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Abstract

Levitodynamics addresses the levitation and manipulation of micro- and
nanoresonators with the purpose of studying their dynamics. This emerging
field has attracted much attention over the last few years owing to unprece-
dented performances in terms of mechanical quality factors, cooling rates at
room temperature, and ultra-high force sensitivities.
In this thesis, I establish the use of an optically levitated and electrically driven
charged silica nanoparticle as a promising and reliable force sensor in vacuum.

The first two experiments discussed in this work seek a deeper knowl-
edge and a higher control of the levitated system. Firstly, I suggest and
demonstrate a novel protocol to measure the mass of the particle up to
2% accuracy using its electrically driven motion. This method improves by
more than one order of magnitude the state-of-the-art mass measurements
in standard optical tweezers schemes. Then, leveraging on these results, a
second experiment is performed to address important open issues regarding
the morphology of the nanoparticles used, with particular interest in their
surface chemistry and in the understanding of mass-losses due to water
desorption from the silica spheres. Finally, backed up by extensive theoretical
background in nonlinear mechanical oscillators, I investigate the stochastic
bistable dynamics of a parametrically driven nanoresonator in the nonlinear
regime, discussing the potential of noise-activated stochastic switching and
stochastic resonance as unconventional force detection schemes.
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1
Introduction

1.1 Micro- and nano-mechanics

Understanding, controlling and manipulating matter at the nanoscale is prob-
ably a well suited definition of nanotechnology: a science that has undoubt-
edly revolutionized lives and economies of the modern world. Its conceptual
origins date back to 1959, when Richard Feynman envisioned the potentiality
of this field claiming: "There’s plenty of room at the bottom" [27]. In fact, manipu-
lating the building blocks of matter at the atomic and molecular scale has en-
abled groundbreaking technologies. From the very first nanotechnological de-
vice, namely the scanning tunnelling microscope [14], and passing by atomic
force microscopy (AFM) [13] and nano-lithography, science has been able to fit
more and more complex machines into ever smaller scales, an extraordinary
example being today’s computer processors. Nanoelectronics is indeed the sci-
ence that probably most has benefited from the progress of nanotechnology,
but certainly not the only one. Micro- and nano-electromechanical systems
(MEMS and NEMS), for instance, are another example of technology that has
widespread presence in everyday’s life. Typically, they comprise a mechanical
resonator that can be of the most diverse form: from ordinary AFM cantilevers
and doubly clamped beams [83], to more complex fashions such as suspended
trampolines [87], graphene membranes [113] and carbon nanotubes [74], just
to name but a few. This family of systems serves a broad range of appli-
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2 Chapter 1. Introduction

cations in both fundamental science and state-of-the-art technologies, one of
their main functions being providing sensing operations, for examples in gy-
roscopes, accelerometers and pressure sensors, that can be easily integrated in
any portable device.

Along the race for reaching better performances, significant achievements
have been accomplished. Among others, extraordinary sensitivity to external
forces [19], single electron spin detection [94], yoctogram mass sensitivity [17]
and single-molecule spectroscopy [39] have been reported.

Furthermore their increasingly smaller sizes are nowadays providing a
unique view in the exploration of the so called mesoworld, where new physics
emerges beyond our classic understanding [83]. In fact, NEMS consist of too
many atoms to be described by conventional quantum mechanics, and yet
they are too small to completely neglect quantum effects. Therefore the arise
of questions such as: can a mesoscopic object be put in a quantum super-
position?, and how big should such a system be to observe the quantum-to-
classical transition and what are the responsible effects?. Somehow, these are
the very same questions that Erwin Schrödinger was asking himself in 1935
with his famous dead-or-alive cat gedanken experiment [96].

A positive answer to the first question was disclosed in 2010 by O’Connell
and colleagues, who cryogenically refrigerated the mechanical mode of a
drum resonator and were able to perform for the first time quantum-limited
measurements at the single phonon level [79] on a macroscopic system. The
door to the quantum mesoworld was finally open. Since then, several other
groups have been able to access the quantum ground state of mechanical mo-
tion [106] This was also possible thanks to the development of ultra-sensitive
optical techniques that, backing up NEMS, initiated a novel branch of nanome-
chanics called optomechanics, where the mutual interaction between the me-
chanical resonator and the electromagnetic field allows for the realization of
unprecedented non-classical states. Besides their ability to access the quantum
regime, such optomechanical systems hold great promise for the realization
of quantum interfaces between solid state quantum bits and photons [90],
therefore attracting lot of interest for quantum computation and quantum in-
formation processing [103].

Nowadays, the potential of optomechanics in the future of quantum tech-
nologies (referred as the second quantum revolution [21]) is becoming unques-
tionable. Nevertheless, what might be questionable is the possibility to oper-
ate quantum-optomechanical systems at room temperature [77], where ther-
mal dissipation imposes severe limitations to the quantum coherence of the
oscillator modes. Modern nano-optomechanics has come a long way toward
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solutions to the dissipation challenge, but clamping and material losses still
limit its performances.

Novel approaches are therefore desirable. Levitation was introduced as a
promising alternative to overcome the limits of dissipation and was indeed
able to achieve outstanding Q× f factors (figure of merit for the coherence of
an oscillating mechanical system) as high as 1013. Similar values were only
recently reached with trampoline resonators [77, 87]. Despite being bound by
the photon recoil limit, optical levitodynamics enabled unprecedented levels
of phonon occupancy at room temperature [50], letting foresee potential for
advancing the state-of-the-art in quantum control at room temperature and,
more importantly for the scope of this thesis, toward a novel family of ultra-
sensitive nano-sensors.

1.2 The emerging field of Levitodynamics

In 1970 Artur Ashkin1 from the Bell Laboratories realized that it was possible
to exploit laser radiation pressure to manipulate matter at the microscale. His
pioneering experiments, at first performed in liquid and air, demonstrated for
the first time optical trapping of dielectric spheres in a focused laser beam [7].
It was the very beginning of a new and promising technology - later on named
‘optical tweezers’ - that opened up a plethora of applications in several dif-
ferent fields [71]. The scientific revolution that optical tweezers enabled in
biology and biophysics [63, 105], with experiments essentially carried out in
liquid, diverted the attention from levitation in vacuum, back in the times
uniquely explored by Ashkin and Dziedzic [8]. Only many years later, in
2010, Li et al. [60] explored the potential of optical trapping in rarified gases
and exploited the technique to measure the instantaneous velocity of a brow-
nian particle, a task that A. Einstein in 1907 deemed impossible [26]. This
result led one year later to the realization of an active feedback scheme to cool
down the center of mass motion of a micron-sized particle in the millikelvin
regime [61]. The technique was further developed by Gieseler et al. who pro-
posed a non-linear parametric feedback scheme to levitate and cool a silica
nanoparticle in high vacuum with a single beam [35] (as opposed to the six
counterpropagating beams of Li et al.). It was, again, a technological progress
that paved the way for a field that has recently been referred as Levitodynam-

1“For the optical tweezers and their application to biological systems”, Arthur Ashkin was
very recently awarded the 2018 Nobel prize in physics.
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ics 2.
The potential of levitodynamics resulted clear since its very early stages.

Unprecedented mechanical Q-factors as high as 108 at room temperature let
foresee the possibility to achieve quantum ground state of mechanical motion
in non-cryogenic environments. Jain et al. [50] proposed a slightly different
feedback scheme and demonstrated a direct measurement of photon recoil
from a levitated nanoparticle. With an occupation number of few tens of
phonons, their results are currently the state-of-the-art towards the quantum
ground state. However, it is essential mentioning that active feedback is not
the only approach to perform cooling on a levitated nanoparticle. There are
currently several groups implementing passive cooling schemes through opti-
cal cavities in the resolved sideband regime [6,54]. Making use of quadrupole
ion (Paul) traps [18, 20, 70] instead of optical tweezers can facilitate this task
since heating rates are typically lower in this implementation [15]. Also, dif-
ferent trap geometries have been recently proposed and implemented, for ex-
ample in front of a parabolic mirror [47,111], in optical standing waves [85] or
based on magnetic levitation [48, 84].

It is clear from the list above (incomplete for obvious reasons), that the
increasing number of research groups joining the levitodynamics community
and the related quantum race is a tangible indication of significant scientific
interest in levitated systems. It is paramount, though, to ask ourselves in
which sense this could be different, or complementary, to what has been
already achieved with other optomechanical systems (see § 1.1). The answer
is clearly not unique, but in this context it is important to stress that one
of the very peculiar features of levitated spheres cooled to the ground state
is the exceptional possibility of performing free falling experiments [45]
in a matter-wave interferometer scheme, therefore exploring wavefunction
collapse models and achieve a better understanding of the decoherence effects
of gravity [52].

Besides the high interest in performing quantum experiments with levitated
nanoparticles, I believe “there’s (still) plenty of room in the classic world”. This
personal and adapted version of Feynmann’s quote intends to stress that the
quite unique features of levitated nanoparticles (such as isolation from the
environment, small masses and tunability of several system parameters) al-
low for cutting-edge fundamental research not only in the quantum regime,

2The name was recently conceived in October 2018, during informal brainstorming discus-
sions between the groups of Lukas Novotny, Romain Quidant, Oriol Romero-Isaart, Christoph
Dellago and Tracy Northup
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but also in classical fields like stochastic thermodynamics [97] and statisti-
cal physics, among others. For instance, transient fluctuations of the rela-
tive entropy change in a relaxation process were observed due to the non-
negligibility of thermal fluctuations at the particle’s (nano) scale [37]. Like-
wise, the experimental measurement [93] of predicted (but yet unobserved)
phenomena such as Kramers’ turnover [40, 57] are likely to become textbook
material in the future.

From a more application-oriented perspective in the classic regime, levito-
dynamics in vacuum is undoubtly a promising candidate for the realization of
ultra-sensitive nano-sensors that operate at room temperature. The unprece-
dented decoupling of the levitated oscillator from its environment has already
enabled the observation of thermal nonlinearities, with prediction [36] and
demonstration [86] of force sensitivities in the zN/

√
Hz (zeptonewton) range.

Such outstanding sensitivities, combined with relatively high mass densities,
are being used for the exploration of short-range interactions in regimes unac-
cessible for ions and cold atoms, for example in the search for non-Newtonian
gravity-like forces. Moreover, the possibility to control and preserve the net
charge of the particle [29] is a unique feature of a levitated system that is
pivotal to electrically couple the particle to external electric fields [47,73]. Do-
ing so in a controlled manner could turn levitated nanoparticles into precise
electric field sensors. Finally, modern nanotechnology rises high interest in
inertial sensing for navigation, and levitated micro-particles (micro- not nano-
because acceleration sensitivity scales linearly with the mass) were recently
implemented as accelerometers and demonstrated nano-g sensitivity [72].

1.3 Motivation and objectives

At the onset if this doctoral work, levitated nanoparticles in vacuum were
amongst the most promising nanomechanical systems able to reach unprece-
dented force sensitivities at room temperature. Yet, proposals of possible ap-
plications did not take into account important issues such as a reliable cali-
bration of the particle’s displacement and a precise measurement protocol of
its mass (essential for quantitative estimation of the detected forces). Also,
the levitodynamics community was coping with an unexpected particle loss
mechanism at moderate vacuum conditions. Several groups, independently
of the specific set-up, had observed instabilities of the system that were sup-
posed to be related with the particle’s bulk temperature [85]. Although the
problem was later technically solved and particle loss avoided, a comprehen-
sive understanding of the involved phenomena was missing. Different in-
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terpretations (or perhaps speculations) let to inconsistent assumptions on the
particle’s morphology after the instability regime.
In such a context, one must realize that a deep knowledge of a system is
paramount (and mandatory) in order to achieve full control and convert it
into a reliable sensor.

This thesis has been devoted to solve some of these open issues, with in-
terest was in the calibration and mass measurement problem. Moreover, the
observation and explanation of pressure-dependent mass losses and their re-
lation with the above mentioned instabilities ended up in an in-depth un-
derstanding of the behavior of silica while it is brought into high vacuum.
Finally, the implementation of an electrical driving scheme with individual el-
ementary charge detection, and the exploration of an unconventional sensing
scheme based on the non-linear phenomenon of stochastic resonance gave us
unprecedented control over the dynamics of the trapped nanoparticles. The
next section provides a more detailed outline of the present work.

1.4 Outline

The thesis comprises four different parts, respectively presenting the theo-
retical background (Chapter 2), the experimental apparatus (Chapter 3), the
three main experiments performed (Chapters 4-6) and the final conclusions
(Chapter 7):

� Chapter 2: Theory of optically levitated nano-resonators. In § 2.1 the es-
sential background on optical levitation is presented. We will
provide a detailed derivation of the trapping forces on dielectric
spheres, and of the far-field scattered intensity that enables inter-
ferometric detection of the particle’s position. § 2.2, reviews the
basics of mechanical resonators, with particular interest in the
nonlinear dynamics of Duffing resonators subject to both direct
and parametric driving.

� Chapter 3: Experimental set-up. We provide a description of the whole ex-
perimental apparatus, focusing on modifications and improve-
ments of its original state [34], including the implementation of
a novel electric driving scheme.

� Chapter 4: Precise measurement of the particle’s mass. This chapter starts
with a review of the two main methods used in the community to
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estimate the particle’s mass. In § 4.3 a novel protocol to perform
this task is suggested and experimentally demonstrated. The
chapter is concluded with a careful estimation of the associated
measurement errors, showing an accuracy that outperforms the
existing methods by more than an order of magnitude.

� Chapter 5: Particle instabilities through moderate vacuum. Here, an in-
depth description of the particle’s morphology is provided. The
chapter contains two main parts, separated by a more techni-
cal one on charge measurement. The first, § 5.2, is an observa-
tional section where unexpected pressure-dependent behaviors
are identified, while § 5.4 present a plausible interpretation of
the experimental results provided. In this last section we dig into
the surface chemistry of silica, and eventually propose a model
that convincingly explains the formerly unclear behavior.

� Chapter 6: A model system for stochastic bistable dynamics. In this chap-
ter the stochastic nonlinear dynamics of a parametrically driven
particle is investigated in different regimes. The first part, § 6.3
characterizes the particle’s response at the first instability tongue
and under externally injected noise. Then, stochastic switching
of the oscillator motion is studied. Finally, levereaging on the
control achieved and on the precise modelling of the bistable
dynamics, we implement stochastic resonance (SR) with the levi-
tated nanoparticle. The potential of this phenomenon as a signal
amplification scheme is investigated and the chapter concludes
discussing its sensing capabilities.

� Chapter 7: Conclusions and future perspectives. A general outlook of the
work, presenting both technical improvements and experimental
results, is followed by our vision on possible future applications
in levitodynamics.





2
Theory of optically levitated

nano-resonators

Contents
2.1 Optical tweezers . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Optical forces in the Gaussian approximation . . . 11
2.1.2 Trapping potential . . . . . . . . . . . . . . . . . . . 15
2.1.3 Scattered Field . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Dynamics of nano-resonators . . . . . . . . . . . . . . . . . . 17
2.2.1 Linear regime of oscillations . . . . . . . . . . . . . 18
2.2.2 Nonlinear regime of oscillations . . . . . . . . . . . 25
2.2.3 Directly driven Duffing resonator . . . . . . . . . . 26
2.2.4 Parametrically driven Duffing resonator . . . . . . . 28

In 1970 Arthur Ashkin proposed and demonstrated a novel technique
to trap and accelerate microparticles by exploiting the radiation pressure of
a focused laser beam. This pioneering work gave birth to a groundbreaking
field, later on named optical tweezers, that revolutionized the way to ma-
nipulate matter in a controlled manner. For his contributions, Ashkin was
awarded the 2018 Nobel prize in Physics.

In § 2.1 we provide the basic concepts of optical levitation. When this
takes place in vacuum, however, optically trapped objects behave as three-

9



10 Chapter 2. Theory of optically levitated nano-resonators

dimensional oscillators and a complete description of their dynamics therefore
relies in the basic concepts of mechanical resonators. These will be reviewed
in § 2.2, both in their linear (§ 2.2.1) and nonlinear (§ 2.2.3-2.2.4) regime of
oscillations.

2.1 Optical tweezers

An object immersed in an electric field scatters part of the incident radiation.
The physics of this scattering phenomenon depends on the size of the ob-
ject itself. In the case of a spherical particle, given the characteristic length
(e.g. its radius rp) and the wavelength λ of the impinging radiation, one can
parametrize the scattering via the quantity

σ =
2πrp

λ
. (2.1)

Three very different cases emerge:


σ� 1→ Rayleigh scattering

σ ' 1→ Mie theory

σ� 1→ Geometric optics

(2.2)

(2.3)

(2.4)

In the experimental condition encountered all along this thesis, condition 2.2
is always fulfilled and we can restrict ourselves to study the case of Rayleigh
scattering: σ � 1. Consider now a monochromatic electromagnetic wave of
angular frequency ω, represented by the fields:

E(r, t) = Re[E(r)e−iωt]

B(r, t) = Re[B(r)e−iωt]
(2.5)

When such fields impinge on a subwavelength particle at position r0 the inter-
nal charges gets displaced, therefore inducing a dipole moment p proportional
to the electric field:

p = α(ω)E(r0). (2.6)

Here the constant α is referred as the polarizability of the particle, and is given
by

α(ω) = 4πε0r3
p

εp(ω)− εs(ω)

εp(ω) + 2εs(ω)
, (2.7)

with ε0,p,s being the dielectric constants of vacuum, particle and surrounding
medium respectively. The force acting on the polarized particle can now be
expressed as:

F = (p · ∇)E + ṗ× B + ṙ× (p · ∇)B. (2.8)
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Neglecting third term due to non-relativistic speeds involved, and considering
the time-averaged force over one cycle of oscillation of the electromagnetic
field (T = 2π/ω), equation (2.8) takes the more familiar form:

〈F〉 = α′

2 ∑
i=x,y,z

Re[E∗i ∇Ei] +
α′′

2 ∑
i=x,y,z

Im[E∗i ∇Ei] (2.9)

= Fgrad(r) + Fscatt(r), (2.10)

where we have used α = α′ + iα′′. The first term in (2.9) is a conservative
gradient force, proportional to the dispersive part of the complex polarizability,
that can be rewritten as

Fgrad(r) =
α′

4
∇[E∗ · E] = α′

2cε0
∇I(r), (2.11)

with I(r) = cε0|E(r)|2/2 being the intensity of the field. Provided α′ > 0 this
force always points towards the the maximum of the intensity and is the one
that enables trapping with a single tightly focused light beams. The second
term in (2.9), often referred as scattering force instead, is a non conservative
force proportional to the dissipative part of the complex polarizability. It is
responsible for “pushing” the particle along the propagation axis of the beam
by transferring momentum to it. Again, we can relate Fscatt to the field’s
intensity I0 and phase φ at the center of the trap:

Fscatt(r) =
α′′

2
I(r)∇φ(r). (2.12)

Important considerations need to be done regarding the complex polariz-
ability α(ω). In the case of a dielectric sphere of volume V levitated in vacuum
(i.e. εs = 1), we can rewrite (2.7) as α0 = 3Vε0(εp − 1)/(εp + 2). The response
of the particle to the external oscillating field depends on the external field, ob-
viously, but also on the field scattered by the particle itself. In order to ensure
energy conservation this mutual interaction with the self-scattered field leads
to a corrections of α0 and to the introduction of an effective polarizability [78]:

α(ω) ≈ α0(ω)

[
1− i

k3

6πε0
α0

]
. (2.13)

2.1.1 Optical forces in the Gaussian approximation

As already mentioned, a small particle (rp ≤ λ/2π) can be trapped in a tightly
focused optical beam as as long as the gradient force Fgrad overcomes the scat-
tering force Fscatt (see eq. 2.10). To compute those forces we need information
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over the intensity and phase profiles in the focus, I(r) and φ(r) = k · r respec-
tively, k being the local wave vector. A first approach is to assume a zero order
Gaussian optical mode, which is fully described by its complex amplitude:

E(r) = E0
w0

w(z)
exp

[
− ρ2

w2(z)

]
e−iφ(ρ,z)êx, (2.14)

where we have defined:

w(z) = w0

√
1 +

(
z
z0

)2

Beamwidth (2.15)

φ(ρ, z) = kz +
ρ2

2R(z)
− ζ(z) Phase (2.16)

R(z) = z
[

1 +
( z0

z

)2
]

Curvature radius (2.17)

ζ(z) = arctan
(

z
z0

)
Gouy phase shift (2.18)

The beam propagates along the êz direction, while êx is the unit vector along
the polarization axis. E0 is the absolute value of the field at the focus, related
to the the total optical power P0 by E2

0 = 4P0/cε0πw2
0, w0 is the so called beam

waist, and z0 = πw2
0/λ is the Rayleigh length.

Using the paraxial approximation to assume w0 = λ/πNA (NA being the
numerical aperture of the focusing optical element), and by expanding the
Gaussian beam up to the fourth order (valid for small displacement |r| << λ),
one can show [51] that the the total gradient force takes the vectorial form:

Fgrad ≈ −

k(x)x
k(y)y
k(z)z

 , (2.19)

being

k(x,y) =
4α′P0

πε0cw4
0
=

4α′

πε0c

(
πNA

λ

)4

P0 (2.20)

k(z) =
8α′P0

πε0cz2
0w2

0
=

8α′

πε0c

(
πNA

λ

)4

NA2P0 (2.21)

This expression establishes that gradient restoring forces in optical traps
are linear in first order of position and consequently they obey Hook’s law
F(i=x,y,z)

grad = −k(i)xi. For this reason the constants k(i) are often referred as op-
tical spring constant, proportional to the optical power. Figure 2.1a shows the
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intensity map of a Gaussian beam at its focus for λ = 1064 nm, w0 = 635 nm
and P0 = 70 mW. White crosscuts correspond to the field intensity along the
(x, y)-plane and (x, z)-plane. The resulting gradient forces for a silica nanopar-
ticle, dp = 143 nm in diameter are shown in Fig. 2.1b together with the linear
restoring force approximation (2.19). It is clear from the plots that this approx-
imation only applies for small displacements of the resonator. We will study
in more depth the consequences of larger displacements in § 2.2.2.
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Figure 2.1: Optical field and gradient forces in an optical tweezer. (a) Intensity map of
Gaussian beam focused down to w0 = 635 nm. Power and wavelength are respectively P0 =

70 mW and λ = 1064 nm. (b) Gradient forces for a dielectric particle dp = 143 nm in diameter,
immersed in the optical field shown in (a). Note that the waist w0 here considered does not
correspond to the the one predicted by the paraxial approximation with a NA = 0.8. In fact,
due to the poor validity of such approximation, the parameter w0 needs to be rescaled by a
factor ∼ 1.5 in order to match experimental observations.

Similarly, for the scattering force one obtains [49]:

Fscatt ≈
α′′E2

0k
2z2

0

 xz
yz

γ + γxx2 + γyy2 + γzz2

 , (2.22)

where the z-component coefficients are defined as:

γ = z2
0

(
1− 1

z0k

)
(2.23)

γx = γy =
1
2
− 2z0

kw2
0
+

2z2
0

w2
0

(2.24)

γz =
1
z0

(
2
k
− z0

)
. (2.25)

(2.26)
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Most of the times, however, the need for high gradient forces that are able
to overcome the scattering ones lead to the use of high NA optical elements to
tightly focus the beam. This restricts the validity of the paraxial approxima-
tion and requires a more general treatment of the problem. For instance one
could follow the theory established by Richards and Wolf [78,89] and describe
the field at the focus as an infinite superposition of plane waves that travel
from the optical element’s surface (assumed to be spherical) towards the fo-
cus. The corresponding integral can be expressed in the angular spectrum
representation [78] as:

E(ρ, ϕ, z) =
ik f e−ik f

2π

∫ θmax

0

∫ 2π

0
E∞(θ, φ)eikz cos θeikρ sin θ cos(φ−ϕ) sin θ dφ dθ ,

(2.27)
with E∞(θ, φ) being the incoming field distribution at the optical element of
focal length f , k the wave vector, and θmax the maximum angle under which
rays are entering in the lens (ultimately depending on the numerical aperture
NA). Although being exact, this approach is most of the times a very compli-
cated task, and the integral in (2.27) can be analytically solved in very limited
cases. An easier approach is then to reconsider the Gaussian approximation,
this time including some corrections due to the high NA of the focusing. In
fact, the plane waves associated with high angles generate new polarizations
in the focus, the symmetry of the light beam is broken, and the light distribu-
tion becomes elongated along the polarization axis of the impinging beam. In
this case the focal distribution would be described by an asymmetric Gaussian
beam of the form:

E(r) = E0
1

1 + (z/z0)
2 exp

[
− x2

w2
x(z)
− y2

w2
y(z)

]
e−iφ(ρ,z)êx . (2.28)

kx =
4α′P0

πε0cw0xw0y

1
w2

0x
(2.29)

ky =
4α′P0

πε0cw0xw0y

1
w2

0y
(2.30)

kz =
16α′P0

πε0cw0xw0y

1
w2

0z
(2.31)

where we have defined w0z =
√

2z0.
Note that due to the radiation pressure the the equilibrium position of the

trapped particle along the beam axis does not coincide with the focus, but gets
forward displaced by zp. This value can be obtained from setting the condition
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F(z)
grad = F(z)

scatt, which leads to:

zp =
1
4

α′′

α′
kγ . (2.32)

2.1.2 Trapping potential

The optical forces computed in §2.1.1 can now be converted into an optical
potential. This will be useful to introduce and model the anharmonicities that
arise in the particle’s dynamics.

The trapping potential can only be defined for the conservative components,
i.e. the gradient force, and we will therefore neglect the non-conservative
scattering force. By Integrating (2.11), we obtain:

Uopt(r) = −
α′

2cε0
I(r). (2.33)

The optical potential corresponds to the (inverted) Gaussian intensity distribu-
tion I(r). For an analytical approach, it is convenient to expand this potential
up to the fourth order. Notice that due to the the symmetry of the problem
only even terms play a role:

Uopt(r) ≈ U0

[
− 1 +

2
w2

0x
x2 +

2
w2

0y
y2 +

2
w2

0z
z2+

− 2
w4

0x
x4 − 2

w4
0y

y4 − 4
w4

0z
z4+

− 4
w2

0xw2
0y

x2y2 − 8
w2

0xw2
0z

x2z2 − 8
w2

0yw2
0z

y2z2
]
,

(2.34)

where U0 = α′P0/(πε0cw0xw0y). The first term corresponds to the depth of the
potential at the center of the trap, while the quadratic terms with prefactors
proportionals to the trap stiffness kx,y,z respectively, represent the harmonic

part of the potential that leads to the linear restoring force F(i=x,y,z)
grad = −k(i)xi.

Finally, the quartic terms represents deviations from the harmonic case, due
to the Gaussian shape of the potential. More precisely, the three terms of the
second row represent nonlinearities of the decoupled modes (i.e. of one di-
mensional oscillators), while the last three terms correspond to cross-coupling
between the different modes of oscillation.

2.1.3 Scattered Field

At the beginning of the chapter we have introduced the dipole approximation,
according to which the small particle (r � λ) trapped in the focus scatters a
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certain amount of the impinging light. The phase of this scattered light de-
pends on the particle position. Consequently, the interference pattern pro-
duced by the sum of the transmitted (reference) field and the scattered field
also depends on the particle’s position, and this relations can be exploited for
detecting the motion of the particle in the trap with high precision.

Following the derivation given in [78], one can show that the field scattered
by the dipole p = αE, at the position rp = (xp, yp, zp) is:

Edp(r) =
αE0ω2µ0

4π|r|
w0

w(zp)
e
−
(

x2
p

wox +
y2

p
woy

)
exp

[
i
(

k|r| − k
r · rp

|r|

)]
êx (2.35)

= Edp(r, rp) exp
{

i[k f + φdp(r, rp)]
}

êx , (2.36)

where we have assumed that the incident field is polarized along the êx axis.
For small displacements of the particle (|rp| � w0x, w0y, z0), the amplitude
Edp(r, rp) depends weakly on the dipole position, and can therefore be rewrit-
ten as Edp(r) ≈ αE0ω2µ0/(4π|r|). If the scattered light is collected with a lens
of focal length fcl, the spherical wavefronts emitted by the dipole are trans-
formed into plane waves. The far-field at longitudinal position z′ behind the
lens will therefore be given by the dipole field at the surface of the so called
reference sphere rcl = (x, y, zcl) of radius fcl, combined with the propagation
terms of an ideal lens: exp(−ik fcl) exp(ikz′). The collimated scattered field at a
position r′ = (x, y, z′) behind the collection lens will therefore have amplitude
and phase given respectively by:

EFF
dp(r

′) = Edp( fcl) =
αE0ω2µ0

4π fcl
(2.37)

φFF
dp(r, rp) = k′r′ − ikzp

(
1− ρ2

2 f 2
cl

)
(2.38)

where in (2.38) we have defined k′ = (−kxp/ fcl,−kyp/ fcl, k), ρ = x2 + y2 and

expanded zcl ≈ fcl − ρ2

2 fcl
. See Fig. 2.2 for a detailed geometry of the system

considered.
The transmitted field, i.e. the one not scattered by the particle, can be as-

sumed to be the simple forward propagation of the Gaussian field to the ref-
erence sphere. Being fcl � z0, the transmitted Gaussian displays spherical
wavefronts that are converted into plane waves by the collection lens:

Eref(r′) ≈
E0z0

fcl
exp

[
i
(

kz′ − π

2

)]
. (2.39)
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Figure 2.2: Optical field scattered from the levitated nanoparticle. A particle levitated at
position rp scatters a certain amount of the impinging field focused at the origin. The far
field intensity pattern behind a collection lens placed at position z = fcl carries information on
the particle position due to the interference between the transmitted and the scattered light.
Processing the propagated beam allows to retrieve information on the particle’s dynamics.

Detecting the superposition of the scattered and transmitted components in
the far field, leads to an interference intensity pattern of the two fields:

IFF(r′, rp) =
cε0

2

∣∣Edp(r′, rp) + Eref(r′)
∣∣2 (2.40)

≈ cε0

2
|Eref|2 + cε0 Re

[
ErefE∗dp

]
(2.41)

≈ cε0

2
|Eref|2 +

αE2
0z0ω2

4πc f 2
cl

e
−ik

[
xxp
fcl

+
yyp
fcl
−zp

(
1− ρ2

2 f 2
cl

)
+ π

2k

]
(2.42)

where in (2.41) we have dropped the intensity emitted by the dipole being this
small compared to the other two, and we have used (2.37),(2.38) and (2.39)
to obtain (2.42). This equation explicitly shows that the interference pattern
at the detector embeds information on the position rp = (xp, yp, zp) of the
particle.

2.2 Dynamics of nano-resonators

Inside of the trapping potential, optically levitated dielectric nanoparticles be-
have as three dimensional nano-resonators. The theoretical background of
these systems is provided in this section, starting with the simple description
of the harmonic oscillator and its properties. Important definitions such as
power spectral density and force sensitivity will provide a preparatory know-
how for tackling both analytical and experimental analysis of the experiments
detailed in the following chapters. The simple harmonic oscillator model will
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be then extended to a more realistic context by introducing the nonlinear dy-
namics of resonators in the case of direct and parametric driving.

2.2.1 Linear regime of oscillations

The harmonic oscillator (HO) is a textbook example of a very common dy-
namical system and surely the simplest model of a mechanical resonator. It
describes the dynamics of any mechanical system subject to a restoring con-
servative force proportional to the displacement of the system itself.

In the case of the Simple Harmonic Oscillator (SHO) the equation of motion
reads:

mq̈ = Fres = −kq, (2.43)

where m is the mass of the system, q̈ = dq/dt2 represents the second deriva-
tive of position q with respect to time, corresponding to its acceleration, and
Fres is a restoring elastic force that, according to Hook’s law, depends on the
stiffness k of the HO (sometimes also called spring constant) and on its dis-
placement. Notice that we have here introduced the variable q to represent a
general coordinate of the oscillator. In the case of a leviatated nanoresonator,
considered as 3D harmonic oscillator, one would have q = x, y, z.

The solution of (2.43) is a harmonic oscillation of the form:

q(t) = q0 cos(Ω0t + φ), (2.44)

where q0 and φ are respectively amplitude and phase of the oscillation, deter-
mined by the initial conditions {q(0), q̇(0)}, while Ω0 = 2π f0 is the mechan-
ical oscillation frequency, also called eigenfrequency, related to the stiffness by
Ω0 =

√
k/m.

Under realistic conditions, however, any resonator experiences friction
forces due to its interaction with the environment and energy gets dissipated
via viscous damping. A more appropriate form of the equation of motion
would therefore read

mq̈ + γq̇ + kq = 0, (2.45)

where we have introduced the viscous damping coefficient γ. Again, (2.45)
can be easily solved and the dynamics of the system is described by:

q(t) = q0e−
Γ
2 t cos

Ω0

√
1−

(
Γ

2Ω0

)2

t + φ

 , (2.46)

Γ = γ/m being the damping rate. The eigenfrequency of the system is now

Ωr = Ω0

√
1− ( 1

2Q ), where the quality factor Q = Ω0/Γ is an important
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Figure 2.3: Response of a driven damped harmonic oscillator (a) Amplitude. (b) Phase

parameter that represents the number of oscillations of the system when its
amplitude decays by a factor e. In other words, Q measures the ability of a
system to store energy, and its value leads to completely different behaviors
of the resonator:

• Q < 1/2 → Overdamped oscillator: the system does not show oscil-
latory behaviour and slowly returns to its equilibrium
position with exponentially decaying amplitude

• Q ∼ 1/2 → Critically damped oscillator: the system does not show
oscillatory behaviour and returns to its equilibrium po-
sition as quickly as possible

• Q > 1/2 → Underdamped oscillator: the system oscillates at fre-
quency Ωr and returns to its equilibrium position with
amplitude gradually decreasing to zero.

The equations of motion (2.43) and (2.45) describe the free harmonic os-
cillator. However, a more interesting and realistic case takes place when an
external force F(t) acts on the system, an the equation of motion takes the
form:

mq̈ + γq̇ + kq = F(t) (2.47)

If the force is harmonic F(t) = F0 cos(ωdrt), the solution has an initial transient
(dependent on the initial conditions) and a steady state solution of the form:

q(t) =
F0/m√(

ω2
dr −Ω2

0

)2
+ Γ2ω2

dr

cos

[
ωdrt + arctan

(
− ωdrΓ

Ω2
0 −ω2

dr

)]
(2.48)

The amplitude and the phase of (2.48) are graphically represented in Fig. 2.3
for different values of the damping Γ, parametrized in terms of Q.

Another interesting case of (2.47) is when the damped harmonic oscillator
is stochastically driven, which for instance takes place when the external
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force F(t) is the thermal noise arising from random collisions between the
resonator and the gas molecules of the surrounding media. According to the
so-called fluctuation-dissipation theorem, this coupling with the surrounding
thermal bath provides both forcing and dissipation in the system. As a result,
similarly to what has been done for (2.45), the dynamics of the resonator
highly depends on the amount of damping. In the following we will study
both the overdamped and underdamped limit cases and extract the relevant
quantities that characterize the dynamics of the system. Before doing so, it is
useful to provide the following definitions.

We define the Fourier Transform (FT) and its Inverse (IFT) in the ordi-
nary frequency domain as:

q̃( f ) =
∫ ∞

−∞
q(t)e−i2π f tdt FT (ordinary frequency) (2.49)

q(t) =
∫ ∞

−∞
q̃( f )ei2π f td f IFT (ordinary frequency) (2.50)

while in the angular frequency space ω = 2π f these takes the form:

q̃(ω) =
∫ ∞

−∞
q(t)e−iωtdt FT (angular frequency) (2.51)

q(t) =
1

2π

∫ ∞

−∞
q̃(ω)eiωtdω IFT (angular frequency) (2.52)

Note that for derivatives in the time domain the definition given above ensures
the validity of:

dnq(t)
dtn = (iω)nq̃(ω) Time derivatives in Fourier space (2.53)

For time-continuous signals (having infinite total energy) it is convenient to
define:

T q̃(ω) =
1√
T

∫ T
0

q(t)eiωtdt Time−limited FT (2.54)

Sq(ω) = lim
T →∞

1
T

∣∣∣∣∫ T0 q(t)eiωtdt
∣∣∣∣2 Power Spectral Density (PSD) (2.55)

= lim
T →∞

|T q̃(ω)|2 (2.56)

=
∫ ∞

−∞
〈 q(t)x(t + τ)〉 eiωτdτ Wiener−Khintchine theorem (2.57)
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Finally, energy conservation requirements allow to link the variance of the
temporal signal to the Power SPectral Density (PSD) in the frequency domain:〈

q2(t)
〉
=

1
2π

∫ ∞

−∞
Sq(ω)dω Parseval′s theorem (2.58)

Overdamped regime
In overdamped conditions the inertial term mẍ(t) in (2.47) can be dropped
(m→ 0), and making use of (2.52) and (2.53), the equation of motion in the
frequency domain reads:

iωγq̃(ω) + kq̃(ω) = F̃th(ω). (2.59)

From the definition (2.55), we obtain:

Sq(ω) = lim
T →∞

|T F̃th(ω)|2
γ2(ω2

c + ω2)
=

σ2

γ2(ω2
c + ω2)

, (2.60)

where for the second equality we have defined the corner frequency ωc =

2π fc = k/γ and set SFth = limT →∞ |T F̃th(ω)|2 = σ2 making use of the fact that
thermal noise is white (i.e. it has a constant frequency-independent spectrum).
To extract information over the physical meaning of σ we can combine eq.
(2.55) and the equipartition principle, which states that the average potential
energy of a HO takes the form:〈

Epot
〉
=

1
2

k
〈
q2(t)

〉
=

1
2

kBT, (2.61)

kB being the Boltzman’s constant and T the bath temperature. In agreement
with the fluctuation-dissipation theorem, we obtain σ2 = 2kBTγ and the PSD
of an overdamped oscillator can be finally expressed as:

Sq(ω) =
kBT

πγ(ω2
c + ω2)

(2.62)

Underdamped regime
Similarly, we can now apply the same approach for the underdamped case
(Q� 1/2). Starting with a mass-normalized equation of motion

q̈ + Γq̇ + Ω2
0q =

Fth(t)
m

(2.63)

and again using identity (2.53), we obtain

|q̃(ω)|2 =
1

m2
[(

ω2 −Ω2
0

)2
+ Γ2ω2

] · |F̃th(ω)|2 . (2.64)
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The PSD of the stochastically driven underdamped HO therefore reads:

Sq(ω) =
2kBTΓ

m
[(

ω2 −Ω2
0

)2
+ Γ2ω2

] (2.65)

Multiple driving: Thermal and harmonic forcing
Because thermal noise is basically everywhere and unavoidable, a very com-
mon situation is that of a harmonic force acting on a thermally driven har-
monic resonator. As a result, the force F(t) in (2.47) is a contribution of two
terms:

F(t) = Fth(t) + Fdr(t) = ση(t) + F0 cos(ωdrt), (2.66)

where η(t), representing the white noise, has a Gaussian probability distribu-
tion that satisfies 〈η(t)η(t + t′)〉 = δ(t′). Again, the equation of motion in the
frequency domain leads to:

q̃(ω) =
1

m(Ω2
0 −ω2 + iΓω)

[
F̃th(ω) + F̃dr(ω)

]
(2.67)

= χ̃(ω) · F̃(ω) (2.68)

where this time we have introduced χ̃(ω) = [m(Ω2
0 − ω2 + iΓω)]−1 as the

fourier transform of the complex susceptibility χ(t) = χ′(t) + iχ′′(t), also
referred as the response (or transfer) function in linear response theory. This
function converts the input signal, i.e. the force F(t) into the output signal, i.e.
the displacement q(t), such that:

q(t) =
∫ ∞

−∞
χ(t− t′)F(t′)dt′ . (2.69)

Notice that due to the linearity of the system, χ(ω) acts independently on the
two different forcing terms. As a result, if these are uncorrelated (as it is the
case between a periodic signal and a random process), we can write Sq(ω) =

Sth
q (ω) + Sdr

q (ω). The first term in this expression has already been calculated
in eq. (2.65), while for the second one a few preliminary considerations are
necessary. The exact analytical expression of F̃dr(ω) is a Dirac delta peaking
at ωdr, which for obvious reasons it is not a physical result to be compared
with experiments. In fact, in any realistic condition the force signal Fdr(t) will
be observed acting on the system just for a finite time T . We will therefore be
allowed to rewrite the definition (2.55) as Sq = |T q̃|2, obtaining a driving force
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spectral density of the form:

SFdr = |T F̃dr|2 =

∣∣∣∣ 1√
T

∫ T
0

F0 cos(ωdrt)e−iωtdt
∣∣∣∣2 (2.70)

=
F2

0 τ

2

∣∣∣e−iω+τsinc (ω+τ) + e−iω−τsinc (ω−τ)
∣∣∣2 (2.71)

=
F2

0 τ

2
[2 sinc(ω+τ) sinc(ω−τ) cos(2ωdrτ) + sinc2(ω+τ) + sinc2(ω−τ)]

(2.72)

≈ F2
0 τ

2
sinc2(ω−τ) .. (2.73)

where we have set ω± = ω ± ωdr and τ = T /2. Finally, the overall PSD of
a thermally driven mechanical resonator subject to external harmonic force
reads:

Sq(ω) =
2kBTΓ

m
[(

ω2 −Ω2
0

)2
+ Γ2ω2

] + F2
0 τ sinc2[(ω−ωdr)τ]

2m2
[(

ω2 −Ω2
0

)2
+ Γ2ω2

] (2.74)

Figure 2.4a verifies the approximation made in (2.74), while in Fig. 2.4b we
show the separate contributions on a thermally and harmonically driven res-
onator according to (2.74). As expected the response to the harmonic driving
is dominant only in a narrowband region around ωdr = 130 kHz, while the
broad thermal spectrum Sth

q , calculated for Q = 10, overcomes Sdr
q everywhere

else.

Force sensing
The example above presented can be extended to the general case of resonant
force sensing, where thermal noise Fth and other possible noise sources limit
the sensitivity of the system in detecting a resonant external force Fext(t). The
overall measured power spectral density can be assumed to take the general
form:

Sq(ω) = |χ(ω)|2 · [SFext(ω) + SFth ] + ζ2 (2.75)

where we have also introduced an additional term ζ2 representing the white
gaussian measurement noise in our system (i.e. independent from the oscilla-
tor dynamics). As a result, by inverting eq. (2.75) to estimate SFext , we find:

|χ(ω)|−2Sq(ω) = SFext(ω)︸ ︷︷ ︸
signal

+ SFth + |χ(ω)|−2ζ2︸ ︷︷ ︸
noise terms

, (2.76)
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Figure 2.4: Thermally and harmonically driven resonator (a) Red dots, representing the
exact analytical prediction of a harmonic force spectral density SFdr are well approximated
by (2.74). The parameters here used are: F0 = 1.6 fN, T = 40 ms, ωdr = 130 kHz. (b)
Power spectral density of a thermally and harmonicaly driven oscillator according to (2.74).
For the harmonic contribution the same parameters as in (a) are used, while the thermal one
correspond to a resonator with m = 3 fg, Q = 10, Ω0 = 125 kHz, T = 300 K.

and the signal to noise ratio (SNR) therefore reads:

SNR =

√
SFext(ω)

SFth + |χ(ω)|−2ζ2 =

√
SFext(ω)

σ2 + |χ(ω)|−2ζ2 (2.77)

where for the second equality we have once more used SFth = σ2. Equa-
tion (2.77) clearly demonstrates the advantage of using a resonator as a
force sensor. In fact, the signal to noise ratio is bounded to the limit
SNR ≤

√
SFext /σ2, and reaches its maximum when the term |χ(ω)|−2ζ2 is

minimized. This condition is fulfilled by operating the resonator on reso-
nance, i.e. when ω = Ω0. In other words, the resonance allows to enhance the
effect of small forces that would be otherwise buried in measurement noise.
By setting SNR|ω=Ω0 = 1 as the condition that defines sensitivity, we eventu-
ally find: √

SFext

Q� 1
'

√
2mΓkBT + ζ2m2ω2

0Γ2 (2.78)

The second term is usually much smaller than the first one (at least when mea-
suring close to resonance), so we can ultimately conclude that the sensitivity
of a mechanical resonator is given by:√

SFext =
√

2mΓkBT , (2.79)

Fmin =
√

4mΓkBTb . (2.80)
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We have here reported also the minimum detectable force (2.80) after integra-
tion in a bandwidth b = 1/T (T being the measurement time). Although
being formally correct, this formula does not take into consideration the sta-
bility of the measuring system: one could in principle resolve an infinitely
small force just by integrating over longer times (or shorter bandwidth). This
is obviously limited by drifts of the resonance peak that would affect the re-
sponse of the system to the external force. As we will see in § 4.3.4, there is
always an optimal measuring time that maximizes the stability and poses a
realistic limit to the achievable force detection capability.

2.2.2 Nonlinear regime of oscillations

In the previous section we have described the dynamics of a mechanical res-
onator in the linear regime of oscillation. This assumption requires the restor-
ing force to be linear in the displacement from its equilibrium position. Con-
sequently the effective potential associated to the conservative force has to be
quadratic in the displacement. Although being a good and useful approxi-
mation in several cases, we know from §2.1.2 that this does not apply for the
trapping potential of an optical tweezer. From eq. (2.34), in fact, we already
see that correction to the quadratic assumption are necessary to match the
Gaussian intensity profile in the trapping field. Limiting ourselves to study
the 1-D problem along the x–mode, and neglecting the mixed terms, one can
rewrite (2.34) as:

U(x)
opt ≈ −U0 +

2
w2

0x
x2 − 2

w4
0x

x4 (2.81)

and consequently:

F(x)
grad = mΩ2

0
(
1 + ξx2) x . (2.82)

A resonator subject to such a nonlinear restoring force is called a Duffing os-
cillator [56], with the nonlinear part usually referred as the Duffing term.

Together with stiffness nonlinearities, the general problem of a nonlinear
resonator usually implicates additional damping terms, also nonlinear, that
depend on the oscillation amplitude. This situation is very typical in me-
chanical resonator such as suspended beams, cantilevers, membranes and
others [25, 62, 100], where high oscillation amplitudes introduce mechanical
stresses in the material that cause the linear damping term to acquire higher
order contributions. In the case of a levitated nanoparticle under paramet-
ric feedback cooling, mechanical stresses do not play a role and the (linear)
damping is solely related to collision with gas molecules in the environment.
However, when feedback cooling schemes [35] are applied in order to confine
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the oscillation to lower amplitudes, the corresponding optical forces introduce
nonlinear damping terms very much like the ones above described. Therefore,
we include this contribution by considering an overall damping force of the
form:

Fγ = (γ + mΩ0ηx2)ẋ (2.83)

2.2.3 Directly driven Duffing resonator

We can now reconsider the linear equation of motion of a harmonically driven
damped mechanical resonator and include the nonlinear terms introduced in
§ 2.2.2. This reads:

d2q
dt

(t) +
[
Γ + Ω0ηq2(t)

] dq
dt

(t) + Ω2
0
[
1 + ξq2(t)

]
q(t) =

F0

m
cos(ωdrt) (2.84)

To simplify the notation1 we introduce a dimensionless time variable τ = Ω0t
and a dimensionless displacement x =

√
|ξ|q and divide Eq. (2.84) by a factor

Ω2
0/
√
|ξ|, obtaining:

ẍ + κẋ + η̃x2 ẋ + x + sgn(ξ)x3 = F̃0 cos(ω̃τ) (2.85)

where we have introduced κ = Q−1, η̃ = η
ξ , F̃0 = F0

√
ξ

mΩ2
0

, ω̃ = ωdr
Ω0

. The sign

function sgn(ξ) allows a general description of both softening (ξ < 0) and
a hardening (ξ > 0) nonlinerarities. However, to match our experimental
conditions and avoid confusion we will from here on consider ξ < 0 and drop
the sign function from our notation.

We will now proceed to solve this nonlinear differential equation using sec-
ular perturbation theory. This is done in the limit of weak linear damping rate
Γ which is used to define the small expansion parameter Q−1 ≡ κ � 1. Re-
quiring the Duffing term to be a factor κ smaller than the linear displacement
leads to the following ansatz:

x3 ∝ κx → x ∝
√

κ ⇒ x(t) =
1
2
√

κ
[

a(T)eiτ + c.c.
]
+O(κ2) (2.86)

x ∝ QF̃0 → F̃0 = κ3/2 f ⇒ F(t) = κ3/2 f cos[(1 + κΩ)τ] (2.87)

The explicit form of x(t) in (2.86) relies on the so called Slow Varying Envelope
Approximation (SVEA) that assumes a fast oscillation of the form eiτ with a
slow complex amplitude a(T) that changes over a timescale T = κτ � τ. The

1 These theoretical sections § 2.2.3 and § 2.2.4 follow the approach of Lifshitz and Cross [62]



2.2. Dynamics of nano-resonators 27

oscillating force cos[(1 + κΩ)τ], instead, is only considered sufficiently close
to the resonant condition ω̃ = 1.

Looking for a perturbative solution, we will now calculate individual terms
of the equation of motion (2.85) making use the above ansatz and retain only
the terms of the order of κ3/2 that do not display fast oscillation {en·it, n ∈
N∧ n > 1}:

ẍ ≈ iκ3/2 da
dT

eiτ + c.c. (2.88a)

κẋ ≈ 1
2

κ3/2ia(T)eiτ + c.c. (2.88b)

x3 ≈ 3
8

κ3/2|a|2aeiτ + c.c. (2.88c)

η̃x2 ẋ ≈ 1
8

κ3/2iη̃|a|2aeiτ + c.c. (2.88d)

Plugging in Eqs. (2.86) to (2.88) into the equation of motion we obtain a dif-
ferential equation for the slow varying envelope a(T):

da
dT

= −1
2

a− η̃ − 3i
8
|a|2a− i

f
2

eiΩT . (2.89)

An interesting approach is to ignore initial transients and to consider only
the steady state of the directly driven Duffing resonator. To do so we look
for solutions a(T) = Aei(ΩT+φ), which correspond to an oscillatory behavior
at the driving frequency ω0(1 + ΩT). For such a steady state, equation (2.89)
reads: [(

3
4

A2 − 2Ω
)
+ i
(

1 +
η̃

4
A2
)]

= f , (2.90)

leading to the recursive amplitude solution:

A2 =
f 2(

2Ω− 3
4 A2

)2
+
(
1 + 1

4 η̃A2
)2 (2.91)

q2
0 =

(
F0

2mΩ

)2

(
ω−Ω0 − 3

8 ξΩ0q2
0

)2
+
( Γ

2 + 1
8 ηΩ0q2

0

)2 (2.92)

Where in (2.92) we’ve converted the solution back to the original physical
quantities q(t) = q0 cos(ωt). A careful analysis of these equations allows us to
draw few important observations. Firstly, we see that in the limit of ξ, η → 0
the response is formally identical to that of a linear (harmonic) driven damped
oscillator (see eq. 2.48). The presence of such nonlinerar terms converts the
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solution into a cubic polynomial in |a|2 and therefore there exist in principle
three solutions for |a|, one of which is unstable. Secondly, for f = const., the
maximum of the curve is reached at the condition: 2Ω− 3/4A2 = 0, which in
terms of the physical units reads:

ΩNL = Ω0 + ∆ΩNL = Ω0 +
3
8

Ωξ A2. (2.93)

As a result, the eigenfrequency ΩNL of a nonlinear resonator depends on the
mode amplitude itself, and gets downshifted (when ξ < 0) for high oscillation
amplitudes.The situation can be easily understood imaging the particle oscil-
lating in a realistic Gaussian potential: for small amplitudes the potential is
quasi-harmonic and the eigenfrequency is well defined by the quadratic term
of the potential. However, when exploring the outer regions of the trap, where
the potential becomes broader (shallower) than the quadratic approximation,
the particle travels larger displacements and as a consequence its oscillation
frequency decreases.

Regarding the solutions of equation (2.90), if the driving amplitude is suf-
ficiently strong the number of solutions changes from one to three and back
to one again, therefore determining the presence of two saddle-node bifurca-
tions. These are singular points where the derivative of the solution diverges
to infinity. We can investigate this condition by differentiating (2.91):[

3
64
(
η2 + 9

)
A4 +

1
4
(η − 6Ω) A2 +

(
1
4
+ Ω2

)]
dA2 =

[
3
4

A2 − 2ΩA2
]

dΩ .

(2.94)
Imposing the singular condition dΩ/dA2 = 0 and solving for Ω we find the
position of the two saddle-node bifurcations as:

Ωsn
± =

3
4

A2 ± 1
2

√
3
16

(3− η2) A4 − ηA2 − 1 . (2.95)

Figure 2.5a shows the numerical solution (2.91) for f = 5 and η = 0.1,
with stable branches in solid color and the unstable one in blue dashed line.
The vertical gray dashed lines identify the two saddle-node bifurcations Ωsn

±
calculated in (2.95). It is easy to foresee in this representation the hysteretic
response that depends on whether the driving signal is swept across the reso-
nance starting from higher or lower frequencies. To extend this into the (Ω, f )
parameter space, Fig. 2.5b dispays the same solution (2.91) as a 2D surface.

2.2.4 Parametrically driven Duffing resonator

Another interesting case for the purposes of this thesis is that of a paramet-
rically driven Duffing resonator. Parametric driving is substantially different
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Figure 2.5: Amplitude response of a directly driven duffing resonator. (a) Numerical
solution of (2.91) for η = 0.1 and f = 5. Linear stability analysis shows that only the upper
(red) and lower (green) branches are stable, while the solution within the two saddle-node
bifurcations Ωs

−n < Ω < Ωs
+n (dashed blue) is unstable. (b) A 3D representation of the

solution in the parameters phase space (Ω, f ).

from direct driving and consists in a time-dependent modulation of a physical
parameter of the resonator. One of the most typical cases of parametric driving
encountered in nano-mechanical resonators is that of a resonantly modulated
stiffness, that in the specific case of a levitated particle translates into a modu-
lation of the optical spring, i.e. of the laser intensity. The equation of motion,
in terms of the physical quantities, can now be written as:

d2q
dt

(t) +
[
Γ + Ω0ηq2(t)

] dq
dt

(t) + Ω2
0
[
1 + ξq2(t) + ε cos(Ωmt)

]
q(t) ≈ 0 (2.96)

where we have defined (Ωm, ε) the modulation frequency and the modulation
depth of the parametric driving respectively. Note that we have approximated
the right hand side of the equation to zero. A rigorous treatment of the prob-
lem should involve the stochastic thermal driving force. However we will
assume in the following that the parametric driving term is dominant, and
will consider negligible the thermal motion of the resonator. Again, by apply-
ing the same normalization of the directly driven case (see eq. 2.84, 2.85) we
can rewrite a simplified adimensional equation of motion:

ẍ + κẋ + η̃x2 ẋ + [1 + ε cos(ω̃τ)] x− x3 ≈ 0 (2.97)

where this time ω̃ = Ωm/Ω0. The most efficient parametric driving takes
place when Ωm ∼ 2Ω0, in which case we modulate the stiffness of the spring
twice per cycle. However, it is in general possible to drive the system every
nth multiple of half a period, therefore obtaining a set of resonances given by
the condition: {Ωm = 2Ω0

n , n ∈ N+}. Each of these conditions will determine
a so-called instability tongue, and in the content of this thesis we will focus
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on the first instability tongue, therefore assuming Ωm = Ω0(2 + δm), with
δm = Ωm/Ω0 − 2 defined as the normalized detuning.

To follow the same procedure of the directly driven case (see § 2.2.3), we
convert the parametric driving term into the SVEA as:

ε cos(ω̃τ)x = κε̃ cos(ω̃τ)x =
1
4

κ3/2ε̃a∗ei(ω̃−2)τeiτ (2.98)

and by inserting this in the equation of motion, we obtain the equivalent of
eq. (2.89) that reads:

da
dT

= −1
2

a− η̃ − 3i
8
|a|2a +

1
4

iε̃a∗eiδ̃mT (2.99)

where δ̃m = δm/κ is a rescaled detuning that operates in the slow time domain,
such that δmτ = δ̃mT.

First instability tongue
Taking a closer look at eq. (2.99), one can show the presence of an instability
in the dynamics of the resonator that sets self sustained oscillations above a
certain threshold εc of the parametric modulation. Intuitively, such an insta-
bility arises from a phenomenon similar to a positive feedback loop: higher
oscillation amplitudes lead to a higher parametric forcing (because of the pro-
portionality to x), which in turns drives the resonator to higher oscillation
amplitudes, and so on. Such an amplification phenomenon reaches a steady
state only thanks to nonlinear damping terms that introduce a saturation of
the exponential growth of the amplitude. An easy approach to obtain infor-
mation on the onset of this instability is to start neglecting the nonlinear terms
and study the linearized equation of motion:

da
dT
' −1

2
a− iε̃a∗eiδ̃mT . (2.100)

We seek for a solution of the form:

a(t) = AeσTeiδ̃mT , (2.101)

where σ corresponds to the exponential growth (σ > 0) or decay (σ < 0)
rate and the other exponential term describes the oscillation at half the pump
frequency. Plugging (2.101) into (2.100) and requiring σ > 0 we obtain the
instability condition as:

ε̃ > 2
√

1 + δ̃m → ε >
2
Q

√
1 + Q2δm (2.102)
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Amplitude response above threshold
For the purposes of this thesis we’re interested in the dynamics of the res-
onator above the instability threshold, i.e. in the nonlinear regime of oscil-
lation. To study this regime we go back to consider the equation of motion
(2.99), and look for a steady state solution of the form:

a(t) = Aei(δ̃mT/2+φ) . (2.103)

Substituting (2.103) into (2.99), we obtain a quadratic equation for |A|2 that
reads: (

δ̃m −
3
4
|A|2

)2

+

(
1 +

η̃

4
|A|2

)2

=

(
ε̃

2

)2

. (2.104)

Equation (2.104) can be solved for |A|2 providing the two amplitude solutions:

|A|2± =

2
[

6δ̃m − 2η̃ ±
√

ε2 (η̃2 + 9)− 4
(
δ̃mη̃ + 3

)]
η̃2 + 9

. (2.105)

Note that A(t) = 0 is also a trivial solution of (2.99). For completeness and to
match theory with experiments, we convert (2.105) back to physiscal quanti-
ties:

q2
0 =

1
ηδ2

th

[
3ξ

η
δm +

1
Q
±

√
ε2δ2

th − δ2
m +

3ξ

η

1
Q2

(
2Qδm −

3ξ

η

)]
(2.106)

≈ 1
ηδ2

th

[
3

ξ

η
δm ±

√
ε2δ2

th − δ2
m

]
(2.107)

where δth =
√

9ξ2 + η2/2η and q0 is the physical oscillation amplitude defined
as q2

0 = 2
〈
q2〉. Notice that the approximation made in (2.107) is valid for

Q� 1.
In Figure 2.6 we show the solutions |a|2 as a function of the detuning δ̃m.

Red, blue and green curves represent respectively |a|2+, |a|2−, and |a| = 0, while
dashed lines indicates that the mode is unstable. Vertical grey dashed lines
represent interesting conditions in the dynamics related with the limits of the
instability region (see Eq. (2.102)).

Comparison between direct and parametric driving As final remarks of this
chapter, it is interesting to go through a comparison (although mainly qualita-
tive) between the resonator response to direct driving as opposed to paramet-
ric driving. As we will see in the next chapter § 3, our setup is provided with
both these actuation schemes. Most of the measurements in the nonlinear
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Figure 2.6: Amplitude response of a parametrically driven duffing resonator. Analytical
solutions (2.105) for η = 1 and ε = 3. Linear stability analysis shows that only the upper (red)
and lower (green) branches are stable, while the solution for δthε < δm < −ε/2 (dashed blue)
is unstable.

regime have been performed with the parametric control. This turned out to
be paramount to observe unique features in the stochastic bistable dynamics
of the levitated oscillator.

Figure 2.7a and 2.7b show the bistable regime for both direct and paramet-
ric driving. In the former case this corresponds to the difference between the
numerical solutions shown as red and green surfaces in Fig. 2.5b, while in
the parametric case the bistable regime is identified by the diffrence between
eq. (2.105) and the trivial A = 0 solution. For graphic reasons, in this lat-
ter case the whole instability tongue is displayed and the monostable regime
is covered by a shaded area. One of the main differences that emerges in
this comparison is the shape of the so-called iso-amplitude lines: subsets of
the bistable regime that display a constant amplitude gap between the high
and the low branch (in these 2D plots represented by the contours of the col-
ormap). While in the parametric case it is possible to scan the whole width of
the bistable regime by following an iso-amplitude line, this is not ensured in
the direct driving case, where in order to follow a similar path one should con-
siderably extend the explored parameter space towards very high drivings f .
As we will see in § 6, this feature of the parametric driving will be of primary
importance to achieve full control on the double-well potential associated with
the bistable dynamics.
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3.1 Introduction

The experimental setup at the onset of this doctoral work was probably the
state-of-the-art in the levitation of nanoparticles with a single tweezer beam
[34]. It mainly comprised three parts: the optics, the vacuum setup and the
parametric feedback electronics. These are described in §3.2 - 3.4.

While the overall scheme of the apparatus has remained unchanged, a con-
sistent part of the work presented in this dissertation has been dedicated to
improve the system in terms of both stability and full control. Moreover, an
additional electrical actuation scheme was designed and implemented in the
set-up. Section §3.5 provides a detailed description of this new part.

35
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3.2 Optical setup

An overview of the whole experimental apparatus is given in Fig. 3.1.
Function-wise, the optical setup can be divided into two sectors: the trap-
ping side, and the detection scheme. In the former both a trapping beam and
a detection (or probe) beam are prepared and sent into the vacuum chamber
where the actual trapping takes place. In the latter, instead, only the probe
beam is retained and processed for efficient detection of the particle’s dynam-
ics.
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Figure 3.1: Experimental set-up. The optical setup comprises two main parts. In the the
trapping side, both the trapping and the detection beam are prepared before entering in the
vacuum chamber. The former is modulated in intensity by an EOM, the second is shifted in
frequency by an AOM. In the detection side, the trapping beam is dumped while the detection
beam is analyzed by means of balanced photoreceivers (PD). Finally, the electronics part consist
of the feedback unit (FB), the driving signal and an FPGA for processing and recording the data.

Trapping side
The light source is a single frequency continous-wave solid state Nd:YAG
laser1, which is used to both trap the silica nanoparticle and detect its mo-
tion. The laser has an optical wavelength of λ = 1064 nm, a spectral linewidth
of ∼ 1 kHz and it features extremely low relative intensity noise (RIN), which
was characterized to be RIN ' 120 dB. A plot of the measured RIN spec-
tral density is shown in Fig. 3.2a. As a comparison, the manufacturer noise
specifications are provided in Fig. 3.2b. We observe a significant mismatch be-
tween the expected performances and our measurements 2. The source of the
measured excess of noise is unclear, but determined no tangible degradation

1Coherent Mephisto, 1W
2Similar mismatch has been observed also in other experiments [43, 49] using Coherent

Mephisto lasers
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of the experimental results. The laser beam first passes through a Faraday
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Figure 3.2: Laser relative intensity noise. (a) Free running (black) and noise suppressed
(red) RIN of the Mephisto laser, compared to the detector noise (grey). The graph shows the
ability of the internally built noise eater to reduce the RIN up to ∼ 25 dB. Similar behaviour is
expected according to the manufacturer specifications (b), although noise suppression should
lower the RIN down to ∼ −150 dB. Notice that the peak appearing at f = 150 kHz is not
due to the optical field. It is indeed detected also in the detector noise spectral density, in the
absence of a laser beam. Panel b) adapted from [1].

isolator3, to block possible back reflections, and is then split into a high power
branch (trapping beam) and a low power branch (detection or probe beam) by
means of a polarizing beam splitter (PBS). We use an intensity ratio of 90− 10
which is tuned with a half-wave plate in front of the PBS. To decouple the two
branches and to avoid interference in the laser focus we use cross polarized
beams and we shift the frequency (∆ f ≈ 110 MHz) of the detection beam
with an acousto-optic modulator4 (AOM). The trapping beam passes through
an electro-optic modulator5 (EOM) that allows the parametric control of the
particle. Both the AOM and the EOM distort the beams by introducing high
spacial frequency components in their intensity distribution. It is therefore de-
sirable to clean both beams by means of convenient spatial filtering (SF), which
consists on focusing the beam through a 25 µm pinhole and recollimating it.
Another advantage is that after filtering the two beams display the very same
intensity distribution and size, which makes it easier to precisely superimpose
them avoiding mismatches between the trapping potential and the probe one.
After the SF, the two paths are recombined with a second PBS before entering
in the vacuum chamber. Here, a high NA microscope objective6 (OBJ) focuses
the beams - creating the optical trap - and an aspheric lens7 (AL) collects and

3Linos
4Brimrose 410-472-7070
5Conoptics 350-160
6Nikon Plan Fluor, 50x, NA = 0.8, wd = 1 mm
7Thorlabs AL1210 - f = 10 mm , NA = 0.55, C-coated
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collimates the light, which is sent out of the chamber. After the vacuum cham-
ber the two beams are again separated: the trapping beam is dumped, while
the probe beam is sent towards the detection side. Efficient separation of the
beams is paramount to avoid detecting the intensity modulation introduced by
the EOM, that would then be fed into the system via the feedback loop. To this
aim we place a couple of half- and quarter-wave plates before the PBS. In fact,
due to the tight focusing and especially to the mechanical stresses present in
the glass windows of the vacuum chamber, mixed polarization states appear
in this side of the set-up. The combination of these two elements allows to get
rid of most the residual trapping light that has gained the right polarization
to leak through the PBS. After dumping the trapping beam and retaining the
probe beam, this latter is sent towards the particle’s detection set-up.

Detection scheme
In § 2.1.3, eq. (2.42), we provided analytical derivation of the far field in-
terference pattern between the transmitted beam and the light scattered by
the particle, showing how this pattern carries information on the position
rp = (xp, yp, zp) of the particle itself. This feature is exploited to interferomet-
rically detect the particle’s dynamics in a homodyne split detection scheme.
For the x– and y–mode this consists in half-splitting the beam with a sharp
edge D-shaped mirror (DM), respectively vertically and horizontally. The two
halves are then focused on the two detectors of a balanced photoreceiver 8.
By doing so it is possible to measure the oscillating component of the in-
tensity pattern perpendicular to the splitting direction. The resulting signal
is then proportional to the particle’s position while DC and slowly drifting
components, being common in both channels, get highly suppressed. For the
z–mode, instead the whole beam is sent to the detector and balanced with a
reference beam picked up before the vacuum chamber. Figure 3.3 exemplifies
the different geometries of the split detection scheme for the different axes.
Compared to previous settings [34], recent updates of the set-up have led to
an improvement in the detection efficiency. In Fig. 3.4 we report a characteri-
zation of the detected signal to noise ratio (SNR) as a function of the optical
power of the probe beam Pdet. This was done at a pressure of P ∼ 6 mBar by
recording the PSD S(i=x,y,z)

v of the three different modes (Fig. 3.4a exemplifies
the case for the x–mode). The variable v(t) represents the uncalibrated parti-
cle’s position given as a digital signal (typically in bits units when the FPGA
streams the data do the PC, occasionally in volts when an oscilloscope is used
instead). The SNR was then calculated comparing the height of the resonance

8Balanced Optical Receiver, 900-1700 nm InGaAs Detector, 80 MHz, Free Space
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Figure 3.3: Split detection scheme. (a) To detect the z–mode the whole beam is focused
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before the vacuum chamber. For (b) x–mode and (c) y–mode, the beam is split with a D-
shaped mirror and the two halves are sent to the two detectors of the respective balanced
photoreceivers.

peak S = Sv(Ω0) and the measurement noise floor N = 〈Sv(ω)〉 estimated in
the absence of trapped particle. As expected, the curves shown in Fig. 3.4b-d
display an increase of the SNR as a function of Pdet, reaching a plateau for
Pdet & 10 mW. A final power of Pdet = 7.5 mW was chosen as a convenient
default setting for our experiments, with a corresponding signal being more
than 40− 50 dB above the measurement noise. We stress that although the de-
tection efficiency might to be a crucial parameter at these pressures, when the
system is brought to high vacuum and the feedback is activated, the oscillation
amplitude is reduced by several orders of magnitudes. In these conditions a
higher SNR leads to higher cooling rates and therefore to lower center of mass
effective temperatures TCM.

3.3 Parametric feedback

For cooling the particle’s Center of Mass (CoM) motion, the setup is provided
with an active parametric feedback scheme [35]. The basic concept of the
feedback is to introduce a modulation in time of the optical intensity I(r) at
the focus. Such a modulation is specifically built up using the information
over the particle’s position x and velocity ẋ in order to create an effective
stiffening (k > k0) and softening (k < k0) spring constant at a precise phase
relation with respect to the particle’s oscillation. Figure 3.5 provides a
graphical representation of the working principle. The particle’s oscillation is
divided in four different sectors:
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I) x > 0, ẋ > 0 moving away from xeq (Ekin → Epot) ⇒ k > k0

II) x > 0, ẋ < 0 falling back to xeq (Epot → Ekin) ⇒ k < k0

III) x < 0, ẋ < 0 moving away from xeq (Ekin → Epot) ⇒ k > k0

IV) x < 0, ẋ > 0 falling back to xeq (Epot → Ekin) ⇒ k < k0

Intuitively, the table above tells us that the optical spring needs to be stiffened
when particle is moving away from the equilibrium position x0 and kinetic
energy is being converted into potential energy. Viceversa, when the particle
is falling back to equilibrium potential and potential energy gets converted
into kinetic energy, the trap needs to be softened. Note that in the frequency
domain this is equivalent to a modulation at twice the frequency of the particle
oscillation.
As a result the feedback signal vFB and consequently the parametric force
applied to the particle are of the form:

vFB ∝ xẋ , FFB = mΩ0ηx2 ẋ , (3.1)

where we have introduced the parameter η, also called nonlinear damping
coefficient, to model the feedback gain.

From an experimental point of view, the feedback signal is implemented
with a modular electronic unit that consists of :

• Bandpass filter, to suppress low– and high–frequency noise components,
respectively due to mechanical vibrations and to the ∆ f = 110 MHz
beating between probe and trapping beam.

• Frequency doublers (one for each mode and optimized for the specific
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Figure 3.5: Working principle of parametric feedback cooling. (a) Real data showing the
modulation of the trapping beam at twice the frequency of the particle’s motion . A phase
shift φFB in the feedback compensates electronics delays and ensures cooling (gray trace). In
the orange curve we artificially set φFB = 0 to exemplify the correct stiffening and softening of
the potential. (b) Particle and feedback signal over longer time scales show the proportionality
between the two.(c) PSD of the particle displacement along the x–mode (with and without
feedback) and feedback signal at twice the particle’s frequency. The inset show some minimal
cooling (energy damped of a factor ∼ 2) at a moderate pressure of P = 1 mBar.

frequency), to create the feedback signal vFB at twice the frequency of
the particle’s oscillation Ω0/2π.

• Phase shifters (one for each mode), to ensure the correct phase of the
modulation with respect to the particle’s oscillation and consequently
an efficient cooling of the CoM motion. We stress the crucial importance
of this unit pointing out that a π shift in this phase converts cooling into
parametric amplification.

• Adder and attenuator, to sum up the signals from the three channels
corresponding to the three oscillation modes and to attenuate the output
signal depending on the specific needs (mainly related with the differ-
ent input signal amplitudes at different pressures). This module is also
provided with a fourth input channel to add a parametric driving signal
in the laser modulation.

Figure 3.6 shows a schematics of how the feedback modules are arranged. We
use a Field Programmable Gate Array9 (FPGA) as a analog-to-digital converter
to process and store the data describing the particle’s dynamics. The signal to

9National Instrument PCIe-7852R
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provide the parametric driving, instead, is created with a waveform genera-
tor10 (FG) and sent to the fourth input channel of the adder module. To ensure
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Figure 3.6: Electronic feedback modules. Schematics of how the signal from the x, y,
and z detectors is processed by the feedback modules. In sequence we find bandpass filters,
frequency doublers and phase shifters, adder and attenuator. The monitor signal is sent to an
FPGA that records the particle’s dynamics. The signal from the function generator (FG) is used
to parametrically drive the particle.

its correct efficiency, parametric feedback is activated only after the particle’s
dynamics enters in the ballistic regime, i.e. when the oscillator performs the
transition between the overdamped and the underdamped regime (see §2.2.1).
To find the initial optimal settings of the feedback the mean energy 〈Ê(i)〉
of the particle along the three oscillation modes (i = x, y, z) is tracked while
scanning the phase shifts φ

(i)
FB. The instantaneous energy Ê(i) is defined as

Ê(i) =
∫ Ω(i)

0 +b

Ω(i)
0 −b

S(i)
v (ω)dω (3.2)

and computed from a T ' 13 ms time trace, where the integration bandwidth
is tipically b = 40 kHz. From an ensemble of NPSD = 1000 realizations of
Ê(i) we estimate the mean energy 〈Ê(i)〉 and the standard deviation of the
energy distribution σÊ(i) . Figure 3.7 shows the mean energy (normalized to its
minimum to enable a direct comparison between the different modes), fitted
with a quadratic function. We also show the extent of the energy distribution
〈Ê(i)〉 ± σÊ(i) . Clearly, optimal parameters can be found as minima in the trend
of 〈Ê(i)〉, and manually set in the feedback electronics for efficient cooling
operation. The different trend shown by the x–mode, compared to the other
two, is due to both a higher feedback gain and a broader range of the phase
shift.

10Agilent 33520A
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function that provides the optimal φ
(i)
FB at the vertex. Finally, the shaded area corresponds to

the width (standard deviation σÊ(i) ) of the energy distribution.

The initial optimization protocol, performed at moderate vaccum, can be
followed by a finer tuning of the phase shifts φ

(i)
FB once high vacuum is reached.

Such a readjustment is of utmost importance in case we want to operate the
system in the nonlinear regime of oscillation, for example when parametri-
cally driving the oscillator. In fact, under these conditions the particle’s os-
cillation and consequently the feedback signal gets greatly amplified (up to
factors of few tens) and the electronics has to operate in a different voltage
regime. Moreover, when parametrically driving the resonator, the frequency
gets downshifted (see nonlinear frequency shift in Eq. (2.93)), and the elec-
tronics could again have a different response to frequencies a few kHz lower
then the ones used in the initial optimization. This further optimization of
the phases φ

(i)
FB is based in the maximization of the nonlinear damping coef-

ficients ηi introduced in (3.1), which is responsible for cooling the particle’s
motion. Some of the experimental procedures described in the following will
be explained in more detail in § 6. The protocol consists in parametrically
driving the particle in the first instability tongue (see §2.2.2) and recording
the response of the oscillation as a function of normalized detuning δm and
modulation depth ε. For each value of ε the amplitude A(δm; η, ξ) is fitted by
the corresponding analytical expression provided in Eq. (2.107) (note that for
an easier notation we have here identified A = q0). The nonlinear coefficients
η and ξ are then extracted as free parameters in the fitting routine. Fig. 3.8a
provides an example of the particle response in the first instability tongue.,
while 3.8b shows a cross cut for ε = 0.325 and the corresponding amplitude
fit in yellow dashed line. The final value of η for each specific value of φ

(i)
FB
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Here, only the results for the x– and y–mode are shown, though the z–mode displays a similar
trend and the phases can be generally optimized.

is averaged over the fits that display confidence level higher that R2 = 0.95.
The process is repeated for every oscillation mode while sweeping the phase
shifts φ

(i)
FB. Finally, Fig. 3.8d shows the nonlinear damping coefficients η(x,y,z)

as a function of the feedback phases. The trend clearly shows the presence of
a maximum identifying the optimal values of the feedback phase settings.

3.4 Particle loading and clusterization

Particles11 smaller than about 1 µm in diameter are loaded in the optical trap
by spraying a solution of ethanol and particles inside the vacuum chamber.

11microParticles GmbH, SiO2-R-0.15, SiO2-R-0.25
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We use a commercial nebulizer12 that creates an aerosol of liquid droplets,
about 5 µm in diameter. A droplet that crosses the trap with sufficiently
low kinetic energy can effectively be attracted to the focus, conveying one or
more nanoparticles in the optical trap depending on the concentration of the
silica particles in the solution. Given that that the particles are provided by
the manufacturer in a wt5% (weight percent) solution of distilled water, the
average number of particles R per droplet of solution can be calculated as:

R =
V
Ve

(
ddrop

d

)3 1
1 + 19ρp/ρdw

, (3.3)

with V and Ve being respectively particles and the ethanol volumes, ddrop and
dp the diameter of the aerosol droplets and of the nanoparticle, ρp and ρdw

the density of bulk silica and of distilled water. In order to have R ≈ 1, in our
experiments we typically chose V = 2.5 µ` and Ve = 3 m` for the dp = 143 nm.

If a droplet of solution with multiple embedded silica nanoparticles falls
into the optical trap, these form a cluster that can be nonetheless stably
trapped and brought to vacuum. In most cases, this is a condition that needs
to be avoided. In order to distinguish whether the object in the trap is a single
nanoparticle or a cluster of multiple particles we observe its scattered intensity
(or brightness B) with an imaging system placed below the vacuum chamber.
The value of B is then compared with the typical range of values expected and
previously characterized. This was done preparing a solution with R & 3 and
collecting the statistics of B from a sample of ∼ 350 particles, dp = 143 nm
in diameter. Being the scattering intensity proportional to the sixth power of
the object size, the exposure time texp of the CCD could not be maintained
constant and had to be continuously readjusted to prevent saturation. We
therefore introduce the normalized brightness:

Beff =
B− B0

texp
, (3.4)

with B0 being the background intensity with an empty trap. From the whole
set of data we built the histogram shown in Fig. 3.9a. At first sight, this re-
sembles a continuous distribution that extends over more than two orders of
magnitude. This would clearly contradict the monodispersity of the particle
solution. However, by zooming into the lowest intensity region (shaded area),
one can easily recognize the presence of individual and well separated peaks
corresponding to increasing integer number of particles in the trap. This spe-
cific result allowed to characterize the expected brightness from a single par-
ticle, as opposed to the multi–particle cluster case, therefore giving a reliable

12Omron MicroAir Nebulizer, NE-U22V
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Figure 3.9: Clusterization of dp = 143 nm particles.(a) Histogram of the effective brightness
from a sample of ∼ 350 particles. The shaded region indicates where the scattering from a
single particle would be expected. (b) Zooming in the low brightness region, the histogram
exhibits individual well separated peaks corresponding to single particles.

selective method for discarding clusters before going to vacuum and perform-
ing the specific experiments. A similar characterization was repeated for the
dp = 235 nm particles, showing in this case less tendency to form clusters.

3.5 Electric driving

In order to implement a direct actuation scheme, complementary to the para-
metric control generated via laser intensity modulation, the original setup de-
scribed in § 3.2 and § 3.3 was provided with a pair of electrodes mounted
inside the vacuum chamber. These generate an electric field that couples
to the charged particle by means of Lorentz interaction (F = qE). Different
electrodes geometries were tested, eventually finding better performances us-
ing small electrodes that could be fit right at the sides of the optical trap,
therefore providing a more homogeneous field. A picture of the updated
setup icluding the final design of the electrical actuation scheme is shown in
Fig. 3.10. The electrodes are made of tempered steel, they have a diameter
of φ = 1.000± 0.003 mm, an axial separation of del = 1.410± 0.013 mm and
are hold by a teflon support at a distance ∆zobj = 0.43 mm from the objective
surface. In § 4.3.4 we will provide further details on the electrodes geome-
tries and how these have been estimated. To generate the electric field and
exert a force on the charged particle we connect one of the two electrodes to a
function generator13, while the other one is directly grounded via the vacuum
chamber. Figure 3.11a shows the resonant response of a particle charged with

13Agilent 3320A Function/Arbitrary Waveform Generator.
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nq = 8 elementary charges to a Vdr = 18.4 Vpp sinusoidal electrical driving
at a frequency of ωdr/2π = 130 kHz, superimposed to the thermal motion of
the resonator (check §2.2.1 for analytical prediction).

Particle

Microscope
objective

Electrodes

Collection lens
Light from laser

Light to detection

Plasma

Figure 3.10: Experiemental set-up inside of the vacuum chamber. A pair of electrodes
placed around the trap focus form an ideal parallel plate capacitor used to generate an electrical
field that couples to the particle via Lorentz interaction.

Charge control method
The particles loaded in the optical trap with the nebulization method usually
show a non-null initial net charge nin

q of the order of ten elementary charges.
In § 5.2.4 we build up considerable statistics on the value of nin

q . Data shows
a 70− 30 biased polarity distribution toward positive charges. Consequently
these particles can already couple to the electric field from the electrodes.
However, higher flexibility on the particle’s polarity and on the number of
charges nq to be used in the experiments is desirable. Moreover, this initial
charge is not known a priori and an experimental method to measure the par-
ticle’s charge is paramount for quantitative analysis of the electrically driven
dynamics. To address these issues, we developed an experimental technique
to control the net charge of the levitated particles. Similarly to what has been
shown in [29], this method consists in applying a high voltage to a bare elec-
trode situated on a side of the vacuum chamber, few centimeters away from
the optical trap (see Fig. 4.2 for set-up schematics). In a moderate vacuum
of P ∼ 1 mbar, the high voltage creates a plasma via the process of corona
discharge [28]. In a nutshell, if a neutral air molecule is ionized by a natural
environmental event (for example after being struck by an ultraviolet photon,
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or a cosmic ray) the formed electron and positive ion get accelerated toward
different directions due to the presence of the high voltage which in turn
prevents them to recombine. Given the small mass of the electron, this latter
acquires enough kinetic energy to ionize other molecules and form an electron
avalanche. The violet glow of the corona (clarly visible in the top-right cor-
ner of Fig. 3.10) is indeed caused by electrons recombining with positive ions
and emitting (mainly) UV photons. Coronæ can be classified into positive and
negative coronæ, depending on the polarity of the high voltage applied to the
electrode. These lead to very different phenomena and are indeed used in sci-
ence and engineering for different purposes. Without entering too much into
the details of these processes, it is sufficient to know that by creating either a
positive or a negative corona one can bias the ratio of positive-to-negative ion-
ized molecules that are accelerated toward the center of the chamber where
the optical trap is situated. Ultimately, these can be adsorbed on the parti-
cle surface and change its net charge almost monotonically (exception made
for few random unfavorable events) from positive to negative and viceversa,
depending on the polarity chosen. Disconnecting the high voltage stops the
corona discharge and the number of charges on the particle is maintained
stable indefinitely.
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Figure 3.11: Net charge control. (a) Power spectral density of a thermally and electrically
driven particle at a pressure P ' 50 mBar (corresponding to a linewidth Γ/2π ' 30 kHz).
The height of the electrically driven peak Sv(ωdr) depends quadratically on the number of
charges |nq|. (b) In order to monitor the value of |nq| while the corona discharge is active, the
amplitude Apk and phase φLI are tracked in time. The discrete steps observed in Apk identify
single elementary charges being added or removed from the particle.

To monitor changes in the particle’s net charge while the corona is active
we look for integer steps in the height of the peak Sv(ωdr) represented in
Fig. 3.11a. For this task we make use a lock-in amplifier (check Fig. 4.2 for
a sketch of the setup configuration). The lock-in is synchronized with the
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function generator that drives the particle at frequency ωdr/2π. As such it
provides the amplitude ALI and phase φLI of the driven oscillation, measured
in a narrow band around ωdr. It is important to stress that the lock-in only
provides positive amplitudes, therefore making it impossible to discern the
particle’s polarity. In other words, the detected peak Sv(ωdr) takes the same
value for both ±nq and assumes the value of the thermal noise floor Sth

v (ωdr)

when nq = 0. However, attraction/repulsion of Lorentz force is such that the
particle’s oscillation results in phase with the external driving if its polarity is
positive, out of phase if this is negative and possesses an undefined phase if
the particle is neutral. We can therefore introduce a normalized phase φN of
the form: 

φN = 1, if φLI > 0

φN = 1, if φLI is undefined

φN = −1, if φLI < 0 ,

(3.5)

such that the signed amplitude Apk = ALI · φN is now directly proportional to
the charge (polarity included) of the particle. Figure 3.11b,c show Apk (blue
data), φLI (gray data) and φN (orange data) respectively for a discharging and
charging process in the range nq ∈ [−16, 6]. Discrete steps in Apk can indeed
be observed, proving the reliability of our method of controlling the net charge
down to the single elementary charge resolution.
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4.1 Introduction

Owing to their high sensitivity, nanomechanical resonators are widely ap-
plied as both mass and force transducers. In the former case, typical opera-
tion schemes rely on measuring the shift of the resonance frequency due to a
change in the mass of the resonator [17] (for example due to adsorption of a
single molecule on its surface). In the latter, instead, forces are detected ob-

51
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serving specific dynamical features in the oscillation and making use of the
transfer function of the resonator to estimate the magnitude of the applied
force [75]. In both cases, the information over the inertial mass of the res-
onator is indispensable for providing quantitative analysis of the results, and
its uncertainty directly affects the accuracy of the measurement.

Although different classes of nanomechanical systems have reached state-
of-the-art yocto-gram and zepto-newton sensitivities (including levitated
nanoparticles in the latter case), clamped resonators still suffer from high un-
certainty on their mass determination that severely impact their sensing accu-
racy. The main reason for such high uncertainties is mainly the impossibility
of applying the rigid body approximation. This leads to consider an effec-
tive mass, different from the inertial mass, whose calculation requires precise
assessment of the system’s geometry, knowledge on material properties and
complex flexural models to to include the shape of the fundamental oscillation
mode and its higher harmonics.

In this context, levitated nanoparticles offer two great advantages. On the
one hand, the rigid body approximation is largely fulfilled: the silica nanopar-
ticle can be considered just as a bulk sphere, whose inertial mass is unambigu-
ously defined. On the other hand, the isolation of the system provides force
calibration strategies that are not affected by clamping losses. For instance, the
possibility of preserving a well defined net charge enables controlled coupling
to the system via Coulomb and/or Lorentz interaction, as explained in §3.5.
It is clear, then, that while levitated systems share the lead with other types of
nanomechanical resonators in terms of sensitivity, they could in principle pro-
vide unbeatable performances in sensing and metrology applications, where
the accuracy of a measurement is just as important as its precision.

Standard approaches in levitodynamics calculate the particle’s mass directly
from the manufacturer specifications, or in some cases applying the kinetic gas
theory. However, both provide a rather inaccurate measurement due the poor
knowledge over quantities like mass density, particle’s size, gas pressure and
its molar mass. The resulting mass uncertainties are as high as 20− 30%, with
negative effects on the sensing performances.

In this chapter we propose and demonstrate a measurement protocol that
is unaffected by the uncertainties mentioned above (density, pressure, size,
etc...), and is able to calculate the particle’s mass with statistical error below
1% and a systematic error of ∼ 2%. Our method exploits the new design
of the optical trap presented in § 3.5, and is based on the analysis of the re-
sponse of a charged particle in a harmonic trap to an external electric field.
The study includes a careful error estimation in § 4.3.4 and § 4.3.5 to deter-
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mine the ultimate mass uncertainty, together with the treatment of possible
anharmonicities in the trapping potential.

4.2 Review of common measurement methods

In the following sections we briefly review the principal methods used for the
estimation of the particle’s mass. We first verify the manufacturer’s specifica-
tions of particle size, and give en estimation of the resulting mass uncertainty.
Then we report a second method to estimate the particle’s mass from kinetic
gas theory, and similarly perform error propagation to evaluate the associated
error.

4.2.1 Manufacturer’s size characterization

The specific type of nanoparticles used are monodispersed silica spheres
(SiO2) that come in a water solution (particle content wt.5% in mass), with
manufacturer specifications reporting a coefficient of variation CV = σd/〈d〉
between 2% and 5%, d and σd being respectively the mean particle’s diameter
and its standard deviation. We performed an independent characterization of
the particle’s size by measuring the diameter of a sample of ∼ 120 particles
in a Scanning Electron Microscope (SEM). The results are given in Fig. 4.1
for the batch SiO2-R-L1914 and show a slightly higher σd compared to the
manufacturer specifications. More precisely we measure d = 232 ± 16 nm,
instead of dman = 235 ± 10 nm. However, the main source of error in this
technique is the uncertainty on the mass density of amorphous silica. This
quantity is given by the manufacturer as ρp = 1850 g/cm3 and no accuracy
of this value is provided. Nonetheless, an extensive search in material science
literature [31, 59, 81, 114] revealed significant variations of the nominal den-
sity, that ultimately depends on the fabrication process and can also largely
vary depending on their water content (more details on this issue are pro-
vided in § 5). Moreover, particles are often exposed to washing and drying
protocols [81] before the density is measured, therefore introducing an intrin-
sic incompatibility between literature or manufacturer specifications and the
actual properties of the particles we optically trap. As a result, the mass den-
sity can be assumed only with an associated uncertainty of (σρp /ρp) & 10%.
Propagating the two known uncertainties in m = π/6ρd3, we have:

σm

m
=

√
9
(σd

d

)2
+

(
σρp

ρp

)2

∼ 25% (4.1)
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Figure 4.1: Particle size characterization. (a) SEM image of few nanoparticles deposited on
a conductive glass substrate. The sample was prepared spraying on the conductive coverslip
the exact same solution we use for trapping. (b) Statistics of the particles’ diameter measured
fitting a circle on the particle edges. We measure d = 232± 16 nm.

4.2.2 Mass from kinetic theory of gases

To avoid relying on the manufacturer specifications, one could retrieve the
particle’s mass from observations of its dynamics [35], and more precisely
making use of the kinetic theory of gases [10, 34]. This theory allows to relate
the measured damping rate Γ, which in the harmonic approximation only
depends on the gas pressure, to the particle’s size. Its definition reads [34] :

Γ =
6πηairrp

m
0.619

0.619 + Kn
(1 + cK) ≈

6πηr
m

0.619
Kn

, (4.2)

with ηair = 18.27× 10−6 Pa · s being the viscosity coefficient of air [42] and rp

the radius of the particle. Kn = `/r is the Knudsen number which is defined
as the ratio between the mean free path ` of the air molecules and the size of
the particle. In practice Kn ∼ 1 at ambient pressure, but becomes Kn � 1 in
vacuum, which justifies the right-hand approximation in (4.2). Finally, ck =

0.31Kn/(0.785 + 1.152Kn + Kn2). From the mean free path, which reads

` =
ηair

Pgas

√
πNAkBT

2M
, (4.3)

with M = 28.97× 10−3 kg/mol being the molar mass of dry air and NA the
Avogadro’s number, we can retrieve particle’s radius and mass as:

r =
2.223

ρp

√
M

NAkBT
Pgas

Γ
(4.4)

m =
0.208

ρ2
p

(
M

NAkBT

)3/2 P3
gas

Γ3 . (4.5)
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Error propagation on eq. (4.5) gives:

σm

m
=

√(
2

σρp

ρp

)2

+

(
3
2

σM

M

)2

+

(
3
2

σT

T

)2

+

(
3

σPgas

Pgas

)2

+
(

3
σΓ

Γ

)2
∼ 35% ,

(4.6)
where for the molar mass we rely on measurements performed on a similar
vacuum set-up [43] that provided an accuracy of ±5%. The pressure’s accu-
racy is given by the specifications of the gauge and reads (σPgas /Pgas) ∼ ±10%.
Finally, temperature and damping errors are detailed more carefully in §4.3.4
and are respectively on the order of ∼ 0.2% and ∼ 0.3%.

It is clear from what has been shown in this section that the available meth-
ods to estimate the particle’s mass provide very inaccurate results. On the one
hand, this prevents a proper displacement calibration of the particle, which
has crucial role in any sensing experiment. We conclude that a new and more
reliable method for mass estimation would be paramount for precision exper-
iments with levitated nanoparticles.

4.3 Mass from harmonically driven thermal states

In this section we describe and demonstrate a method for measuring the mass
of the levitated nanoparticle that relies on the analysis of the particle’s re-
sponse to an external electric field. The experiment is carried out at a moderate
vacuum, corresponding to pressures of P ∼ 50 mBar. Under these conditions
the parametric feedback is not yet activated. Moreover, the dynamics of the
particle is tracked along one single oscillation mode, and the experimental
set-up can be therefore described as a simplified version of the one presented
in § 3.2.

4.3.1 Experimental configuration

Figure 4.2 depicts the experimental configuration. Along the x-mode axis a
pair of electrodes form an ideal parallel plate capacitor that we use to gener-
ate an oscillating electric field E(t) = E0 cos(ωdrt)x̂, which in turn induces a
harmonic force Fel(t)x̂ on the charged particle.

The system dynamics is described by a thermally and harmonically driven
damped resonator, with corresponding equation of motion:

mẍ + mΓẋ + kx = Fth(t) + Fel(t) . (4.7)

Here, k = mΩ2
0 is the stiffness of the optical trap, with Ω0 being the mechanical

eigenfrequency of the oscillator. The first forcing term Fth models the random
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collisions with residual air molecules in the chamber. It can be expressed
as Fth = ση(t), where η is a white Gaussian noise process, and σ relates
to the damping via the fluctuation-dissipation theorem: σ =

√
2kBTmΓ, kB

being the Boltzmann constant and T the temperature of the residual gas in the
chamber. The second forcing term Fel arises from the Lorentz interaction of
the charged particle with the external electric field E(t), and can be expressed
as Fel(t) = F0 cos(ωdrt), where F0 = q · E0. The charge q = nq · qe, where qe is
the elementary charge and nq the number of charges on the particle, can be
finely controlled [29] as described in § 3.5.
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Figure 4.2: Experimental configuration (a) A microscope objective (OBJ) focuses a laser
beam inside a vacuum chamber, where a single nanoparticle is trapped in the focus. The light
scattered by the particle is collected with an aspheric lens (AL) and the motion of the particle
is detected with a split detection scheme. Imaging (IMG) of the particle is performed from the
bottom of the vacuum chamber with a CMOS camera. A pair of electrodes are connected to
the amplified signal from a function generator (FG), creating an electric field that drives the
charged particle. An FPGA and a lock-in amplifier are used to bandpass and record the signal
from the detector. A high voltage applied at one side of the chamber creates a little plasma that
is used to control the particle’s net charge (see § 3.5).

4.3.2 Measurement protocol

We load a single nanoparticle at ambient pressure by nebulizing a solution of
ethanol and silica particles into the chamber. The pressure is then decreased
down to P . 1 mBar where the net number of charges nq can be optimally
set with zero uncertainty (see 3.5). Finally, the vacuum chamber is vented
with nitrogen, and the system is brought back up to an operating pressure of
P ' 50 mBar. Here the particle has already entered the ballistic regime but its
dynamics is still highly damped. This condition is favorable for our experi-
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ments since the high damping reduces the amplitude of oscillation, and hence
the contribution of anharmonicities to the dynamics of the particle [36]. This
allows us to apply the fully linear (harmonic) oscillator model. The analytical
expression of the power spectral density (PSD) for this model was derived in
§ 2.2.1. We report it here for completeness:

Sx(ω) = Sth
x (ω) + Sel

x (ω)

=
4 kBT Γ

m
[(

ω2 −Ω2
0

)2
+ Γ2ω2

] + F2
0 τ sinc[(ω−ωdr)τ]

m2
[(

ω2 −Ω2
0

)2
+ Γ2ω2

] . (4.8)

More precisely, Sx(ω) is the single-sided PSD of the thermally and harmon-
ically driven resonator, whose dynamics x(t) is being observed for a time
T = 2τ Note that Sx(ω) relates to the experimentally measured PSD Sv(ω)

via the calibration factor ccal, such that Sv(ω) = c2
cal · Sx(ω). The determina-

tion of ccal is provided in A. In the absence of electric driving, the motion of
the particle is purely thermal and its PSD is well approximated by an ordinary
Lorentzian function.

From an experimental measurement of Sth
v (ω) we extract the value of

Sth
v (ωdr) and perform maximum likelihood estimation (MLE) to obtain the

values of Ω0 and Γ as fitting parameters. Likewise, when the harmonic driv-
ing is applied to the system, we determine the height of the driven reso-
nance Sv(ωdr), and from this we calculate electric contribution Sel

v (ωdr) =

Sv(ωdr)− Sth
v (ωdr). Figure 4.3 exemplifies this process for an arbitrarily cho-

sen ωdr/(2π) = 135 kHz and for a signal-to-noise SNR = Sv(ωdr)/Sth
v (ωdr) '

60. The curve shown is computed with Bartlett’s method from an ensemble
of Npsd = 1000 averages of individual PSDs, calculated from τ = 40 ms po-
sition time traces. In § 4.3.4 (paragraph Power Spectral Density) we verify that
over the whole measurement time t = Npsd × τ = 40 s the system does not
suffer from low frequency drifts. The electrically driven peak can be fully re-
solved (see inset in Fig. 4.3), and its shape agrees with the Fourier transform
of the rectangular window function used for PSD estimation. The gray data
points at the bottom of the plot represents the measurement noise, which is
∼ 40 db below the thermal signal and more than ∼ 55 db below the driven
peak. Finally, the solid line is a MLE fit of a thermally driven Lorentzian to
the experimental data. Note that, in order to perform the fit and to retrieve
the value of Sth

v (ωdr), the electrically driven peak is numerically filtered out
by applying to the time series a notch filter of variable bandwidth b around
ωdr. The value of b depends on the height of the peak, with typical values of
the order of tens of Hz. We computationally verified that this method does
not affect the estimated fitting parameters Ω0, Γ and the thermal contribution
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Figure 4.3: Measurement. Power spectral density Sv(ω) of a thermally and harmonically
driven resonator at P = 50 mBar. The broad peak centered at Ω0/2π ' 125 kHz corresponds
to the thermally driven state. We fit it with a Lorentzian function (orange) to extract Sth

v (ωdr),
together with Ω0, Γ/2π = 31.8 kHz and the corresponding uncertainties. The narrowband
peak at ω = 135 kHz, also shown in detail in the inset, depicts the electrical excitation from
which we retrieve Sel

v (ωdr) = Sv(ωdr)− Sth
v (ωdr). Gray data points at the bottom of the plot is

the measurement noise, which is & 40 dB below the particle’s signal.

Sth
v (ωdr), introducing negligible errors that remain well below ∼ 0.01 %.
The mass of the particle can ultimately be calculated considering the ratio

RS =
Sel

v (ωdr)

Sth
v (ωdr)

=
Sv − Sth

v

Sth
v

∣∣∣∣
ω=ωdr

. (4.9)

In fact, note that while both Sel
v and Sth

v depend quadratically on ccal, the latter
scales as m−1 while the former scales as m−2. Thus, from their ratio we obtain:

m =
n2

q q2
e E2

0 τ

8 kBT Γ RS
. (4.10)

4.3.3 Results

The suggested protocol for the mass measurement is tested on particles of
different size: dp = 143 nm and dp = 235 nm. In both cases we measure mass
mean values 〈m〉 in agreement with the ones predicted by the manufacturer’s
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specifications and kinetic gas theory (both methods described in § 4.2), and a
reduction of the associated uncertainty of more than one order of magnitude
(see § 4.3.4 and § 4.3.5 for comprehensive treatment of the errors). We report
in the following the results relative to the dp = 143 nm case.

Figure 4.4a shows a reproducibility measurement, performed to estimate
the statistical error of our method. From a sample of 20 independent measure-
ments we find σstat

m ' 0.7%. To validate the generality of our method, the mass
is also measured at different driving parameters, as shown in Fig. 4.4b. The
linear model ensures independence of the measured mass from the driving
frequency ωdr. We indeed find compatibility between the statistical error σstat

m
and the standard deviation of the experimental measurements σm, shown in
Fig. 4.4b respectively as error bars and green dash-dotted line. The mismatch
in the measured mean value 〈m〉 with respect to Fig. 4.4a is due to slightly
different experimental conditions (most probably a temperature change that
was not take into account when computing the mass). Figure 4.4c presents
the response of the system to the external excitation when the driving fre-
quency is swept in the range ωdr ∈ [115, 135] kHz in steps of 1 kHz. For
the main figure a driving voltage of Vdr = 13.7 V was used, resulting in an
electric field amplitude E0 = 4.0 kV/m. For such amplitudes the particle is
still driven in the linear regime. However, for higher driving the dynamics be-
comes nonlinear and the analytical model used to calculate the mass does not
hold anymore. The presence of nonlinearities for higher driving amplitudes is
exemplified in the insets of Fig. 4.4c, where second harmonic oscillatory com-
ponents are detected only for E0 ' 6 kV/m. Finally, Fig. 4.4d presents again
traits of nonlinear behavior for high field amplitudes. Blue data corresponds
to the mass measured with the resonator in the linear regime (driven by a field
amplitude E0 = 4.8 kV/m), while red data correspond to the mass measured
in the anharmonic case (with driving amplitude E0 = 21.2 kV/m). The use
of the linear model to fit a Duffing resonator clearly introduces appreciable
systematic errors in the analysis, and the measured mass for high amplitudes
carries an unphysical dependency on the driving frequency. As a result, we
avoid this situation maintaining the driving field amplitude below 5.5 kV/m
throughout all our measurements.

4.3.4 Uncertainties

In order to estimate the overall mass uncertainty, a careful study of all the
sources of error needs to be carried out. Table 4.1 summarizes the absolute
values and the relative uncertainties of the quantities entering in eq. (4.10).

For several variables and constants, we can neglect the corresponding un-
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Figure 4.4: Mass measurement results. (a) A reproducibility measurement is performed
to determine the experimental random error of our protocol. We find σm/m ∼ 7× 10−3, in
agreement with the expected statistical error σstat

m /m ∼ 9× 10−3. (b) The mass measurement is
performed at different driving frequencies in order to verify the compatibility with the linear
approximation. The resulting dispersion of data-points σ

sweep
m , displayed as a green dot-dashed

lines, is compatible with the error bars representing the statistical error from panel (a). (c) An
example of the driving frequency swept in the range ωdr ∈ [115, 135] kHz. Nonlinear features
such as second harmonic oscillations are detected when the resonator is driven in the nonlinear
regime. (d) Mass measurement datasets for different driving amplitudes. Blue data correspond
to a harmonic oscillator, where no dependency on the driving frequency is observed. Red data,
instead, is measured with the resonator driven into the nonlinear regime. In this case the
measurement exhibits systematic artefacts depending on the driving frequency and a constant
shift in the mean value 〈m〉 .

certainty. Accordingly, for the error propagation we set: σqe = στ = σkB = 0.
Concerning the other quantities, we follow the arguments stated below.

Electric field The absolute value and the corresponding uncertainty on the
electric field E0 have a high impact on the measurement of the mass (we see
indeed from Table 4.1, that the electric field provides the largest relative error
in our set of variables).We estimated the magnitude of the electric field with
finite element simulations (COMSOL). The geometry of the system was in-
ferred from a high resolution image of the electrodes (see Fig. 4.5a), obtained
in situ with a portable microscope (adjustable magnification 40 × −1000×).
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Quantity Value zi Error σzi /zi

nq 8 0
qe 1.602× 10−19 C 6.1× 10−9

E0 5.305 kVm−1 0.011
T 40 ms 4× 10−5

Sv(ωdr) 1057.8 bit2Hz−1 0.005
Sth

v (ωdr) 14.7 0.007
kB 1.380× 10−23 JK−1 5.72× 10−7

T 295.8 K 0.002
Γ 1.998× 105 rads−1 0.003
m 4.01 fg 0.009 (stat.)± 0.024 (syst.)

Table 4.1: Uncertainties table. The different quantities zi involved in the calculation of
the mass are here reported together with the corresponding error σzi . Color coding indicates
negligibility of the uncertainty, with gray rows implying σzi ' 0. Last row summarizes the
result of the mass calculation and the relative uncertainty for the red highlighted point in
Fig. 4.4.

The maximum achievable resolution was limited by the actual fitting of the
microscope inside the vacuum chamber, and by the field of view of the micro-
scope that needed to include both electrodes in the same image. The factor
cimg = 4.64± 0.04 µm/px, used to calibrate pixels into physical distance units,
is calculated comparing the size of the electrodes with their nominal diameter:
φ = 1 mm, ISO h6 tolerance corresponding to σφ = 3 µm. The uncertainty on
the distance del separating the two electrodes is derived from the uncertainty
on each electrode’s edge position. We crop a 20× 20 px2 area at the edge of
one of the electrodes, close to its center (see grayscale map in Fig. 4.5b). Aver-
aging along the z axis, provides the experimental profile I(x) of the electrode
(red crosses). A sigmoid function of the form

Σ(x) = ahigh −
ahigh − alow

1 + e−(x−x0)/τ
(4.11)

is used to fit the profile, the result being displayed as a green solid line in
Fig. 4.5b. The fitting parameters ahigh, alow x0, τ, representing respectively the
high/low plateau level, the center of the edge and its width, are used to calcu-
late the separation w between 1/10 and 9/10 of the step height (dashed purple
vertical lines). The error over the position of the single electrode edge is then
σp = w/2 = 1.14 px, and the error over the electrodes distance σ∆p =

√
2σp.

Using cimg to calibrate into physical units and to propagate with the corre-
sponding error σcimg , we finally obtain del = 1411± 13 µm. The mapped ge-
ometry of the electrodes, together with their distance from the objective and
from the collection lens are plugged into a COMSOL finite element simulation
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Figure 4.5: Electrodes geometry and electrical field simulation. (a) A high resolution image
of the electrodes geometry taken in-situ with a portable microscope. Distances are calibrated
via the electrodes diameter, which are known up to 1 µm tolerance. We measure a separation
between the electrodes del = 1411 µm . (b) The uncertainty σdel

over the electrodes’ gap is
calculated from the edge blurring of the image. (c) Overall geometry of the set-up that is used
to simulate the electric field at the trap position. (d) Magnified version of (c) shows that field
between the electrodes is barely affected by the presence of the dielectric lens in the objective.
(e) The field E0 can be considered constant and homogeneous in the volume explored by the
particle. The uncertainty on the value of E0 is calculated performing different simulations
while varying the distance del and misplacing each of the electrodes by σdel

= 13 µm.

in order to estimate the electric field at the particle’s position. Both objective
and collection lens are modeled as a metal holder with an inset dielectric. One
of the two electrodes is grounded (i.e. U = 0 V potential), while on the other
we apply a dc voltage (U = 1 V). Figure 4.5c–e shows the outcome of the
simulation. As expected, the effects of the collection lens are negligible, while
we observe the field being slightly affected by the objective and the dielectric
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lens. Nevertheless, in between the electrodes the field is quite homogeneous,
and we find E0 = 577± 6 V/m, where the uncertainty σE0 is estimated per-
forming different simulations while varying the distance del and misplacing
each of the electrodes by σdel = 13 µm.

Power spectral density The two heights of the power spectral densities
Sv(ωdr) and Sth

v (ωdr) from which the ratio RS is calculated are only affected
by statistical errors since simulations confirm the validity of the linear model.
σSv is thus calculated as the standard error of the mean of Npsd measurements,
with the 1/

√
Npsd trend being verified. The same applies for Sth

v , where in
this case σSth

v
is calculated from the measurements in the absence of external

electric driving.
The statistical nature of the errors affecting Sv(ωdr), Sth

v (ωdr) and Γ ideally
allows one to increase the integration time of the measurement in order to ar-
bitrarily reduce the associated errors σSv , σSth

v
, and σΓ. However, this approach

is only valid as long as the system is not affected by slow drifts that affect the
system over long timescales. As demonstrated by Hebestreit et al. [44], one
can define an optimal measurement time to extract the energy Ê(T ) = 〈v2〉T
of the particle. Here T expresses the time span of the dataset from which the
variance 〈·〉 is calculated. Note that Ê is not the physical energy, but is propor-
tional to it. More precisely we have Ê =

2Epot

mΩ2
0

. The longest useful integration
time is thus assessed through the Allan Deviation of the variance σ̂E, calculated
from a long position time trace v(t) of ∼ 2 hours. After chopping v(t) into
NT shorter sections of variable length T , we compute Êj(T ) for each section
j = 1, . . . , NT . The Allan deviation of the the energy is then calculated for
each value of T as:

σ̂A =

√√√√ 1
2(N − 1)

N

∑
j=1

(
Êj+1 − Êj

)
(4.12)

In Fig. 4.6 we show σ̂A as a function of τ for different pressures in the vacuum
chamber. The experimental results demonstrate maximum stability for inte-
gration times of τ ∼ 40 s. Moreover, for higher pressures we observe lower
minimas in the Allan deviation, which also indicates a better stability of the
system. We believe this is due to the minor influence of nonlinearities, that
are minimized for pressures P > 10 mBar.

Fitting parameters and nonlinear contributions In order to estimate the un-
certainty of the Lorentzian fitting parameters, and to additionally ensure the
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Figure 4.6: Energy Allan deviation measurement. The Allan deviation of the energy Ê =

〈v2〉 is shown as a function of the integration time τ, for different pressures. At the operating
pressure of ∼ 50 mBar we obtain maximum stability for τ ' 40 s. Lower pressures present
a higher Allan deviation, and consequently a degraded stability, probably due to the onset of
higher nonlinearities in the dynamics of the particle.

validity of the linear resonator model, the effects of nonlinearities in the dy-
namics of the particle need to be further investigated. Such nonlinearities
arise from the anharmonicity of the optical potential [36]. The system can
then be modeled as a Duffing resonator, for which the linear stiffness becomes
a function of position k(x), and the equation of motion therefore reads:

mẍ + mΓẋ + mΩ2
0
(
1 + ξx2) x = Fth(t) + Fel(t) , (4.13)

where ξ < 0 is the so called nonlinear Duffing coefficient. Prompt conse-
quence of the presence of nonlinearities in the dynamics of a resonator is that
the eigenfrequency Ω0 does not correspond to the curvature of the harmonic
potential, but it gets shifted (down-shifted if ξ < 0, up-shifted if ξ > 0) and
becomes energy dependent. More precisely we have:

ΩNL = Ω0

(
1 +

3
4

ξ〈x2〉
)

, (4.14)

where 〈x2〉 is the variance of the oscillation. We can exploit equation (4.14)
to retrieve the value of ξ by driving the particle with increasingly stronger
electric field E0 and monitoring the frequency ΩNL shifted by the nonlinearity.
We use the calibration factor ccal to convert the experimental variance 〈v2〉 into
a calibrated 〈x2〉 with physical units of nm2. Figure 4.7 shows the nonlinear
frequency shift ΩNL

Ω0
− 1 for increasing variance 〈x2〉. Low driving does not



4.3. Mass from harmonically driven thermal states 65

affect the energy of the particle, and no shift is indeed detected. For 〈x2〉 &
2100 nm2 a shift in frequency is observed, and we perform a linear fit to the
experimental data according to Eq. 4.14. From the fit we retrieve: ξ = (−9.03±
0.44) µm−2. The obtained value is in agreement with previous measurement
obtained from a completely different method [88] that provided ξ = (−9.68±
0.15) µm−2.
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Figure 4.7: Nonlinear frequency shift. Due to the anharmonicity of the optical potential,
a nonlinear frequency shift is observed when the particle is excited by the electric actuation.
For variances 〈x2〉 & 2100 nm2 we observe a linear shift, in agreement with eq. (4.14). A linear
regression (red solid line) and related standard deviation (gray area) allow to extract the value
of the nonlinear coefficient ξ = (−9.03± 0.44) µm−2.

Once the onset of nonlinearities in the system has been characterized, it is
important to understand whether these play a role in the mass measurement
protocol described in the previous section. To ensure the validity of the lin-
ear (harmonic) model, we also considered a cubic term in the restoring force
and performed Montecarlo simulations of the resulting Duffing resonator with
parameters compatible with our experimental settings and an overestimated
value of the Duffing coefficient [38, 88] ξ = 12 µm−21. The outcome of the
simulations, detailed in Fig. 4.8, show that at pressures of P = 50 mBar non-
linearities lead to relative errors on the estimated fitting parameters Ω0 and Γ
of the order of a few 0.1% with respect to the exact values used in the simu-
lations. This magnitude of errors is consistent with the validity of the linear
model. Note that this is not the case for lower pressures P . 10 mBar, where
the errors result to be at least one order of magnitude higher, and a more
complicated nonlinear response model would be needed. This is also con-

1I acknowledge G.P. Conangla for his help in the simulations
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firmed by Fig. 4.8 (see inset), where for the P = 10 mBar case we observe a
non-negligible nonlinear shift of the resonance peak.
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Figure 4.8: Estimated PSD from simulated traces. Two PSDs, estimated from the simula-
tion of 1000 traces of 40 ms each, are displayed, corresponding to pressures of 50 mBar (left
panel) and 10 mBar (right panel). Dark blue lines corresponds to the results of the simulation,
red lines corresponds to the fitted function (which assumes a linear model, even if the simu-
lated potential has a Duffing term), and the dashed light blue corresponds to the exact linear
response, calculated with the values of Γ and Ω0 used in the simulation.

Temperature The thermal bath surrounding the particle is assumed to be
constantly thermalized with the set-up, and more precisely with the walls
of the vacuum chamber, i.e. Tbath = Tchamber. Note that this assumption
would not hold for low pressures (P . 1 mBar), where the rarified gas re-
duces the efficiency of convection and infrared laser absorption would rise the
internal bulk temperature Tbulk of the particle [46]. In that case, one should
include a two bath model [69] and consider a higher effective bath tempera-
ture and a corresponding higher uncertainty. However, the moderately high
pressure P = 50 mBar used in our measurements ensures the assumption
Tbulk = Tbath = Tchamber = T. To estimate this value, multiple tempera-
ture measurements on the surface of the vacuum chamber are carried out
with a precision thermistor (0.5◦C accuracy) in order to exclude the presence
of temperature gradients and significant variations during the experimental
times. The uncertainty on the bath temperature is therefore of the order of
σT/T ∼ 0.2%. However, a stable and constant temperature T is ensured only if
the set-up is properly isolated from the lab environment. Isolation is achieved
by enclosing the whole optical table in a unique box that maintains a more sta-
ble temperature and screens the setup from air turbulence. The effect of this
latter is to introduce pointing instabilities in the optical path, with the more
drastic consequence being the unbalancing of the photoreceivers up to satu-
ration. Figure 4.9 displays the measured temperature trend in the lab (probe
placed in the middle of the room) and at the vacuum chamber position. We



4.3. Mass from harmonically driven thermal states 67

observe that while the lab is exposed to temperature fluctuations of a few de-
grees, the temperature inside of the box screening the set-up is maintained
stable, with variations that are well within the assumed accuracy.

0 2 4 6 8 10 12

Time (h)

21

21.5

22

22.5
T

em
pe

ra
tu

re
 (
° C

)

22

22.5
22.6
22.7

23

T
Lab

T
Bath

Figure 4.9: Temperature measurement in the system. A first temperature probe (blue solid
line) is placed in the middle of the lab, exposed to air turbulences and the constant varia-
tions due to the air conditioning. However, a second probe (red solid line) in contact with the
vacuum chamber’s walls measures the bath temperature surrounding the particle. A consis-
tent reduction of the temperature fluctuations is achieved enclosing the set-up and carefully
screening it from air turbulences.

4.3.5 Error Estimation

All the quantities involved in the mass calculation are subject to both system-
atic and statistical errors. However, it is legitimate to assume that for E0 and
T, the systematic one has a dominant contribution and the random error is
negligible, while for RS and Γ the opposite holds.

Assuming uncorrelated variables, we can therefore apply the well-known
variance formula [58] to propagate the relative errors:

σm =
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(
∂m
∂zi

)2
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, (4.15)

where zi runs over the variables reported in Table 4.1, exceptions made for
those in gray color for which σzi ' 0. As a result we obtain:
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Plugging in the errors reported in Tab. 4.1, and thoroughly assessed in the
previous paragraphs, we obtain σ

syst
m /m = 2.24% and σstat

m /m = 0.91%
As a concluding remark, we stress once more the importance of such an ac-

curate measurement of the particle’s mass, that outperforms existing methods
by more than one order of magnitude. This results are pivotal for boosting the
accuracy of levitation-based sensors, paving the way for more reliable impact
of levitodynamics in sensing and metrology.
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5.1 Introduction

At the early stages of this doctoral work, the silica nanoparticles used in
our experiments were modeled as solid spheres of bulk amorphous silica.
Their mass (thoroughly discussed in § 4.3) was indeed calculated using the
density of fused silica reported in common material science handbooks, and
the properties of particle’s material were considered constant throughout the
whole experiments. However, unexpected irreversible phenomena (described
in § 5.2.1 and consisting in pressure-dependent properties of the particle)
could be repetitively observed while going to vacuum right after loading the
particle in the trap. Such observations were shared with other research groups
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working in levitation, yet without a commonly accepted explanation of their
causes. This chapter is dedicated to an in-depth investigation of the phe-
nomenon, with the objective of disclosing its unclear causes.

In the first part of the chapter (§ 5.2 and § 5.2.2) we will restrict ourselves
to pure experimental observations, leaving out (where possible) any interpre-
tation of the presented data. Then, in § 5.4 we will suggest a surface chem-
istry model (Zhuravlev model) of silica that seems to correctly explain our
observations and will provide a quantitative matching of this theory with our
data. The objective of such a careful study of the involved phenomena seeks
a deeper understanding of our system, and consequently goes toward the es-
tablishment of a reliable sensor.

5.2 Observations of pressure-dependent mass and
charge

In this section we will provide an in-depth description of the particle’s be-
havior during the process of pressure reduction in the vacuum chamber. We
will monitor important pressure-dependent variations of oscillation frequency
Ω0, mass m, charge q and scattering intensity B. In order to get a better un-
derstanding of the behavior of these quantities we tracked their values while
performing consecutive pump down and venting cycles. A qualitative and
quantitative analysis of the results will provide the basis for an interpretation
of the observed phenomena and will pave the way for the development of a
simplified model in § 5.4.

5.2.1 Properties changes during pump down process

In a typical levitation experiment, once a single nanoparticle is loaded in the
trap the pressure in the chamber is lowered in order to reach the high vacuum
conditions. During the pump down the particle’s dynamics along the three
motional degrees of freedom is continuously monitored. In the following we
will consider only the x–mode of oscillation. The position x is sampled at a
rate fs = 625 kHz, and the corresponding single-sided power spectral density
S(x)

v = Sv, is computed at a rate of fs/N ' 76 Hz (N = 8192 being the number
of points in the PSD). This allows us to measure the eigenfrequency Ω0 and
the mode energy Ê =

∫ Ω0+b
Ω0−b Sv(ω)dω, where b ' 40 kHz.

Right after loading, the particle naturally carries a few elementary charges
(of the order of nin

q ' 10, although this value depends on the particle’s size).
These are sufficient to monitor possible charge variations ∆q. This is done
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by applying a voltage signal to the electrodes that creates an electric field
E(t) = E0 cos(ωdrt) in the vicinity of the trapping region. This oscillating
electric field excites a coherent oscillation of the nanoparticle along the x axis.
We detect the oscillation as a sharp peak appearing at ωdr, whose associated
energy Êel =

∫
b Sv(ω)dω ∝ q2 is tracked in time integrating Sv in a small

bandwidth b around ωdr (see inset in Fig. 5.1d and Fig. 3.11a).
Finally, the pressure P is continously measured with a full-range gauge and the
scattered light B from the particle is detected with an imaging system placed
below the vacuum chamber (see set-up schematics in Fig. 4.2).

In the first stage of the pump down, more precisely between ambient pres-
sure and P ∼ 0.1 mBar we always observe a continuous decrease of particle’s
eigenfrequency and brightness, followed by an abrupt drop of those quanti-
ties at P . 0.1 mBar. Figure 5.1 is a typical example of such experiments,
where a pump down and vent cycle is followed by a second pump down pro-
cess. This Figure shows the pressure P, the brightness B, the eigenfrequency
Ω0 = Ω(x)

0 and the energy Êel as a function of time. For the sake of clarity in
the description, the plot has been divided into five different time slots:

I) The system is brought from ambient pressure to P . 1 mBar. As soon
as we start reducing the pressure we observe a smooth decrease (∼ 30%)
of the brightness B. The shaded regions are meant to avoid confusion
marking the regime where the dynamics is overdamped and hence quan-
tities such as Ω0 and Eel are ill-defined. As a result, a properly deter-
mined Ω0 ' 130 kHz appears when the particle enters in the ballistic
(underdamped) regime at P . 50 mBar. We observe a slight drift in
frequency between t = 200 s and t = 300 s. This is due to the pres-
sure dependency of the susceptibility χ(ω) of the resonator, and for the
same reason the energy Êel also decreases (Fig. 5.1d). We stress, however,
that this drift cannot be attributed to variations in the particle’s charge.
Indeed, we observe the same behavior even when the particle is fully
discharged and no peak is present at ωdr.

II) In this pressure range the system reaches a steady state condition and
all the tracked quantities (B, Ω0, Eel) now display a plateau. At t ' 450 s
and P ' 0.1 mBar, both the brightness B and the frequency Ω0 drop
abruptly. Simultaneously, the energy Êel sharply increases indicating an
abrupt charging (or discharging) event that leads to |nfin

q | � |nin
q |, with

nin
q and nfin

q being the electrical charge before and after the abrupt event,
respectively.

III) The system displays overall stability after phase II. We stop the pump
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Figure 5.1: Observation of pressure-dependent properties.(a) Pressure during a sequence
of pump down, venting and aditional pump down. (b) The scattering intensity B, measured
with an imaging system and a CCD camera, shows a smooth initial decrease, followed by
a stable plateau and an abrupt drop. After this sudden event, the intensity is maintained
constant throughout venting and subsequent pump down. (c) The oscillation frequency Ω0
shows a similar behavior of B, exceprtion made for the regions of too high damping. (d) The
energy of the electrically driven oscillation shows an abrupt and considerable increase during
corresponding to the drop of B and Ω0, consistent with a charge variation.

down, pressure reequilibrates at ∼ 0.5 mBar and no significant changes
in the observed quantities are detected.

IV) Increasing the pressure back to ambient conditions demonstrates the ir-
reversibility of the observed phenomena. Although the frequency Ω0

and the energy Êel feature a trend similar to the one observed during
the pump down due to the pressure-dependent susceptibility χ(ω) of
the oscillator, the brightness B remains constant. This clearly indicates
that the particle is not affected by pressure changes anymore.

V) Finally, a second pump down to even higher vacuum (P < 0.1 mBar)
leads to almost identical values of the tracked magnitudes. We only ob-
serve a negligible shift in the eigenfrequency (∆Ω0 ≈ 0.25%) , probably
due to the hysteresis of mechanical stresses in the chamber.
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5.2.2 Mass measurement during pump down process

The mass measurement protocol developed in § 4.3.2 can be used to correlate
the observations made in the previous section with possible mass losses from
the particle. The mass measurement method provides reliable results only if
the system is operated in the linear regime, i.e. at relatively high pressures of
P ' 50 mBar. Consequently, although an ideal protocol would consist in con-
secutive mass measurements at progressively lower pressures, we will need
to alternate pump downs and venting (up to P ' 50 mBar) in order properly
estimate the mass. Figure 5.2 exemplifies such an adapted protocol. First, the
pressure in the vacuum chamber is reduced from ambient to P = 50 mBar.
In this process particles lose on average (15± 1)% of the initial scattering in-
tensity B. Interestingly, this percentage loss is independent from the particle
size. A first mass measurement is performed with the method described in
§ 4. We stress that the initial scattering loss suggests that the mass measured
at P = 50 mBar probably does not coincide with the original mass of the
particle (at ambient pressure) right after loading. Subsequent measurements
are operated after progressively higher vacuum levels are reached and show
a constant trend of mass loss. The bottom panel of Fig. 5.2 represents this
situation for a particle d ' 235 nm in diameter. Both the absolute percent
loss ∆m(0)(with respect to the first measurement, i.e. the accumulated mass
loss) and the relative loss ∆m(i−1) (with respect to the previous mass read) are
displayed. These measurement are usually repeated until P = 1 mBar. Below
this pressure the particle undergoes the sudden and abrupt event described
in the previous section § 5.2.1. Interestingly, a considerable fraction of mass
is lost during this phenomenon. Repeated measurements on different parti-
cles seems to show that the amount of mass lost during the abrupt event is
proportional to the slope of the pressure trend, i.e. faster pump downs lead
to more prominent sudden mass losses. This observation, however, should be
the object of more quantitative analysis in future experiments.

In the inset of Fig. 5.2, top panel, we show a peculiar feature of the inves-
tigated phenomenon. Concurrently with a cycle of pump down and venting,
we observe a decrease and a subsequent increase of the scattered intensity B.
Note that the final level is always slightly lower than the starting level right
before the pump down. Assuming a monotone relation between m and B1,
this observation suggests that mass is lost as pressure is reduced, and it is
partially regained when the chamber is vented. Further investigations on this

1This assumption is supported by the following argument: the volume corresponding to
the mass lost is replaced by vcuum (e.g. voids in the bulk structure of the particle), with a
consequent reduction of the overall refractive index.
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Figure 5.2: Mass measurement during pump down. The top two panels represent respec-
tively scattering intensity B, and pressure P during repetition of pump downs and venting
where progressively lower pressures are reached. The bottom panel shows the mass m, mea-
sured after every venting cycle at a pressure of P = 50 mBar. We observe a clear trend of mass
loss during the first part the pump down, and a considerable mass lost during the abrupt event
at P ∼ 0.1 mBar. Numbers indicate the absolute percent loss ∆m(0) (with respect to the first
measurement) and and the relative loss ∆m(i−1) (with respect to the previous mass read).

peculiar behavior are carried out in the next section, where different venting
procedures seems to confirm the hypothesis of a a possible mass uptake.

5.2.3 Mass uptake from a humid environment

A comprehensive description of the particle material, as well as its surface
chemistry and other important related features will be given in the next sec-
tion § 5.4. For the moment it is sufficient to mention that the material com-
posing the nanoparticles, the so-called Stöber silica [104] named after the in-
ventor of the sinthetization method, is a highly porous material. Several stud-
ies [31, 59, 81, 114] report this fact and treat the subject of water evaporation
and adsorption from porous amorphous silica. This well known fact suggests
that the phenomenon observed in the inset of of Fig. 5.2 could be compatible
with the evaporation of water contained in the particle (brightness decrease)
followed by a subsequent uptake of water molecules from the humid environ-
ment (brightness increase). It should be reminded, in fact, that the loading
of the particle takes place at ambient pressure and that humidity levels in the
laboratory are maintained within 50-55%.

In order to support (or to exclude) this hypothesis, we performed the exper-
iment shown in Fig. 5.3. During a first cycle of pump down from ambient pres-
sure to P = 50 mBar and subsequent venting of the chamber, the scattering
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Figure 5.3: Water uptake during chamber venting. Pressure (top panel) and scattering
intensity B (bottom panel) of a repetition of pump downs and venting with different types of
gasses: humid air and dry N2. Data shows the ability of amorphous silica of loosing mass
(water desorption) and uptake mass (water absorption) if exposed to a humid environment.

showed the expected behaviour. When venting with (humid) air from the lab,
we observe that B goes back almost to the initial scattering level (B ' 3500).
However, if we repeat the pump down an the venting process, this time with
dry N2 we observe a considerable reduction of the final level of B ' 3200.
This effect is reproduced a second time, and shows compatible results. Fi-
nally, if the air venting is restored and one additional cycle is performed, the
scattering intensity goes back to higher levels (B ' 3500), compatibles with
the initial state of the particle. This observations can be easily explained by
porous amorphous silica losing water content when brought to vacuum, and
regaining mass in the form of water molecules from the humid environment.
This also explain why the nitrogen venting, i.e. lower water content in the
vacuum chamber, leads to less prominent increase of brightness. Interestingly,
such a pressure-dependent behavior disappears after the system undergoes
the sudden event in which both mass and scattering drop and the particle
acquires additional charges.

5.2.4 Charge variations: observations and statistics

In this section we investigate in more detail the sudden charging/discharging
phenomenon that takes place when going into vacuum right after the loading
(see Fig. 5.1d, sector II). We will provide also some statistical insights about
the magnitude of the charge variations.

As a first interesting observation we point out that although the mass con-
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Figure 5.4: Typical and peculiar event of particle abrupt charging(a):Left to right: scattering
intensityB, frequency Ωb and energy Êel of the electrically driven oscillation for a typical mass
drop event at P ∼ 0.1 mBar. (b) The same quantities reported in (a) for an event more rare
case where a double drop is observed. As explained in the main text, the peculiarity of such
an event is that most of the final charge is gained during the second drop at t = 1345 s.

tinuously changes: from the beginning of the pump down process, until the
occurrence of the mass drop between P ∈ 10−2− 10−1 mBar, charge variations
are detected only during this final abrupt event.

To further investigate this fact, we can now fully discharge the particle (to
neutral) with the ignition of the plasma (see § 3.5) before it reaches the critical
pressure regime. Figure 5.4a displays the parameters of interest for a neutral
particle close to the abrupt event taking place at time t = 574 s (dashed ver-
tical lines). An external electric field E(t) = E0 cos(ωdrt) is applied during
the measurement. From left to right we show the brightness B, the oscillation
frequency Ωb and the energy Êel ∝ |nq|2, these latter two being calculated in
a narrow bandwidth (b ' 1 kHz) around ωdr. As expected, the neutral par-
ticle does not respond to the applied electric field. Therefore, at t < 574 s
we observe Êel ' 0, an undefined Ωb and a stable value of B. As soon as
the particle undergoes the abrupt event, at t = 574 s, the scattered intensity
drops and the appearance of a driven peak at ωdr indicates that the particle
now couples to the electric field. This observation unambiguously confirms
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Figure 5.5: Statistics of the particle’s charge before and after the abrupt event. (a) For
the dp = 143 nm particles we only observe positive polarity after the charging event, with
the majority of particles also having an initial positive charge. Note that for this size, neutral
particles can also be found after the loading. (b) The dp = 235 nm particles show a completely
different statistics than the smaller ones. Most of the times (∼ 90%) they end up being nega-
tively charged but we still observe particles with positive polarity after the charging event. The
only case that seems not to be possible for this size is the transition from negative to positive
polarity.

that the neutral particle gains a net charge during this event. In Figure 5.5 we
report some statistical analysis of this charging event for two different particle
size: dp = 143 nm and dp = 235 nm, and observe that these lead to a radi-
cally different statistics of the initial and final polarity. First of all we note that
for both sizes the initial polarity after the loading is predominantly positive
(70% vs. 30%). However, the behavior of the two samples studied seems to be
be the opposite after the charging event. We in fact end up with only posi-
tive particles for the smaller size (100% vs. 0%) and a statistics predominantly
negative for the bigger particles (87% vs. 13%). These observation could be
valuable information for the development of a model that takes into account
the surface chemistry as well as the surface charge of amorphous silica parti-
cles.

What has been shown in Figs. 5.1 and 5.4a is the general behavior of a
particle brought to vacuum right after being loaded in the trap. We now de-
scribe a less frequent event that has nevertheless been observed several times,
especially with dp = 143 nm. In Fig 5.1b we report the same measurement
described above, carried out with a particle from the same batch as Fig 5.1a.
In the left panel we see that the usual drop in B consists this time of two well
separated drops. The interesting feature of this occurrence is that, at a first
sight, the energy Êel steps up only at the second event, indicating that despite
the two drops display comparable magnitudes, only the second one is affect-
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ing the particle’s charge. A more careful analysis, however, shows that this
is only partially true (see inset in right panel). A little step in the charge is
also observed during the first brightness drop. From the measured energies
Ê0 ' 0.1, Ê1 ' 0.3 and Ê2 ' 150, and given the proportionality (Êi− E0) ∝ n2

q,i,
with i = 1, 2, we can estimate that nq,2/nq,1 ∼ 30. In other words, throughout
the second drop the particle acquires a charge approximately 30 times larger
than during the first one. The reason of such an asymmetry is still not clear
and will be subject of future investigation. We speculate that this could be due
to a multilayer of water molecules (we will indeed introduce H2O multilayers
in § 5.4) that is desorbed in two subsequent events. In such a scenario most of
the charges would depart only during the second drop because they tend to
accumulate in the inner shell, close to the silica surface.

5.3 Measurement protocol for highly charged particles

In this section we propose and demonstrate a simple protocol to measure ar-
bitrarily high number of charges nq on the levitated nanoparticle. As shown
in 3.5, when the corona discharge in the vacuum chamber is active, one can
track the charge-steps that lead to a neutral particle and therefore retrieve
the initial value of nq by merely counting their number. This method is ex-
emplified in Fig. 5.6a, resulting in nq = −19. However, while the particles
right after loading have a relatively small number of charges, on the order of
|nq| = 10, the abrupt event happening at P ∼ 10−1 − 10−2 mBar highly boosts
this number leading to |nq| & 50 in small particles (dp = 143 nm) and up to a
few hundreds for the bigger ones. As a result, counting the number of steps
during a particle discharge from an initial nq � 10 is often a tricky task. In
fact, one would need to observe the particle response to the external field for
long times (of the order of one to few hours) to fully resolve all the charge
steps. As we show in Fig. 5.6b, in fact, for |nq| & 20 the amplitude response
displays a smooth decrease, while integer steps can be resolved only below
this threshold (see figure insets). This is due to a rapid initial discharging of
the particle2 and to the detection of the high oscillations being affected by the
nonlinearity of the probe beam.

Therefore, a more general method to measure |nq| � 10 in these cases is
highly desirable. In the following we describe an alternative protocol that

2When the particle is highly charged, ionized molecules of opposite polarity are strongly
attracted towards the particle due to Coulomb interaction. Therefore, we expect an initial
higher collision rate that quickly takes the particle close to neutral. However, this collision rate
is much lower when |nq| ≈ 0 and and hence change variations happen on a slower time scale.
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Figure 5.6: Discharge to neutral before and after the abrupt event (a) Peak amplitude
Apk, lock in phase φLI and normalized phase φN, as defined in § 3.5, while discharging from
nq = −19. (b) After the abrupt event nq � 10 and steps cannot be fully resolved (see insets).

allows us to measure arbitrarily high number of charges.

(i) Suppose a particle with an unknown number of charges nin
q is trapped

in the focus. Bringing the system to P = 50 mBar enables us to apply
the mass measurement protocol as described in 4.3. We recall here the
equation for the ratio RS that leads to the mass calculation:

RS =
Sel

v (ωdr)

Sth
v (ωdr)

=
Sv − Sth

v

Sth
v

∣∣∣∣
ω=ωdr

=
(nin

q )
2

m
· q2

e E2
0T

8kBTΓ
. (5.1)

Here all the quantities involved, except m and nin
q , are either experimen-

tally determined from the PSD of the thermally and harmonically driven
resonator (i.e. Γ, RS), or are parameters of our system (T, E0, T ) or are
physical constants (kB, qe). Consequently, we can define and calculate a
quantity αqm that takes a similar role to a charge-to-mass ratio:

αqm =
(nin

q )
2

m
=

8kBTΓRS

q2
e E2

0T
. (5.2)

(ii) Once the αqm is measured, we can discharge the particle through the
plasma and set a (small) known number of charges nfin

q by simply count-
ing the step.

(iii) Repeating the mass measurement protocol, this time with the known
value nfin

q allows us to determine the absolute mass of the particle within
∼ 2% error.

(iv) Assuming that no mass variations take place between (i)) and (iii) the
initial number of charges nin

q can finally be calculated as:

nin
q =
√

αqmm (5.3)
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This method has been experimentally validated using an initial known
value of nin,real

q = 61. Following the protocol (i)) to (iv) with a chosen value
nfin

q = 5 we estimated nin,est.
q = 64 ± 2, where the 3% uncertainty has been

propagated using the erros provided in § 4.3.5. Although we don’t exactly
match nin,real

q (further verification should be carried out), we see that this
method still provides a reliable quantitative measurement of highly charged
particles.

5.4 Observations explained: the Zhuravlev model

In this section we provide a simple model to account for the experimental
observations described in § 5.2.1-5.2.3. As a first step towards a better un-
derstanding of the observed particle behavior, a quite obvious, but essen-
tial fact should be stressed: the silica nanospheres used in our experiments
were not specifically conceived for optical levitation experiments in vacuum,
and they are indeed widely used in very diverse fields like biology, medicine
and material science among others. The synthesis of these particles with size
smaller then ∼ 1 µm in diameter was proposed by Stöber et al. in 1968.
One major advantage of this process is that it can produce higly monodis-
perse silica particles with coefficient of variation cv = σd/ 〈d〉 as low as a
few percent. Therefore, they provide an ideal model for studying colloidal
phenomena. In a nutshell, the process consists in hydrolyzing tetraethyl
orthosilicate Si(OEt)4, commonly referred as TEOS. This is usually done in
ethanol and using ammonia as a catalyst. The reaction produces Si(OEt)3OH
and Si(OEt)2(OH)2 that can condensate producing granular silica with diam-
eters ranging from 50 to 2000 nm depending on the experimental conditions.
One important feature of Stöber synthesis is that the silica is produced in
the amorphous (glass) phase, and not in the crystalline phase (quartz). Fig-
ures 5.7a,b exemplify the differencies in atomic conFiguration between the
two types of SiO2. Another fundamental trait of the silica obtained via the
Stöber process, and more generally of any type of amorphous silica, is to
have silanol groups (Si-O-H) on the surface. Figure 5.7c shows the differ-
ent types of silanol that can be encountered. These are classified into iso-
lated silanols (Q3), geminal silanols (Q2), vicinal silanols, surface siloxanes(Q4)
and internal silanols. Finally, amorphous silica is universally a porous ma-
terial, both at the surface (open pores) and in the intenal structure (close
pores) [81]. Depending on their size we can distinguish between macropores
(d > 200− 400 nm), mesopores (3.0− 3.2 nm < d < 200− 400 nm) and super-
micropores (1.2− 1.4 nm < d < 3.0− 3.2 nm). Ad-hoc chemical processes can
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be developed in order to intentionally make the material highly porous (for
example for drug delivery in bio-medical applications [112]).

Although these porosity-boosting processes are not implemented in the syn-
thesis of our nanoparticles, it is very likely that supermicropores are present
both on their surface and in their internal structure [81]. A direct consequence
of micro-porosity and of the presence of silanol groups at the surface is that
the nanoparticles present a substantial content of water. This is referred as
the silica being hydrophilic, which is the typical condition of the Stöber syn-
thesis. Water can be found in different forms: physically adsorbed (or ph-
ysisorbed) and chemically adsorbed (or chemisorbed). The former indicates
H2O molecules contained in the pores and/or physically bound to the surface,
while the latter refers to the O–H carried by the silanol groups. Accordingly,
one can define the processes of dehydration (removal of physically adsorbed
water), dehydroxylation (the removal of silanol groups from the silica surface)
and rehydroxylation (the restoration of the hydroxyl covering) [114]. These
processes, and in particular the ones concerning the removal of water are usu-
ally performed by exposing the particle to high temperatures and vacuo for
long times [31]. Depending on the temperatures reached one can observe dif-
ferent magnitudes of mass-losses in the form of water desorption, together
with several other changes of particle properties such as density, refractive in-
dex, and most importantly surface chemistry. In particular, a comprehensive
description of this latter as a function of the material temperature is provided
by the so called Zhuravlev model [114].
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Optically levitated nanoparticles in vacuum are expected to display similar
behaviors to those observed and supported by the Zhuravlev model. In fact,
although the light absorption of silica at the laser wavelength λ = 1064 nm is
tiny, the fact of being levitated restricts the channels of energy exchange with
the environment, leaving scattering asnd emission of black-body radiation
and gas convection as the only cooling mechanism in high vacuum [16]. As
a result, trapped silica spheres can experience internal bulk temperatures as
high as ∼ 1000 ◦C below P = 10−4 mBar [46]. In the following we will
review some basic concepts of surface chemistry of amorphous silica, linking
the model with the experimental observations drawn in § 5.2. We will often
refer to Fig. 5.10 for a schematic representation of the particle’s evolution.

STAGE 1
Right after loading, the particle is in a maximum state of hydroxylation (hy-
droxyl coverage θHO), meaning that every surface site is covered with an O-H
group. Under these conditions, the silanol number αOH (defined as the super-
ficial density of silanols on the silica surface) has been extensively studied and
literature largely agrees on the value αOH,T = 4.60 nm−2 3. Note that αOH,T

is considered a physico-chemical constant (independent of origin and struc-
tural characteristics of the silica) that goes under the name of Kiselev–Zhuravlev
constant. Additionally, the SiO2 surface is covered with physically adsorbed
water in a multilayer (ML) form: θH2O � 1. Observations of up to ∼ 12 ML
have been reported in [101], and we expect this value to be even higher in our
case. In Fig. 5.8 we calculate and represent the mass of water on the surface
of the particle as a function of the number of multilayers and of the particle’s
size. In the two cases we studied dp = 143 nm and dp = 235 nm the values
obtained are compatible with the mass-losses dicussed in § 5.2.2.

STAGE 2
During the first part of the pump down the external layers of water molecules
are desorbed from the surface according to the dehydration process. This is
responsible for the smooth mass and scattering losses shown in Fig. 5.2. The
relatively high pressure in this regime still provides sufficient gas convection
that ensures a cooling rate higher than the heating rate from light absorption,
and the particle thus maintains a room bulk temperature. This is consistent
with the existing literature [114] which confirms that the initial removal of

3In addition to the agreement with literature, αOH,T coincide with the surface concentration
of Si atoms of β–cristobalite and β–tridymite ((αSi,fi = 4.55) that are silica phases with refractive
index close to the amorphous silica
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Figure 5.8: Mass of water multilayer on the particle surface. The water content on the
particle’s surface is calculated as a function of the number of multilayers of water molecules
and of the particle’s surface.

physically adsorbed water is achiavable by simple vacuum drying. According
to the Zhuravlev model, this process is readily reversible upon the introduc-
tion of an excess of water. This was indeed verified in Fig. 5.3. The silanol
coverage θOH remains unvaried, while θH2O decreases towards unity, i.e. only
few layers of water molecules in an H-bond configuration. Due to furher
decrease of the pressure, the light absorption overcomes the covective cool-
ing rate and the bulk temperature start to increase [43]. As an explanation
to the sudden drop in B, Ω0 and m observed in Fig. 5.1, we believe that at
P = P0 ∈ [10−2, 10−1] mBar the remaining few layers of physically adsorbed
water molecules are abruptly desorbed. According to [43], the particle’s tem-
perature in this pressure regime is T ∼ 200 ◦C. Interestingly, this temperature
coincides with a threshold temperature TB = (190± 10) ◦C introduced in the
Zhuravlev model [114]. At T = TB the model predicts that the isothermic free
energy of the free water ∆F, or in other words the binding strength A of the
physically absorbed water on the surface) becomes equal to zero:

− ∆F = A = RT log (P0/P) . (5.4)

Concurrently, the kinetic order of desorption n varies abruptly from n = 1
to n = 2, and the activation energy of water desorption ED also displays a
rapid increase. Data demonstrating this phenomena has been shown in [114],
and we report in Fig. 5.9 the corresponding adapted figures for clarity. The
coefficients n and Ea shown describe the desorption rate:

Γdes = νe−Ea/kBT Nn . (5.5)
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where ν, also called attempt frequency, represents the probability of an ad-
sorbed molecule to overcome its potential barrier to desorption, while N is
the concentration of the adsorbed material [102]. As a result, all the predic-
tions and our observations seem to be consistent with the complete removal
of physically adsorbed water at the end of STAGE 2 (i.e. for T = TB ' 190 ◦C).

Besides the satisfactory agreement established, the charge variation ob-
served during this event is not yet fully understood. Some studies [101] re-
port the so-called protonation as a surface charging process. This consists in the
SiOH–H2O bond rearranging in a dipolar complex of the form SiO− · · ·H3O+.
Therefore, stripping away the water termination would leave a negatively
charged surface. This could only partially explain our measurements, where
we often observe particles ending up with a positive net charge after the
abrupt water removal. Also, the differing behavior observed between smaller
(dp = 143 nm) and bigger (dp = 235 nm) particles remains unclear. A possible
mechanism for differential particle charging can be conceived if we consider
take into account the different solutions for the synthesis of the two types of
particles: the impurities in suspension in each case, as well as pH conditions,
are likely to be quite different. Therefore, after the removal of the water, some
of these impurities could in principle remain adsorbed on the surface of the
silica, thus determining a different final charge for the the two particle sizes.
As we will discuss in § 7, this remains an open issue of high interest, both
towards a comprehensive understanding of the system, and for the fields of
silica surface chemistry and material science.

STAGE 3

After the abrupt event observed between P = 10−1 and P = 10−2 mBar, that
according to our interpretations coincide with the system reaching the thresh-
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old temprature TB ' 190 ◦C, the particle surface is still in a maximum state of
hydroxylation θOH ' 1, but there is no presence of physically adsorbed water
θH2O = 0. This state is often referred as the dry SiO2 surface. Nevertheless,
the presence of silanols of all types at the surface makes it possible for the
particle to uptake H2O molecules upon the introduction of an excess of water.
Continuing to heat up the particle, silanols at the surface are removed, and the
desorption of water becomes progressively more irreversible. The Zhuravlev
model predicts that internal silanols are removed above T = 900 ◦C and that
complete removal of all OH groups happens at the final threshold tempera-
ture T = 1200 ◦C. At this stage (final stage in Fig. 5.10) the surface is covered
with only siloxanes bridges and becomes completely hydrophobic. We stress
that this is the only fully irreversible stage in the surface chemistry of silica.
However, the reverse processes of re-hydoxylation and re-hydration are ex-
tremely slow once the threshold temperature T = TB has been overcome. In
fact, after the abrupt water-mass drop, we do not observe any trend similar
to those reported in § 5.2.3. Even after leaving the particle trapped at am-
bient pressure for several consecutive days, we couldn’t detect any variation
of scattered intensity. Santamaria et al. [31] observed complete rehydroxyla-
tion and rehydration after leaving the particles immersed in distilled water for
over two months. We therefore conclude that, in the experimental conditions
were levitation experiments operate, the abrupt event can be considered fully
irreversible although the silica has not achieved the hydrophobic state.
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6.1 Introduction

Nano-mechanical resonators need to meet criteria of light mass and high-
Q factor in order to maximize their performances when operated as linear

87
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force transducers. However, these features lead to intrinsically nonlinear be-
haviour [36], with consequent vanishing dynamical range. To overcome this
limitation, modern nanotechnology requires new sensing schemes that take
nonlinearities into account and even benefit from them [109]. Many of the
proposed solutions operate inside an instability region [2, 80] or close to a
bifurcation point [53, 98], where the system ideally becomes infinitely sensi-
tive. Others exploit fluctuations of noisy environments to trigger stochastic
resonances [30] that amplify weak harmonic signals [4, 9, 108]. For all these
sensing applications, a single nanoparticle optimally decoupled from the en-
vironment represents a particularly interesting system in the family of high-Q
resonators.

In this chapter, we demonstrate full control on the linear, nonlinear (§ 6.3.1)
and bistable dynamics (§ 6.4) of a levitated nanoparticle in high vacuum and
under the effect of external noise (§ 6.3.2). The potential of our platform is vali-
dated by the implementation of two nonlinear amplification schemes: Stochas-
tic Resonance (SR) [30] in § 6.5 and direct amplification via stiffness modula-
tion in § 6.5.3. The unprecedented level of control achieved demonstrates
the possible use of levitated nanoparticles as a model system for stochastic
bistable dynamics with applications to a wide range of fields including bio-
physics [5, 41], chemistry [40, 99] and nanotechnology [76].

6.2 Experimental configuration and equation of motion

The experiments described in this section have been performed at a stage
where the electrodes for the direct electrical driving, described in § 3.5, were
not implemented yet. The experimental configuration used in the experiments
presented in this chapter is sketched in Fig. 6.1a. The main optical trapping
scheme, together with the particle’s detection, have been extensively described
in §3.2. Here, the central part of the experiment is played by the imprinted
modulation on the laser intensity. The signal we feed to the EOM is obtained
adding up:

1. the parametric feedback that cools the COM motion of the particle via
nonlinear damping. The system is initialized activating the FB at a
moderate vacuum with a pressure of ∼ 1 mBar, and then brought to
∼ 10−6 mBar.

2. the parametric driving that excites coherent oscillations and allows to
explore the nonlinear features of the optical potential. This signal is
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Figure 6.1: Experimental set-up for parametric driving. (a) A single silica nanoparticle is
trapped inside a vacuum chamber by a tightly focused laser beam. Its motion is measured with
a split detection scheme and parametric feedback is applied via an electro-optical modulator
(EOM) in order to cool its center of mass motion. Likewise, an additional modulation at twice
the the particle’s oscillation frequency drives the latter into the nonlinear regime of the optical
potential. The system can be modeled as a parametrically driven duffing resonator, and its
amplitude response displays typical nonlinear features such as hysteresis and bistability. (b)
In this regime, a low amplitude and a high amplitude oscillation states states coexist. (c) An
effective amplitude bistable potential describes the probability of the two states and, when laser
noise is injected via the EOM, the system displays interwell stochastic transitions (switching).

fully characterized by the modulation amplitude ε and the modulation
frequency Ωm of the driving signal.

3. a broadband Gaussian noise signal that heats up the particle and, un-
der specific conditions, triggers the stochastic bistable dynamics of the
system.

As a result the overall dynamics of the particle along driven mode can be
described by the following equation of motion:

ẍ +
(
Γ + Ω0ηx2) ẋ + Ω2

0
[
1 + ξx2 + ε cos (Ωmt)

]
x =
F
m

(6.1)

where η is the nonlinear (feedback-induced) damping coefficient, ξ is the Duff-
ing term factor. Finally, the fluctuating force F = Fth +Fnoise has two contri-
butions. The first one, Fth, represents the stochastic force arising from random
collisions with residual air molecules in the chamber, while the second, Fnoise,
represents the artificial noise that we add through the EOM.

6.3 Parametric control

In this section we will analyze the response of a parametrically driven levi-
tated nanoparticle in vacuum. The theory of parametrically driven nonlinear
oscillators is provided in § 2.2.2, and we will here compare such theory with
experimental results.
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6.3.1 Nonlinear dynamics at the first instability tongue

The particle response to the external parametric driving is fully characterized
by measuring oscillation amplitude and frequency in the driving parameters
phase space (δm, ε), where δm = Ωm/Ω0 − 2 is the normalized detuning.

Substantially different dynamics can arise in the system depending on how
close to the resonant condition Ωm ≈ 2Ω0 is the modulation, and whether its
strength is above or below the instability condition (2.102) :

ε =
2
Q

√
1 + Q2δm . (6.2)

In the following we will mainly focus on the dynamics above threshold and
inside of the instability tongue, where hysteresis and other bistable features
are observable.

In order to simplify the problem we can neglect the stochastic term F (t)
on the right-hand side of (6.1), since under typical experimental high vacuum
conditions (Q� 1) is much weaker than the nonlinear terms and the paramet-
ric driving on the left. We are therefore left with a fully deterministic equation
that can be solved using the Slowly Varying Envelope Approximation, which pro-
vides the amplitude response of the resonator. Full analytical derivation is
provided in §2.2.2 and leads to the solution (2.106):

A2(δm, ε; η, ξ) =
1

ηδ2
th

[
3ξ

η
δm +

1
Q

+

√
ε2δ2

th − δ2
m +

3ξ

η

1
Q2

(
2Qδm −

3ξ

η

)]
(6.3)

≈ 1
ηδ2

th

[
3

ξ

η
δm +

√
ε2δ2

th − δ2
m

]
(6.4)

where δth =
√

9ξ2 + η2/2η, and again the approximation made in (6.4) is valid
for Q � 1. Notice that the oscillation amplitude q0 expressed in (2.106) has
been here renamed A for simplicity. We will adopt this convention throughout
the whole chapter.

To experimentally measure the amplitude response of the resonator we
sweep the modulation frequency across the resonant condition δm = 0 (corre-
sponding to Ωm = 2Ω0). This produces sideband components at frequencies
|Ω0 ± Ωm|, and leads to energy transfer from the sideband to the particle
whenever the lower sideband Ωm −Ω0 is close to the particle resonance Ω0.
Two types of sweeps can be performed which lead to qualitatively different
responses, i.e. the system displays hysterisis. In the following we provide a
detailed description of the particle’s response corresponding to these sweeps.
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Figure 6.2: Amplitude and frequency response to external parametric driving (a) The
oscillation amplitude (experimental dots in red) during a down-sweep of the the modulation
frequency and (b) during an up-sweep (blue dots). The yellow solid line shows a fit to eq. (6.4),
being η and ξ free parameters. δm = ε/2, −ε/2, and −δthε represent particularly interesting
points in the evolution of the dynamics (see main text). (c)The main oscillation frequency ΩP
shows a similar behavior to the amplitude, with a clear hysteresis observed when reversing
the modulation sweep direction. We also observe frequency pulling phenomena at δm = ε/2
and δm = −δthε. (d) Spectral features of the two stable oscillation modes. The low amplitude
state (blue) is characterized by a carrier mode and a sideband, while the high amplitude state
is locked to the external modulation at a frequency Ωm/2 = Ω0(1 + δm/2).

.
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Frequency down-sweep When the modulation frequency is decreased
across the resonance, the system behaves as depicted in Fig. 6.2a. The par-
ticle enters in the locked region for δm = ε/2, and the oscillation ampli-
tude starts to increase according to equation (6.4). It reaches a maximum for
δmax

m = −εδth/
√

1 + η2/(9ξ2), and decreases while approaching the left edge
of the nonlinear instability region given by δm = −εδth. This condition iden-
tifies a saddle-node bifurcation point, where one of the two solutions of the
secular equation of motion becomes unstable. As a result, the system jumps to
the low-amplitude branch Alow which is not locked anymore to the external
modulation and leaves the instability tongue.

Likewise, the oscillation frequency of the resonator follows a similar behav-
ior, shown in Fig. 6.2c. A primary carrier component and a sideband can be
found at

Ωc,s = Ω0

[
1 +

δm ∓
√

δ2
m − (ε/2)2

2

]
(6.5)

with ∓ corresponding to carrier (c) and sideband (s) respectively (see
Fig. 6.2d). Therefore, far from the instability tongue (δm � ε/2), the res-
onator maintains its main frequency component at Ωc ≈ Ω0. Approach-
ing the δm = ε/2 condition, the particle undergoes the phenomenon of
frequency pulling [55]: the sideband pulls the oscillation to a new pri-
mary carrier component with pulled frequency given by (6.5), i.e: Ωc =
Ωm

2 −
1
2

√
(Ωm − 2Ω0)2 −Ω2

0(
ε
2 )

2. Once the instability tongue is reached the
particle locks to the external modulation and maintains its frequency at Ωm/2
until the bifurcation at δm = −ε/δth is reached. Below this point the mo-
tion features again the carrier and the sideband components, and the former
smoothly goes back to the eigenfrequency Ω0.

Frequency up-sweep When the sweep crosses the resonance starting from
negative detuning δm towards a positive one, the resonance curve is different
from the down-sweep case (see Figs. 6.2b,c). In particular, the particle remains
unlocked for detunings −δthε < δm < −ε/2 with low oscillation amplitude
Alow. A second saddle-node bifurcation is encountered at δm = ε/2, and only
here the system switches abruptly to the high amplitude state Ahigh, locking
to the external modulation. For δm > −ε/2 it continues following the high
amplitude branch given in (6.3) until δm = 2ε, the mode is pulled a bit further
according to (6.5) and finally separates again into into carrier and sideband,
with the particle going back to its initial state oscillating at the eigenfrequency
Ω0.

The dynamics of up- and down-sweeps can be generalized for increasing
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Figure 6.3: Amplitude response in the (δm, ε) parameters phase space. (a) When down-
sweeping the detuning δm for increasing values of modulation depth ε, the amplitude response
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region extends up to ε = −δm/δth due to the nonlinear terms. (b) In the opposite case of a
frequency up-sweep, however, the system displays hysteresis, and the tongue results narrower,
symmetric, and limited by ε = |2δm|.(c) A combination of these two maps, together with
crosscuts for constant ε that are fitted by eq. 6.4. The bistable regime is identified in the
parameters space by subtracting the up-sweeps map from the down-sweeps ones. Solid lines
correspond to the iso-amplitude lines described by (6.8).

modulation depths ε. The emerging 2-D maps are shown in Fig. 6.3a,b respec-
tively.

Iso-amplitude lines
Figure 6.3c shows a combination of up- and down-sweeps of the modulation
frequency. The cross-cuts in the top map illustrate the 2-dimensional surface in
the (δm, ε, A) space that corresponds to the amplitude response of the trapped
particle. The bistable regime in the lower map appears by subtracting the
up-sweep map from the down-sweep one. In order to introduce the bistable
potential model that we will use in the following sections, it is interesting
now to focus on the amplitude trend inside the bistable regime. In particular,
it is instructive to analytically determine the subset of the driving parameters
space that leads to a constant amplitude gap A∆ = Ahigh −Alow. Noting that
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Ahigh � Alow over the whole bistable regime, we can simplify this condition
into:

A2(δm, ε) = A2
∆ → 1

ηδ2
th

[
3

ξ

η
δm +

√
ε2δ2

th − δ2
m

]
= A2

∆ (6.6)

→
√

ε2δth − δ2
m =

1
η

[
A2

∆η2δ2
th − 3ξδm

]
(6.7)

⇒ ε(δm) =

[(
1 +

9ξ2

η2

)
δ2

m

δ2
th
− 6ξA2

∆δm + η2δ2
thA4

∆

]1/2

(6.8)

Equation (6.8) defines the so called Iso-Amplitude lines: a subset of the
bistable parameter space where the two oscillation states remain equally sep-
arated. These lines are displayed in the bottom map of Fig. 6.3c for different
values of A∆ and demonstrate perfect agreement with the experimental data
shown by the color gradient. The observed trend is also shown in the analyti-
cal solution plotted in Fig. (2.7).

6.3.2 Particle response to external parametric noise

Inside the bistable region, natural thermal noise can activate spontaneous
transitions between low- and high-amplitude states. However, in high vac-
uum and with parametric feedback activated, these events are extremely rare.
Thus, in order to observe stochastic activation within a reasonable time the
particle needs to be heated up by additional external noise. As depicted in
Fig. 6.1a, we do so with a function generator that creates a noise signal ζ(t)
of variable amplitude NV, which is sent to the pockels cell (EOM) and results
in a parametric noise of the form Fnoise ∝ NVζ(t)x. Noise calibration can be
performed by measuring the particle’s oscillation amplitude A in the absence
of parametric driving [68]. Figure 6.4a shows the mean amplitude A = 〈A〉T
together with its standard deviation as a function of NV . The response of
the noise-driven particle clearly shows the presence of two regimes. At low
noise levels the noise injected does not affect the particle’s dynamics, which is
still dominated by the thermomechanical noise of the environment. However
when noise in sufficiently high (NV above few hundreds mV), the particle’s
amplitude starts to increase and so does the corresponding standard devia-
tion. We can model the observed behavior assuming an effective temperature

TN =
mΩ2

0<x2>
kB

given by the total noise in the system. We finally extract the
noise calibration by fitting the trend with a power law that, in the regime of
noise levels where we will operate, is found to be TN ∝ N1.47

V . This relation will
be used from now on to address the noise level with its effective temperature.
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Figure 6.4: Particle response to external noise (a), When injecting noise in intensity of
the laser, the particle’s oscillation amplitude increases (blue dots), together with its standard
deviation (shaded area). Converting amplitudes into effective temperatures one can map noise
levels into noise temperatures and extract a power law calibration curve. The inset shows the
energy distribution predicted by (6.9) when the particle is solely subjected to thermal noise. (b),
The particle’s amplitude power spectral density for different noise levels shows an overdamped
behavior. The corner frequency and the plateau height depend on the noise temperature and
their trend is presented in the inset figure.

The inset of Fig. 6.4a shows the energy distribution ρ(E) in the absence of
external noise, calculated from an ensemble of 105 amplitude (or equivalently
energy) measurements. The data is fitted with the analytical prediction of
ρ(E), which reads [34]:

ρ(E) ≈ exp
[
−β

(
E +

η

4mΩ0Γ
E2
)]

, (6.9)

where β = 1/(kBT), T being the bath temperature. It is remarkable, here,
that Γ is the only free parameter in the fit (η being known from the nonlinear
response in the instability tongue, see Fig. 3.8 and 6.3). Therefore, this mea-
surement can be an equivalent method for determining the natural quality
factor Q = Ω0/Γ in the presence of feedback and avoiding the more complex
‘ring-down’ measurement that should be repeated several times to average the
energy fluctuations [37]. In the specific case the fit yields a natural linewidth
of Γ/2π ' 1.1 mHz, and a corresponding quality factor of Q '= 1.2× 108.

Tracking the time evolution of the amplitude also provides information
about its spectral properties. In the absence of coherent driving one finds
that the oscillation amplitude behaves as an overdamped variable, in spite
of being the result of the average over a fast (underdamped) oscillating vari-
able [38]. This behaviour is depicted in Fig. 6.4b where the amplitude power
spectral density SA is shown for different effective noise temperatures. We
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fit the measured power spectral densities (PSDs) with a typical overdamped
Lorentzian SA = S0

f 2
c

f 2+ f 2
c

where S0 = SA( f = 0) is the height of the plateau
and fc is the corner frequency. The inset shows the power law dependency
of these fitting parameters (in terms of relative change with respect to the
no-injected-noise case) as a function of noise temperature. As expected, the
low-frequency plateau raises with the noise intensity, in agrement with the ob-
servation in Fig. 6.4a [65,68]. Interestingly, the corner frequency also increases
with the injected noise, leading to a larger bandwidth of amplitude fluctua-
tions. This effect is likely to be related to the multiplicative nature of noise
after the EOM [110]. Let us stress that the findings of this section, especially
referring to Fig. 6.4b, are essential to justify our modeling of the particle’s dy-
namics in the bistable regime as a fictitious overdamped particle moving in an
effective bistable potential. This model is further detailed in the next section.

6.4 Noise activated switching in the bistable regime

6.4.1 Effective potential shaping

The stochastic switching dynamics of the levitated nanoparticle is investigated
via the injection of noise. Figure 6.5a illustrates position and amplitude time
traces corresponding to few switching events and emphasizes the remarkable
ability of our tracking scheme to resolve considerably different time scales.
Interestingly, we can even observe the fast dynamics of the particle during a
switching event, observing that the transition from one state to the other is a
process that takes a significant number of particle’s oscillations. The ampli-
tude probability distribution ρ(A), obtained by analysing the particle trajec-
tory over approximately one minute, is show in Figure 6.5b. Even though the
particle is in a non-thermal state due to the applied parametric control [37],
we introduce a simplified model that describes the dynamics of its amplitude
as the motion of a thermal fictitious particle in a double well potential. This
justifies the use of the Boltzmann-Gibbs distribution:

ρ(A) ∝ exp
[
−U (A)

kBTN

]
, (6.10)

and allows us to retrieve the amplitude effective potential U (A) that models
the bistable dynamics:

U (A) = −kBTN ln [ρ(A)] + U0 (6.11)

where U0 is a constant offset that we can set at will in order to have
U (Aun) = 0, Aun being the amplitude of the unstable equilibrium. SOme
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examples of this effective potential are given in Fig. 6.5c. The high stability
of the system allows us to continuously modify this probability distribution,
and hence to engineer almost at will the shape of U (A) following any path
inside the bistable regime. As previously mentioned in § 6.3.1, an interesting
case consists in the so called iso-amplitude lines: paths along which the am-
plitude gap A∆ = Ahigh −Alow, is kept constant. These particular subsets of
the phase space are generally blurred by the frequency noise of the resonator,
but clearly visible in our system thanks to the low frequency fluctuations (see
Fig. 6.3c). By following an iso-amplitude line with a fixed A∆, we obtain a
very smooth evolution of the effective potential (see Fig. 6.5c). As we show
in Fig. 6.5c, starting from an asymmetrically tilted configuration, the potential
progressively undergoes an inversion of its shape, passing through a quasi-
symmetric condition where the potential barrier determines equal depth of
the two wells. It is important to stress that, upon this ad-hoc dynamical sweep
of ε and δm, the two minima of the potential corresponding to the amplitudes
Ahigh and Alow, maintain their position fixed. Clearly, this would not be the
case when following any other path, for example moving along ε = const.
lines (see cross-cuts in Fig. 6.3c).

Once the amplitude distribution ρ(A) is determined for a certain set of
parameters (δm, ε; TN), we can derive the state populations as:

Σlow =
1
Σ

∫ Aun

0
ρ(A)dA ; Σhigh =

1
Σ

∫ ∞

Aun

ρ(A)dA , (6.12)

being Σ =
∫ ∞

0 ρ(A)dA a normalization factor. Their evolution as a function of
the detuning is shown in Fig. 6.5d, and display an inversion consistent with
the potential dynamics observed in Fig. 6.5c. Solid lines are sigmoid fits to the
experimental data, of the form:

σlow(δm) = 1− 1
1 + e−(δm−δ∗m)/τ

; σhigh(δm) =
1

1 + e−(δm−δ∗m)/τ
(6.13)

where δ∗m and τ are free fitting parameters. The former represents the detun-
ing at which we find a symmetric potential configuration inside the bistable
tongue, while the latter corresponds to the effective width of the bistable
regime.

Similarly, the overall switching rate Γsw also depends significantly on the
detuning (see Fig. 6.5e). The extremely biased configurations of the potential
found at the edges of the bistable region do not enable almost any switch
within the duration of the experiment. We therefore have Γsw ≈ 0 for high
absolute detunings |δm|, while we encounter a maximum corresponding to
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Figure 6.6: Symmetric potential configuration measurement. (a) Amplitude states Alow,
Ahigh and Aun as a function of the scanned detuning. (b) Over a narrow region of the bistable
regime, the amplitude gap A∆ remains constant. (c) Potential barrier height for Alow → Ahigh
(blue) and Ahigh → Alow transitions (red). (d) Similarly to what shown in Fig. 6.5d, state
populations Σlow and Σhigh invert at the symmetric configuration δ∗m. As a result, fitting with
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of the symmetric configuration and on the width τ of the bistable regime, respectively plotted
in (c) in green circles and gray shaded area. The solid line is a linear fit used to compensate for
symmetry drift at high noise levels.

the symmetric potential configuration δm = δ∗m, as predicted by Kramers’ the-
ory [93].

A closer look at the effective potential shape in the proximity of this sym-
metric configuration is shown in Fig. 6.6. More precisely, Fig. 6.6a confirms
that the two states Ahigh and Alow maintain their value fixed along the ampli-
tude axis. The only change we observe concerns the position of the unstable
state Aun, which due to the population inversion undergoes a shift of ∼ 20%
of the whole amplitude separation between the two stable states. Similarly, A∆

remains unvaried as shown in (6.6)b. Finally, the potential barrier shown 6.6c
also displays a crossing dynamics, in agreement with the state population pre-
viously observed. This type of characterization needs to be repeated whenever
the noise level TN injected in the system is varied. In fact, it allows to know the
exact position of the symmetric condition δ∗m and to compensate for possible
noise-induced drifts of this latter.
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Figure 6.7: Hysteresis quenching for increasing noise levels. The hysteretis regime is
shown at the indicated effective temperatures. For increasing noise levels the instability tongue
becomes narrower, according to the phenomenon of hysteresis quanching [3, 108].

6.4.2 Hysteresis quenching and noise induced effects

Figure 6.3c clearly shows that in the absence of externally injected noise, the
bistability region has a well defined triangular shape described by

ε > −δm/δth ∧ ε < −2δm (6.14)

However this regular shape gets affected when noise in the system is increased
above a critical threshold, according to a phenomenon sometimes called hys-
teresis quenching [3]. Here we first observe and quantify this phenomenon in
our bistable system, and then use the findings of the previous sections to give
a probabilistic description in terms of the bistable effective potential.

Figure 6.7 shows the bistability region for increasing levels of noise. White
dotted lines correspond to the edges of this region in the approximation TN =

0, and are meant to guide the eye through the changes of the system response.
At TN = 0.36 ' 0 all data fit inside the expected region. At temperatures of
TN = 1 to 5 K the noise has still small effects on the system: the hysteretic
regime preserves its size, and only a slight shift towards smaller values of δm

is observed. For T & 10 K more drastic effects are visible, with the hysteresis
region greatly reduced, and almost disappearing for TN ' 50 K.

This observation can be interpreted recalling the effective amplitude po-
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tential introduced in § 6.4.1 and comparing fast with slow modulation fre-
quency sweeps. Figure 6.8a shows the oscillation amplitude for a fast fre-
quency down-sweep through the bistable regime. The frequency change is
realized at a rate of Rfast ' 11.6 kHz/s. The behavior shown is compatible
with that of Fig. 6.7. We indeed observe a reduction in the size of the bistable
regime for increasing TN the left edge of the hysteretic regime shifts towards
δm > 0 for increasing TN . In this case the dynamical modulation of the ef-
fective potential is fast enough to prevent recrossing events after the system
has performed the transition from Ahigh to Alow. Similar behavior is observed
for low noise when repeating the sweep at a lower speed Rslow ' 30.5 Hz/s
(see Fig. 6.8b). However already at TN ' 30 K, the system starts to perform
multiples recrossing events when approaching the symmetry condition, for
which the noise allows to overcome the potential barrier separating the two
states. This is clearly shown in the inset of Fig. 6.8b for TN = 27.5 K and
TN = 30.4 K. For extremely high noise TN & 50 K, these recrossing events are
faster than our amplitude-tracking scheme,which is unable to follow the full
transitions. As a result, fictitious points appear at Alow < A < Ahigh as an
average between Ahigh and Alow, weighted by the corresponding probability
given by the depth of the potential. Thus, we conclude that the timescale re-
lation between the the potential modulation and the switching rate Γsw (given
by the noise in the system), determines the shrinking of the bistable regime
reported in Fig. 6.7.
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The observation of noise-induced changes in the shape of the hysteretic
regime poses the question whether the symmetry condition δm = δ∗m is also
affected by an increase of the noise in the system. It is clear from Figs. 6.5d,e
that an asymmetric potential quenches the switching rate for a given noise
level due to to the difference between the barrier heights ∆Ulow and ∆Uhigh

respectively associated to the transitions Alow → Ahigh and Ahigh → Alow.
The drastic effects of hysteresis quenching can in fact prevent the observa-

tion of stochastic resonance [108] as a consequence of drifts in the symmetry
condition. An asymmetrical potential would lead to to different resonant con-
ditions for the Ahigh → Alow and for the Alow → Ahigh transition. A fine
characterization of the potential shape for increasing noise, and in particular
of its symmetric configuration, is therefore of utmost importance. We do so
by repeating the measurements shown in Fig. 6.6a-c for a fixed ε = ε∗ and for
increasing TN , determining each time symmetry detuning δ∗. The evolution
of this latter is shown in Fig. 6.6d. Again, for low levels of noise, the potential
symmetry is not affected. However, for TN & 15 K we detect a drift towards
higher detunings, which can be fitted linearly in the regime of noises used in
the experiment. This allows us to adjust the driving parameters (δ∗m, ε∗) for
each different noise value, therefore following the symmetry condition and
preventing the system to escape from the bistable regime.

6.4.3 Kramer’s rate

Figure 6.9 shows a typical bistable potential U as a function of its general
coordinate x. Reaction Rate Theory predicts the interwell transition rates Γac

and Γca between the two stable states A and C (local minima of the potential)
as:

Γac =
ωaωb

2πγ
e−

Eab
kBT , (6.15)

where ωi =
√

U′′(xi), Eib = |U (xi)− U (xb)| for i = a, c. γ and T are respec-
tively the damping and the bath temperature. The inverse rate Γca is obtained
by swapping the indexes a and c.

For a symmetric configuration, we have Γac = Γca, and using the equivalent
bath temperature TN , eq. (6.15) simplifies into the Kramers’ rate:

ΓK = Γ0 e−
∆U

kBTN . (6.16)

The adjusted detuning δ∗m(TN) allow us to maintain this symmetric config-
uration, and therefore to experimentally verify the prediction of Kramers’ law.
Figure 6.5f shows the switching rate as a function of injected noise, with a fit
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Figure 6.9: Bistable potential. A general bistable potential features minima at xa and xc
(stable equilibrium) and a relative maxima at xc (unstable equilibrium). Transition rates Γab
and Γba between these states are predicted by Kramers’ rate theory (6.15). In our measurements
we verified the symmetric potential case given by (6.16).

according to eq. (6.16) that shows excellent agreement with the experimental
trend.

6.5 Stochastic Resonance

Once the static potential U (A) has been fully characterized for different sets
of parameters (δm, ε) and for increasing noise temperatures TN , we can now
study the system response to a dynamic (i.e. modulated in time) effective po-
tential. These conditions can trigger the phenomenon of Stochastic Resonance
(SR) [30]. In a nutshell, a weak periodic perturbation in the system induces a
modulation of the potential barrier separating the two stable states. Whenever
the interwell transition rate Γsw matches twice the frequency of the perturba-
tion, the system displays an overall synchronized (i.e. quasi-coherent) switch-
ing dynamics between Ahigh and Alow. Now, given that the rate Γsw depends
monotonically on the amount of noise in the system, SR turns into a noise-
induced rise (and then fall) of the external perturbation’s signal-to-noise ratio
(SNR). As a result, this phenomenon can in principle be exploited to amplify
a narrow-band signal in a nonlinear system under appropriate conditions.

6.5.1 Amplitude modulation

A modulation in the driving parameters is introduced in order to mimic an
external perturbation on the system. In the case of amplitude modulation we
have:

ε(t) = ε∗ [1 + χAM cos(ω̃t)] , δm = δ∗m. (6.17)
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Here, ε∗ and δ∗m are the set of parameters that ensure symmetry of the effective
potential. Note that, as described in § 6.4.2, these set of parameters are actually
a function of the noise temperature TN : δ∗m = δ∗m(TN); ε∗ = ε∗(TN). This
dependency avoids the escape from the bistable region as a consequence of
hysteresis quenching [3, 108], which in turn would prevent the observation of
the full SR curve when noise is increased. The modulation strength χAM is an
adimentional parameter that, in the experiment performed takes the values
χAM = (5, 25, 50)× 10−3. However, knowing the modulation depth ε∗ and the
stiffness of the trap k = mΩ2

0, those values can be converted into physical force
units, and correspond to force modulations of ten to hundreds atto-Newton.

To observe the SR phenomenon we record long amplitude time traces A(t)
(∼ 103 s) and compute their power spectral densities SA(ω) for increasing
levels of noise TN . Figure 6.10 shows the complete response of the system:
at TN ∼ 10 K (point marked A) switching events are only partially correlated
with the modulation signal (see Fig. 6.10b). Instead, when noise is increased to
TN ∼ 16K (point B) the system clearly exhibits an overall synchronization. A
spectral analysis of the corresponding amplitude trace shows that SA features
an extremely sharp peak precisely at ω̃/2π = 1 Hz (see inset in Fig. 6.10a).
Although SR phenomena ultimately describe the resonance in the SNR of the
detected modulation, it is interesting to track the evolution of both the spectral
amplification G (signal) and noise floor N (noise). As expected by looking at
the time traces in Fig. 6.10b, the spectral amplification G first increases, reach-
ing a maximum for the most synchronized dynamics, and then falls back to
zero when noise is further increased and destroys the coherence of the system.
Interestingly, a similar and counterintuitive behavior is observed in the noise
floor N, which presents a non-monotonic trend due to a redistribution of noise
intensity towards higher frequencies. The overall evolution of SNR = G/N is
shown in Fig. 6.10c for the different values of χAM, and fitted with the linear
perturbation theory of stochastic resonance [30], that predicts:

SNR = π

(
χA∆

TN

)2

Γ0 exp
(
− ∆U

kBTN

)
+O(χ4), (6.18)

where χ is the amount of modulation of the potential, proportional to the
experimental value of χAM. The fits display very good agreement with the
experiment. Moreover, the ratios of the fitted modulation depths (2 : 5.4 :
11) are also in good agreement with the expected ratios (2 : 5 : 10) used
in the experiment, remarking once again the quality of the modeled bistable
dynamics.
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Figure 6.10: Stochastic resonance experiment. (a) Spectral amplification G and noise floor
N as a function of the noise temperature for three different modulations. (b) Three examples
of amplitude time traces for different noise temperatures (corresponding to points A,B and C
in (a), together with the modulation signal (orange line, not to scale in y axis). For low noise
(A) there is little correlation between switching dynamics and modulating signal. However, for
higher noise (B) the system reaches synchronization and a maximum in G is found. If further
increased (C), the noise leads to a degradation of the coherence in the switching dynamics. (c)
The signal to noise ratio (SNR) of the detected modulating signal clearly presents a maximum
(resonance) at TN ∼ 28 K. Note that the peak position depends on both G and N and is
therefore not expected to coincide with the peak in (a). (d) The SNR curve for the SR experiment
performed with frequency modulation of the driving signal. The same observations reported
for (c) apply here. In both cases, black circles represent control data with χAM/FM = 0 to show
that no amplification is encountered without modulation.
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6.5.2 Frequency Modulation

A second SR experiment was carried out for frequency modulation of the
driving signal:

δm(t) = δ∗m [1 + χFM cos(ω̃t)] , ε = ε∗. (6.19)

which according to our study (see Fig. 6.5c), induces a potential modulation
consistent with the SR requirements. The corresponding results are shown
in Fig. 6.10d. We emphasize the fact that previous experiments [3, 9] have
only explored the case of an amplitude modulation, and that this is the first
experimental demonstration of SR with frequency modulated signals. Again
the fitted modulation strengths give ratios (1.9 : 2.6 : 4.9), in good agreement
with the expected ones (2 : 2.5 : 5). Interestingly, the resonance appears at a
noise temperature equivalent to the one observed in the amplitude modulation
case. This is consistent with the fixed value of ω̃ along the two experiments
that requires an equal ΓK in order to fulfill the time-scale matching of the
resonant condition.

6.5.3 Comparison with direct amplification

It is interesting now to quantitatively compare the amplification obtained in
the SR scheme with another nonlinear amplification scheme that we refer as
direct amplification. This consists in observing the modulation of the particle
amplitude, introduced by the external perturbation, when the system is driven
at the resonant condition: δm = 0. Note that for zero detuning the particle is
driven outside of the bistable regime, but still inside the instability tongue (see
inset in Fig. 6.11). In this configuration the effective potential is monostable
and the AM and FM modulations applied result in a modulation of the oscil-
lation amplitude for which a spectral analysis still shows a peak at ω̃. After
performing the same type of analysis carried out for the SR phenomenon, we
obtain the SNR (as a function of noise temperature TN) shown in Fig. 6.11. We
fit the experimental data with exponential decays that properly follow the ex-
perimental data for TN < 30 K. Moreover, in order to ease a direct comparison
of the two amplification schemes, we report as well the the fits of Fig. 6.10c,d
as dashed lines. We observe that, independently of the noise level, direct am-
plification always features a higher SNR than the corresponding SR, with the
two methods giving similar outcomes at high TN . We can interpret this this
result as an experimental verification of the central dogma of signal detection
theory [107], namely that stochastic resonance can decrease the SNR degra-
dation of a noisy signal but it does not provide a mechanism by which the



6.5. Stochastic Resonance 107

δm

ϵ

δm=0

Noise Temperature (K)

0 10 20 30 40 50

χAM=25x10-3

χFM=37x10-3

χFM=15x10-3

χAM=5x10-3

S
N

R
 (

d
B
)

20

30

40

50

Figure 6.11: Direct amplification experiment. SNR of a 1 Hz weak modulation signal
detected by the system prepared at resonance (δm = 0) outside of the bistable regime, but still
inside the instability tongue (inset). Circles are experimental data points for different AM/FM
runs. Solid lines are fitted exponential decays, while dashed lines correspond to the fitted
functions (6.18) of Fig. 6.10c,d and allow a straight comparison of the results obtained with the
SR experiment (color coding preserved). In particular, independently of the noise level, direct
amplification always features a higher SNR than the corresponding SR case, with the two
curves approaching for high noise, in agreement with the central dogma of signal detection
theory.

undetectable becomes detectable [22, 82]. The couterinuitive nature of SR, in
fact, mainly relies on suboptimal parameter ranges [66], here exemplified by
the fact that the same modulation becomes remarkably detectable when the
detuning is set to zero, without the need of adding any noise. Nonetheless,
the fact of SR being observed in a wide variety of settings poses the ques-
tion of why this phenomenon is omnipresent and favored by nature. We sur-
mise that suboptimal balanced configurations are generally preferable when
dealing with very complex systems, for which optimal conditions would be
difficult to achieve. Thus, exploiting ambient noise and stochastic resonance
appears to be a successful strategy to ensure a robust amplification method
that, at least above certain thresholds, is less sensitive to noise changes than
other detection schemes (as exemplified by Fig. 6.11).





7
Conclusions and future perspective

In the first part of this concluding chapter we provide a general outlook of of
the main achievement of this doctoral work. Next, future perspectives of the
present work will be exposed, including possible technical improvements of
the experimental apparatus, and proposals for future experiments.

7.1 Outlook

7.1.1 Technical improvements

At the beginning of this doctoral work considerable efforts have been put in
the stabilization of the system. Leveraging on previous experiments [36, 38],
further stabilization of the mechanical frequency has been achieved. An
efficient optimization protocol of the feedback electronics was described
in § 3.3, and allowed for a reduction of the optical noise. This, together
with power optimization of the detection scheme (§ 3.2 and Fig. 3.4), and
careful screening of air turbulence (affecting pointing stability of both the
trapping and detection beam), provided an overall mechanical stability of
σΩ0 /Ω0 ≈ 10−4 over long term integration (experiment durations of ∼ 102 s),
and a maximum stability of σΩ0 /Ω0 = 2 × 10−5 over short time scales
(τ . 1 s), at P = 1.5 × 10−7 mBar. As it was shown while discussing the
stochastic bistable dynamics experiment (§ 6), the achieved stability has
enabled for instance direct measurement of the nonlinear parameters of the

109
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experiment ξ and η with just few percent uncertainty and was paramount for
the quality of the results there reported.

The improvements of the vacuum system, compared to its initial stage,
have been twofold: on the one hand, the setup was upgraded with a nitrogen
pressure line for clean venting. Compared with air venting, this reduces
contamination of the chamber and speeds up the pumping at subsequent
evacuations. On the other hand, a baking system based on heating bands was
implemented in order to heat the system up to temperatures of ∼ 140 ◦C,
therefore achieving further cleaning of the chamber and consequently a better
vacuum.

Finally, a direct force actuation scheme (see § 3.5) has been implemented
in the set-up, complementary to the parametric actuation performed by laser
modulation. The particles, previously considered to be neutral, were actually
found to be initially charged in [85], bearing a net charge q of few elementary
charges. This enabled the possibility to couple the particle to external elec-
tric fields E via Coulomb interaction F = q · E. The generated electric field
was estimated, up to just 1.1% error, via finite elements simulations which
relied on a precise characterization of the electrodes geometry (see § 4.3.4 and
Fig. 4.5). Additionally, a corona discharge scheme for controlling the charge
of the particle was implemented by replicating the work of Frimmer et al. [29].
In our case, however, we showed that inverting the polarity of the high voltage
generating the plasma, allowed to preferentially bias the final charge towards
either positive or negative polarities. The implemented electrical driving was
paramount in all the measurement related to § 4 and § 5, and will have an
essential role in future experiments.

7.1.2 Experimental results

The present dissertation reports on the three main experiments conducted
along the doctoral work. These are thoroughly discussed respectively in § 4,
§ 5 and § 6. In the following we summarize the results obtained in each case.

Precise measurement of the particle’s mass
In § 4, a novel protocol for precisely measuring the mass of a levitated
nanoparticle has been presented. This project was motivated by the neces-
sity of more reliable displacement calibration procedures [44], which have a
severe impact on the accuracy of the system in sensing applications. To put
the experiment into context, in § 4.2 we estimated the uncertainties associated
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with the already existing mass measurement protocols. The outcomes draw
attention on a general problem of levitated nanoparticles, whose mass is usu-
ally given with errors as high as ∼ 30%. Making use of the analytical solution
to the thermally and harmonically driven damped resonator (see § 2.2), in
§ 4.3.2 we showed that the response to a known resonant electric field carries
information on the mass of the resonator. The main result of this section is
contained in Eq. (4.10) which is used in § 4.3.3 to demonstrate the protocol in
a real measurement. This equation for the particle’s mass directly exhibits the
possible sources of error in its calculation. Consequently, § 4.3.4 is dedicated
to a precise estimation of such errors. We conclude that the one relative to
the electric field σE0 /E0 = 1.1% represents the dominant uncertainty, while
for other quantities like bath temperature T, damping Γ and power spectral
densities Sv and Sth

v , they can be maintained below 1%. Finally, error prop-
agation has been applied to calculate both the statistical and the systematic
errors associated to our measurement protocol. We obtained a total error of
2.4% which makes our scheme more than an order of magnitude more precise
than other methods. Direct applications of the proposed protocol are given in
the next experiment, where subsequent mass measurements during pressure
pumps-down clearly demonstrate mass-losses from a levitated silica particle.

Pressure-dependent mass and charge
This chapter was dedicated to the understanding of an unexpected pressure-
dependence of some particle properties. In § 5.2.1 we provided a compre-
hensive description of the observed phenomena . The section exemplifies
the capabilities of our system to monitor in real time quantities such as the
charge of the particle and its scattering intensity. Capitalizing on the mass
measurement method, in § 5.2.2 we correlated such observations with intrin-
sic mass-losses from the silica particle. Further experimental investigations
also demonstrated its reverse process, i.e. mass uptakes from an humid envi-
ronment. In § 5.2.4 and § 5.3 we dealt with the measurement of the particle’s
charge. First, statistics on the charge variations when going to vacuum has
been provided, suggesting the presence different ionic species adsorbed on
the surface for different particle sizes, , probably due to the different synthesis
routes. In § 5.3, we proposed and demonstrated a protocol to measure arbitrar-
ily large numbers of elementary charges: a non-trivial task for highly charged
particles (|nq| & 50). Finally the chapter is concluded with an extensive discus-
sion on possible explanations for the observed phenomena. According to the
so-called Zhuravlev model, the silica surface is covered by water both physi-
cally and chemically adsorbed. Our data seems to confirm that the former is
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desorbed from the surface after the particle is brought into moderate vacuum.
Chemically adsorbed water (i.e. OH silanol groups bound to silica atoms), in-
stead, are most likely not completely removed, although their concentration is
way lower than the physically adsorbed water, and can be further decreased
in high vacuum thanks to the considerable bulk temperatures that the par-
ticle reaches [46]. For the current state of our experiments, the presence of
chemisorbed water does not represent an issue. However, for future develop-
ments in the field, nanoparticles could be thermally treated above T = 1200 ◦C
either before the loading or while already in the trap with a focused a CO2

laser [46].

A model system for stochastic bistable dynamics
The content of this chapter describes the most sophisticated (and somehow
troublesome) experiment carried out along this doctoral work. Former stud-
ies [36, 38] with particles trapped in optical tweezers showed their intrinsic
feature of behaving as a Duffing resonator, and as such, displaying interest-
ing nonlinear phenomena like bistability and hysteretic behaviors. In § 6.3 we
started with an extensive study of the particle’s response to parametric driv-
ing. This section led us to the definition of iso-amplitude lines inside the first
instability tongue. To our knowledge this feature was here observed for the
first time, and played a crucial role in the development of a bistable model for
particle dynamics in the nonlinear regime. To access the bistable dynamics,
additional noise had to be injected in the system. In § 6.3.2 we characterized
the particle’s response to external noise, obtaining a temperature calibration
that was paramount for quantitative analysis of the stochastic switching phe-
nomenon. This first part of the chapter concludes with an in-depth charac-
terization of the bistable double-well potential shape as a function of driving
parameters (δm, ε).

The control obtained on the system, enabled us to implement an experi-
ment to test the sensing capabilities of stochastic resonance (SR): a nonlinear
stochastic process that was proposed as a force detection scheme in noisy en-
vironments [2,4,9,108]. The frequency stability achieved - in particular close to
the bifurcation points - led us (to our knowledge) to the first qualitative and
quantitative agreement between the SR of a nanomechanical resonator and
the corresponding analytical models. Moreover, thanks to a deep understand-
ing of the processes that degrade the SR (such as hysteresis quenching [108]
and potential asymmetries), and implementing compensation techniques to
avoid them, we believe that the capabilities of SR as a detection scheme have
been pushed to their limits. Ultimately, we outperformed existing measure-
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ments [108] and reported amplifications up to 104 of weak signals correspond-
ing to parametric forces of tens to hundreds atto-Newtons. Nevertheless, in
§ 6.5.3 we provided a sensitivity comparison of SR with a complementary di-
rect amplification scheme. Our results show that independently of the noise
level, direct amplification always features a higher SNR than the correspond-
ing SR, and the two methods give similar outcomes only at high noise levels.
In agreeement with theoretical predictions [22, 82], these findings experimen-
tally demonstrate that stochastic resonance can decrease the SNR degradation
of a noisy signal but it does not provide a mechanism by which the unde-
tectable becomes detectable. Although it is not generally convenient to per-
form force detection with stochastic resonance, we foresee in optically levi-
tated nanoparticles a suitable platform for mimicking very complex stochastic
nonlinear dynamics, the SR experiments being a prominent example. This
could allow to shine a light on natural phenomena such as bio-molecule fold-
ing [5, 41], hearing [23, 64], neural signalling [67], and to tackle fundamental
questions of stochastic thermodynamics [11].

7.2 Future perspectives

There are always characteristic transient times from the very first spark of
a scientific idea to its practical implementation and ultimately to useful ap-
plications that have an impact either in everyday life or in fundamental re-
search. This whole process takes considerable time and undergoes very di-
verse phases. It is worth mentioning that Arthur Ashink, the father of levi-
todynamics, has been recently awarded the 2018 Nobel prize in physics pre-
cisely for triggering that spark. His pioneering experiments in levitation of
dielectric particles, paved the way for most of the works discussed and cited
in this thesis. Likewise, T. Li, J. Gieseler (from whom I inherited the set-
up) and the scientists that started developing levitation in vacuum ten years
ago share the credit for impelling a positive slope in the trend of growth of
this field. Current levitodynamics experiment are still experiencing that trend,
and an increasing interest from the scientific community can be inferred. Here
we present what we envision as possible experiments, achievements or appli-
cations that could lead the field to take additional forward steps along that
positive trending slope.

Quantum optomechanics with levitated nanoparticles Compared to atoms
and molecules, nanoparticles used in levitation experiments are dense object
with significant masses that belong to the often mentioned mesoworld. Bring-
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ing these mesoscopic objects into the quantum regime is certainly one of the
driving motors of levitodynamics (if not the Holy Grail of this field [92]). Cur-
rent implementations and future proposals of groundbreaking experiments
are paving the way toward the exploration of the quantum to classical tran-
sition. In this context we envision the possibility of performing matter-wave
interferometry in order to test collapse model and study the decoherence ef-
fects responsible for such transition [91]. Although the state-of-the-art toward
ground state of a levitated nanoparticle has been set with parametric feedback
in a tweezer configuration [50], resolved sideband cavity cooling seems nowa-
days to have great potential to achieve the objective, and is soon expected to
overtake the former systems in the race toward the quantum regime. Given
the situation, parametric feedback may not be the most competitive approach.
Still, better cooling schemes (for instance relaying on phase-locked-loop or
exploiting Kalman filtering for optimal position estimation) could be desir-
able to reach the photon recoil limit, where higher Q-factors, better stability
and in general higher sensitivity, would boost the performances of our force
nano-sesensor.

Frequency stability of levitated nanoresonators The frequency stability of
levitated oscillators is often a disregarded topic. Though, there are stud-
ied that show how in most cases (and actually always, when dealing with
clamped SiN systems) resonators do not sit on the thermomechanical limit of
frequency stability, and excessive unexplained phase noise is observed [95].
Similar investigations have not been yet carried out with levitated resonators,
and there is not a clear opinion whether this class of resonators could be
more suited to overcome this excess of noise, therefore reaching the thermo-
mechanical limit. Amongst the possible causes of such noise excesses Sansa
et al. suggest electrostatically induced changes in stiffness, molecules ad-
sorbtion/desorption onto/from the resonator, or diffusing along its surface,
dielectric and charge fluctuations and thermalization of higher order modes
through nonlinear mode coupling [95]. Interestingly, these are all effects that
could be minimized (an perhaps even completely suppressed) by the intrinsic
nature of levitated systems of being decoupled from the environment and not
oscillating in flexural modes.

Force sensing In its current current state, our system presents a resonant
force sensitivity, as predicted by Eq (2.79), equal to

√
SFmin ∼ 18 zN/

√
Hz.

This equation tells us which parameters could be optimized to boost our sen-
sitivity. Firstly, smaller particles could be used, with diameters as small as
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dp = 50 nm. The mass would then result ∼ 25 times smaller (m = 0.15 fg)
than the ones currently used. Modern technologies allow for easy implemen-
tations of cryogenic refrigeration in optical experiments. The bath temperature
could then be reduced down to T ' 4 K. Mechanical Q-factors as high as 1011

were predicted in ultra-high vacuum conditions [35]. However, it was later
shown [50] that for the typical size of particle used, at pressures of 10−8 mBar
the system already reaches the photon recoil limit. Therefore, lower pressures
would not help in further reducing Γ. We expect this to be limited in the
mrad/s range. Plugging everything into Eq 2.79, we would obtain sub-zepto-
Newton sensitivity of

√
SFmin ∼ 0.2 zN/

√
Hz. Finally, sensing experiment

can in principle exploit long integration times (small bandwidths b) to reach
smaller minimum forces detectable. This is eventually limited by the mechani-
cal stability of the system, which should be free from frequency jittering of the
mechanical resonance (notice, this is an additional motivation for stabilization
of the resonator down to the thermomechanical limit, as expressed in the pre-
vious paragraph). The current stability of the system has been characterized
and ensures integration times on the 1 s timescale. However, active stabiliza-
tion has been demonstrated [32] and implemented in systems very similar
to ours [43] to reach stability up to ∼ 103 s. Performing a force measurement
with these envisioned realistic parameters would take levitodynamics systems
into the yoctoNewton regime (1yN = 10−24N), with sensitivities comparable
to those of trapped ions [12], while using significantly simpler experimental
platforms.

An interesting force sensing scheme, recently demonstrated by Hebestreit
et al., is based on free falling particles. The main difference of this scheme,
compared to conventinal resonant force detection, is its sensitivity to static
forces. Current implementations led to the detection of forces at the atto-
Newton scale, and even higher sensitivities are within reach after technical
improvements of the system. The ability of detecting DC forces opens up the
possibility of exploring the regime of short-range forces such as Casimir and
non-Newtonian gravity-like forces [33].

Finally, more exotic sensing schemes could be explored already with the
current system. Following some proposals [80] and proof-of-concept experi-
ments with macroscopic resonators [24], for instance, a nonlinear parametric
symmetry breaking force transducer could be realized. This strategy would be
very interesting in our system because it relies on concept already thoroughly
investigated in § 6 such as parametric actuation in the first instability tongue
and bistability.
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Material science In § 5 it was mentioned how our assumptions on the par-
ticle’s morphology had to be adapted along with our understanding of the
particle’s properties in vacuum. From a very simplified model of a solid and
unchanging glass sphere, we are now dealing with very complex models (the
Zhuravlev, for instance) on the surface chemistry of silica, and its interaction
with adsorbed water. The results presented in § 5 provide a straightforward
example of the kind of information that a levitation experiment can provide
on the morphology of the silica particle. Needless to say that silica is one
of the most widespread materials for technological applications: from optical
fibers, to electrical isolators in microelectronics, up to more recent utilization
in the creation of artificial opals with interesting optical properties for pho-
tonic crystals [31]. As such, we envision the interesting possibility to inves-
tigate material properties at the nanoscale, i.e. on a single isolated particle,
as opposed to chemistry experiments where samples are usually an ensemple
of individual elements and abrupt physical events get averaged out in collec-
tive behaviors. We stress that to overcome the light absorption problem (that
severely limits the suitable materials for optical levitation), one could rely on
different levitation schemes such as like Paul traps.
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A
Calibration of particle detection

In the experiments presented throughout this thesis, and more generally in
any levitation experiment, the calibration of the particle’s detection represents
a central part of the experimental protocols. This consists in converting the
measured signal vi(t) from the detectors (measured in volts) into a physical
particle displacement qi(t) measured in meters, where i = x, y, z indicates the
three different oscillation modes. Conventional methods assume a linear pro-
portionality between the particle’s position and the detector signal, such that
the calibration factor is c(i)cal = vi(t)/qi(t). A second assumption made in the
typical calibration procedures is to consider the motion of the particle as that
o a perfect harmonic oscillator, therefore neglecting possible nonlinear contri-
butions in its dynamics. This allows to relate the measured signal (and more
precisely its variance) to the known bath temperature through the equipartition
principle. Note that in order to apply this calibration method, the mass of the
particle needs to be known. This again a motivation for § 4.3 with the objective
of lowering the inaccuracy on the particle’s mass.

Linear calibration of particle detection

The state-of-the-art method used in the levitation community to calibrate the
detectors signals (also extensively used in throughout the experiment hereby
described), is to assume the particle’s dynamics at high pressure P ∼ 10 mBar
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to be that of a perfect harmonic oscillator in thermal equilibrium with the en-
vironment. With this assumptions, we can relate the experimentally measured
power spectral density Sv, measured in units of V2/Hz to the expected res-
onator power spectral density, measured in m2/Hz, given as a function of the
damping Γ, the bath temperature T, the oscillator’s mass m and the oscillation
eigenfrequency Ω0.

In practice, we derive Sv as follows:

(i) record a number nPSD of discretized time signals v(t), t ∈ [0, T] at a sam-
pling rate fs = 625 kHz (note that this sampling is limited by the speed
of the FPGA’s digital-to-analog-conver). nPSD and T can vary depending
on the specific needs, however typical values are nPSD = 100, T = 80 ms.

(ii) apply to v(t) a Hanning window function w = {wj, j = 1 . . . N} defined
as:

wj =
1
2

[
1− cos

(
2π j
N

)]
, (A.1)

being N = T · fs the number of elements in the vector v(t), and defining
the quantity S2 = ∑N

j=1 w2
j .

(iii) compute the Fast Fourier Transform FDFT[w · v(t)]

(iv) Finally obtain the experimental power spectral density as the average
over the nPSD PSDs:

Sv( f ) =
|FDFT[w · v(t)]|2

fsS2
·


2, f > 0
1, f = 0
0, f < 0

(A.2)

Note that the expression given in (A.2) is defined in the the natural fre-
quency f domain. To convert it into the angular frequency domain we substi-
tute ω = 2π f , and energy conservation is ensured by the 2π factor included
in the Parseval’s theorem identity (2.58).

We then fit the experimental PSD Sv with a typical lorentzian function of
the form

S(ω) = a4 +
a1

(ω2 − a2
2)

2 + a2
3ω2

, (A.3)

a1, · · · , a4 being free fitting parameters, and compare with the analytical ex-
pected form, preiviously derived in (2.65),

Sx(ω) =
2kBTΓ

m
[(

ω2 −Ω2
0

)2
+ Γ2ω2

] . (A.4)
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Note that the additive factor a4 allows to take into account the measurement
noise in the system: a contribution of optical and electrical noise that, as-
sumed to be white, introduces a constant offset in the power spectral density.
Recalling that Sx(Ω) = Sv(Ω)/C2

cal , we obtain the following correspondence:

a1 = C2
cal

2kBTΓ
m

(A.5)

a2 = Ω0 (A.6)

a3 = Γ (A.7)

Finally, the the calibration factor is calculated as:

Ccal =

√
a1

a2

m
kBT

. (A.8)

Calibration with equipartition of potential energy

An equivalent calibration method to that above described, is to make use of
the equipartition theorem of the potential energy, which reads:

〈
Epot

〉
=

1
2

mΩ2
0
〈

x2〉 = 1
2

mΩ2
0

〈
v2〉

C2
cal

=
1
2

kBT (A.9)

Using the variance
〈
v2〉 of the detected signal time trace v(t), the eigenfre-

quency Ω0 from a fit to the power spectral density Sv(Ω) and T ' 300K, one
obtains:

Ccal =

√
mΩ2

0 〈v2〉
kBT

(A.10)

Calibration with equipartition of kinetic energy

One of the main problems of the two equivalent calibration methods above
described, is the assumption of harmonicity of the potential. In fact, eq. (A.9)
holds only for a strictly harmonic oscillator, while nonlinear correction terms
have to be included in the case of a anharmonic resonator. We know that in
our system such nonlinearities affect the dynamics of the particle [36]. This is
mostly true at higher vacuum levels, but may introduce non-negligible errors
even at higher pressures of P ∼ 1 mBar, where we perform the displacement
calibration.

On the other hand, the equipartition of the kinetic energy holds true inde-
pendently of the harmonicity of the dynamics. As a result we could use the
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following equation to extract the calibration factor:

〈Ekin〉 =
1
2

m
〈

ẋ2〉 = 1
2

m
〈
v̇2〉

C2
cal

=
1
2

kBT (A.11)

Here, ẋ = v̇/Ccal is the velocity of the particle. Experimentally this could be
calculated with a fast sampling of the position, and a time time derivative of
the recorded signal. However, this method is computationally demanding,
and can be replaced by a mathematical trick. It can be demonstrated that the
power spectral density of the variable x and of its derivative ẋ are linked by
the following relation:

Sẋ(Ω) = Ω2Sx(Ω) (A.12)

Therefore, the variance
〈
v̇2〉 can be calculated integrating Sv̇(Ω) = Ω2Sv(Ω)

and inverting eq. (A.11) to obtain:

Ccal =

√
m 〈v̇2〉

kBT
(A.13)



B
Electrically driven peak estimation

A crucial step in several protocols presented throughout this work is the ex-
perimental observation of an ultra-narrow peak in the power spectral density
of the harmonically driven resonator (see for instance Fig. 4.3). In this section
we treat a delicate analysis issue related to the time span of the measured
signal v(t), and the associated frequency resolution in Sv(ω).

The finite measurement time τ of a continuous signal v(t) leads to the sinc
function in (2.74), appearing as the fourier transform of the square function:

H(t; τ) =

{
1 , 0 < t < τ

0 , elsewhere.

The width of such sinc2[(ω−ωdr)τ] function is inversely proportional to the
length of the signal τ in the time domain 1, and can result in a very narrow
peak in the PSD. For typical sampling parameters used in our experiments,
the time signal recorded has a time span of τ = 80 ms, corresponding to a
total number of samples N = τ · fs = 50 kS, being fs the sampling rate of our
acquisition.

When detecting very narrow-band signals in the computed PSD, one has to
be careful with the resolution of the frequency domain. In fact, if no special

1A first approximation for the width can be obtained solving sinc(ω−τ) = 0, which
would give a width ∆ω = 2π/τ. However, a more rigorous approach is to calculate the
FWHM[sinc(ω−τ)] solving sinc(ω−τ) = 0. This more complicate case give the approximated
solution ∆ω ' 3.79/τ.
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measures are taken, one could in principle detect the signal as a single (or
very few) bin(s) peak without resolving the whole sinc function. This partial
resolution introduces a spurious detection of the peak’s height, which in turns
affects the corresponding estimation of Sv(ωdr).

To tackle this issues, let us remind that the maximum detectable frequency,
according to the Nyquist limit is fmax = fs/2, and that standard Fast-Fourier-
Transform (FFT) algorithms give a frequency resolution ∆ f = fs/2

N/2+1 ∼
fs
N =

1
τ

2. As a result, both the sinc-shaped peak and the frequency bin ∆ω have
a width that scales inversely proportional to τ. In other words increasing
the measurement time τ, improves our frequency resolution ∆ f , but does not
improve our peak resolution.

The solution is to use the so-called padding of the input signal. This practice
consists in extending the array in the time domain adding zeroes at its sides,
therefore creating a longer signal of length T (made of 2× nFFT points) that
still contains the harmonic function exclusively inside of H(t; τ). By doing
so, we can maintain a fixed width of the sinc function, and simultaneously
increase at will our frequency resolution. This effect is visually described in
figure B.1a. Figure B.1b, shows when the peak’s height starts to be properly
sampled for the specific case of τ = 80 ms (typically used in our experiments),
while in Fig. B.1c, this is generalized for different integration times τ.

2This is because they preserve the length N of the time signal also in the frequency domain
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André PilanÂăZ., E. M. Rasel, S. Reynaud, C. J. Riedel, M. L. Rodrigues,
A. Roura, W. P. Schleich, Jörg Schmiedmayer, T. Schuldt, K. C. Schwab,
M. Tajmar, G. M. Tino, H. Ulbricht, R. Ursin, and V. Vedral. Macroscopic
quantum resonators (maqro): 2015 update. EPJ Quantum Technology,
3(1):5, Mar 2016. W, cit. on p. ↑4

https://aip.scitation.org/doi/10.1063/1.5017119
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.063602
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.043803
https://aip.scitation.org/doi/10.1063/1.4993555
https://www.nature.com/articles/srep30125
https://www.research-collection.ethz.ch/handle/20.500.11850/200312
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.243601
http://opticaltweezers.org/
https://link.springer.com/article/10.1140/epjqt/s40507-016-0043-7


132 Bibliography

[53] R. B. Karabalin, R. Lifshitz, M. C. Cross, M. H. Matheny, S. C. Mas-
manidis, and M. L. Roukes. Signal amplification by sensitive control of
bifurcation topology. Physical Review Letters, 106(9):1–4, 2011. W, cit. on
p. ↑88
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