

An i*-based Reengineering
Framework for Requirements
Engineering

Gemma Grau Colom

 Doctoral Thesis

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

@ 2008 by Gemma Grau Colom

Defended the 7th July 2008
At the Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics

Advisor:

Xavier Franch

Jury Members:

Prof. Dr. Pere Botella
Prof. Dr. Paul Gruenbacher
Dr. Jolita Ralyté
Dr. Jordi Cabot
Dr. Jordi Marco

This work has been supported by an UPC research scholarship.
This research has been performed in the context of the Spanish MEC
TIN2004-07461-C02-01 project.

a la Mariona

al Pol

Acknowledgements

First of all, I want to thank Xavier Franch for encouraging me to do the PhD and for being the
advisor of my research through this long path. I am also very grateful to Neil Maiden, for
introducing me to Goal-Oriented Requirements Engineering and the i* framework during my
stay in London. His suggestions and feedback have been very valuable in the development of
the PRiM method and the REDEPEND-REACT tool.

Some of my work has been done in collaboration with the research group GESSI. I have a
special gratitude to Carme Quer for her support on the beginning on my PhD and for reviewing
the development of the industrial case study presented in this thesis. I also want to thank Pere
Botella for his guidance. The PRiM method would be difficult to apply without tool support,
and so, I really appreciate the effort of Sebastián Ávila and Marc Oriol for the development of J-
PRiM.

One of my best experiences these years has been collaborating in the i* wiki with Jennifer
Horkoff and Dominik Schmitz. Thank you, guys. I also thank Eric Yu for his proposals and
comments when managing the i* wiki.

During these years, I have been sharing the room with many people to whom I owe long
exciting discussions and good fun. Some of them have become friends: Alina, Carlos, Edgar,
Meritxell, Jordi, Leo, Liliana, Oscar, Pere, and very specially, Claudia and Maria.

Finally, I want to give very special thanks to my family for they support, encouragement and,
above all, their love. Among them, Sergi has taken the worse part, thank you for bearing that
burden with me.

Abstract

Information Systems are a crucial asset of the organizations and can provide competitive
advantages to them. However, once the Information System is built, it has to be maintained and
evolved, which includes changes on the requirements, the technology used, or the business
processes supported. All these changes are diverse in nature and may require different
treatments according to their impact, ranging from small improvements to the deployment of a
new Information System. In both situations, changes are addressed at the requirements level,
where decisions are analysed involving less resources. Because Requirements Engineering and
Business Process Reengineering methods share common activities, and the design of the
Information System with the business strategy has to be maintained during its evolution, a
Business Process Reengineering approach is adequate for addressing Information Systems
Development when there is an existing Information System to be used as starting point.

The i* framework is a well-consolidated goal-oriented approach that allows to model
Information Systems in a graphical way, in terms of actors and dependencies among them. The
i* framework addresses Requirements Engineering and Business Process Reengineering but
none of the i*-based existing approaches provides a complete framework for reengineering. In
order to explore the applicability of i* for a reengineering framework, we have defined PRiM: a
Process Reengineering i* Method, which assumes that there is an existing process that is the
basis for the specification of the new Information System. PRiM is a six-phase method that
combines techniques from the fields of Business Process Reengineering and Requirements
Engineering and defines new techniques when needed. As a result PRiM addresses: 1) the
analysis of the current process using socio-technical analysis techniques; 2) the construction of
the i* model by differentiating the operationalization of the process form the strategic
intentionality behind it; 3) the reengineering of the current process based on its analysis for
improvements using goal acquisition techniques; 4) the generation of alternatives based on
heuristics and patterns; 5) the evaluation of alternatives by defining structural metrics; and, 6)
the specification of the new Information System from the selected i* model.

There are several techniques from the Requirements Engineering and Business Process
Reengineering fields, that can be used instead the ones selected in PRiM. Therefore, in order to
not enforce the application of a certain technique we propose a more generic framework where
to use and combine them. Method Engineering is the discipline that constructs new methods
from parts of existing ones and, so, it is the approach adopted to define ReeF: a Reengineering
Framework. In ReeF the six phases of PRiM are abstracted and generalized in order to allow
selecting the most appropriate techniques for each of the phases, depending on the user
expertise and the domain of application. As an example of the applicability of ReeF, the new
method SARiM is defined.

The main contributions of this work are twofold. On the one hand, two i*-based methods are
defined: the PRiM method, which addresses process reengineering, and SARiM, which
addresses software architecture reengineering. On the other hand, we provide several i*-based
techniques to be used for constructing i* models, generating alternatives, and evaluating them
using Structural Metrics. These methods and techniques are based on exhaustive review of
existing work and their validation is done by means of several formative case studies and an
industrial case study. Tool support has been developed for the approach: REDEPEND-REACT
supporting the graphical modelling of i*, the generation of alternatives and the definition of
Structural Metrics; and J-PRiM supporting all the phases of the PRiM method using a textual
visualization of the i* models.

 9

Table of Contents

List of Figures.. 14

List of Tables ... 17

List of Abbreviations... 20

1. Introduction... 21
1.1. Domain of the Thesis... 21
1.2. Motivation.. 24
1.3. Preliminary Decisions and Open Issues... 25
1.4. Objectives of the Research .. 27
1.5. Approximation to the Solution .. 28
1.6. Research Method ... 29
1.7. Overview of Remaining Chapters.. 30

2. State of the Art .. 33
2.1. Requirements Engineering... 34

2.1.1. Overview of Requirements Engineering... 34
2.1.2. Goal-Oriented Requirements Engineering .. 35
2.1.3. Building Precise Specifications of Software Behaviour 36
2.1.4. Evolving requirements .. 37
2.1.5. Concluding Remarks... 39

2.2. The i* Framework.. 40
2.2.1. Overview of the i* Modelling Constructs ... 40
2.2.2. Definition of an i* Metamodel.. 43
2.2.3. Concluding Remarks... 45

2.3. Analysis of i*-based Modelling Methods and Techniques.. 45
2.3.1. Overview of i*-based Modelling Methods and Techniques 45
2.3.2. Comparing the i*-based Modelling Methods and Techniques.......................... 48
2.3.3. Related i*-based Methods and Techniques... 52
2.3.4. Concluding Remarks... 52

2.4. Analysis of Related Requirements Engineering Methods and Techniques 53
2.4.1. Overview of Goal-Oriented Methods and Techniques 53
2.4.2. Comparing the Goal-Oriented Modelling Methods and Techniques 57
2.4.3. Concluding Remarks... 60

2.5. Conclusions.. 60

An i*-based Reengineering Framework for Requirements Engineering

10

3. PRiM: A Process Reengineering i* Method ... 63
3.1. Overview of the Method.. 64
3.2. Phase 1: Analysing the Current Process .. 65

3.2.1. Documenting the current process.. 65
3.2.2. Documenting a Collaborative Exercise Case Study.. 66

3.3. Phase 2: Building the i* Model of the Current Process ... 68
3.3.1. Step 2.1: Actor Identification and Modelling.. 68
3.3.2. Step 2.2: Building the Operational i* Model .. 69
3.3.3. Step 2.3: Building the Intentional i* Model.. 72
3.3.4. Step 2.4: Checking the i* Model... 74

3.4. Phase 3: Reengineering the Current Process ... 76
3.5. Phase 4: Generation of Alternatives .. 77

3.5.1. Step 4.1: Adding New Actors to the System... 77
3.5.2. Step 4.2: Reallocating Responsibilities... 78
3.5.3. Step 4.3: Checking consistency between alternatives 81

3.6. Phase 5: Evaluating Alternatives ... 81
3.6.1. Step 5.1: Choosing Suitable Properties ... 82
3.6.2. Step 5.2: Defining Metrics over the Models ... 83
3.6.3. Step 5.3: Evaluating the Alternative i* Models .. 84
3.6.4. Step 5.4: Trade-off Analysis of the Results .. 86

3.7. Phase 6: Defining the New System Specification.. 86
3.8. A Summary of PRiM Decisions .. 87
3.9. Conclusions.. 89

4. Defining Structural Metrics over i* Models ... 91
4.1. Motivation.. 92
4.2. An Overview of Existing Structural Metrics ... 93
4.3. Issues for the Metrics Definition Process .. 96

4.3.1. Towards a Template for Documenting Structural Metrics................................ 97
4.4. Adopting a Metamodelling Approach ... 99

4.4.1. The Generic Graph-based Metamodel .. 100
4.4.2. The Generic Sequence-based Metamodel ... 101

4.5. Towards the Definition of Structural Metrics.. 101
4.6. Analysis of the Metamodels and the Structural Elements 102

4.6.1. Establishing the Modelling Language Metamodel.. 102
4.6.2. Identification of the Structural Elements .. 103

4.7. Definition of Structural Metrics over i* Models.. 105
4.7.1. Identifying guidelines for Actor-based metrics... 105
4.7.2. Identifying guidelines for Dependency-based metrics.................................... 107
4.7.3. Example of Metric Definition: Data Accuracy ... 110

4.8. A Mapping-based Process for the Reuse of Structural Metrics 111
4.8.1. Guidelines for the Reuse of Structural Metrics... 112
4.8.2. Example: Reusing a Coupling Metric ... 112
4.8.3. Example: Reusing a Functional Size Structural Metric 114

Table of Contents

 11

4.9. Conclusions.. 119

5. Formative Validation of PRiM .. 121
5.1. Preliminary Validation Concerns... 121
5.2. Case Study Planning .. 123

5.2.1. Definition of the Case Study Goals... 123
5.2.2. Definition of the Hypotheses .. 124
5.2.3. Definition of the Formative Case Studies ... 124

5.3. Formative Case Study Execution... 126
5.3.1. The Meeting Scheduler Case study... 126
5.3.2. The Collaborative Exercise Case Study.. 132
5.3.3. The Conference Management System Case Study ... 136

5.4. Case Study Analysis .. 143
5.4.1. Analysis of the Individual Hypotheses ... 143
5.4.2. Analysis of the Comparative Hypotheses ... 144
5.4.3. Analysis of the Effectiveness when Applying PRiM...................................... 145

5.5. Conclusions.. 146

6. Industrial Validation of PRiM: From FENIX to DRAC.. 149
6.1. Introduction.. 149
6.2. Case Study Analysis .. 150

6.2.1. Define the Goals of the Case Study .. 150
6.2.2. Define the Hypothesis of the Case Study.. 150
6.2.3. Select the Reengineering Project .. 151
6.2.4. Identify the Method of Comparison.. 151
6.2.5. Minimize the effect of confounding factors.. 152

6.3. Case Study Planning .. 153
6.3.1. External Case Study Constraints... 153
6.3.2. Training Requirements.. 153
6.3.3. Necessary Measurements and Data Collection Procedures 153
6.3.4. Responsibilities and Schedule... 154

6.4. Case Study Monitoring .. 154
6.4.1. Phase 1: Analysis of the FENIX System (Current Processes) 155
6.4.2. Phase 2: Construction of the i* Model for the FENIX System....................... 158
6.4.3. Phase 3: Reengineering the FENIX Application... 161
6.4.4. Phase 4: Generation of Alternatives for the FENIX Application.................... 163
6.4.5. Phase 5: Evaluation of the Generated Alternatives ... 167
6.4.6. Phase 6: Generation of the Specification of the New System: DRAC............ 169

6.5. Case Study Results... 170
6.5.1. Hypothesis 1: Time invested... 170
6.5.2. Hypothesis 2: Generated Alternatives... 171
6.5.3. Hypothesis 3: Properties Evaluation ... 172
6.5.4. Hypothesis 4: Final Solution... 172

6.6. Conclusions.. 173

An i*-based Reengineering Framework for Requirements Engineering

12

7. ReeF: a Customizable Reengineering Framework .. 175
7.1. An Introduction to Method Engineering.. 176

7.1.1. Motivation for a Method Engineering Approach.. 176
7.1.2. Overview of Method Engineering Approaches... 177
7.1.3. Comparing the Method Engineering Approaches... 180

7.2. Research Method ... 181
7.3. Analysis of PRiM... 184
7.4. The Abstraction Process .. 184

7.4.1. Application of the Approach for Method Reengineering................................ 184
7.4.2. Abstracting the intentions from the method chunks .. 187

7.5. The Generalization Process ... 187
7.6. The Customization Process.. 190

7.6.1. The Refinement Process.. 190
7.6.2. The Operationalization Process... 191
7.6.3. The Combination Process ... 192

7.7. Summary of ReeF Decisions ... 193
7.7.1. Analysing the use of PRiM as the starting point... 193
7.7.2. Evaluation of ReeF in the Method Engineering Context 194

7.8. Conclusions.. 195

8. Defining SARiM: a Software Architecture Reengineering i* Method..................... 197
8.1. Overview of the Method.. 197
8.2. Phase 1: Analyse the Source Software Architecture.. 199
8.3. Phase 2: Conceptualize the Software Architecture into an i* Model....................... 201

8.3.1. Actor Identification and Modelling... 202
8.3.2. Building the Operational i* Model ... 202
8.3.3. Building the Intentional i* Model ... 204

8.4. Phase 3: Reengineering of the Current Architecture ... 206
8.4.1. The CBSP Approach... 206
8.4.2. Applying the CBSP approach ... 207

8.5. Phase 4: Generation of Alternative Architectures.. 208
8.5.1. The Scenario-based Software Architecture Reengineering Method 208
8.5.2. Pattern-based Generation of Alternative Architectures................................... 209
8.5.3. Convert Quality Requirements to Functionality ... 214
8.5.4. Distribute Requirements.. 214

8.6. Phase 5: Evaluation of the Alternative Architectures .. 215
8.7. Summary of SARiM Decisions ... 218
8.8. Conclusions.. 220

9. Tool Support.. 221
9.1. REDEPEND-REACT: Graphical Tool Support for PRiM...................................... 221

9.1.1. REDEPEND-REACT: Modelling with the i* Framework 222
9.1.2. REDEPEND-REACT: Support for the Generation of Alternatives................ 224
9.1.3. REDEPEND-REACT: Support for the Evaluation of Alternatives 224

Table of Contents

 13

9.2. J-PRiM: Specific Tool-Support for PRiM ... 225
9.2.1. Modelling the i* Framework in J-PRiM ... 226
9.2.2. Specific Support for the PRiM method... 227

9.3. Comparing i* Modelling Tools.. 229
9.3.1. Evaluating the i* Modelling Tools.. 229
9.3.2. Comparing the i* Modelling Tools ... 231
9.3.3. Comparing J-PRiM and REDEPEND-REACT .. 232

9.4. Conclusions.. 233

10. Conclusions.. 235
10.1. Contributions ... 235
10.2. Future Work... 237

Annex A. Partial Catalogue of i*-based Structural Metrics... 239
A.1. Architectural Coupling i* Metric... 240
A.2. Architectural Cohesion i* Metric... 241
A.3. Average Actor Workload i* Metric ... 242
A.4. COSMIC Functional Size i* Metric .. 243
A.5. Data Accuracy i* Metric.. 244

A.5.1. Data Accuracy Customization for the Meeting Scheduler.............................. 245
A.5.2. Data Accuracy Customization for the Collaborative Exercise........................ 246
A.5.3. Data Accuracy Customization for the Conference Management System 246
A.5.4. Data Accuracy Customization for the FENIX case study............................... 246

A.6. Data Consistency i* Metric.. 247
A.6.1. Data Consistency Customization for the FENIX case study........................... 248

A.7. Data Privacy i* Metric... 249
A.7.1. Data Privacy Customization for the Meeting Scheduler 251
A.7.2. Data Privacy Customization for the Collaborative Exercise........................... 251
A.7.3. Data Privacy Customization for the Conference Management System 251

A.8. Data Truthfulness i* Metric... 252
A.8.1. Data Truthfulness Customization for the FENIX case study.......................... 253

A.9. Ease of Communication i* Metric ... 254
A.10. Process Agility i* Metric... 255

A.10.1. Process Agility Customization for the Meeting Scheduler 257
A.10.2. Process Agility Customization for the Collaborative Exercise 257
A.10.3. Process Agility Customization for the Conference Management System....... 258
A.10.4. Process Agility Customization for the FENIX Case Study............................. 258

A.11. Process Coupling i* Metric ... 258
A.12. Uniformity of User Interface i* Metric ... 259

Author’s Publications ... 261

References .. 265

14

List of Figures

Figure 1.1. Analysis of the Requirement Engineering activities in the Information Systems
Development lifecycle.. 22

Figure 1.2. Overview of PRiM: a Process Reengineering i* Method .. 29

Figure 1.3. Overview of the research method .. 30

Figure 1.4. Relationship between the proposed reengineering activities and the chapter’s
sections ... 32

Figure 2.1. Role of requirements in the development lifecycle. Adapted from [Robertson &
Robertson, 1999] .. 35

Figure 2.2. The intentional Requirements Engineering framework. Obtained from [Kavakli,
1999]... 38

Figure 2.3. Scenarios, conceptual models, and goals/requirements in change management
[Haumer et al., 1999].. 39

Figure 2.4. Overview of the representation of the actors, roles, agents and positions in the i*
framework .. 40

Figure 2.5. Strategic Dependency model for a Meeting Scheduling. Adapted from [Yu, 1997]42

Figure 2.6. Strategic Rationale model for a Meeting Scheduling. Adapted from [Yu, 1997].... 43

Figure 2.7. Metamodel for the i* reference framework ... 44

Figure 3.1. Overview of the PRiM methodology, showing the steps undertaken in each of the
phases ... 64

Figure 3.2. Activity diagram of the activities performed to complete a collaborative exercise in
a traditional learning process.. 66

Figure 3.3. Piece of the i* operational model, concerning the dependencies derived from the
DIS Organization of a Collaborative Exercise .. 70

Figure 3.4. Piece of the i* operational model, concerning the dependencies derived from the
DIS Execution of a Collaborative Exercise.. 72

Figure 3.5. Piece of operational and intentional SR i* model for the activity Completion of a

Collaborative Exercise ... 74

Figure 3.6. Concept metamodel as a UML class diagram showing mappings between constructs
in the three model types.. 75

List of Figures

 15

Figure 3.7. Piece of i* model showing responsibility reallocation of the activity Performance of

a Collaborative Exercise into the eLearning System actor .. 80

Figure 3.8. Structural representations of the three i* models for the generated alternatives of the
Collaborative Exercise Case Study .. 85

Figure 4.1. Steps followed in the definition and validation of methods. Adapted from [Briand et

al., 2002] and [Ayyildiz et al., 2006] ... 97

Figure 4.2. Structural Metrics modelling languages and the metamodelling layers proposed. 100

Figure 4.3. Generic Graph-based Metamodel. Adapted from [Etien et al., 2003] 101

Figure 4.4. Generic Sequence-based Metamodel ... 101

Figure 4.5. Process for Defining Structural Metrics... 102

Figure 4.6. Excerpt of the Generic Graph-based Metamodel and its subtype for an i* SD model
.. 103

Figure 4.7. Structural Metrics reuse process based on metamodels. .. 111

Figure 4.8. Reusing a Process Coupling metric: mapping across the different metamodels.... 113

Figure 4.9. The components of a functional process and some of their relationships. Adapted
from [Abran et al., 2007].. 116

Figure 4.10. Reusing COSMIC-FFP: Mapping across the different metamodels.................... 117

Figure 5.1. Strategic Dependency i* Model for the Meeting Scheduler Case Study 127

Figure 5.2. Operational i* Model for the Meeting Scheduler Case Study (excerpt) 128

Figure 5.3. Piece of Operational and Intentional i* Model for the Meeting Scheduler 129

Figure 5.4. SD model for the Collaborative Exercise Case Study ... 133

Figure 5.5. SD i* Model for the Conference Management System Case Study 138

Figure 5.6. Operational i* Model for the activity Submission of Papers of the Conference
Management System Case Study ... 139

Figure 5.7. Operational and Intentional i* Model for the Conference Management System
(excerpt).. 140

Figure 6.1. Case Diagram with the different categories of processes in FENIX. Adapted from
[GESSI, 2007] .. 156

Figure 6.2. The i* model of the data loading processes in FENIX .. 160

Figure 6.3. Goal analysis taxonomy of the FENIX reengineering goals.................................. 162

Figure 6.4. Alternative Generation Plan for the FENIX System.. 165

Figure 7.1. Reference Framework for Method Engineering Approaches. Obtained from [Ralyté,
2001]... 177

An i*-based Reengineering Framework for Requirements Engineering

16

Figure 7.2. Assembly-based method engineering process. Obtained from [Ralyté & Rolland,
2001]... 179

Figure 7.3. Overview of the Research Method used for defining ReeF................................... 183

Figure 7.4. Method chunk “Explore new process alternatives using generation heuristics”.... 186

Figure 7.5. Phases, inputs, outputs, techniques and roles abstracted in ReeF.......................... 189

Figure 8.1. Overview of SARiM, showing the inputs and outputs of each phase.................... 199

Figure 8.2. Overview of the original architecture of the HMR. Adapted from [Kang et al.,
2005]... 200

Figure 8.3. Operational i* Model obtained from the DIS of the activity Call & Come of the
HSR .. 204

Figure 8.4. Intentional SD i* Model for the Call & Come activity of the HSR....................... 205

Figure 8.5. Contributions of the different properties to the attributes following the NFR
approach ... 210

Figure 8.6. Abstraction of the Generic i* Pattern for the Blackboard architectural pattern..... 211

Figure 8.7. Alternative i* SD Model generated from adapting the HSR’s Call & Come
functionality with the Blackboard Generic i* Architectural Pattern 213

Figure 8.8. Applying the Duplicated Hardware Component heuristic to improve fault-tolerance
.. 214

Figure 8.9. Schema of the generated alternative i* architecture models 218

Figure 9.1. Use Case diagram of the functionalities implemented in REDEPEND-REACT .. 222

Figure 9.2. Defining an SR model following the PRiM guidelines in REDEPEND-REACT . 223

Figure 9.3. Part of the definition of a Dependency-based Metric for the Security Property in
REDEPEND-REACT... 225

Figure 9.4. Use Case Model for the main functionalities developed in J-PRiM...................... 226

Figure 9.5. Screenshot of J-PRiM, showing the tree-form organization of the i* model (left) and
a view of the actors catalogue (right) ... 227

Figure 9.6. Screenshot of J-PRiM, showing the generation of the Operational i* Model on
Phase 2.. 228

Figure 9.7. Screenshot of J-PRiM, showing the evaluation of the functional size with the
COSMIC Method ... 230

 17

List of Tables

Table 2.1. Comparison of i* methods and techniques according to the proposed criteria 51

Table 2.2. Comparison of Goal-Oriented Requirements Engineering Methods and Techniques
.. 59

Table 3.1. Detailed Interaction Script (DIS) for the activity Organization of a Collaborative

Exercise .. 67

Table 3.2. Detailed Interaction Script (DIS) for the activity Execution of a Collaborative

Exercise .. 67

Table 3.3. Specification of the Use Case for the activity Execute an On-Line Collaborative

Exercise .. 87

Table 4.1. Overview of UML-based Structural Metrics, classified by the UML model they
evaluate... 94

Table 4.2. Template proposed for documenting Structural Metrics ... 98

Table 4.3. Guidelines for defining actor-based metrics.. 107

Table 4.4. Guidelines for quantifying the dependency-based metrics...................................... 109

Table 4.5. Mapping of the COSMIC-FFP concepts to the i* Concepts 117

Table 5.1. Formative case studies: source problem statement and main objectives to achieve 125

Table 5.2. Detailed Interaction Script (DIS) for the activity Invite Meeting Attendees............ 128

Table 5.3. Quality Attribute analysis of the resources for the Meeting Scheduler Case Study 129

Table 5.4. DIS for the activity Invite Meeting Attendees of the Meeting Scheduler Case Study
.. 131

Table 5.5. Generation of Alternatives for the Meeting Scheduler Case Study......................... 131

Table 5.6. Evaluation of Alternatives for the Meeting Scheduler Case Study 132

Table 5.7. Quality Attribute analysis of the resources for the Collaborative Exercise Case Study
.. 134

Table 5.8. Generation of Alternatives for the Collaborative Case Study 135

Table 5.9. Evaluation of alternatives for the Collaborative Exercise Case Study 136

Table 5.10. DIS for the activity Submission of Papers on the Conference Management System
Case Study.. 139

An i*-based Reengineering Framework for Requirements Engineering

18

Table 5.11. Quality Attribute analysis of the resources for the Meeting Scheduler Case Study
.. 140

Table 5.12. Generation of Alternatives for the Conference Management System Case Study 141

Table 5.13. Evaluation of Alternatives for the Conference Management System Case Study 143

Table 5.14. Summary of the evaluation of the analysed case studies....................................... 145

Table 5.15. Relation of time invested in each of the PRiM phases for each case study........... 146

Table 6.1. Description of the activities for the Data Loading Processes of FENIX................. 157

Table 6.2. Description of the activities for the PAR Marks Calculation Processes of FENIX 158

Table 6.3. Excerpt of the analysis of the problems encountered in the FENIX system 162

Table 6.4. Excerpt of the exploration of local alternative solutions for the problems encountered
in the FENIX system .. 164

Table 6.5. Metrics defined for the FENIX system.. 168

Table 6.6. Evaluation of the Generated Alternatives for the FENIX system 168

Table 6.7. Relation of time invested in each of the PRiM phases for each of the methods 171

Table 7.1. Comparison of the Method Engineering approaches according to a Reference
Framework.. 181

Table 7.2. Phases of PRiM, detailing the techniques, activities, inputs and outputs involved. 185

Table 7.3. Generic notation for the intentions of the abstracted method chunks 187

Table 7.4. Intentions proposed by the Scenario-based Software Architecture Reengineering
method [Bengtsson & Bosch, 1998]... 188

Table 7.5. Refinement step: how the generic intentions in ReeF are refined into SARiM 191

Table 7.6. Operationalization step: how the refined intentions of ReeF are operationalized into
SARiM.. 192

Table 7.7. Combination step: how the operationalized phases are combined to obtain SARiM
.. 193

Table 8.1. Detailed Interaction Script (DIS) for the service Call & Come............................... 201

Table 8.2. Classification of actors for the HSR Case Study... 203

Table 8.3. Transformation rules to obtain an Operational i* Model from an activity DIS 203

Table 8.4. Guidelines for obtaining the Intentional i* Model by analysis of the Operational i*
Model.. 204

Table 8.5. Equivalence between the CBSP Dimensions and the i* Constructs........................ 206

Table 8.6. Questions, answers and examples for stating the filters and correction factors of
actor-based metrics... 216

List of Tables

 19

Table 8.7. Evaluation results for the metrics indicating cohesion and coupling over 4 different
architectural styles .. 218

Table 9.1. PRiM phases and steps, showing how each step is supported by REDEPEND-
REACT and J-PRiM... 233

Table A.1. Documentation of an Architectural Coupling i* metric ... 240

Table A.2. Documentation of an Architectural Cohesion i* metric ... 241

Table A.3. Documentation of a Average Actor Workload i* metric.. 242

Table A.4. Documentation of the COSMIC-FFP Functional Size i* metric............................ 243

Table A.5. Documentation of the Data Accuracy i* metric ... 244

Table A.6. Documentation of the Data Consistency i* metric ... 248

Table A.7. Documentation of the Data Privacy i* metric .. 250

Table A.8. Documentation of the Data Truthfulness i* metric .. 252

Table A.9. Documentation of an Ease of Communication i* metric.. 254

Table A.10. Documentation of a Process Agility i* metric.. 256

Table A.11. Documentation of a Process Coupling i* metric .. 258

Table A.12. Documentation of a Uniformity of User Interface i* metric 260

 20

List of Abbreviations

ADL Architecture Description Language

AOSE Agent-Oriented Software Engineering

CBSP Component-Bus-System-Property approach

CREWS Cooperative Requirements Engineering with Scenarios

DIS Detailed Interaction Script

FUR Functional User Requirements

GBRAM Goal-Based Requirements Analysis Method

GORE Goal-Oriented Requirements Engineering

GQM Goal-Question-Metric paradigm

GRL Goal-oriented Requirements Language

HAM Human Activity Models

HSR Home Service Robot (case study)

IS Information System

ISD Information System Development

KAOS Knowledge Acquisition in autOmated Specification

ME Method Engineering

NFR Non-Functional Requirements framework

PRiM Process Reengineering i* Method

RE Requirements Engineering

ReeF Reengineering Framework

RESCUE Requirements with Scenarios for User-Centred Engineering

RiSD Reduced i* Strategic Dependency Model

RUP Rational Unified Process

SA Software Architectures

SARiM Software Architecture Reengineering i* Method

SD Strategic Dependency i* model

SE Software Engineering

SR Strategic Rational i* model

SRS Software Requirements Specification

UCM Use Case Maps

UML Unified Modelling Language

 21

1. Introduction

This thesis is related with the Requirements Engineering process of Information Systems
Development. More precisely, we propose to address the Requirements Engineering activities
from a reengineering point of view in order to align the development of a new Information
System or the evolution of an already existing one, with the strategy of the organization.

1.1. Domain of the Thesis

Nowadays Information Systems are a crucial asset of the organizations and even provide
competitive advantages to them. However, the Information Systems lifecycle covers a long
period in which its development is only a small part. As remarked in [Rolland et al., 2004],
system evolution is a fact of industrial life. Organizations are embedded into a competitive

environment that exposes them to frequent change. This often implies changes on their

software-based systems and, as a consequence, system evolution costs are fare higher than

initial software development costs.

There are many reasons for evolution and change in Information Systems. Changes that affect
the system over time include requirements, technology and business processes [Smith &
Hybertson, 2002]. All these changes are diverse in nature and may require different treatments
according to their impact over the Information System. On the one hand, the current software
may have to be improved, in order to provide the product with added functionality, better
performance and reliability, or improved maintainability [Pressman, 2005]. On the other hand,
if the changes on the business are too profound, a new Information System may have to be
deployed by adapting an already existing legacy system or by building a new one.

In both situations, changes are addressed at the requirements level, because it makes possible to
address decisions by involving less resources. More precisely, as defined in [vanLamsweerde,
2000], Requirements Engineering (RE) is concerned with the identification of the goals to be

achieved by the envisioned system, the operationalization of such goals into services and

constraints, and the assignment of responsibilities for the resulting requirements to agents such

An i*-based Reengineering Framework for Requirements Engineering

22

as humans, devices, and software. The processes involved in RE include domain analysis,

elicitation, specification, assessment, negotiation, documentation, and evolution.

In Figure 1.1 we show a goal-strategy Map [Rolland & Prakash, 2001] with the most common
Information Systems Development starting situations and how some Requirements Engineering
activities address them. It is possible to observe that in most of these situations, there is an
existing system to be analysed (sometimes even documented), and so, there are processes,
artefacts, and knowledge that can be taken as a starting point and may lead to the final result.
For that reason, we may consider Information Systems Development and Information Systems
Evolution as a process reengineering activity.

Figure 1.1. Analysis of the Requirement Engineering activities in the Information Systems Development

lifecycle

Business Process Reengineering is also known as Business Process Redesign, Business
Transformation, or Business Process Change Management. However, there is no consensus on
the degree of change in the process when the terms reengineering or redesign are applied, and
so, changes may range from a simple modification to a radically different new solution. To
avoid confusion, in this work we refer to evolution when the process changes require adapting
the current Information System and reengineering or redesign when a new Information System
has to be build. Therefore, the methods proposed in this thesis focus on Information Systems
reengineering although most of them can also be applied to Information Systems evolution.
More precisely, we adopt the generic sense of the term process redesign defined in [Yu, 1995]:

When attempting to redesign a process, there are usually many alternatives, each

with different implications for the many parties (stakeholders) that may have an

interest in the process. To identify, evaluate, and select process alternatives that

can address many issues and concerns is a considerable challenge. A systematic,

engineering approach that employs appropriate models, analytical techniques, and

known design methods would facilitate the task of process improvement and

Chapter 1. Introduction .

 23

redesign, increase the chances of success, and potentially lead to more effective

technical systems by establishing clearer links between process design decisions

and technical system alternatives.

Eric Yu, Modelling Strategic Relationships for Process Reengineering (1995)

There are many Business Process Reengineering methods that addresses these issues in a
different way [Anton et al., 1994], [Teng et. al., 1998] and [Katzenstein & Lerch, 2000], among
others. However, all of them include the traditional reengineering activities proposed in [Yu,
1995]:

a) Identifying, delineating, and modelling the existent process;
b) Analysing it for deficiencies;
c) Proposing new solutions (process design); and,
d) Implementing the new design in terms of new technical systems and also new

organizational (people) structures (roles and responsibilities).

As far as we know, none of the existing work supports our claim that the specification of a
Information System may be view as a reengineering activity. However, some Information
Systems Development methods explicitly mention the term reengineering in their proposal
[Anton et al., 1994], [vanDerAalst & vanHee, 1995], [Bengtsson & Bosch, 1998], [Katzenstein
& Lerch, 2000], [Smith & Hybertson, 2002], [Zhang et al., 2003], [Bouillon et al., 2004], [Kim
et al., 2005], [Pressman, 2005]. On the other hand, it is also possible to observe that some other
methods that address the specification, development, or acquisition of an Information System
already support some of the mentioned activities even if they are not defined in the
reengineering context, among them we remark [Dardenne et al., 1993], [Guo et al., 1998],
[deBruin & vanVliet, 2001], [Nurcan & Rolland, 2003], [Grunbacher et al., 2004], [Jones &
Maiden, 2004]. Therefore, we may consider that changes on the Information Systems are all
part of a reengineering activity, which supports our claim of Information Systems Development
being treatable similarly to Information Systems reengineering.

Another observation that can be made is that each above-mentioned reengineering-related
approach focuses on a particular discipline or on a particular phase of the process. For instance,
the disciplines of business processes [Anton et al., 1994], [Katzenstein & Lerch, 2000];
software architectures [Bengtsson & Bosch, 1998], [Pressman, 2005]; or software platforms
[Zhang et al., 2003], [Bouillon et al., 2004]. On the other hand, some methods cover the
analysis of the current process and its representation [Anton et al., 1994], [Katzenstein & Lerch,
2000], [Jones & Maiden, 2004], [Kim et al., 2005]; the search for process alternatives
[Bengtsson & Bosch, 1998], [Katzenstein & Lerch, 2000], [Grunbacher et al., 2004]; or, the
specification of the new system from a modelled alternative [Jones & Maiden, 2004],
[Pressman, 2005]. Despite of this diversity, there are many similarities when the methods are
deeply analysed and some of the differences lie more in the detail (e.g., using a certain
technique or a certain modelling language) than in the rationale or the rough reengineering
process. However, in some proposals, some of the reengineering activities and artefacts are not
mentioned and neither is it the need of aligning the development of the solution with the
strategic needs of the organization. Consequently, it is difficult to apply them through a
complete reengineering process.

An i*-based Reengineering Framework for Requirements Engineering

24

1.2. Motivation

We have mentioned that Information Systems are a valuable asset for organizations to achieve
strategic advantage. According to [Giaglis, 2001], organizations should align the design of
Information Systems with the design of the corresponding business processes, in order to obtain
maximum benefits from their synergy. However, in most of the approaches, business strategy
usually falls outside the scope of current Requirements Engineering approaches [Bleinstein et

al., 2005]. On the other hand, Business Process Reengineering addresses this strategic aspect
and, at the same time, considers the development of an Information System to achieve it. There
are also some other reasons where this approach is adequate:

� The first activity of a reengineering process consists in identifying and delineating the
existent process. This means to spend some valuable time in analysing what it is already
built, but this is worthy. For instance [Yu, 1995] states that the explicit modelling of

business processes and their rationales facilitates on-going process evolution, and

especially facilitates the software evolution of the systems aimed at supporting these

processes. According to [Anton et al., 1994], a previous analysis allows the identification of

local inefficiencies in business processes, and recommends interventions to remove or

mitigate them. That’s why many authors and practitioners argue for the previous analysis of
the existing process and the generation of alternatives from that analysis [Anton et al.,
1994], [Jarzabeg & Tok, 1996], [Katzenstein & Lerch, 2000], [Giaglis, 2001], [Grant,
2002].

� Modelling the existing process also requires some effort. However, as stated in [Giaglis,
2001], organizations are complex in nature because they usually involve different people,
business units, resources, and Information Systems which interact via many different
processes. Consequently, carefully developed models are necessary for understanding their
behaviour in order to design new systems or improve the operation of existing ones.
Actually most Requirements Engineering methods use a modelling language, for instance in
terms of goals [Dardenne et al., 1993], [Anton et al., 1994], [Potts et al., 1994], [Yu, 1995],
[vanLamsweerde, 2001], Maps [Rolland & Prakash, 2001] or Activity Diagrams [Jacobson
et al., 2000]. In addition, there are several studies that prove that the representation of the
problem affects its resolution [Katzenstein & Lerch, 2000].

� Once the process is modelled the reengineering processes proposes analysing it for
deficiencies and proposing new solutions. It is a well known fact that the decisions taken
in the early stages of the Information Systems Development process, affects the quality of
the final product. Actually, there are several factors that influence the final result, such as
the decisions regarding how functional and non-functional requirements are addressed, the
architecture design, or the technology adopted. The consideration of such factors at the
requirements stages results in the exploration of different alternatives, which in
Requirements Engineering is usually done in form of patterns (i.e., [Gamma et al., 1994],
[Jacobson et al., 2000], [Fuxman et al., 2004], among others). Each pattern enforces a set of
quality characteristics and, so, the evaluation of the generated solutions helps the adoption
of more informed decisions, reducing the project risks. Actually, evaluation is one of the

Chapter 1. Introduction .

 25

increasing concerns in Information Systems Development processes, as it is shown in the
amount of work related to the definition of metrics [Porter & Selby, 1990], [Basili et al.,
1994], [Jacquet & Abran, 1997], [Briand et al., 2002], among others.

� Finally, once a solution is selected, the final step is implementing the new design in terms
of new technical systems and also new organizational structures. There are many
methods that address this step by transforming the specification of the new Information
System into code. Among them, we remark [Santander & Castro, 2002], [Bresciani et al.,
2004], and [Jones & Maiden, 2004].

It is possible to observe, that for each of the mentioned activities there are several Information
Systems Development methods and techniques that can be applied, each focusing in different
activities and domains of applications. It is then difficult to choose a unique method or
technique to be applied for all the situations and, because of that, there is a need of establishing
a more generic framework where to use and combine one technique or another depending on the
knowledge of the user or the domain of application.

1.3. Preliminary Decisions and Open Issues

According to the stated motivation, this thesis focuses on how to provide an effective way to
adopt a reengineering perspective during the Requirements Engineering phases of the
Information Systems Development processes, allowing the combination of different methods
and techniques. However, for doing that, we need to choose a modelling language and a set of
existing related techniques to begin with the analysis. With that purposes we have selected the
i* framework.

The i* framework [Yu, 1995] is a well-consolidated goal-oriented approach that allows to
model Information Systems in a graphical way, in terms of actors and dependencies among
them. It proposes two types of models: the Strategic Dependency (SD) model describes a
particular configuration of dependency relationships among organizational actors; and, the
Strategic Rationale (SR) model, which describes the rationales behind process configurations
explicitly in terms of the process elements and the relationships among them. These two models
are in fact, two views of the same process and can be represented together or separately because
they are linked by construction.

We consider that the i* framework is adequate for being used as a Requirements Engineering
reengineering approach because:

� Since its seminal proposal at [Yu, 1995], the i* framework addresses Business Process
Reengineering and Requirements Engineering. There is consolidated existing work in both
disciplines and it is also used in other contexts such as Business Modelling or Agent-
Oriented Systems Development, among others (see work on the [i* wiki] for more details).

� It is agent-oriented, which means that the modelled actors are considered to have its own
intentionality and follow its own rationale criteria. According to [Wooldridge, 1997], an

agent is an encapsulated computer system that is situated in some environment and that is

capable of flexible, autonomous action in that environment in order to meet its design

An i*-based Reengineering Framework for Requirements Engineering

26

objectives. In i* actors have this agent capability and can be of any kind from humans or
organizations to computer systems.

� It is goal-oriented and, because of that, it addresses the whys behind the process rather than
describing the what it has to do. According to [Anton, 1997] by focusing on goals instead of

specific requirements, analysts enable stakeholders to communicate using a language based

on concepts (e.g. goals) with which they are both comfortable and familiar. It must also be

noted that enterprise goals and system goals are more stable throughout the lifetime of an

enterprise than are the requirements defined at any one time.

� In many Goal-Oriented Requirements Engineering techniques, goals are complemented
with a description of their operationalization by using some process description techniques.
For instance, Scenarios are complemented with Goals [Rolland et al., 1999], Use Case
Maps are used in conjunction with GRL [deBruin & vanVliet, 2002], or, in order to
represent the system goals and the business goals, [Salinesi & Rolland, 2003] uses a System
Functionality Model together with a Business Model. However, in the i* framework, the
constructs used to represent the dependency relationships (SD) and the rationale behind the
process configurations (SR) allow to represent in the same model different levels of
abstraction of the process.

� According to [Yu, 1995], the approach it proposes for process modelling, analysis, and
design is compatible with the knowledge-based approach to Software Engineering and
Information Systems Development, enabling a fairly direct link to software development to
support business processes. As a result, there are several proposals that addresses the
construction of a detailed system specification from the i* models [Santander & Castro,
2002], [Bresciani et al., 2004], [Estrada et al., 2003], [Jones & Maiden, 2004].

As a result, we consider that the proposal presented in [Yu, 1995] as a suitable framework from
addressing Business Process Reengineering and Requirements Engineering altogether.
However, when analysing the work that has been done up to the moment, we realized that not
all the activities are completely addressed and we have noticed the following open issues.

Lack of i* modelling techniques. The i* framework allows to represent processes by means of
intentional concepts. Its modelling constructs are defined in a way they allow to model a
process by reasoning about the process itself. However, the inherent freedom provided by
the language and the lack of precise guidelines to guide the construction of the models
complicates the modelling activity. As a result, there is some work that addresses i*
modelling [Yu, 1995], [Estrada et al., 2003], [Bresciani et al., 2004], [Jones & Maiden,
2004], [Jones et al., 2004], [Neto et al., 2004], [Schmitz et al., 2004], [Grau et al., 2005],
but it is not intended to the reengineering context.

Lack of choice for representing the process alternatives. The systematic search for process
alternatives in [Yu, 1995] uses reasoning and hierarchical composition. But, despite the
process is systematic, all the alternatives are represented in the same i* model. A first
drawback of this approach is that when models grow and many alternatives are explored
this can make the models difficult to understand. The second drawback is that it is not
intended to consider existing patterns for generating the alternatives. That’s why some

Chapter 1. Introduction .

 27

proposals using i* take into account existing organizational patterns [Kolp et al., 2003],
[Bastos & Castro, 2004] in order to generate different alternatives and do it in a different
model, but these proposals do not offer specific guidelines for the generation of the patterns
in i* or any rules for its application.

Lack of choice for evaluating the process alternatives. In [Yu, 1995] the evaluation of
alternatives is done by analysing the resulting model through a set of defined concepts such
as ability, workability, viability, and beliability. This qualitative evaluation is adequate
when all the alternatives are represented in the same i* model, but are more difficult to
apply when different i* alternative models are generated. A quantitative evaluation would
be suitable for this representation. Actually, there are some approaches that proposes
structural metrics for evaluating i* models [Franch & Maiden, 2003], [Bryl et al., 2006].

Lack of a reengineering framework where to reuse existing techniques. We have mentioned
several i*-based techniques that could be used in those activities that are not completely
addressed by the i* framework in its seminal proposal [Yu, 1995]. Again we remark that
these i*-based techniques could be combined in different ways depending on the context
and domain of application. Also, as i* is goal-oriented, other goal-oriented techniques or
Business Process Reengineering techniques could be integrated in the process if needed. As
far as we know, this issue has not yet been addressed.

1.4. Objectives of the Research

The general objective of the work presented in the thesis is:

To define an i*-based framework where to address the Requirements Engineering

process from a Reengineering perspective, allowing the definition and reuse of

different models, methods and techniques, in order to provide the resulting method

with guidelines for representing the current process in i*, generating Alternative i*

Models and evaluating the i* models with structural metrics.

As a result of the analysis of the importance of the problem and in order to address this
objective, the following research questions arise:

� Is there any existing i* modelling technique suitable for the definition of i* models in the
reengineering context? If not, is it possible to define one?

� Are there any existing guidelines suitable for representing process alternatives by using
different heuristics and patterns? If not, are they possible to define?

� Which conditions are suitable for the definition of structural metrics over i* models? Is it
possible to define a framework for the definition of structural metrics over i* models?

� Do i* allow the integration of its constructs with the ones presented in other Requirements
Engineering and Business Process Reengineering techniques?

An i*-based Reengineering Framework for Requirements Engineering

28

Thus, besides the general objective presented above, the following objectives pretend to address
the presented research questions.

To provide an i* modelling technique for the definition of i* models in the reengineering
context. There are several i* modelling techniques that can be used to define the i* models
and, despite they are not indented for a reengineering approach, they have to be considered.
More precisely, as repeatability on the construction of the i* models stills and open issue,
other existing agent-oriented and goal-oriented modelling techniques have to be evaluated
in order to define a prescriptive practices for the generation of the models.

To provide heuristics and patterns for generating alternatives in the i* framework. There
are well-known already existing solutions for traditional Information Systems Development
processes that address the generation of alternatives by using heuristics and patterns. We
need to explore the generation of alternatives based on them for addressing the generation
of alternatives in the way that each alternative is modelled in a different i* model.

To provide a framework for the definition of structural metrics over i* models. Structural
metrics have already been used for evaluating i* models, but no framework is proposed for
its further analysis. Additionally to define its own metrics, as i* models can be defined as a
graph (actors are the nodes and dependencies are qualified edges), we believe that structural
metrics from other disciplines can be adapted to the i* context.

To provide a framework for defining i*-based methods by reusing reengineering practices
in other domains. The definition of a reengineering framework by using i* is possible
when by using Method Engineering principles. However, there is no work that proposes to
adapt i* to other Requirements Engineering and analysis design from other domains.

1.5. Approximation to the Solution

The analysis of the stated research objectives, shows that they can be grouped in those that
explore the applicability of i* in a reengineering context and those that generalize the obtained
results into other domains. Therefore, the solution presented in this thesis is composed by two
different parts:

1. Definition of an i*-based method for reengineering current processes (social or socio-
technical) using a reengineering approach. In order to explore the applicability of i* for a
reengineering framework, we have defined PRiM: a Process Reengineering i* Method,
which combines techniques from both the fields of Business Process Reengineering and
Requirements Engineering. PRiM is a six-phase method (see Figure 1.2) which extracts a
strategic i* model of the current process, analyses the resulting model for improvement,
generates different alternatives, facilitates their evaluation and allows specification of the
new system.

Chapter 1. Introduction .

 29

Figure 1.2. Overview of PRiM: a Process Reengineering i* Method

2. Abstraction of a generic reengineering framework for allowing the application of the
obtained techniques in other domains. As we have mentioned, there are many existing
techniques that can be used in a reengineering context. However, in PRiM we have just
applied a few ones related with process reengineering. Method Engineering is the discipline

that constructs new methods from parts of existing methods [Brinkkemper et al., 1998]. In
order to allow creating reengineering methods in a different domain or by using other
techniques, we have defined ReeF, a Reengineering Framework that uses a Method
Engineering approach to propose a set of techniques that allow selecting the most
appropriate techniques in each situation. In order to show the applicability of ReeF into
other domains we have defined SARiM: a Software Architecture Reengineering i* Method.

1.6. Research Method

This thesis has been developed in a research setting with little contact with the industry.
However, the topic of the thesis has arisen after the observation that most of the industrial
projects that were taking place in our university and in the industry were about reengineering an
existing system. This observation has been supported by similar observations in the existing
literature. There is a criticism on the disconnection that is often shown between research and
practice in software engineering [Moody, 2000], in order to avoid such a disconnection we have
followed a research method based on an iterative process that includes:

� Exhaustive review of existing techniques. As we have mentioned, there are many
proposals of techniques that can be used for achieving the reengineering activities. These
techniques have been analysed and, the most solid and widespread have been incorporated
in order to provide our methods with solid foundations.

� Formative validation of preliminary results. Based on the literature review, we have
created a preliminary version of the method that has been first validated using formative
case studies, as it is suggested by [Scriven, 1991]. These case studies have been chosen
among the most used problem statements in the Software Engineering field.

� Industrial validation of the approach. Based on the formative validation of the
preliminary results and the literature review, the solutions are refined. Finally, after some
iterations, when we considered that the formative validation is good enough [Scriven,
1991], we have validated the method in an industrial case study.

An i*-based Reengineering Framework for Requirements Engineering

30

Figure 1.3 presents an overview of the research method where the iteration process is depicted.
The first step has been to define the PRiM method, which has been done by reviewing existing
literature in the fields of Requirements Engineering and Business Process Reengineering. Once
a first version of the method has been defined, it has followed a formative validation using
academic case studies. We remark that the feedback provided by the case studies helps the
refinement of the method. PRiM has also been validated in an industrial case study in order to
verify its applicability in an industrial context. Once a first version of PRiM has been achieved,
it has been used to define ReeF: a Reengineering Framework. ReeF is also build based on
literature review of Method Engineering, Requirements Engineering and other reengineering
work on Business Processes, Software Architecture and Platform reengineering. The experience
obtained when defining reef has, in turn, help to refine the PRiM method. In order to validate
ReeF, we have created a new reengineering method for the domain of software architectures:
SARiM, a Software Architecture Reengineering i* Method. SARiM, in turn is validated using a
formative case study. The execution of the case study has, in turn, helped on the refinement of
the SARiM method.

Figure 1.3. Overview of the research method

1.7. Overview of Remaining Chapters

This document is organized by following a chronological view of the methods and frameworks
defined. However, as the methods involve different activities, it often happens that some
activities are introduced, defined and used in different sections. In order to facilitate its location,
Figure 1.4 presents the relation of the activities and the sections related with them. The rest of
the document is organized as follows:

Chapter 1. Introduction .

 31

Chapter 2 presents the state of the art that provides the theoretical basis for this work. As this
work is related with Requirements Engineering and the i* framework, the state of the art
contains an introduction to the Requirements Engineering practices and the basis of the i*
framework and related work on the use of its construct and the modelling methods and
techniques associated to it.

Chapter 3 describes PRiM, a Process Reengineering i* Method that uses the i* framework to
reengineer the current process in order to obtain the specification of the new system. PRiM
is composed of six phases, which are deeply described: 1) analysis of the current process; 2)
construction of the i* model of the current process; 3) Reengineering the current process; 4)
Generation of alternatives for the new system; 5) evaluation of the generated alternatives;
and, 6) specification of the new system.

Chapter 4 explores how to define, formalize, document and validate structural metrics based on
other existing structural metrics. This chapter is based on the state of the art on structural
metrics and complements the phase of PRiM where structural metrics are defined for
evaluating the generated i* models.

Chapter 5 presents the formative validation of PRiM, which describes a collection of academic
case studies that has been used to define, consolidate, and validate the method.

Chapter 6 contains the industrial case study that validates the PRiM method in an industrial
setting. The case study focuses on FENIX, an Information System that evaluates research in
a university. FENIX has to be replaced by a new system, called DRAC, and the
specification of the new system has to be addressed from a reengineering point of view.

Chapter 7 describes the process we have followed to obtain ReeF, a Reengineering Framework
that uses a Method Engineering approach in order to allow using the techniques proposed in
PRiM in other domains of application.

Chapter 8 presents an application of ReeF in the domain of Software Architectures. As a result
we obtain SARiM, a Software Architecture Reengineering i* Method.

Chapter 9 introduces REDEPEND-REACT and J-PRiM, the tools that have been developed to
support the method. In this chapter we explain the requirements of the tools, which parts of
the methods automate and we show screenshots of the most important parts.

Chapter 10 ends this document with the conclusions of the proposed approach and proposes
some related issues to be developed as future work.

Annex A contains a partial catalogue of i* structural metrics. The documented metrics are the
ones that appear in Chapter 4, Chapter 5, Chapter 6, and Chapter 8 of this document.

An i*-based Reengineering Framework for Requirements Engineering

32

Figure 1.4. Relationship between the proposed reengineering activities and the chapter’s sections

 33

2. State of the Art

This chapter presents an overview of the approaches, methods and techniques related to the
main topic of the thesis, which is related to Goal-Oriented Requirements Engineering and more
precisely, to the i* framework.

Current trends in Requirements Engineering propose to use goals to obtain the ‘whys’ behind
the functionality of the Information System rather than the ‘what’ it has to do. By using goals
the needs of the organization can be better aligned with the functionality provided by the
system. Because of that, goals are also used in disciplines such as Business Process
Reengineering or Agent-Oriented Software Engineering.

There are many requirements modelling languages and modelling techniques to be used in
Requirements Engineering processes and, in each situation, their adequacy has to be analysed.
In this thesis, the use of i* has been a preliminary decision in our work and, therefore, our
analysis compares existing work on the i* framework with related goal-oriented Requirements
Engineering work. This comparison will be done in two different parts in order to differentiate
the analysis of the i* framework as a modelling language from the modelling techniques used to
build the i* models.

This chapter complements the work presented in [Ayala et al., 2005b], [Grau, 2006]. [Grau et

al., 2006], and the remainder of the chapter is organized as follows. In Section 2.1 we provide
an introduction to the Requirements Engineering process. In Section 2.2 we introduce the i*
framework and we provide it’s metamodel for allowing a better understanding. There are
several modelling methods and techniques that address i* modelling and the manipulation and
evaluation of the resulting models, so, in Section 2.3, we analyse them and compare them in. In
order to get an overview of other related goal-oriented methods and techniques, in Section 2.4
we introduce and compare the most well-known. Finally, in Section 2.5 we present the
conclusions.

An i*-based Reengineering Framework for Requirements Engineering

34

2.1. Requirements Engineering

2.1.1. Overview of Requirements Engineering

Requirements Engineering is the responsible discipline for the discovery of the purpose of the
Information System. It includes the identification of the stakeholders, their needs over the future
system and their complete documentation in order to allow the analysis, implementation, and
evolution of the Information System.

There are many definitions for requirements. For instance [Robertson & Robertson, 1999]
defines a requirement as something that a product must do or a quality that the product must

have. We observe that this definition focus on the product (which may not be a software system)
and the qualities that the product shall have, which are more than functionality. Therefore, it is
possible to differentiate among: functional requirements, which specify the behaviour, services,
or behaviour that the product must provide; and non-functional requirements or quality
requirements, which expresses the desirable qualitative that the final product must have and, so,
they impose certain restrictions on the design or implementation. Additionally, [Robertson &
Robertson, 1999] also distinguishes constraints, which are the global requirements that apply to
the entire product and are determined before beginning work on gathering the requirements in
order to be used to estimate the correctness and appropriateness of the requirements as they are
gathered.

According to [Pohl, 1994] the main activities of the Requirements Engineering process are:
elicitation, negotiation, specification and validation. Requirements elicitation deals with
understanding the organisational situation and describing the needs and constraints that the new
system would have in order to improve it. Requirements modelling and analysis helps the
elicitation of the requirements and also helps in its communication. This aspect is important
because there usually are many stakeholders with often conflicting interest in the new system
and, so, requirements has to be presented to them in order to do the requirements negotiation
and establish and agreement. Once this is achieved, requirements specifications are built, stating
the mapping from stakeholders needs to a requirements model. Finally, requirements validation
ensures that the resulting specification corresponds to the stakeholder needs and is compliant
with the stated constraints. As the thesis focus on requirements elicitation and specification, this
Chapter won’t deal with requirements negotiation and validation.

Therefore, Requirements Engineering is the process that establishes the foundations on how the
software system has to be implemented and, because of that, it is highly related with the other
processes of the software lifecycle. As the success of a software system is measured according
to the degree to which it meets the purpose, Requirements Engineering places a crucial role in
the Information Systems Development process. In Figure 2.1 we present a diagram on the role
of requirements in the development lifecycle, were we observe that the requirements
specification is the basis of the rest of the phases and it receives feedback from all of them. The
diagram has been adapted from [Robertson & Robertson, 1999]; by adding some hints for
expressing that the requirements specification is used through the lifecycle for validation.
Therefore, during the specification stage we check that the requirements are precise and correct

Chapter 2. State of the Art .

 35

and we provide measurable fit criteria in order to get a better understanding of the stakeholder
requirements. During the phase of system testing, we use the requirements and the use cases to
test all the software system and subsystem components. Finally, during acceptance testing, the
requirements enable stakeholders to test whether delivered system does what they want.

Figure 2.1. Role of requirements in the development lifecycle. Adapted from [Robertson & Robertson,

1999]

A more precise definition of what is Requirement Engineering can be found in [Zave, 1997]
which states:

Requirements Engineering is the branch of software engineering concerned with

the real-world goals for, functions of, and constraints on software systems. It is

also concerned with the relationship of these factors to precise specifications of

software behaviour, and to their evolution over time and across software families.

Classification of Research Efforts in Requirements Engineering, Zave 1997.

As it is stated in [Nuseibeh & Easterbrook, 2000], there are three main aspects to remark in this
definition. The first one is that it mentions the real-world goals as the main motivation of the
software system. Goals are very important Requirements Engineering processes because it
highlights the ‘why’ as well as the ‘what’ a system has to do. The second aspect is related with
the term precise specifications. The requirements has to be precise because they are the basis,
not only for analysing the requirements but also for validating what stakeholders want, defining
what designers have to build, and verifying that they have done so correctly upon delivery.
Finally, the third aspects, refers to the specifications’ evolution over time and across software

families, which relates the Requirements Engineering process into the reality of a changing
world and the need to reuse partial specifications, as engineers often do in other branches of
engineering.

2.1.2. Goal-Oriented Requirements Engineering

Requirements Engineering research has increasingly recognized the leading role played by goals
in the Requirements Engineering process [vanLamsweerde, 2001]. In early Requirements

An i*-based Reengineering Framework for Requirements Engineering

36

Engineering approaches, the focus was on eliciting and documenting the requirements of what

the system had to do, but not on the rationale behind them. However, understanding the reasons
why a certain aspect of the system is being developed has become a critical success factor in
projects, and so, goal-driven approaches focus on this issue.

A goal is an objective to be achieved by the system under consideration. Goal formulation refers
to the intended properties to be ensured and, thus, goals may be formulated at different levels of
abstraction, ranging from high-level strategic concerns, to low-level technical concerns.

There are many reasons why goals are so important in the RE process [vanLamsweerde, 2001].
According to [Regev & Wegmann, 2005], the reasons for focusing on goals are the higher level

view or requirements afforded by goals as compared with traditional requirements

specifications; the stability of goals compared with the requirements that implement them; the

ability to consider alternative solutions; the verification and completeness of requirements and

traceability from the organizational context to requirements offered by goals.

As a result of their recognized benefits, goals have become the focus of a whole stream of
research on goal modelling, goal specification, and goal-based reasoning for multiple purposes,
such as requirements elaboration, requirements verification or conflict management, and under
multiple forms, from informal qualitative to formal. Among the existing goal-oriented
approaches we remark: the KAOS approach [Dardenne et al., 1993], the i* framework [Yu,
1995], GRAM [Anton, 1997], the NFR approach [Chung et al., 2000], and the Goal-driven
Change Method (GDC) [Kavakli & Loucopoulos, 1998]. These approaches are further
explained in the next sections, and a summary and comparison of several of the most
widespread goal-oriented approaches is available in [Green, 1994], [Kavakli & Loucopoulos,
2004], [Answer et al., 2006].

2.1.3. Building Precise Specifications of Software Behaviour

A software requirements specification (SRS) is a complete description of the behaviour of the
system to be developed. There are several ways to document requirements. It is possible to use
recommended approaches for the specification of software requirements such as the standard
IEEE 830-1998, [IEEE 830-1998]. This standard describes possible structures, desirable
contents, and qualities of a software requirements specification. With a similar aim, [Robertson
& Robertson, 1999] proposes the Volere Requirements Specification template.

Requirements specifications may be complemented with the description of all of the interactions
that the users will have with the software, which can be done by means of use cases or
scenarios. These artefacts provide a description of a sequence of actions or events for a specific
case of some generic task that the system is meant to accomplish. However, there is an
important difference among the concepts of use cases and scenarios, which is the following:

A Use Case is a description of a set of actions, including variants, that a system perform that
yields an observable result of value to a particular actor [Jacobson et al., 2000]. Therefore,
use case can be perceived as a behavioural specification of part of the future system that
describes how the system will behave in response to different inputs received from its

Chapter 2. State of the Art .

 37

environment. It specifies all of the relevant normal course actions, variants on these actions
and also alternative courses that inhibit the achievement of services and high-level system
functions.

A Scenario is one specific sequence of actions that illustrates the system’s behaviour [Jacobson
et al., 2000]. According to [Cockburn, 2000] each scenario contains a sequence of steps
showing how the actions and interactions unfold. A use case collects all the scenarios
together, showing all the ways that the goal can succeed or fail. Therefore, each use case is
normally associated with one or many scenarios. However instantiation in this sense can be
complex because different forms of instantiation include different action sequences and
different actor instantiations. They can also include different contextual assumptions.

It is interesting to note that, unlike methods such as the Rational Unified Process (RUP)
[Jacobson et al., 2000]; many Requirements Engineering methods elicit the use cases
interactively with the stakeholders to try what can occur in the different courses of actions. In
this sense, the use case is a mechanism for acquisition rather than the end product of the
process.

Use cases consider goals as a contextual property and in [Cockburn, 2000], goals are used to
structure use cases by connecting every action in a scenario to a goal assigned to an actor.
According to [Rolland et al., 1999], the goal scenario combination has been used to
operationalize goals, to check whether or not the current system usage capture through
multimedia scenario fulfils its expected goals, to infer goals specification from operational
scenarios and to discover new goals through scenario analysis. There are several techniques that
use this coupling between requirements and scenarios for eliciting requirements, among them
we remark the goal-scenario coupling method of the CREWS ESPIRIT project [Rolland et al.,
1998a], [Rolland et al., 1999]; and the RESCUE process [Jones & Maiden, 2004], [Jones et al.,
2004]. Following the same underlying principles, [Amyot & Mussbacher, 2002], proposes to
use the Goal-oriented Requirement Language (GRL) to describe business goals, non-functional
requirements, alternatives, and rationales; which are complemented by Use Case Map (UCM) in
order to enable the description of functional requirements as causal scenarios.

2.1.4. Evolving requirements

According to [Kardasis & Loucopoulos, 1998] recent years have experienced a growth in
demand for reengineering legacy Information Systems. Requirements processes for this project
has to be addressed in a specific way in order to avoid to spend too much effort on the analysis
of the new system (legacy systems are usually undocumented) and to align the business strategy
with the goals of the new Information System by dealing with stakeholders resistance to change.
Therefore, in order to address these issues, [Kardasis & Loucopoulos, 1998] highlights the need
for understanding of the enterprise in terms of its operations and resources, which provides a
solid background for analysing the system, and for assisting the coordination of business
changes dictated by the migration project; and, also the documentation of dependencies between
business processes and supporting IS in a way that changes in the business level are reflected on
system specifications, and vice versa.

An i*-based Reengineering Framework for Requirements Engineering

38

Based on the same idea, [Kavakli, 1999] proposes a Requirements Engineering intentional
framework that makes the distinction between four different types of intentional knowledge
models with respect to organisational change (see Figure 2.2), which are:

1. As-Is model. It expresses the knowledge about the existing enterprise goals and how
they are achieved through the current enterprise behaviour;

2. Change model. It expresses the knowledge about the stakeholders’ change goals and
how they can be satisfied in terms of alternative change plans;

3. To-Be model. It expresses the knowledge about the desired enterprise situation. For
instance, the future enterprise goals and how they are achieved by the re-engineered
enterprise behaviour; and

4. Evaluation model. It expresses the knowledge about the stakeholders’ evaluation goals
with respect to the appropriateness of an organisational model (current, change or
future).

As-Is

state

Change

state

Future

state

Evaluation

state

What is the

organization

currently trying to

achieve?

How well does an

organizational

model satisfy

stakeholders’

criteria?

What are the

requirements for

change and how

can they be

realized?

What does the

organization wish

to achieve in the

future?

stakeholders

s
ta
k
e
h
o
ld
e
rs

stakeholders

s
ta
k
e
h
o
ld
e
rs

Figure 2.2. The intentional Requirements Engineering framework. Obtained from [Kavakli, 1999]

As we observe there are different states to achieve, that range from the current situation (system
as-is) to the future situation (system to-be). We remark that, evaluation is needed in order to
ensure that the organizational model satisfy stakeholders and can be used to ensure the
alignment between the goals of the organization and the ones of the new Information System.

There are several works that addresses the development of an Information System from the
information of the current system as if it was a reengineering exercise. All of them use a goal-
oriented approach, for instance, the Business Process Reengineering approach of [Anton et al.,
1994]. Some others take advantage of the coupling among requirements and scenarios such as
[Haumer et al., 1999], which proposal consist in placing current-state and future-state scenarios
as well of goal in the context of model-based change management. In Figure 2.3 we show the
proposed cycle: a) reverse analysis, b) change definition; c) change implementation; d) context
integration.

Chapter 2. State of the Art .

 39

chan
ge en

vision
ing

Figure 2.3. Scenarios, conceptual models, and goals/requirements in change management [Haumer et al.,

1999]

On the other hand, requirements evolution also includes those situations where, instead of
developing a new Information System, the current one is evolved for fulfilling new
organizational needs. According to [Nurcan et al., 2005], system adaptation is done under

intense time pressure. Therefore, it is not possible to develop a To-Be model from scratch, given

the time and resources involved. A workable strategy under these circumstances is to use and

modify what is available, and add the remaining. These approaches also aims at aligning the
goals of the organization with the ones of the current Information System and the most
remarkable work is the Alignment and Co-Evolution Method (ACEM) [Etien, 2006], which
expresses change requirements under the form of gaps with the current situation.

2.1.5. Concluding Remarks

Requirements Engineering is the discipline that addresses the delivering of certain system
behaviour to its stakeholders. Its importance is noteworthy because it affects all the Information
System Development process. However, Requirements Engineering process deals with a
number of inherent difficulties. As stated in [Nuseibeh & Easterbrook, 2000], Stakeholders can

be numerous and distributed. Their goals may vary and conflict, depending on their

perspectives of the environment in which they work and the tasks they wish to accomplish. Their

goals may not be explicit or may be difficult to articulate, and, inevitably, satisfaction of these

goals may be constrained by a variety of factors outside their control.

There are several methods and techniques to address this process, among which we have
introduced the most widespread for the elicitation and specification of the requirements. We
have also highlighted the adoption of a goal-oriented approach and the benefits of the coupling
between goals and scenarios. Due to the big amount of legacy systems, we have also mentioned
those methods that addresses requirements evolution by differentiating the system as-is from the
system to-be. In the following sections we describe the most relevant goal-oriented methods and
techniques. As a preliminary decision in this thesis is the use of the i* framework, in the
following section we introduce the i* framework.

An i*-based Reengineering Framework for Requirements Engineering

40

2.2. The i* Framework

The i* framework is a goal-oriented and agent-oriented language defined by Eric Yu [Yu, 1995]
with the aim of modelling and reasoning about organizational environments and their
Information Systems. For doing so, it offers a formal representation of goals and their
behaviours using a formal decomposition structure, allowing the consideration of both
functional and non-functional requirements.

In his thesis, Eric’s Yu [Yu, 1995] proposes to apply the i* framework in the context of
Requirements Engineering, Business Process Reengineering, Organizational Impacts Analysis
and Software Process Modelling. As a result, this broad scope has given rise to an extended
practice on the construction and analysis of i* models (see [i* website] and [i* wiki] for more
details).

2.2.1. Overview of the i* Modelling Constructs

The i* framework proposes the use of two types of models for modelling Information Systems,
each one corresponding to a different abstraction level: a Strategic Dependency (SD) model
represents the intentional level and the Strategic Rationale (SR) model represents the rational
level. The definitions of the constructs provided in this section has been obtained from [Yu,
1995] and the i* Quick Guide at [i* wiki].

2.2.1.1. Modelling Actors

The central concept in i* is the intentional actor. Actors are active entities that carry out actions
to achieve goals by exercising their know-how and, so, organizational actors are viewed as
having intentional properties such as goals, beliefs, abilities, and commitments. We use the term
actor to refer generically to any unit to which intentional dependencies can be ascribed. By
depending on others, actors may be able to achieve goals that are difficult or impossible to
achieve on their own and, consequently, they become vulnerable if the depended actors do not
deliver. Actors are strategic in the sense that they are concerned about opportunities and
vulnerabilities, and seek the arrangements of their environments that would better serve their
interests.

Actors are represented by a round circle (see Figure 2.4, left) and can be specialized into agents,
roles and positions. Agents represent particular instances of people, machines or software within
the organization and they occupy positions and, as a consequence, they play the roles covered
by these positions (see Figure 2.4, right). The actors and their specializations can be
decomposed into other actors using the IS-PART-OF and IS-A relationship.

Figure 2.4. Overview of the representation of the actors, roles, agents and positions in the i* framework

Chapter 2. State of the Art .

 41

2.2.1.2. The Strategic Dependency Model

The Strategic Dependency (SD) model consists of a set of nodes that represent actors and a set
of dependencies that represent the relationships among them. Dependencies expresses that an
actor (depender) depends on some other (dependee) in order to obtain some objective
(dependum). There are four kinds of dependencies:

� Goal Dependency. The depender depends on the dependee to bring about a certain state in
the world. The depender does not care how the dependee does for achieving the goal and,
so, the dependee is free to, and is expected to make whatever decisions are necessary to
achieve it.

� Task Dependency. The depender depends on the dependee to attain a goal in a particular
way. The depender has already made decisions about how the task has to be performed and,
so, it is a constraint imposed by the depender on the dependee. However, the dependee still
has freedom of action within these constraints.

� Resource Dependency. The depender depends on the dependee for the availability of a
physical or informational entity. A resource is the finished product of some deliberation-
action process and so, in a resource dependency, it is assumed that there are no open issues
to be addressed or decisions to be made. By establishing this dependency, the depender
gains the ability to use this entity as a resource.

� Softgoal Dependency. The depender depends on the dependee to meet some non-functional
requirement. A softgoal is similar to a goal except that the criteria of success are not sharply
defined a priori. The meaning of the softgoal is elaborated in terms of the methods that are
chosen in the course of pursuing the goal. The depender decides what constitutes
satisfactory attainment of the goal, but does so with the benefit of the dependee know how.

In Figure 2.5 we show an example of the Strategic Dependency model for Meeting Scheduling,
without computer-based scheduled, adapted from [Yu, 1997]. The model is composed by three
different actors, all of them human: the Meeting Initiator, the Meeting Participant and the
Important Participant, which is linked to the Meeting Participant with an IS-A relationship.
About the dependencies, we remark that the Meeting Initiator depends on the Meeting

Participant and on the Important Participant for the goal Attends Meeting. In order to plan the
meeting, the Meeting Initiator depends on the Meeting Participant for the tasks Send Exclusion

Dates and Send Preferred Dates. We remark that this two elements are modelled as tasks
because the Meeting Initiator, as a depender, has made some decisions on how the dates has to
be delivered (i.e., the dates have to be sent in a certain format and belong within a certain data
range). Once the dates are analysed, the Meeting Participant depends on the Meeting Initiator
for the resource Proposed Date. Note that we modelled it as a resource, because it is an
informational entity. Finally, we have that the Meeting Initiator depends on the Meeting

Participant for the softgoal Agreement Achieved Promptly, and to the Important Participant for
the softgoal Participation Confirmed Promptly. We observe that promptly is relative to the
criteria of the Meeting Initiator and can not be sharply defined a priory.

An i*-based Reengineering Framework for Requirements Engineering

42

Figure 2.5. Strategic Dependency model for a Meeting Scheduling. Adapted from [Yu, 1997]

2.2.1.3. The Strategic Rational Model

The Strategic Rational (SR) model allows visualizing the intentional elements into the boundary
of an actor in order to refine the SD model with reasoning capabilities. The dependencies of the
SD model are linked to intentional elements inside the actor boundary. The elements inside the
SR model are decomposed accordingly to three types of links:

� Task-decomposition links state the decomposition of a task into different intentional
elements. There is a relation AND when a task is decomposed into more than one
intentional element. It is also possible to define constraints to refine this relationship.

� Means-end links establish that one or more intentional elements are the means that
contribute to the achievement of an end. The means is expressed in the form of a task, since
the notion of task embodies how to do something, with the end is expressed as a goal. There
is a relation OR between the end and its means. In the graphical notation, the arrowhead
points from the means to the end.

� Contribution links are Means-end links with a softgoal as end it is possible to specify if the
contribution of the means towards the end is negative or positive.

SR models have additional elements of reasoning such as routines, rules and beliefs. A routine
represents one particular course of action (one alternative) to attain the actor’s goal among all
alternatives. Rules and beliefs can be considered as conditions that have to fulfil to apply
routines.

In Figure 2.6, we present an example of a Strategic Rational model for meeting scheduling,
before considering computer based scheduled, which is adapted from [Yu, 1997]. We observe
that, the SR model complements the SD model presented in Figure 2.5, with the intentionality
of the actors. We observe that, in the SR model, the strategic dependencies are linked to the
intentional elements. Therefore, in Figure 2.6, we observe that the Meeting Initiator has as a
main task to Organize the Meeting. This task is decomposed with a task-decomposition link into
the goal Meeting Be Scheduled, Quick organization and Low Effort. The goal Meeting Be

Chapter 2. State of the Art .

 43

Scheduled is the end to achieve by the task Schedule Meeting and, so, they are related with a
means-end link. In the same way, the Meeting Participant has the task Find Agreeable Date,
which is decomposed into the task Agree to Date. This two task contributes negatively to the
softgoals User Friendly and Minimum Interruption of the Meeting Participant, respectively. On
the other hand, if those softgoals are achieved, they contribute positively to the softgoal Low

Effort for arranging the meeting.

Figure 2.6. Strategic Rationale model for a Meeting Scheduling. Adapted from [Yu, 1997]

2.2.2. Definition of an i* Metamodel

The concepts explained are the ones described in [Yu, 1995] and refined in the i* Quick Guide
at the i* wiki [i* wiki]. However, a characteristic that is soon discovered when starting to use i*
is that there is not a single definition of the language. Due to the strategic nature and objectives
of i*, the language provides some degree of freedom that results into the tendency of each
research team to create its own customized i*. That’s why they are multiple variants of the
language, which are identified in [Ayala et al., 2005b]. Some of the i* variants in process of
consolidation are the Goal-oriented Requirement Language (GRL) [Amyot & Mussbacher,
2002], [GRL website] and the language of the TROPOS project [Bresciani et al., 2004],
[TROPOS website]. There are also other i* variants that, although not being formally described
they also present some differences with the i* seminal proposal. Among them, we remark the i*
modelling language used by the tool REDEPEND [Pavan et al., 2003], the Formal Tropos
language [Formal Tropos website], and the proposal presented in [Sutcliffe & Minocha, 1999].

In order to provide a more comprehensive and flexible definition of the i* framework, in Figure
2.7 we present the metamodel proposed in [Ayala et al., 2005b]. The i* reference framework
proposed is compliant with the variants of i* that we have analyzed in the previous section, and
can be customized using refactorings techniques, such as the ones proposed in [Sunyé et al.,
2001]. The metamodel has been constructed including those concepts common to i*, GRL and
Tropos, and those concepts not common to the three variants but so important for goal-oriented
modelling and agent-oriented modelling that should be present in any other variant that could
appear. The reference framework allows determining the differences of an i* variant respect to

An i*-based Reengineering Framework for Requirements Engineering

44

the framework, and thus to know how much different a new variant that would appear would be
from the core of i*.

We observe that the metamodel integrates most of the described concepts, except those related
to the additional reasoning elements (i.e., routines, rules and beliefs). New concepts that are
useful for modelling are: the class Dependable Node, which models the intentional elements for
which it is possible define dependencies (i.e., actors and intentional elements of the SR model);
the Root association which represents the root of a SR decomposition inside an actor; the
Dependency Equivalence that states equivalences among SD dependencies and their refinement
in the corresponding SR models.

Actor

Agent Position Role

* * * *

*

0..1

is-part- -of Internal Element

1

boundary

*

* *

{ subset }

head

*

tail

*
strengh: { Open, Commited, Critical }

Relationship

Dependable Node Dependum

Dependency

dependee

depender

Intentional Element

{ disjoint, complete }

Node

{ disjoint, incomplete }
root

{ disjoint, incomplete }

{ disjoint, incomplete }

Decomposition Contribution Correlation

{ disjoint, incomplete }

Means-End

External Element

* *

*

*

*

**

playsoccupies

label

Figure 2.7. Metamodel for the i* reference framework

The integrity constraints associated to this model are the following ones (textual):

R1. The attribute label identifies the class Node.
R2. It don’t exist any dependency between two SR-Elements belonging to the same
boundary.
R3. A Node can only have a dependency with a Dependable Node of his kind (Actor or
Internal Element).
R4. The association is-part-of is only possible between Actors of the same kind (Agent,
Position or Role).
R5. There are no cycles between the relationships means-end link and task-decomposition
link. Therefore, a Node cannot depend or be dependent on another node that already task-
decompose or means-end decomposed it.
R6. The means-end link relationship can only be established when the end and the means
are, respectively: goal-task, softgoal-task, and softgoal-softgoal.
R7. When the means-end link relationship is softgoal-task or softgoal-softgoal a value
representing the contribution of the relationship must be stated. Otherwise it has not.

Chapter 2. State of the Art .

 45

The definition of the derivate attributes, classes and relationships is:

/plays. All the roles that are covered by the position that occupies an agent.
/boundary_root. The SR-Node that does not belong to the decomposition of any means-
end link or task-decomposition link.
/SR-Task Node. Contain all the occurrences of the SR-Node that are tasks.
/Dependency Equivalence. When a model is completed shows, for every dependency
between two actors, the dependency with the same dependum that is established between
two SR-nodes, each of them belonging to those actors and respecting the roles of the
dependee i depender.

2.2.3. Concluding Remarks

In this section we have presented a deep overview of the i* framework. First, we have provide
the main i* modelling constructs according to the Yu’s i* seminal proposal [Yu, 1995].
However, they are other i*-based modelling variants, namely GRL and TROPOS, that can be
used for constructing i* models. In order to clarify the used concepts we have provided a
metamodel for an i* reference framework that allows the generation of all the i*-based
modelling variant by applying refactoring techniques.

We remark that, in addition to the modelling construct, the i* framework is tightly linked to the
modelling method or technique used to generate the models. Because of that, it is difficult to
separate the model from the modelling process. Therefore, we have focused on those proposals
that address the description of the modelling constructs and in the next section, we address the
modelling techniques used. We remark that there is some overlapping on some of the modelling
languages and modelling methods and techniques (namely, i* and Tropos) and that, depending
on the modelling technique used, some variations on the syntax of the modelling language are
also detected. However, these other variants are minor variations due to the specific use of the
constructs and they do not have an explicit explanation of formalization.

2.3. Analysis of i*-based Modelling Methods and Techniques

As we have already mentioned, the i* framework is used in a wide variety of context. As the
key factors of its success are on its visual utility and the reasoning capabilities it provides, the
construction of the i* models is not so often addressed. Because of that, most of the proposals
on i* already assume that the user already has a technique to build the models. In this section we
first provide an overview of the proposals that propose specific guidelines for i* modelling and,
then, we compare them.

2.3.1. Overview of i*-based Modelling Methods and Techniques

The i*-based modelling methods and techniques are, as far as we know, the following: the
seminal proposal of the i* framework [Yu, 1995]; the TROPOS methodology [Bresciani et al.,
2004]; the goal-based business modelling oriented towards late requirements generation method

An i*-based Reengineering Framework for Requirements Engineering

46

[Estrada et al., 2003]; the RESCUE process [Jones & Maiden, 2004], [Jones et al., 2004]; a
methodology for mapping activity theory diagrams into organizational models based on i*
[Neto et al., 2004]; a methodology for building i* models from BPEL process descriptions
[Schmitz et al., 2004]; and, the RiSD methodology [Grau et al., 2005].

2.3.1.1. The i* Framework Modelling Guidelines

The seminal proposal of the i* framework [Yu, 1995], does not address the construction of the
i* models as a main issue, but it provides some guidance on how to develop them based in
constructing the SR models by using strategic reasoning in order to obtain also the SD
dependencies. Guidelines on how to decide the different constructs and how to build a
semantically correct i* model are provided in the i* Quick Guide of the i* wiki at [i* wiki].

From the Business Process Reengineering context, the i* framework also uses the same
strategic reasoning over the SR models in order to support i* modelling and the systematic
exploration of alternatives. Once the alternatives are generated in the same i* diagram, the
concepts of ability, workability, viability, and believability are used to evaluate the alternatives
in a systematic way. The formal representations used in i* to support reasoning about business
processes are compatible with knowledge –based software development techniques.

2.3.1.2. The TROPOS methodology

The TROPOS methodology [Bresciani et al., 2004] addresses agent-oriented development and it
is intended to support all analysis and design activities in the software development process.
TROPOS models Information Systems as social structures by means of a collection of social
actors and the social dependencies among them. The modelling of these concepts are associated
to different activities. Therefore, the TROPOS methodology consists of five phases: early
requirements analysis, late requirements analysis, architectural design, detailed design, and
implementation. We remark that requirements analysis is split into two phases: early
requirements and late requirements analysis, both sharing the same conceptual and
methodological approach. The main difference is that in the early requirements phase the
domain stakeholders are identified and modelled as social actors, stating the why behind the
system functionalities (system as-is). On the other hand, in the late requirements phase the i*
model is extended including the system as a new actor and its dependencies with the other
actors of the environment (system to-be). As a last result in the overall process, the stated early
requirements support the verification of how the final implementation matches the initial needs.

2.3.1.3. Goal-based business modelling oriented towards late requirements generation

The objective of the goal-based business modelling oriented towards late requirements
generation method [Estrada et al., 2003] is to use a business model for constructing a software
requirements specification. The method proposes to use a goal-based elicitation method in order
to capture the organizational context in a so-called Goal-Refinement-Tree, which contains the
successive decomposition of goals into subgoals. Such decomposition is done by means of
classification and elicitation strategies. Once the Goal-Refinement-Tree is constructed, several
steps are applied in order to map its goals into the i* SD elements. The i* SR model is created
afterwards by representing the actors internal goals. The final model is used to perform business

Chapter 2. State of the Art .

 47

improvement analysis by means of inserting the system actor into the system. This analysis
leads to strategic models that can be used to derive functional (use case) specifications with
their corresponding scenarios, which can be done by using the guidelines provided in
[Santander & Castro, 2002].

2.3.1.4. The RESCUE process

The RESCUE process [Jones & Maiden, 2004], [Jones et al., 2004] is based on the evidence
that use cases and scenarios are effective for modelling how the system responds to the input
events it receives from the environment and which are the produced. However, as the use case
does not describe the detailed properties of the system, the process focus on how to obtain the
non-functional requirements that the system shall accomplish. With this aim, the RESCUE
process consist of a number of subprocesses, organised into 4 ongoing streams, that run in
parallel throughout the requirements specification stage of a project, and are mutually
supportive. The four RESCUE streams focus on the areas of: 1) Human Activity Modelling,
which is used to analyse the current work domain; 2) System goal modelling, which is done
using the i* framework; 3) Use case modelling and specification, which is followed by
systematic scenario walkthroughs and scenario-driven impact analyses using the CREWS-
SAVRE and CREWS-ECRITOIRE approaches; and, 4) Requirements management using
VOLERE implemented in the Rational’s requirements management tool RequisitePRO in
current rollouts of RESCUE. In addition to these four streams, the RESCUE process uses the
ACRE framework to select techniques for requirements acquisition, and creativity workshops
based on modes of creative and innovative design, to discover candidate designs for the future
system, and to analyse theses designs for fit with the future system requirements. Consistency
between the various artefacts and deliverables produced at different stages in the RESCUE
process is checked at five different synchronization points during the process.

2.3.1.5. Mapping of activity theory diagrams into organizational models based on i*

The methodology presented in [Neto et al., 2004] proposes the mapping of activity theory
diagrams into organizational models based on i*. Thus, it seeks to build i* models based on
activities theory in order to document functional and non-functional requirements and, so,
provide a better understanding of the process. Taking the activity theory models as a starting
point, the activities and their actions are analysed in order to construct the model. This analysis
is done by decomposing the activities into actions and the actions into sub-actions until the
actions are kept simple enough. The method provides concrete guidelines for mapping the
activity theory concepts to an SD i* model, including rules for distinguish the depender and the
dependee, as well as the different kinds of dependencies. SD models are then used to build the
SR by following analogous guidelines.

2.3.1.6. A methodology for building i* models from BPEL process descriptions

The methodology for building i* models from BPEL process descriptions [Schmitz et al., 2004]
provides several guidelines to guide the mapping between BPEL Web Services descriptions into
i* diagrams. The SD and SR models are developed simultaneously by applying the guidelines,
which map the concepts provided in the BPEL descriptions into the i* constructs. Once the

An i*-based Reengineering Framework for Requirements Engineering

48

models are generated, they can be automatically translated into the action language ConGolog in
order to run simulations and analyse the model properties. This method relies on a very formal
basis and its main goal is to represent and evaluated agent-based designs for inter-organizational
networks.

2.3.1.7. The RiSD methodology

The RiSD methodology [Grau et al., 2005] aims at building Reduced i* SD models for software
systems. RiSD is defined as a set of activities structured in two phases, one for constructing the
social system and the other for constructing the socio-technical system. The social system
model does not include the software system and focuses on the stakeholder needs. Its
construction is iterative and begins with the identification of the initial set of social actors
involved, their main goals and their strategic dependencies. The process iterates until all the
actors and dependencies are obtained. The socio-technical system model incorporates the
software system and the SD model dependencies are reassigned around this new actor. The
system may be further decomposed into subsystems which are modelled as new actors and,
therefore, the existing dependencies are reassigned again. As new subsystems may depend on
each other, these dependencies are also established.

2.3.2. Comparing the i*-based Modelling Methods and Techniques

In order to provide a better analysis of the i* modelling methods and techniques, in [Grau et al.,
2006] we analyse the different proposals following the agent-oriented modelling comparison
criteria proposed in [Dam and Winikoff, 2003], [Sturm & Shehory, 2003], [Sudeikat et al.,
2004], which include four categories: concepts, notation, process and pragmatics. As we are
interested in applying the i* framework in a reengineering context, in this section we propose a
more specific analysis, by analysing the methods from a reengineering point of view. The
proposed criteria are: lifecycle coverage, Requirements Engineering modelling strategy,
development of the i* model, generation of alternative models, evaluation and main output of
the method. These criteria are explained in detail in the following subsections. The evaluation
results are summarized in Table 2.1. In order to facilitate to reference them, some of the
methods names are abbreviated as follows: GBM stands for the Goal-based Business Modelling

oriented towards late requirements generation method [Estrada et al., 2003]; ATM stands for
the methodology for mapping Activity Theory diagrams into organizational Models based on i*
[Neto et al., 2004]; and, BPD stands for the methodology for building i* models from BPEL
Process Descriptions [Schmitz et al., 2004].

2.3.2.1. Lifecycle Coverage

The software lifecycle coverage evaluates the phases of the software lifecycle that are addressed
by the method. As i* is a Requirements Engineering modelling language, most of the methods
address early requirements (the seminal proposal, RESCUE, ATM) or early requirements and
late requirements (GBM, RiSD); BPD addresses the detailed design; and, only Tropos addresses
the whole development lifecycle from early requirements to implementation.

Chapter 2. State of the Art .

 49

2.3.2.2. Requirements Engineering Modelling Strategy

The Requirements Engineering modelling strategy adopted describes the strategy used for
analysing the current situation and, so, the information gathering strategy used to build the i*
model. This analysis includes the context, the user’s expectations and organizational needs. The
approach adopted for each modelling method and techniques ranges between the goal modelling
strategies proposed in [Kavakli, 2004], which are: analyse existing documents, elicit goals from
stakeholders, (re-) use goal-pattern/taxonomy, reverse analyse, strategic issues analysis, goal
deployment, and scenario analysis. Depending on the strategy used, the modelling approach can
be top-down (based on progressive decomposition of behaviour), bottom-up (based on the
identification of current behaviour) or mixed. As i* is highly strategic, some of the methods
uses a top-down approach by applying strategic issues analysis (the seminal proposal), goal
deployment (GBM) or both (RiSD). Some other methods analyse existing artefacts for a
bottom-up development of the models, so, ATM uses activity diagrams for a scenario analysis
and BPD uses BPEL descriptions for the analysis of existing documentations. RESCUE is the
only mixed approach using Human Activity models for a scenario analysis and a strategic issues
analysis for obtaining the non-functional goals. It is implicit in the methods that use strategic
issues and goal deployment that they also use the elicitation of goals from stakeholders.

2.3.2.3. Development of the i* Model

The development of the i* model tackles how each method addressees the development of the i*
model in terms of the i* models developed and the guidelines, heuristics and rules provided. We
remark that most of the methods build the SD and SR together (i.e., the seminal proposal,
Tropos, RESCUE, ATM, and BPD), whilst GBM proposes to build the SD before the SR and
RiSD proposes to build the SD by partially developing the SR. Some of the methods propose
different steps for early and late requirements (Tropos, GBM and RiSD). According to the
heuristics and guidelines provided, the i* seminal proposal provides basic guidelines, whilst
Tropos, ATM and RiSD provide heuristics for deciding the dependum kind. Those methods that
use an auxiliary model as starting point provide more precise guidelines on how transform this
artefact into the i* model, that is: GBM applies transformation guidelines from the Goal-
Refinement-Tree to i*; ATM provides specific guidelines for constructing the model from
Activity Diagrams; and, PBD provides specific guidelines for constructing the model form a
BPEL description.

2.3.2.4. Generation of Alternative i* Models

As we have mentioned, Requirements Engineering often requires the generation of alternatives.
In our analysis of the i*-based method and techniques, if the method supports the generation of
alternatives, we describe which kind of alternatives are modelled and which characteristics they
have. In i* alternatives can be represented in two different ways: in a single model or by
generating Alternative i* Models. In the first option, the SR constructs are used in conjunction
with the strategic reasoning capabilities of i* in order to explore the different alternatives that
are represented in a unique i* model. This approach is used in the seminal i* proposal,
TROPOS, RESCUE, and RiSD. The second option is to generate as many models as
alternatives we want to generate. Over the analysed methods, Tropos, GBM and RiSD consider

An i*-based Reengineering Framework for Requirements Engineering

50

two generated alternatives: one when modelling the social system (without involving any
software) and, another, when inserting a software actor to create a socio-technical system. In
order to facilitate the insertion of the software actor, all these methods offer guidelines for the
reallocation of responsibilities. We remark the generation of alternatives is not taken into
account in RESCUE, ATM and BPD.

2.3.2.5. Evaluation of i* Models

The evaluation of the generated i* models can be done in different ways depending on the kind
and number of generated alternatives. If alternatives are considered in a unique i* model, such
as in the i* seminal proposal and TROPOS, they can be evaluated by applying reasoning
techniques over the SR models. Tool Support is important for evaluation and, because of this;
both the i* seminal proposal and TROPOS provide tool support. In BPD the resulting i* model
is evaluated by executing the model in its specific tool support, and the RESCUE method
provides REDEPEND for checking the consistency of the models. The remainder of the
methods, GBM, ATM and RiSD, do not address evaluation issues.

2.3.2.6. Main output of the method

The main output of all the i* methods and techniques is an i* model. However, as some of the
methods use and generate intermediate artefacts during the construction of the models, some of
them also present other outputs. For instance, Tropos generates, in addition of an i*-compliant
Tropos model, a procedure for translating the i* model into code using Jack; and RESCUE
generates a collection of use cases. About the i* models generated, only the i* seminal proposal
and RESCUE generate an i* model using all the basic constructs. About the other methods,
GBM does not use softgoals and means-end links, ATM only uses goal-dependencies and task-
decompositions, and BPM does not use the means-en links. On the other hand, BPM adds the
task-precondition constructor to the i* model and RiSD adds the supports constructor.

Chapter 2. State of the Art .

 51

Table 2.1. Comparison of i* methods and techniques according to the proposed criteria

i* Method or
Technique

Lifecycle
coverage

RE elicitation
strategy

Development of
the i* model

Generation of
alternative i*

Evaluation of i*
models

Main output

The seminal
proposal of
the i*
framework
[Yu, 1995]

- Early
requirements

- Strategic issues
analysis
(top-down)

- SD and SR
built together
- Basic
guidelines
provided

- By means of
strategic
reasoning among
the SR model.

-Reasoning
techniques over
the SR
- Tool support
(OME,
OpenOME)

- Basic i*

TROPOS
[Bresciani et

al., 2004]

- Early
requirements,
- Late
requirements,
- Architectural
design,
- Detailed design,
and
– Implementation

- Strategic issues
analysis
(top-down)

- SD and SR
built together
- Different steps
for early and late
requirements
- Heuristics to
decide the
dependum kind

- Social + socio-
technical system
alternative (new
system actor
added)
- Goals and sub-
goals delegation
based on system
goals analysis

- Reasoning
techniques over
the socio-
technical
alternative
- Tool support
(T-Tool)

- i*/Tropos
- Procedure for
translating to
code using
Jack.

GBM
[Estrada et

al., 2003]

- Early
requirements
- Late
Requirements

- Goal deployment
(top-down,
produces a goal-
refinement-tree)

- SD built before
SR (in different
steps)
- Mapping
guidelines from
the goal-
refinement-tree
to i*

- One socio-
technical system
alternative
- The system is
the only new
actor added
- Reallocation of
responsibilities
by precise
guidelines.

- - Basic i*
without
softgoals and
means-end
links
- To be used in
specification
by using other
methods

RESCUE
[Jones &
Maiden,
2004], [Jones
et al., 2004]

- Early
requirements

- Scenario analysis
(bottom-up, from
Human Activity
Models)
- Strategic issues
analysis (top-
down)

- SD and SR
build together

-One socio-
technical system
alternative.
- By means of
strategic
reasoning among
the SR model.

- Tool Support
(REDEPEND)

- Basic i*
- Use Cases

ATM [Neto et

al., 2004]
- Early
requirements

- Scenario analysis
(bottom -up, from
Activity diagrams)

- SD and SR
built together (in
different steps)
- Mapping
guidelines from
Activity
diagrams to i*
- Heuristics to
decide the
dependum kind

- - - Basic i*,
- SD only goal-
dependencies
- SR only task-
decomposition

BPD [Schmitz
et al., 2004]

- Detailed design - Analyse existing
documentation
(bottom-up from
BPEL
descriptions)

- SD and SR
build together
- Provides
specific
guidelines (from
BPEL to i*)

- - Resulting i*
model can be
executed
- Tool support
(Con-Golog,
SNet Tool)

- Basic i*
- SD without
means-end
- Adds task

precondition
constructor

RiSD [Grau
et al., 2005]

- Early
requirements
- Late
Requirements

- Strategic issues
analysis
(top-down)
- Goal deployment
(top-down)

- SD built by
partially
developing SR
- Different steps
for early and late
requirements
- Heuristics for
i* elements
identification
- Heuristics to
decide the
dependum kind

- One socio-
technical system
alternative
- The system is
the only new
actor added
- Considers
alternative paths

- - Basic i*
- Adds
supports
constructor

An i*-based Reengineering Framework for Requirements Engineering

52

2.3.3. Related i*-based Methods and Techniques

In addition of the presented methods for i* models construction, there are other techniques that
can be used to complement some of the mentioned aspects. These techniques assume that the i*
models are already build and deals with some of the mentioned reengineering activities. As
these methods and techniques address particular aspects, they have not been included in the
comparative and are described hereafter.

Generation of Alternatives with Organizational and Architectural Patterns. The work
presented in [Kolp et al., 2001], [Kolp et al., 2003], and [Bastos & Castro, 2003] is
addressed to the agent-oriented systems development and proposes to generate alternatives
from organizational patterns in order to get the agent-based architecture. The proposed
methods do not provide any techniques for constructing the models or guidelines for
generating the alternatives with the patterns. Instead, they show the Source i* Model, the
generic i* model of the proposed patterns and the results of applying an implicit matching
process. The results are evaluated in terms of the properties to be achieved by each pattern
by using reasoning techniques.

Evaluation of Alternatives. There are different works that deals with the evaluation of
alternatives. Some of them are qualitative and apply reasoning techniques [Yu, 1995],
[Horkoff, 2006], whilst others propose the use of Structural Metrics, such as the REACT
method [Franch & Maiden, 2003] and the metrics defined in [Bryl et al., 2006]. For
instance, the structural analysis of i* models is addressed in the REACT method by defining
metrics over the models with respect some properties considered of interest for the modelled
system (such as security, accuracy or efficiency).

Output generation. The link between strategic reasoning and Information Systems
Development has been widely addressed [Bresciani et al., 2004], [Jones & Maiden, 2004],
[Santander & Castro, 2002]. Among them, we specially remark [Santander & Castro, 2002],
because it provides guidelines for mapping an i* model to an UML use cases diagram and a
preliminary class diagram specification.

2.3.4. Concluding Remarks

In this section we analyse different i*-based modelling methods and techniques from the point
of view of applying them in a reengineering process. From this analysis we obtain two main
issues to address: the first one includes the use of Requirements Engineering techniques for the
generation of the i* models and the second one, the applicability of i* models in a reengineering
context.

By analysing the applicability of the i*-based modelling methods for reengineering purposes,
we observe that most of the methods address the exploration of alternatives in a unique i* model
and its evaluation is done using reasoning techniques. Some of other methods propose the use of
two different models: one for the social system and the other for the socio-technical one, and no
evaluation is applied. On the other hand, those approaches that propose the application of

Chapter 2. State of the Art .

 53

patterns for generating alternatives and the use of structural metrics for evaluating different i*
models are intended to be used in isolation and do not propose any specific i* modelling
method.

We also remark that, most of the methods are not precise enough on how the requirements are
obtained. As i* is a goal-oriented method, the use of goal-oriented acquisition strategies may
improve the construction process. Also, some goal-oriented analysis methods, such as the NFR
framework [Chung et al., 2000] and the AGORA method [Kaiya et al., 2002], would improve
the evaluation of the resulting artefacts. With this aim, in the next section we present an
overview of related Goal-Oriented Requirements Engineering methods and techniques.

2.4. Analysis of Related Requirements Engineering Methods

and Techniques

From the study of the i*-based modelling languages and the i*-based modelling methods and
techniques we observe that there still some open issues to be solved within the i* framework. As
i* is goal-oriented, we believe that the analysis of other goal-oriented Requirements
Engineering methods and techniques could be used to complement the i*-based approach.
Because of that, we analyse several goal-oriented techniques and we compare them with the i*
framework.

2.4.1. Overview of Goal-Oriented Methods and Techniques

In this section we provide an overview of the most well established goal-oriented Requirements
Engineering methods and techniques. Most of the described metrics focus on goal acquisition
and modelling, but some also focus on evolution. Additionally, we also provide a goal-oriented
Business Process Reengineering method. We remark that some of the authors of these methods
have made improvements and specializations of their methods for certain domains. Despite of
this, we have selected the basic version of the each approach because it is the more stable and
contains the basic constructs in more detail.

2.4.1.1. The KAOS approach

KAOS stand for Knowledge Acquisition in autOmated Specification [Dardenne et al., 1993]. It
is a focus on a goal-directed requirements acquisition task and is composed by three
components: a conceptual model for acquiring and structuring requirements models, with an
associated acquisition language; a set of acquisition strategies for elaborating requirements
models in this framework; and an acquisition assistant to provide automated guidance in the
acquisition process according to such strategies.

During the process proposed by KAOS, goals drive the identification of requirements to support
them. In order to support such guidance, it proposes a goal taxonomy where goals are classified
according to their pattern and their category. The pattern of a goal is based on the pattern of its
formal definition. Five patterns can be identified: achieve, cease, maintain, avoid and optimize.
These patterns have an impact on the set of possible behaviours of the system and, so, achieve

An i*-based Reengineering Framework for Requirements Engineering

54

and cease goals generate behaviours, maintain and avoid goals restrict behaviours, and optimize

goals compare behaviours.

The categories established by KAOS to classify goals are: SystemGoals and PrivateGoals.
SystemGoals are application-specific goals that must be achieved by the composite system, and
they can be further specialized in: SatisfactionGoals concerned with satisfying agent requests,
InformationGoals concerned with getting agents information about object states,
RobustnessGoals concerned with maintaining the consistency between the automated and
physical parts of the composite system, and, SafetyGoals and PrivacyGoals concerned with
maintaining agents in states which are safe and observable under restricted conditions,
respectively. On the other hand, PrivateGoals are agent specific goals that might be achieved
by the composite system.

2.4.1.2. The Goal-Based Requirements Analysis Method

The method proposed by GBRAM (Goal-Based Requirements Analysis Method) [Anton, 1997]
defines a top-down analysis method that refines goals and attributes them to agents starting
from inputs such as corporate mission statements, policy statements, interview transcripts. For
doing so, it focus on the transformation of enterprise and system goals into requirements, more
specifically to assist analysts in gathering software and enterprise goals from many sources. The
method’s chief contribution was the provision of heuristics and procedural guidance for
identifying and constructing goals.

The high level phases of GBRAM are: Goal Analysis, which involves the exploration of
available information sources for goal identification followed by the organization and
classification of goals; and Goal Refinement, which involves the evolution of goals from the
moment they are first identified to the moment they are translated into operational requirements
for the system specification. It includes other activities such as refinement, elaboration and
operationalization of goals.

2.4.1.3. The Goal-Scenario Coupling Method

The Goal-Scenario Coupling method, from the CREWS ESPIRIT project [Rolland et al.,
1998a], [Rolland et al., 1999] is based on the concept of Requirement Chunk, which is a pair
<G, Sc> where G is a Goal and Sc is a scenario. A goal is defined as something a stakeholder
aims to achieve, whilst a scenario expresses a possible way in which the goal can be achieved.
Thus, since goal is intentional and scenario is operational in nature, a requirements chunk is a
possible way of achieving the goal. Goals are organized using three types of relationships
(refine, AND, OR) which establish a structure for managing the Requirements Chunks.

The process aims at discovering/eliciting requirements through a bi-directional coupling of
goals and scenarios allowing movement from goals to scenarios and vice-versa. As each goal is
discovered, a scenario is authored for it. In this sense, the goal-scenario coupling is exploited in
the forward direction from goals to scenario. Once a scenario has been authored it is analysed to
yield goals. This leads to goal discovery by moving along the goal-scenario relationship in the
reverse direction. This procedure is done by following four steps: 1) initial goal identification;

Chapter 2. State of the Art .

 55

2) goal analysis; 3) scenario authoring; and, 4) goal elicitation through scenario analysis. The
three last iterations are iterated until all goals have been elicited.

2.4.1.4. The Enterprise Knowledge Development framework

The Enterprise Knowledge Development (EKD) framework [Kavakli & Loucopoulos, 1998]
describes the business enterprise as a network of related business processes which
collaboratively accomplish business goals. To this end, it uses a network of goals that are used
to express the causal structure of an enterprise, in terms of the goals-means relations from the
intentional objective that control and govern the system operation to the actual physical

enterprise processes and activities available for achieving theses objectives. Therefore, it entails
a goal model among other views and suggests a procedure accompanied by a set of diagrams,
which sets the understanding of goals (both operational and strategic) as a basis for business
process identification.

2.4.1.5. The Non-Functional-Requirements approach

The Non-Functional Requirements (NFR) approach [Chung et al., 2000], defines a framework
that represents non-functional requirements in terms of interrelated goals. These goals can be
refined through refinement methods and can be evaluated in order to determine the degree to
which a set of non-functional requirements is supported by a particular design. The NFR model
consist of goals that represent non-functional requirements (NFR goals), design decisions
(satisficing goals), and arguments in support or against other goals (argumentation goals); and
goal relationships for relating goals to other goals. Using this goal organization, non-functional
requirements are used to drive design, support architectural design, and deal with change. NFR
is based on establishing an explicit the relationships between quality requirements and design
decisions and, for doing it, proposes the following tasks: 1) Develop the NFR goals and their
decomposition; 2) Develop architectural alternatives; 3) Develop design tradeoffs and rationale;
4) Develop goal criticalities; and 5) Evaluation and Selection.

2.4.1.6. The GED framework

The Goal-Exception-Dependency (GED) Framework [Katzenstein & Lerch, 2000] is a process
redesign approach that was developed with the aim of addressing the lack of procedures for
information representation and heuristics in process innovation. The method does not address
Requirements Engineering explicitly, but it is goal-oriented and it considers the use of
Information Systems for improving the current process, which makes it analogous to some
Requirements Engineering techniques and may be used for that purpose.

The GED framework provides specific guidelines for analysing and redesigning process. The
method gathers information from the organization about roles, goals, exceptions, and
dependencies and analyzes the relationships among these elements using two different graphical
models: the Goal/Exception diagram and the Dependency diagram. Both models are used to
model the as-is current situation of the organization, and then, they are used to define new
strengths and generate solutions for the system to-be according to them. The two models of the
GED framework are obtained from the existent process as follows:

An i*-based Reengineering Framework for Requirements Engineering

56

� Goal/Exception diagrams are used to recognize those goals that are unmet or that present
conflicts, as well as to identify lose-lose situations.

� Based on the first analysis, new alternatives can be generated by means of taking those
exceptions of the Goal/Exception diagram that help to achieve major goals, and convert
them into a rule. Exceptions can also be used to questioning the need of a certain goal and
then, finding an alternative. Finally, win-win exceptions may be taken as a base for
generating new procedures.

� Dependency diagrams are analysed and problematic dependencies are redesigned by
applying one of the following actions: 1) Alter the dependency by means of shifting the
dependency to another agent or changing its nature; 2) Satisfy the dependency by means of
providing the action or resources needed to accomplish it, one way to achieve that is to add
information technology; and, 3) Balance the web of dependencies by means of reassigning
the responsibilities between the process participants taking into account that a dependency
is more enforced if there exist obligation from both parts.

For evaluating the process alternatives, the GED framework considers the impact of the new
process dependencies on the goals and exceptions in the goal/exception diagram by means of:
evaluate the influence of the new solution on achieving individual goals and process-level goals;
study how the new solution alters the likelihood or frequency of any exceptions occurring; and
observe how the new solution directly affects process-level goals without reasoning.

2.4.1.7. The AGORA method

The AGORA method [Kaiya et al., 2002] provides a technique for estimating the quality of
requirements specifications in a goal-oriented setting. It supports selection of the goals to be
decomposed; prioritization and stakeholders goal conflict solving, selection of a goal out of the
alternatives of the goals as a requirements specification; and analysis of the impacts when
requirements change. For doing it, it uses a goal graph into which nodes and edges it attaches
certain attributes value (from -10 to 10). These values express how many degrees the sub-goal
contributes to the achievement of its parent goal. Different score is given in each edge in OR
and some values is assigned to all the edges in AND-decompositions. Once this is done, it uses
a preference matrix to find conflicts and gaps of understanding among the different
stakeholders. Therefore, its execution is top-down.

2.4.1.8. The Alignment Correction and Evolution Method

The Alignment Correction and Evolution Method (ACEM) [Etien, 2006] addresses the
alignment of the system and business processes in order to evolve them together. The method
analyses the alignment relationship using a pivot model that can be evolved by explicitly
expressing the evolution requirements under the form of gaps between the as-is model and the
to-be model. Gaps express the differences between these two models by means of related
operators (conforming a gap typology), which transform elements of one model to another.

The ACEM method can be applied over different modelling languages because its gap typology
is relative of a generic metamodel [Etien et al., 2006]. However, in most of the authors work,
the business processes are represented with a Goal/Strategy Map [Salinesi & Rolland, 2003]. A

Chapter 2. State of the Art .

 57

map is a directed graph in which nodes are labelled with goals and edges labelled with
strategies. Having several edges pointing to the same node allows representing the different
strategies available to achieve the same goal, thus representing the flow of goals. The coupling
between business processes and system functionalities is achieved in the map formalism by
simply relating map sections to the business processes and system functionalities that they
abstract. In the ACEM method consistency between the models can be checked thought
dependence links, each time an evolution requirement is elicited. It is also possible to address
consistency using metrics [Etien et al., 2005]. In this approach, the consistency relations are
established by measuring the distance between models of the co-evolving entities.

2.4.2. Comparing the Goal-Oriented Modelling Methods and Techniques

There are several comparative studies for goal-oriented modelling techniques. Among them, we
remark the work presented in [Kavakli & Loucopoulos, 2003] compares fifteen different goal-
oriented approaches from the point of view of its usage, subject, representation and
development of its constructs. In [Kavakli & Loucopoulos, 2004] the same authors’ analyses
current approaches for modelling organizational goals from the point of view of the modelling
strategies adopted. In [Regev & Wegmann, 2005] we can found and analysis of KAOS,
GBRAM and GRL from a goal modelling and goal acquisition point of view. Finally, [Answer
et al., 2006] studies how the goals are represented and used in several goal-oriented techniques
that focus on requirements elicitation, analysis, specification or management.

A more empirical comparison is presented in [Matulevicius & Heymans, 2007] by means of an
experiment that compares the quality of two goal languages (i* and KAOS) by means of a
semiotic quality framework. Finally, the work presented in [Jiang et al., 2007] does an empirical
review of Requirements Engineering techniques and proposes a methodology for its selection.

As the comparison of goal-oriented Requirements Engineering methods and techniques is
already explored, in this section we focus on comparing the i* framework and the techniques
explained in the previous chapter by reusing some of the criteria presented in the mentioned
comparative studies. Therefore, we compare the use of the modelling constructs (namely, goal
abstraction level, goal types, goal taxonomy and other constructs used) and the modelling
process issues addressed (namely, requirements elicitation, requirements analysis, requirements
specification and requirements management phases). The evaluation criteria and the results of
the evaluation are explained hereafter and summarized in Table 2.2.

2.4.2.1. Analysis of the Modelling Constructs

All the compared methods and techniques are goal-oriented and, so, the main construct we
compare are goals with respect to three categories: their abstraction level, their type and how
they are organized in the taxonomy. Other constructs used in the approaches are also analysed:

� Goal Abstraction Level. The goals levels of abstraction proposed in [Answer et al., 2006]
differentiate among low level goals dealing with detailed technical concerns (technical
concerns), high level goals representing the objectives of the enterprise (strategic concerns)
and, finally, highest level goals related to the survival of the enterprise. The latest are goals

An i*-based Reengineering Framework for Requirements Engineering

58

from which other goals are refined, and deal with the goals that depend on the nature of the
enterprise and their environment [Regev & Wegmann, 2005]. From the analysed methods,
only i*, EKD and GED deals with the higher level of goals. All the methods address
strategic goals and technical goals (except GED that do not address technical goals).

� Goal Types. The work presented in [Regev & Wegmann, 2005] differentiate between three
different kinds of goals: achievement goals representing objectives of the current or future
state of the system, maintenance goals representing objectives that hold in current and all
future states, and softgoals, which are goals which there are no clear-cut criteria for whether
their condition is achieved. All the methods are goal-oriented but only KAOS, GRAM and
EKD supports achievement and maintenance goals. Softgoals are only supported in i* and
NFR. KAOS, in addition to achievement and maintenance goals, also distinguishes achieve,
cease and optimize goals.

� Goal Relationships. The goals can be organized by establishing a network of relationships
among them. All the methods organize the goals in an AND-OR hierarchy. Additionally,
the Goal-Scenario Coupling Method (hereafter, GSCM) also adds the refinement
relationship and EDK adds the supports relationship. Finally, KAOS, i*, EKD, NFR and
Agora also represents contributions and conflicts among goals.

� Other constructs. About the other constructs used, KAOS, i*, GBRAM, GSCM, EKD and
GED use agents for modelling the active components of the system responsible of achieving
the goals. Constraints are only used in KAOS, i*, and GRAM. The ACEM method uses
dependencies. The i* framework supports beliefs and dependencies, and AGORA supports
assumptions. Among the studied methods, only GSCM, EKD and ACEM present an
implicit sequential flow on the definition of the goals.

2.4.2.2. Analysis of the Modelling Process Issues

In order to analyse the modelling process we have identify several phases of the Requirements
Engineering process that we have classify into Requirements Elicitation, Requirements
Analysis, Requirements Specification and Requirements Management issues by following the
criteria presented in [Anwer et al., 2006]:

� Requirements Elicitation. This criterion includes domain analysis and requirements
identification. All the methods except NFR and AGORA addresses requirements elicitation
by means of understanding the current situation and, so, they involve domain analysis and
use the goal relationships to identify other requirements.

� Requirements Analysis. Regarding the analysis of the requirements, all the methods
address requirements modelling, but only KAOS, GBRAM, NFR and AGORA explicitly
address the classification of the requirements. KAOS, i*, GBRAM, EKD and AGORA
contain guidelines for the elaboration of requirements. KAOS, i*, NFR and AGORA
address conflict resolution by applying reasoning analysis over the contribution and
conflicts relationships. Finally, only AGORA supports the explicit prioritization of
requirements.

Chapter 2. State of the Art .

 59

� Requirements Specification. All the methods contemplates the operationalization of the
requirements, but only GSCM and EKD provides a clear description of the scenarios as they
address goal-modelling as an iterative process where scenarios in GSCM and actor-role
diagrams in EKD are used to discover requirements and vice-versa.

� Requirements Management. As goal graphs provide traceability links from low level
requirements to high level objectives and from the organizational to the business context, all
the methods provide traceability in this sense. Regarding requirements evolution, only EKD
GED, AGORA and ACEM mention it explicitly. Conflict management is only supported by
those methods that represent conflict relationships. Finally measurement can be done by
using reasoning techniques such as in i*, EKD or NFR, or by applying quantitative
techniques such as in AGORA and ACEM.

Table 2.2. Comparison of Goal-Oriented Requirements Engineering Methods and Techniques

Evaluation Criteria KAOS i* GBRAM GSCM EKD NFR GED AGORA ACEM
Goal Level

Highest level (critical) � � �
High Level (strategic) � � � � � � �

Low Level (technical) � � � � � � � �

Goal Types
Goal � � � � � � � � �

Achievement � � �
Maintenance � � �

Softgoal � �
Goal Relationships

AND � � � � � � � �

OR � � � � � � � �

Refinement and Supports � � �

Contributions and Conflicts � � � � � �

Other Constructs
Agent � � � � � �
Beliefs �
Assumptions �

Constraints � � � �
Sequential Flow � � �

M
od

el
lin

g
C

on
st

ru
ct

s

Dependencies � � �
Requirements Elicitation

Domain Analysis � � � � � � �
Requirements Identification � � � � � �

Requirements Analysis
Requirements Modelling � � � � � � � � �

Requirements Classification � � � �

Elaboration � � � � �

Conflict Resolution � � � �

Prioritization �

Requirements Specification

 Operationalization � � � � �

Requirements Management
Traceability � � � � � � �

Evolution � � � �

Conflict Management � � � �

M
od

el
lin

g
P

ro
ce

ss

Measurement � � � � �

An i*-based Reengineering Framework for Requirements Engineering

60

2.4.3. Concluding Remarks

In this section we have presented and analysed several Goal-Oriented Requirements
Engineering techniques. As we have detected in previous sections, the i* framework do not
always provide a specific requirements acquisition approach and, so, the techniques rely on the
modeller capabilities. However, as the i* framework is goal-oriented, we believe it could benefit
from the use of other Requirements Engineering approaches, such as the described ones. In the
comparison, we can observe that the i* framework presents similar characteristics to other
methods. In terms of its constructs, i* does not consider the classification of goals (achievement
goals and maintenance goals). Regarding the modelling process, it does not provide specific
techniques for domain analysis and do not present any requirements classification or
prioritization of requirements. Therefore, conflict management relies on the reasoning
evaluation of the final result. However the goal relationships established in i*, facilitates the
traceability of the requirements.

2.5. Conclusions

The i* framework is becoming a consolidated Requirements Engineering technique. However,
its use stills having some open issues such as the ambiguity of the modelling language, the lack
of prescriptive methodologies or the big size of the resulting models [Estrada et al., 2006].

Despite of this, the i* framework as been successfully used in a wide variety of context such as
Requirements Engineering, business modelling, process analysis, agent-oriented system
development, process management or process reengineering. From the i* related work, we can
observe that each research group has adapted the framework for its own purposes (i.e. by adding
new model constructors and semantics) and defined its own methods and techniques for
constructing the models. However, the main concepts of the framework remained unchanged.

From the perspective of using the i* framework as for reengineering, we remark some open
issues on the four reengineering phases proposed in [Yu, 1995]:

� Identifying, delineating, and modelling the existent process. For the analysis and
modelling of the current process, we found two different kinds of strategies: top-down
approaches construct the model by refining high-level goals to more specific functionality,
and bottom-up approaches analyse the current process in order to obtain the i* model. In a
reengineering context, the second one is more adequate because we already have an existing
process to be used as starting point. However, the current system has to be modelled taking
into account both the current process and the strategic intentionality of the organization,
bottom-up approaches misses the strategic modelling and reasoning of goals. Therefore, a
mixed approach is needed.

� Analysing it for deficiencies. The analysis of the modelled process for founding
inefficiencies is not addressed in any of the i* modelling techniques. Despite they can be
represented by using negative contribution of softgoals, it is not clear how they can be
obtained. The classification of goals into achievement goals and maintenance goals

Chapter 2. State of the Art .

 61

provided in some Goal-Oriented Requirements Engineering approaches (KAOS, GBRAM,
and EKD) provides an adequate support for reasoning about the process deficiencies and
improvements. Another mechanism for analysing the modelled process is to evaluate it
regarding some properties of interest. The evaluation can be done by using a qualitative
approach (for instance, goal-based reasoning techniques over the constructed models), or in
a quantitative manner (for instance, by applying structural metrics).

� Proposing new solutions (process design). The exploration of new solution in i* is usually
done by exploring alternatives using the goal relationships in the SR model. This approach
is not systematic because it relies on the modeller for finding the adequate solution. It can
be also confusing because all the alternatives are generated in a unique i* model. Some
approaches already use different i* for generating alternatives (Tropos, GBM and RiSD
model the social system before the socio-technical system), and Tropos also uses different
models to represent the different view of the system. The generation of the alternatives i*
models would allow the application of more systematic processes for generating alternatives
both in the form of patterns or by providing heuristics for the delegation of responsibilities
between the actors. Actually, there is a proposal for using organizational patterns for
generating i* models, but they do not provide any modelling language or evaluation
technique associated to it, and do not offer specific guidelines for the generation of the
patterns in i* or any rules for its application. Finally, once the alternatives are selected,
evaluation techniques have to be applied to select the most adequate. If solutions are
generated in the same i* model reasoning techniques are adequate. However, when different
i* models are generated, the use of structural metrics becomes more adequate.

� Implementing the new design in terms of new technical systems and new
organizational structures. Already existing work on the i* framework provides rules and
guidelines for constructing the specification of the new system based on its i* model. These
approaches detect the goals that have to be operationalized by the future system and, using
the actors related to these goals, establish the use case diagram and infer some of the use
cases descriptions. We remark that, as in a reengineering approach is more adequate to use
the current process as starting point, a systematic generation of alternatives preserving the
sequential flow of the actions would allow a more systematic generation of the specification
of the new system.

From the above observations we conclude that, despite being intended for a Business Process
Reengineering Process, the original proposal of the i* framework [Yu, 1995] does not provide
all the necessary techniques for its application in all the possible situations. Thus, the i*
framework as is can be applied for exploring particular aspects of a process, but it is not
adequate for complex processes. However, there is a vast amount of related work in i* and goal-
oriented techniques that can be combined and adapted to the original proposal of the i*
framework. Therefore, it is possible to combine different of these techniques according to the
context and domain of application.

These is the main goal of the research performed and, so, in the following Chapters we address
the generation of an specific Process Reengineering i* Method (the PRiM method in Chapter 3),
and after its refinement and validation (Chapters 4, 5 and 6) we generalize them into a generic

An i*-based Reengineering Framework for Requirements Engineering

62

Reengineering Framework (ReeF, in Chapter 7), and we customize it into a new method for a
new reengineering method that applies i* to the domain of software architectures (SARiM, in
Chapter 8).

 63

3. PRiM: A Process Reengineering

i* Method

As pointed out in Chapter 1, one of the main objectives of this thesis is to define an i*-based
framework where to address the Requirements Engineering process from a Reengineering
perspective and, for doing it, we have first developed an i*-based method that addresses the
open issues related with the i* application for reengineering. As a result, we have formulated
PRiM, a Process Reengineering i* Method.

PRiM, was developed under the assumption that developing Information Systems seldom takes
place from scratch, because they are usually built to automate tasks that are already undertaken
by humans in an organization, or to substitute systems that are becoming obsolete from the
organizational point of view. On the other hand, Business Process Reengineering often
addresses the development or acquisition of an Information System in order to provide
competitive advantage to the organization. Consequently, in most cases, we can consider
Information Systems Development and Business Process Reengineering as two views of the
same activity that need to be reconciled.

This chapter extends the work presented in [Grau, Franch & Maiden, 2005a] and [Grau, Franch
& Maiden, 2008] and it is organized as follows. In Section 3.1 we provide an overview of the
PRiM method. The phases of the method are explained in detail in Sections 3.2 to 3.7. We
remark that, since PRiM reuses as much as possible the knowledge on the Requirements
Engineering field, our main contribution are Phase 2 (Section 3.3, constructing the i* model of
the current process), Phase 4 (Section 3.5, generation of alternatives) and Phase 5 (Section 3.6,
evaluation of the alternatives). In order to provide an example, the method is applied to the
Collaborative Exercise Case Study, which is introduced through the description of the different
phases. In Section 3.8 we justify the design decisions of PRiM. Finally, the conclusions are
presented in Section 3.9.

An i*-based Reengineering Framework for Requirements Engineering

64

3.1. Overview of the Method

PRiM is based on the Business Process Reengineering approach presented in [Yu, 1995]. Yu
proposes the following four reengineering phases: (i) modelling the process based on its
intentional concepts; (ii) a systematic search for process alternatives; (iii) a systematic
evaluation of process alternatives with respect to stakeholder interests; and, (iv) the possibility
of connecting strategic reasoning with Information Systems Development.

PRiM uses this reengineering framework as the starting point but extends it in the following two
ways. On the one hand, it adds a first phase in order to make the analysis of the current process
explicit; this is how we first presented the method in [Grau, Franch & Maiden, 2005a].
However, in this first five-phase method, the reengineering of the current process and the
generation of alternatives were done in the same phase, but in [Grau, Franch & Maiden, 2008]
they were identified as two different phases in order to adapt the number and objectives of the
phases to the ones proposed in other reengineering methods [Katzenstein & Lerch, 2000].

Figure 3.1 presents an overview of PRiM, which is composed of six phases. In the first phase,
the current process is analysed using several Requirements Engineering techniques, and a
descriptive model is built based on the results of that analysis. In the second phase, the i* model
is constructed to describe the behaviour and rationale of the current process. The reengineering
activity is done in the third phase using the i* model to discover new strategic needs. The
systematic generation of alternative solutions is done in the fourth phase through the addition of
new actors and the reallocation of responsibilities between them. Those different alternatives are
evaluated in the fifth phase in order to select as the best-fit candidate solution. Finally, the
specification of the new system can be automatically generated from the i* of the selected
solution.

In the remaining sections, we present these phases in detail. We remark that, as PRiM is based
as much as possible on existing Requirements Engineering techniques, we have provide more
detail in those phases where our contribution is full, namely the construction of the i* model of
the current process, the generation of alternatives, and the evaluation of the alternatives.

Figure 3.1. Overview of the PRiM methodology, showing the steps undertaken in each of the phases

Chapter 3. PRiM: A Process Reengineering i* Method .

 65

3.2. Phase 1: Analysing the Current Process

The first phase of the PRiM method aims at capturing and recording information about the
different elements of the current business processes in a social or socio-technical system.
Several techniques can be applied to obtain this information, among them we chose the ones
proposed in the RESCUE process [Jones & Maiden, 2004], [Jones et al., 2004]. RESCUE is a
requirements process that combines techniques from human computer interaction and
Requirements Engineering to gather data and describe the current process in its wider context of
use.

RESCUE proposes Human Activity Modelling as a basis for understanding the current process
and its context of use, and so, to baseline and inform changes specified in the specification of
the new system. Human Activity Modelling represents the behaviour of human actors in the
process, including both the cognitive behaviour of an individual actor and the social behaviour
of a group of actors. Data gathering techniques include observation of the current process and, if
available, software system use reports, informal scenario walkthroughs, and interviews with
stakeholders.

As a result of this process, we obtain two deliverables: Context Models and Human Activity
Models. Context Models establish the different levels of the system actors by means of
concentric circles to describe not only the actors, but also their involvement in the current
process and data flows between them. Human Activity Models (HAMs) are rich, structured
descriptions of the current behaviour that actors undertake to achieve a goal. Each HAM is
modelled according to a predefined structure that enables analysts to collect data from the
current process in a systematic manner. Example fields in a human activity model include
actors’ goals, triggering events, preconditions, assumptions, constraints, normal and alternative
courses of actions and resources. Each HAM is represented using structured natural language, in
order to facilitate a more expressive description that captures the richness of the different
contexts, the behaviours and the resource used in the current process.

3.2.1. Documenting the current process

In Phase 2, captured information about the current business processes is used to build the i*
model. As this information can be obtained by using several different techniques, the resulting
artefacts may not share the same structure. These differences may cause difficulties in applying
the rules and guidelines provided in the next phase and, to avoid it, we propose to use an
intermediate template for documenting the process and unifying the structure of the information.

Scenarios are considered an effective technique for Requirements Engineering documentation
and process analysis. Although there are several proposals for writing scenarios [Rolland et al.,
1998a], we recommend to use our own simplified notation for process scenarios, so-called
Detailed Interaction Script (DIS). At this point, all the scenario information needed has already
been obtained, therefore each DIS is just an intermediate template with which to organize the
information to facilitate the further i* model construction. The DIS template includes goals,
actors, preconditions, triggering events and postconditions, which can be directly obtained from
the process documentation, which in this case are HAMs. DIS actions are the HAMs atomic

An i*-based Reengineering Framework for Requirements Engineering

66

actions written in a more structured way. Thus, for each action we state: the actor who initiates
the action, a short description of the action and, if the action produces or consumes a resource,
the resource involved. If the action requires interacting with another actor, the actor addressee is
also stated. Some examples of DIS are reported in the following section.

3.2.2. Documenting a Collaborative Exercise Case Study

To illustrate our method we apply PRiM to a case study for designing a new software system for
completing an on-line Collaborative Exercise. The main objective of new system is to adapt
traditional courses on-campus to the internet technologies and, therefore, permit students to
perform part of the courses off-campus. Specifically, we focus assisting the students in
completing an on-line Collaborative Exercise.

In this first phase, we analyse the current process, which we assume is purely social and
involves a Teacher and a group of Students. In order to document it, we divide it into several
activities that are described using human activity modelling techniques. Figure 3.2 shows an
UML activity diagram [Jacobson et al., 2000] with the identified activities for completing the
Collaborative Exercise. Each activity consists of a set of related actions which are closely
related in nature and in time. As all the activities are part of the same process, some
precondition relationships are established between them.

The teacher splits the students into
groups and distributes the problem

statement to them. Each student

analyses the exercise statement
and solves the exercise providing

some preliminary results to the rest

of the group. The group discusses
the preliminary results an delivers

the agreed final results to the
teacher.

Organization of

a Collaborative

Exercise

Execution of a

Collaborative

Exercise

Evaluation of a
Collaborative

Exercise

The teacher negotiates a suitable
scheduler for the activity by

sending several alternative
schedulers. The students analyse

this alternatives and provide their

scheduler preferences. Finally the
teacher provides the definitive

scheduler.

The teacher uses a solution

template to correct the exercises;

she assigns a mark to each group
and communicates the results to

the students.

Figure 3.2. Activity diagram of the activities performed to complete a collaborative exercise in a

traditional learning process

In order to document the processes performed in these activities we fill up the corresponding
DIS template. In Table 3.1 we can see the DIS of the activity Organization of a Collaborative

Exercise. We can observe that the resources provided by both the Teacher and the Student, such
as Provide several alternative schedules, Analyse student schedule preferences or Decide

Chapter 3. PRiM: A Process Reengineering i* Method .

 67

definitive schedule are made explicit. In the DIS we differentiate among the produced resources
(which are the ones produced during the action described in the row) from the provided
resources (which are not directly produced by the action, but have to be provided in order to
accomplish it). Once the Teacher has decided the Definitive Schedule based on the Student

Preferences, it delivers it to them.

Table 3.1. Detailed Interaction Script (DIS) for the activity Organization of a Collaborative Exercise

 DIS 1: Organization of a Collaborative Exercise

Source: HAM 1: Organization of a Collaborative Exercise

Actors: Teacher, Student

Precondition: -

Triggering Event: -

Action

Initiator
Action

Consumed
Resources

Produced
Resources

Action
Addressee

Provided
Resources

1 Teacher Provide several alternative schedules Student
Alternative
Schedules

2 Student Analyse alternative schedules
Alternative
Schedules

 Teacher

3 Student Decide schedule preferences
Schedule
Preferences

Teacher

4 Teacher
Analyse student schedule
preferences

Schedule
Preferences

 Student

Actions

5 Teacher
Decide definitive schedule for the
exercise

 Student
Exercise
Schedule

Postcondition The collaborative exercise has been organized

Once the time scheduled for the exercise is established, the Collaborative Exercise can be
executed. Table 3.2 shows the DIS for this activity. The Teacher splits the Students into groups
and provides the exercise problem statement; the Student executes the exercise in a
collaborative way by interacting with the other Students. We can observe that, in order to
perform those collaborative actions, the Student depends on another Student for producing a
certain resource. In that specific case, the DIS action row shows a produced resource which is
the one produced jointly with the other Student.

Table 3.2. Detailed Interaction Script (DIS) for the activity Execution of a Collaborative Exercise

 DIS 2: Execution of a Collaborative Exercise

Source: HAM 2: Execution of a Collaborative Exercise

Actors: Teacher, Student

Precondition: Be in the same location during the exercise

Triggering Event: The collaborative exercise has been scheduled

 Action
Initiator

Action
Consumed
Resources

Produced
Resources

Action
Addressee

Provided
Resources

1 Teacher Split students into groups
Group
Assignment

Student

2 Teacher Provide exercise problem statement
Exercise
Statement

Student

3 Student Check group assignment
Group
Assignment

 Teacher

Actions

4 Student Analyse exercise statement
Exercise
Statement

 Teacher

An i*-based Reengineering Framework for Requirements Engineering

68

5 Student Solve exercise
Preliminary
Results

Student

6 Student Discuss exercise Arguments Student

7 Student Deliver exercise final agreed results
Final Agreed
Results

Student

4a / Student Ask doubts Question Teacher Alternative
courses 5a Teacher Solve doubts Answer Student

Postcondition: The collaborative exercise has been delivered

3.3. Phase 2: Building the i* Model of the Current Process

The reliable generation and evaluation of alternatives requires that the i* model of the current
process is developed in a systematic and prescriptive way in order to avoid taking decisions
upon incomplete or ill-structured knowledge. Ideally, different people modelling the same
process in the same organization should be able to obtain similar results. However, it is possible
to obtain different models for the same process if it is analysed on different organizations
because, since i* is a highly intentional modelling technique, the strategic reasons of every
organization may change, and therefore the resulting models may be different. Thus, in spite of
the modelling process that is followed, the organizational context plays an important role. As it
is mentioned in [Katzenstein & Lerch, 2000], there is evidence that ignoring the difference
between organizational realities and process logistics often causes a mismatch in the process
analysis. Therefore, as proposed in [Anton et al., 1994], we distinguish between two different
kinds of goals: descriptive goals that can be identified using analyses of current processes, and
prescriptive goals that are provided by strategic management.

Using these two different types of goal we build the i* SD model in two steps to distinguish the
operationalization of the process (dealing with descriptive goals) from its strategic intentionality
(prescriptive goals). The result is an i* model with two different parts: the Operational i* Model
(mainly composed of resources, tasks and some goals), and it’s associated Intentional i* Model
(which adds goals and softgoals to the Operational one). To enable the models to be constructed
and add rationale to our analysis of the current process, both SD and SR i* models are
developed. The resulting i* model can then be checked for consistency, as proposed in the
RESCUE process [Jones & Maiden, 2004].

3.3.1. Step 2.1: Actor Identification and Modelling

The first i* modelling step is the identification of the actors and their intentionality (i.e., their
main goal). The actors are identified from documentation of the current process obtained in the
previous phase. Each stakeholder is modelled as a different i* actor and a single actor represents
the software system if it already exists. If the system is considered to be too large or has well-
differentiated parts, we may decompose it using the is-part-of construct provided by the i*
framework. Other aggregation and specialization relationships between the actors can be
identified and included in the model. Due to the unavoidably iterative nature of the process, if
new actors appear in later steps, a further iteration of Step 2.1 is needed in order to take them
into account.

Chapter 3. PRiM: A Process Reengineering i* Method .

 69

The actors identified for the Collaborative Exercise Case Study are a Teacher, which has as its
main goal to have the Collaborative Exercise Evaluated, and the Student which aims at having
the Collaborative Exercise Completed.

3.3.2. Step 2.2: Building the Operational i* Model

As we have already mentioned, in order to be prescriptive when building the i* model at the
operational level, we use both the SD and the SR models. To obtain dependencies in the SD
model we analyse each of the activities identified in Phase 1 (see Section 3.2) focusing on the
actions stated in the DIS of each activity.

The benefits of using the DIS for analysing the activities are twofold. Firstly, the analysis of a
piece of process in a chronological way can be easy to perform and tends to yield similar results
even if performed by different people. Secondly, it is possible to translate the information of the
DIS tables to the i* model we are building, by applying the following rules:

Operational Rule 1: Modelling activity-tasks. Every activity in which an actor is involved is
modelled as a task in its SR. This task (hereafter called an activity-task) is associated to the
actor main goal (already identified in step 2.1) using a Means-End link. Activity-tasks are
named after the activity they are related to. Once all the activity-tasks are modelled, we
obtain a first level of decomposition on the SR model of each actor.

In Figure 3.3 both the Teacher and the Student, which are the two actors involved in the activity
Organization of a Collaborative Exercise, have an activity-task with the name Organize a

Collaborative Exercise in their SR decomposition.

Operational Rule 2: Modelling action-tasks. Every activity-task is decomposed into the
actions of the DIS of the corresponding activity. This is done by translating each action into
a task (hereafter, action-task) and relating this action-task with a task-decomposition link to
the corresponding activity-task of the action initiator.

In Figure 3.3 the activity-task Organize a Collaborative Exercise of the Teacher actor is
decomposed into three action-tasks: Provide Several Alternative Schedules, Analyse Student

Schedule Preferences, and Provide Definitive Schedule. On the other hand, as the Student actor
is the action initiator of two of the actions of this activity, the corresponding activity-task is
decomposed into two action-tasks: Analyse Alternative Schedules and Provide Schedule

Preferences.

Operational Rule 3: Modelling actions that produce/provide resources. If the action on the
DIS produces or provides a resource, this resource becomes a resource dependency where
the action addressee is the depender and the action initiator, the dependee. In the SR model,
this dependency is linked to action-task that produces or provides the resource.

In Figure 3.3 the Student depends on the Teacher for the produced resource Alternative

Schedules, and is the dependee for the consumed resource Schedule Preferences. The Student
also depends on the Teacher for the produced resources Exercise Schedule; however, at this

An i*-based Reengineering Framework for Requirements Engineering

70

point of the analysis, it is not possible to establish the action which consumes this resource, and
therefore the dependency is related to the actor boundary.

Operational Rule 4: Modelling actions that consume resources. If the action on the DIS
consumes a resource, this resource has to be produced by some other action. Thus, we look
for those dependencies produced by other actions and assigned to the actor. If the resource
has already been produced, we link it to the specific action-task. If not, we link directly to
the actors’ activity-task.

In Figure 3.3 we can observe that the action-task of the Student Analyse Alternative Schedules

consumes the resource Alternative Schedule, whilst the action-task of the Teacher Analyse

Student Preferences consumes the resource Schedule Preferences.

Figure 3.3. Piece of the i* operational model, concerning the dependencies derived from the DIS

Organization of a Collaborative Exercise

Operational Rule 5: Modelling Reflexive Actions. The actors used in the DIS and in i*
correspond to roles rather than specific agents. This is why, sometimes, a role may depend
on the same role for performing a certain action, it is what we call reflexive actions because
the DIS action initiator and action addressee correspond to the same actor. To model these
actions in i*, we first create a new actor with the name of the role followed by the word
‘Group’, and with the same main goal as the role. Each reflexive action is modelled as an
action-task in the task decomposition of both the actor and the actor group. In order to
represent the collaborative nature of the action, the produced resource is split into two
different resources: the first one is preceded by the word ‘Individual’ and the second one by
the word ‘Group’. The group actor depends on the individual resources, and produces the
group resources that are consumed by another actor (it can be the individual or not).

For instance, in our case study, we create the actor Student Group with the goal Collaborative

Exercise Completed. Therefore, in Figure 3.4 it is possible to see several examples of modelling
reflexive actions. For instance the action Solve Exercise is modelled as two different action-

Chapter 3. PRiM: A Process Reengineering i* Method .

 71

tasks, one in the i* SR model of the Student actor and the other in the i* SR model of the
Student Group actor. The resource Preliminary Results that is produced by the action is split
into two different resources: Individual Preliminary Results (where the Student is the depender
and the Student Group the dependee) and Group Preliminary Results, where the Student Group
is the depender and the action-task Discuss Preliminary Results of the Student is the dependee.
However, the dependee of the resource produced by the group may not be the individual, which
is the case of the produced resources Group Agreed Final Results that is consumed by another
actor. Although in the figures we are not modelling the activity Evaluation of a Collaborative

Exercise, we remark that it is the Teacher that consumes this resource in order to evaluate the
exercise. So, we can link this resource to the Teacher actor.

Operational Rule 6: Modelling alternative course of actions. Actions in alternative courses
are also modelled as actions-tasks but, as they are not always undertaken, they are linked
with a means-end link to the action-task that causes the alternative course. If it is not related
to a specific action-task, the means-end link is directly linked to the activity-task. Resources
produced, provided and consumed are considered as in rules 2 and 3.

In Figure 3.4 we can see that the action-task Ask Doubts has been added as means-end
decomposition of the tasks Solve Exercise and Discuss Preliminary Results on the Student SR
model. As the alternative action does not directly involve an action-task of the Teacher, it is
linked to the activity-task Execute a Collaborative Exercise. Finally, the Student produces the
resource Question, which is consumed by the Teacher, who consumes it to produce the resource
Answer.

Operational Rule 7: Modelling preconditions, postconditions and triggering events. Every
precondition, triggering event and postcondition of the activity has to be explicitly
modelled. As they are all related with the achievement of a certain state, they are modelled
as goals in the i* model. Preconditions and triggering events are modelled as goal
dependencies where the actor who initiates the activity-task is the depender and the one that
undertakes the triggering task is the dependee. Postconditions are added to the activity-task
as a task-decomposition goal element.

In Figure 3.4 the postcondition of the activity Execution of a Collaborative Exercise is modelled
as the goal Collaborative Exercise Results Delivered on the SR model of the Student. The
Teachers’ action-task Provide Definitive Schedule triggers the activity-task Execute a

Collaborative Exercise, and thus, the Student has a goal dependency on Collaborative Task

Scheduled. The activity-task Execute a Collaborative Exercise also consumes the resource
Exercise Schedule.

All the proposed rules can be performed systematically and even automatically with appropriate
tool support, and there is only one aspect in which the process is not prescriptive. Rules
translate resources to resource dependencies but, sometimes, task dependencies are more
suitable. To differentiate among them, it is necessary to consider what is more important to the
dependee: the resource involved (resource dependency) or the way the resource is obtained (task
dependency).

An i*-based Reengineering Framework for Requirements Engineering

72

Goal

Task

Softgoal

Resource

Actor

Boundary

Means-End

Task-Decomposition

Collaborative

Exercise

Evaluated

Teacher Collaborative

Exercise

Completed

Student

Organize a

Collaborative

Exercice

Organize a

Collaborative

Exercice

Exercice

ScheduleDecide

Definitive

Schedule

Group

Assigment

Exercice is

Organized

... ...

Execute a

Collaborative

Exercice

Execute a

Collaborative

Exercice

Solve

Exercise

Discuss

Preliminary

Results

Deliver

Exercise Final

Results

Ask Doubts

Collaborative

Exercise Results

Delivered

Exercice

Statement

Provide

Exercise Problem

Statement

Analyse

Exercise

Statement

Collaborative

Exercise

Completed

Student

Group

Execute a

Collaborative

Exercice

Individual

Preliminary

Results

Group

Preliminary

Results

Individual

Agreed Final

Results

Group

Agreed Final

Results

Question

Answer

Solve

Doubts

Collaborative

Exercise

Scheduled

Split Students

into Groups

Solve

Exercise

Discuss

Preliminary

Results

Deliver

Exercise

Final Results

Individual

Arguments

Group

Arguments

Check

Group

Assignment

Share Location

during the

Exercise

Figure 3.4. Piece of the i* operational model, concerning the dependencies derived from the DIS

Execution of a Collaborative Exercise

3.3.3. Step 2.3: Building the Intentional i* Model

The Intentional i* Model complements the Operational i* Model by representing the
intentionality behind the analysed process. As it depends on the organization strategic needs its
construction entails more freedom. This is the reason why the Intentional i* Model is only
composed by goals and softgoals. The application of goal-oriented Requirements Engineering
methods [Regev & Wegmann, 2005] helps to discover the intentionality in a systematic way.
Thus, our proposal use the following set of guidelines, which are applied sequentially,
intertwined or iterated whilst new goals or softgoals are still being discovered:

Intentional Guideline 1: Analysis of the Activities Intentionality. An initial set of
prescriptive goals is obtained directly from the current process. Assuming that each of the
studied activities represents the achievement of a goal, strategic goals are obtained as a
response to the following question: “Which is the final state that is achieved by executing
the activity?” The dependee and the depender of that goal arise by asking respectively:
“Which is the actor that needs to attain the goal?” and, “From which actor does it depend to
obtain the goal?”.

In the Collaborative Exercise Case Study, the execution of the activity Execution of the

Collaborative Exercise leads to the achievement of the final intentional state Collaborative

Exercise Passed where it is the Students who depend on the Teacher to achieve it. We remark
that this goal is not the postcondition of the activity, which is the goal Collaborative Exercise

Results Delivered. Therefore, we decompose the activity-task Execute a Collaborative Exercise
into the goal Collaborative Exercise Passed (see Figure 3.5).

Intentional Guideline 2. Decomposition of the Intentional Goals and Softgoals. This initial
set of descriptive goals and the already existing Operational i* Model goals are the basis for

Chapter 3. PRiM: A Process Reengineering i* Method .

 73

obtaining further new goals. A directed inquiry analysis of the process reveals that goal-
based [Potts et al., 2001] and stakeholder interview techniques can be applied [Goetz &
Rupp, 2003]. Based on these proposals, we analyze the Operational i* Model with the
stakeholders and formulate some questions over the i* SR intentional elements. These
questions address intentional issues related to the achievement of the goal such as the why,
what, how, who and where.

For instance, the goal of the Student Collaborative Exercise Passed can be decomposed by
answering the question: “What has to be done exactly to achieve that goal?” As an answer we
obtain the softgoal Exercise Finished within Schedule Time (where the depender is the Teacher)
and the softgoal Provide Correct Results (where the depender is the Students Group). As we
observe in Figure 3.5, this softgoal can be further decomposed by answering the question:
“What has to be done exactly to get the exercise correct results?” As the conditions Be in a

Good Group and Achieve Agreement on the Results contribute to the softgoal, the softgoal is
decomposed into two new softgoals corresponding to these conditions. The dependee for Be in a

Good Group is the Teacher, whilst the one for Achieve Agreement on the Results is the Student
Group.

Intentional Guideline 3: Quality-Attributed Analysis of the Dependencies Intentionality.
The classification of goals according to some attributes helps us to manage these goals. For
instance, in KAOS [Dardenne et al., 1993], goals are classified into satisfaction,
information, robustness, consistency, safety and privacy goals; and likewise classifications
are applied in the NFR framework [Chung et al., 2000]. Based on this underlying principle,
we propose to use a quality attributes catalogue, and specifically the ISO/IEC 9126-1
[ISO/IEC 9126], to generate questions automatically. Quality attributes may be related to
the type of intentional element: for instance, if the analysed element is a resource, we can
ask about data security or data accuracy whilst if it is a task, questions about efficiency or
usability are more appropriate. Most of the quality attributes refer to important goals and
softgoals, but we are only interested in the most crucial ones. Thus the questions are
formulated in terms of how critical is the attribute for the element of the process, and can be
applied to both the dependums and the intentional elements of the SR model. The concrete
writing of questions can be associated with the catalogue itself, therefore providing a
systematic way to generate goals and softgoals.

For instance, in the Operational i* Model Collaborative exercise case study, the resource
Exercise Statement can be analyzed by asking the questions:

� If the Exercise Statement is not accurate enough, will the process fail? Which actors will be
affected?

� If the Exercise Statement data privacy is violated, can someone get hurt or damaged? Which
actors will be affected?

In Figure 3.5 we state that the accuracy on the Exercise Statement is crucial to execute the
exercise, and therefore we introduce a softgoal Exercise Statement is Accurate. The Student
depends on the Teacher for ensuring it. However data privacy is not so critical in general,
neither the teacher nor the Student have any dependency about that (we consider that the teacher

An i*-based Reengineering Framework for Requirements Engineering

74

uses each exercise statement only one time, and once it is given to the students, it can be
disclosed).

Questions can also be applied in a similar manner to the SR model. In Figure 3.5, the action-
task Discuss Preliminary Results is further decomposed into the softgoal Agreement Found as

Soon as Possible, as an answer to the question:

� If Discuss Preliminary Results is not performed efficiently in time, can the process fail?

Intentional Guideline 4: Analysis of Contributions and Conflicts. The resulting set of goals
and softgoals can be analyzed in order to identify contributions and conflicts between the
different intentional elements by means of the i* contribution links. This analysis can be
done as proposed in the NFR framework [Chung et al., 2000] or by considering the
relationships between quality attributes already stated in the quality model [Franch &
Carvallo, 2003].

In Figure 3.5, the softgoal Agreement Found as Soon as Possible contributes positively to the
softgoal Exercise Finished within Schedule Time.

Goal

Task

Softgoal

Resource

Actor

Boundary

Means-End

Task-Decomposition

Contribution to softgoal

Dependency Link

Exercise

Statement is

Accurate

Collaborative

Exercise

Evaluated

Teacher Collaborative

Exercise

Completed

Student

Organize a

Collaborative

Exercice

Organize a

Collaborative

Exercice

...

...
Execute a

Collaborative

Exercice

Execute a

Collaborative

Exercice

Discuss

Preliminary

Results

Exercice

Statement

Provide

Exercise Problem

Statement Analyse

Exercise

Statement

Student

Group

Split

Students

into Groups

Collaborative

Exercise

Passed

Deliver Correct

Results

Be in a

Good Group

Achieve

Agreement on

the Results

Agreement Found

as Soon as

Possible

...Be in a

Good Group

Collaborative

Exercise

Passed

Achieve

Agreement on

the Results

Agreement Found

as Soon as

Possible

Exercise

Finished within

Scheduled Time

Collaborative

Exercise Results

Delivered

Figure 3.5. Piece of operational and intentional SR i* model for the activity Completion of a

Collaborative Exercise

3.3.4. Step 2.4: Checking the i* Model

The intentional elements and dependums of the Intentional i* Model can be checked for the
consistency of the application of the applied rules and guidelines. Figure 3.6 presents a
metamodel with the simplified concepts of the three models used: HAM, DIS and i* models.

As it has been explained in Section 3.2.1, Human Activity Models (HAM) is a notation based
on activities. Activities are identified because they accomplish a certain goal. Each activity is
composed by one or more actions, and in each action, we can identify an implicit involved
resource and two participating actors. Detailed Interaction Scripts are the scenario-based
notation that we propose in PRiM. DIS represents the same concepts that HAMs but replaces

Chapter 3. PRiM: A Process Reengineering i* Method .

 75

the goals by conditions to be achieved and makes explicit the resources and actors involved in
the actions (see Table 3.1 and Table 3.2). The resources in DIS can be of three types: produced
(p), consumed (c) or provided (pv). Finally, the Operational i* Model contains goal and
softgoals that may decomposes each other (reflexive association) and are related to the SR
Tasks. SR Tasks belong to a unique actor, they can be Activity-Tasks or Action-Task (see
Section 3.3.2) and, thus, they can also decompose each other (reflexive association). When the
SR Task is an action-task, it has an associated Resource or Task Dependency that links the two
actors where the SR Tasks belongs too. Finally actors can decompose other actors by means of
the specialization and aggregation relationships (reflexive association).

The baseline concept mappings across those models are defined with thicker horizontal lines.
Thus, the metamodel maps actor goals from HAM into conditions in DIS, and into i* goals and
softgoals. As a DIS is a structured version of a HAM, there is a direct mapping between the
concepts of activities, actions and actors between both models. DIS activities are modelled into
i* tasks and actions are mapped into resources or tasks in the Operational i* Model.

Figure 3.6. Concept metamodel as a UML class diagram showing mappings between constructs in the

three model types

The checking is done in two stages. The first stage ensures correspondence between HAM and
DIS with the following checks:

Check 1.1. Every activity on the HAM should correspond to one or more activities in the DIS.

Check 1.2. Every human activity goal should correspond to one or more conditions (goals or
postconditions) in the DIS.

Check 1.3. Every precondition and assumption on the HAM should correspond to preconditions in the DIS.
Triggering events are modelled equally in both diagrams.

Check 1.4. Every actor of the HAM is mapped into one ore more actors in the DIS.

Check 1.5. All actions on the HAM normal course and alternatives courses should correspond to actions in
DIS detailing the action initiator and, if required, also the action addressee.

Check 1.6. All resources appearing in the HAM actions, should be detailed as produced, provided or
consumed resources in the DIS.

An i*-based Reengineering Framework for Requirements Engineering

76

At the second stage, cross-checking is done in order to ensure the correspondence between the
DIS and the resulting i* models. Those checks are:

Check 2.1. Every DIS activity is modelled as a task, called activity-task.

Check 2.2. Every main goal of an actor is means-end decomposed into those activity-tasks where the actor
performs an action.

Check 2.3. Every normal course action inside an activity is modelled as a task, which decomposes the
corresponding activity-task on the SR model of the actor that initiates the action.

Check 2.4. Every provided resource involved in an interactive action, appears as an SD resource
dependency or task dependency between the actors involved in the interaction, where the depender produces
the resource and the dependee consumes it.

Check 2.5. Conditions of the activity are modelled as goal dependencies (for preconditions and triggering
events) and SR goals (for postconditions).

Check 2.6. Each activity-task is means-end decomposed into its main intentional goal, which can be refined
into other goals.

Check 2.7. Some non-functional constraints are stated over the resources and the task, leading to softgoals
both in the SR and the SD model.

3.4. Phase 3: Reengineering the Current Process

As the purpose of the method is to reengineer a business process, a strategic analysis is needed
to introduce new issues and improvements to that process. Thus, stakeholders may want to
improve some aspects of the current process, and this improvement may take the form of as the
introduction, change or deletion of goals and softgoals. KAOS [Dardenne et al., 1993] proposes
to drive this process by applying patterns that have an impact on the system behaviour: Achieve
and Cease goals generate behaviours, Maintain and Avoid goals restrict behaviours, whilst
Optimize goals compare behaviours. We use these patterns for analysing the SD i* model with
the stakeholders as following:

1. Firstly we restrict the behaviour of the current process by analysing the intentional goals
and softgoals. We classify them into two groups: the goals and softgoals that we want to
Maintain, and the goals and softgoals that we want to Avoid. If a goal has to be avoided,
new goals and softgoals arise in order to state how their behaviour has to be avoided.

2. This new set of goals is analysed in order to generate new behaviour. Thus, we search
for new goals that we want to Achieve or old ones we want to Cease. If the new goals to
Achieve involve the addition of new activities to the process, a DIS is created for the
analysis of the process and the i* model is completed with new SD dependencies and
SR intentional elements by applying the steps on Phase 2. A goal can only be Ceased if
it does not affect the achievement of another goal. In terms of activities, this means that
if some of the actions it involves are preconditions or triggering events of another
activity, it cannot be removed unless the other activities are also removed.

3. Finally, Optimize goals are added in order to compare the behaviour. Questions such as
the ones proposed in step 2.3 in Section 3.3.2, have to be applied.

Chapter 3. PRiM: A Process Reengineering i* Method .

 77

For example, in the Collaborative Exercise Case Study, all the goals are maintained except the
goal Share location during the exercise (see Figure 3.4) that is considered to be avoided (1). In
order to generate the behaviour for avoiding this goal, the goal On-line Collaboration

Mechanism Provided is Added (2). Some optimize softgoals are also included for comparing the
behaviour of the reengineered system with respect to the current one, such as Communication

between the Students is Facilitated and Doubts are Answered Quickly (3).

These goals guide the generation of alternatives and, as all the alternatives must be generated
from the same model, we assume that the i* model obtained in this phase is the starting model.
Thus, hereafter we refer to it as Source i* Model.

3.5. Phase 4: Generation of Alternatives

One of the main strengths of goal-oriented modelling is its adequacy for exploring different
ways to achieve strategic aims. As we have presented in Chapter 2, this can be seen in many
proposals. In the KAOS approach [Dardenne et al., 1993] the identification of alternative
responsibilities and the assignment of actions to responsible agents is an important feature of
their goal-directed acquisition strategy. The i* framework itself [Yu, 1995] seeks systematic
searches for process alternatives by using means-end reasoning and hierarchical decomposition
of tasks into their intentional elements. The TROPOS project [Bresciani et al., 2004] defines the
architectural organization of the system by exploring alternatives whilst introducing new actors.
Those actors are defined according to the choice of a specific architectural style and the benefits
that they provide for the fulfilment of some specific functional and non-functional requirement.
Finally, in [Bryl et al., 2006], the generation of alternatives is also done by reallocating
responsibilities between the actors.

Taking these approaches as the starting point, we use the Source i* Model obtained in the
previous phase as a basis for obtaining new alternatives that are also modelled in i*.
Alternatives are generated by adding new actors to the system and reallocating responsibilities
between them. If new reengineering issues arise during the generation of alternatives, they have
to be added to the Source i* Model. As a consequence, Phase 3 has to be applied again, and the
generation of alternatives restarts.

3.5.1. Step 4.1: Adding New Actors to the System

The addition of actors to the system is done by means of exploring new roles to fulfil in the
business process. It is useful to analyse current solutions to similar processes such as
organization structures or software solutions, so that new actors arise from rational analysis
rather than combinatorial explosion.

One possibility is to apply organizational patterns to explore the application of well-known
solutions that define social patterns and organizational styles expressed as configurations of i*
concepts [Kolp et al., 2003]. As the intention is to design a new process, software roles are also
likely to arise. To find the software roles best suited to the new solutions we recommend using
components catalogues or, even better, taxonomies of COTS components [Ayala et al., 2005a].

An i*-based Reengineering Framework for Requirements Engineering

78

For each added actor, we need to decide its main goal. New actors are added in both the
Operational and the Intentional part of the Source i* Model. In Figure 3.7 we have added to the
i* model for the Collaborative Exercise Case Study an eLearning Software System actor. Its
main goal is On-Line Collaborative Exercise Supported and, thus, the main goal of the other
actors also has to change accordingly. Therefore, the Teacher’s main goal becomes On-line

Collaborative Exercise Evaluated and the Student’s one, On-line Collaborative Exercise

Completed.

3.5.2. Step 4.2: Reallocating Responsibilities

Once the new actors have been discovered, the existing dependencies must be reallocated. Each
activity-task is analysed independently by asking the questions: Do we want this actor to keep
satisfying the dependencies of the activity-task? Is there any other actor that can take that
responsibility? Human capabilities may be checked and software component functionalities may
be matched [Franch, 2005] to answer these questions, and depending on the answer, one of the
following patterns is applied:

Reallocation Pattern 1: Goal Achievement. We consider that the responsibility for achieving
the goal still falls on the current actor. As a result all of the dependencies related to the
activity-task that operationalize this goal remain unchanged.

In the Collaborative Exercise Case Study, one alternative is to let the Teacher decide the
Exercise Schedule in the classroom so the responsibility for Organize a Collaborative Exercise
still falls on the Teacher and the Student, which means that none of the dependencies related to
that activity-task change (see Figure 3.7).

Reallocation Pattern 2: Goal Delegation. We delegate the responsibility of achieving the goal.
Thus, if actor A has an activity-task that operationalizes the goal and we decide that actor B
will achieve it, we delegate the responsibility of the corresponding activity-task to actor B
taking into account the following aspects:

1. A new activity-task with the same name is added to the Means-End decomposition of the
main goal of actor B and all the dependencies related to their action-tasks are moved into
it. Also, a new goal dependency is added stating that Actor A depends on Actor B for
achieving the goal.

2. The action-tasks of the reallocated activity-task are checked in order to ensure that actor
B has all the knowledge and capabilities to undertake them. If actor B cannot fulfil them,
we add a dependency to the actor who can better provide them, which is usually actor A.

3. A goal dependency arises to model that actor A depends on actor B to achieve its
intentional goals on the activity.

For instance, according to the first point of the pattern, the responsibility of the task Execute a

Collaborative Exercise goes to the eLearning System actor who handles the dependencies going
to/stemming from the part of the SR model for the Teacher (see Figure 3.4).

In Figure 3.7, we observe that as a result of the application of the second point of the pattern,
the responsibility of Split Students into Groups and Provide Exercise Statement is now going to

Chapter 3. PRiM: A Process Reengineering i* Method .

 79

the eLearning System. However, the Teacher has to provide the Group Assignment and the
Exercise Statement. Thus, we have two resource dependencies from the eLearning System to the
Teacher in order to obtain that information, and two more dependencies from the eLearning
System to the Student in order to provide it. Therefore, the eLearning System mediates the
interaction.

To improve comprehension we have renamed the action-task in this actor. Thus, Split Students

into Groups is renamed into Provide Group Assignment. On the other hand we remark that, as
the Student is interacting with the eLearning system, all the Student Group activity-tasks fall
into the eLearning system because the software is now the actor that mediates all the
collaborative activities. However, the Student Group actor does not disappear from the model
because the Student still is having some intentional dependencies upon it.

Finally, according to the third point of the pattern, the Student depends on the eLearning System
to accomplish the goal postconditions of the activity Collaborative Exercise Results Delivered
(see Figure 3.7).

As we are in a reengineering context it can also be possible that, for a certain alternative, some
of the activities require a different course of action (e.g. consideration of a COTS component
may require a predefined interaction different from the existing one). On the other hand we have
to introduce new activities in order to operationalize the goals and softgoals of the Source i*
Model. In those cases, the following patterns can also be applied.

Reallocation Pattern 3. Goal Operationalization. We add or change the course of actions that
operationalize a goal. Sometimes the interaction between actors may be different to the
original one (e.g. the added actor can perform tasks in a different order than the original
model, or the use of a software system actor constraints the interaction with the other
actors). In this situation, the action-task in the existent activity-task needs to be redefined in
order to adapt to the behaviour of the new actor. Furthermore, during the Reengineering
Phase, it is possible to add new goals to accomplish or avoid. As these goals are not
operationalized in the current process, the DIS is not yet defined and its representation on
the i* model has to be modelled. In both cases we recommend specification of the new
course of actions in an auxiliary DIS template, then transfer the changes to the i* model
following the rules provided in Phase 2.

Reallocation Pattern 4. Softgoal operationalization. Softgoals of the model can also be
satisfied by operationalizing them. Some softgoals related to non-functional requirements,
can also be operationalized into tasks, such as in the case of the softgoal ‘security accessing
data’, which can be operationalized into a specific protocol such as a course of actions that
asks a password to the user.

An i*-based Reengineering Framework for Requirements Engineering

80

Figure 3.7. Piece of i* model showing responsibility reallocation of the activity Performance of a

Collaborative Exercise into the eLearning System actor

Chapter 3. PRiM: A Process Reengineering i* Method .

 81

3.5.3. Step 4.3: Checking consistency between alternatives

Consistency checks are also applied in order to ensure certain equivalence between the Source
i* Model and the i* model of the generated alternatives. We remark that as the provided patterns
may operationalize goals and softgoals in a different manner to the current process, new
activity-tasks, action-tasks and dependencies arise in the i*. In order to ensure that the i* models
of the generated alternatives can be compared whilst having different structures; we have to
check that the intentional goal of the actors can still being accomplished either by the original
actor or by some other actors. This can be ensured by checking the following properties:

Intentional equivalence. Given two i* models M1 and M2, M1 and M2 are intentionally
equivalent if:

� M1 and M2 have the same intentional goals, being intentional goals the ones obtained
in Step 2.3 (see Section 3.3.2) and in Phase 3 (see Section 3.4).

� For each intentional goal G where an actor is dependee on M1, if G is operationalized
in M1 it is also operationalized in M2; and if G is not operationalized in M1, it is
neither operationalized in M2.

� For each intentional goal G where an actor is dependee on M2, if G is operationalized
in M2 it is also operationalized in M1; and if G is not operationalized in M2, it is
neither operationalized in M1.

Intentional Inclusion. Given two i* models M1 and M2, M1 is intentionally included in M2 if:

� M2 has, at least, the same intentional goals than M1; being intentional goals the goals
obtained in Step 2.3 (see Section 3.3.2) and in Phase 3 (see Section 3.4).

� For each intentional goal G where an actor is dependee on M1, if G is operationalized
in M1 it is also operationalized in M2; and if G is not operationalized in M1, it can be
or not operationalized in M2.

Check 3.1. Every activity-task on the reengineered model is also considered in the alternative model.

Check 3.2. In every alternative model, every actor that is responsible for an activity-task has all the
knowledge to perform all the actions (by itself or by means of a dependency to another actor)

Check 3.3. The intentional goals and softgoals of an actor in the reengineered model still keep being
satisfied by means of dependencies to the actor that performs the activity-task in the alternative model.

Check 3.4. Every generated alternative that operationalize goals and softgoals has to ensure the Intentional
Equivalence or the Intentional Inclusion with the reengineered model.

3.6. Phase 5: Evaluating Alternatives

The systematic evaluation of process alternatives has been addressed in the i* framework [Yu,
1995]. In the original proposal the SD model supports the systematic identification of
stakeholders and their interests and concerns, whilst the SR model supports the systematic
evaluation of alternatives through the concepts of ability, workability, viability, and
believability. The Tropos project [Bresciani et al., 2004] also uses the i* capabilities in a similar
way in order to connect strategic reasoning with Information Systems Development. As i* is a

An i*-based Reengineering Framework for Requirements Engineering

82

goal-oriented technique, some goal-oriented analysis methods, such as the NFR framework
[Chung et al., 2000] and the AGORA method [Kaiya et al., 2002], can also be applied.

Therefore our proposal for evaluating alternatives is based on a structural analysis of the i*
models as presented in the REACT method [Franch & Maiden, 2003], [Sai et al., 2004].
Structural analysis is adequate in the context of PRiM because of the characteristics of the
resulting model. On the one hand, the prescriptive construction of the model ensures that the
resulting i* model contains all the elements involved in the process and none of them is
duplicated or omitted. On the other hand, alternative solutions are constructed as alternative
models whilst, in other approaches, the alternatives are modelled in the same model by using
means-end links.

The structural analysis proposed in REACT is performed by evaluating properties considered of
interest for the modelled system (such as security, accuracy or efficiency). Properties can be
evaluated with structural metrics, which take into account the structural elements of the models
(e.g., actors, SR elements, SD dependencies) and their relationships. Thus, structural metrics are
defined in terms of the actors (actor-based metrics) or the dependencies (dependency-based
metrics) of the model. The results of this analysis are used to inform the selection of the most
suitable alternative. In order to guide the application of the structural metrics we propose the
following steps. More detail on the definition of Structural Metrics is provided in Chapter 4. A
complete documentation of the metrics used in this document can be found in Annex A.

3.6.1. Step 5.1: Choosing Suitable Properties

Based on the structure of the i* SD models, it is possible to analyse their non-functional and
organizational goals by means of several properties, and to use these properties to inform the
evaluation and selection of alternatives. These properties are non-functional requirements or
other process constraints that have already arisen in the previous phases of the method and, as
such, they are modelled as non-functional goals in the i* models. However, not all the
properties are equally important and, for the evaluation, we have to choose the most relevant
ones by prioritising them (e.g., by considering individual stakeholder ranking of properties). As
in Phase 2 we have obtained the intentionality behind the process by asking quality-directed
questions, an analysis of which quality factors were more relevant on the current system also
helps to establish the ranking of properties.

In the Collaborative Exercise Case Study, we can observe that many of the softgoals are
associated with the properties: Ease of Communication (related to the softgoals Achieve

Agreement on the Results, Be in a Good Group, and Deliver Correct Results), Process Agility
(related to the softgoals Agreement Found as Soon as Possible, Exercise Finished within

Scheduled Time), and Accuracy (Exercise Statement be Accurate, Final Results be Accurate).
Thus, these properties are good candidates to be evaluated over the models.

Chapter 3. PRiM: A Process Reengineering i* Method .

 83

3.6.2. Step 5.2: Defining Metrics over the Models

The properties can be evaluated with metrics defined in terms of the actors (actor-based metrics)
and the dependencies (dependency-based metrics) of the model:

Actor-based metrics. Given a property P and an i* SD model that represents a model M = (A,
D), where A are the actors and D the dependencies among them, an actor-based metric for P
over M is of the form:

Σa: a∈A: filterM(a) × correctionFactorM(a)
P(M) =

|| A ||

being filterM: A�[0,1] a function that assigns a weight to the every actor (e.g., if the actor is
human, software or from a specific kind), and correctionFactorM: A�[0,1] a function that
corrects the weight of an actor considering the dependencies stemming from or going to it.

Dependency-based metrics. Given a property P and an i* SD model that represents a model M
= (A, D), where A are the actors and D the dependencies among them, a dependency-based
metric for P over M is of the form:

Σd: d(a,b,u) ∈D: filterM(u)×correctionFactorM(a,b)
P(M) =

|| D ||

being filterM: D�[0,1] a function that assigns a weight to the every dependum (e.g., if the
dependum is goal, resource, task, softgoal if it is from a specific kind), and
correctionFactorM A�[0,1] a function that correct the weight accordingly to the kind of
actor that the depender and the dependee are, respectively. Therefore, it is also possible to
define correctionFactorM(a,b) = correctionFactorM,der(a) x correctionFactorM,dee(b).

Metrics are defined at the beginning of the evaluation phase and are used to evaluate all the
alternatives generated in the previous phase. For instance, in the Collaborative Exercise Case

Study, we define two properties: Ease of Communication and Process Agility, which are both
evaluated by dependency-based metrics.

As stated in the formula above, for defining a dependency-based metrics, three factors have to
be defined. Firstly, in order to weight the filterM(u) we have to analyse the involved dependums
according to the relevance they have for the corresponding property. For the property Ease of
Communication, tasks are the dependums that better contribute to the property because they are
more precise on establishing the way the element is provided. On the other hand, goals provide
more freedom for achieving the dependum, whilst resources are more restrictive. Taking those
criteria into account, we define:

1 if u є Task
0,8 if u є Resource
0,6 if u є Goal

filterM(u) =

0 otherwise

Correction factors are defined by assuming that Ease of Communication is better achieved when
the actors are human, rather than software. So, we define:

correctionFactorM(a,b) = correctionFactorM, dee(b) = correctionFactorM, der(a)

An i*-based Reengineering Framework for Requirements Engineering

84

 1 if a є Human
 0,5 if a є Software

correctionFactorM, der(a) =

 0 otherwise

correctionFactorM, dee(b) = correctionFactorM, der(a)

The metric for Process Agility is defined in a similar way. In that case we consider the
dependums in terms of the agility they provide to the process. Thus, tasks are more constrictive
than resources; and goals are the ones that provide more agility. As duplicated dependums
within the model weaken Process Agility, the weight is divided by the number of times that the
dependency appears in the model.

0,6 / #occurrences(u) if u є Task
0,8 / #occurrences(u) if u є Resource
1 / #occurrences(u) if u є Goal

filterM(u) =

0 otherwise

In terms of Process Agility, we can consider that software systems are more agile than humans
are and that the Teacher actor is more trained in collaborative exercises and provides more
agility than the Student actor. Finally, in human actors, the agility has less influence in the
dependers that in the dependees. Thus, we define:

correctionFactorM(a,b) = correctionFactorM, dee(b) = correctionFactorM, der(a)

0,9 if a = Teacher
0,8 if a = Student
1 if a є Software

correctionFactorM, der(a) =

0 otherwise

0,7 if a = Teacher
0,6 if a = Student
1 if a є Software

correctionFactorM, dee(b) =

0 otherwise

We remark that, in order to weight the filters and correction factors of the metrics, expert advice
is strongly recommended. Metrics can also be defined in more or less detail depending on the
desired accuracy and reuse of the results. This is a trade-off condition, because the more
elaborate the metrics are, the more accurate but less easy they are define and reuse.

3.6.3. Step 5.3: Evaluating the Alternative i* Models

Once the metrics for the properties are defined, metrics can be evaluated. The evaluation
consists of applying the different metrics on every alternative and to store the results for further
analysis. In Figure 3.8 we show three alternative solutions for the Collaborative Exercise Case

Study. The solutions are modelled as structural representations, showing the kind and quantity
of dependencies that appear among the actors. Softgoals are not shown in this representation
because they are not considered for the analysed metrics. The candidate solutions are defined as
follows:

Alternative A. The first alternative is the one proposed in Step 4.2. (see Section 3.5.2), where
the reallocation of responsibilities is done so that the activities Organization of a

Collaborative Exercise and Evaluation of a Collaborative Exercise are undertaken without

Chapter 3. PRiM: A Process Reengineering i* Method .

 85

software support and Execution of a Collaborative Exercise is reallocated into the
eLearning System, which acts as a mediator between the Teacher and the Student.

Alternative B. In the second alternative, all the activities are reallocated into the eLearning
System, which acts as a mediator between the Teacher and the Student. Because they are
not interacting in this alternative, there are no dependencies between the Student and the
Teacher.

Alternative C. The third alternative is a variation of the second, in which the eLearning System
is not only a mediator between the other actors, but it is also in charge of undertaking the
following responsibilities that were undertaken by the Teacher in the second alternative:
Decide the Exercise Schedule, Decide Group Assignment, Solve Student Doubts (e.g., by
means of a FAQ list), and Correct the Exercise (e.g., by using a template introduced by the
Teacher). Because they are not interacting in this alternative, there are no dependencies
between the Student and the Teacher.

D

D

DD

D

D

DD

D

D

DD

Figure 3.8. Structural representations of the three i* models for the generated alternatives of the

Collaborative Exercise Case Study

The evaluation of the properties Ease of Communication and Process Agility over these models
provides the following results:

Property Alternative A Alternative B Alternative C
Ease of Communication 0.519 0.427 0.401

Process Agility 0.419 0.378 0.446

We observe that the Ease of Communication decreases when the system undertakes more
responsibilities. Thus, alternative A involves direct communication between human actors and
so, is better than alternative C where the system not only mediates communication between
humans, but also executes some of their responsibilities. On the other hand, Process Agility is
enhanced in alternative C because the system has more responsibilities. However, when the
system only acts as a mediator between the human actors such as in alternative B, the Process
Agility scores lower than in the case where there is a direct contact between them (for instance,
in alternative A) because in that case, direct communication is more agile.

An i*-based Reengineering Framework for Requirements Engineering

86

We also remark that if we reapply the evaluation with small variations on the values given when
weighting the elements of the metrics, the evaluation results change but the ranking of
suitability of the alternatives is maintained.

3.6.4. Step 5.4: Trade-off Analysis of the Results

The results of the evaluation must be analysed to decide the best candidate solution alternative.
Reaching this decision can be challenging because it is not common that one alternative scores
higher for all the evaluated properties. Thus, a trade-off analysis has to be done in order to
achieve a reconciled solution. For instance in the Collaborative Exercise Case Study, none of
the alternatives scores highest in both Ease of Communication and Process Agility properties.
As a result trade-off decisions have to be taken by prioritizing one property over another (e.g.,
Process Agility rather than Ease of Communication, tends to favour the first alternative, whilst
reversing the priorities tends to favour the second one). Furthermore the analysts might choose
to adopt an intermediate solution (e.g. the first alternative provides the best Ease of
Communication and still a good solution according to Process Agility).

Although we have presented the steps of this phase in a sequential way, iteration is possible and
so, new properties can be chosen and more accurate metrics can be defined in order to achieve a
more precise evaluation. As a general rule, we recommend to begin the evaluation with coarse-
grained metrics and to increase the level of detail when the results of the evaluation require a
deeper analysis. The results obtained may also point out to new issues on the process redesign
and, then, Phases 3 to 5 can be iterated.

3.7. Phase 6: Defining the New System Specification

The link between strategic reasoning and Information Systems Development has been widely
addressed. Several current proposals provide guidelines for mapping an i* model to an UML
use cases and classes specification, including [Bresciani et al., 2004], [Jones & Maiden, 2004],
[Santander & Castro, 2002]. One more specific approach is the one proposed in [Cysneiros and
Zisman, 2004], where guidelines are applied to obtain specific use cases scenarios for the
Prometheus methodology.

The method proposed in [Santander & Castro, 2002] provides guidelines for constructing the
use case specification from an i* model that has already been built correctly. These guidelines
obtain the actors and the use cases from the SD model, and then use the SR model to obtain
different courses of action. Table 3.3 shows the resulting use case obtained applying these
guidelines [Santander & Castro, 2002] to our Collaborative Exercise Case Study.

Chapter 3. PRiM: A Process Reengineering i* Method .

 87

Table 3.3. Specification of the Use Case for the activity Execute an On-Line Collaborative Exercise

Use Case ID: UC2: Performance of an on-line collaborative exercise

Source i* model, activity-task: Perform a collaborative exercise

Actors Teacher, Student, eLearning System

Problem
statement
(now)

The Teacher has organized an on-line collaborative exercise in order to evaluate her
students. The Teacher splits the students into groups and provides them with the
problem statement. The Student gets that information from the system and uses the
system to discuss how to solve the exercise with the other students in her group.
Once they obtain a final version they deliver it using the system.

Triggering
event

The time for the on-line collaborative exercise has come.

Preconditions The Teacher and the Student have previously logged into the eLearning system.

Assumptions -
Normal Course of Actions
1. The Teacher splits the students into groups and introduces the group assignment to the System
 2. The System provides the group assignment to the students
3. The Teacher introduces the problem statement to the System
 4. The System provides the problem statement to the Students
5. The Student solves her exercise and introduces her preliminary individual results to the System
 6. The System distributes all the individual preliminary results to the students of the

same group
7. The Student provides individual comments for discussing the preliminary results
 8. The System broadcasts the individual arguments to all the students of the same group
9. The Student provides agreement to the final results
 10. The System delivers the group results to the Teacher

Alternative Course of actions
5a. The Student asks some doubts to the Teacher by means of introducing a question to the System
 5b. The System made the questions available to the Teacher
5c. The Teacher gets the questions and provides answers to the System
 5d. The System sends back the answers to the Student

3.8. A Summary of PRiM Decisions

PRiM is a method that proposes to address Information Systems specification as a Business
Process Reengineering exercise predicated on the similarities between the activities in both
fields. As Information Systems specification involves Requirements Engineering and analysis
techniques, the method is constructed based on a rigorous state of the art analysis of both
Requirements Engineering and Business Process Reengineering techniques [Grau, 2006].

There are several studies that prove that the representation of the problem affects its resolution
[Katzenstein & Lerch, 2000]. From our experience i* is adequate for Business Process
Reengineering because: 1) as it allows the representation of functional and non-functional
requirements as well as business goals at the same level, it is possible to represent requirements
and organizational needs in the same model; 2) as it is goal-oriented, it has been possible to
adapt other goal-oriented approaches to the method when needed; 3) as it is agent-oriented, it
provides a better view of the intentionality of the actors involved in the process; and, 4) it is
suitable to be used for the generation and evaluation of alternatives.

An i*-based Reengineering Framework for Requirements Engineering

88

In order to improve the correctness of the method, we designed PRiM by adopting existing
techniques and artefacts instead of developing new ad-hoc techniques. The selection of these
techniques was driven by their relevance and the authors’ expertise in applying them:

First Phase. The analysis of the current process involves the use of the RESCUE process, a
consolidated Requirements Engineering technique. The main benefits of using Human
Activity Modelling are the facilities to model and explore the system boundaries by means
of the Context Models; and, a more cost-effective stakeholder involvement, by means of the
framework of acquisition and participatory design techniques that it provides. The Human
Activity Models contains the same information that we need for our DIS template, which is
designed taking into account the information obtained in other scenario-based methods
[Rolland et al., 1998a].

Second Phase. Modelling the current process with i* provides more complete knowledge about
how the organization works and stakeholders’ current expectations. The technique proposed
for constructing the model is more guided than other method because it distinguishes the
functionality performed by the stakeholders (descriptive goals) from their intentionality
(prescriptive goals). These terms were proposed in [Anton et al., 1994] and adopted for
other modelling techniques proposed in Business Process Reengineering [Katzenstein &
Lerch, 2000] and agent-oriented software engineering [Wooldridge et al., 2000].

Third Phase. The analysis of the resulting model for eliciting the reengineering goals is done
with the KAOS approach, which supplies the rationale behind the current design, and
highlight the practices that have to be changed and why. We have adapted KAOS
[Dardenne et al., 1993] for reengineering the current system because is one of the most
wide-spread techniques for requirements elicitation [Regev & Wegmann, 2005]. As KAOS
and i* are both goal-oriented, the technique has been easily adopted and has proved useful
for obtaining the goals for reengineering the current system.

Fourth Phase. The reasoning capabilities of i* guide the exploration and evaluation of different
technological and organizational solutions in a systematic manner driven by the strategic
needs of the organization. The addition of new actors in the system is based on those i*
modelling techniques that create a first social i* model, and then insert the system actor in
order to obtain the socio-technical one [Bresciani et al., 2004], [Estrada et al., 2003], [Grau
et al., 2005]. The addition of new actors and the reallocation of responsibilities are also
addressed in [Bryl et al., 2006], [Katzenstein & Lerch, 2000].

Fifth Phase. The evaluation of alternatives using the REACT method has been described and
validated in [Franch & Maiden, 2003], [Sai et al., 2004]. Other proposals that include
structural metrics are [Bryl et al., 2006], [Franch, 2006].

Sixth Phase. PRiM proposes the generation of the new Information System specification from
the i* model of the chosen alternative, which can be done applying the proposal in
[Santander & Castro, 2002], [Estrada et al., 2003].

Chapter 3. PRiM: A Process Reengineering i* Method .

 89

3.9. Conclusions

In this chapter we have proposed PRiM, a Process Reengineering i* Method, that addresses
system development as a process reengineering exercise, given a special focus on how to build
i* models prescriptively and how to generate and evaluate alternatives in a systematic manner.

With the definition of PRiM, we have demonstrated that: 1) the i* framework is adequate for
addressing Requirements Engineering from a reengineering point of view; 2) it is possible to
define effectives techniques to supply those phases that are not so-well covered by the original
i* framework; 3) It is possible to adapt goal-oriented reengineering techniques or Requirements
Engineering techniques to the i* framework in order to enforce the construction of i* models.

One of the aspects that have been enforced in PRiM is the use of Structural Metrics. The
definition, use and reuse of Structural Metrics are further explained in Chapter 4. The validation
of PRiM as a method are presented in Chapter 5 (for the formative validation) and in Chapter 6
(for its validation in an industrial case study).

As we have mention in Chapter 2 and on each of the phases of the method, there exists related
work for each of the phases of the PRiM method. In Section 3.8 we have justify the decisions
that we have taken for choosing the techniques in PRiM, however, we remark that there are
many other methods and techniques that could have been used instead. Thus, it would be
possible to exchange techniques used in each of the phases with other Requirements
Engineering or Business Process Reengineering techniques. To facilitate this exchange we have
defined ReeF [Grau & Franch, 2007a], a Reengineering Framework that uses the Method
Engineering approach [Brinkkemper et al., 1998], [Ralyté & Rolland, 2001] to define the
generic set of phases that can be customized by other methods and techniques. The definition or
ReeF is further explained in Chapter 7.

An i*-based Reengineering Framework for Requirements Engineering

90

 91

4. Defining Structural Metrics

over i* Models

In this chapter we refine the process for defining Structural Metrics that is proposed in PRiM
(see Phase 5 of the method, at Section 3.7). The reason why we extend the concepts of this
phase of the method is that, in PRiM, the metrics are defined from scratch by applying expert
judgment over the proposed metrics. Despite this technique provides accurate results when
applied properly, it is possible to provide a formal basis to support the definition and reuse of
Structural Metrics.

In order to establish the foundations for the definition and reuse of Structural Metrics, in this
chapter we analyse existing work in metrics, paying special attention to the generic form of the
Structural Metrics and how they are defined. Based on this analysis we conclude that the
domain metamodels where the Structural Metrics are applied present many similarities. These
similarities allow identifying the key structural elements for defining Structural Metrics from
scratch and facilitate the reuse of metrics, by applying mapping concepts between the defined
metrics. The benefits of adapting metrics from different domains rely on the fact that defining
and validating a metric can be a cumbersome activity, whilst adapting a metric implies a more
systematic process, which facilitates reuse and avoids an over-abundance of metrics.

This chapter provides a complete framework for the work presented at [Franch, Grau & Quer,
2004], [Grau, Franch & Quer, 2005], [Grau & Franch, 2007d], [Grau, 2008a], [Franch & Grau,
2008], [Grau, 2008b]. The remainder of the chapter is organized as follows. In Section 4.1 we
introduce the motivation for measurement and in Section 4.2 we present an overview of existing
Structural Metrics. In Section 4.3 we propose some issues for the metrics definition process and
a template for documenting Structural Metrics. In Section 4.4 we present our metamodelling
approach for the definition and reuse of Structural Metrics, which is used to define and reuse
Structural Metrics in Section 4.5. The analysis of the metamodelling languages and their
structural elements is presented in Section 4.6. The definition of structural metrics is explained
in Section 4.7 and the reuse of Structural Metrics is explained in Section 4.8. Based on the
proposed approaches, Section 4.9 analyses the suitability of the proposed actor-based and
dependency-based metrics and presents the conclusions.

An i*-based Reengineering Framework for Requirements Engineering

92

4.1. Motivation

Measuring is crucial in many different disciplines and Software Engineering is not an exception.
There are many quality characteristics that can be measured such as functionality, reliability,
usability, efficiency, modularity, effectiveness, or safety, among others. These quality
characteristics are measured once the Information System is built, but they can be estimated in
the earlier phases of the development process. Therefore, metrics can be applied over different
artefacts, for instance, graphs representing code workflow, conceptual models, or activity
diagrams.

There are several processes for the definition of metrics [Fenton & Fleeger, 1996], [Basili et al.,
1994], most of them taking into account reuse [Porter & Selby, 1990], [Briand et al., 1996],
[Briand et al., 2002], [Ayyildiz et al., 2006]. Despite the existence of these metrics definition
methods, most of the work done with metrics does not use them during their definition and not
all the existing proposals validate the defined metrics. For instance, the approach presented in
[Vanderfeesten et al., 2006], [Vanderfeesten et al., 2007] adapts metrics from Software
Engineering to Business Process models but it does not proposes a general form for a generic
adaptation of metrics across models; and the validation of the proposed metrics is delegated to
the validity of the source Software Engineering metrics.

Due to this lack of definition procedures and validation, reuse is not always possible. Still, the
correct definition and reuse of metrics would avoid some of the observations on the use of
metrics stated in [Curtis et al., 1979], because:

� Reusing existing metrics avoids an over-abundance of metrics, because the previous metrics
are analysed and adapted before defining new ones.

� When defining metrics for reuse, we have to state the concepts measured in a clear manner
stating the conditions for their use and ensuring a proper validation.

� The time invested in reusing the metrics should be less than the one invested to develop and
validate them from scratch, this leave the researcher more time to invest on how to develop
solutions that improve the solution given, rather than on how to measure.

� The feedback obtained from the metrics reuse may be used to improve the defined metric.

Because of that, the need of addressing the reuse of metrics in a systematic way arises. For
instance, the work presented in [McQuillan et al., 2006] discusses several issues relating to
model metrics, with particular emphasis on metrics for UML models, and identifies three levels
of challenges for model metrics: 1) the technical challenge of defining, comparing and reusing
metrics over different descriptions of the same software system; 2) The conceptual challenge of
defining how to measure metrics from partial descriptions of models, and of the change in
metrics between different representations of the software; and 3) the practical challenge of
gathering, comparing and interpreting new and existing metrics. There is no much work of these
authors, but its main goal is to define reusable metrics at the meta-level.

Chapter 4. Defining Structural Metrics over i* Models .

 93

4.2. An Overview of Existing Structural Metrics

Metrics definition processes range from a simple expert judgment qualification, to a more
complex formula calculus. However, as it is remarked in the systematic review of software
development cost estimation studies presented in [Jorgensen & Shepperd, 2007], in spite of the

fact that formal estimation models have existed for many years, the dominant estimation method

is based on expert judgment. One of the kinds of metrics that is less based on expert judgment is
Structural Metrics. Structural metrics can be applied even in the early phases of the software
development process because they only need a model that represents the software artefact to be
measured.

As far as we know, there is no formal definition of structural metric, so we propose to define
them as:

Structural metrics are those metrics that measure software quality characteristics

based on the structure of a modelled software artefact. Depending on the modelling

language used and the evaluation view adopted, it is possible to evaluate different

subsets of quality characteristics.

Structural metrics are applied over different domain models for evaluating different quality
attributes. The most common structural models used can be grouped into: graphs representing
software code abstractions; UML specifications; Business Process Models; i* models;
Functional Size models; and mixed approaches combining different representations.

Metrics over graphs representing software code abstractions. The first software metrics
were intended to evaluate certain qualities of the software code, and so, there are many
Structural Metrics related to them. Most of them address complexity and reuse, and they are
based on the structural elements of the code such as the lines of code or the maximum,
mean of nested functions. Therefore, they represent the code as a graph in order to evaluate
its structure. Because they were the first metrics to be defined, they are usually defined
without using a specific method and sometimes they are not validated. As an example of
code-based structural metric, we have McCabe’s Cyclomatic number [McCabe, 1976] or the
coupling metrics defined in [Xia, 2000]. One of the most general proposals is the one
presented in [Cogan & Shalfeeva, 2002], which proposes a generalized structural model of
structured programs for software metrics definition.

Metrics over UML specifications. With the evolution of software programs into a more
structured design, new metrics appeared in order to measure properties such as the
complexity or the maintainability of software programs over more complex representations
such as the Unified Modelling Language [Jacobson et al., 2000]. Therefore, UML models
have been the focus of many different Structural Metrics for evaluating properties such as
complexity, modifiability and reusability of the modelled artefacts. This metrics are mainly
applied over Class Diagrams [Chidamber & Kemerer, 1994], [Genero et al., 2002b],
[Martin, 2003], Component Models [Goulao & BritoAbreu, 2005], OCL expressions
[Reinoso et al., 2005], Use Cases [Saeki, 2003], and Statechart Diagrams [Genero et al.,

An i*-based Reengineering Framework for Requirements Engineering

94

2002a]. Most of these metrics intend to be used from the point of view of the designer and
are usually defined in a formal manner by using text [Genero et al., 2002b], [Genero et al.,
2002a], [Reinoso et al., 2005]; a formal notation [Chidamber & Kemerer, 1994], [Saeki,
2003], [Martin, 2003] or OCL [Goulao & BritoAbreu, 2005]. There is no metric definition
method mentioned in any of the presented works. Regarding validation, [Chidamber &
Kemerer, 1994] validates the metrics in a formal way by using some defined properties for
each of the metrics. In [Genero et al., 2002a], [Genero et al., 2002b], [Reinoso et al., 2005]
the metrics are validated using empirical experimentation in order to find a positive
correlation between the metrics computed values and the property they measure. In Table
4.1 we show the different kinds of metrics proposed, stating the evaluated UML model and
the properties they measure. From the name of the metrics we can see that most of them are
counting the structural elements of the models they evaluate.

Table 4.1. Overview of UML-based Structural Metrics, classified by the UML model they evaluate

Model Metric Property Measured Reference
Weighted Method per Class
(WMC)

Complexity (effort
predictability)

[Chidamber & Kemerer, 1994]

Depth of Inheritance Tree
(DIT)

Complexity (behaviour
predictability)

[Chidamber & Kemerer, 1994]

Number of Children (NOC) Reusability [Chidamber & Kemerer, 1994]
Coupling between Object
Classes (CBO)

Reusability [Chidamber & Kemerer, 1994]

Response for a Class (RFC) Complexity (testing) [Chidamber & Kemerer, 1994]
Number of Associations Maintainability [Genero et al., 2002b]

Class
Diagram

Number of Aggregations Maintainability [Genero et al., 2002b]
Number of Dependencies
(NOD)

Modifiability [Saeki, 2003]
Use Cases

Number of Use Case Types Modifiability [Saeki, 2003]
Arguments per Procedure
(APP)

Complexity (component
interface)

[Goulao & BritoAbreu, 2005] Corba
Component
Model Distinct Arguments Count

(DAC)
Complexity (component
interface)

[Goulao & BritoAbreu, 2005]

Afferent Coupling Stability [Martin, 2003]
Efferent Coupling Stability [Martin, 2003]

Component
Packages

Abstraction Stability [Martin, 2003]
Number of Navigated
Relationships

Maintainability [Reinoso et al., 2005] OCL
expressions

Depth of Navigations Maintainability [Reinoso et al., 2005]
Number of Activities (NA) Understandability [Genero et al., 2002a] Statechart

diagrams Number of Transitions Understandability [Genero et al., 2002a]

Metrics over Business Process Models. Business Process Modelling is related with the
software domain because, nowadays, it usually considers the automation of some of the
modelled process by means of an Information System. Business Processes are usually
represented as a set of nodes representing states and edges representing transitions between
states. The existing proposals for the metrics evaluate business process models from the
point of view of the process designer. Among them we remark the following measures over
the following models: complexity over Process Charts [Latva-Koivisto, 2001]; coupling and
cohesion over Workflow Models [Vanderfeesten et al., 2006], [Vanderfeesten et al., 2007];
performance over Workflow Processes [Balasubramanian & Gupta, 2005]; complexity over

Chapter 4. Defining Structural Metrics over i* Models .

 95

Process Graphs [Cardoso et al., 2006]; complexity over Even-driven Process Chains (EPC)
[Gruhn & Laue, 2006] and [Mendling, 2007]; and, similarity over Petri Nets represented by
means of an OWL DL-based description [Ehrig et al., 2007]. All the metrics defined in
these proposals are formalized, except the ones presented in [Gruhn & Laue, 2006] which
are defined textually. We also observe that most of them define their metrics by reusing
metrics over other models, which is done using the analogy of their models with models on
other fields. However, none of them proposes a specific method for reusing the metrics and
for validating them. Actually, only [Mendling, 2007] runs an experiment to check that their
Density metric is an indicator of complexity and error prediction; and [Latva-Koivisto,
2001], [Vanderfeesten et al., 2006], [Vanderfeesten et al., 2007] apply the defined metrics
over an example and check the obtained evaluation results among the expected results.

Metrics over i* Models. There are three different proposals of Structural Metrics over i*
models. The first are the metrics defined in the REACT method [Franch & Maiden, 2003],
which count the different elements of the SD i* model for obtaining different values. These
metrics are defined textually and are the basis of the formalization of the metrics presented
in this thesis. The work presented in [Franch, 2006] proposes to evaluate SR models by
means of analysing the structure of the means-end and task-decompositions, and it is
formalized using OCL. Finally, the approach presented in [Bryl et al., 2006] also takes into
account the SR model and proposes a metric for evaluating the Overall Plan Cost.

Metrics measuring the Functional Size. Functional Size Measurement Methods aims at
determining the size of a proposed software system yet to be built based on its requirements.
The first measurement method is Function Point Analysis [Albrecht & Gaffney, 1983]
which reflects the amount of functionality that is relevant to and recognized by the user in
the business and it is based on a formula that counts structural elements such as the number
of user inputs, number of user outputs, or the number of files. Functional Point Analysis is
currently being managed by the International Function Point Users Group [IFPUG website],
and a second generation of methods, including the COSMIC Method [ISO/IEC 19761],
[Abran et al., 2003] has arisen. The Functional Size is measured over the structure of a
specific model, such as the Functional User Requirements [Abran et al., 2003], but also
over other constructs such as UML Class Diagrams [Poels, 2003], [Harput et al., 2005], or
the software model of the process [Santillo et al., 2005]. None of these proposals follows a
specific metrics definition method, and only [Poels, 2003] validate his approach using the
Distance Framework [Poels & Dedene, 2000].

Mixed approaches. The related work we have mentioned focuses on a single kind of software
model for applying their metrics. However, there are some approaches that mix different
models. That’s the case of the work presented in [Etien et al., 2005], which proposes to
apply Structural Metrics to measure the alignment between the business goals and the
system goals during Information Systems evolution. For doing so, it measures two kinds of
models: Maps for representing the business process and UML class and transition diagrams
for representing the system. The approach does not use any method for defining the metrics,
but it is validated in a case-study.

An i*-based Reengineering Framework for Requirements Engineering

96

4.3. Issues for the Metrics Definition Process

The increasingly measurement needs of Software Engineering, has made arise many approaches
that address the definition [Basili et al., 1994], [Porter & Selby, 1990], [Jacquet & Abran,
1997], [Briand et al., 1994], [Briand et al., 1996], [Briand et al., 2002], documentation [Cogan
& Shalfeeva, 2002], [Baroni et al., 2003], [Linke & Lowe, 2006], classification [Oman et al.,
1992], [ISO/IEC 9126], [Xenos et al., 2000], [Woodings & Bundell, 2001], [Martin-Albo et al.,
2003], [El-Wakil et al., 2004], and validation [Schneidewind, 1992], [Calero et al., 2001],
[Genero et al., 2002b], [Genero et al., 2002a], [Abrahão & Poels, 2007] of metrics. It is not the
aim of this section to provide an overview of these existing techniques, but to provide the
adequate framework for defining, documenting, and validating the metrics.

Metrics Definition Methods. Metrics are defined to evaluate certain properties of a certain
artefact. As metrics can be complicated to define and compute, it is very important to
choose those properties that are more important from the evaluation point of view and to
define the right metrics to evaluate them. In order to facilitate this process, a goal-oriented
point of view is adequate and, the most widespread method for metrics definition is the
Goal/Question/Metric (GQM) approach [Basili et al., 1994], which provides a set of
templates to define experimental goals and refines them into concrete and realistic
questions, which subsequently lead to the definition of the metrics. Because it is proven
effective, most of the metrics definition methods are based on the GQM approach, such as
the ones proposed in [Jacquet & Abran, 1997], [Briand et al., 1994], [Briand et al., 1996],
[Briand et al., 2002].

Metrics Documentation. There is no standard documentation for software metrics and, as it is
remarked in [Garcia et al., 2006], there is no consensus yet on the concepts and terminology
used in the field, nor in the metrics classification to be applied. However, in order to allow
the reuse of metrics, there’s a need of documenting and classifying the metrics. One of the
most complete ontologies for software measurement is the Software Measurement Ontology
presented in [Ruiz et al., 2002], [Garcia et al., 2006]. Using the ontology makes possible to
define measures in a precise way, indicating: the measured attribute; the kind of measure,
which can be basic, derived or indicator; and, the scale and unit of measurement.

Metrics Validation. In Figure 4.1 we show the set of steps for the validation of Structural
Metrics. According to [Calero et al., 2001] validation includes:

� Formal Validation. There are two main approaches for formal validation: the
property-based framework and those based on measurement theory. The
GQM/MEDEA [Briand et al., 1996], [Briand et al., 2002] is an example of property-
based framework, where the metrics are defined using a set of mathematical properties
that exhibit. On the other hand, the Distance Framework [Poels & Dedene, 2000], is
based on measurement theory in order to assure the theoretical validity of the defined
measures.

Chapter 4. Defining Structural Metrics over i* Models .

 97

� Empirical Validation. Its objective is to prove the practical utility of the proposed
metric which can be done by applying experimentation and case studies.

� Psychological Explanation. It refers to the fact that, ideally, we should also be able to
explain the influence of the values of the metrics from a psychological point of view.

Figure 4.1. Steps followed in the definition and validation of methods. Adapted from [Briand et al.,

2002] and [Ayyildiz et al., 2006]

4.3.1. Towards a Template for Documenting Structural Metrics

From the definitions above, we observe that there are already existing approaches for the
definition, documentation and validation of metrics. Once this is done, metrics have to be
documented. However, none of the proposed documentation templates [Cogan & Shalfeeva,
2002], [Baroni et al., 2003], [Linke & Lowe, 2006] take into account all the information that we
believe is useful for the definition and reuse of Structural Metrics. Therefore, we have combined
them in order to create an appropriate template for documenting Structural Metrics. Examples of
its application are presented latter on in this chapter and in Annex A. The template is presented
in Table 4.2 and includes four main sections:

� General information. Contains the general information of the metric, including the name
of the metric, its textual definition, the scale, and the quality attributes that it addresses. If
the metric is defined by reuse, the source metric is also stated.

� Classification issues. In order to facilitate reuse, metrics have to be somehow classified in a
Structural Metrics Repository, stating the metamodel over which the metrics are defined,
and the assumptions over which the metric are defined. An assumption is a statement
believed to be true about the relationship between the quality attribute and the
characteristics of the metamodel of the measured artefact. So, assumptions embody the
intuitive knowledge about the development environment and object(s) of study, for
instance: “The larger the number of definitions and condition expressions, the larger the
likelihood of errors”. When assumptions are stated, the measurement concepts (e.g., size,
complexity) become clearer and it is more easy to identify the artefacts, or parts of artefacts
(e.g., definitions, condition expressions), that must be taken into account for the definition
of suitable product abstractions for the metrics. Reuse of metrics is possible under the same
assumptions.

An i*-based Reengineering Framework for Requirements Engineering

98

� Formalization issues. The formalization of the metric can be textual or using a formal
notation. Mathematical properties can also be stated in a textual form or by using a formal
notation and they characterize the defined metric by stating properties such as non-
negativity, null value, and symmetry, among others. Mathematical properties provide a
more precise meaning to the metric, guide its definition and, constraints the search for
metrics if the goal is reusing. Once the metric is defined, mathematical properties allow the
formal validation of the metric by checking that it accomplishes the desired properties, as it
is proposed in [Briand et al., 1996]. Finally, the interpretation of the results is also stated.

� Validation issues. In order to ensure its validity, it is important to state how the metric has
been validated, including the approach used and any other observation.

Table 4.2. Template proposed for documenting Structural Metrics

General Information General Information of the Metric.

Metric name
Name that identifies the Structural Metric, it is usually related to the quality attributes
it evaluates.

Definition Textual definition of the metric, stating the concepts that are measured.

Scale
Scale of the metric, which has to be one of the types proposed in [Fenton & Fleeger,
1996]: Nominal, Ordinal, Interval, Ratio, and Absolute.

Addressed Quality
Attributes

List of properties that the metric address. For instance, coupling is an indicator for the
quality attribute maintainability.

Source If the metric is being reused, the source has to be stated.

Classification Issues The following information intends to facilitate the reuse of the documented metric.

Domain
Classification

In order to create a complete classification for the Structural Metrics, we propose to
reconcile the different aspects addressed in [ISO/IEC 9126]. [Martin-Albo et al.,
2003] [El-Wakil et al., 2004] [Balasubramanian & Gupta, 2005], in a multi-
dimensional schema that may take into account the following attributes:
- Measured artefact (product, resources, process, organization, system)
- Quality characteristic addressed (from the ISO/IEC 9126 [ISO/IEC 9126])
- Granularity/Visibility (internal attribute/external attribute)
- Lifecycle phase where the metric is applied
- Stakeholder point of view

Metamodel:
Identifies the software artefact the metric applies to. We have proposed to use the
metamodel of the modelling languages to be used in the construction of the metrics,
and so, this knowledge is also added to the ontology.

Assumptions:
Assumptions embody the intuitive knowledge about the development environment
and object(s) of study. Assumptions are useful for reuse because metrics can only be
reused under the same assumptions.

Formalization Issues
Contains the necessary information for applying the metric and interpreting the
results.

Formalization:
Formalization of the metric, it can be by means of a precise textual description of by
using a formal notation (relational algebra, OCL, etc.)

Mathematical
Properties:

The relevant mathematical properties that the metric results have to accomplish are
defined.

Interpretation:
Contains some indication for the interpretation metric, such as what it means that the
resulting value is high or low.

Validation Issues The information in this section intends to document the validation of the metric

Validation Applied
Kind of validation that has been applied: Theoretical Validation, Empirical Validation
or Psychological Validation.

Observations Factors to take into account about the validation.

Chapter 4. Defining Structural Metrics over i* Models .

 99

4.4. Adopting a Metamodelling Approach

In the previous sections we have analysed the existent Structural Metrics and we have described
some existing methods for the definition, reuse, validation and documentation of metrics. From
the analysis of this information, we can observe that Structural Metrics are all based on counting
or weighting the structural elements that conforms the modelling language over which they are
defined. For instance, metrics over UML Class Diagrams are based on the number of
associations, the number of attributes and combinations of them. We also observe that the
modelling languages used also have a similar structure. More precisely, we distinguish among
modelling languages that are analogous to a graph and modelling languages that are analogous
to a sequence of actions. For instance, in UML Class diagrams, the classes can be abstracted to
nodes and the relationships to edges; in Workflow Processes the states can be abstracted to
nodes and the transitions to edges; and, in i* models, the actors can be abstracted to nodes and
the dependencies to edges.

According to [McQuillan et al., 2006], defining model metrics is a metamodelling activity. This
statement is based on the fact that for interpreting and understanding a metrics exact definition,
it is necessary to model the entities being measured, and to define the metrics in terms of they
model. Therefore, they propose to define the metrics on the metamodel of the entities being
measured. In the same line [Röttger & Zschaler, 2004] and [Garcia et al., 2007] provide a
model-driven view for reusing the defined metrics.

The model-driven approach presented in [Garcia et al., 2007] uses conceptual architecture based
on the MOF standard. However, if we observe Structural Metrics, it is possible to see that they
all share a more specific metamodel and, so, instead of working at the MOF level, we can use
this specific metamodel for refactoring the others. More precisely, as we have identified in
Section 4.2, the modelling languages over which Structural Metrics are applied, are based over a
graph structure or over a sequence-based notation. Therefore, it is possible to abstract a
metamodel of these notations in order to get a more general view of the defined metrics. We
remark that these generic metamodels can be transformed into specific metamodels, by applying
the refactorings presented in [Sunyé et al., 2001].

Therefore, we can establish the three different layers presented in Figure 4.2:

� First Layer: Generic Modelling Language Metamodel. At this first layer we find the two
modelling languages metamodels identified: the one for graph-based modelling languages,
and the other for sequence-based modelling languages. However, if other metamodels were
identified, our approach could host them. The metamodels can be obtained by applying a
generalization process over the metamodels of the modelling languages.

� Second Layer: Modelling Language Metamodel. Structural metrics are defined over a
certain modelling language, and so, this layer contains the metamodels of these modelling
languages, which can be seen as a refactoring of the metamodels at the layer above. They
can also be considered as an abstraction of the specific domain modelling language.

� Third Layer: Modelling Language Domain Model. Each modelling language metamodel
can be instantiated into many models, depending on its domain. For instance, an i* model

An i*-based Reengineering Framework for Requirements Engineering

100

can be instantiated for the domain of e-business systems or service-oriented systems, where
models in the same domain share similar concepts.

B
y
 G
e
n
e
ra
liz
a
ti
o
n

in
s
ta
n
c
e
_
o
f

i n
s
ta
n
c
e
_
o
f

in
s
ta
n
c
e
_
o
f

in
s
ta
n
c
e
_
o
f

in
s
ta
n
c
e
_
o
f

in
s
ta
n
c
e
_
o
f

in
s
ta
n
c
e
_
o
f

in
s
ta
n
c
e
_
o
f

in
s
ta
n
c
e
_
o
f

B
y
 A
b
s
tr
a
c
ti
o
n

B
y
 In
s
ta
n
tia
tio
n

B
y
 R
e
fa
c
to
rin
g

G
e
n
e
ri
c
 M
o
d
e
ll
in
g

L
a
n
g
u
a
g
e

M
e
ta
-m
o
d
e
l

M
o
d
e
ll
in
g
 L
a
n
g
u
a
g
e

D
o
m
a
in
 M
o
d
e
l

M
o
d
e
ll
in
g
 L
a
n
g
u
a
g
e

M
e
ta
-m
o
d
e
l

refactoring_of

re
fa
c
to
rin
g
_
o
f

re
fa
c
to
ri
n
g
_
o
f

re
fa
c
to
ri
n
g
_
o
f

re
fa
ct
or
in
g_
of

re
fa
c
to
ri
n
g
_
o
f

re
fa
c
to
ri
n
g
_
o
f

re
fa
cto
rin
g
_
o
f

re
fa
c
to
rin
g
_
o
f

Figure 4.2. Structural Metrics modelling languages and the metamodelling layers proposed

4.4.1. The Generic Graph-based Metamodel

In Figure 4.3, we show a Generic Graph-based Metamodel, which corresponds to a
generalization of the generic metamodel for gap typology definition presented in [Etien et al.,
2003]. We have used the metamodel presented in [Etien et al., 2003] instead of defining a new
one, because it is already generic, is currently being used as a metamodel and presents the main
concepts to be shown in a Graph. The modifications we have done to the original metamodel
are: 1) we rename the names of the classes Link and Not Link into Edge and Node, in order to be
more compliant with the graph terminology, and, 2) We add to the class Element the attribute
Type in order to allow an internal classification of the elements. Thus, Element has two
attributes: Name and Type. The attribute Type allows an internal classification of the elements.
For instance, in i*, the Type of a Dependency can be: Goal, Task, Resource or Softgoal, whilst
the Type of an Actor can be: Human, Software, Hardware, and Organization.

As shown in Figure 4.3, Elements are classified into two bundles. First, a distinction between
Simple Elements and Compound Elements is made. Second, elements can be classified into
Nodes and Edges. Compound elements can be decomposed into finer-grain elements, which can
be Simple or, again, Compound elements. Edge elements are connectors between pairs of
elements. One of the connected elements plays the role of the Source and the other is the Target.
For technical reasons, there is always at least one element classified as root. This allows
indicating what the minimal content of a model is: the Object class in a class hierarchy, the
system boundary in a use case Diagram, etc. Finally, an element may have associated one or
more Property.

Chapter 4. Defining Structural Metrics over i* Models .

 101

Figure 4.3. Generic Graph-based Metamodel. Adapted from [Etien et al., 2003]

4.4.2. The Generic Sequence-based Metamodel

In Figure 4.4, we present a metamodel for Sequence-based modelling languages (i.e., scenarios,
use cases, human activity models, and activity diagrams). In order to adhere to several
sequence-based notations, we have defined a generic sequence-based metamodel based on the
metamodel for Use Cases proposed in [Jacobson et al., 2000] and [Nakatani et al., 2001], the
conceptual model for Use Cases presented in [Cockburn, 2000], the Human Activity Models in
[Jones et al., 2004], and the UCM scenario metamodel in [Kealey & Amyot, 2007]. In order not
to enforce a particular notation we have named the classes according to the generic concepts
they indicate. The main concept is a Sequence of Actions, which can be a Simple Sequence of

Actions or a Composite Sequence of Actions (for instance, a Use Case is a set of sequences
representing a Scenario [Cockburn, 2000], and it is also possible to define composite Use Cases
[Nakatani et al., 2001]). Relationships between Sequence of Actions also include inclusion and
extension of other Sequence of Actions. Sequence of Actions are constrained by a certain number
of Conditions, which can be a Goal, a Precondition, a Postcondition or a Triggering Event
specific of each condition. A Sequence of Actions has several Actions. An Action involves two
Actors and manages one Resource.

Figure 4.4. Generic Sequence-based Metamodel

4.5. Towards the Definition of Structural Metrics

As we have remarked in previous sections, current approaches using structural metrics do not
provide precise guidelines on how to define them. In order to address this issue, we propose to
use the two metamodels proposed (graph-based and sequence-based) as a basis for the definition

An i*-based Reengineering Framework for Requirements Engineering

102

and reuse of structural metrics. In Figure 4.5 we present our process, which involves the
following four activities grouped in two phases: Analysis and Definition. In order to improve
the efficiency of this process we need to store both the metamodels and the defined metrics into
repositories. We also assume that metrics are analysed, defined and documented following a
metrics definition process as presented in Section 4.3.

The Analysis Phase consists of two activities. In the first one, the metamodel of the modelling
language is established and then, in the second one, the defined metamodel and the general
knowledge on existing structural metrics, are used in order to identify the structural elements of
the modelling language. For the Definition Phase we have two alternatives. On the one hand,
new metrics can be defined from scratch by using the metamodel and the structural elements for
constructing guidelines that assist its definition. On the other hand, reuse is possible when
analogies between both fields can be found and, so, we use the metamodels and the structural
elements already identified to define new metrics based on reuse. As shown in Figure 4.5, all
the generated elements are stored and reused over time.

Figure 4.5. Process for Defining Structural Metrics

4.6. Analysis of the Metamodels and the Structural Elements

In previous sections we have presented an overview of metrics definition methods. These
methods establish the necessary steps for defining the measuring goals, state assumptions,
formalize the measurement concepts and define and validate the metrics. However, they do not
provide precise guidelines on how to define Structural Metrics. Therefore, in this section we
propose some guidelines for identifying the metamodel and the structural elements of a
modelling language. We remark that this is done only once for each modelling language and are
stored in a repository in order to facilitate its reuse.

4.6.1. Establishing the Modelling Language Metamodel

In this step we define the metamodel of the modelling language over which the metrics are
defined. According on the modelling language, we select the more appropriate generic
metamodel (graph-based or sequence-based) and we transform it into the specific metamodel,
by applying the refactorings presented in [Sunyé et al., 2001], which can be summarized in five
basic operations: addition, removal, movement, generalization and specialization of modelling

Chapter 4. Defining Structural Metrics over i* Models .

 103

elements, where the two last actions use the generalization relationship to transfer elements up
and down a class hierarchy.

4.6.1.1. Establishing the i* Metamodel

As we want to define metrics over i* we define the i* metamodel. In Section 2.3 we have
presented the i* metamodel presented in [Ayala et al., 2005b]. In the metamodel, both SR and
SD i* models are represented, however, in our work we are mainly interested in analysing SD
models and, thus, we consider the excerpt of the model related with the actors and dependencies
among them, which is compliant the generic graph-based metamodel.

In Figure 4.6 we present the metamodel representing the i* SD constructs following the generic
graph-based metamodel. We remark that we only take into account the actor and the dependum,
in the same form as presented in Figure 4.3, where: an Actor is a subtype of the class Node
(subtype of Element) and the Dependum is a subtype of the class Edge (subtype of Element).
Regarding the Name and Type attributes, an Actor can be software (SW), human (H), hardware
(HW), or organization (Org); whilst a Dependum can be a goal (G), a task (T), a resource (R) or
a softgoal (SG). In order to be compliant to the fact that in i* there is no dependum with the
same two actors, we have to add an integrity constraint.

Figure 4.6. Excerpt of the Generic Graph-based Metamodel and its subtype for an i* SD model

We remark that the proposed metamodel, accomplishes the requirements of a generic
metamodel proposed in [Cogan & Shalfeeva, 2002]: 1) the metamodel is single; 2) the model is
represented in a relational format; and, 3) the model reflects all structural characteristics that are
used to define quality characteristics of the object under consideration, and corresponding
widely used graph models should be an instance of the more general model.

4.6.2. Identification of the Structural Elements

The same analogy that allows establishing a common metamodel among the different modelling
languages also provides an analogy on the structural elements used when defining the metrics.
In order to facilitate the definition and reuse of the metrics, we propose to identify common
patterns on the use of the structural elements referring on how they can be counted, classified,
and weighted when defining the metrics. For identifying the structural elements we have to
analyse the metamodel and obtain all the aspects that can be counted, classified and weighted.
In Section 4.2 we presented an overview of existing Structural Metrics approaches, among them
we remark the following ones, which are the ones that intend to be generic:

An i*-based Reengineering Framework for Requirements Engineering

104

� In [Cogan & Shalfeeva, 2002], a generalized structural model of structured programs for
software metrics definition is proposed. The work proposes a basic model of a program and
its components which are defined as a directed multi-graph consisting as a set of nodes and
edges between the nodes. Over this model, a set of characteristics often used to define
software quality metrics are identified. For instance, the number of nodes with a specific
value of Program Component type, the number of edges with a specific value of
Relationship type, the fan-in/fan-out ratio for a certain node, the number of loops in a graph,
or the graph connectivity, among others.

� In [Mens & Lanza, 2002] a graph-based metamodel is used for defining generic object-
oriented software metrics. As most of the UML-based metrics count structural elements,
this generic approach defines several generic metrics which are NodeCound, EdgeCount,
PathLengh, and some refinements according to the attributes or relationships that have. For
instance, transitive edges, which denote chains of edges of the same type. On the other
hand, it defines higher-order metrics such as Node Count Ratio (and Ratio Refinements),
and Promoted Metrics where summation and average are used by using the operators sum
and average.

Therefore, by taking these generic approaches and the specific Structural Metrics described in
Section 4.2, it is possible to determine a set of structural patterns, which are:

� Discriminator by type. It provides a value to each element of a class (Node or Edge
according to its type). For instance, as we have already mentioned, [Cogan & Shalfeeva,
2002] propose the following characteristics for defining software quality metrics: the
number of nodes with a specific value of Program Component type; or, the number of edges
with a specific value of Relationship type. In i* we can use discriminator by actor type or by
dependency type.

� Discriminator by name. It provides a value to each element of a class (Node or Edge)
according to its type. For instance, [Cogan & Shalfeeva, 2002] propose to count the number
of nodes with given values of some Component Attributes. In i* we can use discriminator
by actor name or by dependency name.

� Other discriminators. It is also possible to discriminate a class by other elements such as
other attributes (that has to be added to the metamodel). It is also possible to discriminate if
exist a relationship with a certain element. For instance, in [German & Hindle, 2005] the
renamed entities are identified by adding an attribute that indicates if the entity has been
modified.

The discriminated elements can be combined to obtain other results, for instance:

� Count the number of occurrences of an element. We have observed that many metrics
count the number of elements of a class (number of children [Chidamber & Kemerer, 1994]
in Class Diagrams, or number of states [Genero et al., 2002a] in Statechart Diagrams).
Additionally, we can also add a discriminator when counting the elements.

� Sum a certain value for the number of occurrences of an element. For instance in the
metric Arguments per procedure, [Goulao & BritoAbreu, 2005] count the number of
arguments for each procedure and then divide by the number of procedures. In i*, the

Chapter 4. Defining Structural Metrics over i* Models .

 105

Overall Plan Cost metric defined in [Bryl et al., 2006], also sums the values given to each
task dependency. Additionally, we can also add a discriminator when applying the sum of
certain the elements.

We observe that, in addition to discriminate, count and sum the elements; some other
arithmetical operations can be applied. Among them we remark:

� Ratio of elements with a certain discriminator. In [Cogan & Shalfeeva, 2002] a graph
node has a certain ratio Fan-in/Fan-out, regarding the elements steaming and going from it.
In a similar way, in i* it is also possible to calculate the ratio of dependencies-
in/dependencies-out, where the actor is a dependee (in) or a depender (out).

� Inverse of a value. Once a value is obtained, it is possible to calculate its inverse and to use
it to weight the result in a positive or negative manner.

� Other arithmetical operations. In order to manipulate the results it is also useful to apply
the average function (which obtains the sum of the elements divided by the count of the
elements) or the normalization function, which ensures that the resulting value remains
between a certain intervals in order to facilitate comparison.

4.7. Definition of Structural Metrics over i* Models

Once the metamodel and the structural elements of the modelling language are identified,
Structural Metrics can be defined by establishing a decision table that assists in the definition of
the metrics using the obtained structural elements. This decision table takes the form of a set of
questions to be answered in order to customize the general formula of the metric. Once this is
done, metrics have to be validated and documented. As we are interested in i*-based Structural
Metrics, in the following sections we show how it is applied over actor-based and dependency-
based metrics.

4.7.1. Identifying guidelines for Actor-based metrics

For defining the guidelines for the actor-based metrics we will first analyse the formula we have
provided in Section 3.6.2.

Actor-based metrics. Given a property P and an i* SD model that represents a model M = (A,
D), where A are the actors and D the dependencies among them, an actor-based metric for P
over M is of the form:

Σa: a∈A: filterM(a) × correctionFactorM(a)
P(M) =

limitM(a)

being filterM: A�[0,1] a function that assigns a weight to the every actor (e.g., if the actor is
human, software or from a specific type), and correctionFactorM: A�[0,1] a function that
corrects the weight of an actor considering the dependencies stemming from or going to it.

An i*-based Reengineering Framework for Requirements Engineering

106

If we analyse the metric we can see that it has two differentiated parts, the filterM(a) and the
correctionFactorM(a). Analysing the structural elements related with the actors (see the
metamodel in Figure 4.6, right), we can see that the structural elements that give a value to the
actor according to its name or its type (i.e. the actor node in the metamodel) correspond to the
filter and the ones related with the dependencies of the actors would be the correction factor (the
relationships with the actor node in the metamodel).

Taking this classification as a starting point, we have defined the guidelines presented in Table
4.3, by stating a set of questions that help to identify the elements of each category. We remark
that this first classification can be completed with a deeper analysis of the metamodel. However,
this first level has been sufficient for defining the metrics used in this thesis. For defining the
table we take into account the following assumptions:

� FilterM(a). As actors are represented in a class in the metamodel, we apply a discriminator
over it. Discriminator is expanded in terms of the attributes of the Actor class: type and
name. Therefore, in Table 4.3, for obtaining the value of FilterM(a) we ask a question to
discriminate if the type or the specific actor affects the quality attribute. If none of them
affects it, the filter has the neutral value = 1.

� CorrectionFactorM(a). The Actor class has two relationships that relate them to the
Dependency class: in one it plays the depender role, and in the other one, the dependee role.
Also, these relationships link an actor with another actor. Therefore, the correction factor
can be defined over the dependencies or over the actors.

� Dependencies. According to the identified patterns, the dependency class related with
the actor can be discriminated (by type and name). Also, as they are linked by a
relationship, the relationship can be counted and a ratio can be applied. With these
elements, in Table 4.3 we define that if the type or name of the dependency affects the
property, dependencies are provided with a discriminator value. If the ratio of
dependencies (depender/dependee) affects the property, the ratio is calculated. Finally,
the number of dependencies may affect the property positively (count the number of
dependencies) or negative (an inverse function is applied over the counting).

� Actors. According to the identified patterns, the actor class related with the actor can
be discriminated (by type and name), and the counting and ratio functions can be
applied as in the dependencies. Therefore, in Table 4.3 we ask if the actors related with
the actor affect the property. If it is the type or name of the actor which affects the
property, we apply the corresponding discriminator. If it is the number of actors which
affects the property, we can count the actors, applying the inverse of the number of
actors if the contribution is negative. Finally, a ratio of actors of a certain type can also
be applied.

� limitM(a). Depending on the scale of the metric, the limit can be ignored when calculating
the actor-based metric. But it can also be used to calculate the average and to normalize the
result (see Table 4.3).

Chapter 4. Defining Structural Metrics over i* Models .

 107

Table 4.3. Guidelines for defining actor-based metrics

Metric element Question Answer Example Value
1.1. Actor-based: filterM(a)

Does the type of the actor or the actor itself affect the quality attribute?
No filterM(a) = 1

w, if a є Human
x, if a є Software
y, if a є Hardware

Yes, the actor type affects the
quality attribute
(discriminator by type)

filterM(a) =

z, if a є Other
m, if a = Actor_A
n, if a = Actor_B

Yes, the actor name affects the
quality attribute
(discriminator by name)

filterM(a) =
o, if a = Actor_C

1.2. Actor-based: correctionFactorM(a)
Do the actor dependencies affect the quality attribute?

No correctionFactorM(a) = 1
Yes, the dependency type
affects the quality attribute

Dependency discriminator by type

Yes, certain dependencies
affects the quality attribute

Dependency discriminator by name

Yes, the number of
dependencies affects (positive)

correctionFactorM(a) = #Dep(a)

1 Yes, the number of
dependencies affects (negative)

correctionFactorM(a) =
#Dep(a)

#Deper(a) Yes, the ratio of dependency
in/out affects it

correctionFactorM(a) =
#Depee(a)
#Depee(a)

Yes, the ratio of dependency
out/in affects it

correctionFactorM(a) =
#Deper(a)

Do the actors related with the actor dependencies affect the quality attributes?
No correctionFactorM(a) = 1
Yes, the related actors type
affects the quality attribute

Actor discriminator by type

Yes, certain related actors
affects the quality attribute

Actor discriminator by name

Yes, the number of related
actors affects it (positive)

correctionFactorM(a) = #Dep(a)

1 Yes, the number of related
actors affects it (negative)

correctionFactorM(a) =
#Actor(a)
#Acter(a) Yes, the ratio of related actors

in/out affects it
correctionFactorM(a) =

#Actee(a)
#Actee(a)

Yes, the ratio of related actors
out/in affects it

correctionFactorM(a) =
#Acter(a)

1.3. Actor-based: limitM(a)
Which is the scale of the metric?

Absolute between [0,infinite] Filter(a) = 1
Absolute, average Filter(a) = || A ||

Ratio, [0..1] Filter(a) = Normalization value

4.7.2. Identifying guidelines for Dependency-based metrics

For defining the guidelines for the dependency-based metrics we follow the same procedure as
for the actor-based ones. Thus, we first analyse the formula we have provided in Section 3.6.2.

Dependency-based metrics. Given a property P and an i* SD model that represents a model M
= (A, D), where A are the actors and D the dependencies among them, a dependency-based
metric for P over M is of the form:

An i*-based Reengineering Framework for Requirements Engineering

108

Σd: d(a,b,u) ∈D: filterM(u)×correctionFactorM(a,b)
P(M) =

|| D ||

being filterM: D�[0,1] a function that assigns a weight to the every dependum (e.g., if the
dependum is goal, resource, task, softgoal if it is from a specific type), and
correctionFactorM(a,b): A�[0,1], which can be decomposed into correctionFactorM,der:
A�[0,1] and correctionFactorM,dee: A�[0,1] two functions that correct the weight
accordingly to the type of actor that the depender and the dependee are, respectively.

If we analyse the general form of the metric we can see that it has three differentiated parts, the
filterM(u), the correctionFactorM,der(a) and the correctionFactorM,dee(a). Analysing the structural
elements related with the dependencies (see the metamodel in Figure 4.6, right), we observe that
the structural elements that give a value to the dependency according to its name or its type (i.e.
the dependency node in the metamodel) correspond to the filter and the ones related with the
actors that participate in the dependency correspond to the two correction factors (the
relationships with the two actor nodes in the metamodel). We remark that it is possible to
evaluate the correction factors by giving each one a value (i.e. defining the
correctionFactorM,der(a) and the correctionFactorM,dee(a)), or by giving a value to an specific
combination of the two (i.e. defining the correctionFactorM(a,b)).

Taking this classification as a starting point, we have defined the guidelines presented in Table
4.4, by stating a set of questions that help to identify the elements of each category. We remark
that this first classification can be completed with a deeper analysis of the metamodel. However,
this first level has been sufficient for defining the metrics used in this thesis. For defining the
table we take into account the following assumptions:

� FilterM(u). As dependencies are represented as a Dependum class and its relationships in
the metamodel, we apply a discriminator over it. Discriminator is expressed in terms of the
attributes of the Dependum class: type and name. Therefore, in Table 4.4, for obtaining the
value of FilterM(u) we ask a question to discriminate if the type of the dependum or the
name of a specific dependency actor affects the quality attribute. If none of them affects it,
the filter has value = 1. It is also possible to discriminate positively or negatively, the
duplicity of the dependums, by multiplying or dividing for the number of times the
dependum appears.

� CorrectionFactorM(a,b). The Dependum class has two relationships that state the depender
and the dependee of the dependency. The correction factor concerns a combination of both
actors we apply a discriminator by type or by name of each of the actors (see Table 4.4).

� CorrectionFactorM,der(a). If the depender type or name affects the quality attribute, we
apply a discriminator by type or name in order to obtain the correction factor (see Table
4.4). As in the actor-based metric, actors may be related with other Dependum classes, and
so, further discriminator of the related dependencies or actors can be applied as it has been
done for the actor-based metrics (see previous section and Table 4.3).

� CorrectionFactorM,dee(b). The same criteria applied for the depender, can also be applied
for the dependee. Therefore, this function is analogous to the previous one.

Chapter 4. Defining Structural Metrics over i* Models .

 109

� limitM(u). Depending on the scale of the metric, the limit can be ignored when calculating
the dependency-based metric. But it can also be used to calculate the average and to
normalize the result (see Table 4.4).

Table 4.4. Guidelines for quantifying the dependency-based metrics

Metric element Question Answer Example Value
2.1. Dependency-based: filterM(u)

Does the type of the dependum or the dependum itself affect the quality attribute?
No Filter(u) = 1

w, if d є Goal
x, if d є Resource
y, if d є Task

Yes, the type of the dependum
affects the quality attribute
(discriminator by type)

Filter(u) =

z, if d є Softgoal
m, if d = Dep_A
n, if d = Dep_B

Yes, the name of the dependum
affects the quality attribute
(discriminator by name)

Filter(u) =
o, if d = Dep_C

Do the duplicated dependums affect the quality attribute?
Yes, the number of dependums
affects (positive)

CorrectionFactor(u) = #Dep(u)

1

Yes, the number of dependums
affects (negative)

CorrectionFactor(u) =
#Dep(u)

2.2. Dependency-based: correctionFactorM(a,b)
Does a certain combination of depender and dependee affect the quality attribute?

No CorrectionFactor(a,b) = 1
x, if a = Software

and b = Human
y, if a = Software

and b = Software

Yes, a certain depender type
and dependee type affects the
quality attribute

Correction
Factor(a,b) =

…
x, if a = Actor_A

and b = Actor_B
y, if a = Actor_C

and b = Actor_D

Yes, a certain depender name
and depender type affects the
quality attribute

Correction
Factor(a,b) =

…
2.3. Dependency-based: correctionFactorM,dee(a)

Does the related depender affect the quality attribute?
No CorrectionFactor(a) = 1
Yes, the depender type affects
the quality attribute

Actor discriminator by type

Yes, the depender name affects
the quality attribute

Actor discriminator by name

2.4. Dependency-based: correctionFactorM,dee(b)
Does the related dependee affect the quality attribute?

No CorrectionFactor(a) = 1
Yes, the dependee type affects
the quality attribute

Actor discriminator by type

Yes, the dependee name affects
the quality attribute

Actor discriminator by name

2.5. Dependency-based: limitM(u)
Which is the scale of the metric?

Absolute between [0,infinite] limit(u) = 1
Absolute, average limit(u) = || D ||

Ratio: [0..1] limit(u) = Normalization value

An i*-based Reengineering Framework for Requirements Engineering

110

4.7.3. Example of Metric Definition: Data Accuracy

Data accuracy is a criterion used in evaluating the quality of information that measures the
degree to which information sources are free from mistakes and errors. From the definition of
the metric, we observe that it addresses the data in the form of information and so, it is
concerned with the resources dependencies of the i* model. Because of that, we decide that a
dependency-based metric is needed.

Before defining the metric, we have to state certain factors of the template that will help its
definition. Therefore, we establish that the scale will be a Ratio [0..1] and, based on that, we
state the following assumptions:

� Data accuracy of an i* model with no dependencies between its actors is 1.
� Data accuracy depends on the kind of data being manipulate, as for the correct achievement

of the process, some data has to be more accurate than other.
� Data accuracy depends on the actors that manipulate the data, being human and

organizational actors less accurate than software actors.

Based on these assumptions we state that the higher the value of the metric, the more accurate
data is kept in the process. Once this is stated, we use the guidelines for defining dependency-
based metrics, as follows:

Σd: d(a,b,u) ∈D: filterM(u) × correctionFactorM,der(a) x correctionFactorM,dee(b)
DA(M) =

limitP(M)

filterM(u). As we have stated in the assumptions, data accuracy depends on the kind of the data,
because we assume that only resource and task dependencies are important from an
accuracy point of view. In addition, data accuracy also depends on the dependum name,
because each particular data needs a different degree of accuracy on the process. Therefore,
we have to weight the dependums according to their accuracy needs. As we are not working
with a particular i* model it is not possible to establish a particular weighting, but we
propose to classify the dependums according to four categories: critical, high, medium and
low. We remark that critical accuracy would score lower than low accuracy and, so, we
apply the following filter:

0.2 if critical_accuracy(u)
0.5 if high_accuracy(u)
0.8 if medium_accuracy(u)
1 if low_accuracy(u)

filterM(u) =

1, otherwise

correctionFactorM,der(a). The assumptions state that some actors to be more accurate than
others. However, when the actor is a depender, it is only receiving the data and thus, it can
not introduce mistakes and errors on it unless it becomes dependee of the same data.
Therefore, the depender does not affect data accuracy and we state:

correctionFactorM,der(a) = 1

correctionFactorM,dee(b). On the other hand, we state that the related dependee affects data
accuracy because depending on its type we can consider some actors more accurate than

Chapter 4. Defining Structural Metrics over i* Models .

 111

others. For instance, if we assume that software systems are correctly built and maintained,
they are less prone to introduce mistakes and errors than humans are. Therefore, we weight
the dependees according to their level of accuracy:

0.7 if a є Human
0.7 if a є Organization
0.9 if a є Organization

correctionFactorM,dee(b) =

1 otherwise

limitp(M). Finally, as the scale of the metric is ratio, we apply a normalization value, which can
be the total amount of dependencies on the model.

Limitp(M) = || D ||

We remark that we have applied one guideline for each of the factors of the dependency-based
metric. The defined metric is validated in the case studies of Chapter 5 and Chapter 6. The
complete documentation of these metric can be found in Annex A, Table A.5.

4.8. A Mapping-based Process for the Reuse of Structural

Metrics

We remark that Structural Metrics are defined over the metamodel and, more precisely, are
based on the structural elements represented in the metamodel. We also remark that not all the
metrics are generic of the metamodel, because they may evaluate specific attributes on the
domain models. As we have mentioned before, the reuse of metrics is of special importance
because it makes metrics reuse simpler, avoids an over-abundance of metrics and facilitates its
validation. Because of that, we propose to use the proposed metamodelling levels to define
Structural Metrics from reuse. In Figure 4.7 we present an overview of the process we propose
for reusing metrics. As we are interested in reusing Structural Metrics for their application over
i* models, the process is described following this direction. So, the starting point is a certain
Structural Metric defined for a specific domain based on the metamodel of a certain modelling
language. In order to reuse this source Structural Metric over a different modelling language we
propose to formulate a mapping process between the source metamodel and the i* metamodel.
So, based on this mapping, we can define a new Structural Metric over the i* metamodel,
sharing the same principles of the first one.

Figure 4.7. Structural Metrics reuse process based on metamodels.

An i*-based Reengineering Framework for Requirements Engineering

112

4.8.1. Guidelines for the Reuse of Structural Metrics

Taking these considerations as a basis, in this section we propose a set of guidelines for the
reuse of Structural Metrics. As our final goal is to apply metrics over i* models, these
guidelines will be used to customize two different metrics from other models to i*.

Preliminary metric reuse guideline: Selecting the appropriate metric. In order to achieve an
appropriate reuse of metrics, we have first to select an appropriate metric. Therefore, once
the metric has been defined using the GQM principles, we have to state the assumptions of
measurement and to find a metric that accomplish the same assumptions. The domain
classification and the metamodel may help on founding the appropriate metric.

Metrics reuse guideline 1: Mapping of the metamodelling concepts. Once a suitable metric
is found, we have to check the mapping equivalence between the different relevant
measurement concepts. Despite [Röttger & Zschaler, 2004] provides a set of mapping
guidelines for manipulating the already defined metrics, the study presented in [McQuillan
et al., 2006] concludes that, even for UML metrics, it is very difficult to find a set of
universal mapping guidelines. Because of that, we suggest to establish this mapping based
on our knowledge of both models and to validate the results in further steps. We remark
that, if it is not possible to find the mapping equivalence, another metric has to be selected
for reuse or a new metric has to be defined from scratch.

Metric reuse guideline 2: Metric definition based on the mappings. Based on the established
mapping equivalence, the new metric is defined.

Metric reuse guideline 3: Metrics validation and documentation. The metric is validated by
following one or several of the validation methods presented in Section 4.3. Once this is
done, the metric is documented following the template on Section 4.3.2.

4.8.2. Example: Reusing a Coupling Metric

Metrics are only indicators for certain properties, even if they are named after the property they
measure. As stated in [Fenton & Neil, 2000] there is no direct causality between a metric and
the property it measures, and a complete measurement process has to take into account different
metrics (see explanation of the GQM approach in Section 4.3). As an application of this, we
have the concepts of coupling and cohesion, which are indicators for several properties such as
the maintainability or the complexity of the software system. As coupling is widely explored in
the Software Metrics literature, we will define a coupling metric based on an existing one.

4.8.2.1. Process Coupling: selecting the appropriate Coupling metric

There are different metrics that address coupling, for instance over program modules [Xia,
2000], class diagrams [Chidamber & Kemerer, 1994], [Goulao & BritoAbreu, 2005], [Linke &
Lowe, 2006], or workflow models [Vanderfeesten et al., 2006]. As it is stated in [Mens &
Lanza, 2002] there is no consensus about what is the best alternative definition of the coupling
method. Therefore, we have to select a metric and apply it.

Chapter 4. Defining Structural Metrics over i* Models .

 113

In order to select the most appropriate coupling metric we have to define the assumptions for a
coupling metric over an i* model. According to the concept of coupling, which measures the
degree in which a node element is coupled with other node elements by means of edges, we
define the following assumptions on i*:

� An actor is coupled to another actor when one of the actors has dependencies to the other;
� The coupling of an i* with no dependencies between the actors is 0;
� The coupling of an i* where all the actors are related one with each other is 1;

We observe that, with this assumptions, we need a ratio measure for coupling ranging [0..1],
and so, metrics such as the ones proposed in [Chidamber & Kemerer, 1994] measuring the
coupling of a single element are not appropriated. We also focus on the specification of a
software process and so, a process coupling metric is more adequate than an object coupling
metric.

4.8.2.2. Process Coupling: mapping of the metamodelling concepts

In the workflow process model proposed in [Vanderfeesten et al., 2006] we distinguish three
kinds of elements: operations, activities, processes, and resources. Operations capture the
essential information processing that has to be performed. Any group of operations may be
clustered together into an activity as long as a resource type can be distinguished within the
available ones that are capable of performing all operations. Finally, a process is a set of
activities, being the resources produced by the operations the ones that determine the workflow
between activities. According to this description in the generic graph-based metamodel
presented in Figure 4.3, activities and operations instantiate nodes and resources instantiate
edges. Also, an activity is composed of several operations. For understandability reasons, in
Figure 4.8 we represent the instantiation of the metamodels without the hierarchy of the generic
graph metamodel. The tight links show the equivalence of concepts between the generic graph-
based metamodel, the workflow process metamodel and an i* metamodel, where operations are
equivalent to SR elements, activities are equivalent to actors and, finally, resources are
equivalent to dependencies. We remark that the process and the i* model are not modelled
explicitly.

Figure 4.8. Reusing a Process Coupling metric: mapping across the different metamodels

An i*-based Reengineering Framework for Requirements Engineering

114

4.8.2.3. Process Coupling: metric definition based on the mappings

Once it is possible to establish the mapping between the concepts of both models, we have to
establish the mapping between the metrics. The Process Coupling metric proposed in
[Vanderfeesten et al., 2006] determines the number of related activities for each activity. First,
the average coupling is determined by adding up the number of connections for all activities and
dividing this number of activities. As all the pairs of activities have been counted twice, in order
to get a relative score for this metric, the average coupling is divided by the maximal number of
coupling (i.e., the number of activities minus one). The formal definition is:

For a process that consist of a set of activities (S) on the operations structure (T) where,
- T: an activity on operations structure (D, W, O)
- D: the set of information elements being processed
- W: the set of resource classes or roles that are available to the process
- O: the set of operations on the information elements, such that there are no ‘dangling’

information elements and no value of an information element depend on itself
The process coupling CP is defined as follows:

| {T1, T2) Є S x S | T1 ≠ T2٨ (T1 ∩ T2) ≠ 0} |
CP =

|S| . (|S| - 1)

As the metric is counting actors, we will define an actor-based metric, where,

filterM(a) = 1

correctionFactorM (a) = # b: b∈A and b ≠ a: (Exist d: d ∈ D: (a,b,u) or (b,a,u))

limitP(D) = |A| . (|A| - 1)

We can see that all the actors are taking into account without applying any filter. Regarding the
CorrectionFactor, we get the number of actors that have at least one dependency with the
current actor. Regarding the normalization limit, we apply the same formula of the source
metric.

We remark that, when defining the actor-based metric, some adjustments could be done to
provide a more precise value. For instance, actors can be filtered according if they are software
or non-software, in order to emphasise the software communication.

4.8.2.4. Process Coupling: metric validation and documentation

The source process coupling metric has been validated by applying it over a small case study in
[Vanderfeesten et al., 2006]. Regarding the validation of the process coupling over i*, it has
been applied over the case studies in Chapter 5, with satisfactory results in terms of assumptions
and mathematical properties accomplished. The documentation of the metric can be found in
Table A.11.

4.8.3. Example: Reusing a Functional Size Structural Metric

The Structural Metrics proposed by PRiM focus on the evaluation of non-functional properties
such as easy of use, process agility, maintainability, etc. However, despite that the i* models are
constructed taking into account the functional requirements of the system, functional metrics are

Chapter 4. Defining Structural Metrics over i* Models .

 115

not considered by the method. As stated in [Habela et al., 2005], for productivity reasons it is
important to avoid model reconstruction dedicated for just measuring purposes, therefore we
propose to adapt an existing functional size metric to the i* models constructed with PRiM. The
work presented here is further developed in [Grau & Franch, 2007d] and [Grau, 2008a].

4.8.3.1. COSMIC Functional Size: selecting the Appropriate Metric

Functional size measures the size of a future software system from the specification of its
functional requirements. As i* models represent both functional and non-functional
requirements, they are adequate for measuring the functional size. As functional size measures
the different number of inputs and outputs of the system, we make the following assumptions:

� The functional size of an i* model without software system, is 0.
� The more functional dependencies steaming or going through the software system actors,

the higher is the functional size.

Based on these assumptions, among the different functional size metrics, we have selected the
COSMIC Method [Abran et al., 2003], a method for measuring the functional size which is
supported by the ISO/IEC 19761 [ISO/IEC 19761]. The COSMIC method involves applying a
set of models, principles, rules and processes to the Functional User Requirements (FUR) of a
given piece of software. FURs are a subset of the user requirements, which describe what the
piece of software to be measured shall do in terms of tasks and services. The result is a size
measure expressed in COSMIC Function Points (CFP). The software interacts with these
Functional Users (FU) via data movements across the Functional Process (FU), which conform
a conceptual interface called boundary, and it also moves data to and from Persistent Storage
(PS), also across the boundary.

In the COSMIC Generic Software Model, FURs are mapped into unique functional processes,
where each functional process consists of subprocesses, which can be a data movement or a data
manipulation. A data movement moves a single data group, and there are four types of data
movement: an Entry moves a data group into the FP from a FU; an Exit moves a data group out
of the FP to a FU; a Write moves a data group from the FP to PS and, a Read moves a data
group from PS to FP. Figure 4.9 shows the components of a functional process and the
explained relationships. COSMIC defines that, for any functional process, the functional sizes
of individual data movements shall be aggregated into a single functional size value in units of
CFP by arithmetically adding them together.

Size (functional process) = Σ size(Entriesi) + Σ size (Exitsi) + Σ size (Readsi) + Σ size (Writesi)

The main reasons for selecting this method against other functional size measuring methods are:

� It only distinguishes four different types of data movements that can be easily represented in
i*, whilst other methods such as FFA [Albrecht & Gaffney, 1983], [IFPUG website] take
into account other aspects such as the number of user inquires or number of external
interfaces, which are more difficult to differentiate in the models.

� It is a well-establish method and many measurement procedures have arisen to support it
([Condori-Fernandez et al., 2004], [Habela et al., 2005], among others).

� There are available case studies that can be used to validate the results.

An i*-based Reengineering Framework for Requirements Engineering

116

Entry

Functional

Users

Exit

Boundary

Manipulation

Read

Write

Persistent

Storage

Functional

Process

Figure 4.9. The components of a functional process and some of their relationships. Adapted from

[Abran et al., 2007]

4.8.3.2. The COSMIC Functional Size: mapping of the Metamodelling Concepts

As we have mentioned, there are concept similarities between the representations of the
mappings used in the COSMIC method and the ones represented in PRiM. However, COSMIC
Functional User Requirements (FUR), are an scenario-based notation, and so, they follow a
sequence-based metamodel. On the other hand, i* follows a graph-based metamodel, but, as we
are working with i* models generated with PRiM, and in PRiM, the Operational i* Model is
generated from the documentation of the process into the Detailed Interaction Scripts (DIS), it is
possible to find a mapping equivalence at the metamodel level. In Figure 4.10, we have
established a set of mapping relationships between the concepts needed in the FURs of the
COSMIC method generic software model, the information documented in the DIS tables of
PRiM and the i* concepts. At the left of Figure 4.10, we observe that the COSMIC Functional
Size is based upon a Functional Process which has a Triggering Event and several
Subprocesses associated to it. Each Subprocess has a Data Group that can be of the type: entry
(E), exit (X), read (R) or write (W). In the DIS, each Functional Process is represented by an
Activity; the Triggering Event is part of the Conditions associated to the Activity; and, each
Subprocess is represented by the concept of an Action. There is a correspondence between the
concepts of Data Group and Resource, although the distinction between the Data Group types
is implicit in the DIS information because it depends on the Actors that participate in the action.
PRiM proposes a set of automatic rules to transform DIS into i* Models where Conditions are
transformed into Goal Dependencies, Activities and Actions are represented into SR elements,
and Resource Dependencies are established between the different Actors. In order to help the
evaluation of the i* Model with the COSMIC method, we have added the property COSMIC
(see the graph-based metamodel in Figure 4.3) to the Actor in order to allow its classification
into: Functional User (FU), Functional Process (FP), and persistent storage (PS).

Based on the established metamodels mapping, and the definition of the COSMIC Functional
Size concepts, we can establish a mapping among the COSMIC measurement concepts and the
i* concepts that are described in Table 4.5. We observe that, in order to represent the Read and
Write movements in i*, a database actor has to be defined and the interaction with this new
actor has to be explicitly represented.

Chapter 4. Defining Structural Metrics over i* Models .

 117

Type: {pr, c, pv}

Triggering Event

Functional Process

Subprocess

Data Group

Condition

Activity

Action

Resource

Actor

Goal Dependency

SR Element

Actor

Resource Dependency

2..m

1..m

1..m

1..m

1..m

1..m2..m

1..m

1

1..m

1..m

1

1..m

11..m

2

Functional User

Requirements (FUR)

Metamodel

Detailled Interaction

Script (DIS)

Metamodel

i*

Metamodel

Type: {FU, FP, PS}

Type: { E, X, R, W }

1

1..m

1

1..m

1..4
1

Condition

Sequence of Actions

Action

Actor

1..m

1..m

1

1..m

1..m

2

Sequence-based

Metamodel

Figure 4.10. Reusing COSMIC-FFP: Mapping across the different metamodels

Table 4.5. Mapping of the COSMIC-FFP concepts to the i* Concepts

COSMIC concept (obtained from [Abran et al., 2007]) i* concept
Functional User A (type of) user that is a sender and/or and intended

recipient of data in the Functional User Requirements of
a piece of software.

Actor that represents one or more human roles
that have functional dependencies over the
software under study.

Functional
Process

Elementary component of a set of Functional User
Requirements comprising a unique, cohesive, and
independently executable set of data movements.

Actor that models the component that performs
the functionality that is considered for the
measurement.

Persistent
Storage

Storage which enables a functional process to store or
retrieve a data group beyond the life of the functional
process.

Actor that represents the entities that manage
data in a persistent way.

Data Group Is a distinct, no empty, non ordered and non-redundant
set of data attributes where each included data attribute
describes a complementary aspect of the same object of
interest.

Resource element that represents a physical or
informational entity.

Data Movement A base functional component which moves a single data
group type.

Any dependency where the dependum is a
resource.

Entry (E) Data movement type that moves a data group from a
functional user across the boundary into the functional
process where it is required.

Dependum: Resource (data group)
Depender: Functional Process
Dependee: Functional User

Exit (X) Data movement type that moves a data group from a
functional process across the boundary to the functional
user that requires it.

Dependum: Resource (data group)
Depender: Functional User
Dependee: Functional Process

Read (R) Data movement type that moves a data group from
persistent storage within reach of the functional process
which requires it.

Dependum: Resource (data group)
Depender: Functional Process
Dependee: Persistent Storage

Write (W) Data movement type that moves a data group lying
inside a functional process to persistent storage.

Dependum: Resource (data group)
Dependee: Persistent Storage
Dependee: Functional Process

4.8.3.3. COSMIC-FFP: metrics definition based on the mappings

The PRiM method proposes Structural Metrics for evaluating the i* models and, in order to
apply COSMIC, the numerical assignment rules are defined using the formulas and concepts
proposed in [Franch, Grau & Quer, 2004a], [Grau, Franch & Maiden, 2005a] which differentiate
between actor-based and dependency-based functions. In COSMIC the unit of measurement are
the Data Groups, and in i* Data Groups are represented as resource dependencies. Because of
that, we have to define a dependency-based metric, where the dependencies are filtered by its
type (only resource dependencies are taken into account) and the correction factor is applied by
analysing the dependee and depender actors in order to only take into account the ones proposed

An i*-based Reengineering Framework for Requirements Engineering

118

in PRiM. As functional size is an increasing function, we don’t need to normalize the results.
Therefore, we have adjusted all these factors according to the mapping established in Table 4.5.
The resulting metric is:

Σd: d(a,b,u) ∈D: filterM(u)×correctionFactorM(a,b)
Functional_Size(M) =

limitP(D)

Where,
1, if u є Resource

filterM(u) =
0, otherwise

1, if a є Functional Process and b є Functional User
1, if a є Functional User and b є Functional Process
1, if a є Functional Process and b є Persistent Storage
1, if a є Persistent Storage and b є Functional Process

correctionFactorM (a,b) =

0, otherwise

limitP(D) = 1

4.8.3.4. Validation and Documentation: Evaluating COSMIC-FFP with PRiM

In order to ensure that the defined mapping rules and the numerical assignment rules allow a
reliable calculation of the functional size, applied the method to the three case studies presented
at [COSMIC Method website]. The validation was done by introducing the case studies in our
tool J-PRiM [Grau, Franch & Ávila, 2006] and Chapter 8, and we have obtained positive results
with all of them. The metric is fully documented in Annex A (Section A.4, Table A.4).

To illustrate the validation process, we present the observations for the application of the C-
Registration Case Study [Kelifi et al., 2003]. For the software documentation gathering, we
have used the information provided in the case study (that is, the problem statement and the
rules provided by COSMIC for establishing the Data Groups and the Functional Processes) in
order to ensure that we were working with the same elements of the case study. Therefore,
based on the provided Functional Processes we have established the activities of PRiM and, for
each activity, we have described its actions by filling the DIS template. We remark that, in order
to be compliant with the method, when describing the actions we have made explicit those
actions that involve store or retrieve information from the Persistent Storage. Although this was
not considered in PRiM, it has been possible to introduce this information correctly. Once the
Operational i* Model has been generated, we have applied the proposed COSMIC dependency-
based metric. Once calculated we have compared its result with the result obtained in the case
study. We have to mention that the first results where different from expected. In the first trial
the reason was that, as we wanted to avoid copying the functional process data movements, we
generated our own action description. In this description we considered the command
introduced by the user as a triggering event, whilst in some functional processes of the case
study this is considered as a data movement. We then added these data movements and
regenerated the Operational i* Model. In the second trial, the final result was of 107 CFU, one
unit higher than expected, which is due to a miscalculation on the final results presented in the
case study.

Chapter 4. Defining Structural Metrics over i* Models .

 119

4.9. Conclusions

According to the related work presented in Sections 4.1 and 4.2, there is an increasing use of
Structural Metrics, and also, an increasing need of the reuse of existing metrics. However, most
of the proposed Structural Metrics are defined in an intuitive way, without applying any metric
definition process. In order to facilitate metrics reuse, we have defined a set of systematic
guidelines based on applying a mapping process across the metrics metamodels. In our
experiences the intuitive mapping has been applied successfully without too much effort for
defining the metrics, and we believe that further research may help to establish more precise
rules for applying the mapping process.

When reuse is not possible, the analysis of existing Structural Metrics reveals that it is possible
to define metrics from scratch based on the structural elements common in the already existing
ones. This is due to the fact that all the Structural Metrics are based on a metamodel and those
metamodels can be abstracted into a meta-metamodel stating their main constructs. Using this
property, we have defined a set of guidelines for defining the actor-based and the dependency-
based metrics from scratch. The metrics are defined and documented using the proposed
template and some parts of the formula can be customizable depending on the particular
elements of a particular i* model. We remark that, in order to weight the filters and correction
factors of the metrics, expert advice is strongly recommended. Structural metrics can also be
defined in more or less detail depending on the desired accuracy and reuse of the results. This is
a trade-off condition, because the more elaborate the metrics are, the more accurate but less easy
they are define and reuse. Our experience in using the metrics definition guidelines has show
positive results that encourage further research on the field.

We can then state that we have state two different processes for defining Structural Metrics
from reuse and from scratch. All the defined Structural Metrics are documented in the catalogue
in Annex A. From the observation of these metrics, we observe that, despite the general formula
for actor-based and dependency-based metrics was stated before defining the metrics definition
process [Franch, Grau & Quer, 2004a], it is suitable for defining metrics in different contexts
and with different level of detail.

Regarding validation, we remark that the i* metrics that are defined from reuse, benefit from the
validation of the reused metric. It is also possible to replicate the experiments or case studies on
which the reused metric is applied such as for the COSMIC metric. Regarding the validation of
the metrics defined from scratch, they are validated by its application in different case studies in
Chapter 5 and Chapter 6, were we check that the metric provides the expected results in the
different situations and, so, the stated assumptions are verified.

In relation to the use of Structural Metrics within the PRiM method, the work reported in this
chapter provides two main contributions. On the one hand, it proposes a set of guidelines for
defining and reusing Structural Metrics that can be applied in Phase 4 of the method. On the
other hand, it refines and validates the actor-based and dependency-based metrics general
formula originally proposed by the method (see Section 3.7).

An i*-based Reengineering Framework for Requirements Engineering

120

 121

5. Formative Validation of PRiM

Validation is required in order to determine the real usefulness of a method. Requirements
Engineering methods, such as PRiM, require early validation whilst they are under development
in order to benefit from the feedback provided. This first validation takes the form of formative
case studies, due to their central role in shaping the method [Scriven, 1991]. In this chapter we
address the formative validation, whilst in the next chapter we validate the method developed
during the formative case studies using an industrial case study.

The PRiM method has been developed under strong theoretical basis and, so, the formative
validation does not intend to validate each phase of the method individually, but to address them
as a whole. Because of that, we have chosen three different case studies based on common
exemplars for the goal-oriented field, namely: the Meeting Scheduler, the Collaborative
Exercise, and the Conference Management System. We remark that the Meeting Scheduler Case
Study is the case study that appears in [Grau, Franch & Maiden, 2005a] and the Collaborative
Exercise Case Study the one that appears in [Grau, Franch & Maiden, 2008].

The remainder of the paper is organized as follows. In Section 5.1 we present some preliminary
concerns on the method validation. In Section 5.2, we introduce the general objectives to
achieve by executing the case studies. An overview of the results achieved for each case study is
presented in Section 5.3 and the comparison of the results is presented in Section 5.4. Finally,
Section 5.5 presents the conclusions of the chapter.

5.1. Preliminary Validation Concerns

As we have seen in Chapter 3, PRiM is a method that combines several techniques from
different disciplines. First, it uses Human Activity Modelling [Jones et al., 2004] for analysing
the current process, but it documents the current processes using the DIS tables. Second, the i*
framework is used for modelling the current process and goal-oriented acquisition strategies
such as KAOS [Dardenne et al., 1993] can be combined with its constructs in order to elicit new
requirements. Then, Business Process Reengineering techniques for the generation of
alternatives are also applied following [Katzenstein & Lerch, 2000]. Finally, structural metrics

An i*-based Reengineering Framework for Requirements Engineering

122

are defined for evaluating the alternatives and, the guidelines proposed in [Santander & Castro,
2002] are applied to generate the Use Case models from the resulting i*. It is possible to
observe that, as PRiM uses different techniques, we benefit from the validation of these
techniques as follows.

Phase 1. Human Activity Modelling. By using Human Activity Models for analysing the
current process, PRiM benefits from lessons learned obtained with the RESCUE process
[Jones & Maiden, 2004], which may be considered a predecessor for its first phases. In the
context of RESCUE, context modelling, human activity models and i* were applied
successfully to model and analyze requirements for new socio-technical systems in three air
traffic management projects: for en-route conflict resolution (CORA-2), enhanced air space
management (EASM), and departure management (DMAN). Detailed HAMs were
developed in the DMAN project to describe current processes when managing departures
from airports. In the application of RESCUE, the human activity models revealed that
important human actions (typically physical and cognitive actions undertaken by the air
traffic controller) were often omitted from the future system specification, which tended to
specify system computation and interaction behaviour rather than the behaviour of human
actors in the wider socio-technical system. This direct comparison of the current and future
system models led to important revisions to the use case specifications. More details are
reported in [Maiden, 2004], [Maiden et al., 2004a].

Phase 1. Using DIS tables to document the Processes. One problem that emerged with
RESCUE when developing an i* SD model is the establishment of all the possible
dependencies. Analysts in the projects found difficult to know how to ensure that all
possible dependencies had been considered. The solution implemented in RESCUE consists
of, before drawing a first-cut graphical SD model, listing possible dependencies between
actor pairs in a tabular notation. As this has proven to be an effective practice, in PRiM we
propose to write these tabular dependencies in a more systematic way by analyzing the
different actions undertaken in the process and documenting them in the DIS template. As
mentioned in [Katzenstein & Lerch, 2000], an effective way of doing that is to enumerate
chronologically all of the actions that need to be executed until completing the activity,
making explicit both the actions that the actor performs by itself and the resources that the
actors requires from other actors.

Phase 2. Application of consistency checks. There is a set of consistency checks to verify if
the rules and guidelines proposed in the second phase of PRiM are correctly applied. These
checks have their origin in the verification checks that RESCUE applies to the models at
different stages in the process. Consistency checks applied in the RESCUE process,
revealed inconsistencies between the models, so we expect the same results when applied in
PRiM.

Phase 3. Goal-Oriented Acquisition Techniques. Goal-oriented acquisition in PRiM has been
adapted from the KAOS approach [Dardenne et al., 1993] and so, it benefits from using a
well-established method. Despite KAOS constructs are different from the ones proposed by
i* (see Section 2.4), we observe that the represented concepts are equivalent in the sense

Chapter 5. Formative Validation of PRiM .

 123

that they all consider AND and OR decomposition in their reasoning acquisition process,
which make expect successful results in PRiM.

Phase 4. Generation of Alternatives. The reallocation of responsibilities by means of
delegating actions has been obtained from [Katzenstein & Lerch, 2000]. Despite this work
is not i*-based, the language used is goal-oriented and the proposed guidelines are similar to
the ones proposed in [Bresciani et al., 2004], [Estrada et al., 2003] and [Grau et al., 2005]
for inserting the Software System into the social alternative.

Phase 5. Evaluation of Alternatives. The evaluation of i* models with structural metrics has
been developed for the method after the REACT method [Franch & Maiden, 2003]. In order
to enhance actor-based and dependency-based structural metrics (see [Franch, Grau & Quer,
2004a]) with a more strong background, in Chapter 4 we present an overview of the existing
metrics and, based on the existing work, we propose some guidelines for reusing existing
metrics and defining new ones from scratch.

Phase 6. Generation of Use Case Specification. The generation of Use Case specifications
from the resulting i* model is straightforward in the sense that the i* model has been
generated from the DIS templates, which are a scenario based notation. As the alternatives
are generated by reallocating responsibilities, the order of the elements can be preserved,
thus facilitating their transformation into Use Cases by following [Santander & Castro,
2002]. Non functional requirements can be obtained from the i* model and drawn up into a
requirements document as it is done in [Maiden et al., 2003].

From these validation concerns, we remark that Phase 1, Phase 3 and Phase 6 are based on
existing methods and, so, we can assume that when applied correctly they yield to effective
results. Therefore, those aspects that need more validation are the techniques that we have
defined for Phase 2, Phase 4 and Phase 5. Therefore, the formative validation focuses on these
phases.

5.2. Case Study Planning

Due to the formative basis of these preliminary case studies, we have not applied formal case
studies guidelines [Kitchenham et al., 1995] and neither an experimental approach [Wohlin et

al., 1999] for their execution. However, in order to be rigorous, we have taken some objectives,
hypothesis, and general considerations as starting point.

5.2.1. Definition of the Case Study Goals

As we have seen in the previous section, all the phases of PRiM are based on strong theoretical
basis, reusing existing methods and techniques when possible. Therefore, it is not the goal of the
case study to validate these techniques, but to validate if the result of the application of PRiM
over provides the expected results. The goal of the formative case studies is defined using the
Goal-Question-Metric paradigm [Basili et al., 1994]:

An i*-based Reengineering Framework for Requirements Engineering

124

Analyse a collection of case studies representative of the domain for which PRiM is
intended
For the purpose of evaluate the results obtained by the PRiM method
With respect to their correctness and effectiveness in providing the expected results
From the point of view of the researcher
In the context of a researcher using PRiM over the case studies

5.2.2. Definition of the Hypotheses

The hypotheses define the effect that is expected to achieve by applying the case studies. The
hypotheses are defined according to the purpose of the case studies, which is to evaluate the
results obtained by the PRiM method with respect to their correctness and effectiveness in
providing the expected results. Therefore, while applying each individual case study, we focus
on the results obtained in Phases 2, 4 and 5 and we state the following hypothesis:

H1: Individual Hypothesis. The i* model obtained in Phase 2 of PRiM is a valid
representation of the process under study.

H2: Individual Hypothesis. The Alternative i* Models generated in Phase 4 of PRiM respond
to the reengineering criteria proposed in Phase 3 and are a valid representation of the future
system.

H3: Individual Hypothesis. The evaluation of the Alternative i* Models with respect to a set of
structural metrics, is consistent with the properties of the generated alternative.

We remark that the third hypothesis can be generalized because a structural metric evaluating a
certain property has to yield to the same results when applied over various Alternative i*
Models, even if they are generated in different case studies, because of that we establish the
following comparative hypothesis:

H4: Comparative Hypothesis. The evaluation of the Alternative i* Models belonging to a
different case study with the same metrics, is consistent with the properties of the generated
alternatives.

H5: Comparative Hypothesis. It is possible to define a certain criteria and to generate
Alternative i* Models for different case studies based on them.

5.2.3. Definition of the Formative Case Studies

During the definition of PRiM we have used three different case studies already addressed in the
literature to define, improve and consolidate the techniques proposed in PRiM. In Table 5.1 we
present, for each of the case studies, the source problem statement, and the main objective to
achieve by its fulfilment. We observe that they have been executed sequentially in order to
improve, refine and consolidate the rules, guidelines, checks and techniques defined in PRiM.

Chapter 5. Formative Validation of PRiM .

 125

Table 5.1. Formative case studies: source problem statement and main objectives to achieve

Case Study Source Problem Statement Main Objective to achieve
Meeting Scheduler [vanLamsweerde et al., 1992] Improve the PRiM method

Collaborative Exercise
[IMS Global Learning

Consortium, 2003]
Refine the PRiM method

Conference Management
System

[Ciancarini et al., 1999] Consolidate the PRiM method

The three case studies are described in deep in the following sections. However, we remark that
they all have in common that they automate an existing process that, despite it can be supported
by some software (for instance, they may use e-mail or phone for remote communication), they
do not have specific tool support. Therefore, in the Source i* Model of the three case studies
proposed, the software system is not modelled as an actor, and so, the current social system only
contains Human and Organizational actors. Based on this starting situation, the reengineering
activity consists in improving the current process by means of the design of a specific software
system.

The generation of alternatives addresses which part of the process would be automated. In order
to compare the results obtained by the three case studies, we introduce the software system to
the process and we establish four different levels of automation that result in four different
alternatives, which we have named:

� Partial Delegation. In this alternative, only the most crucial part of the process is delegated
to the software system which responsibility is to manage the communication between the
Human and Organizational actors, but it does not take any decision or produce any resource
on its own.

� Total Delegation. In this alternative the software system is the intermediate actor that
manages all the communication between the software actors. And so, there are no tasks or
resource dependencies between the actors (only strategic ones). As in the partial delegation,
the software system it does not take any decision or produce any resource on its own.

� Partial Execution. Following the same criteria used to delegate the responsibilities in the
partial delegation, in this alternative we add to the software system the capability of take
decisions or produce resources.

� Total Execution. It adds to the software system with the delegation of responsibilities of
the total delegation alternative, the capability of take decisions or produce resources.

We observe that, as the three case studies have the same starting point and are similar in nature
(i.e., they manage the interaction between people in a group), it is possible to evaluate the
alternatives based on the same properties. The metrics we propose to evaluate the alternatives
are the following ones (see the complete documentation in Annex A):

� Data Accuracy. Measures the degree in which the data interchanged among the humans in
a process is accurate. As stated in the definition of the metric in Annex A.5, we assume that
some data has to be more accurate than another one depending on how the lack of accuracy
affects the process. This metric is an indicator for Reliability.

An i*-based Reengineering Framework for Requirements Engineering

126

� Data Privacy. Measures the degree in which the data interchanged among the humans in a
process is private, which means the degree in which it can be analysed and spread. As stated
in Annex A.7, we assume that human actors are more likely to analyse and spread the data
their read than software actors. This metric is an indicator for Security.

� Ease of Communication. Measures the degree in which the communication is facilitated
within the process. We assume that processes involving human actors present more ease of
communication because software actors restrict the way communication is done. This
metric, defined in Section 3.6.2 and documented in Annex A.9, is an indicator for
Efficiency.

� Process Agility. Measures the degree in which the process is agile. We assume that
processes involving software actors are more agile because they are more reliable than
humans. This metric, defined in Section 3.6.2 and documented in Annex A.10, is an
indicator for Efficiency.

5.3. Formative Case Study Execution

In this section we present an overview of the results achieved during the execution of the case
studies. In order to facilitate the understanding of the case study, we provide its problem
statement and a brief description of each step of the PRiM method including some diagrams and
tables when necessary. The case studies have been done by using the tool support of J-PRiM
(see Section 9 and [Grau, Franch & Ávila, 2006]).

5.3.1. The Meeting Scheduler Case study

The meeting scheduler case study is based on the Meeting Scheduler Problem Statement
[vanLamsweerde et al., 1992], and it is one of the most common exemplar in goal- and agent-
oriented. Therefore, the problem has been addressed by many authors in the goal- and agent-
oriented communities [Dardenne et al., 1993], [Potts et al., 2001] and was chosen by Eric Yu to
illustrate the i* framework in [Yu, 1995], [Yu, 1997]. The application of PRiM over this small-
scale problem has as it main objective to test and improve the rules, guidelines, checks and
techniques that we initially proposed within the method. Therefore, it appears as the example of
the first version of the method in [Grau, Franch & Maiden, 2005a].

5.3.1.1. Problem Statement

Meetings are typically arranged in the following way. A meeting initiator asks all potential
meeting attendees for the following information based on their personal agenda for: a set of
dates on which they cannot attend the meeting (hereafter referred as exclusion set); and, a set of
dates on which they would prefer the meeting to take place (hereafter referred as preference set).

The exclusion and preference sets are contained in some time interval prescribed by the meeting
initiator (hereafter referred as date range). The initiator also asks active participants to provide
any special equipment requirements on the meeting location (e.g., overhead-projector,

Chapter 5. Formative Validation of PRiM .

 127

workstation, network connection, telephones, etc.). He/she may also ask important participants
to state preferences about the meeting location.

The proposed meeting date should belong to the stated date range and to none of the exclusion
sets; furthermore it should ideally belong to as many preference sets as possible. A date conflict
occurs when no such date can be found. A conflict is strong when no date can be found within
the date range and outside all exclusion sets; it is weak when dates can be found within the date
range and outside all exclusion sets, but no date can be found at the intersection of all preference
sets. Conflicts can be resolved in several ways: the initiator extends the date range; some
participants remove some dates from their exclusion set; some participants withdraw from the
meeting; or, some participants add some new dates to their preference set.

A meeting room must be available at the selected meeting date. It should meet the equipment
requirements; furthermore it should ideally belong to one of the locations preferred by as many
important participants as possible. A new round of negotiation may be required when no such
room can be found. The meeting initiator can be one of the participants or some representative
(e.g., a secretary).

5.3.1.2. Phase 1: Analysis of the Current Process

Based on the problem statement, we have analysed the current process and we have establish the
high level SD i* model showed in Figure 5.1. We observe that there are six different human
actors: The Meeting Initiator, the Meeting Attendee, which can be an Active Participant or an
Important Participant, the Address Provider and the Resources Manager. The identified
activities documented in the DIS are modelled as goals between the Meeting Initiator and the
Meeting Attendee, the Important Participant and the Active Participant. The goals are: Invite

Meeting Attendees, Provide Data Sets, Find Agreeable Date, Find Room, Provide Equipment,
Conflict Management, and, Attend Meeting.

IS
A

Figure 5.1. Strategic Dependency i* Model for the Meeting Scheduler Case Study

An i*-based Reengineering Framework for Requirements Engineering

128

In Figure 5.1 we also assume that, for scheduling the meeting, the Meeting Initiator needs that
an Address Provider (i.e., a secretary) provides the participant addresses, and that a Resources

Manager provides the meeting room and the required equipment. We model these needs with
the following tasks dependencies between the actors: Provide Participant Addresses, Provide

Meeting Room and Provide Equipment.

Table 5.2 presents the Detailed Interaction Script for the activity Invite Meeting Attendees, as it
has been presented in [Grau, Franch & Maiden, 2005a]. We remark the additional actor that
plays the role of Address Provider that facilitates the participant addresses to the Meeting

Initiator. The rest of the DIS tables, are straightforward.

Table 5.2. Detailed Interaction Script (DIS) for the activity Invite Meeting Attendees

 DIS1: Invite Meeting Attendees
Source HAM1: Invite Meeting Attendees
Actors Meeting Initiator, Address Provider, Meeting Attendee
Precondition -
Triggering
Event

-

 Action Initiator Action
Consumed
Resources

Produced
Resources

Action
Addressee

Provided
Resources

1 Meeting Initiator
Decide Participant
List

Participant
List

2 Meeting Initiator
Get Participant
Addresses

Address
Provider

Participant
List

3 Address Provider
Send Participant
Addresses

Meeting
Initiator

Participant
Addresses

4 Meeting Initiator
Decide Initial Data
Range

Initial Data
Range

Meeting
Attendee

Actions

5 Meeting Initiator Send Invitation
Meeting
Attendee

Initial Data
Range

Postcondition Meeting Invitation Send to all potential participants

5.3.1.3. Phase 2: Constructing the i* Model of the Current Process

The i* model of the current process has been constructed by following the guidelines provided
in Section 3.3. The actors identified are the ones represented in Figure 5.1: the Meeting

Initiator, the Meeting Attendee, the Important Participant, the Active Participant, the Address

Provider and the Resources Manager. The i* model is generated in two different parts by first
generating the Operational i* Model and, then, adding the intentionality to the model. In Figure
5.2 we present the Operational i* Model for the activities Invite Meeting Attendees (see Table
5.2), and the activity Provide Data Sets.

Figure 5.2. Operational i* Model for the Meeting Scheduler Case Study (excerpt)

Chapter 5. Formative Validation of PRiM .

 129

Regarding the Intentional i* Model, the following guidelines has been applied:

� Guideline 1. The intentionality behind the actors has been discovered by asking the final
goal of the activity. For instance, in Figure 5.3, the final goal of the activity Find Agreeable

Date is to have the Maximum Number of Attendees in the Meeting. And it is the Meeting

Initiator that depends on the Meeting Attendee to achieve his goal.

� Guideline 2 and Guideline 4. Goal analysis is used to discover other goals and softgoals
and to establish the contributions and conflicts. For instance, in Figure 5.3 we observe that
the goal Attendee Being in the Meeting is decomposed into the goal Attendee Data Sets

Respected and the softgoal Meeting Details Announced Promptly. Also, the softgoal
Agreeable Date Found Efficiently, which decomposes the goal Agreeable Date Found,
contributes positively to the softgoal Meeting Details Announced Promptly.

Figure 5.3. Piece of Operational and Intentional i* Model for the Meeting Scheduler

� Guideline 3. Finally, we use a quality characteristics catalogue in order to qualify the
resources involved in the process. As we observe in the previous guideline, there are three
concerns: Data Accuracy, Data Privacy, and Process Agility. In order to analyse which
resources are more related to this quality attributes, we use J-PRiM to qualify them. In
Table 5.3 we have market with a “D” which resources are qualified. We remark that, as a
quality attribute may affect all the resources, we need to prioritize which are more affected.

Table 5.3. Quality Attribute analysis of the resources for the Meeting Scheduler Case Study

Resources

A
dd

re
ss

es
 L

is
t

D
at

a
R

an
ge

E
qu

ip
m

en
t a

va
il

ab
il

ity

E
xc

lu
si

on
 S

et

E
xt

en
de

d
D

at
a

R
an

ge

M
ee

ti
ng

 D
at

e

M
ee

ti
ng

 E
qu

ip
m

en
t

M
ee

ti
ng

 R
oo

m

P
ar

ti
ci

pa
nt

s
L

is
t

P
re

fe
re

nc
e

S
et

P
re

fe
rr

ed
 R

oo
m

 L
oc

at
io

n

R
eq

ue
st

ed
 E

qu
ip

m
en

t

R
eq

ue
st

ed
 R

oo
m

R
eq

ui
re

d
E

qu
ip

m
en

t

R
ev

ie
w

ed
 E

xc
lu

si
on

 S
et

R
ev

ie
w

ed
 P

re
fe

re
nc

e
S

et

R
oo

m
 A

va
il

ab
il

ity

W
it

hd
ra

w
 f

ro
m

 M
ee

ti
ng

Data Accuracy D D D D D D

Data Privacy D D D D D

Process Agility D D D D D D D D D

An i*-based Reengineering Framework for Requirements Engineering

130

For instance, the Preferred Room Location and the Required Equipment they have also to be
accurate and private, but if they are not, the process will not fail, as the meeting can be
organized anyway. The resulting qualifications are transformed into softgoals in the model, as it
is show in Figure 5.3.

5.3.1.4. Phase 3: Reengineering the Current Process

As the goal of the case study is to introduce a software actor that assist the current social
process, the main reengineering goal is added as Automation of the process achieved. About the
existing goals those that represent the functionality of the system are maintained (i.e. Meeting

Invitations are sent, Data sets are provided, Agreeable Date is found, Room is found,
Equipment is provided, Conflicts are managed and Meeting is attended). The goals and
softgoals that represents the intentionality behind the system are also maintained, and those
softgoals that qualify the dependencies are classified as optimize goals, because it would be the
basis to compare behaviours.

5.3.1.5. Phase 4: Generation of Alternatives

For generating the alternatives we propose to add new actors to the system and to reallocate the
responsibilities between them. As the main goal to achieve is to automate the process with an
specific software system, we add a unique software actor: the Meeting Scheduler (MS). As we
have stated in the case study planning (Section 5.2), we have generated four different
alternatives, each one stating a different level of delegation to the MS software actor and of
automation of the process. In Table 5.5 we summarize the decisions taken for each of the
activities.

Partial Delegation (A1). The MS software actor is introduced and we delegate the
responsibility of interacting between the Meeting Initiator (MI) and the Meeting Attendee
(MA) to them. However, the interaction between the Meeting Initiator and the other human
actors of the process (i.e., the Address Provider (AP) and the Resources Administrator
(RA)) is still not supported by the system. For instance, in Table 5.4 we present the DIS for
the activity Invite Meeting Attendees, where we highlight the differences with the source
DIS in Table 5.2. These differences are that, as the Meeting Scheduler has the responsibility
of sending the invitation, the Meeting Initiator has to provide the Address List explicitly to
the system (in the source DIS these resources was used for its own knowledge), and provide
the Data Range to the Meeting Schedule.

Total Delegation (B1). The MS software actor is introduced and we delegate to him the
interaction between all the human participants. Therefore, in the resulting i* model there are
not direct dependencies between the human actors.

Partial Execution (A2). The delegation of responsibilities is the same as in the Partial
Delegation but, in addition to manage the interaction, we give to the MS other
responsibilities for automating the process. As a result, the MS is the one that analyses the
Preferred Sets and Exclusion Sets and send the Meeting Date to the Meeting Attendees and
the Meeting Initiator. It also manages the conflicts.

Chapter 5. Formative Validation of PRiM .

 131

Table 5.4. DIS for the activity Invite Meeting Attendees of the Meeting Scheduler Case Study

 DIS-A1-1: Invite Meeting Attendees
Source HAM1: Invite Meeting Attendees
Actors Meeting Initiator, Address Provider, Meeting Attendee
Precondition -
Triggering
Event

-

 Action Initiator Action
Consumed
Resources

Produced
Resources

Action
Addressee

Provided
Resources

Meeting Initiator Sent participant list Participants
List

Address
Provider

Address Provider Analyse participant
list

Participants
List

 Meeting
Initiator

Address Provider Send participant
addresses

 Addresses
List

Meeting
Initiator

Meeting Initiator Get participant
addresses

Addresses
List

 Address
Provider

Meeting Initiator Introduce
Participant
Addresses

 Meeting
Scheduler

Addresses
List

Meeting
Scheduler

Store participant
addresses

Addresses
List

 Meeting
Initiator

Meeting Initiator Decide initial data
range

 Initial Data
Range

Meeting
Scheduler

Actions

Meeting
scheduler

Store initial data
range

Initial Data
Range

 Meeting
Initiator

Postcondition Meeting Invitation Send to all potential participants

Table 5.5. Generation of Alternatives for the Meeting Scheduler Case Study

Activity
Partial Delegation
(A1)

Total Delegation
(B1)

Partial Execution
(A2)

Total Execution
(B2)

Invite Meeting
Attendees

- MI interacts AP
- MS manages

interaction between
MI and MA

- MS manages the
interaction between
all the human actors

- MI interacts AP
- MS manages

interaction between
MI and MA

- MS takes the
responsibilities of
AP

- AP disappears
Provide Data Sets - MS - MS - MS - MS

Find Agreeable Date - MS - MS

- MS analyses data

sets and decides
meeting date

- MS sends meeting

date to MI and MA

- MS analyses the
data sets and
decides meeting

date
- MS sends meeting

date to MI and MA

Find Room

- MI interacts RM
- MS manages

interaction between
MI and MA

- MS

- MI interacts RM
- MS manages

interaction between
MI and MA

- MS takes the
responsibilities of
RM

- RM disappears

Provide Equipment

- MI interacts RM
- MS manages

interaction between
MI and MA

- MS

- MI interacts RM
- MS manages

interaction between
MI and MA.

- MS takes the
responsibilities of
RM

- RM disappears

Conflict
Management

- MS - MS
- MS manages

conflicts and store
withdraws

- MS manages
conflicts and store
withdraws

Attend Meeting - MS - MS - MS - MS

MS: Meeting Scheduler - MI: Meeting Initiator – MA: Meeting Attendee – AP: Address Provider – RM: Resource

Manager – MS in a cell means that the MS manages the interaction between all the human actors.

An i*-based Reengineering Framework for Requirements Engineering

132

Total Execution (B2). The delegation of responsibilities is the same of the Total Delegation
but, as in the Partial Execution, we delegate the tasks of deciding the meeting date and solve
conflicts to the Meeting Scheduler. The Meeting Scheduler is also in charge to manage the
resources and so, the Resource Manager is not needed.

5.3.1.6. Phase 5: Evaluating Alternatives

Once the alternatives are generated, we define the metrics for evaluating them. Metrics are
defined by following the guidelines provided in Chapter 4. As it has been explained in the case
study planning (Section 5.2), in all three case studies the metrics to evaluate are Data Accuracy,
Data Privacy, Process Agility, and Ease of Communication. The complete definition of the
metrics can be found in Annex A, where there is the customization of the metrics Data
Accuracy and Process Agility for the Meeting Scheduler Case Study.

In Table 5.6 we present the evaluation of alternatives for the Meeting Scheduler Case Study. We
observe that, the values of the metrics for Data Accuracy, Data Privacy and Process Agility
increase when the software system assumes more responsibilities. Therefore, the assumption
that the software system improves these properties is verified. On the other hand, Ease of
Communication is better achieved when direct contact with human is possible and, so, it
decreases when we provide the software with more functionalities. We remark that, as the
Partial Delegation (A1) and the Partial Execution (B1) of the process involve more human
communication their values are better than the ones obtained for the Total Delegation (A2) and
the Total Execution (B2). This result verifies the assumption for the Ease of Communication
metric.

Table 5.6. Evaluation of Alternatives for the Meeting Scheduler Case Study

Property Data Accuracy Data Privacy
Ease of

Communication
Process Agility

Source i* Model 0,4900 0,6216 0,7160 0,4762
Partial Delegation (A1) 0,4989 0,6827 0,4838 0,5277
Total Delegation (B1) 0,5047 0,6795 0,4163 0,5428
Partial Execution (A2) 0,5347 0,6971 0,4676 0,5478
Total Execution (B2) 0,5640 0,7033 0,3983 0,5760

5.3.1.7. Phase 6: Defining the New System Specification

Finally, we generate the specification of the new system by transforming the i* model of the
selected alternative into the use case specification, which is automatically done with tool
support.

5.3.2. The Collaborative Exercise Case Study

The Collaborative Exercise Case Study is based on the problem statement “Completing a Jigsaw
Collaborative Activity”, as it appears in [IMS Global Learning Consortium, 2003]. The main
differences with the original problem statement are that the problem statement assumes a
software system manages the interaction between the different actors. Instead, we have adapted

Chapter 5. Formative Validation of PRiM .

 133

the instructions into how it would be done in a traditional course and we have converted into a
Collaborative Exercise. The main objective of adding a software system is to adapt traditional
Collaborative Exercise on-campus to the internet technologies and, therefore, permit students to
perform part of the courses off-campus. The main goal of the application of PRiM over the
Collaborative Exercise is to consolidate the rules, guidelines, checks, and techniques proposed
by the method and, so, it is the example used on the consolidated version of the method in
[Grau, Franch & Maiden, 2008] and it is also presented in the examples of the PRiM method in
Chapter 3.

5.3.2.1. Problem Statement

One common instructional model has students placed in groups of 2-5 members, in which each
student has a task to do according to a certain exercise problem statement. Each student uses a
form to record its preliminary results individually and, then, the preliminary results are
presented to the group. The group discusses the preliminary results and then delivers a final
document with their best group work.

In order to get all the students participate in the collaborative exercise, the teacher negotiates a
suitable scheduler for the activity to take place. For doing it, it sends several alternative
schedules to the students and, based on them, the students provide their schedule preferences.
The Collaborative Exercise takes place on the definitive schedule provided by the teacher. Once
the exercise is finished, the teacher uses a solution template to correct the exercises; assigns a
mark to each group and communicates the results to the students.

5.3.2.2. Phase 1: Analysis of the Current Process

Based on the problem statement, we have analysed the current process and we have organized
the Collaborative Exercise in three main activities: Organization of a Collaborative Exercise,
Execution of a Collaborative Exercise, and Evaluation of a Collaborative Exercise. In Figure 5.4
we show a preliminary i* model with the identified activities which are represented as goals to
achieve. The DIS for the identified activities can be found in Section 3.2.

Figure 5.4. SD model for the Collaborative Exercise Case Study

5.3.2.3. Phase 2: Constructing the i* Model of the Current Process

As it is proposed in Phase 2 of PRiM (see Section 3.3), the i* model is generated in two
different steps in order to differentiate the operationalization of the process from the
intentionality behind it. The actors defined are the ones identified in Figure 5.4. The generated
Operational i* Model is presented in Section 3.3.2 and the Intentional i* Model is presented in

An i*-based Reengineering Framework for Requirements Engineering

134

Section 3.3.3. However, we provide an explanation of the application of the guidelines for the
Intentional i* Model in order to show the similitude with the previous case study.

� Guideline 1. The intentionality behind the actors has been discovered by asking the final
goal of the activity. For instance, in the final goal of the activity Execution of a
Collaborative Exercise is to have the Collaborative Exercise Passed. Finally, it is the
Student that depends on the Student Group to achieve its goal.

� Guideline 2 and Guideline 4. Goal analysis is used to discover other goals and softgoals
and to establish the contributions and conflicts. For instance, in Figure 3.5, we have
observed that the goal Collaborative Exercise Passed is decomposed into the softgoals
Collaborative Exercise Completed within Scheduler Time and Deliver Correct Results. The
softgoal Agreement Found as Soon as Possible contributes positively to Collaborative

Exercise Completed within Scheduler Time, whilst the goal Achieve Agreement on the

Results and the softgoal Be in a Good Group, contributes positively to the softgoal Deliver

Correct Results.

� Guideline 3. Finally, we use a quality characteristics catalogue in order to qualify the
resources involved in the process. As we observe in the previous guideline, there are two
main concerns: Data Accuracy (related with Deliver Correct Results), and Process Agility
(related with Collaborative Exercise Completed within Scheduler Time). As we want to
compare the evaluation results with the other case studies, we also consider that Data
Privacy is also a concern. In Table 5.7 we have market with a “D” which resources have
been qualified. Therefore, we observe that all the resources concerned with the Execution of

the Collaborative Exercise (i.e., exercise statement, individual preliminary results, group
preliminary results, and so on) affect both Data Accuracy and Process Agility. However, in
terms of Data Privacy, we may say that the main concern is on the data that could be used
by other groups in order to copy the final results.

Table 5.7. Quality Attribute analysis of the resources for the Collaborative Exercise Case Study

Resources

A
lt

er
na

ti
ve

 s
ch

ed
ul

es

A
ns

w
er

E
xe

rc
is

e
sc

he
du

le

E
xe

rc
is

e
st

at
em

en
t

F
in

al
 a

gr
ee

d
re

su
lt

s

F
in

al
 n

ot
e

G
ro

up
 a

rg
um

en
ts

G
ro

up
 a

ss
ig

nm
en

t

G
ro

up
 p

re
li

m
in

ar
y

re
su

lt
s

In
di

vi
du

al

ag
re

ed
 f

in
al

 r
es

ul
ts

In
di

vi
du

al
 a

rg
um

en
ts

In
di

vi
du

al

pr
el

im
in

ar
y

re
su

lt
s

Q
ue

st
io

n

S
ch

ed
ul

e
pr

ef
er

en
ce

s

S
ol

ut
io

n

Data Accuracy D D D D D D D D D D

Data Privacy D D D D D D D D

Process Agility D D D D D D D D

During the construction of the Intentional i* Model we remark that, the fact that guidelines 1 to
4 can be applied iteratively, helps in the process. For instance, if we see that Data Accuracy
qualifies the resource Exercise Statement and so, this makes arise the softgoal Understand the

Exercise Statement Quickly.

Chapter 5. Formative Validation of PRiM .

 135

5.3.2.4. Phase 3: Reengineering the Current Process

As the goal of the case study is to introduce a software actor that assist the current process, the
main reengineering goal is to Achieve the automation of the process. About the existing goals
and softgoals, as stated in Section 3.4, all the goals are maintained except the goal Share

location during the exercise that is considered to be avoided (1). In order to generate the
behaviour for avoiding this goal, the goal On-line Collaboration Mechanism Provided is Added
(2). Some optimize softgoals are also included for comparing the behaviour of the reengineered
system with respect to the current one, such as Communication between the Students is

Facilitated and Doubts are Answered Quickly (3).

5.3.2.5. Phase 4: Generation of Alternatives

The generation of alternatives is done by adding new actors to the system and reallocating the
responsibilities between them. As the main goal to achieve in the case study is to automate the
process with an specific software system, we add a unique software actor: the eLearning
System. In Section 3.5, we have only generated three alternatives, but for the formative case
studies we generate four alternatives based on the criteria established in the case study planning
(see Section 5.2). In Table 5.8 we summarize the decisions adopted in each of the activities. The
alternatives have been generated based on:

Partial Delegation (A1). The software actor is introduced to the system and it takes the
responsibility of managing the interaction between the Teacher, the Student, and the Student

Group, but only when the Collaborative Exercise is performed. Therefore, the organization
of the collaborative exercise and its evaluation is still done in a class.

Total Delegation (B1). The software actor manages all the interaction between the Teacher and
the Student and, so, the Collaborative Exercise is organized, executed, and evaluated on-
line.

Partial Execution (A2). The delegation of responsibilities is as in the Partial Delegation and,
so, the software actor manages the interaction between Teacher and the Student during the
execution of the collaborative exercise. Additionally, the software actor establishes the
student groups (which were previously done by the Teacher).

Table 5.8. Generation of Alternatives for the Collaborative Case Study

Activity
Partial Delegation

(A1)
Total Delegation

(B1)
Partial Execution

(A2)
Total Execution (B2)

Organization of a
Collaborative

Exercise

- Non Modified - SW is the actors
intermediate

- Non Modified - SW is the actors
intermediate

- SW decides the
exercise scheduler

Execution of a
Collaborative

Exercise

- SW is the actors
intermediate

- SW is the actors
intermediate

- SW is the actors
intermediate

- SW decides groups

- SW is the actors
intermediate

- SW decides groups

Evaluation of a
Collaborative

Exercise

- Non Modified - SW is the actors
intermediate

- Non Modified - SW is the actors
intermediate

- SW evaluates the
exercise

An i*-based Reengineering Framework for Requirements Engineering

136

Total Execution (B2). The delegation of responsibilities is as in the Total Delegation, and so,
the software actor manages all the interaction between the Teacher and the Student. In
addition, the software actor also is in charge of deciding the exercise schedule, establish the
students groups, and evaluate the Collaborative Exercise based on a template provided by
the Teacher.

5.3.2.6. Phase 5: Evaluating Alternatives

Once the alternatives are generated, we define the metrics for evaluating them. Metrics are
defined by following the guidelines provided in Chapter 4 and, following the case study
planning, they are the same evaluated for the Meeting Scheduler Case Study: Data Accuracy,
Data Privacy, Ease of Communication and Process Agility (see Annex A, Sections A.5, A.7,
A.9 and A.10). We remark that Data Privacy and Process Agility require a customization based
on the particular domain of application (see Section A.7.2 and Section A.10.2, respectively).

In Table 5.9 we show the results of the evaluation of the metrics for the Collaborative Exercise
Case Study. As we have assumed on the definition of the metrics, Data Accuracy, Data Privacy
and Process Agility are better achieved when there is a software system, and so, their values
increases when the software system assumes more responsibilities. On the other hand, ease of
communication is better achieved when there is more interaction with human actors and,
because of that, it decreases when we provide the software with more functionality. We remark
that, as Partial Delegation (A1) and Partial Execution (A2) involve more interaction between
humans, their value for Ease of Communication is higher than for the alternatives of Total
Delegation (B1) and Total Execution (B2).

 Table 5.9. Evaluation of alternatives for the Collaborative Exercise Case Study

Property Data Accuracy Data Privacy
Ease of

Communication
Process Agility

Source i* Model 0,3672 0,5022 0,6694 0,4436
Partial Delegation (A1) 0,3848 0,5357 0,5196 0,5271
Total Delegation (B1) 0,3761 0,5686 0,4268 0,5607
Partial Execution (A2) 0,4120 0,5836 0,4940 0,5690
Total Execution (B2) 0,4906 0,6400 0,4015 0,6158

5.3.2.7. Phase 6: Defining the New System Specification

Finally, we generate the specification of the new system by transforming the i* model of the
selected alternative into the use case specification. An example of DIS table for the activity
Execution of a Collaborative Exercise can be found in Section 3.7.

5.3.3. The Conference Management System Case Study

The Conference Management System Case Study is based on the problem statement provided in
[Ciancarini et al., 1999]. The main differences with the original problem statement are that the
problem statement assumes a software system that manages the interaction between the different
actors. Instead, we have adapted the instructions into how it would be done without specific tool

Chapter 5. Formative Validation of PRiM .

 137

support (i.e., an e-mail service that is not modelled in the Source i* Model). The application of
PRiM over this problem statement has as it main objective to consolidate the rules, guidelines,
checks and techniques proposed within the method.

5.3.3.1. Problem Statement

The process begins with the submission of papers. A form, including basic information on the
submission is available under request from the conference organization. Actors submit papers to
the PC chair and, if a submission does not conform to the submission requirements, it is refused
and its sender is invited to resubmit. On the other hand, if a submission conforms, the
corresponding author gets an acknowledgement. The distribution of the papers to the referees
begins after the deadline for submissions is expired. During the bidding for papers, each PC
member examines the list of submissions and selects a subset of “interesting” papers to review.
The PC chair can alter each subset to balance the review load among PC members. Then, the PC
Chair communicates to each PC member all the papers assigned for refereeing, and the forms
for reviews. Unauthorised access to all submitted papers has to be prevented, so the list of the
submissions and the papers remains confidential.

During the collection of the reports, confidentiality of information is needed. Therefore, the PC
chair generates a file for each submitted paper in which it collects the relative reports. The PC
member also scans all paper reports and generates statistics and an initial proposal for ranking
all papers. During the PC Meeting a PC member needs to be able to access: the list, the
abstracts, and the files of the submissions; the referee reports collected for specific papers; the
logs of comments on specific papers; the ranking table of all submissions; and, finally, decide
on acceptance status and record such a decision. If PC members are allowed to submit papers,
the PC chair has to deny them the information about their own submissions, and, also the
possibility of inferring such information.

Once the list of accepted papers is formed, the PC chair communicates the results and the
referee’s reports to the authors. He also generates a list of the abstracts of the accepted papers,
extracts a list of subreferees for the referee reports, and prepares a synopsis of the result for the
PC Chair. Then, authors of accepted papers submit camera ready versions and, again, the PC
chair controls compliance with camera ready standards and warns the authors, if any incidence
appears. Finally, the PC chair collects all camera ready versions, asks and waits for a preface
from the editor of proceedings, and finally prepares a draft of the proceedings.

5.3.3.2. Phase 1: Analysis of the Current Process

Based on the problem statement, we have analysed the current process and we have establish the
high level SD i* model showed in Figure 5.5, we observe that the actors identified are: the
Author, the PC chair, the PC member, the Reviewer and the Editor of Proceedings. The
identified activities are the same proposed in the problem statement: Submission of papers,
Bidding for papers, Distribution of the papers to the referees, Collection of the reports,
Preparation of statistics, PC meeting, Communication of results, Submitting camera ready, and,
Preparing the proceedings.

An i*-based Reengineering Framework for Requirements Engineering

138

Figure 5.5. SD i* Model for the Conference Management System Case Study

Table 5.10 presents the Detailed Interaction Script for the activity Submission of Papers. We
remark that the PC Chair, as member of the Conference Organization provides the Submission

Form (which includes basic information on the submission like authors, affiliations, paper title,
corresponding author, format of the paper being submitted). Actors submit papers to the PC
chair, which involves two actions in order to send two different resources: the Submission Form
appropriately filled, an the Submission File, an ASCII file containing title and abstract, and the
URL of a file containing the paper in the format declared in the submission. The PC Chair
checks if the submission conform to the above requirements, and the corresponding author gets
an acknowledgement.

5.3.3.3. Phase 2: Constructing the i* Model of the Current Process

The i* model of the current process has been constructed by following the guidelines provided
in Section 3.3. The actors identified are the ones represented in Figure 5.5: the Author, the PC

chair, the PC member, the Reviewer and the Editor of Proceedings. The i* model is generated
in two different parts by first generating the Operational i* Model and, then, adding the
intentionality to the model. In Figure 5.6 we present the Operational i* Model for the activity
Submission of Papers (see Table 5.10).

Regarding the Intentional i* Model, the four provided guidelines have been applied as follows:

� Guideline 1. The intentionality behind the actors has been discovered by asking the final
goal of the activity. For instance, in Figure 5.7, the final goal of the activity Bidding for

papers is to Get interesting papers to review. And it is the PC member that depends on the
PC Chair to achieve this goal.

� Guideline 2 and Guideline 4. Goal analysis is used to discover other goals and softgoals
and to establish the contributions and conflicts. For instance, in Figure 5.7, the task of the
PC Chair actor named Send papers assigned to review is decomposed into the goal
Conflicts are avoided and the softgoals Referee is adequate and Provide maximum number

Chapter 5. Formative Validation of PRiM .

 139

of interesting papers. We observe that the softgoal Referee is adequate contributes
positively to the softgoal Reviews are accurate and Reviews received on time.

� Guideline 3. Finally, as we have done in the other case studies, we use a quality
characteristics catalogue in order to qualify the resources involved in the process. In order to
analyse which resources are more related to these quality attributes Data Accuracy, Data
Privacy, and Process Agility, we use J-PRiM to qualify them. In Table 5.11 we have market
with a “D” the resources that have been qualified. Again, we prioritize the resources that are
more affected. For instance, the Review information has to accomplish Data Accuracy and
Data Privacy, because if not, the process would fail. The resulting qualifications are
transformed into softgoals dependencies in the model (see Figure 5.7).

Table 5.10. DIS for the activity Submission of Papers on the Conference Management System Case

Study

 DIS1: Submission of Papers
Source: HAM1: Submission of Papers
Actors: Author, PC Chair
Precondition: -
Triggering Event: -

 Action Initiator Action
Consumed
Resources

Produced
Resources

Action
Addressee

Provided
Resources

1 PC Chair
Provide submission
form

 Submission Form Author

2 Author
Analyse submission
form

Submission Form PC Chair

3 Author
Send submission
information

Submission
Information

PC Chair

4 Author
Send file with title
and abstract

 Submission File PC Chair

5 PC Chair
Check submission
information

Submission File Author

6 PC Chair
Check file with title
and abstract

 Submitted Paper Author

7 PC Chair
Send
acknowledgement

Submission
Acknowledgement

Author

Actions

8 Author
Get
acknowledgement

Submission
Acknowledgement

 PC Chair

Postcondition: Author paper is submitted

Figure 5.6. Operational i* Model for the activity Submission of Papers of the Conference Management

System Case Study

An i*-based Reengineering Framework for Requirements Engineering

140

Figure 5.7. Operational and Intentional i* Model for the Conference Management System (excerpt)

Table 5.11. Quality Attribute analysis of the resources for the Meeting Scheduler Case Study

Resources

A
cc

ep
ta

nc
e

re
su

lt

A
cc

ep
ta

nc
e

st
at

us

A
ss

ig
ne

d
pa

pe
rs

C
am

er
a

re
ad

y
pa

pe
r

C
om

pl
ia

nc
e

to
 C

am
er

a
R

ea
dy

L
is

t o
f

ab
st

ra
ct

s
of

 a
cc

ep
te

d
pa

pe
rs

L
is

t o
f

re
fe

re
es

L
og

 c
om

m
en

ts

L
og

 c
om

m
en

ts
 f

or
 a

 p
ap

er

P
ap

er
 r

ev
ie

w
 r

ep
or

t

P
C

 m
em

be
r

su
bs

et
 o

f

“i
nt

er
es

ti
ng

”
pa

pe
rs

P
re

li
m

in
ar

y
ra

nk
in

g

P
re

li
m

in
ar

y
st

at
is

ti
cs

P
ro

ce
ed

in
gs

P
ro

ce
ed

in
gs

 p
re

fa
ce

R
ev

ie
w

 f
or

m

R
ev

ie
w

 in
fo

rm
at

io
n

S
ub

m
is

si
on

 a
ck

no
w

le
dg

m
en

t

S
ub

m
is

si
on

 f
il

e

S
ub

m
is

si
on

 f
or

m

S
ub

m
is

si
on

 in
fo

rm
at

io
n

S
ub

m
is

si
on

s
li

st

S
yn

op
si

s
of

 th
e

re
su

lt
s

Data
Accuracy

D D D D D D D D D

Data Privacy D D D D D D D

Process
Agility

 D D D D D D D D

5.3.3.4. Phase 3: Reengineering the Current Process

The main reengineering goal added is Automation of the process achieved. Therefore, those
goals that represent the functionality of the system are maintained: Paper is submitted, Bidding

for interesting papers done, Papers are distributed, Reports are collected, Statistics are

prepared, PC meeting is held, Results are communicated, Camera ready is submitted, and

Proceedings are prepared. The goals and softgoals that represent the intentionality behind the

Chapter 5. Formative Validation of PRiM .

 141

system are also maintained, and more emphasis is given to those softgoals related with the data
privacy of the submitted papers because, with the software system, unauthorised access to all
submitted papers has to be prevented, and both the list of the submissions itself and the papers
has to remain confidential. Therefore, these goals are classified as optimize goals.

5.3.3.5. Phase 4: Generation of Alternatives

In order to generate the alternatives, we add the Conference Management System (CMS) actor
to the system and we reallocate the responsibilities to them, by following the criteria established
in Section 5.2. Therefore, we generate four different alternatives that are summarized in Table
5.12. The generated alternatives are:

Partial Delegation (A1). The CMS software actor is introduced and we delegate the
responsibility of interacting between the PC Chair (PCC) and the Author (A) and the PC

Member (PCM). As we observe in Table 5.12, in this alternative the software system does
not manage the generation of statistics and the PC Meeting. Also, the interaction between
the PC Chair and the Proceedings Editor stills being done as in the Source i* Model.

Total Delegation (B1). The CMS software actor manages all the interaction between all the
human participants. Because of that, in the resulting i* model there are not direct
dependencies between the human actors.

Table 5.12. Generation of Alternatives for the Conference Management System Case Study

Activity
Partial Delegation

(A1)
Total Delegation

(B1)
Partial Execution

(A2)
Total Execution

(B2)
Submission of
Papers

- CMS is the actors
intermediate

- CMS is the actors
intermediate

- CMS checks file and
send acknowledgement

- CMS checks file
and send
acknowledgment

Bidding for
papers

- CMS - CMS - CMS analyses and
satisfies bidding for
papers

- CMS analyses and
satisfies bidding for
papers

Distribution of
the papers to the
referees

- CMS - CMS - CMS distributes papers
to referees

- CMS distributes
papers to referees

Collection of the
Reports

- CMS - CMS - CMS collects reports - CMS collects
reports

Preparation of
statistics

- Non Modified - CMS - CMS prepares statistics - CMS prepares
statistics

PC meeting - Non Modified - CMS - Non Modified - CMS
Communication
of Results

- CMS - CMS - CMS communicates
acceptance results

- CMS communicates
acceptance results
and manages
proceedings

Submitting
Camera Ready

- CMS - CMS - CMS check file and send
acknowledgment

- CMS check file and
send
acknowledgment

Preparing the
Proceedings

- Non modified - CMS - Non modified - CMS

CMS in a cell means that the Conference Management System manages the interaction between all the human actors.

An i*-based Reengineering Framework for Requirements Engineering

142

Partial Execution (A2). The delegation of responsibilities is the same as in the Partial
Delegation but, in addition to manage the interaction, where the CMS has the following
responsibilities for automating the process: in the Submission of Papers, it check the file
correctness and send the acknowledgement; in the Bidding for papers, it provides the list of
received papers to the PC Members, analyse their preferences of interesting papers and
decides the papers to review; it does the Distribution of papers to the referees and the
Collection of the reports; and it automates the Preparation of statistics. The PC meeting is
not managed by the CMS, but once the PC Chair enters the acceptance status, the CMS
communicates the acceptance results and, check the camera ready files and send
acknowledgement to the accepted paper authors. The actions regarding the edition of the
proceedings are not supported by the CMS.

Total Execution (B2). The delegation of responsibilities is the same of the Total Delegation
and the automation of tasks is the same as in the Partial Execution. In addition, in this
alternative the CMS is the actor intermediate in the PC meeting and manages the interaction
for doing the proceedings, by automating the task of producing the list of abstract of
accepted papers and the list of referees.

5.3.3.6. Phase 5: Evaluating Alternatives

Once the alternatives are generated, we define the metrics for evaluating them. Metrics are
defined by following the guidelines provided in Chapter 4. As it has been explained in the case
study planning (Section 5.2), in all three case studies the metrics to evaluate are Data Accuracy,
Data Privacy, Process Agility and Ease of Communication. The definition of these metrics is
detailed in Annex A, Sections A.5, A.7, A.9 and A.10.

In Table 5.13 we show the results for the evaluation of the alternatives for the Conference
Management System Case Study. Regarding Ease of Communication the results are the ones
expected by the assumptions because as the interaction between humans is substituted by the
software interaction, the value of Ease of Communication decreases. We remark that, according
to that, Partial Delegation (A1) and Partial Execution (A2) score better than Total Delegation
(B1) and Total Execution (B2).

On the other hand, the metrics for Data Accuracy, Data Privacy and Process Agility score
different than expected. First, they all provide a higher value on the Source i* Model than on
any of the alternatives. Second they all provide higher values for the Partial Execution (A2) than
for the Total Execution (B2). Finally, the Process Agility results are also higher on the Partial
Delegation (A1) than on the Total Delegation (B1). These results are different from the
expected ones which are that the Data Accuracy, the Data Privacy and the Process Agility
increase when the system gets more responsibilities. However, if we analyse the particularities
of the problem statement the results are not that surprising. As we have observed on Table 5.12,
the main difference between the partial automation (A1, A2) and the total automations (B1, B2)
of the process is on who is responsible for the activities of the preparation of statistics, the PC
meeting and the preparation of the proceedings. These activities involve only human actors in
the partial automation and use the software system as an intermediate in the total automation.

Chapter 5. Formative Validation of PRiM .

 143

However, due to the characteristics of the process, these activities involve the participation of
the same human actors even if they are automated by the Conference Management System. For
instance, during the PC meeting the Conference Management System is only an intermediate of
the human actors and so, it can not improve the results for Data Accuracy, Data Privacy or
Process Agility, because there are even more dependencies than in the previous actions. We
remark that this arguments do not explain the fact that the Source i* Model scores better, which
needs more research on the field.

Table 5.13. Evaluation of Alternatives for the Conference Management System Case Study

Property Data Accuracy Data Privacy
Ease of

Communication
Process Agility

Source i* Model 0,5642 0,5297 0,7006 0,5900
Partial Delegation (A1) 0,4299 0,3992 0,4972 0,4536
Total Delegation (B1) 0,3611 0,3365 0,4054 0,3858
Partial Execution (A2) 0,5129 0,4650 0,5108 0,5279
Total Execution (B2) 0,5044 0,4600 0,3893 0,5118

5.3.3.7. Phase 6: Defining the New System Specification

Finally, we generate the specification of the new system by transforming the i* model of the
selected alternative into the use case specification.

5.4. Case Study Analysis

In the previous sections we have presented a collection of case studies representative of the
domain for which PRiM is intended, for the purpose of evaluate the results obtained by the
PRiM method. As stated in the goal of the case studies, the evaluation has been done with
respect to the correctness and effectiveness of the PRiM method. As we have mentioned, the
three case studies has been done using the tool support of PRiM. In the following sections we
analyse the effectiveness of the method, and the obtained results in terms of the individual
hypothesis and the comparative hypothesis.

5.4.1. Analysis of the Individual Hypotheses

In Section 5.2.2 we have stated three individual hypotheses regarding the individual analysis of
each case study. The conclusions of its application are the following ones.

5.4.1.1. H1: The i* model obtained in Phase 2 of PRiM is a valid representation of the

process under study.

In order to validate this hypothesis we have checked the i* models generated with PRiM with
the elements mentioned in the problem statement and we have seen that all the resources and
main goals were represented. We remark that due to the fact that Phase 2 is based on the
information filled in the DIS table, a different distribution of alternatives may affect the final
number of elements of the final Source i* Model. However, we observe that the grouping of

An i*-based Reengineering Framework for Requirements Engineering

144

actions into different activities do not affect the number of resources, just the number of goals
representing the operational and intentional objectives of the activity. The Intentional i* Model
is more subjective. However, when doing the case studies we have remarked that the application
of the four intentional guidelines in an iterative manner helps to explore all the concerns and
that it finishes when there are no other intentional elements to add. Also, the prioritization of the
added dependencies provides more strength to the proposal.

5.4.1.2. H2: The Alternative i* Models generated in Phase 4 of PRiM are a valid

representation of the future system.

To verify this hypothesis we analyse the Alternative i* Models generated in Phase 4 of PRiM
with the intentionality of: 1) checking if they respond to the reengineering criteria proposed in
Phase 3, and; 2) are a valid representation of the future system. From these point of view, we
observe that all the Alternative i* Model generated are a possible solution of the social system.
Also, despite each alternative provides different levels of responsibility to the system (from
intermediation to execution of tasks), it is possible to generate the specification of a system for
each of them (Phase 6).

5.4.1.3. H3: The evaluation of the alternative i * models with respect to a set of structural

metrics is consistent with the properties of the generated alternative.

The evaluation of the structural metrics over the Alternative i* Models provides consistent
results according to the represented problem statement. In addition, in the Meeting Scheduler
and the Collaborative case studies, we observe that, despite the values obtained for each metric
are different, they follow the same tendency: Data Accuracy, Data Privacy and Process Agility
improve when we give more responsibility to the software system. On the other hand, the results
for Ease of communication remain consistent in all three case studies: scores better when we
have more human interaction (i.e., Source i* Model, Partial Delegation, and Partial Execution);
and gets damaged when we delegate more responsibilities to the system (i.e.: Total Delegation
and Total Execution).

In Table 5.14 we present a summary of the evaluation done, where we remark the previously
mentioned differences. In Section 5.3.3.6 we have tried to explain the different evaluation
results on the alternatives for the Conference Management System Case Study, which are due
the characteristics of the problem statement. Despite the results are not the expected ones, the
analysis done to answer why there are not as expected has been useful to better understand the
nature of the problem, which also helps on the decision making process.

5.4.2. Analysis of the Comparative Hypotheses

On the comparative hypothesis we analyse the results of each case study in a comparative
manner, in order to check if a structural metric evaluating a certain property has to yield to the
same results when applied over various Alternative i* Models, even if they are generated in
different case studies.

Chapter 5. Formative Validation of PRiM .

 145

Table 5.14. Summary of the evaluation of the analysed case studies

 Property Data Accuracy Data Privacy
Ease of

Communication
Process Agility

Source i* Model 0,4900 0,6216 0,7160 0,4762
Partial Delegation (A1) 0,4989 0,6827 0,4838 0,5277
Total Delegation (A2) 0,5047 0,6795 0,4163 0,5428
Partial Execution (B1) 0,5347 0,6971 0,4676 0,5478 M

ee
ti

ng

Sc
he

du
le

r

Partial Delegation (B2) 0,5640 0,7033 0,3983 0,5760
Source i* Model 0,3672 0,5022 0,6694 0,4436
Partial Delegation (A1) 0,3848 0,5357 0,5196 0,5271
Total Delegation (A2) 0,3761 0,5686 0,4268 0,5607
Partial Execution (B1) 0,4120 0,5836 0,4940 0,5690

C
ol

la
bo

ra
ti

ve

E
xe

rc
is

e

Partial Delegation (B2) 0,4906 0,6400 0,4015 0,6158
Source i* Model 0,5642 0,5297 0,7006 0,5900
Partial Delegation (A1) 0,4299 0,3992 0,4972 0,4536
Total Delegation (A2) 0,3611 0,3365 0,4054 0,3858
Partial Execution (B1) 0,5129 0,4650 0,5108 0,5279

C
on

fe
re

nc
e

M
an

ag
er

Partial Delegation (B2) 0,5044 0,4600 0,3893 0,5118

5.4.2.1. H4: The evaluation of the alternative i * models belonging to different case studies

with the same metrics is consistent with the properties of the generated

alternatives.

When applying the same metrics for Process Agility, Data Accuracy, Data Privacy and Ease of
Communication over the different Alternative i* Models, we observe that the results are
consistent with the assumptions taken during the definition of the metrics (see Table 5.14). In
general, the more responsibility is provided to the software system, the higher values for
Process Agility, Data Accuracy and Data Privacy. The Conference Management System is the
only one of the three case studies that provides some variations in these results, which can be
explained by the particularities of the problem statement and how the generation of alternatives
is done. Regarding the property Ease of Communication, all three case studies results agree that
is better achieved between human, and gets damaged when the software system gets more
responsibilities.

5.4.2.2. H5: It is possible to define a certain criteria and to generate Alternative i* Models

for different case studies based on them.

As it can be seen in the case studies, it is possible to define alternatives over different domains
based on the same criteria. Therefore, we have generated, not only consistent alternatives but
also in an efficient manner. As it will be remarked in the next section the time invested for the
generation of alternatives was higher on the first case study (Meeting Scheduler) but the precise
criteria and the previous experience in generating the alternatives, has make it more quicker
during the rest of the phases.

5.4.3. Analysis of the Effectiveness when Applying PRiM

In order to evaluate the effectiveness, in Table 5.15 we provide the relation between the hours
invested in each of the PRiM phases for each case study. The time invested has been calculated
by annotating the day an hour of beginning and end, where each phase has been done by adding
the corresponding amount. On Phase 1 we break down the time invested in the analysis and the

An i*-based Reengineering Framework for Requirements Engineering

146

time invested in documenting the alternatives. It is possible to see that, as all the problem
statements are approximately the same size, the time of the analysis is the same. However, those
case studies with more activities (Meeting Scheduler and Conference Management System) take
more time to be documented even if, in average, they have the same number of actions per task.
As we have used J-PRiM for the generation of the Operational i* Model, the time invested in
this phase is the one of defining the main goal of each actor and checking that the automatically
generated model is correct. Despite also being defined with J-PRiM, the generation of the
Intentional i* Model is not that easy as an analysis on the intentional elements added is needed.
As the goals of the case study restricted the conditions of reengineering the current system into
adding tool support on them, the time invested in Phase 3 can be considered low. Therefore, the
Phase that takes longer is the Generation of Alternatives, which depends more on the number of
alternatives generated (4) than on the number of elements of each model. This is because tool
support facilitates the introduction of the new actor and the generation of alternatives. Finally,
the evaluation of alternatives includes the customization of the model-based metrics (i.e., the
ones that have values particular to a certain case study) and the analysis of the obtained results.
The specification of the new system has not been considered.

Table 5.15. Relation of time invested in each of the PRiM phases for each case study

Phase of PRiM
Meeting Scheduler

Case Study
Collaborative Exercise

Case Study
Conference Management

System Case Study
Phase 1: Analysis of the
problem statement

0 h 19m 0h 12m 0h 15m

Phase 1: Documentation of
the activities (DIS)

1 h 22m 0h 32m 1h 27m

Phase 2: Operational i*
Model

0 h 10m 0h 07m 0h 9m

Phase 2: Intentional i* Model 0 h 54m 0h 30m 0h 34m
Phase 3: Reengineering the
current system

0 h 32m 0h 14m 0h 21m

Phase 4: Generation of
Alternatives

1 h 49m 0h 57m 1h 23m

Phase 5: Evaluation of
Alternatives

0 h 58m 0h 35m 0h 33m

Phase 6: Specification of the
New System

- - -

Total = 6h 04m 3h 07m 4h 12m

5.5. Conclusions

In order to validate the PRiM method we designed a formative experimentation plan that is
organized in four stages using academic case studies. During the three first stages, the case
studies are used to define, improve and consolidate the method, by focusing on the construction
of the i* model (Phase 2 of PRiM) and by checking that the generation of alternatives and its
evaluation yields to the expected results. During the fourth stage the case studies are replicated
by applying the same criteria for the generation of the alternatives (Phase 4 of PRiM) and they
are evaluated using the same structural metrics (Phase 5 of PRiM) in order to compare the
results obtained in the different case studies.

Chapter 5. Formative Validation of PRiM .

 147

As we have seen in the previous section, all the phases of PRiM are based on a strong
theoretical basis, reusing existing methods and techniques when possible. Therefore, it is not the
goal of the case study to validate these techniques separately, but to validate if the result of the
application of PRiM over the case study provides the expected results. During the definition of
PRiM we have used three different case studies already explored in the i* literature to define,
improve and consolidate the techniques proposed in PRiM. During its execution, we have
validated that the construction of the i* model was feasible and that the results were similar to
the ones achieved in other case studies. As the generation and evaluation of alternatives is not
explored by the other case studies, we have checked that the results obtaining when evaluating
the alternatives are consistent with the properties of each alternative.

We remark that the comparison between the case studies is possible because they present a
similar structure: they all begin with the analysis of a social process and they share the domain
characteristic of managing the interaction between people in a group. Also, because, in order to
facilitate the comparison of the generated alternative and the evaluation result, we have establish
a common alternative generation criteria and we use the same set of structural metrics for
evaluating them. As a result, we have verified that the generation of alternatives under the same
criteria is feasible and the metrics evaluation results validate the assumptions even if the case
studies are different. Therefore, the same metrics over Alternative i* Models generated with the
same criteria have the same results for the Meeting Scheduler and the Collaborative Exercise
case studies and some of the results differ on the Conference Management System.

As we have introduced in Chapter 4, metrics are only indicators for certain properties. In the
case studies we have take the same group of metrics and we have customized them by using our
own expert judgement. Therefore, it is possible to define other metrics for Data Accuracy, Data
Privacy, Ease and Communication and Process Agility and their definition can be done at
different granularity levels. However, the most precise the metrics are, the more complex to
define and calculate. This comes up with a trade-off between the time needed to define the
metric and the return of investment.

In addition to the three case studies presented in this chapter, we have also applied the PRiM
method to eMedia Shop problem statement [Kolp et al., 2003]. PRiM was applied to model the
eMedia shop as a social system (Phases 1 and 2) to which we added the socio-technical system
(Phases 3 and 4) following the strategy proposed in TROPOS [Bresciani et al., 2004]. As a
result we obtained two different models, one for each system that presented the same underlying
concepts than the ones identified in [Kolp et al., 2003], especially when modelling goals,
softgoals and some resources. As [Kolp et al., 2003] also addresses the generation and
evaluation of candidate organizational structures, we tried to compare the results obtained in
both approaches. However, it has not been possible because of significant differences between
the number and type of dependencies obtained by means of PRiM. One reason for these
differences was that PRiM is very precise in defining the models and therefore more
dependencies appear. Therefore, the organizational alternatives compared in [Kolp et al., 2003],
are not equivalent from the intentional point of view. Although one could argue that this fact
aligns with the intrinsic freedom that i* provides, it was clear that comparison of organizational
alternatives has to be based on models developed using the same principles in order to validate

An i*-based Reengineering Framework for Requirements Engineering

148

the metrics. Because of that, we are conscious that more research is needed on the definition and
validation of the structural metrics.

About the lessons learn on the application of PRiM, we argue that it reduces the initial effort
required to model the current process because the Source i* Model can be generated from the
description of the current system (Phases 1 and 2). This is possible because of the application of
the rules, guidelines, methods and checks that can be used systematically for guiding the
construction of the Source i* Model. Once the current situation is modelled, the generation of
alternatives using a certain set of predefined criteria helps to be systematic and to analyse all the
possible solutions (although not explored here other mixed Alternative i* Model solutions could
be applied). The generated alternatives can be generated by using a set of predefined i*-based
structural metrics, that can be customized and refined, and yield to the expected results. Finally,
it is possible to obtain the specification of the new system from the description of the selected
alternative.

 149

6. Industrial Validation of PRiM:

From FENIX to DRAC

A method cannot be considered completely useful until it is validated. Because of that, we have
taken a special consideration to the validation of PRiM. However, as PRiM makes uses of
different techniques through its phases, its industrial validation has been delayed until the
formative validation has been done and tool support has been fully developed.

The main goal of this case study is to validate that the use of PRiM in a reengineering project
provides some benefits over using traditional requirements engineering techniques. Despite it
would have been better to compare PRiM with another process reengineering technique this has
not been possible because, as far as we know, it does not exist any other reengineering method
that covers all the phases of our method.

The industrial case study selected for validating PRiM is the DRAC project, which consists on
reengineering the FENIX system, an already existing system deployed at the Universitat
Politècnica de Catalunya, whose aim is to evaluate the amount and quality of the research
within that organization. This project is particularly adequate because it involves reengineering
at the requirements level, just as PRiM is intended for.

In the remainder of the chapter the case study is explained. In Section 6.1 we introduce the
theoretical basis for the case study and how it is organized. The steps are grouped into case
study analysis (Section 6.2), case study planning (Section 6.3), case study monitoring (Section
6.4) and, results analysis (Section 6.5). Finally, the conclusions of the chapter are presented in
Section 6.6.

6.1. Introduction

Case studies help industry evaluate the benefits of methods and tools and provide a cost-
effective way to ensure that process changes provide the desired results [Kitchenham et al.,
1995]. Case studies differ from formal experiments in the fact that they focus on a single project
and, so, it is not possible to have replication, as formal experiments require.

An i*-based Reengineering Framework for Requirements Engineering

150

Case studies are becoming a traditional practice in software engineering. However, despite case
studies share a common set of steps (i.e. hypothesis definition, planning, operation, analysis of
the results), there is no standard way to document them. For this case study we have chosen the
case study guidelines proposed in [Kitchenham et al., 1995] because they are specific of case
studies for method evaluation and present a set of steps for designing and administering case
studies that include the following factors: Define the hypothesis; Select the pilot projects;
Identify the method of comparison; Minimize the effect of confounding factors; Plan the case
study; Monitor the case study against the plan; and, Analyze and report the results.

In the presented case study, we add a first step for establishing the goals of the case study as it is
proposed in [Basili et al., 1994]; and we group the steps in four different sections: case study
analysis, case study planning, case study monitoring and case study results.

6.2. Case Study Analysis

6.2.1. Define the Goals of the Case Study

In this section we analyse the kind of study that is more appropriate for the objectives of our
research. In [Wohlin et al., 1999] a goal definition template is used in order to ensure that the
important aspects of the case study are defined before the planning and execution take place.
The template proposed in the Goal-Question-Metric paradigm [Basili et al., 1994] for
undertaking measurements, is also applicable to case studies. Therefore, we define the main
goal in order to better define and understand further phases of the case study:

Analyse a reengineering project
For the purpose of evaluating the PRiM method
With respect to its effectiveness
From the point of view of the researcher
In the context of two groups of researchers performing a reengineering process

When defining the goal of the case study, we state that we want to evaluate PRiM by analysing
a reengineering project. As we want to evaluate its effectiveness, we decide to perform the
reengineering project by using two different groups of researchers, one using the PRiM method
and the other ones using a control method.

6.2.2. Define the Hypothesis of the Case Study

Based on the goal of the case study, we define the hypothesis. Hypothesis define the effect that
the method is expected to have. Their definition allows stating which measurements are needed
to demonstrate their effect, and to allow identifying, measuring, and collecting the data. As,
formally, hypotheses cannot be proven, we can only disprove them. Therefore, we define the
following null hypothesis stating that there is no difference between treatments:

H1: There is no significant difference in the time invested using the PRiM method and the
control method for achieving the results.

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 151

H2: There is no significant difference in the amount and characteristics of the generated
alternatives using the PRiM method and the ones generated by the control method.

H3: There is no significant difference in the analysis of the properties of the generated
alternatives done by the PRiM method and the ones recommended by the control method.

H4: There is no significant difference in the solution recommended by the PRiM method and the
solution recommended by the control method.

6.2.3. Select the Reengineering Project

The pilot project has to be representative of the type of projects that the organization or the
company usually undertakes. In our case, as we want to validate a method, we have to choose a
project that fulfils the application of the method conditions.

The DRAC project consists in the construction of a new system (DRAC) in order to solve the
problems of the current one (FENIX). For doing so, the Universitat Politècnica de Catalunya
has contacted our research group GESSI in order to assess the requirements and design phases
of the development process. The process is addressed from a reengineering point of view. First
the current system is analysed and, then, based on the needs of the involved stakeholders, the
new system is specified and designed. The documents that have to be delivered to the project
are a glossary of terms, the business processes models, the data conceptual model, the use case
diagrams, and, a requirements document including functional and non-functional requirements.

In order to obtain this documentation, the research group has done several activities in order to
understand the current state of the current system. These activities include interviews with the
different staff that is currently using FENIX (which will be recorded); modelling the current
system using conceptual models and business process models, performing a requirements
analysis, and, then building a proposal of the changes to the processes.

We consider that the DRAC project is suitable to be undertaken with PRiM because it is done
under a reengineering perspective, involving the phases of PRiM, which include the study of the
current system, the requirements gathering for the new system, the generation and evaluation of
alternatives, and the generation of the specification for the new system.

6.2.4. Identify the Method of Comparison

The case study is comparative by nature, and the results of using one method have to be
contrasted with the results of using another. In order to avoid bias and ensure internal validity, a
valid basis for assessing the results has to be selected. For doing so, [Kitchenham et al., 1995]
proposes three alternatives, among which, the more adequate in our case study is to compare the

results of using a new method against a company baseline.

As the case study will be done by our research group GESSI, we do not have a company
baseline to compare but as proposed in [Kitchenham et al., 1995], we can apply a replicated

product design. This design is often used when a researcher wants to demonstrate the

An i*-based Reengineering Framework for Requirements Engineering

152

superiority of a new method compared to current development methods. The conditions of its
application are:

1. Replicate an existing product using the new method or tool
2. Measure the response variables on both versions of the product
3. Compare the two sets of response variables

The replicated product design has two types of risk of bias:

� Only one of the methods is produced under normal commercial conditions. This can
cause a bias due to the lack of motivation on the group that is applying the new method. To
overcome this issue, we undertake both projects in parallel, and the one that would achieve
better results will be the one finally released to the customer.

� The authors of the method undertake the replication project. In that case, the results
may be biased because the authors will usually have more experience with the new method
and are more motivated to see its succeeding. In order to avoid this issue, the replicated

product design case study is applied by two different teams and only one of them uses the
new method.

As a result of this process, we define a case study where the same project is undertaken by two
teams, each one using a different method:

� Control method. It is the method that the control team applies to do the reengineering of the
current processes at the DRAC project. It consists on traditional UML [Jacobson et al.,
2000] requirements engineering and conceptual modelling techniques.

� Control team. It is formed by two persons in the research group that are not related and do
not know the PRiM method. One is a doctor and the other one is a PhD student, both
working on the fields of requirements engineering and conceptual modelling. They will use
the control method to do their part of the work. They are the ones that will be in contact
with the organization in order to obtain the data.

� PRiM method. It is the alternative method that is used for replicating the reengineering of
the current processes at the DRAC project. The method is explained in Chapter 3, in [Grau,
Franch & Maiden, 2005a], and in [Grau, Franch & Maiden, 2008].

� PRiM team. It is formed by the researcher author of this work (as a main researcher) and a
doctor (acting as an advisor). Both are authors and have experience in using the PRiM

method.

6.2.5. Minimize the effect of confounding factors

It is important to properly distinguish the effect of one factor from the effect of another factor,
in order to avoid confusing them. As confounding factors can affect the internal validity of the
study, we will address the most significant ones [Kitchenham et al., 1995] as follows:

� Learning how to use a method or tool as you try to assess its benefits. In order to avoid
that the effects of learning to use the method interfere from the benefits of using it, the
method will be applied by experts on the method (its authors).

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 153

� Using staff that is either very enthusiastic or very sceptical about the method or tool.
As the PRiM method will be applied by its authors, it could be the case that they were too
enthusiastic by the method. However, as their final interest is to evaluate the method, they
will be sincere about its applicability. Additionally, it will be no contact with the control

team, in order not to comment on the solutions, which could influence the results.

� Comparing different systems types. As we are working with a replicated product design
this factor is not applicable.

6.3. Case Study Planning

According to [Kitchenham et al., 1995], the plan of the case study identifies all the issues to be
addressed so that the evaluation runts smoothly, this includes the training requirements, the
necessary measurements, the data collection procedures, and the people responsible for the data
collection and analysis. Additionally, as proposed in the case study guidelines of [Kitchenham
et al., 1995], we also consider the external case study constraints.

6.3.1. External Case Study Constraints

The DRAC project is an industrial project and, so, there are some external constraints that affect
the case study. The DRAC project is undertaken at an established schedule. In this schedule, the
case study takes place during the requirements and early design stages of the DRAC project.
Due to internal decisions, only the control team goes to the meetings with the customers, and
the PRiM team only has access to the documentation obtained by them: namely, the voice
record of the meetings and the generated reports. However, the PRiM team can asks questions to
the control team, and the control team would inform the PRiM team if the customer changes
some requirements or the customer provides some constraints over the candidate solutions.

6.3.2. Training Requirements

As we have explained in Section 6.2.4, both the control team and the PRiM team involved in the
case study are already experts on the method they are applying. On the one hand, the control

team is composed by experts on requirements engineering and conceptual modelling. Finally,
the PRiM method is applied by its authors and using the tool support specifically made for it.
Therefore, we can ensure that the procedures will be well applied and no training requirements
are needed.

6.3.3. Necessary Measurements and Data Collection Procedures

In order to establish the necessary measurements, we analyse the null hypothesis defined in
Section 6.2.2. Based on the hypothesis, the main measures that will be collected are:

� Evaluation of hypothesis H1. In order to compare the time invested using the PRiM method
and the control method for achieving the results, the time invested in the different phases of

An i*-based Reengineering Framework for Requirements Engineering

154

the PRiM method have to be collected: the time invested for modelling the requirements for
the new system, exploring the alternatives for the new system, deciding which alternative is
more suitable, and in generating the final documentation of the system. The time is
measured in hours, and the data has to be collected using a time registration questionnaire
where, for each activity of the method performed, the researcher states the hour where she
begins the activity, the hour where the activity is ended and the total amount. We consider
that is possible to perform the activity within different interval times.

� Evaluation of hypothesis H2: In order to compare the amount and characteristics of the
generated alternatives using the PRiM method and the ones generated by the control

method, we have to obtain the complete list of generated alternatives, stating for each
alternative: the particularities of the alternative, the quality factors that it improves and the
quality factors it damages.

� Evaluation of hypothesis H3. In order to evaluate the analysis of the alternatives generated
by the PRiM method and the ones recommended by the control method, we need to compare
the result of the evaluation of PRiM with the documentation of the recommended solution
and the reasons why it has been selected.

� Evaluation of hypothesis H4. The solution recommended by the PRiM method and the
solution recommended by the control method can also be compared by analysing the
documentation of the recommended solution and the reasons why it has been selected.

6.3.4. Responsibilities and Schedule

As we have already mentioned, there are two different teams: the control team, that executes the
real project using the control method; and the PRiM team, that replicate the project based on the
information gathered by the control team. Because of that, the control team is in charge of
doing the requirements analysis based on the stakeholder interviews and the execution of the
current system (FENIX). Based on this information, the current system is documented using
activity description, activity modelling and conceptual modelling techniques. The resulting
document [GESSI, 2007], is part of the deliverables for the FENIX project and it is the one used
by the PRiM team to begin their execution of the project (which includes the six phases of the
PRiM method, using J-PRiM [Grau, Franch & Ávila, 2006] as tool support). Once both teams
have documented the most suitable solution, the results are compared.

6.4. Case Study Monitoring

FENIX is a software system deployed at the Universitat Politècnica de Catalunya whose
purpose is to evaluate the amount and quality of the research within the university. The
university has authorized the publication of the results in this thesis. However, due to the
sensibility of the data, the described processes and problems can not be provided in detail and
so, only a high-level explanation is provided. We believe that this level of detail is sufficient for
our purposes and so, in the case study monitoring, we present how the different phases of PRiM
are executed and the main relevant results obtained in each of them.

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 155

6.4.1. Phase 1: Analysis of the FENIX System (Current Processes)

FENIX is a software system for the evaluation of the research within the university. In order to
allow such an evaluation, the lecturers and professors (hereafter researchers) have to introduce
their publications, participation in conferences, program and organizing committees, and so on.
Once the data is introduced, the administration of the department where the authors belong to,
validate the data. The data is also validated by the University Library Employees who check that
the publications introduced match with the information available in the proceedings.
Proceedings are available only if the authors provide them to the library for cataloguing
purposes. It is also possible to introduce academic activities in the system (i.e., awards received,
thesis committee membership), which are validated by the FENIX administrative staff. For each
publication and academic activity, a mark is given to the authors. The total amount of marks per
author (called PAR Marks) is calculated once every year. However, every three months a
simulation is run in order to provide partial results to the researchers, so they can know how
they are performing. Each September the total amount of PAR Marks for the year is published.
The research data is also used for internal procedures within the University administration.
According to the documentation provided in [GESSI, 2007], the organizational processes of the
FENIX System are organized in five different categories (see Figure 6.1):

� Data loading processes, related with the introduction to the system of the publications and
academic activities, including their classification, and the kind of participation.

� Master Data Maintainability Processes, related with updating the data of the FENIX
System. It includes processes such as the importation of data from the university staff
databases, the research groups’ management or the activities classification mark schema.

� PAR Marks Calculation Processes, related with the calculation of the PAR marks of the
researchers of the university. It also includes the aggregation of PAR marks by Basic Unit
or by Research Group.

� Information Exploitation Processes, related with the use of the information stored in the
FENIX System.

� Administrative Processes, related with helping the FENIX administration in the use of the
system.

There are several actors that interact in each of the processes (see Figure 6.1). These actors are:
the FENIX Administrative Staff (hereafter, FENIX Staff), which represents the staff that works
at the technical office; the Librarian, that includes each of the staff in the university libraries; the
Researchers, including the professors, research assistants and PhD students that work at the
university; the Head of the Unit, which represents the heads of the basic units of the university
(departments, institutes, and chairs); and, the Unit Administrative Staff (hereafter, Unit Staff),
which includes those workers that work in the basic units of the university and that are the
intermediates between the researchers and the FENIX System administrators.

An i*-based Reengineering Framework for Requirements Engineering

156

Figure 6.1. Case Diagram with the different categories of processes in FENIX. Adapted from
[GESSI, 2007]

In [GESSI, 2007] the documentation of the current process is done by means of a textual
description of the process, stating the actor initiator, the periodicity on which the process is
executed, and an activity diagram of the actions undertaken on the process. Based on this
information it is possible to document the current process by filling the corresponding
information on the DIS templates. For the sake of space and privacy, the details of the DIS
templates can not be shown in detail, but the activities of the Data Loading Processes and the
PAR Marks Calculation Processes are enumerated in Table 6.1 and Table 6.2, respectively.

We remark that the activities of the rest of the processes have not been taken into account
because they correspond to mere administrative processes that, because of their simplicity, have
been considered marginal for the reengineering process. Therefore, they are not deeply studied
in order to simplify the whole process.

The activities for the Data Loading Processes are documented in Table 6.1 where the different
activities are numerated following its decomposition in the original documentation in [GESSI,
2007]. From the name of the activities and their main actors we observe that there are several
users and multiple ways of introducing the data into the FENIX System for each of them:

� It is possible to use the FenixWeb interface (1.1), which is a website that is mainly used for
the researchers.

� It is also possible to introduce the data using the client/server interface of FENIX (which is
what we properly call the FENIX system). FENIX is used by some researchers (1.2.1) and
the Unit Administrative Staff (1.2.2). We remark that FenixWeb does not use the same
database as FENIX and, so, the FENIX Administrative Staff notifies the Unit Staff when
there is data ready to export (1.2.3) and the Unit Staff export the data from FenixWeb and
import to FENIX (1.2.4).

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 157

� In order to ensure that the introduced data is correct, the Researchers have to bring the hard-
copies of their publications to the library and then, the librarians catalogue their publication
and introduce it in the system. In this process the researcher can provide a filled information
template with the publication data to the librarians (1.3.1) or to introduce the publication
data themselves (1.3.2).

� E-Prints UPC is a system where researchers can publish they research reports. Once per
month, the researchers checks the documents introduced in E-Prints UPC, and introduce
them to FENIX (1.4).

� The FENIX Staff is in charge of introducing or modifying activities if a Researcher or Unit
Staff sends them the research data (1.5.1). On the other hand, the FENIX Staff have other
sources of information for introducing the data such (i.e.: the ISI web of knowledge [ISI
website], some of the university databases (i.e. the University Databases, the University
Website, and the E-prints UPC). The FENIX Staff can obtain these data, ask the researcher
for its correctness and, then, introduce it to the system (1.5.2 to 1.3.6).

� Finally, the university provides an official list of approved research activities that is entered
to the FENIX System by the FENIX Staff.

Table 6.1. Description of the activities for the Data Loading Processes of FENIX

Process Process Activity Involved Actors
1. Data Loading Process

1.1. Data Loading into FenixWeb Researcher, FenixWeb
1.2.1. Data Loading into FENIX (researcher) Researcher, FENIX
1.2.2. Data loading into FENIX (Unit Staff) FENIX Staff
1.2.3. Data loading from FenixWeb into FENIX (FENIX

Staff)
FENIX Staff, FenixWeb, Unit
Staff

1.2.4. Data loading from FenixWeb into FENIX (Unit
Administrative Staff)

Unit Staff, FenixWeb, FENIX

1.3.1. Catalogue publication (using physical document and
filled template)

Researcher, Librarian, FENIX,
Library catalogue

1.3.2. Catalogue publication (using physical document) Researcher, Librarian, Library
catalogue

1.4. Data loading into E-prints UPC Researcher, Librarian, E-prints
UPC, FENIX

1.5.1. Data loading into FENIX (FENIX Administrative
Staff)

FENIX Staff, Researcher, Unit
Staff, FENIX

1.5.2. Data loading from IDB into FENIX FENIX Staff, Researcher,
FENIX, ISI database

1.5.3. Data loading from UPC website into FENIX FENIX Staff, Researcher,
FENIX, UPC website

1.5.4. Data loading from E-prints UPC into FENIX FENIX Staff, Researcher,
FENIX, E-prints UPC

1.5.5. Data loading from CTT into FENIX FENIX Staff, Researcher,
FENIX, CTT database.

1.5.6. Data loading from UPC databases into FENIX FENIX Staff, Researcher,
FENIX, UPC database.

1.6. Data loading from approved research activities. FENIX Staff, FENIX

The activities for the PAR Marks Calculation Processes are summarized in Table 6.2, where
each process activity is numerated following the original documentation [GESSI, 2007]. By the
description of the activities, we observe that the process of validating the data of the system is

An i*-based Reengineering Framework for Requirements Engineering

158

awkward because data has to be double validated: once for their format (which is partially done
in some activities of the Data Loading Processes) and once for their confidence. Therefore we
have the following activities:

� The PAR Marks are calculated two times per year in order to provide the researchers with
an estimation of its current value (3.1). If they found any mistake in the data, they can
correct the data or ask the Unit Staff or the FENIX Staff to doing it (3.2).

� As we have mentioned, the information has to be validated for its format and its
truthfulness. The format validation and the control of possible duplicated entries are done
by the FENIX Staff (3.3). The truthfulness validation is done differently for research
publications than for research activities. For research publications, the librarians are
responsible of providing the FENIX Administrators with a list of the researcher catalogued
publications in order to validate its truthfulness (3.4). For the research activities that do not
have a physical document, the Head of the Unit is the one that validates the truthfulness of
the entered data (3.5).

� Once the data is validated, the PAR Marks are calculated (3.6). The process is lunched by
the FENIX Administrator and whilst it is being executed the FENIX System has to be
closed (3.7) and, consequently, it has to be opened again (3.8). Once the definitive PAR
Marks are calculated modifications can only be done by the FENIX Staff and so, the
Researcher has to communicate the information to review to the FENIX Staff (3.9).

� Finally, the FENIX Staff can ask the FENIX System to generate reports with statistics from
the information obtained during the PAR Marks calculation (3.10).

Table 6.2. Description of the activities for the PAR Marks Calculation Processes of FENIX

Process Process Activity Involved Actors
3. PAR Mark Calculation Processes

3.1. Initiate Simulation FENIX, FENIX Staff
3.2. Format and Duplicates Review FENIX, FENIX Staff
3.3. Review Introduced Research Information FENIX, Researcher, Unit Staff, FENIX Staff
3.4. Librarians Truthfulness Validation FENIX, FENIX Staff
3.5. Head of the Unit Validation FENIX, Head of the Unit
3.6. PAR Marks Calculation FENIX, FENIX Staff
3.7. Partial Closing of FENIX FENIX, FENIX Staff
3.8. Opening of FENIX FENIX, FENIX Staff
3.9. Review Calculated Research Information FENIX, Researcher, FENIX Staff

3.10. Report Generation FENIX Staff

6.4.2. Phase 2: Construction of the i* Model for the FENIX System

In the PRiM method, the construction of the i* model is done in two different parts, the
construction of the Operational i* Model and the construction of the Intentional i* Model. As a
result of the analysis of the current processes on the previous phase, we have filled the DIS
tables of each of the activities in the J-PRiM tool. Because of that, the construction of the

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 159

Operational i* Model has been automated by the tool. Regarding the Intentional i* Model, it has
been created by following the guidelines proposed by the method.

In Figure 6.2 we present and excerpt for the i* for the FENIX System, corresponding to the
activities for the introduction of the Research Data during the Data Loading Processes. We
remark that this is not the complete model obtained with PRiM, but a selection of i* elements in
order to help the understanding of how the Phase 2 of the method is performed. Among the
modelled actors we distinguish four human actors: the Researcher (main goal, Research Data is

Evaluated), the Unit Staff (Research Data is Loaded into FENIX), the FENIX Staff (FENIX

System is Managed) and the Librarian (Research Publications are Catalogued). We also have
three software actors: the FENIX System (main goal, Research Data is Managed and

Evaluated), the FenixWeb (Research Data is Managed), and the Catalogue (which is used by
the Librarians to catalogue the Research Publications).

The Operational i* Model represented in Figure 6.2 shows that the Researcher can use two
different software actors for achieving her goal of Research Data is Loaded, and so, her
dependencies are duplicated for the FENIX System and the FenixWeb. Regarding the resources
we remark that the Researcher introduces two kinds of data: Research Activities and Research
Publications. When a Research Publication is introduced, the Researcher gets a receipt to be
used when the Physical Publication is provided to the Librarian in order to catalogue it. Once
the Publication Data is introduced into the Catalogue, the Librarian gives it back to the
Researcher. When the Researcher introduces the data using the FenixWeb, the FENIX Staff
acknowledges the Unit Staff that there is data available to load. Then, the Unit Staff exports the
Research Data from FenixWeb and imports the same data to FENIX. As this process may cause
duplicates, the FENIX Staff has to ensure the integrity of data and so, it can check the data
introduced into the FENIX System and eliminate duplicates.

In Figure 6.2 we only show part of the intentionality of the process. As an example of the
intentionality of the activities, we have that the Researcher depends on the FenixWeb and
FENIX System for the Research Data is Loaded. From an analysis of the intentionality we have
that the researcher has the intentional softgoal Agility on the Data Loading Process, which is
better achieved when the Research Data is introduced via FenixWeb than via the FENIX
System, because the web interface provides a better usability of the system (it is easier to use)
and is more available (you don’t have to download the client program and so, it is available
from any computer with web access). As we have previously explained, Research Publications
have to be catalogued and the Research provides the Physical Publication to the Librarian. As
the Researcher wants the publication back, it depends on the Librarian for the softgoal Quick

Cataloguing Process. The FENIX Staff also have some softgoals dependencies. For instance, it
depends on: the Unit Staff for an Efficient Data Load from FENIX to FenixWeb; the FENIX
System for Research Data is Correct, and the Librarian for Research Publication Data is Valid.

A
n

 i*-b
a
s
e

d
 R

e
e

n
g
in

e
e

rin
g
 F

ra
m

e
w

o
rk

 fo
r R

e
q

u
ire

m
e

n
ts

 E
n
g

in
e

e
rin

g

1
6

0

Researcher

FENIX

System

(sw)

Librarian

FENIX

Staff

Unit Staff

FENIX Web

(sw)

Research

Activities

Research

Publications

Research Data

is Evaluated

Research Data

is Loaded into

FENIX

Research Data

is Managed

Research Data

is Managed

and Evaluated

Modify

Research Data

Research Data

is Loaded

Introduce

Research Data

via FenixWeb

Introduce

Research Data

via FENIX

Import

Research Data

from FenixWeb

Aknowledge data

load from FENIX to

FenixWeb

Export Research

Data (from

FenixWeb)

Import Research

Data (from FenixWeb

to FENIX)

Physical

Publication

Research

Publication

Receipt

Research

Publication

Receipt

Catalogue

(sw)

Research

Publications are

Catalogued

Publication

Data

Catalogue

Publications

Introduce

Research Data

FENIX System

is Managed

Ensure Integrity

of Data

Ensure validity

of data

Research

Activities

Research

Publications

Research Data

is Loaded

Modify

Research Data

Research

Publication

Receipt

Manage

Research Data

Export Reserch

Data to FENIX

Manage

Research Data

Import Reserch

Data from

FenixWeb

Get Research

Publication
Catalogue

Research

Publication

Research

Publication

Data is Valid

Research Data

is Correct

Check

Research

Data

Eliminate

Duplicates

Efficient [Data

Load from FENIX

to FenixWeb]

Agility of the Data

Loading Process

Usability of the

software interface

Availability of the

Software System

Quick

Cataloguing

Process

- +-

Research Data

is Managed

F
igure 6.2. T

he i* m
odel of the data loading processes in F

E
N

IX

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 161

6.4.3. Phase 3: Reengineering the FENIX Application

The reengineering of the FENIX application has been done from the analysis of the
documentation of the current system provided in [GESSI, 2007]. In this document the control

team documented the current process but also the main problems encountered in each activity of
the activities according to the stakeholders comments. Therefore, for reengineering the current
process we have analysed the detected problems and summarized the weak points encountered.

6.4.3.1. Goal-Oriented Analysis of the Detected Problems

Based on the documented problems, we have constructed a table for the goal-oriented analysis
of the weakness and strength of the different processes. From this analysis we have obtained
several goals by following the classification proposed by the KAOS approach [Dardenne et al.,
1993]. Therefore, we classify the goals as Avoid, Maintain, Achieve, Cease, and Optimize, as
follows:

Goal of the Activity. Based on the described problems we decide if the goal of the activity
(identified in phase 2 of the method) has to be maintained or avoided.

For instance, in Table 6.3 we observe that the goal of the Activities 1.1 and 1.2 is data

introduced into the system, and as the detected problems do not deal with the achievement of
this goal, they are goals to be maintained. On the other hand, the goal of the Activity 1.3.1 is
published document is catalogued using form, which, according to problem 3, it is hardly used,
so the goal is to be avoided.

Goal of the Problem. For each problem, we identify its main goal and, if it applies, we also
decide if it is a goal to achieve or to cease.

In Table 6.3, we observe that the main goal addressed by Problem 1 is to support data loading

process from FenixWeb to FENIX, and, because it takes too long is to be ceased. On the other
hand, in Problem 4, we see that when hard copies of the publication are not available,
researchers bring alternative hard copies for cataloguing the publication (i.e., printed copies of
the publication) and, as this appears to be a usual procedure, we propose to achieve the goal

publication is catalogued using alternative documents.

Softgoal of the Problem. A problem can also be related to a certain quality attribute and, so, we
analyse the problem in order to detect the quality attributes to optimize.

In Table 6.3 we show that Problem 1 is related to the delay that is produced during the data
loading process from FenixWeb into FENIX, and so affects data integrity, which is to be
optimized. Problem 2 is related to the use of the FENIX application in its client/server interface
by the researchers because they are not used to this kind of interface, therefore, the goal
optimize uniformity of user interface arises. We remark that a certain problem can have a goal
and a softgoal (Problem 1) or just one of them (Problem 2, 3, 4 and 5).

An i*-based Reengineering Framework for Requirements Engineering

162

Table 6.3. Excerpt of the analysis of the problems encountered in the FENIX system

Activity Problem Goal Analysis
1.1. Data Loading into FenixWeb Maintain data is introduced into the system.
 Problem 1. The data loading process

from FenixWeb into FENIX takes to
long.

Cease support data loading process from FenixWeb to
FENIX.
Optimize data integrity.

1.2. Data Loading into FENIX Maintain data is introduced into the system.
 Problem 2. The FENIX application is

only used by the Unit Administrators
because researchers are not used to its
interface.

Optimize uniformity of user interface.

1.3.1. Catalogue publication using physical
document and filled template

Avoid published document is catalogued using form

Problem 3. Hardly used. Cease published document is catalogued using form
Problem 4. When physical document
is not available, researchers catalogue
alternative documents.

Achieve publication is catalogued using alternative
documents.

Problem 5. Researchers have to
manage the process of
sending/receiving the physical
documents.

Optimize process agility.

6.4.3.2. Summary of the Reengineering Analysis

As a result of the analysis of the activities of the Data Loading Processes and PAR Mark
Calculation Processes of FENIX, we have obtained a total amount of 76 reengineering goals for
the new system. As it is difficult to work with such an amount of goals altogether, the goals
have been organized and summarized by using the goal organization capabilities provided by
the i* framework.

In Figure 6.3 we show an excerpt of the constructed goal analysis taxonomy where we have
classify the goals obtained in Table 6.3. We remark that, in order to classify the goals we have
introduced the high level system goals (dark grey). Therefore, the classification is not by
process activity or by detected problem as in the analysis, and so, the reengineering goals (light
grey) are grouped according to their concerns.

Figure 6.3. Goal analysis taxonomy of the FENIX reengineering goals

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 163

As it is not possible to fully present this analysis, we summarize it as follows. There are mainly
three weak points: 1) the current legacy system is 10 years old and, because of an old process
design, the authors have to do a lot of work for introducing the data to the system and to provide
prove of trustiness; 2) the validation process is complex and requires the librarians to check
twice the data entered in order to ensure that it is correct, and, 3) the current legacy system has
been improved during its lifetime and there are several databases and some replication of data
among them.

The reengineering of the current process as proposed in this phase provides a deeper knowledge
of the nature of the encountered problems. The identification of the goals associated to each
problem allows detecting new functionalities to achieve or old functionalities to cease.
However, as the analysis is goal-oriented, it does not enforce any particular solution, which will
be done in the next phase. We remark that the identification of the softgoals will drive the
generation and evaluation of the alternatives.

6.4.4. Phase 4: Generation of Alternatives for the FENIX Application

The generation of alternatives is guided by the goal-oriented analysis of the previous phase and
it is not possible to use the same criteria for generating alternatives used in the formative case
studies. As there are many activities, we need to establish a specific alternative generation
criteria in order to avoid combinatorial explosion. Therefore we propose to analyse some
possible solutions to the problems and then to establish the criteria for the generation of
alternatives, before generating the alternatives itself.

6.4.4.1. Exploring local alternative solutions

In the previous phase we have obtained the goals associated to each activity, but we have not
enforced any particular solution. In this phase we are already addressing the generation of
alternative solutions and, for doing it, we propose to extend the table proposed in the previous
phase with possible local solutions for each problem.

An excerpt of this exploration of alternative solutions is shown in Table 6.4. For instance, we
observe that there are two different alternative solutions that satisfy the goals associated to
Problem 1: to use the same database for FenixWeb and FENIX or to avoid the use of the
FenixWeb interface for introducing the data to the system. The goal analysis of problem 2 is to
Optimize the uniformity of user interface, which has also two different solutions: to avoid the
use of the FenixWeb interface for introducing the data to the system, or to avoid the use of the
FENIX interface for introducing the data to the system.

For some activities there is only one local alternative solution. For instance, to address Problem
3 we can delete the activity, and for Problem 4 and 5 we have to redefine the activity in order to
allow cataloguing the publication with alternative documents and to improve the process of
sending/receiving the physical documents. We remark that, when activities are modified, the
intentional inclusion has to be maintained.

An i*-based Reengineering Framework for Requirements Engineering

164

Table 6.4. Excerpt of the exploration of local alternative solutions for the problems encountered in the

FENIX system

Activity Problem Goal Analysis Local Alternative Solutions
1.1. Data Loading into FenixWeb Maintain data is introduced into

the system.

 Problem 1. The data
loading process from
FenixWeb into FENIX
takes to long.

Cease support data loading
process from FenixWeb to
FENIX.
Optimize data integrity.

LS-1. Use the same database for FenixWeb
and FENIX
LS-2. Avoid the use of the FenixWeb
interface for introducing the data to the
system.

1.2. Data Loading into FENIX Maintain data is introduced into
the system.

 Problem 2. The
FENIX application is
only used by the Unit
Administrators.

Optimize uniformity of user
interface.

LS-2. Avoid the use of the FenixWeb
interface for introducing the data to the
system.
LS-3. Avoid the use of the FENIX interface
for introducing the data to the system.

1.3.1. Catalogue publication
using a hard copy of the
document and filled template

Avoid published document is
catalogued using form

Problem 3. Hardly
used.

Cease published document is
catalogued using form

LS-4. Delete activity if intentional inclusion is
maintained.

Problem 4. When
physical document is
not available,
researchers catalogue
alternative documents.

Achieve publication is
catalogued using alternative
documents.

LS-5. Redefine the activity in order to allow
cataloguing the publications with alternative
documents.

Problem 5.
Researchers have to
manage the process of
sending/receiving the
hard copies of the
documents.

Optimize process agility. LS-6. Redefine the activity in order to
improve the process of sending/receiving
hard-copies of the documents.

6.4.4.2. Defining the alternative generation plan

In order to avoid combinatorial explosion when generating alternatives, we have to define a
strategy for generating the alternatives. For doing it, we analyse the local alternatives solutions
in order to find common actions to take. Therefore, we identify that all the proposed solutions
can be grouped into the following three levels:

� Level A: Uniformity. There are two different ways of introducing the information into the
system and two databases where the data is stored. At this level we group the solutions that
propose to achieve a single interface and to have a single database.

� Level B: Reallocation of Responsibilities. The current system allows users undertaking
different processes for achieving the same purposes and there are many actors involved in
each of the processes. At this level we group those solutions that propose to redefine the
processes by reallocating the responsibilities into different actors.

� Level C: Process Automation. Some actors complain that have to do a lot of work for
achieving the activity goal and this work involves interacting with different software
systems. At this level we group those solutions that propose to automate those parts of the
process that can be done by the system by using information from other systems.

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 165

Using these three levels, we propose an alternative generation plan that generates the
alternatives incrementally at each of the levels and uses the best solution at a certain level to
generate solutions in the next one. Therefore, as presented in Figure 6.4 we first apply the
solutions at level A, sequentially following a certain order. If An is better than An-1 we continue
generating the sequence using An, otherwise we skip An and we use An-1 as a basis. The best of
the solutions is used as the basis for generating the solutions at the level B, where the same
process is applied and the best solution generated with B is used to apply the solutions at level
C. The order of execution of the levels in the FENIX case study is defined using our knowledge
on the impact of each solution in order to add the complexity in a gradual manner. However,
other criteria could be used such as asking the users to prioritise the local alternative solutions.

Figure 6.4. Alternative Generation Plan for the FENIX System

6.4.4.3. Description of the Generated Alternatives

The alternatives we have generated using the alternative generation plan for the FENIX system
are the following.

A1. Single Database. In order to solve the delay produced when loading the data from the
FenixWeb database into the FENIX database, we propose to use a single database for both
of them. Despite the database is not an actor of the system and cannot be eliminated, the
processes involved with loading the data from one database to another disappear.

A2. Single Interface. The user can introduce the data using the FenixWeb interface or the
FENIX interface. In order to address this issue we allow a single interface for introducing
the data which is FENIX. FenixWeb has been deleted because all its functionalities where
covered by the processes using FENIX (intentional inclusion) and this has facilitated the
generation of the alternative. However, this does not means that the interface of FENIX will
not use the web, this design decision has to be taken into the design phase and, so, it is not
addressed here.

B1. Digital Prove of Evidence of Publication. The researcher has many forms of entering the
research data into the system, namely because it has to provide the hard copy documents of
a publication as prove of evidence. However, nowadays this information can be easily

An i*-based Reengineering Framework for Requirements Engineering

166

checked in the internet in the on-line publication of the books, journals, conference
proceedings or even in official websites. Therefore, it is possible to catalogue a publication
providing some of this data as a reference for the librarians to check the correct format of
the data and as prove of evidence. With this process, the need of managing the physical
document disappears and the librarians only have to check once the data entered against the
one provided in the reference.

B2. Digital Prove of Evidence for Research Activities. In order to evaluate the research
performed, research activities other than publications are also evaluated. The researchers are
very often asked to correct the data of the research activities. Following the same idea as in
B2, this alternative proposes the solution of providing proves of evidence of the research
activity to the librarians so they can check themselves the correct format of the data and, at
the same time, they have a prove of its truthfulness. The probe of evidence of the research
activity can be an e-mail, a reference to an official website, or a reference publication,
among others. In this alternative, the user does not correct its data about the research
activities.

B3. Self-correction of errors. In the current FENIX system, when an error in the entered data
is detected by the Researcher or the Unit Staff, a request has to be sent to the FENIX
Administrators for them to correct the error. In this alternative, we allow the Researcher and
the Unit Staff to solve the format errors.

B4. Validating data truthfulness. In the previous alternatives, the validation of the truthfulness
of the information was done by the Head of the Department, however, with the digital
proves of evidence when entering the publications data and the research activities, this
validation can be done by the FENIX administrator.

C1. Include external support. In the current process, there is a lot of interaction with different
software systems. For instance the FENIX Administrator uses an EXCEL file in order to
store some process data. In this alternative the information stored by the EXCEL file is
stored by the FENIX System.

C2. Drop useless processes. In the current process, FENIX Administrators search for
information about research activities in some official websites where it is difficult to find
information. As they do not have so many time for searching in these websites and it is from
the researcher interest to provide the data of its research activities, these processes are
removed.

C3. Automate website search. On the other hand, in the current process, there are websites
where it is possible to find information about research publications and, this information can
be retrieved easily (i.e., on-line journals, proceedings and books). This process is now done
by the FENIX Administrator which retrieves the data one by one and has to manually check
if it is already entered. In this alternative the new software system supports that process on
request of the FENIX Administrator.

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 167

6.4.5. Phase 5: Evaluation of the Generated Alternatives

The evaluation of the generated alternatives is done by applying the four steps proposed in
PRiM for choosing the suitable properties, defining the structural metrics over the i* models,
evaluating the Alternative i* Models, and applying a trade-off analysis of the results.

6.4.5.1. Choosing Suitable Properties

For choosing the properties to be evaluated, we have analysed the softgoals identified when
reengineering the current process (phase 3). The softgoals have arisen in order to remark those
properties that the stakeholders wanted to optimize and, so, they are suitable for the evaluation
of alternatives. The selected properties are:

� Average Actor Workload measures the average work done by each of the actors of a
process.

� Data Consistency measures the integrity of related data between the databases of an
information system. It is related to the fact that each user observes a consistent view of the
data.

� Data Truthfulness measures the degree in which false information can be introduced and
processed by the software system and the possibility of not correcting it.

� Data Accuracy measures the degree to which information sources are free from mistakes
and errors.

� Ease of Communication measures the degree in which the communication is facilitated
within the process.

� Process Agility measures the degree in which the process is agile in terms of the elements
that hinder the achievement of the process.

� Uniformity of User Interface measures the percentage of interaction that the user have
with the different systems.

6.4.5.2. Defining Metrics over the Models

In order to define the metrics, we have applied the process proposed in Chapter 4. In order to
avoid interfering with the goal of the case study, which is to evaluate the metrics results and not
to define the metrics itself, the metrics are presented in Annex A. In Table 6.5 we present a
summary of the defined metrics, stating their kind (actor-based or dependency based), the
source (reused or defined from scratch), the level of customization needed and the section of
Annex A, where they can be found.

We remark that, as some metrics where already defined, we benefit from reuse in this phase.
Therefore, Data Accuracy, Ease of Communication and Process Agility where already defined
and we have only customized the corresponding the metrics for Data Accuracy and Process
Agility. Therefore, for the case study, only four metrics have been defined from scratch, from
which, two of them need customization and the other two not, which means that can be directly
reused in further case studies.

An i*-based Reengineering Framework for Requirements Engineering

168

Table 6.5. Metrics defined for the FENIX system

Metric Kind Source Customization Annex A
Average Actor Workload Actor-based From scratch Not needed Section A.3
Data Accuracy Dependency-based From scratch Needed Section A.5 - A.5.4
Data Consistency Dependency-based From scratch Needed Section A.6 - A.6.1
Data Truthfulness Dependency-based From scratch Needed Section A.8 - 0
Ease of Communication Dependency-based From scratch Not needed Section A.9
Process Agility Dependency-based From scratch Needed Section A.10 -

A.10.4
Uniformity of User Interface Actor-based From scratch Not Needed Section A.12

6.4.5.3. Evaluating the Alternative i* Models

The different metrics have been introduced to the J-PRiM tool support and have been evaluated
providing the results presented in Table 6.6.

Table 6.6. Evaluation of the Generated Alternatives for the FENIX system

Alternative
Average

Actor
Workload

Data
Accuracy

Data
Consistency

Data
Truthfulness

Ease of
Communication

Process
Agility

Uniformity
UI

Source i*
Model 0,530808 0,199394 0,041305 0,188737 0,291515 0,265000 0,200000

A1 0,518106 0,190899 0,044831 0,193876 0,298427 0,274989 0,400000

A2 0,476158 0,189586 0,047219 0,195444 0,300710 0,284963 0,600000

B1 0,445272 0,188219 0,052226 0,204726 0,294658 0,276055 0,600000

B2 0,445682 0,185000 0,054792 0,226181 0,304306 0,280334 0,600000

B3 0,442785 0,201429 0,062143 0,253175 0,306508 0,312836 0,600000

B4 0,405840 0,201429 0,062143 0,253175 0,306508 0,320455 0,500000

C1 0,405748 0,203333 0,061911 0,249594 0,300976 0,330515 0,500000

C2 0,377775 0,201293 0,063664 0,248276 0,305345 0,334150 0,500000

C3 0,377715 0,203304 0,061087 0,249665 0,298261 0,350099 0,600000

6.4.5.4. Analysis of the Results

We remark that, when following the alternative generation plan, the solution selected at each
level has been the last one generated and, because of that, the corresponding row of Table 6.6 is
marked in light grey. This selection has been driven by the analysis of the results where we have
evaluated the alternative with the best trade-off value. Each metric evaluation is explained as
follows.

� Average Actor Workload presents decreasing values because, in each alternative, we have
given more responsibilities to the software system and this lowers the result of the metric.
Therefore, in each alternative, the actor workload decreases. These results are the ones
expected for the metric and we only observe a small fluctuation of these decreasing values
between alternatives B1, B2 and B3. They are due to the fact that, in these alternatives, we
are reallocating responsibilities between the human actors and not to the system, which
explains that not significant improvement of the metric value appears.

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 169

� Data Accuracy shows very similar results in all the alternatives. Despite the expected
results should present an increasing value, we observe that at level A it decreases in A2, at
level B it increases for each alternative, and at level C, the results are closer to the result at
level B4. An explanation for this behaviour is that the generated alternatives do not
effectively improve Data Accuracy, because we still have data provided by actors that are
likely to introduce mistakes and errors.

� Data Consistency presents increasing values in the results obtained from the evaluation of
the alternatives. We only have two observations. The first one is that alternatives B3 and B4
show the same values which is due to the fact that, between these two alternatives, we have
only changed the responsibilities, not the number or kind of the dependencies. The second
observation is related with the fact that the values are really low. That’s because there are
many duplicated dependencies in the i* models, and duplicated dependencies lower the
results of the metric.

� Data Truthfulness shows increasing values in the results obtained. Again, B3 and B4 score
the same value and we observe that at level C, the results are very similar. This is due to the
fact that these alternatives improve process agility but don’t deal directly with the validation
of truthfulness of the results.

� Ease of Communication presents very similar values in all the alternatives. This is due to
the fact that, in all the models, the communication between the actors is done using the
software system as the intermediate. According to the definition of the metric, ease of
communication is better achieved when humans communicate with other humans, and is
damaged when using a software system. From this point of view, the results are correct but
do not provide a resolutive criterion during the analysis of the alternatives.

� Process Agility shows increasing values for the evaluation of all the alternatives. These
results are consistent with the assumptions of the metric and also with the fact that the
alternative generation plan has been guided mainly by this property. The process agility
value has been the resolutive factor for selecting between the alternatives in the same level
because it is the property that appears more important from the goal analysis performed in
phase 3.

� Uniformity of User Interface presents increasing values when evaluating the alternatives.
We found a decreasing value from B3 to B4, which is due to the fact that we have
eliminated the Head of the Department actor and, as the number of human actors is low, this
affects the results. However, in C3 the result improves against as we have unified the
interface for accessing the system.

6.4.6. Phase 6: Generation of the Specification of the New System: DRAC

As the case study has been supported by J-PRiM, the generation of the specification of the new
system DRAC has been done by the tool. The resulting process involves the same actors of
FENIX and has a total amount of 26 use cases, with an average of 10.4 actions per use case.

An i*-based Reengineering Framework for Requirements Engineering

170

6.5. Case Study Results

For analysing the case study results, we check the hypothesis stated at the beginning of the case
study by comparing the results obtained with the PRiM method with the ones obtained with the
control method. The data for the analysis has been obtained from the deliverables of the project
and the interviews with the control team. Due to the sensibility of the data, the specific solutions
cannot be presented and, so, we focus on the analysis of the results.

6.5.1. Hypothesis 1: Time invested

The first hypothesis states that there is no significant difference in the time invested using the
PRiM method and the control method for achieving the results. In order to evaluate this
hypothesis, we compare the time invested using the PRiM method and the control method in the
different phases of the PRiM method. The time is measured in hours and using the procedure
explained in Section 6.3.3.

From the results presented in Table 6.7 we observe that there is a significant difference between
the results obtained in both methods. Despite the PRiM method presents a lower time
investment, there are other factors that we have to take into account:

� In the case study, we have applied PRiM over the documentation generated by the control

team, which means that we have not taken into account the time invested in the interviews
with the stakeholders and project managers, which is computed by the control team.

� In the PRiM team we have only measured the time invested for documenting the phases in
the tool support J-PRiM and, for the documentation of this chapter, whilst the control team
has generated and reviewed all the deliverables of the project.

� In the PRiM team we have only taken into account two of the five groups of processes of
the FENIX system. Despite they where the more complicated and the ones that have
undertaken major improvements, the control team has analysed and documented the whole
project.

� In the PRiM team we have not taken into account the time invested in the specification of
the new system because, despite it is possible to generate it automatically with J-PRiM, we
could not get feedback from the stakeholders in order to refine the results, as it has been
done by the control team.

� The PRiM team we use specific tool support with J-PRiM whilst the control team uses a
combination of non-specific tool support.

For all that reasons, we cannot separate the time invested in each activity and so, we can not
evaluate the effectiveness of each method. However, we can conclude that, according to the
percentage of time that the PRiM method represents on the total amount of time needed by the
control method, it seems worthy to apply PRiM to complement other methods. Nevertheless, we
need to analyse the other hypothesis in order to obtain a definitive conclusion of this statement.

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 171

Table 6.7. Relation of time invested in each of the PRiM phases for each of the methods

Phase of PRiM PRiM team Control team

Phase 1: Analysis of the current process 26h
Phase 1: Documentation of the current process

3h 08m
2h 54m 62h

Phase 2: Operational i* Model 0h 16m -
Phase 2: Intentional i* Model 1h 23m -
Phase 3: Reengineering the current system 8h 51m 47h 42m
Phase 4: Generation of Alternatives 10h 03m 84h 12m
Phase 5: Evaluation of Alternatives 4h 52m 32h 30m
Phase 6: Specification of the New System - 154h 30m

Total = 31h 47m 406h 54m

6.5.2. Hypothesis 2: Generated Alternatives

The second hypothesis states that there is no significant difference in the amount and
characteristics of the generated alternatives using the PRiM method and the ones generated by
the control method. As it has been presented in Section 6.3.3, for evaluating these hypotheses
we have obtained and compared the complete list of generated alternatives, taking into account
the particularities of each alternative:

� Alternatives generated with the PRiM method. As explained in Section 6.4.4, in PRiM we
generated the alternatives based on the reengineering goals obtained in phase 3 of the
method. The alternatives were generated using an alternative generation plan in order to
avoid combinatorial explosion. As a result we have generated 9 alternatives grouped in 3
classification levels.

� Alternatives generated with the control method. The control team has generated the
alternatives based on a list of goals of the main stakeholders of the future system. Based on
these goals, the main concerns have been explored individually and they have obtained 41
alternatives grouped in 12 classification levels. It is not possible to reproduce these
alternatives in this document, but we mention that its strategy has been to detect first the
classification levels exploring different concerns. For instance the first levels addresses if
validation is needed. Then, for each level, the control team has systematically generated
alternatives taking into account the possible range of answers of the level. Each alternative
is represented as a sentence explaining the solution.

It is possible to observe that there is a significant difference in the amount and characteristics of
the generated alternatives. There are two main reasons that explain these differences:

� Choosing a different representation for the alternatives. The alternatives generated by
the PRiM method were developed by creating different Alternative i* Models, one for each
solution. However the solutions generated by the control method, were represented in a
logical manner with a sentence explaining the specific solution.

� Choosing a different strategy for generating the alternatives. Because in PRiM we
modelled each alternative solution in an i* model, we adopted a strategic point of view for
avoiding combinatorial explosion. The control method explored the alternatives in a logical
form and, so, the combinatorial explosion was not a problem for them.

An i*-based Reengineering Framework for Requirements Engineering

172

From the analysis of the generated alternative, we observe that the generated alternatives are
completely different using both methods. Despite it is difficult to compare alternatives with
such a different nature, when analysing each specific content, we observe that all the
alternatives generated with the PRiM method are included into the alternatives generated by the
control method. Actually, the PRiM method could have benefit from the alternative analysis
done in the control method in order to define the alternative generation plan in a more
systematic manner.

6.5.3. Hypothesis 3: Properties Evaluation

The third hypothesis states that there is no significant difference in the analysis of the properties
of the generated alternatives done by the PRiM method and the ones recommended by the
control method. The evaluation of alternatives has been done as follows:

� Alternatives evaluated with the PRiM method. As explained in Section 6.4.5, in PRiM we
evaluated the Alternative i* Models according to the non-functional properties the
stakeholders where more concerned with. The evaluation was done using structural metrics
and, so, it is of a quantitative nature and addresses non-functional properties.

� Alternatives evaluated with the control method. The control method evaluated each
alternative against the goals of each stakeholder stating if the goal was achieved or not. So,
the evaluation is qualitative and addresses functionality.

From the description of the evaluation procedures, we see that there is a significant difference in
the analysis of the generated alternatives. The PRiM method proposes a quantitative point of
view for evaluating non-functional properties, whilst the control method proposes a qualitative
point of view for addressing functionality. However, as the non-functional properties addressed
by PRiM are related to functional improvements, we observe that both analysis are not that
different and the results obtained are not contradictory as they both encourages those alternative
processes that improve the non-functional properties detected.

6.5.4. Hypothesis 4: Final Solution

The third hypothesis states that there is no significant difference in the solution recommended
by the PRiM method and the solution recommended by the control method. For evaluating this
hypothesis, we have compared the solution recommended by the PRiM method and the solution
recommended by the control method by analysing the documentation of the recommended
solution and the reasons why it has been selected.

Due to data sensitivity and space reasons, it is not possible to compare both solutions in this
document. However we remark two main differences in the solution adopted:

� The solution presented by the control method proposes more processes than the one
proposed by the PRiM method, mainly for the generation of reports based on the introduced
data.

� The solution presented by the control method allows the researchers to provide prove of
evidence of their publications (i.e., link to the conference proceedings), but not of their

Chapter 6. Industrial Validation of PRiM: From FENIX to DRAC .

 173

research activities (i.e., e-mails, links). It also keeps some processes we have remove such
as the one to catalogue publication using a hard copy of the document and filled template.

Because of this, we can say that there is a significant difference in the solution recommended.
However, if we analyse the planning of the case study, we observe that this differences are not
due to the use of the PRiM method, but to the inherent nature of the case study. On the one
hand, the PRiM team did not interact with the stakeholders, whilst the control team has been
obtaining feedback on the generated solutions. This explains that they have included new
processes that we have not been considered at the beginning. On the other hand, the PRiM team
has not been aware of the political requirements that have finally driven the selection of the final
solution.

6.6. Conclusions

In this case study we analyse the applicability of PRiM in an industrial case study. The case
study follows a replicated product design, where the real project is performed by the control

team and using a control method; and, the PRiM method is applied by the PRiM team doing a
replica of the real project. As a result we can conclude that it is possible to use PRiM in a real
case study and that the time invested to perform the activities proposed by the method, is
worthy. However, as we want to evaluate not only the time invested but also the quality of the
generated solutions, the data regarding the generation and evaluation of the alternatives and the
selected solution are also analysed and compared.

As a result of this comparative analysis, we can conclude that there are significant differences
between the techniques and the results obtained by each of the methods. Some of these
differences are due to the inherent nature of the case study, which avoids the contact of the
control team with the stakeholders. However, other differences are due to the different point of
view adopted for the generation and evaluation of alternatives: 1) the PRiM method generates
the alternatives avoiding combinatorial explosion, whilst the control method explores all the
alternatives sequentially; and, 2) the PRiM method uses a quantitative analysis of the non-
functional properties of the alternatives, whilst the control method uses a qualitative analyses of
the functionality performed in the new alternatives.

Despite the differences encountered the alternatives and the final solution where not that
different in the content, which makes us think that a combined use of both techniques would
enrich the complete reengineering process. Actually, the documentation of the problems on the
current processes activities done by the control team helped us to detect the reengineering goals
in a more systematic manner. And, for that reason, we believe that a high-level exhaustive
analysis of the alternatives as done in the control method would be useful guide the definition of
the alternative generation plan.

The use of PRiM in a reengineering project such as FENIX could help the decision-making by
investing a few more hours. PRiM allows a complete goal-oriented analysis of the current
processes and the generated alternatives; it generates the processes of all the alternatives and
allows its evaluation based on a quantitative analysis of non-functional properties. As there is

An i*-based Reengineering Framework for Requirements Engineering

174

specific tool support for PRiM (see J-PRiM in Chapter 8), there is the possibility of
automatically generate the i* models of the generated alternatives and to obtain the use case
diagram of the selected alternative. Actually, there is evidence that the use of the J-PRiM tool
support improves the time invested for doing the process.

 175

7. ReeF: a Customizable Reengineering

Framework

In this chapter we present ReeF, a customizable Reengineering Framework that uses a Method
Engineering approach to allow creating a new reengineering method from existing
Requirements Engineering and Reengineering techniques.

ReeF is based on PRiM, the Reengineering Method presented in Chapter 3. PRiM comprises six
reengineering activities that include identifying and modelling the current process, analysing it
for deficiencies, proposing new solutions by means of alternatives that can be evaluated, and
implementing the new system by using the most suitable solution. When analysing the methods
proposed for the specification, development or acquisition of IS, we observe that most of them
already support some of these activities. Some of them consciously, by applying the term
reengineering in its proposal; and some others unconsciously, by mentioning the phases that
characterize reengineering. In both cases, it is possible to find reengineering approaches in
difference disciplines such as business processes, software architectures, or software platforms,
among others. Despite of this diversity, there are many similarities when the methods are deeply
analysed. However, in some proposals, some of the reengineering activities and artefacts are not
mentioned and the lack of a generic framework makes difficult to apply them through a
complete reengineering process. In order to address this issue, we have used the principles of
Method Engineering to abstract and generalize the phases of PRiM in order to obtain ReeF, a
customizable Reengineering Framework.

This chapter extends the work presented in [Grau & Franch, 2007a] and it is organized as
follows. In Section 7.1 we present an overview of Method Engineering techniques. The research
method followed to define ReeF is explained in Section 7.2. Following this research method,
Section 7.3 presents an analysis of the PRiM method following the directives of Method
Engineering; and Section 7.4 and Section 7.5 exemplifies the abstraction and generalization
processes followed to obtain ReeF. The generic steps for customizing ReeF are presented in
Section 7.6 and the additional considerations for using i* when customizing ReeF are presented
in Section 7.7. In Section 7.8 we present the analysis of the adopted decisions during the
definition of ReeF. Finally, Section 7.9 contains the conclusions.

An i*-based Reengineering Framework for Requirements Engineering

176

7.1. An Introduction to Method Engineering

In this chapter we aim to reconcile different reengineering methods and techniques by using a
reengineering framework that we have named ReeF. Method Engineering is the discipline that

constructs new methods from parts of existing methods [Brinkkemper et al., 1998]. Therefore,
we propose to adopt a Method Engineering approach to facilitate the generation of new
reengineering methods by instantiated ReeF in different disciplines and domains. In Method
Engineering this is done by derivation and combination of reusable fragments. In order to
provide the adequate framework for applying a Method Engineering approach, in this section
we motivate its need, we present an overview of method engineering approaches, and we
compare them. We remark that, as Method Engineering is not the main focus of this thesis, we
just provide an overview of those methods that are more interesting for our work. More precise
state of the art can be found on Method Engineering specific thesis such as in [Ralyté, 2001].

7.1.1. Motivation for a Method Engineering Approach

Method Engineering is the discipline that builds project-specific methods, called situational

methods, from parts of the existing methods, called method fragments. This technique is known
as method assembly. Method Engineering arises in order to solve the open issues of traditional
Information Systems Development methods. According to [Ralyté, 2001], the main problem of
existing Information Systems Development is that they usually propose a well-defined set of
resulting artefacts, but the method phases that construct the artefacts are not always adapted to
the needs of the users and are difficult to evolve. Therefore, the main issues addressed in
Method Engineering are the precise documentation of methods and the definition of processes
for allowing its reuse.

In Figure 7.1 we show the method engineering reference framework proposed in [Ralyté, 2001],
which exemplifies the different strategies that can be used to define a method. There are two
different strategies to be used to define a method: from scratch, when they do not use any
existing resource as starting point, and from existing methods, when the new method is creating
from parts of existing ones. In order to select the methods to be used to define the new method,
a method comparison strategy has to be applied.

In order to define the method construction goal, [Ralyté, 2001] proposes different strategies:

� The ad-hoc strategy is based on the experience obtained from the development of several
Information Systems on a specific domain.

� On the instantiation strategy, a metamodel representing the common and generic
characteristics of different existing process and product models, is instantiated for creating
the new method.

� The language based strategy deals with the formalization of the methods in order to
facilitate its manipulation.

� The assembly strategy, proposes to decompose existing methods into method fragments that
are selected and merged in order to create a new method.

Chapter 7. ReeF: a Customizable Reengineering Framework .

 177

� The pattern-based construction strategy it is based on the use of patterns for modelling the
process of constructing a new method.

� The tool-based strategy proposes a Computer Aided Method Engineering approach in
which a tool is used to define a new method by entering the method requirements into a tool
that guides the rest of the process.

� The correction strategy and the evaluation strategy aims at verifying that the method can be
correctly applied over the domain it has been defined for.

Figure 7.1. Reference Framework for Method Engineering Approaches. Obtained from [Ralyté, 2001]

7.1.2. Overview of Method Engineering Approaches

There are several proposals that address Method Engineering. Among them we have selected
those approaches that are most well established in the community and they are suitable for our
intentions: the Assembly Techniques for Method Engineering proposed in [Brinkkemper et al.,
1998]; the OPEN Process Framework [OPF website]; the Approach for Method Reengineering
as explained in [Ralyté & Rolland, 2001]. The authors of these methods have made
improvements and customizations of their methods for certain domains and, thus, we have
selected the basic version of the each approach because it is the more stable and contains the
basic constructs in more detail. Other work of the authors is mentioned in the next sections.

7.1.2.1. Assembly Techniques for Method Engineering

The Assembly Techniques for Method Engineering proposed in [Brinkkemper et al., 1998],
includes a procedure for the identification and representation of method fragments and imposes
some constraints on method assembly processes in order to guide the assembly of method
fragments into a meaningful method.

According to this proposal, a method fragment can be classified according to the perspective

dimension (i.e., product perspective and process perspective), the abstraction dimension (i.e.,
conceptual level and operational level), and the granularity layer at which it resides. There are
five possible granularity layers: method, which addresses the complete method for developing
the Information System; stage, which addresses a segment of the life-cycle of the Information
System; model, which addresses a perspective of the Information System (i.e., an aspect system

An i*-based Reengineering Framework for Requirements Engineering

178

of an abstraction level); diagram, addressing the representation of a view of a Model layer
method fragment; and, concept, which addresses the concepts and associations of the method
fragments on the Diagram layer, as well as the manipulations defined on them.

Depending on that classification schema, it is possible to apply a method assembly by focusing
on the product perspective (i.e., the deliverables that are produced), or the process perspective
(i.e., the stages, activities and tasks to be carried out). The assembly processes proposed are
done based on the proposed requirements for method assembly, which are classified in order to
facilitate its application.

The proposed method assembly rules are formalized in order to be more precise and to allow the
verification of the resulting method. Further work of the author addresses the definition of a
Method Engineering Language called MEL, for the Description of Systems Development
Methods [Brinkkemper et al., 2001]. This language supports the representation and
manipulation of method fragments, development and project management aspects of methods,
conceptual definition and supportive technical aspects of the methods and, constraints and rules
concerning method fragments.

7.1.2.2. The OPEN Process Framework (OPF)

The OPEN Process Framework (OPF) [OPF website] is a generic framework that provides a
repository with a wide range of generic Method Components, which are different parts of
existing methods described at different levels of detail that can be used for defining other
methods in different domains. Consequently, the definition of new methods is done by
following an instantiation strategy.

The OPEN Process Framework (OPF) consists of three major parts:

� A metamodel defining the fundamental kinds of reusable method components and how
they are related to each other. A method component can be specialized into Endeavour,
Language, Producer, Stage, Work Product or Work Unit, which, in turn, can all be
specialized forming a complete hierarchy of elements.

� A repository of reusable method components, which contains the complete descriptions
of each kind of reusable method component. The repository is very complete, thus enabling
the selection of those components more suitable for the specific purposes of the method.

� A set of construction and usage guidelines on how to reuse the method components in the
repository to produce situation-specific processes. The guidelines include how to determine
method needs, tailor the method components, document the method and evaluate and
improve the process, among others.

7.1.2.3. An Approach for Method Reengineering

The Approach for Method Reengineering [Ralyté, 2001], [Ralyté & Rolland, 2001] addressees
Situational Method Engineering in order to support the construction of methods based on an
assembly strategy, which is based on reuse. The approach proposes to assemble reusable
method fragments originating from different methods, in order to tailor a new method for a
specific project situation. For doing so, a method is considered as a couple of two interrelated

Chapter 7. ReeF: a Customizable Reengineering Framework .

 179

models: the product model and the process model. The product model of a method defines a set
of concepts, relationships between these concepts and constraints for a corresponding schema
construction. The process model describes how to construct the corresponding product model.

The Approach for Method Reengineering considers method fragments and method chunks as the
basic blocks for constructing new methods, which can be stored in a method repository, called
method base. In Figure 7.2 we show an overview of the proposed process as presented in
[Ralyté & Rolland, 2001], where we observe that the process starts with the analysis of the
initial method description. By using the set of proposed method reengineering guidelines, it
proposes to decompose the existing Information Systems method in a modular way, obtaining a
collection of reusable method chunks, which are stored in the method base. Once the method

base is populated with a number of method chunks, the construction of a new method is possible
through the retrieval of those method chunks that match the characteristics of the project
situation at hand and their assembly to form the new method.

Figure 7.2. Assembly-based method engineering process. Obtained from [Ralyté & Rolland, 2001]

In order to address the construction of new methods, [Mirbel & Ralyté, 2005] proposes a
combination of assembly-based and road-driven approaches. This proposal is based on the
premise that method assembly has to take into consideration both the critical knowledge about
Information System Development and the structural knowledge and reuse intention. Therefore,
a classification technique has to be applied in order to allow a better qualification of method

chunks when entering them into the repository and to enable the use of more powerful matching
techniques to retrieve them. Consequently, it is possible to define a reuse frame that aggregates
different Information System Development critical aspects useful to tailor new methods with
regards to the organizational, technical and human dimensions of Information Systems.

Starting from this first decomposition, each company may populate the reuse frame with its own
relevant criteria in order to let Information Systems Development crew members adapt the
project or company-specific method in a meaningful way for the company. As a consequence,
the three key steps in the assembly-based method engineering process are:

An i*-based Reengineering Framework for Requirements Engineering

180

� Specify method requirements. The requirements specification guidelines help to define the
requirements for the project-specific method in terms of required Information Systems
Development activities by specifying the type of these activities and the order of their
execution.

� Select method chunks. The chunk selection guidelines advise how to retrieve method

chunks from the method repository in order to satisfy the requirements identified in the
previous step.

� Assemble method chunks. The method construction guidelines assist the method engineer
in the selected method chunks assembly process in order to obtain a homogeneous method:
- Assembly by association. Is relevant when the method chunks to assemble correspond

to two different system engineering functionalities, that is, they allow to achieve
different engineering intentions and the results o one chunk is used as a source product
by the second one.

- Assembly by integration. Is relevant to assemble chunks that have similar engineering
goals but provide different ways to satisfy it.

7.1.3. Comparing the Method Engineering Approaches

In Table 7.1 we evaluate the presented methods according to the reference framework strategies
proposed in [Ralyté, 2001] (see Figure 7.1). We remark that each approach has been
complemented with techniques proposed in related approaches, typically from the same group
of authors. For instance, the approach for method reengineering [Ralyté & Rolland, 2001], the
combination of assembly-based and road-driven approaches [Mirbel & Ralyté, 2005], as well of
the work presented in [Ralyté, 2001], [Ralyté et al., 2004] is presented together because they are
part of the work of the same authors. When analysing the Method Engineering approaches
presented in the previous section, we remark that they all focus on a certain strategy of the
reference framework, but it incorporates other techniques that follows complete the method by
following another strategy. For instance, despite don’t mentioning it specially, all three
approaches follows an ad-hoc strategy based on the knowledge on the specific domain for
selecting the method fragments, the method components or the method chunks to be used in the
method. On the other hand, any of the methods proposes a pattern-based construction strategy
of the methods, or a specific validation strategy, as they assume the user validates the method
using their own techniques.

The Assembly Techniques for Method Engineering provides method assembly techniques
according to the product perspective, the process perspective and the combination of both
(assembly strategy). It also offers requirements and rules for method assembly that the new
method is well defined by (correction strategy). In order to provide a more formal basis to the
approach, the authors have defined the Method Engineering Language (MEL) [Brinkkemper et

al., 2001] that is used to document the method fragments and to manipulate them.

The OPEN Process Framework follows an instantiation strategy as it proposes a metamodel
representing the generic characteristics of different existing process models, that can be
instantiated for creating the new method. In order to facilitate method manipulation it proposes
a Documentation Template (language-based strategy) and a complete process framework

Chapter 7. ReeF: a Customizable Reengineering Framework .

 181

repository in the form of a web catalogue [OPF website] (tool-based strategy). In order to
ensure the correctness of the resulting method, the work proposed in [Zowghi et al., 2005]
presents specific construction and usage guidelines.

The Approach for Method Reengineering follows an assembly strategy that includes
guidelines for the definition of the method chunks and different guidelines for the assembly by
association or by integration. In order to facilitate the manipulation of the elements it proposes a
certain documentation template [Ralyté, 2001] that is based on the generic pattern notation
proposed in [Plihon & Rolland, 1997]. The correctness of the resulting method is ensured by the
use of operators for Object Models Assembly and Process Models Assembly [Ralyté, 2001],
[Ralyté et al., 2004] (correction strategy). Finally, the work presented in [Mirbel & Ralyté,
2005] proposes the reuse frame, which includes guidelines for reuse intention matching and
situational metrics that can be used to create an existing method by instantiating an existing one
(instantiation strategy).

Table 7.1. Comparison of the Method Engineering approaches according to a Reference Framework

Assembly Techniques for
Method Engineering

and related work
[Brinkkemper et al., 1998]

The OPEN Process
Framework

and related work
[OPF website]

An Approach for Method
Reengineering

and related work
[Ralyté & Rolland, 2001]

Ad-hoc strategy Selection of the Method
Fragments

Selection of the Generic Process
Framework and the Method
Components to be instantiated

Selection of the Method Chunks

Instantiation
strategy

Non Applicable Instantiation of the Method
Components

Reuse Frame, including reuse
intention matching and
situational metrics
[Mirbel & Ralyté, 2005]

Language-based
strategy

Method Engineering
Language (MEL)
[Brinkkemper et al., 2001]

Documentation Template Documentation Template
[Ralyté, 2001] and generic
pattern notation [Plihon &
Rolland, 1997]

Assembly strategy Method Assembly on the
Product Perspective,
Process Perspective and
combination
[Brinkkemper et al., 2001]

Non Applicable Guidelines for defining method

chunks, Assembly by association
and Assembly by integration

Pattern-based
construction
strategy

Non Applicable Non Applicable Non Applicable

Tool-based
strategy

Non Applicable Process Framework Repository Non Applicable

Correction
strategy

Requirements and Rules
for method assembly
[Brinkkemper et al., 1998]

Construction and Usage
guidelines
[Zowghi et al., 2005]

Operators for Object Models and
Product Models assembly
[Ralyté, 2001], [Ralyté et al.,
2004]

Validation
strategy

Non Applicable Non Applicable Non Applicable

7.2. Research Method

In the previous section we have introduced the most relevant Method Engineering approaches
and, in this section we analyse their suitability for being used in the definition of ReeF. As none

An i*-based Reengineering Framework for Requirements Engineering

182

of the presented methods addresses the construction of a generic reengineering framework, we
have adapted the concepts to be used and we have applied our own research method.

As the goal is to obtain a metamodelling method to be used to create new methods by using an
instantiation strategy, we have first considered using the OPF approach for generating ReeF.
More precisely we have studied the customizations for a Business Reengineering Project and for
a Framework Project. However, in both cases, the level of detail provided in OPF was too broad
for our purposes. For instance, the OPF reengineering phase description includes aspects such as
management, quality, and testing; but does not include all the basic activities that we have
identified in reengineering methods. Because of that, we decided to use another approach for
defining our reengineering framework, but still using OPF for assessing the analysis of existing
reengineering methods, as a kind of classification schema.

In a similar way, the reuse frame proposed in [Mirbel & Ralyté, 2005] establishes a complete
classification for the method chunks to be selected. Among the reuse frame examples presented
we remark the one that addresses the system engineering activities, which includes Requirement
Engineering with the activities Requirements Elicitation, Requirements Specification and
Requirement Evolution, among others. Despite these activities are related with PRiM, the reuse
frame does not present further detail on how to use them and neither a procedure to define a
reuse frame where to include the phases defined in PRiM.

The method fragments proposed in the assembly techniques for method engineering
[Brinkkemper et al., 1998] and the method chunks proposed in the approach for method
reengineering [Ralyté & Rolland, 2001], [Mirbel & Ralyté, 2005] are too specific of the method
reengineered and, so, their granularity level is too detailed for being part of the generic
framework. However, as we want PRiM to be an instance of ReeF, these approaches are
adequate for studying PRiM in the first term. Therefore, we use the Approach for Method
Reengineering [Ralyté & Rolland, 2001] for abstracting the concepts of the specific method

chunks of PRiM, and then, we generalized them into abstracted method chunks. There are
several approaches on how to document, store and reuse the different method parts
[Brinkkemper et al., 1998], [Mirbel & Ralyté, 2005], [OPF website], [Ralyté, 2001], [Ralyté &
Rolland, 2001] that could be used to define and customize ReeF. However, as we use method

chunks during the definition of the method, we keep on using them for illustrating its
customization, as it is done in [Mirbel & Ralyté, 2005], [Ralyté, 2001], [Ralyté & Rolland,
2001]. Consequently, we assume that method chunks are stored in a method base.

In Figure 7.3 we show the method we propose to define ReeF by analysing and generalizing
PRiM. The definition of ReeF is done in two steps: abstraction and generalization. Abstraction
is the process of extracting common features from specific examples, whereas generalization is
the process of formulating general concepts by abstracting common properties of instances.
During the abstraction process, the phases of PRiM are analysed in order to synthesize its
method chunks, following the principles given in [Ralyté & Rolland, 2001].

PRiM is a method specific for the process reengineering domain and, thus, for obtaining a
generic framework, we need to apply a generalization process over other reengineering methods
from different domains. Among the existing domains we have selected those methods with
more relevance and interest for Information Systems Development: 1) Requirements Evolution

Chapter 7. ReeF: a Customizable Reengineering Framework .

 183

methods [Kavakli & Loucopoulos, 1998], [Jones & Maiden, 2004], [Etien, 2006]; 2) Business
Process Reengineering methods [vanDerAalst & vanHee, 1995], [Anton et al., 1994],
[Katzenstein & Lerch, 2000], [Nurcan & Rolland, 2003]; 3) Architecture reengineering methods
[Bengtsson & Bosch, 1998], [Pressman, 2005] [Kim et al., 2005]; and, 4) Platform
reengineering methods [Bouillon et al., 2004], [Zhang et al., 2003].

As a result, a new set of method chunks is obtained, with the particularity that the method
artefacts (namely, the techniques, modelling languages, tool support and roles involved) are
specified by stating its generic definitions instead of their particular ones. Also, special
emphasis is given on the generic intention (the goal) that each method chunk pursues. The
generic framework is then defined by analysing and reconciling all the obtained elements.

The customization of ReeF is done by applying the following steps: refinement,
operationalization and combination. During refinement, the generic definitions stated in the
method chunks of ReeF, are refined into specific ones for the domain of application. During the
operationalization step, the refined statements of ReeF are used for selecting from the method

base those method chunks that better accomplish a certain purpose. In order to facilitate this
step, the method chunks can be classified according to a set of criteria [Mirbel & Ralyté, 2005],
[Ralyté, 2001]. Finally, during combination, the selected method chunks are combined in order
to obtain the new method. As we have mentioned, these steps can also be done by using other
methods [Brinkkemper et al., 1998], [OPF website].

Figure 7.3 presents an overview of the Research Method used to define ReeF, where we remark
that the validation of ReeF is twofold. On the one hand, the proposed research method used for
the definition of ReeF ensures that the different reengineering methods analysed can be
successfully defined as instances of the framework. On the other hand, in Chapter 8 we define a
new method for the domain of software architectures with the objective of validating its
customization.

Figure 7.3. Overview of the Research Method used for defining ReeF

An i*-based Reengineering Framework for Requirements Engineering

184

7.3. Analysis of PRiM

As PRiM is deeply described in Chapter 3, we refer to it for further information of the method.
However, we would like to remark the basis on which the method is constructed. On the one
hand, PRiM is based on an exhaustive state-of-the-art on Business Process Reengineering
methods [Grau, 2006] complemented with well established Requirements Engineering
techniques such as the RESCUE process [Jones & Maiden, 2004] and the KAOS approach
[Dardenne et al., 1993]. On the other hand, where no appropriate techniques were found, new
ones has been created also based on a state-of-art on the field, and in order to incorporate in the
new method the adequate techniques, roles and artefacts. We highlight these included elements
in the summary of the method in Table 7.2.

We remark that, due to the iterative nature of this research, the version of PRiM that has been
used on this analysis has only 5 phases as it has been presented in [Grau, Franch & Maiden,
2005a]. The only difference between the two versions is that in this first one the elicitation of
the requirements for the new process is a step of the generation of alternatives. Due to the
results obtained from the abstraction and generalization processes on the definition of ReeF, we
realize that they were two different phases and so, in Chapter 3 and in [Grau, Franch & Maiden,
2008], the PRiM method has six phases.

7.4. The Abstraction Process

In the Abstraction process we extract common reengineering features from the specific method
PRiM. For doing so, we use the Approach for Method Reengineering proposed in [Ralyté &
Rolland, 2001] for obtaining the method chunks of PRiM. Once this done, we abstract the
generic intentions of these method chunks.

7.4.1. Application of the Approach for Method Reengineering

The Approach for Method Reengineering [Ralyté & Rolland, 2001] proposes a set of intentions
for reengineering the current method which are: Define a section, Define a guideline, Identify a
method chunk, and Define a method chunk. Each of these intentions has a set of associated
strategies that are modelled in a Goal/Strategy intention map. In order to reengineer PRiM, we
apply the four intentions proposed but we don’t describe them in detail. A complete description
of the foundations can be found in [Ralyté, 2001], [Ralyté & Rolland, 2001].

7.4.1.1. Defining the sections

The definition of a section consists at identifying the sections in order to restructure the initial
process model of the method as a map. As the PRiM method has a well defined process model
and, so, in order to identify its sections we use the functional strategy in order to establish the
method map sections from its phases.

Chapter 7. ReeF: a Customizable Reengineering Framework .

 185

Table 7.2. Phases of PRiM, detailing the techniques, activities, inputs and outputs involved

Phase Activity Input Techniques Roles Output

Phase 1: Analysis of the current process

Analysis of the
current process

Current process Observation Process analyst
Human Activity
Diagrams (HAM)

Phase 2: Construction of the i* model of the current process

Transformation HAM Transformation rules i* modeller DIS

Actor Identification
and modelling

DIS Analysis of HAM i* modeller i* model actors

Building the
Operational i* Model

DIS Transformation Rules i* modeller
Operational i*
Model

Building the
Intentional i* Model

Operational i*
Model

Provided Guidelines Process analyst
Intentional i*
Model

Checking the
Complete i* model

Intentional i* Model Consistency checks i* modeller Complete i* model

Phase 3: Generation of alternatives for the new process

Reengineering the
current process

Complete i* model
Requirements
Elicitation Patterns

Requirements
engineer

Enriched i* model

Adding new actors to
the process

Enriched i* model Analysis of the market Process designer
Actors for an i*
alternative (one)

Reallocating
responsibilities

Enriched i* model,
Actors

Provided Guidelines Process designer
Alternative i*
model (one)

Checking the
consistency

Alternative i*
models (all)

Consistency Checks i* modeller
Consistent i*
alternatives

Phase 4: Evaluation of alternatives for the new process

Choosing suitable
properties

Extended i* model
Observation of needs
from model

Process analyst Properties

Defining property
metrics

Properties Definition guidelines Process analyst Property metrics

Evaluating alternative
models

Consistent i* alt.
Metrics

Evaluation principles i* modeller Evaluation Results

Evaluation Trade-off
analysis

Evaluation results Trade-off analysis Process analyst
Suitable i* model
solution

Phase 5: Specification of the new Information System

Specification of the
new IS.

Suitable i* model
solution

Transformation
guidelines

i* and Use Case
modellers

Use Case model of
new IS.

The intentions (or goals) of each phase of PRiM are identified and documented using the
Method Reengineering suggested notation, as follows:

� Analyse the current process using Human Activity Modelling;
� Conceptualize the current process into an i* model;
� Elicit requirements for the new process and explore different process alternatives based on

them;
� Assess the generated process alternatives using evaluation techniques; and,
� Create the specification of the new Information System.

When reviewing the guidelines associated to these intentions, we realize that the section “Elicit
requirements for the new process and explore different process alternatives based on them”
contains two different products that could be treated independently. Thus, we apply the
progression discovery strategy and, as a result, the section is divided into two different ones:

An i*-based Reengineering Framework for Requirements Engineering

186

“Elicit requirements for the new process using a goal-oriented approach” and “Explore new
process alternatives using process generation heuristics”.

7.4.1.2. Defining the guidelines

The definition of the guidelines refers to the definition of the guidelines associated to the
identified sections in order to complete the map. So, once the sections are defined, the
guidelines indicating how to proceed to achieve the objective of each identified section are also
defined by applying Method Reengineering. For instance, the method chunk “Explore new
process alternatives using process generation heuristics” has a unique strategic guideline that we
have labelled as: “Explore a process alternative solution with reallocating responsibilities
between actors strategy” (see Figure 7.4).

7.4.1.3. Identifying the method chunks

During the identification of the method chunks every section of the method map is analysed in
order to check if it is candidate to be defined as a method chunk. In the case of PRiM, the
method chunks are identified by using a section-based discovery strategy. We consider that each
of the identified sections represents a method chunk because they can be reused separately
outside its original method. Actually, as each phase of PRiM has been defined by a different
technique that can be reused separately, we do not consider applying any other strategy to
identify more method chunks.

7.4.1.4. Define a method chunk

The definition of the identified method chunks consists on including the completion of the
guidelines and the definition of their descriptors. At the top of Figure 7.4 we present the
descriptor for the method chunk “Explore new process alternatives using process generation
heuristics”.

Situation:

Intention:
Origin:
Objective:

Type:
Aggregates:

Application Domain: Information Systems, Business process reengineering
Design Activity: Discover system requirements
Explore new process alternatives using process generation heuristics
PRiM method
To help the process designer to explore different process candidate actors and generate the process
alternatives that takes into account these actors.
Atomic
<(Problem description), Explore a process alternative solution modelled in i*>

<(Problem description),
Explore a process alternative solution with reallocating responsibilities between actors strategy>

<(Problem description),
Identify an Actor>*

<(Problem description), Explore
reallocation of responsibilities>

c1: NOT all actors have been
identified
c2: all actors have been
identified
c3: an alternative has been
generated
c4: NOT all the responsi-
bilities have been reallocated
c5: all the alternatives have
been generated.

Figure 7.4. Method chunk “Explore new process alternatives using generation heuristics”

Chapter 7. ReeF: a Customizable Reengineering Framework .

 187

7.4.2. Abstracting the intentions from the method chunks

Once all the PRiM method chunks are identified, we abstract their intentions and the method
artefacts used and, as a result, we obtain a set of abstract method chunks. Table 7.3 shows the
results of these abstractions, where we can observe that the intentions of the PRiM method

chunks are written in an abstract manner in order to help further customization of the method.
This is done by substituting the PRiM specific artefacts (techniques, modelling languages, tool
support and roles) for their equivalent generic artefacts, which are written between the symbols
<>. The flow of the artefacts involved in the abstracted method chunks shows that they are
treated in a specific order, hence establishing that they are sequential. In the fourth abstracted

method chunk (abridged as amc) of Table 7.3, we show how the abstracted method artefacts are
documented by stating a description and some of the examples of the analysis techniques,
modelling languages, tool support and roles involved. The rest of the method artefacts
abstraction is straightforward. A more formal documentation of the framework could be stated
by using [Brinkkemper et al., 2001]. A complete catalogue of method artefacts can be found at
the OPF repository [OPF website].

Table 7.3. Generic notation for the intentions of the abstracted method chunks

amc 1: Analyse [source] <domain artefact> using <analysis techniques> obtaining <analysed artefact>

amc 2: Conceptualize <analysed artefact> into <model artefact>

amc 3: Elicit <requirements artefact> for the [final] <domain artefact> using <elicitation techniques>

Explore [candidate] <domain artefact> using <generation techniques> obtaining [generated] <domain
artefact>

Techniques: Techniques and heuristics used to explore candidate solution artefacts (e.g., application of
organizational patterns, application of architectural patterns, heuristics and guidelines for the generation
of alternatives).

Modelling language: Formalisms used to conceptualize the candidate solution artefacts (e.g., Business
Process Reengineering models, conceptual models, scenarios, architecture description languages, goal
hierarchies, actor-dependency models such as i*)

Tool Support: Tools that aims at supporting the exploration of candidate solutions using an specific
formalism (e.g., scenario generation tools, generation of alternative architectures tools)

amc 4:

Roles Involved: Analyst, which is domain expert, responsible of exploring the solution artefacts (e.g.,
process analyst, software architectures analyst, systems analyst).

amc 5: Assess [generated] <domain artefact> using <evaluation techniques>

amc 6: Create [final]<specification artefact> for the [new] <domain artefact> using <model transformation
techniques>

7.5. The Generalization Process

During the generalization process we formulate general concepts by analysing the common
properties of other reengineering methods. Once the initial set of method chunks are identified,
we apply again the Approach for Method Reengineering [Ralyté & Rolland, 2001] to analyse
more reengineering methods in order to obtain a generalization of the process. The undertaken
review includes the methods used in the definition of PRiM (now studied from a Method
Reengineering perspective) and the reengineering methods from different disciplines mentioned
in the research method (Section 7.2). As a result, we obtain the method chunks of these

An i*-based Reengineering Framework for Requirements Engineering

188

processes. In Table 7.4 we present an excerpt of it by showing the intentions obtained from
analysing the Scenario-based Software Architecture Reengineering method [Bengtsson &
Bosch, 1998]. We observe that each intention corresponds to an abstracted method chunk with
only one exception: after the elicitation of the functional requirements, the method assesses the
current software architecture.

Table 7.4. Intentions proposed by the Scenario-based Software Architecture Reengineering method

[Bengtsson & Bosch, 1998]

Method Scenario-based Software Architecture Reengineering [Bengtsson & Bosch, 1998]
amc 1:
amc 2:

These method chunks are not defined, as the method establishes as its input: the source
<software architecture> conceptualized into <scenarios>

amc 3: Elicit <functional requirements> for the final <software architecture>
amc 5: Assess <current software architecture> using <scenario-based evaluation>
amc 4: Explore candidate <software architecture> using <QA-optimizing architecture

transformations>
amc 5: Assess generated <software architecture> using <scenario-based evaluation>
amc 6: This method chunk is not defined. The output of the method is: <improved architecture

design>

When analysing the method chunks obtained from applying Method Reengineering over all the
previously mentioned reengineering methods, we observe the following:

� The analysed methods chunks present intentions that can be considered equivalent to the
abstracted method chunks. For instance, all the methods share the intention of “Explore new
solution artefacts”, although they propose different guidelines to satisfy it.

� Not all the analysed methods present a sequential instantiation of the abstracted method

chunks, as most of them omit some intentions. We remark that usually the omitted phases
are the ones at the beginning or at the end of the process. For instance, in [Bengtsson &
Bosch, 1998], [deBruin & vanVliet, 2001], [Kim et al., 2005], the first two intentions are
not mentioned as they assume that the information of the current situation is already studied
and modelled for their purposes, but they all generate and evaluate candidate software
architectures.

� Some of the studied methods propose a preliminary evaluation of the modelled process
before the elicitation of new requirements. For instance, [Bengtsson & Bosch, 1998],
[Nurcan & Rolland, 2003], [Zhang et al., 2003].

� Some of the methods allow iteration between the phases, allowing eliciting new
requirements, exploring new solutions and evaluating them several times before choosing
the final solution [Bengtsson & Bosch, 1998], [Bouillon et al., 2004], [deBruin & vanVliet,
2001], [Nurcan & Rolland, 2003].

� All the analysed methods have the abstracted method chunks for exploring and assessing
the solution artefacts. However, in some of the methods the assessment is implicit in the
exploration of the solutions as if it were a cycle between both phases. For instance, in
[Bouillon et al., 2004] and [Kim et al., 2005] the designer generates the solutions according
to its own criteria, which means an implicit evaluation of the current solution.

Chapter 7. ReeF: a Customizable Reengineering Framework .

 189

� All the studied methods have their intentions executed in the sequential order established by
the abstracted method chunks. An extreme example of this is the work proposed in [Nurcan
& Rolland, 2003] where different reengineering processes can be generated from applying a
set of map strategies, and the generated methods are compliant with ReeF.

� The method artefacts obtained in the studied method chunks are equivalent to those
abstracted in ReeF and, although the proposed techniques come from different domains,
their intentions and roles are an instance of the ones abstracted.

� All the methods use a modelling language for communicating between its phases. The
common modelling languages are visual models (e.g., Use Case Maps [deBruin & vanVliet,
2001], enterprise business process models [Nurcan & Rolland, 2003]) and structured text
(e.g., scenarios [Bengtsson & Bosch, 1998]).

Taking those considerations into account, we generalize the abstracted method chunks obtained
in ReeF and we establish the following restrictions:

� There is a sequential order within the different abstracted method chunks, but it is possible
to omit the ones at the beginning or at the end, as some methods do.

� It is possible to assess the source artefact after it is modelled, in order to inform the
elicitation of requirements.

� It is possible to iterate between the phases: the evaluation of alternatives can inform a new
elicitation of requirements; new alternatives are generated and evaluated; and so on and so
forth, until a final solution is found.

As a result, the ReeF framework is composed of six phases, which are shown in Figure 7.5. The
arrows show the sequence of execution of the phases according to the abstracted method chunks
allowing the diversions and iterations previously mentioned.

Figure 7.5. Phases, inputs, outputs, techniques and roles abstracted in ReeF

An i*-based Reengineering Framework for Requirements Engineering

190

We observe that the framework defines, for each of these phases, the work products needed
(inputs) and produced (outputs) during the phases, the techniques (including the activities for
obtaining the work products, the transformations between models and the tool support used) and
the roles that are involved. As the framework is generic, customization is applied in order to
instantiated it. We remark that during customization it is possible to define the new method by
using different techniques for each of its iterations if needed.

7.6. The Customization Process

As we have already mentioned we propose to customize ReeF by executing the steps of
refinement, operationalization and combination. As an example of application of the framework
we propose the definition of SARiM, a Software Architecture Reengineering i* Method. The
aim of SARiM is to adapt the experience in using PRiM to the domain of software architectures.

We argue that the use of i* as a modelling language has several advantages. On the one hand, i*
allows to represent functional and non-functional requirements as well as business goals at the
same level, thus bridging the gap that is usually found between requirements and architectures
[Grunbacher et al., 2004]. On the other hand, i* has already been successfully used for the
representation of software architectures [Bastos & Castro, 2004], [Franch & Maiden, 2003],
[Kolp et al., 2003]. As a result, the customization strategy followed in SARiM case prioritized
operationalization over refinement and combination. A more complete description of the
method is shown in Chapter 8 as a validation of ReeF.

7.6.1. The Refinement Process

The generic intentions (or goals) defined in the abstract method chunks of ReeF are refined for
the particular domain of software architecture in order to establish the main objectives to be
satisfied in the new method. We remark that at this stage we are only defining the objectives to
accomplish in each of the phases. So, in some cases it is possible that only the domain artefacts
are defined, leaving the techniques and generated artefacts to be filled during the
operationalization.

For instance, in Table 7.5 we present the refinement of the generic intentions of ReeF into
SARiM. We can observe that we refine the phases at different levels of detail according to our
needs:

� In the first phase we observe that only the <domain artefact> is refined into the domain of
software architectures. Because of that we can state that we want to use an architecture

analysis technique but, as we don’t know which want to use, we live the <analysed
artefact> to determine during operationalization.

� In the second phase, as we have decided that we wanted to use i* in SARiM, we are more
precise and se state that we want to obtain an i* model as the model artefact.

Finally, during the refinement it is possible to state the iterations between phases and to
duplicate or remove a certain phase following the order stated by ReeF (see Figure 7.5). We

Chapter 7. ReeF: a Customizable Reengineering Framework .

 191

have decided to use the same phases of PRiM in SARiM, but it would have been possible for
instance, to consider the evaluation of the current software architecture before the elicitation of
the new requirements and to state a different technique for each during operationalization.

Table 7.5. Refinement step: how the generic intentions in ReeF are refined into SARiM

Generic Intention in ReeF Refinement into SARiM
Analyse [source] <domain artefact>

using <analysis techniques>

obtaining <analysed artefact>

Analyze source software architecture
using <architecture analysis technique>
obtaining <analysed artefact>

Conceptualize <analysed artefact>

into <model artefact>

Conceptualize the software architecture
into an i* model

Elicit <requirements artefact>

for the [final] <domain artefact>

using <elicitation techniques>

Elicit quality requirements
for the final software architecture
using <elicitation technique>

Explore [candidate] <domain artefact>

using <generation techniques>

Explore candidate software architectures
using <generation techniques>

Assess [generated] <domain artefact>

using <evaluation techniques>

Assess generated software architecture
using i* structural evaluation techniques.

Create [final]<specification artefact>

for the [new] <domain artefact>

using <model transformation techniques>

Create final specification
for the new software architecture
using i* to use cases transformation techniques.

7.6.2. The Operationalization Process

Once the intentions are defined, we search into the method base those method chunks that better
accomplish the intention. We propose to classify the method chunks in the database according to
three dimensions: intention they support, domain they are designed for, and modelling language
used. The reason for taking considering the modelling language is that, if the method chunks do
not share the same modelling language, a transformation technique has to be applied between
them, so it is recommended to take this aspect into account in order to facilitate further steps.
However, other classification criteria for the method base can be used [Bengtsson & Bosch,
1998], [Mirbel & Ralyté, 2005].

Based on the refined intentions, the search for the appropriate method chunks in the method

base is facilitated, as the set of candidate elements is delimited. We remark that the method base
is not complete and not all the method chunks required may be found there. If this is the case, a
study of other suitable methods has to be done and the resulting method chunks have to be
added into the method base. This study may include reengineering methods but also well-know
Requirements Engineering methods or guidelines for the application of patterns that, although
not being defined as reengineering methods, may support some of the proposed phases.

In the second column of Table 7.6 we show whether the method chunks available in the method

base are supported or not by PRiM. In the example previously presented in Table 7.4 we show
the intentions of the method chunks for the Scenario-based Software Architecture Reengineering
Method [Bengtsson & Bosch, 1998]. There, the fourth method chunk is scenario-based and
proposed a set of architecture transformation guidelines based on quality attributes. As this
intention satisfies the one we have refined for SARiM, we use it.

An i*-based Reengineering Framework for Requirements Engineering

192

The other phases that are not supported by PRiM are the analysis of the current software
architecture and the elicitation of requirements for the future one. As there are no method

chunks in the method base to support those phases, we analyze other methods for doing it. More
precisely, we have searched in the field of Requirements Engineering and we have selected the
Architecture Reconstruction Method [Guo et al., 1998] for the recovery and analysis of the
current architecture, and the CBSP method [Grunbacher et al., 2004] to be adapted to the i*
notation for the elicitation of the new requirements.

Table 7.6. Operationalization step: how the refined intentions of ReeF are operationalized into SARiM

Refinement into SARiM Operationalization of SARiM
Analyze source software architecture
using <architecture analysis technique>
obtaining <analysed artefact>

Analyze source software architecture
using the Architecture Reconstruction Method
obtaining scenarios

Conceptualize the software architecture
into an i* model

Conceptualize the software architecture
into an i* model
using PRiM i* modelling technique

Elicit quality requirements
for the final software architecture
using <elicitation technique>

Elicit quality requirements
for the final software architecture
using the CBSP method

Explore candidate software architectures
using <generation techniques>

Explore candidate software architectures
using Scenario-based Software Architecture Reengineering
Method

Assess generated software architecture
using i* structural evaluation techniques

Assess generated software architecture
using PRiM i* structural evaluation techniques

Create final specification
for the new software architecture
using i* to use cases transformation techniques

Create final specification
for the new software architecture
using PRiM i* to use cases transformation techniques

7.6.3. The Combination Process

Once the method chunks are selected, method engineering techniques for assembling can be
applied [Brinkkemper et al., 1998], [Mirbel & Ralyté, 2005], [OPF website], [Ralyté, 2001],
[Ralyté & Rolland, 2001] in order to obtain the final method. The combination of the method

chunks is addressed in [Mirbel & Ralyté, 2005], [Ralyté, 2001], which defines two different
kinds of integration:

� Assembly by association is applied when the method chunks to assemble correspond to two
different system engineering functionalities where the result of one chunk is used as a
source product by the second one but do not have common elements in their product and
process models. As a result, the assembly process deals with making the bridge between the
two chunks, which is done by defining links between the different concepts in the two
method chunks.

� Assembly by integration is applied to assemble chunks that have similar engineering goals
but provide different ways to satisfy it. In such a case, the process and product models are
overlapping, that is, contain some identical or similar elements. The assembly process
consists in identifying the common elements in the chunks product and process models and
merging them.

Chapter 7. ReeF: a Customizable Reengineering Framework .

 193

We just remark that, following the criteria in [Mirbel & Ralyté, 2005] all the method chunks are
combined following the established order. In Table 7.7 we present the method chunks
operationalized in SARiM, the inputs and outputs of each method chunk and the combination
strategy used. For instance, we can observe that in the first method chunk we use an assembly by

association, where transformation techniques are applied in order to transform i* models into
scenarios. On the other hand, method chunks for requirements elicitation and architectures
generation, we apply an assembly by integration, as the tight link between i* and Requirements
Engineering techniques, facilitates it.

Table 7.7. Combination step: how the operationalized phases are combined to obtain SARiM

Operationalization of SARiM Inputs and Outputs Combination Strategy
Analyze source software architecture
using the Architecture Reconstruction
Method
obtaining scenarios

Input: source software
architecture
Output: scenarios

Assembly by association:
transformation of scenarios into DIS
templates is needed.

Conceptualize the software architecture
into an i* model
using PRiM i* modelling technique

Input: DIS tables
Output: i* Model Assembly by integration: the

similarities between i* and
Requirements Engineering techniques
allow it.

Elicit quality requirements
for the final software architecture
using the CBSP method

Input: Requirements
Output: Architectural
requirements expressed with the
CBSP. Assembly by association:

transformation of the i* model and the
CBSP requirements into scenarios. Explore candidate software architectures

using Scenario-based Software
Architecture Reengineering Method

Input: Source scenario
Output: Alternative scenarios Assembly by association:

transformation of the scenarios into i*
models, using intermediate DIS tables. Assess generated software architecture

using PRiM i* structural evaluation
techniques

Input: Alternative i* models
Output: Evaluated i* models

Create final specification
for the new software architecture
using PRiM i* to use cases
transformation techniques

Input: Selected i* model
Output: Use Cases

No assembly is needed: the output and
the input are both i* models.

7.7. Summary of ReeF Decisions

In this section we present the arguments that enforce PRiM as being suitable enough to be used
as a starting point for ReeF and the compliance of ReeF with the Method Engineering approach.

7.7.1. Analysing the use of PRiM as the starting point

The main purpose of this research is to use PRiM as a basis for defining a generic framework in
which other existing reengineering techniques, can be reconciled, adapted and analysed. Despite
other methods such as the ones presented in [Yu, 1995] or [Katzenstein & Lerch, 2000], could
have been used as the starting point, our first choice was PRiM because our ultimate goal is to
use the resulting reengineering framework for customizing PRiM in other domains other than
Process Reengineering. For instance, in Chapter 8, we present SARiM, a Software Architectures
Reengineering Method that is a customization of ReeF into the domain of software
architectures. In addition to that reason, we argue that this method is adequate as starting point
because:

An i*-based Reengineering Framework for Requirements Engineering

194

� It is constructed after a rigorous state of the art of Business Process Reengineering
techniques;

� It makes use of widespread techniques and artefacts in its definition instead of proposing
ad-hoc ones;

� There is an existing tool, J-PRiM (see [Grau, Franch & Ávila, 2006] and Chapter 9), that
supports the application of the method.

� Some of the underlying ideas are applicable to contexts other than Business Process
Reengineering; and,

� As authors, we have experience in applying the method and, so, access to all the
components that we want to abstract onto the customizable framework which is a kind of
information sometimes difficult to obtain whilst analysing other methods.

Also we would like to remark the benefits of the use of i* in PRiM from a Method Engineering
point of view. On the one hand, i* supports all the phases of the method, allowing an assembly

of methods by association [Mirbel & Ralyté, 2005], because no connection between the product
models has to be done when combining the different method chunks. Actually, this also
facilitates the substitution of most of the techniques applied on the phases for other i*
techniques with the same aims, without great modifications and without altering the result (e.g.,
the generation of alternatives can be done by using the organizational patterns proposed in
[Kolp et al., 2003]). On the other hand, as i* is goal-oriented and agent-oriented, it allows
reasoning at the goal and agent levels, which aligns with the strategic nature of reengineering
processes. Consequently, in the assembly of methods by integration [Mirbel & Ralyté, 2005],
goal-oriented and agent-oriented method chunks are easily adapted to represent the concepts in a
unique i* model (e.g., in Phase 3, KAOS goals are represented in the i* model).

7.7.2. Evaluation of ReeF in the Method Engineering Context

ReeF has been defined following the principles of Method Engineering because this technique is
specially well-suited when defining new methods based on existing ones. As a result, the
advantage of applying the framework is twofold:

� It provides a common umbrella under which the different existing reengineering proposals
may be analysed, compared for possible adoption, customized to particular contexts and
even composed to deal with reengineering at different levels. In particular, an existing
method could be enlarged to deal with some activity not covered in its definition, or some
technique may be changed with some other identified as similar.

� It allows formulating new reengineering approaches starting from that framework, not only
facilitating that task, but also providing an ontology of reference and the possibility of
reusing methods, techniques, models and tools from a common experience base.

ReeF is not intended to deliver an exhaustive catalogue with all the possible phases and
techniques, but instead it serves as a generic, customizable framework, which provides, among
other things, different levels of abstraction and the possibility of choosing between different
characteristics. More precisely, we argue that the framework satisfies the following guiding
principles proposed by the OPF [OPF website]:

Chapter 7. ReeF: a Customizable Reengineering Framework .

 195

� Flexibility. In order to allow maximum flexibility when customizing, the phases of ReeF
provide: atomicity, in the way that the activities it proposes are related to only one concept
of the reengineering activities; optionally, certain phases can be avoided if the
customization requires so; and iteration, in those methods that require several iterations of
some of the phases.

� Standardization. ReeF uses the most common terminology in the Business Process
Reengineering field. For techniques, roles and activities it uses the already standardized
terminology and concepts coming from the OPF.

� Completeness. ReeF is complete in the sense that it includes all the elements that may be
needed in a reengineering process. Although it not provides a complete repository of
elements for instantiate the framework, it provides techniques for constructing this
repository.

� Openness. ReeF remains open in the sense that there is not a closed list of elements and
also because it is not necessary to instantiate all those elements, allowing the method
engineer to customize them accordingly to its goals.

� Reengineering Best Practices. ReeF is based on the abstraction and generalization of well-
know reengineering methods and related Requirements Engineering techniques.

� Usability. ReeF facilitates usability by providing guidelines for its customization, as it is
shown in the customization of ReeF into SARiM.

� Reuse. The framework supports reuse of methods providing the context where to customize
the method and a set of elements as examples.

7.8. Conclusions

In this chapter we have introduced ReeF, a Reengineering Framework that allows integrating
different Requirements Engineering techniques using a reengineering approach. The benefits
resulting from this process are twofold. In the one hand, the definition of ReeF may help to
understand, reconcile, and analyse existing reengineering methods, and also to formulate new
specific ones. With this aim, ReeF clearly establishes the reengineering phases and the method
artefacts involved in each phase (techniques needed, modelling languages used, tool support
provided, and roles). On the other hand, the abstraction and generalization mechanisms used for
abstracting and generalizing ReeF from other methods (such as PRiM), may be applied to
generate other customizable frameworks based on a different development point of view (as we
have done with process reengineering).

An i*-based Reengineering Framework for Requirements Engineering

196

 197

8. Defining SARiM: a Software

Architecture Reengineering i* Method

In the previous chapter we have defined ReeF, a Reengineering Framework that uses a Method
Engineering approach for creating new reengineering methods from existing techniques. As an
example of application we have defined SARiM, a Software Architecture Reengineering i*
Method, which is a customization of ReeF on the domain of Software Architectures.

In this chapter we extend the definition of SARiM by refining and exemplifying some of its
steps. The benefits of this process are twofold. On the one hand, we validate that is possible to
use ReeF to define a complete method in a certain domain of application by reconciling
different software architecture reengineering techniques. On the other hand, we contribute to fill
the recognized gap between requirements and architectures, by providing a goal-oriented
approach for the generation and evaluation of alternative architectures.

The remainder of this chapter extends the work presented in [Grau & Franch, 2007b] and it is
organized as follows. In Section 8.1 we provide an overview of SARiM. The method is
composed of six phases, five of which are detailed in the following sections: Section 8.2
explains how to analyse the current architecture, Section 8.3 focus on how to model the
software architecture in i*, Section 8.4 explains how to reengineer the current software
architecture, Section 8.5 presents some guidelines for the generation of alternative architectures
and, finally, in Section 8.6, the architectures are evaluated. Finally, the summary of SARiM
decisions is presented in Section 8.7 and the conclusions are in Section 8.8.

8.1. Overview of the Method

In this section we present our method for the design of software architectures, SARiM, a
Software Architecture Reengineering i*-based Method. The key point of SARiM is that it does
not consider the generation and evaluation of alternative architectures as an isolated process but
as a part of a comprehensive framework from a reengineering perspective. SARiM has been

An i*-based Reengineering Framework for Requirements Engineering

198

defined as a refinement of the generic Reengineering Framework, ReeF, which allows
integrating different software engineering methods and techniques. We refer to [Grau & Franch,
2007a], and Chapter 7 for more details.

In Figure 8.1, we present an overview of SARiM. We observe that it is composed of six phases,
which may be iterated as required. For instance, after the evaluation in Phase 5 it is possible to
discover some quality attributes not well-addressed and then go back to Phase 4 to generate new
candidate architectures or modify some existing ones.

Phase 1: Analysis of the source software architecture. Some analysis techniques are specific
of software architectures, such as the Architecture Reconstruction Method (ARM) [Guo et

al., 1998] which allows performing a semi-automatic analysis process for reconstructing
architectures based on the recognition of architectural patterns. However, the analysis of the
existing documentation or the observation of the current process such as in the RESCUE
process [Jones & Maiden, 2004], [Jones et al., 2004] can also be applied. As a result of this
phase we obtain an analysed software architecture, which is documented with the DIS
template in order to be the input of the next phase.

Phase 2: Conceptualization of the analysed software architecture into an i* model. The i*
model is generated from the documentation provided in the DIS templates and the
guidelines and rules proposed in PRiM. Therefore, the model combines two types of
information: Intentional (i.e. strategic information about decisions and their rationale) and
Operational (i.e. architectural components and their interconnections).

Phase 3: Elicitation of new requirements for the software architecture. As i* is goal-
oriented, we use a goal-oriented Requirements Engineering technique in order to elicit the
functional and non-functional requirements for the upcoming software architecture. In order
to link the requirements with the architectures we propose to use the CBSP approach
[Grunbacher et al., 2004] for the elicitation of the requirements.

Phase 4: Exploration of candidate software architecture solutions. During this fourth phase
the candidate software architectures are explored. For doing so, we propose to adapt the
architecture transformations proposed in [Bengtsson & Bosch, 1998] where generic
architecture solutions are selected and applied in order to generate an alternative. Therefore,
we first build Generic i* Architectural Patterns from existing architectural solutions (which
can be stored for reuse when reapplying the process). Once this is done, the alternative
architectures are generated by applying a dependency analysis and matching process over
the Source i* Architecture Model and each selected Generic i* Architectural Pattern. As a
result, we obtain a set of alternative i* architecture models.

Phase 5: Assessment of the generated solutions using evaluation techniques. Once the
alternative i* architecture models are generated, they can be evaluated by defining or
reusing structural metrics as it is presented in Chapter 4.

Phase 6: Creation of the specification for the new software architecture. In this phase we
translate the Alternative i* Model of the selected architecture into its specification.

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 199

Figure 8.1. Overview of SARiM, showing the inputs and outputs of each phase

8.2. Phase 1: Analyse the Source Software Architecture

SARiM is based on a Reengineering Framework and, thus, the first phase of the method consists
on analysing the current software architecture. This can be done by using architecture recovery
techniques such as the Software Architecture Reconstruction Method [Guo et al., 1998].
However, if there is existing documentation available it is also possible to use it as a starting
point. That is the approach we use when analysing the Home Service Robot (HSR) case study as
presented in [Kang et al., 2005], [Kim et al., 2005]. This case study has been chosen because
the details about the problem statement are very clear, it is simple enough to be analysed and
understood in the context of an example, and also because mobile robots are commonly used in
software architecture examples [Shaw & Garlan, 1996].

According to [Kang et al., 2005], [Kim et al., 2005], the HSR is a prototype that supports the
following daily home services:

� Call & Come (CC). This service analyzes the audio data sampled in order to detect
predefined sound patterns. If a “come” command is recognized, the robot tries to detect the
direction of the sound source, rotates to the direction of the sound source and tries to
recognize a human face. If the caller’s face is detected, the robot moves forward until it
reaches within 1 meter from the caller. If a “Stop” command is recognized while the robot is
moving, the robot stops.

� User Following (UF). The robot locates a user and constantly checks vision data and sensor
data for keep following the user. The robot follows the user within 1 meter range. If the
robot misses the user, it notifies him by saying “I lost you” and the action terminates.

� Security Monitoring (SM). The robot patrols around a house for surveillance using a map.
Intrusion or accidents are defined as patterns recognizable from vision and sound data. If

An i*-based Reengineering Framework for Requirements Engineering

200

such an event is detected, the robot notifies the user directly via an alarm or indirectly
through a home server.

� Tele-presence (TP). A remote user can control the robot using a PDA. The robot sends the
remote user a map of the house and the user can command the robot to move to a specific
position. In addition, the robot can send captured images to the remote PDA for
surveillance.

In order to provide those services, the HSR has the following hardware components: a Single
Board Computer that controls the peripherals; a Front Camera to allow face recognition, user
tracking, security monitoring and tele-presence; a Ceiling Camera to do map building and self-
positioning; 8 SL Microphones to interpret speaker commands and locate its specific position; a
Structured Light Sensor to detect obstacles and recognize footsteps; an Actuator to allow the
HMR movement; an LCD display to show information; a Wireless LAN to communicate to the
Home Server; and, finally, a Speaker to generate sound. In the current architecture, all the
devices interact directly with the SBC sending synchronous messages and all the components
are at the same level of abstraction (see Figure 8.2 for a high-level view of the architecture). For
more details about the HSR problem statement we refer to [Kang et al., 2005], [Kim et al.,
2005].

Figure 8.2. Overview of the original architecture of the HMR. Adapted from [Kang et al., 2005]

As we have already mentioned, the result of this phase has to be documented filling up the
corresponding DIS templates, in order to be used as input for the next phase. For the HMR we
have used the description of the services and the schema of the conceptual architecture in order
to obtain the needed information. As a result we have obtained 5 activities: one for each of the
four services plus an additional activity to represent the command recognition. In Table 8.1 we
present the DIS for the service Call & Come, we remark that the components of the architecture
have become actors in the DIS. We also remark that, in the description of the actions, we have
made explicit the commands sent by the Call & Come to the Actuator. The reason for that is that
we assume that, for security reasons, the component may send several rotation parameters until
it is sure to rotate and, then, it sends the command. As the Front Camera and the Structured
Light Sensor just provide data, we don’t make explicit the movement.

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 201

Table 8.1. Detailed Interaction Script (DIS) for the service Call & Come

 DIS 1: Call & Come

Source: Description of the HMR and its original architecture in [Kang et al., 2005], [Kim et al., 2005].

Actors: Call & Come, SL Microphones, Actuator, Front Camera, Structured Light Sensor

Precondition: -

Triggering Event: COME command is received

Action
Initiator

Action
Resources
Consumed

Resources
Produced/Provided

Action
Addressee

1 SL microphones Detect the Strength of Sound Strength of Sound Call & Come

2 Call & Come Obtain Sound Direction Strength of Sound SL microphones

3 Call & Come Calculate Rotation Parameters Rotation Parameters Actuator

4 Actuator Prepare for Rotation Rotation Parameters Call & Come

5 Call & Come Execute Rotation Command Rotation Command Actuator

6 Actuator Rotate Rotation Command Call & Come

7 Front Camera Provide Video Data Video Data Call & Come

8 Call & Come Detect face in Video Data Video Data Front Camera

9
Call & Come Calculate Direction of Object Direction of Object Structured Light

Sensor

10
Structured Light
Sensor

Locate Direction of Object Direction of Object Call & Come

11
Structured Light
Sensor

Calculate Distance to User Distance to User Call & Come

12
Call & Come Obtain distance to user Distance to User Structured Light

Sensor

13
Call & Come Calculate Movement

Parameters
 Move Parameters Actuator

14 Actuator Prepare for Movement Move Parameters Call & Come

15 Call & Come Execute Move Command Move Command Actuator

Actions

16 Actuator Move Move Command Call & Come

Postcondition: -

8.3. Phase 2: Conceptualize the Software Architecture into an

i* Model

In the second phase, the analysed software architecture is modelled. As we have adopt the i*
framework for modelling the architecture, we use the rules and guidelines provided in the
second phase of PRiM in order to construct the model. The complete details on the construction
of those i* models can be found in Section 3.3. We remark that previously to this step we have
evaluated the adequacy of using i* models for representing and analyzing software architectures
in order to check how components and connectors can be represented. A more complete
analysis can be found at [Grau & Franch, 2007c].

Components. A component in a software architecture is a unit of computation or a data store
[Medvidovic & Taylor, 2000]. In ADLs, components have an interface which contains a set
of interaction points (also called ports) that allows interacting with the external world. In i*,
actors are the most intuitive way to represent components, being their ports the points where
the dependencies are connected to the actor. Therefore, an i* actor may have as many ports
as needed and, as dependencies are bidirectional, we can distinguish between input ports
(where the actor is the depender) and output ports (where the actor is the dependee).

An i*-based Reengineering Framework for Requirements Engineering

202

Connectors. Connectors are architectural building blocks used to model interactions among
components and rules that govern those interactions [Medvidovic & Taylor, 2000]. The
interface of the connectors is the set of interactions points between the connector and the
components attached to it. In i* connectors are represented as dependencies and,
accordingly, operational dependencies, represent how one component communicates with
other parts of the system; and intentional dependencies, represent what behaviour a
component expects from other parts of the system.

8.3.1. Actor Identification and Modelling

As we have already mentioned, during the construction of the DIS templates we take into
account all the different actors that appear in the current system. Actors can be distinguished by
a label with their name. As in i* actors can represent different kinds of entities (i.e.,
stakeholders, software systems, hardware sensors, etc.) and architectural components are
software entities, we consider adequate to add an attribute to the actors for indicating their
structural type as it is done with the dependencies. Our proposed initial set of structural types is:

� Human actor. It is the final users of the software system. For instance, in the HSR, it is the
user that commands the HSR.

� Software actor. It is the software system that is in charge to satisfy the human actor
requirements. The software system can be represented by a unique software actor or by a set
of actors that represents components and interact one with each other. For instance, in the
HSR, they are the components that command the Single Board Computer: Call & Come,
User Following, Surveillance, Navigation, Tele-Presence and SLAM.

� Hardware actor. In those software systems where we need to obtain certain information
about the environment it is the hardware devices that provided it. In the HSR, we have
several of these devices: Front Camera, Ceiling Camera, Microphones, LCD Display,
Actuator, Speaker, Wireless LAN and Structured Light Sensor.

� Organizational actor. It models the organizations that provide or require services from the
software system and its final users. In the HSR, it could be the enterprise that provides the
service of maintaining the robot.

We remark that more structural types can be added if needed, and also, it is possible to further
divide each structural type into subtypes, eventually in more than one level. For instance, for
software actors we may distinguish commercial off-the-shelf components (COTS), modules and
layers, allowing a better the correspondence of concepts between the Software Architectures
constructs and the i* constructs. In Table 8.2 we present the actors of the Home Service Robot
indicating its structural type and main goal.

8.3.2. Building the Operational i* Model

Once the actors are defined and its type and main goal are stated, we build the i* Model based
on the rules and guidelines provided by the PRiM method (see Section 3.3.2). We remind that,
in PRiM, the i* model is constructed in two differentiated steps in order to differentiate the
functionality provided by the system (Operational i* Model) from the strategic intentionality

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 203

between them (Intentional i* Model). Table 8.3 summarizes the rules applied for transforming
the information stored in the DIS to the Operational i* Model.

Table 8.2. Classification of actors for the HSR Case Study

Actor Structural Type Main Goal
User Human HSR is controlled
Call & Come Software HSR goes to the user
Surveillance Software HSR patrols the house
Tele-Presence Software HSR goes where indicated
User Following Software HSR follows the user
Navigation Software HSR can move
SLAM Software HSR knows its position in the house
Front Camera Hardware Front images are recorded
Ceiling Camera Hardware Ceiling images are recorded
8-Chanel Microphones Hardware Sound is recorded
Structured Light Sensor Hardware Distances are calculated
LCD Display Hardware Information is showed
Actuator Hardware HSR is moved
Speaker Hardware Messages are specked
Wireless LAN Hardware Remote communication is achieved

Table 8.3. Transformation rules to obtain an Operational i* Model from an activity DIS

 Description
Operational
Rule 1

Every activity in which an actor is involved is modelled as a task in its SR. This task (hereafter,
activity-task) is related to its main goal using a Means-Ends link.

Operational
Rule 2

Every activity-task is decomposed into the actions of the DIS corresponding to its activity. This is
done by translating each action into a task (hereafter, action-task) and linking it to the
corresponding activity-task with a task-decomposition link.

Operational
Rule 3

If the action on the DIS produces a resource, this resource becomes a resource dependency that is
linked to the action-task that produces the resource.

Operational
Rule 4

If the action on the DIS consumes a resource, this resource has to be produced by some other
action. So, the produced resource is linked to the specific action-task.

Operational
Rule 5

If the action is reflexive (the action initiator and the action addressee are the same actor) a new
actor representing the group is introduced for representing the communication.

Operational
Rule 6

Alternative courses of actions are represented as the actions but they are linked with a means-end
link to the action-task that produces the alternative course.

Operational
Rule 7

Preconditions and postconditions are added as task-decomposition elements of the activity-task.
Trigger events are modelled as goal dependencies where the actor who initiates the activity-task is
the depender and the one that undertakes the triggering task is the dependee.

In the architectural domain, the separation between the operational and intentional level is also
applicable. The Operational i* Model relationships represents the interactions at the
architectural level and the kind of the dependum used enforces the link between requirements
and architectures. Because of that, the dependencies that occur between the components of the
system represent the architectural concerns by means of the following operational relationships
(see Figure 8.3 for the examples):

� Task dependencies stating service invocation. For instance, the Call & Come depends on
the Actuator for the tasks Execute Rotation Command. We remark that these tasks arises
from deciding that for the resource in the DIS Rotation Command, the actor has more
interest in how the action is completed than in the resource itself.

An i*-based Reengineering Framework for Requirements Engineering

204

� Resource dependencies stating information interchange. For instance, the Call & Come
depends on the SL Microphones for the resource Detect the Strength of Sound.

� Goal dependencies state functional requirements representing preconditions. For instance
the Call & Come depends on the user for Come command is received, as a precondition to
execute all its actions.

User

HSR is

controlled

Call and Come

SL

Micro-

phones

(HW)
Sound is

recorded

Call and Come

Detect the

Strenght of

Sound

Front

Camera

(HW)
Front images

are recorded

Call and Come

Provide Video

Data

Call &

Come

(SW)

The HSR goes

to the User

Call and Come

Come Comand

is Received

Obtain Sound

Direction

Calculate

rotation

parameters

Execute

rotation

comand

Detect face in

video data

Calculate

direction of

object

Obtain Distance

to user

Calculate

movement

parameters

Execute move

command

Actuator

(HW)

HSR is moved

Call and ComeStrenght of

Sound

Rotation

Parameters

Execute

Rotation

Command

Video Data

Direction of

Object

Distance to

User

Move

Parameters

Execute Move

Command

Prepare for

Rotation

Rotate

Prepare for

Movement

Move

Structur

ed Light

Sensor Distances are

found

Call and Come

Locate

Direction of

Object

Provide

Distance to

User

Figure 8.3. Operational i* Model obtained from the DIS of the activity Call & Come of the HSR

8.3.3. Building the Intentional i* Model

The Intentional i* Model is constructed by using the guidelines provided in Section 3.3.3, which
are summarized in Table 8.4.

Table 8.4. Guidelines for obtaining the Intentional i* Model by analysis of the Operational i* Model

Guideline Description
Intentional
Guideline 1

For each activity there is a goal that summarizes its strategic intentionality by stating the final
state achieved when completing the activity.

Intentional
Guideline 2

Intentional goals are decomposed into goals and softgoals in order to describe the aspects that
influence the achievement of the goal.

Intentional
Guideline 3

For those operational dependencies that require quality attributes to be achieved, there is a
softgoal stating a non-functional requirement.

Intentional
Guideline 4

Contributions and conflicts are stated in order to allow a better analysis of the resulting model.

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 205

As we have mentioned, the intentional relationships are the ones that involve human or
organizational actors as dependee and/or depender. In Figure 8.4 we present the Intentional i*
SD Model for the HSR, we remark that this model contains both the dependencies of the
Operational i* Model and some of the intentional elements that arise during the construction of
the Intentional i* Model. These lasts, represent the intentional needs of the actors upon the
system as follows (see examples on Figure 8.4):

� Goal dependencies state functional requirement over the system. For instance, the User
depends on the Call & Come for achieving the goal Come when called and to the Actuator

for Accidents are avoided.

� Resource dependencies state flow of concepts, and remarkable some type of knowledge, or
a concept, relevant for the domain that does not physically exist. For instance, the SL

Microphones depend on the User for the concept Voice Command in the context of the
HSR.

� Softgoal dependencies state high-level non-functional requirements, which may refer to
quality of service, development objectives, or architectural constraints over the components,
e.g. the User depends on the HSR depends for the softgoals User position location is

accurate and Robot movement is efficient.

User

SL

Micro-

phones

(HW)

Front

Camera

(HW)

Call &

Come

(SW)

Come Comand

is Received

Actuator

(HW)

Strenght of

Sound

Rotation

Parameters

Execute

Rotation

Command

Video Data

Direction of

Object

Distance to

User

Move

Parameters

Execute Move

Command

Structur

ed Light

Sensor

Come when

called

Accidents are

avoided

User position location

is accuarate

Robot movement is

efficient

Voice

command

User image

Figure 8.4. Intentional SD i* Model for the Call & Come activity of the HSR

We remark that we do not model task dependencies at the intentional level, because they
enforce that the depender provides a prescriptive procedure, which is done at the operational

An i*-based Reengineering Framework for Requirements Engineering

206

level. On the other hand, in PRiM we not take into account Resource dependencies at the
intentional level, but from an architecture context, it is relevant to have them. This decision is
enforce by the fact that, when modelling early requirements, late requirements and architectural
design in TROPOS [Bresciani et al., 2004] they only use goals, softgoals and resources.

8.4. Phase 3: Reengineering of the Current Architecture

In PRiM, the requirements are used using KAOS [Dardenne et al., 1993] for the elicitation and
classification of the goals for the new process. As there are specific methods for obtaining
requirements for architectures, we have used Method Engineering techniques for customizing
this step of ReeF (see Chapter 7).

8.4.1. The CBSP Approach

The technique we have adopted in this step is the CBSP approach [Grunbacher et al., 2004],
which stands for Component-Bus-System-Property. These dimensions are the basis for
classifying and refining the requirements, and to capture the different trade-off issues and
options. If we analyse these dimensions, it is possible to see some analogy with the constructs
we propose in the Operational i* Model and the Intentional i* Model. Therefore, in Table 8.5
we observe that, as these dimensions refers to the structure of the resulting architecture, all of
the terms are equivalent to the SD level of the i* model. The exception is on the Components
and the Component properties that can be represented either as part of the internal SR of the
actor representing the component and with the corresponding dependency.

Table 8.5. Equivalence between the CBSP Dimensions and the i* Constructs

CBSP Dimension Definition Equivalent i* Constructs
Cp: SR task and task
dependency (operational)

1. Components C are model elements that describe or involve an
individual Component in an architecture. It can be
decomposed into:
Cp: Processing components
Cd: Data components

Cd: SR resource and resource
dependency (operational)

2. Bus Connector B are model elements that describe or imply a Bus
(connector)

task dependency, and resource
dependency (operational)

3. System-wide
features

S are model elements that describe system-wide features
or features pertinent to a large subset of the system’s
components and connectors

goal dependency (intentional)

4. Component
Properties

CP are model elements that describe or imply data or
processing Component Properties. Refers to the quality
properties of the software system such as reliability,
portability, scalability, etc.

SR softgoal, and
softgoal dependency
(intentional)

5. Bus Properties Are model elements that describe or imply Bus
Properties

softgoal dependency
(intentional)

6. System
Properties

SP are model elements that describe or imply system (or
subsystem) Properties.

softgoal dependency
(intentional)

The CBSP approach addresses the elicitation and prioritization of requirements for architecture
by applying the following steps to an already obtained set of requirements that are used as
starting point:

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 207

1. Selection of requirements for next iteration. A team of architects applies the CBSP
taxonomy to the most essential set of requirements for the next iteration. The architects
eliminate requirements considered unimportant or infeasible through stakeholder-based
prioritization, thus arriving at a set of core requirements to be considered for the next
level of requirements.

2. Architectural classification of requirements. A team of architects classifies the
selected requirements using the CBSP taxonomy. Each requirement is assessed by the
experts based on the requirement’s relevance to the CBSP dimensions.

3. Identification and resolution of classification mismatches. When the architects differ
in their architectural classification using the CBSP, it means that is time to analyse the
reasons for diverging opinions. Thus, a voting process is a mechanism to reveal dissent
among the architects and to reduce risks in requirements refinement.

4. Architectural refinement of requirements. The team of architects rephrases and splits
requirements that exhibit overlapping CBSP properties and concerns. Such redundancies
are identified and eliminated in the intermediate CBSP model.

5. Trade-off choices of architectural elements and styles with CBSP. At this point we
can consider that the CBSP is refined and no conflicts exist and all model elements are
relevant to the one of the six CBSP dimensions. As multiple architectural styles may
appear to be (reasonably) well suited to the problem, additional work to select the most
appropriate style is needed. The selection of the styles is choice of the architects. By
considering the rules and heuristics of the selected style(s) the architects start converting
the CBSP model elements into components, connectors, configurations, and data, with
the desired properties.

8.4.2. Applying the CBSP approach

The CBSP approach is used over an initial set of requirements in order to classify and define
them. Therefore, we have to provide an initial set of requirements as starting point. When
analysing the HSR Case Study, we notice that there are mainly two main problems as starting
point, which can be analysed as follows:

� Lack of flexibility during product evolution. The current architecture intermix control
components with computational components and this makes difficult to add, remove, or
replace components as the product evolves.

� Feature interaction problems occur when a service is added. It is not clear how the
different features related with each other. In order to solve this problem we have to consider
how features should be related with each other.

We remark that, as the HSR Case Study is based on a problem statement (see [Kim et al., 2005],
[Kang et al., 2005]), no stakeholders are available for doing some of the CBSP steps, namely
the stakeholder-based prioritization and the voting process. According to the CBSP dimensions
classification, the lack of flexibility during product evolution can be classified the component
property regarding maintainability; whilst the feature interaction problems when a service is

An i*-based Reengineering Framework for Requirements Engineering

208

added, can be considered as a system property regarding extensibility. Finally, we remark that
the trade-off choices of architectural elements and styles proposed in the CBSP approach are
addressed in the next phase of SARiM.

8.5. Phase 4: Generation of Alternative Architectures

Once the requirements for the new architecture are obtained, we need to generate and evaluate
the different alternatives that can support this architecture. As a result of the generation of
alternative architectures we have a set of Alternative i* Models. There are many methods for the
generation of alternative architectures, most of them based on the use of architectural patterns
and styles (for instance, the Fifth Step of the CBSP approach [Grunbacher et al., 2004]
presented in the previous section). However, among the existing methods, we have chosen the
one proposed in the Scenario-based Software Architecture Reengineering Method [Bengtsson &
Bosch, 1998]. The reason for selecting this approach is that, as we will see, it is more complete
in the sense that, it proposes the use of patterns for generating the alternatives and it also
considers the possibility to convert quality requirements to functionality and to distribute
requirements.

8.5.1. The Scenario-based Software Architecture Reengineering Method

The Scenario-based Software Architecture Reengineering Method [Bengtsson & Bosch, 1998]
consists of four steps that are applied over the updated requirements specification and the
existing software architecture. This is exactly what we have as an input at the beginning of this
fourth phase in SARiM: the Source i* Architectural Model and the set of requirements obtained
in the previous phase. According to [Bengtsson & Bosch, 1998], the steps of its method are:

1. Incorporate new functional requirements in the architecture. Although software
engineers generally will not design a system less reliable or reusable, the software
qualities are not explicitly addressed at this stage. The result is a first version of the
application architecture design.

2. Software quality assessment. Each quality attribute (QA) is estimated, using primarily
scenario-based analysis for assessment technique. If all estimations are as good as or
better than required, the architectural design process is finished. Otherwise, the next
step is entered.

3. Architecture transformation. QA-optimization transformations are used to improve
the architecture. Each set of transformations (one or more) results in a new version of
the architectural design that has the same functionality, but different values for its
quality attributes.

4. Software quality assessment. The design is again evaluated and the process is repeated
form 3 until all software quality requirements are met or until the software engineer
decides that no feasible solution exists.

As we have mention the incorporation of requirements in the architecture has already been done
in the previous phase of SARiM and, following ReeF, the software quality assessment is done in

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 209

the next phase. Thus, in this phase we will focus on the QA-optimization transformations of the
architecture. The iterative nature of the Scenario-based Architecture Reengineering [Bengtsson
& Bosch, 1998] is also stated in SARiM, so it is possible to iterate through these phases as
proposed by their method.

Therefore, in this section we focus on the five categories of architecture transformations that
have been identified: 1) Impose architectural style; 2) Impose architectural pattern; 3) Apply
design pattern; 4) Convert quality requirements to functionality; and, 5) Distribute requirements.
In the following sections we explain and exemplify how these steps are adapted in SARiM. As
imposing architectural styles, patterns, and designs patterns are based on the same underlying
ideas, we address them in a unique section.

8.5.2. Pattern-based Generation of Alternative Architectures

The Scenario-based Software Architecture Reengineering Method proposes to work with
architectures at different levels of granularity, each one addressing different concerns.
Therefore, when imposing an architectural style, we are deciding the major reorganization of the
architecture and determining its software quality requirements. Architectural patterns generally
impose a rule on the architecture that specifies how the system will deal with one aspect of its
functionality. The application of a design pattern generally affects only a limited number of
components in the architecture.

From these definitions we can observe, that architectural patterns are predominant in the
architecture, design patterns affect a larger part of the architecture, and, design patterns
represent a less dramatic transformation that do not cause the complete architecture to be
reorganized. In addition, a component can be involved in multiple design patterns without
creating inconsistencies. Despite they affect different levels of the architecture all these
solutions generate alternative architectures by using predefined patterns. Consequently, we refer
to them with the term Generic i* Architectural Patterns, which includes architectural patterns,
architectural styles and design patterns. Therefore, the guidelines we provide can be used for
doing different kinds of architectural transformations that, if needed, can be applied at different
levels in the same architectural solution. We divide this process in the Definition of the Generic
i* Architectural Patterns and the construction of the Alternative i* Models from the generated
patterns.

8.5.2.1. Definition of Generic i* Architectural Patterns

In this subsection we study the definition of architectural patterns expressed through i* SD
models that we call Generic i* Architectural Patterns. These patterns are maintained in a pattern
repository and are created by transforming existing architectural solutions than may come either
from established knowledge or from real projects. Patterns may be created either during a
particular execution of SARiM or as a parallel process of maintenance of the repository. We
remark that the guidelines for the generation of the Generic i* Patterns are only applied once for
each architectural pattern, allowing reusability when reapplying the method.

An i*-based Reengineering Framework for Requirements Engineering

210

Pattern Preliminaries: Pattern Selection. There are many architectural patterns that can be
used for generating software architectures. So, in order to generate alternative architectures
in a controlled way, we will only explore those patterns that help the achievement of the
quality attributes we want for the final software system. As we have used the CBSP
approach, we can use a structure similar to the Property to Style Mapping Table
[Grunbacher et al., 2004]. However, most of the quality attributes are represented as
softgoals in the i* model and this makes possible to use other techniques for selecting the
patterns to apply. For instance, to use the NFR [Chung et al., 2000] approach for modelling
the contributions of each softgoal to the architectural patterns and, then, select those with a
positive contribution. It is also possible to check the properties of each pattern in a pattern
catalogue [Buschmann et al., 2001], or a feature-solution graph [deBruin & vanVliet, 2001].

For instance, as we show in Figure 8.5 if the quality attribute to achieve is Maintainability we
may select a Blackboard pattern, and if Exchangeability is needed, we may select a layered
architecture. None of these architectural solutions have to be selected if efficiency is a crucial
point for the architecture.

Figure 8.5. Contributions of the different properties to the attributes following the NFR approach

Pattern Guideline 1: Actor Identification. Once the pattern is selected, we analyse it in order
to identify the architectural components suggested by the pattern. Each component will be
modelled as an actor in the i* model of the new alternative architecture.

For instance, in the Blackboard architectural pattern as defined in [Buschmann et al., 2001],
three actors are identified: the Blackboard, the Knowledge Source and the Control. We remark
that, according to the pattern documentation, several Knowledge Sources can be used.
Moreover, in some cases, the specific number and name of the components remains undefined
in the pattern. For instance, that is the case of the Layers architectural pattern as defined in
[Buschmann et al., 2001]. In this situation, in order to discover all the actors we have first to
determine the number of layers and the abstraction level that they represent. This can be done
by applying our own criteria or by adapting the criteria used to define other layer architectures,
such as the OSI 7-Layer Model or the TCP/IP protocol [Buschmann et al., 2001].

Pattern Guideline 2: Definition of the Generic i* Architectural Pattern. Once the actors are
defined, the architectural solution is deeper analysed in order to abstract the general
responsibilities of each actor and the generic dependencies with the other actors. As a result
we obtain a Generic i* Architectural Pattern. The information needed for such an analysis is
the one documented in the architectural solution.

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 211

In order to enforce the link between requirements and architectures when deciding the kind of a
certain dependency, we use the six CBSP architectural dimensions proposed in [Grunbacher et

al., 2004] into the i* constructs (see Table 8.5 in the previous section). For further reuse of the
documented Generic i* Architectural Pattern the source of the pattern and the decisions taken
during its definition have to be documented.

In Figure 8.6 we show how we define the Generic i* Architectural Pattern for the Blackboard

architectural pattern. At the left of the figure we can see the classes and their responsibilities as
they are documented in [Buschmann et al., 2001]. We can also observe that we add an i* actor
for each of the classes of the pattern. The dependencies are established as follows:

� The Blackboard manages central data, which is a system feature and so, it is modelled as the
goal dependency Central data is managed. As central data is a data component, a resource
dependency Central data is also stated. As both the Knowledge Source and the Control
depend on the Blackboard for the central data management, each dependency appears twice.

� The Control monitors the Blackboard and schedules the Knowledge Sources activations.
Both are system features and so they are represented as goal dependencies. Thus, the
Blackboard depends on the Control for Blackboard is monitored whilst the Knowledge
Source depends on the Control for the goal Knowledge source activations are scheduled.
We remark that the Control monitors the Blackboard by analysing the Central data (which is
an already existing dependency). On the other hand, as the Control involves a process for
scheduling the Knowledge Sources, we need a task dependency stating that the Control
depends on the Blackboard for Activate knowledge sources.

� The Knowledge Source evaluates its own applicability by using the central data. Thus, the
Blackboard depends on the Knowledge Source for the goal Knowledge source applicability

is evaluated. The Knowledge Source has the responsibility to compute a result (which
involves a data component) and to update the Blackboard (which involves a processing
component). Thus, the Blackboard depends on the Knowledge Source for the resource
Computed result, and the Knowledge Source depends on the Blackboard for the task Update

blackboard.

Figure 8.6. Abstraction of the Generic i* Pattern for the Blackboard architectural pattern

An i*-based Reengineering Framework for Requirements Engineering

212

8.5.2.2. Constructing Alternative i* Models from the Generic i* Architectural Patterns

In this subsection we study the generation of the Alternative i* Models from the Generic i*
Architectural Patterns that we have generated.

Pattern Guideline 3: Actors analysis and matching. Using the Source i* Architecture Model
and the Generic i* Architectural Pattern of the solution to be applied, we analyse the
dependencies in both models in order to match the related elements and establish the
equivalence between the Source i* Architecture Model actors and the Generic i*
Architectural Pattern actors. As we have previously proposed in Section 8.3.1 and it is
described in [Grau & Franch, 2007c], in both groups we distinguish the four kinds of actors:
Human, Organizational, Software and Hardware.

We remark that there are some actors on the Source i* Architecture Model that may not have an
equivalence in the Generic i* Architectural Pattern and viceversa, for instance the actors that
represent humans, organizational or hardware components in the Source i* Architecture Model
are not typically actors of the Generic i* Architectural Patterns. This aspect is solved in the next
guideline with the reallocation of responsibilities.

If we match the concepts of the Home Service Robot (HSR) and the Blackboard architectural

pattern we can observe that the HSR involves a human actor (the User), a software actor (the
Single Board Computer that is the component that controls the HSR), and several hardware
actors that interact with the user (i.e., Front Camera, Microphones, Actuator, etc., see Section
8.2 for more details). However, we can also observe that, although the actors on the Generic i*
Architectural Pattern and the ones on the Source i* Architecture Model conform two disjoint
groups, the HSR software actor that controls the HSR can be refined into the set of actors
proposed by Blackboard i* architectural pattern.

The Blackboard architectural pattern contemplates the possibility of having several Knowledge
Sources. The strategy we follow to decide the number of Knowledge Sources and their specific
responsibilities is to analyse other existing blackboard configurations specific for robots.
Among them we have chosen the one proposed in [Shaw & Garlan, 1996], which suggest the
following Knowledge Sources, that we model as actors in the alternative i* architecture model:
the Lookout, which monitors the environment for landmarks; the Pilot, which is in charge that
planning the current path and control the robot actuators; and, finally, the Map Navigator, which
plans the high-level path. The actor Control of the Blackboard i* architectural pattern
corresponds to the Captain component in [Shaw & Garlan, 1996] and the hardware actors can be
considered as the perception subsystem in [Shaw & Garlan, 1996]. See Figure 8.7 for a
representation of the mentioned actors and their responsibilities.

Pattern Guideline 4: Reallocation of responsibilities. Once the actors of the Source i*
Architecture Model and the Generic i* Architectural Pattern have been analysed, we create
the new alternative i* architecture model with: the software actors of the Generic i*
Architectural Pattern; and, the human, organizational, and hardware actors of the Source i*
Architecture Model. As the actors of the Source i* Architecture Model may not be
considered on the Generic i* Architectural Pattern, the dependencies related with these
actors have to be reallocated on the actors suggested by the pattern. This reallocation is

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 213

done by matching the different elements in both models until having the entire Source i*
Architecture Model dependencies represented following the structure of the Generic i*
Architectural Pattern.

As a result of the matching activities we create a new alternative i* architecture model with the
human and hardware actors of the Home Mobile Robot Source i* Architecture Model and the
software actors of the Blackboard i* architectural pattern as it has been customized applying the
previous guideline (see Figure 8.7). Once this is done, the reallocation of responsibilities is
carried out as follows: the processes for locating the user, analysing the distance with objects
and detecting predefined intrusions patterns fall into the Lookout actor; the current path
planning, including the control of the movement actuators (rotation and advance functions) fall
into the Pilot actor; the analysis of the current position and the planning of the tele-surveillance
path, remain inside the Map Navigator; and, finally, the interpretation of user commands and the
monitoring of all his/her actions is done by the Control actor. Dependencies steaming from or
going to the hardware actors remains unchanged on the hardware actors’ side and are
reallocated into the Blackboard actor in the Software side, the rest are reallocated in the
software actors as mentioned.

Figure 8.7. Alternative i* SD Model generated from adapting the HSR’s Call & Come functionality with

the Blackboard Generic i* Architectural Pattern

An i*-based Reengineering Framework for Requirements Engineering

214

8.5.3. Convert Quality Requirements to Functionality

Another type of transformation proposed in [Bengtsson & Bosch, 1998] is the conversion of a
software quality requirement into a functional solution. This solution consequently extends the
architecture with functionality not related to the problem domain but is used to fulfil a software
quality requirement. Exception handling is a well-known example that adds functionality to a
component to increase the fault-tolerance of the component.

In the i* context the conversion of quality requirements to functionality is equivalent to the
operationalization of softgoals. Therefore, we propose to apply local heuristics either to the
current architecture or to any of the obtained candidate architectures. For instance, an action to
be adopted for making the system more robust against the failure of a certain component would
be to duplicate this component by means of the following heuristic:

Duplicated Hardware Component Heuristic. This heuristic duplicates a hardware actor and
the dependencies that stem from or go to it.

In Figure 8.8 we show an excerpt of the i* model before and after this heuristic is applied in
order to improve Video Data fault-tolerance by duplicating the Front Camera. We remark that
the Video Data resource is in fact duplicated since the HSR receives two inputs, whilst the Good

Visibility softgoal is not duplicated because the environmental conditions are the same for both
cameras.

We remark that this solution supports especially the Fault tolerance quality factor because
duplicating a hardware component makes the system more robust against hardware failure. It
also improves the accuracy of the results since there are two data to detect and correct
transmission errors. However, these local solutions may have some negative effect on the
efficiency of the system (more time and space required to process data), the complexity of the
data processing algorithm and, of course, the overall system cost.

Figure 8.8. Applying the Duplicated Hardware Component heuristic to improve fault-tolerance

8.5.4. Distribute Requirements

The final type of transformation proposed in [Bengtsson & Bosch, 1998] deals with software
quality requirements using the divide-and-conquer principle: a software quality requirement at

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 215

the system level is distributed to the subsystems or components that make up the system. Thus,
a software quality requirement is distributed over a certain number of components that make up
the system by assigning a software quality requirement to each component. A second approach
to distribute requirements is by dividing the software quality requirement into two or more
software quality requirements. For example, in a distributed system, fault-tolerance can be
divided into fault-tolerance computation and fault-tolerance communication.

8.6. Phase 5: Evaluation of the Alternative Architectures

There are many proposals that address the evaluation of alternative architectures. Most of the
methods that evaluate architectures at their early stages use scenario-based techniques; and, the
ones that focus on the evaluation of behaviour and performance work at a lower level of detail
by using Architecture Description Languages. Most of the work for evaluating i* models use
reasoning-based techniques [Yu, 1995]. However, we are more interested in the use of structural
metrics [Franch & Maiden, 2003], [Franch, Grau & Quer, 2004a], [Franch, 2006], [Bryl et al.,
2006].

We remark that, from an architectural point of view, SD models are more interesting than SR
models, because they focus on the relationships among different actors that cooperate for
satisfying some goals, whilst SR models provides the insights inside the actors. Because of that,
based on the structure of the i* SD models, it is possible to analyse the degree of fulfilment of
the quality attributes for each alternative architecture, which allows evaluating the generated
alternatives and informing their selection. As we have presented in Section 3.6, Chapter 4 and
[Franch, Grau & Quer, 2004a]), metrics are defined in terms of the actors (actor-based metrics)
and the dependencies (dependency-based metrics) of the model.

In order to guide the definition of the filters and correction factors proposed by the metrics and
perform the evaluation of the generated architectures, we have summarized the guidelines
proposed in Section 4.6, into the following guidelines.

Evaluation Preliminaries: Quality Attributes Selection. Quality attributes tend to be non-
functional requirements or constraints that have already arisen in the previous phases of the
method and, as such, they are modelled as softgoals in the Source i* Architecture Model.
However, not all the quality-attributes are equally important and, thus, we have to choose
the most relevant to the new architecture. This can be done using different techniques being
one of them prioritising the requirements (e.g., by considering individual stakeholder
ranking of properties).

Evaluation Guideline 1: Defining the Evaluation Goal. The Goal Question Metric (GQM)
paradigm [Basili et al., 1994] is commonly used for defining metrics. For instance, in
[Fenton & Fleeger, 1996] the GQM is used to analyse what has to be measured. In our case,
the scope of measurement is restricted, as we already know that we want to measure the
degree on what the software architecture ensures a quality attribute. Thus, the general form
of the evaluation goal will be: To evaluate the <quality attribute> of the modelled software
architecture in order to assess it.

An i*-based Reengineering Framework for Requirements Engineering

216

For instance, the evaluation goal for assessing the quality attribute maintainability is: To

evaluate the maintainability of the modelled software architecture in order to assess it.

Evaluation Guideline 2: Defining the Goal Questions. Once the goal is defined, questions for
evaluating the goal have to be defined, in the same way as it is proposed in [Basili et al.,
1994] and applied in [Fenton & Fleeger, 1996].

For instance, for assessing the goal defined for maintainability, the question is: What elements

do affect maintainability? In the literature, there is evidence that maintainability is better
achieved it in those architectures that present a low level of coupling and a high level of
cohesion [Buschmann et al., 2001].

Evaluation Guideline 3: Defining the Goal Questions Metrics. Metrics are used to assess the
questions and, as we have explained at the beginning of this section, they can be actor-based
or dependency-based according to [Franch, Grau & Quer, 2004a]. For deciding the kind of
metric we propose to define the following questions: What are the architectural elements

that are more relevant for the quality attribute? If the components are more relevant, we
define an actor-based metrics. If the connections are more relevant we will define a
dependency-based metric.

Once the kind of metrics is defined, we have to choose the values to be assigned to filterM(a)
and correctionFactorM(a) in actor-based metrics, and the ones for filterM(u),
correctionFactorM,der(a) and correctionFactorM,dee(b) in dependency-based metrics. For guiding
the selection of the most suitable structural element, we propose the set of questions shown in
Table 8.6. The contents of the table was defined after the analysis of the structural elements on
the i* framework presented in Chapter 4, adapted to the domain of software architectures.

Table 8.6. Questions, answers and examples for stating the filters and correction factors of actor-based

metrics

Metric element Question Answer Example Value
1.1. Actor-based: filterM(a)

Does the kind of the actor or the actor itself affect the quality attribute?
No FilterM(a) = 1

w, if a ∈ Human
x, if a ∈ Software
y, if a ∈ Hardware

Yes, the kind of component affects
the quality attribute.

FilterM(a) =

z, otherwise
m, if a = Actor_A
n, if a = Actor_B

Yes, the specific component affects
the quality attribute

FilterM(a) =

...
1.2. Actor-based: correctionFactorM(a)

Do the actor dependencies or the actors related with the dependencies affect the quality
attribute?

No CorrectionFactorM(a) = 1
1 Yes, the number of dependencies

affects it.
CorrectionFactorM(a) =

#Dep(a)
1 Yes, the number of dependencies

ER affects it.
CorrectionFactorM(a) =

#Deper(a)
1 Yes, the number of dependencies

EE affects it.
CorrectionFactorM(a) =

#Depee(a)
1

Yes, the number of actors related
with a affects it.

CorrectionFactorM(a) =
#Actor(a)

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 217

In Table 8.6 we present the set of questions for actor-based metrics. We observe that a certain
actor can be filtered according to its kind and the specific component it represents. A correction
factor can be applied if the number of dependencies related with the actor (#Dep(a)) negatively
affects the quality attribute; if only the dependencies where the actor is a depender (#Deper(a))
negatively affects the quality attribute; if only the dependencies where the actor is a depender
(#Depee(a)) negatively affects the quality attribute; or, if it is the total amount of actors related
with the actor (#actor(a)) that negatively affects the quality attribute.

As we have mentioned before, maintainability is better achieved in those architectures that
present a low level of coupling and a high level of cohesion. In the structure of the i* models a
low level of coupling can be measured by stating an actor-based metric, where the number of
actors related with the current actor negatively affects the property (see Section A.1 for the
complete definition of the Architectural Coupling metric):

1
Actor-based coupling metric: filterM(a) = 1 and correctionFactorM(a) =

#Actor(a)

In a similar manner, cohesion is related with the number of dependencies that steam from or
goes through each actor. If the same dependency appears more than once, cohesion is damaged.
In this case we can define a dependency-based metric as follows (see Section A.2 for the
complete definition of the Architectural Cohesion metric):

1 correctionFactorM,der(a) = 1
Dependency-based cohesion metric: filterM(u) =

#Duplicated(u)
 and

correctionFactorM,dee(b) = 1

Evaluation Guideline 4: Evaluating the Metrics. The evaluation of the metrics is done by
applying the corresponding actor-based or dependency-based formula with the values stated
in the previous guideline. As alternative i* architecture models can be large and complex,
tool support is essential. As we have mentioned in the previous Chapters, we use J-PRiM
[Grau, Franch & Ávila, 2006] to support the evaluation of the alternatives according to the
defined metrics.

In order to show the application of the metrics, we have generated and evaluated 4 different
alternatives architectures for the HSR. In Figure 8.9. we show an schema of how the
dependencies are distributed according to the patterns: A) Blackboard; B) 8-Layers defining the
8 levels as proposed in [Shaw & Garlan, 1996]; C) 3-Layers defining the 3 levels as proposed in
[Buschmann et al., 2001], and D) a Control-loop as defined in [Shaw & Garlan, 1996].

An i*-based Reengineering Framework for Requirements Engineering

218

D

D D D

D

DD

D

D

D D

D

D

D D D D

D

D D D

D

Figure 8.9. Schema of the generated alternative i* architecture models

The results of the evaluation are presented in Table 8.7. According to the coupling metric, we
observe that those alternative i* architecture models where there are more components and these
components have dependencies with few other ones, score better for coupling (e.g., Layered
architectures, being 8 levels better than 3). On the other hand, those alternative i* architecture
models where there are less dependencies for data interchange between different components,
score better for cohesion (e.g., the Control loop architecture is more cohesive than the Layered
architectures). Therefore, the solution that provides a better trade-off of these aspects is the
Blackboard pattern.

Table 8.7. Evaluation results for the metrics indicating cohesion and coupling over 4 different

architectural styles

Property
Blackboard

pattern
8-Levels layered

architecture
3-Levels layered

architecture
Control-loop
architecture

Coupling 0,6250 0,5814 0,6065 0,8125
Cohesion 0,5217 0,1611 0,4000 0,9500

8.7. Summary of SARiM Decisions

There is a recognized gap between requirements and architectures. There is also evidence that
architecture generation and evaluation, when done at the early phases of the development
lifecycle, is an effective way to ensure the quality attributes of the final system. In order to
address these issues during the requirements process, we have adopted a reengineering point of
view and we have customized ReeF by using the i* framework as a modelling framework and
by adapting some well-know software architecture techniques. In this section we evaluate the
adopted decisions.

Chapter 8. SARiM: A Software Architecture Reengineering i* Method .

 219

Adopting of a reengineering approach. There is evidence that different alternative
architectural solutions satisfy different quality attributes and, so, the exploration and
evaluation of alternatives are usual activities during software architectures processes. In
SARiM, we do not consider the generation and evaluation of alternative architectures as an
isolated process but as a part of a reengineering framework, that we have named ReeF
[Grau & Franch, 2007a]. There are two reasons than enforce this decision. First, most of the
reengineering approaches consider the generation and evaluation of alternative solutions.
Second, several proposals in the field of software architectures also follow a reengineering
approach, among them we remark [Bengtsson & Bosch, 1998], [Kang et al., 2005], [Kim et

al., 2005].

Using the i* framework for representing software architectures. Many researchers have
realized that, to obtain the benefits of an architectural focus, software architecture must be
provided with its own body of specification languages and analysis techniques [Medvidovic
& Rosenblum, 1997]. According to [Grunbacher et al., 2004] this gap is mainly due to the
different representation of concepts in requirements and in architectures. Because of that,
goal-oriented models [vanLamsweerde, 2001] are an adequate formalism for representing
software architectures. Among the different existing goal-oriented proposals, we remark the
i* framework [Yu, 1995], a goal-oriented modelling language that allows representing the
functional and non-functional requirements of an architecture using actors and dependencies
instead of components and connectors. There are several proposals that enforce this
decision, among them [Yu, 1997], [Kolp et al., 2003], [Bastos & Castro, 2004], [Penserini
et al., 2006]. Because of that, we have analyse the adequacy of using i* models for
representing and analyzing software architectures [Grau & Franch, 2007c].

Reengineering the current architecture. There are several methods that could have been used
to reengineer the current architecture in SARiM. The benefits for choosing the CBSP
approach [Grunbacher et al., 2004] are twofold. On the one hand the classification of the
architectural concerns that it provides a strong analogy with the concepts provided by the i*
framework. On the other hand, the method classify and refine the requirements, and
captures the different trade-off issues and options, which provides an added value to the
adaptation of KAOS that we propose in PRiM.

Generation of alternatives. The use of architectural solutions is the most common approach
for generating software architectures [Bengtsson & Bosch, 1998], [deBruin & vanVliet,
2001], [Grunbacher et al., 2004], among others. On the other hand, existing work on the
generation of alternative architectures using the i* framework as a modelling language
adopt a similar approach. This work is mainly represented by [Kolp et al., 2003], [Bastos &
Castro, 2004], and it is oriented towards agent-oriented software architectures. In their
context, patterns are used for generating organizational architectures which are represented
in i*. Based on these patterns, the i* models are build by matching the concepts represented
in the i* organizational patterns with the functional and non-functional requirements for the
new software architecture. Therefore the generation of Generic i* Architectural Patterns and
its use for generating Alternative i* Models it is the most logical solution in this case. About
the technique we have adapted for driving this process, the two main reasons for selecting

An i*-based Reengineering Framework for Requirements Engineering

220

the Scenario-based Software Architecture Reengineering Method [Bengtsson & Bosch,
1998] are that: first, it contemplates reengineering and so, it is well linked to the phases for
incorporating new requirements and for assessing the alternatives; and, second, it is more
complete than other methods because it contemplates the generation of solutions by
converting requirements to functionality and distributing requirements.

Evaluation of alternatives. According to [Clements et al., 2002], there are several categories of
evaluation techniques: Questioning techniques allow investigating any area of the project at
any state of readiness and include scenario-based methods [Bengtsson & Bosch, 1998],
[deBruin & vanVliet, 2001]; Measuring techniques require the existence of some artefact to
measure and include the definition of metrics for an static analysis of the structure, being
common to use an Architecture Description Language for that purpose; and, Hybrid
techniques that combine elements from questioning and measuring techniques, such as the
ATAM method [Clements et al., 2002]. In a deeper analysis of the techniques used in each
category, we can observe that most of the methods that evaluate architectures at their early
stages use scenario-based techniques, and that Architecture Description Languages
represent a much lower level of detail and focus on the evaluation of the behaviour and
performance. In SARiM we generate the representation of the architecture by using the
information in the DIS templates (which are scenario-based templates), and we use a
quantitative approach for its evaluation as it is done in [Franch & Maiden, 2003], [Bryl et

al., 2006].

8.8. Conclusions

In this chapter we have customized ReeF into SARiM, a method for addressing the generation
and evaluation of alternative architectures from a reengineering point of view. Despite the
method has been made from different software architecture reengineering fields, the results of
its application on the Home Service Robot Case Study, show that it is consistent.

More academic and industrial case studies have to be done to obtain a complete validation of
SARiM. During its execution we could better define the catalogue of Generic i* Architectural
Patterns and the catalogue of Structural Metrics and we could refine some of its steps with more
heuristics, guidelines and lessons learned.

However, the preliminary results of applying SARiM in the Home Service Robot Case Study is
adequate for validating that ReeF can be customized into another domain of application such as
the domain of Software Architectures.

 221

9. Tool Support

The PRiM method and the customization of ReeF into other methods such as SARiM, involve
the execution of different phases and the application of different methods and techniques.
Although the methods can be applied manually, the use of tool support improves their
applicability and, because of that, we have used tool support since the inception of the method.

Our first proposal is REDEPEND-REACT, a graphical tool that assists the construction of
complex i* models. Once the models are constructed, REDEPEND-REACT supports the
generation and evaluation of alternatives. Despite being adequate for our earlier case studies,
REDEPEND-REACT is a graphical tool and, thus, as i* models grow, it gets slower, models are
difficult to manage, individual elements hard to locate, and the model layout has to be
rearranged every time a new element is inserted.

In order to solve these drawbacks and provide more complete support for the PRiM method, we
developed J-PRiM. The main difference between J-PRiM and other modelling tools is in the
way the i* elements are introduced and visualized. Usually i* modelling tools represent the
models as drawings whilst J-PRiM does not show the i* elements in a graphical way, but in a
textual tree-form hierarchy.

This chapter extends the work presented in [Grau, Franch & Maiden, 2005b] and [Grau, Franch
& Ávila, 2006] and it is organized as follows. In Section 9.1 we present REDEPEND-REACT,
the VISIO graphical tool that allows the generation and evaluation of alternatives. In Section 9.2
we present J-PRiM, the JAVA tool that represents the i* elements textually and supports the
phases of the PRiM method. We compare these tools to other i* modelling tools in Section 9.3.
Finally, Section 9.4 presents the conclusions.

9.1. REDEPEND-REACT: Graphical Tool Support for PRiM

REDEPEND is a graphical modelling tool implemented as a Microsoft VISIO plug-in that
enables to model and analyse complex i* SD and SR models and has been used extensively to

An i*-based Reengineering Framework for Requirements Engineering

222

produce i* models in several projects [Pavan et al., 2003]. The main functionalities of
REDEPEND are:

� The development of i* models by dragging and dropping the different i* shapes (actors,
goals, softgoals, resources, tasks and dependencies) from the VISIO stencil to the drawing
page;

� The validation of i* SD and SR models by means of syntax checks and an attribute
indicating the degree of checking of each of the elements;

� The analysis of the resulting model by means of reasoning based techniques; and,

� The automatic generation of requirements documents from the non-functional requirements
represented in i*, which are documented following the VOLERE template.

REDEPEND-REACT is an extension of REDEPEND that has been developed to support the
generation and evaluation of alternative architectures of components as it is presented in
[Franch & Maiden, 2003], [Grau, Franch & Maiden, 2005b]. However, as the provided
functionalities are based on the i* constructs, it has been possible to adapt this functionalities
and add some other ones to support the phases of the PRiM method related with modelling the
current situation with i*, generate alternatives and evaluate the resulting alternatives. In Figure
9.1 we show the Use Case diagram of REDEPEND-REACT, for more information about this
tool we refer to [REDEPEND-REACT website].

REDEPEND-REACT

Build the i* SD

model

Manage an actors

catalogue

Generate

alternative

architectures

Define properties

over the i* SD

models

Evaluate

alternative

architectures

Manage a software

components

catalogue

Requirements

Engineer

Software

Architect

COTS Market

Expert

Figure 9.1. Use Case diagram of the functionalities implemented in REDEPEND-REACT

9.1.1. REDEPEND-REACT: Modelling with the i* Framework

To facilitate the development of the i* models with the PRiM method we have added some
additional functionality to facilitate the construction of the Operational i* Model on Phase 2.

Chapter 9. Tool Support .

 223

REDEPEND-REACT does not support the documentation of the process in DIS and its
transformation into the i* constructs. However, it helps to draw the model following the rules
for the Operational i* Model. Concretely, we propose to decompose an actor into its main goal
as it is suggested by the method. Then, this goal can be means-end decomposed into activity-
tasks, which are drawn following a sequential order in the SR model and, in turn, are
decomposed into action-tasks in the same order they are stated in the DIS. For doing so in a
more agile way, the REDEPEND stencil has been enriched with new shapes for drawing
activity-tasks, action-tasks and dependencies between them. The resulting structured diagram
facilitates the understanding of the i* model and the location and modification of its elements. A
screenshot of the resulting model is presented in Figure 9.2. We remark that, in addition to these
facilities, the i* shapes can be ordered in any position through the VISIO drawing page and that
softgoals and goals representing the Intentional i* Model can be added whenever are needed.

Figure 9.2. Defining an SR model following the PRiM guidelines in REDEPEND-REACT

In order to allow reuse and return on investment, REDEPEND-REACT also provides an actor
catalogue. This catalogue contains different kinds of actors (software, human, organization or
hardware), that can be used for defining models by dragging & dropping them to the central
page. In the catalogue the main SR decomposition of the actor and some of its most
representative dependencies can be stored, making the definition of the model easier because of
the reuse of constructs. Following the same principle, a components catalogue is provided, the
aim of this catalogue is to be used when working with architectures of components, and so, it

An i*-based Reengineering Framework for Requirements Engineering

224

allows recording the available components and stating which software actors are covered by
each component.

9.1.2. REDEPEND-REACT: Support for the Generation of Alternatives

The generation of alternatives can be done by duplicating the Source i* Model and modifying
directly in the drawing page. The tool allows duplicating and merging actors to facilitate this
task. As a result, each alternative is shown as a different i* model in an independent VISIO
drawing page.

When working with architectures of components, it is also possible to generate the alternative
models automatically. Thus, automatic generation heuristics are based on the fact that, from an
architectural point of view, it is possible to instantiate the actors of the i* model (at the role
level) with certain combinations of the components stored in the Components Catalogue (at the
agent level) [Grau, Franch & Quer, 2005], [Grau & Franch, 2007c]. The heuristics use the actors
stored in the components catalogue and are the following:

� Architectures with an actor covered for more than two components are recommended if
there are many dependencies between those two actors.

� Architectures with an actor covered for more than two components are not recommended
because it is not a usual situation.

� Only architectures covered with a set of existing components are recommended by the tool.

REDEPEND-REACT offers a feature to state a limitation on the coverage of a particular actor,
and allows the concept of anchoring: a software actor is anchored if it is covered by a software
subsystem whose selection is not negotiable. Therefore, the user can indicate which actors are
anchored (not possible to instantiate with a component) and the maximum number of times the
actor can be instantiated. Based on this information, the alternatives are generated.

9.1.3. REDEPEND-REACT: Support for the Evaluation of Alternatives

In order to evaluate the generated alternatives, REDEPEND-REACT allows defining metrics for
the properties that are interesting for the system being modelled. These metrics are defined in
terms of the actors and dependencies of the models and the results of their evaluation are used to
analyse and compare the different generated solutions. Figure 9.3 shows an Actor-Dependency
metric for the Security Property in REDEPEND-REACT.

As properties addressing non-functional aspects such as security, efficiency and so on are likely
to appear over and over in system analysis, it becomes useful to have a catalogue of metrics for
such properties, just as it is done with the actor’s catalogue and the components catalogue.

The metrics defined in the Properties Catalogue can only be of a certain kind. However, in order
to allow computing more elaborated metrics, it is possible to export all the generated
architectures to an EXCEL file. Once the exportation is finished, it is possible to tune the values
of the metrics on the new file and define more elaborated metrics by using the formulas and
other facilities provide by EXCEL and automatically update the provided results.

Chapter 9. Tool Support .

 225

Figure 9.3. Part of the definition of a Dependency-based Metric for the Security Property in

REDEPEND-REACT

9.2. J-PRiM: Specific Tool-Support for PRiM

In order to provide complete support for the PRiM method, we propose J-PRiM [Grau, Franch
& Ávila, 2006], a Java tool that we have developed within the Eclipse framework that runs over
a MySQL database and is compliant with the i* metamodel presented in [Grau et al., 2005]. The
main difference between J-PRiM and other modelling tools is in the way the i* elements are
introduced and visualized. Usually i* modelling tools represent the models as drawings as in
REDEPEND-REACT. However, J-PRiM does not show the i* elements in a graphical way, but
in a tree-form hierarchy.

In Figure 9.4 we present the Use Case diagram for the functionalities provide by J-PRiM. For
more information about J-PRiM can be found at [J-PRiM website].

An i*-based Reengineering Framework for Requirements Engineering

226

Figure 9.4. Use Case Model for the main functionalities developed in J-PRiM

9.2.1. Modelling the i* Framework in J-PRiM

J-PRiM is a Java tool that allows i* SD and SR modelling. This can be done either when using
the methodology or when developing models from scratch. In J-PRiM, the i* elements are
shown in a tree-form hierarchy (see Figure 9.5, left). Because of that, changes over the i* model
are executed by clicking on the element and choosing the corresponding action on the menu.
This textual visualization has several advantages:

� Unlimited number of elements in the i* model. In the graphical tools, it is more difficult
to manage models with many actors and dependencies due to the fact they have to be
located in a physical drawing each one occupying its space.

� Ordered view of the i* elements. As it has been mentioned in Section 2.2, there is no way
to represent the temporality in the i* models unless the elements are defined in a certain
order, this is difficult to do in a drawing but easier if the elements are listed in the hierarchy-
tree.

� Easy reordering of the elements of the i* model. It is possible to reorder the SR elements
and the dependencies by moving up and down its elements.

� Different visualizations of the i* model. Actors, SD dependencies and SR elements can be
viewed in different ways (grouped by SR, SD, actor, attributes or steps where they have
been generated in PRiM).

� Easy search for elements. It is possible to look for a certain element in the i* list and to
locate it easily.

Chapter 9. Tool Support .

 227

� Graphical visualization of the i* model by exporting through iStarML. In is possible to
export the models generated with J-PRiM to iStarML [Cares et al., 2007], the XML
interchange format of the i* tools. The iStarML export facilities makes possible to visualize
the generated models to any graphical modelling i* tools that imports that format.

Figure 9.5. Screenshot of J-PRiM, showing the tree-form organization of the i* model (left) and a view

of the actors catalogue (right)

9.2.2. Specific Support for the PRiM method

As we have introduced in Chapter 3, the PRiM method addresses i* modelling from the process
reengineering perspective, where the specification of a new system starts from the observation
of the current process and ends with the achievement of the specification of the system to-be. To
guide the application of the methodology, all the phases and steps are ordered in tabs (see
Figure 9.3, Figure 9.4 and Figure 9.5, where phase tabs are at the top, and step tabs are at the
bottom grouped by their phase). As PRiM is an iterative process that can be refined by going
back on its steps, the tool allows changing the data introduced in a previous step and reapply the
method. Traceability over these changes is not recorded by the tool.

9.2.2.1. Phase 1: Analysis of the Current Process

In the first phase of PRiM, the current process is analysed and the information obtained is
summarized into Detailed Interaction Scripts (DIS). DIS are tables that describe the information
of each activity of the current process by means of its preconditions, postconditions, triggering

An i*-based Reengineering Framework for Requirements Engineering

228

events, and a list of the actors, actions and resources involved in the activity. J-PRiM allows to
define the activities of the process and to fill the DIS templates by providing forms.

9.2.2.2. Phase 2: Constructing the i* Model of the Current Process

In the second phase, the construction of the i* model begins with the identification of the actors
of the system, and accordingly, the tool provides the actors introduced in the previous phase as
the starting list. The i* model is built in two differentiated steps in order to distinguish the
functionality performed by the stakeholders from their strategic intentionality. PRiM provides
prescriptive rules for generating the Operational i* Model of the system from the DIS and, as
those rules are very specific, the tool generates the i* model automatically (see Figure 9.6 for a
screenshot of this functionality). Based on the Operational i* Model and several guidelines, the
tool also guides the user for obtaining the Intentional i* Model.

9.2.2.3. Phase 3: Reengineering the Current Process

In the third phase, the process is analysed for improvements in order to be reengineered. J-PRiM
supports this process by allowing to state for the whole process and also for each activity, which
problems has been detected. Once this is done, the detected problems are transformed into goals
or softgoals for the new system. These new goals and the ones identified in the system as-is, are
analysed and classified into: achieve, maintain, avoid, cease, and, optimize goals; such as it is
proposed in the KAOS approach [Dardenne et al., 1993]. The tool also allows prioritizing and
grouping goals for a better analysis.

Figure 9.6. Screenshot of J-PRiM, showing the generation of the Operational i* Model on Phase 2

Chapter 9. Tool Support .

 229

9.2.2.4. Phase 4: Generation of Alternatives

In the fourth phase process alternatives are systematically generated by means of adding new
actors to the system, removing existing actors, and reallocating the responsibilities between the
others. The tool provides:

� Automatic generation of all the possible combinations according to some predefined
filters. This functionality is similar to the one provided by REDEPEND-REACT, and
allows to state the actors that can are anchored (i.e. are not duplicated during the generation
of the alternatives) and how many times each actor can be covered by another actor.

� Assisted distribution of responsibilities between actors. The tool assists the user to apply
its own patterns and strategies to distribute the goal responsibilities between the actors. As
the patterns still leave a certain degree of freedom when choosing the actors and
reallocating the goal responsibilities.

9.2.2.5. Phase 5: Evaluation of Alternatives

Both the alternatives generated automatically by the tool and the ones introduced by the user,
are evaluated in the fifth phase. J-PRiM assists the user in the selection of properties and the
definition of their metrics. As it is defined in the PRiM method and in [Franch, Grau & Quer,
2004a], the metrics can be actor-based or dependency-based. The tool has a wizard to help
deciding which kind of metric is more adequate and to select the structural metrics that affects
it, following the aspects presented in Section 4. Once this is done, the user can select all the
metrics for the properties that has to be evaluated and J- PRiM automatically evaluates the
models according to them. Additionally, J-PRiM also provides an specific interface for
evaluating the functional size with the COSMIC Method [Grau & Franch, 2007d], [Grau,
2008a], which allows to establish the boundaries of the system and automatically calculates the
resulting values, as it is shown in Figure 9.7.

9.2.2.6. Phase 6: Constructing the Specification of the New System

Finally, in the sixth phase, PRiM proposes the generation of the new system specification from
the i* model of the chosen alternative. This aspect is supported by generating in the interface a
table with all the use cases where the user has the possibility to change the resulting use cases
before printing them into an .html document.

9.3. Comparing i* Modelling Tools

9.3.1. Evaluating the i* Modelling Tools

The intensive use of the i* framework requires tools and methods to handle the complexity of
the resulting models. Because of that, the i* community has developed different i* modelling
tools that support these processes. Most of these tools are developed under open source
premises and make their code available for further development, however, as the i* community
research issues are diverse in nature, nearly each research group has created its own tool.

An i*-based Reengineering Framework for Requirements Engineering

230

Figure 9.7. Screenshot of J-PRiM, showing the evaluation of the functional size with the COSMIC

Method

With an aim of allowing a better comparison of the existing i* modelling tools we have created
a questionnaire to evaluate and compare the existing i* modelling tools. The questionnaire has
been designed by creating first a Quality Model of the i* modelling tools following the
techniques proposed in [Franch & Carvallo, 2003], [Grau et al., 2004]. As a result, we obtained
a list of suitable functional and non-functional attributes for the use and development of the
tools, including several categories:

� General Information. Including the tool name, version, involved group, web page, main
purpose of the tool, i* framework supported, current state and availability of the tool, and
technological requirements (platform requirements, programming language and other
technology used).

� i* Modelling Suitability. Evaluates how the tool allows to model i* SD and SR models, the
flexibility that provides to the user for doing so (representation and reordering of elements,
possibility of working with several models at the same time), and the analysis facilities of
the tool (checking and calculation).

� Usability. The usability is based on the understandability of the user interface and on the
documentation and other modelling facilities (guidelines, examples) provided by the tool.

� Maturity. The maturity is evaluated according to the number and size of examples and case
studies where the tool has been applied to.

Chapter 9. Tool Support .

 231

� Extensibility and Interoperability. As there are many tools and functionalities, it is
important to state how they can be used together by means of importing and exporting files
(for instance, XML), or by developing new functionalities.

The idea of the constructed quality model was to allow each development group to evaluate
their own tools. With this aim, the attributes obtained in the quality model were converted to
questions and, after being reviewed by two experts on i* tools, they have been published in the
i* tools section of the i* wiki [i* wiki]. Currently, there are up to 12 tools evaluated in the i*
wiki by following the questionnaire structure that has been filled by their own developers.

9.3.2. Comparing the i* Modelling Tools

In order to compare the different tools, we have filled a comparison table [i* wiki], Comparing

the i* Tools section. The tools that has been evaluated at the moment are: OpenOME and OME,
from the University of Toronto, Canada; TAOM4E, from the Itc-IRST in Trento, Italy; GR-
Tool, T-Tool and ST-Tool, from the University of Trento, Italy; jUCMNav, from the University
of Otawa, Canada; SNet Tool, from the RWTH Aachen University, Germany; DESCARTES,
from the Université Catholique de Louvain, Belgium; REDEPEND-REACT and J-PRiM, from
the Universitat Politècnica de Catalunya, Spain; and, finally, the commercial tool Microsoft
VISIO.

From the comparative of these tools it is possible to observe that all the i* tools have been
developed for supporting its own research method and that the i* framework that are supported
are mainly the seminal proposal [Yu, 1995] and TROPOS [Bresciani & Donzelli, 2003]. Only
OME, REDEPEND-REACT and VISIO allows to adapt the constructs to the different i*
variants. Most of the tools are a stable prototype version that stills being under development, but
authors made it available both for modelling and for development purposes. Java is the
programming language most used for developing the tools and they are usually run over
Windows.

All the tools support SD and SR modelling and allow working with both models together. This
is usually done by means of expandable elements (SD actors can be expanded into SR actors),
except in the cases of REDEPEND-REACT and J-PRiM because, as they construct the models
following PRiM, they always work with SR models that can be transformed in SD models (and
not the other way round). According to the way the models are constructed, the majority of the
tools support a graphical construction of the models (such as REDEPEND-REACT) and only J-
PRiM and the ST-Tool supports the construction of the models textually.

As far as we know, J-PRiM is the only tool that offers a textual tree-form representation for the
visualization and modification of the i* models. In the same line the ST-Tool allows entering
the elements textually but it does not allow visualising them textually. TAOM4E shows the
elements in a tree-form hierarchy for giving another view of the models and help the user to
locate them, but they can not be edited from the hierarchical tree. All the graphical i* modelling
tools allow to change the name, size and type of the actors and the dependums and to move the
elements across the drawing page. Some tools even provide functionality for the automatic
organization of the elements (OpenOME, REDEPEND-REACT, TAOM4E and jUCMNav).

An i*-based Reengineering Framework for Requirements Engineering

232

According to the checking facilities provided by the tools, SD and SR models are syntactically
checked by all the tools except OME. Some tools provide other checking facilities, that include
the ones supporting the analysis of the models (i.e., stating which elements has been checked by
the users, or stating if they are elements already satisfied in for the propagation of reasoning
labels). DESCARTES allows tracing the modelled elements.

As we have already mentioned, scalability is a major issue in i* modelling. The different tools
address scalability in different ways. For instance, in addition to expand SD actors into SR
actors, OPEN-OME, OME and ST-Tool allow to hide or unhide a certain element. In TAOM4E
the model can be developed in different drawings pages where each actor and dependum are
considered as unique through the different views of the models. REDEPEND-REACT does not
support scalability in either of these forms. On the other hand, J-PRiM allows expanding or
constricting any of the elements in the visualization tree and, for those models constructed with
PRiM it addresses scalability by working with each process activity independently and, so,
grouping the different elements by activities.

In this analysis we have seen that all the existing tools are different because they support
different methods and they address the i* issues in a different way. In order to help the
interoperability of the different tools there is an initiative for creating and using the iStarML
[Cares et al., 2007], a specific XML for interoperating the tools. J-PRiM is compliant with that
format and allows importing and importing XML files with the i* models information.

9.3.3. Comparing J-PRiM and REDEPEND-REACT

All the existing i* tools are intended to support a specific modelling or analysis method.
Therefore, in order to support PRiM we have developed our own tools. For our graphical tool,
REDEPEND-REACT we have adapted REDEPEND because VISIO provides a better support
for large models than JAVA applications, and, because it already have some embedded i*
modelling functionality. As we couldn’t found any textual tool in the way we wanted to support
PRiM we developed J-PRiM in JAVA.

In Table 9.1 we summarize the functionalities of REDEPEND-REACT and J-PRiM detailing,
for each of the steps of the PRiM method, which phases are supported by the tool, the level of
user information needed and the degree of automation. Therefore, some steps may not be
supported by the tools; steps that require the user to enter data are supported by forms; steps that
complete existent data but still require user expertise are guided; and, steps that can generate
new data without user interaction are automatically supported.

Chapter 9. Tool Support .

 233

Table 9.1. PRiM phases and steps, showing how each step is supported by REDEPEND-REACT and J-

PRiM

 Phases Steps REDEPEND-REACT J-PRiM
1 Analysis of the Current Process

1.1. Analysis of the Current Process Not Supported Forms
1.2. Documenting the Current Process into DIS Not Supported Forms

2 Construction of the i* Model
2.1. Actor Identification and Modelling Actor Catalogue Forms
2.2. Building the Operational i* Model PRiM modelling Automatic
2.3. Building the Intentional i* Model REDEPEND i* modelling Guided

2.4. Checking the Resulting i* Model Not Supported Automatic
3 Reengineering the Current Process
 3.1. Recording the current problems Not Supported Forms
 3.2. Obtaining Goals for the New System Not Supported Guided
 3.3. Classification and Prioritization of Goals Not Supported Guided
4 Generation of Alternatives

3.1. Automatic generation of Alternatives Automatic Automatic
3.2. Adding/Removing System Actors REDEPEND i* Modelling Forms
3.3. Reallocating Responsibilities REDEPEND i* Modelling Guided

3.4. Checking Consistency between Alternatives Not Supported Automatic
5 Evaluation of Alternatives

5.1. Choosing Suitable Properties Form Form
5.2. Defining Property Metrics Form Form
5.3. Evaluating Alternative Models Automatic Automatic

5.4. Evaluation Trade-off Analysis Not Supported Guided
6 Specification of the New System
 6.1. Generation of Use Cases Not Supported Guided
 6.2. Generation of Non-functional Requirements List Supported by REDEPEND Guided

9.4. Conclusions

The construction, analysis and manipulation of the i* models becomes more and more difficult
as the size of the models grow. Because of that, tools are a basic aspect of any i*-based method.
As the i* framework is a graphical modelling language, we have first developed REDEPEND-
REACT, which supports i* modelling, the generation of Alternative i* Models and its
evaluation using structural metrics. Because the usability of graphical tools decreases for big i*
models and also because the PRiM method requires many additional information to be
executed, we have developed J-PRiM, a Java tool that represents the models textually in a tree-
form hierarchy.

The tools we have developed are aimed to support the PRiM phases. However, they are also
intended to the basic i* modelling processes. In order to be complementary to other existing i*
modelling tools, both REDEPEND-REACT and J-PRiM are developed taking into account both
existing functionalities and our own modelling experience. Thus, on the one hand,
REDEPEND-REACT is a plug-in for REDEPEND, an already existing and broadly used
graphical modelling tool. In order to improve the usability of the tool, REDEPEND-REACT
offers functionality for automatic ordering the shapes and transforming SR models into SD
models. On the other hand, J-PRiM functionalities tackle typical limitations of graphical tools
such as the difficulty of ordering the graphical elements in the drawing page or the scalability of

An i*-based Reengineering Framework for Requirements Engineering

234

the drawn models when the complexity of the models grows. Because of that, J-PRiM shows the
models textually and, so, allows introducing the models textually.

Of course, there is more work to do with the existing tools. Some of the biggest issues are
interoperability with other modelling tools in order to allow the application of different
modelling and analysis techniques over the same model. This is currently being addressed with
the iStarML standard interchange format. Also, the tools are being improved based on our
experience on using them.

 235

10. Conclusions

In this thesis we have addressed the Requirements Engineering process from a Reengineering
point of view, with the aim of aligning the development and the evolution Information Systems
with the strategy of the organization. For doing it, we have selected the i* framework as a
modelling language because it allows to represent both the operational and the intentional level
of the organization. As a result we have used a Method Engineering approach for defining a
generic Reengineering Framework (ReeF) and we have defined and reused different existing
methods and techniques for defining two different i*-based reengineering methods, one for the
process domain (PRiM) and the other for software architecture domain (SARiM).

10.1. Contributions

The contributions of this thesis can be analysed from two different points of view: the definition
of the reengineering framework and the methods, and the definition of the i*-based techniques
that are used in the methods. The first part has been achieved as follows:

Definition of PRiM: a Process Reengineering i* Method. This method addresses the
reengineering of a current process (mainly social) into a socio-technical solution including
an Information System. In order to take into account both the strategic goals of the
organization and the functional and non-functional goals of the system it adapts different
techniques and provides new ones. More precisely:

� It adapts some techniques from Requirements Engineering for the analysis of the
current process (Phase 1) and the elicitation of the requirements for the new system
(Phase 3). The reallocation of responsibilities for the generation of alternatives (Phase
4) is adapted from the Business Process Reengineering domain.

� It proposes a method for building the i* model taking into account the intentional and
operational view of the process (Phase 2); and also the use of structural metrics for the
evaluation of the generated alternatives (Phase 5).

An i*-based Reengineering Framework for Requirements Engineering

236

� It uses the guidelines for the generation of the specification from the i* models (Phase
6) that is provided by some work in the i* community.

Definition of ReeF: a Customizable Reengineering Framework. The main contributions of
the framework are twofold. On the one hand, it proposes a procedure for defining a method
engineering framework based on existing methods. This method consists on the abstraction
of the concepts from an already existing method (PRiM), and its generalization by analysing
different methods from different reengineering domains. On the other hand, it proposes a
reengineering framework that is compliant with the Method Engineering principles.

Definition of SARiM: A Software Architecture Reengineering i* Method. SARiM has been
defined by customizing ReeF, and using those techniques of PRiM related with i*
modelling and the evaluation of i* models using structural metrics, and, some other related
software architecture reengineering methods. Previously to the construction of SARiM, we
have analysed the suitability of i* for representing Software Architectures.

During the construction of the reengineering methods we have used existing techniques
whenever possible. However, when this has not been possible, we have defined the following
i*-based techniques, which addresses the i* research questions mentioned in the introduction:

Definition of an i* modelling technique for the definition of i* models in the reengineering
context. The PRiM method proposes to define the i* model based on the analysis of the
reengineered processes and by applying two different steps in order to address both the
operational level and the strategic intentionality behind it.

Definition of heuristics and patterns for the generation of alternatives in the i* framework.
We have defined two different approaches for the generation of alternatives: a set of
guidelines for the reallocation of responsibilities between the i* actors (Phase 4 of PRiM),
and a set of guidelines for defining and using architectural patterns in i* (Phase 4 of
SARiM).

Definition of Structural Metrics for the evaluation of alternatives. We have provided a
general form for the definition of actor-based and dependency-based structural metrics
(Phase 5 of PRiM), a set of guidelines for defining the metrics (Phase 5 of SARiM) and an
approach for defining structural metrics by analogy with structural metrics from other fields.

Definition of a generic framework for defining i*-based methods by reusing reengineering
practices in other domains. As we have already mentioned, we have provided ReeF, a
Reengineering Framework that uses Method Engineering principles to apply the techniques
proposed and complementary Requirements Engineering techniques to other domains of
application such as the domain of software architectures.

The PRiM method is fully supported by the textual tool J-PRiM and some parts of the method
are supported by the graphical tool REDEPEND-REACT. By using these tools, the proposed
methods and techniques have been used successfully in several academic case studies and PRiM
has been validated with an academic case study.

Chapter 10. Conclusions .

 237

10.2. Future Work

There still some open issues that can be addressed on further work based on this thesis:

Definition of a complete catalogue of i*-based patterns. In SARiM we have addressed the
generation of Generic i* Architectural Patterns. However, we have only address the
construction of few of them. Therefore, more patterns would be added when reapplying the
method in the Software Architecture domain (including architectural styles, architectural
patterns, and design patterns). Also patterns may be found and documented in other
domains (organizational patterns for process reengineering). All these patterns have to be
fully documented in order to enforce reuse and return of investment when reapplying the
method.

Definition of a complete catalogue of i*-based structural metrics. The application of
structural metrics in other case studies from the already addressed or new domains will form
a complete catalogue of structural metrics. When building the complete catalogue we might
be more precise on stating which types of attributes can be evaluated with structural metrics.
In order to allow reuse, the metrics in the catalogue have to be fully documented, including
its categorization by evaluated attribute and domain of application, and stating the
assumptions that have to be taken for its right use.

Customization of ReeF in other domains of application. In order to obtain more feedback
and validation, ReeF would have to be customized into other reengineering methods or used
to improve the two already existing ones (PRiM and SARiM). The new methods would be
constructing by following the principles of the situational method engineering. That is by
adapting the techniques proposed in PRiM and SARiM, when possible, or by adapting and
defining completely new techniques, including the use of a different modelling language.
Taking these considerations into account, one candidate domain of application would be to
customize SARiM for supporting the requirements engineering stages of the Software
Product Lines.

Improvement of J-PRiM. J-PRiM is the specific tool support for PRiM. It supports all the
reengineering phases and it has been used to support SARiM without main modifications.
However, in order to facilitate further applications of the method, new functionalities would
have to be added to J-PRiM for supporting the i*-based Patterns Catalogue and guiding the
selection and reuse of both the patterns and the structural metrics.

An i*-based Reengineering Framework for Requirements Engineering

238

 239

Annex A. Partial Catalogue of

i*-based Structural Metrics

This annex contains a partial catalogue of i*-based Structural Metrics. The catalogue is partial
because it does not contain all the metrics, but only the ones used for the examples and case
studies of the thesis. The metrics presented here are the defined by using the procedures
described in Chapter 4, and has been documented following the template proposed in Section
4.3.1.

The remainder of the chapter contains the documentation of the metrics in alphabetical order.
We remark that there are two kinds of metrics, those that are general for any of the domains
used in this thesis, and those that have to be maintained for a particular domain. The
documented metrics are summarized in the following table, where we state the section where
the metric is found, its kind (dependency-based or actor-based metric), and the source (defined
from reuse or from scratch) and if any customization is needed. We observe that, from 11
metrics that have been defined, only three are actor-based, being the rest dependency based.
According to the source, we have only reused 2 of the metrics from other fields (one actor-based
and the other one dependency-based). Finally, customization is needed in 5 of the metrics,
whilst the other 6 can be used as they are.

Section Metric Kind Source Customization
A.1 Architectural Coupling i* Metric Actor-based Scratch Not needed
A.2 Architectural Cohesion i* Metric Dependency-based Scratch Not needed
A.3 Average Actor Workload i* Metric Actor-based Scratch Not needed
A.4 COSMIC Functional Size i* Metric Dependency-based Reuse Not needed
A.5 Data Accuracy i* Metric Dependency-based Scratch Needed

A.6A.5.4 Data Consistency i* Metric Dependency-based Scratch Needed
A.7 Data Privacy i* Metric Dependency-based Scratch Needed
A.8 Data Truthfulness i* Metric Dependency-based Scratch Needed
A.9 Ease of Communication i* Metric Dependency-based Scratch Not Needed

A.10 Process Agility i* Metric Dependency-based Scratch Needed
A.11 Process Coupling i* Metric Actor-based Reuse Not needed
A.12 Uniformity of User Interface i* Metric Actor-based Scratch Not needed

An i*-based Reengineering Framework for Requirements Engineering

240

A.1. Architectural Coupling i* Metric

Architectural Coupling is a metric indicates the degree in which a component is coupled with
other components. As in i* components are modelled as actors, we assume that the more an
actor is coupled to each others, the more high the coupling value is. Architectural Coupling, it is
an indicator of Complexity and Maintainability of the system, as maintainability is better
achieved in those architectures that present a low level of coupling. The metric is documented in
Table A.1.

Table A.1. Documentation of an Architectural Coupling i* metric

General Information

Metric name Architectural Coupling

Definition
Architectural Coupling is a measure for the degree in which an architectural
component is coupled with the other components of the software system

Scale Ratio: [0..1]

Addressed QA Maintainability

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: Architectural Model
Quality characteristic: Maintainability
Granularity/Visibility: External Attribute
Lifecycle: Design
Stakeholder point of view: Architectural Designer

Metamodel: i* metamodel

Assumptions:

- An actor is coupled to another actor when one of the actors has dependencies to the
other

- The architectural coupling of an i* model with no dependencies between the actors is
0

- The architectural coupling of an i* model where all the actors are related with each
other is 1

Metric Formalization

Formalization:

Actor-based i* metric

Σa: a∈A: filterM(a) × correctionFactorM(a)
ACohesion(M) =

limitP(A)

Where,

filterM(a) = 1

1
correctionFactorM (a) =

#Actor(a)

limitP(D) = || A ||

Mathematical
Properties:

Non-negative: The architectural coupling of an i* model is non-negative
Normalization: Allows meaningful comparisons between the architectural coupling of

different i* models, since they belong to the same interval
Null value: The architectural coupling of an empty model is null
Monotonicity: Adding elements inside the actors do not decreases architectural

coupling
Cohesive modules: The coupling of an i* model obtained by putting together two

different i* models is not greater than the architectural coupling of the original
system

Interpretation: The i* models with a low architectural coupling are easier to maintain.

Annex A. Partial Catalogue of i*-based Structural Metrics .

 241

Validation

Validation Shows expected results in the HSR Case Study in SARiM (Chapter 8).

Observations The i* model has to represent an architectural model constructed using SARiM.

A.2. Architectural Cohesion i* Metric

Architectural Cohesion is a metric indicates the degree in which a component provides certain
functionality without depending on other components. As in i* components are modelled as
actors and their interaction with the other components is modelled in terms of dependencies.
Therefore, cohesion is related with the number of dependencies that steam from or goes through
each actor. If the same dependency appears more than once it means that the dependum is being
manipulated by many different actors and, so, cohesion is damaged. The complete definition of
the Architectural Cohesion metric is presented in Table A.2. We remark that the metric is
defined from scratch and do not need any specific customization.

Table A.2. Documentation of an Architectural Cohesion i* metric

General Information

Metric name Architectural Cohesion

Definition
Measures the degree to which the functionality provided by a component is related at a
single purpose

Scale Ratio: [0..1]

Addressed QA Maintainability

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: Architectural Model
Quality characteristic: Maintainability
Granularity/Visibility: External Attribute
Lifecycle: Design
Stakeholder point of view: Architectural Designer

Metamodel: i* metamodel

Assumptions:

- An actor presents a higher cohesion when it does not present duplicated
dependencies with other actors

- The architectural cohesion of an i* model with no dependencies between the actors is
0

- The architectural cohesion of an i* model where dependencies are not duplicated
between actors is 1

Metric Formalization

 Formalization:

Dependency-based i* metric
Σd: d(a,b,u) ∈D: filterM(u) × corrFactorM,der(a) × corrFactorM,dee(b)

AC(M) =
limitP(D)

Where,

1
filterM(u) =

#Duplicated(u)

correctionFactorM,der(a) = 1

correctionFactorM,dee(b) = 1

limitP(D) = || D ||

An i*-based Reengineering Framework for Requirements Engineering

242

Mathematical
Properties:

Non-negative: The architectural cohesion of an i* model is non-negative
Normalization: Allows meaningful comparisons between the architectural cohesion of

different i* models, since they belong to the same interval
Null value: The architectural cohesion of an empty model is null
Monotonicity: Adding elements inside the actors do not decrease architectural

cohesion
Cohesive modules: The architectural cohesion of an i* model obtained by putting

together two different i* models is not greater than the architectural cohesion of the
original system

Interpretation: The i* models with a higher level of architectural cohesion are easier to maintain

Validation

Validation Applied Shows expected results in the HSR Case Study in SARiM (Chapter 8).

Observations The i* model has to represent an architectural model constructed using SARiM.

A.3. Average Actor Workload i* Metric

Average Actor Workload is a metric that indicates the average work done by each of the actors
of a certain process. In i*, a way of estimating the work done by an actor is to count the number
of dependencies steaming from this actor, as we assume that they are representative of the work
it does to satisfy the other actors. Therefore, we establish an actor-based metric where the
filterM(a) is the neutral value 1, and the correctionFactorM(a) is related with the number of
dependencies where the actor is the dependee. When applying the guidelines for quantifying the
actor-based metrics, we identify that the number of dependencies where the actor is the
dependee affects the property: 1/#Depee(a). However, in the assumptions we want the actor
workload to increase when there are many dependencies, we define the correction factor as the
negative value: 1 - 1/#Depee(a). Finally, as we want to obtain the Average Actor Workload, we
divide by the total amount of actors. The metric is documented in Table A.3. We remark that the
metric is defined from scratch and do not need any specific customization.

Table A.3. Documentation of a Average Actor Workload i* metric

General Information

Metric name Average Actor Workload

Definition
Average Actor Workload is a measure for the average work done by each of the actors of a
certain process

Scale Ratio: [0..1]

Addressed QA Complexity

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: Process Model
Quality characteristic: Complexity
Granularity/Visibility: External Attribute
Lifecycle: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:

- The individual Actor Workload depends on the number of dependums that this actors
provides to the other actors (dependencies where he is the dependee)

- The Average Actor Workload of an i* model with no dependencies between the actors is 0
- The Average Actor Workload of an i* model where all the actors have many dependencies

being the dependee is closer to 1

Annex A. Partial Catalogue of i*-based Structural Metrics .

 243

Metric Formalization

Formalization:

Actor-based i* metric

Σa: a∈A: filterM(a) × correctionFactorM(a)
AAW(M) =

limitP(A)

Where,

filterM(a) = 1

1
correctionFactorM (a) =

#Depee(a)

limitP(D) = || A ||

Mathematical
Properties:

Non-negative: The Average Actor Workload of an i* model is non-negative
Normalization: Allows meaningful comparisons between the Average Actor Workload of

different i* models, since they belong to the same interval
Null value: The Average Actor Workload of an empty model is null
Monotonicity: Adding elements inside the actors do not modifies the Average Actor

Workload

Interpretation:
The i* models with a high Average Actor Workload are more complex that i* models with
lower values of Average Actor Workload.

Validation

Validation Shows expected results in the FENIX Case Study (Chapter 6).

Observations

When computing the metric, we have to take into account the special case where the
#Depee(a) = 0, in order to avoid a mathematical error. Therefore, if #Depee(a) = 0,
correctionFactorM (a) = 1.

A.4. COSMIC Functional Size i* Metric

The COSMIC method defines a set of guidelines for evaluating the functional size. By using our
mapping based process for the definition of metrics, we have adapted the COSMIC functional
size metric to the i* models generated with PRiM. The i*-based COSMIC Functional Size is a
dependency-based metric defined from reuse (see Section 4.8.3), that can be used in any i*
model defined with PRiM. The only restriction applied is that during the description of the
activities, the actions of storing and retrieving information from a Persistent Storage actor has to
be made explicit. The metric is documented in Table A.4.

Table A.4. Documentation of the COSMIC-FFP Functional Size i* metric

General Information

Metric name i*-based COSMIC-FFP Functional Size

Definition
Metric that measures the Functional Size of a software product based on its i* model. The
unit of measure for the functional size is CFU.

Scale Absolute. The only valid values are zero and positive integers.

Addressed QA
The functional size is an indicator for complexity, development effort, and
maintainability of the specified software system.

Source Adapted from the COSMIC method [Abran et al., 2007], [COSMIC-FFP website].

Classification Issues

Domain
Classification

Measured artefact: System Model
Quality characteristic: Functional Size
Granularity/Visibility: Internal Attribute
Lifecycle phase: Specification

An i*-based Reengineering Framework for Requirements Engineering

244

Stakeholder point of view: Designer, Project Manager

Metamodel: i* metamodel

Assumptions:
- The functional size of an i* model without software system, is 0.
- The more functional dependencies steaming or going through the software system

actors, the higher is the functional size.

Metric Formalization

Formalization:

Dependency-based metric:

Σd: d(a,b,u) ∈D: filterM(u)×correctionFactorM(a,b)
Functional_Size(M) =

limitP(D)

Where,

1, if d є Resource
filterM(u) =

0, otherwise

1, if a є Functional Process and b є User
1, if a є User and b є Functional Process
1, if a є Functional Process and b є Persistent Storage
1, if a є Persistent Storage and b є Functional Process

correctionFactorM (a,b) =

0, otherwise

limitP(D) = 1

Mathematical
Properties:

Non-negativity: the CFU can not be negative
Null-value: If there is no actor in the system, the value is null.
Module additivity: If merging two i* models of the system, the resulting functional size

will be the addition of the two individual ones.

Interpretation: The higher the Functional Size, the larger the final software system will be.

Validation

Validation
Applied

Duplication of the COSMIC-FFP case studies with successful results.

Observations
The i* model has to be constructed by making explicit an actor representing the Database
and the interaction of the software system with this actor.

A.5. Data Accuracy i* Metric

Data Accuracy measures the degree in which the data interchanged among the humans in a
process is accurate. It is a dependency-based metric where we assume that some data has to be
more accurate than another one depending on how the lack of accuracy affects the process. This
metric is an indicator for Accuracy, Reliability, and Fault Tolerance. This metric has been
defined from scratch in Section 4.6.4 and its documentation template is in Table A.5. We
remark that for its correct application, this metric needs customization which is done in the
following subsections.

Table A.5. Documentation of the Data Accuracy i* metric

General Information

Metric name Data Accuracy

Definition
Data accuracy is a criterion used in evaluating the quality of information that
measures the degree to which information sources are free from mistakes and errors

Scale Ratio: [0..1]

Addressed QA Accuracy, Reliability, Fault Tolerance

Annex A. Partial Catalogue of i*-based Structural Metrics .

 245

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: System Model
Quality characteristic: Accuracy, Reliability, Fault Tolerance
Granularity/Visibility: External Attribute
Lifecycle phase: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:

- Data accuracy of an i* model with no dependencies between the actors is 1.
- Data accuracy depends on the kind of data being manipulate, as for the correct

achievement of the process, some data has to be more accurate than other.
- Data accuracy depends on the actors that manipulate the data, being human and

organizational actors less accurate than software actors.

Metric Formalization

Formalization:

Dependency-based metric:

Σd: d(a,b) ∈D: filterM(u) × corrFactorM,der(a) x corrFactorM,dee(b)
DA(M) =

limitP(M)

Where,

0.2 if critical_accuracy(u)
0.5 if high_accuracy(u)
0.8 if medium_accuracy(u)
1 if low_accuracy(u)

filterM(u) = .

1, otherwise

correctionFactorM,der(a) = 1

0.7 if a є Human
0.7 if a є Organization
0.9 if a є Software

correctionFactorM,dee(b) =
1 otherwise

Limitp(M) = || D ||

Mathematical
Properties:

Non-negativity: the data accuracy can not be negative
Null-value: If there is no actor in the system, the value is null.

Interpretation:
The higher the Data Accuracy value, the more accuracy, reliability and fault tolerance
is provided in the process.

Validation

Validation Applied Empirical Validation in the case studies (Chapter 5 and Chapter 6).

Observations -

A.5.1. Data Accuracy Customization for the Meeting Scheduler

In order to customize the Data Accuracy i* metric for the Meeting Scheduler Case Study, we
have weight its dependums according to the criteria provided by the metric. Therefore, we have:

critical_accuracy(u) = {Addresses List, Meeting Date, Participants List}
high_accuracy(u) = {Data Range, Exclusion Set, Extended Data Range, Meeting Room, Preference Set,

Reviewed Exclusion Set, Reviewed Preference Set}
medium_accuracy(u) = {Equipment Availability, Meeting Equipment, Preferred Room Location,

Requested Equipment, Requested Room, Required Equipment, Room Availability,
Withdraw from Meeting}

low_accuracy(u) = { }

An i*-based Reengineering Framework for Requirements Engineering

246

A.5.2. Data Accuracy Customization for the Collaborative Exercise

In order to customize the Data Accuracy i* metric for the Collaborative Exercise Case Study,
we have weight its dependums according to the criteria provided by the metric. Therefore, we
have:

critical_accuracy(u) = {Answers, Exercise statement, Final results, Solution}
high_accuracy(u) = {Alternative Schedulers, Exercise Scheduler High, Final note, Group

arguments, Group preliminary results, Individual arguments, Individual final
results, Individual preliminary results, Questions, Sample Answers, Scheduler
preferences}

medium_accuracy(u) = {Group Assignment, Group final results, Groups assigned}
low_accuracy(u) = {Final note Confirmation, Scheduler Confirmation}

A.5.3. Data Accuracy Customization for the Conference Management System

In order to customize the Data Accuracy i* metric for the Conference Management System Case
Study, we have weight its dependums according to the criteria provided by the metric.
Therefore, we have:

critical_accuracy(u) = {Camera ready paper, Proceedings}
high_accuracy(u) = {Acceptance result, Review information}

medium_accuracy(u) = {Acceptance status, Assigned papers, List of abstracts of accepted papers, List of
referees, Paper review report, Preliminary ranking, Preliminary statistics,
Proceedings preface, Review form, Submission file, Submission form, Submission
information, Submissions list, Synopsis of the results}

low_accuracy(u) = {Compliance to Camera Ready, Log comments, Log comments for a paper, PC
member subset of 'interesting' papers, Submission acknowledgment}

A.5.4. Data Accuracy Customization for the FENIX case study

In order to customize the Data Accuracy i* metric for the FENIX case study, we have weight its
dependums according to the criteria provided by the metric. In general terms, critical accuracy is
stated on those data elements whose accuracy can damage the evaluation process, which is
mainly the validated data. On the other hand, those data which is not yet validated has been
classified with high accuracy. Medium accuracy has been related to those data related with the
list of elements and low accuracy has been related to the actions performed to the system.
Regarding medium and low accuracy, the elements with that value are auxiliary to the
processes, and so, its accuracy is not that critical from the evaluation point of view. Therefore,
we have:

critical_accuracy(u) = {Validated activity data, Loaded activity data, Evaluation activity data, Modified
evaluation activity data, Evaluation data range, Request for changes, Hard copy of
publication, PAR marks, Prove of evidence for activity, Prove of Evidence for
publication}

high_accuracy(u) = {Data accuracy acceptance, Approved activity, Official activity data, Publication
data, UPC activity data, Non-validated activity data, New activity data, Existing
activity data, E-prints UPC activity data, Modify activity data, Generated reports}

medium_accuracy(u) = {List of authors pending to agreement, List of authors that have agreed, Validated
activity List, Non-validated Activity List, Validated catalogued publications, Non-
validated catalogued publications, Process notification}

low_accuracy(u) = {Delete activity data action, Begin data loading processes action, Evaluating
process opening action, Evaluating process system closing action}

Annex A. Partial Catalogue of i*-based Structural Metrics .

 247

A.6. Data Consistency i* Metric

Data Consistency measures the integrity of the data that is manipulated by the different actors of
a software system. It is related to the fact that each user observes a consistent view of the data.
Therefore, the proposed metric is an indicator for Consistency, Integrity and Reliability of the
data.

As Data Consistency is related with data, we define a dependency-based metric taking into
account the resource dependencies of the i* model. Before defining the metric, we state those
factors of the template that help its definition. As a first decision we establish that the scale of
the metric will be Ratio [0..1], and that the result would follow the assumptions stated in Table
A.6. Based on these assumptions we state that the higher the value of the metric (value 1), the
more data consistency is provided by the process and, so, we use the guidelines for defining the
filter and the two correction factors as follows:

filterM(u). Data Consistency depends on the kind of the data, because we assume that only
resource are important from a consistency point of view. In addition, there are some data
that is more concerned about data consistency than others (i.e., data that can damage the
process if it is not consistent). Therefore, we propose to weight the dependum according on
how critical it is for data consistency. This is done by applying a discriminator by name and,
as the particular name of each dependum is related with the specific i* model, we propose a
customizable classification of the elements, according to the following two categories:
critical and low. We remark that when consistency is more critical it score lower and that’s
why in Table A.6 critical_consistency(u) scores 0.6, whilst low_consistency(u) scores 1. On
the other hand, we also assume that duplicated dependums damages data consistency
because if a resource is provided by different actors, we have more possibilities it is not
consistent with the other ones. Because of that, we divide the obtained value by the number
of times the dependency is duplicated.

correctionFactorM,der(a). The assumptions state that some actors provide more data consistency
than others. However, when the actor is receiving the data, it can not damage data
consistency and so, we state that correctionFactorM,der(a) scores 1 for all the actors (see
Table A.6).

correctionFactorM,dee(b). On the other hand, we state that when providing the data, some
actors’ damage data consistency more than others. Therefore, we define that software actors
provide more consistent data, as we assume they apply the same treatment to the same
group of data. However, human and organizational actors can damage data consistency
because they obtain the data from different sources. Finally, dependencies with the rest of
the actors are not taken into account (see Table A.6).

limitp(M). Finally, as the scale of the metric is ratio, we apply a normalization value, which is
the total amount of dependencies of the model.

An i*-based Reengineering Framework for Requirements Engineering

248

Table A.6. Documentation of the Data Consistency i* metric

General Information

Metric name Data Consistency

Definition
Data privacy is a criterion used in evaluating the integrity of data that measures the
degree to which information sources provide the same contents when a certain data is
required.

Scale Ratio: [0..1]

Addressed QA Consistency, Integrity, Reliability

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: System Model
Quality characteristic: Integrity
Granularity/Visibility: External Attribute
Lifecycle phase: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:

- Data consistency of an i* model with no dependencies between the actors is 1.
- Data consistency depends on the sensitivity of data being manipulate and, so, some

data requires more integrity than other.
- Data consistency also depends on the number of actors that are able to manipulate

and provide the data.
- Data consistency depends on the actors that manipulate the data, being human and

organizational actors more critical than software actors.

Metric Formalization

Formalization:

Dependency-based metric:

Σd: d(a,b) ∈D: filterM(u) × corrFactorM,der(a) x corrFactorM,dee(b)
DC(M) =

limitP(M)

Where,

0.2 / #duplicated(u) if critical_ consistency(u)
1 / #duplicated(u) if low_ consistency(u) filterM(u) = .
1, otherwise

correctionFactorM,der(a) = 1

1 if a є Software
0.6 if a є Human
0.6 if a є Organization

correctionFactorM,dee(b) =

1 otherwise

Limitp(M) = || D ||

Mathematical
Properties:

Non-negativity: Data Consistency can not be negative
Null-value: If there is no actor in the system, the value is null.

Interpretation: The higher the Data consistency value, the more reliability is provided in the process.

Validation

Validation Applied Shows expected results in the FENIX Case Study (Chapter 6).

Observations -

A.6.1. Data Consistency Customization for the FENIX case study

In order to customize the Data Consistency i* metric for the FENIX case study, we have weight
its dependums according to the criteria provided by the metric. In general terms, critical
accuracy is stated on those data elements whose lack of consistency can damage the evaluation

Annex A. Partial Catalogue of i*-based Structural Metrics .

 249

process, which is mainly the validated data. On the other hand, those data which is not yet
validated, the lists of elements auxiliary, and the system actions, has been classified with low
consistency. Therefore, we have:

critical_consistency(u) = {Validated activity data, Loaded activity data, Evaluation activity data, Modified
evaluation activity data, Evaluation data range, Request for changes, Hard copy of
publication, PAR marks, Prove of evidence for activity, Prove of Evidence for
publication, Data accuracy acceptance, Approved activity, Official activity data,
Publication data, UPC activity data, Non-validated activity data, New activity data,
Existing activity data, E-prints UPC activity data, Modify activity data, Generated
reports}

low_consistency(u) = {List of authors pending to agreement, List of authors that have agreed, Validated
activity List, Non-validated Activity List, Validated catalogued publications, Non-
validated catalogued publications, Process notification, Delete activity data action,
Begin data loading processes action, Evaluating process opening action, Evaluating
process system closing action}

A.7. Data Privacy i* Metric

Data Privacy measures the degree in which the data interchanged among the humans in a
process is private, which means the degree in which it the data can be obtain by a third party
which is not involved in the process. Regarding Data Privacy, we assume that human actors are
more likely to analyse and spread the data they manipulate than software actors. Therefore, the
proposed metric is an indicator for Security.

Data privacy is related with the possibility of the information being accesses by non authorised
actors. As the information is represented in the i* models by means of a resource dependency,
we establish that a dependency-based metric is needed. Before defining the metric, we have to
state those factors of the template that help its definition. As a first decision we establish that the
scale of the metric is Ratio [0..1], and that the result is based on the following assumptions
defined in Table A.7.

Based on these assumptions we state that the higher the value of the metric (value 1), the more
data privacy is respected by the process. Then, we use the guidelines for defining the
dependency-based metrics, and we define the filter and the two correction factors as follows:

filterM(u). As we have stated in the assumptions, data privacy depends on the kind of the data,
because we assume that only resource and task dependencies are important from a privacy
point of view. In addition, there are some data that is more concern to data privacy than
others (i.e., personal data or personal schedule). Therefore, we propose to weight the
dependum according on how critical it is for data privacy. This is done by applying a
discriminator by name and, as the particular name of each dependum is related with the
specific i* model, we propose a customizable classification of the elements, according to the
following four categories: critical, high, medium and low. We remark that critical privacy
would score lower and that’s why in Table A.7 critical_privacy(u) scores 0.2, whilst
low_privacy(u) scores 1.

correctionFactorM,der(a). The assumptions state that some actors provide more data privacy
than others. Because of that, we assume that when the actor is receiving a certain data, it can

An i*-based Reengineering Framework for Requirements Engineering

250

analyse its content and, then, damage data privacy. As we have already mentioned, we
assume that human and organizational actors are more likely to damage data privacy and so,
we give them a lower level of value in the correctionFactorM,der(a) as it is shown in Table
A.7.

correctionFactorM,dee(b). On the other hand, we state that the related dependee affects less the
data privacy because it is the one that provides the data. If we analyse the different actors
and situations we see that if a human and organizational actors can provides the data to a
software system or to another human, but the privacy is only affected if there is a human
actor on the other side (which has already been considered in the correctionFactorM,der(a)).
Because of that the correctionFactorM,dee(b) scores 1 for all the actors (see Table A.7).

limitp(M). Finally, as the scale of the metric is ratio, we apply a normalization value, which is
the total amount of dependencies on the model.

Table A.7. Documentation of the Data Privacy i* metric

General Information

Metric name Data Privacy

Definition
Data Privacy is a criterion used in evaluating the quality of information that measures
the degree to which information sources are free from mistakes and errors

Scale Ratio: [0..1]

Addressed Quality
Attributes

 Security

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: System Model
Quality characteristic: Security
Granularity/Visibility: External Attribute
Lifecycle phase: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:

- Data privacy of an i* model with no dependencies between the actors is 1.
- Data privacy depends on the sensitivity of data being manipulate and, so, some data

requires more privacy than other.
- Data privacy depends on the actors that manipulate the data, being human and

organizational actors more critical than software actors.

Metric Formalization

Formalization:

Dependency-based metric:

Σd: d(a,b) ∈D: filterM(u) × corrFactorM,der(a) x corrFactorM,dee(b)
DP(M) =

limitP(M)

Where,
0.2 if critical_ privacy(u)
0.5 if high_ privacy(u)
0.8 if medium_ privacy(u)
1 if low_ privacy(u)

filterM(u) = .

1, otherwise

0.7 if a є Human
0.7 if a є Organization
0.9 if a є Software

correctionFactorM,der(b) =

1 otherwise

Annex A. Partial Catalogue of i*-based Structural Metrics .

 251

correctionFactorM,dee(a) = 1

Limitp(M) = || D ||

Mathematical
Properties:

Non-negativity: the data privacy can not be negative
Null-value: If there is no actor in the system, the value is null.

Interpretation: The higher the Data privacy value, the more security is provided in the process.

Validation

Validation Applied Empirical Validation in the case studies (Chapter 5).

Observations -

A.7.1. Data Privacy Customization for the Meeting Scheduler

In order to customize the Data Privacy i* metric for the Meeting Scheduler Case Study, we have
weight its dependums according to the criteria provided by the metric. Therefore, we have:

critical_ privacy(u) = { Addresses List, Participants List}
high_ privacy(u) = {}

medium_ privacy(u) = {Exclusion Set, Meeting Date, Preference Set, Reviewed Exclusion Set, Reviewed
Preference Set, Withdraw from Meeting}

low_ privacy(u) = {Data Range, Equipment Availability, Extended Data Range, Meeting Equipment,
Meeting Room, Preferred Room Location, Requested Equipment, Requested
Room, Required Equipment, Room Availability}

A.7.2. Data Privacy Customization for the Collaborative Exercise

In order to customize the Data Privacy i* metric for the Collaborative Exercise Case Study, we
have weight its dependums according to the criteria provided by the metric. Therefore, we have:

critical_ privacy(u) = {Final note Confirmation, Group preliminary results}
high_ privacy(u) = {Answers, Final note, Group arguments, Individual arguments, Individual final

results, Individual preliminary results, Questions, Scheduler preferences}
medium_ privacy(u) = {Alternative Schedulers, Exercise Scheduler, Exercise statement, Final results,

Group Assignment, Group final results, Groups assigned, Sample Answers,
Scheduler Confirmation, Solution }

low_ privacy(u) = {}

A.7.3. Data Privacy Customization for the Conference Management System

In order to customize the Data Privacy i* metric for the Conference Management System Case
Study, we have weight its dependums according to the criteria provided by the metric.
Therefore, we have:

critical_ privacy(u) = {Acceptance result, Acceptance status, Preliminary ranking, Preliminary statistics,
Review information, Submission file}

high_ privacy(u) = {Paper review report, Submissions list}
middle_ privacy(u) = {Assigned papers, Log comments, Log comments for a paper, PC member subset

of 'interesting' papers, Submission information}
low_ privacy(u) = {Camera ready paper, Compliance to Camera Ready, List of abstracts of accepted

papers, List of referees, Proceedings, Proceedings preface, Review form,
Submission acknowledgment, Submission form, Synopsis of the results}

An i*-based Reengineering Framework for Requirements Engineering

252

A.8. Data Truthfulness i* Metric

Data Truthfulness measures the degree in which false information can be introduced and
processed by the system and the possibility of not correcting it. It is related to the users
introducing false data to the system and the system processing this data. Therefore, the proposed
metric is an indicator for Truthfulness, Integrity and Reliability of the data. As Data
Truthfulness is related with data, we define a dependency-based metric taking into account the
resource dependencies of the i* model. Before defining the metric, we establish that the scale of
the metric will be Ratio [0..1], and that the result would follow the assumptions stated in Table
A.8. Based on these assumptions we state that the higher the value of the metric (value 1), the
more truthfulness is provided by the process and, so, we use the guidelines for defining the filter
and the two correction factors as follows:

filterM(u). Data Truthfulness depends on the kind of the data, because we assume that there is
some data that is important to be true than other. Therefore, we propose to weight the
dependum according on how critical it is for data consistency by applying a discriminator
by name and, as the particular name of each dependum is related with the specific i* model,
we propose a customizable classification of the elements, according to the following two
categories: critical and low. We remark that when consistency is more critical it score lower
and that’s why in Table A.8 critical_true(u) scores 0.6, whilst low_true(u) scores 1.

correctionFactorM,der(a). The assumptions state that some actors provide true data rather than
others. However, when the actor is receiving the data, it can not damages data truthfulness
because it only gets the data and so, we state that correctionFactorM,der(a) scores 1 for all the
actors (see Table A.8).

correctionFactorM,dee(b). On the other hand, we state that when providing the data, some actors
are more likely to provide untruthful data. Therefore, we classify the actors as: high_true(b),
medium_true(b), low_true(b), and very_low_true(b) with the values presented in Table A.8.

limitp(M). Finally, as the scale of the metric is ratio, we apply a normalization value, which is
the total amount of dependencies of the model.

Table A.8. Documentation of the Data Truthfulness i* metric

General Information

Metric name Data Truthfulness

Definition
Data truthfulness is a criterion used for measuring the degree in which false
information can be introduced and processed by the system and the possibility of not
correcting it during the process.

Scale Ratio: [0..1]

Addressed QA Truthfulness, Integrity, Reliability

Source Defined from scratch

Annex A. Partial Catalogue of i*-based Structural Metrics .

 253

Classification Issues

Domain
Classification

Measured artefact: System Model
Quality characteristic: Integrity
Granularity/Visibility: External Attribute
Lifecycle phase: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:

- Data truthfulness of an i* model with no dependencies between the actors is 1.
- Data truthfulness depends on the sensitivity of data being manipulate and, so, some

data requires more integrity than other.
- Data truthfulness depends on the actors that manipulate the data, being some actors

more reliable than others.

Metric Formalization

Formalization:

Dependency-based metric:

Σd: d(a,b) ∈D: filterM(u) × corrFactorM,der(a) x corrFactorM,dee(b)
DT(M) =

limitP(M)

Where,

0.6 if critical_ true(u)
1 if low_ true(u) filterM(u) = .
1 otherwise

correctionFactorM,der(a) = 1

1 if high_trueder(a)
0.7 if medium_ trueder(a)
0.6 if low_trueder(a)
0.3 if very_low_trueder(a)

correctionFactorM,dee(b) =

0, otherwise

Limitp(M) = || D ||

Mathematical
Properties:

Non-negativity: Data Truthfulness can not be negative
Null-value: If there is no actor in the system, the value is null.

Interpretation: The higher the Data Truthfulness value, the more reliable is the process.

Validation

Validation Applied Shows expected results in the FENIX Case Study (Chapter 6).

Observations -

A.8.1. Data Truthfulness Customization for the FENIX case study

In order to customize the Data Truthfulness i* metric for the FENIX case study, we have weight
its dependums according to the criteria provided by the metric. In general terms, critical
truthfulness is stated on those data elements whose lack of true can damage the evaluation
process, which is mainly the validated data. On the other hand, those data which is not yet
validated, the lists of elements auxiliary, and the system actions, has been classified with low
true. Therefore, we have:

critical_consistency(u) = {Validated activity data, Loaded activity data, Evaluation activity data, Modified
evaluation activity data, Evaluation data range, Request for changes, Hard copy of
publication, PAR marks, Prove of evidence for activity, Prove of Evidence for
publication, Data accuracy acceptance, Approved activity, Official activity data,
Publication data, UPC activity data, Non-validated activity data, New activity data,
Existing activity data, E-prints UPC activity data, Modify activity data, Generated
reports, Validated catalogued publications, Non-validated catalogued publications}

An i*-based Reengineering Framework for Requirements Engineering

254

low_consistency(u) = {List of authors pending to agreement, List of authors that have agreed, Validated
activity List, Non-validated Activity List, Process notification, Delete activity data
action, Begin data loading processes action, Evaluating process opening action,
Evaluating process system closing action}

On the other hand, regarding the definition of the correctionFactordee(b), we have classified the
actors of the process with the criteria that the software systems involved in the process, as
follows:

high_ truedee(b) = {Access, FENIX Administrator, Library Database, Staff Database,
Library Catalogue, Head of the Unit, e-Prints UPC, FENIX,
FenixWeb}

medium_ truedee(b) = {Unit Staff, Librarian}
low_truedee(b) = {Researcher}

A.9. Ease of Communication i* Metric

Ease of Communication measures the degree in which the communication is facilitated within
the process. We assume that processes involving human actors present more ease of
communication because software actors restrict the way communication is done. Therefore, this
metric is an indicator for Efficiency. In order to decide which kind of metric is the more
appropriate, we evaluate which elements are more relevant for the dependency: the actors or the
dependencies. As the objects of communication are the dependencies, we establish a
dependency-based i* metric and we define its factors as follows:

� filterM(u). We assume that the kind of the dependum affects the quality attribute. Based on
that, tasks are the dependums that better contribute to the property because they are more
precise on establishing the way the element is provided. On the other hand, goals provide
more freedom for achieving the dependum, whilst resources are more restrictive.

� correctionFactorM,der(a) and correctionFactorM,dee(b). Correction factors are defined by
assuming that Ease of Communication is better achieved when the actors are human, rather
than software.

In Table A.9 we present the documentation template for the Ease of Communication metric. We
remark that the metric is defined from scratch and do not need any specific customization for an
specific domain.

Table A.9. Documentation of an Ease of Communication i* metric

General Information

Metric name Ease of Communication

Definition Measures the degree in which the communication is facilitated within the process.

Scale Ratio: [0..1]

Addressed QA Efficiency

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: Process Model
Quality characteristic: Complexity

Annex A. Partial Catalogue of i*-based Structural Metrics .

 255

Granularity/Visibility: External Attribute
Lifecycle: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:

- The processes involving human actors present more ease of communication because
software actors restrict the way communication is done.

- Ease of communication of an i* model with no dependencies between the actors is 0
- Ease of communication of an i* model with dependencies, depend on the kind of this

dependencies, being tasks the dependencies that facilitate it more.

Metric Formalization

Formalization:

Dependency-based i* metric
Σd: d(a,b) ∈D: filterM(u) × corrFactorM,der(a) × corrFactorM,dee(b)

EofC(M) =
limitP(D)

Where,

1 if d є Task
0,8 if d є Resource
0,6 if d є Goal

filterM(u) = .

0 otherwise

1 if a є Human
0,8 if a є Organization
0,5 if a є Software

correctionFactorM,der(a) =

0 otherwise

correctionFactorM,dee(b) = correctionFactorM der(a)

Mathematical
Properties:

Non-negative: The ease of communication of an i* model is non-negative
Normalization: Allows meaningful comparisons between the ease of communication

of different i* models, since they belong to the same interval
Null value: The ease of communication of an empty model is null
Monotonicity: Adding elements inside the actors do not decrease ease of

communication
Cohesive modules: The ease of communication of an i* model obtained by putting

together two different i* models is not greater than the ease of communication of
the original modular system

Interpretation:
The i* models with a high ease of communication are more agile than i* models with
lower ease of communication.

Validation

Validation Applied Empirical Validation in the case studies (Chapter 5 and Chapter 6).

Observations -

A.10. Process Agility i* Metric

This metric measures the degree in which the process is agile. We assume that processes
involving software actors are more agile because they are more reliable than humans. This
metric is an indicator for Efficiency. The metric for Process Agility is defined as a dependency-
based metric because the dependencies are the property related elements (see Table A.10).

� filterM(u). We assume that the kind of the dependum affects the quality attribute and, so, we
consider the dependums in terms of the agility they provide to the process. Thus, tasks are
more constrictive than resources; and goals are the ones that provide more agility. As
duplicated dependums within the model weaken Process Agility, the weight is divided by
the number of times that the dependency appears in the model.

An i*-based Reengineering Framework for Requirements Engineering

256

� correctionFactorM,der(a) and correctionFactorM,dee(b). Correction factors are defined by
assuming that each specific actor affects the quality attribute. Because of that, the correction
factors remain undefined and a discriminator by name would have to be applied. As stated
in the assumptions field, the discriminator values have to be defined by ranging which
actors provide more agility to the process (i.e., they have more experience). As general rule,
we can consider that software systems are more agile than humans, and human agility
depends on the training and interest on completing the process. We also consider that the
depender is more agile than the dependee, because it to obtain something is easier than to
provide it. In Table A.10 we show the values regarding to four different categories for each
correction factor: critical, high, medium and low.

Table A.10. Documentation of a Process Agility i* metric

General Information

Metric name Process Agility

Definition Measures the degree in which the process is agile.

Scale Ratio: [0..1]

Addressed QA Efficiency

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: Process Model
Quality characteristic: Complexity
Granularity/Visibility: External Attribute
Lifecycle: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:

- The processes involving software actors show more Process Agility because
software actors are always available and more trained on doing the process.

- Process Agility of an i* model with no dependencies between the actors is 0.
- Process Agility of an i* model with duplicated dependencies is lower than if

they are not, because duplicated information damages process agility.

Metric Formalization

 Formalization:

Dependency-based i* metric
Σd: d(a,b) ∈D: filterM(u) × corrFactorM,der(a) × corrFactorM,dee(b)

PA(M) =
limitP(D)

Where,
0,6 / #occurrences(u) if u є Task
0,8 / #occurrences(u) if u є Resource
1 / #occurrences(u) if u є Goal

filterM(u) = .

0 Otherwise

1, if high_agilityder(a)
0.9, if medium_agilityder(a)
0.8, if low_ agilityder(a)

correctionFactorM,der(a) =

0, otherwise

1, high_agilitydee(b)
0.7, medium_agilitydee(b)
0.6, low_agilitydee(b)

correctionFactorM,dee(b) =

0, otherwise

Annex A. Partial Catalogue of i*-based Structural Metrics .

 257

Mathematical
Properties:

Non-negative: The Process Agility of an i* model is non-negative
Normalization: Allows meaningful comparisons between the Process Agility of

different i* models, since they belong to the same interval
Null value: The Process Agility of an empty model is null
Monotonicity: Adding elements inside the actors do not decrease Process Agility
Cohesive modules: The Process Agility of an i* model obtained by putting

together two different i* models is not greater than the Process Agility of the
original modular system

Interpretation:
The i* models with a high Process Agility are more agile than i* models with
lower Process Agility.

Validation

Validation Empirical Validation in the case studies (Chapter 5 and Chapter 6).

Observations -

A.10.1. Process Agility Customization for the Meeting Scheduler

In order to define the correction factors for the Process Agility Metric we have to apply a
discriminator by name. As we have already mentioned, we assume that software actors are more
agile and so, the Meeting Scheduler software actor scores “1” in both roles (depender and
dependee). For the human actors, we assume that the Meeting Initiator is trained in organizing
meetings and has a strong interest on the meeting to be done so, its agility is high. The meeting
attendee also has a strong interest on the meetings, but both the Address Provider and the
Resource Manager have less interest on the meeting being organized.

As it is possible to observe in the definition of the factors, we have provided different values
according to these factors. As stated by the metric, the values are higher when the human actors
are dependers (they receive the information) than when they are dependees (they have to
provide something).

high_agilityder(a) = {Meeting Scheduler}
medium_agilityder(a) = {Meeting Initiator, Address Provider, Resources Manager}

low_agilityder(a) = {Meeting Attendee}

high_agilitydee(b) = {Meeting Scheduler}
medium_agilitydee(b) = {Meeting Initiator, Address Provider, Resources Manager}

low_agilitydee(b) = {Meeting Attendee}

A.10.2. Process Agility Customization for the Collaborative Exercise

In order to define the correction factors for the Process Agility Metric we have to apply a
discriminator by name. In terms of Process Agility, we can consider that software systems (i.e.
the Software actor) are more agile than humans and that the Teacher actor is more trained in
collaborative exercises and provides more agility than the Student actor. We also consider that,
for the human actors, the agility has less influence in the dependers that in the dependees. Thus,
we define:

high_ agilityder(a) = {Software}
medium_ agilityder(a) = {Teacher}

low_ agilityder(a) = {Student, Student Group}

high_agilitydee(b) = {Software}
medium_agilitydee(b) = {Teacher}

low_agilitydee(b) = {Student, Student Group}

An i*-based Reengineering Framework for Requirements Engineering

258

A.10.3. Process Agility Customization for the Conference Management System

In order to define the correction factors for the Process Agility Metric we have to apply a
discriminator by name. In terms of Process Agility, we can consider that software systems (i.e.
the Software actor) are more agile than humans. From the humans, we consider that the Editor
of Proceedings, the PC Chair and the PC Member are more trained in conference management
and so, they are more agile than the Author, the Program Committee and the Reviewer.

high_ agilityder(a) = {Conference Management System}

medium_ agilityder(a) = { Editor of Proceedings, PC Chair, PC member }
low_ agilityder(a) = {Author, Program Committee, Reviewer}

high_agilitydee(b) = {Conference Management System}

medium_agilitydee(b) = { Editor of Proceedings, PC Chair, PC member}
low_agilitydee(b) = {Author, Program Committee, Reviewer}

A.10.4. Process Agility Customization for the FENIX Case Study

In order to define the correction factors for the FENIX case study we have to apply a
discriminator by name. In terms of Process Agility, we can consider that software systems (i.e.
the Software actor) are more agile than humans.

high_ agilityder(a) = { FENIX Administrator, Library Database, Library Catalogue, e-Prints,
FENIX, FenixWeb }

medium_ agilityder(a) = { Unit Staff, Library Staff, Researcher }
low_ agilityder(a) = { Access, Head of the Unit }

high_ agilitydee(b) = { FENIX Administrator, Library Database, Library Catalogue, e-Prints,

FENIX, FenixWeb }
medium_ agilitydee(b) = { Unit Staff, Library Staff, Researcher }

low_ agilitydee(b) = { Access, Head of the Unit }

A.11. Process Coupling i* Metric

Process Coupling is a metric indicates the degree in which an actor is related with other actors.
We assume that the more an actor is coupled to each others, the more complex the process is
and, in the case there is a software system, it is more difficult to maintain. Therefore, it is an
indicator of Complexity and Maintainability of the process. The metric has been adapted from
[Vanderfeesten et al., 2006] (see Section 4.5.2) and its documentation template is in Table A.11.

Table A.11. Documentation of a Process Coupling i* metric

General Information

Metric name Process Coupling

Definition
Process Coupling is a measure for the strength of association established by the
dependencies between actors in the i* model

Scale Ratio: [0..1]

Addressed QA Complexity, Maintainability

Source
Process Coupling, adapted from [Vanderfeesten et al., 2006]

Annex A. Partial Catalogue of i*-based Structural Metrics .

 259

Classification Issues

Domain
Classification

Measured artefact: Process Model
Quality characteristic: Complexity
Granularity/Visibility: External Attribute
Lifecycle: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:
An actor is coupled to another actor when one of the actors has dependencies to the other
The coupling of an i* with no dependencies between the actors is 0
The coupling of an i* where all the actors are related one with each other is 1

Metric Formalization

Formalization:

Actor-based i* metric

Σa: a∈A: filterM(a) × correctionFactorM(a)
CP(M) =

limitP(A)

Where,
filterM(a) = 1

correctionFactorM (a) = # b: b∈A and b ≠ a: (Exist d: d ∈ D: (a,b,u) or (b,a,u))

limitP(D) = |A| . (|A| - 1)

Mathematical
Properties:

Non-negative: The process coupling of an i* model is non-negative
Normalization: Allows meaningful comparisons between the process coupling of

different i* models, since they belong to the same interval
Null value: The process coupling of an empty model is null
Monotonicity: Adding elements inside the actors do not decrease process coupling
Cohesive modules: The cohesion of an i* model obtained by putting together two

different i* models is not greater than the process coupling of the original modular
system

Interpretation:
The i* models with a high process coupling are more complex that i* models with lower
coupling.

Validation

Validation By construction, because it is obtained from an already validated metric.

Observations -

A.12. Uniformity of User Interface i* Metric

Uniformity of User Interface is a metric that indicates the percentage of interaction that a human
user has with the different software systems and, so, it is an indicator for Usability. As it is
concerned with human actors, we define an actor-based metric and we define:

� filterM(a). As we only want to take into account human actors the kind of the actor affects
the property. We state the neutral value 1 for Humans, Organizations and Departments and
we do not take into account the other kinds of actors which have a 0 value.

� correctionFactorM(a). As stated in the definition of the metric, we only take into account
those software actors related with the actor. If a human actor is related with several software
actors, the property is damaged. Therefore, we define the correction factor in a way that the
number of software actors related with the human actors affects it: 1#Actor(a), where a є

Software.

An i*-based Reengineering Framework for Requirements Engineering

260

The metric is documented in Table A.12. We remark that this metric is defined from scratch and
do not need any specific customization.

Table A.12. Documentation of a Uniformity of User Interface i* metric

General Information

Metric name Uniformity of User Interface

Definition
Uniformity of User Interface is a metric that indicates the percentage of interaction that a
human user has with the different software systems within a process.

Scale Ratio: [0..1]

Addressed QA Usability

Source Defined from scratch

Classification Issues

Domain
Classification

Measured artefact: Process Model
Quality characteristic: Usability
Granularity/Visibility: External Attribute
Lifecycle: Specification
Stakeholder point of view: Process Designer

Metamodel: i* metamodel

Assumptions:

- The Uniformity of the User Interface depends on the number of software actors interacting
with a human actor.

- The Uniformity of the User Interface of an i* model with no dependencies between humans
and software actor is 1.

- The Uniformity of the User Interface of an i* model where an actor interacts with many
different software actors gets closer to 0.

Metric Formalization

Formalization:

Actor-based i* metric

Σa: a∈A: filterM(a) × correctionFactorM(a)
UofUI(M) =

limitP(A)

Where,

1 if a є Human
1 if a є Organization
1 if a є Department

filterM(a) =

0 otherwise

1
correctionFactorM (a) =

#Actor(a, a є Software)

limitP(D) = || A ||

Mathematical
Properties:

Non-negative: The Uniformity of the User Interface of an i* model is non-negative
Normalization: Allows meaningful comparisons between the Uniformity of the User Interface

of different i* models, since they belong to the same interval
Null value: The Uniformity of the User Interface of an empty model is null
Monotonicity: Adding elements inside the actors do not modifies the Uniformity of the User

Interface

Interpretation:
The i* models with a high Uniformity of the User Interface are more easy to use that i*
models with lower values of Uniformity of the User Interface.

Validation

Validation Shows expected results in the FENIX Case Study (Chapter 6).

Observations

When computing the metric, we have to take into account the special case where the #Actor(a,
a є Software)= 0, in order to avoid a mathematical error. Therefore, if #Actor(a, a є Software)
= 0, correctionFactorM (a) = 1.

 261

Author’s Publications

To complement the reading of this document, we refer to the following associated published
papers or technical reports that are a direct contribution of the author to the thesis.

The introduction presented in Chapter 1 and the state-of-art presented in Chapter 2 is an
extension of the work published in:

Claudia P. Ayala, Carlos Cares, Juan Pablo Carvallo, Gemma Grau, Mariela Haya, Guadalupe Salazar, Xavier

Franch, Enric Mayol & Carme Quer. "A Comparative Analysis of i*-Based Goal-Oriented Modelling
Languages". In Proceedings of the Seventeenth International Conference on Software Engineering and

Knowledge Engineering, SEKE 2005. pp: 43-50.

Gemma Grau, Carlos Cares, Xavier Franch, Fredy Navarrete. "A Comparative Analysis of i* Agent-Oriented
Modelling Techniques". In Proceedings of The Eighteenth International Conference on Software Engineering

and Knowledge Engineering, SEKE 2006. Pages: 657 - 663.

Gemma Grau. "State of the Art for the Systematic Construction and Analysis of i* Models for assessing
COTS-Based Systems Development". Research Report, Universitat Politècnica de Catalunya, Departament de

Llenguatges i Sistemes Informàtics, LSI-06-38-R (2006).

Chapter 3 introduces the PRiM method. A preliminary version of this method and an extended
journal version are presented in:

Gemma Grau, Xavier Franch, Neil A.M. Maiden. "A Goal Based Round-Trip Method for System
Development". In Proceedings of the 11th International Workshop on Requirements Engineering: Foundation

for Software Quality, REFSQ 2005. pp: 71-86.

Gemma Grau, Xavier Franch, Neil A.M. Maiden. "PRiM: an i*-based process reengineering method for
Information Systems specification". Information and Software Technology. Volume 50. Issues 1-2 (January

2008). pp: 76-100.

Chapter 4 extends the part of Chapter 3 that is related to the definition and reuse of metrics.
More information can be found at:

Xavier Franch, Gemma Grau & Carme Quer. "A Framework for the Definition of Metrics for Actor-
Dependency Models". In Proceedings of the 12th IEEE Requirements Engineering International Conference,

RE 2004. pp: 348-349.

Gemma Grau, Xavier Franch, Carme Quer. "Un Marco para la Definición de Métricas sobre Modelos de
Dependencias de Actores". In Proceedings of the Eighth Workshop on Requirements Engineering, WER 2005.
pp: 185-196. An English version of this paper is available as a Research Report, at the Departament de

Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, LSI-04-10-R, 2004.

An i*-based Reengineering Framework for Requirements Engineering

262

Gemma Grau, Xavier Franch. "Using the PRiM method to Evaluate Requirements Models with COSMIC-
FFP". In Proceedings of the International Conference on Software Process and Product Measurement,

MENSURA 2007. pp: 110-120.

Gemma Grau. "Adapting the COSMIC Method for Evaluating the Functional Size in PRiM ". In the special

issue of the International Conference on Software Process and Product Measurement, MENSURA 2007.
Springer-Verlag, LNCS 4895. Pages: 139-153, 2008.

Xavier Franch, Gemma Grau. “Towards a Catalogue of Patterns for defining Metrics over i* Models”. To
appear in Proceedings of the 20th International Conference on Advanced Information Systems Engineering,

CAiSE 2008. Springer-Verlag.

Gemma Grau. “A Metamodelling Approach for the Definition and Reuse of Structural Metrics”. Research

Report, at the Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, LSI-08-
16-R, 2008.

The PRiM method is analysed in Chapter 7, in order to obtain ReeF, our Reengineering
Framework. A description of the process can be found at:

Gemma Grau, Xavier Franch. "ReeF: Defining a Customizable Reengineering Framework". In Proceedings

of the 19th International Conference on Advanced Information Systems Engineering, CAiSE 2007. Springer-

Verlag, LNCS 4495, pp: 485-500.

Chapter 8 presents the work on how ReeF has been customized into the domain of software
architectures for creating SARiM, a Software Architecture Reengineering i* Method. More
information about the method and the use of i* in the domain of Software Architectures are at:

Gemma Grau, Xavier Franch. "On the Adequacy of i* Models for Representing and Analysing Software
Architectures". In Proceedings of Advances in Conceptual Modeling – Foundations and Applications, ER 2007

Workshops: RIGiM 2007. Springer-Verlag, LNCS 4802, pp. 296-305.

Gemma Grau, Xavier Franch. "A Goal-Oriented Approach for the Generation and Evaluation of
Alternative Architectures". In Proceedings of the First European Conference on Software Architecture
(ECSA'07). Springer-Verlag, LNCS 4758, pp: 139-155.

The tool support used for developing the research of this thesis is presented in Chapter 9, and
has also been published at:

Gemma Grau, Xavier Franch, Neil A.M. Maiden. "REDEPEND-REACT: an Architecture Analysis Tool". In

Proceedings of the 13th IEEE Requirements Engineering International Conference, RE 2005. pp: 455-456.

Gemma Grau, Xavier Franch, Sebastián Ávila. "J-PRiM: A Java Tool for a Process Reengineering i*
Methodology". In Proceedings of the 14th IEEE International Requirements Engineering Conference, RE
2006. pp: 352-353.

The websites for the tool support are available at:

J-PRiM website: http://www.lsi.upc.edu/~ggrau/JPRIM/

REDEPEND-REACT website: http://www.lsi.upc.edu/~ggrau/REDEPEND-REACT/

Finally, during the reading of the document we reference several collaborative works with some
authors (author order is only significant when it is not alphabetical):

Gemma Grau, Juan Pablo Carvallo, Xavier Franch & Carme Quer. "DesCOTS: A Software System for
Selecting COTS Components". In Proceedings of the 30th EUROMICRO Conference, 2004. pp: 118-126.

Gemma Grau, Xavier Franch, Enric Mayol, Claudia Ayala, Carlos Cares, Mariela Haya, Fredy Navarrete, Pere

Botella, Carme Quer. "RiSD: A Methodology for Building i* Strategic Dependency Models". In

Author’s Publications .

 263

Proceedings of The Seventeenth International Conference on Software Engineering and Knowledge

Engineering, SEKE 2005. pp: 259-266.

Xavier Franch, Gemma Grau, Enric Mayol, Carme Quer, Claudia Ayala, Carlos Cares, Fredy Navarrete, Mariela
Haya, Pere Botella. "Systematic Construction of i* Strategic Dependency Models for Sociotechnical
Systems". International Journal of Software Engineering and Knowledge Engineering. Vol. 17, No. 1, 2007.
pp: 79-106.

Gemma Grau, Jennifer Horkoff, Dominike Schmitz, Samer Abdulhadi, Eric Yu. "Fostering Investigation,
Collaboration, and Evaluation: the i* Wiki Experience". In Proceedings of the 3rd International i*

Workshop, istar'08. Recife, Brazil, February 11-12, 2008. pp: 33-36.

Some other author’s publications (research work not included in this thesis):

Juan Pablo Carvallo, Xavier Franch, Gemma Grau, Carme Quer, Xavier Burgués. "COSTUME: Un Método
para la Combinación de Modelos de Calidad". In Proceedings of the 6th International Workshop on

Requirements Engineering, WER 2003. ISBN:85-87926-07-1. pp: 153-167.

Pere Botella, Xavier Burgués, Juan Pablo Carvallo, Xavier Franch, Gemma Grau, Jordi Marco, Carme Quer.

"ISO/IEC 9126 in practice: what do we need to know?". In Proceedings of the First Software Measurement

European Forum, SMEF 2004. Pages: 297-308.

Juan Pablo Carvallo, Xavier Franch, Gemma Grau, Carme Quer. "On the Use of Quality Models for COTS
Evaluation". MPEC Workshop. In Proceedings of the 25rd International Conference on Software Engineering,

ICSE 2004. pp: 31-36.

Carvallo, J.P., Franch, X., Grau, G., Quer, C. "Reaching an Agreement on COTS Quality through the Use of
Quality Models". WSQ Workshop. In Proceedings of the 25rd International Conference on Software
Engineering, ICSE 2004. Pages: 18-23.

Carvallo, J.P., Franch, X., Grau, G., Quer, C. "QM: A Tool for Building Software Quality Models". In
Proceedings of the 12th IEEE Requirements Engineering International Conference, RE 2004. Pages: 358-359.

Carvallo, J.P., Franch, X., Grau, G., Quer, C. "QM: A Tool for Building Software Quality Models". Research
Report at the Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, LSI-04-

11-R, 2004.

Carvallo, J.P., Franch, X., Grau, G., Quer, C. "COSTUME: A Method for Building Quality Models for
Composite COTS-based Software Systems". In Proceedings of the Fourth International Conference on

Quality Software, QSIC 2004. pp: 214-223.

Ayala, C., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol, E., Quer, C. "Análisis
Comparativo de Lenguajes de Modelado Orientados a Objetivos basados en i*". In Proceedings of the

Jornadas Iberoamericanas de Ingeniería del Software e Ingeniería del Conocimiento, JIISIC'04. pp: 527-540.

An i*-based Reengineering Framework for Requirements Engineering

264

 265

References

[vanDerAalst & vanHee, 1995] van der Aalst, W.M.P., van Hee, K.M.: “Framework for Business

Process Redesign”. In Proceedings of the 4th Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises, WETICE 1995. pp. 36-45.

[Abrahão & Poels, 2007] Abrahão, S.M., Poels, G.: “Experimental evaluation of an object-oriented

function point measurement procedure”. Information & Software Technology. Volume 49, Number 4.

pp: 366-380 (2007).

[Abran et al., 2003] Abran, A., Desharnais, J.M., Oligny, S., St-Pierre, D., Symons, C.: “COSMIC-FFP

Measurement Manual (The COSMIC Implementation Guide for ISO/IEC 19761:2003)”. Version 2.2,

Common Software Measurement International Consortium, 2003. Available at:

http://www.lrgl.uqam.ca/cosmic-ffp/.

[Abran et al., 2007] Abran, A., Desharnais, J.M., Oligny, S., St-Pierre, D., Symons, C.: “COSMIC

Method Version 3.0, Measurement Manual”. The Common Software Measurement International

Consortium, 2007. Available at: http://www.gelog.etsmtl.ca/cosmic-ffp/COSMIC-MethodV3.html.

[Albrecht & Gaffney, 1983] Albrecht, A.J., Gaffney, J.E.: "Software Functions, Source Lines of Code,

and Development Effort Prediction: A Software Science Validation". IEEE Transactions on Software

Engineering, Vol. 9, No. 6, November 1983. pp. 639-647.

[Amyot & Mussbacher, 2002] Amyot, D., Mussbacher, G.: “URN: Towards a New Standard for the

Visual Description of Requirements”. In Proceedings of the Third International Workshop on

Telecommunications and beyond: The Broader Applicability of SDL and MSC., 2002. Pages: 21-37.

[Anton, 1997] Anton, A.I. Goal Identification and Refinement in the Specification of Software-Based

Information Systems. PhD dissertation. Georgia Institute of Technology, Atlanta, 1997.

[Anton et al., 1994] Antón, A.I., McCracken, W.M., Potts., C.: “Goal Decomposition and Scenario

Analysis in Business Process Reengineering”. In Proceedings of the 6th International Conference on

Advanced Information Systems Engineering, CAiSE 1994. Springer-Verlag. LNCS 811. pp. 94-104.

[Anton et al., 2000] Antón, A.I., Dempster, J.H., Siege, D.F.: “Deriving Goals from a Use Case Based

Requirements Specification for an Electronic Commerce System”. In Proceedings of the Sixth

International Workshop on Requirements Engineering: Foundation for Software Quality, REFSQ

2000. Pages: 10-19.

An i*-based Reengineering Framework for Requirements Engineering

266

[Answer et al., 2006] Anwer, S., Jinnah, M.A., Ikram, N.: “Goal Oriented Requirement Engineering: A

Critical Study of Techniques”. In Proceedings of the 13th Asia Pacific Software Engineering

Conference, APSEC 2006. Pages: 121-130.

[Ayala et al., 2005a]. Ayala, C.P., Botella, P., Franch, X.: “On Goal-Oriented COTS Taxonomies

Construction”. In Proceedings of the 4th International Conference on COTS Based Software Systems,

ICCBSS 2005. Springer-Verlag, LNCS 3412. pp. 90-100.

[Ayala et al., 2005b] Ayala, C., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X.,

Mayol, E., Quer, C. "A Comparative Analysis of i*-Based Goal-Oriented Modeling Languages". In

Proceedings of The Seventeenth International Conference on Software Engineering and Knowledge

Engineering (SEKE'05). Pages: 43-50. This paper is an English version of [Ayala et al., 2004].

[Ayyildiz et al., 2006] Ayyildiz, M., Kalipsiz, O., Yavuz, S.: “A Metric-Set and Model Suggestion for

Better Software Project Cost Estimation”. Transactions on Engineering, Computing and Technology.

Volume 16, November 2006.

[Balasubramanian & Gupta, 2005] Balasubramanian, S.; Gupta, M.: “Structural metrics for goal based

business process design and evaluation”. Business Process Management Journal, Volume 11, Number

6, 2005. Pages: 680-694.

[Baroni et al., 2002] Baroni, A.L., Braz, S., Brito e Abreu, F.; “Using OCL to Formalize Object-Oriented

Design Metrics Definitions”.

[Baroni et al., 2003] Baroni, A.L., Brito e Abreu, F.; “An OCL-Based Formalization of the MOOSE

Metric Suite”. In Proceedings of QAOOSE 2003.

[Basili et al., 1994] Basili, V.R., Caldiera, G., Rombach, H.D.: “The Goal Question Metric Approach”.

Encyclopedia of Software Engineering, Wiley, 1994.

[Bastos & Castro, 2003] Bastos, L.R.D.; Castro, J.F.B.: “Integration between Organizational

Requirements and Architecture” In Anais do Workshop em Engenharia de Requisitos, WER 2003.

Pages: 124-139.

[Bastos & Castro, 2004] Bastos, L.R.D., Castro, J.F.B.: “Enhancing Requirements to derive Multi-Agent
Architectures”. In Anais do Workshop em Engenharia de Requisitos, WER 2004. pp. 127-139.

[Bengtsson & Bosch, 1998] Bengtsson, P., Bosch, J.: “Scenario-based Software Architecture

Reengineering”. In Proceedings of the 5th International Conference on Software Reuse, ICSR 1998.

pp. 308-317.

[Bergner et al., 2005] Bergner, K., Rausch, A., Sihling, M., Ternité, T.: “DoSAM – Domain-Specific

Softwae Architecture Comparison Model. In Proceedings of QoSA-SOQUA 2005. Springer-Verlag,

LNCS 3712. pp. 4-20.

[Bleinstein et al., 2005] Bleistein, S.J.; Cox, K.; Verner, J.: “Strategic alignment in requirements analysis

for organizational IT: an integrated approach”. In Proceedings of the 2005 ACM symposium on

Applied computing, SAC 2005. Pages: 1300-1307.

[Bodhuin et al., 2004] Bodhuin, T., Esposito, R, Pacelli, C., Tortorella, M.: “Impact Analysis for

Supporting the Co-Evolution of Business Processes and Supporting Software Systems”. In

Proceedings of the CAiSE'04 Workshops: Knowledge and Model Driven Information Systems

Engineering for Networked Organisations, 2004. pp. 146-150.

References .

 267

[Bouillon et al., 2004] Bouillon, L., Vanderdonckt, J., Chow, K.C.: “Flexible Re-engineering of Web

Sites”. In Proceedings of the 9th International Conference on Intelligent User Interface, IUI 2004. pp.

132-139.

[Bresciani & Donzelli, 2003] Paolo Bresciani, Paolo Donzelli: “A Practical Agent-Based Approach to

Requirements Engineering for Socio-technical Systems”. In Proceedings of the 5th International Bi-

Conference Workshop on Agent-Oriented Information Systems, AOIS 2003. Pages: 158-173.

[Bresciani et al., 2004] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: “Tropos:

An Agent-Oriented Software Development Methodology”. In Journal of Autonomous Agents and

Multi-Agent Systems. Kluwer Academic Publishers, Vol 8, Issue 3, 2004. pp. 203-236.

[Briand et al., 1994] Briand, L., Morasca, S., Basili, V.R.: “Goal-Driven Definition of Product Metrics

Based on Properties”. University of Maryland, Department of Computer Science, Technical Report

CS-TR-3346, UMIACS-TR-94-106, 1994.

[Briand et al., 1996] Lionel C. Briand, Sandro Morasca, Victor R. Basili: “Property-Based Software

Engineering Measurement”. IEEE Trans. Software Eng. 22(1): 68-86 (1996).

[Briand et al., 2002] Lionel C. Briand, Sandro Morasca, Victor R. Basili: “An Operational Process for

Goal-Driven Definition of Measures”. IEEE Trans. Software Eng. 28(12): 1106-1125 (2002).

[Brinkkemper et al., 1998] Brinkkemper, S., Saeki, M., Harmsen, F.: “Assembly Techniques for Method

Engineering”. In Proceedings of the 10th International Conference on Advanced Information Systems

Engineering, CAiSE 1998. Springer-Verlag, LNCS 1413. pp. 381-400.

[Brinkkemper et al., 2001] Brinkkemper, S., Saeki, M., Harmsen, F.: “A Method Engineering Language

for the Description of Systems Development Methods”. In Proceedings of 13th International

Conference Advanced Information Systems Engineering, CAiSE 2001. Springer-Verlag, LNCS 2068.

pp. 473-476.

[deBruin & vanVliet, 2001] de Bruin, H., van Vliet, H.: “Scenario-based Generation and Evaluation of

Software Architectures”. In Proceedings of the 3rd International Conference on Generative and

Component-Based Software Engineering, 2001. LNCS 2186, pp.128-139, 2001.

[deBruin & vanVliet, 2002] de Bruin, H., van Vliet, H.: Top-Down Composition of Software

Architectures. In Proceedings of the 9th IEEE International Conference on Engineering of Computer-

Based Systems, ECBS 2002: 147-176.

[Bryl et al., 2006] Bryl, V., Giorgini, P., Mylopoulos, J.: “Designing Cooperative IS: Exploring and

Evaluating Alternatives”. OTM Conferences (1) 2006. pp. 533-550.

[Buschmann et al., 2001] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns. ISBN 0-471-95889-7. John's Wiley

& Sons Ltd, 2001.

[Calero et al., 2001] Calero, C., Piattini, M., Genero, M.: “Empirical validation of referential integrity

metrics”. Information and Software Technology 43 (2001). pp. 494-957.

[Cant et al., 1995] Cant, S.N., Jeffery, D.R., Henderson-Sellers, B.: “A conceptual model of cognitive

complexity of elements of the programming process”. Information and Software Technology, 1995.

37 (7). pp. 351-362.

[Cardoso et al., 2006] Cardoso, J., Mendling, J., Neuman, G., Reijers, H.A.: “A Discourse on

Complexity of Process Models”. In Proceedings of BPM 2006 Workshops. Springer-Verlag, LNCS

4103. pp. 117-128.

An i*-based Reengineering Framework for Requirements Engineering

268

[Cares et al., 2007] Cares C., Franch X., Perini A. and Susi A.: “iStarML. The i* Mark-up language”.

Research Report, Universitat Politècnica de Catalunya, Departament de Llenguatges i Sistemes

Informàtics, LSI-07-46-R (2007).

[Chidamber & Kemerer, 1994] Chidamber, S.R., Kemerer, C.F.: “A Metrics Suite for Object Oriented

Design”. IEEE Transactions on Software Engineering. Vol. 20, No. 6., June 1994.

[Chung et al., 2000] Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishers, 2000.

[Ciancarini et al., 1999] Ciancarini P., Rossi, D., Vital, F.: “A case study in designing a document-

centric groupware application over the Internet”. Dipartimento di Scienze dell'Informazione -

University of Bologna – Italy. Available online at: http://www.visualize.uk.com/conf/activeweb/

proceed/pap22/ (1999).

[Clements et al., 2002] Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures.

Methods and Case Studies. ISBN 0-01-70482-X. Addison-Wesley, 2002.

[Clotet et al., 2007] Clotet, R., Franch, X., López, L., Marco, J., Seyff, N., Grunbacher, P.: “The Meaning

of Inheritance in i*”. In Proceedings of 17th International Workshop on Agent-Oriented Information

Systems, AOIS 2007. pp: 651-666.

[Cockburn, 2000] Cockburn, A.: Writting Effective Use Cases. Addison-Wesley, 2000.

[Cogan & Shalfeeva, 2002] Cogan, B., Shalfeeva, E.: “A Generalized Structural Model of Structured

Programs for Software Metrics Definition”. Software Quality Journal, 10, pp. 149-167, 2002.

[Condori-Fernandez et al., 2004] Condori-Fernández, N., Abrahão, S., Pastor, O.: “Towards a

Functional Size Measure for Object-Oriented Systems from Requirements Specifications”. In

Proceedings of the 4th International Conference on Quality Software, QSIC 2004. pp. 94-101.

[Condori-Fernandez et al., 2006] Condori-Fernández, N., Pastor, O.: “Evaluating the Productivity and

Reproducibility of a Measurement Procedure”. In Proceedings of the 2nd International Workshop on

Quality of Information Systems, QoIS 2006. pp: 352-361.

[COSMIC-FFP website] The COSMIC-FFP at: http://www.cosmicon.com. Last Accessed: January
2008.

[COSMICon website] The COSMIC-FFP at: http://www.lrgl.uqam.ca/cosmic-ffp/. Last Accessed:

January 2008.

[Curtis et al., 1979] Curtis, B., Sheppard, S.B., Milliman, P., Borst, Tom Love, M.A.: “Measuring the

Psychological Complexity of Software Maintenance Tasks with the Halstead and McCabe Metrics”.

IEEE Transactions on Software Engineering 5(2). pp: 96-104 (1979).

[Curtis et al., 1992] B. Curtis, B.; Kellner, M.I.; Over, J.: “Process Modelling”. Communications of the

ACM, Vol. 35, No. 9, September 1992.

 [Cysneiros and Zisman, 2004] Cysneiros, G., Zisman, A.: “Refining the Prometheus Methodology with

i*”. In Proceedings of the 3
rd

 International Workshop on Agent-Oriented Methodologies, held at the

19th Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA 2004.

[Dam and Winikoff, 2003] Dam, K.H.; Winikoff, M.; “Comparing Agent-Oriented Methodologies”. In

Proceedings of the Fifth International Bi-Conference Workshop on Agent-Oriented Information

Systems, AAMAS 2003.

References .

 269

[Dardenne et al., 1993] Dardenne, A., van Lamsweerde, A., Fickas, S.: “Goal-directed Requirements

Acquisition”. Science of Computer Programming, Volume 20, Issue 1-2, April 1993. pp. 3-50.

[Dobrica & Niemelä, 2002] Dobrica, L., Niemelä, E.: “A survey on software architecture analysis

methods”. IEEE Transactions on Software Engineering, Vol. 28 , Issue 7, July 2002. pp: 638 – 653.

[Ehrig et al., 2007] Ehrig, M., Koschmider, A., Oberweis, A.: “Measuring Similarity between Semantic

Business Process Models”. In Proceedings of the Fourth Asia-Pacific Conference on Conceptual

Modelling, APCCM 2007.

[El-Wakil et al., 2004] El-Wakil, M., El-Bastawisi, A., Bokhtar, M., Fahmy, A.: “Software Metrics – A

Taxonomy”.

[Estrada et al., 2003] Estrada, H., A. Martínez, A., Pastor, O.: “Goal-based business modeling oriented

towards late requirements generation”. In Proceedings of the 22nd International Conference on

Conceptual Modeling, ER 2003. Springer-Verlag, LNCS 2813. pp. 277-290.

[Estrada et al., 2006] H. Estrada, A. Martínez Rebollar, O. Pastor, J. Mylopoulos. “An Empirical

Evaluation of the i* in a Model-Based Software Generation Environment”. In Proceedings of the 18
th

International Conference on Advanced Information Systems Engineering, CAiSE 2006. LNCS 4001,

pp. 513-527.

[Etien, 2006] Etien, A. Ingénierie de l’alignement : Concepts, Modèles et Processus. La méthode ACEM

pour l’alignement d’un système d’information aux processus d’entreprise. Thèse de doctorat en

informatique de l’Université Paris 1. March, 2001.

[Etien et al., 2003] Etien, A., Deneckère, R., Salinesi, C.: “Extending Methods to Express Change

Requirements”. In Proceedings of EMSISE 2003.

[Etien et al., 2005] Etien, A., Rolland, C., Salinesi, C.: “Measuring the Business / System Alignment”. In

Proceedings of Requirements Engineering for Business Need and IT Alignment (REBNITA 2005).

[Faulkner & Kolp, 2003] Faulkner, S., Kolp, M.: “Towards an Agent Architectural Description

Language for Information Systems”. In Proceedings of the 5th International Conference on

Enterprise Information Systems, ICEIS 2003. pp. 59-66.

[Fenton & Fleeger, 1996] Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical

Approach. ISBN 0-534-95429-1. International Thomson Computer Press, 1996.

[Fenton & Neil, 2000] Fenton, N.E., Neil, M.: “Software metrics: roadmap”. In proceedings of ICSE -

Future of SE Track 2000. pp: 357-370.

[Formal Tropos website] Formal Tropos web page: http://dit.unitn.it/~ft/. Last accessed: January 2008.

[Franch & Carvallo, 2003] Franch, X., Carvallo, J.P.: “Using Quality Models in Software Package

Selection”. IEEE Software, 20(1), 2003, pp. 34-41.

[Franch & Maiden, 2003] Franch, X., Maiden, N.A.M.: “Modeling Component Dependencies to Inform

their Selection”, In Proceedings of the 2nd International Conference on COTS Based Software

Systems, ICCBSS 2003. Springer-Verlag, LNCS 2580. pp. 81-91.

[Franch, Grau & Quer, 2004a] Franch, X., Grau, G., Quer, C. "A Framework for the Definition of

Metrics for Actor-Dependency Models". In Proceedings of the 12th IEEE Requirements Engineering

International Conference, RE 2004. pp: 348-349.

An i*-based Reengineering Framework for Requirements Engineering

270

[Franch, Grau & Quer, 2004b] Franch, X., Grau, G., Quer, C. "A Framework for the Definition of

Metrics for Actor-Dependency Models". Research Report, Universitat Politècnica de Catalunya,

Departament de Llenguatges i Sistemes Informàtics, LSI-04-10-R.

[Franch, 2005] Franch, X.: “On the Lightweight Use of Goal-Oriented Models for Software Package

Selection”. In Proceedings of the 17th International Conference on Advanced Information Systems

Engineering, CAiSE 2005. Springer-Verlag, LNCS 3520. pp. 551-566.

[Franch, 2006] Franch, X.: “On the Quantitative Analysis of Agent-Oriented Models”. In Proceedings of

the 18th International Conference on Advanced Information Systems Engineering, CAiSE 2006.

Springer-Verlag, LNCS 4001, pp. 495-509.

[Franch et al., 2007] Franch, X., Grau, G., Mayol, E., Quer, Q., Ayala, C., Cares, C., Navarrete, F. Haya,

M., Botella, P. "Systematic Construction of i* Strategic Dependency Models for Sociotechnical

Systems". International Journal of Software Engineering and Knowledge Engineering. Vol. 17, No. 1

(2007). Pages106.

[Fuxman et al., 2004] Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M., Traverso, P.: Specifying and

analyzing early requirements in Tropos. Requirements Engineering 9(2): 132-150 (2004).

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series, November

1994.

[Garcia et al., 2006] García, F., Bertoa, M.F., Calero, C., Vallecilo, A., Ruiz, F., Piattini, M., Genero, M.:

“Towards a consistent terminology for software measurement”. Information and Software Technology

48 (2006) 631-644.

[Garcia et al., 2007] García, F., Serrano, M., Cruz-Lemus, J., Ruiz, F., Piattini, M.: “Managing software

process measurement: A metamodel-based approach”. Information Sciences 177 (2007) 2570-2586.

[Genero et al., 2002a] Genero, M., Miranda, D., Piattini, M.: “Defining and Validating Metrics for UML

Statechart Diagrams”. In QAOOSE 2002.

[Genero et al., 2002b] Genero, M., Piattini, M., Calero, C.: “Empirical Validation of Class Diagram
Metrics”. In Proceedings of the 2002 International Symposium on Empirical Software Engineering

(ISESE 2002).

[Genero et al., 2005] Genero, M., Piattini, M., Calero, C.: “A Survey of Metrics for UML Class

Diagrams”. In Journal of Object Technology, vol. 4, no. 9, November-December 2005, pp. 59-92.

[German & Hindle, 2005] German, D.M., Hindle, A.: “Measuring fine-grained change in software:

towards modification-aware change metrics” In Proccedings of the 11th IEEE International Software

Metrics Symposium (METRICS 2005).

[GESSI, 2007] Software Engineering for Information Systems Group (GESSI): “Analysis and description

of the Processes of the FENIX System”. Unpublished document (2007).

[Giaglis, 2001] Giaglis, G.M.: “A taxonomy of business process modelling and Information Systems

modelling techniques”. International Journal of Flexible Manufacturing Systems, Vol. 13, No. 2,

2001. Page(s):209-228.

[Giorgini et al., 2003] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani,R.: “Formal Reasoning

Techniques for Goal Models”. In Journal on Data Semantics I, 2003. Springer Verlag, LNCS 2800.

pp. 1-20.

References .

 271

[Goetz & Rupp, 2003] Goetz, R., Rupp, C.: “Psychotherapy for System Requirements”. In Proceedings

of the 2nd IEEE International Conference on Cognitive Informatics, 2003. pp. 75-80.

[Gopu, 2003] Gopu, A.: “Software Metrics & Associated Issues. A Literature Survey”. Indiana

University, 2003.

[Goulao & BritoAbreu, 2005] Goulao, M., Brito e Abreu, F.: “Formal Definition of Metrics Upon the

CORBA Component Model”. In Proceedings of QoSA-SOQUA 2005, LNCS 3712, pp. 88-105, 2005.

[Grant, 2002] Grant, D.: “A Wider View of Business Process Redesign”. Communications of the ACM.

February 2002/Vol. 45, No. 2. Page(s) 85-90.

[Grau et al., 2004] Grau, G., Carvallo, J.P., Franch, X., Quer, C. "DesCOTS: A Software System for

Selecting COTS Components". In Proceedings of the 30th EUROMICRO Conference. Pages: 118-

126.

 [Grau, Franch & Maiden, 2005a] Grau, G., Franch, X., Maiden, N.A.M. "A Goal Based Round-Trip

Method for System Development". In Proceedings of the 11th International Workshop on

Requirements Engineering: Foundation for Software Quality (REFSQ'05). Pages:71-86.

[Grau, Franch & Maiden, 2005b] Grau, G., Franch, X., Maiden, N.A.M. "REDEPEND-REACT: an

Architecture Analysis Tool". In Proceedings of the 13th IEEE Requirements Engineering

International Conference (RE'05). Pages: 455 - 456.

[Grau, Franch & Quer, 2005] Grau, G., Franch, X., Quer, C. “Un Marco para la Definición de Métricas

sobre Modelos de Dependencias de Actores". In Proceedings of the Eighth Workshop on

Requirements Engineering (WER'05). Pages: 185-196.

[Grau et al., 2005] Grau, G., Franch, X., Mayol, E., Ayala, C., Cares, C., Haya, M., Navarrete, F.,

Botella, P., Quer, C. "RiSD: A Methodology for Building i* Strategic Dependency Models". In

Proceedings of the Seventeenth International Conference on Software Engineering and Knowledge

Engineering (SEKE'05). Pages: 259-266.

[Grau et al., 2006] Grau, G., Cares, C., Franch, X., Navarrete, F. "A Comparative Analysis of i* Agent-

Oriented Modelling Techniques". In Proceedings of the Eighteenth International Conference on

Software Engineering and Knowledge Engineering (SEKE'06). 5-7 July 2006. Pages: 657 - 663.

[Grau, Franch & Ávila, 2006] Grau, G., Franch, X., Ávila, S. "J-PRiM: A Java Tool for a Process

Reengineering i* Methodology". In Proceedings of the 14th IEEE International Requirements

Engineering Conference (RE'06). Pages: 352-353.

[Grau, 2006] Grau, G.. "State of the Art for the Systematic Construction and Analysis of i* Models for

assessing COTS-Based Systems Development". Research Report, Universitat Politècnica de

Catalunya, Departament de Llenguatges i Sistemes Informàtics, LSI-06-38-R.

[Grau, 2007] Grau, G. "A Reengineering Framework for Informing Decisions over Requirements

Models". In Proceedings of Workshops and Doctoral Consortium of the 19th International

Conference on Advanced Information Systems Engineering (CAiSE'07). Vol. 2, Pages: 853-860.

[Grau & Franch, 2007a] Grau, G., Franch, X.. "ReeF: Defining a Customizable Reengineering

Framework". In Proceedings of the 19th International Conference on Advanced Information Systems

Engineering (CAiSE'07). Pages: 485-500.

[Grau & Franch, 2007b] Grau, G., Franch, X. "A Goal-Oriented Approach for the Generation and

Evaluation of Alternative Architectures". In Proceedings of the First European Conference on

Software Architecture (ECSA'07). Springer-Verlag, LNCS 4758. Pages: 139-155.

An i*-based Reengineering Framework for Requirements Engineering

272

[Grau & Franch, 2007c] Grau, G., Franch, X.: "On the Adequacy of i* Models for Representing and

Analysing Software Architectures". In Proceedings of Advances in Conceptual Modeling –

Foundations and Applications, ER 2007 Workshops: RIGiM 2007. Springer-Verlag, LNCS 4802, pp.

296-305.

[Grau & Franch, 2007d] Grau, G., Franch, X: "Using the PRiM method to Evaluate Requirements

Models with COSMIC-FFP". In Proceedings of the International Conference on Software Process

and Product Measurement, IWSM-MENSURA 2007. pp. 110-120.

[Grau, 2008a] Grau, G. "Adapting the COSMIC Method for Evaluating the Functional Size in PRiM ".

In the special issue the International Conference on Software Process and Product Measurement,

MENSURA 2007. Springer-Verlag, LNCS 4895. Pages: 139-153, 2008.

[Grau, 2008b] Grau, G., Franch, X. “A Meta-modelling Approach for the Definition and Reuse of

Structural Metrics”. Research Report, at the Departament de Llenguatges i Sistemes Informàtics,

Universitat Politècnica de Catalunya, LSI-08-16-R, 2008.

[Grau, Franch & Maiden, 2008] Grau, G., Franch, X., Maiden, N.A.M. "PRiM: an i*-based process

reengineering method for Information Systems specification". Information and Software Technology.

Volume 50, Issue 1-2, pp. 76-100 (2008).

[Green, 1994] Green, S.: “Goal-Driven Approaches to Requirements Engineering” Technical Report

DoC TR-93-42 1994, Imperial College of Science, Technology and Medicine, Department of

Computing Technical Report, London, UK, 1994.

[GRL website] http://www.cs.toronto.edu/km/GRL/

[Gruhn & Laue, 2006] Gruhn, V., Laue, R.: “Complexity Metrics for Business Process Models”.

[Grunbacher et al., 2004] Grünbacher, P., Egyed, A., Medvidovic, N.: “Reconciling software

requirements and architectures with intermediate models”. Software and Systems Modeling, Volume

3, Number 3, August 2004. pp. 235-253.

[Guo et al., 1998] Guo, G.Y., Atlee, J.M., Kazman, R.: “A Software Architecture Reconstruction

Method”. In Proceedings of 1st Working IFIP Conference on Software Architecture, WICSA 1999.
pp. 15-34.

[Habela et al., 2005] Habela, P., Glowacki E., Serafinski T., Subieta K., “Adapting Use Case Model for

COSMIC-FFP Based Measurement”. In Proceedings of the 15th International Workshop on

SoftwareMeasurement (IWSM2005). pp. 195-207.

[Harput et al., 2005] Harput, V., Kaindl, H., Kramer, S.: “Extending Function Point Analysis to Object-

Oriented Requirements Specifications”. In Proceedings of the 11th International Metrics Symposium

(METRICS 2005).

[Haumer et al., 1999] Haumer, P., Heymans, P., Jarke, M., Pohl, K.: “Bridging the Gap Between Past

and Future in RE: A Scenario-Based Approach” In Proceedings of the 4th IEEE International

Symposium on Requirements Engineering (RE '99). pp. 66-73.

[Horkoff, 2006] Horkoff, J.: Using i* Models for Evaluation. M.Sc. Thesis at the University of Toronto

(2006).

[IEEE 830-1998] IEEE recommended practice for software requirements specifications, 1998.

[IFPUG website] International Function Point Users Group, at: http://www.ifpug.org/.

References .

 273

[IMS Global Learning Consortium, 2003] IMS Global Learning Consortium: “Learning Design Best

Practice and Implementation Guide. Version 1.0 Final Specification”. December 2003. Available at:

www.imsglobal.org.

[ISI website] ISI Web of Knowledge. Available at: http://isiwebofknowledge.com/. Last visited: May

2008.

[ISO/IEC 9126] ISO/IEC Standard 9126-1 Software Engineering – Part 1: Quality Model, 2001.

[ISO/IEC 19761] ISO/IEC 19761:2003. “Software Engineering – COSMIC-FFP – A functional size

measurement method”, International Organization for standarization, 2203.

[i* wiki] The i* wiki at: http://istar.rwth-aachen.de/. Last Accessed: January 2008.

[Jacobson et al., 2000] Jacobson I., Boock G., Rumbaugh, J. The Unified Software Development Process.

Addison-Wesley-Longman, 2000.

[Jacquet & Abran, 1997] J. P. Jacquet, A. Abran. “From Software Metrics to Software Measurement

Methods: A Process Models”. In Proceedings of the 3rd International Software Engineering Standards

Symposium, ISESS’97. pp. 128-135.

[Jarzabeg & Tok, 1996] Jarzabek S.; Tok W.L.: “Model-based support for business re-engineering”.

Information and Software Technology, Volume 38, Number 5, May 1996. Elsevier Science. Pages:

355-374.

[Jiang et al., 2007] Jiang, L., Eberlein, A., Far, B.H., Mousavi, M.: “A methodology for the selection of

Requirements Engineering techniques”. Software and Systems Modeling, DOI 10.1007/s10270-007-

0055-y (2007).

[Jones & Maiden, 2004] Jones, S., Maiden, N.A.M.: “RESCUE: An Integrated Method for Specifying

Requirements for Complex Socio-Technical Systems”. Book chapter in Requirements Engineering for

Sociotechnical Systems, Idea Group Inc., 2004.

[Jones et al., 2004] Jones, S., Maiden, N.A.M., Manning, S., Greenwood, J.: “Human Activity Modelling

in the Specification of Operational Requirements: Work in Progress”. In Proceedings of the Workshop

Bridging the Gaps between Software Engineering and Human-Computer Interaction, 2004.

[Jorgensen & Shepperd, 2007] Jorgensen, M., Shepperd, M.: “A Systematic Review of Software

Develoment Cost Estimation Studies”. IEEE Transactions on Software Engineering, Vol. 33, No. 1,

January 2007.

[Kaiya et al., 2002] Kaiya, H., Horai, H., Saeki, M.: “AGORA: Attributed Goal-Oriented Requirements

Analysis Method”. In Proceedings of the 10th IEEE International Conference on Requirements

Engineering, RE 2002. pp. 13-22.

[Kang et al., 2005] Kang, K.C., Kim, M., Lee, J., Kim, B.: “Feature-Oriented Re-engineering of Legacy

Systems into Product Line Assets – a case study”. In Proceedings of the 9th International Conference

on Software Product Lines, SPLC 2005. LNCS 3714. pp. 45-56.

[Kardasis & Loucopoulos, 1998] Kardasis, P., Loucopoulos, P.: “Aligning Legacy Information Systems

to Business Processes”. In Proceedings of CAiSE 1998: 25-39.

[Katzenstein & Lerch, 2000] Katzenstein, G., Lerch, F.J.: “Beneath the Surface of Organizational

Processes: A Social Representation Framework for Business Process Redesign”. ACM Transactions

on Information Systems, Volume18, Number 4, 2000. pp. 383-422.

An i*-based Reengineering Framework for Requirements Engineering

274

[Kavakli, 1999] Kavakli, E.: Goal-Driven Requirements Engineering: Modelling and Guidance.PhD

Thesis, University of Manchester, 1999.

[Kavakli, 2004] Kavakli, E.: “Modelling organizational goals: Analysis of Current Methods”. In

Proceedings of SAC 2004.

 [Kavakli & Loucopoulos, 1998] Kavakli, E., Loucopoulos, P.: “Goal-Driven Business Process analysis

Application in Electricity Deregulation”. In Proceedings of the 10th International Conference on

Advanced Information Systems Engineering (CAiSE’98). Springer-Verlag, LNCS 1413, pp. 305-324.

[Kavakli & Loucopoulos, 2003] Kavakli, E., Loucopoulos, P.: “Goal Driven Requirements Engineering:

Evaluation of Current Methods”. In Proceedings of EMMSAD’03.

[Kavakli & Loucopoulos, 2004] Kavakli, E.; Loucopoulos, P.: “Goal Modeling in Requirements

Engineering: Analysis and Critique of Current Methods”. Book chapter in Information Modeling

Methods and Methodologies. Idea Group Publishing, pp. 102-124 (2005).

[Kealey & Amyot, 2007] Kealey, J., Amyot, D.: “Enhanced Use Case Map Traversal Semantics”. In

SDL 2007: Design for Dependable Systems. LNCS 4745 (2007). pp: 133-149.

[Kelifi et al., 2003] Khelifi A., et al.: “The C-Registration System Case Study with ISO 19761 (2003)”.

Available at: http://www.gelog.etsmtl.ca/cosmic-ffp/casestudies/. Last Accessed: January 2008.

[Kim et al., 2005] Kim, M., Lee, J., Kang, K.C., Hong, Y., Bang, S.: “Re-engineering Software

Architecture of Home Service Robots: A Case Study”. In Proceedings of the 27th Conference on

Software Engineering, ICSE 2005. pp. 505-513.

[Kitchenham et al., 1995] Kitchenham, B., Pickard, L., Pfleeger, S.L.: “Case studies for method and tool

evaluation”. IEEE Software. Volume: 12, Issue: 4. July 1995.

[Kolp et al., 2001] Manuel Kolp, Paolo Giorgini, John Mylopoulos: “A Goal-Based Organizational

Perspective on Multi-agent Architectures”. ATAL 2001. Pages: 128-140.

[Kolp et al., 2003] Kolp, M., Giorgini, P., Mylopoulos, J.: “Organizational Patterns for Early

Requirements Analysis”. In Proceedings of the 15th International Conference on Advanced

Information Systems Engineering, CAiSE 2003. Springer-Verlag, LNCS 2681. pp. 617-632.

[Kruchten, 1995] Kruchten, P.B.: “The 4-1 View Model of Architecture”. IEEE Software. November

1995, 12(6), p. 42-50.

[vanLamsweerde, 2000] van Lamsweerde, A.: “Requirements Engineering in the year 00: a research

perspective” In Proceedings of the 2000 International Conference on Software Engineering (ICSE

2000). pp: 5-19.

[vanLamsweerde, 2001] van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided

Tour”. In Proceedings of ISRE 2001. pp. 249-263.

[vanLamsweerde, 2003] van Lamsweerde, A.: “From System Goals to Software Architecture”. In

Proceedings of Formal Methods for Software Architecture, SFM 2003. Springer-Verlag, LNCS 2804,

pp. 25-43.

[vanLamsweerde et al., 1992] van Lamsweerde, A., Darimont, R., Massonet, P.: “The Meeting

Scheduler Sytem – Problem Statement”. 1992. Available at: http://www.lore.ua.ac.be/Teaching/

SSPEC2LIC/MeetingScheduler.pdf.

[Latva-Koivisto, 2001] Latva-Koivisto, A.M.: “Finding a complexity measure for business process

models”. Research Report. Helsinki University of Technology, Systems Analysis Laboratory, 2001.

References .

 275

[Linke & Lowe, 2006] Lincke, R., Löwe, W.: “Foundations for Defining Software Metrics”. In

Proceedings of the 3rd International Workshop on Metamodels, Schemas, Grammars, and Ontologies

for Reverse Engineering, ATEM 2006.

[Maiden, 2004] Maiden N.A.M..: “Systematic Scenario Walkthroughs with ART-SCENE”. In Scenarios,

Stories and Use Cases, Eds Alexander & Maiden, John Wiley, 2004. pp. 166-178.

[Maiden et al., 2003] Maiden, N.A.M., S. Manning, S., Jones, S., Greenwood, J. “Generating

requirements from systems models using patterns: a case study”. Requirements Engineering. Volume

10 , Issue 4 (November 2005). Pages: 276 – 288.

 [Maiden et al., 2004a] Maiden N.A.M., Jones S.V., Manning S., Greenwood J. & Renou L.: “Model-

Driven Requirements Engineering: Synchronising Models in an Air Traffic Management Case Study’,

In In Proceedings of the 16th International Conference on Advanced Information Systems

Engineering, CAiSE 2004. Springer-Verlag LNCS 3084. pp. 368-383.

 [Maiden et al., 2004b] Maiden N., Robertson S. & Gizikis A.: “Provoking Creativity: Imagine What

Your Requirements Could be Like”, IEEE Software, September/October 2004, 21(5). pp. 68-75.

[Martin, 2003] Martin, R.C.: Agile Software Development. Principles, Patterns, and Practices. Prentice

Hall, 2003. ISBN 0-13-597444-5.

[Martin-Albo et al., 2003] Martin-Albo, J., Bertoa, M.F., Calero, C., Vallecillo, A., Cechich, A., Piattini,

M.: “CQM: A Software Component Metric Classification Model”.

[Matulevicius & Heymans, 2007] Matulevicius, R., Heymans, P.: “Comparing Goal Modelling

Languages: an Experiment”. In Proceedings of REFSQ’07. Springer-Verlag, LNCS 4542, pp. 18-32,

2007.

[McCabe, 1976] McCabe, T.J.: “A complexity measure”. IEEE Transactions on Software Engineering.

Vol. 2, No. 4 (1976). Pp. 308-320.

[McQuillan et al., 2006] McQuillan, J.A., Jacqueline, Power, J.F.: “On the Application of Software

Metrics to UML Models”. In Proceedings of MoDELS 2006 Workshops, LNCS 4364, pp. 217-226,

2006.

[Medvidovic & Rosenblum, 1997] Medvidovic, N., Rosenblum, D.S.: Domains of Concern in Software

Architectures and Architecture Description Languages. In Proceedings of the Conference on Domain-

Specific Languages, DSL 1997. pp. 199-212.

[Medvidovic & Taylor, 2000] Medvidovic, N., Taylor, R.N.: “A Classification and Comparison

Framework for Software Architecture Description Languages.” IEEE Transactions on Software

Engineering, vol. 26, no. 1, pp. 70-93 (January 2000).

[Mendling, 2007] Mendling, J.: “Testing Density as a Complexity Metric for EPCs”.

[Mens & Lanza, 2002] Mens, T., Lanza, M.: “A Graph-Based Metamodel for Object-Oriented Software

Metrics”. Electronic Notes on Theoretical Computer Science 72(2): (2002).

[Mirbel & Ralyté, 2005] Mirbel, I., Ralyté. J.: “Situational method engineering: combining assembly-

based and roadmap-driven approaches”. Requirements Engineering, Volume 11. Issue 1. December

2005.

[Moody, 2000] Moody, D.L.: “Building links between IS research and professional practice: improving

the relevance and impact of IS research”. ICIS 2000: 351-360.

An i*-based Reengineering Framework for Requirements Engineering

276

[Nakatani et al., 2001] Nakatani, T., Urai, T., Ohmura, S., Tamai, T.: “A Requirements Description

Metamodel for Use Cases”. In Proceedings of the Eighth Asia-Pacific on Software Engineering

Conference (APSEC 2001). pp: 251-258.

[Neto et al., 2004] Neto, G.C., Gomes, A.S., Castro, J.B.: “Mapeando Diagramas da Teoria da Atividade

em Modelos Organizacionais Baseados em i*”. In Proceedings of the 7th Workshop em Engenharia

de Requisitos, 2004, pp 39-50.

[Nurcan & Rolland, 2003] Nurcan, S., C. Rolland. C.; “A multi-method for defining the organizational

change”. Information and Software Technology, Volume 45, Number 2, January 2003. pp. 61-82.

[Nurcan et al., 2005] Nurcan, S., Etien, A., Kaabi, R., Zoukar, I., Rolland, C.: “A strategy driven

business process modelling approach”. Business Process Management Journal. Volume: 11, Issue: 6,

2005. pp: 628 – 649.

[Nuseibeh & Easterbrook, 2000] Nuseibeh, B., Easterbrook, S.: “Requirements Engineering: A

Roadmap”. In Proceedings of the Conference on The Future of Software Engineering, 2000. Pages: 35

– 46.

[Oman et al., 1992] Oman, P., Hagemeister, J., Ash, D. “A Definition and Taxonomy for Software

Maintainability”, Software Engineering Test Laboratory Report #91-08-TR, University of Idaho, ID

83843, 1992.

[OPF website] The OPEN Process Framework (OPF) at: www.opfro.org. Last Accessed: January 2008.

[Pavan et al., 2003] Pavan, P., Maiden, N.A.M., Zhu, X.: “Towards a Systems Engineering Pattern

Language: Applying i* to Model Requirements-Architecture Patterns”. In Proceedings of Proceedings

of the Second International Workshop From SofTware Requirements to Architectures, STRAW 2003.

[Penserini et al., 2006] Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: “From Stakeholder Intentions

to Software Agent Implementations”. CAiSE 2006, pp. 465-479.

[Pfleeger et al., 1997] Pfleeger, S.L., Jeffery, R., Curtis, B., Kitchenham, B.: “Status Report on Software

Measurement”. IEEE Software, March/April 1997, pp. 33-43.

[Plihon & Rolland, 1997] Plihon, V., Rolland, C.: “Genericity in method construction”. APSEC 1997:
302-311.

[Poels & Dedene, 2000] Poels, G., Dedene, G.: “Distance-based software measurement: necessary and

sufficient properties for software measures”. Information and Software Technology, January 2000.

Volume 42, Number 1. pp. 35-46(12).

[Poels, 2003] Poels, G.: “Definition and Validation of a COSMIC-FFP Functional Size Measure for

Object-Oriented Systems”. In Proceedings of QAOOSE 2003.

[Pohl, 1994] Pohl, K.: “The three dimensions of Requirements Engineering: a framework and its

applications”. In selected papers from the fifth international conference on advanced Information

Systems engineering (1994). pp: 243 – 258.

[Porter & Selby, 1990] Porter, A.A., Selby, R.W.: “Empirically Guided Software Development Using

Metric-Based Classification Trees”. IEEE Software, March 1990. pp. 46-54.

[Potts et al., 2001] Potts, C., Takahashi, K., Antón, A.I.: “Inquiry-Based Requirements Analysis”. IEEE

Software, 11(2), 1994. pp. 21-32.

[Pressman, 2005] Pressman, R.S.: Software Engineering: a Practitioner’s Approach. McGraw-Hill

International Edition, 6th edition, 2005.

References .

 277

[Ralyté, 2001] Ralyté. J. Ingénierie des méthodes par assemblage de composants. Thèse de doctorat en

informatique de l’Université Paris 1. Janvier, 2001.

[Ralyté & Rolland, 2001] Ralyté, J., Rolland, C.: “An Assembly Process Model for Method

Engineering”. In Proceedings of 13th International Conference Advanced Information Systems

Engineering, CAiSE 2001. Springer-Verlag, LNCS 2068. pp. 267-283.

 [Ralyté & Rolland, 2001] Ralyté, J., Rolland, C.: “An Approach for Method Reengineering”. In

Proceedings of the 10th International Conference on Conceptual Modelling, ER 2001. Springer-

Verlag, LNCS 2224. pp. 471-284.

[Ralyté et al., 2004] Jolita Ralyté, Colette Rolland, Rébecca Deneckère: Towards a Meta-tool for

Change-Centric Method Engineering: A Typology of Generic Operators. In Proceedings of CAiSE

2004. pp: 202-218.

[Regev & Wegmann, 2005] Regev, G., Wegmann, A.: “Where do Goals Come from? The Underlying

Principles of Goal-Oriented Requirements Engineering”. In Proceedings of the 13
th

 IEEE

International Conference on Requirements Engineering, RE 2005. pp. 339-349.

[Reijers & Vanderfeesten, 2004] Reijers, H.A., Vanderfeesten, I.T.P.: “Cohesion and Coupling Metrics

for Workflow Process Design”. In proceedings of BPM 2004. Springer-Verlag, LNCS 3080. pp. 290-

350.

[Reinoso et al., 2005] Reynoso, L., Genero, M., Piattini, M., Manso, E.: “Assessing the impact of

Coupling on the Understandability and Modificaiblity of OCL expressions within UML/OCL

combined models”. In Proceedings of the 11th IEEE International Software Metrics Symposium,

METRICS 2005.

[Robertson & Robertson, 1999] Robertson, S., Robertson, J.: Mastering the Requirements Process.

Addison-Wesley, 1999.

[Rolland et al., 1998a] Rolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden,

N.A.M., Jarke, M., Haumer, P., Pohl, K., Dubois, E., Heymans, P.: “A Proposal for a Scenario

Classification Framework”. Requirements Engineering Journal. Vol 3.No 1. 1998. pp.23-47.

[Rolland et al., 1998b] Rolland, C., Souveyet, C., Ben Achour, C.: “Guiding goal modeling using

scenarios”. IEEE Transactions on Software Engineering, Vol. 24, pp. 1055-1071, December 1998.

[Rolland et al., 1999] Rolland, C., Grosz, G., Kla, R.: “Experience with Goal-Scenario Coupling in

Requirements Engineering”. In Proceedings of RE 1999. pp: 74-83.

[Rolland et al., 2004] C. Rolland, C. Salinesi, A. Etien: “Eliciting gaps in requirements change”.

Requirements Engineering. Vol. 9, No. 1, February 2004. Pages: 1-15.

[Rolland & Prakash, 2001] Rolland, C., Prakash, N.: Matching ERP System Functionality to Customer

Requirements. In Proceedings of RE 2001. pp. 66-75.

[Röttger & Zschaler, 2004] Röttger, S., Zschaler, S.: “Model-Driven development for Non-functional

Proeprties: Refinemetn through Model Transformation”.

[Ruiz et al., 2002] Ruiz, F., Genero, M., García, F., Piattini, M., Calero, C.; “A proposal of a Software

Measurement Ontology”.

[Saeki, 2003] Saeki, M.: “Embedding Metrics into Information Systems Development Methods: An

Application of Method Engineering Technique”. In Proceedings of CAiSE 2003, LNCS 2681, pp.

374-389, 2003.

An i*-based Reengineering Framework for Requirements Engineering

278

[Sai et al., 2004] Sai, V., Franch, X., Maiden, N.A.M.: “Driving Component Selection through Actor-

Oriented Models and Use Cases”. In Proceedings of the 3rd International Conference on COTS-

Based Software Systems, ICCBSS 2004. pp: 63-73.

[Salinesi & Rolland, 2003] Camille Salinesi, Colette Rolland: Fitting Business Models to System

Functionality Exploring the Fitness Relationship. CAiSE 2003: 647-664.

[Santander & Castro, 2002] Santander, V.F.A., Castro, J.F.B.: “Deriving Use Cases from

Organizational Modeling”. In Proceedings of the 10th IEEE Requirements Engineering Conference,

RE 2002. pp 32-39.

[Santillo et al., 2005] Santillo, L., Conte, M., Meli, R.: “Early & Quick Function Point: Sizing More with

Less”. In Proceedings of METRICS 2005.

[Schmitz et al., 2004] Schmitz, D., Lakemeyer, G., Gans, G., Jarke, M.: “Using PBEL Process

Descriptions for Building up Strategic Models fo Inter-Organizational Networks”. In Proceedings of

the Workshop on Modeling Inter-Organizational Systems, MIOS 2004. Springer-Verlag, LNCS 3294.

pp. 520-532.

[Schneidewind, 1992] Schneidewind, N.: “Methodology for Validating Software Metrics”, IEEE

Transactions on Software Engineering, Volume 18, Number 5, pp. 410-442, May 1992.

[Scriven, 1991] Scriven, M.: “Beyond formative and summative evaluation”. In Evaluation and

education: At quarter century. Chicago: National Society for the Study of Education (1991). pp. 19-

64.

[Shaw & Garlan, 1996] Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging

Discipline. ISBN: 0-13-182957-2. Prentice Hall, 1996.

[Smith & Hybertson, 2002] Smith, J.D., Hybertson, D.: “Implementing Large-Scale COTS

Reengineering within the United States Department of Defense”. In Proceedings of the First

International Conference on COTS-Based Software Systems, ICCBSS 2002. Springer-Verlag, LNCS

2255. pp. 245-256.

[Sturm & Shehory, 2003] Sturm, A., Shehory, O.: “A Framework for Evaluating Agent-Oriented
Methodologies”. In Proceedings of the Agent-Oriented Information Systems, 5th International Bi-

Conference Workshop, AOIS 2003. Pages: 94-109.

[Sudeikat et al., 2004] Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: “Evaluation of Agent -

Oriented Software Methodologies - Examination of the Gap Between Modeling and Platform”. In

Proceedings of the Fifth International Agent-Oriented Software Engineering Workshop, AOSE 2004.

Pages: 126-141.

[Sunyé et al., 2001] G. Sunyé, D. Pollet, Y. Le Traon, J.M. Jézéquel. “Refactoring UML Models”.

Proceedings of the 4th International Conference <<UML>> 2001 – The Unified Modeling Language,

Toronto, Canada, October 1-5, 2001, pp. 134-148.

[Sutcliffe & Minocha, 1999] Sutcliffe, A.G., Minocha, S.: Linking Business Modelling to Socio-

technical System Design. In Proceedings of CAiSE 1999. pp: 73-87.

[Teng et al., 1998] J.T.C. Teng, S.R. Jeong, V. Grover. “Profiling successful reengineering projects”.

Communications of the ACM. Volume 41, Issue 6, June 1998. pp: 96 – 102.

[TROPOS website] TROPOS web page, http://www.troposproject.org/. Last accessed: January 2008.

[Jacobson et al., 2000] UML 2.0 Specifications http://www.uml.org/, last accesed January 2006.

References .

 279

[Vanderfeesten et al., 2006] Vanderfeesten, I., Reijers, H.A., van der Aalst, W.: “Evaluating Workflow

Process Designs using Cohesion and Coupling Metrics”. BPM Center Report BPM-07-02,

BPMcenter.org, 2007.

[Vanderfeesten et al., 2007] Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst,

W.: “Quality Metrics for Business Process Models”. BPM and Workflow Handbook 2007. Future

Strategies Inc., Lighthouse Point, Florida, USA, 2007, pp. 179-190.

[Woodings & Bundell, 2001] Woodings, T.L., Bundell, G.A.: “A Framework for Software Project

Metrics”. In Proceedings of the 12th ESCOM Conference on Software Control and Metrics (2001).

[Wooldridge, 1997] Wooldridge, M.: “Agent-based software engineering”. IEEE Proceedings –

Software, Vol. 144, No. 1, 1997 Pages: 26-37.

[Wooldridge et al., 2000] Wooldridge, M., Jennings, N. R., and Kinny, D. “The Gaia methodology for

agent-oriented analysis and design”. Journal on Autonomous Agents Multi-Agents Systems. Vol. 3,

No. 3, 2000.

[Wohlin et al., 1999] Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B. and Wesslén A.:

Experimentation in Software Engineering. Springer, 1999.

[Xia, 2000] Xia, F.: “On the concept of coupling, its modelling and measurement”. The Journal of

Systems and Software 50 (2000). pp. 75-84.

[Xenos et al., 2000] Xenos, M., Stavrinoudis, D., Zikouli, K., Christodoulakis, D.: “Object-Oriented

Metrics – A Survey”. In Proceedings of the Federation of European Software Measurement

Associations, FESMA 2000.

[Yu, 1995] Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD. thesis, University

of Toronto, 1995.

[Yu, 1997] Yu, E.: “Towards Modeling and Reasoning Support for Early-Phase Requirements

Engineering”. In Proceedings of the 3rd IEEE International Symposium on Requirements

Engineering, RE 1997. pp. 226-235.

[Z.151–GRL] Z.151 – Goal Requirements Language (GRL). International Telecommunication Union
(ITU). September, 2003.

[Zave, 1997] Zave, P.: “Classification of Research Efforts in Requirements Engineering”. ACM

Computing Surveys, 29(4): 315-321 (1997).

[Zhang et al., 2003] Zhang, W., Jarzabeg, S., Loughran, N., Rashid, A.: “Reengineering a PC-based

System into the Mobile Device Product Line”. In Proceedings of the 6th International Workshop on

Principles of Software Evolution, 2003. pp. 149-160.

[Zowghi et al., 2005] Zowghi D., Firesmith D., and Henderson-Sellers B., “Using the OPEN Process

Framework to Produce a Situation-Specific Requirements Engineering Method”. In Proceedings of

the International Workshop on Situational Requirements Engineering Processes, SREP 2005.

