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Abstract

The energy model in the last decades has been dominated by the consumption of fossil fuels assuming

a high environmental cost. Global warming and the destruction of the ozone layer are two examples of

the deterioration that is being suffered due to the use of these energy sources. Increasingly, the use of

renewable energy one of the alternatives in building a sustainable economic model. Among renewables,

solar energy is presented as an inexhaustible and accessible source of energy. The solar pond is a

technology that meets all requirements to be considered an energy storage device. It can store solar

energy, charging during the months of high solar incidence (Spring-Summer), storing the energy through

the time and making possible its use when it is requested.

A salt gradient solar pond is a body of saline water with long term thermal storage capacity. The aim

and scope of this PhD thesis is divided in two parts. First, the improvement of the efficiency of the solar

pond technology through experimental evaluation the heat extraction and heat supply processes under

different weather conditions. These experiments were carried out in a 50 m2 solar pond pilot plant located

in Martorell (Catalonia). Heat extraction experiments were performed using both heat exchangers

installed (lateral and bottom) individually or both at the same time. The results demonstrated that the

efficiency of the pond increases when the heat is removed from the lateral heat exchanger compared to

either using the bottom heat exchanger or using both heat exchangers simultaneously. On the other hand,

the use of solar collectors as an external source of heat were conducted together with heat extraction

process under two different seasonal temperature conditions: winter and summer. The results indicated

that the use of solar collectors allowed a 50% increase in daily efficiency during the cold season tests.

The second part was focused on the design, construction and operation of a 500 m2 solar pond in Solvay

Minerales facilities (Granada). The solar pond was designed to supply the heat required to preheat the

water (> 60 °C) and the reagents in the mineral flotation unit at the mineral processing facility. The

overall efficiencies obtained after the first and second operation periods are 9.7 and 12.3%, respectively,

with maximum values of 28 and 24% obtained during the first months of operation. Regarding the

economic savings, reductions of 52 and 68% were obtained in the first and second periods compared

with the traditional system without solar pond. Also, the environmental impact is clearly reduced

considering the reduction of CO2 emissions. The experience of the Granada solar pond proves that the

main advantage of a solar pond is the capacity to store energy in the months with the highest solar

radiation to provide a flux of heat to an external system during the whole year even under strong weather

conditions, as observed during the January 2015 snowfall.
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1. Introduction

1.1.Solar Energy Storage

In recent decades, a rapid worldwide population growth has led to a greater consumption of conventional

energy resources, such as fuel, coal and oil. The consumption of these resources generates serious

environmental problems such as climate change and other environmental impacts that represent the

greatest challenge of today's society. Renewables are shown as one of the solutions to solve the

challenges that arise to modify the current energy model. Thus, investment in these energies would

decrease the reliance on traditional fossil fuels and consequently decrease the impact on the environment

(Sayer et al., 2018).

Within the renewable energy, solar energy is one of the most important sources of energy and can be

deployed to meet the energy needs of a low carbon economy. In recent years, different technologies

have been proposed to use the solar thermal energy as a useful and efficient source (Khalilian, 2017).

Solar energy is abundance, free and clean as well as does not make any noise or generate pollution to

the environment. Many industrial processes are involved in heat utilization with low (i.e. 20–200 ◦C),

medium and medium-high (i.e.80–240 ◦C) temperature levels. However, solar energy is an intermittent

and time-dependent source of energy; therefore, it is necessary systems to accumulate solar radiation,

store and release it to an application (Mekhilef S. et al., 2011).

Energy storage is the ability to store some type of energy that can be used later for your any energy

need. Normally, it is applied to balance the possible problem between energy supply and demand. These

devices arise from the need of having the energy production dissociated from its supply and distribution.

An energy storage process has three basic steps: Charging (loading), storing and discharging (releasing)

(Gil et al., 2010).

The solar pond is a new technology that meets all requirements to be considered an energy storage

device. It can store solar energy, charging during the months of high solar incidence (Spring-Summer),

storing the energy through the time and making possible its use when it is needed.
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1.2.Solar pond

In broad terms, a solar pond is a large body of water that collects and stores solar energy. The first

investigation on the solar pond was conducted by Kalecsinsky (1902). This researcher studied the

behaviour of the natural lake in Transylvania (Hungary) known as Lake Madoc. This lake showed

temperatures as high as 70°C at a depth of 1.32 m in the summer season and salinity was about 26 % of

NaCl at bottom. The minimal temperature was 26°C during early spring (Tundee et al., 2010). Similar

observations were reported in other places of the world, such as the “Hot Lake” near Oroville in

Washintong (Anderson 1958), Lake Vanda in the Antarctic (Wilson & Wellman 1962) a solar lake in

the red sea between Africa and Asia (Por 1968), Uganda (Melack and Kilham, 1972), Los Roques in

Venezuela (Hudec and Sonnenfeld, 1974) and Sinie in Africa (Cohen et al., 1977). These studies were

used as a starting point for the study of artificial solar pond as a possible technology of solar energy

storage.

The most commonly artificial solar pond used is salinity gradient solar pond (SGSP) followed by

shallow solar pond (SSP). There are other types of artificial solar pond such as partitioned solar pond,

saturated solar pond, membrane stratified solar pond and viscosity stabilized solar pond.

1.3.Salinity gradient solar pond

In practice, any water pond with a black bottom is capable of collecting solar energy, but the collection

efficiency is poor, this is because the heated water at the bottom rises by convection to the top where

the heat is rapidly dissipated to the environment.

The convections currents that normally develop due to the presence of hot water at the bottom and cold

water at the top are minimized by presence of strong density gradient from bottom to top (Weinberger,

1964); (Bansal and Kaushik, 1981). This density gradient is obtained by using a high concentration of

suitable salts such as NaCl at the bottom of the pond and low salinity water at the top. This density

gradient acts as an insulating layer because the thermal conductivity of the salt solution decreases with

increasing salinity (Garg, 1987).

A typical salinity gradient solar pond (SGSP) consists in three distinct zones (Zangrando 1980; Tabor

& Weinberger 1981) as shown in Figure 1. The surface area formed by fresh water or low salinity water

is called upper convective zone (UCZ) and it is a zone of constant temperature, close to the ambient

temperature, and salinity, between 2-3%. The thickness of this area varies from 0.1 to 0.4 m. Below this

UCZ, there is an intermediate zone consists on several layers with different density. The brine density

gradually increases towards the bottom of the pond causing a concentration gradient. This gradient

prevents the occurrence of convection currents and, as a result of solar energy absorption, a gradient of
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temperature is also established. The gradient zone is known as a non-convective zone (NCZ) and it is

the key of this technology. The thickness of this intermediate area ranges from 1 to 1.5 m. The lower

zone has the highest density (highest salinity concentration), near saturation, and it is known as low

convective zone (LCZ). This zone acts as a thermal storage with temperature ranging between 50-90ºC

depending on the size of the pond.

Figure 1. Scheme of salinity gradient solar pond with concentration and temperature profiles (Leblanc et al., 2011).

1.3.1 Pre-requisites to establishment a solar pond

The requirements to use this technology are:

 High solar radiation

 Availability of land surface

 Availability of salt at a relatively short distance

 Need for heat at low temperature
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1.3.2 Establishment of salt gradient

The salt concentration gradient in the pond can be generated by several methods depending on local

requirements (Kaushika, 1984). These methods include natural diffusion, stacking and redistribution.

 Natural diffusion

In this method, the lower half is filled with brine and the upper half is filled with tap water, top and

bottom concentrations are maintained constant by regularly washing the surface and adding salt in the

bottom. Due to the upward diffusion of salt, a salinity gradient will be established. This is a very slow

method of establishing the salt gradient and should be considered if the pond is very large or if the

starting time could be unlimited (Zangrando, 1980).

 Stacking

This method consists on fill the storage layer with high concentration solution and several other layers

of salt solutions of differing concentration. The practical approach for stacking used is that the bottom

layer is filled first and successively lighter layers are floated upon the lower denser layers. The

concentration of salt in successive layers is changed in steps from near saturation at the bottom to fresh

water at the top. For a typical pond of about 1 m depth, one might use about 10 layers. (Chepurniy &

Savage 1975; Sayigh 1977).

 Redistribution

This method is considered to be the most convenient for larger ponds (Nielsen & Rabl 1976; Nielsen et

al. 1977), the artificial pond is filled with high salinity brine to half of its gradient zone depth and then

fresh water is added through a diffuser. Initially, a diffuser is placed at a level making the starting of the

non- convective zone and fresh water is pumped through a diffuser for a pre-calculated time (flowrate).

At the end of the first pumping period, the diffuser is raised to the next higher position and water is

pumped again for a second period. The diffuser is thus moved upward continuously at a rate twice that

of the increase in the pond water level. In parallel with this, solutions of appropriate density are injected

for fine adjustment of the salinity gradient. Finally, a layer of fresh water is added to make the surface

zone. At the completion of this process, a nearly uniform salt concentration gradient in the pond is

obtained (Zangrando 1979).
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1.4.Monitoring system

The measures of the temperature and density profiles are the most direct and simple way to define the

different zones of the solar pond and to control its stability (Leblanc et al., 2011). A monitoring and

sampling are needed to measure physical and chemical parameters such as temperature, density, pH and

turbidity at different heights of the pond. The automatic monitoring system can include temperature

sensors distributed at various heights inside the pond and connected to a data collection system for

processing. Daily data collection provides a temperature profile as can be seen in Figure 2. Sampling is

also required at different heights of the solar pond in order to measure the density, the pH and the

turbidity at different pond depths. Once data is treated the concentration profile is obtained as is shown

also in Figure 2. Furthermore, this information is essential to control and detect potentials instabilities

that can occur into the system. The values of pH and turbidity are also critical since they are indicators

of the level of clarity of the pond.

Figure 2. Schematic diagram of typical concentration and temperature profiles of the solar pond (Kurt et al., 2000).

1.5.Control variables

1.5.1 Maintenance of salt gradient

The stability of the gradient layers is necessary to achieve a successful operation of the solar pond. Both,

the UCZ and LCZ zones cause erosion of the boundaries of the gradient zone. This erosion process

causes the reduction of thickness of the NCZ (Karim et al., 2010). To maintain the stability of the

gradient, it is necessary to control the salt concentrations (density) at the top and the bottom of the pond

(Tabor, 1981). Therefore, two maintenance operations have to be carried out. Firstly, flush pond surface

with fresh water is necessary to compensate evaporation losses and to remove the salt diffused from the

bottom to the surface. If the surface is not flushed, the salinity of the UCZ would increase affecting the

overall density gradient. The rate of flushing is approximately twice the average rate of water loss due
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to evaporation (Leblanc et al., 2011). The second maintenance operation is the addition of salt in the

bottom. Two methods are used to perform this operation. On the one hand, injecting occasionally a

concentrated salt solution in the bottom of the solar pond (Tabor 1981; Sherman & Mechanics 1992)

and on the other hand, adding salt into a cylinder like a salt charger to replenish the salt at the bottom of

the pond. The bottom of the cylinder is open and salt coming out confirming a salt pile in the shape of

the semi cone around the charger (Jaefarzadeh and Akbarzadeh, 2003). Figure 3 shows a scheme of salt

charger in the solar pond.

Figure 3. Schematic view of the pond with salt charger (Jaefarzadeh and Akbarzadeh, 2003)

1.5.2 Maintenance clarity of the system

A solar pond as a solar collector is depending on light transmission to the storage zone. The suspended

particles and the growth of microbial and algae substances reduce the amount of solar energy reaching

the LCZ (Wang & Seyed-Yagoobi 1995; Gasulla et al. 2011). Control of brine pH (< 4) is one of the

most common strategies to maintaining the pond clarity by adding hydrochloric acid at different layers.

Acidification of the pond provides a reliable and simple maintenance method for preventing algal

blooms and maintaining high transparency. The acid should be added only in the UCZ and NCZ area.

The addition of acid in the region near the interface LCZ-NCZ or storage area generates salt precipitation

and causing instabilities in the salt gradient (Leblanc et al., 2011). Another disadvantage in the use of

acid is the corrosion phenomena inside the pond.

Other method to keep the pond clarity is the use of brine shrimp to feed of and hence control the algal

level (Wang & Seyed-Yagoobi 1995; Malik et al. 2011) or the use of copper sulphate to treat algae

growths (Gasulla et al., 2011).

1.6.Applications of solar ponds

A solar pond can be an environmental and economical alternative in front of other large-scale solar

thermal collectors. The main advantage of this technology is that it has an integrated thermal energy

storage system, so it can supply thermal energy continuously regardless of the time day or the weather.
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Solar ponds are particularly useful as an alternative to fossils fuels and it has a variety of applications

like heat for industrial process, heating buildings, desalination, electrical power production, salinity

mitigation and chemical production.

1.6.1.Heat for industrial process

Solar ponds can be economically viable for the supply of low temperature heat to an industrial process

as an alternative to fossil fuels. El Paso solar pond became the first solar pond in the world to supply

heat to an industry in 1985, where 350 x 106 kJ of thermal heat were delivered to a food canning plant

(Reid et al. 1985; Swift et al. 1987). Other examples of this application can be the Bhuj solar pond,

which provided 15000 m3 of hot water to a dairy plant (Kumar and Kishore, 1999) or Pyramid Hill solar

pond in Victoria (Leblanc et al., 2011).

1.6.2.Heating buildings

A solar pond has the capability of storing summer heat for winter applications, which is very suitable

for heating buildings (Tabor, 1981). The use of the solar pond to heating buildings was studied by Rabl

& Nielsen (1975). This study demonstrated that a solar pond can be used for a single house, where the

pond surface area was approximately the same area as the floor area. Other research illustrates the use

of solar pond even at high latitudes where the sunlight is lower as was studied in London by Bryant &

Colbeck (1977).

1.6.3.Desalination

Thermal desalination by using a salinity gradient solar pond is a ground-breaking technology in a solar

desalination (Lu et al., 2001). This application was studied in the El Paso solar pond since 1987 using a

stage flash evaporation system. The study showed that this kind of technology can be an alternative with

zero emissions and pollutions (Lu et al., 2004). Other authors have studied thermal desalination

processes such as multiple effect evaporation or a multistage flash process by using heat from a salinity

gradient solar pond to produce fresh water and salt, which can be recycled to the solar pond and hence

reducing the cost of operation (Leblanc et al., 2010).

1.6.4.Electrical power production

A solar pond produces low temperature heat (70°C and 90°C) making it less attractive for electricity

generation compared with conventional other renewable technologies. However, solar pond could be

competitive as a power generator if compared with a diesel for producing electricity. The best practice

is to couple the solar pond to an organic Rankine cycle to convert the low temperature heat supply to

electricity using low boiling organic liquid as the working fluid. Figure 4 shows the diagram of this

application.
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Figure 4. Conventional method of extracting heat from solar pond for power generation using heat engine (Andrews
and Akbarzadeh, 2005)

The first solar pond power station (SPPP) was constructed in Ein Boked in 1977 to produce power at

approximately 20kW (Tabor, 1981). Other SPPP were constructed in Beith Ha’rava (Tabor and Doron,

1990), in Alice Spring (Collins, 1984) and in El Paso (J R Hull et al., 1989).

1.6.5.Salinity mitigation

Integration of solar ponds into salinity mitigation is an attractive application. Many areas of formerly

productive land are suffering from rising salinity levels around the world as a result mainly of tree

clearing and irrigation. Solar ponds provide simultaneous support for a potential application such as

process heat. If evaporation ponds are established in a chain as a salt production line, the first few ponds

in the chain provide ideal opportunities for creating solar ponds (Akbarzadeh et al., 2009).

Figure 5. Integration of a solar pond into in a salinity control scheme (Akbarzadeh et al., 2009)
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As can be seen in Figure 5 the solar pond is the first evaporation pond in the chain for salt production.

Bore water is introduced to the surface of the pond for surface washing. The overflow from the first

pond goes to the second pond and gravitates. The process continues in the others ponds in the chain.

The evaporation causes the increases of the salinity in each pond. In the last pond, crystallisation of

sodium chloride takes place. This material is usually disposed of as waste. A small amount of the bittern

is pumped to the bottom of the solar pond to maintain the required salinity gradient in the pond

(Akbarzadeh et al., 2009).

1.6.6.Chemical production

Other application of solar pond is its use in mines industries. Solar ponds can be used to produce

chemicals using the heat provided by the pond. Lesino et al. (1990) reported the commercial use of 400

m2 salinity gradient solar pond for sodium sulphate (Na2SO4) production. The sodium sulphate solution

dissolves at 40°C, making the solar pond a useful component of the process. The use of this technology

can provide substantial cost saving when it replaces the function of a conventional boiler.

1.7.Overview of solar ponds worldwide

In the last thirty years more than sixty solar ponds have been built around the world. Table 1 collects

examples of different solar ponds built over time in different areas of the planet. It specifies the year of

construction, the area, the maximum temperature reached in the LCZ and the applications of the heat

delivered from the pond.

The construction of solar ponds had a great growth in the 70s and 80s being shown as a clean and

economical technology. Due to be unable to compete with the low price of gas and other fossil fuels,

many of these projects were abandoned during the 90s. In recent years, it has taken up the study of these

devices appearing as an option to a sustainable energy model.

Figure 6 and 7 shows two photographs of the facilities of the El Paso Solar Pond and Pyramid Hill

(Australia) as an example of the research carried out on this technology.
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Figure 6. El Paso Solar Pond (Texas)

Figure 7.solar pond Pyramid Hill (Australia)



Table 1. Overview of solar pond around the world

Name Constructi

on

Area

(m2)

Tmax

(LCZ)

Applications References

Israel Eilat Ein Boqek solar pond 1977 6250 85-90 Electrical production (Tabor and Doron, 1986)

Beith Ha’rava solar pond 1982 25000 Electrical production (Tabor and Doron, 1990)

USA

Ohio

Ohio State University 200 62-69 Pilot Plant (research) (Rabl and Nielsen, 1975)

Ohio State University 400 Pilot Plant (research) (Nielsen, 1980)

Ohio Agriculture Research and Devel.

Centre

1977 156 46 Heating building (Greenhouse) (Fynn, 1981)

Miamisburg 1978 2020 51.1 Heating building (Swimming pool and

recreational building)

(Shah et al. 1981; Bryant et al.

1979)

New Mexico University of New Mexico (Albuquerque) 1975 175 93 Heating building (House) (Wilkins et al. 1986;

Zangrando 1991)

Texas University of Texas (El paso) 1983 3355 72 Industrial process heat (food canning

factory); Desalination, electrical power

production

(Reid et al. 1985; Swift et al.

1987; Liao et al. 1988; Hull &

Nielsen 1988)

Illinois University of Illinois 1987 2000 70 Heating building (swine research facility) (Newell et al., 1990)

India

Bhavnagar

Central Salt and Marine Chemicals

Research Inst.

1970 1200 Pilot Plant (research) (Srinivasan, 1993)

Institute’s experimental salt farm 1980 1600 75 Pilot Plant (research) (Mehta et al., 1988)

Bangalore

Institute of science in Banglore

(Pondicherry)

100 70 Pilot Plant (research) (Patel and Gupta, 1981)

Indian Institute of Science 1984 240 50-70 Pilot Plant (research) (Srinivasan 1990; Akbarzadeh

& Manins 1988)

Karnataka

Masur 400 Heating building (Rural community) (Srinivasan, 1993)

Hubli 300 Heating building (To supply hot water for

college)

Gujerat Khuj Dairy (Bhuj) 1987-1991 6000 99.8 Industrial process heat (Milk processing

dairy plant)

(Kumar and Kishore, 1999)



Austra

lia

Aspendale

(Victoria)

Commonwealth Scientific and Industrial

Res. Org.

1964 44 63 Pilot Plant (research) (Davey, 1968)

Laverton (Victoria) Cheetham Salt Works 1981 900 Pilot Plant (research) (Golding et al., 1982)

Alice Sprong Northern Territory 1980 2000 80 Electrical power production (Collins, 1984)

1984 1600 80-85 Electrical power production (Sherman and Imberger, 1991)

Pyramid Hill

(Victoria)

Pyramid Salt Ltd facility/ RMTI

University

2000 3000 62 Industrial process heat (Leblanc et al., 2011)

Other

places

Argentina Puna 1981 400 Chemical production (Lesino et al. 1990; Lesino &

Saravia 1991)

Italy Margherita Di Savoia 25000 Desalination (Folchitto, 1997)

China Zabuya Lake (Qinghai Tibet Plateau) 2500 39 Chemical production (Nie et al., 2011)

Spain Solvay Martorell (Catalonia) 2009 50 63 Pilot Plant (research) (Valderrama et al. 2011;

Bernad et al. 2013)
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1.8.Methods of heat extraction

The extracting heat from a solar pond is performed by removing the heat from the LCZ by two common

methods. The first method is pumping hot brine from the upper region of LCZ by means of a diffuser

(extraction diffuser) through an external heat exchanger, where heat is transferred to a separate working

fluid and hence delivered to the application, and then returning the brine at a lower temperature to the

lower region of the LCZ through another diffuser (Return diffuser) as is depicted in Figure 8 (Andrews

and Akbarzadeh, 2005).

Figure 8. Conventional method of heat extraction from solar pond for industrial process heating using an external

heat exchanger pumping the hot brine from LCZ. (Andrews and Akbarzadeh, 2005).

This method was used in several solar ponds worldwide as the El Paso, Texas (Xu et al., 1993), Kutch

in India (Kumar and Kishore, 1999), Beith Ha’rava in Israel (Tabor and Doron, 1990) and Singapore

(Kho et al., 1991).

These experiences indicate that the brine-withdrawal method is effective. The extraction diffuser can be

moved to the height of maximum temperature in the storage zone and the return diffuser is placed below

it. This method allows placement for both diffusers near the point of use. Also, this method ensures that

the cooler brine is returned to the bottom, reducing ground losses (Leblanc et al., 2011). On the other

hand, this method generates local temperatures differences, whose final effect is to destabilize the

salinity gradient layer, because this brine extraction/injection process is performed at a specific point of

solar pond (Angeli et al., 2006).

Another aspect to consider in this method of heat extraction is the material used in the design of diffusers

and pipes because brine of LCZ is a corrosive medium. In the El Paso solar pond, the diffusers and pipes

used in the heat extraction system were all made of steel. After several years of operation, they all

indicated selective rusting. Besides the corrosion problem, the free ions of iron were suspected to
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contribute to clarity problems. A black layer appeared in the pond and the brine became very turbid

(Abou-Chakra, 1992). Iron reduction bacteria were a possible cause. Based on this experience, the heat

extraction system were redesigned and reconstructed and the steel diffusers were replaced with new

ones made of polypropylene plate and connected by rubber hose to the external piping system (Leblanc

et al., 2011).

In the second method fresh water circulates, in a closed cycle, through a series of pipes installed inside

the pond as internal heat exchanger and transfers its thermal energy to an external heat exchanger. The

common position for the internal heat exchanger is in the storage zone near to the gradient layer as can

be seen in Figure 9. Thereby, this method stimulates the convection process in the thickness of the LCZ

(Jaefarzadeh, 2006).

Figure 9. Conventional method of heat extraction using an internal heat exchanger (Leblanc et al., 2011).

This method has been proved by several studies as Pyramid Hill, Victoria (Leblanc et al., 2010),

Marshad in Iran (Jaefarzadeh, 2006) and Ohio State University (Nielsen, 1980).

The internal heat exchanger may be made from metallic or plastic pipes. In the metallic pipe system, the

maximum rate of heat extraction is controlled by the natural convection intensity. On the other hand,

the corrosion process may occur and contribute in a decreased clarity. Whereas with plastic pipe system,

the thermal conductivity of the plastic will restrain the heat removal. Therefore, a larger pipe area is

needed for this case (J R Hull et al., 1989).

1.9.Methods to improve the thermal performance

The main problem to the scale application of solar ponds in industry has been the low solar thermal

efficiency and in many cases low temperature heat available (below 60 °C) as discussed by Andrews &

Akbarzadeh (2005) and Leblanc et al. (2011). Researchers have proposed many different ways of

improving the thermal performance of solar ponds: i) improving the water clarity (Gasulla et al. 2011;

Wang & Seyed-Yagoobi 1995; Malik et al. 2011; Jaefarzadeh & Akbarzadeh 2002), ii) increasing the

thickness of LCZ and reducing the thickness of UCZ (Wang and Akbarzadeh, 1982), iii) introducing an
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additional upper NCZ (Husain et al., 2012), iv) putting an external reflector to reflect additional solar

radiation into shallow solar pond (Aboul-Enein et al., 2004), v) placing a honeycomb surface insulation

system to minimize the losses (Arulanantham et al., 1997), vi) using floating rings to reducing and

maintaining the thickness of the UCZ (Akbarzadeh et al., 1983) or vii) integrating a solar pond with flat

plate solar collectors (Bozkurt and Karakilcik, 2012).

Recent studies are focused on the removal of heat from salinity gradient zone to improve the overall

thermal performance. An alternative method of extracting heat from NCZ using a lateral in-pond heat

exchanger was performed theoretically (Andrews and Akbarzadeh, 2005). Later, an experimental

research to confirm the theoretical result was carried out in 53 m2 experimental solar pond (Leblanc et

al., 2011). The results obtained shown that the heat extraction from NCZ has increased the overall

thermal efficiency of SGSP by up to 50% compared to traditional methods of heat extraction and

reducing the upward heat lost. However, the installation of lateral heat exchanger for larger scale solar

pond is impractical and costly. Similar study has been conducted both numerically and experimentally

for the 0.64 m2 mini solar pond (Ould Dah et al., 2010). The result showed the improvement of the solar

pond performance. A recent investigation has proposed a multi-layer heat extraction system remove heat

at different level in NCZ by withdraw the hot brine and re-injecting it back at the same level (Yaakob

et al. 2011).

1.10. Solar pond efficiency

Solar radiation goes through the different zones of the solar pond increasing the temperature and stored

energy in each point of the system. Initially, solar radiation reaches the surface region. Part of this energy

is lost as radiation reflected into the atmosphere. Another part is stored in this area increasing the

temperature of the entire zone and the rest is transmitted towards to the gradient area. In the NCZ, part

of the solar radiation is absorbed and stored in this zone. So, the NCZ temperature increases in each

layer of the salinity gradient leading to the establishment of a thermal gradient. The rest of the solar

radiation is transmitted to the LCZ where the majority of this energy is absorbed as a thermal energy.

For this reason, the TLCZ is increased getting the highest value of the system. In the present Ph.D. thesis,

the efficiency of solar ponds is studied in order to increase its performance. Many authors have defined

the efficiency of the solar pond from the point of view of thermal energy stored in the system relative to

the incident radiation up on the pond (Bozkurt and Karakilcik, 2015; Karakilcik et al., 2006; Dehghan

et al., 2013). Other studies have focused on defining solar pond efficiency as the extracted energy to the

incident radiation (Andrews and Akbarzadeh, 2005; Leblanc et al., 2011).

The use of solar collectors as an additional source of heat have studied and the effect of the use of these

devices on the efficiency of the solar pond (Bozkurt and Karakilcik, 2015b; Bozkurt and Karakilcik,

2012; Bozkurt et al., 2014). The heat stored in LCZ is defined as the heat gain by the solar collectors

and the heat entering in the LCZ.
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2. Thesis overview

The dissertation is focuses on the technology of salinity gradient solar ponds and it is divided in two

parts (Figure 10). The first part of the study is dedicated to improving the efficiency of the solar pond

through the processes of heat extraction and heat supply (from an external source) to the system. In this

section, a novel heat extraction method is used in which the heat is extracted from the gradient zone

(NCZ) and also from the storage area (LCZ) (Publication 1). Afterwards, the use of solar collectors as

an external heat source is evaluated using both in-pond heat exchangers at the storage area (LCZ) and

in the saline gradient zone (NCZ) (Publication 2).

The second part contains the design, the construction, the establishment of the salinity gradient and the

start-up of the first industrial solar pond in Europe (Granada, Spain). Likewise, the evolution of the

system during the first two years of operation was studied by assessing the stability of the saline and

thermal gradient. The efficiency of the pond as well as the economic and environmental saving during

the first two years of operation was also evaluated within this section (Publication 3). The stability of

the system as well as the influence on the solar pond efficiency operating in extreme temperature

conditions was studied (Publication 4).

Figure 10. Thesis overview
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3. Objectives

The main objective of this Ph.D. thesis is the study of the technology of solar ponds as a source of

renewable energy on a pilot scale to subsequently scale, build, operate on an industrial scale a solar pond

of 500 m2 that partially meets the energy needs of the flotation unit of a mining industry (Solvay

Minerals) located in Granada (Spain). The use of solar energy instead of fossil fuels means both energy

and environmental savings, which represents the main advantages of this technology.

As it is shown in Figure 11, all the knowledge acquired in the Martorell pilot-scale solar pond served as

a starting point for scaling this technology on an industrial scale in the Granada solar pond.

Figure 11. Thesis diagram scheme

For this purpose, specific objectives are proposed:

 To study the thermal performance of the solar pond under different operation conditions in a pilot

scale.

 To evaluate the heat extraction from lateral in-pond heat exchanger to compare with the traditional

method of heat extraction under different weather conditions in a pilot scale.

 To examine the possibility of the use of solar collectors to increases the energy efficiency of the

solar pond under different weather conditions.

 To design the first industrial solar pond in Europe according with the energy needs of the flotation

unit in Solvay Minerales.

 To construct and start-up of the 500m2 industrial solar pond in Solvay Minerals.

 To operate the solar pond in order to minimize the consumption of fuel oil in Solvay Minerales.
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4. Methodology

4.1Solar pond description

In the present Ph.D. thesis, the solar pond technology was studied and evaluated in two different scales.

On one hand, the solar pond pilot plant (50 m2) located in Martorell and, on the other hand, the industrial

solar pond in Granada (500 m2). The solar pond located in the facilities of Solvay in Martorell, was

designed to carry out an experimental investigation of the operation of this technology, the control and

maintenance systems were tested, as well as the heat extraction and the analysis of the efficiency of the

system. With all this knowledge acquired, the design, construction and operation of the first industrial

solar pond in Europe located in the facilities of the Solvay Minerals mining company in Granada was

carried out.

4.2 Salinity gradient solar pond Martorell

4.2.1 Construction

In 2009 an experimental solar pond pilot plant was constructed in Solvay-Martorell facilities (Catalonia)

to capture and store solar energy. The body of the pond was a cylindrical reinforced concrete tank, with

3 m height, 8 m diameter and total area of 50 m2 (Bernard F. et al., 2013). A picture of the solar pond in

Martorell is shown in Figure 12.

Figure 12. Solar pond Martorell
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The lateral tank wall was insulated with 60 cm of rock wall, a layer of insulated material and a metallic

external shell. Figure 13 shows the different thermal insulation layers.

Figure 13. Insulation of lateral wall

In 2012 in order to avoid heat losses and to improve the efficiency of the system, an insulation material

was added at the bottom of the pond. This insulation layer consisted on 40mm of Polystyrene C3 TG

CANTO with a thermal conductivity of 0.0395 W/mK and a thermal resistance of 1.012K/W. In

addition; a concrete slab of 150mm was added on the top of the insulation layer. This concrete had a

thermal conductivity of 0.47 W/mK and a thermal resistance of 0.32 K/W. Figure 14 shows the

insulation and concrete process installation.

Figure 14. Insulation and concrete process installation in solar pond Martorell

4.2.2 Control of salinity gradient

A mobile PVC pipe (6mm of diameter and 3 m height) supported in a fixed tub and a peristaltic pump

(3 L/h) was used as sampler mechanism to measure its density, pH and turbidity inside the pond at

different heights. A portable density meter DMA 35 (Anton Par) was used for measurement of density.

Further, pH and turbidity were measured by portable pH meter (Crison pH25), and portable turbidity

meter (Hanna HI93703), respectively.
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4.2.3 Maintenance of salinity gradient

To keep the salinity gradient and ensure its correct operation the addition of fresh water on the surface

of the pond was required. For this purpose, a device shown in Figure 15b was used. The flushing system

had a board on the surface that avoids to disturb the UCZ during the flushing procedure.

Furthermore, a salt charger was used to replace the salt in LCZ. It was made from a cylinder of polyvinyl

chloride (PVC) with a diameter of 0.8 m installed on the wall of the pond as it is shown in Figure 15a.

The bottom of the cylinder was designed to release salt by means of windows located at 0.6 m above

the bottom, thus the border between the LCZ and NCZ was determined by the salt charger design.

The pH and the turbidity parameters were measured in order to control the clarity maintenance of the

system. To control the growth of algae an acidification system was used. This system was composed of

five tubs installed on the pond to delivered acid (9% v/v.) from the surface to different heights (0.2, 0.6,

0.95, 1.5 and 2.1 m) as can be seen in Figure 15c.

Figure 15. Maintenance equipment of salinity gradient: a) salt charger; b) fresh water supply system; c) control pH
system

4.2.4 Thermal gradient control and weather conditions equipment

The temperature measurement at different heights was performed by means of 21 sensors (thermo-

resistances Pt-100-K type, Abco, Spain) uniformly distributed each 14 cm (starting at 0.2 cm from the

bottom) installed in a plastic support fixed to the pond wall. Heat losses by the wall and the bottom were

also considered, thus, other 6 sensors were inside and outside of the wall concrete, and inside of the slab

of the pond. The temperatures measured every 2 s and the averages after 10 min as well as the hourly

and daily average were recorded.

The weather parameters were measured by means of an automatic weather station CR1000 Measurement

and Control System (Campbell Scientific, Barcelona, Spain), which was programmed to measure and
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store data (Data logger CR1000) of different meteorological sensors with high accuracy as follows: rain

gages, solar radiation, wind speed, relative humidity, barometric pressure and air temperature. The

sensors took measures every 10 s, the hourly average was recorded as well as the daily average (24 h).

4.2.5 Heat extraction and external solar collectors

4.2.5.1 Lateral and Bottom Heat Exchanger

Two heat exchangers were installed in the solar pond. The bottom heat exchanger (250 m) located in

the storage zone and the lateral heat exchanger that covers all lateral area (730m). Both coils were made

of polybutylene and have 28 mm of diameter. Figure 16 shows both heat exchangers.

Figure 16. Lateral and bottom heat exchangers installed in solar pond Martorell

4.2.5.2 External solar collectors

The heat supply system is composed of the same circuit of both heat exchangers located at the bottom

and in the lateral area of the solar pond. In this case, solar collectors are installed in order to study the

performance of the integrated system. This system consists of four solar thermal collectors of 2.4 m2

each. The solar collectors have been oriented directly toward the equator, facing south, while the tilt

angle of the collector has been adjusted to the latitude of the Solvay facilities (41°S). The solar collectors

have been connected to the heat exchangers by using PVC pipes, and all external pipes have been

thermally insulated with neoprene. A scheme of the heat supply system is shown in Figure 17. For the

operation of the heat supply system two temperature sensors (PT1000) were installed. One of them is

located at the top of the LCZ (0.5 m from the bottom of the pond approximately), where the maximum

temperature of the system is reached. A second sensor is installed at the exit of the solar collectors’ pipe.

When the system supplies heat to the LCZ, the hot water is pumped from the solar collectors to the heat

exchanger located in the bottom area of the pond. The working fluid transfers the energy to the storage

zone and then returns at a temperature near to the temperature of LCZ, to be heated by the solar thermal

collectors. When the heat is supplied to the lateral area, the hot water is pumped from the solar collectors

to the lateral heat exchanger. The hot water flows through the pipe from the top to the bottom of the

pond along the lateral heat exchanger, transferring the heat through the NCZ and the LCZ and then
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exiting the pond to the solar collectors at a temperature approaching the temperature of the storage zone

(Fig. 17). The water, after being heated, is then pumped back to the pond to start a new cycle. The cycle

continues as long as the temperature difference between the two sensors remains above 15 °C.

The temperature and the flow rate of the working fluid are controlled by temperature sensors located in

the inlet and the output circuit (PT100) and a flow meter situated in the input of the circuit (Flow meter

SMC, Range: 0.5 - 4L/min) in both cases.

Figure 17. Scheme of heat supply system

4.2.5.3 Heat extraction system equipment

The heat extraction system was composed by a cooler (HRS024-AF-20 2.1kW SMC) and two heat

exchangers. These devices were connected by a set of pipes made of PVC. Depending on the heat

extraction circuit used the heat will be removed in a specific zone of the solar pond, bottom or lateral

area. A scheme of the heat supply system is shown in Figure 18. The cooler is an air-cooled system

formed by two circuits, the working fluid circuit and the refrigerant circuit. The working fluid, water in

this case, runs through the circuit removing the heat from the solar pond. The refrigerant is a high-

temperature and high-pressure gas that flows through the closed refrigerant circuit and cools the working

fluid.

When the heat is extracted by the heat exchanger in the LCZ, the water flows through the pipe at the

bottom of the pond removing heat from the LCZ. The fluid then exits the pond at a temperature near the

temperature of the storage zone of the pond, to be cooled by the cooler system. The water, after being
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cooled, is then pumped back to the pond to start a new cycle. In the case of the lateral heat exchanger,

the fluid flows through the pipe from the top (at the boundary between the UCZ and the NCZ) to the

bottom of the pond along the lateral heat exchanger, extracting heat through the NCZ and the LCZ, then

exiting the pond at a temperature near the temperature of the storage zone, then to be cooled by the

cooler system. In both heat extraction methods, the working fluid passes slowly through the cooler layers

of the NCZ and the UCZ causing a decrease of the temperature due to the temperature difference between

the LCZ and the upper regions of the NCZ and the UCZ.

A temperature sensor (PT100) and a flow meter (SMC) located in the inlet and outlet pipes have been

employed to measure the flow rate and the temperature of the working fluid for each heat exchanger.

Figure 18. Scheme of heat extraction system
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4.3 Salinity gradient solar pond Granada

4.3.1 Solvay Minerales description and energy needs

Solvay minerals is a mining company located in Granada (Spain). It is an open mine that extracts

celestite in order to produce strontium sulphate. Strontium sulphate is the raw material in the production

of strontium carbonate used in different sectors as automotive, electronics, conservation and storage

energy. The mining operation consists of a crushing plant, pre-concentration by dense media, milling

and flotation process that occupies an area of more than 70 hectares. In the flotation process water is

used at a temperature of 60 °C to dissolve the reagents used in the process. Fuel oil was used for this

purpose, and thus the installation of the SGSP offers significant benefits by reducing fuel oil

consumption and minimizing its environmental impact, which is mainly associated with the greenhouse

gas emissions.

4.3.2 Pond specifications and site arrangement

The Granada Solar Pond is a collaborative project between Universitat Politècnica de Catalunya (UPC),

RMIT University and Solvay Iberica to study solar pond technology in order to capture and store solar

energy and to use this energy as a low thermal application in a mining facility located at south of Spain.

The purpose of this solar pond was to deliver the heat required to preheat the water (>60°C) and the

reagents in the flotation unit. Fuel oil was used for this purpose, thus, the installation of the solar pond

represented a benefit by reducing fuel oil consumption and minimizing its environmental impact mainly

associated to the greenhouse gas emissions. In 2014, an industrial salinity gradient solar pond was

constructed in Solvay Minerales in Granada, (south Spain). This solar pond was the first industrial solar

pond in Europe. The total area of the pond is 500 m2 (20 x 25m) with a depth of 2.2 m. Table 2 shows

the weather parameters of the solar pond location (Bernad et al., 2013). The low convective zone (LCZ)

was designed to be 0.65 m thick, the non-convective zone (NCZ) 1.35 m and the upper convective zone

(UCZ) 0.2 m.

Table 2. Location and weather parameters at Solvay Minerales mining facilities in Granada (Spain).

Coordinates 37° 3’ 0’’ N, 3° 45’ 0’’ W

Altitude (m) 929

Wind average speed (m/s) 2.3

Summer maxim temperature (°C) 33.0

Winter minimal temperature (°C) -7.0
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4.3.3 Construction and establishment of the salinity gradient

The construction of the salinity gradient solar pond in Granada took place in 2014. From May to June

of that year the earthworks, the thermal insulation of the system, the installation of the heat exchanger

as well as the installation of all the devices to control the extraction process were carried out (Annex V).

The salt gradient was established in July 2014 using the redistribution method. The establishment of the

salinity gradient was carried out over 5 days (Annex IV). Once the gradient was formed, system

operation and heat extraction process began. In the first month of operation, temperatures reached

temperatures up to 90ºC. All the details of the design of the system can be found in Annex I, II and III.

4.3.4 Control of salinity gradient

To carry out the maintenance and control of the salinity gradient, the following parameters were

measured: pH, turbidity and density at different height of the pond. The devices used were the same as

in the solar pond of Martorell (a mobile PVC pipe as a sampler mechanism, density meter, pH meter

and turbidity meter). All the details about this topic can be found in Annex V.

4.3.5 Maintenance of salinity gradient

The maintenance of the salinity gradient was carried out by adding fresh water by a flushing system as

well as salt using two salt chargers to replace the salt in the storage area. The fresh water supply with a

low salt concentration leaves the system and was stored in an auxiliary pond. The estimation of water

supply, salt consumption and the volume of the auxiliary pond can be seen in Annex III.
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To control the clarity of the system an acidification system was used. This system was composed by

ten tubs to add acid at different heights. All the details of the devices used in the maintenance of salinity

gradient can be seen in Annex V.

4.3.6 Thermal gradient control and weather conditions equipment

The thermal gradient of the solar pond was controlled and measured by 42 thermal sensors (thermo-

resistances Pt-100-K type, Abco, Spain). The sensors were distributed every 0.5 cm from the bottom

and connected to a data logger where the information was recorded (Annex V).

The weather parameters were measured by a meteorological station (CR1000 Measurement and Control

System. Campbell Scientific, Barcelona, Spain), which was programmed to measure and store data

(Data logger CR1000). The weather parameters measured were rain gages, solar radiation, wind speed,

relative humidity, barometric pressure and air temperature (Annex V).

4.3.7 Heat extraction system

The heat extraction system installed in the Granada solar pool was composed of six independent

concentric spirals of polyethylene pipes. The total length was 1200 m distributed in six individual spirals

of 200m each one in all bottom area of the pond. The design and the installation of the heat exchanger

can be seen in Annex II and Annex V, respectively.

4.4 Economic and thermal efficiency calculations

In the present PhD thesis, the efficiency of solar ponds in different systems has been calculated, both

pilot plant and industrial scale. The more common definition of the solar pond is a system, which is

capable of collecting solar radiation and storing this energy in the form of heat (Tabor and Weinberger,

1981; Hull et al., 1989) to supply this heat at a low temperature to a particular application. Accordingly,

the instantaneous efficiency concept introduced by Date et al., 2013 was used in this work.

= ∑ ∑∑ (1)

where is the total incident radiation measured throughout day is the amount of

heat extracted from the system during day and is estimated according to method proposed by Leblanc

et al. (Leblanc et al., 2011), and represents the part of the solar radiation that the system is

capable of storing in the LCZ during day . In the research carried out in Granada solar pond some days,
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the energy stored in the LCZ may decrease; that is, the system loses its capability to store energy due to

unfavourable solar radiation conditions; consequently, is assumed to be 0. Thus,

and are calculated by Eqs. 2 and 3 as shown below:

= · · ( − ) (2)

= · · · ( − ) ( − ) > 00 ( − ) < 0 (3)

In the research carried out with solar collectors (Publication 2) the energy supplied to the system is

considered and equation 1 takes the following form (equation 4) where is the total incident

radiation in the solar collectors during the test.

= ∑ ∑∑ ∑ (4)

The specific heat capacity of the salt solution (kJ/kg·K) is given by Eq. 5 (Wang and Akbarzadeh, 1982)

where S is the salt concentration (kg/m3).

= 4180 + 4.396 + 0.0048 (5)

Furthermore, the effectiveness of the heat exchanger can also be determined according to Eq. 6 (Tundee

et al., 2010) in Publication 1:

= −− (6)
Where

is the outlet temperature of the heat transfer fluid (°C)

is the inlet temperature of the heat transfer fluid (°C)

is the LCZ temperature (°C)

In Publication 3 was carried out an economic analysis to define the savings involved the use of solar

pond in the flotation process. For this, the fuel oil bill and the data obtained by monitoring the

performance of the solar pond was compare
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9. Conclusions

The use of renewable energies in industrial sector is a way to deal with environmental problems associate

to the use of fossil fuels such as climate change, ozone layer depletion and air pollution. Furthermore,

the substitution of fossil fuels represents an economic and environmental benefit for the industrial sector

according to the current legislation. The European directive states that by 2020, 20% of energy

production must come from renewable energy sources. This objective means that research into new

technologies and increasing the efficiency of existing technologies will play a fundamental role in this

new sustainable development.

In this PhD thesis, an industrial solar pond was designed, constructed, and operated during two periods

(2014–2015) at the mining facilities of Solvay Minerales in Granada (Spain). This is the first industrial

salinity gradient solar pond in Spain and its study is a starting point for the implementation of this type

of systems in the industrial sector.

The use of this technology at industrial scale involves the evaluation of both its performance and its

efficiency in order to optimize the operating parameters to provide the greatest amount of renewable

energy to the industrial process. Since the construction of the Martorell solar pond in 2009, extensive

research was carried out on this technology. All the knowledge acquired in the maintenance and

operation as well as the results obtained on a pilot scale allowed to carry out the design and construction

of the Granada solar pond on an industrial scale.

A new alternative method of heat extraction from the solar pond exhibited how the instantaneous

efficiency of the solar pond increases when the heat extraction was performed by the lateral heat

extraction regardless the weather conditions and compared with the traditional method of heat extraction

from the bottom area. This behaviour during cold temperature conditions represents a substantial gain

in instantaneous efficiency above 50% compared with the traditional method of heat extraction. In warm

conditions, the lateral heat extraction reported a gain of approximately 30%. On the other hand, the use

of both heat exchangers supposes a slight gain in the instantaneous efficiency of the solar pond compared

with the efficiency obtained in the bottom heat extraction. The main advantage in the use of both heat

exchangers in the heat extraction process is that the pond can deliver the same quantity of energy

working at a lower flow rate. It means that the LCZ is capable of preserving more stored thermal energy

using both heat exchangers than in the case of independent heat extraction.

Otherwise, seasonality affects the effectiveness of the heat exchanger showing effectiveness values of

60% during the colder months and about 80% during the warmer months.

The integration of other renewable energy sources such as solar collectors as an external energy source

can be considered an appropriated solution to avoid a large decrease in the TLCZ and TNCZ, which would
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not only result in a significant improvement in energy efficiency but also increase the capacity of the

solar pond to provide heat to an external application during the colder months, which are the most

unfavourable in terms of solar radiation. The results obtained, in a cold month scenery, show that the

heat supply process carried out with lateral and bottom heat exchangers is the most effective

configuration present a value of up to 18%, representing 29% and 49% increases in efficiency compared

when the test was performed independently.

When the heat supply process is combined with the heat extraction in summer conditions the efficiency

shows the higher value when the process is carried out extracted the heat from the bottom area and

supply heat from the lateral (18%) being twice the average efficiency of the solar pond and more than

three times when there were no heat supply or extractions in the system.

The experience of the Granada solar pond proves that the main advantage of a solar pond is the capacity

to store energy in the months with the highest solar radiation to provide a flux of heat to an external

system during the whole year. Theoretical calculations based on solar radiation indicated that the use of

the SGSP would reduce the annual fuel consumption by more than 50%, thus providing a significant

improvement at both economic and environmental levels. Two months after the SGSP was established,

in August 2014, the temperature in the storage zone of the SGSP reached approximately 90 °C.

During 2015, the salinity gradient began to deteriorate, increasing the height of the UCZ and LCZ and

decreasing the height of the NCZ. In April 2015, the salinity gradient was considered to be technically

destroyed. Notwithstanding, the system was able to provide the expected heat flow to the flotation unit

for two more months, after which the solar pond stopped its operation. In September 2015, the solar

pond was refilled using the water injection method and its operation was restarted.

In terms of energy efficiency, a yearly balance was suggested to obtain a reliable value of thermal

efficiency and minimize seasonal effects. The overall efficiencies obtained after the first and second

operation periods were 9.7 and 12.3%, respectively, with maximum values of 28 and 24% obtained

during the first months of operation. In terms of the greenhouse gas emissions, 31.7 and 22.5 tn of CO2

were avoided during the first and second periods of operation due to the heat supplied by the Granada

solar pond.

Regarding the economic savings, the fuel oil cost of the flotation unit was reduced by a higher percentage

than the fuel oil consumption, due to the decreasing tendency of fuel oil prices during 2014 and 2015.

Reductions of 52 and 68% were obtained in the first and second periods of operation, respectively, when

compared to 2013.

The study of this type of technology under non-favourable environmental conditions (low temperature

and radiation) allows to know and predict the behaviour of the system in areas where the use of

renewable energies is not common due to its climatological conditions. The study of the Granada solar
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pond during a snowfall showed how the system responded positively to weather variations, even those

that are extreme and unusual, and that also confirms the fundamental role of the salinity gradient as a

thermal isolation layer. It is important to note that salinity gradient and LCZ were not affected due to

the snowfall and only the UCZ reported some temporary instability that lasted a week approximately.

The stored energy during January 2015 was 13.3GJ and the weekly efficiency reached 10%. This

analysis confirms that solar pond technology is able to store energy even under extreme weather

conditions and it is of the greatest importance in terms of its operation as well as its capacity to supply

energy to an external application.
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ANNEX I.AREA SALINITY GRADIENT SOLAR POND AND ECONOMIC SAVING

The first phase of the design of the Granada’s solar pond project is the sizing of the pond, considering

the energy needs of the application and the environmental factors of the place. The aim of this project

is pre-heating the working fluid of the flotation process using a solar pond as a thermal power source.

The daily total volume of hot water needed for the application is 10000 L. Assuming that the temperature

of the working fluid is at the same temperature as the LCZ, the monthly average values obtained in the

Martorell solar pond during its operation is taken to calculate the energy required in the process. Take

into account the total volume per day needs for the application, the average temperature of the tap water

and the average temperature of the working fluid the total energy per month needs for the application is

calculated as shows Table 3.

Table 3. Total energy per month needs for the flotation process

January February March April May June July August September October November December

Days 31 29 31 30 31 30 31 31 30 31 30 31

flow rate [l/day] 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

Temp av. tap water [°C] 9 10,2 11,4 12,6 13,8 15 16,2 15 13,8 12,6 11,4 10,2

Temp av. Process [°C] 25 30 35 40 50 52 55 50 45 40 35 25

ΔT [°C] 16 19,8 23,6 27,4 36,2 37 38,8 35 31,2 27,4 23,6 14,8

Energy required [GJ/day] 0,7 0,8 1,0 1,1 1,5 1,5 1,6 1,5 1,3 1,1 1,0 0,6

Total energy month [GJ] 20,7 24,0 30,6 34,4 46,9 46,4 50,3 45,4 39,1 35,5 29,6 19,2

Theoretically, a solar pond has an efficiency of 15 -20 %, that is, of the total solar radiation only this

percentage is stored in form of heat in the system. Considering the monthly solar radiation, the

theoretical area is calculated in different pond efficiency scenarios as shown Figure 19. Once the

calculations have been made and taking into account that the efficiency of the pond will be around the

theoretical value calculated in different studies, it is concluded that the smallest area necessary to meet

the energy requirements of the application is 500 m2.
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Figure 19. Calculation of the total area of the pond in different efficiency scenarios

On the other hand, the energy saving can be estimated taking into account that the average consumption

of gas oil in the flotation process is 25000 l / year, therefore use of the solar tank as an energy source

would result in an economic saving of approximately 50%.
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ANNEX II. DESIGN HEAT EXTRACTION SYSTEM

II.1Heat extraction system

The design of the heat exchanger was divided in two stages. First, the working flow rate was defined

according the energy specifications of the process and also the solar pond capacity to supply energy.

Second, the length of the heat exchanger is defined considering environmental factors, process needs

and the previously defined working flow rate.

II.1.1 Definition of the working flow rate

The aim of this project is pre-heating the working fluid of the flotation process using a solar pond as a

thermal power source. In the flotations process area there are two tanks of 5 m3 each one which feeds

the process. The flotation process consumes 5 m3 in reagent tank (Tank 1) in approximately 16 hours.

When the discharge of the Tank 1 is taking place the second reagent tank (Tank 2) start its charge.

Independently of the flow rate of work, each tank will be charge once in a day, so the daily total volume

of hot water will be 10000 L. On the other hand, depending on the flow rate, the duration of the charge

of the tanks varies. For this reason, the fillings tanks time for the daily flotation process volume is

calculated for different flow rates in order to check that the process of filling-emptying of the tanks is

possible to different flow rates in the range of 0 - 100 L / min. Figure 20, 21 and 22 shows the process

filling – emptying of the tanks. When increasing the flow, the filling of the tanks is faster, but it supposes

a sudden cooling of the solar pond which can cause disturbances in the system and could destroy the

thermal gradient.

Figure 20. Charge-Discharge process for a flow rate of 12 L/min
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Figure 21. Charge-Discharge process for a flow rate of 28 L/min

Figure 22. Charge-Discharge process for a flow rate of 84 L/min

Once the filling time of the tanks has been checked, the necessary length of the heat exchangers is

calculated. Assume that the bottom of the pond is at 50 °C and the fresh water is at 15 °C it has been

calculated with a mathematical model of heat extraction the outlet temperature of working fluid.  Table

4 shows the main characteristics has been used.

Table 4. Working condition of the calculation of the length of heat exchanger system

Temperature LCZ (°C) 50

Temperature inlet cold water (°C) 15

Flow rate (L/min) 0 – 120
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Longitude Heat exchanger (m) 1200

Average solar radiation daily (MJ) 10000

Vprocess flotation (L) 10000

Figure 23 shows the variation of the outlet temperature of working fluid and the efficiency of the solar

pond depending on the flow rate of work. On one hand, the outlet temperature remains constant

approximately of 55 °C (TLCZ) for a flow rates below 40 L/min. When the flow rate increases above this

value the outlet temperature of the working fluid decreases.

On the other hand, the pond efficiency is the thermal performance to store and delivered the heat and its

value is in average of 15-20% (Wang and Akbarzadeh, 1982) and it can be calculated as the daily heat

extracted regard the daily solar radiation at the surface of the pond. The rate of thermal energy extracted

is given by equation 1 (Leblanc et al., 2011)= · · ( − ) (Equation 1)

Where

Q is the rate of thermal energy extracted (W)

m is mass flow rate (kg/s)

Cp is the specific heat of water (J/kg °C)

To is the outlet temperature of the working fluid (°C)

Ti is the inlet temperature of the working fluid (°C)

Considering that the flotation process needs 10000 L every day, the daily rate of thermal energy

extracted for each flow rate can be calculated by equation 2= · (Equation 2)

Where

q is the daily thermal energy extracted (J)

Q is the rate of thermal energy extracted (W)

t is the daily time to fill the reagents tanks to obtain 10000L (s)

Considering the daily solar radiation and the area of the pond, the pond efficiency it can be calculated

by equation 3



ANEXX II

108

= ∙ (Equation 3)

Where

A is the area of the solar pond (m2)

H is the daily solar radiation at the surface of the pond (J/m2)

The Figure 23 shows that the efficiency for each flow rate has a value between 16.71 and 12.24 % that

it is a reasonable value for salinity gradient solar pond performance.

Figure 23. Effect of the flow rate on the outlet temperature of working fluid and efficiency of the solar pond

The effectiveness of heat exchanger is can be calculated by equation 4 (Tundee et al., 2010)

= −− (Equation 4)

Where

Toulet is the outlet temperature of working fluid (°C)

Tinlet is the inlet temperature of working fluid (°C)

TLCZ is the temperature of LCZ (°C)

It is noted from the Figure 24 that the effectiveness decreases when the flow rate increases. For flow

rates below 40 L/min the effectiveness reached the higher values (approximately 100%) and then

decreases to a value of 73.25 % for the higher flow rate (120 L/min).
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Figure 24. Effect of the flow rate on the heat exchanger effectiveness

The calculation carried out by mathematical model shows that to work with a flow rate above 40 L/min

implies a decrease, on one side, in the outlet temperature of working fluid and, in the other side, in the

effectiveness of the heat exchanger. Then, a flow rate of 40 L/min was set for the heat exchanger to

ensure that the required amount of warm water was fed into the flotation unit.

II.1.2 Definition of the length of heat exchanger

The main characteristics used in the mathematical model are summarized in Table 5 and are defined by

the pipe supplier (e.g ID and materials). Thus, the heat exchanger length was estimated by the pipe ID,

the amount of heat stored in LCZ (predicted by the model), the tap water temperature and the amount

of water needed in the reactive preparation (in terms of volume).

Table 5. Characteristic of the mathematical model

Material D(m) k (W/mk) Lspiral (m) e (m) rinlet (m) routlet(m) Rpipe(K/W) Rspiral (K/W)

PE 0.016 0.43 20 0.002 0.0008 0.01 5.4E-05 4.1E-03

In order to evaluate the heat exchanger length and the influence of the weather (tap water temperature),

the amount of heat delivered from the LCZ and the temperature of the heated water was estimated as

can be seen in Figure 25 and 26 respectively for every season. The heat exchanger pipe was divided in

spiral sections of 20 m length in order to calculate the heat and temperature variations.
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Figure 25. Heat delivered from LCZ for every season

Figure 26. Temperature of the working fluid for every season

As can be seen after 60 spiral sections of the heat exchanger no more heat is delivered for every season

and it corresponds to approximately 1200 - 1300 m.

II.1.3 Design of the configuration of the heat exchangers

The heat extraction system is designed to provide heat for use in reactive preparation in mine flotation

process. Heat is extracted from the pond by circulating fresh water through a heat exchanger located in
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the bottom area, and then 150 m away to deliver heat to the application by feeding a tank. The layout in

the bottom of the solar pond is able to take different configurations, which can be grouped in two groups:

 Single module configuration: Formed by a single pipe distributed across the bottom of the solar

pond.

For this type of configuration, two designs are proposed. Firstly, a spiral single module (Figure 27) and

secondly, parallel single module (Figure 28). The advantages that present these configurations are, on

one hand, the flow rate will remain constant throughout the conduction and, in the other hand, the pipe

is almost immersed in the storage area, only the outlet and the inlet are in the surface, so the heat losses

are minimum. As a disadvantage the fact that a leakage in the pipe can occur so the extraction system

has to be completely replaced.

Figure 27. Spiral single module

Figure 28. Parallel single module
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 Independent modules configuration: Formed by individual pipes spread over different sectors of

the bottom. All of them are independent of each other.

Three designs are proposed for this type of configuration. Firstly, serial spiral independent modules

(Figure 29), secondly, parallel spiral independent modules (Figure 30) and thirdly parallel independent

modules (Figure 31). The advantage that present these configurations is in the case of leakage, the

module with the leak can be isolated. As for the disadvantages, it is impossible to assurance that the

velocity of each module is the same and, on the other hand, a section of the pipeline of each module is

located on the surface which causes heat loss. Similarly, heat loss also will occur when the pipe goes

through HCZ and NCZ areas, due to their temperature are lower. This problem can be solved insolating

the surface section of the pipes.

Figure 29. Serial spiral independent modules
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Figure 30. Parallel spiral independent modules

Figure 31. Parallel independent modules

The option that was carried out in the solar pond of Granada was the use of parallel spiral independent

modules as it provided a simpler and more controllable work methodology.
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The total length of the polyethylene heat exchangers pipes was determined to be 1200 m distributed in

six individual spirals of 200m each one in all bottom area of the pond. Table 6 shows the characteristics

of the heat extraction system. Figure 32 shows the final design of the distribution of the heat exchanger

in the Granada solar pond.

Table 6. Characteristics of the heat exchanger of the Granada solar pond

Inner diameter (m) 0.028

Outer diameter (m) 0.032

Length of each roll (m) 200

Number of rolls 6

Material PE100

Figure 32. Final design of the heat exchanger in the solar pond Granada
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ANNEX III. ESTIMATION OF WATER SUPPLY IN THE SOLAR POND AND SALT
CONSUMPTION

In a saline gradient solar pond, salt diffuses from the storage zone (LCZ), which is at a saturation

concentration of 25% (250000 mg / l), to the surface area (UCZ), which must be found at a concentration

comprised between 0 - 4% (0-40000 mg / l), increasing the concentration in this area resulting in

deterioration of the gradient. To guarantee the stability of the gradient zone, both the concentration of

the storage area and the concentration of the surface area must be kept constant. For this, two

maintenance actions must be carried out. On the one hand, salt must be added to the storage area, to

ensure that it is at the saturation concentration and, on the other hand, fresh water must be added to the

surface layer to drag the salt that has spread and also to compensate losses due to evaporation. To control

the system, it must be quantified the consumption of fresh water that will lead to the use of the solar

pond in the company Solvay Minerals as well as the management of the overflow water that will

accumulate in the auxiliary pond.

The saline gradient solar pond has an area of 500 m2 and a height of 2.5 m. The auxiliary pond has an

area of 100 m2 and a height of 1m.

Figure 33 shows a general scheme of the flows of matter that take place in the solar tank and the auxiliary

pond

To quantify the consumption of fresh water in the system, a mass balance is made in the solar pond.

Figure 34 shows the inlet and outlet flows.

Figure 33. Flows of matter in the solar tank and the auxiliary pond
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Equation 5 shows the mass balance in the solar pond:	 Equation 5

The volume contributed by the precipitations (Wrain) and the volume lost due to the evaporation that

takes place in the surface layers of the pond (Wevap), are calculated taking into account the climatology

of the area.

Table 7 shows the data of the precipitations in a place near Escuzar mine to quantify the water supply

by the rain. This data come from the weather station located in Bermejales.

Table 7. Average monthly precipitation in Escuzar during the year
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Precipitation

(l/month m2)
54.8 43.1 43.1 38.5 35.0 18.1 4.3 3.5 19.7 45.8 61.2 56.5

The calculation of the evaporation is done using equation 6 (Pancharatnam, 1972):	 ∗ (Equation 6)

Where
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Figure 34. Mass balance in the solar pond
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W Mass transfer between air and pond surface ·
Kg Mass transport coefficient · ·∗ saturation vapor pressure                                        (mmHg)

pa Partial pressure of water in air                           (mmHg)

For the calculation of each of the terms that form equation 6 equations 7, 8 and 9 defined in Perry's

Chemical Engineers' Handbook (Perry and Green, 1997) are used:

= 1.9 + (0.476 · ( ℎ)) · 0.001 (Equation 7)

∗ = 31.82 · . ·( ° )° (Equation 8)

= ∗ · (%)
(Equation 9)

The values of the ambient temperature and the wind speed have been taken from the Bermejales weather

station and Relative humidity from Ogijares weather station (Table 8). Both weather stations are near

Escúzar mine

.Table 8. Average relative Humidity, ambient temperature and average wind spedd in Escuzar

Figure 35 shows the values of the quantity of water evaporation and the water supply by the rain present

in the mass balance for each month. It can be observed that in the period between the months of May to

September, the evaporated volume is greater than the volume contributed by the precipitations, while

from November to December, the precipitations are the majority.
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Average Relative Humidity (%)
78.51 77.81 69.06 64.43 52.9 51.86 39.83 46.67 57.33 63.29 78.66 71.77

T ambient (ºC)
6.7 7.8 9.9 12 15.3 20.4 24.1 23.9 20.1 14.9 10.5 6.9

Average wind speed (m/s)
1.04 0.96 1.13 1.24 1.48 1.68 1.84 1.65 1.38 1.08 0.84 0.66
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Figure 35. Precipitation and evaporation monthly volume in the solar pond

Once the volume corresponding to the climatological conditions has been quantified, it is only necessary

to calculate the volume necessary to compensate the diffusion that takes place in the solar pond (Wout).

For its calculation, the first Fick law of diffusion is used (Equation 10) that will provide the value of the

mass diffusion speed (m )̇:

· ñ = ∝· = (Equation 10)

Where

CLCZ LCZ concentration (kg/m3)

CUCZ UCZ Concentration (kg/m3)

Z            NCZ height (m)

α Diffusion coeficient (0.11-0.22 m2/año)

Using equation 10 and the values of the diffusion coefficient of 0.11-0.22 m2 / year, values have been

obtained for the mass diffusion speed of 20 and 40 kg / m2 ·  year.

Table 9 shows the values of the mass diffusion speed used by different authors in order to compare whit

the results obtained:

Table 9. Values of mass diffusion of different studies
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Author Year · ñ
Agha et al. 2004 16.6

Ouni et al. 2003 20

Newell et al. 1994 12.5-25

Rabl and Nielson 1975 22-25

Tabor 1975 20-30

Weinberger 1964 20-30

In conclusion, the value of the mass diffusion speed used in this study has been chosen taking into

account two aspects:

1. The range of values obtained by calculations made using equation 10 (20-40 kg / m2

· year).

2. Values used in research conducted on the operation of solar ponds.

According to these two premises, a value of 20 kg / m2 year is chosen because is an average of the

values used by the different authors consulted. Taking into account the area of the solar pond (500 m2)

and the condition that in the surface area the concentration can have a maximum value of 4% (40000

mg / l), the volume of overflow will have a value around 250 m3 / year, taking a constant monthly value

for the Wout of 20.46 m3 / month.

On the other hand, taking into account this mass diffusion coefficient, the average annual consumption

of salt in the solar pond is estimated to be 10 Tn / year to keep the concentration in the LCZ.

Figure 36 shows the monthly values calculated for each factors of the mass balance (Equation 5). The

outflows that correspond to evaporation water and water to compensate the diffusion are shown as a

value:
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Figure 36. Precipitation, evaporation and outflow monthly volume in the solar pond

Figure 37 shows the value of the contribution water consumption required each month.

Figure 37. Water supply in the solar pond
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If the monthly consumption of fresh water is added to achieve the correct functioning of the solar tank,

the total annual consumption will be around 450 m3.

The solar pond requires an auxiliary pond where the water from the overflow is accumulated. This

overflow water is necessary to maintain a constant concentration in the surface layer and remove the

possible dirt that accumulates on the surface, in order to allow the higher incidence of the sun rays.

For the calculation of the volume that will be stored in the auxiliary pond and the concentration of NaCl,

a mass and component balance is made. Figure 38 shows a diagram of the outflows and the inflows that

take place in the auxiliary pond.

Equation 11 shows the mass balance in the auxiliary pond:

(Equation 11)

The terms of the W'rain and the W'evap are calculated as was done in the case of the solar pond, taking

into account now the surface of the auxiliary pondis 100 m2. The meteorological data necessary for the

calculation have been taken from the same sources as in the case of the solar pond calculation. The value

of Wout is taken from the calculation made in the previous section for the calculation of the water

necessary to compensate the diffusion, taking a constant monthly value of 20.46 m3 / month.

Figure 39 shows the monthly values for each of the terms of the material balance (Equation 7):
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Figure 38. Mass balance in the auxiliary pond
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Figure 39. Values of the volumes calculated for evaporation water (Wevap), rainwater (Wrain) and water to

compensate for diffusion (Wout) in the auxiliary pond

Assuming the auxiliary pond has a defined volume of 100 m3 and it is empty in the month of October,

equation 11 would be as follows:

- Mass balance October (first month):

V (Oct) = Wout (Oct) + Wrain (Oct) – Wevap (Oct)

Once the volume has been quantified for the first month, it is calculated for the subsequent months until

the accumulated volume approaches the maximum volume of the auxiliary pool (100 m3), at which time

it will be emptied:

- Mass balance November:

V (Nov) = V (Oct) + Wout (Nov) + Wrain (Nov) - Wevap (Nov)

In general, the mass balance is defined for the first month (Equation 12) and the rest of months until

reaching the volume of the auxiliary pond.

- Mass balance first month (or after emptying) (Equation 12):
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V (n) = Wout (n) + Wrain (n) - Wevap (n) (Equation 12)

- Mass balance month n (Equation 13):

V (n) = V (n-1) + Wout (n) + Wrain (n) - Wevap (n) (Equation 13)

Figure 40 shows the volume of the auxiliary pond in each month using equations 12 and 13 for its

calculation. As it is observed, three discharges would be made, one during the winter months, which

depending on the meteorological factors would be carried out between the months of December to

February; another in the summer months between the months of May to July and finally another

discharge at the end of September, leaving the pond ready to start the cycle again.

Figure 40. Water management in the auxiliary pond

The concentration present in the auxiliary pond is calculated by performing a component balance

(NaCl).

- Component balance October (first month):

V (Oct) ·  C (Oct) = Wout (Oct) ·  Cout (Oct)

C (Oct) = (Wout (Oct)·  Cout (Oct)) / V (Oct)
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V (Nov) · C (Nov) = V (Oct) ·  C (Oct) +Wout (Nov) ·  Cout (Nov)

C (Nov) = (V (Oct) ·  C (Oct) +Wout (Nov) ·  Cout (Nov)) / V (Nov)
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Generally, is defined the component balance for the first month (Equation 14) and the other month

(Equation 15):

- Component balance first month:

C (n) = (Wout (n) ·  Cout (n)) / V (n) (Equation 14)

- Component balance month n:

V (n) ·  C (n) = V (n-1) ·  C (n-1) + Wout (n) ·  Cout (n)

C (n) = (V (n-1) ·  C (n-1) + (Wout (n) ·  Cout (n)) / V (n) (Equation 15)

Figure 41 shows the value of the concentrations over time in the auxiliary pond. During the discharges

in winter and summer seasons, the concentration will be around values of 3.5-4.5% (35000 - 45000 mg

/ l), while in the last discharge in the month of September the concentration will be more elevated around

a value of 12% (120000 mg / l). This is due during the summer the evaporation is higher than other

seasons so the concentration increasing sine these values. The water discharged from the auxiliary pond

is used to irrigate dirt roads to minimize dust in the mine facilities.

Figure 41. Concentration in the auxiliary pond during the year
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Table 10 shows a summary of the volume and concentration during the discharge operations during the

year.

Table 10. Summary of the study of volume and concentration in the auxiliary pond during the year

Discharge operation V auxiliary pond (m3) Concentration (%)

December - February ˞ 90 3.5-4.5

May – July ˞ 90 3.5-4.5

September ˞ 20 12
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ANNEX IV. ESTABLISHMENT OF THE SALINITY GRADIENT

The salinity gradient zone is the key element of salinity gradient solar ponds. The first major task of

applying solar pond technology is determining how to construct a prescribed salinity distribution profile

effectively and efficiently.

Before constructing the salinity gradient of the solar pond, a precalculated volume of saturated brine

must be put into the pond. The level of brine required is governed by the depth of both the lower

convective zone (LCZ) and the non-convective zone (NCZ).  A saturated brine volume equal to the

specified storage zone (LCZ) plus half of the gradient zone (NCZ) is the first step required.

To fill the pond, it is possible to use brine solution or to prepare a saturated salt solution. In this project

it was decided to use brine coming from salt mines near the mine (Flusal S.A.). Table 11 shows the

characteristics of the brine:

Table 11. Brine characteristic

Cl (g/l) 158

Cu (µg/l) < 5

Pb (µg/l) < 1

Dry residue (g/l) 231

(g/l) 110

pH 7,07

Density (g/l) 250 - 260

the initial volume of brine needed must be defined by equation 16:

VSB = Asp ·  (hLCZ + ½ hNCZ) (Equation 161)

Where,

VSB is volume of saturated brine (m3)

Asp is the total area of solar pond (m2)

hLCZ is the height of LCZ (m)

hNCZ is the height of NCZ (m)

In the case of the Escùzar solar pond, the volume of saturated brine will be 662.5 m3 with a total height

of 1.32 m.
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The Froude number, Fr, is a critical parameter for the fixed level injection process. The Froude number

is a dimensionless number representing the ratio of the kinetic energy to the gravitational potential

energy of the injected fluid. The correct Froude number can be calculated using the following equation

(3) (Zangrando 1991).

= ∗∆ ∗ ∗ (3)

Where ρ is the density of the surrounding saline fluid (kg/m3), v is the injection velocity at the diffuser

outlet (m/s), g is the acceleration due to gravity (m/s2), Δρ is the density difference between the injected

fluid and the surrounding fluid (kg/m3) and B is the gap width of the diffuser (m).

It has been found that the Froude number needs to be maintained at a constant value of approximately

18 in order to achieve complete mixing at the injection diffuser level (Liao, Swift and Reid, 1988;

Zangrado and Johnstone, 1988). For Froude numbers smaller than this value the injected fluid rises, by

buoyancy, and mixes above the diffuser level. For Froude numbers larger than this value, the injected

fluid entrains significant quantities of fluid from below the diffuser level (Leblanc, 2011).

To maintain the Froude number at a value of 18, it is necessary to change the design of the diffuser (Gap

width) or the injection velocity of the process Both changes make the filling process more complex.

Experimental experiences (Leblanc et al., 2011, Valderrama et al., 2011) in the establishment of the

gradient show that it is possible to work with a Froude number of approximately 18 or below to achieve

complete mixing at the injection diffuser level and establish the salinity gradient successfully.  To verify

that the values of Fr number were in the optimum working range (≤ 18), the variation of the Fr number

through the height of the solar pond was calculated for different flow rates (Figure 42). The flow rate

that presents a Fr number within the optimum working range is 250 l / min. For the surface area it has a

value of approximately 16 for the surface area and values of approximately 4 for the bottom zone. These

values of Fr number are saving to establish the salinity gradient. The lower flow rate (200 l / min) would

also be a good workflow but the filling time would increase. The higher flow presents values above 18

which can generate problems when establishing the salt gradient. Therefore, 250 l / min is established

as the work flow.
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Figure 42. VAriation Fr number acros the height of the solar pond different flow rates

Figure 43 shows the design of the diffuser used in the establishment of salinity gradient profile in

Granada solar pond. Table 12 shows the values defined for its construction.

Figure 43. Scheme of the diffuser ued to set up salinity gradient

Table 12. Parameters of the diffuser used in the salinity gradient establishment of the Granada

Diameter (mm) 500

Gap width (mm) 10

Thickness (mm) 16

Pipe inlet diameter (mm) 50

Material Stainless steel
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Once the flow rate to fill the pond and the diffuser was defined, a procedure is designed to carry out the

formation of the salt gradient and the necessary maintenance actions to ensure its correct operation.

Firstly, it fills the pond with saturated brine at a height of 1.3 m (hLCZ + ½ hNCZ). The transport of this

brine to the mine will be done by trucks. The salt company has three trucks with a total volume of 24

m3 each one. If the salt company does two trips per day, the pond will be filled in 5 days.

Once the pond is full with brine, the establishment of salinity gradient process starts. Firstly, the

supporting vertical rod of the diffuser should be marked in intervals of 25 mm. With these marks is

possible to control the distance between the plane of the diffuser and the water level at any time.

The injection process to establish the salinity gradient starts putting the diffuser at a height of 0.65 m

from the bottom of the pond (NCZ-LCZ interface). The velocity of the injection will be of 250 L/min.

When the water level rises a height of 50mm the injection will be stop. With this flow rate, the injection

process for each step will be about 1.67 hours. Then, it must wait for 30 minutes. To check the correct

establishment of the salinity gradient a complete salinity profile will be taken. This should also take

another 30 minutes. Therefore, every step will take approximately 3 hours.

When the salinity profile has been taken, the second step will be start. It has to move the diffusor 100

mm and it will get back to inject water. Accomplish this injection process until the pond water level

reaches the boundary of NCZ and UCZ specified in the design. Therefore 13 injections steps will be

required.

To finish, add fresh water into the pond surface through a Floating system to avoid mixing, until the

pond level reaches the design value (2.2 m). The supply water system can be used to carry out this

operation with a low flow rate approximately about 25 L/min.

Once the gradient is established it will be start the actions to control de system. On one hand, it will be

necessary to take samples of the system to study the evolution and the stability of the salinity gradient

every day in the week after the gradient establishment. Density, pH and turbidity will be measured to

carry out this objective. On the other hand, it will be needed to add acid to decreases the pH between 3

to 4 to control de clarity of the system and to prevent the growth of the algae. The acid will be HCl and

its concentration should be approximately 9% so it’s necessary to prepare the solution with this

concentration and add to the system through the pipes of the acidification system. It’s recommended to

add acid each day after the gradient establishment to decreases the pH in several steps for not disturb

the system using 200 L of acid solution approximately in each supply operation. It must supply acid to

the system until the pH shows values between 3 to 4.  In the schedule it can be seen that the operation

of supply acid will be one week. If the system reaches the needed pH before it will stop the supply

operation.
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Once time the pH of the system will be stable, the study of the stability and the evolution of the system

will be carried out once a week. If the pH increases it would be necessary to add acid to the system

again.

Simultaneously the treatment of data must be carried out. The salinity and temperature profiles, the

water, salt and acid consumptions and the weather parameters will be study to have an overview of the

system.

The establishment of the salinity and thermal gradient can be seen in Figure 44 a and b respectively.
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Figure 44. a) Settling of salinity gradient and b) evolution of the temperature gradient during the process of

establishing the salinity gradient at the Granada solar pond in July 2014.
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ANNEX V.CONSTRUCTION GRANADA SOLAR POND

V.1 Construction

During the month of May 2014, the construction of the solar pond began at the Solvay Minerals facilities

in Granada. The construction of the pond was carried out in different phases. In this section, the different

phases will be explained chronologically.

V.2 Earth movement

Before beginning the excavation process, it was necessary to move some freshwater pipes that were in

the construction area of the solar pond (Figure 45 and 46).

Figure 45. Initial location of the freshwater pipes in Solvay Minerales facilities
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Figure 46. New location of the freshwater pipe

After this relocation of the pipes, the excavation of the land began. First the ground was prepared with

a bulldozer (Figure 47) and all the plaster was removed from the construction zone (Figure 48).

Figure 47. Preparation of the ground
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Figure 48. Removal of rock

Then the compaction of the land was carried out. First, the soil was leveled and then compacted using a

drum compactor machine (Figure 49). The goal was to get a surface as uniform as possible.

Figure 49. Compaction of the ground

The area of the solar pond was marked using a total station to measure the perimeter for the solar tank

as a measurement tool (Figure 50).
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Figure 50. Perimeter measurement with a total station

The excavation process was formed by two parts (Figure 51). Firstly, the excavation of the volume of

rocks, without taking into account the walls of the pond (Figure 52). Secondly, the excavation process

on the walls, to ensure greater stability (Figure 53). It was decided that the walls of the solar pond should

have a certain inclination so that, when the earth gets wet in the winter and autumn seasons, periods with

a higher proportion of rain, the plaster rocks that can be loose, cannot fall and damage the coating of the

pond.

Taking into account this observation, the first stage of excavation was not carried out until the end of

the marked perimeter to execute it in a second stage, taking into account the certain inclination of the

walls of the pond. Once both phases were completed, the surface material was removed, and the

earthwork phase was completed (Figure 54).
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Figure 51. Start of excavation process

Figure 52. First phase of the excavation process
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Figure 53. Second phase the excavation process

Figure 54. End of the excavation process

Once the excavation of the land and the walls of the solar pond was completed, the surface finishing

phase began. This phase was divided in two parts, first at the base and then the walls of the pond as the

excavation process. The objective of this operation is to prevent leaks and achieve a uniform finish.
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For this, a level was placed at the base of the pond with the idea of measuring the uniformity of the land

(Figure 55) and adding material in the areas where the desired uniformity is not achieved (Figure 56 and

57).

Figure 55. Land leveling on the base of the pond

Figure 56. Addition of material on the walls of the pond
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Figure 57. Addition of material on the base of the pond

V.3 Overflow system

The solar pond was connected to the auxiliary pond by an overflow system. This system is a canal with

a length of 0.8 m and a height of 0.3 m (Figure 58 and 59). Through this system the rainwater and the

water supply, used to maintain constant the concentration of the UCZ, is accumulated in the auxiliary

tank. To construct the channel concrete pieces were used as show Figure 60.
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Figure 58. Canal to connect solar pond with auxiliary pond 1

Figure 59. Canal to connect solar pond with auxiliary pond 2
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V.4 Thermal insulation installation

Once the entire surface of the base and walls had been sealed and the overflow system of the solar pond

had been completed, the surface was waterproof and thermally insulated. This insulation was made to

reduce the heat losses of the pond with the soil and walls. The waterproof was done with a layer of

concrete (Figure 61).

Figure 60. Concrete piece used in construction of the overflow system
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Figure 61. Concrete layer on the walls to waterproof the system

The internal insulation is composed of several layers of insulating material. For the first layer two

options of insulation were proposed: the ChovAFOAM 300 meters and the second one was

THERMOPLAN. Both are good thermal insulators that adapt perfectly to the conditions of the project,

but ChovAFOAM 300 has been chosen because was more resistant to work at higher pressures.

Table 13 y 14 shows the characteristics of each of the thermal insulators considered.

Table 13. Characteristics of ChovAFOAM 300 M (50mm)

ChovAFOAM 300 M (50 mm)

DESIGN CRITERIA Score (0-5) REASON

Affordability 5 ~ 6 € / m2

Thermal conductivity 4 Good thermal conductivity (0.034 W/mK)

Maximum pressure able to withstand 5 Can withstand ≥ 300 of pressure

Maximum temperature able to

withstand

4 0℃≤ ≤ 65℃
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Table 14. Characteristics of TERMOPLAN (8mm)

The material was prefabricated strips of 1250 mm x 600 mm x 50 mm (Figure 62). The installation was

done on the base of the pond and up to a height of 0.80 m from the walls. It took approximately three

days to be placed on the base and walls of the solar pond (Figure 63 and 64).

Figure 62. Dimensions of insulation ChovAFOAM 300 M 50

TERMOPLAN (8 mm)

DESIGN CRITERIA Score (0-5) REASON

Affordability 5 ~ 6 € / m2

Thermal conductivity 5 Good thermal conductivity (0.034 W/mK)

Maximum pressure able to withstand 0 Can withstand ≥ 300 of pressure

Maximum temperature able to

withstand

5 − 20℃≤ ≤ + 80℃
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Figure 63. Start of the thermal insulation installation process

Figure 64. End of the process of placing the first layer of insulation

The second layer of thermal insulation is composed of expanded clay (Arlita). This layer ensures thermal

insulation layer protection in the case the temperature reaches 65°C in the LCZ (Figure 65). At the end

of the process of placing the second layer of insulation, the coating of the walls is continued with the

thermal insulation ChovAFOAM 300 meters (Figure 66).
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Figure 65. Laying the extended clay layer

Figure 66. Laying the ChovAFOAM material on the walls.

Once placed the insulation ChovAFOAM 300 M 50 mm and expanded clay (Figure 67), began the

placement of the third layer. This layer of thermal insulation was composed by a geo-textile layer. It is

a material composed mainly of polypropylene and polyester, to separate the different layers of thermal

insulation and ensure that there is no contamination between the different materials (Figure 68).
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Figure 67. End of the process of placing the second layer of insulation

Figure 68. Laying the geotextile layer

To finish, two layers of primary coating insulation with a thickness of 1 mm and secondary coating were

placed. The primary coating is composed of vinyl polychloride (PVC), a material characterized by

ductile and tenacious, with dimensional stability and environmental resistance. In addition, it is a great

thermal insulator, a very necessary condition for this type of technology (Figure 69 and 70).
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Figure 69. Placement of PVC on the geotextile layer

Figure 70. End of the process of placing the third layer of insulation

The secondary coating, the last layer of thermal insulation, is composed of high density polyethylene

(PE), with high chemical resistance, very favourable as a waterproof barrier, to ensure that there are no

leaks (Figure 71).



ANNEX V

149

Figure 71. End of the process of placing the quarter layer of insulation

The use of both coatings is to provide a double layer of protection for the solar pond. To detect possible

leaks, between the PVC and PE coverings, a PE pipe connecting the base with the surface of the pond

and a sensor that indicates the existence of water between these two layers of insulation was installed.

Figure 72 shows a schematic of the insulation layers of the system

Figure 72. Scheme of insulation layers of the systems

V.5 Catwalk and instrumentation room

The next step was the construction of an access platform to the solar pond and an instrumentation room

(Figure 73). In this catwalk several instrumentations were installed. On one hand, the two salt chargers

were installed to feed the LCZ with NaCl in order to maintain a constant saturation concentration (Figure
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74 and 75). On the other hand, a sampler was installed to control the salt gradient as well as the

temperature and pH of the system at different heights (Figure 76). Also, 42 termoresistences was

installed over the height to control the temperature of the system. These sensors were distributed at

intervals of 5 cm, starting 0.5 cm from the bottom and installed in plastic supports (Figure 77). Finally,

pipes system was installed to add hydrochloric acid to the system at different heights in order to conserve

the water clarity (Figure 78). Figure 79 shows all the instrumentation placed on the catwalk.

Figure 73. Catwalk and instrumentation room
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Figure 74. Salt chargers

Figure 75. Loaded salt charger



ANEXX V

152

Figure 76. Sampling mechanism to take samples at different heights

Figure 77. Disposition of temperature sensors in the solar pond
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Figure 78. Pipe system to add acid in the system at different heights

Figure 79. Salt charger, temperature sensors, system of pipes and diffusor on the catwalk
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The instrumentation room is used to install all necessary instrumentation to control the heat extraction

process of the system and the fresh water supply system. A flow meters (SMC) to mesure the inlet flow

rate and thermal sensors (PT100) were installed to measure the inlet and outlet temperature of the

working fluid. To ensure that the inlet flow rate in each spiral was the same, a rotameter was installed

in each of the individual spiral heat exchangers. A valve to regulate the flow rate is also intalled (Figure

80)

To mesure the parameters of the fresh water supply system a flow meter and a temperature sensor were

installed (Figure 81).

Figure 80. Fresh wàter System

Inlet water to the solar pond heat exchangers

Inlet Flow meter
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Figure 81. Water supply system

On the other hand, a thermostat valve were installed to achieve a constant temperature of 60 °C. When

the temperature of the outlet flow is higher than 60 °C this thermostate valve open a circuit to mix with

fresh water (Figure 82). Firstly, the decrease in the temperature of the outlet flow was obtained, but the

thermostatic valve didn’t work correctly because couldn’t regulate the temperature in a stable way, so it

was decided to work without it. Consequently, the outlet flow from the heat exchanger goes directly to

the industrial process (Figure 83).

Water supply

Water supply to the surface of the solar
pond

Valve to regulate the flow rate of water
supply

Flow meter water supply

Water to mix with hot water

Fresh water Temperature
sensor
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Thermostatic valve

Outlet Temperature sensor solar pond

Outlet Temperature sensor

Fresh water Temperature sensor

Outlet flow meter

Outlet Temperature sensor

Outlet temperature
sensor

Figure 82. Initial outlet flow rate to the industrial application with thermostatic valve

Figure 83. Final system of the outlet flow rate to the industrial application
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V.6 Auxiliary pond

The auxiliary pond was built parallel to the solar pond. Both are connected by the overflow system. The

function of this pond is to store the excess water from the solar pond. This water comes from rainwater

as well as the water supply used to keep the concentration on the surface constant. It has a volume of

134.4 m3 and an area of 96 m2 (Figure 84).

Figure 84. Dimensions of the auxiliary pond

The auxiliary pond is not buried. For its construction, firstly, the ground was cleaned and smoothed so

that the surface was as uniform as possible (Figure 85). Secondly, the structure of the side walls was

built (Figure 86). Thirdly, the side walls were raised to a height of 1.40m using blocks (Figure 87). This

auxiliary raft was isolated to prevent leaks to the ground with two layers, one of geotextile and another

of PVC (Figure 88 and 89). Finally, both ponds are joined by the overflow system (Figure 90).
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Figure 85. Preparation of the ground of the auxiliary pond

Figure 86. Structure of the auxiliary pond
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Figure 87. Construction of the walls of the auxiliary pond

Figure 88. Laying the geotextile layer
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Figure 89. Laying the layer second layer of PVC

Figure 90. Final aspect of the auxiliary pond and union with the solar pond (red)

V.7 Installation heat exchangers system

The heat exchanger was placed at the bottom of the solar pond. The material that was used to

manufacture the heat exchanger were polyethylene pipes (PE100) of 32 mm and 28 mm of outer and

inner diameter respectively. The use of metallic pipes would provide a greater heat transfer but could
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lead to corrosion problems due to the high salinity of the water in the pond. According to the design, the

exchanger would be formed by 6 independent pipes of 600 m each one placed in a spiral shape to occupy

the entire lower area of the tank. To place them, a structure made up of concrete blocks was used to

separate the tubes from the pond floor (Figure 91). The heat transfer occurs in the entire lateral area of

the pipes. Once this structure was placed, each of the spirals forming the heat exchanger was placed

(Figure 92).

Figure 91. Structure of the concrete blocks in the bottom of the solar pond
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Figure 92. Final location of the heat exchanger

V.8 Meteorological station

The meteorological station CR1000 Measurement and Control System (Campbell Scientific, Barcelona,

Spain) was installed on the roof of the instrumentation room to measure the environmental parameters

(Figure 93). The station was programmed to measure and store data (Datalogger CR1000) from the

different meteorological sensors with high accuracy, as follows: rain (52202/52203, 2% up to 25 mm /

h); solar radiation (CS300, ± 5% for daily total radiation); wind speed (03002, ± 0.5 m / s); relative

humidity (CS215, ± 2%, 10-90% RH); barometric pressure (CS106, ± 0.6 mb, 0-40 ° C), and air

temperature (CS215, ± 0.4 ° C, over +5 to +40 ° C). The sensors take measurements every 10 s, and the

hourly average is recorded as well as the daily average (24 h). The monthly average ambient temperature

is determined by averaging the values recorded daily.
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Figure 93. Meteorological station



ANEXX V








