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ABSTRACT 

Urban systems are not only major drivers of climate change, but also impact hotspots. The 

processes of global warming and urban population growth make our urban agglomerations 

vulnerable to chain reactions triggered by climate related hazards. Hence, the reliable and cost-

effective assessment of future climate impact is of high importance. Two major approaches 

emerge from the literature: i) detailed spatially explicit assessments, and ii) more holistic 

approaches consistently assessing multiple cities. In this multidisciplinary thesis both 

approaches were addressed. Firstly, we discuss the underlying reasons and main challenges of 

the applicability of downscaling procedures of climate projections in the process of urban 

planning. While the climate community has invested significant effort to provide downscaling 

techniques yielding localised information on future climate extreme events, these methods are 

not widely exploited in the process of urban planning. The first part of this research attempts to 

help bridge the gap between the communities of urban planners and climatologists. First, we 

summarize the rationale for such cooperation, supporting the argument that the spatial scale 

represents an important linkage between urban and climate science in the process of designing 

an urban space. Secondly, we introduce the main families of downscaling techniques and their 

application on climate projections, also providing the references to profound studies in the field. 

Thirdly, special attention is given to previous works focused on the utilization of downscaled 

ensembles of climate simulations in urban agglomerations. Finally, we identify three major 

challenges of the wider utilization of climate projections and downscaling techniques, namely: 

(i) the scale mismatch between data needs and data availability, (ii) the terminology, and (iii) the 

IT bottleneck. The practical implications of these issues are discussed in the context of urban 

studies. 

 

The second part of this work is devoted to the assessment of impacts of extreme temperatures 

across the European capital cities. In warming Europe, we are witnessing a growth in urban 

population with aging trend, which will make the society more vulnerable to extreme heat 

waves. In the period 1950-2015 the occurrence of extreme heat waves increased across 

European capitals. As an example, Moscow was hit by the strongest heat wave of the present 

era, killing more than ten thousand people. Here we focus on larger metropolitan areas of 

European capitals. By using an ensemble of eight EURO-CORDEX models under the RCP8.5 

scenario, we calculate a suite of temperature based climate indices. We introduce a ranking 



procedure based on ensemble predictions using the mean of metropolitan grid cells for each 

capital, and socio-economic variables as a proxy to quantify the future impact. Results show that 

all the investigated European metropolitan areas will be more vulnerable to extreme heat in the 

coming decades. Based on the impact ranking, the results reveal that in near, but mainly in 

distant future, the extreme heat events in European capitals will be not exclusive to traditionally 

exposed areas such as the Mediterranean and the Iberian Peninsula. Cold waves will represent 

some threat in mid of the century, but they are projected to completely vanish by the end of 

this century. The ranking of European capitals based on their vulnerability to the extreme heat 

could be of paramount importance to the decision makers in order to mitigate the heat related 

mortality. Such a simplistic but descriptive multi-risk urban indicator has two major uses. Firstly, 

it communicates the risk associated with climate change locally and in a simple way. By allowing 

to illustratively relate to situations of other capitals, it may help to engage not only scientists, 

but also the decision makers and general public, in efforts to combat climate change. Secondly, 

such an indicator can serve as a basis to decision making on European level, assisting with 

prioritizing the investments and other efforts in the adaptation strategy. Finally, this study 

transparently communicates the magnitude of future heat, and as such contributes to raise 

awareness about heat waves, since they are still often not perceived as a serious risk.  

 

Another contribution of this work to communication of consequences of changing climate is 

represented by the MetroHeat web tool, which provides an open data climate service for 

visualising and interacting with extreme temperature indices and heat wave indicators for 

European capitals. The target audience comprises climate impact researchers, intermediate 

organisations, societal-end users, and the general public. 

 

 

Keywords: urban climate; downscaling; climate change; impact assessment; adaptation 
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1 Introduction 

1.1 Scientific Background 

1.1.1 Climate Change 

Continued warming of our planet is evident and captured in the observations. According to 

(Hansen et al., 2010), during the 1966-2015 period the global annual-mean surface air 

temperature increased by 0.17 °C per decade. This warming is even stronger (0.21 °C) when only 

the land area is considered. Another study by (Papalexiou et al., 2018) found a global increase 

of 0.19 °C per decade during the past 50 years, but with an acceleration up to 0.25 °C per decade 

in the last 30 years. Climatologist expect the global mean warming to be approximately 2 °C by 

2050 (IPCC, 2014; Lelieveld et al., 2016), and the warming by the end of the century might reach 

up to 5.8 °C (Patz et al., 2005). Even if society acts responsibly and manages to keep global 

warming under the 2 °C increase relative to preindustrial era, a regional warming might strongly 

overpass this threshold (Seneviratne et al., 2010). While the global warming rate remains 

uncertain and climate projections vary in dependency of the used models and scenarios, there 

is a general agreement on overall warming trend (Tebaldi et al., 2006; Min et al., 2011; Fischer, 

2014). Moreover, even a relatively small rise in average global temperature triggers significantly 

more severe extreme events (Katz et al., 2002; Russo et al., 2015). It was demonstrated by 

(Diffenbaugh et al., 2007) that severity of the hottest months and days of the year already 

increased.  

Zhang et al., (2011) reported that since 1950 more than 70% of the sampled global land area 

undergone a significant increase in the occurrence of temperature extremes. A recent study 

utilizing data of about 9000 globally placed stations shows positive trends in the approximately 

80% of studied area (Papalexiou et al., 2018). Moreover, in some regions, the exceedance of the 

90th percentile of daily temperatures relative to the 1961–1990 reference period is expected to 

occur in 70% of the time for the last three decades of this century (Russo & Sterl, 2012; Zhang 

et al., 2011).  

A general warning can be found for mid latitudes (Fischer et al., 2013), and more specifically for 

the Mediterranean area (Patz et al., 2005; Russo et al., 2014; Papalexiou et al., 2018), Western 

and Southern US (Patz et al., 2005), Indonesia. Africa, and both Americas (Russo et al., 2014), 

and Europe (e.g. Lhotka et al., 2018;  Russo et al., 2014; Papalexiou et al., 2018) large portions 

of Russia (Russo et al., 2015), or Australia, Nepal, Maymar, portions of China, Kazakhstan and 

Mongolia (Papalexiou et al., 2018). When the severe RCP8.5 scenario became a reality, the 

northern part of Brazil was also found to expect to suffer extreme heatwaves regularly (Russo 

et al., 2014). In fact, the heat impacts in Latin America (and generally in all humid regions) will 

be more severe, which is confirmed by modelling when the humidity is taken in the account 

(Russo et al., 2017). In contrary, Alaska, north-east Australia, and northern parts of Norway, 

Sweden and Finland show decreasing trends (Papalexiou et al., 2018). 
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Nearly all the regions exhibit stronger warm extremes and weaker cold extremes (Zhang et al., 

2011), and warming is projected to accelerate in the future with steep growth in numbers of 

warm days and nights (Lelieveld et al., 2016). In the future, the increased persistency of large 

synoptic phenomena in the atmosphere might cause higher extreme temperatures and more 

severe heat waves (Barriopedro et al., 2011;  Tomczyk & Bednorz, 2016; Pereira et al., 2017). 

The extreme climate events and their associated risks represent a more serious threat to natural 

and human systems than the changes in climatic mean (Weber & Sonka, 1994; Easterling et al., 

2007; Meehl et al., 2000;   Tebaldi et al., 2006; Zhou et al., 2004; Zwiers et al., 2011; Mekasha et 

al., 2014; Seo et al., 2016).  

 

1.1.2 Climate Change and Heat Waves  

The Intergovernmental Panel on Climate Change (IPCC) have confirmed that the trends in global 

temperature experienced over the last century cannot be explained solely on the basis of 

inherent variability of the climate system (Houghton et al., 2001). Since then, many others have 

started to argue about the importance of anthropogenic influence in this process. The World 

Meteorological Organization (WMO, 2015) states that from 79 scientific studies published in the 

Bulletin of the American Meteorological Society in a period between 2011 and 2014, the 

majority confirmed that extreme meteorological events were magnified by anthropogenic 

factors. However, regardless of what is the real trigger in that phenomenon, climate change is a 

fact and society needs to address this issue and its consequent threats. The Met Office Hadley 

Centre, HadCRUT4.4.0.0, (Morice et al., 2012)  projected that the global average temperature 

would probably cross the symbolic threshold of 1 °C above the pre-industrial era in 2015. This 

scenario was recently preliminary confirmed by WMO (WMO, 2015). Worldwide, the period 

between 2011 and 2015 has been the warmest on record with the highest global average 

temperature estimates most likely assigned to year 2015. The warming of 2015 is a flag of great 

importance because it represents global warming of 1 °C (UK Met Office, 2015), which 

represents the half of internationally agreed limitation in order to avoid dangerous climate 

change (UNFCCC, 2011). According to WMO, this is caused by an extremely strong El Nino 

phenomenon, which is itself a result of greenhouse warming (Cai et al., 2014). 

The last five years were outstanding in terms of occurrence of many extreme meteorological 

events – the heat waves in particular. Only in 2015 major heat waves have stroked India in May 

and June with average maximum temperatures over 42 °C, and locally exceeding 45 °C, which 

caused over 2300 deaths (Hussain et al., 2016). Heat waves also occurred in Europe (Duchez et 

al., 2016), northern Africa and Middle East where many new temperature records were set. In 

May extremely high temperatures were reported in Burkina Faso, Niger and Morocco. Portugal 

and Spain were exposed to unusually high temperatures as well. In July, Denmark, Morocco and 

Iran were affected by heat waves. The month of August brought a heat wave to Jordan and, 

simultaneously, the city of Wroclaw (Poland) experienced some all-time high temperatures with 

a peak of 38.9 °C on the 8th of August. The heat spread up over Eastern Europe in September, 

and the record high temperatures were exceeded in South Africa on a regular basis in spring 

2015 (WMO, 2015).   
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According to the analysis of the last half decade many extreme events, especially those related 

to temperature extremes, have had resolutely increasing probability of occurrence as an impact 

of anthropogenic climate change.  These probabilities have grown by a factor of 10 or higher in 

some cases. The most steadily growing increase in these probabilities has been on extreme heat 

(WMO, 2015). 

1.1.3 Urbanization and Population Boom 

In parallel with climate change, we are witnessing a population boom and the vast majority will 

concentrate in large metropolitan agglomerations. In 2007, first time in history, the urban 

population exceeded the rural one. Therefore, the human kind became predominantly urban 

based. The number of rural dwellers has been growing since 1950 and it is projected to reach its 

peak in near future (UN, 2014). However, this report also states that in early twenties of the 

century, the global rural population will start to decline towards 3,2 billion in 2050. 

In 2014, about 3.9 billion people, representing 54% of global population, were urban dwellers. 

Half of the urban population is resided in small agglomerations up to half-million inhabitants. 

Roughly one of eight urban dwellers is an inhabitant of a megacity (settlements with population 

of 10 million or more). The number of megacities nearly tripled since 1990. Currently, we have 

28 megacities on the planet, and they are home to 453 millions of people. The United Nations 

(UN, 2014) projected that by year 2030 there will be 41 megacities on the Earth. In previous 

decades, the largest agglomerations were located in developed regions, but currently the 

world’s largest cities are in global South. The projections say that by 2050 the urban systems will 

be home to 66% of global population, representing 6.3 billon urban dwellers (UN, 2014). 

Cities are commonly associated with the concentration of economic activity, and thus provide 

its inhabitants with higher level of literacy, education, better healthcare, access to social services 

and opportunities for cultural and political participation. However, urban environment is 

nowadays more unequal than rural areas, and a large proportion of urban poor is living in 

metropolitan systems with sub-standard conditions. The urban poor are especially vulnerable 

to extreme weather events, and climate change related disasters caused population loss in some 

cities. If poorly planned and managed, urban expansions may lead to sprawl, pollution and 

environmental degradation (UN, 2014). 

The official outcome of RIO+20 conference entitled “The Future We Want” clearly states that 

the development of sustainable urban systems is crucial and that cities can lead the way to an 

economically, socially and environmentally friendly future if the holistic approach to urban 

planning and management will be applied (UN, 2012).  

 

1.1.4 Climate Change and Cities 

Cities and climate change are mutually connected. Urban systems act as important economic 

hubs and, as such, they are very demanding on resources. Globally, the energy consumption of 

urban agglomerations is up to 80% of the total energy production, which represents 

approximately 71–76% of global CO2 emissions (UN, 2014). This illustrates the important role of 

urban areas as drivers of global warming, but also their potential for mitigating high carbon 
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dioxide emissions. The urbanized areas are not only major drivers of climate change, but 

simultaneously they are hot spots of climate change impact. Cities are challenged by intersecting 

issues related to increasing risk of climate hazards and continuing processes of population boom 

and urbanization (GERISC, 2015). 

Providing services like public transport, housing, electricity, water and sanitation is typically 

cheaper and more environmental friendly in dense urban systems than in rural areas.  These 

services require certain infrastructure. For example, the energy infrastructure leverages 

economic development, health and quality of life in general. Disruptions of electricity, gas and 

fuel supplies can have serious consequences on business, healthcare, energy services, schools, 

street lighting, water treatment and supply, public transport, road traffic management and 

public safety. For instance, extreme temperature can possibly impact the production of 

electricity, depending on the particular location and overall context (Rosenzweig et al., 2011). 

The foreseen life time of infrastructure components varies between 5 and 50 years (in some 

cases 100 years). Therefore, the current decision making will define not only the safety, but also 

the contribution of the energy sector on greenhouse warming (IPCC, 2014). 

In general, urban systems are hot spots of various disaster risks, which make them especially 

vulnerable to chain reactions (WEF, 2015). In addition, many of the world’s agglomerations are 

from historical reasons located in areas highly exposed to multiple hazards (Akbari et al., 1999; 

Haigh, 2012). Most likely, cities will be increasingly exposed to impacts of climate change in form 

of urban flooding, flash floods, river floods, and heat waves causing high levels of air pollution 

triggering serious health problems. Climate change has major economic consequences in form 

of reduction in labour productivity, disruption of transport systems and significant losses in 

energy production and its supply chains (Confalonieri et al., 2007). 

According to Hartmann et al., (2013), one of the major symptoms of climate change relevant for 

urban systems are heat waves. Their frequency probably increased since the middle of twentieth 

century. Constant grown of urban population is driving the replacement of natural vegetation 

cover by artificial surfaces (EC-DG Environment, 2012). This accelerates the urban heat island 

phenomenon, and reduces the capacity of natural retention and infiltration of precipitation. One 

of the most direct consequences is an increase in the seasonal mean temperatures (Collins et 

al., 2013). Furthermore, increasing temperatures and changes in rainfall variability will only 

amplify this problem (Revich & Shaposhnikov, 2012). This also indicates that the magnitude of 

impacts is a function of both the societal and the climatological factors (Rosenzweig et al., 2011).  

The impact of climate change in urban areas is often worsened by systematic interaction within 

the inner city environment, and by processes occurring in rural areas surrounding the urban 

settlements (OECD, 2014). The local authorities should plan and manage the urban system 

aiming to improve the resilience to extreme meteorological events. Adaptation measures should 

focus on a regional and local scale in order to solve issues related to the connection of fresh air 

zones inside and outside the urban agglomeration boundaries (GERISC, 2015). The capacity of 

local governments to face the impacts of climate change will be tested for the combination of 

increasing occurrence of natural disasters, insufficient management strategies and rapid 

urbanization (Tanner et al., 2009). The mortality due to natural disasters is highest in developing 
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countries, while overall economic damage is greatest in developed regions. One of the key 

reasons of life losses is an absence of efficient early-warning systems (Zommers, 2012). 

Under good and qualified management, the process of urbanization can provide an opportunity 

to economic grown with simultaneous positive environmental development. In the same time, 

rapid urbanization can strengthen the magnitude of almost every global risk, and local impacts 

can also be further amplified by unsustainable production and consumption patterns (GERISC, 

2015). 

 

1.1.5 Natural Hazard Assessment 

When the climate change and the evaluation of climate impacts are discussed, the assessment 

of associated potential natural disasters is in the centre of attention. Diagram below (Figure 1) 

depicts the essential components of assessment of natural hazards related to climate change. 

Taking to consideration the realistic time and resources constraints, the majority of our effort 

will be devoted to the key generic steps: “Weather and Climate Events” and “Exposure” 

components, rather than attempt to execute a complete assessment of potential natural 

hazards related to climate change. 

 

Figure 1 - Scheme of natural hazard assessment (IPCC, SREX, 2001). 

 

1.1.6 Modelling of the Impacts of Future Climate 

The general recipe for estimating the impact of future climate events (not considering the 

Exposure and Vulnerability parts of Natural Hazard Assessment) consists of deployment of the 

ensemble of numeric physical models, establishing the robust metrics able to detect the 

extremes of interest, and the interpretation of obtained results. The members of a Climate 
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Model Ensemble should be ideally validated against reliable observational datasets or, for data 

scarce regions, against reanalyses products (so-called hind cast procedures). When the model 

runs for a historical period are found valid, also the future projections are considered as a 

reliable base of future climate behaviours assessment. Regarding the future periods, considering 

that our planet is undergoing global warming and local climate exhibits increased variability, the 

models have to incorporate future scenarios reflecting the directions and magnitude of changes 

in the evolution of the climate variables relevant to climate impacts of interest. The numerical 

models provide the simulated climate variables (e.g. daily maximum near-surface temperature, 

daily precipitation, etc.) but the bigger impacts are commonly associated with the occurrence of 

extreme events, for example, the prolonged periods of extreme heat or drought. For that 

purpose, robust and understandable Climate Indices have to be deployed to consistently capture 

the impacts (e.g. Zhang et al., 2011). The definition of extreme in long time-span is challenging 

– current extremes are likely to become the future norms (Argüeso et al., 2016). Moreover, the 

climate indices should be chosen from widely utilized indicators to allow for comparison 

amongst the studies. For example, in plain words, the term “Heat Wave” can mean various 

different things (Zhang et al., 2011). The suit of selected climate indices also should be aligned 

with the purpose of the study. Nevertheless, generally, the climate indicators represent the 

quantification of climate related natural hazards. 

1.1.7 Multi-Model Ensemble Problem 

Multi-Model Ensembles are broadly defined as a set of model runs originating from structurally 

different models. In context of climate ensembles, the projections come from numerical models 

parametrizing or resolving the selected relevant process. Various types of climate ensembles are 

recognised, for example, the superensembles (contain more sets of initial conditions for each 

particular model), or the perturbed physics ensembles (composed from multiple runs of single 

model but with different settings of parameters) (Tebaldi & Knutti, 2007). The principle that 

using a combination of multiple models outperforms any single projection or forecast is 

anchored on the assumption that errors tend to cancel out in the ensemble, when the individual 

members are independent. Thus, with increasing number of simulations, the overall uncertainty 

should decrease. The usage of this approach is not at all limited solely to the domain of climate 

and meteorological science. The examples manifesting the improvement in skill, reliability and 

consistency of prediction can be found in  the public health sector (Early warning system for 

Malaria occurrence (Thomson et al., 2006)) or in agriculture (crop yield projection by 

(Cantelaube et al., 2004). The ensemble problem is also related to the field of machine learning, 

where, for instance, all the trees of random forest can be seen as an individual members of a 

large ensemble.  

To understand why are climate Multi-Model Ensembles (MMEs) somewhat particular, the model 

structure and model uncertainties should be addressed. Undoubtedly, the different groups 

around the world develop different circulation models relatively independently. However, there 

is a whole list of unavoidable similarities. For instance, the parallel developed models aim to 

provide similar resolution and thus they cannot resolve (therefore they have to parametrize) the 

same physical phenomenon.  The theoretical arguments derived from state-of-the-art physics 

are likely to be the same. Additionally, the computational methods (including the same known 

shortcomings) are unavoidably common to many circulation models (Tebaldi, 2007). On the top 
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of that, in the spirit of open science, especially in case of successful models, the entire model 

components are open and therefore borrowed by other modelers in order to improve and speed 

up their own development efforts. All abovementioned is resulting in presence of the persistent 

bias in climate MME (Tebaldi, 2007).  

When designing the model, certain choices have to be made and they may implicitly exhibit 

uncertainty. This uncertainty is difficult to capture by changing parameters within a single 

model. Such an uncertainty contains not only the theoretical aspects like assumptions, 

simplifications or choices in parametrizations of physical processes, but also the implications of 

practical decisions such as numerical aspects of the choice of the grid, the resolution or the 

truncation. These abovementioned uncertainties are attributed to model structure (Tebaldi & 

Knutti, 2007). In order to understand and quantify the uncertainty in climate change projections, 

the structural uncertainties should be deeply investigated. Without such an evaluation it is not 

possible to guarantee that results do not strongly exhibit artefacts of the individual structures. 

This represents the strongest argument supporting the utilization of ensembles of different 

models (Tebaldi & Knutti, 2007). In climate modelling, the total uncertainty is composed of 

partial uncertainties of completely different nature and origin: firstly, natural fluctuation 

emerging in climate in the absence of any radiative forcing of the planet. This uncertainty is 

commonly referred to as the internal variability of the climate system. Secondly, the response 

uncertainty. It is a model uncertainty in the response to the same radiative forcing. Thirdly, we 

recognize uncertainty originating in scenarios for future emissions of greenhouse gases, related 

to potential anthropogenic influence based on the future socio-economic and technological 

evolution (Hawkins & Sutton, 2012). The proportional influence of all three abovementioned 

components of uncertainty depends on the prediction lead time and also varies with spatial and 

temporal scale (Räisänen & Palmer, 2001). The model and scenario derived uncertainties play 

an important role in long term predictions (e.g. many decades) at regional and larger scales. On 

the other hand, in context of projections covering upcoming one or two decades at regional 

spatial scale, the model uncertainty and inner-variability are the most influential (Hawkinson & 

Sutton, 2012). It should be noted that in the context of climate MME, the uncertainty due to 

inter model variance and the internal variability of each model should be kept separated. This 

recommendation is based on the fact that the first mentioned component is not a fundamental 

property of the climate system, whilst the second one is (Hawkins & Sutton, 2012). 

Understanding the uncertainty in climate modelling is crucial not only in order to be detected, 

quantified and attributed, but also for purposes of the adaptation and mitigation planning 

(Deser et al., 2012). 

1.1.8 Adaptation and Mitigation 

It is important to describe the concept of sustainable city in terms of efforts towards urban 

development satisfying environmental, socio-cultural and economic needs of inhabitants, in 

order to highlight the interactions of mitigation and adaptation measures when applied at 

different scales (Georgescu et al., 2015). 

Strategies to mitigate negative impacts of urbanization on the environment (e.g. urban heat or 

air pollution) commonly account for direct modifications of surface's properties and surface 

energy balance (Oke, 2006). For instance, covering the roofs with high albedo materials 
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increases the reflectance and therefore, diminishes the heat storage and consequent sensible 

heat (Akbari et al., 1999). Furthermore, deployment of highly permeable concrete or tarmac also 

decreases the amount of heat stored in urban fabric and enables larger surface evaporation 

(Stempihar et al., 2012). The urban green rises the intensity of the latent heat fluxes and 

provides direct shading from the vegetation canopy (Dimoudi & Nikolopoulou, 2003). Moreover, 

in the mitigation and adaptation portfolio, recent  technologies complement above-mentioned 

well established methods (Georgescu et al., 2015). Specifically, these technologies encompass 

utilization of phase change solar energy storing materials (Santamouris et al., 2011), 

photovoltaic pavements and canopies (Golden et al., 2007) and waste usage for power 

generation purposes (Persson & Werner, 2012). In the city context, deployment of these 

technologies may change water and surface energy cycles, which subsequently mitigates the 

urban heat island (UHI) effect and therefore, reduces an energy demand and green gas 

emissions (Georgescu et al., 2015). Also, the anthropogenic heat when put in use for power 

generation, can be seen as an energy-saving opportunity (Salamanca et al., 2014). The physical 

principles behind those processes and impacts of related adaptation approaches are well known 

at various spatial extents, but multi-scale impacts on urban systems need further investigation 

(Georgescu et al., 2015). 

When choosing an appropriate adaptation strategy, the scale interdependency should be 

considered. Certain approaches (e.g. green roofs) provide micro-scale benefits, where most of 

the profit is given to selected stakeholders concentrated in vicinity of building rooftop. In 

contrary, the urban planners should be aware of synoptic and global climate because those may 

significantly narrow down the portfolio of applicable micro-scale solutions (Georgescu et al., 

2015). For instance, in urban systems periodically exposed to dust storms, the effect of 

installation of highly reflective roofs will be significantly lowered by decrease in albedo due to 

fine particle deposition (Getter & Rowe, 2006). Moreover, climatological impacts occurring at 

the larger scale may unexpectedly influence a metropolitan system. For example, high 

reflectivity can detrimentally influence a hydrology cycle in urban area and as such cause 

decrease in regional-scale precipitation (Bala & Nag, 2012). Specific climatic conditions 

predefine effective adaptations. The strategies should be harmonious with large spatial 

sustainability context. Hence, for example, utilizing non-native flora (aiming for local 

temperature reduction) with high water demand in arid zones may result to reduction in city 

water supply (Ruddell & Dixon, 2014). According to Georgescu et al. (2015), the balance between 

localized cooling and water scarcity in cities should be subject to further research.   

Even individual building can have decadal or century-times scale impact. Decisions of urban 

planners also have climate-related spatial impacts and planning process should consider the 

limits on parallel or concurrent development resulting from scale interdependent phenomena 

(Mills et al., 2010). Buildings relatively taller than surrounding constructions would alter shading, 

near-surface temperature and the wind regime which consequently influence the thermal 

comfort and the air quality in the area, particularly in case of cumulated impacts related to the 

rapid development. As an example can serve the study of Pearl River delta in East China, which 

documents the impact of the sum of rapid development onto regional air quality (Lu et al., 2009). 

The decision makers should be aware of scale interdependency dimension of development in 

order to optimize strategies across various spatial scales. Georgescu et al. (2015), clearly states 
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that not all the adaptation and mitigation measures should be given an equal weight across all 

spatial scales. In addition, there is still demand for deeper analysis, tool development and 

coordinated efforts, which should rise from the collaboration between global climate and urban 

communities and related disciplines. 

Downscaling methods have been proposed to obtain regional and local-scale weather and 

climate data. Many well established researchers clearly state that there is a strong need of finer 

scale information on climate elements, particularly in areas of complex topography and with 

highly heterogeneous land cover (e.g. Giorgi et al., 2001; Mearns et al., 2003; Wilby et al., 2004). 

Describing in more detail the areas where information is needed, authors typically provide 

examples such as coastal areas, river mouths, islands or mountain regions. Until today, the urban 

systems are not explicitly mentioned on such lists, even though they fulfil the requirements of 

the above definition (considering the term “topography” in a broader sense). There are 

examples of successful applications of downscaling methods in the context of urban systems 

(e.g., Kusaka et al. (2012), predicting heat stress for Tokyo, Osaka and Nagoya metropolises). 

Furthermore, one of the most frequently mentioned main constraints of the application of 

downscaling techniques is the lack/scarcity of the observational data within the downscaling 

domain. However, the city, the smart city in particular, is an example of data generator, and as 

such perhaps this constrain is not potentially that disconcerting. 

The problematics of scientific background is in reality far more complex and include many other 

aspects, namely the physical principles of heat wave formation, the urban specific temperature 

related physical processes, urban heat island phenomenon, impacts of extreme heat, the 

relation of heat and air pollution, physiological functioning of human bodies and health 

consequences, aging trends in European society, the different impact groups within a urban 

space, relation between climate science and urban planning, importance of data scale for 

mitigation and adaptation planning, definition of extremes, the issues of downscaling and 

comparative ranking, and the communication of climate change. These topics are addressed in 

more detail in the following chapters of the thesis. 

1.2 Problem Statement 

The key messages of previous paragraphs frame the scope and relevance of this study. The 

planet is currently undergoing a process of climate change and greenhouse warming. The 

heatwaves are one of the most amplified symptoms of this change. Human kind is currently 

predominantly urban based, and the majority of ever continuing population growth will take 

place in urban agglomerations. In warming Europe, we are witnessing a growth in urban 

population with aging trend, which will make the society more vulnerable to extreme heat 

waves. In the period 1950-2015 the occurrence of extreme heat waves increased across 

European capitals. As an example, Moscow was hit by the strongest heat wave of the present 

era, killing more than ten thousand people. Cities are especially vulnerable to impacts of climate 

change. Urban systems are not only major drivers of climate change, but also impact hot spots. 

Furthermore, the impacts are commonly managed in city scale. In the same time, when 

managed in a sophisticated manner, urbanization can provide an opportunity to mitigate natural 

risks related to climate change. The prevention, mitigation and adaptation measures are and 

will be managed by local authorities and commonly at city scale. Therefore, assessing climate 
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change impacts on quality of life and on infrastructures in urban systems is an important area of 

research. Not only the processes and their impacts on all levels (local, meso and global scale), 

but also the interactions between those should be subject to detailed analysis. While global and 

regional climate projections are currently available, local-scale information is lacking. Such a 

detailed information is crucial for impact assessment studies, particularly in urban areas. The 

assessment of vulnerability of European capitals to extreme heat could be of paramount 

importance to the decision makers in order to mitigate the heat related mortality, especially 

with the foreseen increase of global mean temperature. 

 

1.3 Research questions 

This research work adds to the body of knowledge on climate change and impacts in the urban 

systems by addressing the key question: 

• Which are the current and future impacts of extreme temperatures in the main 

European metropolitan systems? 

Three research questions emerge from this general question: 

• Which European capitals will be affected by more intense and frequent heat waves 

towards the end of the century? 

• Which European capitals will be affected by more intense and frequent cold waves 

towards the end of the century? 

• How can such information be deployed to different stakeholders (such as impact 

researchers, city planners, decision makers and citizens) in a simple and effective 

manner? 

 

1.4 Objectives 

The main objective of this thesis is to assess current and future impacts of extreme 

temperatures in European capitals. 

A number of detailed objectives emerge from this general objective: 

• To analyse how is the climate information being incorporated into the decision process 

and urban planning. 

• To rank the European capitals in terms of impacts of extreme temperatures. 
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• To compare the impacts of extreme temperatures in European capitals by taking into 

account the population exposure. 

• To provide recommendations and tools that can help urban inhabitants, city planners, 

and decision makers to adapt or mitigate the impacts of extreme temperature events. 

 

In order to address the proposed objectives, the research methodology includes three main 

stages. First, a thorough literature review and discussion on the multidisciplinary issues involved 

are undertaken. This stage is crucial, because it is expected to contribute to the selection of 

appropriate methods, tools and information sources, which may be useful not only in the 

following research stages, but also for impact researchers and city planners. 

Secondly, climate projections data for Europe from Multi-Model Ensembles are collected, and a 

set of indices of extreme temperatures and heat waves (HWs) and cold waves (CWs) indicators 

are computed. A ranking procedure is then proposed, accounting for the different spatial extents 

of European capitals, the length of each assessed period (near past, near future, and future), 

and different impacts’ magnitudes of HWs and CWs. The ranking procedure is then extended to 

account for population exposure. The results of this research stage are expected to provide 

further insights on the impacts of extreme temperatures and related population exposure across 

all the European capitals. Moreover, we expect to raise awareness about HWs, since they are 

still often not perceived as a serious risk (Keramitsoglou et al., 2017). 

Finally, the third stage is dedicated to the development of a Web tool, in order to provide an 

open data climate service for visualising and interacting with extreme temperature indices and 

HWs indicators for European capitals. We expect that this tool may contribute to the effective 

communication of the complex issue of climate change to a large audience. 

1.5 Thesis outline 

The thesis is organised in five chapters and appendixes. The first chapter discusses the 

motivation and relevance of the research work, states the objectives and the research questions, 

and briefly summarises the methodological stages. This chapter ends with a brief overview of 

each of the main chapters, and their links to published or submitted scientific articles. 

Chapter 2 is mainly based on the article “Climate projections and downscaling techniques: a 

discussion for impact studies in urban systems” published in the International Journal of Urban 

Sciences (Smid & Costa, 2017). This chapter provides a literature review on the thesis topics, 

particularly on localised climate projections, emphasising their statistical downscaling, and on 

the relations between the fields of climate science, urban planning and policy making. Section 

2.1 is dedicated to downscaling procedures of climate projections data. Further details on the 

most significant statistical downscaling procedures are disclosed in Appendix A. In Section 2.2, 

emphasis is given to recent advancement in urban studies incorporating climate projections. 

Chapter 2 also includes a discussion on the applicability of climate data to urban planning 

practice where three main bottlenecks of wider utilization of localized climate projections in 

planning of adaptation and mitigation measures and urban design in general are formalized. 
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Chapter 3 is an extension of the submitted article “Ranking European Capitals by Exposure to 

Heat Waves and Cold Waves”. This section presents the research on the impact of future heat 

waves and cold waves in 31 European capital cities using an ensemble of 8 GCM/RCM models 

under the RCP8.5 scenario from EURO-CORDEX. In section 3.5 we introduce a ranking procedure 

based on the ensemble predictions, and population density as a proxy to quantify the future 

exposure. Section 3.6 covers the obtained results. The ranking of European capitals based on 

their exposure to extreme heat is of paramount importance to decision makers in order to 

mitigate the heat related mortality, especially with the foreseen increase of global mean 

temperature. Furthermore, this simple comparative indicator is expected to help 

communicating the global, complex and impersonal issue of climate change locally thus 

contributing to raise awareness and call for action. 

Chapter 4 is devoted to the Web tool developed as an integrated part of the Open City Toolkit 

(OCT) of the Geoinformatics: Enabling Open Cities (GEO-C) project [642332 — GEOC — H2020-

MSCA-ITN-2014; http://www.geo-c.eu/]. The architecture, functionalities and the purpose of 

the Web tool are detailed in this chapter, which is an extension of the submitted article 

“MetroHeat web tool: a communication service of climate change impacts on temperature over 

European capitals”. 

Finally, Chapter 5 states the conclusions of this study by summarising the main findings and 

contributions of the research work, and by pointing out a number of suggestions for further 

research.

http://www.geo-c.eu/
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2 Literature Review 

In the warming world, we are witnessing an urban population boom and an increasing number 

of megalopolis areas (Yang & Chen, 2007). Projections indicate that by 2050 urban systems will 

be home to 66% of the global population, representing 6.3 billon urban dwellers (UN, 2014). 

Urban systems act as important economic hubs and, as such, they provide its inhabitants with 

higher quality of life, including health, cultural and psychological aspects (Murray, 2011). 

Urbanized areas are not only major drivers of climate change (CC), but are simultaneously hot 

spots of CC impact, and many of the world’s agglomerations are located in areas highly exposed 

to multiple hazards (Akbari et al., 1999; Haigh & Amaratunga, 2012). CC impacts on urban 

systems may cause the stagnation of the state or entire country (Malakar & Mishra, 2017). 

Climate change has major economic consequences in the form of reduction in labour 

productivity, disruption of transport systems and significant losses in energy production and its 

supply chains (Confalonieri et al., 2007). Mortality due to natural disasters is highest in 

developing countries, while overall economic damage is greatest in developed regions (Kousky, 

2014). However, economic development significantly decreased disaster damage (Choi, 2016). 

All the above-mentioned illustrates the importance of CC impact assessment in urban contexts. 

While impact assessments are commonly based on the output of state-of-the-art GCM-RCM 

simulations (Regional Circulation Models nested within General Circulation Model) providing 

information at scales varying between 12.5 and 50 km, the process of urban planning operates 

with finer scales exploiting detailed knowledge of neighbourhoods sometimes even at sub-

street level. The GCM-RCMs are numerical coupled models describing atmosphere, oceans, land 

surface, sea ice and interactions among those earth systems. Those models remain essential 

tools to assess climate change (Fowler et al., 2007). However, their coarse resolution and 

inability to resolve sub grid scale features limits their usability. A large portion of impact studies 

operates on scales finer than common resolution of global or even regional model outputs 

(Wilby et al., 2004).  

The strong need for higher resolution climate data for impact assessment is a long time well-

known issue (e.g., Cohen, 1996; Kim et al., 1984). This interest originated in the recognized 

discrepancy of course resolution GCMs (hundreds of kilometres) and the scale of interest of 

impact studies (an order or two orders of magnitude finer scale) (Hostetler, 1994). The impact 

applications are highly sensitive to local climate variation, and as such they require information 

proportional to the point climate observations. The fine-scale variations are parametrized in 

lower resolution models. The requirement of fine-scale information emerges particularly in 

regions of complex topography (Giorgi & Bi, 2000; Mearns et al., 2003; Wilby et al., 2004). 

Describing areas where information is needed in more detail, authors typically provide examples 

such as coastal areas, river mouths, islands or mountain regions. Until today, urban systems are 

not explicitly mentioned on such lists, even though they fulfil the requirements of the above 

definition (considering the term ‘topography' in a broader sense). 

When choosing an appropriate adaptation strategy, scale interdependency should be 

considered. Certain approaches (e.g. green roofs) provide micro-scale benefits, where most of 

the advantage is given to selected stakeholders concentrated in the vicinity of building rooftops. 
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On the contrary, urban planners should be aware of synoptic and global climate change because 

this may significantly narrow down the portfolio of applicable micro-scale solutions (Georgescu 

et al., 2015). For instance, in urban systems periodically exposed to dust storms, the effect of 

installation of highly reflective roofs will be significantly lowered by the decrease in albedo due 

to fine particle deposition (Getter & Rowe, 2006). Moreover, climatological impacts occurring at 

a larger scale may unexpectedly influence a metropolitan system. For example, high reflectivity 

can detrimentally influence a hydrology cycle in an urban area and as such cause a decrease in 

regional-scale precipitation (Bala & Nag, 2012). Georgescu et al. (2015), clearly states that not 

all adaptation and mitigation measures should be given an equal weight across all spatial scales. 

In addition, there is still demand for deeper analysis, tool development and coordinated efforts, 

which should rise from the collaboration between global climate and urban communities and 

related disciplines.



 
LITERATURE REVIEW 

 

15 
 

GCM-RCM outputs are still insufficient for the analysis of many regional and local climate 

aspects, such as extremes. GCMs of very high resolution would indeed improve the simulations 

of regional and local aspects (Christensen et al.,  2007), but they remain unreachable due to the 

enormous computational cost (Fowler et al., 2007), which leads to the accommodation of 

downscaling techniques (Rummukainen, 2010). 

2.1 Downscaling of climate projections 

In this study the term “Downscaling” refers to techniques improving spatial or/and temporal 

resolution of climate projections. Principally any data can be refined by downscaling techniques 

(Rummukainen, 2010). Coarse GCM output might be satisfactory, for example when the 

variation within a single grid cell is low or in case of global assessment. The main advantage of 

information directly obtained from GCM is the certainty that physical consistency remains 

unattached (Mearns et al., 2003). GCMs are valuable predictive tools, but they cannot account 

for fine-scale heterogeneity and reflect on features like mountains, water bodies, infrastructure, 

land-cover characteristics, convective clouds and coastal breezes. Bridging this gap between the 

resolution of climate models and regional and local scale processes represents a considerable 

challenge. Moreover, the uncertainties that characterize the GCMs/RCMs are generally 

aggravated when these models are downscaled, which is the crucial step for identifying the city-

specific impacts and, consequently, to identify vulnerabilities. Hence, the climate community 

put significant emphasis on the development of techniques for downscaling (Fowler et al., 2007). 

There is no consensual and unique classification scheme to be applied in attempts to 

comprehensively review and summarize the downscaling techniques. In many studies (e.g. 

Fowler et al., 2007; Khan et al., 2006; Trzaska & Schnarr, 2014), the methods are categorized 

into two main groups: Dynamical downscaling and Statistical downscaling. Dynamic downscaling 

is based on RCMs or fine spatial-scale numerical atmospheric models, such as Limited Area 

Models (LAM) (Feser et al., 2011; Fowler et al., 2007). Statistical downscaling is based on 

observed relationships between climate at fine and coarse resolutions that are used to 

transform global climate models’ output to finer resolution. Alternatively, Mearns et al. (2003) 

distinguish three groups of approaches: High resolution GCMs; Nested LAM and RCMs; and 

Empirical/Statistical and statistical/dynamical methods. Within the group of Statistical 

downscaling, many approaches can be distinguished and classified according to different 

criteria. For example, Wilby et al. (2004) provide background information and guidance on the 

application of some Statistical downscaling methods, but also listed alternatives to downscaling 

techniques (thus somehow excluding those from the family of downscaling methods) including 

spatial interpolation of grid points (sometimes named ‘unintelligent downscaling’), climate 

sensitivity analysis (frequently addressed as bottom-up approach), spatial/temporal analogues 

using historical data and simple change factor (known as Delta method). Giorgi et al., (2001) 

provide a survey of statistical downscaling techniques focusing on studies published between 

1995 and 2000. More detailed review of downscaling techniques in field of climate projections 

can be found in appendix A. 

2.1.1 Dynamical downscaling 

In a nutshell, dynamical downscaling represents a group of methods originally used in numerical 

weather forecasting (Rummukainen, 2010). The first studies establishing the foundation of 
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regional modelling are Dickinson et al., (1989) and Giorgi & Bates, (1989). Since then, the field 

has undergone massive development (e.g., Christensen et al., 2007; Feser et al., 2011; Giorgi et 

al., 2001; Hong & Kanamitsu, 2014; Xue et al., 2014; Wang et al., 2004). Dynamical models 

address data and physical processes equivalent to GCMs, but at finer scales, and provide results 

only for selected limited regions of the globe (Trzaska, & Schnarr, 2014). RCMs utilize the same 

physical-dynamical definitions of the key climate processes as GCMs. Atmospheric fields 

representing the output of a global model (e.g. surface pressure, wind, temperature and 

humidity) are loaded into vertical and horizontal boundaries of the RCM. Administering of 

boundary conditions represents a major challenge of dynamical downscaling (Rummukainen, 

2010). The physics-based equations and locally specified data are used to gain regional climate 

outputs (Trzaska, & Schnarr, 2014). The unresolved inner-cell variabilities are pushed to RCM 

output rather than fully taken into account. All the inner-cell fine scale processes are 

approximated in a procedure called parametrization (Rummukainen, 2010). 

Two major streams are recognizable in dynamical downscaling. In the first, the resolution is 

increased over the entire domain of the atmospheric global model (e.g., Christensen et al., 

2007). The second strategy is based on the utilization of a global model with variable grid cell 

size (Fox-Rabinovitz et al., 2008; Lal et al., 2008). This technique maintains a coarse grid over the 

majority of the globe, but increases the resolution within a particular area of interest 

(Rummukainen, 2010). 

The earlier RCMs resolution used to vary between 100 to 50 km, and at its best 25 km grid cells 

(Rummukainen, 2010). The more recent development proved that RCMs are capable of 

delivering high resolution results (20 km or less) (Leung et al., 2003; Mearns et al., 2003). 

Consequently, increasing resolution also entails increasing computational cost and data volume. 

RCMs also require a high level of expertise to interpret the results. Moreover, the RCM 

experiments require high frequency (e.g. 6 hours) GCM fields supply for boundary conditions. 

These data are not usually stored due to mass-storage demand (Mearns et al., 2003). Due to 

these practical limitations, the regional dynamical downscaling models remain out of reach for 

a vast majority of researchers. Accordingly, the emphasis in this paper is given on the application 

of statistical downscaling techniques. 

2.1.2 Statistical downscaling 

Statistical downscaling, also known as ‘Empirical/statistical’ or ‘Statistical/dynamical’ 

downscaling (Mearns et al., 2003), is based on the perspective that regional climate is mainly 

conditioned by two factors: the large-scale climate and the local/regional features such as 

topography, land-sea distribution or land use (Fowler et al., 2007; Mearns et al., 2003; Zorita & 

Von Storch, 1999; Wilby et al., 2004). The large scale climate variables are used as ‘predictors’ 

to regional or local variables named ‘predictands. Fowler et al. (2007) expressed the essence of 

the idea of statistical downscaling as the following descriptive equation: 

R=F(X) 

where R represents the local climate variable which is subject to downscaling, X is the set of 

large climate variables, and F is a function which relates R and X being validated by the use of 

point observations or/and gridded reanalysis data. This equation represents the most common 
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form, but other relationships have been used, such as relationships between predictors and the 

statistical distribution parameters of the predictand (Pfizenmayer & von Storch, 2001), or the 

frequencies of extremes of the predictand (Katz & Group, 2002). 

Statistical downscaling allows one to simultaneously simulate multiple outputs such as 

precipitation, maximum and minimum temperatures, solar radiation, relative humidity and wind 

speed (e.g. Parlange & Katz, 2000), which is of great importance, particularly for impact studies 

(Wilby et al., 2004). It is also possible to downscale predictors independently, but in such a case, 

it is crucial to ensure that inter-variable relationships remain intact. 

The performance of downscaling techniques depends on the choice of the regional domain 

(Wilby & Wigley, 2000), which in practice is often not considered (Benestad, 2001), and also 

depends on the regionalization methods (Wilby et al., 2004). Gutiérrez et al. (2013) assessed the 

performance of statistical methods commonly used for downscaling temperature (including 

Analogue methods, Weather typing techniques, Multiple linear regression, and Regression 

conditioned on weather types) with respect to their robust applicability in climate change 

studies. These authors established a new validation framework exploiting the anomalous warm 

historical periods. Based on this framework the study concluded that regression methods are 

the most appropriate in regard to climate change studies. Weather typing was found to 

underestimate the temperature in moderately warmer conditions and Analog methods, even 

though best reproducing the observed distributions, significantly underestimate the 

temperatures for warm periods in comparison with observed values. 

Operational weather forecasting approaches, such as Perfect Prognosis (Perfect Prog) (Von 

Storch et al., 1993) and Model Output Statistics (MOS) (Wilks, 1995, 1999), may also be 

incorporated in statistical downscaling (e.g., Feddersen & Andersen, 2005). These approaches, 

also named statistical post-processing methods, have been successful in correcting many 

deficiencies inherent to forecasts from numerical weather prediction models (Marzban et al.,  

2006). Both groups of methods use large multiple regression equations, taking advantage of the 

correlations between predictand and regressors. The classification has its foundation in the 

character of the employed predictors (Maraun et al., 2010). 

Perfect Prog was developed to exploit the deterministic nature of dynamical Numerical Weather 

Prediction (NWP) models. Large scale observational data are often replaced by the reanalysis 

products, and the MOS approach is also rooted in NWP (Glahn & Lowry, 1972). The main 

principle is to exploit statistical relationships between local observational data and simulated 

output of the numerical model, in order to correct for RCMs errors (Maraun et al., 2010). This 

approach allows for the impact of a particular dynamical model to be directly reflected at 

different projections. A limitation of MOS models is that the data set must contain both the 

historical records of the predictand and the corresponding stored records of the forecast 

produced by the dynamical model. 

2.1.3 Discussion of downscaling approaches 

The choice of an appropriate method, or even deciding whether or not it is convenient to apply 

a downscaling procedure, is often not straightforward (Mearns et al., 2003). Nevertheless, 

frequently, the global or continental scale information is implemented directly, which negatively 
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affects the resulting local scale impact maps (Trzaska, & Schnarr, 2014). We acknowledge that 

the most cutting edge approach to provide future localised climate information is to combine 

dynamical downscaling with further statistical advancement and bias corrections, as Lemonsu 

et al., (2013) did when assessing the evolution of Parisian climate. However, these authors had 

access to a luxurious retrospective dataset with high spatial-temporal resolution for evaluation 

purposes. Moreover, their skills, expertise and the access to (funding, time and computational 

power) resources were arguably outstanding. Those advantages are usually associated with 

larger cities hosting universities and other institutions able to help with such sophisticated 

planning. Smaller urban systems often struggle to obtain such support, mainly in terms of 

expertise (Georgi et al., 2006). This is of high importance since consistent long-term urban policy 

should be based on systematic local participation. 

On the other hand, the major practical limitation of regional dynamical downscaling, which is its 

high computational demand (Mearns et al., 2003; Fowler et al., 2007; Rummukainen, 2010), is 

not so impactful in the case of empirical/statistical downscaling techniques. Furthermore, 

statistical downscaling allows to simultaneously simulate multiple outputs such as precipitation, 

maximum and minimum temperatures, solar radiation, relative humidity and wind speed (e.g. 

Parlange & Katz, 2000), which is of great importance, particularly for impact studies (Wilby et 

al., 2004). This flexibility, together with their reachability to wider urban stakeholder 

communities, determines the focus of this paper in terms of practical bottlenecks discussed 

below. In the following, we outline the strengths and weaknesses of statistical downscaling 

approaches. 

The climate community invested significant effort to compare the methods of statistical 

downscaling (e.g., Benestad, 2001; Dibike & Coulibaly, 2005; Huth, 1999; Khan et al., 2006; 

Schoof & Pryor, 2001; Widmann et al., 2003; Wilby & Wigley, 1997; Zorita & Von Storch, 1999). 

Schoof (2013) provides a broad overview of statistical downscaling for studies on regional 

climate change, focusing on downscaling assumptions, choices of predictors and predictands, 

and methodological approaches. 

The strengths and weaknesses of distinct approaches of statistical downscaling are summarized 

in Table 1. The basic assumption of stationarity is essential, but it also represents the major 

theoretical weakness of statistical downscaling (Wilby et al., 2004). The concept of stationarity 

assumes that the statistical relationship between the predictor and predictand will not change 

in future climate (Fowler et al., 2007). However, there is evidence that this may not occur (e.g. 

Fowler & Kilsby, 2002; Slonosky et al., 2001). Stationarity of the predictor-predictand 

relationship can be tested using long records, or a period of different climate characteristics can 

be used for model validation. Non-stationarity is introduced by an incomplete set of predictors, 

which does not reflect the low frequency behaviour, or has an inappropriate sampling or 

calibration period, or by real changes in the climate system. However, in projected climate 

change, the circulation dynamics may be robust to non-stationarities and the associated degree 

of non-stationarity is relatively small (Hewitson & Crane, 2006). 

When applied to a changing climate, another key assumption inherent to statistical downscaling 

is that the predictors should ‘carry the climate change signal’ (Giorgi et al., 2001). Selected 

predictors should be physically meaningful and reflect the processes which subsequently control 
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variability in the climate. The selected predictor variables should also be those that are well 

represented by GCMs (Fowler et al., 2007). Appropriately selecting variables is in the equilibrium 

between the relevance in the physical climate reality and the accuracy with which the predictor 

is reproduced by the climate model (Wilby & Wigley, 2000). Partial correlation analysis, step-

wise regression or an information criterion are examples of procedures that may be preliminarily 

applied in order to identify the most promising predictor variables (Wilby et al., 2003). Also, local 

knowledge and expert opinion are priceless information sources in attempts to assemble the 

most effective set of predictors (Wilby et al., 2004). 

When the statistical downscaling model is not able to consolidate land surface forcing, meaning 

that the simulated regional climate is determined solely on the basis of free atmospheric 

variables, the CC scenario will omit changes in land-surface feedback. However, it is 

acknowledged that local land use management influences regional climate, vegetation cover 

and runoff regimes (e.g. Chase et al., 2001, Kalnay et al.,  2006; Prudhomme et al., 2002). 
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Table 1 - Strengths and weaknesses of statistical downscaling methods with sample studies. 

Strengths Weaknesses Sample studies 

Weather typing 

 Yields physically 

interpretable linkages 

to surface climate. 

 Versatile (e.g., can be 

applied to surface 

climate, air quality, 

flooding, erosion, etc.). 

 Compositing for 

analysis of extreme 

events. 

 Requires additional 

task of weather 

classification. 

 Circulation-based 

schemes can be 

insensitive to future 

climate forcing. 

 May not capture intra-

type variations in 

surface climate. 

 Empirical Orthogonal Functions (EOFs) 
(Goodess & Palutikof, 1998) 

 Cluster analyses (Cheng, Auld, Li, 

Klaassen, & Li, 2007; Cheng, Yu, Li, Li, & 

Chu, 2009; Osca, Romero, & Alonso, 

2013) 

 Fuzzy methods (Bardossy, Bogardi, & 

Matyasovszky, 2005; Bárdossy, Stehl’\ik, 

& Caspary, 2002; Teutschbein, Wetterhall, 

& Seibert, 2011) 
 Analogue method (Zorita, & Von Storch, 

1999) 

 Hybrid approaches (Enke, Deutschländer, 

Schneider, & Küchler, 2005) 

Weather generators 

 Production of large 

ensembles for 

uncertainty analysis or 

long simulations for 

extremes. 

 Spatial interpolation of 

model parameters using 

landscape. 

 Can generate sub-daily 

information. 

 Arbitrary adjustment of 

parameters for future 

climate. 

 Unanticipated effects to 

secondary variables of 

changing precipitation 

parameters. 

 Markov chains (Camberlin, Gitau, Oettli, 

Ogallo, & Bois, 2014; Kim, Kim, & Kwon, 

2011) 

 Markov processes of second order 
(Mason, 2004; Qian, Hayhoe, & Gameda, 

2005) 

 Markov processes of third order 
(Dubrovský, Buchtele, & Žalud, 2004) 
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Strengths Weaknesses Sample studies 

Regression methods 

 Relatively 

straightforward to 

apply. 

 Employs full range of 

available predictor 

variables. 

 ‘Off-the-shelf’ 

solutions and software 

available. 

 Poor representation of 

observed variance. 

 May assume linearity 

and/or normality of 

data. 

 Poor representation of 

extreme events. 

 Regression-based and Generalized 

Linear Models (GAM) (Bergant & 

Kajfež-Bogataj, 2005; Hellström, Chen, 

Achberger, & Räisänen, 2001; Korhonen, 

Venäläinen, Seppä, Järvinen, & others, 

2014) 

 Principal Component Analyses (PCA) 
(Kidson & Thompson, 1998; Sarhadi, 

Burn, Yang, & Ghodsi, 2017) 

 Artificial Neural Networks (ANN) and 

machine learning algorithms (dos Santos, 

Mendes, & Rodrigues Torres, 2016; Joshi, 

St-Hilaire, Ouarda, & Daigle, 2015) 

 Canonical Correlation Analyses (CCA) 
(Karl, Wang, Schlesinger, Knight, & 

Portman, 1990; Skourkeas, Kolyva-

Machera, & Maheras, 2013) 

 Singular Value Decomposition (SVD) 
(Chun, Sung, Woo-Seop, Oh, & Hyojin, 

2016; Huth, 1999; Liu & Fan, 2012; 

Zwiers & Von Storch, 2004) 

 Kriging and other spatial interpolation 

approaches (George, Janaki, & Gomathy, 

2016; Ramos, St-Onge, Blanchet, & 

Smargiassi, 2015) 

 

Statistical downscaling methods tend to underestimate the variance and poorly represent 

extreme events. Therefore, the techniques that introduce additional variability are frequently 

utilized (Fowler et al., 2007). A method magnifying the variability by multiplication by a suitable 

factor is known as ‘Variance inflation’ (Karl et al., 1990). The randomization method adds 

variability in the form of white noise, and provided good results in returned values of surface 

temperature for central Europe (Kyselý, 2002). A more sophisticated approach to add variability 

to statistical models is a variant of canonical correlation analysis called ‘Expanded downscaling’ 

(e.g., Huth, 1999; Müller-Wohlfeil et al., 2000). Each of the abovementioned approaches have 

different drawbacks (Bürger & Chen, 2005). Variance inflation does not adequately reflect 

spatial correlations. Randomization poorly transfers change in variability that influences 

expected future change. Expanded downscaling is highly susceptible to the choice of statistical 

processes during its own application (Fowler et al., 2007). 

Generic weakness of statistical downscaling is high demand on available data. On the other 

hand, the computational cost of statistical downscaling is relatively low. Therefore, it may 

appear to be an advantageous alternative for projects where the computational capacity, 

technical expertise or time represent significant restriction (Trzaska, & Schnarr, 2014). Statistical 

downscaling may be appropriate for impact studies in heterogeneous regions with complex 

topography and steep environmental gradient (e.g. islands, mountains, land/sea contrast), or in 
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cases where point scale information is required (e.g. local flooding, soil erosion, urban drainage, 

etc.), or to produce large ensembles and transient scenarios (Wilby et al., 2004). 

2.2 Climate projections and urban studies 

This section illustrates the variety of current approaches available to study potential impacts of 

CC in urban systems, thus it provides a typological summary rather than a comprehensive review 

of the field. The studies are organised from the point of view of the scale and the complexity of 

deployed downscaling techniques with highlights of unique features. We start with relatively 

simple studies utilizing the data from only one weather station. Then we move to works 

assessing climate change in more than one metropolitan system, but sometimes considering 

each city as a point feature. Finally, we focus on complex studies deploying various techniques 

of statistical and dynamical downscaling, exploiting a range of environmental indices and (apart 

from the climate simulations) deploying sophisticated models of future evolution of urban land 

cover. 

The first group of urban studies commonly uses observational data from just one or few 

measurement stations (weather or rain gauge stations) for validation purposes. These time 

series are used to correct bias in dynamically simulated GCMs or RCMs in order to obtain more 

reliable projections of urban climate. This approach is widely used in hydrology and the term 

downscaling frequently refers to temporal disaggregation of the data (e.g. Hingray & Haha, 

2005; Huang & Lu, 2015; Willems & Vrac, 2011). 

Sunyer, Madsen, & Ang, (2012) considered future scenarios for a location north of Copenhagen 

(Denmark) using simulated data from a set of RCM projections of the ENSEMBLES project (Van 

der Linden & Mitchell, 2009) with spatial resolution of 25 km. This study compares five statistical 

downscaling methods: two regression models and three weather generators. The regression 

methods exploit the different statistical properties, namely changes in mean and changes in 

mean and variance. The Weather Generators (WGs) are a Markovian chain model, a semi-

empirical model and a Neymar-Scott Rectangular Pulses (NSRP) model. The paper by Sunyer et 

al. (2012) is also outstanding for its highlights of the importance of the limitations and 

advantages of different downscaling techniques. 

Somewhat related is a study of Onof & Arnbjerg-Nielsen, (2009), but with focus given solely to 

WGs. The rainfall generator in this method is composed of two features: the storm structures 

are captured by the hourly generator and then the disaggregator provides hourly information at 

finer temporal scales. Another difference from Sunyer et al. (2012) lies on the method of 

transformation of the areal information (RCM output) to the point scale. Here, the areal 

information is represented by a grid-squared product of the Danish Meteorological Office with 

a resolution of 10 km. For each gauge, the RCM cell containing the gauge and the eight 

neighbouring cells are considered. Than the mean and standard deviation over those nine grid-

squares are used in the fitting of the hourly generator. This strategy was also applied by Willems 

& Vrac (2011). These authors used two sets of methods. One of them was the direct usage of 

climate models output with computation of quantile perturbations on extreme events. The 

study tested the assumption that the same perturbations remain constant for finer temporal 

scales. The second group of methods belong to the family of Weather typing approaches, which 

account for low accuracy of daily precipitation in current climate models by considering that 
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change in precipitation is not only a function of change in atmospheric circulation but it also 

depends on temperature rise. 

Recently, Batista et al., (2016) assessed the impact of future heat in the metropolitan region of 

São Paulo (Brazil) based on the Indoor Perceived Equivalent Temperature (IPET) index. The IPET 

was computed on the adjusted cutting-edge multi model climate project CORDEX, which is an 

international initiative for downscaling climate projections from different parts of the world. 

More specifically, Batista et al. (2016) deployed CREMA (CORDEX REgCM4 hyper-Matrix 

experiment) simulations. This study is unique considering the use of measurements from two 

weather stations for validation purposes, which is justified by the varying wind conditions in the 

city. 

Another group of studies focused on the impact of CC in urban systems by assessing multiple 

metropolitan areas simultaneously. Such studies, apart from their conclusions regarding specific 

cities, also allow for judgments at broader spatial domains (e.g. state or regional). For example, 

a study by Martin et al., (2012) assessed the potential temperature-related mortality under 

climate change for fifteen Canadian cities. This study shares some aspects with previously 

mentioned works, namely the strategy of the eighth neighbouring grid-cells centred at the 

observations’ locations – in this case the airports. A distinctive feature of this work is the linkage 

between temperature and mortality, which was possible due to the cooperation between the 

authors and the Public Health Agency of Canada that provided the mortality data. 

Fallmann et al.,  (2015) analysed various climate indices for eleven urban areas in Central Europe. 

This work used climate simulations of a non-hydrostatic Weather Research and Forecasting 

(WRF) model with the Advanced Research WRF-ARW dynamic solver version 3.1.1. of 7 km grid 

cell resolution. The E-OBS dataset (Haylock et al., 2008) was used for validation purposes. 

Another highlight of the study by Fallmann et al. (2017) is that it provides some hints on the 

technical / IT execution of the exercise, which is seldom addressed in scientific literature. 

A very different study by Huang & Lu, (2015) assessed the effect of Urban Heat Island (UHI) on 

climate warming in the Yangtze river delta in China, which covers many metropolitan areas. The 

analyses were based on measurements from forty-one meteorological stations that uniformly 

covered the study area with data from 1957 to 2013. The authors provide the warming rates 

and estimates of the UHI contribution to observed warming. Another aspect of this study is the 

classification of the cities into levels according to population size and subsequently derived 

conclusions within those categories.  

Another study for China region using climate simulations in the context of urban systems is the 

work of Li et al.,  (2015). The authors projected heat-related mortality for cardiovascular diseases 

and respiratory diseases. The interesting feature to be highlighted is that this work targets the 

specific causalities within those disease categories instead of the total heat-related mortality. 

On the other hand, the limitation of this study might be the usage of the ensemble consisting of 

only five GCMs (the rule of thumb recommends at least ten models). However, Li et al., (2016) 

have improved the study by utilizing thirty-one downscaled climate models for the same area. 

More importantly, they included the trend of aging population in the estimate of future heat-



 
LITERSTURE REVIEW 

 

24 
 

related mortality. Consequently, this study provides the first evidence of the synergy in hybrid 

question of global warming and population aging in China. 

Completely unparalleled is a study by Früh et al., (2011). Firstly, the RCMs runs were used as 

input for a dynamical model to obtain data at urban scale (horizontal resolution varies from 500 

m at the outskirts to 50 m at the city centre), and then the microscale simulations covering thirty-

year time slices (past and future) were delivered via the Cuboid method. This method considers 

the assumption that it is possible to reduce the problem into three degrees of freedom: the 2-m 

air temperature, the 2-m humidity and 10-m wind speed. This approach is related to the family 

of envelope models used in Ecology. Only a small set of meteorological conditions are being 

simulated and the specific day characteristics are derived by means of interpolation. According 

to Früh et al. (2011), this pragmatic approach provides approximated results but significantly 

decreases the computational cost. 

A complex study by Hayhoe et al., (2004) assessed CC impacts on a medium size area of interest 

in California (USA), where one of the four locations considered for extreme heat analyses is 

located in the city of Los Angeles. This study used one lower (B1) and one higher (A1fi) Special 

Report on Emission Scenarios (SRES), which bracket a large proportion of various future emission 

scenarios. Dynamical models were statistically downscaled to a grid of 1/8º (~13.5 km) by a still 

popular downscaling method based on probability density functions. This approach belongs to 

the family of empirical-statistical downscaling techniques. Furthermore, simple regression was 

used to downscale to the locations of selected weather stations. The observed monthly 

regression relations were then applied to future projections to ensure that the approximated 

information on future climate shared the same weather statistics. Hayhoe et al. (2004) also 

reported that the extrapolation beyond the range of observed values were rarely needed 

because the simulated climate behaviour involves higher occurrence of warm days rather than 

an increase in expected absolute maxima. This study represents one of the most complex CC 

impact assessments in terms of impacted sectors: extreme heat, heat related mortality, 

snowpack, runoff, water supply, agriculture and general vegetation distribution. The most 

relevant conclusions in an urban context are about extreme heat and related mortality, but the 

authors also provide insights on future precipitation, snowpack, runoff, water supply, agriculture 

and vegetation cover. 

Even though the study by Lee et al., (2016) is not urban specific, it used RCM simulations and 

has several unique aspects. The authors computed the Probable Maximum Precipitation (PMP) 

deploying data from 64 weather stations dispersed all over South Korea, which were 

interpolated into a 5x5 km grid by inverse distance weighting. The bias included in RCM 

simulation was corrected by the quantile-mapping method. First, the major storm events on the 

record were identified assuming that their associated precipitation efficiency was maximal. The 

storm efficiency is a function of perceptible water (total mass of water vapour in vertical column 

of the atmosphere). However, the direct measurement of this quantity is very challenging and 

perceptible water is also not a common variable provided by RCMs. The first unique feature of 

this study is the overcoming of the issue of lacking perceptible water information by exploiting 

the correlated relationship with surface dew point temperature. Second, this article provides a 

very detailed and intelligible explanation of a cutting edge bias correction method. 
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Kusaka et al., (2012) evaluated future heat stress in the world´s largest metropolitan system – 

Greater Tokyo. This sophisticated study deploys the dynamical WRF model with 3 km horizontal 

spacing. The boundary forcing is created by averaging the ensemble of three different GCMs. To 

express estimated future heat stress this study uses the concept of Wet-Bulb Globe 

Temperature (WGBT). WGBT is an empirical heat index developed to control heat-related 

causalities in military training, and supposedly it correlates better with heat stroke occurrence 

than simple air temperature. Another simple but interesting indicator of future heat stress used 

by Kusaka et al. (2012) is the frequency of Heat-induced Sleeping Discomfort (HSD) nights.  

Another highlight of this work is an approach to account for the complexity of the urban system. 

The WRF model is coupled to a single layer Urban Canopy Model (UCM), which considers the 

urban geometry, green fraction and anthropogenic heat emission with diurnal variation. 

There are many studies confirming that land cover has a significant impact on climate (e.g. 

Fallmann et al., 2017; Huang & Lu, 2015; Solecki & Oliveri, 2004). Some works proved its impact 

on rather local scales (Cui & Shi, 2012; Früh et al., 2011; Hu & Jia, 2010; Wolters & Brandsma, 

2012; Zhang et al., 2010). Other studies provided evidence of climate being influenced by 

urbanization and related land cover changes on regional or even global scale (e.g. Batista et al., 

2016; Da Rocha et al., 2014; Llopart et al., 2014). On the other hand, a global study by Peng et 

al., (2011), considering 419 large cities, states that no relation has been confirmed between the 

size of the metropolitan system or population density and the UHI effect. Rather than that, those 

authors emphasised the importance of urban design and urban vegetation cover within the city. 

One of the most complex approaches for downscaling urban climate data involving land use 

modelling is the work of Solecki & Oliveri (2004). As a part of the New York Climate & Health 

Project, these authors describe a procedure to downscale CC scenarios in urban land use models. 

The land use models considered in this study are part of the SLEUTH program (Clarke et al.,  

1997), which deploys a probabilistic cellular automata protocol, and consists of two core 

components: the Land Cover Deltatron Model (LCDM) is nested within an Urban Growth Model 

(UGM). An alternative to those mostly not user friendly cellular automata models was recently 

introduced by Bununu (2017). 

Finally, Lemonsu et al. (2013) used a very sophisticated approach to investigate the evolution of 

Parisian climate. This study was conducted as part of the EPICEA project (French acronym for 

Pluridisciplinary study of the impacts of climate change at the scale of Parisian region). The 

aforementioned authors combined dynamical downscaling with the quantile-quantile (q-q) 

correction method. The long term urban climate simulations were calculated by the SURFEX land 

surface modelling system. The analyses were done for a 48 km x 48 km study area with a spatial 

resolution of 1 km. The land use / land cover scheme followed the CORINE classification. For 

evaluation purposes, the high spatial-temporal resolution (8 km, hourly) retrospective dataset 

(1958–2008) generated by the SAFRAN system was utilized. This study by Lemonsu et al. (2013) 

assessed possible aspects of future climate in winter and summer seasons separately by 

exploiting a wide range of climate indices, and provided information on the UHI effect as well. 
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2.3 Discussion 

Climate change is expected to have significant impacts on urban systems and built infrastructure 

(Chapman et al., 2016; Hunt & Watkiss, 2011; Rosenzweig et al., 2011), such as energy systems 

(Spandagos & Ng, 2017), water supply and wastewater treatment (Howard et al., 2016; Wang 

et al., 2016), transportation systems (Dulal et al., 2011; Kwan & Hashim, 2016; Peterson et al.,  

2008), public health and human comfort (Araos et al., 2016;  Batista et al., 2016; Li et al., 2015; 

Molenaar et al., 2015). 

What climate-related challenges does the city face? Where are adaptation policies and actions 

the most urgently needed? Those are key questions faced by decision makers but the answers 

often lead to short or medium term solutions. Actions like establishing a plan for the mobile 

dams’ deployment belong to coping measures and are based on the experiences of past extreme 

events. Incremental adaptation represents another approach, when the already existing 

solutions are improved step by step considering the future evolution of the climate conditions. 

Coping and incremental adaptation measures certainly have their value but do not grant the 

functionality in the long term future. In extreme cases, these approaches might lead to a 

scenario where the urban system is locked-into an unsustainable situation (e.g. the capacity of 

already existing dykes or conventional sewerage system is not ever-increasable). On the other 

hand, urban systems last for decades and certain features such as valuable heritage remain for 

centuries. Hence, broader and systematic approach to address long term adaptation planning is 

needed. Transformative adaptation combines coping and incremental strategies, while 

addressing the root of causes and acknowledging the future potential magnitude of various risks. 

Transformative adaptation aims to multipurpose solutions and, as an integral part of urban 

planning, turns challenges to opportunities and boosts overall quality of life.   

Adaptation to climate change is currently becoming an integral part of urban planning and 

infrastructure development at city and district levels. While the short and medium term 

perspective is usually considered, long-term planning often remains omitted by managers and 

decision makers. There are several reasons for the lack of long term adaptation planning and 

action. Firstly, for example in European cities, administrators operate with reduced budgets and 

high unemployment resulting from economic crises. Globally, while some cities already 

experienced dramatic impacts of CC, others view the matter as a distant future challenge, thus 

their focus is on more urgent problems. In fact, in scientific literature the evidence of the current 

lack of appropriate policy targeting the urban climate can be found (Hughes, 2017). Moreover, 

even though integrated long-term transformative adaptation strategy makes the action more 

affordable, these investments are rewarding after a long time beyond political mandates. Long 

term adaptation planning operates with periods of approximately 50-100 years and represent a 

difficult challenge owing to the uncertainty associated with future climate, as well as because of 

the socioeconomic evolution of complex urban environments (George et al., 2016). 

2.3.1 Linking climate data and urban planning 

Climate information should be considered in the planning practice of different sectors, such as 

cultural heritage protection, disaster risk reduction, food security, public health, energy, 

transport, tourism, water resources and coastal management. However, recommendations on 

how to incorporate climate data into the urban planning process often remain rather holistic. A 
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few major entities (e.g., WMO – World Meteorological Organization, IPCC – Intergovernmental 

Panel on Climate Change, FAO – Food and Agriculture Organization of the United Nations), 

among other authors (e.g., Akbari et al., 2016; Davoudi et al, 2009), provide general information 

on adaptation and mitigation planning. For example, the Implementation Plan of the Global 

Framework for Climate Services (WMO, 2014) provides some insights, but they are still general 

as they typically reflect the purpose of the actions or they are limited to a few urban systems. 

Eliasson (2000) investigated if, how and when knowledge about the climate is used in the urban 

planning process. The study showed that the use of climatic information was unsystematic and 

that climatology had a low impact on the planning process. Carter et al., (2015) discuss the use 

of weather data and climate projections by urban planners from Greater Manchester (UK) for 

adaptation planning. Those authors also stress practical limitations in the data that are 

constraining its wider use, such as the need to provide simpler messages with an accompanying 

narrative to explain what CC means locally. Lorenz et al., (2017) explored the usability and 

adoption of climate projections within local adaptation planning in England and Germany. Their 

conclusions regarding the English context raised the question to what extent the discussion on 

the usability of climate projections at a local level is sensible at the moment. Lorenz et al. (2017) 

also concluded that Germany makes substantial use of past and present climate data for spatial 

planning, but the strictly regulated nature of planning prevents the use of climate projections, 

due to their inherent uncertainties. 

How exactly can uncertain probabilistic information be included in a decision support system? 

A basic concept, still widely used in engineering, considers the climate variability but only with 

constant properties through time, and based on the severity of the past events. This stationarity 

assumption is still a common practice when designing new infrastructures (Klein Tank et al., 

2009). Therefore, the capacity to endure extremes is accounted for up to a magnitude that might 

not realistic at locations where that assumption is not met. In fact, urban planners often take 

into account spatially course projections of climate events and then apply general adaptation 

measures across the whole metropolitan area (e.g., the utilization of certain thickness of 

insulation of electric wires or the usage of pipes with specific diameter or/and of certain material 

when the replacement takes place). Such adaptation measures are not location-specific. Hence, 

they may be effective but not efficient. Instead (or additionally), urban planners could use 

localised climate projections to prioritize projects according to areas with strongest future 

impacts (i.e., the conjunction of hazards exposure and vulnerabilities). Detailed climate 

projections could assist with major infrastructures development to ensure their safety. For 

example, industries with high potential to contaminate water resources and soil could be 

located in areas of low risk of extreme climate impacts. Urban planning should give a greater 

emphasis to the locations exhibiting higher impacts on the vulnerable part of society, such as 

children, elderly and low income communities. Furthermore, close attention should be given to 

land-use planning to prevent new urbanization in high-risk areas (including high-risk areas in 

distant future). 

The important reason why the localised climate information is being incorporated to urban 

planning rather slowly is that data providers and data users need to interact better. It can also 

be due to the uniqueness of each urban system, or because climate adaptation is still somewhat 

new in the policy making agenda (Carter et al., 2015). Climate experts often do not have a 
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mandate to influence the decision-making process, while urban decision makers need assistance 

with data handling and interpretation. In urban space, various programs, institutes and private 

stakeholders typically address individual aspects of adaptation planning, but the coordination 

between them is generally week (WMO, 2014). Due to the novelty of this agenda, the interaction 

between stakeholders should have a form of long-term bidirectional communication to allow 

for feedback and further adjustments. Moreover, Schoof (2013) suggested to establish new 

expert positions within decision-making bodies. Those climate professionals would help to 

increase the utility of localised climate projections. 

To successfully tackle the impacts of CC in urban systems, climate projection data with a suitable 

spatial scale are vital. For example, while water management studies require an inter-regional 

approach, UHIs or stormwater related challenges are by their nature local (George et al., 2016).  

Local stakeholders often have very fine scale information regarding vulnerabilities to changing 

climate, while at the same time local decision makers have a key responsibility to deliver space-

specific adaptation measures to address the environmental, social and economic implications of 

CC (Carter et al., 2015).  

Currently, we are witnessing two parallel tendencies. The first one is a push towards localised 

city / district level planning (George et al., 2016), and a second one is a need for long-term 

adaptation planning (Davoudi et al., 2012). The lack of information that can be used as a basis 

for impact studies addressing these two requirements represents a certain gap. Different 

communities are mentioning this gap, each of them from their own perspective. The 

environmentalist community often refers to a gap in knowledge (e.g. Martins & Ferreira, 2011) 

and urban planners state that cities do not have skills and expertise, whilst decision makers 

address the shortage of financial resources to bridge this gap by consultancy (George et al., 

2016). However, the two above-mentioned requirements are bounding this gap. 

The usual approach to dealing with uncertainties in future projections of climate change and its 

impacts is to consider a range of possible future scenarios under different Representative 

Concentration Pathways (RCPs) (e.g., RCP 4.5 or RCP 8.5) described by Van Vuuren et al. (2011). 

The temporal scope of most of the impact studies based on such CC projections is the end of the 

century. These studies are particularly useful for long-term sustainable development planning, 

because it must account for vulnerability to extreme weather events, disaster management and 

adaptation, particularly in developing countries (Mirza, 2003). Nevertheless, Vautard et al., 

(2013) argue that the medium term future period of 2050 corresponds to the societal demand 

of climatic projections useful for adaptation purposes. Regardless of the time scope of the 

climate projections (2050 – medium term future; 2100 – distant future) or the range of possible 

future scenarios, important is the need for downscaling scenarios and projections at spatial 

scales that are relevant for adaptation policies, particularly at city scale. 

Carter et al. (2015) advocate that, for effective adaptation, decision makers should develop 

responses to recent trends in weather and climate, as well as to future projections. Those 

authors support this claim on a detailed case study of CC impacts and urban adaptation 

responses linked to spatial planning in Greater Manchester (UK). Research methods employed 

included downscaling climate projections, spatial analysis with Geographic Information Systems, 

land use modelling, energy balance modelling, social network analysis, participatory workshops, 
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and scenario development, among other approaches. We agree that their conclusions and 

recommendations are relevant to cities in general. 

Another successful multidisciplinary approach is the Rotterdam Climate Initiative 

(http://www.rotterdamclimateinitiative.nl), which aims to have reduced CO2 emissions by 50% 

and to have made the region 100% climate proof by 2025. Four potential climate scenarios are 

used for all climate research and policy-making in the Netherlands, such as the urban CC 

adaptation plans (City of Rotterdam, 2013). For example, two extreme climate scenarios are 

used to determine the upper and lower limits for the rise in sea level and the normative river 

flow, as well as to analyse flood protection measures. One of the scenarios assumes 1°C 

temperature rise on earth in 2050 compared to 1990 and no change in air circulation patterns, 

and the other one assumes 2°C temperature rise, milder and wetter winters due to more 

westerly winds and warmer and drier summers due to more easterly winds. These CC scenarios 

are also linked to two socioeconomic scenarios. This combination has led to four delta scenarios 

looking ahead to 2050 and 2100. The Rotterdam Climate Change Adaptation Strategy is based 

on these delta scenarios (City of Rotterdam, 2013). 

2.3.2 Mismatch between data needs and data availability 

In localised long-term future climate impact assessment, there is no alternative to deployment 

of climate projections. Swart et al., (2014) emphasised the need to enclose the gap in available 

climate simulations data by calling for making the projections more precise. Moreover, Olazabal 

et al., (2014) highlight the problem of the lack of knowledge on specific local future climate 

conditions. The quantitative knowledge relevant to local priorities is pivotal in urban planning, 

urban design and the adaptation strategy implementation processes. Space-specific information 

can be used for the development of map-based interfaces, which is very effective in 

communication. This is important because local level tools and decision support systems foster 

citizens’ participation, and allow them to embrace the change and tackle the adaptation as a 

positive opportunity rather than an issue solely bringing additional costs. 

Evidence based knowledge of previous events, general climate change information, localised 

climate projections and vulnerability assessment of exposure features represents the main 

components of urban adaptation strategy. While local and regional governments have very fine 

scale information on urban systems and their vulnerability at their disposal, data with the 

adequate spatial scale regarding future climate behaviour, as simulated by GCM/RCM models, 

are often lacking to address its relation with various aspects of urban systems. This mismatch 

between data needs and data availability is schematically depicted in Figure 2, which also 

illustrates the magnitude of the need for applying downscaling techniques to the already 

available GCM/RCM data.

http://www.rotterdamclimateinitiative.nl/
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Figure 2 - Mismatch between data needs and data availability in urban systems. 

The discrepancy between features A and B (Figure 2) express the general mismatch at spatial 

and temporal scales. Ideally, A and B would overlap. 

Figure 2 can provide insights on questions like: Is the available data sufficient to address a 

particular urban challenge? Is there a need to apply downscaling techniques, and if so, what 

would the satisfactory spatial and temporal target resolution be? For example, there is a great 

variation in the requirements on space and time resolution in hydrology. Water management 

operates on broader areas at catchment scales, thus the common RCM output with 50x50 km 

cell size might be feasible. Conversely, stormwater and urban draining analyses require a much 

finer spatial and temporal scale, coming down to point scale representing individual rain gauges.  

Similarly, on the temporal axis of Figure 2, flash floods analysis calls for hourly and sub-hourly 

data. Overall, the needs for urban hydrological studies are located in the right-bottom part of 

object B (Figure 2). For example, heat waves (in dependency on what kind of environmental 

index is being used) are typically defined as certain days during which the temperature does not 

drop under a certain threshold. Hence, daily temperature data would be effective for such an 

assessment and subsequent adaptation planning. Additionally, the dotted lines in Figure 2 

represent examples of the mismatch between raw GCM/RCM output and the needs of urban 

studies. The line marked as I illustrates the situation where cutting-edge RCM simulations are 

available (e.g. EURO-CORDEX data with 12x12 km /day resolution) and the UHI effect is of main 

concern. The longer line II depicts GCM/RCM of 50x50 km / 6 hourly, and the subject to be 

analysed is a stormwater discharge. These illustrative examples assist in reading Figure 2, where 

the length of lines I and II represents the magnitude of the scale mismatch, which emphasise the 

current need for the deployment of downscaling techniques. 
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2.3.3 Climate change adaptation practices and scale interdependency 

Grimmond et al. (2010) identify current capabilities to observe and predict urban atmospheric 

processes across a range of spatial scales. In future urban climate assessment, there is a need to 

not only estimate the climate behaviour, but also the socioeconomic evolution of the urban 

system. Those two are bind since they are bidirectional inter-dependent. Therefore, the 

modelling should also be coupled. Land use and land cover represent prominent observable 

tokens of the socioeconomic situation. Generally, land use in the context of complex urban fibre 

is a phenomenon occurring (and being managed) at finer scale than typical GCM/RCM output, 

thus downscaling techniques have their value for urban planning and design. Moreover, land-

use changes are not considered in RCMs, which are usually run with static vegetation (Rössler 

et al., 2017). For example, when designing an urban square, decision makers having the localised 

information on future climate conditions (including the influence of e.g. amount of sealed 

surface to water run-off and UHI) may design the square differently. The positioning of 

circumferential buildings, the excessive water draining vegetation or shading trees can be 

added, targeting the areas of likely future high exposure. Street design can incorporate the 

corridors following the main local wind directions (Georgi et al., 2016). Such decisions are 

difficult to be made based on coarse resolution decision making supporting materials, 

particularly in a city context, where conditions might differ street by street (Ali-Toudert & Mayer, 

2007). 

Specific climatic conditions predefine effective adaptations. The strategies should be 

harmonious within a large spatial sustainability context. Hence, for example, utilizing non-native 

flora (aiming for local temperature reduction) with high water demand in arid zones may result 

in the reduction of city water supply (Ruddell & Dixon, 2014). According to Georgescu et al., 

(2015), the balance between localized cooling and water scarcity in cities should be subject to 

further research. 

Both climate and land cover models carry large uncertainties. This uncertainty must be kept in 

mind during the decision making. Hence, the action taken on the basis of localised future 

projections should favour the so called robust and low-regret measures.  Those measures are of 

relatively low cost and bring large benefits. For example, instead of increasing the capacity of a 

sewerage system, which does not guarantee sufficient functionality under long-term climate 

change, the city may deploy a green infrastructure at a lower cost. Such a solution also brings 

additional benefits and is more flexible, therefore it allows the urban system to avoid locking 

itself in the unsustainable strategy (Georgi et al., 2016). Moreover, due to the complexity and 

long-term nature of climate, the integration of a monitoring, reporting and evaluation (MRE) 

system is vital (UNFCCC, 2010). MRE does not only represent a procedure to systematize 

experience and extend knowledge, but also provides an emphasis on learning. Hence, MRE 

allows for necessary continuous adjustments in future decision making (Bours et al., 2014). 

2.3.4 Practical bottlenecks for geographers, urban planners or statistics 

practitioners 

Terminology represents the very first bottleneck for everyone new to the field of downscaling 

of climate projections. Von Storch et al. (1991) might have been the first ones to use the term 

downscaling and it has been widely used since then, but the terms disaggregation and 
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regionalization are also frequently used in Europe. In parallel, the name refinement was 

proposed by Environment Canada (Hengeveld, 2000). Nevertheless, the downscaling concept 

has been increasingly utilized in Canada (Barrow et al., 2004). ‘Statistical/empirical’ downscaling 

is commonly addressed by simplified terms ‘statistical’ or ‘empirical’ downscaling, while 

‘Dynamical downscaling’ can be referred to as ‘numerical’ downscaling (Bi et al., 2017). 

Downscaling and climate modelling represent a multidisciplinary field, where researchers from 

various backgrounds intersect their efforts, resulting in specific terminology, which may be 

somewhat confusing.  For instance, Polynomial Regression (also called the Surface Trend 

Analysis) is a statistical technique. In the context of spatial interpolation procedures, it is 

commonly classified as a deterministic technique, and kriging approaches are classified as 

stochastic. Furthermore, the terms ‘statistical’ and ‘stochastic’ (frequently used as names of sub-

classes in downscaling methodological reviews) are not always considered as synonymous, even 

though both terms could be seen as identical since they are referring to methods handling input 

modelling factors as variables with certain probability distributions. In addition, recent 

development is moving towards multi-step methodologies containing deterministic and 

stochastic components. This evolution leads to the introduction of new terms like hybrid or 

semi-stochastic approaches, which makes the efforts of initial exploration of various 

downscaling methods even more challenging. Consequently, we present perhaps the most 

comprehensive graphic in Figure 3. Not all classification terms found in the literature are 

included, but it is helpful when one tries to orient oneself in the main sub-categories of 

statistical/empirical downscaling. 

Figure 3 - Main families of empirical/statistical downscaling (adapted from Bi et al., 2017). 

Wilcke & Bärring, (2016) argue that many climate impact modellers are simply not able to handle 

the data generated by GCM-RCM simulations. This topic is seldom discussed in urban climate 

scientific literature (e.g., Wilcke & Bärring, 2016; Rössler et al., 2017). Here, we hypothesize that 

the underlying reason largely lies in certain entrance barriers within the IT domain. Sometimes, 

one can find pointers, for example when Fallmann et al. (2017) state that calculations were 

carried out using Climate Data Operators (CDO) tools. However, the comprehensive know-how 
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is not that straightforward to find. This IT bottleneck is possible to divide into two related areas. 

First, is the data structure / format, and the second is the amount of data generated by GCM-

RCMs (meaning both data volume and large quantity of files). 

Future climate projections data are commonly provided in NetCDF (Network Common Data 

Form) format. This is a set of interfaces, libraries, self-describing, machine-independent and 

array-oriented data formats supporting creation, access and sharing of scientific data (Rew et 

al., 2011). NetCDF has its origin in the University Corporation for Atmospheric Research (UCAR) 

consortium, under the Unidata program. NetCDF is a successor of Common Data Format 

developed by NASA, but it is no longer compatible (Rew et al., 2011). All above-mentioned 

entities represent supreme sources of information. The various versions of NetCDF data can be 

encountered (NetCDF-3, NetCDF-4/HDF5, NetCDF-4/HDF5 classic and 64-bit Offset format), 

which may easily lead to confusion (Rew et al., 2011, Appendix C). Since March, 2011 the 

NetCDF-4/HDF5 file format is standard and has been approved and recommended by NASA 

Earth Science Data Systems (http://earthdata.nasa.gov/standards; accessed: 13/03/2017), and 

NetCDF Classic and 64-bit Offset Format are standards recognized by the Open Geospatial 

Consortium (OGC; http://www.opengeospatial.org, accessed: 13/03/2017). In general, NetCDF 

data is binary, self/describing and portable – meaning that all computer platforms, regardless of 

their approaches towards integer storage, characters and floating point numbers can access 

such data (Rew et al., 2011). A variable represents a multidimensional array of values of the 

same type. The dimension specifies the variable shape, common grid and coordinate system. An 

attribute holds the properties of data sets (global attribute) or specific variable (e.g. units), but 

attributes cannot be multidimensional (Rew et al., 2011). The other important role of attributes 

is the implementation of conventions. Typically, it is a name of an attribute rather than the name 

of the variable that is subject to standardization. The NetCDF Climate and Forest Conventions 

dictates the organization of the data in the climate domain (Eaton et al., 2011). 

The NetCDF-4/HDF5 represents the file format providing the most enhanced capabilities.  The 

deployment of HDF5 as storage layer removes many of the restrictions common to the 64-bit 

offset and the classic NetCDF files. The model allows for user-defined data types including more 

primitive types as strings, larger variable sizes and supports multiple unlimited dimensions. 

Furthermore, the HDF5 storage layer allows for per-variable compression, multidimensional 

tailing and dynamic scheme changes, meaning that there is no need to copy data when adding 

a new variable. Finally, when reading and writing NetCDF-4/HDF5 files, the parallel I/O 

(input/output) is supported, thus the computational performance is significantly improved 

[7.3.4. Parallel I/O], which is of extraordinary importance when handling large multi-model 

ensembles of climate projections due to large number of files. 

The cost of the above-mentioned power and flexibility comes in software applicability. Most of 

existing NetCDF software is only compatible with the classic data model and it is not capable of 

handling the additional complexity. This brings the necessity of installation of multiple SW 

libraries, but the more important challenge, reported by NetCDF users, is the shortcoming of 

Windows platform support in comparison with Linux 

(https://earthdata.nasa.gov/standards/netcdf-4hdf5-file-format; accessed: 15/03/2017). 

Additionally, some of GCM/RCM simulations come on unconventional grids (e.g. False North 

Pole rotated native grid for European domains of EURO-CORDEX experiment). They can be easily 

http://earthdata.nasa.gov/standards
http://www.opengeospatial.org/
https://earthdata.nasa.gov/standards/netcdf-4hdf5-file-format
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re-rotated (https://www.earthsystemcog.org/projects/cog/faq_data/; accessed: 17/03/2017), 

but not by tools commonly used by classical geographers, urban planners or statistics 

practitioners. Somewhat extensive lists of SW tools to conveniently handle NetCDF data can be 

found in https://www.unidata.ucar.edu/software/netcdf/software.html (accessed: 

23/03/2017). 

Apart from data format, the second practical challenge of the deployment of the full multi-

model climate ensembles is simply the amount of data in terms of both-data volume and large 

quantity of files generated by GCM/RCMs. We will use an example to illustrate the data amount 

necessary to work within the context of climate projections. Multiple variables such a 

precipitation, maximum and minimum temperatures, solar radiation, relative humidity and wind 

speed are of interest for impact studies (Wilby et al., 2004). Here, for simplicity, only one variable 

will be considered for illustration purposes. We selected the EURO-CORDEX (Jacob et al., 2014) 

multi-model ensemble since it represents the cutting edge, fine scale set of climate simulations 

and it is openly available. Furthermore, for the sake of simplicity, we are only considering a single 

climate scenario (e.g. RCP 8.5), but note that in a real climate impact assessment exercise all the 

following numbers would be multiplied by the number of required variables, and then the data 

for each scenario would also be added.  Searching the data internet portal (https://esg-

dn1.nsc.liu.se/projects/esgf-liu/; accessed: 03/10/2016) with the following specifications 

returns approximately 620 files with 620 GB: CORDEX experiment, daily data, EUR-11 domain, 

historical plus RCP 8.5 runs, average temperature, time span between 1971 and 2100, and only 

10 GCM/RCM models as a minimum number of ensemble members. 

The data comes in the form of NetCDF-4/HDF5 files – each one containing a time slice of 5 years 

covering the whole European domain. In Windows environment, users have an option to add 

the files, one by one, to the basket as in a common e-shop. However, it is clearly convenient to 

migrate to the Linux environment already in this very first step. Then, the automatic wget 

download is available and requires only basic knowledge of shell scripting. This principle holds 

true for each subsequent step in data handling. For example, when applying spatial and 

temporal subsetting with focus on a particular urban system, the resulting data are not large in 

terms of bytes, but the number of files remains. Luckily, the climate community invested 

significant efforts to provide the tools for managing such a data (including e.g. merging files by 

time, so our 620 files potentially become just 1). But, again, those tools are not common in the 

tool boxes of most classical geo-practitioners. 

To provide the directions to the reader searching for the right tools, we would like to highlight 

some (reflecting just our personal preference). To understand the data structure, time and space 

handling, and quick visualisation purposes, Panoply software from NASA 

(https://www.giss.nasa.gov/tools/panoply/) and Ncview by David W. Pierce 

(http://meteora.ucsd.edu/~pierce/ncview_home_page.html; accessed: 03/10/2016) represent 

convenient starting points. We recommend the CDO tools (Schulzweida, 2017) for pre-

processing and computing many of traditionally used environmental indices. Working with CDO 

within the Python environment is also an option (e.g. Anaconda Python distribution). The 

‘extRemes’ R package (Gilleland & Katz, 2016) allows to build indices in an R environment and 

contains few advanced indices (e.g. Russo et al., 2015). To calculate and interpret climate change 

signals and time series from climate multi-model ensembles the ‘wux’ R package (Mendlik et al., 

https://www.earthsystemcog.org/projects/cog/faq_data/
https://www.unidata.ucar.edu/software/netcdf/software.html
https://esg-dn1.nsc.liu.se/projects/esgf-liu/
https://esg-dn1.nsc.liu.se/projects/esgf-liu/
https://www.giss.nasa.gov/tools/panoply/
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
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2016) is an interesting tool, and the recent ‘spdownscale’ R package (Rasheed et al., 2017) can 

be of priceless help when in need for statistical downscaling and bias correction. 

Furthermore, somewhat related to the IT bottleneck, we would like to highlight a few 

methodologies that have been proposed for reducing the computational cost. When 

computational resources represent a constraint, the full multi-model climate ensemble can be 

reduced to a few representative members, while preserving crucial statistical properties (total 

spread / uncertainty) and simultaneously reducing structural bias in the resulting subset 

(Mendlik & Gobiet, 2016). These authors proposed a straightforward three-step procedure to 

achieve this utilizing commonly used statistical techniques: principal component analysis and 

cluster analysis. Other related useful approaches are provided by Wilcke, & Bärring (2016) and 

Cannon, (2015). 

 

2.4 Summary 

We introduced the rationale and problem background justifying the need for future climate 

impact assessment targeting metropolitan areas from a multidisciplinary point of view – climate, 

urban planning and policy making. The downscaling of climate projections generated by 

GCM/RCMs was briefly reviewed and discussed. Furthermore, focus was given to recent 

developments in urban climate studies making use of downscaling approaches. The reasons why 

fine-scale climate data is being incorporated to urban planning rather slowly are highlighted. A 

thorough review on the major challenges in the use of climate change impact data for urban 

planning is provided. Moreover, some strategies to deal with them are suggested. 

Three major practical bottlenecks of using climate projections and their downscaled derivatives 

in an urban context were covered, namely the terminology, the scale mismatch, and the IT 

aspects. In the literature, the call for multidisciplinary cooperation between the communities of 

climate and urban planning can be found. However, we would like to emphasize that specific IT 

expertise would be also required to successfully tackle the task of future climate impact 

assessment at an urban scale.  

In this chapter, we attempt to bridge the gap between all involved expert stakeholders. By 

highlighting the pitfalls and providing pointers towards appropriate tools and information 

sources we hope this work might be useful to anyone new in the field of impact assessment 

using localised future climate data, regardless of the background from which he or she will tackle 

this multidisciplinary challenge.
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3 Ranking European Capitals by Exposure to Heat Waves and Cold 

Waves 

In this study we focus on future impacts of temperature extremes in European capital cities, 

with emphasis on heat waves since these represents one of the most remarkable extreme 

climate related events regularly striking Europe (Vautard et al., 2013). Figure 4 serves as a 

domain map of this study localizing the target cities, indicates the population densities by colors, 

and also illustrates the occurrence of severe HWs between 1981 and 2010. In 2007, humankind 

became predominantly urban based (McCarthy et al.,  2010; UN, 2014). Projections indicate that 

by 2050 urban systems will be home to 66% of the global population representing 6.3 billon 

urban dwellers (UN, 2014) with this proportion being even higher in European Union, where 

currently 75% of population reside in cities with expected growth to 82% by 2050 (Guerreiro et 

al., 2018; UN-habitat, 2010). The increasing urbanization (Estrada et al., 2017; Smid & Costa, 

2017) accompanied with an aging trend of European society will lead to magnified impacts of 

future heat including the higher risk of future heat related mortality (Baccini et al., 2008; Hajat 

et al., 2014). Urbanized areas are not only major drivers of climate change, but are 

simultaneously hot spots of climate change impact (de la Barrera & Henriquez, 2017). The recent 

study by Guerreiro et al., (2018) covering 571 European cities shows that capitals are among top 

100 for one or more analyzed future hazards. European capitals typically represent around 30% 

of national GDP (Eurostat, 2016), and they often have a critical role concentrating international 

and intranational flows of capital accompanied with labour activity, and as such, they are vital 

for national competitiveness in a globalized world (Dijkstra et al., 2013). 
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Figure 4. Target cities with the population density (for 2010) indicated by colors, and severe HWs (magnitude > 

3) occurrence between 1981 and 2010 illustrated by proportional sized background symbols. 

Europe was marked amongst the particularly warming regions (IPCC, 2007), with strong 

response to the anthropogenic climate change thus exhibiting stronger warming rate then the 

planetary mean (Amengual et al., 2014; Kuglitsch et al., 2010). The Heat Waves (HWs) do not 

only have various human, economic and environmental consequences (Argüeso et al., 2016), 

but they also represent one of the deadliest weather-related hazards (Habeeb et al., 2015; 

Revich & Shaposhnikov, 2012; Robine et al., 2008). Many efforts have been recently devoted to 

studying European heat (e.g. Guerreiro et al., 2018; Lhotka et al., 2018; Pereira et al., 2017; 

Russo et al., 2014; Schoetter et al., 2015). A detailed description of the 10 most severe HWs 

within European domain since 1950 can be found in Russo et al. (2015). The 2003 HW had a 

death toll of approximately 40,000 people in Europe, highlighting the need to implement early 

warning systems in European cities (García-Herrera et al., 2010).  The strongest event of the 

present era was the 2010 HW, strongly impacting Moscow, where an extreme day temperature 

of 38.2 °C was recorded and more than ten thousand people died (Barriopedro et al., 2011). 

Since then, other intense events stroke Europe, such as the sever Central European HW events 

of 2013 (Holtanová et al., 2015) and 2015 (Hoy et al., 2017), or the recent heatwave of summer 

2017 that impacted western and central Europe  (Sánchez-Benítez et al., 2018).  

Regarding the future perspective, we will encounter more frequently HWs of greater intensity 

and duration across entire Europe. The increase in amplitude will be most dramatic in southern-

central Europe, while the extension of the duration is expected to be most pronounced in the 

Mediterranean (Fischer & Schär, 2010; Guerreiro et al., 2018). The future impacts in southern 

areas is frequently emphasized in the literature (e.g. Jacob et al., 2014; Pereira et al., 2017), and 
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the high populated areas of Mediterranean coast will be of concern (Fischer & Schär, 2010). The 

north-south gradient across the Europe is expected to remain (Fischer et al., 2012), but the 

strongest intensification of hot extremes may occur in mid continental latitudes (Fischer, 2014) 

due to higher increase in climate variability towards the north (Fischer & Schär, 2010). Extreme 

heat events can occur also in Northern areas currently not being strongly associated with HWs 

(D’Ippoliti et al., 2010). 

Despite these predictions, situation in urban zones will be somewhat different. At the city level, 

the anthropogenic activities, such as natural-to-urban land conversion or changes in radiative 

substances in the atmosphere, will influence local climates (Estrada et al., 2017). In urban 

settings the stress of extreme heat is exacerbated by the UHI – Urban Heat Island effect. Dark 

surfaces (e.g. roads, parking lots or rooftops) may warm about 8 °C above the temperature of 

surrounding air (Patz et al., 2005). The construction of high-rise buildings and the densely build 

environment contribute to exacerbated heat stress. Varentsov et al., (2017) showed for Moscow 

that recent urban sprawl contributed by 10% on UHI increase in central metropolitan area. UHI 

also exhibit spatial and diurnal variation. The stronger effect is represented by nocturnal heat 

UHI but this is concentrated in city centers and other densely constructed areas. On the other 

hand, spatially larger day-time UHI has lower intensity and warming is most pronounced in 

residential neighborhoods less protected by shading (Lemonsu et al., 2015). However, the 

impacts remain unclear – for example, Schuster et al., (2014) in study of spatially variability of 

heat related mortality in Berlin, did not find any clear spatial trends or major clusters. Instead 

their results indicate large spatial variability with many hotspots.    

In Europe the increased heat stress within urban areas was demonstrated, for example, for 

Hungary (Unger, 1996), Greece (Kamoutsis et al.,  2007), or more recently for 571 cities all over 

Europe (Guerreiro et al., 2018). The HW impact is heterogeneous across the European cities. 

(Ward et al., 2016) concluded that cities located in cooler climate are more affected than 

settlements in warmer regions.  D’Ippoliti et al., (2010) showed that the mortality was amplified 

by HW by 12.4% in North Continental part and even by 21.8% in Mediterranean. The trends are 

alarming worldwide but in the global study on modern megalopolises, Papalexiou et al., (2018) 

explicitly pointed out Paris with warming trend 0.96 °C per decade closely followed by Moscow, 

thus illustrating the importance of the issue in European context.  

The largest and most densely populated urban zones exhibit the strongest UHI (Schatz & 

Kucharik, 2015), which supports our focus on Capitals. Moreover, under the RCP8.5 “business 

as usual” scenario, even for median cities there is expected 1.7% and 5.6% lost in GDP for years 

2050 and 2100 respectively, and the total cost of urban impacts could be magnified by a factor 

2.6 due to UHI effects (Estrada et al., 2017). These findings, together with close link between 

capital cities and national economies (Dijkstra et al., 2013) also justify the selection of 

target cities in this study.  

Our primary purpose was to examine the changing characteristics of heat extremes 

across the European capitals with particular attention to a comparison among the cities. 

The quantification of cost and benefits, and the adaptation design of urban space 

remains the major challenge (Guerreiro et al., 2018) and our method offers a suitable 
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framework to assess HW risks associated with future climate in urban areas. The 

variations among the cities depend on wide range of geographical, socioeconomic, 

demographical, technological and cultural factors (Baccini et al., 2008). In future Europe, 

the currently relatively better adjusted (due to their historical experience with extreme 

heat) Southern cities will anyway need to increase their resilience which can be realized 

mostly via radical changes and costly, fundamental re-engineering measures (Guerreiro 

et al., 2018), while Central Europe is expected to have more capacity and economic 

power to facilitate the necessary adaptations ( Guerreiro et al., 2018; Tapia et al., 2017).  

In this study, we computed HWs and Cold Waves (CWs) indices on a subset with eight members 

of EURO-CORDEX ensemble (Jacob et al.,  2014) for historical (1971-2005) and future (2006-

2100) periods under the RCP8.5 (Riahi et al., 2011) “business-as-usually” scenario for 31 

European capitals (EU28 plus Moscow, Oslo and Zurich). HWs and CWs indices were constructed 

based on the simulations of daily near-surface maximum and minimum temperatures, following 

the definition of the Heat Wave Magnitude Index daily (HWMId) (Russo et al., 2015). The spatial 

extent of Larger Metropolitan Area (LMA) for each city was based on the data from the Urban 

Atlas produced by the European Environmental Agency (EEA, 2012). We propose a ranking 

procedure for the capital cities in terms of HWs and CWs impact. We also reflected the variation 

in impacts of extreme heat onto different metropolitan societies by including the population 

density as additional exposure variable into the ranking. 

This cities’ ranking has three major benefits. Firstly, it communicates the risk associated with 

climate change induced extreme heat locally – virtually on “people’s backyards”. Due to its 

simplicity and the fact that it allows to illustratively relate to situations of other Capitals, may 

help to engage not only scientists, but also the decision makers and general public, on efforts to 

combat climate change. In many cases, we are afraid that society may be often overwhelmed 

by either the complexity of climate related scientific findings or by constant repetition of media 

correctly informing on pessimistic perspective of our climate. Secondly, such an indicator can 

serve as a basis to decision making on European level, assisting with prioritizing the investments 

and other efforts in the adaptation strategy. Thirdly, this study communicates the magnitude 

(property of HWMId) of future heat and as such contributes to raise awareness about HWs since 

they are still often not perceived as a serious risk (Keramitsoglou et al., 2017). 
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3.1 Data and Methods 

3.1.1 Climate Simulations 

To investigate impacts of extreme temperatures across the European capitals (EU28, Moscow, 
Oslo, and Zurich) we used the recommended multimodel ensemble approach since ensemble as 
a whole outperforms individual projections and provide more a reliable picture of future 
changes (Sillmann et al., 2013b) and multi dynamical Regional Climate Model (RCM) downscaling 
of individual Global Circulation Models (GCMs) is also desirable (Smid & Costa, 2017). The 
European branch of CORDEX experiment currently provides the largest collection of simulations 
and provides the data at two different resolutions – 0.11° and 0.44°. These simulations were 
evaluated by many. Projected climate variables were compared with the observed values (e.g. 
Abiodun, et al., 2017; Hofstra et al., 2009; Soares and Cardoso, 2018) and also indices 
constructed based on the simulations of daily minimum and maximum temperature CORDEX 
data were extensively validated against their counterparts computed on observational dataset 
(Lelieveld et al., 2016; Pereira, et al., 2017). These validation exercises are most frequently done 
using the Ensemble-OBS gridded observational dataset by Haylock et al., (2008). Some studies 
specifically assess the ability of models to project the HWs (e.g. Ouzeau et al., (2016), Vautard 
et al., (2013); or Lhotka et al., (2018)) and generally literature confirms the reliability of EURO-
CORDEX data (e.g. Kotlarski et al., (2014)). Here we rely on these previous studies and consider 
the EURO-CORDEX simulations valid for analyses of future heat and cold waves. 

The EURO-CORDEX models exhibit common biases underestimating heat extremes in 
Scandinavia, and the contrary for Southern and Central Europe, and also exhibit large-scale 
cooling over vast continental areas in simulations at increased resolution. Detailed bias analyses 
can be found in Vautard et al. (2013). Despite those systematic biases, simulated values of 
temperature variables were found especially reliable. Moreover, the indices used in this study 
(HWMId/CWMId by Russo et al., (2015) – see section 2.2.1) contain implicit bias corrections by 
obtaining the percentile thresholds from respective model runs instead of observations. This 
strategy to minimize the bias was also used by Pereira et al. (2017).  
 From two available EURO-CORDEX resolutions we choose the finer grid projections (~ 12.5 km). 

It was shown that coarser simulations project drier summer conditions (Kotlarski et al., 2014) 

and very persistent HWs (Vautard et al., 2013). These issues are improved in higher resolution 

(Kotlarski et al., 2014; Lhotka et al., 2018), and the main advantages of finer scale projections 

are in warm season (Soares & Cardoso, 2018; Lhotka et al., 2018). These improvements can be 

attributed to enhanced orography and better resolved local feedbacks and, as such, being 

pronounced in some coastal regions due to more accurate representation of coastline and 

coastal breeze (Vautard et al., 2013), and also in areas of complex terrain (Lhotka et al., 2018), 

which are both relevant in context of our target cities. 

From full EURO-CORDEX ensemble we excluded some models due to their shortcomings in the 

Mediterranean area (Kotlarski et al., 2014) and in the ability to estimate the intensity of extreme 

events (Vautard et al., 2013). The resulting subset used in this work is composed of 8 simulations, 

containing different GCM/RCMs combinations performed by four different institutions (Table 

2). The daily maximum and minimum near-surface temperature data for the 1971–2100 period 

were retrieved from ESG – Earth System Grid data repository and the details on models can be 

found in the EURO-CORDEX website (http://www.euro-cordex.net).  

http://www.euro-cordex.net/
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Table 2 - The list of utilised GCM/RCMs combinations. 

Institute RCM Driving GCM 

Royal Netherlands 

Meteorological Institute 

(KNMI) 

RACMO22E ICHEC-EC-EARTH 

Danish Meteorological 

Institute (DMI) 

HIRHAM5 ICHEC-EC-EARTH 

Swedish Meteorological and 

Hydrological Institute (SMHI) 

RCA4 ICHEC-EC-EARTH 

Institut Pierre Simon Laplace 

(IPSL-INERIS) 

WRF331F IPSL-IPSL-CM5A-MR 

Swedish Meteorological and 

Hydrological Institute (SMHI) 

RCA4 IPSL-IPSL-CM5A-MR 

Royal Netherlands 

Meteorological Institute 

(KNMI) 

RACMO22E MOHC-HadGEM2-ES 

Swedish Meteorological and 

Hydrological Institute (SMHI) 

RCA4 MOHC-HadGEM2-ES 

Swedish Meteorological and 

Hydrological Institute (SMHI) 

RCA4 MPI-M-MPI-ESM-LR 

 

From all the Representative Concentration Pathways (RCPs) scenarios adopted by the IPCC for 

its 5th Assessment Report (Christensen et al., 2013) here we use RCP8.5 scenario.  Unlike the 

SRES (Special Report on Emission Scenarios) (Nakicenovic et al., 2000) scenarios, they are not 

associated with particular storylines thus account for combined uncertain influence of 

economic, technological, demographical and policy factors (Sillmann et al., 2013b). The RCP8.5 

assumes continued growth of energy demand, hence does not have any peak breaking point 

during the 21st century. This scenario assumes continuing trends in all anthropogenic activities 

influencing the climate with no mitigation policies being implemented (Riahi et al., 2011). 

Here, we choose this scenario because it might be more relevant in projected future 

heat impacts over the cities given the additional influence of the urbanization to local 

climates. The other reason lays in one of the major objectives of this study which is the 

communication of climate change. Multiple previous studies found that most severe impacts 

throughout the 21st century are projected under the RCP8.5 scenario (e.g. Jacob et al., 2014; 

Lhotka et al., 2018; Russo et al., 2015). However it is noteworthy the recent interesting finding 
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of Lhotka et al., (2018) for near future (2020-2049) in Central Europe the largest increment of 

HWs frequency exhibit the RCP4.5 “low concentration” scenario. Nevertheless, the main 

objective of this study is to analyse the evolution of extreme heat impacts during the entire 

century, and to communicate the quantified comparative hazard across the European capitals 

in simplistic manner, thus the RCP8.5 as an upper risk boundary was utilized in this study.  

3.1.2 Climate Indices 

Indices describing moderate climate extremes are commonly deployed to characterise the 

impacts of climate change, since they capture relatively frequent impact-causing events 

(Alexander et al., 2006). When assessing the impacts of extreme temperatures in changing 

climate, two main challenges are encountered. Firstly, the definition of extreme in long time-

span is problematic – current extremes are likely to become the future norms (Argüeso et al., 

2016). Secondly, the differences in local climates must be considered when the impact 

assessment aims to comparison amongst distant locations (Pereira et al., 2017) and the 

perception and vulnerability is not only function of local physical conditions but also of the 

cultural and environmental attitude of the society (e.g. Coccolo et al., 2016). These challenges, 

were overcome to large extend for most of the characteristics of future climate by (Alexander 

et al., 2006) and for HWs specifically by (Russo et al., 2014; and Russo et al., 2015).  

For assessing the risks and vulnerabilities of urban populations to extreme heat the frequency 

and occurrence of HWs are vital (McCarthy et al., 2010). However, the term heat wave may refer 

to many different things in dependence of used formula (Zhang et al., 2011). The diversity in 

obtained results was demonstrated by Jacob et al., 2014; pointing out the projected increase in 

HWs occurrence ranging from 9 to 45 depending on the index formulation. To define the 

consistent index capturing multiday temperature extremes is, due to the dependency of these 

events not only on the frequency distribution but also on the day to day persistence, especially 

challenging (Zhang et al., 2011). There have been numerous efforts to provide a robust HW 

definition (e.g. Alexander et al., 2006; Frich et al., 2002; Hansen et al., 2008; Kyselý, 2010; Lhotka 

& Kyselý, 2015; Lhotka et al., 2018; Meehl & Tebaldi, 2004; Orlowsky & Seneviratne, 2012; 

Perkins et al., 2012; Russo & Sterl, 2011; Russo et al., 2014, 2015; Schär et al., 2004; Sillmann et 

al., 2013a). However, the currently implemented ETCCDI (Expert Team on Climate Change 

Detection and Indices) index – the Warm Spell Duration Index (WSDI) still exhibits some 

shortcomings (see IPCC, 2012; Orlowsky & Seneviratne, 2012; Russo et al., 2014) and an 

universally accepted HW definition is still missing, thus represents an open issue to scientific 

debate (Keramitsoglou et al., 2017). 

In order to quantify heat wave (cold wave) intensity we deployed the HWMId (CWMId),  taking 

into account duration and temperature anomalies of heat waves into a single number (see Russo 

et al., 2015). The robustness of this index was illustrated, for example, by its ability to capture 

the large Finish HW of 1972 which till then went largely undetected by previous indices, despites 

the fact that this unusual event was reported in traditional newspapers. In the same time the 

HWMId also demonstrated its ability to precisely detect well known historical events across the 

globe (Russo et al., 2015). Hence, our choice of this HW metric allows for comparison amongst 

large distances in space and time. Moreover, to calculate the HWMId in the reference period, 

the bootstrap / one “out-of-base” year cross-validation procedure illustrated in Zhang et al., 
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(2005) is used, therefore avoiding potential heterogeneities between the outside and within of 

the base period (Sippel et al., 2015), which is in agreement with ETCCDI recommendations 

(Schaller et al., 2018). 

According to Russo et al., (2015) the HWMId is defined as the maximum magnitude of the 

heatwaves in a year, and a heatwave is defined as a climatic event equal or longer than 3 

consecutive days with maximum temperature (Tmax) above the daily threshold for the 

reference period 1981-2010. The threshold is defined as the 90th percentile of the set of daily 

maximum temperature computed from 31 day moving windows around each day of the year, 

for the entire 30 years reference period. Hence, for a given day d, the threshold is the 90th 

percentile of the set of data Ad defined as follows: 

 

 

where ⋃ denotes the union of sets and Ty,i is the daily Tmax of the day i in the year y. The 

magnitude of the event is then computed as the sum of the magnitude of the consecutive days 

composing a heatwave, with daily magnitude calculated by 

 

 

 

with Td being the daily Tmax on day d of the heatwave, T30y25p and T30y75p are, the 25th and 75th 

percentile values, respectively, of the time series composed of 30 year annual maximum daily 

temperatures within the reference period 1981–2010.  The Md function gives the magnitude of 

a single heat wave day. The Md is applied to each heat wave day and the final score of the 

HWMId is given by the sum of all Md values calculated for the days composing a heat wave.   

Here cold waves are defined as three consecutive days with daily minimum temperature below 

the daily threshold defined as the 10th percentile of daily minima, centered on a 31 day window. 

In analogy to the HWMId definition the Cold Wave Magnitude Index daily (CWMId) is defined as 

the minimum of the magnitude of all the cold waves in a year with values smaller or equal to 

zero. The CWMId sums the negative magnitude of the consecutive days composing a coldwave. 

In this study, in order to compare the CWMId with HWMId we take the absolute values of the 

CWMId. This means that CWMId values close to zero indicate cold wave with very low 

magnitude and high positive values correspond to severe or extreme cold waves. 
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The data pre-processing was executed by means of the Climate Data Operator (CDO 2018: 

Climate Data Operators.  Available at: http://www.mpimet.mpg.de/cdo) software and for 

calculation of HWMId/CWMId the “extRemes” R package (Gilleland & Katz, 2016) was used.  

 

3.1.3 Spatial Determination of Large Metropolitan Areas 

The usage of larger simulated or gridded observational datasets to assess the climate change 

impact over the set of target cities is not new (e.g. Guerreiro et al., 2018; Habeeb et al., 2015; 

Mishra & Lettenmaier, 2011; Papalexiou et al., 2018). The studies vary in the way how the target 

city areas are defined and how the data within the selected extent are treated, often in 

dependence on main aim of each study. Urban zones have been determined using different 

approaches, such as satellite night-time lights products (e.g. Yang et al., 2017), auxiliary data 

such as “Gisco Urban Audit 2004” (e.g. Guerreiro et al., 2018), areal estimates as a function of 

population density (e.g. Estrada et al., 2017), GIS processing of OpenStreetMaps (e.g. Varentsov 

et al., 2017), or predefined radius around the city centre (e.g. Papalexiou et al., 2018). Here, we 

exploit the data of Urban Atlas (EEA, 2012) offering the spatial extent of Greater Metropolitan 

Areas thus containing also the new and old urbanization situated often outside the municipality 

boundaries, but factually co-forming the metropolis as a whole and its climate. Subsequently, 

for each capital city apart Moscow, we sub set the HWMId/CWMId gridded values to the 

smallest rectangle containing the area given by Urban Atlas. In case of Moscow, which is not 

covered in the product, we estimated the area based on Varentsov et al., (2017). 

In contrast to recent extensive study of Guerreiro et al., (2018) using 1 grid point to represent 

each city, we involved in analysis all the grid cells of each selected rectangle, therefore fulfilling 

the requirement of de la Barrera & Henriquez, (2017) to focus on cities “in extenso”. For 

example, the rectangular subset for Lisbon contains also the Sintra mountain known for its 

relatively cooler and wetter microclimate (Alcoforado et al., 2014) but also being a home to 

significant portion of Lisbon Metropolitan Area population. Hence, we believe that this approach 

prevents to assess the climate impacts as too severe, which may be a case when only the central 

meteorological station or the associated grid cell is considered. 

Finally, we computed the annual median of the grid cells for each index, thus differing from 

previous studies based on averaged values, such as Abiodun et al., (2017); and Papalexiou et al., 

(2018). By this method, schematically depicted on Figure 5, each index for each city is 

represented by single vector, which than serves as the input for the comparative ranking 

procedure.  

 

http://www.mpimet.mpg.de/cdo
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Figure 5 – Goinformatics workflow to determine the larger metropolitan areas and post-processing of the 

computed climate indices 

3.1.4 Ranking Procedure 

To rank the capital cities in terms of impact risks, firstly, we split the merged climate simulations 

covering the 1971 – 2100 period consisting of historical and RCP8.5 scenario realizations into 

three periods: near past (1981–2010), near future (2021-2050), and future (2071-2100). This 30 

years chunks of computed indices were chosen to avoid the presence of climate change signal 

thus ensuring the stationarity in time series (Russo & Sterl, 2012). 

Secondly, we constructed the following matrix for each 30 year period (i.e. time-slice) based on 

the annual spatial median of computed indices: 

 

𝐴 = {𝐴𝑖𝑗: 𝑖𝜖𝐼;𝑗𝜖𝐽} 
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where I stands for the set of 31 cities, and J stands for the set of annual HWMId /CWMId values 

in the considered period. 

Subsequently, for each city, the number of HWMId/CWMId values exceeding a certain threshold 

were counted and divided by period length. These relative frequencies are interpreted as the 

probabilities of occurrence of events with given magnitudes for all cities in each time-slice. The 

considered magnitude thresholds were:  greater than 3 labeled as “severe” events, greater than 

6 labeled as “extreme” events, and greater than 9 labeled as “very severe” HWs and CWs. These 

thresholds are arbitrary but chosen in a way that they divide the past-present era HW 

magnitudes to approximately equal sized segments (the highest magnitude within computed 

ensemble mean between 1971 and 2020 is 11.204 for Berlin). Finally, the ensemble median of 

resulting probabilities was used for the final ranking and plotted on circular plots. 

Exposure to Heat waves and Cold Waves has been measured by means of population density. 

The data about 31 target capitals were retrieved from spatially explicit dataset by Jones & 

O’Neill, (2016) consistent with the SSP1 Socioeconomic pathway (O’Neill et al., 2014). According 

to the dataset, the most densely populated city in this study is London, followed by Moscow and 

Paris (Figure 2). On the opposite side relatively sparsely populated cities of Lefkosia, Tallinn, and 

Valletta can be found. The SSP1 scenario assumes, the rapid urbanization, continuing migration, 

and in low fertility countries (including Europe) positive economic prospects which will allow for 

medium fertility level (Jones & O’Neill, 2016). This dataset offers near past, current and 

estimated future projections, with data spanning over the period from 1980 to 2100 by decade. 

Firstly, we exploited only the values for the year 2010, thus considering the population density 

as a static factor. In other words, we analyzed recent past exposure and analogously estimated 

exposure for future periods as if the population densities remain constant. The vectors of 

population densities expressed in thousands per km2 were divided by their maximum (the value 

of population density of the densest populated city) therefore expressed at the standardized 

scale between 0 and 1, with values close to zero or one indicating low or high population density, 

respectively. Furthermore, the exposure measure was calculated as the product of the 

probabilities of occurrence of HWs with different magnitudes and standardized population 

density values. This was done for each target city and for all three analysed time-slices. Secondly, 

to assess the influence of evolving population projections, we undertaken a similar procedure, 

but instead of static population density data, the median of projected values within each period 

was utilized. For example, city specific HWs probabilities of 2071-2100 were multiplied by 

vectors of the same length, computed as medians of population density projections for years 

2080, 2090, and 2100 with the same standardization. Then again, the final ranking was based on 

the ensemble median. 
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3.2 Results 

Our results provide insights regarding the future evolution of temperature related exposure of 

population across all the European capitals. We showed that the cold waves exhibit a decreasing 

trend with already relative small impacts in the mid-century and almost entirely vanishing in far 

future. The results clearly show a gradual increase in frequency and severity of extreme heat 

events. Based on the impact ranking, in near and distant future extreme heat events will be not 

exclusive to traditionally exposed areas such as Mediterranean and Iberian Peninsula. Severe, 

extreme and very extreme HWs have increasing probabilities of occurrence from 2021-2050 to 

2071-2100 in most cities (Figure 6).  
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Figure 6 - Probability of HWs occurrence. 
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In near future (2021¬–2050), the occurrence of HW with magnitude greater than 6 is more likely 

in Madrid and Valletta (probability about 0.6), Lefkosia, Ljubljana, Rome, and Sofia (probability 

over 0.4) and Athens, Bucharest, Budapest, and Zurich (probability = 0.3), whereas the 

occurrence of HW of magnitude greater than 9 is most likely in the Valletta (probability = 0.46), 

Madrid (probability = 0.43), followed by Rome and Sofia (probability = 0.3). Valletta and Madrid 

show the highest values in probability of occurrence of heatwaves with a magnitude greater 

than 9 but also Ljubljana and Zagreb might be exposed to very extreme HWs. In 2071–2100, the 

probabilities of occurrence of HW greater than 6 are smaller than 0.5 only in Amsterdam. In 

distant future, the probabilities of occurrence of HW to be more severe than 9 are greater than 

0.75 in the following cities: Athens, Bratislava, Bucharest, Budapest, Lefkosia, Ljubljana, Madrid, 

Rome, Wien, Zagreb and Zurich, but closely followed by Paris (probability = 0.73) and Lisbon 

(probability = 0.71).  

These findings confirm that HWs will most likely strike the populous metropolises of Madrid, 

Rome and Athens commonly associated with extreme temperatures but also other cities, 

namely Wien, Zagreb, and Zurich should expect serious impacts in the future. The Maltese 

capital, Valletta, particularly emerges from the analyses, as it is projected to progress from a 

comparatively center position in the ranking for near past towards the most severe HWs by the 

end of this century. These impacts will be even more serious due to Valletta’s geographic 

location in the middle of Mediterranean Sea where the humidity will enhance all the negative 

implication for local population (Russo et al., 2017).  

Another important finding is related to relative change between near and distant future. 

Whereas the top ranked metropolises of Lefkosia, Madrid, Rome, Sofia and Valletta keep their 

leading positions, the continental European cities of Bucharest, Budapest, Ljubljana, Prague 

Paris and Zagreb will experience a dramatic increase in HWs occurrence. This holds true for the 

HWs of all the analyzed magnitudes. Somewhat special case is represented by Athens, because 

it is ranked in between these two groups for the period 2021-2050 (particularly for magnitudes 

higher 6 and 9) but will belong to the top ranked capitals towards the end of century. These 

relative changes between the two future periods are less striking when the population factor is 

taken in account. This is a direct consequence of the methodology, where the multiplication 

between 2 vectors (HWs probabilities and exposure factor based on population densities – both 

on scale between 0 and 1) naturally often yields lower results to be plotted. Hence, even though 

the HWs exposure evolution (the dramatic increase for continental cities towards the end of the 

century) remains, the relative changes on the circular plots are also decreased. 

When the population densities are considered (Figure 7, and Figure 8), the less populous 

metropolitan areas located in warm climates (e.g. Lefkosia or Valletta) do not appear in top 

positions of our ranking. The cities of Athens, Rome, Wien, Zagreb and Zurich strongly emerge 

from the analyses as the most exposed to future HW hazard, followed by Lisbon, Ljubljana, 

London, Madrid, Sofia, Stockholm, and Tallinn. Moreover, the involvement of the projections of 

population density to the analyses brought only quantitative changes and does not change the 

resulting ranking order. We hypothesize that this hints the need for more elaborated 

demographic models rather than indicating that population density is not suitable proxy for the 
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population exposure. 

 

Figure 7 - Exposure to HWs – static population density. 
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Figure 8 - Exposure to HWs – dynamic population density. 

With the increasing of global mean temperature, model simulations indicate that the occurrence 

of CWs of magnitude greater than 3 is unlikely in all cities (Figure 9). The estimated probabilities 

are smaller than 0.25 in all periods and vanish to almost zero in all cities in distant future (2071-
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2100). In near future (2021-2050), the occurrence of CW exceeding the magnitude 3 is more 

likely in the cities of Zagreb and Zurich (probability > 0.18), Budapest and Paris (probability = 

0.17) and Amsterdam, Berlin, Bratislava, Prague, Sofia, Warsaw (probability > 0.13), whereas the 

occurrence of CW stronger than value 6 of CWMId is more likely in the cities of Amsterdam, 

Bratislava, Bucharest, Paris, and Wien (probability > 0.1). The estimated probabilities of CW to 

be greater than 9 are smaller than 0.1 in all cities and within the three periods.  
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Figure 9 - Probability of CWs occurrence. 

Because CWs are projected to not to be a major threat across all the European capitals, this can 

be considered as a positive impact climate change and the exposure considering the population 

data was not analyzed.   
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Even though, the CWs are projected to be almost absent in the future, additionally we have 

tested if the reduction in CWs exposure will be equal, greater of lower than increase of HWs 

exposure. For each city we estimated the following index for each level of magnitude (3, 6, 9): 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  
|(𝑃𝑟(𝑓𝑢𝑡𝑢𝑟𝑒 𝐻𝑊𝑠) − Pr (𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝐻𝑊𝑠)|

|(𝑃𝑟(𝑓𝑢𝑡𝑢𝑟𝑒 𝐶𝑊𝑠) − Pr (𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝐶𝑊𝑠)|
 

 

The results show that for events of magnitude 3, in vast majority of European capital cities the 

increase in HWs will heavily outweigh the change in exposure to CWs. The same holds true for 

waves of magnitude greater than 6 when differences between present situation and distant 

future are considered. However, the extreme climate events of this magnitude and their shift in 

the near future, for some cities (e.g. Bratislava, Dublin, Ljubljana, Stockholm, Valletta, Vilnius, 

Tallinn, or Zurich), exhibit the opposite tendency in the relative evolution in exposure to HWs 

and CWs. This tendency is observable also for very extreme events for both considered time 

periods. It is noteworthy that in most cases where increasing CWs exposures were stronger than 

their HWs counterparts, the final results are of very small absolute values when compared with 

opposite situation. There is a large variety of possible explanations of this phenomenon and the 

further analyses would be needed to understand the underlying reasons. The full results can be 

found in Appendix B – Figure 15. 

It should be emphasized that the results interpretation should be handled with caution. For 

example, the large metropolitan area of Amsterdam, even though being ranked with lowest risk 

in comparison to other European capitals towards the end of the century, has an estimated 

probability of occurrence of severe HWs equal to 0.66, and for extreme HWs the probability is 

0.41 (chances of very extreme events are predicted to be 0.3). Hence, the result should not be 

misinterpreted as the extreme heat event will be no serious threat for such locations. 

 

3.3 Conclusions and Discussion 

Even though HWs are often still not perceived as serious risk (Keramitsoglou et al., 2017) they 

were found as the deadliest form of extreme weather in US (Habeeb et al., 2015) and there is 

no reason to assume that this will be different in Europe. Managing the impacts in cities is of 

paramount importance (UN-habitat, 2010) because it is the metropolitan space where the most 

people will encounter the extreme heat (Schatz & Kucharik, 2015) and it is the nature of urban 

space what enhances the impacts of larger scale synoptic phenomenon (e.g. Arnfield, 2003; 

Estrada et al., 2017; Zhao et al., 2014). The alternation of climate impacts by urban space will be 

not always necessary negative. Impacts may be softened by the joint influence of urban space 

and climate warming, such as some costs associated with maintenance of rich cultural heritage 

of European cities (la Fuente et al., 2011), reduction in winter heating demand and saved lives 

(Schatz & Kucharik, 2015, Kolokotroni et al., 2012).  Nevertheless, the increasing negative 

impacts of extreme heat will by far outweigh the positive consequences.  
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Specifically in urban areas, the crucial negative impacts of extreme heat include health risks, 

human discomfort, associated higher concentrations of pollutants, lower water quality, increase 

energy demand for cooling, and decrease in labor productivity (Dunne et al., 2013; Estrada et 

al., 2017; Zander et al., 2015). The risk of fire triggered by overload of power transmission lines 

(Altalo & Hale, 2004; Habeeb et al., 2015) also represent monetary costs and causes areal 

blackouts (Habeeb et al., 2015). Moreover, it was reported that even if the wildfire does not 

strike the urban zone directly, nearby agglomerations experience continued periods of extreme 

air pollution (Konovalov et al., 2011). Even with no fire occurrence, the episodes of extreme heat 

are responsible for the air quality deterioration in urban environment (Fischer et al., 2012; 

Nazaroff, 2013; Sarrat et al., 2006; Stathopoulou et al., 2008).  

The elderly, young, the individuals with preexisting chronic conditions, communities with weak 

socioeconomic status, people with mental disorders and isolated individuals are commonly 

listed as the vulnerable disadvantaged impact groups (Basu, 2009; Habeeb et al., 2015; 

Keramitsoglou et al., 2017). Especially the aging factor is emphasized in many studies (e.g. 

Baccini et al., 2008; D’Ippoliti et al., 2010; Michelozzi et al., 2009; Son et al., 2012). The elderly 

population suffers the enhanced burden from heat stress because of less-well functioning 

thermoregulation (Flynn et al., 2005), decreased skin blood flow and reduced cardiac output 

(Kenney & Munce, 2003), and higher presence of preexisting chronic conditions. The risk grows 

with continues aging in population of highly developed countries (Michelozzi et al., 2009). 

Moreover, the significant portion of wealthier elders choose to retire out of the urban zones 

thus remaining urban elders represent an important group in danger considering also their more 

frequent isolation, reluctance to spend on cooling, and urban effects on local climate (Habeeb 

et al., 2015; Hajat et al., 2014; Michelozzi et al., 2009; Son et al., 2012). 

Amongst the aforementioned consequences of extreme heat, the health impacts are of 

outstanding importance. In Europe, where universal healthcare generally covers the entire 

population, the health impacts also represent direct monetary cost to governments. The health 

impacts span from heat cramps which may signalize heat exhaustion and heat strokes 

(Michelozzi et al., 2009; Russo et al., 2017) leading to fatal congestive heart failure or acute 

myocardial infraction (Koken et al., 2003), to respiratory diseases. In high-income settings of 

European capitals only smaller proportion of fatalities occurs due to hyperthermia as such (Hajat 

et al., 2014). The respiratory heat-related illnesses may be associated with the systematic 

inflammation of airways resulting in chronic obstructive pulmonary diseases triggering dyspnea, 

further amplified by extreme heat conditions (Viegi et al., 2007). Furthermore, other infectious 

diseases associated with vector infectious agents, such as viruses, bacteria or protozoa, are 

thermostatically dependent (Kovats et al., 2001; Gubler et al., 2001; Patz et al., 2005). For 

example, the occurrence of food-born infection of Salmonellosis in Continental Europe was 

enhanced by 30% by elevated average temperature (Kovats et al., 2004; Patz et al., 2005). 

The physiological impacts of extreme heat have stronger association with nighttime rather than 

day time temperatures (Tan et al., 2010; Habeeb et al., 2015; Keramitsoglou et al., 2017). In 

urban systems during the night, the shallow, vertically stable atmosphere layer is formed, 

preventing the day-time diffusion of excessive heat. The day-night temperatures asymmetry is 

vital for human health since the urban inhabitants are prevented to recover during nocturnal 

relief and people suffer the prolonged periods of extreme heat burden (Anderson & Bell, 2011; 
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Schatz & Kucharik, 2015; Keramitsoglou et al., 2017; Pereira et al., 2017). Moreover, both – the 

enhanced duration and intensity of HWs are responsible for more severe impacts (D’Ippoliti et 

al., 2010; Son et al., 2012). The more negative impacts are commonly associated with prolonged 

periods of extreme heat (D’Ippoliti et al., 2010; Kalkstein et al., 2011; Schatz & Kucharik, 2015; 

Zuo et al., 2015; Pereira et al., 2017), even though Gasparrini & Armstrong, (2011); estimated 

the HW influence on mortality as relatively small in comparison to impact of daily high 

temperatures. 

This study does not substitute a detailed city-specific vulnerability assessment, neither explicitly 

quantifies the impacts in monetary or epidemiological terms. Our results provide insights 

regarding the future evolution of temperature related exposure of population across all the 

European capitals. We showed that the cold waves exhibit a decreasing trend with already 

relative small impacts in the midcentury and almost entirely vanishing in far future. This is in 

agreement with previous work on Iberian Peninsula by Pereira et al., (2017). We confirmed that 

HWs will most likely strike the populous metropolises of Madrid, Rome and Athens commonly 

associated with extreme temperatures but also other cities, namely Wien, Zagreb, and Zurich 

should expect serious impacts in the future. The Swiss capital – Zurich, deserves the particular 

attention since it was marked as the city with the most significant rise in HWs intensity 

(quantified as 12.9 C) from all the European capitals (supplementary of Guerreiro et al., 2018) 

and so far it does not represent recognized HWs impact hotspot. The Maltese capital, Valletta, 

particularly emerges from the analyses, as it is projected to progress from a comparatively 

center position in the ranking for near past towards the most severe HWs by the end of this 

century. These impacts will be even more serious due to Valletta’s geographic location in the 

middle of Mediterranean Sea where the humidity will enhance all the negative implication for 

local population. Our results generally agree with previous studies (e.g. Peterson et al., 2012) 

that increase in magnitude of heat waves and decrease in magnitude of cold spells over entire 

European domain can be expected. Moreover, we confirm that by the end of the century the 

relatively higher increase in the intensity of future heat will take a place along south – northeast 

gradient (Pereira et al., 2017), with the most dramatic rise in HWs magnitudes in Central Europe 

(supplementary of Guerreiro et al., 2018), and also in south-central Europe (Fischer and Schar, 

2010). To this we can add south-east European region (represented in this study by cities of 

Bucharest and Sofia), where we expect the HWs of comparable severity as in Mediterranean, 

closely followed by Moscow which is typically not included in most of European studies. The 

absence of humidity in our analyses represents a limitation of this work and it is one of the 

directions for further research. Nevertheless, in continental European areas relative humidity 

does not play a significant role during heat waves. For example the two most outstanding events 

on record (HWs of 2003 and 2010) were characterized as not humid (Russo et al., 2017).  

It should be emphasized that the results interpretation should be handled with caution. For 

example, the large metropolitan area of Amsterdam, even though being ranked with lowest risk 

in comparison to other European capitals towards the end of the century, has an estimated 

probability of occurrence of severe HWs equal to 0.66, and for extreme HWs the probability is 

0.41 (chances of very extreme events are predicted to be 0.3). Hence, the result should not be 

misinterpreted as the extreme heat event will be no serious threat for such locations. 
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We found that when the population exposure feature is taken into account, the less populous 

metropolitan areas located in warm climates (e.g. Lefkosia or Valletta) do not appear in top 

positions of our ranking. The more surprising result is that relatively highly populated areas of 

Budapest, Bucharest, Lisbon and Paris do not rank in high positions in HW exposure results. 

Moreover, the involvement of the population density projections to the analyses brought only 

quantitative changes and does not change the resulting ranking order. We hypothesize that this 

hints the need for more elaborated demographic models rather than indicating that population 

density is not suitable proxy for the population exposure. Finally, the relative changes between 

the 2 future periods described in the results section are less striking when the population factor 

is taken in account. This is a direct consequence of the methodology, where the multiplication 

between 2 vectors (HWs probabilities and exposure factor based on population densities – both 

on scale between 0 and 1) naturally often yields lower results to be plotted. Hence, even though 

the HWs exposure evolution (the dramatic increase for continental cities towards the end of the 

century) remains, the relative changes on the circular plots are also decreased. 

Overall, the major usage of our simplistic but descriptive urban indicators (i.e. the estimated 

probabilities of HWs/CW for each city) is twofold. Firstly, similarly to the study of Guerreiro et 

al.,(2018) such a methodology can serve as a basis to decision making on European level, 

assisting with prioritizing the investments and other efforts in the adaptation strategy. Secondly, 

it communicates the risk associated with climate change induced extreme heat locally, thus 

helps to bridge the gap between science, policy making and general public to better comprehend 

the seemingly no personal issue of climate change and its impacts. The climate change 

communication represents the vital prerequisite for action and the fact that our indicators are 

comparative highly contributes to its illustrative and communication power. Finally, since our 

study is based on HWMId, unlike many other works, our results offer the transparent 

information about the magnitudes of future HWs events. For example, in comparison with 

(Ward et al., 2016) focused on UHI effects during the HWs, the HWMId utilizes the magnitude 

sum over all HW days thus better captures the cumulative burden of temporarily persistent HW 

episodes. However, we reached the similar finding that in comparison with population related 

information, it is the regional climate as the most important explanatory factor of heat impacts. 

The other study by (Lemonsu et al., 2013) defines HW intensity as product of maximum 

temperature by duration in days, but this is not suitable to analyze the longer periods. 

Nevertheless, we acknowledge that these authors had different aims in mind and all the rigorous 

assessment addressing the magnitudes or intensity aspect of HWs helps to create a more precise 

picture of upcoming challenges. This contributes to raise awareness about HWs since they are 

still often not perceived as serious risk (Keramitsoglou et al., 2017).
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4 MetroHeat 

This section is devoted to the web tool developed as an integral part of the Open City Toolkit 

(OCT) of GEO-C. This work is partially based on subfield of climate science – climate services and 

partially on Climate Change communication which represents compelling but unwell integrated 

and dispersed body of literature (Moser, 2006). In this section we address the motivation and 

purpose behind the platform development, as well as description of target audience. 

Furthermore, we highlight the success factors and pitfalls being encountered when developing 

such a service, including implemented solutions. Finally, we describe the architecture and 

functionalities provided by the tool and we discuss potential limitations and further activities. 

Researchers, consultants, policy makers, private stakeholders and even general public represent 

a growing amount of people requiring climate-related information. However, they differ in 

terms of their backgrounds, skills and objectives (Swart et al., 2017). In response to this demand, 

numerous entities developed information platforms and portals providing an ever increasing 

amount of climate and climate impact data during the last decade (Street et al., 2015). This 

phenomenon resulted in the so-called “Portal Proliferation Syndrome” diagnosis, as users do 

not know from where to obtain and how exactly to interpret the available climate information 

(Bernard, 2011; Swart et al., 2017). The purview of climate services is clearly being continuously 

extended by adding more actors, such as the so-called purveyors, who play the vital role of 

knowledge brokers by translating climate and climate impact information from a scientific-

technical domain to understandable and plain text deliverables to non-scientific public, thus 

assisting policy makers and others to combat the consequences of climate change (Swart et al., 

2017).  

This evolution is also reflected in the history of released global frameworks. The World 

Meteorological Organization (WMO) in 2009 organized the 3rd World Climate Conference, where 

a Global Framework for Climate Services (GFCS) was established, aiming to strengthen 

production, availability, delivery, and application of science-based climate services and 

prediction (WMO, 2009). This framework followed-up the concept of climate services in the 

United States (NRC, 2001). In 2010, GFCS was complemented with a report entitled “Climate 

Knowledge for Action: A Global Framework for Climate Services”, and in 2014 with an 

Implementation Plan (GFCS, 2014). According to the WMO definition, climate services should 

provide one or multiple climate products, or provide advice to decision-making of individuals or 

organizations, simultaneously targeting the facilitation of adaptation planning (WMO, 2009). In 

Europe, this definition is broadened by a framework of the European Research and Innovation 

Roadmap for Climate Services (EC, 2015), delineating climate services as “the transformation of 

climate-related data – together with other relevant information – into customised products, 

such as projections, forecasts, information, trends, economic analysis, assessments (including 

technology assessments), counselling on best practices, development and evaluation of 

solutions and any other service in  relation to climate that may be of use to the society at large. 

As such, these services include data, information and knowledge that support adaptation, 

mitigation and disaster risk management (DRM)” (Swart et al., 2017). 
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Under this framework, the researchers are expected to overcome not only the challenges of new 

raw data production, but the community is also called to deliver processed high-quality 

information. To achieve this, the development of the climate data infrastructure must comply 

with data management and preservation requirements according to open data policies (De 

Filippis et al., 2018). The research data infrastructure must facilitate data discovery and access 

but, since the interdisciplinary approach is key to overcome many challenges associated with 

the impacts of climate change (Hadorn et al., 2008), the infrastructure should also provide 

means to improve the collaboration between scientists of different background (Zhao et al., 

2015).  

Apart from the aforementioned frameworks, scientific literature offers recommendations for 

the provision of climate services. For example, Sigel et al., (2016) extensively reviewed 17 

existing national portals discussing their limitation and possibilities. Bulens et al., (2013) 

presented the results of an experiment based on the feedback from participants thus tackling 

the issue from a user perspective. Houtkamp et al., (2016) analysed the user requirements and 

summarized learned lesson in terms of user engagement, and Swart et al., (2017) proposed a 

systematic evaluation framework for climate services related portals. The lively debate about 

climate services worldwide, particularly in Europe, highlights their usefulness for a wide range 

of users, but the developments are usually framed in the perspective of the data provider 

(Lourenço et al., (2015). Although global and European climate services do not explicitly exclude 

climate impact information, they are often not yet focused on it. (Swart et al., 2017). Moreover, 

most current services have a national, regional, or global focus. Hence, climate services targeting 

metropolitan communities, particularly in Europe, are still lacking. 

 

4.1 Purpose 

The open data climate service, MetroHeat (https://cgranell.shinyapps.io/metroheat/), is a web 

tool for visualising and interacting with extreme temperature indices and heat waves indicators, 

based on multi-model climate projections for major European cities. 

Aligned with the previously stated definitions and motivation, the purpose of our open data, 

web -based climate service is threefold: 

- to provide the transformed climate impacts-related data as customised products for urban 

stakeholders; 

- to support the capacity for multidisciplinary research and cooperation; 

- to contribute to the effective communication of the complex issue of climate change. 

This initiative arises based on two facts – firstly even though the theory recommends the usage 

of full ensembles of climate simulations, in reality many climate modellers are simply not able 

to handle large multi-model ensembles (MME) (Wilcke & Bärring, 2016). Secondly, those who 

have the resources and advanced skills to manage climate data or to compute derived indices 

mainly stores these products in personal archives (De Filippis et al., 2018). However, when these 

computed datasets become accessible in a user-friendly manner, they may be of further use for 

many stakeholders (Smid & Costa, 2017). 

https://cgranell.shinyapps.io/metroheat/
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MetroHeat offers intermediate products, namely a suite of extreme temperature indices 

computed on a subset of EURO-CORDEX ensemble data (Jacob et al., 2014), which is a cutting 

edge and fine scale set of climate simulations that is openly available. Users can specify the 

European capital cities (EU28, Moscow, Oslo, and Zurich) of their interest together with a 

desired time-span (annual or decadal data between 1971 and 2100). Based on the users’ 

preferences, multiple graphics are then automatically generated and adjusted. Finally, the 

resulting graphics can be downloaded, either as a graphic file (e.g. PNG, JPEG, etc.) or as a table 

file with the raw data series (e.g. CSV).  

The main barriers to the communication of climate change are people’s apathy or disinterest, 

the overabundance of information and its complexity. The issue of climate change is global, 

uncertain, politically charged, and difficult to solve (Moser, 2006). The computed climate indices 

provide detailed insights at city level, and contribute to a better understanding of the “local” 

impact of climate change in a unique way, which is tailored to be understandable and accessible 

to a widest audience. Therefore, MetroHeat enables people to connect to this ostensibly 

impersonal problem. 

 

4.2 Target audience 

When developing climate a service or, in a broader sense, communicating climate change, the 

very first question to be asked is: “Who is the audience?” (Moser, 2006). Often, even in climate 

services developed by formal international programmes, such as the European Copernicus 

Climate Change Service (C3S; https://climate.copernicus.eu), the target users are seen primarily 

as a homogenous group of policy makers. Even though most climate services acknowledge the 

diversity amongst the target users, these services do not distinguish between them in terms of 

the different products or associated components that best suit their needs (Benitez-Paez et al., 

2017; Swart et al., 2017). The funding is often conditioned by the creation of societal benefits 

from the investment, thus climate services tend to stress the societal-end users as main 

beneficiaries (EC, 2015).  

In reality, thought, the spectrum of users is very diverse, varying from climate scientist and policy 

makers (from Global or European to municipal and sub-municipal levels), to private companies 

and non-governmental organizations. For pragmatic reasons, Swart et al., (2017) categorized 

the users into four user groups as follows:  climate scientists, climate impact researchers, 

intermediate organizations, and societal-end users. The climate scientists demand high-level 

data of high reliability, and their requirements on post-processing capabilities provided by 

climate services are relatively low. Similarly, the impact researchers call for high level-data. 

However, this group also needs impact indicators, rather than raw climate variables, and their 

appreciation of post-processing functionalities is expected to be somewhat higher. Under the 

group of intermediate organizations there are various sub-groups of knowledge purveyors and 

boundary workers, such as consultants. They are interested in all possible kinds of information. 

While their skills are not necessary matching the level of the previous two groups, the 

intermediate organizations play the vital role of knowledge brokers by providing the link 

between climate data providers and climate impact information delivery.  This user group 

exhibits increased demand for tools to allow them to post-process the provided data by 

https://climate.copernicus.eu/
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themselves. Lastly, Swart et al., (2017) define the societal-end users as governmental or industry 

decision makers, which are broadly described as “people who are trying to address the impact 

of changing climate”. This group is also interested in all kind of available data but often lack skills, 

interest, and time needed to handle climate-related data. Therefore, they demand information 

delivered in a clear and concise manner.  

Here, we expanded the classification of Swart and colleagues by an additional group of the 

general public. We argue that one of the primary aims of climate services, like any other form 

of communication of climate change-related scientific findings, is to trigger certain behavioural 

changes (Blix, 2004). For example, when the goal is to reduce transport emissions, all actors from 

vehicle manufacturers, national legislators, municipal transport and urban planners should be 

addressed, but special attention should be given to individual inhabitants – drivers, commuters 

or travellers in general. The general public can have significant influence over the decision 

makers’ actions. Casually educated individuals can act collectively, changing behavioural norms 

and mobilizing for policy changes at local and higher levels (Moser, 2006). But this connection is 

mutually beneficial since the effectiveness of solutions and policies highly relies individual 

attitude and behaviour (Heiskanen et al., 2010). Following the classification of Swart et al., 

(2017) classification, we argue that this user group of general public needs lower level climate 

impact information. Since the general public are not expected to have advanced data handling 

skills, emphasis should be placed on the simplicity of accessibility and interpretation of climate 

information. Figure 10 depicts the target users groups of MetroHeat. 

 

 

Figure 10 - Different MetroHeat user groups, their purposes and interactions. 

4.3 Materials and methods 

4.3.1 Suite of extreme temperature indices 

The Expert Team on Climate Change Detection and Indices (ETCCDI; 

http://etccdi.pacificclimate.org/index.shtml) formalized the list of recommended climate 

http://etccdi.pacificclimate.org/index.shtml


 
METROHEAT 

 

63 
 

indices to facilitate the coherency in climate impact modelling across the globe (Peterson, 2005). 

This list, currently known as “ETCCDI Indices”, has been further analysed perhaps in most detail 

by Zhang et al., 2011; Sillmann et al., 2013a; and Sillmann et al., 2013b. The more extreme the 

event is, the more relevant for the society is to define, capture and project such a phenomenon. 

However, the rarer the event is, the higher is the uncertainty associated with such a projection 

due to its position further in the tail of the distribution of the climate element. Thus, in this 

trade-off between the uncertainty and rarity/severity of climate events, the emphasis of ETCCDI 

indices (and also of this work) is given to “moderate extremes” that typically occur at least once 

a year (Zhang et al., 2011). MetroHeat provides 3 different ETCCDI absolute indices, 4 ECCDTI 

percentile-based indices, and it is complemented with the Heat Wave Magnitude Index daily 

(HWMId) (Russo et al., 2015).  

Absolute indices represent the upper or lower extreme per chosen period of time (Sillmann et 

al., 2013b), and they are often used by engineers to infer the design of the infrastructures (Zhang 

et al., 2011). Here, we computed the maximum and minimum of daily maximum temperatures 

for each year (TNx and TNn respectively) and also the annual maximum of daily maximum 

temperature (TXx) (Alexander et al., 2006) to capture the evolution of extreme heat peaks. 

In comparison with the absolute indices, the percentile-based indices have a clear advantage, as 

they can be used in studies of wide regions with different climate characteristics (Tank & 

Können, 2003). Moreover, they are better descriptors of variation in synoptic conditions 

facilitating the extreme events (Zhang et al., 2011). They express the percentile rates of 

thresholds exceedance. The thresholds of ETCCDI indices are typically defined as the 90th or 

10th percentile, and days exceeding (not exceeding) a given high (low) percentile are counted. 

Hence, all the percentile-based indices provided by MetroHeat account for the climatic 

variability amongst the individual cities. 

We exploited the ETCCDI percentile-based indices indicating the number of warm days (Tx90p) 

and warm nights (Tx90p) due to their high importance for heat impact on human health 

(Lubczyńska et al., 2015). Furthermore, we computed their counterparts: the number of cool 

days and cool nights (Tx10p and Tn10p, respectively). These indices are important because, even 

though the cold impacts are expected to decrease (Hajat et al., 2014; Lhotka & Kysely, 2015; 

Pereira et al., 2017), the cold waves influence the heating energy demand (Mishra & 

Lettenmaier, 2011). Furthermore, the cold related mortality was observed to supersede the heat 

related mortality in some European countries (Keatinge et al., 2000; O’Neill et al., 2003). For 

example, in the UK, the cold impacts with demographic changes are expected to remain 

important (Hajat et al., 2014). Moreover, the results of (Fonseca et al., 2016) suggest increasing 

trends in cold days and cold nights in winter time over the Iberian Peninsula. Accordingly, the 

Tx10p and Tn10p indices represent valuable climate information in MetroHeat. 

The ETCCD index named Warm Spell Duration Index (WSDI) still exhibits some shortcomings to 

characterize heat waves  (see Orlowsky & Seneviratne, 2012; IPCC, 2012; Russo et al., 2014). 

Hence, we deployed the HWMId, which is an improvement of the Heat Wave Magnitude Index 

(Russo et al., 2014) anchored in Russo et al., 2015. The HWMId also utilises percentile-based 

local thresholds, and by default it provides not only the magnitude of heat waves, but also the 

duration and timing for each year (Russo et al., 2015). 
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The complete suite of 8 indices provided via the web service is further detailed in Table 3, which 

includes their units, computational description, short explanation and literature references. The 

ETCCDI indices were computed by means of the Climate Data Operator (CDO 2018: Climate Data 

Operators.  Available at: http://www.mpimet.mpg.de/cdo) software, and for calculation of 

HWMId the “extRemes” R package (Gilleland & Katz, 2016) was used. The raw climate variables 

underlying the intermediate products provided in MetroHeat can be retrieved from ESG – Earth 

System Grid data repository. Details on climate models can be found in the EURO-CORDEX 

website (http://www.euro-cordex.net), and are described by Jacob et al. (2014). 

Table 3 - Provided climate indices. 

Index Description Explanation Units References 

HWMId Sum of the 

magnitude* of 

consecutive days 

(≥3) composing 

the heatwave.  

 

 

 

 

(*Daily 

magnitude 

relative to local 

IQR threshold of 

reference period) 

The maximum magnitude of 

the heat waves in a year. A 

“heat wave” is defined as a 

sequence day in which the 

daily maximum temperature 

is above the 90th percentile 

of daily Tx for a 31-day 

running window centered at 

this day for the reference 

period 

 

 

 

 

 

 

 

Non-

parametric 

ranking 

 

 

(values in [0, 

+¥[) 

(Russo et al., 

2015) 

Tn10p Percentage of 

days when TN < 

10th percentile 

 

The amount of very cold days 

 

% of days 

(Alexander et 

al., 2006) 

Tn90p Percentage of 

days when TN > 

90th percentile 

 

The amount of very warm 

nights. 

 

% of days 

 

(Alexander et 

al., 2006) 

http://www.mpimet.mpg.de/cdo
http://www.euro-cordex.net/
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Tx10p Percentage of 

days when TX < 

10th percentile 

The amount of days when 

the daily high is much cooler 

than average. 

 

% of days 

(Alexander et 

al., 2006) 

Tx90p Percentage of 

days when TX > 

90th percentile 

 

The amount of days when 

the daily high is much 

warmer than average 

 

% of days 

(Alexander et 

al., 2006) 

TNn Annual minimum 

value of daily 

minimum 

temperature  

Absolute peak – “the coldest 

night” 

°C (Alexander et 

al., 2006) 

TNx Annual 

maximum value 

of daily minimum 

temperature 

Absolute peak – “the 

Warmest night” 

°C (Alexander et 

al., 2006) 

TXx Annual 

maximum value 

of daily 

maximum 

temperature 

Absolute peak – “the hottest 

day” 

°C (Alexander et 

al., 2006) 

 

4.3.2 Success factors and pitfalls 

Formal frameworks (e.g., European Research and Innovation Roadmap for Climate Services) and 

climate services literature are mainly focused on relatively large developments (e.g., C3S). They 

provide recommendations for development process, which we cannot fully fulfil given the 

available resources and time restrictions. For instance, the recommended four-step user 

engagement process emphasizes long-term ongoing discussion and feedback from users during 

the development (Houtkamp et al., 2016), which was out of our reach. However, we instead 

reviewed the scientific literature and identified the major pitfalls and success factors. This review 

exercise helped us design the MetroHeat web tool in accordance with good practices to avoid 

recurrent mistakes found in literature. It should be noted, though, that our rather modest web 

tool does not have any ambition to compete with well-established climate services, we hope 

that this tool has a potential to fill a certain gap. While global, European, and national climate 

information services are fairly available, there are only a few services focused on urban areas 

(Baklanov et al., 2018).  

Major pitfalls emerging from the literature are duplication (i.e. production of redundant 

information) (Hammill et al., 2013), lack of data in easy-to-handle form (Smid & Costa, 2017), 

deployment of static information (e.g. reports or maps) for download (De Filippis et al., 2018), 

and general deficient data visualization capabilities (Swart et al., 2017). On the other hand, 
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successful factors that are most frequently mentioned are: to provide open access, to consider 

the particular needs of users, and to ensure the scientific correctness associated with trust 

(Swart et al., 2017). 

To avoid the most commonly recognised pitfalls, the design and implementation of MetroHeat 

incorporated the following functionalities. We provided the capability of downloading data in 

CSV and XLS formats, which are widely known data structures and representations. Additionally, 

graphics can be downloaded in different formats, such as PNG, JPEG, SVG, or PDF files 

(preserving the aesthetics of the graph). Moreover, the web tool offers interactive non/static 

information (for further details see the Functionalities section). The different visualizations are 

synchronized in sense that the selection of the user on one activates the same selection on the 

others. Regarding the pitfall of duplication, to the best of our knowledge, there is no other 

service focused exclusively on European capital cities offering the pre-computed ensemble 

(including ensemble mean) of the selected climate indices. Climate impact researchers without 

skills or resources to handle large multi-model climate projections may use MetroHeat to 

conduct their research on specific European metropolitan systems/areas. Finally, we are 

definitely confident that there is no other climate service offering visualizations of the HWMId 

– Heat Wave Magnitude Index daily (Section 2.1). 

In an attempt to comply with the success factors that emerge from the literature we made all 

the data fully open and accessible. Due to restricted time and financial resources it was not 

possible to tailor specific sub-interfaces for each user group. Hence, we choose the strategy of 

maximum simplicity in terms of both – data formats and web application interface. To ensure 

the scientific correctness associated with trust Swart et al.; (2017) recommend the support of 

some widely recognised institution to ensure the quality and give the additional credibility. Even 

though, the MetroHeat web tool cannot provide an official link to such an institution, the 

presented information is supported by scientific papers previously published by ourselves and 

also by others. The EURO-CORDEX simulations have been validated by many (e.g. Jacob et al., 

2014; Kotlarski et al., 2014; Katragkou et al., 2015; Cardoso et al., 2016; Prein et al., 2016; Soares 

& Cardoso, 2018). More specifically, their ability to reproduced past and project future HWs 

(heat waves) was shown by (Lhotka et al., 2018; Vautard et al., 2013). The credibility of climate 

indices computed based on EURO-CORDEX was described by (Dosio, 2016) for ETCDDI indices 

and for HWMId by (Russo et al., 2015). Finally, we invested effort to provide solid visualisation 

capabilities ranging from the visualization of tabulated data, to various types of charts (line, bar 

and area), and polar charts and sparklines. All types of visualizations are automatically 

synchronized and adjusted on-the-fly according to the criteria selected by user (more in section 

4.4.2 Implemented features). The web tool was developed within the Open City Toolkit of the 

GEO-C project (http://geo-c.eu/), funded by the European Commission (Grant Agreement 

number 642332 — GEO-C — H2020-MSCA-ITN-2014), which is acknowledged in the About menu 

of the tool. 
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4.4 MetroHeat web tool 

4.4.1 Architecture 

The MetroHeat web tool is structured in two parts. The first part represents a set of R scripts 

with the aim of handling intermediate tasks for data processing. These scripts take as input the 

results of the models ensemble, and reorganise them to best suit the MetroHeat design 

requirements and the purposes of the contained data visualisations while, at the same time, 

ensuring an adequate level of transparency towards users. the resulting processed data, ready 

to be consumed by MetroHeat, are publicly available in a CKAN-based catalogue (http://giv-

oct2.uni-muenster.de:5000/dataset?groups=datasets&tags=ESR09). The public registration of 

the processed datasets in a CKAN-based catalogue is a requirement of the GEO-C project, which, 

as one of its outcomes (Granell et al., 2018), is the realisation of an Open City Toolkit (Degbelo 

et al., 2016). In short, the Open City Toolkit is aimed to transform the research outcomes from 

the GEO-C individual projects into datasets, services, applications and products that can be 

relevant for city developments and city stakeholders. 

The second part of our MetroHeat web tool is the conceptual architecture and materialisation 

of the web application itself. The bottom part of diagram in Figure 11 illustrates the architecture 

of the MetroHeat web tool, while the top part represents the required steps for computing the 

input data into climate indices and pre-processing those indices for data visualisation, as 

described above. The CKAN-based catalogue thus acts as a nexus between the two parts of the 

MetroHeat web tool. As in any data science project, the first part of the web tool – data 

transformation, processing and preparation - was by far the most complex and time consuming 

of both parts, which is in line with the common assertion that data preparation and pre-

processing tasks constitute a highly significant portion of any data science project. 

 

 

Figure 11 - MetroHeat web tool architecture. 
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In terms of implementation, the R scripts for data pre-processing are stored and published in 

GitHub (https://github.com/cgranell/climatechange-viz) and the web tool was entirely 

developed with the well-known R package “Shiny” (Chang et al. shiny: Web Application 

Framework for R, 2018. https://cran.r-project.org/package=shiny)], which was designed to build 

interactive web applications in R. The source code of MetroHeat is also available in GitHub 

(https://github.com/cgranell/climatechange-shiny-apps). The application is deployed in a public 

server and fetches on the fly the input data from the CKAN catalogue instead of doing so locally. 

This architecture is meant to prolong the applications lifespan since its operability requires a 

minimum set of maintenance activities and also does not require any dedicated in-house 

hardware infrastructure since it is deployed in the cloud infrastructure. 

 

4.4.2 Implemented features 

The MetroHeat home page is intuitively divided into three vertical areas with different purposes 

(See Figure 12). The features in the left panel serve as a menu to navigate between different 

sections which can be understood as sub-applications to access and interact with data products 

as explained later on. The central part is devoted to place interactive visualisations. On the right 

panel said various parameter selectors are located. The main parameters selected are reflected 

in coloured boxes placed horizontally above the central visualisation area. These information 

boxes are meant to always display the current user selection. In the left top corner of the central 

panel for data visualisation, the Compare/Explore button can be found. It allows to switch 

between graphical visualisation and tabulated data. Generated graphics were given their own 

interactivity. The legend items, i.e. city names, play a dual role: as a traditional legend item to 

color a data series, and as a way to select/unselect each data series in the graphic. When the 

user hoovers a data series in the graphic, a tooltip automatically pops up containing condensed 

information (time instance and values of the selected climate index for the current selection of 

Capitals). Finally, the three horizontal bars icon located in top right corner of the data 

visualisation panel denotes additional options such as printing and graph downloading in several 

formats. While raw data series are downloadable in CSV and XLS data formats, the graphical 

output is downloadable in two raster formats (PNG and JPEG) and two vector formats (SVG and 

PDF) to meet up to maximum extent the need of different users, provide them with high quality 

graphical materials, and allow them for additional editing with tools of their own choice. 

 

https://cran.r-project.org/package=shiny)
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Figure 12 - MetroHeat user interface and visual disposition of functional features.  

The right panel of MetroHeat contains selectors to define the content and customise the style 

of the data visualisations. Nevertheless, the type of selectors being visualised and even the 

content of these selectors depend on the active selection done by the user in the main menu 

(left panel). This means that the selection of the main option (data product/sub-application) in 

the left panel generates dynamically the set of allowed selectors on the right panel of 

MetroHeat. For example, if a user selects “yearly forecast”, she can choose from the collection 

of eight different GCM/RCMs combinations (“Model” selector) and also between eight different 

climate indicators (“Index” selector) referring each to distinct aspects of metropolitan local 

climates. Another drop-down menu (“City” selector) serves to select the metropolitan areas of 

users’ interest. Selecting or dropping a city from the City selector automatically updates the 

corresponding plot. The user can also choose any arbitrary period between 1971 and 2100 

(yearly time steps) through the “Years” selector. While the previous selectors are aimed to 

personalise the content of the graphic, by filtering either the data series (cities) or the temporal 

dimension (X-axis), the last drop-down menu (“Plot type” selector) refer to visualisation options, 

allowing users to choose different types of plots, such as scatter plots, stacked bar charts or 

spline area charts (examples below in Figure 13). 
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Figure 13 – The examples of different visualization capabilities. 

The web tool is designed to provide all its functionalities smoothly in all common internet 

browsers and can be accessed via https://cgranell.shinyapps.io/metroheat/. 

4.4.3 Data products  

The left panel of the MetroHeat web tool allows users to choose between the different data 

products – the yearly projections and their means for each decade, which better illustrates the 

slow variation in the climate.  

https://cgranell.shinyapps.io/metroheat/
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These three data products are accessible through the menu options in the left panel as “Yearly 

forecast”, “Decadal forecast”, and “Ensemble means”. All of the three views of the MetroHeat 

share the same user interface for consistency. The difference lies in the content of the selectors 

on the right panel, which slightly change depending on the active data product, for dynamically 

customising the resulting plot.  

Two of the data products, yearly and decadal forecast, has an additional but synchronised 

visualisation to inspect data differently through the menu option “Sparklines”. Sparklines allow 

for the general visual comparison amongst the cities but also displays multiple climate indices 

at the same time (see Figure 14). By synchronised visualisation we mean that the last user 

selection applies to the sparkline visualisation, as this visualisation mode, as illustrated in the 

Figure below, does not show a right panel for parameter selectors. This means the current 

selection in terms of models, indices, timespan, and selected cities in the yearly forecast or 

decadal forecast visualisation applied to filter out the input dataset for the sparklines 

visualisation. Technically, the sparklines visualisations in MetroHeat utilise the R package 

sparkline (Vaidyanathan et al., 2016). 

 

Figure 14 - Sparklines synchronized visualization. 

  

 

4.5 Discussion 

The web tool offers climate impact-related data aiming for different urban stakeholders. Urban 

researchers may exploit the provided intermediate products to enhance their own research. The 

decision makers at the European level may utilize the information to prioritize the adaptation 

and mitigation strategy planning. Our tool also communicates the climate impacts in a 

comparative manner between all European capitals. It allows a wider public to intuitively 

understand the implications of different extreme heat magnitudes, since citizens are generally 

familiar (often having personal experience) with climate across their cities. This local point of 
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view on the global, complex and non-personal issue of climate change, helps to raise awareness 

and to casually educate the public. Subsequently, this may increase the capacity and willingness 

of citizens to engage in the debate and influence the decision making process. 

Our goal to catalyse the research of others is aligned with current open data policies, where 

online portals are expected to positively contribute towards reforms (Weerakkody et al., 2017). 

The European Commission established plans to open public data via the Communication on 

Open Data in 2011. However, the ambition of making data available to the community originates 

from a European directive in 2003 encouraging greater realization of the economic value of 

public data through its reuse. Open data are stimulating the innovations (van Veenstra & van 

den Broek, 2013; Janssen et al.,  2012), supplying policy-makers with information to comprehend 

complex challenges (Sivarajah et al., 2016) and enhance the involvement of citizens in 

governmental activities (Conradie & Choenni, 2014).   Furthermore, the key purpose of open 

data is to encourage the creative developments of further applications to serve and engage the 

wider society through the visualization of patterns and relationships (Martín et al., 2015; 

Weerakkody et al., 2017). However, to make these goals achievable, there are still bottlenecks 

and barriers, preventing the utilization of open data at wider scale. The most frequently listed 

barriers are the data structures, and the required relatively high technical and analytical skills of 

users (Smid & Costa, 2017; Palma, 2017). We argue that overcoming these obstacles is even 

more challenging in regard of climate science. Wilcke & Bärring, (2016) stated that many climate 

impact modellers are simply not able to handle the large volumes of data, which are necessary 

to analyze the climate impacts. For illustration, the ensembles data of climate simulations 

usually comes in the form of hundreds or thousands of files, and the total data volume is in the 

order of Tera Bytes. Technicians are encouraged to develop applications based on open data to 

benefit wider society, but the raw climate data with thousands of time steps and multi-model 

simulations do not represent such an easy-to-use information.  

Climate data are most frequently available in NetCDF binary format (Palma, 2017), which 

requires the installation of multiple SW libraries, and NetCDF support in terms of SW tools is 

much more advanced for Linux than for the Windows environment 

(https://earthdata.nasa.gov/standards/netcdf-4hdf5-file-format; accessed: 15/03/2017, Smid & 

Costa, 2017). Moreover, the climate projections are commonly available in geographic grids 

(Hijmans et al., 2005), which are sometimes unconventional (e.g. with False North Pole rotated 

native grids with the latitude and longitude coordinates provided each in form of matrix instead of 

vector). Even though there are many open climate data sets nowadays, handling them requires 

programming skills and complex pathways, and additional expertise to generate the impact 

information. Moreover, these pathways differs by various communities developing the climate 

models, and this results in a gap of knowledge interchange (Palma, 2017). For this reason, for 

example, Fofonov & Linsen (2018) developed a tool, named MultiVisA, which can be used for 

visualizing such climate simulation ensembles, but its main target audience are domain experts. 

However, the tools as ClimPick (Palma, 2017) or MultiVisa, still aim to general broad purposes. 

They ease the data handling and visualisation but do not provide (or allow to calculate) the 

domain specific indices. 

Our web tool is free and publicly available, and it offers visualization capabilities of temperature 

impact information on all the European capital cities (EU28, Moscow, Oslo, and Zurich) in a simple, 

https://earthdata.nasa.gov/standards/netcdf-4hdf5-file-format
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easy to use, and understandable form. In this sense, we acted as knowledge brokers, providing the 

intermediate products, thus allowing the other stakeholders (mainly urban researchers and the 

decision makers) to skip the strongest utilization barriers discussed above. 

Somewhat more complex is to engage with the general public, since there is also the 

psychological dimension and not only the technical aspects playing a crucial role.  The key 

motivation factor to engage the public is their sense of empowerment (Wang & Fesenmaier, 

2003; Muntinga et al.,  2011). The empowerment is defined as nexus between sense of personal 

competence and willingness to take action in the public domain (Zimmerman & Rappaport, 

1988; Li, 2016). Li, (2015) describes empowerment as a multi-level construct consisting of the 

individual level, the organizational level, and the community level. Studies on empowerment 

span over many fields, such as health, management, education, and psychology science, but the 

role of public relations and engagement in the power dynamic of climate policy deserves 

attention as well. Public engagement fuelled by the sense of empowerment should trigger the 

desired change. 

Regarding web tools, platforms and services, Muntinga et al., (2011) define the quantum of 

online engagement as an increasing scale of the involvement, from consuming to contributing, 

and then to creating. We recognise that in the highly scientific climate domain, the general 

public users cannot be expected to become content creators, which would represent the 

ultimate level of public engagement. However, we hope that users will acquire climate 

knowledge by using our web tool, thus enhancing their sense of personal competence, which 

subsequently allows for their enhanced willingness to engage in the public domain – between 

themselves and towards the decision makers. Accordingly, a more informed urban audience can 

better engage with climate policy decision making at city level.  

According to marketing research, public complaining behaviour is an outstanding power-action. 

This behavioural component of psychological empowerment is a fundamental display of the 

publics’ power (Li, 2015). Complaining allows customers to express their frustration and 

confront companies’ wrong-doings based on their buying experiences (Li & Stacks, 2014). We 

argue that in regard of climate impact adaptation, one of the most frequent wrong-doings is the 

non-doing. Climate change adaptation and mitigation measures taken in advance will be far 

more cost-efficient than actions taken after the society feels the climate change direct impact. 

Therefore, citizens’ engagement in the policy decision making process is fundamental to boost 

adaptation and mitigation measures. Moreover, we recognise that the absence of a platform 

enabling the dialog between policy makers and citizens is a major limitation of our web tool, as 

it would enhance the interpersonal component of public empowerment. This is due to the fact 

that we neither officially represent a part of decision making, nor the raw climate data producing 

structures. Hence, we do not have the necessary means to facilitate this important ongoing 

debate. Instead, our web tool engages the wider society as an integrated part of the Open City 

Toolkit (OCT) of the GEO-C project (Degbelo et al., 2016). The OCT is a freely available and open 

data based prototype with a set of the tools aiming to increase transparency, facilitate 

collaborations, and improve cities’ actions. Therefore, our web tool contributes to raising 

awareness and spreading the information in a bottom-up approach via the OCT, and also 

through marketing efforts from the institutions involved in the GEO-C project (http://geo-c.eu/). 

http://geo-c.eu/
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4.6 Conclusion 

MetroHeat is an open data and open source based web tool providing impact-related 

customised products for urban stakeholders in all European capitals (EU28, Moscow, Oslo, and 

Zurich). European capitals typically represent around 30% of national GDP (Eurostat, 2016), and 

they often have a vital function concentrating international and intranational money flows  

accompanied with labour activity, and as such, they are crucial for national competitiveness in 

context of  globalized economy (Dijkstra et al., 2013).  

The underlying data is an eight-member ensemble belonging to EURO-CORDEX project. Even 

thought, the underlying data are also freely publicly available, their original form is not easy to 

use, interpret or visualize. Therefore, we acted as knowledge purveyors, aiming to facilitate 

informed decision making, to foster multidisciplinary research and cooperation, and to raise 

awareness and engage the general public with complex issue of local impacts of changing 

climate.  

In comparison with current market, well established services communicating climate change 

impacts have a global, national or regional focus. Despite that urban level and city administrators 

were identified as vital to combat the climate change impacts (Hintz et al., 2018), the climate 

service targeting metropolitan communities in Europe is still lacking. In terms of data handling 

and visualization, there has been recently tools developed such as ClimPick (Palma, 2017) or 

MultiVisA (Fofonov & Linsen, 2018) but these serve to broader purposes and their users are still 

required to possess significant expertise to extract meaningful information. Hence, we believe 

that MetroHeat has its use niche filling this market gap. 

As final note, currently MetroHeat offers the data on past, current and future aspects of local 

climates related to extreme temperature, but the web tool is ready to accommodate in future 

also the information on other hazards, for example, droughts, floods, or sea-level rise where 

relevant.
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5 Conclusion 

The main objective of this thesis was to assess current and future impacts of extreme 

temperatures in European capitals. A literature review and discussion on the topic was 

undertaken, which allowed for investigating how the climate information is being incorporated 

into the decision process and urban planning. Within the community of urban planning there is 

emerging call for local climate information (George et al., 2016) and in the same time the need 

for long-term planning is currently emphasised (e.g. Davoudi et al., 2012). In parallel, the lively 

scientific debate centred on the trade-off between the reliability of statistical downscaling of 

climate simulations and its convenience is now lasting more than a decade. However, regardless 

whether the localised climate projections are delivered by means of dynamical or statistical 

downscaling methods, there are still certain practical barriers for the implementation of such an 

information in the processes of decision making, urban planning, and designing the adaptation 

and mitigation strategies. In this thesis we identified and formalised the practical barriers of the 

wider utilization of climate projections. 

The first outstanding practical bottleneck is related to still persisting scale mismatch between 

data needs and data availability. Most of currently available downscaled products still do not 

offer the fine scale appropriate to complex urban environment and sufficient spatial resolution 

to address many of the urban challenges. For example, regarding the floods, the framework to 

assess the future adaptation benefits is available (Ward et al., 2016) but metropolitan 

adaptation to heat-waves still presents a major challenge in urban decision making (Tapia et al., 

2017). The localized quantitative knowledge relevant to local priorities is pivotal in urban 

planning, urban design and tailoring of the adaptation strategy. Moreover, the spatially explicit 

information can be used for the deployment of map-based interfaces. These may serve as a basis 

for better informed decision making and prioritizing, but also as tools of effective 

communication to foster citizens participation and allow the society as a whole to embrace the 

change and tackle the adaptation as a positive opportunity. 

The second significant practical barrier, which obstacles the wider exploitation of localized 

climate projections, lies within the IT domain. Wilcke & Barring (2016) argue that many climate 

impact modellers are simply not able to handle the data generated by GCM-RCM runs. This topic 

is seldom discussed in urban climate or urban planning scientific literature. Also based on our 

own experience, we formalised this bottleneck and divided the issue into three different areas: 

i) the data amount (meaning both – the data volume, and large quantity of files), ii) the common 

data structure/format, iii) the challenge to gain know how for the ultimately required complex 

workflow. 

The development of new tools to handle, visualize, analyse and interpret the outputs of climate 

models represents an important part of the solution. Efforts are currently being done, such as 

those by (Hempelmann et al., 2017; Palma, 2017; Fofonov & Linsen, 2018). Likewise, some of 

the outputs of this thesis contribute to ease the handling of massive data produced by GCM-

RCM simulations, and to reduce the need to discover the rather awkward data procedures bind 
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to often locally kept data processing know-how (Hempelmann et al., 2017). Our contribution is 

represented by the climate communication service web tool called MetroHeat, developed as an 

integral part of the Open City Toolkit (OCT), synergizes with findings of Chapters 2 and 3. The 

most important scientific findings of Chapter 3 are complemented with a suit of climate indices 

descriptive to various aspects of future extreme climate behaviours across the European capital 

cities. The data and visualisations are available to download, thus allowing other researchers to 

skip an important IT bottleneck formalised in Chapter 2, and also to avoid the need for significant 

computational resources. The customised products can be easily used, for example, in the fields 

of climate adaptation, epidemiology, smart cities, or in general urban sciences. Moreover, the 

presented data products can serve as a basis to decision making on European level, assisting 

with prioritizing the investments and other efforts in the adaptation strategy. At last but not at 

least, in similar manner as the comparative urban indicator of Chapter 2, also the other climate 

indices offered via customizable comparative graphics communicate the local impacts. This is in 

alignment with current European data policies, which encourage the increase of the economic 

value of public data through its reuse. Even though the original underlying data of this research 

are openly accessible, they are not easy-to-use, thus we “translated” it to an intuitively 

understandable form. Hence, the web tool contributes also on casual public education, the 

engagement of wider urban population, and raising the awareness about upcoming 

consequences of climate change 

The main scientific contribution of this research is represented by ranking procedure described 

in Chapter 3 and its results. Heat waves are considered by IPCC the most important and 

dangerous hazard related to climate change and managing the impacts of HWs in cities is of 

paramount importance (UN-habitat, 2010) because it is the metropolitan space where the most 

people will encounter the extreme heat (Schatz & Kucharik, 2015). The alternation of climate 

impacts by urban space, described in the Introduction, will be not always necessarily negative. 

The CWs impacts may be softened by the joint influence of urban space and climate warming, 

such as reduction in winter heating demand and saved lives (Schatz & Kucharik, 2015; 

(Kolokotroni et al., 2012).  Nevertheless, the increasing negative impacts of extreme heat will by 

far outweigh the positive consequences.  

Specifically in urban areas, the crucial negative impacts of extreme heat include health risks, 

human discomfort, associated higher concentrations of pollutants, lower water quality, increase 

energy demand for cooling, and decrease in labor productivity (Dunne et al., 2013; Estrada et 

al., 2017; Zander et al., 2015).  

In Europe, where universal public health insurance generally covers entire population, the 

health impacts also represent direct monetary cost to governments. The health impacts span 

from heat cramps which may signalize heat exhaustion and heat strokes (Michelozzi et al., 2009; 

Russo et al., 2017) leading to fatal congestive heart failure or acute myocardial infraction (Koken 

et al., 2003), to respiratory diseases. In high-income settings of European capitals only smaller 

proportion of fatalities occurs due to hyperthermia as such (Hajat et al., 2014).  

Our results provide insights regarding the future evolution of temperature related exposure of 

population across all the European capitals. We showed that the cold waves exhibit a decreasing 

trend with already smaller impacts in the midcentury and almost entirely vanishing in far future. 
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We confirmed that HWs will most likely strike the populous metropolises of Madrid, Rome and 

Athens commonly associated with extreme temperatures but also other cities, namely Valletta 

Sofia, Wien, Zagreb, and Zurich should expect serious impacts in the future. The Maltese capital, 

Valletta, particularly emerges from the analyses, as it is projected to progress from a 

comparatively centre position in the ranking for near past towards the most severe HWs by the 

end of this century. 

Currently, in places such as Valletta or Lisbon the humidity may already play an important role 

but in future also other locations, for example, large coastal agglomerations of Northern Europe, 

can be exposed to severe impacts of humid HWs.  

Overall, the major usage of our simplistic but descriptive urban indicators (i.e. the estimated 

probabilities of HWs/CW for each city) is twofold. Firstly, similarly to the study of Guerreiro et 

al.,(2018) such a methodology can serve as a basis to decision making on European level, 

assisting with prioritizing the investments and other efforts in the adaptation strategy. Secondly, 

it communicates the risk associated with climate change induced extreme heat locally, thus 

helps to bridge the gap between science, policy making and general public to better comprehend 

the seemingly no personal issue of climate change and its impacts. The climate change 

communication represents the vital prerequisite for action and the fact that our indicators are 

comparative highly contributes to its illustrative and communication power. Finally, since our 

study is based on HWMId, unlike many other works, our results offer the transparent 

information about the magnitudes of future HWs events. This contributes to raise awareness 

about HWs since they are still often not perceived as serious risk (Keramitsoglou et al., 2017). 

In summary, this thesis contributed with relevant knowledge on current and future impacts of 

extreme temperatures in European capitals, as well as with recommendations and tools that can 

help urban inhabitants, city planners, and decision makers to adapt or mitigate the impacts of 

extreme temperature events. This work also helps to decrease the important gap between 

various stakeholders and thus facilitate the forging of complex but well-rounded solutions.   

5.1 Limitations 

This study does not substitute a detailed city-specific vulnerability assessment, neither explicitly 

quantifies the impacts in monetary terms. Each large urban system is unique in its complexity 

and the detailed city-specific vulnerability assessment would require access to dynamical model 

coupled with urban land cover simulations. This approach was in terms of time, expertise and 

computational resources out of our reach and also out of the scope of this research. The 

important limitation of this study is the absence of the impact assessment of the humidity 

aspect. Humidity is currently increasingly being recognised as an important factor influencing 

the human ability to coop with extreme heat events. This limitation is caused by difficulties 

related to the availability of the reliable air humidity projections for the European domain. 
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5.2 Future research 

 
Future research should include the humidity aspect in the assessment of heat wave impacts on 

European urban areas. The Apparent Temperature or the Wet Bulb Temperature variables could 

be incorporated in a thermo-dynamical way, and be used as proxies to quantify heat related 

impacts on human beings. Moreover, other sophisticated indices (e.g. Apparent Heat Wave 

Index (AHWI) (Russo et al; 2017) would be an interesting addition to the risk assessment. With 

focus on the humidity impacts, the emphasis can be given to the urban systems located on 

coasts, or further research may be conducted on areas of interest outside of Europe. 

Furthermore, the methodology presented in Chapter 3 represents a framework ready to 

accommodate also the information on other significant hazards such as droughts, floods, or sea 

level rise where relevant. When these information will be obtained in a consistent manner, the 

further step would be to improve the ranking algorithm to build a truly multi-hazard urban 

indicator. Another potential area of further research is to add the epidemiological perspective 

and involve the air pollution, morbidity, mortality, hospital admission, or emergency phone calls 

data.
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Appendix A 

A-1 Regional and local climate modelling 

The climate system is global. The fundamental aspects of climate research are observations, 

theory and models (Rummukainen, 2010). General Circulation Models (GCMs) are numerical 

coupled models describing atmosphere, oceans, land surface, sea ice and interactions among 

those earth systems. GCMs are essential tools to assess the climate change (Fowler et al., 2007). 

However, their coarse resolution and inability to resolve sub grid scale features limits their 

usability (Grotch & MacCracken, 1991). Nevertheless, frequently, the global or continental scale 

information is implemented directly, which negatively affects the resulting local-scale impact 

maps (Trzaska & Schnarr, 2014). A large portion of impact studies operates on scales finer than 

common resolution of global or even regional model outputs (Wilby et al., 2004). The strong 

need of higher resolution climate data for impact assessment is an issue well known for a long 

time (Kim et al., 1984; Gates, 1985; Robinson & Finkelstein, 1989; Lamb, 1987; Smith & Tirpak, 

1989; Cohen, 1996). This interest origin in recognized discrepancy of course resolution GCMs 

(hundreds of km) and the scale of interest of impact studies (an order or two orders of 

magnitude finer scale) (Hostetler, 1994).   

The impact applications are highly sensitive to local climate variation, and as such they require 

the information proportional to the point climate observations. The fine-scale variations are 

parametrized in lower resolution models. The requirement of fine-scale information emerges 

particularly in regions of complex topography, coastal or island areas and in regions with highly 

diverse land cover (Giorgi et al., 2001; Mearns et al., 2003; Wilby et al., 2004).  

In reality, the climate system is defined by processes occurring on a broad range of spatial and 

temporal scales. Consequently, GCMs have an ability to effectively characterize large-scale 

climate features (e.g. general circulation of the atmosphere and the oceans). Additionally, they 

perform well describing sub-continental patterns. Horizontal meshes of the atmospheric 

component of the GCMs range from 400 to 125 km (Laprise et al., 2008). The formal resolution 

of GCMs varies between 200 and 100 km2, which is insufficient for the analysis of many regional 

and local climate aspects, such as extremes. GCMs of very high resolution would indeed improve 

the simulations of regional and local aspects (Rummukainen, 2010), but they remain 

unreachable due to the enormous computational cost (Fowler et al., 2007), which leads to the 

accommodation of downscaling techniques (Rummukainen, 2010).   

The climate projections can be subject to downscaling on their spatial or/and temporal aspects. 

Spatial downscaling refers to the methods deriving the information in finer spatial resolution, 

acting like a “magnifying glass”, e.g. from original GCM course resolution of 500 km to obtaining 

grid cells of 20x20 km. Temporal downscaling derives fine-scale temporal information (e.g. daily 

rainfall, surface wind speed variability, storm inter-arrival times, monsoon front onset and 

transition times) (Mearns et al., 2003) from coarse-scale temporal GCM output (e.g. monthly or 

seasonal rainfall amounts) (Trzaska & Schnarr, 2014). The spatial and temporal variabilities are 
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closely related, meaning that the projection of short term extremes will be more precise when 

simulated in high spatial resolution. (Mearns et al., 2003). 

Nowadays, a wide pallet of methods generating high resolution climate information is available. 

These techniques vary in their strengths and weaknesses – some tend to be complex and 

computationally expensive while others are difficult to interpret. The choice of an appropriate 

method, or even the decision whether or not it is convenient to apply a downscaling procedure, 

is often not straightforward (Mearns et al., 2003).    

A-2 Downscaling procedures 

Principally any data can be refined by downscaling techniques (Rummukainen, 2010). The course 

GCM output might be satisfactory, for example when the variation within a single grid cell is low 

or in case of global assessment. The main advantage of information directly obtained from GCM 

is the certainty that physical consistency remains unattached (Mearns et al., 2003). GCMs are 

valuable predictive tools, but they cannot account for fine-scale heterogeneity and reflect on 

features like mountains, water bodies, infrastructure, land-cover characteristics, convective 

clouds and coastal breezes. Those heterogeneities ae essential for decision making in fields of 

agriculture, hydrology, species distribution (Trzaska & Schnarr, 2014) and urban planning. 

Bridging this gap between the resolution of climate models and regional and local scale 

processes represents a considerable challenge, including the application of climate change 

scenarios. Hence the climate community put significant emphasis on development of techniques 

for downscaling (Fowler, 2007). 

There is no consensual and unique classification scheme to be applied in attempts to 

comprehensively review and summarize the downscaling techniques. In many studies (e.g. 

Fowler et al., 2007; Trzaska & Schnarr, 2014; De Castro et al., 2005; Shukla & Lettenmaier, 2013; 

Khan et al., 2006), the methods are categorized into two main groups: Dynamical downscaling 

and Statistical downscaling. Dynamic downscaling is based on regional climate models (RCMs) 

or fine spatial-scale numerical atmospheric models, such as Limited Area Models (LAM). 

Statistical downscaling is based on observed relationships between climate at fine and coarse 

resolutions that are used to transform global climate models’ output to finer resolution. 

Alternatively, for example Mearns et al., (2003) distinguishes three groups of approaches: High 

resolution GCMs; Nested limited area models and RCMs; and Empirical/Statistical and 

statistical/dynamical methods. Within the group of Statistical downscaling, many approaches 

can be distinguished and classified according to different criteria. For example, Wilby et al. 

(2004), provide background information and guidance on the application of some Statistical 

downscaling methods, but also listed alternatives to downscaling techniques (thus somehow 

excluding those from family of downscaling methods) mentioning spatial interpolation of grid 

points (sometimes named “unintelligent downscaling”), climate sensitivity analysis (frequently 

addressed as “bottom-up” approach), spatial/temporal analogues using historical data and 

simple change factor (known as “Delta” method). Giorgi et al. (2001) provide a survey of 

statistical downscaling focusing on studies published between 1995 and 2000. 
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The methodological review will be organised under the two broad categories: Dynamical 

downscaling and Statistical downscaling. The later will be further detailed, because it was found 

to be more appropriate to address the thesis objectives.  

A-2.1 Dynamical downscaling 

The term “dynamical downscaling” mainly pertains to Limited Area Models (LAMs) or regional 

climate models (RCMs) (Fowler et al., 2007; Feser et al., 2011). In nutshell, those represent a 

group of methods originally used in numerical weather forecasting (Rummukainen, 2010). The 

first studies establishing the foundation of regional modelling are Dickinson et al., 1989 and 

Giorgi et al., 1989. Since then, the field has undergone massive development, as documented in  

Christensen et al.,  2007; Feser et al., 2011; Giorgi et al., 1991; Giorgi et al., 2001; Grotch, 1991; 

Wang et al., 2004; McGregor, 1997; Meehl et al., 2007; Hong & Kanamitsu, 2014; Pielke et al., 

2012; Xue et al., 2014. Dynamical models address data and physical processes equivalent to 

GCMs, but at finer scales, and provide results only for selected limited regions of the globe 

(Trzaska & Schnarr, 2014). 

RCMs are complementary tools to GCMs. They provide essential input to climate impact studies 

and adaptation planning and as such; they contribute to both research and application works 

(Rummukainen, 2010). Dynamical downscaling techniques represent one of the fundamental 

philosophies to tackle studies of more detailed processes and simulations of regional, or even 

local, conditions (Rummukainen, 2010). Over the last quarter of the century, RCMS increased in 

spatial and temporal resolution, in periods covered in models runs and they were developed 

towards regional climate system models. Dynamical regionalisation procedures give capabilities 

to assess past and possible future climate and assist the progress of climate impact studies, thus 

RCMs support the climate policy and adaptation measures (Rummukainen, 2010). Dynamical 

downscaling was successfully implemented in the past to simulate orographic precipitation (Frei 

et al., 2003), extreme climate events (Fowler et al., 2007; Frei et al., 2006) and non-linear effects 

(e.g. anomalies related to El-Niño phenomenon) (Leung et al., 2003). 

RCMs utilize the same physical-dynamical definitions of the key climate processes as GCMs 

(Rummukainen, 2010). Atmospheric fields representing the output of a global model (e.g. 

surface pressure, wind, temperature and humidity) are loaded into vertical and horizontal 

boundaries of the RCM. In other words, the forcing data are fed to RCMs as lateral boundary 

conditions. The fundamental boundary conditions usually are temperature, moisture, wind 

information, sea surface temperature and sea ice (Rummukainen, 2010). These lateral boundary 

conditions apply alongside of the RCM domain. Administrating of boundary conditions 

represents a major challenge of dynamical downscaling (Rummukainen, 2010). The physics-

based equations and locally specified data are used to gain regional climate outputs (Trzaska & 

Schnarr, 2014). The major assumption used by dynamical regional models is that there is no 

dramatic deviation between low and high resolution circulation pattern, otherwise the 

consistency between course resolution forcing and high resolution output would be dubious 

(Mearns et al., 2003). The unresolved inner-cell variabilities are pushed to RCM output rather 

than fully taken into account. For example, the process of formation of rain from cloud droplets 

is well known, but it is not convenient to model all droplets individually. All these inner-cell fine 
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scale processes are approximated in a procedure called “parametrization” (Rummukainen, 

2010).  

The earlier RCM resolution used to vary between 100 to 50 km, and at its best 25 km grid cells 

(Rummukainen, 2010). The more recent development proved that RCMs are capable of 

delivering high resolution results (20 km or less) (Leung et al., 2003; Mearns et al., 2003). 

Consequently, increasing resolution also entails increasing computational cost and data volume. 

RCMs also require high level of expertise to interpret the results. The above mentioned 

restrictions are often critical for institutions in developing countries (Trzaska & Schnarr, 2014). 

Two major streams are recognizable in dynamical downscaling. In the first, the resolution is 

increased over the entire domain of the atmospheric global model (e.g. Christensen et al., 2007). 

The second strategy is based on the utilization of a global model with variable grid cell size (Fox-

Rabinovitz et al., 2008; Lal et al., 2008). This technique maintains a course grid over the majority 

of the globe, but increases the resolution within a particular area of interest (Rummukainen, 

2010). 

The temporal resolution of RCMs varies from few minutes to approximately half an hour, while 

GCMs data are commonly provided in six hours steps. This increases uncertainty, but there are 

also other technical issues associated (e.g. functional form of the blending of the boundary 

conditions with regional model, the width of the adjustment zone, size of the regional domain 

or even the domain orientation) (Rummukainen. 2010). However, studies have shown that 

RCMs generate additional variability not associated with the boundary forcing (e.g. Vernekar & 

Ji, 1999; Giorgi & Bi, 2000; Christensen et al., 2001).  

The evaluation of RCMs’ performance may be based upon a technique known as “hindcast” 

(Christensen et al., 1997). In these experiments, the perfect boundary conditions are used 

meaning that, instead of simulated conditions, the compilations of observations (obtained via 

meteorological reanalysis) (Uppala et al., 2005; Kalnay et al., 1996; Onogi et al., 2007). are 

applied to drive boundary conditions. Hindcasts reduce systematic biases in large-scale forcing 

(Rummukainen, 2010). 

RCMs are commonly addressed as “nested” regional climate models. Nesting refers to supplying 

the high resolution RCM with the results for a particular region from a coupled GCM, which are 

used as initial and boundary conditions for the RCM. Therefore, the regional model is nested 

inside the global simulation (Mearns et al., 2003). Utilization of more than one RCM is also an 

option. The model with smaller domain is nested within a domain of another RCM. This 

technique is called “multiple-nesting” (Rummukainen, 2010). The majority of RCM is done as 

“oneway” nesting experiments. Their main purpose is to generate realistic climate surfaces in 

high spatial resolution. An alternative is to coordinate the efforts of global and regional climate 

modelling and use the output of regional simulation to improve the performance of GCM. This 

variant is known as “twoway” nesting (Rojas, 2006). 

RCM climate change simulation experiments can be run in “time-slice” mode, or continuous 

climate projections can be generated. Time-slice mode refers to obtaining the climate change 
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signals via comparison of recent past or present-day period and future scenario targeting 

periods of interest (Mearns, 2003).  Examples of studies utilizing transient simulations are 

Cubasch et al., 1995; Hudson & Jones, 2002; Govindasamy et al., 2003. In order to produce 

scenarios for periods outside the time-slices, “pattern scaling” has been used (Fowler et al., 

2007). Continuous climate projections of extended periods are convenient for analysing possible 

impacts with time wise longer characteristics such as impacts on forest or other ecosystems 

(Rummukainen, 2010).  

As mentioned earlier, RCMs inhibits other uncertainties than those inherent to GCMs. This 

uncertainty has a small, but not ignorable impact, on future projections (e.g. Rowell et al., 2006). 

It can be compensated by re-tuning of the boundaries and dumping the numerical noise 

(Rummukainen, 2010). The inexactness associated with RCM outputs of temperature 

projections was found lower than the uncertainty introduced by emission scenarios, but for 

simulated precipitation the opposite is the true (Fowler et al., 2007). In nested regional models, 

the uncertainty introduced by the choice of the RCM is comparable to the uncertainty associated 

with global circulation model selection (Fowler et al., 2007). RCMs are still burdened with 

systematic errors, thus they require a bias correction and also further downscaling to finer 

resolution (Trzaska & Schnarr, 2014). 

The first main advantage of dynamical downscaling is that the information is derived from 

physically-based models, and the second one is the ability of those models to provide feedback 

(Mearns et al., 2003). RCMs also successfully generate information on precipitation extremes at 

scales unavailable via GCMs (e.g. Frei et al.; 2003, Huntingford et al., 2003; Christensen et al., 

2003; Frei et al., 2006; Schmidli et al., 2006), and even surpass the performance of GCMs on 

their grid scale (Durman et al., 2001).  

A technical weakness of dynamical regionalization techniques is the application of formulations 

of course models. Therefore, the model may require some adjustment for use at finer spatial 

scale. This issue emerges particularly in case of models with variable grid resolution because 

parametrization needs to be valid for all the scales covered by the model (Mearns et al., 2003). 

The other issue arises from the assumption that relationships developed in physical 

parametrization of RCMs for present day climate will hold under the possible future conditions. 

This weakness is common also to all methods of statistical downscaling (Wilby et al., 2004). The 

major practical limitation of regional dynamical downscaling models is their relatively high 

computational demand (Mears et al., 2003; Fowler et al., 2007; Rummukainen, 2010; Trzaska & 

Schnarr, 2014). Moreover, the RCM experiments require high frequency (e.g. 6 hours) GCM 

fields supply for boundary conditions. These data are not usually stored due to mass-storage 

demand. (Mearns et al., 2003). 

A-2.2 Statistical downscaling 

Statistical downscaling is also known as “Empirical/statistical” or “Statistical/dynamical” 

downscaling (Mearns et al., 2003). These methods are based on the perspective that regional 

climate is conditioned mainly by two factors: the large-scale climate and the local/regional 

features such as topography, land-sea distribution or land use (von Storch et al., 1993, 1999). 

Methods of statistical downscaling encompass the establishment of statistical models related to 



 
APPENDIX A 

 

 

114 
 

empirically observed relationships between large-scale atmospheric and local climate 

characteristics (Mearns et al., 2003; Wilby et al., 2004; Fowler et al., 2007; Trzaska & Schnarr, 

2014). The large scale climate variables are used as “predictors” to regional or local variables – 

“predictands” (Wilby et al., 2004). Fowler et al., 2007 expressed the essence of idea of statistical 

downscaling in descriptive equation: 

R=F(X) 

where R represents the local climate variable which is subject to downscaling, X is the set of 

large climate variables, and F is a function which relates R and X being validated by use of point 

observations or/and gridded reanalysis data (Fowler et al., 2007). This equation represents the 

most common form, but other relationships have been used (e.g., relationships between 

predictors and the statistical distribution parameters of the predictand in Pfizenmayer & von 

Storch (2001), or the frequencies of extremes of the predictand by (Katz et al., 2002).   

Many statistical downscaling models have been proposed for data-rich areas, utilizing a wide 

pallet of techniques varying from different regression methods to neural networks and 

analogues (Mearns et al., 2003). Statistical downscaling allows to simulate simultaneously 

multiple outputs such as precipitation, maximum and minimum temperatures, solar radiation, 

relative humidity and wind speed (e.g. Parlange & Katz, 2000), which is of great importance, 

particularly for impact studies (Wilby et al., 2004). It is also possible to downscale predictors 

independently, but in such a case, it must be ensured that inter-variable relationships remain 

intact.  

When developing statistical downscaling models, two major aspects should be primarily 

considered. First, the determination of the model time-step (e.g. hourly or daily average). The 

second consideration is related to the required addressed periods. Sometimes, the classical 

climatological seasons (e.g. December – February or March-May) may not correspond to the 

seasonality contained in data, thus alternative delimitations may be required (Winkler et al., 

1997).     

The basic assumption of stationarity is essential, but it also represents the major theoretical 

weakness of statistical downscaling (Wilby et al., 2004). The concept of stationarity assumes that 

the statistical relationship between the predictor and predictand will not change in future 

climate (Fowler et al., 2007). There is evidence showing that this may be not always the truth 

(e.g. Huth, 1997; Slonosky et al., 2001; Fowler and Kilsby, 2002). Stationarity of predictor-

predictand relationship can be tested using long records, or a period of different climate 

characteristics can be used for model validation (Charles et al., 2004). Non-stationarity is 

introduced by an incomplete set of predictors, which does not reflect the low frequency 

behaviour, or has a non-appropriate sampling or calibration period, or by real changes in the 

climate system (Wilby et al., 1998). However, in projected climate change, the circulation 

dynamics may be robust to non-stationarities and the associated degree of non-stationarity is 

relatively small (Hewitson & Crane, 2006).  
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When applied to a changing climate, another key assumption inherent to statistical downscaling 

is that the predictors should “carry the climate change signal” (Giorgi et al., 2001). Selected 

predictors should be physically meaningful and reflect the processes which subsequently control 

variability in the climate. The selected predictor variables should also be those that are well 

represented by GCMs (Fowler et al., 2007). Appropriately selecting variables is in the equilibrium 

between the relevance in the physical climate reality and the accuracy with which the predictor 

is reproduced by the climate model  (Osborn et al., 1999; Wilby & Wigley, 2000).  

Partial correlation analysis, step-wise regression or an information criterion are examples of 

procedures, which may be preliminarily applied in order to identify the most promising predictor 

variables (Charles et al., 1999;  Wilby et al., 2003). Also, the local knowledge and the expert 

opinion are priceless information sources in attempts to assemble the most effective set of 

predictors (Wilby et al., 2004). 

When the statistical downscaling model is not able to consolidate land surface forcing, meaning 

that the simulated regional climate is determined solely on the basis of free atmospheric 

variables, the climate change scenario will omit changes in land-surface feedback. However, 

nowadays, it is already acknowledged that local land use management influences regional 

climate, vegetation cover and runoff regimes (Chase et al., 2001; Kalnay and Cai, 2003; Stohlgren  

et al., 1998). 

Methods of statistical downscaling tend to underestimate the variance and poorly represent the 

extreme events. Therefore, the techniques that introduce additional variability are frequently 

utilized (Fowler et al., 2007). Method magnifying the variability by multiplication by a suitable 

factor is known as “Variable inflation” (Karl et al., 1990). The randomization method adds 

variability in form of white noise (e.g. Kilsby et al., 1998). The randomization technique provided 

good results in returned values of surface temperature for central Europe (Kyselý, 2002). A more 

sophisticated approach to add variability to statistical models is a variant of canonical correlation 

analysis called “Expanded downscaling” (Bürger, 1996). This method has been employed by 

Huth, 1999; Dehu et al., 2000; and  Müller-Wohlfeil et al., 2000. Each of the abovementioned 

approaches have different drawbacks (Burger and Chen, 2005). Variable inflation does not 

adequately reflect spatial correlations. Randomization poorly transfers change in variability that 

influences expected future change. Expanded downscaling is highly susceptible to the choice of 

statistical processes during its own application (Fowler et al., 2007). 

The performance of downscaling technique depends on choice of the regional domain (Wilby & 

Wigley, 2000), which in practice is often not considered (Benestad, 2001), and also depends on 

the regionalization methods (Wilby et al., 2004). The choice of a downscaling procedure is 

typically conditioned by the data availability, the access to already existing models (and their 

documentation), and to the statistical/technical nature of the study (e.g. uni-variate or 

multivariate, single or multisite) (Wilby et al., 2004). Gutiérrez et al. (2013) assessed the 

performance of statistical methods commonly used for downscaling temperature (including 

analogue methods, weather typing techniques, multiple linear regression, and regression 

conditioned on weather types) with respect to their robust applicability in climate change 

studies. These authors concluded that, overall, regression methods were the most appropriate 
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for climate change studies, although they fail to reproduce the observed winter distribution of 

minimum temperature. 

In general, the methodological reviews of downscaling procedures often cover various methods 

according to their application (e.g. downscaling for the hydrological modelling). Some of the 

most recent and comprehensive studies like Value-Cost Action (ES 1102) or Fischer et al., (2013) 

apply categorization according to Wilks, 1995 using concept of Perfect Prog and MOS. Other 

examples of systematic classification schemes of downscaling techniques can be found for 

instance in (Fowler et al., 2007) where three main categories are recognised: regression models, 

weather typing schemes and whether generators or in Trzaska & Schnarr, (2014) classifying also 

into three classes: Linear methods, Weather classifications and Weather generators.  

Downscaling and climate modelling represent a multidisciplinary field, where researchers from 

various backgrounds intersect their efforts, resulting to specific terminology, which may be 

somewhat confusing.  For instance, the Polynomial Regression (also called the Surface Trend 

Analysis) is a statistic technique. When applied for interpolation purposes, it’s commonly 

classified as a deterministic technique. Even the terms “statistic” and “stochastic” (frequently 

used as names of sub-classes in downscaling methodological reviews) are not always considered 

as synonymous even though both terms could be expressing the same since they are referring 

to methods approaching various input modelling factors as variables with certain probability 

distribution. Furthermore, the recent development is going towards multi-step methodologies 

containing deterministic and stochastic component. This evolution leads to introduction of new 

terms like hybrid or semi-stochastic approach, which makes the efforts to systematically classify 

downscaling methods to previously used categories even more challenging. 

For purpose of this proposal we adopted the classification of statistical downscaling methods 

from Fowler 2007, which is very alike the one established by Wilby et al., (2004) recognizing 

three main following categories: 

 

 Regression models 

 Weather typing (also called weather classifications) 

 Weather generators  

 

5.2.1.1 The Delta-Change method 

This method is also known as Change Factor method (CFs) or the “perturbation” method. It is 

the most straightforward technique to generate finer spatial scale scenarios (Wilby et al., 2004). 

Differences between control and future GCM simulation are applied to baseline observations 

(Fowler et al., 2007). In first step, the reference climatology is identified for particular area of 

interest. With respect to purpose of the study, the subject of delta-change method can be for 

example representative long average (e.g. 1961 – 1990) or actual meteorological record (e.g. 

daily maximum temperatures). Afterwards, change factors in the corresponding temperature 
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variable for course scale grid cell closes to target site are computed. Finally, the variable change 

– “delta” is simply added to each day in the baseline (Wilby et al., 2004). 

The main advantage of the delta-change method is that, due to its simplicity and 

computationally low cost, can be applied to several coarse scale models to produce manifold 

climate scenarios (Fowler et al., 2007). There are also caveats associated with this method. CFs 

assumes that performance of GCM is more accurate in simulation of relative changes rather than 

absolute values, thus presuming a constant bias through the time (Fowler et al., 2007). The 

second caveat represents the limited abilities of this method. Even though CFs allows to scale 

the mean, maxima and minima of climate variables, the method is omitting the possibility of 

changing variability thus the resulting spatial pattern of climate stays constant (Diaz-Nieto and 

Wilby, 2005). Moreover, CFs are not easily applicable to precipitation records because 

precipitation amounts can be affected by the number of rainy days, the magnitude of extreme 

events and therefore yield even negative precipitation simulations (Wilby et al., 2004). 

The examples of previous studies utilizing the delta method are Arnell et al., 1992; 1994; Arnell 

and Reynard, 1996; Diaz-Nieto and Wilby, 2005; Eckhardt and Ulbrich, 2003; Pilling and Jones, 

1999; Prudhomme et al., 2002. 

5.2.1.2 Regression models 

The predictor-predictand relationship is determined by “transfer function” (F. Giorgi et al., 

2001). This relation can have linear or nonlinear character (Wilby et al., 2004). Multiple 

regressions models employ grid cell values of GCMs as predictors of regional predictand like 

surface temperature or precipitation (e.g. Hanseen-Bauer and Forland, 1998; Hellström et al., 

2001). Methods of somewhat higher complexity involve usage of principal components of 

pressure fields or geopotential heights (e.g. Cubasch et al., 1996; Kidson & Thompson, 1998; 

Hanssen-Bauer et al., 2003). Examples of even more sophisticated methods are Zorita & Von 

Storch (1999), using artificial neural networks (ANN), or deployment of canonical correlation 

analysis (CCA) (e.g. Karl et al., 1990; Wigley, 1990; Von Storch et al., 1993; Busuioc e tal., 2001), 

or singular value decomposition (SVD) (e.g. Huth, 1999; Von Storch and Zwiers, 2001). Abauvrer 

and Asin, 2005 innovated this type of techniques by utilization of logistic regression to daily 

precipitation probability and generalized linear model (GAM) for Ebro valley. This method 

provided reasonable good results for seasonal characteristics and some of the daily behaviours 

but had a low performance in reproducing the extreme events (Fowler et al., 2007). The multi-

way partial least squares regression was applied by Bergant & Kajfez-Bogataj, (2005) to 

regionalize temperature and precipitation in Slovenia. This approach superseded conventional 

regression models but was tested only on the cold season (Fowler et al., 2007). Regression 

approaches tend to underestimate variance in future climate (Wilby et al., 2004). Some 

downscaling regression models use the stochastic processes to represent unresolved variance 

(e.g. Charles et al., 1999; Wilby et al., 2003). Burger in 1996 and later Von Storch et al., 1999 

debated the problem of under prediction of variance (Wilby et al., 2004).  

The most outstanding of regression methods is Regression-Kriging (RK). In environmental 

science, RK became the most popular technique for its relative simplicity and also performance 

superseding other geostatistical techniques. Regression-kriging is especially interesting for 
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interpolation of climatic and meteorological data because the explanatory variables (e.g. in form 

of meteorological satellite data) are today increasingly collected with shrinking time intervals. 

Therefore, when such an auxiliary data is available, spatio-temporal regression-kriging models 

can be developed. The alternatives to Regression-kriging include Bayesian Maximum Entropy 

approach, techniques of machine learning and also other available kriging techniques, such as 

co-kriging The Bayesian Maximum Entropy method can be preferred option when explanatory 

data are from many different sources and differ in reliability (D`Or et al., 2003). The machine 

learning algorithms include neural networks and decision trees. However flexible the decision 

trees methods are (they allow optimization for local fits), they are not principally favourable 

from statistical point of view because those methods omit spatial location of points when 

deriving the classification trees (Hengl, 2009). Co-kriging (CK) also allows to use the explanatory 

information, but employment of this method is most appropriate when the explanatory data 

are not spatially exhaustive. CK requires modelling of both – direct and cross-variograms. In 

general, RK is usually preferred over CK if the covariates are available in form of complete 

maps/images. An interesting option is the combination of regression kriging and co-kriging. In 

this case, RK is used in deterministic part of the model and then CK is applied in order to 

interpolate on residuals and add these back to improve estimated deterministic part of 

variation. There are a few limitations of regression kriging. This method is highly sensitive to 

data quality. A single bad data point can affect the result of regression and thus ruin prediction 

over the whole area of interest. Furthermore, the points must be well spread at the edges of the 

feature space. This is also supporting argument to exploit multiple predictors to fit the target 

(Hengl, 2009). The auxiliary maps should have a constant physical relationship with the 

dependent variable through time, and also a linear relationship.  

5.2.1.3 Weather typing 

Weather typing or classification schemes connected the occurrence of “weather classes” with 

local climate (Fowler et al., 2007). This models group days into classes called weather states or 

types, based on their synoptic closeness (Wilby et al., 2004). The definition of synoptic similarity 

uses empirical orthogonal functions (EOFs) (Goodness and Palutikof, 1998), or indices from SLP 

data (Conway et al., 1996), or cluster analysis (Fowler et al., 2000, 2005), or fuzzy rules (Bardossy 

et al., 2002, 2005). Weather typing methods assumes that weather states will remain constant 

and many of these classification procedures suffer from the inherent problem of within-class 

variability of climate parameters (Birkmann et al., 2000). The way around this issue was 

suggested by Enke et al., (2005) where the schema is based on a stepwise multiple regression 

and predictor fields are successively chosen in order to minimize RMSE between observations 

and projections (Fowler et al., 2007). Analogue method was originally developed by Lorenz, 

(1969) for weather forecasting. Analogue approaches are weather typing schemes where 

predictands are chosen by matching the previous situations with state of current weather (Wilby 

et al., 2004). The method was rediscovered for purpose of climate applications (Zorita, 1995; 

Martin et al., 1997) since longer series of predictors and completed reanalysis data became 

available (e.g. Kalnay et al., 1996). However, analogue method is sensitive to limited pools 
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observations (Timbal et al., 2003), but it is appropriate to generate multi-site and multi-variate 

series (Timbal and McAvaney, 2001).  

5.2.1.4 Weather generators (WGs) 

These models are reflecting the statistical attributes of local climate variable but not the 

observed events (Wilks and Wilby, 1999). Weather generators are based on Markovian 

processes. In principle, WGs condition their parameters on large-scale atmospheric predictors, 

weather states or rainfall properties (Katz et al., 1996; Semenov and Borrow, 1997; Wilks, 1999). 

Variables like wet-day amounts, temperatures or solar radiation are often conditioned on 

precipitation occurrence (Wilby et al., 2004). Weather generators appear useful particularly for 

temporal downscaling such as disaggregation of monthly precipitation sums (Kilsby et al., 1998). 

Also weather generators employing Markov process of second order (e.g. Mason, 2004) and 

third order (Dubrovsky et al., 2004) have been developed. These methods improved projections 

of precipitation occurrence and persistence (Fowler et al., 2007).  

More recent evolution of these approaches represents, for example, the connection of the 

Neyman Scott rectangular pulse model (NSRP), which is a stochastic precipitation generator, to 

the weather component developed by Watts et al., 2004 (originated from WG constructed by 

Jones and Salmon, 1995). This methodology is described by Kilsby et al., (2007) and it shows 

enhanced skill in capturing the variability and projections of extremes (Fowler et al., 2007). 

Major weakness of weather generators represented by their conditioning to specific local 

climate relationships. Therefore, they are not directly applicable in other climates. WGs also 

have a tendency to underestimate the inter-annual variability (Fowler et al., 2007). 

Additionally, should be noted the Statistical DownScaling Model (SDSM) (Wilby et al., 2002) 

using circulation patterns and moisture variables to condition local parameters. SDSM also 

introduces the variance to projected downscaled series by stochastic inflation. This approach is 

a hybrid of regression methods and stochastic weather generators (Fowler et al., 2007). 

A-2.3 Comparison of statistical downscaling methods 

The climate community invested significant effort to compare the methods of statistical 

downscaling. The examples of comparative studies are Wilby and Wigley, 1997; Zorita and Von 

Storch, 1997; Huth, 1999, Benestad, 2001; Schoof & Pryor, 2001; Dibike and Coulibaly, 2005; 

Khan et al., 2006 and Widmann et al., 2003.  

Generic weakness of statistical downscaling is high demand on available data. Furthermore, 

these methods usually do not consolidate land-surface feedbacks, and they assume stationarity 

(Wilby et al., 2004). Statistical downscaling is straightforward when compared to dynamical 

methods but tends to underestimate variance in future climate (Fowler et al., 2007). On the 

other hand, the computational cost of statistical downscaling is relatively low. Therefore, they 

may appear to be advantageous alternative for projects where the computational capacity, 

technical expertise or time represent significant restriction (Trzaska & Schnarr, 2014). 

Statistical downscaling may be appropriate for impact studies in heterogeneous regions with 

complex topography and steep environmental gradient (e.g. islands, mountains, land/sea 
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contrast), or in cases where point scale information is required (e.g. local flooding, soil erosion, 

urban drainage, etc.), or to produce large ensembles and transient scenarios (Wilby et al., 2004).
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Appendix B (CWs and relative decrease/increase of HWs/CWs) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 – Relative evolution of HWs and CWs. 
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