal et al. 2007, Espelta et al. 2009a, Boivin et al. 2017).
Insects are major seed consumers and in many cases prey on seeds still attached to the mother
plant, what is called pre-dispersal seed predation (PDSP hereafter) (Crawley 2000, 2014,
Ramirez & Traveset 2010, Beckman & Muller-Landau 2011). Seeds constitute a rich source
of concentrated proteins, oils and minerals, with generally higher caloric and nutrient values
than other plant tissues (Jordano 2014). Moreover, they represent a resource commonly
aggregated in space with high local abundance, despite only accessible for a transitory period
due to usual seasonal patterns of plant reproduction (Boivin et al. 2017). Insects may feed on
seeds at all life stages, but they commonly do it during the larval period. Owing to their rich
nutrient composition and the presence of a protective coat, seeds are a suitable place for
laying eggs and thus the larvae of many granivorous insects complete their development
within them, consuming the nutrient-rich kernel (Fenner & Thompson 2005, Ramirez &
Traveset 2010, Schowalter 2016).

Plants have evolved a series of strategies to protect their seeds from predators or at least
reduce the negative consequences of granivory on their fitness. Resistance mechanisms
include physical barriers that prevent consumption (Janzen 1971, Kelrick et al. 1986, Hulme
and Benkman 2009, Travers-Martin & Mauller 2008). Defenses may also be chemical, such
as toxic or deterrent compounds (Janzen 1971, Hulme & Benkman 2009, Kergoat et al. 2005,
Schowalter 2016). Physical and chemical defenses are effective but costly, as they require
large investments of resources (Schoonhoven et al. 2005, Agrawal & Fishbein 2006, Crawley
2014), nonetheless, they are not the only mechanisms to reduce the negative consequences
of PDSP. Some species try to “escape” by producing seeds when predators are either absent
or in low numbers (Pilson 2000, Elzinga et al. 2007, Boivin et al. 2017). Other plants exhibit
a “masting” behavior (sensu Janzen 1971) combining the synchronous and erratic production
of large and nil seed crops to satiate and starve predators (Espelta et al. 2008) or abort part

of their seeds to trap predators and reduce their population size (Peguero et al. 2014). Indeed,



these mechanisms do not prevent predation, but they help to “tolerate” it by assuring that a
fraction of the seed crop will survive and be dispersed (Crawley 1997, 2014). Tolerance may
also occur at the seed level, as larger seeds may better satiate predators saving a certain
portion of cotyledons and still producing viable seedlings (Sousa et al. 2003, Bonal et al.
2007, Espelta et al. 2009a). Interestingly these strategies to reduce the negative impact of
seed predation may co-occur in the same species varying in their importance across
environmental gradients (e.g. seed abortion vs. masting through an altitude gradient in
Peguero et al. 2014).

Trophic specificity and assembly of a granivorous insect community:

Resource or time partitioning?

Plant strategies to avoid predation have triggered the development of morphological,
physiological and behavioral adaptations by phytophagous insects and promoted their trophic
specialization (Strauss & Zangerl, 2009, Yguel et al., 2011). This defense-counter defense
dynamics (also called arms race) has promoted outstanding examples of local adaptations
(Toju & Sota 2005, 2006) and coevolution (Jordano et al. 2003, Herrera & Pellmyr 20009,
Schowalter 2016, Cheplick 2015). The small-size, short life span and rapid reproductive rate
of insects promotes a tight association with their host plants (Strauss & Zangerl, 2009, Boivin
etal. 2017). The complexity of some plant defensive strategies makes that trophic specialists
are either the only species able to feed on the host plants or at least more efficient than
generalists. Insects are in fact a paradigmatic example of trophic specialization, going from
those that feed on many plants, plants of the same family or genus to extreme specialists that

exploit only one species (reviewed in Barrett & Heil, 2012).

Trophic specificity rules the life histories of specialist insects to a great extent, conditioning
community assemblage and population dynamics. Specialization would favour inter-specific
partitioning of the trophic resources among species, guaranteeing that each species acquires
a portion and ensuring their co-existence. According to the Competitive Exclusion Principle
(Hardin, 1960), natural selection would maintain specialization because different species

cannot use the same limited resources indefinitely. However, more recently the Co-existence



Theory (Chesson, 2000 a,b) has proposed mechanisms to explain that competing species can
sustainably maintain an overlapping trophic niche, although it does not deny that

specialization favours niche partitioning.

Regarding population dynamics, specificity enhances the specialist fitness when feeding on
the preferred food source. However, it also reduces its trophic versatility, as many species
cannot feed on alternative plants when the preferred host is not available (Espelta et al. 2009a,
Bonal et al. 2016). Hence, trophic specialization implies a strong influence of the host plant
over insect populations (Ylioja et al. 1999). Plant population dynamics (i.e. the spatial-
temporal variation of resource for the insects) may thus lead to bottom-up forces influencing
insect numbers by means of stochastic demographic variability (Lande 1988, Kolb et al.
2007). Such effects may ultimately affect insect population genetics, with small and isolated
populations of specialists being more prone to bottlenecks and genetic drift (Gaete-Eastman
et al. 2004) compared with generalists with no host restrictions (Newman & Pilson 1997,
Peled et al. 2016).

In this Thesis we have assessed how trophic specificity and environmental conditions affects
species assemblage and population dynamics in one of the most prevalent groups of specialist
seed feeding insects, namely Curculio spp. Weevils of the genus Curculio (Coleoptera:
Curculionidae) are the most common pre-dispersal predators of many Fagaceae species, such
as oaks (Quercus sp.) (Bonal etal. 2007, Peguero etal. 2017, Yu et al. 2015), hazels (Corylus
avellana) (Ali Niazee 1998, Saruhan & Tuncer 2000, Guidone et al. 2007) and sweet
chestnuts (Castanea sativa) (Desouhant et al. 2000). After eggs are laid in the seeds, the
weevil larvae complete their growth within a single seed by feeding on the cotyledons
(Desouhant et al. 2000, Bonal et al. 2007, Bonal & Mufioz 2009). Small seed size constrains
larval growth and fitness prospects (Desouhant et al. 2000, Bonal & Muifioz 2008, Espelta et
al. 2009b), hence, oviposition takes place only when the seeds have reached a minimum size
(Espelta et al. 2009a, Bonal et al. 2011). Adult phenology differs depending on the species,
for instance, in some species adults emerge from their underground refuges in spring after
diapause, whereas in others they do not pop out until late summer (Bonal et al. 2011). After

emerging and mating, females drill an oviposition puncture through the seed coat with their



specialized rostrum while the seeds are still attached to the branch (Desouhant et al. 2000,

Bonal et al. 2007) and they usually lay one egg per seed.

Different studies have analyzed the role of morphological diversification, phenology and life
cycles on niche partitioning among species in this striking group of insects. Regarding
morphological diversification, the closely related Curculio camelliae constitutes probably
one the most outstanding examples of trophic adaptation. In this species, the geographical
variability of the seed coat thickness of its host plant (Camellia japonica) has promoted a
disproportionate rostrum enlargement in certain weevil populations (Toju & Sota 2005, 2006,
Toju 2008, Toju et al. 2011). By contrast, this has not occurred in weevils predating upon
acorns despite the large variability in the size of these seeds (Espelta et al. 2009a, Bonal et
al. 2016).

Macroevolutionary comparative studies have shown that shifts to exploit larger seeds could
promote a body size increase, as a larger seed would allow a larger larval size with the
subsequent fitness advantages (Desouhant et al. 2000, Hughes & Vogler 2004, Bonal et al.
2011). However, even though rostrum length differs among species predating upon oaks, it
does proportionately to the rest of the body (Bonal et al. 2011). Interestingly, contrary to
Camellia seeds, coat thickness does not vary as much in acorns, which probably explains the
lack of such a disproportionate rostrum development. By means of applying molecular
techniques, the role of body size on trophic niche partitioning has been assessed in natural
conditions. Genetic analyses (i. e. DNA barcoding) allow the unequivocal identification of
larvae, something generally impossible based on morphological traits (see Pinzén-Navarro
et al. 2010). This technique allows to know the plant host and the different seed sizes
exploited by each weevil species. Doing so, it has been found that the effect of niche
partitioning according to body size is mediated by seed size. In Mediterranean oak forests
with different sized Curculio spp. (e.g. the smaller Curculio glandium and the bigger C.
elephas), small-sized ones can exploit small acorns that do not allow the development of
larger species larvae (Espelta et al. 2009a, Bonal et al. 2011). In America, such a niche
partition also exists, being more marked in tropical weevils than in those that inhabit

temperate regions (Peguero et al. 2017).



Niche partitioning could also be independent of body/seed size relationships but linked to
digestive adaptations to feed on certain plant species. This might be the case observed when
larvae of a particular weevil species grow unrestricted within large acorns of different oak
species, but they attain a different final mass (Mufioz et al. 2014, Peguero et al. 2017). The
mechanisms underlying such differences remain unknown, yet some studies have shown that
the species composition of the endosymbiont bacteria linked to Curculio spp. differs
according to the preferred host plant (Toju & Fukuatsu 2011). However, even considering

that a certain degree of specificity at this level could occur, it is far from being the norm.

Large-scale studies, including different species of Curculio and many species of oaks, have
found no differences in larval performance among Quercus spp. (Bonal et al. 2016). In
temperate forests of Europe and western North America, all weevil species may feed on any
Quercus spp., with no strict specialists (Govindan et al. 2012, Bonal et al. 2018 in press).
The few reports from tropical oak forests show specificity at the subgenus level: weevils that
feed on white oak (Leucobalanus) very rarely prey on red oak (Erithrobalanus) acorns, and
vice versa (Peguero et al. 2017). However, differences at the subgenus level coincide with
differences also in seed sizes, making it difficult to identify the ultimate cause of such trophic

segregation.

Besides niche partitioning based on host specificity and/or acorn size, other studies have
pointed at time partitioning as the mechanism allowing the co-existence of these species
sharing a common resource (sensu Chesson 2000a,b). Such time partitioning could occur
within the same year and between years. Time partitioning within the same year would result
from inter-specific differences in the timing of reproduction. This will depend not only on
adult emergence phenology, but also on the maturation of eggs. In some species, females
have mature eggs at the onset of their adult life (proovigenic), whereas in others it requires a
certain period (synovigenic) (Jervis et al. 2008, Richard & Casas 2009, Péllison et al. 2012).
Within a given year, early reproducing species would infest most available seeds in lean
years, whereas late reproducing ones would outcompete them in highly productive years in
which their larvae would grow larger within full sized acorns (Espelta et al. 2009a, VVenner

et al. 2011, Pélisson et al. 2013a, b). Time partitioning between years would be related to



inter-specific differences among weevils in diapause length (i.e. from one to four years
depending on the Curculio species), combined with the stochasticity of seed crops (Espelta
et al. 2008). Interestingly, variable diapause will promote that unpredictable large seed crops

will not always benefit the same species but promote their co-existence (Venner et al. 2011).

Weevil population dynamics and seed predation extent: A matter of resource

availability or environmental stochasticity?

Ecomorphological adaptations and trophic specificity may allow the co-existence of different
Curculio species and their ability to intensively predate upon seeds. Many Fagaceae trees
including oaks show synchronous and irregular patterns of seed production across years, so-
called masting (Kelly & Sork 2002). Masting is expected to impact on the population
dynamics of insects like weevils, with specialized seed-feeding habits, limited mobility, and
short life span encompassed within the seeding season (Shibata et al. 1998, Kelly et al. 2000,
Maeto & Ozaki 2003). Although the ultimate causes underlying masting may be multiple
(Kelly 1994, Kelly et al. 2000, Yu et al. 2003, Koenig & Knops 2005, Espelta et al. 2008,
Fukumoto and Kajimura 2011, Archibald et al. 2012, Moreira et al. 2016), one of the
hypotheses, namely the most supported is the predator satiation hypothesis (PSH hereon) that
proposes precisely that masting may be a reproductive mechanism to control the seed

predator populations (Espelta et al. 2008, 2009b, Bogziewicz et al. 2018).

Satake et al. (2004) proposed that predator satiation at the population level by means of
irregular large and nil seed crops would occur through a combination of “functional satiation”
and “numerical satiation”. Functional satiation will occur as not all seeds can be consumed
during an unpredictable massive crop as it surpasses the feeding capacity of predators (Ims
1990), and numerical satiation takes place as predator populations collapse during poor crop
years, so the existing number of predators may be too low to consume many seeds (Crawley
& Long 1995). However, although specialist insect populations are clearly conditioned by
seed availability, such principle of PSH might be too simplistic, as changes in population size
in insects have been also observed to be directly related to meteorological conditions or to
disturbances (Robinet & Roques 2010, Schowalter 2016).

10



In the specific case of Curculio weevils, adult emergence failure due to the lack of rainfall
has been reported both in sweet chestnut Castanea sativa orchards (Menu 1993) and oak
Quercus spp. stands (Bonal et al. 2010, 2015). Adults need to dig up their way to the surface
from their underground refuges after diapause, and they may die without achieving it if the
soil is too hard owing to the lack of precipitation. Thus, an independent effect of meteorology
on insect populations might disrupt the crop size/infestation rates relationship. Specifically,
even if there is a bumper crop of seeds ready to be consumed, negative environmental
conditions may impede adult weevils to predate upon it. Unfortunately, few studies have
simultaneously tested whether environmental factors influencing masting (e.g. temperature
in Schauber et al. 2002, Kelly et al. 2013; precipitation in Pérez-Ramos et al. 2010,
Fernandez-Martinez et al. 2015 or even “weather packages” in Fernandez-Martinez et al.
2017) may also be directly involved in controlling seed predators and thus contribute to
safeguard part of the seed crop. This is a plausible hypothesis, as we know that rainfall
amount and its seasonal distribution may influence oviposition from granivorous insects
(Bonal et al. 2010) by affecting the number of adults emerging from the soil (Schraer et al.

1998), or even altering their sex ratio (Bonal et al. 2015).

11
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Research Obijectives

The main goal of this Thesis is to assess how trophic specificity affects species assemblage
in the specialist Curculio spp. weevils and to what extent their population dynamics is driven
by resource pulses (seed availability) or environmental stochasticity (rainfall). The use of
molecular techniques has allowed identifying larvae to the species level and to establish
unequivocal host plant-weevil species relationships. In addition, it has allowed for the first
time to assess the genetic signature left by the degree of specialization of some species in this
group of insects considering the spatial distribution of their hosts (i.e. continuous or
fragmented). Moreover, by means of the analyses of midterm databases | have been able to
disentangle the contribution of masting (i.e. extreme resource variability) and environmental
stochasticity (seasonal pattern of rainfall distribution) in the dynamics and predation intensity
of these granivorous insects. These aims have been addressed in two studies (chapters)

already published in international journals.

-In the first study, host specificity among Curculio spp. have been assessed in a system with
three potential host plants: hazelnut tree Corylus avellana and two oaks Quercus ilex and
Quercus humilis by means of DNA analyses. The three hosts species differ in the size of their
seeds and in the timing of their maturation. As an additional novelty, specificity patterns have
been analyzed along a geographical gradient, in which the degree of overlap among host
plants in the timing of seeding and seed size may differ owing to climate variation (i.e. higher
overlap of seeding phenology in Norther sites owing to a shorter vegetative season and more
extended seed production timing in the south). In this context | have assessed whether host
specificity and weevil co-existence is a matter of resource or time partitioning: i.e. seed size
vs. egg maturation in females. Lastly, | have assessed whether narrow specialist feeding on
a host with a patchier distribution is more likely to suffer population bottlenecks and gene

flow restrictions.

13



-In the second study, we have tried to disentangle whether weevil population dynamics and
its impact on seed predation is mostly controlled by variability in the resource (seed
production by hosts) or by the direct impact of environmental conditions (i.e. rainfall amount
and distribution) on the abundance of adult weevils. By contrast, some previous studies have
highlighted the paramount influence of the extreme interannual variability in seed production
(masting) to reduce the size of the weevil populations and their damage to crops. On the other
hand, others have emphasized the role of stochastic adverse events (e.g. drought) in blocking
adult emergence form the soil after diapause and thus in reducing population numbers. Yet,

this is the first time that both factors are jointly analyzed.

In addition to shedding light on how trophic specificity, resource availability and
environmental stochasticity may affect species assemblage and population performance in
communities of Curculio spp., my thesis may help to understand how increasing habitat loss
and fragmentation owing to land-use change and new climatic scenarios arising from climate

change may impact on these insects and this plant-animal interaction.
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Abstract

Synchrony between seed growth and oogenesis is suggested to largely shape trophic breadth of seed-feeding in-
sects and ultimately to contribute to their co-existence by means of resource partitioning or in the time when in-
festation occurs. Here we investigated: (i) the role of seed phenology and sexual maturation of females in the
host specificity of seed-feeding weevils (Curculio spp.) predating in hazel and oak mixed forests; and (ii) the
consequences that trophic breadth and host distribution have in the genetic structure of the weevil populations.
DNA analyses were used to establish unequivocally host specificity and to determine the population genetic
structure. We identified 4 species with different specificity, namely Curculio nucum females matured earlier and
infested a unique host (hazelnuts, Corylus avellana) while 3 species (Curculio venosus, Curculio glandium and
Curculio elephas) predated upon the acorns of the 2 oaks (Quercus ilex and Quercus pubescens). The high spec-
ificity of C. nucum coupled with a more discontinuous distribution of hazel trees resulted in a significant genet-
ic structure among sites. In addition, the presence of an excess of local rare haplotypes indicated that C. nucum
populations went through genetic expansion after recent bottlenecks. Conversely, these effects were not ob-
served in the more generalist Curculio glandium predating upon oaks. Ultimately, co-existence of weevil spe-
cies in this multi-host-parasite system is influenced by both resource and time partitioning. To what extent the
restriction in gene flow among C. nucum populations may have negative consequences for their persistence in a
time of increasing disturbances (e.g. drought in Mediterranean areas) deserves further research.

Key words: Corylus avellana, Curculio spp., genetic structure, Quercus spp., trophic breadth
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straining the regeneration process (Espelta et al. 2009b).
Trophic breadth and specificity of seed-feeding insects
is often explained by differences among plant hosts in
chemical or morphological traits (Bernays & Graham
1988; Forister et al. 2015). Differences in phytochemis-
try (mainly nitrogen-based defensive compounds) have
been observed to be highly relevant for the diversifi-
cation of phytophagous insects and their diet breadth
(Kergoat et al. 2005). Concerning other seed features,
size is a trait claimed to influence ecomorphological di-
versification in many endophytic insects (e.g. body size
and rostrum shape), promoting differences in their tro-
phic niche, ecological adaptations and species radiation
(Hughes & Voegler 2004a; Bonal et al. 2011; Pegue-
ro et al. 2017). In addition to chemical and morpholog-
ical differences, seeding phenology and stochasticity
in the availability of this resource have also been sug-
gested as key factors influencing the guild of insect spe-
cies predating upon a particular plant host (Espelta et
al. 2008, 2009b; Coyle et al. 2012; see also Pélisson et
al. 2013a). As insects are short-living organisms, syn-
chronization of their life-cycle with the resources upon
which they depend is critical (Bale et al. 2002, 2007;
Hood & Ott 2010). Therefore, processes such as adult
emergence (Espelta et al. 2017) and oogenesis (Trudel
et al. 2002; Son & Lewis 2005) have to be tightly con-
nected with the presence of seeds for oviposition (Bonal
et al. 2010). In particular, oogenesis (i.e. egg maturation
in females) has been predicted to differ depending on
the stochasticity of seeds availability. Thus, proovigen-
esis (i.e. females have already mature eggs at the onset
of their adult life) would be favored in species predating
upon hosts that regularly produce seeds while synovi-
genesis (i.e. females start their adult life with imma-
ture eggs) would be advantageous for species exposed
to more random fluctuations of seed production (Jervis
et al. 2008; Richard & Casas 2009), as they can better
adjust the amount of energy invested in reproduction to
the amount of seeds (but see Pélisson 2013b). Ultimate-
ly, the co-existence of the different seed consumers in
a multi-host community could be mediated by resource
partitioning (e.g. insects predate preferentially upon dif-
ferent species according to different seed traits; see Es-
pelta et al. 2009a), time-partitioning (e.g. insects exhibit
differences in life span and the timing of seed predation;
see Pélisson et al. 2012) or the trade-off among disper-
sal versus dormancy ability to cope with resource scar-
city (Pélisson et al. 2012). Yet, the importance of the
interplay among seed size, seeding phenology and oo-
genesis in driving the guild of insects predating upon

seeds of different hosts in multi-specific systems has
been seldom explored.

The breadth of the trophic niche of seed-feeding in-
sects (specialist vs generalist) may influence the num-
ber of species that predate upon different seeds and it
has consequences for the dynamics of the communi-
ty of hosts (Espelta et al. 2009b). However, beyond the
effects on plant fitness, differences in the trophic niche
may also influence the population dynamic of the seed
consumers (Ylioja et al. 1999) depending on life-his-
tory traits such as dispersal ability and landscape attri-
butes (i.e. abundance and spatial distribution of hosts).
Spatial connectivity among plant-hosts has been shown
to be especially relevant for insects with low disper-
sal ability (Thomas et al. 2001; Kruess 2003), resulting
in a stronger genetic structure and reduced gene flow in
the insect populations located on more isolated hosts. In
the long run, host isolation may even result in coloni-
zation credits for some insect species, especially those
with a narrower diet breadth (Ruiz-Carbayo et al. 2016)
and poor dispersal ability (Pélisson et al. 2013b; Hei-
neger et al. 2014). Conversely, generalist species may
show a more continuous distribution in the landscape,
benefiting from the spatial overlap of the different host
plants upon which they feed (Newman & Pilson 1997),
and show no genetic structure differences among popu-
lations owing to gene flow. Interestingly, for seed-feed-
ing insects a comparison of the genetic structure of their
populations and the spatial structure of their potential
hosts could provide strong evidence about differences
of the trophic niche breadths. Moreover, the use of mo-
lecular techniques (DNA barcoding) may help to detect
cryptic speciation and trophic niche segregation among
morphologically similar species (Peguero et al. 2017),
and also to establish species specificity in an unequiv-
ocal way in comparison to classifications based on the
presence or absence of a species on a particular plant,
especially when the lack of morphological differences
at certain stages (e.g. larvae) make species identification
impossible otherwise (Govindan et al. 2012). Unfortu-
nately, this combination of landscape ecology (i.e. host
connectivity) and population genetics when studying the
breadth of the trophic niche and dispersal ability of phy-
tophagous insects remains largely unexplored.

The main aims of this study have been to investigate
in a multi-host and multi-seed-predator system the role
of seed size, seed phenology and ooegenesis in the host
specificity of seed-parasite weevils (Curculio spp.) and
to analyze the consequences that potential differences
in trophic specialization and host distribution may have
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in the genetic structure of weevil populations. Curculio
spp. (Coleoptera: Curculionidae) are seed parasites that
differ in their dispersal ability (Venner ef al. 2011), dia-
pause duration (Pélisson et al. 2013a,b), oogenesis (with
both proovigenic and synovigenic species; Pélisson et
al. 2013a) and the breadth of their trophic niche (Mufioz
et al. 2014; Bonal et al. 2015; Peguero et al. 2017). We
conducted this study in Catalonia (northeast Spain) in
mixed forests including oaks (Quercus ilex, Quercus pu-
bescens) and common hazel trees (Corylus avellana)
with 4 different weevil species present (Curculio nucum
Linnaeus, Curculio glandium Marsham, Curculio veno-
sus Gravenhorst and Curculio elephas Gyllenhaal). In-
terestingly, in this region oaks show a much more con-
tinuous distribution and later seeding, while hazels often
appear in more discontinuous patches and have an earli-
er production of fruits (Gracia et al. 2004). Concerning
weevils, the 4 species overwinter underground, but they
differ in the duration of their diapause, the phenology of
emergence, oogenesis and dispersal ability. Adults of C.
glandium, C. venosus and C. nucum emerge in spring 2
years after larvae buried into the soil, while C. elephas
exhibits variable diapause and adults emerge in early au-
tumn (Bonal et al. 2010; Espelta et al. 2017) for up to 3
years (Pelisson ef al. 2013b). Concerning oogenesis, in
C. glandium, C. venosus and C. nucum females are re-
productively immature (synovigenic) and ovarian devel-
opment is accomplished after 1 or 2 months of the feed-
ing period (Bel-Venner ef al. 2009), while C. elephas
females are proovigenic and food intake is not required
for ovarian development (Pélisson et al. 2012). Regard-
ing host selection, previous studies have suggested that
C. nucum is highly specialized in hazelnuts (Bel-Ven-
ner et al. 2009), while the other weevils depredate upon
several oak species (Mufioz ef al. 2014). However, these
results have not been confirmed by means of DNA anal-
yses as no study has been conducted in mixed hazel—
oak forests. Considering the traits of the species in-
volved in this multi-host and multi-predator system and
the spatial distribution of hosts, we hypothesize that: (i)
seed size and the synchronization of seeding phenology
and oogenesis will be responsible for the guild of wee-
vils predating upon the different plants; and (ii) the nar-
rower trophic breadth of C. nucum and the more patchy
distribution of hazels in comparison to the more gener-
alist habit of the other weevils and the continuous dis-
tribution of oaks will result in differences in the genetic
structure of weevil populations of these species.

MATERIALS AND METHODS

Causes of host specificity in seed weevils

Study area and species

The study was carried out in mixed forests with the
presence of oaks (Q. ilex and Q. pubescens and com-
mon hazel trees (Co. avellana) in Catalonia (north-east
Spain, Fig. 1). The evergreen Q. ilex and the winter-de-
ciduous Q. pubescens are extensively distributed in pure
and mixed forests in all the western rim of the Mediter-
ranean basin (Espelta et al. 2008), while the common
hazel (Co. avellana) often appears in scattered groups
in mixed deciduous forests or cultivated in monospe-
cific stands (AliNiazee 1998). Acorns in Quercus spp.
and hazelnuts in Co. avellana mature in 1 year and both
are subjected to intense pre-dispersal seed predation
by weevils (Curculio spp.), a group of granivorous in-
sects extensively distributed in the northern hemisphere
(Hughes & Voegler 2004a). In Catalonia, the most com-
mon weevil species predating upon acorns are C. glan-
dium and C. elephas (Espelta et al. 2009b), the lat-
ter also depredating upon chestnuts (Castanea spp.),
while in hazelnuts the unique species described up to
now has been C. nucum, a hypothesized highly specif-
ic seed parasite (Guidone et al. 2007; Bel-Venner et al.

Corylus avellana Quercus ilex + Quercus pubescens
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Figure 1 (a) Location of study sites in Catalonia (north-east
Spain). (b) Distribution of Corylus avellana, Quercus ilex and
Quercus pubescens according to the presence of this species in
plots inventoried in the Catalan Forest Inventory (Gracia et al.
2004). RI, Ripoll (5 plots); OL, Olot (4 plots); MO, Montseny (4
plots); MA, Maresme (5 plots); PR, Prades (5 plots).
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2009). However, it must be highlighted that except for
the weevil species predating upon oaks, ascription of
weevil species to a plant host is based on the observa-
tion of adults in the foliage of that particular species, but
no study has addressed this issue comprehensively (e.g.
identifying by means of molecular techniques the spe-
cies of the larvae inside chestnuts or hazelnuts).

During early summer on hazelnuts (AliNiazee 1998)
and early autumn on acorns (see Bonal & Muiioz 2009)
female weevils perforate the seed cover with their snout
and oviposit commonly a single egg so the larvae devel-
op feeding on the seed kernel. At the middle of summer
in C. nucum (Bel-Venner et al. 2009) or late autumn in C.
elephas and C. glandium (Espelta et al. 2009a), larvae
exit the seed and bury into the ground to overcome the
diapause period and undergo full metamorphosis.

Sampling design

In 2013 we established a total of 23 sampling plots
grouped into 5 geographical clusters (Sites) in a north
to south latitudinal gradient (see Fig. 1). This sampling
procedure was selected to account for the possible ef-
fects of latitude on the duration of the vegetative sea-
son and, thus, on the seeding phenology of oaks and ha-
zelnuts, their overlap and the overlap among these host
species and the weevils predating upon their seeds. Pre-
sumably a tighter vegetative season in northern and
colder sites would lead to more similar patterns of seed
production while these could be more relaxed and lon-
ger in southern and warmer places. Ultimately, this
could lead to differences in the guild of weevils predat-
ing upon these plants. Plots were selected by searching
for the presence of trees of Co. avellana and Q. ilex or Q.
pubescens based on the Catalan Forest Inventory (Gracia
et al. 2004) and field observations of their reproductive
status (i.e. presence of seeds). From late July (end of ha-
zel seeding season) to early October (end of the acorn
crop) we carried out 3 sampling campaigns: (i) late July
to early August; (ii) late August to early September; and
(ii1) late September to early October to account for pos-
sible differences in the phenology of seed infestation by
the different weevil species present. In every plot and
in each sampling period we randomly collected a mini-
mum of 100 seeds from each species (Co. avellana and
Quercus spp.) under the canopies of several randomly
selected trees. Seeds were taken to the laboratory and
classified as sound or infested to assess infestation rates
per species and sampling period. Infested seeds are eas-
ily recognizable by the presence of female oviposition

scars. We calculated the volume of both sound and in-
fested seeds by measuring the length and width to the
nearest 0.01 mm with a digital caliper (see Espelta et
al. 2009a). Infested seeds were placed individually in
plastic trays for individual monitoring. Each seed was
checked daily to register the emergence of larvae, which
were immediately transferred to 2 mL Eppendorf with
96% alcohol. Once larvae stop emerging (approximate-
ly 3 weeks after seeds were collected) seeds were dis-
sected to check for the presence of non-emerged larvae.
From hazelnuts only Curculio larvae emerged, while for
acorns the 6% of larvae corresponded to the Cydia spp.
moth.

In parallel, during the abovementioned field cam-
paigns adult weevil were captured by shaking the can-
opy and collecting the fallen individuals in an inverted
umbrella held beneath the foliage for species identifi-
cation at the laboratory. To establish whether females
were sexually mature, they were dissected under a mi-
croscope to observe abdominal segments and ovary ma-
turity. We considered the presence of eggs as a sign of
female ready for oviposition and the absence of eggs as
females that were still immature or had already ovipos-
ited (Pélisson et al. 2013a).

DNA barcoding and larval species identification

A total of 1657 Curculio larvae emerged from ha-
zelnuts and acorns. In order to establish unequivo-
cal trophic relationships between insects and their host
plants we used molecular techniques (DNA barcoding)
as larvae cannot be determined according to morpho-
logical characters. Therefore, from 342 larvae select-
ed randomly among the ones emerged in the labora-
tory from the 3 hosts we extracted DNA from a small
piece of larval tissue (approximately 2-mm long) us-
ing the NucleoSpin-Tissue kit according to the manu-
facturer’s instructions (MACHEREY-NAGEL GmbH,
Diiren, Germany; www.mn-net.com). We amplified a
fragment (826 bp) of the mitochondrial cytochrome oxi-
dase subunit 1 (cox1) using primers Pat and Jerry (please
see Hughes & Vogler [2004b] for details on primer se-
quences and PCR protocols). We chose this fragment of
cox1 due to the availability of many reference sequenc-
es from correctly determined adults of European Cur-
culio spp. For comparison (Hughes & Vogler 2004b).
Sequencing was performed using Big-Dye (Perkin-El-
mer) technology and an ABI3700 sequencer. Sequence
chromatograms were assembled and edited using Se-
quencher 4.6 (Gene Codes, Ann Arbor, MI, USA). For
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species identification we discarded those sequences that
after edition were shorter than 500 base pairs. Edited se-
quences were aligned using CLUSTALW supplied via
http://align.genome.jp, with default gap open and gap
extension penalties. The alignment sets were collapsed
into unique haplotypes and each of this compared to
the Curculio spp. reference sequences available at Gen-
Bank. We applied the most conservative limit used in
DNA barcoding, which states a maximum genetic diver-
gence (number of different nucleotides by the total num-
ber of compared nucleotides) of 1% with respect to the
reference sequence for an unambiguous identification to
the species level (Ratnasingham & Herbert 2007).

Data analysis

To evaluate the occurrence of the different wee-
vil species in the 3 potential hosts Co. avellana, Q. ilex
and Q. pubescens) across the 5 study sites, we conduct-
ed a Pearson’s y’-test. Similarly, we used ’-tests for the
comparison of the presence of male and female wee-
vil proportion, as well as that of immature and mature
females among sampling periods. A generalized linear
mixed model (GLMM), following a binomial distribu-
tion, was used to test for the effects of the study site (RI,
Ripoll; OL, Olot; MO, Montseny; MA, Maresme; PR,
Prades), sampling period (1, 2, 3) and host species (Co.
avellana, Q. ilex and Q. pubescens) on the seed preda-
tion rate by weevils. The factor “plot” was included as
a random effect in the GLMM analyses to account for
the repeated nature of the measurements and other un-
explained variation. Analyses of deviance Type II Wald
’-tests were performed to establish the significance of
each different independent variable in the model. A gen-
eral linear mixed model was applied to test for the ef-
fects of host species, sampling period and seed condi-
tion (sound or infested) on seed size (volume in mm’)
with the factor “plot” included as a random effect.

For population genetic analyses we chose those spe-
cies in which there were a minimum of 10 individu-
als per population with sequences longer than 750 bp;
namely, Curculio glandium and Curculio nucum. We
used ARLEQUIN software (Excoffier et al. 2005) to calcu-
late standard molecular diversity indices (gene diversi-
ty and nucleotide diversity) and to perform analyses of
the molecular variance (AMOVAs). Signatures of pop-
ulation demographic changes (bottlenecks or expan-
sions) were examined by Tajima’s D (Tajima 1989) and
Fu’s F' (Fu 1997) as implemented in ARLEQUIN software.
We also tested whether there was any geographic pat-
tern in the population genetic structure using SamMova 1.0

Causes of host specificity in seed weevils

(Dupanloup et al. 2002). This method identifies the op-
timal grouping option (K) that maximizes the among-
group component (FCT) of the overall genetic variance.
We defined the number of populations (K) and ran 100
simulated annealing processes. We simulated different
numbers of populations, ranging from K =2 to K =4, to
determine the best population clustering option.

RESULTS

Molecular analyses allowed the identification of the
larvae emerged from the seeds of the 3 host species (Co.
avellana, Q. ilex and Q. pubescens) as all sequences
showed a divergence below 1% with respect to Curcu-
lio spp. reference sequences from GenBank. This diver-
gence was much lower than inter-specific differences,
which in all cases exceeded 8%. All larvae correspond-
ed to 4 species; namely, C. elephas, C. glandium, C. nu-
cum and C. venosus. As shown in Figure 2, weevil spe-
cies were not randomly distributed among hosts; that
is, C. nucum was exclusively present in hazelnuts while
the other 3 weevils emerged uniquely from acorns (3’
=263.9, P <0.001). C. glandium and C. elephas were
more abundant in Q. ilex (respectively, >, = 91.8, P <
0.001, and y s = 23.3, P < 0.001) while there were not
significant differences in the presence of Curculio ve-
nosus between the 2 oak species (3’5 = 7.47, P > 0.05).
The different presence of larvae of the 4 weevil species

Weevil (Curculio spp.) species

OC. pucum BC. glandium [OC. elephas BC. venosus

3%

18%. 13%

19%

78% ) 1%

C. avellana Q. ilex

Q. pubescens

Host species

Figure 2 Proportion of the different weevil species infesting
the seeds of the 3 host species (Corylus avellana, Quercus ilex
and Quercus pubescens) according to the DNA analyses of the
larvae emerging from the seeds.
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Figure 3 Proportion of females with eggs (black column) and
without eggs (white columns) for the 3 weevil species (Corylus
avellana, Quercus ilex and Quercus pubescens) captured in the
3 sampling periods during the seeding season: Jul-Aug = from
the end of July to the beginning of August; Aug—Sep = from
the end of August to the beginning of September; Sep—Oct =
from the end of September to the beginning of October.

in the 3 hosts, especially among hazelnut and the 2 oaks,
was not due to the lack of a particular species in a given
site as we captured adult specimens of all weevil species
along the entire gradient. Moreover, as hazelnuts were
bigger than acorns during almost the entire seeding sea-
son (Table 1 and Fig. 3), the abovementioned differenc-
es in weevil specificity among these 2 groups of hosts
does not seem to be due to the exclusion of certain wee-
vil species from hazelnuts by a too small seed size.

Male and female weevils occurred in nearly the same
frequency with no significant variation along the sam-
pling periods (x*, = 2.28, P > 0.05). Yet the propor-
tion of females with presence of eggs and without eggs
showed significant differences through the season (3>, =
33.7, P <0.001) and for the different weevil species. As
shown in Figure 4, through the season the presence of
females with eggs was earlier in C. nucum, followed by
C. glandium and C. elephas. In the 2 synovigenic spe-
cies, C. nucum had a decreasing pattern (x>, = 10.5, P
< 0.01) in the presence of females with eggs, while C.
glandium exhibited an increasing pattern (X°, = 35.3, P
< 0.001). In the proovigenic C. elephas we did not find
females on the very first sampling period but as soon
as they appeared during the second and third sampling
dates they were already sexually mature (3>, = 16.5, P
< 0.001). Consistently with the seasonal patterns of the
presence of females ready to oviposit, we found that in-
festation rates showed significant variation among study
sites (y°, = 16.5, P < 0.001), sampling periods (x°, = 5.5,
P < 0.05) and host species (1>, = 6.4, P < 0.05). Over-
all, infestation was higher in northern localities and it
increased as the seeding season progressed (see coeffi-
cients for the different effects in Table 2). Concerning
host species, infestation rates showed contrasting tem-
poral patterns in hazelnut versus oaks (Table 2, Fig. 5),
in agreement with host seeding phenology and oogene-

Table 1 Estimates for the significant effects of tree host, sam-
pling period and seed condition (sound or infested) over seed
size (volume in mm’) according to the linear mixed model

Effects

Estimate Standard error ¢-value
Intercept 3.199 0.0278 153.912%%%*
Date 0.01695 0.004249 3.990%**
Host, O. pubescens ~ —0.1876 0.008793 —21.336%**
Host, Q. ilex —0.4808 0.009984 —48.159***
Seed condition, sound —0.03143 0.006962 —4.5]5%%*
*P <0.05, **P<0.01 and ***P < 0.001.
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Figure 4 Mean + SE volume (mm”) of sound (open dots) and
infested (black dots) seeds of the 3 host species (Corylus avel-
lana, Quercus ilex and Quercus pubescens) along the sampling
dates. Jul-Aug = from the end of July to the beginning of Au-
gust; Aug—Sep = from the end of August to the beginning of
September; Sep—Oct = from the end of September to the begin-
ning of October. Notice the difference in the scale of the y-axis
for the 3 host species.

Causes of host specificity in seed weevils

Table 2 Estimates for the significant effects of study site, tree
host and sampling period on weevil infestation rates according
to the generalized linear mixed model

Effects Estimate  Standard error z-value
Intercept —2.8280  0.5462 —5.177%**
Site Olot 1.0830 0.4776 2.268*
Site Ripoll 1.5611 0.4788 3.260**
Host, Q. pubescens 0.9615 0.3810 2.523%
Date 0.4634 0.1973 2.349*

*P <0.05, **P <0.01 and ***P < 0.001.
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Figure 5 Mean + SE seed infestation rate of the 3 host species
(Corylus avellana, Quercus ilex and Quercus pubescens) along
the sampling dates. Jul-Aug = from the end of July to the be-
ginning of August; Aug—Sep= from the end of August to the
beginning of September; Sep—Oct = from the end of September
to the beginning of October.

sis in females; that is, in hazelnuts infestation occurred
earlier and slightly decreased through the season, while
it was absent during the first sampling date in the 2 oak
species, and progressively increased towards the end of
the season (Fig. 5).

The population genetic analyses showed marked dif-
ferences between C. nucum and C. glandium. Mean ge-
netic diversity was higher in C. nucum (Table 3), main-
ly due to the higher number of distinct haplotypes; that
is, an ANOVA in which the population was included as
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Table 3 Values of gene diversity, nucleotide diversity, Tajima’s
D and Fu’s F recorded at each population for Curculio nucum
(a) and Curculio glandium (b)

(a) Curculio nucum

Gene Nucleotide

diversity diversity Tajima’s D Fu’s F
Ripoll 0.87 0.0015 —1.63% —4.54%x%
Olot 0.75 0.0024 —1.96%* —8.34%x*
Montseny 0.89 0.0032 —1.40* —6.87%**
Maresme  0.88 0.0034 —0.41 -1.20
Prades 0.59 0.0012 —1.69%* —5.27***
(b) Curculio glandium
Ripoll 0.71 0.0012 -1.10 —2.61%
Olot 0.57 0.0009 —0.46 —0.84
Montseny 0.69 0.0013 -1.22 —2.61%
Maresme  0.69 0.0013 —0.75 -1.95
Prades 0.63 0.0034 -1.79 1.46

*P <0.05, **P <0.01 and ***P < 0.001.

a random factor showed that mean gene diversity was
significantly higher in C. nucum (F, , = 9.40; P = 0.03).
A total of 31 haplotypes were retrieved from the 118 se-
quences of C. nucum included in the analyses versus
just 13 from 96 sequences in C. glandium (see Tables
4 and 5). In C. nucum, 48% of the individuals had the
most common haplotype but there were many rare hap-
lotypes sometimes found in just one individual and/or at
a single population (Table S1). In the case of C. glandi-
um, there were much fewer rare haplotypes and the two
most frequent ones were found in 80% of the individu-
als (Table S2). The high proportion of rare haplotypes
in C. nucum suggests population expansion after recent
bottlenecks and, accordingly, both Tajima’s D and Fu’s
F had negative and significant values in all populations
except one. In the case of C. glandium only for Fu’s
test were the values significant in two populations, thus
showing that most populations were in equilibrium (Ta-
jima 1989; Fu 1997). The AMOVA revealed a more re-
stricted gene flow between populations in the case of C.
nucum, in which differentiation among populations ex-
plained 5.02% of the total molecular variance (degrees
of freedom = 4; P < 0.01), whereas in C. glandium in-
ter-population differences were not significant. The re-
sults of the SAMOVA were marginally significant for C.
nucum (FCT = 0.08; degrees of freedom = 1; P = 0.08)
and defined two clusters within the geographical range

of our study, the first grouping the nearby populations
of Montseny (MO) and Maresme (MA) and another one
including the rest (see Fig. 1). No significant geograph-
ical pattern of molecular variance was found in C. glan-
dium.

DISCUSSION

Seed infestation by weevils did not occur randomly
but with 2 opposite breadths of host specificity; name-
ly, the highly specialized C. nucum infested a unique
host (hazelnuts), while up to 3 species (C. glandium, C.
elephas and C. venosus) predated almost indistinctive-
ly upon 2 oaks (Q. ilex and Q. pubescens). These dif-
ferences in trophic specificity coupled with differenc-
es in the geographical distribution of the hosts resulted
in 2 distinct patterns concerning the genetic character-
istics of weevils’ populations; that is, we only found a
significant genetic structure among the populations in
the highly specialist C. nucum. Ultimately, the results of
these genetic analyses confirmed the specialist or gener-
alist trophic breadth of the different weevil species ac-
cording to the identification of the larvae found in the
seeds and they stress how molecular techniques may
help to establish unequivocal trophic relations for seed
feeding insects.

Previous studies have suggested that seed size has
been a relevant trait promoting ecomorphological adap-
tations in the genus Curculio and driving species diver-
sification (Hughes & Vogler 2004a; see also Peguero et
al. 2017). In the end, a tight relationship between seed
and weevils’ body size would result in differences in
the ability of larger and smaller weevils to infest seeds
of different size (differences in trophic breadth); that
is, small species would be able to infest both small and
large seeds while species with a larger body size would
be restricted to larger seeds to obtain enough resourc-
es to complete larvae development (see Bonal & Muiioz
2008; Espelta et al. 2009a; Bonal & Mufioz 2011; Peg-
uero et al. 2017). Yet, this does not seem to be the case
in our study system where hazels, the species infested
by a single species (C. nucum), showed the largest seeds
during most of the season (Fig. 3) and experienced the
lower infestation rate (see Table S3). Instead of an in-
fluence of seed size, our results suggest that the exclu-
sive infestation of hazelnuts by C. nucum could be more
related to a different pattern of sexual maturation of fe-
males among the 2 weevil species emerging from the
soil in spring, specifically an earlier maturation in C. nu-
cum in comparison to C. glandium (Fig. 4). These dif-
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ferences could be due to differences between the 2 wee-
vils in the requirements of resource acquisition as it has
been demonstrated that sexual maturation in females of
these synovigenic species critically requires some feed-
ing at adulthood before reproductive development takes
place (Bel-Venner et al. 2009; Pélisson et al. 2012). The
early maturation in C. nucum would be advantageous
to oviposit in hazelnuts before the hardening of the nut-
shell, as this is a fast process occurring during seed
growth and the main mechanism in hazels to avoid in-
festation (Guidone et al. 2007). Moreover, oviposition
of C. nucum would be expected to occur soon after mat-
ing as weevils do not adjust laying eggs to the moment
of highest seed availability, but they oviposit as soon as
females have mature eggs (Bonal ef al. 2010). This be-
havior is probably linked to the temporal unpredictabil-
ity of seed crop size (Bonal & Muifioz 2008; Espelta et
al. 2008) and other constraints they have to cope with,
such as the need of rainfall episodes to soften the soil
and allow the emergence of adults (Bonal et al. 2010,
2015; Espelta et al. 2017). Only during the 2 earlier
samplings, females of C. nucum seemed to preferential-
ly choose bigger seeds, a behavior related with the need
to select a minimum seed size to ensure larvae develop-
ment and also owing to the availability of more seeds
for oviposition (see Espelta et al. 2009a).

In comparison to the extreme host—parasite specificity
of C. nucum, the other 3 weevils (C. venosus, C. glan-
dium and C. elephas) predated indistinctively upon the
2 oaks with no evidence of a strategy in the partitioning
of this resource according to the identity of the host spe-
cies or to seed size. The avoidance of competitive exclu-
sion among these species could be explained by several
mechanisms contributing to stabilize their coexistence;
that is, time partitioning (Pélisson et al. 2012; see also
Espelta et al. 2009a) and/or diversification of disper-
sal-dormancy strategies (Pélisson et al. 2012). On the
one hand, time partitioning in breeding activity can exist
when 2 competing species differ in the speed of energy
acquisition to be allocated to reproduction by females
and the duration of their lifespan; that is, one species ac-
quires resources faster and it is able to oviposit earlier
on seeds, but it is exposed to a higher risk of seed abor-
tion, while the other oviposits later but has a longer life
span allowing it to lay eggs during a larger time frame
(see Pelisson et al. 2012 for C. pellitus and C. glandi-
um). On the other hand, stabilization can be reached by
means of different dispersal versus dormancy strategies
with some species relying on a high dispersal ability
and others depending on dormancy strategies (e.g. vari-

Causes of host specificity in seed weevils

able diapause) to cope with seed scarcity. This seems to
be the case for C. glandium and C. elephas; that is high
dispersal ability (up to 11 km) in the former species and
an extended diapause (up to 3 years) in the later (see
Venner et al. 2011; Pélisson et al. 2012). Yet, other fac-
tors not covered in this study, such as the risk of parasit-
ism or survival of larvae during diapause, may also help
equalize their success to infest (Bonal et al. 2011). Sim-
ilarly, future studies with more intense and appropriate
sampling schemes should address the relationship be-
tween the number of adults of the different species and
the number of larvae to disentangle the different preda-
tion rates upon each species and the influence of other
environmental factors.

Ultimately, differences in the trophic breadth leave a
contrasting genetic signature in the populations of the
2 species of weevils. A much higher number of local
rare haplotypes were found in the monophagus C. nu-
cum, along with a marginally significant genetic struc-
ture among populations, contrary to the more general-
ist C. glandium (see, for a similar example in aphids,
Gaete-Eastman et al. 2004). Inter-specific differences
in genetic characteristics of phytophagous insects could
arise from differences in their dispersal ability or in the
spatial distribution (isolated vs continuous) of the host
(Peterson & Denno 1998; Kubish et al. 2014). Unfortu-
nately, in comparison to the precise information about
the dispersal ability of C. glandium (approximately 10
km in Pélisson et al. 2012), we lack detailed knowledge
about the dispersal range of C. nucum, except some ev-
idence of weevils moving away from local sites to feed
during adulthood and prior to mating (Bel-Venner et
al. 2009). Yet the fact that C. nucum and C. glandium
are sister species (Hughes & Voegler 2004a) and they
share many similar life-history traits, such as ecomor-
phological adaptations and body size, adult emergence
in spring, synovigenic females and a fixed diapause of
2 years (see Hughes & Vogler 2004a; Bel-Venner et al.
2009; Pélisson et al. 2012a,b), make us consider that
they may have a similar dispersal ability. Therefore, the
differences we observed in their genetic characteristics
would be probably due to their different diet breadth and
the more patchy and discontinuous distribution of hazels
in comparison to the more abundant and constant pres-
ence of oaks (Gracia et al. 2004; see also Fig. 1), along
the geographical gradient sampled (approximately 225
km from Ripoll to Prades).

Connectivity may be critical for population survival
(Fahrig & Merrian 1985; Fahrig & Paloheimo 1988) and
metapopulation dynamics (Levins 1970), especially in
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front of a disturbance: for example, the negative impact
of severe drought episodes for the emergence of adult
weevils (Bonal et al. 2015; Espelta ef al. 2017). In that
sense, our molecular data show that such disturbances
may have occurred and left their signature in C. nucum
population genetics. The significant negative values re-
trieved in the neutrality tests (Tajima’s D and Fu’s F) in-
dicate that most of the C. nucum populations sampled
went through population expansion after recent bottle-
necks. Almost half of the individuals had the same hap-
lotype and there was an excess of rare haplotypes that
differed little from the most common one. The lower
gene flow between populations (marginally significant
genetic structure among populations) in C. nucum would
favor such bottlenecks as the patchy distribution of ha-
zel trees would complicate the arrival of immigrants.
None of this happened in the case of C. glandium feed-
ing on the widespread oak trees. Yet the interpretation of
the results for C. nucum must be cautious as the shallow
genetic structure observed suggests that a fair amount of
gene flow still occurs, enough to overcome drift. More-
over, in addition to the current distribution of hazelnuts,
other abiotic environmental conditions could also be in-
volved in the genetic structure observed in C. nucum
(e.g. geological barriers or altitude for Trichobaris soror
in De la Mora et al. 2015)

CONCLUSION

The use of molecular analyses allowed us to precise-
ly identify the weevil species depredating upon the vari-
ous potential hosts in these mixed deciduous forests and
to unequivocally confirm the high specificity of the ha-
zelnut C. nucum and the more flexible and wider trophic
breadth of the rest of the weevils (C. venosus, C. glan-
dium and C. elephas) depredating upon acorns. In this
multi-host and multi-parasite system, co-existence of the
various weevil species seems to be mediated by a com-
bination of extreme resource partitioning (i.e. among
C. nucum and the rest of species) and a combination of
time partitioning and differences in dispersal-dormancy
strategies among the 3 species depredating upon oaks.
Interestingly, although sometimes suggested, differences
in seed size did not have any effect in driving host spec-
ificity or the trophic breadth of the weevil species pres-
ent. Moreover, our results highlight that differences in
specificity in trophic breadth and in the spatial distribu-
tion of hosts at a large geographical scale may result in
the presence of genetic structure among the populations
of highly specific parasites (C. nucum) depredating upon

patchily distributed hosts (Co. avellana). To what extent
this restriction in gene flow (dispersal) may have nega-
tive consequences for the persistence of the populations
of these highly specialized seed-feeding pests in a time
of increasing disturbances (e.g. drought events in Med-
iterranean areas) is a fascinating question that deserves
further research.
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SUPPLEMENTARY MATERIALS

Additional supporting information may be found in
the online version of this article.

Table S1 Number of Curculio nucum individuals bear-
ing each haplotype in the 5 study populations

Table S2 Number of Curculio glandium individuals
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bearing each haplotype in the 5 study populations

Table S3 Mean + SE density of host plants and the per-
centage of sound and infested seeds per location and
host plant Density of host plants was calculated as
the mean of the nearest inventoried plots included in
the Catalan Forest Inventory (Gracia ef al. 2004).
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Table S1 Number of Curculio nucum individuals bearing each haplotype in the five study populations
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Table S2 Number of Curculio glandium individuals bearing each haplotype in the five study populations

Haplotype Maresme Montseny Olot Prades Ripoll
1 11 15 11 4 6
2 1 1
3 1 1
4 8 9 5 7 8
5 1 3 1 1
6 1
7 1
8 1
9 1

10 2

11 1

12 1 1
13 1

Table S3 Mean =+ SE density of host plants and the percentage of sound and infested seeds per location and host plant. Density of
host plants was calculated as the mean of the nearest inventoried plots included in the Catalan Forest Inventory (Gracia et al. 2004).

Q. pubescens Q. ilex C. avellana |
Density Sound Infested Density Sound Infested Density Sound Infested
('stems ha™) (%) (%) ('stems ha™) (%) (%) ('stems ha™) (%) (%)

Ripoll 778 + 64 25+5  75+9 - - - 341 +41 60+ 4 40+7
Olot 1021 +131  29+11 71«7 456 + 33 45+ 8 55+ 11 441 + 39 75+8 25+9
Montseny 678 + 64 559 41+5 714 + 81 60+7 40+ 5 456 + 64 76 £ 11 24+ 10
Maresme 512+ 131 50£8 50+6 915+ 44 59+ 11 41+6 501 +73 89+12 11+4
Prades 455+ 96 645 36+7 875+ 74 67+6 33+9 315+ 84 76 £ 11 24+ 8
2 © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
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Abstract. Escaping seed predation is a classic “economy of scale” hypotheses (predator satiation hypothe-
sis, Psh) to explain the selection for the synchronous production of massive and nil seed crops (masting) in
plants. The Psh postulates that predator satiation occurs through a combination of (1) “functional satia-
tion,” as not all seeds can be consumed during a massive crop, and (2) “numerical satiation,” as predator
populations collapse during poor crop years. Many studies advocate for the Psh, but few have investigated
the importance of masting compared to other factors for the control of predation extent. Namely, environ-
mental cues prompting masting could also determine predator’s success and, ultimately, influence directly
and independently seed predation intensity. We explored this question in Mediterranean oaks, as they
exhibit strong masting behavior; acorns are heavily predated upon by weevils; and rainfall stochasticity
drives masting and the emergence of adult weevils from the soil. Results of two mid-term studies (4 and
11 yr) showed that acorn production and predation were highly variable across years, while the abun-
dance of adult weevils was positively related to autumn rainfall and to the number of infested acorns the
previous years. Ultimately, acorn predation was negatively influenced by inter-annual fluctuation of seed
production (masting) yet, mainly and positively, prompted by autumn rainfall and acorn crop size (only in
one site). Our results highlight the relevance of masting to reduce seed predation. Yet evidences that rain-
fall stochasticity directly determines the success of weevils, and it independently influences seed predation
extent, indicate that environmental cues prompting masting may also fine-tune the output of this repro-
ductive behavior. Additionally, local differences suggest that the relevance of masting may change with
tree characteristics (low vs. high seed production) and landscape structure (isolated vs. dense forests). We
also discuss what can be the effects of increasing drought in Mediterranean areas for this antagonistic
interaction, triggered by rainfall.

Key words: Curculio spp.; extended diapause; granivory; Mediterranean oak forests; plant-animal interactions;
pre-dispersal seed predation; Quercus ilex; resource pulses.
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INTRODUCTION

The synchronous and intermittent production
of large and nil seed crops (often termed masting)
is a taxonomically and geographically wide-
spread reproductive behavior among plants
(Kelly and Sork 2002). The superabundance of
seeds in certain years combined with periods of
almost no reproduction not only influences the
temporal patterns of seedling recruitment in
these species (De Steven and Wright 2002,
Oddou-Muratorio et al. 2011) but also results in
an erratic pulse of resources triggering a cascade
of “bottom-up” effects across trophic levels: seed
consumers (Selva et al. 2012), predators of seed
consumers (Ritchie and Johnson 2009), parasites
(Jones et al. 1998), and even parasitoids (Satake
et al. 2004).

Evolutionary hypotheses for the advantages of
masting as a reproductive strategy are based on
an “economy of scale” principle: A single but
extraordinary reproductive episode should be
more beneficial than continuous but moderate
reproductive events (Kelly and Sork 2002). In this
sense, the advantage of masting as a mechanism
to reduce seed predation (the seed predation satia-
tion hypothesis sensu Janzen 1971, see also Silver-
stown 1980) has probably been one of the
hypotheses receiving greatest attention (Kelly
et al. 2000, Yu et al. 2003, Espelta et al. 2008,
Fukumoto and Kajimura 2011, Archibald et al.
2012, Moreira et al. 2017). As proposed by Satake
et al. (2004), the synchronous, irregular produc-
tion of large and nil seed crops would lead to
predator satiation by combining two different
mechanisms: (1) “functional satiation” (large seed
crops surpass the feeding capacity of predators,
see also Ims 1990) and (2) “numerical satiation”
(the current number of predators may be too low
to consume many seeds if the previous year’s crop
was small, Bonal et al. 2012). Certainly, masting is
expected to be especially effective in controlling
predators with specialized seed-feeding habits,
limited mobility, and a short life span encom-
passed within the seeding season (Shibata et al.
1998). This is the case of many preeminent seed
consumers such as granivorous insects (e.g.,
weevils in Mulder et al. 2012, Munoz et al. 2014,
bruchids in Peguero et al. 2014).

Evidences of the benefits that extreme inter-
annual variability in seed production may play
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in reducing seed predation have been extensively
suggested (Satake et al. 2004, Espelta et al. 2008,
Peguero et al. 2014, Moreira et al. 2017). How-
ever, few studies have tested whether environ-
mental factors (proximate causes) influencing
masting might also be directly involved in con-
trolling seed predator’s populations and thus
also contribute to escape seed predation (but see
Poncet et al. 2009). Therefore, while the relevance
of environmental conditions for synchrony in
reproduction and variability in seed crops has
been thoroughly investigated (temperature in
Schauber et al. 2002, Kelly et al. 2013, rainfall in
Pérez-Ramos et al. 2010, Fernandez-Martinez
et al. 2015, or even “weather packages” in
Fernandez-Martinez et al. 2016, see also Koenig
et al. 2016), their potential direct impact on the
predators that consume these seeds has often
been neglected. Temperature and precipitation
may certainly have an effect on predation extent
by determining food resource (crops) variability,
but they may also directly influence the popula-
tion size or the performance of seed consumers.
For example, meteorological conditions are
known to directly affect the population size and
activity of rodents (e.g., squirrels in Kneip et al.
2011, wood mice in Wrdbel and Bogdziewicz
2015, Sunyer et al. 2016) and ungulates (Servanty
et al. 2009). Similarly, rainfall amount and its sea-
sonal distribution may influence oviposition by
granivorous insects (Bonal et al. 2010) by affect-
ing the number of adults emerging from the soil
(Schraer et al. 1998), or even altering their sex
ratio (Bonal et al. 2015).

Disentangling the issue as to whether seed pre-
dation is mainly controlled by variability in seed
production or by the direct impact of meteoro-
logical conditions on predators may help in
shedding light on the evolution of this reproduc-
tive behavior in plants as well as to understand
its relevance under new climatic scenarios arising
from climate change. Mediterranean oaks (Quer-
cus spp.) offer a worthwhile opportunity to
examine this question since they show clear
masting behavior (Koenig and Knops 2000) and
acorns are largely consumed by seed predator
specialists such as acorn weevils (Curculio spp.;
Bonal et al. 2007). Moreover, rainfall stochastic-
ity, including the occurrence of severe drought
episodes, influence masting in these species
(Espelta et al. 2008, Pérez-Ramos et al. 2010,
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Fernandez-Martinez et al. 2012) and the emer-
gence of adult weevils from the soil after dia-
pause (Bonal et al. 2010). Thus, the main aim of
this study was to elucidate the contribution of
the inter-annual variability in acorn crop size
and the direct effects of precipitation (i.e., condi-
tioning the likelihood of acorn weevil emergence
from the soil) for the extent of acorn predation.
To test this, we used an intensive four-year moni-
toring of acorn production, rainfall variability,
adult weevil emergence from the soil after dia-
pause, and acorn predation in isolated Quercus
ilex trees in a savannah-like landscape, and also a
database (11 yr) of acorn production, rainfall
variability, and acorn predation by weevils in 15
forest stands. We specifically assessed (1) the
inter-annual variability of acorn production and
acorn predation, (2) the effect of rainfall on adult
emergence from the soil and thus on the abun-
dance of adult weevils, and (3) the dependence

Collserola
9,

Huecas
L]
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of acorn predation rates on current crop size,
inter-annual variability in acorn crop sizes, and
rainfall amount, as a surrogate of the abundance
of adult weevils. We hypothesize that, apart from
the reported effects of rainfall stochasticity in
determining masting in Mediterranean oaks
(Espelta et al. 2008, Fernandez-Martinez et al.
2012), it may play a relevant role in acorn infesta-
tion through its direct effect on the number of
adult weevils present, thus fine-tuning the
expected effects of masting on predation.

MATERIALS AND METHODS

Study area and species

This study was conducted in two different
areas of Spain: Huecas (Toledo, central Spain)
and Collserola (Barcelona, northeast Spain;
Fig. 1) where the reproductive patterns of Quer-
cus ilex and acorn predation by weevils (Curculio

Fig. 1. Location of the study sites (Huecas and Collserola) in Peninsular Spain. Notice that Huecas (A) corre-
sponds to a savannah-like landscape (“dehesa”) with scattered oaks, while Collserola (B) is an old-coppiced oak
forest. Photograph A courtesy of Helena Ruiz-Carbayo.
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spp.) have been thoroughly studied (Bonal et al.
2007, 2010, Espelta et al. 2008, 2009). Huecas is a
savannah-like landscape with scattered Q. ilex
trees (from 1 to 100 trees/ha, up to 2 km apart)
embedded in a cropland matrix (Fig. 1A).
Climate is continental Mediterranean with cold
winters, extremely hot, dry summers, and rain
concentrated in spring and autumn. Mean
annual temperature ranges from 14.6° to 16°C,
and mean annual precipitation ranges from 350
to 450 mm per year. The landscape structure
allows the intensive monitoring of separate indi-
vidual trees that are like “islands” for insects’
specialists on oaks (Ruiz-Carbayo et al. 2017).
For the purpose of this study, we selected 24 focal
trees and monitored acorn production and seed
predation rates over four years (2009, 2010, 2011,
and 2012) and adult weevil emergence from the
soil beneath each tree over five years (2008, 2009,
2010, 2011, and 2012). Rainfall patterns from
2008 to 2012 were obtained from a local weather
station. Collserola Natural Park is a coastal mas-
sif covered by dense, old-coppiced Q. ilex forests
(see Fig. 1B). Climate is typically Mediterranean,
with 614 mm of mean annual precipitation and
monthly temperatures with a maximum of
24.3° £ 0.7°C in August and a minimum of
8.5° £ 0.6°C in January. Summer is the warmest,
driest season, while most rainfall occurs in spring
and autumn (Fernandez-Martinez et al. 2012).
For the purposes of this study, we used the data
collected from 15 Q. ilex trees in 15 forest stands
(~225 trees) where acorn production and seed
predation were monitored from 1998 to 2009 (see
Espelta et al. 2008 for methodological details).
The annual pattern of rainfall per plot from 1998
to 2009 was obtained from the meteorological
database developed in the MONTES project (M.
Ninyerola and M. Batalla).

Quercus ilex acorns mature in one year and
seed production is subjected to strong inter-
annual fluctuations (Espelta et al. 2008). In
Collserola, acorns are subjected to pre-dispersal
predation by two weevil species, Curculio glan-
dium and Curculio elephas (Espelta et al. 2009),
while C. elephas is the prevalent acorn parasite in
Huecas (Bonal et al. 2007). Curculio glandium is
widely distributed in Europe associated with oak
trees (Quercus spp.), while C. elephas is present in
central and southern Europe, also associated
with oaks (Quercus spp.) and chestnuts (Castanea
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sativa). In the two study areas, both weevils can
only infest acorns since there are no chestnuts
around. Both C. glandium and C. elephas over-
winter underground, but the two species present
different phenologies: C. glandium emerges ear-
lier, mostly in spring (Pélisson et al. 2013), while
the emergence of C. elephas is restricted to
autumn (Espelta et al. 2009, Bonal et al. 2012).
After emerging, adult weevils climb to the crown
for mating. This is the time when acorn preda-
tion also takes place (Bonal and Munoz 2009,
Espelta et al. 2009), after females drill a tiny hole
in the seed cover with their rostrum and gener-
ally deposit a single egg in the developing acorn
using their oviscapt. The two weevil species also
differ in their dispersal ability and dormancy
strategy. Adults of C. glandium emerge from the
soil two years after larvae development and are
able to fly up to 10 km, while C. elephas emerges
in early autumn and has a much lower dispersal
ability (Venner et al. 2011, Pélisson et al. 2013).
In fact for C. elephas, genetic differences and
restricted gene flow among populations are
observed beyond 300 m (H. Ruiz-Carbayo, un-
published manuscript). This species also has the
ability to spread the emergence of adults up to
three years (~66% emerging the first year, 30% in
the second, and 4% during the third year; see
Venner et al. 2011, Pélisson et al. 2013).

Sampling design

In Huecas, acorns were collected using buckets
(0.12 m* x 0.5 m) hung from the lower branches
of every tree to prevent predation by large ungu-
lates. The number of traps per tree was propor-
tional to its canopy surface, and covered at least
1.5-2% of the canopy (see Bonal and Munoz 2009
for details). Seed traps were sampled periodically
and, after the first infested acorns were collected,
traps were checked every 10 d until acorn fall
ceased. On each revision, seeds were taken to the
laboratory to identify sound and infested ones
(Bonal and Munoz 2009). In addition, to estimate
the population size of acorn weevils and the phe-
nology of their emergence from the ground, a
survey of adult emergence was carried out from
August 2008 to October 2012, using emergence
traps attached to the trunks of focal trees. Each
trap consisted of a cone of mosquito netting
attached to the tree trunk with a closed bottle on
top. After emerging from the soil, the weevils

June 2017 ** Volume 8(6) ** Article 01836



climbed up the trunk and were trapped in the
bottle (see Bonal et al. 2012 for further details).
Distance between trees and their location in a
hostile media for weevils (croplands) make suc-
cessful dispersal of C. elephas among trees almost
impossible (Bonal et al. 2012). Traps were
checked on a daily basis from August to late
October in order to record the number of individ-
uals that had emerged. At the same time, weekly
precipitation was measured at a local weather
station for the same period in order to determine
the possible influence of rainfall on the emer-
gence of adults.

In Collserola Natural Park, acorn production
and predation rates were recorded in 15 plots
established in oak forests in 1998. At each plot,
15 trees were randomly selected (225 trees in
total) from among those with most of their
crowns exposed to full sun and with similar dbh.
Each tree was tagged and four branches of simi-
lar size (~2-3 cm in diameter) were randomly
chosen from different sections of the canopy (see
Espelta et al. 2008 for further details). From 1998
to 2009, the number of acorns produced and
infested was counted on these branches at the
peak of the acorn crop in the area (usually in
early to mid-September, Espelta et al. 2009). This
sampling protocol was selected because the inter-
mingling of tree branches precludes the possibil-
ity of individual monitoring of seed production
per tree by means of seed traps (see Fig. 1B).
Similarly, surveys of adult emergence were not
conducted owing to the difficulties of performing
them in these dense old-coppiced forests
(~1500-2000 individuals/ha).

For each tree, we calculated the number of
sound acorns produced per year, the number of
parasited acorns, the inter-annual variability in
acorn production (CV, coefficient of variation of
seed production across years), and synchrony in
the pattern of seed production. Synchrony was
calculated as the Pearson’s coefficient of correla-
tion (r) of non-log-transformed data of each tree
with the rest of trees in Huecas and with all trees
in the same plot in Collserola (see Espelta et al.
2008 for further details).

Data analysis

Generalized linear mixed models (GLMMs),
following a binomial distribution, were used to
test for the effects of several variables on acorn
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predation rate (i.e., the ratio of infested acorns to
the total number of acorns in year t). Seed preda-
tion rate is the variable commonly used to inves-
tigate whether temporal variability in seed
production (masting) may influence seed preda-
tion extent (see Satake et al. 2004, Bonal et al.
2007, Espelta et al. 2008, Moreira et al. 2017), as
the use of the crude number of seeds depredated
can be tightly linked to the number of seeds
available. The rationale behind the inclusion of
the different independent variables in the model
and their expected impact (positive or negative)
on acorn predation is listed below:

1. Acorn crop size in year t—This variable may
have a negative effect on predation if func-
tional satiation takes place (Satake et al.
2004). Conversely, it could have a positive
effect, especially in Collserola where the
weevil with the highest dispersal ability is
found (C. glandium), if weevils are attracted
by more productive trees. Therefore, differ-
ences between the two study sites Huecas
and Collserola may be expected due to their
extremely different tree density.

2. Number of infested acorns in year,_; and
year;_,—The number of infested acorns
during previous years can be assumed to be
an estimate of the current size of the wee-
vils” population in year f, especially if envi-
ronmental conditions do not affect their
success (no effects of rain). We added
infested acorns in the previous two years, as
the weevil species present both in Collserola
and in Huecas (C. elephas) exhibits extended
diapause (i.e.,, 96% of adults emerging in
two years; Venner et al. 2011), and the other
species present in Collserola (C. glandium)
emerges after two years (Venner et al. 2011).
This variable is expected to increase acorn
predation (Bonal et al. 2010).

3. Inter-annual fluctuation on seed production (i.e.,
ratio of mature acorn crop size in year t to that in
year,_q and year,_,)—Inter-annual fluctuation
in seed production is the variable often used
to explore the potential advantages of mast-
ing for escaping seed predation by combin-
ing the numerical and functional satiation of
predators (see Satake et al. 2004, Espelta
et al. 2008, Tachiki and Iwasa 2013, Moreira
et al. 2017). This variable is the ratio of the
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size of the current acorn crop available to
previous year crops, as the proxy of the
potential number of adult weevils present in
year t. This ratio is expected to be negatively
related to acorn predation: A high ratio (a
large acorn crop size in year t and a low seed
production in previous years) would mean
the presence of few adult weevils and a high
number of acorns in year ¢, thus resulting in
low predation rates.

4. Rainfall—As rainfall amount is suggested to
be a crucial factor to allow the emergence of
adult weevils from the soil (Alverson et al.
1984), and this may directly affect acorn pre-
dation, we included in the analyses the val-
ues of total rainfall for the periods when the
emergence of weevils has been observed in
our study areas in previous studies: from
September to October for C. elephas in Hue-
cas and Collserola (Espelta et al. 2009, Bonal
et al. 2010) and from May to June for
C. glandium in Collserola (Espelta et al.
2009). In the two sites, we expected rainfall
to have a positive effect on acorn predation
as the greater the amount of rainfall, the
more weevils would be able to emerge from
the soil (Schraer et al. 1998) and potentially
infest acorns.

The “plot” and the “tree” factors in Collserola
and the “tree” factor in Huecas were included as
random effects in the GLMM analyses to account
for the repeated nature of the measurements and
other unexplained variation. Selection of the
most adequate model was done by using the
dredge function of the MuMIn package in
R (Barton 2015). Comparison of sets of alterna-
tive models was done by using differences in the
second-order (or corrected) Akaike Information
Criterion (AIC.) and contrasting models by using
¥> tests. Inclusion of a variable in the model
required a significant % test (P = 0.05) and a dif-
ference between AIC (delta: AAIC,) of at least
of four units compared to the same model
excluding that variable. Pseudo-coefficients of
determination (R?) were used to estimate the
contribution (in %) of fixed effects (R? ) and

. 2marginal .
both fixed and random effects (RZ . gitona) i
explaining the variability of acorn predation.

To test for the main factors accounting for the

abundance of adult weevils in a given year in the
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site where we monitored their emergence
(Huecas), we ran a GLM including the number of
weevils emerging per tree and year as the depen-
dent variable and rainfall during the season of
emergence (from September to October) and the
number of acorns infested during year; ; and
year; , per tree as the independent factors. In
addition, we analyzed the relationship between
rainfall and emergence of adult weevils from the
soil at a fine-grained temporal scale by plotting
the number of emerged weevils and the amount
of rainfall per week. We then ran correlation analy-
ses comparing rainfall accumulated in one or two
weeks and the number of emerged weevils one
week later, since a minimum rainfall threshold is
needed to soften the soil enough for weevil emer-
gence (Mulder et al. 2012 and references therein).

Data analyses were performed using the R
statistical software program, version 3.1.1 (R
Development Core Team 2014).

REesuLTs

Annual acorn production varied in both study
sites with years of abundant and low seed crops,
although this pattern was much more evident in
Collserola than in Huecas (Fig. 2, CV =197 £
0.07 in Collserola and 0.94 + 0.11 in Huecas). In
Collserola, oaks usually exhibited very low acorn
production (422 + 139 acoms~tree*]~yr*]), and
there were high pulses of production in only
three out of 11 yr (Fig. 2A): remarkable peaks in
2002, 2004, and 2008 and almost no mature acorn
production in 2000, 2001, and 2005. In Huecas,
trees were more productive (5281 4 1608
acorns-tree '-yr'), yet similar to Collserola, and
despite a shorter time series, there was a year
with a remarkable crop size (2012) preceded by
some with lower values (Fig. 2B). Synchrony
among trees in their inter-annual pattern of seed
production was also higher in Collserola than in
Huecas (Pearson’s r: 0.67 + 0.05 and 0.36 + 0.09,
respectively). Parallel to the large variation
observed in seed production, the proportion of
acorns depredated by weevils exhibited large
variability over the years in both sites, with a pat-
tern of low values in years of high seed produc-
tion and more variable rates (both low and high)
in years of lower acorn crops (Fig. 2). In Collser-
ola, the higher predation rates were observed in
2001, 2003, 2006, and 2009 as opposed to 2000,
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Fig. 2. Mean acorn production per tree (columns), mean acorn predation percentage per tree (black dots), and
cumulative rainfall (empty squares) in early autumn (September and October) in Collserola (A) and Huecas (B).

2002, and 2007 (Fig. 2A), while in Huecas
(Fig. 2B) 2009 and 2012 showed lower predation
rates than 2010 and 2011.

The detailed (“per tree”) monitoring of adult
weevil emergence conducted in Huecas revealed
that the number of adult weevils present in a
given year was significantly and positively
related to the amount of autumn rainfall that year
(F=1261, P<0.001) and to the number of
infested acorns—a proxy of the number of larvae
—the two previous years (F =24.9, P < 0.001).
This relationship between the numbers of adult
weevils present (emerged from the soil) and
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rainfall amount in early autumn is also supported
by the weekly patterns of rain accumulated and
the number of weevils emerged and trapped
(Fig. 3). In the four years included in the study,
emergence of adult weevils from the soil started
in early September and peaked some weeks later,
roughly at the end of October, concurrent with
rainfall accumulation patterns (see Fig. 3). In fact,
emergence was positively correlated (r = 0.53,
P < 0.001) with the amount of rainfall in the pre-
vious two weeks, probably because some time is
needed to moisten and soften the soil enough to
facilitate the emergence process.
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Fig. 3. Weekly precipitation (gray columns) and adult weevil emergence (black dots) from early September to
late October for the years 2008 to 2012 in Huecas. S = September; O = October; 1 = first half month; 2 = second

half month.

As shown in Table 1, in Collserola, acorn pre-
dation per tree was significantly influenced by
the size of the current acorn crop, rainfall amount
in early autumn, and inter-annual fluctuation of

Table 1. Coefficients of the significant effects in the gen-
eralized linear mixed models on the effects of crop
size;, Crop Size;_1 and (2 inter-annual variability in
crop size (ratio of crop year; to crop year;_1 and -2
hereafter crop ratio), autumn rainfall, and spring
rainfall on acorn predation rate per tree in year t (see
the Data analysis section for further details about
these variables).

Site Effect Estimate  Std.error  z-Value
Huecas Intercept —0.56682 0.16953 3.277**
A. Rainfall 1.02438 0.14032 7.155%**

Crop ratio  —0.44428 0.14161 3.075**
Collserola Intercept -3.9772 0.2330 16.091***
Crop; 0.7540 0.2210 3.284%**

A. Rainfall 1.8931 0.2617 6.915%**

Crop ratio —1.3791 0.2687 5.572%**

Notes: A. rainfall, autumn rainfall. Predictors are ordered by
relative importance established by the dredging process accord-
ing to maximum likelihood and the model average function.

*P < 0.05, **P < 0.01, and ***P < 0.001.
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seed production (ratio of acorn crop f to acorn
crop t—1 and ¢—2). In the model, acorn crop size
and autumn rainfall had a positive effect on
acorn predation, while inter-annual fluctuation
in seed production (masting) had a negative
effect. Similarly, in Huecas, the proportion of
infested acorns per tree was significantly affected
by inter-annual fluctuation in seed production
and by autumn precipitation (Table 1). As
observed in Collserola, rainfall had a positive
effect on acorn predation, while inter-annual
fluctuation had a negative effect (Table 1). In
both sites, considering the relative importance of
all variables included in the model, early autumn
rainfall was the main source of acorn predation
variability followed by inter-annual fluctuation
in seed production (see Table 2 and also Fig. 2
for the similarity in the patterns of early autumn
rainfall amount and acorn predation).

DiscussionN
Our results demonstrate that early autumn

rainfall stochasticity directly affects the emer-
gence of adult weevils from the soil, and this
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Table 2. Relative contribution of the different variables explaining acorn predation calculated by comparing the

best model and alternative models with an identical fixed-effects structure, but ignoring one variable at a time.

RZ
Site Model dfpod. AIC, AAIC, Afest . Marg. Condit.

Huecas Best model 6 374.3 0.205 0.385
A. Rainfall 4 408.6 34.2 2 39.0%** 0.015 0.398

Crop ratio 4 378.7 44 2 9.1* 0.175 0.395

Collserola Best model 8 6417.3 0.167 0.910
A. Rainfall 6 6504.2 68.9 2 74.0%** 0.068 0.900

Crop ratio 6 6495.5 33.1 37.2%x* 0.123 0.912

Crop; 7 6437.7 9.3 1 10.9%** 0.152 0.903

Note: df,q: degrees of freedom of the model; dfi.s: degrees of freedom of the test; marg.: marginal R?, proportion of vari-
ance explained by the fixed factors alone; condit: conditional R?, proportion of variance explained by both the fixed and random

factors; AIC., Akaike Information Criterion.
*P < 0.05, **P < 0.01, and ***P < 0.001.

effect may become as important as the inter-
annual variation in acorn crop size (masting) for
acorn predation extent. Interestingly, as masting
in Mediterranean oaks is also driven by inter-
annual differences in rainfall amount, mostly in
spring and summer (see Espelta et al. 2008,
Ferndndez-Martinez et al. 2012, 2015, Koenig
et al. 2016), rainfall stochasticity appears as the
trigger point of this complex plant-animal inter-
action and its final outcome: acorn predation.
Indeed, our results do not falsify the predator
satiation hypothesis as an ultimate cause for the
selection of masting. Yet they highlight that prox-
imate environmental causes involved in this
reproductive phenomenon may also directly and
independently influence seed predation extent,
thus fine-tuning the effects of inter-annual seed
variability. To what extent this role may change
under new ecological scenarios arising from cli-
mate change (e.g., increasing drought in Mediter-
ranean areas) remains a challenging question to
be further investigated.

Early autumn rainfall influenced the emer-
gence of adults of Curculio elephas from the soil,
and this is the most likely explanation for the
positive influence of precipitation during this
season on acorn predation extent. Previous stud-
ies, both experimental (Alverson et al. 1984,
Schraer et al. 1998) and observational (Bonal
et al. 2010), had already shown a positive rela-
tionship between precipitation and adult weevil
abundance, with the need of a certain rainfall
amount threshold to enhance their emergence
(Fig. 3, see also Mulder et al. 2012). Yet for the
first time, we demonstrate that this effect may
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influence seed predation extent. Rainfall in early
autumn certainly would benefit the emergence of
C. elephas, the weevil with a later phenology, and
the only one present in Huecas, but not Curculio
glandium, the second species present in Collserola
that emerges in spring. The lack of significant
effects of spring rainfall we observed for acorn
predation in this site may be due to the fact that
moister conditions during late winter and initial
spring observed in the soils of the study area
(Sanchez-Costa et al. 2015) make rainfall not to
be such a crucial factor for the emergence of
C. glandium as it is for C. elephas after summer.

The effect of rainfall stochasticity on the emer-
gence of some weevil species becomes crucial to
explain why predation rates do not always match
the functional and numerical satiation effects pre-
sumably associated with inter-annual crop vari-
ability. For example, as shown in Fig. 2A, acorn
predation in Collserola in 2007 was as low as the
values observed during the two masting events
(2002 and 2008), although the crop size in 2007
was much lower (poor functional satiation expected)
and very similar to that of the previous year 2006
(poor numerical satiation expected). Interestingly, in
2007, rainfall in September-October was extremely
low (Fig. 2A) and this could constrain weevil
emergence from the soil and reduce predation
intensity. Similarly, in Huecas, predation in 2011
was much lower than that in 2010, even though
the number of acorns produced in these two years
was very similar (Fig. 2B), probably owing to the
extremely dry autumn in 2011 (see Fig. 3).

Our results demonstrate that aside from acorns,
weevils require perforce a certain amount of
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rainfall at a very precise time of the year (autumn)
in order to be able to emerge from the soil and
successfully infest the acorns. Interestingly, this
environmental requirement is uncoupled with the
ones driving acorn production as this mostly
depends on rainfall in spring and early summer
(Espelta et al. 2008, Fernandez-Martinez et al.
2012, 2015), with barely any effects of autumn
rain, when acorns have almost fully developed
(Espelta et al. 2009). Therefore, in a year with a
large acorn crop available after optimal conditions
in spring and summer, weevils could not benefit
from it, if a dry autumn occurs and it blocks their
emergence. This suggests that extended diapause
in weevils is indeed a complex phenomenon that
might have evolved not only to cope with the
extreme inter-annual variability in seed crop size
but also to cope with the effects of climate uncer-
tainty (see also Venner et al. 2011, Pélisson et al.
2013). At the same time, it is challenging whether
masting promoted variable diapause or it was
the unpredictable emergence of weevil adults,
prompted by rainfall stochasticity, what made
masting advantageous for oaks. In any case, theo-
retical models developed by Satake and Bjernstad
(2004) suggest that, whatever the origin for
extended diapause in a predator, extremely high
temporal variability in seed production (masting)
would benefit the host to buffer its effects.

The relevance of rainfall for controlling seed
predation by weevils also challenges which will
be the outcome of this antagonistic interaction in
new climatic scenarios arising from climate
change. In Mediterranean-type areas, the pre-
dicted increase in the intensity and length of
drought events will certainly affect the patterns
of acorn production, reducing the size of acorn
crops, as has been already tested in experiments
of rainfall exclusion (Sanchez-Humanes and
Espelta 2011). Yet extended drought may also
directly affect weevil populations by limiting the
success of their emergence (Bonal et al. 2010) or
even altering the sex ratio of populations (Bonal
et al. 2015). This raises the question as to
whether inter-annual variability in seed predic-
tion or direct rainfall shortage effects on weevils
will increase in importance for controlling acorn
predation as climate change progresses (see also
McKone et al. 1998, Poncet et al. 2009).

The observed effect of inter-annual crop vari-
ability to reduce acorn predation supports
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predator satiation as one of the evolutionary
hypotheses based on a plant-animal interaction
to explain masting in oaks. Certainly, it could be
argued that there are other animals also feeding
on acorns such as rodents, birds, or ungulates
not included in this study. However, weevils are
one of the most important pre-dispersal acorn
consumers, being able to destroy up to 60% of
the crop in a given year (Leiva and Fernandez-
Alés 2005), and the only ones that comply with
the three characteristics suggested by Shibata
et al. (1998) to make a predator highly sensitive
to inter-annual seed variability: short life span,
reduced mobility, and high specificity. In addi-
tion to these effects, we cannot discard that the
production of extraordinary large crops may also
increase the chances of successful seed dispersal
and recruitment in these species both by increas-
ing the attraction of avian seed dispersers
(Pesendorfer and Koenig 2016) and by reducing
the removal of cached seeds during masting
years (dispersal satiation hypothesis in vander
Wall 2010, see also Zwolak et al. 2016).

In contrast to some previous studies, we did
not observe a higher proportion of seeds con-
sumed at low levels of seed availability, the
so-called type II functional response of seed con-
sumers (sensu Holling 1959, see also Moreira
et al. 2017), indicating that the effects of masting
may be somewhat idiosyncratic. In fact, although
the effects of masting and early autumn rain on
acorn predation were similar in the two localities,
they differed in the intensity of these effects and
the importance of other variables: greater impor-
tance of masting in Collserola and of rainfall in
Huecas and significant effect of the current acorn
crop sizes in the former site (see Tables 1 and 2).
Moreover, in Collserola, the high value of the R?
conditional (~0.90), which accounts for the vari-
ability explained by random factors, suggests a
major importance of the factor “plot” that may
be due, among others, to differences in acorn
production among forest stands (see also Espelta
et al. 2008). Considering the size of crops pro-
duced in the two sites, it seems reasonable that
masting had more importance in a site like Col-
Iserola where trees produce smaller crops (~10%
of the values recorded in Huecas, see Fig. 1 and
Espelta et al. 2008), forests are more continuous,
and adult weevils of C. glandium are much more
able to disperse from one tree to another. The
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production of moderate-low seed crops and the
intermingling of trees may explain why weevils
disperse and may concentrate on relatively more
productive trees, a pattern suggested by the posi-
tive effect we observed of the current acorn crop
size on predation (Table 1). This scenario would
give masting a greater importance to control seed
predation (see also Maeto and Ozaki 2003). Con-
versely, isolated trees in the savannah-like land-
scape of Huecas are bigger, less resource limited,
and may produce larger acorn crops regularly
(Moran-Lopez et al. 2016). In this situation,
although masting remains still important, the
direct effects of rainfall stochasticity on weevils
may become more relevant to control acorn pre-
dation extent. Altogether, these local differences
suggest that the relevance of masting may be
somewhat context dependent and change with
the size and productivity of trees and the land-
scape structure (see also Espelta et al. 2008,
Yamauchi et al. 2013), especially in long-lived
tree species such as oaks, a question that has
been barely addressed up to now and requires
further research.

CONCLUSION

The main contribution of our study has been
to demonstrate that irregular seed crops (mast-
ing) certainly help escaping acorn predation in
Mediterranean oaks, yet the direct effects of rain-
fall stochasticity on the success of weevil popula-
tions may be as important as in reducing seed
predation extent. Furthermore, our results sug-
gest that the importance of masting to mitigate
seed predation may change with individual char-
acteristics (e.g., seed production) and spatial
attributes (i.e., isolation). Our findings also ques-
tion whether the increase in more severe and
long-lasting drought events in Mediterranean
areas owing to climate change will have a posi-
tive or negative impact in the outcome of this
plant-animal interaction.
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General
discussion

The ecological and evolutive principles underlying
plant-insect interactions are still largely unknown.
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Scope of General discussion

Throughout this Thesis several determinants and ecological drivers of granivory have been
explored in Mediterranean forests. In a multi-host (Quercus spp., Corylus avellana) and
multi-seed-predator (Curculio spp.) system, specificity and diet breadth of weevils was
evaluated to understand the mechanisms allowing the coexistence of the different weevil
species: i.e. resource partitioning (specificity based on host species membership, seed size
variability) or time partitioning (specificity based on the combination of seed phenology and
female ooegenesis). Our results showed that co-existence is not driven by differences in seed
size but modulated by the combination of time partitioning and probably dissimilarities in
dispersal-dormancy strategies among weevils. Differences in weevil specificity and in the
spatial distribution of the hosts studied resulted in the presence of genetic structure among
the populations of the more specific weevil depredating upon the more patchily distributed
host. Additionally, two oak forest scenarios (savannah-like landscape with scattered oaks in
Huecas and an old-coppiced oak forest in Collserola) were used to assess the influence of
inter-annual variability in acorn crop size and precipitation during weevil emergence from
the soil, for acorn predation. The results showed that irregular seed crops (masting) certainly
helps reducing acorn predation in Mediterranean oaks. However, the direct influence of
rainfall stochasticity on the success of weevil emergence from the soil also contributed to
decrease seed predation in a similar magnitude. Beyond the results obtained and the issues
discussed in both papers, some integrative ideas are discussed and exposed in this chapter, to
broaden the perspectives of the research conducted as well as to suggest some possible new
research lines.

Curculio spp. coexistence: Resource or time partitioning?

Ecological communities are limited membership assemblages in which interspecific biotic
interactions and abiotic conditions are the primary factors influencing composition and
diversity (Chase & Myers 2011). Species coexistence requires mechanisms such as
partitioning factors that reduce fitness inequalities (Chesson 2000). Several types of factors
allow species coexistence by partitioning, i.e. space, food, and time (Schoener 1974, Loreau

1992). For example, in discontinuous forest landscapes, seed weevil occupancy was related
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to the differential suitability of hosts as resources for each weevil species as long as this
creates a differential spatial storage effect that, coupled with a temporal storage effect
induced by differences in diapause, facilitates species coexistence (Govinda & Swihart
2015). In a different case, beta diversity of a Lepidoptera community in Mediterranean holm
oaks (Q. ilex) in a savannah-like landscape was mostly explained by spatial distance between
trees, supporting the importance of assemblages of species based on differences in dispersal.
In that case community assembly was also driven by the interaction of connectivity with tree
age and size, two relevant factors that contributed to differences in species abundance,
richness, and diversity (Ruiz-Carbayo et al. 2016). Similarly, on studies of bee and
bumblebee communities, coexistence has been observed to be driven by several factors, i.e.
interspecific differences in spatial resource utilization, depending on foraging ranges
according to body and colony sizes (Westphal et al. 2006) and morphological differences in
tongue length (Heinrich 1976). Concerning Curculio spp., several factors have been invoked
to explain species coexistence in these granivorous weevil communities, including
differential use of resources (seed size preferences, Espelta et al. 2009, Bonal & Mufioz 2009,
Peguero et al. 2017) and diversification of dormancy strategies and dispersal abilities
(Venner et al. 2011, Pélisson et al. 2012, 2013a,b; Ruiz-Carbayo et al. 2018). In my research,
in a multi-host-multi-phytophagous study system, differences in host specificity among
weevils were not driven by differential preferences according to seed size but by time
partitioning (i.e. differences in female sexual maturation, among C. nucum and the rest of
species, and a combination of time partitioning and differences in dispersal-dormancy
strategies among the three species depredating upon the same oak species, C. venosus, C.
glandium and C. elephas).

Time dimension has been observed to facilitate niche partitioning between co-occurring
organisms and allow coexistence (Kronfeld-Schor & Dayan 2003, Castro-Arellano & Lacher
2009). Difference between the time scales of consumer and resource dynamics is a critical
factor for the coexistence of consumers that occupy different temporal niches in a seasonal
environment (Loreau 1992) in insects but also in mammals. For instance, in two rodent
communities in a tropical semideciduous forest and a cloud forest, their temporal activity

showed a non-random niche segregation (Castro-Arellano & Lacher 2009). Similarly, time
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partitioning favors the coexistence and reduces the competition of two sympatric crab-eating
foxes (Credocyon thous and Lycalopex gymnocercus) with very similar body size and food
habits, with distributional ranges that overlap extensively in South America (Di Bitetti et al.
2009). According to the results of my research, differences in the patterns of sexual
maturation of females (i.e. synovigenic vs. provigenic species), could be a key factor for

segregation in time of the different weevil species and their co-existence.

Tolerance of seed predation: the effects of resource variability (masting) and abiotic

factors stochasticity.

Oaks show a strong “masting” reproductive behavior: namely, the synchronous and
intermittent production of large and nil acorn crops over wide areas (Bonal et al. 2007,
Espelta et al. 2008, Koenig et al. 2016). Weather conditions play a major role as proximate
cues for synchrony and variability in reproduction (e.g. rainfall in Pérez-Ramos et al. 2010,
or even “weather packages” in Fernandez-Martinez et al. 2017, see also Koenig et al. 2016).
Concerning the consequences of masting, there is an extensive consensus on the role of this
bizarre reproductive behavior to reduce pre-dispersal acorn predation (see for granivorous
insects Bonal et al. 2007; Espelta et al. 2008; Xia et al. 2016) yet, prior to this thesis, barely
any study had analysed the importance of masting compared to other factors regarding
infestation rates. In particular if the abovementioned environmental cues prompting masting
could also determine predator’s success and, ultimately, influence independently and directly
the seed predation extent. Indeed, many studies have shown that environmental conditions,
rainfall variation in particular, could directly influence abundance, demographic components,
and population fluctuations of phytophagous species (see Schraer et al. 1998, Servanty et al.
2009, Bonal et al. 2010, Kneip et al. 2011, Bonal et al. 2015, Wrdbel & Bogdziewicz 2015,
Sunyer et al. 2016), yet they have not assessed whether this had an effect on the extent of
seed predation (but see Poncet et al. 2009). In that sense, my results confirmed the important
effect of rainfall amount and distribution for the emergence of adult weevils from the soil
(see also Bonal et al. 2010) and ultimately its impact on the intensity of acorn predation. This
provides some new perspectives on the nature of this plant-animal interaction. On the one

hand, rainfall appears as a trigger environmental factor of this complex plant-animal
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interaction and its outcome (acorn predation) by influencing both the dynamics of seed crops
and weevil population sizes. On the other hand, this effect of rainfall stochasticity coupled
with the local differences among the two study sites (Collserola and Huecas) suggest that the
relevance of masting to escape seed predation may be somewhat context dependent and
change with the patterns of rainfall distribution in autumn and its effects on weevil
emergence, tree characteristics (low vs. high seed production), landscape structure (isolated
vs. dense forests). Indeed, several studies have highlighted that interactions among herbivore
communities and host plants are driven by ‘contingent’ abiotic and biotic factors but are
highly context dependent (Pringle 2016). For example, Bogdziewicz et al. (2018) on an eight-
year study evaluating seed production, spatiotemporal patterns of weevil seed predation, and
abundance of adult weevils in a holm oak (Q. ilex) covering a continuum of conspecific
density found that the effects of temporal variation in seed production on pre-dispersal seed
predation was highly influenced by the spatial arrangement of trees (i.e. differences among
more or less dense areas). The context dependency of masting reported in my study may help
to explain why, although many studies have emphasized that this curious reproduction pattern
should follow an “economy of scale” principle: i.e. the production of infrequent bumper crop
episodes should be more beneficial than moderate and continuous reproductive events (Kelly
& Sork 2002) and increase regeneration success, we still lack empirical evidence of its
ultimate positive effect on oak recruitment. Clearly, future research should be aimed to

elucidate this point.

Effects of fragmentation and rainfall stochasticity: Insights of potential global change

impacts on granivorous insects.

Global Change is threatening biodiversity conservation and exerting other pervasive impacts
on biotic networks and interactions (Steffan-Dewenter et al. 2002, Tylianakis et al. 2008,
Gilman et al. 2010, DeL ucia et al. 2012, Forrest 2015). Effects of global change over plant—
insect interactions have been shown to be variable at spatial and temporal scales but
ultimately to jeopardize relevant ecosystems services (e.g. pollination in Byers 2017). In that
context, this thesis provides some insights on the potential effects for granivorous weevils of

two of the most common problems involved in global change, such as the fragmentation of



habitats (chapter 11) and the consequences of climate change (chapter I11).

Habitat fragmentation may be a major a risk for plant insect interactions owing to the negative
effects of habitat loss and isolation (Brudvig et al. 2015, Valiente-Banuet et al. 2015, Rossetti
etal. 2017, Grass et al. 2018). Indeed, it has been observed that net habitat loss and associated
changes in spatial configuration may cause drastic declines in pollinator populations and
species richness (Steffan-Dewenter et al. 2002), ultimately decreasing reproductive output
and increasing inbreeding depression in plant remnant habitat patches (see Young et al. 1996,
Lennartsson 2002, Steffan-Dewenter et al. 2002). In the same line, a decrease in frugivorous
seed dispersers in fragmented landscapes may lead to recruitment losses among plants
(Asquit et al. 1997, Guariguata et al. 2000) and consequently cascading effects on
community structure (Byrnes et al. 2006). Even though the specific aim of the study
presented in chapter 1l was not to analyze the effects of landscape fragmentation on the
granivorous weevils, our results highlight that the patchy distribution of a host (Corylus
avellana) and the specificity of the granivorous weevil feeding on their seeds (Curculio
nucum) may have consequences for the genetic structure of the seed predator. This result
agrees with other studies conducted on other Curculio spp. that have observed that isolation
of forest patches may result on restricted gene flow among weevil populations (see Ruiz-
Carbayo 2018, for Curculio elephas). In summation, all these observations warn about the
fact that the potential increase in the scattered distribution of host plants owing to land use
changes may increase genetic drift in insect populations, reducing gene flow and increasing
genetic erosion odds (Ingvarsson & Olsson 1997, Peterson & Denno 1998, Peled et al. 2016).
This scenario may be particularly negative for highly specialized insects (Futuyma & Moreno
1988, Hernandez-Vera et al. 2010), with low dispersal ability (Peterson & Denno 1998,
Kubish et al. 2014) such as Curculio spp. weevils. Then, connectivity may be critical for
population survival (Fahrig & Merrian 1985, Fahrig & Paloheimo 1988) and metapopulation
dynamics (Levins 1970). In that sense, to what extent the low gene flow among sites and the
population bottlenecks observed for the highly specific C. nucum may threaten the continuity
of these populations if isolation of hazelnut patches increases, should deserve further

research.
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In addition to habitat loss and fragmentation, climate change is also a major threat for plant-
insect interactions (Tylianakis et al. 2008, 2010, Gilman et al. 2010, Byers 2017), owing both
to indirect effects such as a disruption in the matching of the phenologies of plants and insects
(Forrest & Miller-Rushing 2010, Forrest 2015) or direct negative effects in any of the two
components of the interaction. Mismatches in the phenology of plant-insect interactions
caused by climate change and their negative consequences have been extensively reported
(e. g. see for pollination Gordo & Sanz 2005, Kudo & lda 2013), and once again the
consequences are expected to be more negative for highly specialized insects than for
polyphagous ones. The latter may switch and expand their feeding range as they are not
constrained by a particular host, while narrow diet breadth phytophagous insect would be
unable to track changing climate or shift to a new host. (Braschler & Hill 2007, De Lucia et
al. 2012). Warming temperatures or changes in the precipitation regime my also directly
impact growth, survival, and reproduction of plants and insects (Forrest 2015). For example,
weevil oogenesis and egg maturation process depend on temperature (Guidone et al. 2007)
so it is expected that extreme temperature variation could alter oviposition. Interestingly, the
paramount importance of rainfall amount and distribution for the emergence of adult weevils
observed in chapter 111 of this thesis emphasizes the dramatic consequences that the predicted
decrease in precipitation and increased stochasticity owing to climate change in
Mediterranean regions (Pefiuelas et al. 2018) may have for this insect group. Indeed,
extended drought may negatively affect weevil populations by altering the sex ratio (Bonal
et al. 2015) and limit the success of their emergence or favor it out of time once seeds have
fallen (Bonal et al. 2010). Considering that the predicted increase in drought episodes will
reduce the size of acorn crops, as it has been already tested in experiments of rainfall
exclusion (Sanchez-Humanes & Espelta 2011), these results challenge which will be the
outcome of this antagonistic interaction in new climatic scenarios arising from climate

change in Mediterranean-type areas.
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New research perspectives for Plant-Phytophagous interactions.

After previous reflections, here | would like to present some areas of interesting perspectives
that I personally consider deserve attention and in some extent beyond those exposed in both
published papers. Indubitably, the research conducted on this thesis leaves behind
interrogatives in community ecology, context dependency and the effects of global change
for plants-phytophagous insect interactions. For instance, drivers of phytophagous insect
coexistence in multi host set-ups, ecological specialization, underlying evolutive

mechanisms, PSh in contingent scenarios, among others are still issues in the inkwell.

According to community ecology, specialization can be based upon the assumption that
generalist species should co-occur with many different species across sites, whereas
specialists should co-occur with relatively few species (Devictor et al. 2010). This attribute
could be measured from species co-occurrence patterns along environmental gradients or
contrasting scenarios and indirectly quantify specialization as it reflects the species response
to environmental heterogeneity. Concomitantly with host species, co-occurrence patterns
could help to understand the drivers of species coexistence stabilization mechanisms, host
selection and phytophagous insect specialization determinants. Considering contingency of
biotic and abiotic effects over plant-phytophagous insect interactions (Kolb et al. 2007,
Maron et al. 2014, Moreira et al. 2016), experiments across broad gradients would determine
whether the outcome of plant-phytophagous insect interactions varies with changing
conditions (Moreira et al. 2016). An auspicious path of future research is also exploring
evolutionary consequences of ecological dynamics driven by resource pulses and climatic
cues, and how changes in species functional responses underlie such dynamics. Particularly
interesting would be to evaluate rainfall stochasticity effects on plant-phytophagous insect

interactions in subtropical and tropical deciduous forests as well in arid and desertic habitats.

On the other hand, precise predictions of biotic responses to global change are crucial for
conserving natural and human-influenced ecosystems and cannot be considered
comprehensive without a deep understanding of the widespread relevance of plant-

phytophagous insect interactions (Gilman et al. 2010). Both host plants and phytophagous
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insect communities have been found to be changing because of several global change effects
in their phenologies, reproductive performance, genetic structure and adaptive capabilities
(De Lucia et al. 2012, Forrest 2015, Byers 2017). Considering species, interactions and
community process levels, studies are needed to assess changes on phytophagous species co-
occurrence, reproductive alterations on host and phytophagous insects and adaptative
responses like host shifting. Studying the influence of dispersal capacity, flight activity and
differences in diapause and dormancy trends as key factors in ecological diversification
would be also relevant facing environmental changes. Other factors not enclosed on these
studies such as the risk of parasitism, survival of larvae during diapause, natural enemy
resistance (Oliver et al. 2003, Haine et al. 2008), differences in endosymbiont communities
(Merville et al. 2013), could help understand the effects of global change.

Furthermore, gene flow restrictions and genetic consequences of fragmented habitats
specially over phytophagous species deserve attention. For instance, assessment of restriction
in landscape functional connectivity, could help understand consequent gene flow reduction
and its negative aftereffects for the persistence of specialized herbivore populations
compared to generalist species. Similarly, genetic variation erosion due to habitat
fragmentation (Young et al. 1996) is interesting owing to possible long-term evolutionary
consequences on host plants and herbivore species and its direct effect on individual fitness,
short-term viability of remnant populations and resilience capacity on drastically changing

scenarios.
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General Conclusions

1- DNA analyses revealed that Curculio nucum shows a complete specificity on hazelnut
(Corylus avellana) while the other weevil species (C. venosus, C. glandium and C.
elephas) show more flexible and wide trophic breadth depredating upon acorns of

different oak species (Quercus ilex, Q. pubescens) (Chapter I1).

2- Seed-size does not influence host specificity by Curculio spp. Coexistence of the different
weevil species seems to be intermediated by the combination of time partitioning driven
by female sexual maturation (synovigenic vs. proovigenic species) and diversification of

dispersal (high vs. low) and dormancy (fixed vs variable diapause) strategies. (Chapter

).

3- The avoidance of competitive exclusion among the weevil species emerging in spring
could be explained by a different pattern of sexual maturation of females, specifically an
earlier maturation in C. nucum in comparison to C. glandium. As well other ecological
inter-specific differences are contributing to stabilize weevil coexistence on those that rely
on acorn infestation; as C. glandium and C. elephas; that is high dispersal ability in the

former species and an extended diapause in the later. (Chapter I1I).

4- Differences in weevil specificity in their trophic breadth and the spatial distribution of
hosts (continuous vs. scattered) results in the presence of genetic structure among the
populations of the highly specific weevil (C. nucum) depredating upon a single patchily
distributed host (C. avellana) but not in (C. glandium) predating indistinctively in the

various and more continuously distributed oaks (Quercus ilex, Q. pubescens). (Chapter

).
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5- Oaks in Collserola and Huecas exhibited a strong masting behaviour with the production

of highly synchronous and variable seed crops across years (Chapter 111)

6- Rainfall amount and seasonality influenced the emergence of adult weevils from the soil

in Huecas. (Chapter I11).

7- Masting contributed to the reduction of seed predation in the two monitored sites
(Collserola dand Huecas) and supports the Predator satiation hypothesis. Yet precipitation
did also influence acorn predation, probably via its effects on the emergence of adult

weevils (Chapter I111).

8- Differences among the two studied sites (Collserola and Huecas) in the importance of
masting to moderate seed predation suggest that the effects of this reproductive behaviour
are highly context dependent and change with local conditions (e.g. seed production
amount) and spatial location of trees (i.e., isolation). (Chapter I11).
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Epilogue

Plant-insect interaction: the final frontier.

These are the voyages of the starship “Doctoral Thesis”. Its mission: to explore strange new
hypotheses, to seek out new interactions and new conclusions, to boldly go where no
phytophagous insect or plant host has gone before...

...A not so long time ago in a galaxy not so far away...It is a dark time for plant-insect
interactions. Although the Oak masting has been functional, Weevil troops have been driven
away by Rainfall Stochasticity forces from their hidden base and pursued them across the
galaxy. Evading the dreaded Global Change, a group of freedom weevils led by Curculio has
established a new secret base on the remote world of new Plant Hosts. The evil lord
"Competitive Exclusion”, obsessed with finding young Curculio, has dispatched thousands
of DNA analysers into the far reaches of space....

...Thanks for sharing my journey into the secret life of plants and insects and having very
close encounters of the biological interactions kind. Here | tried to explore plant-insect
vicissitudes in wonderland or maybe somewhere in time. To find out that they are constantly
living on the edge and weevils like zombies arise from the ground with the rain. On this trip,
from The Shire to Mordor and back home the extremely amazing weevils from the
segregating fellowship wander in winding paths on a thrilling odyssey full of contingent,
pulsed and stochastic outcomes. Finally, this epiphanies and wonder tales of weevils riding
seeds on the storm will be remembered between brainwaves and reflections in the ancient
books of the dead peak-oilers society.

...I dedicate this epilogue in loving memory to all those weevils, adults and larvae, that lie
in a 1.5 ml eppendorf on the lab in the name of science progress. Now you are one with the
force and the force is one with you ...May the force be with you always...

This is the end

Beautiful friend

This is the end

My only friend

the end
Of our elaborate plans, the end
Of everything that stands, the end
No safety or surprise, the end

I'll never look into your eyes again

The Doors 1967
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Top: adult female weevil Curculio sp.

Middle top: acorn infested by Curculio sp. larvae
Middle bottom: weevil larvae emerging from a
hazelnut.

Bottom:field sampling (Prades, Catalunya)
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