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Abstract

Microelectromechanical Systems (MEMS) are relevant components for the diversification

and integration of functionalities into a single heterogeneous chip or package in the known

More than Moore approach. This thesis contributes to this field by exploiting the possibili-

ties of mature CMOS technologies to develop chaotic CMOS-MEMS resonators with higher

performance than obtained until now and supporting its potential application in compact

chaos-based secure communication systems. Specifically, this work deals with the analysis,

design and experimental demonstration of chaotic electrical signal generation using simple

MEMS structures with a high degree of integration and scalability in CMOS technologies

and others.

The work analyzes from a practical perspective the geometric and electrical conditions

for sustained chaotic motion in electrostatically actuated beam-shaped resonators. Practi-

cal applications require reasonable and wide enough range of system parameters to assure a

feasible functionality in current technologies. An exhaustive analysis and numerical study of

the system features indicates the need for cross-well chaotic motion that implies a bistable

performance of the MEMS device. Such conditions involve, in contrast to typical MEMS

resonators applications (sensors or RF oscillators), a relatively large gap between the res-

onator and electrodes making the readout method a key issue. The on-chip CMOS capaci-

tive readout circuit allows the detection of the resonator motion with a high signal-to-noise

ratio.

A nonlinear electromechanical model for capacitive clamped-clamped beam (cc-beam)

resonators have been developed and implemented in an analog hardware description lan-

guage (AHDL) enabling system level electrical simulations. The model accounts for non-

linearities from variable resonator-electrode gap, thermal effect, residual fabrication stress,

fringing field effect as well as an accurate resonator deflection profile in contrast to par-
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allel plate approximations. Accurate analytical expressions of the design conditions for

bistability have been derived from the model and validated through FEM simulations and

experimental data.

The results reached in this thesis goes beyond the merely numerical or analytical ap-

proaches stated up to now for beam-shaped resonators. Experimental measurements of

extensive homoclinic chaotic motion have been reported for the first time in a straight and

non-axially forced bistable cc-beam resonator operating, in addition, in the MHz range. The

pioneer results on such simple and highly scalable structures represents a breakthrough for

the development of a compact and low-cost platform for the study of potential applications

of bistability and chaotic signal generation with added values beyond the use of purely

electronic circuits.
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Resum en català

El Sistemes Microelectromecànics (MEMS) són components rellevants en la diversificació

i integració de diferents funcionalitats dins un únic xip o encapsulat heterogeni, el que

es coneix com aproximació More than Moore. Aquesta tesi contribueix en aquest camp

mitjanant l’explotació de tecnologies CMOS madures en el desenvolupament de ressonadors

CMOS-MEMS caòtics amb millors prestacions que les obtingudes fins el moment i que

refermen la seva potencial aplicació en sistemes compactes de comunicacions segures basades

en caos. En concret, aquest treball tracta sobre l’anàlisi, disseny i demostració experimental

de generadors elèctrics de senyal caòtic emprant estructures MEMS simples amb un alt grau

d’integració i escalabilitat en tecnologies CMOS i d’altres.

El treball analitza des d’una perspectiva pràctica les condicions geomètriques i elèctriques

necessàries per obtenir moviment caòtic sostingut en ressonadors de tipus biga amb actuació

electrostàtica. Les aplicacions pràctiques requereixen d’un rang raonable i suficientment

ampli de paràmetres que garanteixin la funcionalitat adequada del sistema amb les tecnolo-

gies actuals. Un anàlisi exhaustiu i numèric de les caracteŕıstiques del sistema evidencia

la necessitat de treballar amb moviment caòtic de pou creuat (cross-well), fet que im-

plica un comportament biestable del dispositiu MEMS. Aquest comportament requereix,

al contrari que en aplicacions t́ıpiques dels ressonadors MEMS (sensors i oscil·ladors de ra-

diofreqüència), d’una distància relativament elevada entre el ressonador i els elèctrodes fent

que el mètode de lectura emprat sigui un punt clau. El circuit CMOS de lectura capacitiva

integrat monoĺıticament sobre el xip permet la detecció del moviment del ressonador amb

una elevada relació senyal/soroll.

S’ha desenvolupat un model electromecànic no-lineal per ressonadors de tipus pont (cc-

beams) implementat en un llenguatge de descripció de hardware analògic (AHDL) que

permet la realització de simulacions elèctriques a nivell de sistema. El model considera les
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no-linealitats originades per la distància variable entre el ressonador i l’elèctrode, l’efecte

tèrmic, l’estrès residual, els camps elèctrics marginals aix́ı com un perfil acurat de la deflexió

del ressonador a diferència de les aproximacions de pla paral·lel. A partir d’aquest model

s’han obtingut expressions anaĺıtiques acurades de disseny per a la condició de bistabilitat

que han estat validades a partir de simulacions FEM i de dades experimentals.

Els resultats assolits en aquesta tesi sobrepassen els enfocs merament numèrics o anaĺıtics

reportats fins el moment per a ressonadors de tipus biga. Per primer cop s’han obtingut

mesures experimentals de moviment caòtic homocĺınic i sostingut en un ressonador biestable

tipus pont, recte i no forçat axialment, i que a més opera en el rang dels MHz. Aquests

resultats pioners amb estructures simples i totalment escalables representen un avenç en el

desenvolupament d’una plataforma compacta i de baix cost per l’estudi d’aplicacions de la

biestabilitat i la generació de senyals caòtics amb valors afegits respecte a la utilització de

circuits estrictament electrònics.
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Resumen en castellano

Los Sistemas Microelectromecánicos (MEMS) son componentes relevantes en la diversifi-

cación e integración de diferentes funcionalidades dentro de un único chip o encapsulado

heterogéneo, lo que se conoce como aproximación More than Moore. Esta tesis contribuye

en este campo mediante la explotación de tecnoloǵıas CMOS maduras en el desarrollo de

resonadores CMOS-MEMS caóticos con mejores prestaciones que las obtenidas hasta el

momento y que afianzan su potencial aplicación en sistemas compactos de comunicaciones

seguras basadas en caos. En concreto, este trabajo trata sobre el análisis, diseño y de-

mostración experimental de generadores eléctricos de señal caótica utilizando estructuras

MEMS simples con un alto grado de integración y escalabilidad en tecnoloǵıas CMOS y

otras.

El trabajo analiza desde una perspectiva práctica las condiciones geométricas y eléctricas

necesarias para obtener movimiento caótico sostenido en resonadores de tipo viga con ac-

tuación electrostática. Las aplicaciones prácticas requieren un rango razonable y suficiente-

mente amplio de parámetros que garanticen la funcionalidad adecuada del sistema con las

tecnoloǵıas actuales. Un análisis exhaustivo y numérico de las caracteŕısticas del sistema

evidencia la necesidad de trabajar con movimiento caótico de pozo cruzado (cross-well), he-

cho que implica un comportamiento biestable del dispositivo MEMS. Este comportamiento

requiere, al contrario que en aplicaciones t́ıpicas de los resonadores MEMS (sensores y os-

ciladores de radiofreqüencia), una distancia relativamente elevada entre el resonador i los

electrodos haciendo que el método de lectura utilizado sea un punto clave. El circuito

CMOS de lectura capacitiva integrado monoĺıticamente sobre el chip permite la detección

del movimiento del resonador con una elevada relación señal/ruido.

Se ha desarrollado un modelo electromecánico no-lineal para resonadores de tipo puente

(cc-beams) implementado en un lenguaje de descripción de hardware analógico (AHDL) que
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permite la realización de simulaciones eléctricas a nivel de sistema. El modelo considera

las no-linealidades originadas por la distancia variable entre el resonador y el electrodo,

el efecto térmico, el estrés residual, los campos eléctricos marginales aśı como un perfil

preciso de la deflexión del resonador a diferencia de las aproximaciones de plano paralelo.

A partir de este modelo se han obtenido expresiones anaĺıticas precisas de diseño para la

condición de biestabilidad que han sido validadas a partir de simulaciones FEM y de datos

experimentales.

Los resultados alcanzados en esta tesis sobrepasan los enfoques meramente numéricos

o anaĺıticos reportados hasta el momento para resonadores de tipo viga. Por primera vez

se han obtenido medidas experimentales de movimiento caótico homocĺınico y sostenido en

un resonador biestable de tipo puente, recto, no forzado axialmente y que, además, opera

en el rango de los MHz. Estos resultados pioneros con estructuras simples y totalmente

escalables representan un avance en el desarrollo de una plataforma compacta y de bajo

coste para el estudio de aplicaciones de la biestabilidad y la generación de señales caóticas

con valores añadidos respecto a la utilización de circuitos estrictamente electrónicos.
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• J. Barceló, I. De Paúl, S. Bota , J. Segura and J. Verd, ”Thermal Tuning and De-

sign Conditions for Bistability in Electrostatically Actuated Microbeam Resonators”,

32th Design of Circuits and Integrated Systems Conference (DCIS), Barcelona (Spain)

2017.
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(TELSIKS), Nǐs (Serbia) 2015.
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Chapter 1

Introduction and motivation

This first chapter gives a brief overview of the thesis, which is mainly proposed as the

exploiting of mature CMOS technologies to develop chaotic CMOS-MEMS resonators with

higher performance than obtained until now. MEMS devices are framed in the More than

Moore era and the bistability and chaos behavior in such devices are introduced in the

state of the art context. The CRIPTOMEMS and KEYNEMS research projects, which

constitutes the framework of this thesis, are also presented. Finally, the structure of this

dissertation is described and enumerated.

1.1 MEMS in the More than Moore era

MEMS acronym stands for micro-electromechanical system, and consists usually in a device

in the size of microns, containing mechanical moving parts whose movement is electrically

excited and/or sensed. In this way, the system relates the mechanical and the electrical

domains, performing a transduction from one domain to the other, or in both senses. MEMS

represent one of the elements for the functionality diversification sought after in the More

than Moore paradigm (see figure 1-1). This new domain, besides the continuous scaling-

down in IC technologies following the Moore law (or even beyond it), is driving interest

in new devices for information processing and memory, new technologies for heterogeneous

integration of multiple functions, and new paradigms for system architecture [1].

The interest for the micro and nano technology was announced in 1959 by the Richard

Feynman’s famous lecture entitled ”There’s Plenty of Room at the Bottom” and pronounced

in the American Physical Society meeting at Caltech [2]. In it, Feynman exposes the enor-
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Figure 1-1: Dual trend for the integrated systems, projected by ITRS: miniaturization of
the digital functions (More Moore) and functional diversification (More than Moore) [1].

mous potential of the field of science that allows the manipulation, control and measurement

of particles and elements of the order of atomic magnitude. As of then, the study of micro

and nanotechnology has undergone a great intensification that has affected a large spectrum

of technical areas of application. Nowadays, the digital era in which society is immersed

has been reached thanks to the development and miniaturization of the IC technology. This

process offers a wide variety of interesting opportunities as well as numerous challenges that

must be faced with new designs, technologies and approaches.

The development of MEMS has been possible by the innovation of silicon based fabri-

cation techniques; the MEMS technology uses a variety of materials and processes from the

IC industry, like, for instance, the surface micromachining and the bulk micromachining.

The first MEMS resonator (a transistor with a resonating gate, whose resonance frequency

was 5 kHz and its quality factor was 500) was released in 1967 [3]. From this moment,

industry and research have developed several design solutions, with the aim of improve the

MEMS features, mainly quantified as the resonance frequency, the quality factor, the mo-
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tional impedance and the power-handling (the maximum power which can be invested in

the resonator movement before the appearance of the nonlinear regime) parameters. The

first MEMS with a comb-drive structure (with a resonance frequency of about 50 kHz and

a quality factor of 100) was fabricated by the University of Berkeley (California) in 1989

[4], and in 1998 the first polysilicon made comb-drive was released [5]. In order to overcome

the frequency limitation of the comb-drive MEMS, the beam shaped resonators (cantilevers

and cc-beams) were introduced [6], as well as other geometries like disk resonators, which

provide a model in 2003 with a resonance frequency in the order of GHz and a quality factor

upper than 1500 at room conditions, keeping also low the motional impedance.

The current and potential future applications of MEMS include microsensors (e.g. gy-

roscopes and accelerometers [7]) biomedical applications (e.g. instruments for analysis, im-

plants and drug delivery [8]), microactuators and RF-MEMS (e.g. tunable micromachined

capacitors, integrated high Q inductors, low-loss micromechanical switches [9], [10], [11]).

In particular those RF-MEMS devices arouse great interest because of their amenability to

on-chip integration alongside transistors, which might enable a single-chip RF front-end,

reducing size and power consumption and raising robustness against interferences [12].

1.2 Nonlinear dynamics and chaos

A dynamical system is a set of possible states that present a temporal evolution, together

with a rule or law which defines the present state in terms of previous states [13]. On

the other hand, state is defined as all the necessary information to know the behavior and

the evolution of the system. In a nonlinear dynamical system described from dynamical

variables with bounded values, the chaotic regime is defined as the nonperiodic but bounded

movement, with great sensitive dependence on initial conditions, unpredictable (without

knowing the rule governing the system, only knowing the values of the dynamical variables

along the whole time, it is impossible to predict the values of these dynamical variables

in future time), with noise shape but, in contrast to noise, deterministic (given the same

conditions, the response dynamics will be identical no matter the number of repetitions).

Formally, chaotic behavior appears when confinement in the phase space (for bounded

values of the dynamical variables) and exponential divergence of initially near trajectories

(a consequence of the sensitive dependence on initial condition) take place simultaneously.
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This notion of exponential divergence is quantified by the Lyapunov exponents [14] [15].

At the same time, attractor is defined as the subset of the phase space where trajectories

converge after a long enough time lapse, in a way that an attractor is never abandoned

by trajectories even if they are perturbed [16]. The bounded and non chaotic dynamic

systems can converge in a point (equilibrium point), or in a set of states that are repeated

periodically (limit cycle). The chaotic dynamics is characterized by a third kind of attractors

(called strange attractors), whose more interesting feature is that they present a fractal (non

integer) dimension [14], [17].

1.3 Nonlinear dynamics and chaos in MEMS, state of the art

The behavior of electrostatically actuated MEMS resonators is inherently nonlinear due to

the nonlinear electrostatic force and the mechanical resonator nonlinear properties that can

be exploited to display chaotic motion under specific operating conditions. In spite of its

considerable potential in several applications, the chaotic behavior of such MEMS devices

constitutes an exotic field, with very few reported experimental results.

1.3.1 Chaotic behavior in MEMS resonators

In 1998, Y. Wang et al. reported for the first time experimental chaotic behavior from a

MEMS (fabricated at Cornell University in 1996) [18]. The MEMS structure, a nonoverlap-

ping comb drive, was fabricated using the single-crystal reactive etching and metalization

process [19], and monolithically integrated with the electronic circuitry. The operation of

this system was performed by means of electrostatic actuation (which depends on the posi-

tion of the resonator, i.e what is called parametric forcing) provided by electrodes parallel

to the beams structures, and the mechanical stiffness is obtained from the restoring springs

that hold the structure, which will be susceptible to the induced resonant movement figure

(1-2). The application of a bias voltage to the structure results in a symmetric stiffness in

the electrical domain which tunes the effective stiffness of the system and, in consequence,

provokes a reduction of the resonance frequency. From this tuning procedure, the system

is made to be bistable, and with a proper AC excitation the chaotic behavior arises, as a

reconstruction of the two-well potential Duffing attractor and can be experimentally mea-

sured. The proposed structure in [18] has a size of approximately 1.5× 0.75mm, resonates
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with a natural frequency of ≈ 6 kHz, and typical values of 32.6V of bias voltage and 1.37 V

of excitation amplitude are needed. The movement of the structure resonance is given in the

parallel direction to the electrodes (or in the perpendicular direction to the ”fingers”); the

movement in another direction is prevented by the structural design of the resonator, and

this fact prevents the system from collapsing because of the pull in effect. The disposition of

the fingers increases the coupling area and, in this way, relatively low voltages are needed.

Finally reference [18] experimentally demonstrated the autosynchronization capability of

pairs of identical devices.

Figure 1-2: a) Schematic representation and b) SEM image of the electromechanical system
reported in [18].

References [20] and [21] introduces a theoretical prediction of the chaotic behavior in

a comb drive shaped MEMS (depicted in figure 1-3) by means of the analytical Melnikov

method [22]. In these references, the electromechanical system was modeled with a version

of the Mathieu equation, and the natural frequency of the fabricated device was ≈ 10 kHz.

The procedure to attain chaotic behavior consists in tuning the mechanical stiffness by

means of DC voltage until the two-well potential distribution is reached, and then an AC

excitation with the proper frequency and amplitude was applied. The numerical simula-

tions and experimental results agreed in the reproduction of the chaotic attractor for a set

of parameters (bias voltage, excitation amplitude and frequency) for which the Melinkov

criterion predicts chaotic behavior. The homoclinic structure is found to be indispensable

for the Melnikov analysis, and essential for the chaotic behavior attainment.

The adoption of these relative large and complex structures increases the resonator mass,
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Figure 1-3: SEM image of the fabricated device reported in [20] and [21].

reducing its resonance frequency, and adds constraints in terms of fabrication reliability.

As a consequence, the very few experimental results reported in the literature have been

obtained with MEMS resonators working in the kHz range [18], [20], [21]. On the other hand,

the consideration of simple resonant structures, as a cantilever (clamped beam) or a bridge

(cc-beam) resonator, provides significant benefits in terms of integration feasibility and

scalability to nanometer dimensions (NEMS resonators) enabling both high sensitivity and

high operating frequency. In [23], authors proposed the analysis of the nonlinear dynamics of

a cantilever shaped MEMS oscillator from Poincare maps. Using a closed loop configuration

a bistable system was attained, and nonlinear effects like period doubling bifurcation and

ultimately chaotic behavor were numerically obtained.

In [24] and [25], authors provide a procedure to follow the period-doubling route to chaos

with an electrostatically actuated microstructure. The application of high DC voltages is

needed to bring the device into a nonlinear state, which can be observed as a breaking

of the symmetry in the acceleration-velocity phase state plots. By applying upper DC

values than the ”DC-symmetry-breaking”, an applied growing AC amplitude provoke a

symmetry breaking in the velocity-position phase plot (called ”AC-symmetry-breaking” by

[25]). The symmetry-breakings are a prerequisite for the period-doubling route to chaos

[17]. On further increasing the AC amplitude, and under superharmonic frequencies the

period doubling sequence takes place and interesting chaotic transition (banded chaos) is
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observed during it.

In [26], numerical studies (leaded by the Melnikov criterion) are performed to establish

the conditions for homoclinic chaos in cc-beam mircoresonators. Extensive chaotic behavior

is obtained by numerical simulations. Moreover a robust adaptive control based on fuzzy

and sliding-mode control is applied to stabilize the MEMS resonator in a high-amplitude

oscillation state, suppressing the chaotic response. References [27], [28] and [29] continued

the analysis performed in [26] providing wider perspectives or proposing improvements to

the chaotic predictive method based on the Melnikov theory. In [27] an analytical and

numerical analysis of the homoclinic and heteroclinic chaotic behavior based on the three-

well potential distribution (made possible by the presence of the quintic term of the nonlinear

stiffness) is introduced: the parameter criteria to allow such a potential distribution are set,

and the approximate analytical prediction for chaotic response is addressed. On the other

hand, references [28] and [29], developed a new criterion for chaotic behavior prediction

with is claimed to be more accurate than the Melnikov analysis.

In [30] the symmetry-breaking route to chaos has been found, and extensive chaotic mo-

tion is numerically predicted and experimentally measured to appear in nonplanar motion

performed by a fabricated nanowire resonator. This paper reports that in the nonplanar

regime, the chaotic behavior can be rather common, this fact converts the non-planar move-

ment into one of the strategies to seek the chaotic response in resonators. Reference [30]

states that dynamical phenomenon of crisis can occur where two symmetry-broken chaotic

attractors can collide simultaneously with their basin boundaries to form a much larger,

single chaotic attractor possessing the full symmetry of the system.

Experimental chaotic motion has also been measured in microcantilevers used for atomic

force microscopy (AFM), as reported in [31] and [32]. In these applications the microcan-

tilevers are subjected to a variety of short and long range forces, van der Waals, capilar-

ity, Pauli repulsion, nanoscale contact and elastic forces amongst others. Period doublig

sequences under these conditions have been found for both asymmetric single well and

asymmetric double well potential.

Potential application is secure communication purposes

Prospective applications of chaotic MEMS/NEMS resonators at VHF (very high frequency)

range and higher include random number generators or signal encryption system in chaotic
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based secure communications systems as proposed in [18], [21], [30]. Until now, traditionally

the security in communication systems has been based on software techniques and protocols

for data encryption. However, the need for high speed in data transmission has motivated

an increase in the interest of hardware schemes for real time data cryptography. The feature

of autosynchronization presented by chaotic systems, demonstrated in the pioneer work [33]

for the Lorenz system, and physically implemented in electronic circuits and experimentally

corroborated by [34] has immediate application in the field of secure communications. In

[34], authors encrypted useful information by means of a widebanded chaotic carrier signal

(the output of the sender), and recovered it after a synchronization of the chaotic signal in

the receptor. Reference [18] experimentally observed for the first time the synchronization

between a pair of identical MEMS resonators, and proposed immediately their scheme to be

used in secure communications purposes. Nevertheless, despite this promising work, [18] is,

still nowadays, the only work where synchronization between chaotic MEMS is proposed.

Up to now, it seems that the scientific community has preferred to focus in the research of

chaotic optical devices for its use in secure communication systems as the alternative option

to the use of electronic or electromechanic chaotic systems [35], [36], [37].

1.3.2 Bistability in MEMS

Bistability in MEMS, because of its several potential applications, has sparked the interest

of researchers and developers, but in spite of that, until now, just analytical and numerical

studies about bistable simple clamped-clamped microbeams are reported in literature. For

instance, in [38] and [29], the different regions of parameter space are set to imply a classifi-

cation of the resonator dynamics. On the other hand the existing experimental works refer

to comb-drive MEMS in the range of the KHz [39], arched beams [40] and axially loaded

bridges [41], where buckling is given by an applied mechanical axial forcing. However, ref-

erence [42] reports an interesting work, including experimental results, where a bistable

behavior of a microcantilever (with a frequency in the range of the kHz) is achieved by

means of the interaction of fringing field effects with electrostatic and mechanical (restor-

ing) forces.

Amongst their numerous applications, bistable MEMS have been found to be useful

as threshold switches, mechanical memories, micro-relays, band-pass filters, and energy

harvesters [39]. For instance, the bistable microcantilever reported in [42] was used as
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pressure sensor in [43]. Finally, bistability (two-well potential distribution) can be seen as

the first step to attain chaotic behavior in MEMS resonators, since it has revealed to be

the easiest and (by far) most reported strategy to obtain chaotic response in a resonator,

as it allows an assimilation to the well know Duffing Ueda chaotic system.

1.4 Objectives: CRIPTOMEMS and KEYNEMS projects

The thesis objectives are completely framed within the projects CRIPTOMEMS (TEC2009-

07254-E) and KEYNEMS (TEC2014-52878-R). Starting from the intrinsic nonlinearities

previously observed in beam resonators, the CRIPTOMEMS project was conceived as a

first exploration of the feasibility in obtaining chaotic signal generators based on beam-

shaped CMOS-MEMS resonators for a potential application in cryptographic schemes. The

project proposed, as an added value of MEMS resonators (instead of purely integrated

circuits), the use as encryption key of a physical parameter of the device that cannot be

measured. In this sense the MEMS-based device becomes a physically unclonable device.

From the theoretical and numerical results obtained from this project, the main line of the

next KEYNEMS project was devised for the practical implementation of clamped-clamped

microbeams resonators as nonlinear and chaotic CMOS-MEMS devices using mature CMOS

technologies.

In this context, the main objective of this thesis work is the analysis, design and exper-

imental demonstration of generation of chaotic electrical signals by using simple microelec-

tromechanical structures with a high degree of integrability and scalability in commercial

CMOS technologies. The CMOS-MEMS fabrication approach, detailed in chapter 3, ex-

hibits interesting features for the achievement and development of MEMS based bistable

and chaotic systems:

• The scaling down of the MEMS dimensions to the submicrometric range allows the

fabrication of resonators with relative high frequencies. The increase of the chaotic

resonator frequency allows a wider bandwidth and a higher velocity in potential ap-

plications of data transmission.

• The monolithic integration (MEMS resonator and CMOS circuitry fabricated into a

single CMOS die) improves the signal to noise ratio and in consequence the quality
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of the output signal. Moreover, the monolithic integration allows its immediate ap-

plication in smart microsystems as a transmission module component, providing, in

this way, compact, economical and reliable systems.

• The use of electrostatic transduction implies a direct dealing with electric signals

without the need of additional transduction elements. In this way an improvement of

the energetic efficiency is expected in comparison with optical based systems.

• The use of capacitive readout allows an easy and direct monolithic integration of such

MEMS/NEMS devices with electronics enabling the exploitation of their practical

applications [44], [45], [46], [47].

1.4.1 Why cc-beam MEMS?

The aim of the present work is to study and evaluate the potentialities of nonlinear behavior

in MEMS resonators, establish their operating limits and propose design rules to optimize

their operation. Hardware-based designs are claimed to provide high performance solutions

for several fields in engineering, and amongst them, the wide potential applications of MEMS

devices make them highlight. MEM systems allow a high level of scalability, which implies

an increase of the operating frequency and the bandwidth, and they are compatible with

CMOS technology. Specifically, the use of simple structures (like cantilevers or cc-beams) as

resonators is optimal, because, for the same stiffness, they present the least mass, allowing

a higher frequency, and higher sensitivity. Simple structures are compatible with top-down

and bottom-up fabrication approaches and, in addition, they provide benefits in terms of

fabrication reliability and scalability down to nanometric dimensions.

The approach proposed in this work is to exploit the electromechanical nonlinearities

inherent in doubly clamped beams (cc-beams) for interesting nonlinear behaviors, like the

bistability, and eventually chaotic motion. The strategy for the chaotic behavior attainment

is the reproduction of the Duffing Ueda strange chaotic attractor with two-well potential.

Consequently, bistability is seen as the first step to achieve extensive, robust and nontran-

sient chaotic response. As it has been mentioned, bistability itself presents several uses

and applications, and the mere achievement of two-well potential distribution (bistable be-

havior) itself represents an objective. This bistability is sought in an in-plane operation,

without adding curvature to the beams, or applying axial loads; this fact provides more
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simplicity and reliability to the current approach. Moreover, the in-plane operation pro-

vides facilities to the capacitive readout, unlike the out-of-plane operation. However, the

need of bistability (namely, a homoclinic structure) prevents the cantilever-based designs

from being considered, because the two-well potential distribution requires a non negligible

nonlinear mechanical stiffness while in the cantilever (because of its smaller hyperstaticity

order with respect to the cc-beam) this condition is not fulfilled (notice that the bistable

behavior of the cantilevers reported in [42] and [43] relies on a not in-plane fringing field-

based forcing). On the other hand, the way proposed in [27] to achieve the chaotic regime

in a MEMS resonator, based on the quintic nonlinear stiffness term (which would allow the

heteroclinic-based chaos) is not considered in this work, since it has been proved that the

quintic stiffness term has a negligible influence on the static and dynamic behavior of the

systems under study.

In summary, the development of this thesis has been focused on submicrometric cc-beam

designs, with non-linear behavior, fabricated in commercial CMOS technologies, whose in-

plane operation is based on electrostatic actuation and capacitive readout. It is important to

remark that there are no previous experimental results of such resonators exhibiting either

bistability or chaos, and some of the numerical simulations reported up to now exhibit

mostly unclear results. In some simulation studies chaos is only obtained for extremely

narrow range of actuation voltages [25], making practical implementations unfeasible due

to inherent fabrication tolerances. In other numerical works, extended and sustained chaotic

behavior is reported but assuming impractical system parameters [26], [27].

1.5 Thesis outline

The structure of this dissertation has been disposed with the aim of allow, as much as

possible, a fairly comprehension of the effectuated work. After this introductory chapter,

the document has been distributed amongst seven chapters and four additional appendices,

with the following structure:

• Chapter 2: In this chapter, the mathematical approaches and tools used for the static

and dynamic features description of nonlinear resonators are summarized.

• Chapter 3: The MEMS generalities theory and the fabrication approaches of the

MEMS devices is explained in this chapter.
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• Chapter 4: This chapter explores the design and operating conditions for the two-well

potential distribution and homoclininc chaos in beam-shaped MEMS, using a 1DOF

model based on the parallel plate assumption.

• Chapter 5: In this chapter, an accurate nonlinear model considering realistic con-

ditions of MEMS cc-beams (near real deflection profile, and nonlinear second order

parameters) is developed. The conclusions provided by chapter 4 are adapted to this

accurate model.

• Chapter 6: This chapter presents the experimental results of bistable behavior and

chaotic response. These results prove the conclusions mainly exposed in previous

chapters, and the accuracy of the model presented in chapter 5.

• Chapter 7: In this chapter, the main conclusions of the thesis are exposed as well as

the proposed future work to continue with the advances provided by this thesis.

• Appendix A: In this appendix, a control method based on fuzzy logic and implemented

with artificial neural networks is proposed to be used to improve the chaotic response

of a MEMS system within the homoclinic region.

• Appendix B: This appendix presents the implementation of the model developed in

chapter 5 in an analog hardware description language (AHDL) and its utility for the

bistable analysis.

• Appendix C: This appendix is a list of the different generations of chips designed and

fabricated during this thesis.

• Appendix D: This appendix summarizes the main approaches to the application of

chaotic behavior to the field of critpography and secure communications.
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Chapter 2

Mathematical model of nonlinear

and chaotic resonators

This chapter summarizes the mathematical tools and approaches used to model the static

and dynamic features and behavior of nonlinear resonators. The models for the MEMS

resonator behavior (exposed in further chapters) can be assimilated to the Duffing equation

which has been used to observe (by means of analytical and numerical studies) the nonlinear

response of such systems. The features of the Duffing equation are explored from the

analytical and numerical point of view, and analytical and numerical methods for chaotic

behavior prediction and detection are introduced.

2.1 One degree of freedom model

A reduced-order model, with one degree of freedom (1DOF), for a doubly clamped beam

(figure 2-1) under electrostatic actuation (see section 3.1.5 for details) is obtained, and

assimilated to the classical Duffing equation. The Galerkin method, a powerful and com-

putationally efficient weighted-residual method, capable of handling nonconservative and

nonlinear systems has been used [48]. Next, a brief illustration of this method is presented.

2.1.1 The Galerkin discretization and order-reduction method

Following the theoretical development explained in [48], consider a system with an equation

and boundary condition expressed as
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Figure 2-1: Representation of a clamped-clamped beam resonator (where the electrostatic
actuation is applied) with its dimensional variables.

A (z) = F

B1 (z) = z1,0 B2 (z) = z2,0 (2.1)

with z (x, t) being a parameter that depends on space and time variables, A a linear or

nonlinear differential operator in space and time, F the forcing function, B1 and B2 are

boundary operators and z1,0 and z2,0 the boundary constants (nontime varying). Based

on the method of separation of variables, an approximate solution of the system (2.1) is

assumed to have the form of

z (x, t) = φ0 (x) +
n∑
i=1

ui (t)φi (x) (2.2)

where φ0 (x), the particular static solution of the system, satisfies the inhomogeneous bound-

ary conditions of equation (2.1), every ui (t) is an unknown function of time, and every φi (x)

correspond to an approximate or trial function, which should fulfll the following conditions:

• Satisfy the homogeneous form of all the boundary conditions of the problem.

• Be as many times differentiable as the order of the differential equation of the system

• Form or belong to a complete set of linearly independent functions, otherwise the

series of equation (2.2) will not converge to the exact solution as n→∞

The approximated solution (2.2) is substituted into the system (2.1), and the error R is

generated:
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A

[
φ0 (x) +

n∑
i=1

ui (t)φi (x)

]
− F = R. (2.3)

Following the procedure of the weighted residual methods, the error R is made to con-

verge to 0 by requiring it to be orthogonal to every weighting function (chosen to be the

φi (x) functions, in the case of the Galerkin method). Multiplying equation (2.3) by φj (x)

and integrating the whole equation over the domain Γ of the problem the following expres-

sion is obtained:

∫
Γ
φj (x)

(
A

[
φ0 (x) +

n∑
i=1

ui (t)φi (x)

]
− F

)
dx =

∫
Γ
φjRdx = 0 (2.4)

The result of this procedure is a set of n differential equations in time (ui (t)), which

can be numerically integrated using Runge-Kutta techniques. The total response is given

by substituting these integrated functions into equation (2.2).

2.1.2 1DOF model formulation

Starting from the Bernouilli-Euler-based equation, provided in [49], which governs the de-

flection ω (y, t) of beams with uniform geometry and material properties, a 1DOF macro-

model (reduced-order model) can be obtained from applying the Galerkin method [48].

Following [49], the deflection of each position y of the beam span of a clamped-clamped

microbeam is given by :

EI
∂4ω

∂y4
+ ρwth

∂2ω

∂t2
+ c1

∂ω

∂t
=

(
N1 +

Ewth
2l

∫ l

0

(
∂ω

∂y

)2

dy

)
∂2ω

∂y2

+
εthv (t)2

2 (s− ω)2 (2.5)

where l,w,and th are the dimensions of the beam (length, width and thickness respectively),

s is the gap between the beam and the electrode, y is the position along the beam length,

t time, E the Young modulus, I the moment of inertia of the cross section, ρ the material

density, ε the dielectric constant, c1 is the damping factor per unit length and N1 the axial

load. The term added to N1 parameter corresponds to the mid-plane stretching effect that,

as will be seen in the development of the method, causes the non-linear behavior of the
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system [50]. The voltage parameter v (t) is defined as

v (t) = VDC + VAC cos (Ωt) (2.6)

and the boundary conditions are

ω (0, t) = ω (l, t) = 0,
∂ω (0, t)

∂y
=
∂ω (l, t)

∂y
= 0 (2.7)

For simplicity, non-dimensional parameters (denoted by hats) are commonly used:

ŷ =
y

l
, ω̂ =

ω

s
, t̂ =

t

T
. (2.8)

where T is a time scale defined as [48]:

T =

√
ρwthl4

EI
(2.9)

From these definitions the following relations are obtained

∂nω

∂yn
=

s

ln
∂nω̂

∂ŷn
,

∂nω

∂tn
=

s

Tn
∂nω̂

∂t̂n
(2.10)

and substituting these relations into equation (2.5) leads to

EI
s

l4
∂4ω̂

∂ŷ4
+ ρwth

s

T 2

∂2ω̂

∂t̂2
+ c1

s

T

∂ω̂

∂t̂
=

(
N1 +

Ewth
2l

∫ 1

0

(
s

l

∂ω̂

∂ŷ

)2

ldŷ

)
s

l2
∂2ω̂

∂ŷ2

+
εthv (t)2

2s2 (1− ω̂)2 (2.11)

Finally, the nondimensional equation (2.12) is obtained. From now, the hats of the nondi-

mensional parameters have been removed for simplicity.

∂4ω

∂y4
+
∂2ω

∂t2
+ c

∂ω

∂t
=

(
N + α1

∫ 1

0

(
∂ω

∂y

)2

dy

)
∂2ω

∂y2
+ α2

v (t)2

(1− ω)2 (2.12)

where c =
c1l

4

EIT
, N =

N1l
2

EI
, α1 = 6

( s
w

)2
, and α2 =

εthl
4

2s3EI
, and having defined the cross

section moment of inertia (I) as I =
thw

3

12
. Based on the method of separation of variables,

the solution of equation (2.12) can be written in the form
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ω (y, t) =

n∑
i=1

ui (t)φi (y) (2.13)

with φi (y) being the i-th mode shape of the clamped-clamped beam. The mode shapes are

orthogonal between them. By substituting this equation into equation (2.12), multiplying

each term by the j-nth mode shape and integrating all over the beam domain from 0 to 1,

the following expression is obtained:

∫ 1

0
φj (y)

(
n∑
i=1

ui (t)
∂4φi (y)

∂y4
+

n∑
i=1

∂2ui (t)

∂t2
φi (y)

)
dy

+c

∫ 1

0
φj (y)

(
n∑
i=1

∂ui (t)

∂t
φi (y)

)
dy

−
∫ 1

0
φj (y)

α1

∫ 1

0

(
n∑
i=1

ui (t)
∂φi (y)

∂y

)2

dy +N

( n∑
i=1

ui (t)
∂2φi (y)

∂y2

)
dy

= α2v (t)2
∫ 1

0

(
φj (y)

(1−
∑n

i=1 ui (t)φi (y))2

)
dy (2.14)

The ortogonality between the mode shapes implies that

∫ 1

0
φiφj = δi,j (2.15)

where δi,j is the Kronecker Delta, namely 1 if i = j and 0 otherwise. Considering only the

first term of the Galerkin expansion (ω (y, t) = u1 (t)φ1 (y)):

∫ 1

0
φ1 (y)u1 (t)

∂4φ1 (y)

∂y4
dy +

∂2u1 (t)

∂t2
+ c

∂u1 (t)

∂t

−
∫ 1

0
φ1 (y)

(
α1

∫ 1

0

(
u1 (t)

∂φ1 (y)

∂y

)2

dy +N

)(
u1 (t)

∂2φ1 (y)

∂y2

)
dy

= α2v (t)2
∫ 1

0

(
φ1 (y)

(1− u1 (t)φ1 (y))2

)
dy (2.16)

and, by regrouping terms:
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∂2u1 (t)

∂t2
+ c

∂u1 (t)

∂t
+ u1 (t)

κ1︷ ︸︸ ︷(∫ 1

0
φ1 (y)

∂4φ1 (y)

∂y4
dy −N

∫ 1

0
φ1 (y)

∂2φ1 (y)

∂y2
dy

)
−u1 (y)3 α1

∫ 1

0
φ1 (y)

∂2φ1 (y)

∂y2
dy

∫ 1

0

(
∂φ1 (y)

∂y

)2

dy︸ ︷︷ ︸
κ3

= α2v (t)2
∫ 1

0

(
φ1 (y)

(1− u1 (t)φ1 (y))2

)
dy︸ ︷︷ ︸

F (y, t, v (t))

(2.17)

Changing the notation ˙ =
∂

∂t
, ′ =

∂

∂y
and denoting respectively by ui and φi the

functions ui (t) and φi (y), equation (2.17) can be expressed as [50]:

ü+ cu̇+ κ1u+ κ3u
3 = F. (2.18)

However, the integral of the forcing term (F (y, t, v (t))) can not be easily solved, and

a Taylor expansion in power series, without retaining a sufficient number of terms would

make the method wield inaccurate results. A reliable and efficient method (proposed in

[49]) to overcome this issue consists in multiplying both sides of equation (2.12) by (1− ω)2

( being ω the the nondimensional parameter) and then applying the Galerkin method. If

the following relation between axial force and the mode shape is used:

φ′′′′i −Nφ′′i − ω2
n0iφi = 0 (2.19)

with ωn0i being the natural frequency corresponding to the i-th mode shape, expressed with

respect to the time scale T , the development of the Galerkin method provides:
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∫ 1

0
φj

(
1−

n∑
m=1

umφm

)2( n∑
i=1

uiω
2
n0iφi +

n∑
i=1

üiφi

)
dy

+ c

∫ 1

0
φj

(
1−

n∑
m=1

umφm

)2( n∑
i=1

u̇iφi

)
dy

− α1

∫ 1

0
φj

(
1−

n∑
m=1

umφm

)2
∫ 1

0

(
n∑
i=1

uiφ
′
i

)2

dy

( n∑
i=1

uiφ
′′
i

)
dy

= α2v (t)2
∫ 1

0
φjdy (2.20)

Only one term in the Galerkin expansion is considered now:

∫ 1

0
φ1

(
u1ω

2
n0iφ1

)
(1− u1φ1)2 dy +

∫ 1

0
ü1φ

2
1 (1− u1φ1)2 dy

+ c

∫ 1

0
u̇1φ

2
1 (1− u1φ1)2 dy − α1

∫ 1

0
φ1

(
u1φ

′′
1

∫ 1

0

(
u1φ

′
1

)2
dy

)
(1− u1φ1)2 dy

= α2v (t)2
∫ 1

0
φ1dy (2.21)

Finally the reduced order model provided by the Galerkin method (equation (2.22)), after

executing the spatial integrals (easier to solve than in equation (2.17)), can be numerically

integrated in time for dynamic simulations.

ü1 + u1ω
2
n0i + cu̇1 − α1

∫ 1
0 φ
′2
1 dy

(
u3

1

∫ 1
0 φ1φ

′′
1dy − 2u4

1

∫ 1
0 φ

2
1φ
′′
1dy + u5

1

∫ 1
0 φ

3
1φ
′′
1dy
)

(
1− 2u1

∫ 1
0 φ

3
1dy + u2

1

∫ 1
0 φ

4
1dy
)

= α2v (t)2

∫ 1
0 φ1dy(

1− 2u1

∫ 1
0 φ

3
1dy + u2

1

∫ 1
0 φ

4
1dy
) (2.22)

2.2 Analytical approach to the Duffing equation

In 1918, Georg Duffing introduced an equation for a nonlinear oscillator with a cubic stiffness

term to describe the hardening spring effect observed in many mechanical problems [22].

The Duffing equation governs the behavior of an oscillator subjected to structural nonlinear

stiffness, to viscosity damping, and to a sinusoidal excitation [51]. Many years later, Holmes

and Moon experimentally observed chaotic behavior with a metallic cantilever beam placed
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symmetrically between two clamped magnets, which perform temporally periodic forcing to

the cantilever [52]. P. Holmes and F. Moon described the motion of the tip of a cantilever

beam by means of a version of the Duffing equation with a negative linear stiffness. The

Duffing equation represents, together with the Van der Pol equation the most common

examples of chaotic oscillators [22]. From the generic form of the Duffing equation (2.23),

an analysis of the fixed points and their stability is performed.

ẍ+ αx3 + βx+ δẋ = Φcos (ωt) (2.23)

where α corresponds to the nonlinear stiffness, β to the linear stiffness, δ to the damping

parameter and Φ to the excitation amplitude. The equation (2.23) can be rewritten as a

system with:

ẋ1 = x2

ẋ2 = −αx3
1 − βx1 + ε

(
−δ̄x2 + Φ̄ cos (ωt))

)
(2.24)

where x1 = x ,x2 = ẋ, δ = εδ̄, Φ = εΦ̄, and ε being a small perturbation parameter. The

unperturbed case is a Hamiltonian system [53]. The system (2.24) may be expressed as a

matrix Ẋ = F (X), were

X =

 x1

x2

 ;F (X) =

 f1 (x1, x2)

f2 (x1, x2)

 (2.25)

Considering the non forced case Φ = 0 the fixed points (denoted by (x1st, x2st) ) are

obtained from imposing ẋ1 = ẋ2 = 0, namely

0 = x2st

0 = −αx3
1st − βx1st − εδ̄x2st (2.26)

In this way, the signs of the linear and nonlinear stiffness coefficients ( α, β ) determine

the nature of the fixed points. In the case of αβ > 0 only the trivial fixed point exists

(x1st, x2st) = (0, 0). In contrast, for αβ < 0, besides the trivial fixed point, there are two
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nontrivial fixed points, given by (x1st, x2st) =

(
±
√
−β
α
, 0

)
. Following the procedure shown

in [17], the stability of the fixed point is examined by performing local analysis. Now the

variables y1 and y2 and their temporal derivatives are defined as

y1 = x1st + ∆x1 (t)

y2 = x2st + ∆x2 (t)

ẏ1 = ∆ẋ1 (t)

ẏ2 = ∆ẋ2 (t) (2.27)

where |∆x1 (t)| , |∆x1 (t)| << 1 . Introducing these variables into the matrix Duffing equa-

tion (2.24), the following system is obtained

∆ẋ1 (t) = f1 (y1, y2) = y2

∆ẋ2 (t) = f2 (y1, y2) = −αy3
1 − βy1 − ε ¯δy2 (2.28)

Undoing the change of variable, neglecting the powers of the terms ∆x1 (t), ∆x1 (t) and

taking into account the equilibrium equations (2.26), leads to the following matrix equation:

 ∆ẋ1

∆ẋ2

 =

 0 1

−
(
β + 3αx2

1st

)
−εδ̄

 ∆x1

∆x2

 (2.29)

which is equivalent to the expression
d∆X

dt
= JF∆X evaluated over the fixed points, where

JF is the Jacobian matrix of F (X). The eigenvalues of the matrix JF can be obtained from

its characteristic equation

λ2 + εδ̄λ+
(
β + 3αx2

1st

)
= 0 (2.30)

namely

λ =
−εδ̄ +

√(
εδ̄
)2 − 4

(
β + 3αx2

1st

)
2

(2.31)

The signs of the eigenvalues and, consequently, the stability of the fixed points depend on
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the values of the parameters of the characteristic equation. In the cases under consideration,

the damping term always opposes the movement, thus a negative sign for the δ parameter

is considered. The cases given by the sign combinations for the α and β parameters are

analyzed.

• Case 1 α, β > 0. In this case, only the trivial fixed point exists, (x1st, x2st) = (0, 0),

thus the expression of the eigenvalues is given by

λ =
−εδ̄ ±

√(
εδ̄
)2 − 4β

2
(2.32)

and some subcases may be considered

∗ 4β > (εδ)2. The eigenvalues are complex conjugate values with negative real

part, thus the trivial fixed point is a stable focus.

∗ 4β = (εδ)2. There is only one eigenvalue, which is real and negative.

∗ 4β < (εδ)2. There are two real and negative eigenvalues. The trivial fixed point

is a stable node.

• Case 2 α, β < 0. In this case, the only fixed point is the trivial one, thus the

eigenvalues are obtained from equation (2.32). There will be a positive and a negative

eigenvalue, regardless the damping term. In consequence, the trivial fixed point will

be a saddle point.

• Case 3 α < 0, β > 0 . For this situation, besides the trivial fixed point, there are two

nontrivial fixed points given by (x1st, x2st) =

(
±
√
−β
α
, 0

)
. The eigenvalues of the

jacobian matrix evaluated over the nontrivial fixed points are given by

λ =
−εδ̄ ±

√(
εδ̄
)2

+ 8β

2
(2.33)

thus, regardless the value of the damping factor, the nontrivial fixed points will be

always saddle points. In contrast, the nature of the trivial fixed point depends on

the relative value of the damping factor and the linear stiffness term following three

subcases, the same subcases than in case 1.
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• Case 4 α > 0, β < 0. With this situation, the nature of the nontrivial fixed points

follow diffent subcases:

* |8β| > (εδ)2. The eigenvalues are complex conjugate, with negative real part,

thus both nontrivial points are stable focus.

* |8β| = (εδ)2. There is only one eigenvalue, which is real and negative.

* |8β| < (εδ)2. The eigenvalues are real and negative. The nontrivial fixed points

are stable nodes.

On the other hand, the trivial fixed point will be always a saddle point, which can be

deduced from the eigenvalues of the jacobian matrix evaluated over this point, namely

a real positive and a real negative eigenvalues.

2.2.1 Analysis of the case 4: α > 0, β < 0

If the conservative situation is considered (namely, neglecting the damping and forcing

terms) [54], the resulting equation is given by

ẍ+ βx+ αx3 = 0. (2.34)

The equilibrium or fixed points are known to be (x1st, x2st) = (0, 0), which is a saddle

point, and (x1st, x2st) =

(
±
√
−β
α
, 0

)
, which for the conservative case are two centers.

Equation (2.34) represents an integrable Hamiltonian system with total energy [55]:

H = T (ẋ) + U (x) =
1

2
ẋ2 +

1

2
βx2 +

1

4
αx4 (2.35)

where the potential function is

U (x) = β
1

2
x2 + α

1

4
x4 (2.36)

This potential function presents a local maximum in x = 0 and two local minima

in x = ±
√
−β
α

. The minimum value of the potential function in these local minima is

Umin = U

(
±
√
−β
α

)
=
−β2

4α
. The potential function U (x) for different values of the

parameters is depicted in figure 2-2:
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Figure 2-2: Representation of the pontential function for a) α = 1 and different values of β
and b) β = −1 and different values of α.

The time derivative of the total energy of the system provided by equation (2.35) is

Ḣ = ẋ
(
ẍ+ βx+ αx3

)
. The definition of the system (2.34) implies Ḣ = 0 and, consequently,

the total energy has a constant value along the whole orbit (which is consistent with its

conservative essence) [54]. The value of the constant energy for each orbit is determined

from the initial values of position and velocity (x0, ẋ0) as H0 =
1

2
ẋ2

0 +
1

2
βx2

0 +
1

4
αx4

0. In

this way for each value of energy, the velocity can be written and plot as a function of the

position as [54]:

ẋ (x) = ±
√

2 (H0 − U (x)). (2.37)

The orbits corresponding to each value of initial energy are plotted in figure 2-3, and

the maximum velocity in each orbit is obtained from its minimum value of the potential

function as ẋmax =
√

2 (H0 − Umin (x)) =

√
2H0 +

β2

2α
.

The symmetric orbits corresponding to the H0 = 0 level of energy for the conservative

case are called homoclinic orbits. The equation of the homoclinic orbits is found to be [55]:

Γ0
± (t) =

(
±
√
−2β

α
sech

(√
−βt

)
,∓
√

2β2

α
tanh

(√
−βt

)
sech

(√
−βt

))
(2.38)

Beside the homoclinic orbits, from sign of the constant energy level, two different kind

of movements can be observed: the in-well low-amplitude oscillations with a energy level
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Figure 2-3: Phase portrait of the conservative orbits for different levels of constant energy
(H0). The homoclinic orbits are highlighted with red asterisks.

placed in Umin < H0 < 0, which turn around the nontrivial fixed points, and the cross-

well motion, with a positive level of energy. The homoclinic orbits, also called separatrix,

represent the boundary between these two movements.

If the damping term is introduced in equation (2.34), the system is no longer conserva-

tive, and given that Ḣ = ẋ
(
ẍ− x+ αx3

)
= δẋ2 < 0 the energy decreases along the orbits,

except over the axis ẋ = 0 where the energy remains constant [54]. The two nontrivial fixed

point are no longer centers, instead of that they behave as stable focus. The trivial fixed

point keeps being a saddle point, but the homoclinic orbit is broken: the stable manifold

has no longer its origin in the unstable manifold like in the conservative case, but it comes

from upper levels of energy.

Finally, if the forcing term Φ cos (ωt) is also included, the system presents a far richer

dynamical behavior. First of all it cannot be known if the system loses or wins energy

along the orbits: Ḣ = ẋ
(
ẍ− x+ αx3

)
= δẋ2 + ẋΦ cos (ωt). However, the energy keep being

constant over the axis ẋ = 0. On the other hand the fixed point are no longer independent

of the time:the solutions of the system ẋ = x = 0 present a dynamic evolution. Finally, the

introduction of forcing term implies an increase from 2 to 3 of the dynamical dimension of
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the system; accordingly to Poincare-Bendixon theorerm [22], it is this third dimension that

allows for chaotic behavior.

2.2.2 Duffing equation solutions based on Jacobi elliptic functions

Taking the undamped and unforced Duffing system, accordingly to [56], the differential

equation z̈ + az + bz3 = 0 with initial conditions z (0) = z0 and ż (0) = ż0 has an exact

analytical solution in the form of the Jacobi elliptic function z = Zcn(ωt+ θ), where ωt+ θ

is the argument of the elliptic function (cn), k2 is the modulus and Z is the amplitude given

by

Z =

√√√√(−a
b

+
a+ bz2

0

b

√
1 +

2ż2
0b

a

)
(2.39)

The frequency of vibration (denoted by Ω) for a phase angle of 2π is found to be a

generalization of the resonant frequency equation for the case on non-negligible nonlinear

stiffness.

Ω =
π
√
a+ bZ2

2K

(
bZ2

2 (a+ bZ2)

) (2.40)

with K (·) being the compete elliptic integral of the first kind, defined with the arbitrary

variable κ as:

K (κ) =
π

2

(
1 +

1

4
κ2 +

9

64
κ4 +

25

256
κ6 + . . .

)
(2.41)

The adjustment between this analytical solution for the Duffing equation and the nu-

merically obtained solutions can be proven either in time or in frequency domain. Since

the differential equation is undamped, the initial amplitude remains as the stationary os-

cillation amplitude. Thus, equation (2.40) shows the influence of the nonlinear stiffness (as

a function of the oscillation amplitude) in the system resonance frequency, observed as the

spring hardening effect caused by the mechanic nonlinearity. This effect is in agreement

with the amplitude-dependent peak resonant frequency obtained by L.D.Landau and E.M

Lifshitz in [57], which is briefly summarized in section 2.2.3.

2.2.3 Amplitude-dependent resonance frequency: Landau analysis

Accordingly to [57] and [58], the dumped mass-spring equation ca be assimilated to te

mass-spring equation with a generic nonlinear stiffness function (Fk), given by:
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Fk = k1x+ k2x
2 + k3x

3 + σxn (2.42)

with σxn representing the higher order terms, which are assumed to be negligible. If the

undamped and unforced case is considered:

m
∂2x

∂2t
+ k1x+ k2x

2 + k3x
3 = 0 (2.43)

wherem represents the mass, an oscillation at the natural frequency ω0 (given by ω0 =

√
k1

m
)

is expected. However, the nonlinear terms changes the oscillation frequency to ω′0. To obtain

an approximation for such new frequency, a perturbation analysis around the linear natural

frequency is performed, by considering

ω′0 = ω0 + εω1 + ε2ω2

x = x0 + εx1 + ε2x2 (2.44)

with ε being a small and positive perturbation parameter. The nonlinear stiffness param-

eters are defined as k2 = εκ2m and k3 = εκ3m , and a new time variable τ = ω0t is

introduced. The derivatives with respect to the original time variable t are related to the

derivatives with respect to the new time variable τ as following:
∂

∂t
=

∂

∂τ

∂τ

∂t
. Introducing

the expressions (2.44) into equation (2.43):

(
ω0 + εω1 + ε2ω2

)2(∂2x0

∂τ2
+ ε

∂2x1

∂τ2
+ ε2

∂2x2

∂τ2

)
+ ω2

0

(
x0 + εx1 + ε2x2

)
+εκ2

(
x0 + εx1 + ε2x2

)2
+ ε2κ3

(
x0 + εx1 + ε2x2

)3
= 0 (2.45)

and grouping terms in powers of ε ( ε0, ε1, and ε2) next three equations are obtained:
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ω2
0

∂2x0

∂τ2
+ ω2

0x0 = 0

2ω1ω0
∂2x0

∂τ2
+ ω2

0

∂2x1

∂τ2
+ ω2

0x1 + κ2x
2
0 = 0

ω2
0

∂2x2

∂τ2
+ ω2

1

∂2x0

∂τ2
+ ω2

0x2 + 2κ2x0x1 + κ3x
3
0 + 2ω0ω2

∂2x0

∂τ2
+ 2ω0ω1

∂2x1

∂τ2
= 0 (2.46)

The first equation, corresponding to the terms in ε0, provides a solution in the form of

x0 = X0 cos (τ) and by substituting it into the second equation, corresponding to the terms

in ε1, the following expression is obtained:

ω2
0

∂2x1

∂τ2
+ ω2

0x1 = −κ2 (X0 cos (τ))2 − 2ω1ω0X0 cos (τ) (2.47)

where the secular term 2ω1ω0X0 cos (τ) would imply an infinite growing of x1 in time, thus

needs to be equaled to zero, which imply ω1 = 0. Then a solution for the equation (2.47) is

found as

x1 = X2
0

κ2

6ω2
0

cos (2τ)−X2
0

κ2

2ω2
0

(2.48)

Repeating the process and substituting the found expressions for x0 and x1 into the equation

in terms of ε3 provides

ω2
0

∂2x2

∂τ2
+ ω2

0x2 = −
(

3κ3

4
X3

0 −
5κ2

2

6ω2
0

X3
0 − 2ω0ω2X0

)
cos (τ)−

(
κ2

2

6ω2
0

X3
0 +

κ3

4
X3

0

)
cos (3τ)

(2.49)

where, again, the secular term

(
3κ3

4
X3

0 −
5κ2

2

6ω2
0

X3
0 − 2ω0ω2X0

)
must be set to zero, thus

ω2 =

(
− 5κ2

2

12ω3
0

+
3κ3

8ω0

)
X2

0 (2.50)

and now, the equation in terms ε3 can be solved, providing the expression of x2. At this

point the value of the oscillation frequency affected by the nonlinear terms can be obtained:

ω′0 = ω0 + ε2
(
− 5κ2

2

12ω3
0

+
3κ3

8ω0

)
X2

0 (2.51)

which implies (in agreement with [59] and [60]) the amplitude dependence of the resonance

frequency in terms of the Landau successive approximations method:
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ω′0 = ω0 + ω0

(
3k3

8k1
− 5k2

2

12k2
1

)
X2

0 (2.52)

The nonlinearity is most apparent around the resonance frequency since nonlinear spring

provokes that the resonance frequency depends on the oscillation amplitude.

2.3 Numerical approach to the Duffing equation

A wider knowledge of the nonlinear and chaotic features of the Duffing equation requires

numerical computation. The goal of this approach is to numerically bound the regions of the

parameters space that provide chaotic behavior for a further extrapolation to the equation

of the MEMS under study.

2.3.1 Duffing system with double-well potential (2WP)

The typical chaotic strange attractor of the Duffing system with two-well potential distri-

bution corresponds to snap-trough oscillations in the form of a cross-well chaotic motion: a

bounded non-periodic and, apparently, erratic jumps between the potential wells through

the potential barrier placed in the trivial fixed point x = 0 [61]. A complete view of the dy-

namics of the Duffing system with two potential wells is provided in [62]. The main interest

regarding to the system’s behavior is located to the surroundings of the principal resonance.

In [62] all the attractors governing the nonlinear resonance phenomenon are related and a

map of the parameter space regions (where the boundaries for the nonlinear effects and

the robust chaotic motion are set) is shown. Chaotic behavior can be obtained from the

reproduction of the strange chaotic attractor, or as the culmination of the period-doubling

process (also known as Feigenbaum route), a process of nonlinear effects which provoke the

progressive appearance of new frequencies until the chaotic response is reached.

Figure 2-4 depicts the numerically obtained bifurcation diagrams of the two potential

well Duffing system, from a variation of a parameter while the other parameters are keep

constant. For each value of the control parameters (β in figure 2-4a) and Φ in figure 2-4b))

the equation is numerically solved and the positions of the Poincare1 points are plotted.

Notice that the Poincare map is enforced to depict only the stationary response, while the

1The Poincare map is known as the stroboscopic plot of the phase space, obtained from the intersection
of the trajectories with a subspace (called Poincare section), transversal to the flow, which implies a discrete
time mapping with a regular sampling period [63].
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transient response has been removed. Extensive chaotic behavior for a wide range of the

control parameters can be observed from these numerical simulations.

Figure 2-4: Bifurcation diagrams based on the positions of the Poincare points: a) variation
of the β parameter under constant values of the α = 1, δ = 0.2, Φ = 0.3 and ω = 1
parameters and b) variation of the φ parameter under constant values of the α = 1, β = −1,
δ = 0.2 and ω = 1 parameters.

Robust and sustained chaotic behavior, as reported in [52], is obtained in the regions

predicted by the bifurcation diagrams and its time series, phase map, Poincare map and

periodogram are shown in figures 2-5 and 2-6.

Figure 2-5: a) Chaotic time series and b) phase map with highlighted homoclinic orbits for
the two-well potential Duffing equation with parameters α = 1, β = −1, δ = 0.2, Φ = 0.3
and ω = 1.
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Figure 2-6: a) Chaotic Poincare map and b) periodogram for the two-well potential Duffing
equation with parameters α = 1, β = −1, δ = 0.2, Φ = 0.3 and ω = 1.

2.3.2 Duffing system with single-well potential (1WP)

Nonlinear and even chaotic behavior have been reported from the Duffing system with a

single potential well [64]. The Duffing system is defined by a symmetrical vector field, and

this fact generates symmetrical trajectories with respect to the origin [65]. The bifurcation

caused by symmetry breaking imply the presence of nonlinear behaviors which may lead, to

period-doubling bifurcation and, ultimately, to chaotic behavior [25]. Only the orbits which

have reached a symmetry breaking can follow the period-doubling route. In reference [65]

regions of the parameters space with nonlinear and chaotic motion of the Duffing equation

with a single potential well are represented. In the same way as in figure 2-4, a bifurcation

diagram based on the Poincare points is depicted in figure 2-7a). The chaotic behavior

predicted in this bifurcation diagram is numerically obtained and represented in 2-7b) and

2-8.
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Figure 2-7: a) Bifurcation diagrams based on the positions of the Poincare points:variation
of the φ parameter under constant values of α = β = ω = 1, δ = 0.2 . b) Chaotic time
series in a single potential well distribution for α = β = ω = 1, δ = 0.2 and Φ = 57.

Figure 2-8: a) Chaotic Poincare map and b) periodogram for the single-well potential
Duffing equation with parameters α = β = ω = 1, δ = 0.2 and Φ = 57.

As a conclusion, chaotic behavior can be also reached with a single potential well dis-

tribution, however the required excitation amplitudes are far greater than the ones needed

in the double-well potential Duffing system. Moreover, the chaotic behavior obtained as

the culmination of the period doubling route in a single potential well system is considered

”weak” in comparison with the ”robust” chaotic behavior corresponding to the ”cross-well”

attractor [54], [62]. The weakness of the chaotic motion of the single well potential system

can be seen from its frequency bandwidth when the position time series is represented in
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the frequency domain and compared with the bandwidth for the ”cross well” case (figures

2-6b) and 2-8b)).

2.4 Melnikov method and chaos

The Melnikov method is an analytical technique which can be used to predict the presence

of chaos in a dynamical system [66], [22]. For a generic one degree of freedom system as

u̇ = f (u) + εg (u, t) (2.53)

and considering the vectors u =

x
y

 f =

f0 (x, y)

f1 (x, y)

, and g =

g0 (x, y, t)

g1 (x, y, t)

, the system

can be expressed as

ẋ = f0 (x, y) + εg0 (x, y, t) =
∂H

∂y
+ εg0 (x, y, t)

ẏ = f1 (x, y) + εg1 (x, y, t) = −∂H
∂x

+ εg1 (x, y, t) (2.54)

where ε is a small perturbation parameter, g is a periodic function in t function with period

T, and H is a real Hamiltonian function. Assume that the unperturbed system (ε = 0) is

an integrable Hamiltonian system which possesses a fixed hyperbolic saddle point u0 with

overlapping stable and unstable manifolds, and an homoclinic orbit Γ0
± (t) [55] [66]. If a

small perturbation is applied (ε 6= 0), a periodic orbit close to the saddle point exists (and

represents a fixed point in the Poincare map) [66]. In agreement with Moser theorem and

the Smale Birkhoff homoclinic theorem, if the the stable and unstable manifolds intersect

transversely then the systems dynamics will contain a horseshoe map [66]. The existence

of a horseshoe map implies that there are a countable infinity of periodic orbits, that there

are an uncountable number of aperiodic orbits, and that there is a dense orbit which comes

arbitrarily close to every point in the invariant set of the horseshoe map. In summary a

chaotic set may exists in the system when a transverse intersection of the manifolds occurs

[22], [66]. The Melnikov function, defined as

M (t0) =

∫ ∞
−∞

f
(
Γ0

+ (t)
)
∧ g
(
Γ0

+ (t) , t+ t0
)
dt (2.55)
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(where Γ0
+ (t) = Γ0

+ (x (t) , y (t)) is the homoclinic orbit) gives a measure of distance between

the stable and unstable manifolds in the perturbed case (when ε 6= 0 and can be used to tell

when the stable and unstable manifolds intersect transversely. If for some t0 and some set of

parameters M (t0) = 0 and M ′ (t0) 6= 0 (with M ′ being the time derivative of the Melnikov

function), the stable and unstable manifolds have a transverse intersection, horseshoe map

exists, and chaos may occur [22], [66].

2.5 Lyapunov exponents

The aperiodic long-term behavior of a bounded deterministic system with a high sensitivity

to initial conditions may be taken as a commonly accepted description of chaotic motion [14].

While it is relatively easy to establish when a system is deterministic (described by equations

without random variables), aperiodic and bounded, at least for the time-scales over which

numerical computations are feasible, the sensitive dependence on initial conditions is far

more difficult to establish [14]. Lyapunov exponents quantify the exponential divergence of

initially close state-space trajectories and estimate the amount of chaos in a system [15].

The Lyapunov spectrum (a system with n dimensions has n Lyapunov exponents) is

closely related to the eigenvalues of the system. Both quantities are determined from the

Jacobian matrix assuming linear local dynamics. However, unlike the eigenvalues, Lyapunov

exponents are always real numbers, their associated directions are mutually orthogonal and

each Lyapunov exponent is a global quantity (averaged along the orbit or trajectory) [14].

An striking feature of chaotic systems is the unpredictability of their future states de-

spite a deterministic time evolution [67]. This instability is a consequence of the inherent

instability of the solutions, reflected by the sensitive dependence on initial conditions. While

in linear or periodic systems the divergence between initially close trajectories is very slow,

in chaotic systems such divergence is given at exponential rate. The properly averaged

exponent of this exponential rate is characteristic for the system underlying the data and

quantifies the strength of chaos [67]. From the Lyapunov spectrum, the most significant

exponent is the maximal one. Several developed algorithms restrict themselves to deter-

mine the maximal Lyapunov exponent. As an abstract analysis, let s̄n1 and s̄n2 be two

points in phase space with small distance between them ‖s̄n1 − s̄n2‖ = δ0 � 1 , while δ∆n

denotes the distance at time n between the two trajectories emerging from these points,
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δ∆n = ‖s̄n1+∆n− s̄n2+∆n‖. Then, the maximal Lyapunov exponent λ verifies approximately

the relation

δ∆n ≈ δ0e
λ∆n (2.56)

Two trajectories cannot separate further than the size of the attractor, thus the law

(2.56) is only valid during times ∆n for which δ∆n remains small. In addition, a mathe-

matically more rigorous definition must involve two limits: δ0 → 0 and ∆n → ∞ . More

specifically the first limit must be implemented firstly in order to avoid the second one

(where the Lyapunov exponent λ becomes a well-defined and invariant quantity) to provide

always infinite results [67]. Considering the previous observations, the dynamic behavior of

the system can be classified from the value of λ provided by the equation(2.56).

• A negative value of the maximal Lyapunov exponent means an exponential rhythm

approximation of the trajectories, which implies the existence of a stable fixed point.

• A zero value of the maximal Lyapunov exponent implies a conservation of the distance

between two trajectories, for instance a marginally stable motion.

• A positive but finite value of the maximal Lyapunov exponent reveals an exponentially

growing divergence between the trajectories. This fact is assimilated to the sensitive

dependence to initial conditions, which characterizes the chaotic systems

• An infinite value of the maximal Lyapunov exponent corresponds to random noise.

The Lyapunov exponents are a characteristic quantity, invariant under transformations

as phase space reconstructions, variable changes, and rescalings, as long as these transfor-

mations are smooth. The Lyapunov exponents carry the units of an inverse time and give

a typical time scale for the divergence or convergence of nearby trajectories [67].

Given the definition of the Lyapunov spectrum (λ1, λ2, . . . , λn) , where n is the number of

equations (or, equivalently the number of state variables), the sum of the positive exponents,

equals the Kolmogorov entropy K (equation (2.57)). This is a mean rate of the information

gain [68], [15].

K =
∑
λi>0

λi (2.57)
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2.5.1 Lyapunov exponents in unidimensional dynamic systems

Let an unidimensional map2 be defined as [14]:

xn+1 = f (xn) (2.58)

Consider two nearby initial points, x0, x0 + ∆x0, with ∆x0 � 1. After an iteration of the

map, these points are separated by

∆x1 = f (x0 + ∆x0)− f (x0) (2.59)

Being, by definition

f ′ (x0) =
df

dx

∣∣∣∣
x0

= lim
∆x0→0

f (x0 + ∆x0)− f (x0)

∆x0
(2.60)

equation (2.58) can be approximated to

∆x1 ≈ ∆x0f
′ (x0) (2.61)

Now the local Lyapunov exponent can be calculated as the λ which verifies eλ =

∣∣∣∣∆x1

∆x0

∣∣∣∣,
namely

λ = ln

∣∣∣∣∆x1

∆x0

∣∣∣∣ ≈ ln |f ′ (x0) | (2.62)

The global Lyapunov exponent is defined as the average of the local ones (exponents given

by equation (2.62)) over many iterations [14]:

λ = lim
N→∞

1

N

N−1∑
n=0

ln |f ′ (xn) | (2.63)

Besides the average exponential rate of separation of two nearby initial conditions, the global

Lyapunov exponent quantifies as well the average stretching of the phase space. However, it

is important to understand that the value of the local Lyapunov may oscillate widely with

respect to the global value of the system, and it is possible the presence of transient chaotic

behavior or even periodic behavior for a long time before eventually sampling a different

2Discrete sequence of state vectors or scalars which constitute a dynamic system described in discrete
time [69]
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region dominated by an strange attractor. In such cases, long computations are required to

avoid incorrect results, and even under this assumption, no matter how long the calculation

lasts, a complete dependability of the result would never be reached [14].

Let now a one-dimensional flow defined by ẋ = f (x) [14]. To calculate the Lyapunov

exponent, two initial points close enough to each other (x0 and x0 + ∆x0) are considered,

and a small time delay ∆t

∆x1 = ∆x0 + [f (x0 + ∆x0)− f (x0)] ∆t ≈ ∆x0

[
1 + f ′ (x0) ∆t

]
(2.64)

In the same way as in the discrete case (map), the local Lyapunov exponent is defined as

the λ that verifies [14]:

eλ∆t =
∆x1

∆x0
= 1 + f ′ (x0) ∆t (2.65)

and, in order to obtain the global value of the Lyapunov exponent, the average value along

the trajectory is calculated, as it is done in the discrete case with the equation (2.63).

In the case of continuous unidimensional systems, the trajectories can only be attracted

towards fixed points or the infinite. A trajectory attracted towards a fixed point will

provide a negative Lyapunov exponent; in this case the Lyapunov exponent quantifies the

rhythm at which the points of the neighborhood of the fixed point collapse towards it. On

the other hand, it must be understood that a trajectory attracted toward the infinite will

present a positive Lyapunov exponent without chaotic movement, but in this case a positive

Lyapunov exponent does not mean a chaotic behavior because the movement is not bounded

[14]. Actually, since in a deterministic system trajectories are not allowed to intersect, a

continuous system (described by autonomous differential equations) cannot be chaotic in

less than 3 dimensions [67] (in agreement with the Poincare-Bendixson theorem [13], [22]).

The Lyapunov exponents of a unidimensional discrete system (map) are nondimensional,

while for a continuous system they have the units corresponding to t−1. The inverse of the

Lyapunov exponent can be understood as the measure in temporal domain of the divergence

or convergence of the trajectories corresponding to the initial conditions in a neighborhood

(keeping in mind the great oscillation that the local Lyapunov exponent may present)[14].
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2.5.2 Phase space reconstruction by Delay Method

Consider a dynamic system where each state depend on N dynamic variables which con-

stitute the phase state. However, the available information provided by an experiment is

not a phase space, but a time series, commonly a scalar sequence of measurements of some

quantity which depends on the current state of the system, taken at a sampling time [67]:

sn = s (x̄ (n∆t)) + µn (2.66)

where s is the sampling function, and µn the measurement noise. Fortunately, from a

time series, the reconstruction of the phase space is possible. Such a reconstruction is

really needed, given the importance of the phase space in further calculations of the system

dynamics. The phase state, reconstructed by delays in m dimensions is constituted by

vectors s̄n in the form of:

s̄n =
(
sn, sn+ν , . . . , sn+(m−2)ν , sn+(m−1)ν

)
(2.67)

where each component of the vector is a value of the time series, separated from the next one

and the previous one by a temporary margin. This temporary margin, expressed as number

of samples (ν) or in temporary units (ν∆t) is known as ”delay”. Each point of the trajectory

expressed with the reconstructed phase space has m components, one component for each

delay in the original time series. An important question now is under what assumptions a

trajectory expressed with the reconstructed phase space is equivalent to the trajectory in

the original phase space.

Takens’ theorem determines when the obtained representation of the state vectors in the

original phase state in Rn is equivalent3 to the the representation given by the vectors s̄n in

Rm, corresponding to the reconstructed phase space by delays [69]. Before the formulation

of the Takens’ theorem, some concepts are introduced.

An attractor is defined as the set of points or the subspace in phase space dense of

solution trajectories after the evanescence of the initial transient solutions [14]. Equilib-

rium points, limit cycles or toroidal surfaces (for quasiperiodic motions) are examples of

nonchaotic attractors. However chaotic orbits move around strange attractors, which are

3An equivalence is a homeomorphism, namely a bijective continuous function between two topological
sets, and with continuous inverse function [69].
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constituted by a set in phase space with fractal dimension [16]. Examples of attractors

are depicted in figure 2-9. Formally, an attractor A is a set of points, with null volume,

belonging to the phase space, which verifies the following conditions [69], [16]:

• A is an invariant set: all the trajectories that start from A, remain in A for all time.

• A attracts a set of initial conditions (basins of attraction of A). There is a set U ⊃ A

such as x0 ∈ U , the distance between x (t) and A tends to zero when t tends to ∞.

A attracts all the trajectories starting from U . The greatest U that satisfies this

condition is called basis of the attractor.

• A is minimal: there is no subset of A which verifies these two previous conditions

Note that for the existence of an attractor, the overall dynamics must be dissipative, i.e.,

globally stable, and the total rate of contraction must outweigh the total rate of expansion

[15]. A dynamic system is dissipative if the volume of any set in the phase space decreases

along the time. Formally, let S0 be a set of points which occupies a volume V0 in the phase

space. Let’s consider these points as initial conditions of trajectories that, after a time T

will become the set of points ST = fT (S0) which will occupy a volume VT in phase space.

If the condition VT < V0∀ (T, S0) is verified , then the system is dissipative. Eventually a

null volume (namely, the attractor) will be reached.

Figure 2-9: a) Nonchaotic attractor obtained from Lorenz equation. b) Lorenz strange
chaotic attractor.

The Minkowski-Bouligand (or ”box-counting”) dimension is a parameter that charac-

terizes the dimension of a fractal set [14]. Given a fractal set located into a n-dimensional
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space, let’s define a a set of n-dimensional cubes or ”boxes” with edge L. The number of

needed cubes to cover all the fractal set depends on the edge L. More specifically, if the

object that is covered by ”boxes” was a line, one would expect that N ∝ 1

L
, and if it was a

surface, one would expect that N ∝ 1

L2
, etc. In the same way, for a set of a fractal dimen-

sion D0 the verification of N ∝ 1

LD0
is expected, thus the Minkowski-Bouligand dimension

is defined as [70]:

D0 = lim
L→0

ln (N)

ln
(

1
L

) (2.68)

Another method to determine the dimension of the attractor consists in, given a point

in the space, build around it a topological sphere with variable radius r, and quantify the

number of points of the attractor inside the topological sphere as a function of the radius

(and let’s call this function b (r)). The exponent of the growth of the number of points inside

the topological sphere as a function of the radius is good approximation of the attractor

dimension (d), which may be not an integer [14], [70]. This exponent is known as the

correlation dimension:

b (r) = krd (2.69)

At this point the Takens’ theorem can be enunciated:

Theorem 1. Let M be a compact manifold of dimension m. For pairs (φ, y), with φ ∈

Diff2 (M), y ∈ C2 (M,R), it is a generic property that the map Φφ,y : M → R2m+1, defined

by

Φ(φ,y) (x) =
(
y (x) , y (φ (x)) , . . . , y

(
φ2m (x)

))
is an embedding4 [71].

Takens’ theorem establishes that, as a generic property, a map built by means of the

delay method (”delay map”) of dimension m = 2D + 1 is an embedding of a compact

manifold A of dimension D if the measurement function s : A→ R is class C2 and includes

all the degrees of freedom. As a consequence of this enunciate, if the dimension (m) of

the reconstructed phase space is greater than twice the attractor ’s dimension, an attractor

4Continuous and injective application between topological spaces (differentiable manifolds, in this case)
which implies a homeomorphism between image and inverse image [71].
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generated in the reconstructed space will be equivalent to the existing one in the original

phase space [67].

If a dimension m provides a good reconstruction of the phase space, reconstructions

with dimensions m′ > m will be also good. However, it must be taken into account that

an excessively big value of the reconstructed space dimension adds redundancies that may

generate for instance, a degradation in the performance of the algorithms for the Lyapunov

exponent calculation. A way to estimate the optimal dimensions for the reconstructed

phase space is the false neighbors method. The main idea of this method is to measure

the euclidean distance between a given point and its closest neighbor in the reconstructed

phase space while the dimension m of the reconstructed phase space is being increased. If

the increase of m implies an increase in the distance, it can be deduced that the previous

dimension m was insufficient and the points seemed to be closer than what they really are

because they were in a projection of a space with more dimensions. Otherwise, it can be

deduced that the increase of the dimension m is unnecessary. Let a generic point p defined

in a reconstructed space with m− 1 dimensions : p =
(
sk, sk+ν , . . . , sk+(m−3)ν , sk+(m−2)ν

)
,

and let the point pNN be its closer neighbor, the square of the euclidean distance between

them can be expressed as

R2
m−1 = [sk − sNN ]2 + · · ·+

[
sk+(m−3)ν − sNN+(m−3)ν

]2
+
[
sk+(m−2)ν − sNN+(m−2)ν

]2
(2.70)

while the square of the euclidean distance between those two points when another dimension

is added to the reconstructed space state is

R2
m = R2

m−1 +
[
sk+(m−1)ν − sNN+(m−1)ν

]2
(2.71)

Using a threshold value RT for the ratio between the increase in the euclidean distance when

the additional dimension is added and the euclidean distance in the original dimension, a

criterion to decide whether the original dimension of the reconstructed phase space is enough

is established as

RT <

∣∣sk+(m−1)ν − sNN+(m−1)ν

∣∣
Rm

(2.72)
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In practice, values of RT between 10 and 50 are found to be appropriated for most situations

[72]. The problem in determining the temporary delay (or lag) is still an open issue. In

agreement with [15] a delay value that would provide good results is the one that makes the

autocorrelation function drop to 1 − 1

e
of its initial value. The autocorrelation function is

the measure of the similarity of a signal with respect to itself after a time delay [14], [67]. It

allows to quantify the repetition patterns and the periodicities of a signal. For discrete cases

(such as a time series), and for a generic delay ν, the autocorrelation function is defined as:

rν =
N∑
n=1

(xn − µ) (xn+ν − µ) (2.73)

being µ the expected value of the signal. Then, is agreement with [15], a delay which implies

an approximate relation given by

rν
r0
≈ 1− 1

e
(2.74)

is needed. It means that the delay makes the components of the reconstructed phase space

points be away enough to not present similarities.

Once the phase space is reconstructed, it is possible to reconstruct the attractor of the

original system. The proper relation between the values of the attractor dimension and the

reconstructed phase space dimensions, is obtained, in summary, from next theorems [14]:

• A generic d-dimensional curved space can be represented into a cartesian space with

dimensions of 2d+ 1 dimension, fulfilling the requirement of no intersection of trajec-

tories (Whitney’s theorem) [14], [73].

• The anounced Takens’ theorem, besides proving that the delay-constructed variables

allow to reconstruct the phase space in order to host the dynamic system ( provided

the measured variable is smooth and couples to all the other variables), states the

needed number of delays in the phase space reconstruction is 2d+ 1 [14].

• Sauer et.al. generalize the theorems of Whitney and Takens for attractors of fractal

dimension DF . The dimensions of the needed phase space to host an attractor with

fractal dimension DF must be simply greater than 2DF [74].

In this way, a phase space reconstruction (called time-delay embedding space) with

the minimum dimensions needed to reproduce and keep all the dynamic and topological
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conditions of the original system can be reached. In most of the cases, this minimum

dimension (”embedding dimension”) is the nearest integer greater than 2DF .

The dimension of the phase space will influence on the kind of attractors. For example,

a bounded solution of an autonomous differential equation on a curve must converge in a

point (attractive equilibrium point), while for autonomous differential equations over the

plane the bounded solutions may converge either to an equilibrium point or closed curve

(periodic orbit or limit cycle). In systems of 3 dimensions or more dynamics are richer

and more diverse [69]. In agreement with the theorem of Poincare-Bendixson5, in systems

with dimension equal o greater than 3 described by continuous differential equations, the

presence of a positive Lyapunov exponent is an indicator of the presence of an strange

attractor and chaotic behavior. In contrast of maps, a system described by autonomous

equations cannot be chaotic in less than three dimensions. Since the trajectories are not

allowed to intersect in a deterministic system, either the phase space or the attractor must

be more than 2-dimensional. Notice that strange attractors with fractal dimensions are

typical of chaotic systems [67].

The presence of a positive Lyapunov exponent is sufficient for diagnosing chaos and

represents local instability in a particular direction. As mentioned before, the presence of

an attractor makes the overall dynamics be dissipative [15]. Thus, even when there are

several positive Lyapunov exponents, the sum across the entire spectrum is negative [15].

Actually, a theoretical consequence of the work of E.Lorenz [76] is that one of the causes

of the strange attractors is the presence of dissipative terms, thus in absence of these terms

the strange attractor disappears and a limit cycle appears.

2.5.3 Measuring the maximal Lyapunov exponent from data

One of the main goals of the dynamic systems analysis is to obtain the maximal Lyapunov

exponent from a time series generated by the system. For this purpose, several algorithms

have been implemented: Wolf et.al (1985), Sano and Sawada (1986) and Rosenstein el.al.

(1993). These methods have in common the main numerical procedure for the calculation

of the maximal Lyapunov exponent from a time series. A reconstruction of the phase space

and the test of the exponential divergence of nearby trajectories by means of an average

5The bounded orbits corresponding to a C1 class differential equation over the plane are periodic orbits,
or (asymptotically) tend to periodic orbits or end in a fixed point [75].
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value of those divergence along the whole data set.

Given a time series with values {x1, x2, . . . , xn}, the trajectory is expressed in the phase

space reconstructed by delays as a matrix X with dimension M ×m :

X =


X1

X2

...

XM

 =


x1 x1+ν · · · x1+(m−1)ν

x2 x2+ν · · · x2+(m−1)ν

...
... · · ·

...

xM xM+ν · · · xM+(m−1)ν

 (2.75)

with m being the optimal dimension for the phase space reconstructed by delays or embed-

ding space, M the number of initial points that belong to the first delay interval (as shown

in figure 2-10) and ν the temporary delay nondimensionalized with the sampling period of

the original time series (if J is the value of the time delay, and fs is the sampling frequency

of the time series, the relation ν = J · fs is verified). In order to build the matrix, it is

necessary to consider a duration of the time series as a number N of points such as N is

multiple of the optimal dimension of the reconstructed phase space. In this way the relation

N = M ×m is verified.

Figure 2-10: Representation of the time series points and their correspondence with the
elements of the matrix M, equation (2.75).

Only with the time series, the whole state of the system is defined: e.g. in the i − th

discrete time, the system state is given by

Xi =
[
xi, xi+ν , . . . , xi+(m−1)ν

]
(2.76)

Notice that every vector-row belonging to the trajectory matrix is a point in the recon-

structed phase space. The numerical method for the maximal Lyapunov exponent calcu-

lation consists in taking one of these points Xn0 as a reference, selecting all the points in

a sphere of radius ε centered in Xn0, and computing the average of the distances between
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the point Xn0 and all these nearby points as a function of the relative time (expressed as

a delay multiple). The logarithm of the averaged value of the ratio between the distance

from the reference point to each point in the sphere and that distance in the initial time is

a measure that contains all the deterministic fluctuations due to either the projection over

the reconstructed phase space or the inherent dynamics of the system. Finally, an average

of those logarithmic values must be done by taking as reference Xn0 the other points (an

arbitrary set of N points) of the time series. The values of last average depend on the

discrete time ∆n of the time series:

λ1 (∆n) =
1

N

N∑
n0=1

ln

 1

|U (Xn0) |
∑

Xn∈U(Xn0)

∣∣∣∣dXn (∆n)

dXn (0)

∣∣∣∣
 (2.77)

where U (Xn0) is the set of points Xn belonging to the the sphere of radius ε centered in

the reference point Xn0, dXn (0) is the euclidean distance in the initial time between the

reference point Xn0 and the generic point Xn belonging to U (Xn0), and dXn (∆n) is the

distance between these two generic points after a time lapse ∆n (note that this time lapse

implies a displacement of number of points ∆n in the reconstructed-by-delays matrix of

the system). λ1 represents an estimation of the maximal Lyapunov exponent. From this

basic procedure each algorithm introduces slight variations to improve the convergence of

the numerical method, and to make it more robust and reliable.

A priori, the optimal value of the radius ε is unknown, and the problem of the presence

of noise in the time series data must be considered. If the noise level is higher than the

radius ε some points may be falsely considered to belong to the topological sphere. On the

other hand, if the considered dimension m for the reconstructed phase space is big enough

to avoid the intersection of trajectories, small variations of m wont affect the result.

An improved version of the Wolf algorithm implemented in Matlab is used in this thesis

to perform the estimations of the maximal Lyapunov exponent, as a way to explore the

presence of chaotic behavior in the generated time series. The main feature of the Wolf

algorithm is the that a single neighbor is followed and repeatedly replaced when its sepa-

ration from the reference trajectory grows beyond a certain limit [15], [77]. To corroborate

its proper performance, several time series, obtained from the numerical resolution of the

Duffing equation, have been used to test the algorithm, and its results have been compared

with those provided by the Govorukhin algorithm. The Govorukhin algorithm, developed
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by V. Govorukhin is a free source code which provides the Lyapunov spectrum from the

ODE -system instead of the time-series. For each set of parameters corresponding to the

equation parameters, the Govorukhin algorithm obtains the evolution of the three Lyapunov

exponents of the Duffing system. The good agreement between both methods, the improved

and Matlab-implemented Wolf algorithm and the Govorukhin algorithm (shown in figures

2-11 and 2-12, for either linear and chaotic Duffing systems), proves the accuracy of the first

one, which can be used for time-series obtained from any source. The comparison is per-

formed between the maximal Lyapunov exponent provided by the Govorukhin method and

the Lyapunov value (corresponding to the maximal exponent) given by the Wolf algorithm.

Figure 2-11: Lyapunov exponent of a Duffing linear system obtained from a) its time series
with Wolf algorithm and b) its ODE system with Govorukhin algorithm.
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Figure 2-12: Lyapunov exponent of a Duffing chaotic system obtained from a) its time series
with Wolf algorithm and b) its ODE system with Govorukhin algorithm.
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Chapter 3

MEMS resonators: theory and

fabrication

In this chapter, the operating principles and the fundamental parameters of electrostatically

actuated cc-beam resonators with capacitive readout are described. The used analytical

approach is the one degree of freedom (1DOF), obtained from the Galerkin discretization

and order-reduction method. Taking this approach as starting point, an equation that

govern the dynamical behavior of a generic cc-beam is obtained and all its terms are modeled

with analytical expressions. In the same way, the electrostatic actuation and the capacitive

readout principles are exposed and their influence over the MEMS performance is analyzed.

The second part of this chapter relates the used fabrication and integration techniques and

approaches in the framework of CMOS technologies, considered in this work.

3.1 MEMS modeling

The electromechanical system under consideration consists in a clamped-clamped beam

placed symmetrically and in plane between two electrodes in which electrostatic actuation

and capacitive readout may be respectively performed. Figure 3-1 depicts the scheme of

the system and shows its geometrical parameters.

3.1.1 Resonance frequencies and modes

Given the one dimensional Bernouilli-Euler differential equation for the homogeneous beam

(2.5), if the undamped and unforced case is considered and if the axial force and the mid-
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Figure 3-1: Schematics of the electromechanical system with one of the possible topologies,
showing the parameters length (l), width (w), thickness dimension (th) and beam-driver
gap distance (s). The in-plane vibration takes place in the x-direction.

plane stretching terms are set equal to zero, accordingly to [48] it can be expressed as

∂4ψ (y, t)

∂y4
+
ρA

EI

∂2ψ (y, t)

∂t2
= 0, (3.1)

where the deflection of the beam is denoted as ψ (y, t), A is the cross section area (A =

wth) and all the other parameters are defined in section 2.1.2. A solution in the form of

ψ (y, t) = x (y) sin (ωnt+ θ) is supposed, where ωn is the resonant frequency of the n mode

of vibration and θ is an arbitrary phase; then the differential equation (3.1) becomes

∂4x (y)

∂y4
− ρA

EI
ω2
nx (y) = 0 (3.2)

If a solution in the form of x (y) = eλy is considered, the characteristic equation is found

to be

λ4 − ρA

EI
ω2
n = 0 (3.3)

calling q4 =
ρA

EI
ω2
n, the roots of the characteristic equations are λ = ±q ,λ = ±iq, thus the

general solution has the form x (y) = C1e
qy + C2e

−qy + C3e
iqy + C4e

−iqy. In this way the
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general solution can be written as

x (y) = A1 sinh (qy) +A2 cosh (qy) +A3 sin (qy) +A4 cos (qy) , (3.4)

and its y-derivative function is

dx (y)

dy
= q [A1 cosh (qy) +A2 sinh (qy) +A3 cos (qy)−A4 sin (qy)] (3.5)

From the boundary conditions (namely, x (0) = x (l) = 0 and
dx (0)

dy
=
dx (l)

dy
= 0 for

the cc-beam), the following transcendental equation is obtained

(
sinh (ql)2 − sin (ql)2

)
−
(

cosh (ql)− cos (ql)
)2

= 0 (3.6)

whose solutions (4.7300, 7.8532, 10.9956, 14.1372, ...) are the eigenvalues kn for the different

in-plane vibration modes of the cc-beam.

3.1.2 Beam under punctual load

As a first approximation, the dynamical behavior of the resonators is conceived as a lumped

mass-spring system. The mass is assumed to be concentrated an the middle point of the

beam span (y = l/2 in figure 3-1) and all the forcing is supposed to be punctual over this

point. Under these assumptions, the system dynamics is described analytically with a single

degree of freedom equation in the x-direction (figure 3-2). Consider the undamped case,

whose dynamic equation can be written as:

meffẍ+ k1x = 0 (3.7)

The beam deflection under a punctual force in such direction (Fx) applied at the center

is [78]:

ωF (y) =
Fxy

2

4EI

(
y

3
− l

4

)
(3.8)

for beam length values between 0 and l/2. The displacement of the middle point y = l/2 is

taken as the reference displacement x and the linear stiffness constant, for the beam under

punctual load, according to the Hooke law is:
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k1 =
16Ethw

3

l3
(3.9)

In a cc-beam, the cubic nonlinear stiffness (k3) cannot be neglected, especially for large

deformations. As seen in section 2.1.2 and specifically in equation (2.17), the main source

of the nonlinear stiffness is the mid-plane stretching generated because of the hyperstaticity

of the cc-beam . In [59], an approximate analysis of the nonlinear additional anharmonic

force caused by large deformations is used to estimate the nonlinear stiffness of a cc-beam

accordingly to equation (3.10), an expression quite similar to that reported in [79], [80] [81],

and which has been validated from FEM simulations.

k3 = 0.767
k1

w2
=

12.272Ethw

l3
(3.10)

In contrast to cc-beam resonators, for a cantilever beam the geometric and inertia non-

linearities can be considered negligible [48]. Finally, the expression for the system effective

mass, which is considered to be concentrated in the middle point of the cc-beam span

(y = l/2) is found to be:

meff =
192ρwthl

k4
n

(3.11)

Figure 3-2: Schematics representation of the damped mass-spring system.

3.1.3 Beam under uniformly distributed load

In the case that the load applied to the beam is uniformly distributed along the beam

span, the deformation is lower (and smaller displacement of the middle point) than in the
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case of a punctual force concentrated at the middle. For the same value of the force, if

it is distributed, the beam presents more stiffness. The elastic profile curve of a cc-beam

subjected to a uniformly distributed load is found ([78]) to follow equation:

ωq (y) =
q

EI

(
− l

12
y3 +

1

24
y4 +

l2

24
y2

)
(3.12)

where q is defined as the load per length unit, and the total force applied to the beam is

F = q · l. In the same way as in section 3.1.2, the displacement of the middle point of the

beam span (ωq (l/2)) is identified with the x variable, and accordingly to the Hooke law,

from equation (3.12), the linear stiffness in this case is obtained ([82]) as

k1 =
32Ethw

3

l3
(3.13)

The ratio between the linear and the nonlinear stiffness keeps the same constant value (for

a given w parameter) as in the mass-spring model [59]:

k3 = 0.767
k1

w2
=

2 · 12.272Ethw

l3
(3.14)

Nevertheless, the natural frequency, given by equation (3.16) is know to be an intrinsic

feature of the beam, which does not depend on how it is loaded or forced. In this way, the

effective mass in the case of uniformly loaded beam results to be [83]:

meff =
2 · 192ρwthl

k4
n

(3.15)

For large deformations, the punctual load model is a-priori considered more realistic than

the uniform load model because, given the strong dependence of the force on the position,

the deformed cc-beam shape implies a far bigger concentration of the force in the middle

zone of the beam span.

3.1.4 Damping term

The natural frequency of the mass-spring system can be obtained from the general solution

(x (t) = a cos (ω0t+ θ)) of the homogeneous differential equation of the undamped and

unforced spring-mass system (3.7):
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ω0 =

√
k1

meff
(3.16)

If the dissipation of energy , caused by several sources,is considered in the mathematical

model, the damping term must be included in the differential equation, thus it results to be

meffẍ+ γẋ+ k1x = 0. (3.17)

Let the solutions of this equation be in the form of x (t) = aer·t, the characteristic

equation is given by meffr
2 +γr+k1 = 0. Being r =

−γ ±
√
γ2 − 4k1meff

2meff
, the critical value

of the damping term is defined as

γcr = 2
√
k1meff (3.18)

if the damping parameter has a smaller value than the critical value, the r parameter is

complex and the general solution will be oscillatory. By defining the parameter ζ as the

ratio between the actual damping term and the critical one

ζ =
γ

γcr
=

γ

2
√
k1meff

(3.19)

ζ is nondimensional damping parameter which depends on the fluid where the oscillation

takes place, and the shape of the oscillator. The quality factor Q is defined as the di-

mensionless parameter that relates the value of the total energy stored in the system with

the energy that dissipates in each cycle. The value of the quality factor is the sum of the

contributions of all the dissipation mechanisms [84]:

1

Q
=

1

Qair
+

1

Qanchor
+

1

Qsurface
+

1

QTED
+

1

Qothers
(3.20)

namely the air-squeezing, anchor loses, the surface contribution, the thermoelastic damping

(TED), and others. Specifically the quality factor Q depends on the pressure of the gas

surrounding the resonator following the shape shown in figure 3-3, and is related with the

ζ parameter as

Q =
1

2ζ
(3.21)
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thus the quality factor Q describes how undamped the system is. Then the r parameters

can be expressed as

r =
−ζγcr ±

√
(ζγcr)

2 − 4k1m eff

2meff
(3.22)

and, by developing this equation with the definition of the critical damping parameter γcr

given in equation (3.18), the following expression is obtained:

r = −ζω0 ± iω0

√
1− ζ2 (3.23)

On the other hand, the damping term γ can be written as

γ = 2ζmeffω0 =
meffω0

Q
(3.24)

The general solution for the differential equation of the unforced and damped mass-

spring system meffẍ+ 2ζmeffω0ẋ+ k1 = 0 would be in the form of

x (t) = λ1e
r1t + λ2e

r2t (3.25)

being er1t = e−ζω0t
(

cos
(
ω0

√
1− ζ2t

)
+ i sin

(
ω0

√
1− ζ2t

))
, and

er2t = e−ζω0t
(

cos
(
ω0

√
1− ζ2t

)
− i sin

(
ω0

√
1− ζ2t

))
, then

x (t) = e−ζω0t
(
C1 cos

(
ω0

√
1− ζ2t

)
+ C2 sin

(
ω0

√
1− ζ2t

))
(3.26)

where C1 = (λ1 + λ2) and C2 = i (λ1 − λ2), constants which may be determined from the

initial conditions. If the initial conditions x (0) = x0 and ẋ (0) = ẋ0 are imposed, the general

solution becomes

x (t) = e−ζω0t

(
x0 cos

(
ω0

√
1− ζ2t

)
+
ζω0x0 + ẋ0

ω0

√
1− ζ2

sin
(
ω0

√
1− ζ2t

))
(3.27)

This general solution, shown in figure 3-4 a) for its underdamped case (γ < γcr), has a

perfect agreement with the numerical obtained solution of the damped and unforced mass-

spring system (3.17). The resonance frequency of the damped system can be deduced to

be
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ωa = ω0

√
1− ζ2 (3.28)

while the amplitude presents an exponential decrease (also depicted in figure 3-4 a)), whose

exponent is a multiple of the natural frequency of the undamped spring-mass system. Figure

3-4b) represents the variation of the resonance frequency in terms of the Q factor.

Figure 3-3: Dependence of the quality factor Q on the pressure [86].

Figure 3-4: a) Representation of the sinusoidal response of an unforced and underdamped
resonator. b) Resonance frequency variation caused by the damping effect, normalized with
the undamped natural frequency.
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3.1.5 Electrostatic actuation

When using electrical conductors as structural layers, the beam resonator and an electrode

constitute a capacitor. The capacitance between the plates of a parallel plate capacitor is

given by

C0 =
ε0lth
s

(3.29)

being ε the vacuum permittivity with an approximate value of ε0 ≈ 8.854 F/m. Know-

ing that the electrostatic energy and the electric charge stored between the plates of the

capacitor are respectively

WC =
1

2
CV 2, (3.30)

and

QC = CV, (3.31)

the relations between the differential variations of energy and charge in the capacitor from

differential variations of capacitance can be established: dWC =
1

2
V 2dC and dQC = V dC.

Considering that this charge is provided by a voltage supply; the supply charge (QV ) varies

as dQV = −dQC and the total stored electrical energy change is given by dWe = dWC −

V dQC = −1

2
V 2dC [58]. If the 1 DOF. parallel plate model approximation is considered,

the capacitance constituted by the beam and each electrode depends on the displacement

of the moving resonator:

C =
ε0thl

s− x
(3.32)

The force acting on the capacitor is the negative gradient of the total energy and, given

that only movement in x-direction is considered, the expression of the electrostatic force

can be expressed as [58]:

Fe = −dWe

dx
=

1

2
V 2∂C

∂x
=

V 2ε0lth

2 (s− x)2 (3.33)

Accordingly to last equation , the capacitive electrostatic force is positive for a positive
dC

dx
, which means that the electrostatic force has the same sign as the the displacement
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that provokes an increase of the capacitance [58]. On the other hand, the electrostatic

force is proportional to the square of the voltage, thus it is independent on the sign of

such voltage. In the general case, V is considered as the contributions of the AC and DC

voltages, resulting

Fe =

(
V 2
DC + V 2

AC (cos (ωt))2 + 2VDCVAC cos (ωt)
)
ε0lth

2 (s− x)2 (3.34)

and expanding

Fe =

(
V 2
DC +

1

2
V 2
AC +

1

2
V 2
AC cos (2ωt) + 2VDCVAC cos (ωt)

)
ε0lth

2 (s− x)2 (3.35)

it can be seen that the electrostatic force has frequency components at frequencies zero, ω

and 2ω. The component of the generated electrostatic force at the frequency ω is

Feω (t) = VDCVAC cos (ωt)
∂C

∂x
(3.36)

Given the damped and forced linear mass-spring system equation,

meffẍ (t) + γẋ (t) + k1x (t) = Fe (t) (3.37)

the Laplace transform provides the transfer function between the input (forcing) and the

output (position) [85]:

H (s)) =
X (s)

Fe (s)
=

1

meff

1

s2 +
ω0

Q
s+ ω2

0

(3.38)

where the projection over the jω axis results
X (ω)

Fe (ω)
=

1

k1

 1

1−
(
ω

ω0

)2

+
jω

Qω0

. An under-

damped system presents a resonant peak that increases in amplitude with greater quality

factor Q values. Finally the position response at the resonance frequency is given by [85]:
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x (ω = ω0) =
Feω
k1

 1

1−
(
ω

ω0

)2

+
jω

Qω0


ω=ω0

= −j Q
k1
Feω = −j Q

k1
VDCVAC

dC

dx
(3.39)

3.1.6 Capacitive readout

One of the important issues to solve in the submicrometer and nanometer scale resonators is

the transduction of the movement into an electrical signal. The approach used in this work

is the use of capacitive readout principle. Since the charge between the plates of a capacitor

is given by the capacitance times the voltage between such plates (Q = CV ) and given that

the current is, by definition, the time derivative of the charge (Ic =
∂Q

∂t
), the capacitive

current generated by the resonant beam subjected to bias voltage and AC excitation can

be expressed as [86]:

Ic =
∂ (C · V )

∂t
= C

∂ (VAC cos (ωt))

∂t
+ (VDC + VAC cos (ωt))

∂C

∂t
(3.40)

assuming that VAC � VDC (which is the most habitual case), equation (3.40) can be

approximated to

Ic ≈ −CωVAC sin (ωt) + VDC
∂C

∂t
= IP + IM (3.41)

with IP being the parasitic current generated by the sinusoidal essence of the VAC voltage

(and thus does no reflect the movement of the oscillator) and IM the motional current,

proportional to the variation of the capacitance between the resonator and the electrode.

From equation (3.32) it is known that, since either permittivity (ε0) or coupling area (l · th)

are constants, thus the variation of the capacity, which generates IM is due to the variation

of the position. With the aim of analyze the motional current term, the movement of the

moving resonator is assumed to be sinusoidal. In this way

IM ≈ VDC
∂C

∂t
= VDC

∂C

∂x

∂ (x0 sin (ωt))

∂t
= ηωx0 cos (ωt) (3.42)

with η being the electromechanical coupling factor. This is an important factor that ex-

presses the ratio between the applied AC voltage and the component of the generated
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electrostatic force at the frequency ω:

η =
Feω

VAC cos (ωt)
= VDC

dC

dx
(3.43)

with Feω given by equation (3.36) [86]. The derivative function of the capacitance between

the oscillator and the electrode with respect to the position x is
dC

dx
=

d

(
ε0thl

(s− x)

)
dx

=

ε0thl

(s− x)2 =
C0s

(s− x)2 , which for small amplitude oscillations can be approximated to
C0

s
. In

this way, the electromechanical coupling factor can be written as:

η ≈ VDC
C0

s
(3.44)

Thus the motional generated current (IM ) depends on the applied DC voltage, on the

oscillation amplitude, on the frequency and on the coupling area.

From equation (3.39) it can be observed that when the AC excitation is applied in a

frequency corresponding to the natural frequency of the resonator, the effect of the force

is multiplied by the quality factor Q, defined in (3.21), which is specific for each resonator

system. For the usual high-Q resonators, the approximate expression QFe = k1x can be

considered [86], and in this way, the oscillation amplitude in this case can be approximated

to

xr = Q
ηVAC
k1

≈ Q

k1
VDCVAC

C0

s
(3.45)

which is consistent with the expression provided in (3.39) and the motional current term

can now be written to depend on the electromechanical coupling factor as

IMr = Q
η2VACω

k1
≈ Q

C2
0V

2
DCVACω

s2k1
(3.46)

Finally, the parasitic current is defined as

IP = CP
∂V

∂t
= −CPωVAC sin (ωt) (3.47)

where CP is defined, in general, as the coupling capacitance between the readout electrode

and the electrode or structure where the AC excitation is applied. The motional current

60



is magnified at the resonance frequency, however out-of-resonance the parasitic term of the

current dominates over the motional term.

3.1.7 Equivalent electric circuit for MEMS resonators

The electrical performance of the MEMS system in its linear regime can be assimilated to

a RLC (figure 3-5) circuit corresponding to the motional impedances in series with a trans-

former, and all in parallel with the capacitance corresponding to the parasitic current, given

by equation (3.47) [87]. A relation between the applied AC excitation and the generated

capacitive current for the readout can be obtained. At this point two different capacitances

must be distinguished: CE is the capacitance formed by the resonator and the electrode be-

tween which the AC excitation takes place, and CR is the capacitance between the resonator

and the readout electrode. The sign of time derivatives of these capacitances determines if

the generated motional current at the resonance and AC excitation are in the same phase

or in the opposite phase. However, since the resonator is placed symmetrically between the

electrodes, in any case the value of these capacitances for the zero displacement is the same:

C0. In this way, given the approximation
dC

dx
≈ C0

s
introduced in section (3.1.6), equation

(3.36) results:

Feω (t) = VDCVAC cos (ωt)
C0

s
, (3.48)

and the motional current can be approximated to

IM (t) = VDC
C0

s
ẋ (t) (3.49)

which implies ẋ (t) =
sIM (t)

VDCC0
. Knowing the expression for ẋ (t), equations for ẍ (t) and

x (t) may be obtained as

x (t) =
s

VDCC0

∫ t

0
IM (t) dt (3.50)

and

ẍ (t) =
s

VDCC0

dIM (t)

dt
(3.51)
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By substituting these expression into the equation of the linear damped mass-spring equa-

tion (3.37)

meff
s

VDCC0

dIM (t)

dt
+ γ

sIM (t)

VDCC0
+ k1

s

VDCC0

∫ t

0
IM (t) dt = VDCVAC cos (ωt)

C0

s
(3.52)

Last equation can be assimilated to the RLC circuit differential equation:

LM
di

dt
+RM i+

1

CM

∫ t

0
idt = VAC cos (ωt) (3.53)

and given the expressions for the electromechanical coupling factor (η), the damping term

(γ) and the qualilty factor (Q) provided respectively by equations (3.44), (3.24) and (3.21),

the motional RLC constants of the equivalent circuit are found to be

• Motional inductance: LM = meff

(
s

VDCC0

)2

=
meff

η2
(3.54)

• Motional resistance: RM = γ

(
s

VDCC0

)2

=

√
k1meff

Qη2
(3.55)

• Motional capacitance: CM =
1

k1

(
VDCC0

s

)2

=
η2

k1
(3.56)

while the parasitic capacitance CP is defined in section 3.1.6. On the other hand, following

the definition of the electromechanical coupling factor (η) in equation (3.44), ηE and ηR are

defined respectively as ηE = VDC
dCE
dx

and ηR = VDC
dCR
dx

. The motional current given in

equation (3.46) can be expressed as

IMr = −Q
k1

dCE
dt

dCR
dt

VACω (3.57)

The sign of the electromechanical coupling factors determines the phase of the motional

current, defining the transformer factor as [88]:
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ΦM =
ηE
ηR

(3.58)

Given the symmetrical position of the beam with respect to the electrodes the defined

capacitances verify

∣∣∣∣dCEdt
∣∣∣∣ =

∣∣∣∣dCRdt
∣∣∣∣ ≈ C0

s
. Thus the value of ΦM is 1 or -1.

Figure 3-5: Equivalent electric circuit for the resonator.

3.1.8 One driver versus two drivers configurations

In the one driver configuration, the electrostatic and readout capacitances (CE and CR)

are defined between the resonator and the same electrode, thus their time derivatives verify
dCE
dt

=
dCR
dt

. With this circumstance the phase inversion effect appears and the antireso-

nance occurs at lower frequency than the resonance (figure 3-6a)). The main drawback of

this configuration is that there is a direct coupling of the electrostatic capacitance CE in the

readout electrode, and given that both parasitic and motional current oscillate at the same

frequency, the parasitic current can mask the motional current. This problem is overcome

by using different electrodes for driving and readout, this is the two-driver configuration. In

this case a growing CE implies a decreasing CR and vice versa, this is to say
dCE
dt

= −dCR
dt

.

In this case there is no phase inversion, and the resonance precedes the antiresonance in the

frequency sweep (figure 3-6b)).
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Figure 3-6: Numerical simulations of the frequency response of the electromechanical system
in a) one-driver configuration (where phase is inverted) and b) two-driver configuration
(where phase is not inverted).

3.1.9 Complete dynamic equation

The mechanical nonlinear behavior is modeled by the nonlinear (cubic) stiffness term, pro-

vided in sections 3.1.2 and 3.1.3. Higher order stiffness terms are neglected in the vast

majority of references in literature, since they has been found to be unnecessary. Figure

3-7 compares, for two different resonator dimensions, the force vs deflection chart obtained

by FEM simulations and from the polynomial equation (F (x) = k1x + k3x
3 + ... ) till the

third degree and till the fifth degree. For the usual values of the displacement the use of

higher order stiffness terms provides no appreciable benefits in terms of accuracy.

Once all the terms and parameters that have influence on the dynamic behavior corre-

sponding to the flexure resonance of biased (by a DC voltage) and electrostatically actuated

(by an AC excitation) clamped clamped beams are defined, the one degree of freedom equa-

tion to model the dynamics is found to be

meffẍ+ γẋ+ k1x+ k3x
3 =

C0s

2

(VDC + VAC cos (ωt))2

(s− x)2 (3.59)

Developing the forcing term
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Figure 3-7: FEM (COMSOL) and analytical force-displacement plots using the dimensions
of polysilicon resonators corresponding to a) AMS 035 technology with dimensions l=54.6
µm, w=350 nm, th=282 nm and b) UMC 018 technology with dimensions l=43.6 µm,
w=280 nm, th=580 nm.

meffẍ+ γẋ+ k1x+ k3x
3 =

C0s

2 (s− x)2

(
V 2
DC + 2VDCVAC cos (ωt) + (VAC cos (ωt))2

)
(3.60)

assuming that the bias voltage is far greater than the excitation amplitude (VAC << VDC),

and that the oscillation amplitude of the beam is really small in comparison with the

gap parameter (x << s), the forcing term in V 2
AC can be neglected and the complete

dynamic equation can be assimilated to the Duffing equation (2.23). In this way, the Duffing

equation can be used as a first approximation to study and understand the behavior of

nonlinear resonators susceptible to present chaotic response. However, it must be taken into

account that the dependence of the forcing on the position (x) introduces nonlinearity and

complexity that cannot be neglected. In fact, the electrostatic force involves a parametric

excitation.

3.1.10 Nonlinearities in frequency response

The nonlinear effects on the electrostatically actuated cc-beam resonators have their ori-

gin either in the mechanical domain or in the electrical domain. The nonlinearities in the

electrical domain are caused by the nonlinear essence of the electrostatic coupling, and
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provokes a bending towards lower frequencies of the frequency peak (spring softening). On

the other hand, the mechanical nonlinearity, which is modeled with the nonlinear stiffness

term, generates a bending of the frequency peak toward upper frequencies (spring hard-

ening). When experimental measurements are performed (instead of numerically obtained

plots), the phenomena of spring hardening and softening are observed as hysteresis (shown

in figure 3-8), and they are magnified by a growing value of the Q factor [59].

Figure 3-8: Illustration of a) the spring softening effect caused by a dominant presence of
the electrostatic nonlinearity and of b) the spring hardening caused by a dominant presence
of the mechanical nonlinearity.

3.2 MEMS Fabrication

This section introduces a brief summary of the fabrication methods and approaches of

MEM and NEM systems, the use of CMOS technologies for this purpose and especially the

features of a specific technology for MEMS fabrication. The application of this technology

to the design and fabrication of monolithic MEMS resonators in previous works is taken as

a starting point for the present study.

3.2.1 Scaling-Down

A scaling-down of the mechanical transducer size into the submicrometer and nanometer

range provides important advantages but, at the same time, some challenges [86], [89], [90].

Table 3.1 summarizes the effect of a uniform scaling-down on the different parameters of the

electromechanical systems. The way how the scaling down proper to CMOS technologies
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(where the thickness dimension does not scale in terms of λ) affects these parameters is also

shown . A scaling factor of λn in a magnitude means that, for a decrease of a factor λ in the 3

dimensions of the beam, this magnitude decreases a factor λn , while a scaling factor of λ−n

means that it increases a factor λn. The scaling-down of the resonator dimensions implies an

increase of the operating frequency and the bandwidth, highly desirable for RF applications.

On the other hand it makes the beam more nonlinear, with richer dynamical response and

several potential applications. Moreover, the effect of the miniaturization provides benefits

in terms of energy efficiency and response time. However, as shown in table 3.1 the main

drawbacks of the scaling-down are a decrease of the electrostatic coupling and force, which

may eventually compromise the actuation and the capacitive readout.

Table 3.1: Scaling factor for the different magnitudes, assuming an uniform scaling λ in all
dimensions, and assuming the scaling proper to CMOS technologies (the thickness param-
eter (th) is assumed not to scale in terms of λ).

Parameter Scaling Factor
Scaling Factor

in CMOS technologies

Mass (m) λ3 λ2

Linear stiffness (k1) λ 1

Nonlinear stiffness (k3) λ−1 λ−2

Nonlinearity strength (k1/k3) λ−2 λ−2

Resonance frequency (f0) λ−1 λ−1

Electrostatic coupling (C0) λ 1

Electrostatic force (FE) 1 λ−1

Response time (τ) λ λ

Capacitive current (IC) λ 1

3.2.2 CMOS-MEMS fabrication and system integration

The fabrication process of MEMS and NEMS fabrication is known to follow two basic

techniques [86]:

• bulk micromachining: refers to all techniques used to remove significant amounts of

the substrate (bulk) material, in such a way that the bulk is part of structural material

of the micromachined movable structure. The silicon etching can be performed using
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wet etchants or etchants in vapor and plasma states (dry etching), both in an isotropic

or anisotropic way.

• surface micromachining: involves the deposition of thin films on the wafer surface and

the selective removal of one or more of these layers (sacrificial layers) to release the

movable structures.

The progressive miniaturization of microsensors and microactuators fabricated using IC

technologies and materials achieved over the past years has allowed the integration of those

devices and the interface circuit on the same chip (monolithic integration) or in the same

package (hybrid integration), with important advantage in terms of cost of fabrication, size

and reliability [86]. Specifically with the monolithic integration, the whole electromechanical

system is fabricated with an optimized process for IC and some compatible post-processing

steps. Using this approach, the parasitics due to the interconnection between the actuators

and the interface circuit are minimized (which is compulsory with the submicrometer range

fabricate devices in oder to allow operative sensor readout), the system assembly is simple

and does not depend on the number of connections; finally the use of the same technology

allows a good matching between the actuator and the interface circuit.

In general, the fabrication process of CMOS MEMS is done with a regular CMOS process

sequence in combination with compatible micromachining and film deposition [91]. In this

sense, three main approaches can be distinguished [92]:

• Pre-CMOS or MEMS-first approach: The MEMS structures are totally or partially

formed before the CMOS process. The IC is not affected by the micromachining

process, but the structure must be protected during the CMOS process [93], [94].

• Intra-CMOS or Intermediate-CMOS approach: The microstructures are fabricated by

micromachining the CMOS metalization stack during an interruption of the CMOS

process sequence [95], [96]. Inserting the micromachining process steps before the

backend interconnect metalization ensures process compatibility with the polysilicon

deposition and anneal. As in the pre-CMOS approach, MEMS structures have to be

protected during the CMOS process.

• Post-CMOS or MEMS-last approach: All micromachining process is performed once

the CMOS process is finished. This approach implies a limitation of the available
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temperature for the MEMS process, but also the advantage of allowing the vertical

stacking of microstructures on top of the electronics, which reduces the die size and

can improve performance through reduced interconnect parasitic resistance and ca-

pacitance [92]. Two strategies may be distinguished within this approach. In the

first strategy, the MEMS structures are completely built on top of a finished CMOS

substrate, leaving the CMOS layers untouched. The microstructures are released by

etching a CMOS sacrificial layer [97]. In the second strategy, the MEMS are obtained

machining the CMOS layers using CMOS-compatible bulk and surface micromachin-

ing techniques [98].

Following references [99] and [92], the term CMOS-MEMS refers the intra-CMOS process

(in which the MEMS is defined using one or more layers of the CMOS back-end-of-line1

materials, available in the standard CMOS technologies), while the pre-CMOS and post-

CMOS approaches, since they require special technological processes (not available in a

standard CMOS technology), are considered non standard approaches.

The intra CMOS approach takes advantage of the benefits provided by the CMOS tech-

nologies: fast turnaround fabrication time, reproducibility, yield, reliable MEMS dimensions

definition due to the strict CMOS technology tolerance and good matching with the inter-

facing circuitry, minimizing the parasitic effects and optimizing the signal-to-noise ratio. On

the other hand, some limitations come from the design rules established by the standard

CMOS IC process and the properties of the back-end-of-line materials which exhibit higher

energy losses [99]. The releasing of the MEMS resonator to obtain the movable mechan-

ical MEMS device is performed using isotropic wet etching, anisotropic dry etching or a

combination of these etchings.

3.2.3 Fabrication approach

The current approach used in the framework of this thesis consists in the design and fabri-

cation of monolithically integrated MEMS with an intra-CMOS process, defining standard

BEOL CMOS layers as structural MEMS layers and a post CMOS wet etching without

additional mask [100]. The purpose of this wet etching is the release of the resonant struc-

1Back end of line (BEOL) is the set of layers deposited over the semiconductor where the individual
devices (transistors, capacitors, resistors, etc.) are patterned (namely the front end of line or FEOL).
Within BEOL, metalization layers have interconnection functions between FEOL elements.
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tures by means of the removal of the SiO2 sacrificial layer. The used commercial CMOS

technology is the AMS 0.35 µm from ”Austria Micro Systems”. This technology, commonly

abbreviated as AMS 035, provides a set of CMOS processes with a common core, called

C35. This core includes a p-type substrate, a polysilicon capacitor module, four metal

layers with their interconnection VIAS, and a bias voltage of 3.3V [85], [101]. The passiva-

tion layer is enough to protect the CMOS circuitry during the etching procedure allowing

the process to be mask-less [99]. A low cost standard intra-CMOS process is followed,

after which the mechanical resonators are completely mechanized without any additional

micro/nano-mechanization techniques. A standard CMOS layer is used as structural layer

and the different silicon dioxide underlying layers are used as sacrificial layers. To allow a

direct postprocessing of the MEMS, a pad cut has been defined over the resonator area. In

this way, the resonator structure is kept free of the addition of any other layer over it. The

rest of the chip area is covered by the passivation layer which protects the circuitry during

the postprocess. The fabrication area for the resonators is designed specifically allowing a

very fast etching of the sacrificial layers, which does not cause any damage to the CMOS

and does not need any additional protection mask [86]. In last decade a wide variety of

devices have been fabricated using the AMS 035 CMOS technology: resonators [102], oscil-

lators [103], sensors [45], relays [104], etc. A similar strategy of CMOS MEMS fabrication

was developed at the Carnegie Mellon University (USA) by the group of G.K. Fedder [46],

[97] and, more recently, at the National Tsing Hua University (Taiwan) using TSMC 0.35

µm and TSMC 0.18 µm technologies [47], [105]. The cross-section of the AMS 035 CMOS

technology is shown in figure 3-9, and the dimensional and mechanical parameters each

layer are shown in table 3.2.

Figure 3-9: Cross-section of the AMS 0.35µm CMOS technology.
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Figure 3-10: Cross-section of the AMS 0.35µm CMOS technology when using different
available standard CMOS layers as structural layer, before and after the wet etching.

Table 3.2: Dimensions and mechanical parameters corresponding to the different layers of
AMS 0.35µm CMOS technology [85], [101].

Poly 1 Metal 1..3 VIA Metal 4
Material Polysilicon TiN-Al-TiN W TiN-Al
th (nm) 282 640 1000 850
Min. gap (nm) 450 450 450 600
Min. width (nm) 350 600 500 600
Density (kg/m3) 2330 3000 19300 3000
Young’s modulus (GPa) 160 131 410 131

Releasing process

When the CMOS process is finished, the resonator is buried into the silicon dioxide (SiO2),

dielectric material which is working as sacrificial material. In this way a post-process to

release the structure and allow its movement is needed. This releasing process is the only

process which is made out-foundry, and consist in a post CMOS one-step maskless wet etch-

ing with a hydrofluoric solution (HF) [100]. One of the used HF solutions is the commercial

Silox Vapox III (from Transene Company, Inc.) which contains ammonium fluoride, glacial
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acetic acid, aluminum corrosion inhibitor, surfactant and DI water, and presents a theo-

retical etch rate of 960 Å/min for the silicon dioxide [105]. The hydrofluoric acid attacks

the silicon dioxide, but (in spite of the presence of aluminum corrosion inhibitor) since it

is a highly corrosive acid, it attacks also the aluminum (to a lesser extent). Experimental

measurements (reported in [105]) effectuated with Silox Vapox III revealed an etch rate of

about 29 Å/min. In this way the selectivity Silox Vapox III of between silicon dioxide and

aluminum is approximately 33:1. Another used commercial HF solution is ALPAD Etch

639 (also from Transene Company, Inc.), an oxide etchant designed to minimize attack on

aluminum pads or other aluminum structures and on silicon surfaces. The formulation of

ALPAD Etch 639 includes a surfactant to ensure wetout over high surface energy substrates.

The last used wet etchant is a home-made a reproduction of the commercial HF solutions.

The wet etching has a low effect on the passivation: for example the selectivity between

silicon dioxide and silicon nitride of the Silox Vapox III is approximately 96:1. The releasing

process follows four steps:

• In the etching step, the chip is submerged into the hydrofluoric solution (HF) along

a period of time which depends on how deep the structure is placed.

• After the etching step, the sample is submerged in deionized water, maintaining a

constant flow, to remove the reactive agent.

• The sample is submerged into isopropyl alcohol (isopropanol) bath, to remove the

water which may be accumulated in the nooks of the chip.

• Finally, the sample is put into an oven, under a temperature of 100◦C, to dry it and

to eliminate all the isopropyl alcohol from the chip.

After these four steps the structure is released and ready for operation or scanning

electron microscope (SEM) imaging. Figure 3-10 represents the etching process for the

different available structural layers.

Metal devices

While using the top metal layer or a deeper metal layer available in the technology as

structural layer, the CMOS circuitry and the resonator are designed together. Mainly,

the material corresponding to the metal layers is aluminum, stacked between thin layers
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of titanium nitride. The sacrificial layer is the underlying stack of silicon dioxide layers

corresponding to the different inter-metal oxides (i.e.IMD3, IMD2, and IMD1), metal1-poly

oxide (ILDFOX), and field oxide (FOX) [99]. As usual, a pad window is defined over the

resonator area to allow a direct post-processing of the MEMS and the rest of the chip area

(except the electrical contact pads) is covered by the passivation layer: a silicon nitride film

(Si3N4) deposited by plasma-enhanced chemical vapor deposition (PECVD) which protects

the circuitry during the post-CMOS process [86]. The structures are completely mechanized

at the end of the standard CMOS process, and the sacrificial layer is only present under the

resonator enabling a simple etching of the silicon dioxide. Whit this approach, the minimum

width of the resonator as well as the gap spacing to the electrodes is limited by the design

rules of the technology (in the case of AMS 035 technology, MET4 design rules limit the

resonator width and the gap both to 600 nm). The mask-less HF solution-based etching

process is the only processing step outside the foundry. As it is an isotropic process, the

etching time depends on the MEMS dimensions and the quantity of oxide over the structure

[99].

One of the developed options for the AMS 035 technology is to use the top metal layer

as the structural material for the resonators. This metal layer is constituted by a titanium

nitride (TiN) layer of 100 nm below an aluminum (Al) layer of 750 nm. An averaging

process provided the mechanical properties of this double layer, namely a density of 3000

Kg/m3 and a Young’s modulus of 131 GPa [85].

Polysilicon devices

Mechanical structures fabricated with the polysilicon capacitor module are available in the

AMS 035 technology. This module is constituted by two polysilicon layers: Poly1 is the

bottom layer (282 nm) and Poly2 is the top layer (200 nm). This two polysilicon layers are

separated by a 41 nm thick silicon oxide layer [86].

The usual is to use the Poly1 layer as structural layer to fabricate both the resonator

and the electrodes. In this case, the sacrificial layer is the underlying field oxide layer (FOX

of 290nm). To allow the direct post-processing without any additional mask, a hole through

the silicon dioxide is also opened over the resonator area in order to fasten the releasing

process. This hole is defined in the AMS 035 technology by using a stack of three layers:

PAD layer (pad cut), VIA3 layer, and VIA2 layer. In this way, in contrast to the metal
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approach, the resonator structure remains still protected by IMD1 and ILDFOX layers to

avoid damages during the rest of the CMOS process (metal deposition and etchings). The

rest of the chip area is covered by passivation layer in the same way that in the metal

approach. In order to release the resonator, the same post-CMOS process that in the metal

approach is performed. In this case, since several oxide layers above the resonator have also

to be removed, the post-process time must be increased [86].

Tungsten devices

The VIA layers, from VIA 1 to VIA 3, made of tungsten (W) work as connectors between

metal layers. In the deposition process of the tungsten, a 20 nm layer of TiN is deposited

to protect the lateral walls of the whole in the SiO2; however given its relative thinness, its

influence over the mechanical properties of the VIA has been neglected [85] [106]. When the

VIA is defined between two metal layers, its thickness correspond to the distance between

these metal layers, but when there is no defined metal layer below the VIA it can occupy

the thickness of this missing metal layer. When no metal layer is defined either above or

below the VIA it has a minimum and a maximum thickness values. Since the only limit for

the VIA layers length is the aspect ratio allowed by the technology, the VIA layers can be

used as the structural layers for MEMS devices. Experimental measurements of torsional

relays fabricated with tungsten VIA 3 of AMS 035 CMOS technology are reported in [106],

[104] and [107]. Specifically, this thesis reports fabricated resonators using the VIA3 and

their experimental measurements (see chapter 6 for details).
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Chapter 4

Limits of electrostatically actuated

microbeam resonators as chaotic

signal generators: a first

approximation

The biasing requirements to obtain cross-well chaotic motion for in-plane electrostatically

driven beam-shaped MEMS resonators are investigated in this chapter for typical actua-

tion/readout topologies. Practical applications such as chaotic signal generators require

reasonable and wide enough range of voltages (DC and AC) to assure a feasible control

in current CMOS or nanotechnologies. In this chapter, these conditions are found when

enabling cross-well motion operation in stead of in-well operation. As a first approximation,

from the 1DOF model, parallel plate assumptions are used in the derivation of electrostatic

force term, neglecting the effect of the fringing field at this stage, as well as other nonlinear

second order effects. The parallel plate approximation, based on the mass-spring model (see

section 3.1.2) assumes the beam displacement in the x-direction (denoted by the variable

x) as a non deformable solid. Under these assumptions, and considering the scaling in the

dimensional parameters down to the submicrometer range, this chapter tackles with the

conditions and limits for two-well potential distribution and chaos in nonlinear cc-beam

resonators when considering typical parameter values from various fabrication approaches.
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4.1 Electromechanical system analysis

As seen in chapter 2, it is possible to obtain chaotic behavior from a recreation of the chaotic

Duffing attractor with two-well potential or even with one-well potential distributions. The

nonlinear essence of the physical system allows the appearance of nonlinear behavior such

as Period Doubling bifurcation or the reproduction of strange attractors, which ultimately

may lead to chaotic motion.

Chaotic behavior generated from recreation of the strange attractor of the Duffing sys-

tem with two-potential well arises in a sustained, robust and nontransient form, for a wide

range of system parameters and for a wide bandwidth in the frequency domain (see section

2.3.1). Moreover, cross-well chaos, arisen from the two-well potential Duffing system is

more widely reported in literature (see section (1.3.1)) than the single potential well chaos.

For these reasons, the first approach to MEMS resonators chaotic behavior is based on the

two-well potential Duffing strange attractor.

For instance, references [108] and [21] claim that the main way to obtain chaotic motion

with a resonator is the reproduction of the two-well potential distribution in the Duffing

system. In addition, as stated in section 2.4, the application of the Melnikov method

requires the presence of more than one potential minimum to generate the homoclinic (or

heteroclinic [27]) trajectory for the unperturbed case.

4.2 Two-well potential distribution in a cc-beam resonator

The design and operating conditions to achieve a two-well potential distribution are analyzed

using the parallel plate approximation (where the whole beam is identified with the mass-

spring model explained in section 3.1.2). Three topologies are typically used in the literature

to perform both the electrostatic actuation and readout of the capacitive current Ic (t)

generated at the resonator-driver interface [45],[109]. A DC voltage and an AC voltage

source (VAC and VDC respectively) are used to bias and excite the resonator using some of

the three schemes depicted in figure 4-1. Topology I uses two electrodes, in addition to the

beam resonator, for electrostatic actuation (upper electrode) by means of an AC voltage

source (with an amplitude VAC at a frequency ω), and capacitive readout (bottom electrode)

respectively. The resonator is biased at a DC voltage (VDC) to obtain a capacitive current

(due to the resonator motion) that is sensed by the readout electrode. The capacitive current
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Ic (t) has mainly two components (motional and parasitic) as stated in section 3.1.6. The

whole expression for the capacitive current, as a function of time, is

Ic (t) =
d (CV )

dt
= V (t)

dC (t)

dt
+ C (t)

dV (t)

dt

≈ VDC
∂C (t)

∂x (t)

∂x (t)

∂t
+ Cp (t)

∂VAC (t)

∂t
= IM (t) + IP (t) (4.1)

where Cp (t), defined as the parasitic capacitance, is the capacitance the AC application

place and the readout electrode. In (4.1) it is assumed (like in most applications) that

VDC � VAC . It is important to note that Topology I exhibits some benefits with respect to

the other two topologies also found in the literature and shown in figure 4-1(b and c). The

use of independent AC and DC voltages is more suitable for operating as a self-sustained

oscillator [45]. The AC signal can be generated by a sustaining circuit and feed to the

excitation electrode to get a closed-loop configuration, eliminating the need for integration

of bulky passive elements as ac-coupling capacitors or inductors. On the other hand, in terms

of capacitive readout, the parasitic feedthrough current is minimized when using specific

electrodes for the electrostatic actuation and capacitive readout as pointed in section 3.1.8.

Both Topologies I and II have no direct capacitive coupling between the actuation electrode

(VAC) and the readout electrode, thus getting a theoretically null Cp in contrast to the

single-electrode topology (figure 4-1c), which corresponds to one-driver configuration. In

any case, in practical applications, there is always a non-zero parasitic current due to the

effects like coupling through the substrate, and especially the fringing field effect. Next, the

electrostatic force term in the motional equation is analyzed for these three topologies.

4.2.1 Topology I

The lumped equation to describe the resonator dynamics with the topology I (figure 4-1a))

where the AC signal is connected to the driving electrode and the bias voltage is applied to

the beam, can be approximated to

meffẍ+ γẋ+ k1x+ k3x
3 =

C0s

2

(
(VAC cos (ωt)− VDC)2

(s− x)2 −
V 2
DC

(s+ x)2

)
(4.2)

Expanding the expression of the actuation force Fexc (right side of the equation)
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Figure 4-1: Schematic representations of driven beam resonators: a) Topology I. b) Topol-
ogy II. c) Topology III.

Fexc =
C0s

2

(
(VAC cos (ωt))2 − 2VDCVAC cos (ωt)

(s− x)2

)
+
C0s

2
V 2
DC

(
1

(s− x)2 −
1

(s+ x)2

)
(4.3)

and by developing the second term power in series, the actuation force is found to be

Fexc =
C0s

2

(
(VAC cos (ωt))2 − 2VDCVAC cos (ωt)

(s− x)2

)
+
C0s

2

V 2
DC

s2

(
4x

s
+

8x3

s3
+ σ (xn)

)
(4.4)

Due to the symmetry of the DC electrostatic force in this topology, since the bias voltage

is applied to the beam resonator, the even power coefficients cancel each other and do not
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appear in the motional equation. In equation (4.4), σ (xn) denotes higher-order terms.

After this development, equation (4.2) can be assimilated to the Duffing equation (2.23)

which describes the response of a periodically excited oscillator [54],[110] as experimentally

demonstrated in [109]. Therefore, the system motion equation is given by

ẍ+

(
k3

meff
−

4C0V
2
DC

meffs4

)
x3 +

(
k1

meff
−

2C0V
2
DC

meffs2

)
x+

(
γ

meff

)
ẋ

=
C0s

2meff

(
(VAC cos (ωt))2 − 2VDCVAC cos (ωt)

(s− x)2

)
+
C0s

2

V 2
DC

s2
σ (xn) (4.5)

Note how the bias voltage VDC tunes the effective linear and nonlinear beam stiffness

modulating the nonlinear behavior (i.e. spring softening and spring hardening)[111]. Ne-

glecting the higher-order terms (σ (xn)), the main difference between the MEMS system

model and the Duffing oscillator is the parametric excitation amplitude (i.e. the electro-

static force depends on the resonator position) that causes the pull-in effect [112].

At this point, the design and biasing conditions required to create a double-well potential

for the electrostatically actuated MEMS with the current topology are derived. Given the

Duffing system described by equation (2.24), and its potential function provided by equation

(2.36), the local maximum and minimum positions of the potential function are x = 0 and

x = ±
√
−β
α

; as explained in section 2.2.1, βα < 0 is required to have a nontrivial real

solution. The Duffing system exhibits a two-well potential distribution when β < 0 and

α > 0. The nontrivial positions correspond to minumums of the potential function (namely,

the potential wells) [54], which can be corroborated from the sign of the second derivative

of the potential function (U ′′

(√
−β
α

)
= β + 3α

(
−β
α

)
= −2β > 0 so local minima,

and U ′′ (0) = β < 0 so local maximum). Consequently a negative linear stiffness and

a positive cubic stiffness are required.For small oscillation amplitudes relative to the gap

(i.e. x/s � 1), Taylor series to the third power approximation of the electrostatic force is

acceptable to estimate the MEMS behavior. Thus, equation (4.5) is suitable for the system

analysis without taking into account higher order terms. The Duffing-like equation shows

a two-well potential distribution when following inequalities are satisfied:

k1

meff
−

2C0V
2
DC

meffs2
< 0 and

k3

meff
−

4C0V
2
DC

meffs4
> 0 (4.6)
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The last equation establishes that double-well potential cannot be attained in this way for a

cantilever structure since its k3 parameter is almost zero. On the other hand, for a cc-beam

structure, the VDC values must verify the following inequalities:

√
k1s2

2C0
< VDC <

√
k3s4

4C0
(4.7)

It is evident that, to allow the existence of a set of DC values that verify these conditions,

the following inequation must be met:

√
k1s2

2C0
<

√
k3s4

4C0
(4.8)

Given the definitions of the parameters k1 and k3 given respectively in equations (3.9)

and (3.10) the design condition required to enable cross-well operation for the cc-beam

resonator width w in terms of the gap distance s is easily derived:

s >

√
2
k1

k3
= 1.615w (4.9)

Notice that, since it is given as a ratio between the linear and nonlinear stiffness, this

geometric design condition is also valid when the beam is considered to be under an uni-

formly distributed force (with k1 and k3 respectively defined in equations (3.13) and (3.14)).

Seeking the biasing conditions to achieve a two-well potential (2WP) distribution, the static

force equation along the position x is given in equation (4.10). The AC voltage term in

cos2 implies a bias component that affects the static balance; however, given that VAC is

considered to be far smaller than VDC , the small bias term generated by the AC voltage

can be neglected, and in this way:

F (x, VDC) = −
(
k1x+ k3x

3
)

+
sV 2

DCC0

2

(
1

(s− x)2 −
1

(s+ x)2

)
(4.10)

while the whole potential energy function along the position x can be expressed as

U (x, VDC) = Uelastic (x) + Uelectric (x, VDC)

=
1

2
k1x

2 +
1

4
k3x

4 −
sV 2

DCC0

2

(
1

(s− x)
+

1

(s+ x)

)
(4.11)

The equilibrium points of the system and their stability features can be found respec-
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tively from the roots of the first and second potential function derivative (
∂U (x, VDC)

∂x
= 0

,
∂2U (x, VDC)

∂x2
= 0). Assuming for simplicity only positive bias voltages and solving both

equations concurrently, the solutions of type (x, VDC) that represent equilibrium points and

bias stability boundaries are found. The first couple of solutions is

(xpi0, Vpi0) =

0,

√
k1s2

2C0

 , (4.12)

where Vpi0 is the lower limit value in inequations (4.7). This expression for the Vpi0 is well-

known in the literature as the pull-in voltage, that is, the bias voltage causing the collapse

onto the electrode driver. This effect is only valid for gap values when the design condition

in (4.9) is not satisfied (figure 4-2a). A second couple of real solutions is found to be

(xpiw, Vpiw) =

±√k3s2 − 2k1

3k3
,

√
2 (k3s2 + k1)3

27C0s2k2
3

 , (4.13)

which only exists if the design condition for 2WP (4.9) is fulfilled (figure 4-2b).

For the case when the design condition for 2WP is attained (s > 1.615 · w), x = 0

represents an equilibrium point for any VDC . For VDC < Vpi0, x = 0 is an stable equilibrium

point. Vpi0 is, in this case, the bias voltage value at which this point becomes unstable and

for Vpi0 < VDC < Vpiw, and the position x tends to the nearest stable equilibrium points

(now the bottom of the potential wells). The static collapse onto the driver takes place in

this case for bias voltages higher than Vpiw that can be defined as the true pull-in voltage

when working with a double-well potential.

In the case when the design condition is not verified (s < 1.615 · w), the only stable

point x = 0 becomes unstable when the bias voltage reaches the value of Vpi0, and then the

system is subjected to the pull-in effect. With the aim of illustrate the positions and the

stability of the equilibrium points in both cases, they are calculated using the parameter

values corresponding to a 1MHz-designed polysilicon cc-beam for the AMS 035 CMOS

technology (given in the first row of table 4.2) , and depicted in figure 4-2. Using the same

parameter values, the force and potential functions along all the possible deformed positions

x are calculated for different values of the bias voltage when the design condition (equation

(4.9)) is fulfilled (and the two-well potential is allowed), and represented in figure 4-3. In

this case, the roots of force function in figure 4-3 a) correspond to the equilibrium points
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of the supercritical Pitchfork bifurcation diagram (figure 4-2b) at the different bias values.

Notice that the situation of two-well potential distribution implies 5 roots of the static force

function.

Figure 4-2: Bifurcation diagram showing the resonator equilibrium points and their stability
as a function of the DC bias voltage in case of a) not verifying (for s = 1.439w, subcritical
Pitchfork bifurcation) and b) verifying (for s = 2.41w, supercritical Pitchfork bifurcation)
the design condition for double-well potential.

Figure 4-3: a) force and b)potential b) distribution along the deformation position for
different biasing conditions, verifying (s = 2.41w) the design condition for double-well
potential.

Once a double-well potential distribution has been reached, another important operating

condition is that the potential barrier between potential wells must be lower than the

82



potential barriers that separate the potential valleys to the pull-in regions. If the potential

values of the nontrivial unstable equilibrium points (corresponding to the potential maxima

at deformed positions) are lower that the potential value at the trivial unstable equilibrium

point U (0), the snap-in (or cross-well) movement wont be able to take place, because the

beam will collapse instead of it.

4.2.2 Topology II

In the second topology (figure 4-1b) the bias voltage is also applied symmetrically at both

electrodes, as a result the same considerations than the previous scheme are used for the

power series development of the actuation force. In this case, the system motional equation

and the Duffing-like equation are

meffẍ+ γẋ+ k1x+ k3x
3 =

C0s

2

(
(VACcos (ωt) + VDC)2

(s− x)2 −
V 2
DC

(s+ x)2

)
(4.14)

and

ẍ+

(
k3

meff
−

4C0V
2
DC

meffs4

)
x3 +

(
k1

meff
−

2C0V
2
DC

meffs2

)
x+

(
γ

meff

)
ẋ

=
C0s

2meff

(
(VAC cos (ωt))2 + 2VDCVAC cos (ωt)

(s− x)2

)
+
C0s

2

V 2
DC

s2
σ (xn) (4.15)

respectively. The analysis and conclusions of the potential function characteristics developed

for the topology I are also valid for this topology, since both topologies have the same layout

and are governed by the same static potential function (equation (4.11)).

4.2.3 Topology III

The topology in figure 4-1c) uses one single electrode for both biasing and actuation pur-

poses. In this case, the dynamics of the MEMS is governed by:

meffẍ+ γẋ+ k1x+ k3x
3 =

C0s

2

(
(VAC cos (ωt) + VDC)2

(s− x)2

)
(4.16)

Since the DC bias voltage is not applied symmetrically in this topology, the position x = 0

is no longer an equilibrium point and the even powers in Taylor expansion do not cancel

83



each other. The potential energy function (having considered again that VDC � VAC and,

thus, neglected the small bias term generated by the cos2 term) can be written as

U (x, VDC) =
1

2
k1x

2 +
1

4
k3x

4 −
sV 2

DCC0

2

(
1

(s− x)

)
(4.17)

Given that parameters k1, k3, C0 and s are positive, the existence of more than two roots

for |x| < s is not possible, making a double-well potential distribution unfeasible. Thus,

for small VDC values there is an stable equilibrium point that becomes unstable for values

exceeding the pull-in voltage and unavoidably cause the resonator collapse to the electrode.

An expression of the pull-in voltage for a one-driver topology has been widely reported in

the literature [58], [82], providing Vpi0 =

√
8k1s2

27C0
for a position of xpi0 = s/3, however these

results correpond to the approximation in which the nonlinear stiffness has been neglected.

4.3 Design for 2WP with cc-beams

In previous sections, the impossibility of obtaining a double-well potential energy distribu-

tion, neither for cantilevers structures nor cc-beams arranged as in topology III have been

demonstrated. In this section, the considerations required to design an electrostatically

actuated cc-beam resonator exhibiting a double-well potential in the equivalent topologies

I and II are analyzed. For a given technology, characterized mainly by the minimum width

w that can be fabricated and the mechanical properties of the resonator structural layer

(Young’s modulus (E) and density (ρ)), the desired operating frequency determines the

length of the beam resonator according to

l = 4

√
16Ew2k4

n

192ρ (2πf0)2 (4.18)

where kn is the first eigenvalue, taking the value 4.73 for an in-plane cc-beam resonator.

To create a double-well potential, the design condition (4.9) sets the minimum gap s and

therefore the needed bias voltage. To provide a reasonable range of DC voltages between Vpi0

and Vpiw that allow the operation in a two-well potential, the gap s which sets the voltage

range is chosen to be higher than the minimum imposed by equation (4.9). A margin of

10% voltage range (between the upper and lower bias boundary values) is considered to be

reasonable, thus the proper gap is obtained by solving:
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1.1

√
k1s2

2C0
=

√
2 (k3s2 + k1)3

27C0s2k2
3

(4.19)

from the next expansion of this equation

(1.1)2 27

4

k1s
2

C0
=

(
k3s

2 + k1

)3
C0s2k2

3

(4.20)

it is found to be independent on the C0 parameter; even more, calling

µ10 =
27 (1.1)2

4
, equation (4.20) leads to

k3s
6 + (3− µ10) k2

3k1s
4 + 3k3k

2
1s

2 + k3
1 = 0 (4.21)

by substituting the expressions of k1 and k3 (either for the mass-spring model or for the

uniformly loaded beam) in equation (4.21), it results to be also independent on all the

parameters (E, l, th) except on the gap/width ratio:

(12.272)3
( s
w

)6
+ (3− µ10) (12.272)2 16

( s
w

)4
+ 3 · 12.272 (16)2

( s
w

)2
+ 163 = 0 (4.22)

In conclusion, the margin percentage (pc) between the upper and lower voltage bound-

ary values depend only on the s/w ratio. Calling µ =
27 (1 + pc/100)2

4
, the figure 4-4a)

represents the required value of the s/w ratio to allow each margin percentage. Notice that

the value of the ratio corresponding to the 0% of the margin is exactly 1.615, the minimum

s/w ratio to enable the presence of the nontrivial stable equilibrium points.
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Figure 4-4: a) Ratio between s and w to enable each margin percentage between Vpi0 and
Vpiw. b) Lower bias boundary value for two potential well distribution, at a frequency of
1MHz, as function of the normalized width parameter for the technologies considered in
table 4.2.

The main cc-beam resonator characteristics from a practical perspective are its resonance

frequency and the minimum DC bias voltage that enables 2WP (Vpi0). Such parameters

are related according to

Vpi0 = 2πf0

√
96ρws3

ε0k4
n

(4.23)

assuming the case of punctual load applied to the middle point of the beam span, and to

V qpi0 = 2πf0

√
192ρws3

ε0k4
n

(4.24)

for the uniformly distributed forcing along the beam span. Two important conclusions can

be stated from equations (4.19), (4.23) and (4.24):

• The minimum Vpi0 value is achieved by minimizing the resonator width w (limited by

the technology), as can be seen in figure 4-4b).

• The required bias voltage scales linearly with the desired natural frequency. Thus, an

increase ×10 of the desired natural frequency implies an increase ×10 of the needed

bias voltage to achieve 2WP, as shown in figure 4-5a).
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Figure 4-5: a) Bias voltage needed and b) aspect ratio (length/width) required at the desired
operation frequency of the MEMS resonator for the technologies considered in table 4.2.

Another important consideration for practical applications of cc-beam resonators as

chaotic generators is related to the magnitude of the motional current obtained. In contrast

to linear applications, where the gap distance is designed to be as small as possible to

maximize the electromechanical coupling, here, a large gap is required to enable cross-well

motion. In this sense, the electromechanical coupling factor (4.25) allows a quantification of

the capability to generate such current in terms of only the DC bias voltage and geometric

parameters [44].

η ≈ VDCC0

s
∝ th (4.25)

Once the desired frequency is set, the DC voltage range, the gap distance and the

resonator length remain as fixed parameters. Therefore, as derived from (4.25) given the

definition of the coupling capacitance at the non-deformed position (C0), the only way to

enhance the electromechanical coupling is by fabricating the resonator with its thickness (th)

as large as possible. Note that the parameters length (l) (4.18), bias boundary values (Vpi0,

Vpi0) (4.12) (4.13) and gap of 10% of margin between bias boundary values (s10%) (4.19)

for a given frequency does not depend on the thickness parameter (th), in consequence the

th can be modified without affecting them. In any case, the maximum aspect ratio (th/w)

that can be fabricated is limited by the available technologies.

On the other hand, the need of reducing the resonator width to maintain appropriated
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DC voltage ranges while working at relative high frequency is also illustrated in figure 4-5.

In contrast, it is important to remark that for low frequencies (i.e. less than 100 kHz)

the use of too narrow beams may become a handicap. Thus, the aspect ratio between the

length and the resonator width can be unfeasible from a fabrication perspective. In fact,

the maximum aspect ratio (l/w) reported in the literature regarding fabricated cc-beam

resonators is lower than 400 [113]. In this case, the use of wider beams or even larger

structures like nonoverlapping comb drives would be preferred.

In past sections we have omitted the fringing field effects on the electrostatic force

calculation. In practice such effect can be considered as an increase of the effective coupling

capacitance C0 [114]. Since there is not any impact on mechanical parameters (i.e. k1 and

k3), the design condition given by the inequation (4.9) remains unchanged. In any case,

the increase of the electrostatic force reduces the value of lower and upper limits of VDC

that induce the double-well potential. However, the ratio of such new limits V ∗pi0 andV ∗piw

remain unchanged since such ratio (4.26) does not depend on electrical parameters.

V ∗piw
V ∗pi0

=

√
4 (k3s2 + k1)3

27s4k2
3k1

(4.26)

Up to now we have assumed a fully symmetry in the device (i.e. gap distance between

the resonator to the electrodes) obtaining a symmetric electrostatic force and double-well

potential. In practice, fabrication tolerances may induce gap mismatch in the device. A de-

tailed analysis of last terms in equation (4.2) reveals that a double-well potential is possible

at the expenses of increasing the gap distance and the polarization voltage requirements.

This effect is illustrated in figure 4-6 for a 10-MHz resonator considering the technologies in

table 4.2. The exponential dependence of both the bias voltage and gap value as a function

of the gap mismatch can be clearly observed. Thus, for a gap mismatch below 2% the

obtained values are quite similar to the ideal case (figure 4-5). On the other hand, for a

10% mismatch the bias voltage required is much higher. As an example of this situation,

the potential and force distribution along the possible positions (x), for different gap values,

are depicted in figures 4-7 and 4-8 (using the parameter values given in table 4.2 for1MHz

polysilicon resonators with AMS 035 technology) to compare their shapes when a mismatch

of 10% affect one of the two gaps and when there is a total symmetry. The point to prove

is that the two potential well distribution (which implies 5 roots of the force function) can
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only be reached if the gap is increased. Note that, an increasing gap means an increase of

the needed voltage, thus in order to perform the comparison, a DC voltage with the same

proportion of Vpi0 and Vpiw is considered in each case : VDC = 0.1 · Vpi0 + 0.9 · Vpiw. While

for a nominal gap of 1µm (figure 4-7) the two-well potential distribution cannot be reached,

it arises for a gap of 1.5µm (figure 4-8). However, if the potential barrier (U (x)) between

the potential wells is higher than one of the nontrivial potential maximums, the cross-well

motion wont be able to take place, and the system will collapse by the the pull-in effect.

Figure 4-6: a) Bias voltage needed and b) gap distance required for a 10-MHz frequency
resonator as a function of gap mismatch for the technologies considered in 4.2.
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Figure 4-7: Comparison between the symmetric and asymmetric case in a) the force function
and in b) the potential function for a gap of 1µm and a DC voltage given by VDC =
0.1 · Vpi0 + 0.9 · Vpiw.

Figure 4-8: Comparison between the symmetric and asymmetric case in a) the force function
and in b) the potential function for a gap of 1.5µm and a DC voltage given by VDC =
0.1 · Vpi0 + 0.9 · Vpiw.

4.4 Nondimensional analysis and frequency response

Considering the natural frequency of the resonator ω0 ( namely
√
k1/meff), defining the new

time variable τ = tω0 and following the procedure explained in [26], the relation between

the t- derivatives and τ -derivatives are found to be:
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ẋ =
dx

dt
=
dx

dτ

dτ

dt
= x′ω0

ẍ =
dẋ

dt
=
d (x′ω0)

dτ

dτ

dt
= x′′ω2

0. (4.27)

Using these relations, and considering the variable x̂ =
x

s
, the equation of the system

with topology I (equation (4.2)), where the term of square sine has been neglected (since

the AC excitation amplitude is considered to be far smaller than the DC bias voltage), can

be written as

x̂′′ +
γ

meffω0
x̂′ +

k1

meffω
2
0

x̂+
k3s

2

meffω
2
0

x̂3 =
ε0thl

2
V 2
DC

1

meffω
2
0s

3

(
1

(1− x̂)2 −
1

(1 + x̂)2

)
+
ε0thl

2
(−2VDCVAC sin (Ωτ))

1

meffω
2
0s

3

(
1

(1− x̂)2

)
(4.28)

where Ω =
ω

ω0
. Thus, defining the dimensionless parameters

• δ =
γ

meffω0
=

(
meffω0

Q

)
meffω0

=
1

Q
;

• β =
k1

meffω
2
0

= 1;

• α =
k3s

2

meffω
2
0

=
k3s

2

k1
=

12.272

16

( s
w

)2
;

• µ =
ε0thl

meffω
2
0s

3

the nondimensional equation of the system is found to be

x̂′′ + βx̂+ αx̂3 + δx̂′ = µ1

(
1

(1− x̂)2 −
1

(1 + x̂)2

)
− µ2

cos (Ωτ)

(1− x̂)2 (4.29)

where, µ1 =
1

2
µV 2

DC , and µ2 = µVDCVAC . The potential distribution along the position of

the equation (4.29) shows two minimums (as it is required in order to achieve homoclinic

chaotic motion) for a range of values of the µ1 parameter between µ1min and µ1max. These

boundary values of µ1 for bistability correspond to µ1min = µVpi0 and µ1max = µVpiw, and
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from the definitions of the voltage boundary values Vpi0, Vpiw given respectively in (4.12),

and (4.13) ,

• µ1min =
1

2

ε0thl

meffω
2
0s

3

k1s
3

2εthl
=

1

4
(dimensionless and constant)

• µ1max =
1

2

ε0thl

meffω
2
0s

3

2
(
k3s

2 + k1

)3
27εthlsk

2
3

=

(
k3s

2 + k1

)3
27k1s4k2

3

=

(
12.272 ·

( s
w

)2
+ 16

)3

27 · (12.272)2 · 16 ·
( s
w

)4 (di-

mensionless, function of (s/w) and existing only if the geometric condition for bista-

bility, s > 1.615w is verified)

This nondimensional equation allows the characterization of all-the cc-beam resonators

(in any available technology) with a given ratio between s and w. Moreover, since the ω0 has

been used in the procedure to obtain the nondimensional equation, no matter the desired

frequency. Writing the linear and nonlinear stiffness in the electrical domain together with

the linear and nonlinear stiffness in mechanical domain, and neglecting the higher to 3 terms

of the power series expansion, equation (4.29) can be expressed as:

x̂′′ + δx̂′ =
(
−β + 2µV 2

DC

)
x̂+

(
−α+ 4µV 2

DC

)
x̂3 − VDCVAC sin (Ωτ)µ

1

(1− x̂)2 (4.30)

With the definitions V = −VDCVAC , φ1 =
(
−β + 2µV 2

DC

)
, φ3 =

(
−α+ 4µV 2

DC

)
last

equation is expressed as:

x̂′′ + δx̂′ = φ1x̂+ φ3x̂
3 + V cos (Ωτ)µ

1

(1− x̂)2 (4.31)

Solving equation (4.31) using the multiple scales method, a relation for the frequency

response fo the resonator as a function of the system parameters is obtained [28], [50]:

(
a∆Ω

4
− γ1z

3

4Ω0

)2

+δ2

(
−γ1a

3

16Ω2
0

+
aδ2

128Ω2
0

+
a∆Ω

16Ω0
+
a

8

)2

−
(

δ2

128Ω3
0

+
1

8Ω0

)2

K2 = 0 (4.32)

where γ1 =
1

8

(
3φ3 −

10k2
2

3Ω2
0

)
, k2 = 3

√
|φ1φ3|. Ω0 =

√
|2φ1|, A = V µ and

K = A

(
2

√∣∣∣∣φ1

φ3

∣∣∣∣− 3
φ1

φ3
+ 4

φ1

φ3

√∣∣∣∣φ1

φ3

∣∣∣∣+ 1

)
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Figures 4-9, and 4-10 represent the frequency response of MEM systems (from equation

(4.32)) with different dimensional parameters, in agreement with section 3.1.10.

Figure 4-9: Frequency response of the resonator with β = 12, µ = 0.338, a)δ = 0.1 and b)
δ = 0.03.

Figure 4-10: Frequency response of 1MHz resonator designed with AMS 035 technology
for a) VAC = 0.3 V and different bias voltages and b)VDC = 5V and different excitation
amplitudes.

4.5 Melnikov analysis

As introduced in section 2.4, the Melnikov method has been used in several references

to establish a necessary condition for chaotic motion based on the existence of transverse
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homoclinic orbits in the Poincare map [55]. The Melnikov function gives a measure of the

leading order distance between the stable and unstable manifolds for the complete system

(with non-null dissipative and forcing terms)[21]. The Melnikov criterion gives a necessary

but not sufficient condition for occurrence of homoclinic chaotic behavior, and is based on

the intersection of system response with the homoclinic orbit [29]. With the definition of

all its parameters, equation (4.31) is written now as

x̂′ = û

û′ = φ1x̂+ φ3x̂
3 + ε

(
δû+ µ sin (Ωτ)V

1

(1− x̂)2

)
(4.33)

where δ = εδ and µ = εµ. The potential function can be approximated to U (x) =
1

2
φ1x

2 +

1

4
φ3x

4. From the definition (given in [55]) of the homoclinic orbit given in equation (2.38):

Γ0
± (t) =

(
x̂0 (t) , û0 (t)

)
=±√−2φ1

φ3
sech

(√
−φ1t

)
,∓

√
2φ2

1

φ3
sech

(√
−φ1t

)
tanh

(√
−φ1t

)(4.34)

and with Γ0
± (t) =

(
x̂0 (t) , û0 (t)

)
, the Melnikov function is given by

M (τ0) =

∫ ∞
−∞

f
(
Γ0

+ (τ)
)
∧ g
(
Γ0

+ (τ) , τ + τ0

)
dτ (4.35)

namely:

M (τ0) =

∫ ∞
−∞

û0 (τ)

(
−δû0 (τ) + V sin (Ω (τ + τ0))µ

1

(1 + x̂0 (τ))2

)
dτ (4.36)

Defining xe =

√
−2φ1

φ3
as the positive root of the potential function (U (x)), and K = −φ1,

and following the procedure detailed in [26], the Melnikov criterion is found to be:

∣∣∣∣∣δ
√
Kx2

e

3V µ

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

xeπ
Ω√
K√

(1− (xe)
2)

sinh

(
Ω√
K

(− arccos (xe))

)
sinh

(
Ω√
K
π

)
∣∣∣∣∣∣∣∣ (4.37)
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References [28] and [29] consider, two critical amplitudes for the chaotic motion prediction

as an improvement of the Melnikov method. In these references, based on the intersection of

the steady state of the system with the homoclinic orbit, two effective criteria depending on

the relative value of the damping ratio were established. For a resonator with a high damping

ratio the chaotic motion occurs where the corresponding maximum velocity approaches to

the homoclinic orbit velocity. On the other hand, a resonator with low damping ratio

becomes chaotic where its vibration amplitude approaches the homoclinic orbit amplitude.

The two critical amplitudes considered in [28] and [29] are

acr1 =
φ1

Ω
√

2 (−φ3)
(4.38)

and

acr2 =

√
−φ1

2φ3
(4.39)

If the right hand side term of equation (4.37) minus the left hand side term of the equa-

tion is labeled as Melnikov points, figure 4-11 depicts the value of the Melnikov points for

different values of the AC excitation amplitude, providing for different values of frequency a

minimum AC amplitude which fulfills the necessary but not sufficient Melnikov criterion for

chaos. In figure 4-11, these minimum values of AC excitation amplitude are also compared

with those provided by the criterion proposed in [28] and [29].
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Figure 4-11: a) Representation of the Melnikov points for different values of driving fre-
quency and of AC excitation amplitude, using the parameter values corresponding to a
1MHz polysilicon resonator designed in AMS 035, under a DC bias of VDC = 20.7V and b)
comparison between the minumum AC excitation amplitude obtained from the Melnikov
method and from the critical amplitudes (equations (4.38) and (4.39)) given in [28] and
[29].

4.6 Chaotic behavior in 1WP MEMS resonators: a critical

revision

Numerical simulations of the Duffing oscillator with single-well potential, reported in lit-

erature (as well as in section 2.3.2), show various types of nonlinear dynamic behaviors:

symmetry breakings, hysteresis, period doubling bifurcations and, finally, chaotic motion

[64], [65]. However, chaotic motion obtained under these conditions (in-well chaos) as

the completion of a period doubling route is described as weak in contrast to cross-well

Duffing chaos, considered as robust [54], [62]. This weak nature can be observed, among

others, through the chaotic signal spectrum bandwidth that is significantly narrower than

the bandwidth exhibited by a cross-well chaotic signal. In this sense, cross-well chaos is

desired instead of in-well chaos in practical applications as random number generation or

chaos-based secure communications. On the other hand, single-well based chaos in a Duffing

system is achieved for relative high actuation amplitudes [64], [65] in comparison with the

Duffing chaos based on two-well potential (for comparison, see figures 2-7a) and 2-4b)). This

fact may compromise the stability in the case of MEMS resonators due to the parametric
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excitation in the electrostatic actuation. Given the similarity between the electrostatically

actuated MEMS motion and the Duffing oscillator, the last results suggest a priori the

unsuitability of in-well chaotic operation.

Furthermore, a fundamental issue from a useful perspective is that single-well chaotic

behavior in electrostatically actuated MEMS resonators is provided for a narrow range of

system parameters to allow a practical implementation by means of any physical device.

This fact is verified in several works that analyze chaos behavior in MEMS resonators [24],

[25], [115] as depicted in table 4.1. The actuation voltage range ratio has been obtained

as the ratio between the range of the excitation voltage amplitudes that provide chaotic

behavior and the lower absolute value of this range. It is important to remark that none of

these works reports experimental measurements.

The works in [24] and [25], provide numerical simulations of the transition to chaos

in an electrostatic clamped-clamped microbeam through period doubling route under su-

perharmonic excitations. A bias voltage slightly higher than DC-symmetry breaking (that

indicates the presence of nonlinearities), but lower than the pull-in voltage is applied; from

this, following period doubling bifurcations and by superharmonic frequencies, in-well chaos

is found for a voltage range of only few millivolts. A similar performance is found in [25] and

[115] where the path of symmetry breakings and period doubling bifurcations in torsional

mirror resonators is followed. Single-well potential chaos is attained again only for an ac-

tuation voltage range of few millivolts or even less. On the other hand, non-planar motion

has been recently proposed in [30] as a novel way to achieve extensive chaotic behavior in

contrast to nonextensive chaotic behavior attained through period-doubling bifurcations as

commented earlier. Such performance is observed by modeling the non-planar motion of

a silicon nanowire. Unfortunately, non-planar movement exhibits a challenging capacitive

readout given the small variation of the resonator-driver capacitance caused by the tor-

sional NEMS oscillation (in contrast to lateral displacement) making the use of capacitive

transduction impractical. Therefore, different readout techniques like the integration of

piezoresistive layers or the use of off-chip and bulky optical readout systems among other

techniques must be considered at the expense of increasing fabrication cost and complexity.
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Table 4.1: Summary of works reporting on single-well potential based chaotic behavior in
simple resonant structures under electrostatic actuation.

Reference [25] [25] [24] [115] [30]

Resonator Cantilever Torsional mirror CC-beam Torsional mirror Nanowire

In-plane actuation? Yes Yes Yes No No

Actuation voltage range ratio (%) 0.016 0.003 0.016 0.01 < 0.5

4.7 Numerical results of 2WP cc-beams

To illustrate the practical limits and the design procedure in fabricating chaotic genera-

tors based on in-plane electrostatically actuated cc-beam resonators, the main parameters

corresponding to various top-down CMOS technology approaches (which have previously

demonstrated the capability in fabricating these types of MEMS structures) have been de-

rived (table 4.2). For comparison purposes, a target resonance frequency of 1 MHz has

been considered. The bias boundary values numerically obtained when the electrostatic

force is considered to be concentrated at the middle point of the beam span are compared

with those (denoted by V qpi0 and V qpiw) obtained when the load is approximated to be

uniformly distributed along the beam.

Table 4.2: Design parameter values for two-well potential operation in 1 MHz cc-beam
resonators implemented in various CMOS-MEMS technology approaches. The gap s is
chosen to establish a relative DC voltage range of 10% .

Technology E (GPa) ρ
(
kg/m3

)
w (nm) th (nm) l (µm) s (nm) C0 (aF )

AMS 035 POLYSILICON 160 2330 350 282 54.601 842.22 161.87
AMS 035 METAL 4 131 3000 600 850 63.839 1443.8 332.77
AMS 035 METAL 3 131 3000 600 640 63.839 1443.8 250.56
AMS 035 TUNGSTEN 411 19300 500 800 48.7 1203.2 286.71
UMC 018 METAL 131 3000 280 580 43.611 673.78 332.39
SI 65 nm POLYSILICON 160 2330 65 100 23.53 1801 115.74

Technology Vpi0 (V ) Vpiw (V ) η (nC/m) V qpi0 (V ) V qpiw (V ) ηq (nC/m) Vpiw/Vpi0
AMS 035 POLYSILICON 20.411 22.452 3.923 28.866 31.753 5.5479 1.1
AMS 035 METAL 4 68.064 74.871 15.688 96.258 105.88 22.186 1.1
AMS 035 METAL 3 68.064 74.871 11.812 96.258 105.88 16.704 1.1
AMS 035 TUNGSTEN 119.89 131.88 28.569 169.55 186.5 40.402 1.1
UMC 018 METAL 14.823 16.305 7.3126 20.963 23.059 10.342 1.1
SI 65 nm POLYSILICON 0.87 1.03 0.559 1.229 1.452 0.79 1.1814

In order to limit the required bias voltage, one possible solution that would be explored

is the use of a nanometric CMOS technology. The smaller size implies a reduction of

the needed bias voltages (even to extremely low values); however, the electromechanical

1Minimum gap distance allowed by this technology
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coupling also decreases around two orders of magnitude with respect to submicrometric

CMOS technologies, potentially compromising the signal capacitive readout, and even more

when on-chip CMOS circuitry is not feasible in the nanometric CMOS technology.

Numerical simulation results are presented below as an example of cross-well chaotic

response of a cc-beam resonator. The parameters used are based on a polysilicon beam

fabricated in the AMS 035 CMOS technology as in [44]. The resonator is arranged according

to Topology I, with dimensions given in the first row of table 4.2. At room conditions

operation (P = 1atm and T = 300 K) the resonator exhibits a quality factor (Q) of 165. The

parameters of the motional equation, obtained from equations (3.11), (3.24), (3.9) and (3.10)

are: meff = 4.82×1015kg, γ = 1.83×1010Ns/m, k1 = 0.19N/m, k3 = 1.19×1012N/m3, and

a fundamental in-plane resonance frequency of 1 MHz. To ensure a DC voltage operation

range of 10%, the gap has been set in this case to 842 nm obtaining pull-in voltages of

Vpi0 = 20.41V and Vpiw = 22.44V , respectively, in agreement with 4.2. Figure 4-12 show

numerically obtained bifurcation diagrams where, for different values of DC voltage and

AC excitation amplitude, the position of the Poicare points are plotted. The regions of the

parameter space where chaotic behavior is found agree with the predictions of the Melnikov

method.

Figure 4-12: Bifurcation diagrams based on the position of the Poincare points for the
1MHz-designed AMS 035 polysilicon resonator under a) VAC = 0.3V and a variation of the
DC voltage and under b) a VDC = 20.7V and a variation of the AC excitation amplitude.

For a DC bias voltage of 20.7 V the potential well bottom is located at x = ±93nm and

cross-well chaotic behavior is observed for an excitation voltage of VAC = 0.3V as shown in
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figure 4-13. It is important to remark that cross-well chaos can be achieved for relatively

small excitation voltages in contrast to the DC voltage required for in-well chaos (single-

well potential) as detailed in section (4.6). On the other hand, due to the relative large

gap distance used to enable double-well potential, the magnitude of the capacitive current

generated in the resonator-driver is relative low, in the nanoampere range, as depicted in

figure 4-14. This low current together with the relative high frequency make the readout

system to be critical. In this sense, the use of on-chip CMOS circuitry allows high-sensitivity

readout as demonstrated in previous works [44], [45]. A positive value of the maximal

Lyapunov exponent is obtained with the Wolf algorithm (see section 2.5.3 for details), as

shown in figure 4-15. Such results imply the presence of sustained chaos in the output time

series. Appendix A introduces a method based on fuzzy logic and artificial neural networks

to search the operation conditions to optimize the chaotic response.

Figure 4-13: a) Time series waveform and b) Poincare map for VDC = 20.7V , VAC = 0.3V
and superharmonic excitation f = f0/2 = 500kHz, showing the typical shape of chaotic
dynamics.
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Figure 4-14: a) Capacitive current generated and b) spectrum corresponding to the chaotic
signal depicted in figure 4-13.

Figure 4-15: Maximal Layapunov exponent, numerically obtained with Wolf algorithm from
time-series corresponding to the chaotic signal depicted in figure 4-13.

Finally, in order to demonstrate the potential use of the chaotic signal as true random

number generator, the levels of the position have been classified in a 8-bit quantification as

depicted in figure 4-16. The probability of every position is evenly distributed for a wide

range of positions. In this way, instance, the generation of 7-bit random numbers is found
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to be feasible.

Figure 4-16: Histogram of different position levels for the chaotic signal time-series given
in figure 4-13a).

4.8 Discussion and conclusions

The chaotic behavior of MEMS structures constitutes an exotic field exhibiting a consid-

erable potential. It is important to emphasize that, up to date, no experimental results

of chaotic motion were reported on simple structures like cc-beams. Chaotic behavior has

been only experimentally observed for relatively large and complex structures using non-

overlapping comb fingers as driver electrodes working in the kHz range. In this chapter,

the possibility of obtaining chaotic behavior with a MEMS simple resonator (cc-beam and

cantilever) placed in-plane has been evaluated from two approaches. The first approach

was oriented to explore the one-well chaotic behavior of simple and in-plane oscillators (cc-

beams or cantilevers) as culmination of period doubling route. An exhaustive revision of the

works found in the literature indicates the unfeasibility of the in-well chaotic behavior since

the extremely narrow range of the actuations voltages that disables chaotic performance

in real systems. In addition, numerical simulations of the Duffing system (performed in

section 2.3.2) shown the need of great excitation amplitudes, and a weakness of the chaotic

response in comparison with the homoclinic chaos. These results discourage definitively
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the practical exploitation of in-well chaos using the proposed approach. In the second ap-

proach, the reproduction of the well known 2WP Duffing chaotic attractor with a beam

MEMS resonator has been analyzed. This chaotic behavior is found to be robust, broad

banded, stationary and provided by a wide range of parameters. In fact, two-well Duffing

chaos is the most widely used among most chaotic oscillators references. In any case, it is

important to mention inconsistencies found in some previous works ([26], [27], [116]). As

we remark in the first section, in a cc- beam resonator the effective mass, linear and non-

linear stiffness and the capacitance for zero displacement parameters are not independent.

Solving the system of equations to size the microresonator considered in [26] reveals a set

of values for these parameters that are fully incompatible. The given capacitance for zero

displacement takes an unusually high value of C0 = 0.94pF for a simple cc-beam resonator

(C0 × s = 1.875 × 1018Fm and s = 2µm). Assuming a Young modulus of E = 160 GPa

for the silicon cc-beam resonator and by the equations intended for k1, k3 and C0 the mi-

croresonator dimensions are found to be: w = 506nm, l = 344µm and t = 616µm. The

aspect ratio th/w obtained from such values (∼ 103) is absolutely unfeasible for any MEMS

fabrication technology. In fact, the maximum th/w ratio reported up to now is less than 100

[117]. In addition, a mass density value of 122kg/m3 is also derived from last parameters,

which is an unrealistic value for common MEMS materials.

To summarize, taking a first approximation of a simple lumped model to easily get the

essential nonlinear performance of beam-shaped resonators, both the technological (mate-

rial and aspect ratios) and electrical (voltage values) requirements for the generation of a

double-well potential distribution (which enables its operation as cross-well based chaotic

generator in an extensive and robust way) have been determined. In contrast to typi-

cal applications (sensors, RF oscillators, etc.), a relatively large gap is required making

the capacitive readout a key issue. In this way, the resonator width minimization becomes

mandatory if high frequency operation is desired, since the required bias voltage value scales

linearly with the resonance frequency. These results are given for some CMOS technolo-

gies (which have been reported in literature to be used for MEMS resonator fabrication)

to illustrate the order of magnitude of the polarization voltages depending on the required

operating frequency and the approximated real resonator dimensions.
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Chapter 5

Nonlinear macro-model for

cc-beam microresonators

In chapter 4, the design and operating conditions for cross-well motion (based on bistabil-

ity) have been reported and numerically reproduced to obtain rich and sustained chaotic

behavior. Bistability (two-well potential distribution) can be seen as the first step to attain

the chaotic behavior in MEMS resonators, having also some other applications, like thresh-

old switches, memory cells, relays, valves etc. [118]. Up to now, all the analytic procedure

relies on the parallel plate approximation, namely the conception of that all the beam is

sliding as a solid without deformation and that it keeps always a perfect parallel orienta-

tion with respect to the electrodes. However, bistable behavior requires relative large beam

displacements making the resonator to electrode parallel plate approximation ([21], [26])

inaccurate for its design, especially in narrow beams. In addition, the fringing field effects

and residual stress (second order nonlinear effects) may modify significantly the resonator-

electrode capacitance and the resonance frequency respectively [119] and, in consequence,

must be taken into account for a more realistic and reliable modeling.

In this chapter a nonlinear compact model with accurate near-real resonator deflection

profile based on finite difference method is developed. The finite difference method provides

a good accuracy with low computational cost. The model includes the mechanical stiffness

cubic nonlinearity term, the intrinsic electrostatic nonlinearities, the fringing field contribu-

tions and the residual fabrication stress [114], [120]. Since only time-derivatives equations

are used, the model can be embedded within common electrical simulators for system level
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simulations into the IC design flow (see appendix B for more details). Finally, the model

has been applied to predict the design parameters and biasing conditions to achieve two-

well potential distribution (or bistable behavior) in a narrow cc-beam resonator reported

in references [109], [121]. Moreover, the accuracy of the model has been validated through

extensive FEM simulations and experimental data.

5.1 Near real deflection profile

Consider the Topology I exposed in chapter 4 because of the advantages it provides: as

explained in section 4.2, this topology reduces the parasitic feedthrough current and uses

independent AC and DC voltage sources (more suitable for operating as a self-sustained

oscillator [45]).

The beam parallel plane deformation is found to be not realistic enough, especially for

large displacements of the middle point. Thus, the deflection profile of the electrostatically

actuated cc-beam is considered in order to obtain an improved model. The electrostatic

actuation can understood as a distributed phenomenon along the span that causes the beam

deformation and at the same time is affected by it. Despite the fact that the distributed

load caused by the electrostatic actuation is not uniform, especially for large deformations,

the cc-beam is considered to be under a uniform load (q) accordingly to [78] (the deflection

profile in this case is obtained as equation (3.12)). If the electrostatic coupling is not applied

over the whole beam length, the elastic equation of the deflection profile is given by [78]:

ωq (x, y) =



y2

6EI
(3MA +RAy) 0 ≤ y < l − lc

2
−1

24EI

(
q

(
y − l − lc

2

)4

− 4RAy
3 − 12MAy

2

)
l − lc

2
≤ y < l + lc

2

1

6EI

(
3 (MB + lRB) y2 −RBy3 + l2 (3MB + lRB)

−3 (2MB + lRB) ly)
l + lc

2
≤ y < l

(5.1)

where MA,B andRA,B are respectively the reaction forces and momentums in the clamped

ends of the beam given by equations (5.2). The effective coupling length is lc considering a

symmetrical disposition of the electrode with respect to the beam.
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MA = MB = − qlc
24l

(
−l2c + 3l2

)
; RA = RB =

qlc
2

(5.2)

The maximum deflection occurs at the beam center (ωq (l/2)), whose displacement cor-

responds to the x parameter (x = ωq (l/2)), and is used to find the normalized deflection

profile for the cc-beam (5.3) (for the case of a uniform load applied to the whole beam

span), that is, the deflection at each position in terms of such maximum. The expression

obtained is independent of the load value.

ωq (x, y) =
384x

l4

(
− l

12
y3 +

1

24
y4 +

l2

24
y2

)
(5.3)

Moreover, following what is exposed in section 3.1.1, the equation of the first mode

shape of a cc-beam is [58]:

u1 (x, y) = xC1 [sinh (β1 · y/l)− sin (β1 · y/l) + α1 (cosh (β1 · y/l)− cos (β1 · y/l))] (5.4)

where α1 = (sinhβ1 − sinβ1) / (cosβ1 − coshβ1), β1 is the eigenvalue for the fundamental

vibration mode (β1 = kn) , and C1 is a constant obtained by imposing that
u1 (l/2)

x
= 1

(C1 = 1/ [sinh (β1/2)− sin (β1/2) + α1 (cosh (β1/2)− cos (β1/2))]), andx is the maximum

deflection (at y = l/2). The beam deflection under a punctual force in the x-direction (Fx)

applied at the center is found [78] to follow the polynomial equation (3.8). Following the

same procedure as the one for equation (5.3), equation (3.8) can be expressed in terms of

the maximum deflection point (and independent of the force value) as

ωF (x, y) = −48xy2

l3

(
y

3
− l

4

)
(5.5)

In figure 5-1a) the deflection profile obtained by FEM simulations of a cc-beam under

electrostatic force is compared respectively with the shape of the deflection profile caused by

either an uniformly distributed load (equation (5.3)) or lumped load applied to the center

of the beam (equation (5.5)), and with the first mode shape of a cc-beam (equation (5.4)).

Equations (5.3), (5.4) and (5.5) are plotted in figure 5-1a) for the x value corresponding

to the maximum deflection point given by FEM simulations. It is interesting to notice the

good agreement between all these curves, and between these curves and the FEM obtained

points. Given the accuracy of the deflection profile given by the curve (5.3), it is used as an
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approximation of the real deflection profile. Moreover, it presents practical advantages: it

is defined along the whole beam span (in contrast with equation (5.5) which is only defined

for y ∈ [0, l/2]), and it is a polynomial function (so it is simpler to operate with than the

mode shape equation (5.4)).

Figure 5-1: a) Elatic deflection profiles comparison between the mode shape equation (5.4),
the deflection under uniform load (polynomial equation (5.3)), the deflection under lumped
and centered load (polynomial equation (5.5)) and the deflection profile provided by FEM
simulation. b)Analytical (equation (5.3)) and FEM-obtained deflection profile, and the
corresponding finite difference method (FDM) profile for N = 6 slices and N = 20 slices.
Both figures refer to an AMS 035 polysilicon cc-beam resonator whose dimensions are given
in the first row of table 4.2 under a electrostatic load provided by a bias voltage of 34V.

As exposed in section 3.1.5, the electrostatic force acting on the beam is found as the

negative gradient of the energy stored between the beam and each electrode, thus in the

defined 1 DOF it is proportional to the x-derivative of the capacitance. The differential

beam-electrode capacitance can be accurately approximated for the equation (5.6) as a

function of the beam deflection (x) at the middle point and the position (y) on the beam.

dC (x, y) =
ε0thdy

s− ωq (x, y)
(5.6)

The whole dynamic equation of the electromechanical system, posed as the dynamic

equilibrium over the point y = l/2, can be expressed in the terms previously introduced, as
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an improvement of equation (4.2) :

meffẍ+ γẋ = −
(
k1σx+ k3σx

3
)

+
1

2
ε0thkFF

∫ l

0

(
(VAC cos (ωt)− VDC)2

(s− ωq (x, y))2 −
V 2
DC

(s+ ωq (x, y))2

)(
∂ωq (x, y)

∂x

)
dy (5.7)

where k1σ,k3σ are the linear and nonlinear stiffness coefficients that depend, a priori, on

the residual fabrication stress, and kFF is the fringing field term, which provides a contri-

bution to the coupling capacitance between the beam and the electrodes. These effects, the

residual fabrication stress and the fringing field contribution to the coupling capacitance,

and their influence on the parameters of the dynamic equation will be analyzed in following

sections. The electrostatic force can be numerically approximated by integrating the differ-

ential capacitance along the beam length, and subsequently by deriving it with respect to

the x variable. However, this numerical procedure results to be highly time-consuming and

unfeasible in an electrical simulator. To conduct the described electromechanical system

within IC design tools, only time derivatives can be contained in the model.

From the assimilation of the dynamic equation to the classic Duffing equation with para-

metric excitation, and given the solution of the undamped and unforced Duffing equation

based on Jacobi elliptic function explained in section 2.2.2, the resonance frequency of the

system is found to present amplitude dependence on the nonlinear stiffness, following a

function that can be assimilated to equation (2.40). The effect of the nonlinear stiffness on

the resonance frequency and its dependence on the oscillation amplitude is illustrated by

numerical simulations. In these simulations a control parameter a is introduced to modify

the nonlinear stiffness when numerically solving the undamped and unforced Duffing system

(meffẍ+k1x+ak3x
3 = 0) using dimensions and parameters corresponding to a 1MHz AMS

035 polysilicon cc-beam resonator (dimensions given in the first row of table 4.2). The max-

imum power frequencies (namely the resonance frequencies) for each oscillation amplitude

are represented in figure 5-2a). Those frequencies are compared and mainly agree with the

analytically obtained ones from equation (2.40). Numerical simulations reported in figure

5-2a) show that the influence of the nonlinear stiffness on the resonance frequency is only

important for oscillations whose values are significant fractions of the gap parameter. How-

ever, in practice, the oscillation amplitude is limited by more critical effects like the pull-in

effect. With this results, we can forecast that for the usual small oscillation amplitudes the
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nonlinear stiffness will have a negligible effect on the resonance frequency.

Figure 5-2: a) Numerically and analytically obtained resonance frequency for each oscillation
amplitude value, and for different values of a constant (a) which modifies the nonlinear
stiffness. b) Average error between FEM simulations and the proposed model (based on
FMD) for the values of capacitance (left) and its x-derivative (right) as a function of the
number (N) of slices. In both figures the cc-beam resonator dimensions are the same and
given in the first row of table 4.2.

5.2 Model based on finite difference method

Given the need of simplifying the numerical process to obtain the electromechanical system

dynamical response without loss of accuracy, a method based on finite differences is applied,

and the system equations are adapted, including the nonlinear contributions. As in [122] the

finite difference method is applied to calculate the capacitance and the electrostatic force

acting on the beam resonator. The total capacitance between the beam and each electrode

is calculated by slicing the beam along its length (y direction) and by considering each one

of the N slices as a parallel plane capacitor with a displacement given by the elastic profile

curve, approximated by the equation of the uniformly loaded cc-beam (equation (5.3)).

This conception, in which each slice has a length of ∆y =
l

N
is depicted in figure 5-1b) for

two different number of slices; the total capacitance is obtained as:

C = ε0th∆y

N∑
n=1

1

(s− xPn)
+ Cc (5.8)
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with Pn being the normalized displacement of each slice (from equation (5.3), the displace-

ment of the n-th slice is given by ωq (x,∆y · n) = x ·Pn), and the Cc term is an offset value

of the capacitance which does not depend on the beam deformation . This Cc parameter

has no influence on the electrostatic force because it does not appear in the x derivative

function of the capacitance position, which is found to be

∂C

∂x
= ε0th∆y

N∑
n=1

Pn

(s− xPn)2 (5.9)

The finite difference method accuracy is good enough as deduced from the results in

figure 5-2b). In addition, the accuracy reaches a value close to its maximum for a relatively

low number of slices (N ∼ 10). Taking a higher N value raises the computational cost

without a significant accuracy benefit. The system dynamic equation (5.7) can be now

adapted to the finite difference method approach by reformulating the electrostatic forcing

term:

meffẍ+ γẋ = −
(
k1σx+ k3σx

3
)

+
ε0lthkFF

2N

N∑
n=1

(
(VACcos (ωt)− VDC)2

(s− xPn)2 −
V 2
DC

(s+ xPn)2

)
Pn (5.10)

and in the same way as in section 4.2.1, by developing the static forcing term in power

series, and regrouping in powers of x

meffẍ+ γẋ

(
k1σ − V 2

DC

2kFFε0thl

Ns3

N∑
n=1

P 2
n

)
x+

(
k3σ − V 2

DC

4kFFε0thl

Ns5

N∑
n=1

P 4
n

)
x3

=
ε0lthkFF

2N

N∑
n=1

(
(VACcos (ωt))2 − 2VACVDCcos (ωt)

(s− xPn)2

)
Pn (5.11)

In practice, the higher-order terms of the power series development can be neglected. The

motional capacitive current generated in each beam-electrode interface is expressed as

ic = VDC
∂C (t)

∂t
= −VDCε0thlkFF

N

N∑
n=1

Pn

(s+ xPn)2 ẋ (5.12)
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5.3 Analysis of model accuracy and parameter fitting

The accuracy of the nonlinear model based on the finite difference method is proved in this

section from FEM simulations and experimental measurements. In addition, the model is

applied to obtain an accurate analytical expression for the pull-in voltage in electrostatically

actuated cc-beam resonators.

5.3.1 Pull-in analysis

Neglecting fringing field effect and residual fabrication stress and considering in this case a

one-electrode system, the pull-in voltage is derived from the static terms in equation

meffẍ+ γẋ = −
(
k1x+ k3x

3
)

+
ε0thl

2N

N∑
n=1

(VACcos (ωt)− VDC)2

(s− xPn)2 Pn (5.13)

when the mechanical term and electrostatic term take the same value,

Vpi =

√√√√√√
2 (k1xr + k3x3

r)

ε0th
l

N

N∑
n=1

Pn

(s− Pnxr)2

(5.14)

with xr being the static equilibrium point whose equilibrium become instable i.e. where the

pull in effect arises. Although equation (5.14) depends on the number of slices considered,

the accuracy does not improve for N > 10 as shown in figure 5-3a). For the resonator param-

eters indicated in the first row of table 4.2 (1MHz polysilicon resonator of AMS 035), pull-in

is analytically obtained for a voltage of 34.78 V corresponding to a nominal displacement

of 500.5 nm. FEM simulations with COMSOL have been performed to validate the model.

The simulator provides, for each voltage, the equilibrium position values (corresponding to

the deformation displacement of the central point of the beam) that can be stable, unstable

or non-existent. The top of the curve corresponds to the boundary bias voltage between the

stable and unstable solutions, and represents the pull-in position and bias voltage. In this

case, the pull-in (depicted in figure 5-3b)) is obtained with COMSOL for a voltage of 35.69

V and a nominal displacement of 492 nm. Thus, the model error is found to be bounded

to 2.7%, corroborating the validity of the proposed finite difference method, and providing

a breakthrough in terms of accuracy over the parallel plate approximation.
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Figure 5-3: Pull-in calculation using a) the analytical model as a function of the number (N)
of slices, and b) using FEM analysis with COMSOL. In both figures the cc-beam resonator
dimensions are provided in the first row of table 4.2.

5.3.2 Fringing field effect

An accurate beam-electrode capacitance estimation requires considering the fringing field

effect, especially in narrow beam resonators, where this phenomenon is accentuated. Several

models for this effect have been published (e.g. [119], [123] and [124]). Amongst all the

equations in literature for the fringing field effect, the function with best fitting with our

FEM simulations and experimental data is equation (5.15), an expression obtained from

a semi-empirical formulation [114] that depends only on geometric parameters and on a

dimensionless fringing field factor (αFF):

kFF =

[
1 + αFF

(
s

th

)(w
s

)0.222
]

(5.15)

Extensive 3D-FEM simulations were carried out for various cc-beam dimensions and as-

pect ratios to prove the accuracy of equation (5.15) and to determine the fringing field factor

(αFF). The computed capacitance values between the electrode and the non-deformed beam

were compared to the theoretical capacitance value. As expected, the FEM computed ca-

pacitance value increases exponentially due to the fringing field as the electrostatic coupling

volume increases until a maximum saturation value. Such capacitance value includes the

overall fringing field contribution and can be used to determine the value of the dimension-

less parameter αFF in the fringing field analytical expression (5.15). Table 5.1 summarizes
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Table 5.1: Beam-electrode static capacitance and αFF parameter obtained from COMSOL,
considering two 1 MHz designed cc-beams with technologies described in table 4.2.

Technol. FEM C0 ( fF )
FEM dC/dx (nF/m)
(average)

αFF

AMS 035 µm POLYSILICON 0.578 0.207 0.329
UMC 018 µm METAL 0.674 0.414 0.249

the FEM simulations results considering two cc-beam dimensions according to two com-

mercial CMOS technologies. The fringing field constant is obtained from the derivative of

the capacitance with respect the x parameter to avoid the undesired contribution of offset

parasitic capacitances, which are constant and independent on the position (and in conse-

quence have no effect on the driving force). Values between 0.25-0.35 have been revealed as

good approximation for the fringing field parameter.

5.3.3 Residual fabrication stress

The residual fabrication stress, present commonly in many MEMS structures, may induce

a variation of its resonance frequency. This can be attributed to a beam stiffness change,

assuming that its mass and volume remain constant. Cc-beam structural mechanics FEM

simulations have been performed to find an analytical expression of the residual stress

influence on the beam linear and nonlinear stiffness coefficients. As expected, a residual

stress value increase results in a stiffness linear term increase according to the expressions

found in the literature as in [120],

k1σ = k1

(
1 +

σeffl
2

ηEw2

)
(5.16)

where σeff is the residual stress value and η is a constant coefficient depending on the different

vibration modes profile shape (i.e. independent on either the dimensional parameters or

the fabrication technology [125]). For the fundamental mode of a cc-beam, a value η = 3.39

has been found and corroborated with FEM simulations. On the other hand, the cubic

nonlinear stiffness term value remains practically unchanged by the residual stress (table

5.2), corroborating the results also found in [60] and [126]. Therefore, the approximation

k3σ ∼ k3 seems appropriate even for large stress factor variations. These considerations are

consistent with equation (2.17), where the axial force only affects the linear stiffness.
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Table 5.2: Cc-beam linear and nonlinear stiffness values obtained from FEM simulations
for various dimensions and residual stress values, with and without the Poisson effect.

k1

(
Nm−1

)
/ k3

(
Nm−3

)
AMS 035 UMC 018

Layer Metal Poly Si Metal

l (µm) 18 54.6 13.8
th (nm) 850 282 580
w (nm) 600 350 280
(no Poisson effect)
σeff = 0MPa 65.27/1.17 · 1014 0.194/8.08 · 1011 10.11/7.33 · 1013

(with Poisson effect)
σeff = 0MPa 65.12/1.15 · 1014 0.194/8.06 · 1011 10.11/7.25 · 1013

σeff = 10MPa 66.48/1.15 · 1014 0.278/8.06 · 1011 10.67/7.25 · 1013

σeff = 50MPa 71.9/1.15 · 1014 0.615/8.05 · 1011 12.93/7.24 · 1013

σeff = 100MPa 78.66/1.15 · 1014 1.026/8.05 · 1011 15.72/7.23 · 1013

σeff = 500MPa 132.1/1.13 · 1014 4.166/8.03 · 1011 37.58/7.18 · 1013

σeff = 1GPa 197.64/1.12 · 1014 7.973/8.01 · 1011 64.09/7.14 · 1013

σeff = 5GPa 696.6/1.04 · 1014 3.768/7.95 · 1011 265.68/6.92 · 1013

5.3.4 Poisson effect

The Poisson ratio effect on the cc-beam mechanics has been also analyzed from FEM sim-

ulations. A variation of only 0.2% and 1% in the values of the linear and cubic stiffness

coefficients respectively were obtained (see table 5.2, where, as an example, the case corre-

sponding to σeff = 0 is reported with and without considering the Poisson effect). Therefore,

to simplify the analytical expressions derived, the Poisson contribution has not been con-

sidered in the nonlinear model.

5.3.5 Analytical and experimental frequency response

The bias voltage applied symmetrically to the structure modifies the effective beam stiffness.

Such spring softening effect has been used in several works to tune the system resonance

frequency (e.g. [21], [26] and[18]). In general, the bias voltage could tune either the linear

and nonlinear mechanical stiffness terms in equation (5.10). From the Jacobi frequency

equation (2.40) provided in section 2.2.2 and in [56], a general equation has been found
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including the fringing field and the residual stress parameter.

fj =

√√√√ 1

meff

((
k1σ +X2k3

)
−

(
2ε0 th l kFF

s3N

N∑
n=1

P 2
n +X2 4ε0 th l kFF

s5N

N∑
n=1

P 4
n

)
V 2
DC

)

4K

(
bX2

2 (a+ bX2)

)
(5.17)

where a =
1

meff

(
k1σ − V 2

DC

2kFFε0thl

Ns3

N∑
n=1

P 2
n

)
, b =

1

meff

(
k3 − V 2

DC

4kFFε0thl

Ns5

N∑
n=1

P 4
n

)
and

X represents a system amplitude response characteristic value derived from equation (2.39)

making the analytical expression to agree with the amplitude dependent peak resonant

frequency in section 2.2.2 and [127]. Experimental measurements on fabricated CMOS cc-

beam resonators (figure 5-4) were performed to obtain the resonance frequency value as a

function of the bias voltage (VDC) for various electrostatic actuation forces (VAC). Figure

5-4b) results show that the natural frequency (denoted by f0σeff
, affected by the residual

stress and corresponding to the case VDC = 0), and the resonance frequencies of the biased

cc-beam do not present a significant variation for various values of excitation amplitude,

meaning that X2 term in equation (5.17) can be neglected. Indeed, oscillations of small

amplitude around the non-deformed position present a frequency response whose resonance

frequency can be approximated to:

fr =
1

2π

√
k1σ

meff︸ ︷︷ ︸
f0σeff

√√√√1−
2V 2

DCε0thlkFF

s3Nk1σ

N∑
n=1

P 2
n (5.18)

Specifically the cc-beam resonator used for experimental measurements depicted in figure

5-4 corresponds with a C1 resonator of the Run 2015 set (see chapter 6 for details) with

dimensions specified in the first column of table 6.1 and in the first column of table 6.2. The

analytical curve is obtained from equation (5.18). The increase in the measured natural

frequency (to 2.2 MHz) with respect to the designed one (0.75 MHz) is found to be due to

the residual stress. Using equations (5.16) and (5.18) the residual stress and the fringing

field parameter for this device were found to be respectively 224 MPa and ∼ 0.2.
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Figure 5-4: a) SEM image of a fabricated CMOS-MEMS cc-beam resonator. b) Experi-
mental dependence of the resonance frequency with the applied bias voltage for a designed
metal 0.75-MHz cc-beam resonator.

5.4 Conditions for bistability

The model has been implemented in Verilog-A for electromechanical simulations using Spec-

tre within the CADENCE IC design framework (appendix B). The implemented Verilog-A

nonlinear model can be used to determine a DC sweep and operating point, transient,

small signal (AC) and large signal (PSS), among others, and simulations of electrical and

non-electrical variables like resonator position or velocity. As an example, results in fig-

ure B-2 show the DC bias range required to generate a double-well potential distribution

(Vpi0 < VDC < Vpiw). The fringing field effect is clearly remarkable; it can be seen that con-

sidering this effect is a must for a successful design. The DC biasing conditions to enable

a double-well potential distribution set a minimum ratio between the gap (s) and beam

width (w) as reported in chapter 4. In this section, such design procedure is adapted to

the finite difference method based on equation (5.10), and considering the fringing field and

fabrication stress.

In order to obtain a negative linear effective stiffness and a positive nonlinear effective

stiffness, the following inequalities for the DC biasing voltage are obtained

√√√√√√
k1σNs3

2ε0thlkFF

N∑
n=1

P 2
n

< VDC <

√√√√√√
k3Ns5

4ε0thlkFF

N∑
n=1

P 4
n

(5.19)
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Given the k1 and k3 definitions (equations (3.9) (3.10)), the cc-beam-electrode gap distance

condition in terms of the beam width is obtained from last inequality (5.19):

s > w

√√√√√√√√√√2
16

12.272

N∑
n=1

P 4
n

N∑
n=1

P 2
n

(
1 +

σeffl2

ηETw2

)
(5.20)

This updated equation considers both an accurate deflection profile of the beam and the

residual stress factor in contrast to previous works ([26] and [38], for instance). Conceiving

the model as a 1-DOF system, the potential function U (x, VDC) is expressed as the integral

along x of the static terms in equation (5.10), having included the fringing field and residual

stress factors:

U (x, VDC) =
1

2
k1σx

2 +
1

4
k3x

4 − V 2
DC

ε0thlkFF

2N

N∑
n=1

(
1

(s− xPn)
+

1

(s+ xPn)

)
(5.21)

From the potential function, specifically by solving the system (
∂U (x, VDC)

∂x
= 0 ,

∂2U (x, VDC)

∂x2
= 0) the singular points and their stability boundaries can be obtained.

From these equations, the nontrivial singular points exist only if the geometric condition

(5.20) is verified. When this condition is attained, by increasing the bias voltage, the

system is made to undergo a supercritical Pitchfork bifurcation, which will provide two

stable nontrivial points between bias boundaries named Vpi0 and Vpiw. Such singular points

represent the corresponding position and bias voltage boundary values for which a two-

well potential distribution takes place. Adapting the procedure explained in chapter 4

to the finite difference method addressed in this chapter and including both fringing field

and residual stress, the analytical expressions for the lower bias boundary value (equation

(5.22)) and the required beam length (equation (5.23)) for the design resonance frequency

are obtained.

Vpi0 =

√√√√√√
k1σNs3

2ε0lth kFF

N∑
n=1

P 2
n

(5.22)
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l =

√√√√σeffk4
n +

√
σ2

effk
8
n + 12Ew2k4

nf
2
0σeff

π2η2ρ

6f2
0σeff

π2ηρ
(5.23)

Figure 5-5 shows the cc-beam design rule to enable the existence of two-well potential

distribution for various slices numbers and three residual stress values. In the case of no

stress, a value s/w = 1.39 is found to be lower than the oner reported for the parallel plate

approximation of the beam-electrode system (s/w=1.615) as reported in chapter 4 and [38].

In a recent work ([50]) a slightly higher value of s/w = 1.43 is obtained considering an

approximated beam deflection based on its resonance mode shape in contrast to this thesis

where the static deflection function is considered, being more appropriate for the static

analysis.

Like in previous equations derived in this thesis, the value from equation (5.20) depends

on the number of slices considered (N). In this case for a reasonable low value of N > 4

the design condition factor converges to a stable value, as shown in figure 5-5. In contrast

to the results obtained in chapter 4, here the residual stress effect sets the design condition

in equation (5.20) to depend on the beam dimensions. In addition, the voltage boundary

values for bistability (Vpi0 and Vpiw) grow no longer linear with the cc-beam resonance

frequency. Table 5.3 summarizes the design and biasing conditions for bistability provided

by the model for a designed and fabricated 1-MHz metal cc-beam resonator corresponding

to a C4 resonator of the Run 2015 set (used in experimental measurements which will

be widely explained in chapter 6, and whose dimensions are exposed in table 6.2) under

various assumptions, and compares those results with the ones given by the parallel plate

approximation (considering in this case a uniformly distributed force). Specifically, the

used resonator for the experimental measurements related in table 5.3 is C4(16)-k151 under

a temperature of 110◦C. The reported results, which include experimental measurements,

clearly indicate again the need of considering both fringing field effects and residual stress

for a successful cc-beam design.

1This nomenclature for specifying the resonator, chip and generation of fabricated sets is explained in
appendix C.
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Table 5.3: Comparative of DC biasing margins to achieve 2WP, the required gap value (smin

given by equation (5.20)) and the natural resonance frequency, considering the dimensions
of the C4 design in table 6.2 with and without residual fabrication stress. The fringing
field and the total stress parameters were experimentally found to be 0.355 and 41 MPa
respectively.

Metal C4 Parallel plate Finite difference model Experimental
αFF = 0
σL = 0 Pa

αFF = 0.335
σL = 0 Pa

αFF = 0.335
σL = 41 MPa

αFF = 0.335
σL = 41 MPa

Vpi0 (V) 163.031 180.843 140.532 202.39 194
Vpi0 (V) 221.58 269.52 209.44 237.31 –
smin (µm) 0.969 0.832 0.832 1.198 –
f0 (MHz) 1 1 1 1.421 1.42

Figure 5-5: Minimum design condition factor s/w ratio enabling two-potential distribution
as a function of the number of slices (N) for three stress parameter values. The values
corresponding to the nonzero stress parameters (whose stationary values were found to be
respectively ∼ 4.07 and ∼ 2.15) are calculated for the C1 design in table 6.2. In the case of
zero stress the design condition value (1.386) is independent on the dimensions.

Experimental measurements, reported in table 5.3 (and, afterwards, in chapter 6), on

fabricated devices revealed positive residual stress parameter values indicating the presence

of tensile load, which induces an increase of the resonance frequency. In this case, to keep

a desired value of the resonance frequency, larger beam lengths are required. On the other

hand, the tensile residual stress involves the need of increasing the gap (s) to attain the
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geometric condition for the two-well potential distribution. High values of the gap parameter

imply high values of the required bias voltages to reach the bistability. However, one of the

design requirements is keeping low values of the bias voltage. The design natural frequency

of the beam can be optimized to provide the minimum values for the needed bias voltage.

Knowing that the natural frequency of the beam for small amplitude oscillations can be

approximated to the square root of the quotient between the total effective linear stiffness

and the effective mass (equation (5.18)) [56], figure 5-6a) depicts the lowest bias boundary

values obtained for the minimum s value attaining the geometric condition (equation (5.20))

for different values of σeff, as a function of the desired natural frequency. Notice that in

the case of σeff 6= 0, for each specific natural frequency (which implies a value of length

(l) accordingly to equation (5.23)) a required minimum gap value smin is obtained, and

this minimum gap value is used to obtain the 2WP lower bias boundary value for the

minimum gap attaining the geometric condition (Vpi0 (smin)). Each curve shows an optimal

natural frequency in terms of the needed bias voltage. The optimal design frequency, which

minimizes the needed bias voltage to achieve a two-well potential distribution, set the beam

length according to equation (5.23).

Given the common experimental values for the residual stress (see section 6.2.4), even

for the optimal design frequency, the biasing corresponding to the minimum gap attaining

the geometric condition is quite high. Moreover, it is important to take into account that

the minimum value of gap attaining the geometric condition corresponds to the situation

in which the double-well potential distribution arises, and for this value of gap Vpi0 and

Vpiw have very close values to each other. The margin between the lower and the upper

bias boundary values that provide the double-well potential distribution grows with the

gap (s) (as shown in figure 5-6b)), and specifically a margin of 10% between Vpi0 and

Vpiw is desired. The curves shown in figures 5-6a) and b) are calculated for the parameter

values corresponding to the Metal4 layer of the AMS 035 technology detailed in table 4.2

(w = 600nm, th = 850nm); in the specific case of figure 5-6b), the bias boundary values for

bistability are calculated with the obtained optimal value of frequency (and, consequently

of l, which results to be, in this case l = 71µm) for a given value of σeff (σeff = 0.1623 GPa

is the residual stress average value of the Run 2015 set, as it will be pointed in chapter 6).
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Figure 5-6: a) Lower bias boundary values to achieve bistability for the minimum gap
attaining the geometric condition (5.20) for different values of the residual stress, as function
of the design natural frequency. b)Plot of the bias boundary values which provide two-well
potential distribution as a function of the gap parameter (s), for a given value of residual
stress. The vertical line points the gap value for which a margin of 10% between the Vpi0
and Vpiw is attained (s = 3.3 µm, in this case).

Figure 5-7 summarizes the effect of the residual stress on different design and operating

parameters, within the allowance of the condition of bistability. A growing residual stress

value implies the need of a bigger gap, an increase of the resonance frequency and of the

absolute values of the bias boundary values for bistability as well as a reduction of the margin

between them. The numerical calculations of the parameters depicted are obtained from

the same dimensions as the ones used in figure 5-6 (l = 71µm, w = 600nm, th = 850nm),

which happens to correspond with the dimension of the C3 resonator of the Run 2017 set

(see table 6.6).
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Figure 5-7: a) Variation of the minimum gap attaining the condition for bistability and of
the resonance frequency as function of the possible value of the residual stress σeff. b) Bias
boundary values for a constant gap (s = 3.3 µm) and different values of the residual stress.

5.5 Thermal effect

To improve the features of the bistable system in terms of the bias voltage requirements

(and of geometric design condition), the thermal effect can be used to provoke a variation in

the Young modulus ([128] and [129]) as well as a generation of an internal stress according

to

ET = E (1 + TCE (T − T0)) ; σT = −αT (T − T0)ET (5.24)

with T0 being the initial temperature, TCE the Temperature Coefficient of Young modulus,

and αT the thermal expansion coefficient (that must be determined experimentally). Typi-

cally, the thermal expansion coefficient αT has a positive value, which means that operating

the beam under rising temperatures causes a growing of the compressive stress that stands

against the tensile residual stress. Thus, the total stress denoted as σL is defined as the

sum of the residual stress σeff and the thermal stress σT . The new geometric condition that

enables 2WP is obtained by considering σL and ET instead of σeff and E (equation (5.25)).

In the same way, a redefinition of the equations of the effective mechanical linear stiffness

(equation (5.26)) and of the lower bias boundary value (equation (5.27)) are obtained:
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=
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P 4
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(
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σLl2

ηETw2

)
, (5.25)

k1σL = k1

(
1 +

σLl
2

ηEw2

)
, (5.26)

and

Vpi0 =

√√√√√√
k1σLNs

3

2 ε0 l th kFF

N∑
n=1

P 2
n

(5.27)

Equations (5.25), (5.26) and (5.27) indicate that thermal effect makes the beam less stiff,

allowing that smaller gaps fulfill the design condition and, in consequence, lower bias volt-

ages are needed to attain bistability. The effect of the temperature on the measurement of

a fabricated resonator (with a given value for the gap parameter (s)) is the reduction of the

absolute values of the bias boundaries for bistability (Vpi0 and Vpiw), and an enlargement

of the Vpiw/Vpi0 ratio, as shown in figure 5-8. These effects can be deduced from the facts

that a growing s/smin ratio implies an increase of the Vpiw/Vpi0 ratio and that a decrease

of the total stress value implies that Vpi0 will be lower. The calculations of figure 5-8 have

been performed using the cc-beam dimensions proper to the C4 resonator of the Run 2015

set (see table 6.2).
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Figure 5-8: Bias boundary values (Vpi0 and Vpiw) as a function of the temperature under
which the 1MHz metal resonator is subjected, for given values of σeff and αT . The vertical
line points the gap value for which a margin of 10% between the Vpi0 and Vpiw is attained.

5.6 Melnikov method adjustment

The Melnikov function has been adapted to the finite difference equation (5.10) which mod-

els the system addressed in this chapter. Following the process described in [26] to obtain a

nondimensional version of equation (5.10), having the definitions of the dimensional param-

eters of equation (5.10), and knowing that within the frame of the current accurate model

the resonance frequency value is given by ω0 =

√
k1σL

meff
, the parameters of the nondimen-

sional equation are defined as x̂ =
x

s
; Ω =

ω

ω0
; β =

k1

meffω
2
0

= 1; α =
k3s

2

meffω
2
0

=
k3s

2

k1σL

=

12.272

16

( s
w

)2
(

1 +
σLl

2

ηEw2

)−1

, δ =
γ

meffω0
=

(
meffω0

Q

)
meffω0

=
1

Q
and µ = kFF

ε0thl

meffω
2
0Ns

3
.

Denoting V = −VDCVAC , φ1 =

(
−β + 2µV 2

DC

N∑
n=1

P 2
n

)
, φ3 =

(
−α+ 4µV 2

DC

N∑
n=1

P 4
n

)
, the

nondimensional equation of the electromechanical system is approximated to

x̂′′ + δx̂′ = φ1x̂+ φ3x̂
3 + V sin (Ωτ)µ

N∑
n=1

Pn

(1− x̂Pn)2 (5.28)

The equation (5.28), can be expressed as the system
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x̂′ = û

û′ = φ1x̂+ φ3x̂
3 + ε

(
δû+ V µsin (Ωτ)

N∑
n=1

Pn

(1− x̂Pn)2

)
(5.29)

where ε is a smal perturbationl parameter. If Γ0
± (t) =

(
x̂0 (t) , û0 (t)

)
is considered to be

the homoclinic orbit defined in [55] as equation (4.34), accordingly to [55] the Melnikov

function given by equation (4.35) can be expressed as:

M (τ0) =

∫ ∞
−∞

û0 (τ)

(
−δû0 (τ) + V µ sin (Ω (τ + τ0))

N∑
n=1

Pn

(1 + x̂0 (τ)Pn)2

)
dτ (5.30)

This integral can be separated in two terms

M (τ0) =

∫ ∞
−∞
−
(
û0 (τ)

)2
δdτ︸ ︷︷ ︸

I1

+

∫ ∞
−∞

û0 (τ)V µ sin (Ω (τ + τ0))

N∑
n=1

Pn

(1 + x̂0 (τ)Pn)2dτ︸ ︷︷ ︸
I2

(5.31)

and, if xe =

√
−2φ1

φ3
is defined as the positive solution of the potential function U (x) = 0

and K = φ1, the first term I1 has a solution given by [26]:

I1 =

∫ ∞
−∞
−
(
û0 (τ)

)2
δdτ = −2

3
δ
√
Kx2

e (5.32)

As stated in [26],

∫ ∞
−∞

û0 (t)
sin (ω (t+ t0))

(1 + x̂0 (t))2 dt = xe

2π
ω√
K√

(1− x2
e)

cos (ωt0)

sinh

(
ω√
K

(− arccos (xe))

)
sinh

(
ω√
K
π

) (5.33)

From this previous result, I2 can be solved as
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∫ ∞
−∞
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and then, the whole Melnikov function is found to be

M (τ0) = I1 + I2 = −2

3
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√
Kx2
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P 2
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(5.35)

which must be equal to 0 for some τ0, so the next condition must be attained:

2
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Finally, the Melnikov criterion can be obtained
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Taking as variable parameters the frequency and amplitude (expressed in dBm referenced to

50Ω) of the AC excitation and the bias voltage, the Melnikov method shows regions of this

parameter space where chaotic motion based on two-well potential distribution may arise.

The left hand side of the inequation (5.37) is renamed as ”Melnikov value” in figure 5-9,
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which for two given values of excitation amplitude represents the results of the Melnikov

analysis evaluation for different combinations of bias voltage and driving frequency (the

used nondimensional parameters have been obtained from the dimensions corresponding

to the C4 resonator of the Run 2015 set, shown in table 6.2, and from the experimental

values of σL and αFF of the specific resonator C4(17)-k15 under an operating temperature of

120◦C). As introduced in chapter 4, references [28] and [29] consider, wihtin the situation of

the two-well potential distribution, two critical amplitudes (equations (4.38) and (4.39)) as

improvements of the accuracy of the Melnikov method in the case of high and low damping

ratios respectively. However, numerical simulations revealed that those critical amplitudes

represent an improvement of the Melnikov mehtod accuracy only for great bias voltage closer

to the the upper bias boundary value (static pull-in voltage) than to the lower bias boundary

value, for the parallel plane approximation used in [28] and [29]. With the finite difference

method addressed in this chapter, the Melnikov method provides still a better performance

of the chaotic behavior prediction, when comparing all the amplitude prediction values

with the numerical results. As an example to illustrate this asseveration, figure 5-10 shows

the Poincare positions from the numerical solving of the differential equation (5.10) under

constant values of bias voltage and driving frequency, and for different values of excitation

amplitude: while the Melnikov method reports a possible chaotic behavior (which can be

only transient chaos) for an amplitude greater than -6.2 dBm, the critical amplitudes acr1

and acr2 establish respectively the prediction of the boundary for chaotic behavior in -17.4

dBm and -10.9 dBm.
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Figure 5-9: Numerical Melnikov values for a) 5 dBm and b) 10 dBm values for the AC exci-
tatation amplitudes. Zero or positive Melnikov values indicate that the Melnikov criterion
for homoclinic chaotic behavior is verified.

5.7 Numerical simulations of chaotic motion

Numerical simulations of chaotic time series and Poincare map, as the dynamical response of

the complete system described in this chapter, are reported in figure 5-11 and in figure 5-12

using the dimensions corresponding to the C4 resonator of the Run 2015 set (see table 6.2)

and the experimental values of σL and αFF of the specific resonator C4(17)-k15 under an

operating temperature of 120◦C. The used values of bias voltage and excitation amplitude

and frequency verify the Melnikov criterion for chaotic motion. Previously, the bifurcation

diagram plotted in figure 5-10 depicts the numerically obtained Poincare positions (for con-

stant values of bias voltage and excitation frequency) as a function of the AC, to explore

the values of excitation amplitude which provide chaotic numerical response. The signal

output reported in figure 5-12 is obtained from the expression of the generated capacitive

current provided by the model (equation (5.12)), neglecting its parasitic component and

multiplying each frequency component by the gain of the transimpedance amplifier at its

corresponding frequency. Finally, the Wolf algorithm provides the maximal Lyapunov ex-

ponent of the time series depicted in figure 5-11 and represents it in figure 5-13, where its

positive and finite value is demonstration of the presence of chaos.

129



Figure 5-10: Numerical bifurcation diagram based on Poincare points, for a bias voltage of
135 V and a driving frequency of 0.7 MHz.

Figure 5-11: Numerically obtained a)time series and b) Poincare map, for a bias voltage of
135 V, 11 dBm of excitation amplitude and a driving frequency of 0.7 MHz.

130



Figure 5-12: Numerical simulations of a) time series and b) Poincare map corresponding
to the generated output signal obtained from the amplification of the generated capacitive
current through an approximation of the GTIA transimpedance amplifier of the circuit, for a
bias voltage of 135 V, 11 dBm of excitation amplitude and a driving frequency of 0.7 MHz.

Figure 5-13: Maximal Lyapunov exponent, numerically obtained with Wolf algorithm from
chaotic time series depicted in figure 5-11.
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5.8 Discussion and conclusions

A compact model for electrostatic cc-beam resonators (easily implementable as a Verilog-A

module for system level electrical simulations) has been developed, considering a near-

real deflection profile (in the form of a finite difference method) and the second order

nonlinear effects (fringing field contribution to the coupling capacitance, residual stress and

the thermal effect). To test the accuracy of the model, and to obtain the values of the

parameters corresponding to the underlying nonlinear effects, extensive FEM simulations

and experimental measurements have been effectuated. The residual stress is found to affect

the linear mechanical stiffness while the nonlinear stiffness is practically unaffected by the

residual stress; the Poisson effect has no appreciable influence on the stiffness variation

caused by the residual stress. The developed model has been used to derive the conditions

to achieve bistability (i.e two-well potential distributions): dimensional design rule and the

needed bias voltage for bistability are found to depend on the residual stress and on some

dimensional parameters; the needed bias voltage for bistability grows no longer linearly

with the frequency but for each value of the residual stress there is an optimal value of the

frequency. The residual stress implies the need of greater gap to attain the design condition

for two-well potential distribution, and a decrease of the ratio between the upper and the

lower bias boundary values. In the same way as in the parallel plate approximation, in order

to minimize the required bas voltage, the resonators must be designed with the minimum

width (w) available by each technology. The thermal effect can be used to compensate the

residual stress. In this way smaller gaps fulfill the design condition (s/w) and lower bias

voltages are needed. A greater temperature than the one of room conditions, makes the

beam less stiff, implies a decrease of the absolute value of the bias boundary values for

bistability and provokes an enlargement of the ratio Vpiw/Vpi0.
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Chapter 6

Experimental results: bistability

and chaos

This chapter presents the experimental measurements and validation of the nonlinear model

introduced in chapter 5. The model considers a near real deflection profile for the cc-beam

and the second order nonlinear effects, namely the thermal effect, the fabrication residual

stress, and the contribution of the fringing field to the coupling capacitance between the

beam and the electrodes. Several monolithically integrated cc-beam resonators in the MHz

frequency range have been fabricated with the AMS 035 CMOS technology (in two sets of

fabrication). These fabricated devices have been used to experimentally demonstrate the

bistable operation and, eventually the extensive, robust and nontransient chaotic behavior

for the first time in a cc-beam resonator. In this sense, such results provide a breakthrough

in the field, with respect to the existing works reported in literature.

6.1 Experimental setup

Several cc-beam resonators have been designed and fabricated in AMS 035 technology.

Topology I (explained in section 4.2.1) used in the design allows two basic setups which

are schematically depicted in figure 6-1. In both setups the bias voltage VMEMS is applied

to the beam in order to enable the generation of the motional capacitive current and to

tune the linear and nonlinear stiffness of the beam. In Setup#1, the AC excitation (VAC)

is performed in the driving electrode (where a bias VD1 voltage is applied to compensate

the readout circuit gate voltage VD2 = 2V which is applied to the readout electrode).
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Given that there is no direct coupling between the electrode where the AC exctiation is

applied (D1) and the readout electrode (D2), this setup minimizes the generation of the

parasitic feedthrough current (see section 4.2), and the generated capacitive current can

be approximated to equation (5.12), with VDC = VMEMS − VD2. On the other hand, in

Setup#2, the AC excitation (VAC) is applied to the beam, together with the VMEMS bias

voltage by means of a bias tee and the VD1 bias voltage is also applied to the upper driver

to compensate the gate voltage at the lower driver. In this way, besides the motional

component proper to equation (5.12), now the generated capacitive current also has the

parasitic component. The total generated capacitive current can be expressed as equation

(6.1).

ic = ε0th
l

N
kFF

(
(VDC + VAC cos (ωt))

N∑
n=1

−Pn
(s+ xPn)2 ẋ

− (ωVAC sin (ωt))

(
N∑
n=1

1

(s+ xPn)
+ Cc

))
(6.1)

The first term of equation (6.1) corresponds with the motional component while the second

term is the parasitic current caused by the sinusoidal nature of the applied AC voltage.

Figure 6-1: Schematic the electrostatically actuated bistable cc-beam showing the two basic
setups used in this chapter.
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6.1.1 Transimpedance amplifier circuit

The CMOS readout circuit consists in a transimpedance amplifier which detects and con-

verts the capacitive current into a voltage. Figure 6-2 depicts the scheme of the readout

CMOS circuitry monolithically integrated with resonator on the fabricated chips. The tran-

simpedance amplifier (TIA) is constituted by three main modules: the front-end preamplifier

(UGB module), the voltage amplifier (CA module), and the 50-Ω output buffer (B50) [130].

• UGB, front-end-preamplifier: integrates (through the CI , parasitic capacitance at the

sense node) the capacitive current from the resonator, and the resulting Vin voltage

is detected by means of its readout preamplifier, which in this case is a unity gain

buffer. The parasitic capacitance at the sense node is found to be the sum of the

input capacitance of the circuit (CG), the resonator-substrate capacitance (CSB), the

connexion to the circuit capacitance (CCB), and the capacitance of the bias element

(Cbias). All these capacitances were minimized in order to maximize the sensitivity of

the readout. In order to keep the large impedance at the sense node (and, consequently

a low input-referred noise) a pseudo resistor (specifically, a PMOS transistor working

at the sub-threshold region with an extremely high resistance) is used as the bias.

Therefore, with the aim to reduce the parasitic capacitance associated to the bias

element (Cbias) a resistance Rbias was connected between Vin and V01 (namely the

input and the output of the front-end preamplifier).

• CA, voltage amplifier: this amplifier is based on a cascode with cascode-load con-

figuration. Given the high gain of this amplifier, the stage is also self-polarized by

means of a PMOS pseudo resistor and AC coupled with the front-end-preamplifier in

order to assure the correct biasing at the input node. The intrinsic gain is reduced

by using the AC coupling given the capacitance divider produced between it and the

input capacitance of the cascode amplifier.

• B50, 50-Ω output buffer: An output buffer stage is added to drive the 50-Ω input

impedance of the RF measurement instruments. Is based on two source follower

stages. In order to reduce its power consumption the output is AC coupled to an

external instrument by means of an external capacitance.
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Figure 6-2: Electrical scheme of the CMOS readout circuitry UGBCA50, connected to the
MEMS resonator, in the same IC CMOS chip.

The whole circuit is addressed as UGBCA50. For the electrical characterization of the

resonators, with a 2-driver configuration corresponding to Topology I (see section 4.2), five

input/output pads (called respectively VDD, VMEMS, Vexc, Vout and GND) are used, and

an additional pad has been included to allow the access at the output node of the cascode

amplifier (Vc out). The input pads VMEMS and Vexc access respectively to the cc-beam

resonator and to the D1 electrode, while the VDD pad corresponds to the supply voltage of

the CMOS circuitry and the GND pads are grounded. The Vout pad provides the output

signal of the readout circuitry. An optical image of the whole area is shown in figure 6-3.

6.1.2 Laboratory measurement setup

Once the fabrication and releasing process is finished, every chip is stuck and bonded to

a socked and mounted on a PCB. This PCB is placed into a climatic chamber to set and

control the temperature and humidity conditions: the study of the thermal effect implies

the test of the system response under different temperatures. Notice that for experimental

measurements below 100◦C, a relative humidity of 20% is used. Different DC sources

(Agilent E3631/3 B and Keithley 2410) provide the bias voltages specified in the electrical

scheme depicted in figure 6-2. The AC excitation is supplied by a function generator (AWG

2021) or a network analyzer (Agilent E5062A) which, from the output signal (Vout) provides
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Figure 6-3: Optical image of the CMOS-MEMS design fabricated in AMS 035 technology,
with the MEMS area connected to the readout circuitry (UGBCA50).

the S21 transmission parameter. The scheme of this configuration is shown in figure 6-4.

The output signal Vout is also applied to a spectrum analyzer (Agilent E4407B) and/or to an

oscilloscope (TDS 640A) to acquire the spectrum or the time series of the signal respectivley.

Finally, all the standalone instrumentation and the measurement data is remotely managed

by a computer through GPIB or RS-232.

6.2 Experimental validation of the nonlinear model

A symmetrical application of the bias voltage generates a stiffness in the electrical domain

that tunes linear and nonlinear stiffness of system, accordingly to [21] and [56], and to

chapters 4 and 5. Besides the dependence on the linear stiffness, the resonance frequency

of the nonlinear electromechanical oscillator is known to exhibit amplitude dependence on

the nonlinear stiffness, thus, for small oscillation amplitudes, the resonance frequency can

be approximated to depend only on the linear stiffness either in mechanical or electrostatic

domain (equation (6.2)). The thermal terms, (ET and σL) defined in chapter 5, are included

to the equation to model the thermal effect on the frequency response. To indicate the

137



Figure 6-4: Scheme of the experimental setup used for measurements.

influence of the thermal effect, the resonance frequency is denoted by frT .

frT =
1

2π
√
meff

√√√√16ET thw3

l3

(
1 +

σLl2

ηETw2

)
− kFF2 ε0 l th

Ns3
V 2
DC

N∑
n=1

P 2
n (6.2)

Equation (6.2) implies a linear relation between f2
rT and V 2

DC . The procedure to validate

the nonlinear model consists firstly in checking that the experimental points (VDC , frT )

fit the shape of the function (6.2). Then from each experimental curve the values of the

second order parameters (i.e. fringing fields constant, residual stress and thermal expansion

coefficient) are obtained and checked to remain in similar values.

6.2.1 Designs and experimental measurements

As wider explained in chapter 3, the commercial CMOS technology used for the designs and

fabrication is the C35 process family from ”Austria Micro Systems”, a 3.3V 0.35µm CMOS

technology which provides provides 4 layers of metal and 2 layers of polysilicon, as well

as the tungsten VIA. Table 6.1 relates the dimensions and main mechanical parameters of
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each structural layer in the AMS 035 CMOS technology, available for the cc-beam resonators

mechanization.

Table 6.1: Dimensions and parameters of the AMS 035 CMOS technology.

AMS 035 Tech. Metal 4 Metal 3 Tungsten Polysilicon

E (GPa) 131 131 411 160

ρ (kg/m3) 3000 3000 19300 2330

w (µm) 0.6 0.6 0.5 0.35

th (µm) 0.85 0.64 1 0.282

Two generations of devices have been designed, fabricated and measured with the aim

of validating the nonlinear macro-model developed in chapter 5, establishing the limits for

the second order parameter values.

6.2.2 First generation set of prototypes

The first generation of designed and fabricated devices corresponds to the Run 2015 set.

Table 6.2 summarizes the dimensions of the fabricated resonators corresponding to this first

generation, whose desing in Cadence is shown in figure C-1 (appendix C). Figure 6-5 shows

an optical image of a C4 resonator corresponding to the Run 2015 set.

Table 6.2: Desing parameters of the fabricated resonators corresponding to the Run 2015
set.

Metal 4 Polysilicon

Parameters C1 C2 C3 C4 C5 C6

l (µm) 73.75 63.85 52.1 63.85 54.6 63

w (µm) 0.60 0.6 0.6 0.6 0.35 0.35

s (µm) 1.72 1.5 1.45 2.07 0.9 0.9

freq. (MHz) 0.75 1 1.5 1 1 0.75
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Figure 6-5: Optical image of a fabricated C4 resonator corresponding to the Run 2015 set.

Extensive experimental measurements of the frequency response of the fabricated CMOS

cc-beam resonators have been performed under different thermal and biasing conditions.

The Setup#1 (see figure 6-1) is used in this experimental procedure to reduce the parasitic

feedthrough current, allowing an accurate measurement of the system frequency response.

Figure 6-6a) shows that the power of the primary resonance peak grows with the applied

bias voltage, as does the attenuation of the antiresonance, while the primary resonance

frequency is decreasing. On the other hand, in figure 6-6b) the shapes of the experimental

resonance frequency dependence on the bias voltage show a very good agreement with the

theoretical curves provided by equation (6.2), demonstrating the accuracy of the approach,

and fulfilling the first step to the model validation by means of experimental data. Moreover,

such experimental data have been used to find second order parameters as well as the

respective Vpi0 values (these values of bias voltage correspond with the lower bias boundary

value if the geometric condition (s/w) for bistability is attained, otherwise they imply the

collapse of the towards one of the electrodes beam because of the pull-in effect). The average

value of the fringing field constant is obtained from the slope of each curve f2
rT = m·V 2

DC+n.

From equation (6.2), the slope m (which can be numerically obtained from the experimental

points) is found to be

m = −kFF
ε0lth

2π2meffNs3

N∑
n=1

P 2
n (6.3)

and from this expression and the definition of kFF , given in equation (5.15), the αFF con-

140



stant can be calculated. From the natural frequency at room temperature, the equation of

k1σT (5.26) provides the value of the residual stress (σeff) not modified by the thermal effect.

The experimental Vpi0 values are obtained as the intersection of the curves of equation (6.2)

given by the experimental points with the frT = 0 axis; Finally the thermal constant αT is

obtained from the variation of the natural frequency (frT (VDC = 0)) caused by the change

in the temperature: given the respective definitions of ET , and σT (provided by (5.24)) and

equation (6.2) for VDC = 0, the αT with best fitting of the experimental curve is numerically

obtained, as shown in figure 6-7. All these values are summarized in tables 6.3, 6.4 and

6.5, as well as the minimum gap value attaining the geometric condition for bistablility and

its associated lower bias boundary value Vpi0 when the resonator is subjected to the room

temperature (RT=20◦C by default) and when the resonator is subjected to an ”operational

temperature” (OT=120◦C by default). The second order nonlinear parameters are shown in

figures 6-12 and 6-13. The reasonable similarity (keeping in mind the fabrication tolerances

and the uncertainties in the chemical attack releasing procedure) between the respective val-

ues of all these parameters corresponding to the different experimentally measured devices

belonging to the Run 2015 set, constitutes a prove of the models accuracy.

The results tables include the wet etching time using the different wet etchants explained

in section 3.2.3; in these tables the acronym HMS stands for the home-made hydrofluoric

solution.
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Figure 6-6: From resonator C4(15)-k15 a) experimental frequency response of a metal
4 (aluminium and titanium nitride) cc-beam resonator for a temperature of 110◦C under
different bias voltage values; b)representation of the experimental maximum response power
frequency of this metal 4 cc-beam resonator with respect to the applied bias voltage for
different temperature values (20◦C, 40◦C, 60◦C, 80◦C and 100◦C), and their respective
theoretical counterparts (in dotted lines).

Figure 6-7: Experimental natural frequencies (frT (VDC = 0)) values for different tempera-
tures, and the analytical fitting function from which the value of the αT constant is obatined,
from the resonator C4(15)-k15.
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Table 6.3: Experimentally measured parameters corresponding to Metal 4 resonators be-
longing to the Run 2015 set.( * OT=130◦C ,** OT=110◦C ).

METAL4 Run2015 Chip4 C1 Chip4 C4 Chip14 C4 Chip15 C4

Wet etching time 10’ (HMS) 10’ (HMS) 10’ (HMS) 10’ (HMS)

f0 (MHz) at RT 1.919 2.232 2.223 2.409

σeff (GPa) 0.163 0.156 0.155 0.1885

αT (K−1) 8.71e-06 8.99e-06 9.73e-06 1.096e-05

αFF (∅) 0.172 0.150 0.265 0.235

smin (µm) at RT 2.130 1.857 1.850 2.005

Vpi0 (V) at RT 232.17 339.59 328.15 359.69

smin (µm) at OT 1.298* 1.247 1.128 1.355**

Vpi0 (V) at OT 152.58* 236.33 206.17 265.27**

Table 6.4: Experimentally measured parameters corresponding to Metal 4 resonators be-
longing to the Run 2015 set. (* OT=130◦C ,** OT=110◦C).

METAL4 Run2015 Chip16 C4 Chip17 C4 Chip34 C4 Chip43 C4

Wet etching time 10’ (HMS) 20’ (HMS) 10’ (Silox) 20’ (ALPAD)

f0 (MHz) at RT 2.31 1.951 2.143 1.886

σeff (GPa) 0.170 0.110 0.141 0.100

αT (K−1) 1.13e-05 8.35e-06 9.76e-06 5.84e-06

αFF (∅) 0.236 0.652 0.2638 0.382

smin (µm) at RT — 1.623 — 1.569

Vpi0 (V) at RT — 241.35 — 248.12

smin (µm) at OT 1.209** 0.918 1.040 1.122*

Vpi0 (V) at OT 228.65** 136.83 215.37 182.02*
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Table 6.5: Experimentally measured parameters corresponding to Metal 4 resonators be-
longing to the Run 2015 set. (* OT=130◦C ,*** RT=25◦C).

METAL4 Run2015 Chip52 C4 Chip53 C4 Chip57 C4 Chip59 C4

Wet etching time 10’ (HMS) 10’ (HMS) 10’ (Silox) 10’ (Silox)

f0 (MHz) at RT 1.857 1.681 2.169 1.982

σeff (GPa) 0.096 0.0716 0.145 0.115

αT (K−1) 3.49e-06 4.55e-06 9.07e-06 8.74e-06

αFF (∅) 0.519 0.689 0.310 0.227

smin (µm) at RT 1.5450 1.3985 1.8049*** 1.649***

Vpi0 (V) at RT 248.60 203.26 307.48*** 294.96***

smin (µm) at OT 1.288* — 1.168 0.944

Vpi0 (V) at OT 196.39* — 209.90 182.31

These experimental results provided the information about the order of magnitude of the

residual stress generated from the fabrication procedure. Given the experimental values of

the fabrication residual stress, although the geometric condition for bistability is attained

by the most of the resonators at room temperature, the desired margin of 10% between

the upper and the lower bias boundary value does not occur at room temperature. In

practical application, driving the resonator into the bistable regime is not recommended

without a margin wide enough, because it would eventually lead to the resonator collapse

as a consequence of the pull in effect. Thus, for the resonators belonging to the Run 2015

set, the operating temperature must be applied in order to compensate the tensile residual

stress before the bistable region is reached.

6.2.3 Second generation set of prototypes

The second generation of designed and fabricated cc-beam resonators corresponds to the

Run 2017 set. This second generation has been designed to include new prototypes to

explore the feasibility of the two-well potential distribution at room temperature (RT)

with a sufficient margin between the bias boundary values for bistability. In addition, other

designs are included in Run 2017 set to test their functionality and to measure their features.

Table 6.6 summarizes the dimensions of the fabricated resonators corresponding to the

Run 2017 set, whose design screen in Cadence is shown in figure C-2 (appendix C). As

developed in chapter 5, the ensurement of a big enough margin between bias boundary
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values for bistability involves the use of big gaps, and consequently big values of bias voltage

are needed. Some of the prototypes have been designed following the frequency optimization

of the needed bias voltage explained in chapter 5 (resonators denoted whose frequency is

remarked with (opt)) while the other ones have a given frequency , but in any case the second

order nonlinear effects must be taken into account. For this reason, a previous estimation

(experimental measurements of the Run 2015 devices) of the parameters corresponding to

these second order effects is needed. The further experimental measurements of the Run

2017 devices provide the actual values of these second order effect parameters, and indicate

whether there is a big variation of them between fabrication sets. The whole Run 2017 is

designed considering a thermal constant and a fringing field constant given from an average

of the αT and αFF respectively measured from the resonators belonging to the Run 2015

set, namely αT = 9.605e − 6K−1 and αFF = 0.2. Most of the resonators in Run 2017 are

designed considering a 100% of an average value σeff of the Run 2015 set (σeff = 0.1623 GPa),

however some of them have been designed considering a 50% of this value. As an exception

of the general criterion, the C4 has been designed with the optimal frequency to minimize

the bias voltage under an operating temperature (OT) of 100◦C (and under the effect of

the corresponding thermal stress). Finally, using the VIA tungsten layer (see section3.2)

some resonators have been designed. Since the residual stress is a priori unknown, 3 of the

4 tungsten resonators have been designed neglecting the residual stress, and the 4th one has

been designed considering a 50% of the average residual stress of the Metal 4 resonators of

the Run 2015 set.
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Table 6.6: Desing parameters of the fabricated resonators corresponding to the Run 2017
set.

σeff (Gpa) margin T (◦C) l (µm) s (µm) freq. (MHz) Vpi0 (V) Vpiw (V)

C1
M

et
al

4
0 — — 63.85 2.07 1 355 —

C2 0.1623 10% RT 50.9 2.55 3 624 688

C3 0.1623 10% RT 71 3.3 2 (opt) 594 654

C4 0.064 (σL) 10% 100◦C 111 3.3 0.8 (opt) 238 263

C5 0.1623 5% RT 71 2.9 2 (opt) 496 522

C6

M
et

al
3 0.1623 10% RT 58.65 2.55 3 595 656

C7 0.1623 10% RT 73 3.375 1.93 (opt) 562.5 620

C8 0.0812 10% RT 103 3.5 0.97 (opt) 400 —

C9

T
u

n
g
st

en

0 10% RT 48.7 1.125 1 156.1 173.0

C10 0 10% RT 34.4 1.125 2 312.1 346.0

C11 0 5% RT 48.7 0.975 1 127.0 133.6

C12 0.0812 10% RT 55.825 1.45 1 224.5 246.9

Metal resonators

The experimental results obtained from the measurement of the Metal 4 resonators corre-

sponding to the Run 2017 set are sumarized in table 6.7. As expected, the increase of the

gap parameter (s) in the new designs of Run 2017, with the aim of enforce the dimensional

condition to allow bistability, implies an increase of the needed bias voltage. In this way

the high voltages needed to achieve bistability in the Metal 4 resonators of the Run 2017

set are the counterpart to the bigger margins (Vpiw to Vpi0) that is needed to assume.

Although the values of the σeff coefficient provided by experimental measurements are

in the same order of magnitude as the estimated residual stress (the σeff average value from

the experimental measurements of the resonators belonging to the Run 2015 set), they are

greater than it, and in general, greater than expected. The increase of these values with

respect to the estimated one is not very pronounced (from approx. 5% to approx. 15%).

However the residual stress has a great influende on the smin parameter and on the needed

bias voltage (see figure 5-7, which depicts specifically the numerically obtained values of

the bias boundary values for bistability for a resonator with dimensions corresponding to

the C3 resonator of the Run 2017 set). Thus, for the σeff coefficients obtained from the

experimental measures, the margin between Vpi0 and Vpiw will be slightly smaller than the
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10% at room temperature. Figure 6-8 depicts the experimental frequency response and

the resonance frequency of a Metal 4 resonator (C3) corresponding to the Run 2017 set

under different temperature and bias conditions, while figure 6-9 shows an optical image of

a Metal 4 resonator (C4) corresponding to such a run.

Table 6.7: Experimentally measured parameters corresponding to Metal 4 resonators be-
longing to the Run 2017 set. (* OT=100◦C ,** OT=140◦C).

METAL4 Run2017 Chip6 C2 Chip7 C5 Chip8 C3 Chip8 C4 Chip17 C3 Chip17 C4

Wet etching time 10’ (Silox) 15’ (Silox) 30’ (Silox) 30’ (Silox) 15’ (Silox) 15’ (Silox)

f0 (MHz) at RT 3.076 2.14 2.09 1.25 2.123 1.281

σeff (GPa) 0.174 0.191 0.180 0.172 0.187 0.182

αT (K−1) 8.724e-06 8.92e-06 9.21e-06 7.58e-06 9.80e-06 9.09e-06

αFF (∅) 0.237 0.197 0.242 0.266 0.226 0.404

s (µm) 2.55 2.9 3.3 3.3 3.3 3.3

smin (µm) at RT 1.627 — 2.151 3.143 2.185 3.221

Vpi0 (V) at RT 762.51 – 597.19 350.64 688.65 433.92

smin (µm) at OT 1.193 1.715* 1.256** 2.215 1.479 2.416

Vpi0 (V) at OT 450.57 412.58* 373.82** 245.70 378.67 242.52

Figure 6-8: From resonator C3(8)-k17 a) experimental frequency response of metal cc-beam
resonator for a temperature of 140◦C under different bias voltage values; b)representation of
the experimental maximum response power frequency of this metal cc-beam resonator with
respect to the applied bias voltage for different temperature values (20◦C, 60◦C, 100◦C,
120◦C and 140◦C), and their respective theoretical counterparts (in dotted lines).
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Figure 6-9: Optical image of a Metal 4 resonator (C4) belonging to the Run 2017 set.

Tungsten resonators

The experimental results of the measured tungsten resonators (summarized in tables 6.8

and 6.9) revealed an average residual stress coefficient of σeff ∼ 0.74 GPa , more than 4.5

times the average value of the residual stress coefficient used as reference in the design esti-

mations (moreover, notice that 3 of the 4 tungsten resonators have been designed without

considering the residual stress). Another important fact is that the variation of the natural

frequency with the temperature is not as pronounced as in the Metal 4 cases (the average

tungsten αT parameter represents approximately the 30% of the average Metal 4 αT value).

Low dependence of the frequency on temperature is considered an advantageous feature for

a resonator performance. However in this case, the small values of αT coefficient prevent the

thermal effect from successfully compensating the huge residual stress. These circumstances

make the fabricated tungsten resonators unable to meet the dimension condition for bista-

bility at any temperature that the climatic chamber is capable to reach. The solutions for

further designs, in order to overcome the issues of the tungsten fabricated resonators, would

involve a much greater gap parameter (which would imply much greater bias voltages) or a

fabrication procedure which ensures a reduction of the residual stress. Figure 6-10 depicts

the experimental frequency response and the resonance frequency of a tungsten resonator

(C11) corresponding to the Run 2017 set under different temperature and bias conditions,

while figure 6-11 shows an optical image of a tungsten resonator (C9) corresponding to such
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a run.

Figure 6-10: From C11(7)-k17 a) experimental frequency response of a tungsten cc-beam
resonator for a temperature of 120◦C under different bias voltage values; b)representation
of the experimental maximum response power frequency of this tungsten cc-beam resonator
with respect to the applied bias voltage for different temperature values (20◦C, 60◦C, 100◦C
and 120◦C), and their respective theoretical counterparts (in dotted lines).

Table 6.8: Experimentally measured parameters corresponding to tungsten resonators be-
longing to the Run 2017 set.

TUNGSTEN Run2017 Chip2 C9 Chip2 C10 Chip2 C11 Chip2 C12

Wet etching time 10’ (Silox) 10’ (Silox) 10’ (Silox) 10’ (Silox)

f0 (MHz) at RT 2.412 3.697 2.437 2.105

σeff (GPa) 0.708 0.707 0.725 0.743

αT (K−1) 2.66e-06 2.94e-06 2.28e-06 2.58e-06

αFF (∅) 0.481 0.475 0.446 0.394

s (µm) 1.125 1.125 0.975 1.45

smin (µm) at RT 1.672 1.279 1.689 1.917

Vpi0 (V) at RT 339.87 523.61 280.83 441.78

smin (µm) at OT 1.571 1.202 1.601 1.793

Vpi0 (V) at OT 320.59 485.31 272.07 402.51
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Table 6.9: Experimentally measured parameters corresponding to tungsten resonators be-
longing to the Run 2017 set.

TUNGSTEN Run2017 Chip7 C11 Chip7 C12 Chip8 C10 Chip8 C11

Wet etching time 15’ (Silox) 15’ (Silox) 30’ (Silox) 30’ (Silox)

f0 (MHz) at RT 2.494 2.135 3.766 2.486

σeff (GPa) 0.767 0.768 0.745 0.760

αT (K−1) 2.45e-06 2.19e-06 3.66e-06 2.83e-06

αFF (∅) 0.554 0.459 0.701 0.704

s (µm) 0.975 1.45 1.125 0.975

smin (µm) at RT 1.729 1.945 1.303 1.723

Vpi0 (V) at RT 286.36 433.12 502.30 272.23

smin (µm) at OT 1.634 1.846 1.209 1.613

Vpi0 (V) at OT 263.52 407.98 452.33 251.12

Figure 6-11: Optical image of a tungsten resonator (C9) belonging to the Run 2017 set.

Using the measured average values for the nonlinear second order effects, table 6.10

shows the optimal dimensional values to enable the two-well potential distribution with a

tungsten device. As explained in chapter 5, the minimum gap value attaining the dimen-

sional condition for bistability (smin) under each temperature provides coincident values of

bias boundary values for bistability; greater values of gap are needed to ensure the 10%

of margin and the enormous bias voltages required discourages the implementation of this

approach.
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Table 6.10: Numerical estimation of the dimensional and biasing conditions for bistability
following the optimization process described in chapter 5. The averaged values of the second
order parameters (σeff = 0.7404 GPa, αT = 2.699 · 10−6K−1, αFF = 0.45), have been used
in the calculation.

T l (µm) f0 (MHz) smin (µm)
Vpi0(V )

for smin

s10% (µm)
Vpi0(V )

for s10%

Vpiw(V )

for s10%

20◦C 52 2.279 1.801 618.4 2.871 1153 1269

100◦C 55 2.023 1.789 544.3 2.859 1019 1122

120◦C 56 1.953 1.790 525.8 2.850 979 1077

6.2.4 Experimental second order parameters comparison

The second order parameters σeff and αT of the Metal 4 resonators of the Run 2017 set are

found to be quite similar to the ones corresponding to the Metal 4 resonators of the Run

2015 set, as depicted in figure 6-12 and 6-13. However, as it has been mentioned in section

6.2.3, the residual stress coefficient has been found to be slightly higher in the resonators

of the Run 2017 (even if the values of this coefficient of both runs are in the same order of

magnitude). Conversely, the tungsten resonators present their own values of σeff and αT ,

which are quite distant from the metal 4 values, as depicted in 6-12. In general, the average

values of σeff, and αT parameters corresponding to Metal 4 and tungsten can be respectively

observed. Nevertheless, some points of αT corresponding to the Metal 4 resonators of the

Run 2015 set are particularly low and may be considered as outliers (figure 6-12b). The αFF

values (which are, a priori, independent on the material), present a greater dispersion (figure

6-13). However, and except for some spurious values corresponding to Metal 4 resonators

of the Run 2015 set, a tendency to an average value (≈ 0.23) for the Metal 4 resonators,

while the tungsten resonators present higher and more scattered values of αFF. Regardless,

a general average value can be obtained and considered. The respective variations of the

experimentally obtained constant values (i.e. the respective variations inside the sets of

metal 4 σeff, of tungsten σeff, metal 4 αT , of tungsten αT and of αFF) can be explained to

be caused by several factors:

• The presence of fabrication tolerances in the dimensional parameters of the resonator,

which can reach up to 10% in the worst cases.

• The lack of uniformity of the chemical attack corresponding to the wet etching process.

151



• The possible lack of uniformity of the cross section of the beam along the span.

Figure 6-12: Experimental σeff and αT parameter values. The respective average values
(σeff = 0.1499 GPa for Metal 4 and σeff = 0.7404 GPa for tungsten, αT = 9.261 · 10−6K−1

for Metal 4 and αT = 2.699 · 10−6K−1 for tungsten) are indicated by dashed lines.

Figure 6-13: Experimental αFF parameter values. The average value (αFF = 0.38) is
indicated by dashed lines.
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6.3 Experimental validation of bistability

If the ratio s/w condition is attained for a given temperature, the increasing bias voltage

makes the system follow a supercritical Pitchfork bifurcation, which will provide two sta-

ble nontrivial points (corresponding to the symmetrically located minima of the potential

function) between the bias boundary values Vpi0 and Vpiw (see figure 6-14). Following this

Pitchfork bifurcation when the growing bias voltage reaches Vpi0 the nondeformed position

(x = 0) becomes unstable, and the oscillation of the beam takes place around the new

nontrivial stable positions, as is proper of homoclinic structures.

6.3.1 Experimental bistability measurement

The change of the point around which the oscillation takes place produces a change of the

coupling capacitance between the beam and the readout electrode which can be sensed by

a network analyzer as a shift of the S21 scattering parameter of the CMOS-MEMS system.

The network analyzer must be set up to provide a constant value of the excitation frequency,

corresponding to a higher value than the natural frequency in each temperature because,

otherwise, at some point in the process of increasing DC (and consequently decreasing the

resonance frequency) the excitation frequency would be equal to the resonance frequency,

placing the system in a dangerous condition of falling into pull-in collapse. In order to

maximize the sensitivity of the experimental detection procedure, the configuration denom-

inated as Setup#2 in figure 6-1 has been implemented; this setup allows the possibility of

sensing the variation in the parasitic current produced by the oscillation around a nontriv-

ial equilibrium point, besides the variation of the motional current due to the same reason.

Since the oscillation of the beam has small amplitude, in this case the parasitic component

dominates over the motional component; moreover, from equation (6.1) it can be seen that

a variation of the point around which the oscillation takes place has more influence on the

parasitic component than on the motional component. The variation of the experimental

S21 magnitude, depicted in figure 6-15a), implies the presence of the two-well potential

distribution, and may be compared with the analytical pitchfork bifurcation expressed in

terms of the normalized capacitance corresponding to the singular points of the potential

function.

While the applied bias voltage is being increased, once the proper value has been reached
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(Vpi0 < VDC < Vpiw), the experimental points may move towards both potential wells

because of some slight asymmetries induced by the VD1 voltage. For instance, in figure 6-

15a), the points with positive values are obtained with VD1 = 4V , while those with negative

values correspond to VD1 = 2V . Those asymmetries produce the margin between the

upper trajectory and the lower trajectory of the experimental data shown in figure 6-15a).

When the asymmetry produced by the VD1 voltage is performed with a time square signal,

the snap-though motion is clearly observed in the time domain for biasing voltages higher

than Vpi0. Figure 6-15b) shows the time history of the system transmission response (S21)

experimentally measured (also, using Setup#2) with a network analyzer when the cc-beam

resonator is excited by a squared signal at 4 Hz through the VD1 node. Bistability is observed

from the snap-through motion attained when the system exhibits two-well potential (for

VMEMS = 203V in this case). This plot compares the variation of the position caused by the

effect of the changing asymmetry when we are outside the bistable region (VMEMS = 160V )

and when we are inside it (VMEMS = 203V ): the variation of 2V of the asymmetry in

the single potential well region provokes just a slight deformation, while in the bistable

region generates a big variation. It is needed to note that the results of bistability, reported

in figures 6-15a) and b) have been obtained under an operating temperature of 120◦C.

Specifically figures 6-15a) and b) correspond to experimental measurements of the resonator

C4(16)-k15. Bistability has been also measured with metal resonators belonging to the Run

2017 set: figure 6-16 shows the experimental bifurcation to the bistable state of C3(8)-k17,

under an operating temperature of 140◦C.

Numerical studies reported in section 5.5 indicate that the application of higher tem-

perature increases the margin between Vpi0 and Vpiw for the same s/w ratio (see figure

5-8), and moreover the absolute values of these bias boundary values is decreased, moving

the system away from the danger of pull-in collapse; thus the use of high temperatures is

recommended.
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Figure 6-14: Schematic representation of a) the supercritical Pitchfork bifurcation of the
equilibrium points in the 2WP distribution and b) the nontrivial equilibrium deformations
of the cc-beam resonator.

Figure 6-15: a) Experimental (from the Metal 4 resonator C4(16)-k15) and numerical Pitch-
fork bifurcation. b) Experimental time history of the system transmission response inside
and outside of the bistable regime.
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Figure 6-16: Experimental (from the Metal 4 resonator C3(8)-k17) and numerical Pitchfork
bifurcation.

6.3.2 Capacitive coupling analysis

The experimentally obtained coupling levels between the cc-beam resonator and the readout

driver can be used to estimate the value of the offset capacitance Ck defined as the total

capacitance contribution which does not depend on the beam deformation Ck = kFFCc.

Given the small oscillation amplitudes, when using the Setup#2 for the measurement of

the bistable behavior, the parasitic component of the capacitive current is far bigger than

the motional component, which can be neglected, thus the capacitive current can be ap-

proximated to

ic ≈ −ωVAC sin (ωt)

(
kFF

ε0thl

N

N∑
n=1

1

(s+ Pnx)
+ Ck

)
(6.4)

The transimpedance gain, whose value for each input frequency is known, can be expressed

as

GTIA (ω) =
Vo rms

ic rms
(6.5)

while the coupling level measured in the network analyzer is the relation between the system

input and output signals in the form
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S21 = 20 log10

(
Vo rms

VAC rms

)
. (6.6)

In this way, the transimpedance gain can be approximated to

GTIA (ω) ≈ 10
S21
20

2πfexc

(
kFF

ε0thl

N

N∑
n=1

1

(s+ Pnx)
+ Ck

) (6.7)

Considering the coupling level S21 corresponding to the bias voltages that provides a single

potential well and negligible displacement (x ≈ 0), the offset component of the capacitance

Ck can be estimated following equation (6.8). The values of this parameter, corresponding

to several measured devices are shown in the last row of table 6.11 represented in figure 6-17.

All the estimated Ck values are of the same order of magnitude and, as has been pointed

in section 6.2.4, their apparent disparity can be explained by the fabrication tolerances and

uncertainty in the releasing process.

Ck ≈

(
10

S21
20

2πfexcGTIA (ω)
− kFF

ε0thl

s

)
(6.8)

The total experimental capacitance at zero displacement can be approximated with the

expression

C0 exptl ≈
10

S21
20

2πfexcGTIA
(6.9)

The comparison between the total experimental capacitance values at zero displacement

(equation (6.9)) and the theoretical C0 values (equation (3.29)) is shown in table 6.11.

These estimation procedure can only be done if the the value of the transimpedance gain of

the whole TIA amplifier is well known. However, in most of the effectuated experimental

measurements of bistability, an additional capacitance have been added to the Vc out output,

with the aim of limit the gain of the amplifier and avoid the saturation of the output signal.

When this capacitance is added, the transimpedance gain is minor than the nominal of the

UGBCA50 circuit (for the usual frequency ranges), but its exact value is unknown. The

measurements of the devices listed in table 6.11 (and whose estimated Ck values are depicted

in figure 6-17) have been effectuated without having added this additional capacitance to

the Vc out node. In this way the value of the transimpedance gain of the whole TIA amplifier
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is well known, and tabulated to depend on the frequency of the input signal.

Table 6.11: Comparison between the experimental and theoretical capacitive coupling level

Chip15 C4 Chip16 C4 Chip17 C4 Chip59 C4

Experimental S21 11.2566 11.0981 10.0438 8.8711

Experimental C0 (F) 9.33e-16 9.16e-16 7.37e-16 6.44e-16

Theoretical C0 (F) 2.32e-16 2.32e-16 2.32e-16 2.32e-16

Estimated Ck (F) 6.00e-16 5.83e-16 2.25e-16 3.13e-16

Figure 6-17: Estimation of the offset capacitance component Ck obtained from the low
biased S21 coupling level measurements.

6.4 Experimental demonstration of chaotic motion

This section reports the experimental measurement of extensive and sustained homoclinic

chaotic response obtained for the first time from fabricated cc-beams resonators in the range

of the MHz. The procedure of chaotic behavior seeking requires the application of specific

biasing conditions for each resonator under test. In this case, the procedure with the specific

resonator C4(17)-k15 is reported.

For a bias voltage beyond the lower bias boundary value, once the bistable region has

been reached, the analytic equation (6.2) provides no real frequency; however numerical sim-
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ulations of the complete system for a frequency sweep provide a new resonance frequency

which grows again with the applied bias voltage until the upper bias boundary value (Vpiw),

from which the collapse of the beam caused by the pull-in effect would occur. The growth

of the resonance frequency in the bistable region has been also experimentally observed (as-

suming the pull-in danger when the frequency sweep makes the system undergo thought its

resonance frequency at so high bias voltages), and compared with the numerically obtained

one in figure 6-18)a). The experimental frequencies start to grow with the bias voltage

for a DC value smaller than the analytically expected value from equation (6.2)(Vpi0); the

assumption that the linear stiffness (either in mechanical and electrical domain) dominates

in the frequency over the other nonlinear stiffness terms becomes non acceptable when

the linear stiffness becomes suffciently small. The result is that the system steps into the

bistable region and the corresponding homoclinic structure arises for lower DC values than

theoretically expected. This effect can also be seen in the experimental coupling bifurcation

diagram, figure 6-18b).

From the conducted experiment for bistable behavior of the system, referred in previous

section and effectuated with the specific resonator under test (figure 6-18), it is known that

for a bias voltage greater than approx VDC = 121.5V the system exhibit a two-well potential

distribution and, with this condition, it is susceptible to provide chaotic response.

Figure 6-18: a) Experimental and numerical resonance frequency as a function of the bias
voltage, and b) experimental bistability and numerical pitchfork bifurcation. Both plots
refer data obtained under a temperature of 120◦C.
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The fact that the homoclinic structure appears for a lower bias voltage than the ana-

lytically predicted one prevents the correct application of the formulated procedure of the

Melnikov method. A further correction of the Melnikov method taking into account this

situation would be needed. The experimental output is a voltage signal. In the experimen-

tal procedure the Setup#1 is used in order to minimize the parasitic capacitive current. To

find the generation of chaotic behavior, the bias voltage is set in a value which implies the

two-potential well distribution, and then the nonlinear and chaotic behavior are tracked by

sweeping the excitation amplitude and frequency. When the proper excitation frequency is

found, the presence of nonlinear effects impose their influence and by increasing the excita-

tion amplitude the system eventually exhibits extensive chaotic behavior (figures 6-21, and

6-23). The nonlinear behavior corresponding to the period doubling bifurcation has been

also measured and reported in figures 6-19 and 6-20.

Experimental chaos is found to be more evasive than in numerical simulations, but finally

it was obtained. Another control variable that can also be modified during the chaotic

behavior search process is VD1. All the experimental measurements of period doubling

bifurcation and chaotic response have been performed under an operating temperature of

120◦C. Besides the signal time series, the obtained chaotic behavior is also represented

with its Poincare map (figures 6-21b), and 6-23b)), showing a typical shape of the chaotic

series, which may be compared with the numerically obtained one, in figure 5-12. All the

experimentally obtained signals are filtered in order to remove the high frequency noise.

After this filtering, the maximal Lyapunov exponent of the time series depicted in figures

6-21a), and 6-23a) have been calculated by means of the algorithm introduced by Wolf

et.al in [77] and successively improved until the implementation of the latest version for

the Matlab environment in 2016 (see section 2.5.3). The positive and finite value of the

maximal Lyapunov exponent given by the Wolf algorithm, and shown in figures 6-22 and

6-24 corroborates the presence of extensive chaotic essence in the measured time series.

Finally, figure 6-25 shows the lab experimental setup, in a moment where a chaotic response

was experimentally measured.
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Figure 6-19: Experimental time series of the system showing nonlinear behavior and period
doubling bifurcation. The parameter values are a) (up) VMEMS = 127 V, VD1 = 2.9 V,
fexc = 1.387 MHz and VAC = 15.05 dBm (bottom) VMEMS = 127(V), VD1 = 4 (V),
fexc = 1.38 MHz and VAC = 18.3 dBm and b) (up) VMEMS = 127 V, VD1 = 4 V, fexc = 1.42
MHz and VAC = 15.05 dBm (bottom) VMEMS = 127(V), VD1 = 2.8 (V), fexc = 1.38 MHz
and VAC = 15.05 dBm.

Figure 6-20: Experimental time series of the system showing nonlinear behavior and period
doubling bifurcation. The parameter values are a) (up) VMEMS = 126 V, VD1 = 4 V,
fexc = 1.415 MHz and VAC = 15.05 dBm (bottom) VMEMS = 128(V), VD1 = 4 (V),
fexc = 1.43 MHz and VAC = 15.05 dBm and b) VMEMS = 127 V, VD1 = 4 V, fexc = 1.386
MHz and VAC = 15.05 dBm.
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Figure 6-21: Experimental chaotic time series a) and Poincare map b) for VMEMS = 128 V,
VD1 = 3.24 V, an excitation amplitude of 15.05 dBm and a driving frequency of 1.39 MHz

Figure 6-22: Maximal lyapunov exponent, numerically obtained with Wolf algorithm from
the chaotic time series depiced in figure 6-21.
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Figure 6-23: Experimental chaotic time series a) and Poincare map b) for VMEMS = 128 V,
VD1 = 3.72 V, an excitation amplitude of 15.05 dBm and a driving frequency of 1.39 MHz.

Figure 6-24: Maximal lyapunov exponent, numerically obtained with Wolf algorithm from
the chaotic time series depiced in figure 6-23 .
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Figure 6-25: Photograph of the lab facilities, and of the experimental detection of chaotic
behavior in MEMS resonator.

6.5 Discussion and conclusions

The first conclusions of this chapter is the verification of the hypothesis formulated in

previous chapters, especially in chapter 5. The nonlinear model based on the finite difference

method from a near real deflection profile and taking into account the second order nonlinear

effects has been experimentally proved to be accurate enough. To reach this conclusion, the

experimental variation of resonance frequency with the bias voltage and temperature has

been observed to have the shape predicted by the model equations, and the experimental

values of the second order constants have been seen to keep respectively similar enough
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values between them. The experimental measurements have been performed on devices

fabricated in two different generations (Run 2015 and 2017 sets). The slight differences

between the values of the constants of the second-order non-linear effects can be explained

from the tolerances of the nominal fabrication process and chemical attack for the release

of the structure. However, in the specific case of the residual stress, as stated in chapter

5, its variation has a great influence on the results and produces a large divergence on the

bias voltage values needed to obtain two-well potential distribution.

On the other hand, the second order parameter values of the tungsten resonators have

been experimentally obtained. The measured average value of the tungsten residual stress

disables the achievement of the bistability at reasonable values of temperature and/or bias

voltage.

The bistable behavior reported in this chapter has been experimentally measured for

the first time in straight and non axially forced cc-beam resonators. The measured bistable

behaviors have been experimentally obtained for the bias voltage predicted by the nonlinear

model (as function of the respective values of the second order effects constants) in several

fabricated devices. The homoclinic structure has been found to arise for a bias voltage

slightly lower than the predicted one, because in practice the resonance frequency does not

reach the zero value with the growing bias voltage, but starts to grow again from a small

but greater than zero value. Furthermore, from the situation of bistability, generated in

a fabricated device, extensive chaotic motion, based on the homoclinic structure proper of

the achieved two-well potential distribution, has been experimentally measured for the first

time in a cc-beam resonator providing, in addition, important improvements in terms of

frequency (MHz range) and bandwidth with respect to the previous experimental works

reported in literature. The chaotic nature of the measured signals have been verified by

means of a numerically obtained positive and finite value of the maximal Lyapunov exponent

from a trustworthy algorithm.
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Chapter 7

Conclusions and future work

7.1 Final conclusions

The research developed in the frame of the CRIPTOMEMS and KEYNEMS projects pro-

vides interesting and novel results which forecast promising further applications in several

fields. From the analytical study of the nonlinear behavior of electrostatically actuated

MEMS resonators, the goal has been the exploitation of such nonlinearities to achieve

bistability and chaotic response of the system. Because of the inherent benefits in terms of

scalability, frequency, simplicity and fabrication reliability, the elected structure has been

the straight and non-axially forced cc-beam with in plane resonance. The strategy has been

a previous obtaining of the conditions for the reproduction of the Duffing-Ueda strange

attractor based on the homoclinic structure, namely the 2WP distribution or bistability.

A first study has been performed to explore the viability of using beam-shaped mi-

crostructures as chaotic signal generators. This first analysis has been performed on the

parallel plate approximation, since it is the most common analysis found in literature, and

accurate enough for small oscillations amplitudes. Within this framework, and from the

demonstrated stiffness tuning capability of the symmetrical application of a bias voltage,

a geometric design condition (which involves a minimum ratio between the electrode-beam

gap and the beam width) to allow the generation of two-well potential distribution has

been stated. This gap/width ratio has been found to be the factor which the ratio between

the upper and lower bias boundary values for bistability depends on. The design criterion

has been the minimization of the bias voltage needed to achieve bistability while enabling

a margin of 10% between the upper and lower bias boundary values for bistability. This
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criterion implies the use of the minimum beam width allowed by the considered technol-

ogy. The requirement of 10% of margin between bias boundary values sets the needed gap

value. The beam length is found to depend on the desired natural frequency, and a linear

dependence between the needed bias voltage for bistability and the design frequency has

been proven. Within this approximation, numerical simulations of the nonlinear response

of a 1MHz-designed cc-beam with dimensions corresponding to a 350 nm-width polysilicon

resonator beam have been performed, obtaining extensive chaotic response, analyzed with

Melnikov method, and corroborated with a positive and finite value of the maximal Lya-

punov exponent. Besides the analysis of the conditions to obtain chaotic behavior based on

2WP, the possibility of chaos based on 1WP has been explored, through the analytical and

numerical study of the Duffing equation and an exhaustive revision of the literature. The

lack of robustness of the chaotic behavior, the narrow range of the system parameters that

provide it and the need of large excitation amplitudes discourage this approach.

A later analysis has gone beyond the parallel plate approximation. In this case we have

developed a model based on a FDM from a near real deflection profile, which considers a set

of nonlinear effects whose influence is lower than the main terms in model equation but that

cannot be neglected for a proper design and analysis procedure. These second order effects

are the fabrication residual stress, the contribution of the fringing fields, and the thermal

effect. FEM simulations and experimental measurements have been used to determine the

proper expressions to include these effects into the model. The tensile fabrication residual

stress is found to provoke an increase of the linear stiffness while the nonlinear stiffness

remains practically unaffected. The fringing fields effect implies a contribution to the cou-

pling capacitance between the beam and the electrodes that increases the electrostatic force.

The growing temperature is known to make the beam less stiff, through a decrease of the

Youngs modulus, and the appearance of an internal compressive stress that stands against

the fabrication residual stress. The considerations previously made for the parallel plate

approximation have been adapted to the more accurate FDM approach. The accuracy of

this electromechanical model has been tested by comparing its predictions with the results

provided by COMSOL FEM simulations. Moreover, since only time derivatives are included

in the model, it can be implemented in an analog hardware description language (AHDL)

enabling system level electrical simulations.

With the accurate new model, the minimum gap/width ratio required to attain bista-
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bility is no longer a constant, but depends on the residual stress and on the geometric

parameters. In addition, the residual stress makes the needed bias voltage for bistability

grow no longer linearly with the design natural frequency. In contrast, for each value of

the residual stress there is an optimal frequency that minimizes the needed bias voltage to

achieve the two-well potential distribution. In order to ensure the attainment of the geo-

metric condition for bistabiliy or in any case, enlarge the margin between the bias boundary

values, the thermal effect is applied to compensate the residual stress effect. Using this com-

plete model, numerical simulations of the homoclinic chaotic response of a 600 nm-width

1MHz metal designed device are reported and checked with the maximal Lyapunov expo-

nent criterion. The chaotic behavior is found to arise for a set of parameters for which the

Melnikov criterion (properly adapted to the model based on finite difference method and

considering the second order effects) predicts the possibility of chaotic response. Experi-

mental results from fabricated metal and tungsten resonators with the AMS 035 technology

have proved the accuracy of the complete FDM-based model, and provided the experimental

values for the constants of the second order nonlinear effects. The tungsten resonators have

been found to be unfeasible for its performance as 2WP systems under reasonable values of

bias voltage and temperature, because of the presence of great values of residual stress.

Finally, for the first time, the bistable behavior and chaotic signal generation with

simple and straight metal cc-beam resonator in the range of MHz has been experimentally

measured. Extensive experimental homoclinic chaotic motion has been obtained from the

bistable cc-beam resonator and validated by means of a positive Lyapunov exponent.

7.2 Future work

This work has contributed to the development of chaotic resonators by means of a low-

cost CMOS-MEMS platform. The next step is to extend the experimental measures to

new designs. The release and experimental corroboration of the correct performance of the

polysilicon resonators is particularly promising, since they are supposed to provide a great

improvement in terms of the needed bias voltage and because of the possibility of bistable

and chaotic response at room temperature with a wide bias margin. In addition, new pro-

totypes like curved beams and non-interdigitated comb drives have been included in a new

set of fabricated devices (see figure 7-1). Through their experimental measurements, new
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functionalities and features can be explored and compared with those of the cc-beam res-

onators. Finally, from the experimentally obtaining of the chaotic behavior, its application

in secure communication purposes becomes available.

Figure 7-1: Optical images of a) Metal 3 arched beam and b) Metal 4 non-interdigitated
comb drives resonator.

7.2.1 Application of chaotic systems in secure communications

The chaotic systems provide rich and complex possibilities for signal generation, with wide

applicability in signal processing and communications. The apparent erratic essence (noise-

like) but deterministic, with wide bandwidth in the frequency domain, of the chaotic signals

allows its application in secure communication purposes, and more specifically in the field

of cryptography. On the other hand, one of the most interesting properties of the chaotic

signals is their capability of synchronization between pairs of chaotic transmitters [34]. A

review of the chaotic synchronization and cryptography theory is exposed in Appendix D.

The great dependence on initial conditions exhibited by chaotic systems allows several

parameters to be used as encryption key in a further cryptographic system based on chaotic

MEMS [131]. The use of hardware-based cryptography, itself, is supposed to provide ben-

efits in terms of frequency and speed on the traditional software cryptographic techniques.

Moreover, the approach based on the dependence on a non-measurable physical parameter,

provides an important added value.
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Appendix A

MEMS chaotic response

improvement with ANN and Fuzzy

Control

Fuzzy logic has been revealed to be a powerful method to control different kind of plants.

Its application in the control of nonlinear, subject to noise, or partially unknown systems

is particularly useful. The use of fuzzy-logic controllers in chaotic systems reported in

literature are focused on control and suppression of the chaotic response, which is considered

to be undesirable. Thus, in [132] a fuzzy controller obtained from a knowledge base formed

by fuzzy sets and inference matrix is used to perturb a variable of the Chua circuit and

stabilize the chaotic output. Meanwhile, in [133] Gaussian membership based fuzzy models

are used to estimate the unknown parameters and functions needed to build a controller

that is proved, by means of the Lyapunov stability theory, to be useful to control a Duffing

system. Concerning to the dynamics of MEMS, fuzzy systems have been designed in [26],

[134] and [135] to mimic ideal controllers based on the Sliding Mode Control, i.e. feedback

controllers which cause the state trajectory to reach a sliding surface and behaving as a

stable trajectory. In such references, the fuzzy control is used to convert chaotic oscillations

into desired regular ones, exhibiting a periodic behavior.

On the other hand, the ANNs are found to be a very powerful and efficient method

for modeling purposes, due to their learning and generalization capabilities. They learn

dependences between input-output dataset in the training procedure, adjusting the network
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parameters (neuron connection weights and neuron transfer functions or thresholds). Once

properly trained, the ANN provides quickly accurate output values from input vectors (that

should belong to the same range as the training data, but may not be included in the training

set) even without the knowledge of the modeled physical process [136].

A.1 Fuzzy-neural controller

Within the assumption made in chapter 4 (the parallel plate approximation and without

considering the second order effects), let the dimensionless equation of the system be defined

as

x̂′′ + βx̂+ αx̂3 + δx̂′ = µ1

(
1

(1− x̂)2 −
1

(1 + x̂)2

)
− µ2

cos (Ωτ)

(1− x̂)2 + µ3
cos (Ωτ)2

(1− x̂)2 (A.1)

where the dimensionless parameters β, α, δ are defined in section 4.4, and for this approach

are found to be either constant or depend only on the ratio s/w. On the other hand, lets

define µ1 =
1

2
µV 2

DC , µ2 = µVDCVAC , µ3 =
1

2
µV 2

AC , with µ =
ε0thl

meffω
2
0s

3
. As it has been

explained in chapter 4, the potential function of the system described by equation (A.1)

exhibits two minima for a bias voltage range defined between the bias boundary values Vpi0

and Vpiw, namely in the range of µ1 values between µ1min and µ1max. In section 4.4 it has

been stated that these boundary µ1 values are respectively a constant (µ1min = 0.25) and

an expression which depend only on the s/w ratio:

µ1max =

(
12.272

( s
w

)2
+ 16

)3(
27 · (12.272)2 · 16

( s
w

)4
)−1

(A.2)

It is important to remember that this upper boundary value for bistability (µ1max) only

exists if the two-well potential distribution has been reached, this is to say, if the dimensional

condition for bistability s > 1.615 is attained. Consider a 1MHz -polysilicon resonator with

a gap value that allows a 10% of margin between the bias boundary values for bistability

(Vpi0 and Vpiw), with dimensions given in the first row of table 4.2 (l = 54.6µm , w =

350nm, th = 282nm, and s = 842nm) and a quality factor Q = 165; the values of the

dimensionless parameters results to be α = 4.44, β = 1 (constant value for all resonators),

δ = 6.061 · 10−3, µ1min = 0.25 (constant value for all resonators) and µ1max = 0.3025. Even
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when the conditions to achieve robust and extensive chaotic response in nonlinear MEMS

oscillators are verified, the attainment of the proper parameters which provide chaotic

dynamics behavior (since it is highly sensitive to parameter variation) is not immediate.

Instead of the large amount of time consuming numerical simulations that are needed to

find the robust chaotic behavior (which is desired for its further applications) a new control

method is proposed. This proposed new approach consists in the application of a fuzzy

controller for the MEMS system that performs a search of the conditions of maximum

richness in the chaotic behavior of the plant system (MEMS) within the design dimensions

and biasing conditions that assure a two-well potential distribution. This search is executed

by means of iterations that involve the change of an operating parameter and the measure

of dynamic features in the output signal on a time window. The spectrum bandwidth

parameter of the MEMS dynamics time-series is taken as a metric of the nonlinear and

chaotic behavior of the system. In order to enable its further application in an experimental

setting, the bandwidth is measured from the number of points (n) in the periodogram with

a higher power than a boundary value (for instance 10% of the maximum power), which

can be directly obtained from a spectrum analyzer.

Artificial neural networks are proposed to be combined with this control application due

to their powerful capability to be also adapted to a nonlinear, noisy, or even partially un-

known plant; moreover, ANNs are easily implementable over, for instance, a microcontroller

or FPGA [137]. The scheme of the whole system is depicted in figure A-1. An artificial

neural network is trained to provide a crisp control function, given by a control surface

(obtained by fuzzy reasoning), which relates the input bandwidth parameter nk (which

would be obtained from a spectrum analyzer (S.A.)) of the nonlinear signal generated by

the MEMS system and the actual value of the µ1k parameter (namely the dimensionless

value of the actual DC voltage term in the system) to a normalized output control value ak

falling between -1 and 1. The subscript k represents the k-th iteration of the control proce-

dure. The control output value ak is adjusted to the dimensional value by an amplification

block (K) and applied directly to the MEMS system as a variation of the DC voltage value.

This amplification block must have the parameters corresponding to the technology of the

MEMS system, as well as the iteration number k and the first DC value applied.
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Figure A-1: Scheme of the proposed fuzzy control system implemented with ANN.

The control surface is designed to be stable and to be useful to maximize the chaotic

response, knowing the high variance of the dynamical behavior with small changes in the

parameters (that can be caused by fabrication tolerances). Since the control surface is ob-

tained from the normalized parameters proper to the dimensionless equation of the MEMS

system, equation (A.1), the same control surface is valid for any cc-beams resonator dimen-

sions, and for different fabrication technologies, while having the same s/w ratio. In this

sense, to apply the control system to cc-beam devices built with different dimensions, or in

different technologies, only the amplification block K has to be modified.

To build the fuzzy-based control surface, several steps in fuzzy reasoning are performed

[138]. First of all, state and control variables are identified and the membership functions of

the several linguistic labels for each variable are constructed (figure A-2). In the present case,

the bandwidth quantification (n) and the µ1 parameter are identified as state variables and

the normalized output (a), as control variable. After that, an implication matrix between

the linguistic labels is defined (table A.1). The singleton function of the actual state variable

values as fuzzification and the Mamdami function as fuzzy implication function are used

(see [138] for wider explanation of fuzzy reasoning). For each pair of inputs, the union

(maximum function) of the intersections between the output membership function and the

minimum of the input singletons is obtained. Consequently, the defuzzified value is obtained

as the centroid of this area. For each pair of inputs, a single defuzzified value is obtained

and the whole set of defuzzified values can be represented as the mesh of the control surface

(figure A-4). It is preferable to control the normalized bias input parameter rather than

the normalized excitation amplitude, because the margin between the bias boundary values

(given by Vpi0 and Vpiw) is better known and wider than the margin of the AC amplitude
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(bounded by the dynamic pull-in effect). The avoidance of DC values upper than the pull-in

limits is needed, so the fuzzy implication matrix between linguistic variables must ensure a

negative increment of the control variable for the linguistic variable corresponding to values

of µ1 close to the upper limit. Furthermore, to avoid the creation of infinite loops, the

control surface must have a non symmetric transition from positive to negative output sign.

After defining the fuzzy sets of the linguistic variables and the fuzzy implication matrix,

the control surface is obtained. The membership functions and, in consequence, the control

surface, may be customized to fulfill the stability requirements and may be optimized to

allow a faster convergence.

Figure A-2: Membership functions of the different variables to the respective linguistic
labels.
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Table A.1: Fuzzy implication matrix between the linguistic labels.

µ1 low (ML) µ1 medium (MM) µ1 high (MH)
Bandwidth
narrow (BWN)

variation
positive (VP)

variation
positive (VP)

variation
negative (VN)

Bandwidth
medium (BWM)

varition
positive (VP)

variation
positive (VP)

variation
negative (VN)

Bandwidth
wide (BWW)

stay (VS) stay (VS) stay (VS)

A.2 Analytical study of the control convergence

The MEMS system (expressed for instance in equation (A.1) or (4.33)) can be view as an

equation in the form ˙̄x = f (x̄, t), and moreover, considering the definition of the driving

force (equation (3.34)) with constant VAC and taking VDC as the control variable, the MEMS

system equation has the form of ˙̄x = f (x̄, t, VDC). The function of the number of points in

the periodogram with a significant power (nk) has the form of nk = g (x̄, VDC + uk−1), where

uk is the output of the whole control system (both nk and uk refer the k-th iteration), and g

is, a priori, an unknown function. Nd is considered the minimum acceptable measure value

for the bandwidth, i.e. the lower bound of the iteration procedure goal. If the error function

of each iteration is defined as ek = H [Nd − nk − 1] , where H [x] is the Heavyside function

and a Lyapunov candidate function that verifies the conditions of the Lyapunov stability

for discrete-time systems [139] is found, the convergence to zero of the error function is

assured. In summary, given a system described as xk+1 = h (xk), for an equilibrium point

x = xst, and a neighborhood U of such a point, a generic discrete-time Lyapunov candidate

function V (x) must verify:

• V (x) ≥ 0∀x ∈ U and V (xst) = 0

• ∆V (x) = V (h (x))− V (x) ≤ 0∀x ∈ U

• The equilibrium point x = xst is G0-asymptotically stable, with G0 = {x ∈ U :

V (x) = 0}

to ensure that the equilibrium point is stable in the terms of Lyapunov along the neighbor-

hood. Then a discrete-time Lyapunov candidate function has been found as

Vk = eku
2
k (A.3)
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Ensuring that uk can only be zero if ek is zero, the value of the function Vk is zero if

and only if ek is zero; otherwise Vk is always positive. The variation between iterations of

this Lyapunov candidate function is

Vk − Vk−1 = eku
2
k − ek−1u

2
k−1 (A.4)

Following with the premise that if ek is zero then uk is zero, ek−1 = 0 implies ek = uk = 0,

and in this case Vk − Vk−1 = 0. For ek−1 > 0, ek any of the following situations can occur:

• ek = 0 and thus Vk − Vk−1 = −u2
k−1 < 0

• ek > 0 and thus Vk − Vk−1 = u2
k − u2

k−1, in consequence the only condition that is

needed to be ensured is |uk| < |uk−1|

The last condition to be fulfilled is that e = 0 must be G0- assimptotically stable.

Let the sets G0 and Bθ be defined to be respectively G0 = {e ∈ R : V (e) = 0}, and

Bθ = {x ∈ R : |x| < θ}, with θ an arbitrary real positive number while h+ is defined to be

the set of the functions h+ = {hp, p ∈ N}, with h being the iteration function (hek = ek+1).

The condition of G0- assimptotic stablility of the e = 0 point implies that ∀ε > 0∃δ > 0 :

h+ (Bδ ∩G0) ⊂ Bε, and there have to exist a δ > 0 such that lim
p→∞

hp (e) = 0∀e ∈ (G0 ∩Bδ).

It is straightforward to see that, since G0 = {0} these latter two conditions are fully satisfied

and, in consequence the zero error is stable in terms of Lyapunov criteria. In summary, in

order to verify the analytical conditions that assure the error function convergence to zero,

the control system output must be zero only once the procedure goal is reached, and its

absolute value must decrease in each iteration.

A.3 Results and simulations

The disposed setup (figure A-1) allows the fulfillment of the requirements for zero error

convergence. The condition of zero output control value for all the bandwidth inputs higher

than the boundary value Nd is imposed by the control surface. The condition |uk| < |uk−1|

is imposed by means of a cycle divider, in the block K, that performs an amplification

given by a q−k factor with k the iteration number and q a real positive number: in this

case the actual output value of the k iteration is
uk
qk

and the condition to be fulfilled is
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that

∣∣∣∣ukqk
∣∣∣∣ < ∣∣∣∣uk−1

qk−1

∣∣∣∣ which in the worst case implies

∣∣∣∣max (u)

qk

∣∣∣∣ < ∣∣∣∣min (u)

qk−1

∣∣∣∣, and last ex-

pression implies
|max (u)|
|min (u)|

< q, the q value must higher than the ratio max/min nonzero

output absolute value of the control surface. From this condition a compromise solution is

needed: the control surface must be smooth enough to be able to be obtained by the fuzzy

inference procedure, but on the other hand a small ratio of the max/min nonzero output

of the control surface is required because otherwise the output value of the control system

would decrease quickly and an increasing number of iterations would be needed to reach the

goal of the control system. After the definition of the control surface, an artificial neural

network is defined in Matlab environment and trained with the input output values of the

control surface (figure A-3). Numerical simulations with the parameters corresponding to

a 1MHz natural frequency polysilicon cc-beam resonator (designed in AMS 035 technology

with the parameters given in the first row of table 4.2) were performed, using the control

system designed to verify the exposed convergence conditions, with the aim to corroborate

its capability in leading to a desired chaotic response. The control surface used is shown in

figure A-4. In each iteration the output of the control system is applied to the input pa-

rameters of the next simulation. The spectral representation of the MEMS system dynamic

response time series shows a significant increase of the bandwidth in a few iterations, as it

is shown in figure A-5. A further analysis of the position time series of the MEMS system

confirms that, while the response after the first iteration corresponds to a linear behavior,

the dynamics of the system after the third iteration of the control system corresponds to

a robust cross-well chaotic behavior, as can be deduced from the typical chaotic shape of

the Poincare map, and a finite and positive maximal Lyapunov exponent. An analysis of

the numerical simulations indicates that the stability conditions obtained in section A.2

are sufficient but not necessary to achieve the system convergence to the desired rich and

complex chaotic stationary response. However, the implementation of a control system that

verifies such conditions guarantees mathematically the convergence.
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Figure A-3: Matlab ANN toolbox interface,
plotted during the training process.

Figure A-4: Control surface designed to test the ef-
fectiveness of the control system; z axis represents the
normalized response of the control systems, x axis the
normalized actual µ1 value) and the y axis normalized
actual bandwidth measure.

Figure A-5: Signal spectrum representation after a) 1 iteration, and b)4 iterations. In the

present case, the amplification block K provides uk ≈ 0.072 (ak)
1/2.
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A.4 Conclusions

A control method, combining fuzzy logic and artificial neural networks, to improve the

chaotic response richness of a nonlinear submicrometric electromechanical resonator is de-

veloped for the first time as a way to optimize the MEMS performance in secure communica-

tion applications (for instance). The stability requirements and the conditions (a decreasing

absolute value in the control output and null output value only when the goal is achieved)

for the convergence to the desired chaotic dynamics have been analytically determined, and

applied to simulate the response of a cc-beam resonator designed in a CMOS technology.

The application of the fuzzy-ANN based control method presents several advantages such

as the applicability in nonlinear plants, and the adaptability to different types of plant tech-

nology. Moreover, since the presented control system performs an automatic search for the

parameters that provide a wide band chaotic response, the actual values of these parameters

are no needed, and in consequence the control system can be applied in further experimental

applications, in which, due to the hypersensitivity of chaotic behaviour, small parameter

variations due to fabrication tolerances may invalidate the previous simulation-based chaos

search results. The input-output dataset provided by the fuzzy control surface in this ap-

proach is smooth enough to allow the ANN to achieve, after the training procedure, almost

perfect adjustment.
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Appendix B

Model integration in Verilog-A for

system level electrical simulations

Analog hardware description languages (AHDL) allow the description of multi-domain sys-

tems like MEMS within EDA tools [140]. Therefore, system level electrical simulations of

MEMS together with CMOS circuitry can be carried out using an electrical simulator. A

Verilog-A compact macro-model using the description provided in chapter 5 has been de-

veloped and allows electromechanical simulations in an analog circuit design environment

like Virtuoso (CADENCE). The beam-driver model is defined as a three-port system: the

two electrodes and the beam structures. Each port is bi-directional to allow current in

any direction depending on the configuration used to actuate the beam and to perform the

electrical readout. The main Verilog-A macro-model features are:

• Nonlinear model.

• Accurate deflection profile of the beam.

• Fringing field factor (αFF).

• Residual fabrication stress contribution to the stiffness (σeff).

• 3 bidirectional electrical ports: electrode 1 (D1), electrode 2 (D2) and beam (B).

• 2 mechanical output ports: nominal displacement (Z) and velocity (Vb).

• Number of beam slices (N) as an input parameter.
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All the macro-model input parameters related to the beam-driver system geometrical

dimensions (thickness, length, width and gap), the structural material mechanical properties

(E,ρ), the dielectric constant, Q-factor, number of slices, fringing field factor and residual

fabrication stress can be set by the user. This macro-model, whose symbol in CADENCE

environment is shown in figure B-1, is suited for all type of analyses including AC, DC,

transient, noise, PSS, parametric, etc.

Figure B-1: Plot of the Verilog-A macro-model symbol in CADENCE environment.

The Verilog-A model has been applied to analyze the conditions that enable bistability

behavior in a cc-beam resonator with the parameters specified in previous sections for C4

resonator of the Run 2015 set (a AMS 035 metal fabricated resonator with dimensions

l = 63.85µm, w = 600nm, th = 850nm, and s = 2.07µm) intended to act as a chaotic signal

generator (figure B-2). These dimensions ensure the attainment of design condition to allow

the two-well potential distribution in a cc-beam within the model based on finite difference

method and taking into account the influence of the fabrication residual stress (equation

(5.20)), for the σeff values considered in figure 5-4 (chapter 5). The results in figure B-2

agree with those shown in table 5.3 (chapter 5).
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Figure B-2: Equilibrium position results obtained from a DC analysis using Spectre sim-
ulator in CADENCE framework, for various values of the fringing field constant, and the
fabrication residual stress parameter.
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Appendix C

Runs description

The complete layout of the two generations of chips designed and fabricated in the frame-

work of this thesis are summarized in this appendix.

C.1 First generation: Run 2015 set

The Run 2015 set, labeled as Keyset15, was fabricated in November 2015. The resonators

(cc-beams) corresponding to the KEYNEMS project are C1 to C4 (Metal 4 resonators) and

C5, C6 (polysilicon resonators). The complete chip dimensions are 3.65× 1.84 mm.

Figure C-1: Cadence screen of the Run 2015 design.

C.2 Second generation: Run 2017 set

The Run 2017 set, labeled as Keyset17, was fabricated in November 2015, The resonators

(cc-beams) corresponding to the KEYNEMS project are C1 to C5 (Metal 4 resonators),
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C6 to C8 (Metal 3 resonators), C9 to C12 (tungsten resonators), C13 to C15 (polysilicon

resonators), and two additional curved cc-beams C16 (Metal 3) and C17 (polysilicon). The

complete chip dimensions are 4.35× 3.42 mm.

Figure C-2: Cadence screen of the Run 2017 design.

C.3 Resonators designation code

With the aim of simplifying the designation of the resonators, belonging to the several chips

fabricated in each generation, the nomenclature used in this thesis is the following: Cx(y)-

kz, where x stands for the resonator number, y stands for the chip number and z can be

15 (corresponding to the Run 2015 set) or 17 (corresponding to the Run 2017 set). As an

example C4(1)-k15 refers to the C4 resonator of the chip 1, corresponding to the Run 2015

set.
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Appendix D

Theoretical approach to chaotic

synchronization and cryptography

Cryptography, a subfield of cryptology, deals with the construction of protocols, methods

and algorithms to achieve information security goals, typically on a mathematical basis

[141]. By definition, and encrypted signal is understood as the codified signal which cannot

be interpreted without a processing depending on a key (parameter containing the secret

information which allows the interpretation of the message). The different approaches for

secure communication cryptographic schemes are classified by the essence of the key and by

the used methods of encryption and decryption. All the chaos-based procedures for secure

communications applications follow a common scheme (figure D-1): a valuable message is

protected by means of a chaotic encryption, sent through a non-secure channel, and will be

only able to be decrypted if the encryption key is known.

Figure D-1: Common scheme of the cryptographic systems.
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D.1 Theoretical approach to the synchronization between

chaotic systems

The property of synchronization between two identical chaotic systems was first reported

by [33], and [142]. Most of the approaches to the synchronization between chaotic systems

use the mastes-slave (or drive-response) formalism. In this way, the idea of synchronization

consists in the use of an output signal from the master system to control the slave system

so that the output signal of the slave system tends asymptotically to the output signal of

the master system [143]. Consider the chaotic system described by

ẋ = Ax+ f (x) (D.1)

and

ẏ = By + g (y) + u (D.2)

with x, y ∈ Rn being the state vectors of the systems; A,B n×n system parameter matrices,

and f, g : Rn −→ Rn the respective nonlinear functions of each system. Consider the system

described by equation (D.1) as the master system, and the system described by equation

(D.2) as the slave system. In the equation of the slave system there is an additional term:

u ∈ Rn is a control vector or controller of the slave system. In this way, the problem

of the synchronization consists in designing a controller u which ensures the asymptotic

convergence of the output signals of both systems. The synchronization error vector is

defined as

e = y − x (D.3)

with e ∈ Rn. The synchronization error dynamics can be expressed, in the general case as

ė = By −Ax+ (g (y)− f (x)) + u (D.4)

The asymptotic convergence of the output signals of both systems implies lim
t→∞
‖e (t) ‖ = 0;

the stability theory of Lyapunov can be used to demonstrate and ensure this convergence.

A candidate Lyapunov function (V ) is defined as a scalar function (V : Rn −→ R) ,

locally (in 0) definite positive (i.e. exists U, neighborhood of 0 such that V (0) = 0 and

V (x) > 0∀x ∈ U\{0} ) which can be used to prove the stability of a dynamic system [144].
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Using this definition, the stability theorem of Lyapunov is announced:

Theorem 2. Let x=0 be an equilibrium point of the autonomous system ẋ = f (x), and let

V (x) be a candidate Lyapunov function whose time derivative function is given by

V̇ (x) =
∂V (x)

∂x

dx

dt
= ∇V (x) ẋ = ∇V (x) f (x) , (D.5)

if the function V̇ (x) is locally semidefinite negative (i.e. exists U, neighborhood of 0 such

that V̇ (x) ≤ 0∀x ∈ U then the system presents a stable equilibrium in U. If the function

V̇ (x) is locally definite negative (i.e. exists U, neighborhood of 0 such that verifies strictly

that V (x) < 0∀x ∈ U\{0} ), the equilibrium is locally attractive. Finally if the candidate

Lyapunov function is definite positive over all the domain, and its time derivative is globally

definite negative (V̇ (x) < 0∀x ∈ Rn\{0}), the equilibrium is globally attractive.

There is no general method for building or finding a candidate Lyapunov function,

which is able to demonstrate the stability of a given equilibrium point. However, it is

important to notice that the stability theorem of Lyapunov (theorem 2) provide sufficient

but non necessary conditions for the demonstration of an equilibrium stability, thus the

impossibility of finding a proper Lyapunov function to prove the stability of an equilibrium

point does not imply the instability of this equilibrium point.

To test the stability of the state e = 0 of the synchronization error system (D.4) consider

a candidate Lyapunov function given by V (e) = eTPe, with P being a definite positive

matrix1, then V (e) will be a positive definite function by construction. If a controller u is

defined to provide an error which verifies

V̇ (e) =
dV (e)

dt
= −eTQe (D.6)

with Q being a definite positive matrix, then it can be assured that V (e) is a definite negative

function. In this way, the stability theorem of Lyapunov guarantees that the error function

dynamics is globally exponentially stable stable, and that the condition lim
t→∞
‖e (t) ‖ = 0 is

verified for all initial condition e (0) ∈ Rn.

1a positive definite matrix M has, amongst others,these equivalent definitions:

• The determinants of all the principal minors are positive.

• All the eigenvalues of M are positive.

• zTMz > 0∀z ∈ Cn such that z 6= 0.
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D.1.1 Synchronization of Lorenz systems

In [34] and [145], the synchronization between chaotic Lorenz systems is experimentally

demonstrated as well as its application in the duty of encryption and decryption. The Lorenz

system, which can be physically implemented as a circuit, is mathematically described as

the following equation, obtained from the electric parameters of the circuit [146]:

u̇ = σ (v − u)

v̇ = ru− v − 20uw (D.7)

ẇ = 5uv − bw

For some set of parameter values, the Lorenz system exhibit chaotic behavior. Moreover,

the synchronization between pairs of Lorenz systems present a surprising robustness over

noise and (more important), over the useful signal which can be encrypted inside the chaotic

output of the master system.

Consider a pair of identical Lorenz system, where one of them works as master system,

and the other one as the slave system. Figure D-2 shows the scheme of the synchronization

between the two Lorenz systems. The output signal of the master system, obtained from

its first channel, is introduced in the second and third channel of the slave system and its

output signal is compared with the one of the master system to obtain the error signal.

Figure D-2: Scheme of the synchronization between two identical Lorenz systems [34].

Assuming that both systems are identical, the equations of the slave system are found
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to be:

u̇s = σ (vr − us)

v̇s = ru− vs − 20uws (D.8)

ẇs = 5uvs − bws

with (us, vs, ws) the vector of state variables of the slave system. The error vector is defined

as:

e1 = u− us

e2 = v − vs (D.9)

e3 = w − ws

and its dynamics are governed by:

ė1 = σ (e2 − e2)

ė2 = −e2 − 20u (t) e3 (D.10)

e3 = 5u (t) e2 − be3

The synchronization procedure consists, then, in the stabilization of the error vector

dynamics in the state e = ~0. In this case, the dynamics of the error vector is found to be

asymptoticly stable, the state e = ~0 is globally attractive. It can be demonstrated with the

Lyapunov function:

V (e, t) =
1

2

(
1

σ
e2

1 + e2
2 + 4e2

3

)
, (D.11)

which verifies the condition of being definite positive in the origin, and its time derivative

function:

V̇ (e, t) =
1

σ
e1ė1 + e2ė2 + 4e3ė3 = −

(
e1 −

1

2
e2

)2

− 3

4
e2

2 − 4be2
3 (D.12)

is globally definite negative. In this way, the stability theorem of Lyapunov guarantees that

e (t) −→ ~0 when t −→∞, i.e. synchronization would take place.

The demonstrated capability of autosynchronization can be applied in the definition of
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a whole cryptographic system based on the chaotic behavior of Lorenz systems. Figure

D-3 represents the scheme of the cryptographic system: a useful signal m (t) is masked by

the chaotic signal u (t) generated in the master system, generating the s (t) signal. The

power of the useful signal is significantly lower than the power of the chaotic signal. The

s (t) signal will be emitted and used by the slave system to reproduce the chaotic signal,

and this reproduction of the master chaotic signal is not affected or disturbed either by

noise or by the useful signal carried by the s (t) signal. In this way, the subtraction of

the generated chaotic signal in the slave system ur (t) from the transmitted s (t) provide a

good approximation to the useful signal (m̂ (t) ≈ m (t)). Figure D-4 represents the Lorenz

system 3D trajectory obtained from the master system (u, v, w) and the one obtained from

the slave system (ur, vr, wr) from the whole numerically implemented Lorenz cryptographic

system. Moreover, figure D-5 depicts the original and the recovered useful signal, encrypted

and decrypted by the Lorenz cryptographic system.

Figure D-3: Scheme of the cryptographic system based on Lorenz systems [34].
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Figure D-4: Original (a)) and recovered (b)) 3D chaotic trajectories of the Lorenz systems
in the cryptographic scheme depicted in figure D-3.

Figure D-5: Time series of the original and the recovered useful signal using the crypto-
graphic scheme depicted in figure D-3.

It is interesting to note that this idea is not restricted to just the Lorenz circuit, but

has wider potential [34]. For example, Kocarev et al. have also demonstrated the masking

concept into chaotic signal, by using Chua‘ s circuit [147]. In consequence , this scheme

must also be tested in the Duffing system.
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D.1.2 Synchronization of Duffing systems

In [143], the problem of synchronize two chaotic Duffing systems is tackled. Considering a

master system whose dynamics is governed by the equations

ẋ1 = x2

ẋ2 = −δx2 + βx1 − αx3
1 + Φ cos (ωt) (D.13)

and an slave system, which is suppose to be defined by identical parameters than the master

system:

ẏ1 = y2 + u1 (t)

ẏ2 = −δy2 + βy1 − αy3
1 + Φ cos (ωt) + u2 (t) (D.14)

with uT = [u1, u2] being the controller (not necessarily linear) that must be designed to

provoke an asymptotic convergence to zero of the error function defined as

e1 = y1 − x1

e2 = y2 − x2 (D.15)

and whose dynamics is governed by

ė1 = e2 + u1 (t)

ė2 = −δe2 + βe1 − α
(
y3

1 − x3
1

)
+ u2 (t) (D.16)

The controller proposed by [143] is

u1 (t) = −e2 − εe1

u2 (t) = −βe1 + α
(
y3

1 − x3
1

)
+ (δ − ε) ε2 (D.17)

with ε > 0, in this way, the equation governing the error vector dynamics become

ė1 = −εe1

ė2 = −εe2 (D.18)

194



The Lyapunov function given by

V (e) =
1

2

(
e2

1 + e2
2

)
(D.19)

is considered; this function is clearly a positive definite function, because it is generated

from V (e) = eTPe, with P =

 1/2 0

0 1/2

 definite positive matrix ( the determinants of

all its principal minors are positive, and hence it verifies that zTMz > 0∀z ∈ Cn such that

z 6= 0). Moreover the function (D.19) has a time derivative function given by

V̇ (e) = e1ė1 + e2ė2 = −ε
(
e2

1 − e2
2

)
(D.20)

which is clearly definite negative. Then the stability theorem of Lyapunov assures that the

behavior of the error vector is exponentially stable toward the ~0 value, in a global way.

The property of the synchronization between Duffing systems has been used to synchro-

nize the chaotic behavior of MEMS systems in [18]. The synchronization procedure consists

in the use of a controller in the acceleration component of the slave system y2 consisting in

a negative gain for the error signal between the position signals of both systems as shown

in figure D-6. This approach is the first proposal of synchronization between two MEMS

devices. The master system is defined as:

ẋ1 = x2

ẋ2 = q0

(
Gx− k1x1 − k3x

3
1 − cx2

)
(D.21)

Gx = (V1 + Va sin (t))2 f (x1)− (V2 − Va sin (t))2 f (−x1)

and the slave system:

ẏ1 = y2

ẏ2 = q0

(
Gy − k1y1 − k3y

3
1 − cy2 + u

)
(D.22)

Gy = (V1 + Va sin (t))2 f (y1)− (V2 − Va sin (t))2 f (−y1)

u = p (x1 − y1)

(D.23)
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where k1 and k3 are the linear and nonlinear stiffness respectively, c is the damping term,

and f (x) is a function of the position component x which models the half of the x-derivative

of the capacitance. In this case both systems are supposed to be identical.

Figure D-6: Scheme of the synchronization two MEM systems proposed in [18].

Reference [18] reports a successful numerical synchronization between a pair of matched

chaotic MEMS.

D.2 Chaotic masking cryptography in Duffing systems

The syncrhonization between pairs of chaotic Duffing systems is only possible in absence

of perturbations (namely noise or useful signal), otherwise the slave system reproduces its

whole s (t) input signal. In this way the cryptographic scheme based on chaotic masking

does not provide the desired results, and the recovery of the useful signal is not available.

However, reference [148] proposes an approximation to perform the synchronization between

chaotic Duffing systems based on ”H∞” approach, which is supposed to result more robust

over external perturbations. Consider a Duffing master system defined by equation (D.13),

while the slave system is governed by:

ż1 = z2 + u1 (t) + d1 (t)

ż2 = −δz2 + βz1 − αz3
1 + Φ cos (ωt) + u2 (t) + d2 (t) (D.24)

with u (t)T = [u1, u2] being the controller vector, and d (t)T = [d1 (t) , d2 (t)] the vector of

external disturbances. With this situation, the dynamics of the error vector can be written
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as

ė1 = e2 + u1 (t) + d1 (t)

ė2 = −δe2 + βe1 − α
(
z3

1 − x3
1

)
+ u2 (t) + d2 (t) (D.25)

and in matricial form

ė = Ae+ g (t) + u (t) + d (t) (D.26)

with

A =

 0 1

−β −δ

 ; g (t) =

 0

−α
(
z3

1 − x3
1

)
 (D.27)

Following the calculation of the method H∞, the system presents H∞ synchronization si

the error function ~e (t) satisfies

∫ ∞
0

eT (t)Qe (t) dt < ξ2

∫ ∞
0

dT (t) d (t) dt (D.28)

with ξ > 0 being the H∞ norm bound (or disturbance attenuation level) and Q is a positive

and symmetric matrix. With these definitions [148] enunciates and demonstrates :

Theorem 3. For given ξ > 0 and Q = QT , if there exists X = XT > 0 and Y such that


AX +XAT + Y + Y T I X

I −ξ2I 0

X 0 −Q−1

 < 0 (D.29)

where A is the matrix of the linear factor of the error dynamics (equation (D.26)), then

H∞ synchronization of the chaotic signals, with ξ level of attenuation is obtained under the

controller

u (t) = Y X−1e (t)− g (t) (D.30)

Moreover, a corollary announced and demonstrated by reference [148], shows that using

the system of controllers defined by theorem 3, asymptotic synchronization between chaotic

Duffing systems in the absence of external disturbance is also obtained.

On the other hand in [149] the synchronization between MEMS chaotic output signals in

the presence of parametric uncertainties and/or disturbances has been analytically achieved,
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and demonstrated from the Lyapunov stability theory. The nonlinear dynamics of the

master system is defined as

~̇x = ~F (~x) ~α+ ~f (t, ~x) (D.31)

which is susceptible of reporting chaotic behavior, and a second nonlinear system is defined

as

~̇y = ~G (~y) ~β + ~g (t, ~y) + ~h (~y)u (D.32)

which acts as slave system; ~x, ~y ∈ R2 are bounded state vectors, ~α = (α1, α2, . . . , αn)T , and

~β = (β1, β2, . . . , βp)
T are vectors of parameters corresponding to each equation (~β ∈ R2

is the vector of uncertain parameters, or subjected to disturbances, belonging to the slave

system) , u is a scalar control function and

~F (~x) =

 0 0 . . . 0

F21 (~x) F22 (~x) . . . F2n (~x)

 =

 0

~F2

 (D.33)

~G (~y) =

 0 0 . . . 0

G21 (~y) G22 (~y) . . . G2p (~y)

 =

 0

~G2

 (D.34)

~f (t, ~x) =

 x2

f (t, ~x)

 ; ~g (t, ~y) =

 y2

g (t, ~y)

 ; ~h (t, ~y) =

 0

h2 (~y)

 (D.35)

It can be observed that equations (D.31) and (D.32) have the typical form of the Duffing

equation and of the MEMS resonators with electrostatic actuation, and that the controller

term in the slave system is only applied to the acceleration component of the system. The

functions f (t, ~x) and g (t, ~y) represent the excitation functions in each system, while h2 is

defined as h2 =
1

(1− y)2 , considering y to be the dimensionless position (adimensionalized

with the gap parameter). Given four positive constants (µ1, µ2, µ3, µ4 > 0), if the control

term is defined as

u = h−1
2 (~y)

(
− ~G2β̂ + F2α̂− g (t, ~y) + f (t, ~x)− µ−1

2 (µ1e1 + µ2e2)− µ−1
2 µ1e2

)
(D.36)
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while the parameters are updated according to the laws

˙̂α = −µ3 (µ1e1 + µ2e2)µ2
~F T2

˙̂
β = −µ4 (µ1e1 + µ2e2)µ2

~GT2 (D.37)

and ~e = ~x−~y = (e1e2)T is the error vector, then the slave system synchronizes globally and

asymptotically with the master system. This statement can be proved using the Lyapunov

stability theory. The main drawback of this synchronization scheme to be used in secure

communication purposes is that the controller, which has to be be implemented by circuitry

(and in this way it can be replied), depends on the parameters of both systems, thus it

depend also on the encryption key. In this way, the encryption key remains exposed.

D.3 Cryptographic method based on initial conditions mod-

ulations

The technique of encryption by modulation is based on the introduction of the useful mes-

sage in the parameters of the system dynamics. Specifically, the encryption can be per-

formed when the information affects the initial conditions of the master system. It can be

mathematically demonstrated that under specific circumstances the synchronization error

vector dynamics depends on the initial conditions of the systems. Following the formulation

of [131], with the Duffing master system dynamics described by

ẋ1 = x2

ẋ2 = −αx3
1 − δx2 + Φ cos (x3) (D.38)

ẋ3 = 1

and the slave system dynamics described by

ẏ1 = y2

ẏ2 = −αy3
1 − δy2 + Φ cos (y3) (D.39)

ẏ3 = 1
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Those systems present a synchronization error which can be expressed as

x2 (t0)− y2 (t0) = −δ
∫ t0

0
(x2 (t)− y2 (t)) dt+ 2Φ sin (ψ) sin (t0 + Ω) + C1 (D.40)

with C1 being a integration constant, ψ =
x3 (0)− y3 (0)

2
(x3, y3 are constants) and Ω =

ψ + y3 (0) +
π

2
. When t tends to infinity, equation (D.40), stays in a stationary state

dominated by the second term [150]. This second term depends on the initial conditions

of both systems: if x3 − y3 = 2nπ where n is an integer, the error function will tend to

zero, while if x3 − y3 = 2 (n− 1)π, the error will stay at its maximum stationary state.

The synchronization, then is made to depend on the initial conditions of the systems. The

communication system is designed by choosing two sets of initial conditions, to represent

the binary values 0 and 1 whether synchronization takes place or not. Once the values for

the initial conditions in the slave system have been established, to represent a 0 bit the

initial conditions in the master system that allow the synchronization are imposed, and to

represent a 1 bit the initial conditions in the master system that prevent the synchronization

are imposed (or vice versa, only a criterion is needed). For instance, if an initial value y3 = 0

is fixed in the slave system, following the previous criterion a 0 bit is obtained from an input

m = x3 (0) = 2π and a 1 bit is obtained from an input m = x3 (0) = π . In this way, a binary

word of 4 bits [0,1,0,1] is transmitted by the initial conditions m = [2π, π, 2ππ] imposed at

the master system by means of resets with a frequency f1 ( which has not to correspond to

any frequency proper to the chaotic response) and recovered in the slave system as the error

signal of the synchronization between it and the master system output: a period T1 =
1

f1

of synchronization equals to a logical 0, and a period T1 of no synchronization corresponds

to a logical 1.

D.4 Requirements for secure communications based on chaotic

MEMS

The engineering problem of the secure communications based on chaotic MEMS consists

basically in the use of the generated chaotic signal to encrypt the useful signal, and decrypt

the unintelligible signal by means of another chaotic MEMS, which have to synchronize with

the first one. The synchronization must be conditioned to the identity of an unclonable
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parameter (the encryption key) of both MEMS (the transmitter and the receiver). In

summary, the design constraints of the cryptographic system based on chaotic MEMS are:

1. The useful signal must be placed, in frequency domain, into the bandwidth of the

chaotic signal used to encrypt, in order to prevent the possibility of its interception

by filtering.

2. The chaotic behavior must be sensitive to small variations of the parameter taken as

the encryption key, because otherwise it would be possible to decrypt the useful signal

without the encryption key.

3. The chaotic behavior must be robust (non sensitive) to the variations of the other

physical parameters due to fabrication tolerances, because otherwise the recovering of

the useful signal would be impossible, even possessing the encryption key.

4. The designed controllers, which will be implemented in the circuitry, must not depend

on any parameter related to the encryption key, because otherwise, it would be exposed

and will be easily duplicable, and only reproducing the circuitry the decryption would

be available.

5. The synchronization between the generated chaotic signals by both generators must

be attained in a robust way regarding to external perturbations (like the useful signal).

6. The controllers, which belong to the slave system must be able to be implemented, this

is to say, they must refer to variables that can be accessed. For instance, there is no

way to introduce a control signal to the velocity channel of the slave system. Mainly,

the available access to the system variables is through the bias voltage and the AC

excitation, which directly influence the acceleration channel of the electromechanical

system.

7. In order to obtain a robust synchronization, it is necessary to have a feedback that

keeps the error variable stable to avoid divergent behaviors.

The fulfillment of all these requirements when designing a complete cryptographic system

based on the chaotic behavior of MEMS constitutes a challenge for future work. However,

the steps to overcome the first and main obstacle (the achievement of robust and stationary
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chaotic behavior in MEMS resonators with sufficient performance to be used in applications

of cryptography) have been done in the current dissertation.
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Murano, and N. Barniol, “Integrated CMOS MEMS with on-chip readout electronics

for high-frequency applications,” IEEE Electron Device Letters, vol. 27, no. 6, pp.

495–597, 2006.

212



[101] M. Riverola, “Micro and Nano-Electro-Mechanical Devices in the CMOS Back End

and their Applications,” PhD Thesis, Universitat Autònoma de Barcelona, 2017.
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[107] M. Riverola, G. Vidal-Álvarez, G. Sobreviela, A. Uranga, F. Torres, and N. Barniol,

“Dynamic Properties of Three-Terminal Tungsten CMOS-NEM Relays Under Non-

linear Tapping Mode,” IEEE Sensors Journal, vol. 16, no. 13, pp. 5283–5291, 2016.

[108] W. Zhang, R. Baskaran, and K. Turner, “Tuning the dynamic behavior of parametric

resonance in a micromechanical oscillator,” Applied Physics Letters, vol. 82, no. 1, pp.

130–132, 2003.

[109] R. M. C. Mestrom, R. H. B. Fey, J. T. M. van Beek, K. L. Phan, and H. Nijmei-

jer, “Modelling the dynamics of a MEMS resonator: Simulations and experiments,”

Sensors and Actuators, A: Physical, vol. 142, no. 1, pp. 306–315, 2008.

213



[110] C. L. Olson and M. Olson, “Dynamical symmetry breaking and chaos in Duffing’s

equation,” American Journal of Physics, vol. 59, no. 10, pp. 908–911, 1991.

[111] B. E. DeMartini, J. F. Rhoads, K. L. Turner, S. W. Shaw, and J. Moehlis, “Lin-

ear and nonlinear tuning of parametrically excited MEMS oscillators,” Journal of

Microelectromechanical Systems, vol. 16, no. 2, pp. 310–318, 2007.

[112] L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel, “Analysis and analytical model-

ing of static pull-in with application to MEMS-based voltage reference and process

monitoring,” Journal of Microelectromechanical Systems, vol. 13, no. 2, pp. 342–354,

2004.

[113] X. L. Feng, M. H. Matheny, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Low

voltage nanoelectromechanical switches based on silicon carbide nanowires,” Nano

Letters, vol. 10, no. 8, pp. 2891–2896, 2010.

[114] J. Teva, G. Abadal, Z. J. Davis, J. Verd, X. Borrisé, A. Boisen, F. Pérez-Murano, and
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