3D reconstruction for plastic surgery
simulation based on statistical shape

models

Guillermo Ruiz Fernandez

DOCTORAL THESIS UPF/ YEAR 2018

THESIS SUPERVISORS

Dr. Miguel Angel Gonzilez Ballester 2

Dr. Federico Mateo Sukno !

! Department of Information and Communication Technologies

2 ICREA, Barcelona, Spain

upf.

Universitat
Pompeu Fabra
Barcelona



copyright
all rights reserved

Copyright © (Guillermo Ruiz Fernandez) All rights reserved.

i



Hoy es siempre todavia,
toda la vida es ahora.

Antonio Machado

A mi padre, Jose Manuel y a mi madre, Esther. Gracias.

11






Acknowledgments

The decision of doing a Ph.D. supposes a great personal challenge.
Along the way you go through all kind of emotions. Sometimes you feel
satisfaction with the obtained results and the work done. Other times,
when something does not go well you feel frustration. It is not always
easy. There are a number of people who in one way or another have
contributed to make this adventure more enjoyable by giving their support
and help. I wanted to thank all of them.

First of all, I would like to thank my supervisors Miguel Angel Gonza-
lez and Federico Sukno for giving me the opportunity of being part of
the department of Information and Communication Technologies in the
UPEFE. Thank you for all of your advices, your guidance and everything
you taught me during these years.

I would like to thank Jaime Garcia, for giving me the great opportu-
nity of joining Crisalix, providing the possibility to carry out this Ph.D. in
the company. It has been a really nice experience. I am very grateful to
have been part of the development team during these years where I have
learned many things. I would like to especially thank Edu, for being a
great colleague in the master that we studied together, and even a better
work colleague afterwards. Thank you for all your always good advices
and all your invaluable help. It is a pleasure to work by your side. Pol,
many thanks for your willingness to help and always have the best advi-
ces. Thank you for your awesome tools and your insistence to make me
write using pure Latex. Many thanks to the rest of my Crisalix colleagues,
for being part of this great work atmosphere and because from all of you
I keep learning new things day by day.

Finally, I would like to give my most deepest and sincere gratitude to
the people that most matter to me. To my father, my mother and my sister
for all their love. Thanks for giving me the opportunities and experiences
that have made me who I am. Thank you for always being there. And of
course thank you Adri, for being by my side every day, bringing me your
unconditional support and love.






Abstract

This thesis has been accomplished in Crisalix in collaboration with the
Universitat Pompeu Fabra within the program of Doctorats Industrials.
Crisalix has the mission of enhancing the communication between pro-
fessionals of plastic surgery and patients by providing a solution to the
most common question during the surgery planning process of “How will
I look after the surgery?”. The solution proposed by Crisalix is based in
3D imaging technology. This technology generates the 3D reconstruction
that accurately represents the area of the patient that is going to be oper-
ated. This is followed by the possibility of creating multiple simulations
of the plastic procedure, which results in the representation of the possible
outcomes of the surgery.

This thesis presents a framework capable to reconstruct 3D shapes of
faces and breasts of plastic surgery patients from 2D images and 3D scans.
The 3D reconstruction of an object is a challenging problem with many
inherent ambiguities. Statistical model based methods are a powerful ap-
proach to overcome some of these ambiguities. We follow the intuition of
maximizing the use of available prior information by introducing it into
statistical model based methods to enhance their properties.

First, we explore Active Shape Models (ASM) which are a well-known
method to perform 2D shapes alignment. However, it is challenging to
maintain prior information (e.g. small set of given landmarks) unchanged
once the statistical model constraints are applied. We propose a new
weighted regularized projection into the parameter space which allows
us to obtain shapes that, at the same time, fulfill the imposed shape con-
straints and are plausible according to the statistical model.

Second, we extend this methodology to be applied to 3D Morphable
Models (3DMM), which are a widespread method to perform 3D recon-
struction. However, existing methods present some limitations. Some
of them are based in non-linear optimizations computationally expensive
that can get stuck in local minima. Another limitation is that not all the
methods provide enough resolution to represent accurately the anatomy
details needed for this application. Given the medical use of the applica-
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tion, the accuracy and robustness of the method, are important factors to
take into consideration. We show how 3DMM initialization and 3DMM
fitting can be improved using our weighted regularized projection.

Finally, we present a framework capable to reconstruct 3D shapes of
plastic surgery patients from two possible inputs: 2D images and 3D
scans. Our method is used in different stages of the 3D reconstruction
pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The
developed methods have been integrated in the production environment
of Crisalix, proving their validity.
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Resum

Aquesta tesi ha estat realitzada a Crisalix amb la col-laboraci6 de la Uni-
versitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix t€ com
a objectiu la millora de la comunicaci6 entre els professionals de la cirur-
gia plastica i els pacients, proporcionant una solucié a la pregunta que
sorgeix més freqiientment durant el procés de planificaci6é d'una operacid
quirdrgica “Com em veuré després de la cirurgia?”’. La solucié proposada
per Crisalix esta basada en la tecnologia d'imatge 3D. Aquesta tecnologia
genera la reconstruccié 3D de la zona del pacient operada, seguit de la
possibilitat de crear multiples simulacions obtenint la representacié dels
possibles resultats de la cirurgia.

Aquesta tesi presenta un sistema capag¢ de reconstruir cares i pits de
pacients de cirurgia plastica a partir de fotos 2D i escanegis. La recons-
truccié en 3D d'un objecte és un problema complicat degut a la preseéncia
d'ambigiiitats. Els metodes basats en models estadistics son adequats per
mitigar-les. En aquest treball, hem seguit la intuici6 de maximitzar 1'is
d'informacié previa, introduint-la al model estadistic per millorar les se-
ves propietats.

En primer lloc, explorem els Active Shape Models (ASM) que sén un
conegut metode fet servir per alinear contorns d’objectes 2D. No obstant,
un cop aplicades les correccions de forma del model estadistic, es dificil
de mantenir informaci6 de la que es disposava a priori (per exemple, un
petit conjunt de punts donat) inalterada. Proposem una nova projeccio
ponderada amb un terme de regularitzacid, que permet obtenir formes que
compleixen les restriccions de forma imposades i alhora sén plausibles en
concordanca amb el model estadistic.

En segon lloc, ampliem la metodologia per aplicar-la als anomenats
3D Morphable Models (3DMM) que sén un metode extensivament utilit-
zat per fer reconstrucci6 3D. No obstant, els metodes de 3DMM existents
presenten algunes limitacions. Alguns estan basats en optimitzacions no
lineals, computacionalment costoses i que poden quedar atrapades en mi-
nims locals. Una altra limitaci6 és que no tots el metodes proporcionen la
resolucié adequada per representar amb precisio els detalls de I'anatomia.
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Donat 1ds medic de I'aplicacid, la precisi6 i la robustesa son factors molt
importants a tenir en compte. Mostrem com la inicialitzaci6 i l'ajustament
de 3DMM poden ser millorats fent servir la projeccié ponderada amb re-
gularitzacié proposada.

Finalment, es presenta un sistema capa¢ de reconstruir models 3D
de pacients de cirurgia plastica a partir de dos possibles tipus de dades:
imatges 2D i escaneigs en 3D. El nostre metode es fa servir en diverses
etapes del procés de reconstruccid: alineament de formes en imatge, la
inicialitzaci6 1 'ajustament de 3DMM. Els metodes desenvolupats han
estat integrats a 1'entorn de producci6 de Crisalix provant la seva validesa.
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CHAPTER 1
INTRODUCTION

When a person visits a doctor to undergo plastic surgery, the commu-
nication between the doctor and the patient during the surgery planning
process is of vital importance. The patient’s expectations have to be met
after the surgery to avoid unsatisfactory results and even the need to re-
operate. Therefore, it is preferable for the patients to be highly involved
during the surgery planning process. Important aspects of the surgery
planning, such as the implant selection or the surgical approach elec-
tion, can be supported by a realistic representation of the outcome of the
surgery giving the patients an approximate idea of how they will look after
the surgery. Existing methods of patient assessment are two-dimensional
images based. The main limitation of these methods is the lack of depth
dimension, leading to inconsistencies due to the representation of three-
dimensional objects in two dimensions. More recent imaging methods
such as volumetric medical images (e.g. MRI) or 3D scanners can provide
accurate three-dimensional representations of the patient’s body. How-
ever, they are based on the use of huge hardware devices that might result
invasive for the patients, time-consuming and very expensive. All these
limitations make the aforementioned solutions inadequate to be used in
medical assessments.



This dissertation has been carried out in Crisalix in collaboration with
the Universitat Pompeu Fabra (UPF). The mission of Crisalix is to en-
hance the communication between surgeons and patients. The proposed
solution to overcome the limitations of traditional patient assessment meth-
ods is based on 3D imaging technology. This technology generates the 3D
model of the region of the patient that is going to be operated. Further-
more, when these 3D models are generated, they can be used to illustrate
any plastic or aesthetic procedure simulation in order to let the patients
visualize how they would look after having the surgery. Through a web-
based application that provides a set of tools, the doctors can create multi-
ple simulations for a patient, trying out different implants or transforming
the 3D reconstruction in different ways, so that the patient can have an
idea of the possible outcomes of a procedure and choose the one that suits
him/her best. Also, this tool allows the doctor to advise the patients in an
interactive way, helping the patients feel like they too have a say in how
they will look after the surgery.

The generation of the patient’s 3D model is achieved by performing
3D reconstruction. 3D reconstruction of an object consists of determin-
ing its geometry and appearance from incomplete data. This is a chal-
lenging problem with many inherent ambiguities. For this reason, it is
crucial to define the input data for the reconstruction method, because it
will define the complexity and the possible solutions to the problem. In
addition, it is very important to think how this data can be acquired, since
it will not be done by the researchers but by the doctors. In this thesis,
we have explored the use of two different kinds of input data: 2D images
and 3D point clouds obtained with a structured light based scan. These
two different inputs are suitable to be used in an application such as the
one described above. 2D images are very easy to obtain and handle with a
great variety of devices. However, performing 3D reconstruction from 2D
images can be a difficult challenge if there is no extra information of the
scene. On the other hand, the acquisition of 3D point clouds with a struc-
tured light scan provides a robust and really valuable depth information
conditioned to the use of a scanner device. Despite the need of a device,
existing systems specifications are suitable to be used for this application
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since they are portable and affordable.

In order to perform 3D reconstruction from images or depth data, re-
searchers usually explore ways to minimize the ambiguities of the prob-
lem that can help to reduce its complexity and increase the robustness and
accuracy of the methods. In some cases, this is done by assuming knowl-
edge about the scene conditions, such as illumination or the acquisition
of information with calibrated cameras or devices. In other approaches,
statistical models or regression models are used to represent the charac-
teristics of the reconstructed objects and are built from sets of training
data previously acquired.

Model-based methods are widely used to perform 3D reconstruction.
These methods use predefined templates or a statistical model, providing
prior knowledge about the geometry of the reconstructed object. Fur-
thermore model-based methods are robust against noisy data, incomplete
scans or occluded elements. In particular, 3D Morphable Models (3DMM)
proposed by [Blanz and Vetter, 1999], are extensively used for 3D face
reconstruction. The 3DMM consists of building a statistical model by ex-
tracting the mean shape and the variation modes within a population from
a database. However, the existing 3DMM methods present some limi-
tations. Some of them are based on non-linear optimizations which are
computationally expensive and can get stuck in local minima. Another
limitation that some 3DMM methods have is that they are not adequate to
work in uncontrolled environments. In addition, given the medical use of
the application, the accuracy and robustness of the method are important
factors to take into consideration.

In this thesis, we focus on the study of statistical models and 3DMM,
exploring ways to extend the methodology to maximize the use of the
available prior information, with the aim to enhance its properties and
overcome the aforementioned limitations. The final goal is to provide a
robust framework which obtains 3D reconstructions of faces and breasts
from plastic surgery patients representing as much accurately as possible
the real patient’s anatomy.



1.1 Motivation and objectives

When 3D reconstruction is applied for medical image applications, some
additional challenges arise. In a field such as aesthetic surgery, and even
more when the method has to be implemented to create a commercial
application for the use of professional surgeons there are important re-
quirements that need to be addressed carefully.

In first place, the used method should be a portable solution suitable to
be used in surgeons offices, therefore it should not depend on huge or ex-
pensive hardware devices, which can provide accurate 3D reconstructions
but are not appropriate for the aforementioned scenario.

Another important aspect of the method is the accuracy. The patients
planning to have surgery, will be able to see themselves "reflected" on the
reconstructions and simulations. Therefore, it is very important that the
reconstructions represent very accurately the anatomy of the patients, and
the robustness of the method is essential in order to provide good quality
and suitable reconstructions. Otherwise, the patients might have doubts
or directly decide not to go through with the surgery.

The method should be also fast enough to be used during a medical
appointment. When the doctor wants to instruct and advise the patient
using the visual support of the 3D reconstruction, it is desirable that it
can be provided at that specific moment without the need of long waiting
periods or scheduling a second appointment.

After analyzing the application requirements and the aforementioned
limitations of the existing methods, the research in this work covers the
following points:

* Performing 3D reconstruction from 2D images implies the advan-
tage of using an input easily obtainable, but is a challenging task.
The 3D reconstruction from 2D images pipeline involves many tasks
that have to be resolved in order to recover the 3D geometry of the
reconstructed object. It is very common that the first important task
to be resolved is the 2D landmarks alignment in the input images,
that later will be put in correspondence to obtain the 3D informa-
tion. The process of 2D landmark alignment has to be robust since
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its output will determine the result of the 3D reconstruction. Ac-
tive Shape Models (ASM) are a powerful and well-known method
proposed by [Cootes et al., 1995] to locate boundaries of objects in
images. They are based on obtaining a statistical shape model built
from a collection of 2D shapes. Our first intuition is to explore
the introduction of prior information into the ASM to enhance its
properties. In some applications, there might be prior information
available and some landmarks can be known beforehand (i.e., the
user is asked to manually locate a small set of landmarks). The goal
is to introduce this prior information within the statistical model to
increase the accuracy and robustness of the 2D shape alignment
method.

* The following step is to extend the previous methodology to work
with statistical models based on 3D shapes. The goal is to inte-
grate 3D shape prior information into a statistical model built from
3D shapes. 3DMM are a robust and widely used method to per-
form 3D reconstruction. However, if additional prior information is
combined with the 3DMM statistical model, shape constraints can
be imposed to improve the 3DMM properties.

» After working with both 2D shapes and 3D shapes and exploring
the intuition of introducing prior information within statistical mod-
els, the goal is to integrate these methods in Crisalix’s production
3D reconstruction framework proving their validity. This frame-
work should be able to process different inputs (2D images and
scans) from plastic surgery patients. Using the proposed method,
the objective is to provide robustness and increase the quality of the
patients 3D reconstructions.

1.2 Thesis outline and contributions

This thesis provides not only a theoretic framework but also a set of al-
gorithmic solutions to the previously mentioned problems, which come
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from the real needs of the company in which this thesis is developed.
This document is organized as follows:

* Chapter 2 explains the use of 3D reconstruction as a tool of com-
munication between the surgeon and the patient and plastic surgery
planning. The second part of the chapter places the reader in the
framework of this thesis, which has been developed in Crisalix. The
readers will find a general overview of the framework used to ob-
tain the 3d reconstruction and a description of its applications in the
production company environment.

* Chapter 3 presents a review of the main approaches to perform 3D
reconstruction. This chapter reviews the related methods of the
state of the art to perform 3D reconstruction with special interest
in face and breast 3D reconstruction.

* Chapter 4 presents a method to perform face alignment in images.

This method is based on introducing prior knowledge, such as pre-
viously detected landmarks, into the shape statistical model in order
to apply shape constraints. The method provides a weighted regu-
larized projection into the parameter space. The outcomes of this
research have been presented in the following paper:
Guillermo Ruiz, Eduard Ramon, Jaime Garcia, M. A. Gonzalez,
Federico Sukno. Weighted regularized ASM for face alignment. In
proc. of the International Conference on Image Processing (ICIP),
2016.

* Chapter 5 presents a framework to fit a 3DMM of the breast to two
possible inputs: 2D photos and 3D scans. The weighted regularized
projection already introduced in chapter 4 is applied to 3D shapes.
The contribution of each point in the 3DMM shape is weighted,
allowing to assign more relevance to those points that we want to
impose as constraints. The method is applied in several stages of
the 3D reconstruction process. The publication associated to this
contribution is:

Guillermo Ruiz, Eduard Ramon, Jaime Garcia, Federico Sukno,
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M. A. Gonzilez (2018). Weighted Regularized statistical shape
space projection for breast 3D model reconstruction. Medical Im-
age Analysis, 47:164-179.

» Chapter 6 presents the conclusions of this thesis and describes the
possible lines of future work of the exposed research projects.



Chapter 2 have been removed from the thesis due to
confidentiality issues.



CHAPTER 3
RELATED WORK

3D reconstruction of an object has been extensively studied in computer
vision. Many reconstruction methods can be applied to recover the 3D
structure of an object and especially the topic 3D face reconstruction
has been addressed by the researchers is many publications. The chosen
method depends on the scenario and the conditions in which the recon-
struction is applied. When 3D reconstruction is applied to plastic surgery
planning (e.g. face and breasts reconstructions) there are several require-
ments that need to be fulfilled. The quality of the reconstructed body parts
needs to be suitable enough to be shown to a patient and the patient’s
anatomy must be represented very accurately. In addition, the input data
for the method has to be easy to obtain.

In this chapter, we give an overview of the main approaches used for
the researchers to perform 3D reconstruction. We have special interest
in those methods focused on recovering the shape of human body parts
such as the face or breasts. The reviewed 3D reconstruction methods can
be classified depending on the scenarios and the needed input data. The
possible scenarios are: 3D reconstruction from multiview images, in
which the input is a set of images describing the object from different
points of view and 3D reconstruction from single image.
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3.1 3D reconstruction from multi-view images

3D reconstruction methods from multi-view images are widely used to re-
cover the 3D shape of an object. The idea is to acquire multiple images of
the object from different points of view, in order to estimate the surface of
the object. Nowadays, 2D images can be easily obtained using common
cameras which are accessible to everyone. These reconstruction methods
can be classified depending on the scenario and the conditions in which
the 2D images are captured. In some approaches, these conditions are
controlled, meaning for example, that the set of cameras that acquire the
images are calibrated or the lighting of the scene is known. These meth-
ods are described in section 3.1.1. On the other hand, there are methods in
which all this scene information is unknown and the images are obtained
under uncontrolled conditions. These methods are described in section
3.1.2.

3.1.1 Controlled scene

In this section, some of the most widely used methods to perform 3D
reconstruction under controlled scenario are explained. For the particular
case of reconstructing faces or parts of the human body, the most popular
methods are multiview stereo, structured light or photometric stereo.
Multiview stereo is a well-known and widely used technique, in which
the goal consists of recovering the 3D shape of an object from a set of
images taken from different known positions [Seitz et al., 2006]. The
problem of reconstructing an object can be solved either by passive or
active methods. Passive methods are based on the acquisition of these
images with fixed cameras usually with lighting setups. In this case, the
only purpose of the lights is to illuminate the scene but without direct im-
pact in the triangulation to estimate 3D points. The 3D points estimation
is achieved by finding correspondences (i.e., looking for the same point
in two different images as illustrated in Figure 3.1) within the acquired
images by using stereo matching methods. Using these multi-view setups
for 3D reconstruction provides accurate results but also implies controlled
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Figure 3.1: Stereo passive. Multiple images describing the reconstructed
object are acquired from different points of view. In this example, two
different cameras c; and ¢, are used to take the images /; and /5 respec-
tively. The blue dots p; and p2 represent the inner left eye bodymark in
each one of the images. The point P (which corresponds to the left eye
bodymark in the 3D object) can be estimated by triangulation using the
points correspondences and the cameras.

scene conditions. In the particular case of reconstructing parts of the body
the multi-view stereo setups typically consist in a set of calibrated cam-
eras with illumination placed around the face [Beeler et al., 2010, Bradley
etal., 2010, Beeler et al., 2011, Fyffe et al., 2014] or the breasts [Henseler
et al., 2011, Hoeffelin et al., 2014].

Active stereo methods use additional information in order to obtain
higher quality results and maximize their accuracy. This additional in-
formation usually consists of marker data placed in the scanned subjects
[Alexander et al., 2009] or the use of structured light (see Figure 3.2). The
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projector

Figure 3.2: Stereo active. Multiple images /; and /5 describing the scene
are acquired from different points of view c¢; and c;. Additionally, a de-
vice projects a pattern over the object (i.e., projector). With this extra
information the process of finding the correspondences p; and p, shown
in blue dots is simplified.

process of finding correspondences is simplified and more robust with this
additional information.

Structured light is a technology that consists in the use of a device
projecting a light pattern (usually a simple geometric structures such as
stripes, dots or grids) over the scene [Salvi et al., 2010] (see Figure 3.3).
Another calibrated camera obtains the color image of the scene from a
different point of view from the projected pattern. The knowledge of the
pattern geometry and the recovered deformed patterns from the scene are
used to extract the 3D surface information. The object can be scanned
from different view points and the 3D surface information is integrated
in dense 3D surface that recovers the scene depth. Structured light ap-
proaches are widely used in practical applications given their robustness.
However, their accuracy directly depends on the resolution of the pro-
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projector

4

Figure 3.3: Structured light. The camera c; obtains the color image of the
scene [;. Another device projects a pattern over the scene (i.e., projec-
tor). Knowing the pattern geometry and the suffered deformation of the
projected pattern the depth of point P can be estimated.

jected patterns.

Photometric stereo methods were introduced by [Woodham, 1980]
and address the problem of 3D reconstruction by estimating the 3D ge-
ometry of an object from multiple images of a specific sample obtained
with a fixed camera and under varying lighting conditions. Computing the
intensity variation in each pixel, the local orientation of the surface can
be estimated. In addition, the reflectance albedo can be obtained as part
of the same process. In order to simplify the computation, photometric
stereo usually uses Lambertian reflectance model. The general equation
of photometric stereo is formulated as:

I, L{
Ll =pi | LY | n 3.1
Is; Lg
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for the specific case of having three different images with their respec-
tive light source vectors, where /N is the number of the image pixels,
It = 1,..., N is the set of intensities for image k and L; is the jth
light source vector. The reflectance albedo p; and the surface normal n;
can be calculated by solving equation 3.1. However, the classic formula-
tion of the method has some limitations: the images have to be acquired
from the same pose under changing illumination conditions, which im-
plies a specific capture device or setups. In addition, since all the images
are taken from a single point of view, the estimated geometry is a partial
region of the full object making difficult the reconstruction of the full ob-
jector a closed 3d surface. Usually, photometric stereo devices are used to
capture the input images [Hansen et al., 2010, Angelopoulou and Petrou,
2014, Sun et al., 2015]. Some approaches combined multiview stereo
or shape from motion with photometric stereo methods [Zhang et al.,
2003, Esteban et al., 2008] dealing with images from different points of
view and enabling a full 3D reconstruction.

The methods described in this section are able to obtain accurate 3D
reconstructions but are subject to have some knowledge of the scene (i.e.,
known cameras or illumination) or the use of specific devices that provide
extra information. Other methods, such as photometric stereo, are usually
too computationally expensive to be used in real time applications and
they require training sets with collection of images with different illumi-
nations of a specific sample.

3.1.2 Uncontrolled scene

More recent approaches perform 3D reconstruction from a set of im-
ages acquired in an uncontrolled way (i.e., in the wild images) and are
able to estimate the camera poses and the lighting. These methods are
based in the aforementioned photometric methods. The reconstruction
is performed using as an input a collection of images from an individ-
ual in which, there are a great variety of poses, expressions and light-
ing conditions without restrictions [Kemelmacher-Shlizerman and Seitz,
2011, Roth et al., 2015, Roth et al., 2016]. The authors of these works,
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relax the constraints that are needed in photometric stereo (i.e., rigid ge-
ometry, known lighting and cameras) to be able to work with collections
of images acquired under unconstrained conditions. In the method of
[Kemelmacher-Shlizerman and Seitz, 2011], the authors assume weak
perspective camera and Lambertian reflectance. They detect fiducial points
on the 2D images collection and use the corresponding positions of these
fiducials in a 3D template to recover the pose of each face and normalize
it (e.g. this results in a collection of normalized faces with all the faces
in a frontal position). From this set of frontalized faces, the lighting and
the surface normals are estimated. Similarly, the authors of [Roth et al.,
2015] assume also weak perspective camera projection and Lambertian
reflection. They perform 2D face alignment in all the images collection
and a predefined 3D face template is deformed so that the projections of
its 3D landmarks are consistent with the 2D detected landmarks. This de-
formation provides the global shape, but the fine details are obtained by
estimating the photometric normals based on [Kemelmacher-Shlizerman
and Seitz, 2011]. In the work of [Roth et al., 2016] the authors fit a
3DMM to produce a person specific template mesh instead of using pre-
defined templates without prior face distribution knowledge. In addition,
the contribution of each one of the images is weighted to use the ones that
are more confident to produce accurate reconstructions in specific parts
of the face. The authors of [Zeng et al., 2017] in order to avoid the use
of generic templates or 3DMM, use multiple reference models, each one
for some specific component of the input 2D face image (e.g. the eye, the
nose or the mouth). With this combination, they claim that their method
can obtain more accurate reconstructions.

In conclusion, these methods can recover fine details but they are usu-
ally too computationally expensive to be used in real time and they require
a collection of images with different illuminations of a specific sample.
Furthermore, to solve the challenging problem of performing reconstruc-
tion from images acquired in an unconstrained way, the authors usually
need to make assumptions and introduce in their methods prior informa-
tion such as predefined templates or 3DMM.
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3.2 3D reconstruction from single image meth-
ods

In many applications the only available input is a single image of the sub-
ject that we want to reconstruct. This fact implies a great simplification
of the input data (i.e., a single image of the subject that can be easily
obtained with a camera device) without the need of acquisition set ups,
but nevertheless makes more challenging the 3D reconstruction problem.
3D reconstruction from a single image has been extensively explored by
researches and is an ill-posed problem due to the difficulty to extract all
the necessary information to perform the 3D reconstruction. Therefore,
the methods that perform reconstruction from a single image, mitigate the
uncertainty by introducing additional data (i.e., prior information) such as
illumination priors or statistical models. In this approach, common 3D re-
construction methods can be classified according to the introduced prior
information in shape from shading, learning based methods and 3DMM
models.

3.2.1 Shape from shading

Shape from shading methods are based on estimating the geometry of
an object based on illumination and lighting changes applied to that ob-
ject. The concept of shape from shading was firstly introduced in [Horn,
1975, Horn and Brooks, 1989] and since then, many different approaches
appeared [Zhang et al., 1999]. Shape from shading methods estimate the
surface normals of an object and are a particular case of the aforemen-
tioned photometric stereo methods. In this case, only a single image of
the subject is available, making the ambiguity more extreme. The main
principle of this technique is that the amount of light reflected by a surface
is dependent on the orientation of the surface in relation to the light source
and the observer. Therefore, these methods require knowledge about the
illumination or lighting configuration, the surface reflectance properties,
the color (e.g. albedo), the boundary conditions (e.g. depth knowledge in
certain regions of the object) or the camera projection. However, all this

28



information is usually not available since it is part of the reconstructed ob-
jectitself. Thus, these methods need to do assumptions and introduce cer-
tain constraints such as assuming that the lighting configuration is known
or a few normals are previously given (e.g. the shape silhouette).

In particular, shape from shading has been extensively applied to per-
form 3D face reconstruction. Faces are difficult objects to reconstruct
thus, in order to obtain suitable results for face reconstructions, authors
have explored different approaches to introduce prior assumptions to re-
duce the problem difficulty. For example, the symmetry of the face has
been used as a prior knowledge constraint to reduce the number of un-
knowns [Shimshoni et al., 2000, Zhao and Chellappa, 2000, Zhao and
Chellappa, 2001]. Another approach to perform shape from shading is
introducing statistical knowledge about the object. The first shape from
shading statistical method was firstly introduced by [Atick et al., 1996]
in which the authors represented the faces in a low-dimensional parame-
terization using principle analysis component (PCA). A different method
that embedded statistical information in a shape from shading algorithm
was [Smith and Hancock, 2006] in which the facial shape was described
as the variation of surface normals directions. In the method of [Dovgard
and Basri, 2004] the authors presented a combined approach which used
faces symmetry and statistics of human faces as constraints in a restricted
setup. Statistical methods are usually robust but they require a collec-
tion of instances with full correspondence in order to build the statistical
model. In order to avoid this, other shape from shading approaches intro-
duce a template model as reference for the reconstruction to supply the
missing information and recover the shape information by estimating the
rest of unknowns (e.g. lighting and reflectance) [Kemelmacher and Basri,
2006, Kemelmacher-Shlizerman and Basri, 2011, Jiang et al., 2018].

In conclusion, shape from shading methods can recover shape infor-
mation and details from a single image but they require to take strong as-
sumptions and usually the introduction of prior knowledge is needed. For
face reconstruction, templates or statistical models are frequently used for
these methods and the results are normally highly conditioned by them.
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3.2.2 Learning-based methods

Learning-based methods relate the input image with some form of re-
gression with the 3D reconstruction. These methods can be divided in
regression methods and deep learning methods.

Regression methods have been extensively applied for the task of
2D face alignment [Xiong and De la Torre, 2013, Kazemi and Sullivan,
2014]. Given the good results of applying regression methods to 2D face
alignment, the researchers have also started to use regression methods
for 3D face reconstruction as well. Some approaches perform regression
from a set of 2D landmarks to directly infer the 3D geometry of the face
[Aldrian and Smith, 2010, Dou et al., 2014, Liu et al., 2015]. These meth-
ods consist on a pre-trained set of regressors that gradually adjust the 3D
shape to an input image. The regressors are usually trained with a collec-
tion of paired 2D shapes (i.e., sparse set of 2D landmarks) and their corre-
sponding 3D shapes (with a known 2D to 3D shapes mapping). Thus, the
regressors learn the existing correlation between them. Let P be defined
as the annotated facial 2D landmarks P = (g, Yo, T1, Y1, -, Tn, Yn)' ON
a given image in which the landmark (z;,y;) as the ith landmark on the
2D image and n is the number of 2D landmarks. In order to reconstruct
the 3D shape, the method is initialized with a the 3D shape 5. The idea
is to compute the adjustment that is applied to the shape Sy _; at the &y,
iteration. In order to do so, the corresponding points to the landmarks
are 