ESTUDIO EXPERIMENTAL DE GEOPOLÍMEROS DE ARCILLAS

en función de la resistencia mecánica

JUAN CARLOS CALDERÓN PEÑAFIEL

Anexos

Anexo 1.0 "Compressive strength and embodied environmental impact of experimental polymerized-clay bricks" 197 Anexo 3.0 "La tiera: un material compuesto" 220 Anexo 4.0 Descripción de anàlisis y ensayos 238 Anexo 5.0 Procedimientos experimental 238 Anexo 6.1 Descripción de anàlisis y ensayos 247 Anexo 6.1.1 Determinación del límite lípido y determinación del límite plástico de arcilla Tipo A 250 Anexo 6.1.2 Información suministrada por el distribuidor de arcilla Tipo A 251 Anexo 6.1.3 Analisis por microscopia electrónica de borrido (SEM) de arcilla Tipo A 252 Anexo 6.2.1 Analisis por microscopia electrónica de borrido (SEM) de arcilla Tipo A 252 Anexo 6.2.1 Determinación del límite judida y determinación del límite plástico de arcilla Tipo B 253 Anexo 6.2.2 Analisis por microscopia electrónica de borrido (SEM) de arcilla Tipo B 263 Anexo 6.2.2 Análisis granulométrico mediante difracción liste (PAI) de arcilla Tipo B 264 Anexo 6.2.2 Análisis granulométrico mediante difracción liste (PAI) de arcilla Tipo B 265 Anexo 6.2.2 Análisis granulométrico mediante difracción lister (PAI) de arcilla Tipo C 274 Anexo 6.3.2 Análisi	ANEXOS		195						
Anexo 6 lo campaña experimental 238 Anexo 5.0 Procedimientos experimentoles y equipos 247 Anexo 6.6.1.1 Determinación del limite Ilquido y determinación del limite plástico de arcilla Tipo A 250 Anexo 6.6.1.2 Información suministrado por el distribuidor de arcilla Tipo A 251 Anexo 6.6.1.6 Análisis granulométrico mediante diffracción láser (ADU) de arcilla Tipo A 252 Anexo 6.6.1.6 Análisis granulométrico mediante diffracción láser (ADU) de arcilla Tipo A 250 Anexo 6.6.2.1 Determinación del limite liguido y determinación del limite plástico de arcilla Tipo B 263 Anexo 6.6.2.1 Determinación del limite liguido y determinación del limite plástico de arcilla Tipo B 263 Anexo 6.6.2.2 Información suministrado por el distribuidor de arcilla Tipo B 264 Anexo 6.6.2.4 Análisis granulométrico mediante diffracción láser (ADU) de arcilla Tipo B 265 Anexo 6.6.2.7 Análisis granulométrico mediante diffracción láser (ADU) de arcilla Tipo C 274 Anexo 6.6.3.2 Información suministrado por el distribuidor de arcilla Tipo C 275 Anexo 6.6.3.4 Análisis granulométrico mediante diffracción láser (ADU) de arcilla Tipo C 280 Anexo 6.3.4 Análisis granulométrico mediante diffracción láser (ADU) d	Anexo 1.0 "Comp Anexo 2.0 "Mate Anexo 3.0 "La tie	Anexo 1.0 "Compressive strength and embodied environmental impact of experimental polymerized-clay bricks" Anexo 2.0 "Materiales de arcilla geo-polimerizada: Tecnologías para la arquitectura del futuro" Anexo 3.0 "La tierra: un material compuesto"							
Anexo 5.0 Descripción de onôlisis y ensoyos 238 Anexo 5.0 Procedimientos experimentales y equipos 247 Anexo 6.6.1.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo A 250 Anexo 6.6.1.3 Andisis por diffracción de arroyas X (DRX) de arcilla Tipo A 251 Anexo 6.6.1.4 Andisis granulométrico medionte difracción (SEM) de arcilla Tipo A 252 Anexo 6.6.1.7 Andisis granulométrico medionte difracción (SEM) de arcilla Tipo A 256 Anexo 6.6.2.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo B 263 Anexo 6.6.2.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo B 264 Anexo 6.6.2.2 Andisis por diffacción de raryos X (DRX) de arcilla Tipo B 264 Anexo 6.6.2.4 Andisis por diffacción de raryos X (DRX) de arcilla Tipo B 272 Anexo 6.6.3.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C 274 Anexo 6.6.3.2 Información suministrado por el distribuidor de arcilla Tipo C 274 Anexo 6.6.3.2 Andisis por diffacción líguido y determinación del límite plástico acilla Tipo C 276 Anexo 6.6.3.4 Andisis granulométrico mediante diffracción (SEM)	Anexos de la cam	npaña experimental							
Anexo 5.0 Procedimientos experimentales y equipos 247 Anexo 6.6.1.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo A 250 Anexo 6.6.1.2 Análisis por difracción de royos X [DK] de arcilla Tipo A 251 Anexo 6.6.1.6 Análisis por difracción de royos X [DK] de arcilla Tipo A 252 Anexo 6.6.1.6 Análisis por microscopia electrónica de barrido [SEM] de arcilla Tipo A 253 Anexo 6.6.2.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo B 263 Anexo 6.6.2.2 Información suministrada por el distribuidor de arcilla Tipo B 263 Anexo 6.6.2.2 Información suministrada por el distribuidor de arcilla Tipo B 264 Anexo 6.6.2.4 Análisis por microscopia electrónica de barrido [SEM] de arcilla Tipo B 265 Anexo 6.6.2.7 Análisis por microscopia electrónica de barrido [SEM] de arcilla Tipo C 274 Anexo 6.6.3.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C 275 Anexo 6.6.3.2 Información suministrada por el distribuidor de arcilla Tipo C 276 Anexo 6.6.3.4 Análisis por microscopia electrónica de barrido [SEM] de arcilla Tipo C 280 Anexo 6.6.3.7 Análisis por microscopia electrónica de barrido [SEM] de arcilla Tipo D 285 Anexo 6.6.4.7 Análisis por microscopia electró	Anexo 4.0	Descripción de análisis y ensayos	238						
Anexo 6.6.1.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo A 250 Anexo 6.6.1.2 Información suministrada por el distribuidor de arcilla Tipo A 251 Anexo 6.6.1.6 Análisis por difracción de rayos X (DRX) de arcilla Tipo A 252 Anexo 6.6.1.6 Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo A 256 Anexo 6.6.1.7 Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo B 263 Anexo 6.6.2.1 Información al límite líquido y determinación del límite plástico de arcilla Tipo B 264 Anexo 6.6.2.2 Información al límite líquido y determinación del límite plástico de arcilla Tipo B 264 Anexo 6.6.2.4 Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo B 269 Anexo 6.6.3.4 Análisis granulométrico mediante difracción del ITipo Lib de arcilla Tipo C 274 Anexo 6.6.3.1 Información al límite líquido y determinación del límite plástico de arcilla Tipo C 276 Anexo 6.6.3.4 Análisis por microscopia electrónica de barrido ISEM) de arcilla Tipo C 276 Anexo 6.6.3.7 Análisis por microscopia electrónica de barrido ISEM) de arcilla Tipo D 286 Anexo 6.6.4.1 Determinación del límite líquido y determinación del límite plástico arcilla Tipo D 286 <td>Anexo 5.0</td> <td>Procedimientos experimentales y equipos</td> <td>247</td>	Anexo 5.0	Procedimientos experimentales y equipos	247						
Anexo 6.6.1.2 Información suministrada por el distribuidor de arcilla Tipo A 251 Anexo 6.6.1.6 Análisis por difracción de royos X (DRX) de arcilla Tipo A 252 Anexo 6.6.1.6 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo A 256 Anexo 6.6.1.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo A 259 Anexo 6.6.2.1 Información suministrada por el distribuidor de arcilla Tipo B 264 Anexo 6.6.2.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo B 265 Anexo 6.6.2.4 Análisis granulométrico mediante difracción Idser (JADI) de arcilla Tipo B 266 Anexo 6.6.3.7 Análisis por difracción de rayos X (DRX) de arcilla Tipo B 272 Anexo 6.6.3.1 Determinación de límite líquido y determinación de arcilla Tipo C 274 Anexo 6.6.3.1 Determinación de rayos X (DRX) de arcilla Tipo C 276 Anexo 6.6.3.3 Análisis granulométrico mediante difracción Idser (ADI) de arcilla Tipo C 276 Anexo 6.6.3.4 Análisis granulométrico mediante difracción Idser (ADI) de arcilla Tipo C 280 Anexo 6.6.3.7 Análisis granulométrico mediante difracción Idser (ADI) de arcilla Tipo C 280 Anexo 6.6.3.7 Análisis granulométrico mediante difracción Idser (ADI) de ar	Anexo 6.6.1.1	Determinación del límite líquido y determinación del límite plástico de arcilla Tipo A	250						
Anexo 6.6.1.3 Andikis por difracción de rayos X (DRX) de arcilla Tipo A 252 Anexo 6.6.1.6 Andikis granulométrico mediante difracción lóser (ADU) de arcilla Tipo A 256 Anexo 6.6.1.7 Andikis por microscopio electrónico de barrido (SEM) de arcilla Tipo A 259 Anexo 6.6.2.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo B 263 Anexo 6.6.2.2 Información suministrada por el distribuidor de arcilla Tipo B 264 Anexo 6.6.2.4 Andikis por difracción de rayos X (DRX) de arcilla Tipo B 265 Anexo 6.6.2.7 Anólisis por difracción de rayos X (DRX) de arcilla Tipo B 269 Anexo 6.6.3.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C 272 Anexo 6.6.3.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C 276 Anexo 6.6.3.2 Andikis por microscopia electrónica de barrido (SEM) de arcilla Tipo C 283 Anexo 6.6.3.4 Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo C 286 Anexo 6.6.3.7 Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo D 285 Anexo 6.6.4.1 Determinación de rayos X (DRX) de arcilla Tipo D 286 Anexo 6.6.4.2 Análisis por	Anexo 6.6.1.2	Información suministrada por el distribuidor de arcilla Tipo A	251						
Anexo 6.6.1.6 Análisis granulométrico mediante difracción láser (ADI) de arcilla Tipo A 256 Anexo 6.6.1.7 Análisis por microscopia electrónica de barrido (SEAI) de arcilla Tipo B 263 Anexo 6.6.2.1 Determinación del límite líquido y determinación del límite plóstico de arcilla Tipo B 263 Anexo 6.6.2.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo B 265 Anexo 6.6.2.7 Análisis granulométrico mediante difracción láser (ADU) de arcilla Tipo B 265 Anexo 6.6.3.7 Análisis granulométrico mediante difracción de rayos X (DRX) de arcilla Tipo B 272 Anexo 6.6.3.1 Determinación del límite líquido y determinación del límite plóstico de arcilla Tipo C 274 Anexo 6.6.3.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo C 276 Anexo 6.6.3.4 Información suministrada por el distribuidor de arcilla Tipo C 276 Anexo 6.6.3.7 Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo C 283 Anexo 6.6.3.7 Análisis por difracción de rayos X (DRX) de arcilla Tipo D 286 Anexo 6.6.4.1 Determinación del límite líquido y determinación del límite plóstico arcilla Tipo D 285 Anexo 6.4.2 Información a unimistrada por el distribuidor de arcilla Tipo D 286 An	Anexo 6.6.1.3	Análisis por difracción de ravos X (DRX) de arcilla Tipo A	252						
Anexo 6.6.1.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo A 259 Anexo 6.6.2.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo B 263 Anexo 6.6.2.2 Información suministrada por el distribuidor de arcilla Tipo B 264 Anexo 6.6.2.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo B 265 Anexo 6.6.2.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo B 272 Anexo 6.6.2.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo C 274 Anexo 6.6.3.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C 274 Anexo 6.6.3.2 Información suministrada por el distribuidor de arcilla Tipo C 276 Anexo 6.6.3.2 Análisis granulométrico mediante difracción (aser (ADU) de arcilla Tipo C 280 Anexo 6.6.3.7 Análisis granulométrico mediante difracción (aser (ADU) de arcilla Tipo C 280 Anexo 6.6.4.2 Información suministrada por el distribuidor de arcilla Tipo D 285 Anexo 6.6.4.2 Información suministrada por el distribuidor de arcilla Tipo D 286 Anexo 6.6.4.2 Información suministrada por el distribuidor de arcilla Tipo D 286 Anexo 6.4.1 Determinac	Anexo 6.6.1.6	Análisis aranulométrico mediante difracción láser (ADL) de arcilla Tipo A	256						
Anexo 6.6.2.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo B 263 Anexo 6.6.2.2 Información suministrada por el distribuidor de arcilla Tipo B 264 Anexo 6.6.2.3 Andítisis por difracción de rayos X (DRX) de arcilla Tipo B 265 Anexo 6.6.2.7 Andítisis por microscopía electrónica de barrido (Ser/IADU) de arcilla Tipo B 272 Anexo 6.6.3.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C 274 Anexo 6.6.3.2 Información suministrada por el distribuidor de arcilla Tipo C 275 Anexo 6.6.3.4 Andítisis por difracción de rayos X (DRX) de arcilla Tipo C 276 Anexo 6.6.3.4 Andítisis por difracción de rayos X (DRX) de arcilla Tipo C 280 Anexo 6.6.3.7 Andítisis por difracción de rayos X (DRX) de arcilla Tipo C 280 Anexo 6.6.3.7 Andítisis granulométrico mediante difracción láser (ADU) de arcilla Tipo D 285 Anexo 6.6.4.2 Información suministrada por el distribuidor de arcilla Tipo D 286 Anexo 6.6.4.3 Andítisis granulométrico mediante difracción láser (ADU) de arcilla Tipo D 286 Anexo 6.4.4 Información suministrada por el distribuidor de arcilla Tipo D 286 Anexo 6.6.4.7 Andítisis por difracción de	Anexo 6.6.1.7	Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo A	259						
Anexo 6.6.2.2 Información suministrada por el distribuidor de arcilla Tipo B 264 Anexo 6.6.2.3 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo B 265 Anexo 6.6.2.7 Análisis por microscopia electrónica de barrido (SEAV) de arcilla Tipo B 272 Anexo 6.6.2.7 Análisis por microscopia electrónica de barrido (SEAV) de arcilla Tipo C 274 Anexo 6.6.3.1 Determinación del límite líquido y determinación del arcilla Tipo C 274 Anexo 6.6.3.2 Información suministrada por el distribuidor de arcilla Tipo C 276 Anexo 6.6.3.6 Análisis por difracción de rayos X (DRX) de arcilla Tipo C 276 Anexo 6.6.3.6 Análisis por microscopia electrónica de barrido (SEAV) de arcilla Tipo C 280 Anexo 6.6.3.7 Análisis por microscopia electrónica de barrido (SEAV) de arcilla Tipo C 280 Anexo 6.6.3.7 Análisis por microscopia electrónica de barrido (SEAV) de arcilla Tipo D 285 Anexo 6.4.1 Determinación suministrada por el distribuidor de arcilla Tipo D 286 Anexo 6.4.2 Información suministrada por el distribuidor de arcilla Tipo D 286 Anexo 6.4.4 Análisis por microscopía electrónica de barrido (SEAV) de arcilla Tipo D 287 Anexo 6.4.7 Análisis por microscopía electrónic	Anexo 6.6.2.1	Determinación del límite líquido y determinación del límite plástico de arcilla Tipo B	263						
Anexo 6.6.2.3 Análisis por difracción de royos X (DRX) de arcilla Tipo B 265 Anexo 6.6.2.6 Análisis granulométrico mediante difracción láser (ADU) de arcilla Tipo B 269 Anexo 6.6.2.7 Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo C 274 Anexo 6.6.3.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C 274 Anexo 6.6.3.2 Información suministrada por el distribuidor de arcilla Tipo C 275 Anexo 6.6.3.3 Análisis granulométrico mediante difracción láser (ADU) de arcilla Tipo C 280 Anexo 6.6.3.7 Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo C 283 Anexo 6.6.4.1 Determinación del límite líquido y determinación del límite plástico arcilla Tipo D 285 Anexo 6.6.4.1 Determinación de rayos X (DRX) de arcilla Tipo D 286 Anexo 6.6.4.2 Información suministrada por el distribuidor de arcilla Tipo D 286 Anexo 6.6.4.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo D 287 Anexo 6.4.4 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D 291 Anexo 6.4.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D 291 Anexo 6.4.7 Análisis por microscopía p	Anexo 6 6 2 2	Información suministrada por el distribuidor de arcilla Tipo B	264						
Anexo 6.6.2.6Análisis granulométrico mediante difracción láser (ADU) de arcilla Tipo B269Anexo 6.6.2.7Análisis granulométrico mediante difracción láser (ADU) de arcilla Tipo B272Anexo 6.6.3.1Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C274Anexo 6.6.3.2Información suministrada por el distribuidor de arcilla Tipo C275Anexo 6.6.3.3Análisis por difracción de rayos X (DRX) de arcilla Tipo C276Anexo 6.6.3.7Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo C280Anexo 6.6.3.7Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo C283Anexo 6.6.4.1Determinación del límite líquido y determinación del límite plástico arcilla Tipo D285Anexo 6.6.4.2Información suministrada por el distribuidor de arcilla Tipo D286Anexo 6.6.4.3Análisis por difracción de rayos X (DRX) de arcilla Tipo D287Anexo 6.6.4.7Análisis granulométrico mediante difracción láser (ADU) de arcilla Tipo D287Anexo 6.6.4.7Análisis granulométrico mediante difracción láser (ADU) de arcilla Tipo D287Anexo 6.7.1Diseño de experimentos296Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)316Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.4 <td>Anexo 6 6 2 3</td> <td>Análisis por difracción de ravos X (DRX), de arcilla Tipo B</td> <td>26.5</td>	Anexo 6 6 2 3	Análisis por difracción de ravos X (DRX), de arcilla Tipo B	26.5						
Anexo 6.6.2.7Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo B272Anexo 6.6.3.1Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C274Anexo 6.6.3.2Información suministrada por el distribuidor de arcilla Tipo C276Anexo 6.6.3.3Análisis por difracción de rayos X (DRX) de arcilla Tipo C280Anexo 6.6.3.4Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo C280Anexo 6.6.3.7Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo D285Anexo 6.6.4.1Determinación del límite líquido y determinación del límite plástico arcilla Tipo D286Anexo 6.6.4.3Análisis por difracción de aroyos X (DRX) de arcilla Tipo D287Anexo 6.6.4.4Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo D287Anexo 6.6.4.5Análisis por difracción de aroyos X (DRX) de arcilla Tipo D287Anexo 6.6.4.7Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo D287Anexo 6.7.1Diseño de experimentos296Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental B (GEO-E)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental B (GEO-E)314Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental B (GEO-E)315Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental B (GEO-E)316Anexo 6.9.6Resis	Anexo 6 6 2 6	Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo B	269						
Anexo 6.6.3.1Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C274Anexo 6.6.3.2Información suministrada por el distribuidor de arcilla Tipo C275Anexo 6.6.3.3Andílisis por difracción de rayos X (DRX) de arcilla Tipo C276Anexo 6.6.3.7Andílisis granulométrico mediante difracción láser (ADL) de arcilla Tipo C280Anexo 6.6.3.7Andílisis por microscopía electrónica de barrido (SEM) de arcilla Tipo C283Anexo 6.6.3.7Andílisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D285Anexo 6.6.4.1Determinación suministrada por el distribuidor de arcilla Tipo D286Anexo 6.6.4.3Andílisis por difracción de rayos X (DRX) de arcilla Tipo D286Anexo 6.6.4.4Andílisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D291Anexo 6.6.4.7Andílisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D294Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.4Análisis provinteritoo ATG de geo-polímeros a base de arcilla330Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.6Resistencia a la com	Anexo 6 6 2 7	Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo B	272						
Anexo 6.6.3.2Información suministrada por el distribuidor de arcilla Tipo C275Anexo 6.6.3.3Análisis por difracción de rayos X (DRX) de arcilla Tipo C276Anexo 6.6.3.4Análisis granulométrico mediante difracción lóser (ADL) de arcilla Tipo C280Anexo 6.6.3.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo C283Anexo 6.6.4.1Determinación del límite líquido y determinación del límite plástico arcilla Tipo D286Anexo 6.6.4.2Información suministrada por el distribuidor de arcilla Tipo D286Anexo 6.6.4.3Análisis por difracción de rayos X (DRX) de arcilla Tipo D287Anexo 6.6.4.4Análisis granulométrico mediante difracción lóser (ADL) de arcilla Tipo D287Anexo 6.6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D286Anexo 6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D287Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental D (GEO-B)312Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.6Resistencia a la compresión y flexión: Campaña experimental B (GEO-E)317Anexo 6.9.6Resistencia a la compres	Anexo 6 6 3 1	Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C.	274						
Anexo 6.6.3.3Análisis por difracción de rayos X (DRX) de arcilla Tipo C276Anexo 6.6.3.4Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo C280Anexo 6.6.3.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo C283Anexo 6.6.4.1Determinación del límite líquido y determinación del límite pástico arcilla Tipo D285Anexo 6.6.4.2Información suministrada por el distribuidor de arcilla Tipo D286Anexo 6.6.4.3Análisis por difracción de rayos X (DRX) de arcilla Tipo D287Anexo 6.6.4.4Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D287Anexo 6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D287Anexo 6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D287Anexo 6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D294Anexo 6.7.1Diseño de experimentos296Anexo 6.7.1Diseño de experimentos296Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental C (GEO-C)313Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330<	Anexo 6 6 3 2	Información suministrada por el distribuidor de arcilla Tipo C	275						
Anexo 6.6.3.6Análisis granulométrico mediante difracción láser (ADI) de arcilla Tipo C280Anexo 6.6.3.7Análisis granulométrico mediante difracción láser (ADI) de arcilla Tipo C283Anexo 6.6.4.1Determinación del límite líquido y determinación del límite plástico arcilla Tipo D285Anexo 6.6.4.2Información suministrada por el distribuidor de arcilla Tipo D286Anexo 6.6.4.3Análisis por difracción de rayos X (DRX) de arcilla Tipo D287Anexo 6.6.4.4Análisis por difracción de rayos X (DRX) de arcilla Tipo D291Anexo 6.6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D294Anexo 6.6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D294Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.6Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis de porosimetría por invección de mercurio de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por invección de merc	Anexo 6 6 3 3	Análisis por difracción de ravos X (DRX), de arcilla Tipo C	276						
Anexo 6.6.3.7Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo C283Anexo 6.6.3.7Análisis por microscopia electrónica de barrido (SEM) de arcilla Tipo D285Anexo 6.6.4.1Determinación del límite líquido y determinación del límite plástico arcilla Tipo D286Anexo 6.6.4.2Información suministrada por el distribuidor de arcilla Tipo D287Anexo 6.6.4.3Análisis por difracción de rayos X (DRX) de arcilla Tipo D287Anexo 6.6.4.6Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D291Anexo 6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D294Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.6Resistencia a la compresión y flexión: Campaña experimental S (GEO-E)317Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis de prosimetría por inyección de mercurio de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de prosimetría p	Anexo 6 6 3 6	Análisis granulométrico mediante difracción láser (ADU) de arcilla Tipo C	280						
Anexo 6.6.4.1Determinación del límite líquido y determinación del límite plástico arcilla Tipo D285Anexo 6.6.4.2Información suministrada por el distribuidor de arcilla Tipo D286Anexo 6.6.4.3Análisis por difracción de rayos X (DRX) de arcilla Tipo D287Anexo 6.6.4.6Análisis granulométrico mediante difracción lóser (ADL) de arcilla Tipo D291Anexo 6.6.4.7Análisis granulométrico mediante difracción lóser (ADL) de arcilla Tipo D291Anexo 6.7.1Diseño de experimentos296Anexo 6.7.1Diseño de experimentos296Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetrá por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-políme	Anexo 6 6 3 7	Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo C	283						
Anexo 6.6.4.2Información suminitariada por el distribuidor de arcilla Tipo D280Anexo 6.6.4.3Análisis por difracción de rayos X (DRX) de arcilla Tipo D287Anexo 6.6.4.4Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo D291Anexo 6.6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D294Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)316Anexo 6.9.6Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)316Anexo 6.9.6Resistencia a la compresión y flexión: Campaña experimental B (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Campaña experimental B (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.4Análisis de porosimetría por inyección de mercurio	Anexo 6 6 4 1	Determinación del límite líquido y determinación del límite plástico arcilla Tipo D	285						
Anexo 6.0.4.2Informaticado por distributido de cicilla Tipo D287Anexo 6.6.4.3Análisis por difracción de rayos X (DRX) de arcilla Tipo D291Anexo 6.6.4.7Análisis granulométrico mediante difracción de laser (ADL) de arcilla Tipo D291Anexo 6.6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D294Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental D (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis SEM de geo-polímeros a base de arcilla330Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.7Permenabilidad al vapor de agua de geo-polímeros a base de arcilla360Anexo 6.12.7Permenabilidad al vapor de agua de geo-polímeros a base de arcilla360Anexo 6.12.8Determinación de la dusorción de agua a por capilaridad de geo-polímeros a base de arcilla360Anexo 6.12.8Determinación de lastorción de agua a base de	Anexo 6.6.4.2	Información suministrada por el distribuidor de arcilla Tipo D	286						
Anexo 6.6.4.6Análisis per dinaction de loyos X (phy) de dicilia (ADL) de arcilla Tipo D201Anexo 6.6.4.7Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo D291Anexo 6.6.4.7Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D294Anexo 6.7.1Diseño de experimentos296Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental C (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetria por invección de mercurio de geo-polímeros a base de arcilla364Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla360Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla360Anexo 6.12.8Determinación de la módulo de elasticidad dinámico MOE de aec-polímeros a base de arcilla370	Anexo 6.6.4.3	Análisis por difracción de ravos X (DRX), de arcilla Tipo D	287						
Anexo 6.6.4.7Análisis granicinado granicinado medición redeción redc	Anexo 6.6.4.6	Análisis granulométrico mediante difracción láser (ADU de arcilla Tipo D	20/						
Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental C (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico AIG de geo-polímeros a base de arcilla330Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla360Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de aeo-polímeros a base de arcilla382	Anexo 6.6.4.7	Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D	294						
Anexo 6.7.1Diseño de experimentos296Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental C (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de aeo-polímeros a base de arcilla382									
Anexo 6.9.1Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)310Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental C (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.7Permeabilidad al vapor de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla370	Anexo 6.7.1	Diseño de experimentos	296						
Anexo 6.9.2Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)312Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental C (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla360Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla382	Anexo 6.9.1	Resistencia a la compresión y flexión: Campaña experimental A (GEO-A)	310						
Anexo 6.9.3Resistencia a la compresión y flexión: Campaña experimental C (GEO-C)313Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla382	Anexo 6.9.2	Resistencia a la compresión y flexión: Campaña experimental B (GEO-B)	312						
Anexo 6.9.4Resistencia a la compresión y flexión: Campaña experimental D (GEO-D)316Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla382	Anexo 6.9.3	Resistencia a la compresión y flexión: Campaña experimental C (GEO-C)	313						
Anexo 6.9.5Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)317Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla382	Anexo 6.9.4	Resistencia a la compresión y flexión: Campaña experimental D (GEOD)	316						
Anexo 6.9.6Resistencia a la compresión y flexión: Ensayos complementarios319Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla382	Anexo 6.9.5	Resistencia a la compresión y flexión: Campaña experimental E (GEO-E)	317						
Anexo 6.12.1Análisis DRX de geo-polímeros a base de arcilla330Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla382	Anexo 6.9.6	Resistencia a la compresión y flexión: Ensayos complementarios	319						
Anexo 6.12.2Análisis termogravimétrico ATG de geo-polímeros a base de arcilla339Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla382	Anexo 6.12.1	Análisis DRX de geo-polímeros a base de arcilla	330						
Anexo 6.12.3Análisis SEM de geo-polímeros a base de arcilla344Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de aeo-polímeros a base de arcilla382	Anexo 6.12.2	Análisis termogravimétrico ATG de geo-polímeros a base de arcilla	339						
Anexo 6.12.4Análisis de porosimetría por inyección de mercurio de geo-polímeros a base de arcilla360Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de aeo-polímeros a base de arcilla382	Anexo 6.12.3	Análisis SEM de geo-polímeros a base de arcilla	344						
Anexo 6.12.6Determinación de la absorción de agua por capilaridad de geo-polímeros a base de arcilla364Anexo 6.12.7Permeabilidad al vapor de agua de geo-polímeros a base de arcilla370Anexo 6.12.8Determinación del módulo de elasticidad dinámico MOE de aeo-polímeros a base de arcilla382	Anexo 6.12.4	Análisis de porosimetría por inyección de mercurio de aeo-polímeros a base de arcilla	360						
Anexo 6.12.7 Permeabilidad al vapor de agua de geo-polímeros a base de arcilla 370 Anexo 6.12.8 Determinación del módulo de elasticidad dinámico MOE de aeo-polímeros a base de arcilla 382	Anexo 6.12.6	Determinación de la absorción de agua por capilaridad de aeo-polímeros a base de arcilla	364						
Anexo 6.12.8 Determinación del módulo de elasticidad dinámico MOE de aeo-polímeros a base de arcilla 382	Anexo 6.12.7	Permeabilidad al vapor de aqua de aeo-polímeros a base de arcilla	370						
	Anexo 6.12.8	Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla	382						

Artículo sobre la optimización de la resistencia a compresión y el impacto ambiental de bloques experimentales de arcilla polimerizada, presentado a la revista "Construction & Building Materials".

Elsevier Editorial System(tm) for Construction & Building Materials Manuscript Draft Manuscript Number: CONBUILDMAT-D-18-08444 Title: Compressive strength and embodied environmental impact of experimental polymerized-clay bricks Article Type: Research Paper Keywords: Geopolymers; polymerized-clay bricks; clay; clay bricks; alkaline activation; NaOH; aluminosilicates; embodied environmental impact; life cycle assessment; compressive strength Corresponding Author: Mr. JUAN CARLOS CALDERON PEÑAFIEL, Corresponding Author's Institution: Universitat Politècnica de Catalunya First Author: JUAN CARLOS CALDERON PEÑAFIEL Order of Authors: JUAN CARLOS CALDERON PEÑAFIEL; Mariana Palumbo, Ph.D; Alba Torres Rivas, Ph.D Student; Dieter Boer, Ph.D; Joan Ramon Rosell, Ph.D Abstract: The aim of this investigation was to evaluate the simple compressive strength and the embodied environmental impact of polymerized-clay bricks manufactured with experimental procedures similar to geopolymerization, comparing them with common ceramic bricks and compressed earth blocks (CEB). Commercial raw clay containing 49% by weight of kaolinite and an alkaline activator based on NaOH and Na2SiO3 was used with curing temperatures of 80 to 120 $\,^\circ\text{C}$ for 2 to 24 hours. Experimental polymerized-clay bricks, with the appropriate formulation, reached compressive strengths greater than 20 MPa with an 80-90%reduction of environmental impact compared with common ceramic bricks. Suggested Reviewers: Ignacio Zabalza Bribián Centre of Research for Energy Resources and Consumption izabal@unizar.es

Ahmed Jelidi Laboratoire de Génie Civil, Ecole Nationale d'Ingénieurs de Tunis, Université de Tunis El Manar ahmed.jelidi@tunet.tn

Lorenzo Miccoli BAM Federal Institute for Materials Research and Testing lorenzo.miccoli@bam.de

Adamah Messan Institut International d'Ingénierie de l'Eau et de l'Environnement adamah.messan@2ie-edu.org

Taha Ashour Benha University taha.ashour@fagr.bu.edu.eg

Compressive strength and embodied environmental impact of experimental polymerized-clay bricks

JC Calderon-Peñafiel (a,b^{*}), A Torres-Rivas (c), M Palumbo (c), D Boer (d), JR Rosell (a,b)

Abstract:

The aim of this investigation was to evaluate the simple compressive strength and the embodied environmental impact of polymerized-clay bricks manufactured with experimental procedures similar to geopolymerization, comparing them with common ceramic bricks and compressed earth blocks (CEB). Commercial raw clay containing 49% by weight of kaolinite and an alkaline activator based on NaOH and Na₂SiO₃ was used with curing temperatures of 80 to 120 °C for 2 to 24 hours. Experimental polymerized-clay bricks, with the appropriate formulation, reached compressive strengths greater than 20 MPa with an 80-90% reduction of environmental impact compared with common ceramic bricks.

Highlights

- Na₂SiO₃ is not essential to ensure compressive strength of polymerized-clay bricks
- Exposure time to temperature had the biggest influence in the compressive strength
- Experimental clay bricks can achieve a compressive strength greater than 20 MPa
- Experimental clay bricks show better environmental qualities than ceramic bricks

Keywords:

Geopolymers, polymerized-clay bricks, clay, clay bricks, alkaline activation, NaOH, aluminosilicates, embodied environmental impact, life cycle assessment, compressive strength

1. Introduction.

Energy is the main resource for the manufacturing of modern materials. For centuries, natural raw materials have been transformed into processed products to build, investing increasing amounts of energy (*Figure 1*) and producing greater environmental impacts.

	Time line and energy consumption in building materials											
9.000 b.C.	8.000 b.C.	····· 7.000 b.C.	····· 6.000 b.C.	····· 5.000 b.C.	4.000 b.C.	····· 3.000 b.C.	····· 2.000 b.C.	····· 1.000 b.C.	0	1.000 a.C.	1.800 a.C.	···· Nowadays
Soil, stone	Soil, stones, reeds/ thatch, Sun dried bricks/ado- be, unprocessed timber					o- Burnt clay bricks, lime, cast iron products, lime-pozzolana cement						Aluminium, steel, glass, Portland cement, plas- tics, other smart materials, nano-materials, etc.
LOW ENERGY MATERIALS						MED				LS	T	HIGH ENERGY MATERIALS

Figure 1. Timeline and energy consumption in building materials (data by Venkatarama^[1])

Nowadays the activity in the construction sector represents a serious threat to the environment. It consumes most of the natural resources and is responsible for 30% of carbon dioxide emissions [2, 3] - 4 - 5]. From their construction to their demolition, buildings consume 40% of the energy produced worldwide [6, 7]. For the reduction of the grey energy in buildings, it is important to reduce not only the operational energy demand but also its embodied energy, by accurately choosing the construction materials [8, 9, -10].

a Departament de Tecnologia de l'Arquitectura, Universitat Politècnica de Catalunya (UPC), Campus Sud, Av. Diagonal, 649. 08028 Barcelona, Spain. b Laboratori de materials- EPSEB, Universitat Politècnica de Catalunya (UPC), Campus Sud, Av. Doctor Marañón, 44-50, 08028 Barcelona, Spain. c Departament d'Enginyeria Jouinica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, Tarragona, Spain d Departament d'Enginyeria Mecànica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, Tarragona, Spain

Corresponding author. Email addresses: juan.carlos.calderon@upc.edu (J.C. Calderón-Peñafiel).

The growing emphasis on the conservation and protection of the environment has boosted the search for low environmental impact alternatives to replace the currently mainstream materials ^[11]. Portland cement, which together with steel revolutionized the building culture of the 20th century ^[12], is probably the most paradigmatic example. Currently Portland-cement-based concrete is the most widely used material on the planet ^[13], with a consumption of 1m³ per person per year ^[14]. Portland cement is produced primarily from a mixture of limestone (80%) and clay (20%) calcined to temperatures around 550 - 700°C at 1450°C for 1 to 6 hours (depending on the oven) and then ground into fine particles. The resulting product, so-called clinker, may be mixed with aggregates and other materials to form composites such as concrete or mortar and are often further mixed with additives to enhance or modify its performance ^[15]. The production of 1 ton of Portland cement generates a total of 0.94 tons of CO₂ ^{[16} - ^{17]} (that is, almost one ton of CO₂ per ton of cement). Globally, nearly 3 Gt of Portland cement are produced yearly, and this figure is expected to be doubled by 2056 ^[18].

Compressive strength is one of the most important mechanical properties of construction materials ^[19]. Therefore, the challenge has been (and still is) to develop a building material that can compete with the most used construction materials in its (mechanical and other) properties, but at a lower environmental cost. In this regard, geopolymers emerged as a possible alternative to conventional construction materials ^[20] - ^{21]}, as they offer outstanding resistant characteristics, with lower embodied energy ^[22] - ²³ - ^{24]}.

This study focuses on the evaluation of the simple compressive strength and the embodied environmental impact of polymerized-clay bricks manufactured by experimental procedures analogous to geopolymerization. Geopolymerization is the term used to refer to the chemical reaction that occurs when mixing aluminosilicates with concentrated alkaline (or less commonly with acid) "activators", usually hydroxides and alkaline silicates. This chemical reaction creates a new molecular network, forming materials called 'geopolymers' ^{[25} - ^{26]}.

For the manufacturing of geopolymers, aluminosilicates (raw materials rich in Al_2O_3 and $SiO_2)^{[27]}$ are used. These materials play an important role as sources of Al^{3+} and Si^{4+} ions, for which is preferable that they are composed of more than 70% alumina and silica in a reactive amorphous phase ^[28].

Several precursor materials have been used as sources of alumina and silica ions in geopolymers, which affect their final properties. The most commonly used to date are fly ash $^{[29} - ^{30} - ^{31]}$, blast furnace slag $^{[32} - ^{33} - ^{34]}$ metakaolin $^{[35} - ^{36} - ^{37]}$ and other raw materials rich in highly reactive aluminosilicates $^{[38} - ^{39} - ^{40]}$. The geopolymers manufactured from these precursor materials generally have outstanding mechanical performance and have been issued of most of the investigations to date, including some works focusing on the analysis of their environmental impact $^{[41} - ^{42]}$.

Further studies have investigated the possibility of using other sources of aluminosilicates. Clay is one of such alternative sources. In most cases, clay is subjected to a previous process of thermal alteration that amplifies the natural reactive characteristics of the material. This is the case of metakaolin (kaolin calcined to temperatures around 550 - 700 °C)^{[43} - ⁴⁴ - ^{45]}. It has also been proved that pozzolanic soils can be treated with alkaline solutions to form similar materials to metakaolin-based geopolymers, due to the high temperatures at which the raw materials were exposed in volcanic activity ^[46].

Studies on geopolymerization of natural non-calcined clay are scarce because the aluminosilicates in raw clays are less reactive than in calcined ones ^[47]. Nonetheless, the high availability of clay justifies its study as a source of aluminosilicates in geopolymers.

Previous investigations on "alkaline activation" of clay mainly focused on the characterization of materials activated by alkali; the comparative influence of the concentration of NaOH and KOH solutions on the early age characteristics of kaolin-based geopolymers; the influence of curing temperature; the stoichiometry of the reaction of alkali-activation of kaolinite; the importance of specific surface area in the geopolymerization of heated illitic clay; among other aspects affecting the polymerization process ^[48-49-50-51-52-53]. In none of these investigations the embodied impact of the precursor materials was considered in the design and selection of formulations and manufacturing methods.

This research focuses on the evaluation of the environmental impact caused by the manufacture of experimental polymerized-clay bricks developed in the *Laboratori de materials, Escola Politècnica Superior d'Edificació de Barcelona (EPSEB)*, using compressive strength as a functional unit. Biobjective optimization is used for the ulterior selection of those formulations that simultaneously present higher compressive strength and lower environmental impact, which are compared with commonly used clay building materials such as ceramic bricks and compressed earth blocks (CEB).

2. Materials and methodology

2.1 Materials

Figure 2. SEM micrographs of Clay

Trade clay (Clay *BEIG PEN / F* supplied by *Argiles Colades S.A.*, from *La Bisbal d'Empordà*, Girona - Spain) was used as a base material, both as the main binder in mixtures and as a precursor source of inorganic aluminosilicates. The chemical and mineral compositions of the clay were provided by the distributor and are shown in *Table 1* and *Table 2* respectively. The particle size was equal to or less than 125µm according to the supplier's data. *Figure 2* shows the layered structure of kaolin with a smaller surface area than the spherical particles of fly ash but with nanometric particles susceptible to geopolymerization ^[54].

Table 1. Chemical composition of clay. Data provided by the supplier (elementary analysis, expressed in %).										
SiO ₂	Al ₂ O3	Fe2O3	PPC	K ₂ O	CaO	MgO				
56.53	23.32	10.39	8.40	0,64	0.40	0.31				
Table 2. Mineralogic	Table 2. Mineralogical composition of clay. Data provided by the supplier (elementary analysis, expressed in %)									
Kaolinite Quartz Hematite Feldspar K Plagiocl										
49.00	4	2.00	6.00	2.00		1.00				

Figure 3 shows the result of the particle size analysis by laser diffraction (ADL). 9.808 μ m is the median mass diameter (MMD) or the median volume distribution. The particle size below which 10% of the sample is found is 1,761 μ m. The particle size below which 90% of the sample is found is 52.524 μ m. The weighted average by volume or the mass moment average is 21.585 μ m.

Figure 3. Particle size analysis (ADL)

Trade sand (Siliceous sand –Standard– L-105115, supplied by *Àrids per a la Indústria i la Depuració*, S.L., Barcelona) was used as filler. It was used to improve the workability of the mixtures and as an indirect silica source. According to the supplier, its SiO₂ content was \geq 98.5% SiO₂ and its particle size smaller than 250 µm.

An alkaline solution was used for the polymerization. Alkaline activators act as a catalyst and the metal cation serves to form a structural element and balance the negative frame carried by the tetrahedral aluminum. The initial reaction mechanism is driven by the ability of the alkaline solution to dissolve the base material and release the silicon and reactive aluminum in the solution.

The alkaline solution was prepared using deionized water (electrical conductivity $\sigma = 5.49$ uSm-1), granules of sodium hydroxide NaOH and, in some cases, sodium silicate.

2.2. Preparation of the samples

An alkaline solution NaOH was prepared by dissolving granules of NaOH in deionized water (molarity adjusted to each case to 5 M or 10 M). The solution was mixed for 5 minutes at 2000 rpm using a magnetic stirrer and then allowed to cool to room temperature for 24 hours in hermetic containers. In some mixtures, sodium silicate was added after cooling time by following the same procedure as described before.

To produce the mixtures the precursors of aluminosilicates (sand and clay) were mixed for 2 minutes at 140 rpm using an automatic mortar mixer. Then, the alkaline solution was added and the whole was mixed for five additional minutes at 285 rpm. The mixture was cast in 4x4x16cm stainless steel molds by pressing by hand and cured in the oven at a specific time and temperature indicated in each case (Curing). The mixtures were then removed from the oven, unmolded and allowed to cool.

After conditioning at 25°C and 60% relative humidity for 28 days (samples GEO A) and 14 days (rest of the samples), the specimens were tested under compression. The detailed experimental conditions and the identification of each sample are summarized in *Table 3*. All proportions refer to the amount of clay by weight.

Sample	Clay	Sand	Water	NaOH	Molarity alkaline	NasSiOs	Curing	
Sample	City	Build	water	nuon	solution (M)	142,5103	$(^{\circ}C)$	(Hours)
Geo A 01	1.00	1.00	0.33	0.07	5	0.04	80	2
$G_{22} \wedge 02$	1.00	1.00	0.33	0.07	5	0.04	80	2
Geo A 03	1.00	1.00	0.28	0.07	10	0.04	80	2
Geo A 04	1.00	1.00	0.28	0.11	10	0.04	80	2
$G_{22} \wedge 05$	1.00	1.00	0.31	0.13	10	0.04	80	2
Geo A 06	1.00	1.00	0.33	0.07	5	0.08	80	2
$C_{22} \wedge 07$	1.00	1.00	0.37	0.07	10	0.09	80	2
$G_{22} \wedge 0^{\circ}$	1.00	1.00	0.28	0.11	10	0.08	80	2
$C_{22} \wedge 00$	1.00	1.00	0.31	0.13	10	0.09	120	2
$C_{22} \wedge 10$	1.00	1.00	0.33	0.07	5	0.04	120	2
Geo A-10	1.00	1.00	0.37	0.07	5 10	0.04	120	2
Geo A-11	1.00	1.00	0.28	0.11	10	0.04	120	2
Geo A-12	1.00	1.00	0.31	0.13	10	0.04	120	2
Geo A-13	1.00	1.00	0.33	0.07	5 E	0.08	120	2
Geo A-14	1.00	1.00	0.37	0.07	5	0.09	120	2
Geo A-15	1.00	1.00	0.28	0.11	10	0.08	120	2
Geo A-16	1.00	1.00	0.31	0.13	10	0.09	120	2
Geo A-17	1.00	1.00	0.33	0.07	5	0.04	80	4
Geo A-18	1.00	1.00	0.37	0.07	5	0.04	80	4
Geo A-19	1.00	1.00	0.28	0.11	10	0.04	80	4
Geo A-20	1.00	1.00	0.31	0.13	10	0.04	80	4
Geo A-21	1.00	1.00	0.33	0.07	5	0.08	80	4
Geo A-22	1.00	1.00	0.37	0.07	5	0.09	80	4
Geo A-23	1.00	1.00	0.28	0.11	10	0.08	80	4
Geo A-24	1.00	1.00	0.31	0.13	10	0.09	80	4
Geo A-25	1.00	1.00	0.33	0.07	5	0.04	120	4
Geo A-26	1.00	1.00	0.37	0.07	5	0.04	120	4
Geo A-27	1.00	1.00	0.28	0.11	10	0.04	120	4
Geo A-28	1.00	1.00	0.31	0.13	10	0.04	120	4
Geo A-29	1.00	1.00	0.33	0.07	5	0.08	120	4
Geo A-30	1.00	1.00	0.37	0.07	5	0.09	120	4
Geo A-31	1.00	1.00	0.28	0.11	10	0.08	120	4
Geo A-32	1.00	1.00	0.31	0.13	10	0.09	120	4
GEO-B01	1.00	1.00	0.30	0.12	10	0.00	80	24
GEO-B02	1.00	1.00	0.30	0.06	5	0.00	80	24
GEO-B05	1.00	1.00	0.30	0.12	10	0.08	80	24
GEO-B06	1.00	1.00	0.30	0.06	5	0.07	80	24
P05-01	1.00	1.00	0.36	0.14	10	0.00	0	0
P05-02	1.00	1.00	0.36	0.14	10	0.00	110	4
P05-03	1.00	1.00	0.36	0.14	10	0.00	110	7
P05-04	1.00	1.00	0.36	0.14	10	0.00	110	24
P06-01	1.00	1.00	0.30	0.12	10	0.08	0	0
P06-02	1.00	1.00	0.30	0.12	10	0.08	110	4
P06-03	1.00	1.00	0.30	0.12	10	0.08	110	7
P06-04	1.00	1.00	0.30	0.12	10	0.08	110	24
P07-01	1.00	0.75	0.30	0.12	10	0.08	100	4
P07-02	1.00	1.00	0.30	0.12	10	0.08	100	4
P07-03	1.00	1.25	0.30	0.12	10	0.08	100	4
P07-04	1.00	1.50	0.30	0.12	10	0.08	100	4

Table 3. Factors and variables of the different samples

2.3 Simple compressive strength.

For testing simple compressive strength, the standards UNE-EN 196-1, UNE-EN 772-1, UNE-EN 12390-3, 1015-11 and UNE-EN 12390-4 were used as a reference. Six prismatic blocks of each sample (40 x 40 x 80 mm) were placed in-between two 40 x 40 mm support plates and compressed using a universal test machine according to EN ISO 6507-1 and EN 1015-11. The load was increased progressively at a rate between 50 N/s and 500 N/s in such a way that rupture took place between 20 and 90 seconds after the beginning of the test. A 300 kN electromechanical automatic press with displacement, deformation and load control and the respective devices for the bending and compression test were used at the application of load. The maximum load reached by each specimen was recorded and the compressive strength of the material was calculated.

2.4. Embodied environmental impact

The embodied environmental impact of experimental polymerized-clay bricks was evaluated using the life cycle assessment (LCA) methodology. The aim of the LCA was twofold. First, to evaluate which combination of the compositions and production processes tested in the laboratory, simultaneously had a better environmental and mechanical performance. Second, the evaluation of the environmental impacts associated to the production of the experimental bricks in comparison with similar existing building products made from clay, such as ceramic clay bricks and compressed earth blocks (CEB). Thus, the scope of the LCA analysis was limited to the production process, taking into account the impacts associated with the raw materials used in each case and to the energy consumed during the production process.

The energy consumed during the production process was estimated under the hypothesis that the experimental bricks were manufactured at an industrial scale. The main assumptions made are described in detail in sub-section 2.4.2. These are based on the industrial production of ceramic bricks, though adapted to the temperatures and times needed to cure the bricks at the laboratory. The *allocation at the point of substitution* system model in *Ecoinvent database 3.4* was used to determine the environmental impacts associated with the inventory. The results obtained are expressed using the *ReCiPe* weighting method (End Points).

2.4.1. Bi-objective optimization of the polymerized-clay bricks

For the accomplishment of the first objective of the LCA, the environmental impacts (points) and compressive strengths (MPa) of the formulations were plotted together. In such a plot, the optimal solutions conform the Pareto front below, which no solution exists that simultaneously improves both objectives. In other words, each point in the Pareto frontier minimizes the total environmental impact and maximizes the compressive strength. The formulations situated at the extremes of the Pareto frontier (extreme optimal) have the best performance in one of the objectives (either low environmental impact or high compressive strength). The rest of the solutions are so-called dominated solutions, that is, they have worse performance in one of the objectives in comparison to the solutions forming the Pareto front, and thus can be dismissed.

2.4.2. Comparison with similar building products

For the second objective of the LCA, the environmental impacts associated with the production of the optimal experimental bricks (extreme and balanced optimal) were compared to those of similar

existing building products. The main characteristics of the products analyzed are presented in *Table 4*.

Table 4. Main characteristics of the products analyzed and production parameters assumed in the calculations.

Product	Composition	Water content	Density	Compressive strength	Furnace temperature	Residence time
		(kg/kg)	(dry, kg/m ³)	(MPa)	(°C)	(h)
Polymerized-clay brick	Clay, sand, NaOH, Na ₂ SiO ₂	0.110-0.173	1875	2,4 - 29,0	0 to 120	2 to 24
Ceramic clay brick	Clay, sand	0.149	1800	19,61	1250 ⁵³	13.5 ⁵³
Compressed earth block	Clay, sand	0.074	1850	3.63	-	-

It was assumed that both, the experimental blocks and the ceramic clay bricks were produced in a tunnel oven powered by natural gas. The performance of the furnace was assumed to be 60%^[55]. The main production parameters are presented in *Table 4*.

The methodology presented by LJ Villa ^[56] was used for determining the heat flow of the oven. The heat flow of the oven was calculated as:

$$Q_{process} = (w \times q_{drying} + q_{plaster}) \times \frac{100}{r}$$
 Eq. 1

Where:

 $Q_{process}$ (kJ/kg) is the heat needed in the process, not considering furnace heat losses; w (Parts per unit) is the average water content of the bricks at the entrance of the furnace; q_{drying} (kJ/kg) is the heat needed to dry the bricks; $q_{plaster}$ (kJ/kg) is the heat of fusion of the fired plaster; and r is the furnace performance, which was set to 60%.

The heat needed to dry the bricks (q_{drying}) was calculated following the expression:

$$q_{drying} = q_w + q_l + q_v \qquad \qquad Eq. 2$$

Where:

 q_w (kJ/kg) is the heat needed to increase the temperature of water from 30°C to 100°C; q_l (kJ/kg) is the heat involved in the evaporation of water; and q_v (kJ/kg) is the heat needed to increase the temperature of water vapor from 100°C to the final temperature of the vapor (200°C for the ceramic clay brick and the maximum temperature for the experimental samples).

For the bricks cured at temperatures lower than 100°C, the factors q_l and q_v were 0. From the laboratory tests, it can be considered that it takes 24 hours to dry the bricks. Thus, when shorter times were used, the amount of energy was reduced proportionally, assuming that the drying was not complete at the end of the process.

The heat of fusion of the fired plaster was calculated following the equation:

$$q_{plaster} = (1 - w) \times C_{Pplaster} \times (T_f - T_i)$$

Where:

Eq. 3

 $C_{Pplaster}$ is the specific heat of the clay plaster, calculated as the weighted average of the specific heats of each of its components, shown in Table 5; and T_f and T_i are the maximum and initial temperatures, respectively.

Pow motorial	$C_{\mathbf{n}}(\mathbf{r} / \mathbf{r}_{\mathbf{n}} \mathbf{V})$	Mass (parts	Mass (parts per unit)			
Kaw material	Ср (кј/кg•к)	Polymerized-clay bricks	Ceramic clay bricks			
Clay	0.92	0.25-0.67	0.92			
Sand	0.80	0.16-0.55	0.01			
NaOH	1.49	0.00-0.07	0.00			
Na ₂ SiO ₂	0.92	0.00-0.05	0.00			
Water	4.18	0.09-0.22	0.07			

Table 5. Specific heat and portions of the raw materials of the clay bricks

In the case of the CEBs, only the impact associated with the raw materials was considered as their production process does not involve heat contribution. The rest of the impacts (due to infrastructure, packaging, etc.) were not included as these were assumed to be less significant and common in all production processes.

3. Results

3.1 Simple compressive strength

Simple compressive strength tests were performed on all samples (with 6 replicates of each sample). The results are shown in *Table 6*. The sample that showed the highest compressive strength (29.0 MPa) was P06-04 with 0.3 water, 0.12 NaOH, 0.08 Na₂SiO₃, exposed at 110°C for 24 hours.

Sample	Compressive strength	Sample	Compressive strength	Sample	Compressive strength	Sample	Compressive strength
	[MPa]		[MPa]		[MPa]		[MPa]
Geo A-01	3,9	Geo A-13	4,2	Geo A-25	8,4	P05-01	2,4
Geo A-02	3,3	Geo A-14	2,9	Geo A-26	10,4	P05-02	5
Geo A-03	5,1	Geo A-15	6,1	Geo A-27	8,5	P05-03	5
Geo A-04	3,8	Geo A-16	4,6	Geo A-28	5,9	P05-04	22,5
Geo A-05	3,6	Geo A-17	4,8	Geo A-29	11,8	P06-01	4,4
Geo A-06	2,9	Geo A-18	3,8	Geo A-30	6,4	P06-02	5,3
Geo A-07	7,8	Geo A-19	5,5	Geo A-31	5,5	P06-03	20,7
Geo A-08	6,2	Geo A-20	4,5	Geo A-32	8,2	P06-04	29
Geo A-09	7,5	Geo A-21	3,7	GEO-B01	25,7	P07-01	25,6
Geo A-10	7,4	Geo A-22	3,6	GEO-B02	15,9	P07-02	22,7
Geo A-11	7,4	Geo A-23	7	GEO-B05	17,3	P07-03	22,4
Geo A-12	6,5	Geo A-24	6,8	GEO-B06	20,2	P07-04	24,9

Table 6. Simple compressive strength results

The resistance to simple compression was the response variable by which the role of the rest of the variables were analyzed: water, NaOH, Na₂SiO₃, temperature and time of exposure. All the analyzed variables could be classified as qualitative values, because despite having been quantitative, not a complete range of values have been used, whereas different predefined values

Figure 4. Average compressive strength data according to the water content

Figure 5. Average compressive strength data according to the temperature

Figure 6. Average compressive strength data according to the exposure time to temperature

where chosen (0.28, 0.30, 0.31, 0.33, 0.36, 0.37kg/kg for the water content, 0, 80, 100, 110, 120°C for the temperature, 0, 2, 4, 7, 24h for the curing time). Due to this reason, all the samples were analyzed following an Analysis of Variance (ANOVA), taking the variables as qualitative and the resistance result as quantitative. All the variables and the compression resistance where analyzed, it showed that the most influential variables in the mechanical performance of the samples analyzed were water (*Figure 4*), temperature

(*Figure 5*) and the time of exposure to temperature (*Figure 6*) which obtained a lower p-value than the level of significance.

The following figures represent the mean value of the compressive strength for the different values of the variables and the least square deviation of the samples of each of the values of the variables.

The increase in water, which provides a means of reaction and ensures the workability of the mixture during the process and handling ^[57], negatively influences the resistance to

compression due to the evaporation of water and the increase of the porous network of the material.

It was observed that the increase in NaOH content was reflected in the increase in compressive strength. Higher concentrations of NaOH promote higher resistances in the early stages of the reaction. However, the resistance of aged samples can be compromised with concentrations higher than 14M due to an excessive OH- in the solution,

causing an undesirable morphology and nonuniformity of the final products ^[58]. From the

analysis of results it was also concluded that the incorporation of Na_2SiO_3 did not guarantee an improvement in the mechanical performance of most of the samples. Furthermore it was observed that the addition of Na_2SiO_3 is dispensable in samples with outstanding mechanical performance (P5-04 and Geo B-01).

The reaction between the alkaline activation solution and the aluminosilicates source increases with increasing the curing temperature. However, a too high temperature will cause a decrease in the compressive strength, due to the fast vaporization of the mixing water ^[59]. The results showed that the time of exposure to temperature has a greater impact in mechanical performance than the increase in temperature. Exposing samples at a temperature of 110 °C for 24 hours resulted in a 4.5 times greater resistance to compression than those samples exposed to the same temperature for 4

Figure 7. SEM micrograph of GEO-B01 sample.

and 7 hours and 9.3 times higher than samples that were cured at room temperature. It was also deduced that between the samples exposed to 4 hours and the samples exposed to 7 hours there was no significant increase in the resistance to simple compression.

Figure 7 shows the reorganization and fusion of the clay sheets by the polymerization generated by the action of the alkaline activator, the temperature and the exposure time, which affects the mechanical behavior of the sample (GEO-B01).

The results obtained from samples P07-01 to P07-04 showed that the proportion of sand

influenced the compression resistance but not to the same extent as the other variables. It was observed that the best results were obtained with a ratio of 0.75 and 1.5 of sand in proportion to the weight of the clay. In any case, the workability of the mixture that had a ratio of 1 of sand (P07-02) was better than mixtures which had a ratio of 0.75 (P07-01).

3.2. Embodied environmental impact

3.2.1. Bi-objective optimization of the polymerized-clay bricks

The diverse mixtures and manufacturing methods tested were compared regarding their environmental impact and compressive strength. The results are presented in *Figure 8*. The results are presented using the Total Points of the *ReCiPe* weighting method for ease of comparison. The optimal formulations, that is, those formulations from which it is not possible to improve one of the parameters without worsening one of the other two, constitute the Pareto frontier. These are highlighted using darker markers in the figure.

It was found that 3 of the 48 experimental formulations are optimal solutions (darker marks in Figure 8). As the environmental impact of the additives is high, the results are highly sensitive to the amount of additives in the samples. 9 of the forty-eight samples showed higher compression strengths than an average ceramic brick (20,2 to 29.0 MPa).

From the optimal solutions, GEO-B02 is the sample showing the lowest environmental impact, as it

Figure 8. Comparison of the different formulations FU: kilograms.

is produced at 80°C and incorporates low amounts of NaOH (3% dry weight). However, it is also the sample in the Pareto frontier with lower compressive resistance (15.9 MPa). GEO-B01 is the sample showing a more balanced performance, as its environmental impact is still low and its compressive strength is 25.8 MPa, which is higher to average ceramic bricks. Sample P06-04 is the one showing the highest compressive strength (29 MPa) and also the highest environmental impact. With respect to GEO-B01, the compressive strength is increased by 11% and the environmental impact in 52%. The main differences in the production process between samples GEO-B01 and P06-04 were the addition of 4% of Na₂SiO₃ in the mixture and the shift of curing temperature from 80° C to 110°C.

Although excluded from the optimal solutions, it is interesting to note that P07-04 and P07-01 also show remarkable strength (24,9 and 25,6 Mpa), but at a higher environmental cost than GEO-B01. In the three cases the mixtures incorporated the same amount of NaOH, but P07-04 and P07-01 also included 5% of Na₂SiO₃ and were cured at 110°C for 4h, while the former (GEO-B01) was cured at 80°C for 24h.

As described before, the environmental impact taken into account includes two main sources: embodied impact of raw materials and the impact of energy use during manufacturing. The weight of the former was found to be more significant than the latter being most of the impact due to the additives used (NaOH and Na₂SiO₃).

It is worth to highlight that the results show how the improvement of the mechanical properties is not linked with an increase of the embodied impact, which shows the interest on integrating the LCA analysis from early stages in material design.

Figure 9. Effect of the dosage of additives on the EI

In Figure 9 the formulations are plotted according to their additive content and their EI. The size of the bubbles corresponds to the compressive strength; optimal solutions are highlighted in orange. The results show that EI is highly dependent on the dosage of additives, regardless of the kind of substance used. However, some of the samples depart from this trend. This is the case of samples P05-04, P07-04 and P06-04. While P06-04 and P07-04 have the same amount of additives but are cured at 110 °C for 24 h and 100 °C for 4h respectively, this is, the EI associated with the manufacture of P07-04, 31% lower, which results in a 15% lower compressive strength.

It is remarkable that two of the optimal solutions (GEO-B02 and P06-04) are extreme solutions, with the lowest and highest content of additives and the lowest and highest environmental impact respectively. This reveals the significance of additives in the EI of the samples.

Taking into account that both additives play an important role in the process of clay polymerization, the effect of both substances together was analyzed. In *Figure 10*, the total amount of additives is

plotted against the compressive strength. The size of the bubbles corresponds to the curing time, which is a parameter that was found to have a significant influence on the results. This is made evident in this figure, where the samples are divided into two groups: smaller bubbles (samples cured for 2, 4 and 7 h) correspond to the samples with compressive resistances lower than 15 MPa, and fall at the lower part of the plot; and bigger bubbles, which are cured for 24h and fall at the upper area of the plot (>15 MPa). All the optimal solutions are in this second group. Only five samples cured at less than 24h showed good compressive strength (P07-01 to 04

Figure 10. Effect of the dosage of additives on the compressive strength

and P06-03). This may be due to the lower content of water of these samples (in all cases, 0.3 g_{H2O}/g_{clay} , using NaOH solutions 10 molar).

3.2.2. Comparison with similar building products

The optimal mixtures and manufacturing methods were compared with similar building products in

the market, i.e., an average ceramic brick and a compressed earth block (CEB). For this comparison, the functional unit (FU) was normalized with compressive strength, to compare the impact of material units that offer the same performance.

The results are shown in Figure 11. The environmental impact (EI) is split into four distinct impact categories, that is Human Health, Ecosystems, Resource depletion and Climate change (*ReCiPe* endpoints). For each category, the impacts corresponding to the raw materials and the energy consumption during manufacturing are distinguished (dashed and solid hatches respectively).

The EI of ceramic bricks is higher than that of the optimal of the experimental polymerized-clay bricks formulations in the four impact categories, mainly due to energy consumption. Compared to ceramic bricks, the experimental

Figure 11. Environmental impact of a massive wall supporting 200 kg/mL

polymerized-clay bricks reduce the EI from energy consumption but increase the EI due to material use, especially in the categories of climate change and resource depletion.

Among the experimental polymerized-clay bricks, the sample GEO-B06 is the one showing higher EI both due to energy and material use. The results indicate that the EI of the raw materials in optimal formulations is between 4.5 and 8 times higher than in the ceramic bricks but the impact resulting from energy use is reduced more than 10 times, which results in an overall lower EI. Thus, any of the optimal formulations of the polymerized-clay bricks would be a better choice than average ceramic brick.

Per functional unit CEB continue to be the best environmental option. However, due to remarkably lower strength (2-5 MPa), in constructions and buildings wider walls will be required to support usual loads, which may be a concern if land cost is high or constraint use of space prevails.

4. Conclusions

The effect of five manufacturing variables on the mechanical properties and the environmental

Figure 12. GEO-B01 is the sample showing a more balanced performance with 25.7 MPa compressive strength.

impact of 48 experimental polymerizedclay bricks were analyzed.

It was concluded that the simple compressive strength is closely linked to the proportions of the precursor materials and the curing characteristics. Among the variables studied, although the alkaline activator is an indispensable factor to initiate the polymerization reactions, the water content, the curing temperature and the curing time, played a decisive role in the increase of resistance to simple As for the alkaline compression. activator, it was observed that the increase in water content in the mixture is detrimental to the compressive strength.

The best results were obtained with closest values to the plastic limit of the clay, while a higher concentration of NaOH (molarity) favored mechanical performance. It was observed that the content of Na₂SiO₃ is not essential to guarantee a good resistance to compression as observed in the samples GEO-B01 (Figure 12; 25.7MPa), Geo-B02 (15.9MPa) and P05-04 (22.5MPa).

The results showed that the increase in temperature caused an increase in the compressive strength. It was observed that a temperature of 80° C was enough to obtain a good compression resistance, increasing the time of the exposure time to temperature to 24 hours.

Among the 48 mixtures analyzed, 9 exceeded 20 MPa of simple compressive strength, being the sample P06-04 the one with highest strength (29.0 MPa), which is comparable to the performance of high resistance ceramic brick.

When the compressive strength of the samples was evaluated against their embodied environmental impact, it was found that three formulations could be considered optimal solutions. It was observed that the improvement in the mechanical performance of the materials was not linked to an increase in their environmental impact, which shows the interest on including this parameter in an early stage in the material design.

Using polymerized bricks results in 80 to 94% reduction of the environmental impact compared to average ceramic-clay bricks. Moreover, compared to construction and building materials manufactured at temperatures above 1000°C, the experimental polymerized-clay bricks required ten times lower temperature (80°C - 100°C), reachable even by solar energy.

On the other hand, depending on the mechanical solicitations, it is possible to choose among the optimal formulations obtained. For example, for non-load-bearing walls, the prototype B06-02 may be the best choice, but for walls bearing heavy loads, other options, such as P06-04, will offer a better performance.

Experimental polymerized-clay bricks show a greater simple compressive strength and better environmental characteristics than average ceramic bricks, which justifies research that encourages the optimization and further development of this experimental material.

Conflict of interest

The authors declare there are no conflicts of interest.

Acknowledgments

This study has been supported by Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT)-Ecuador, the Ministerio de Economía y Competitividad (MINECO) and the Universitat Rovira i Virgili (URV) (FJCI-2016-28789), the Spanish Government (BIA2017-83912-C2-1-R) and the Catalan Government through GICITED-UPC research group (2017SGR1758).

References

¹ Venkatarama Reddy, B. V. (2009). Sustainable materials for low carbon buildings. International Journal of Low-Carbon Technologies, 4(3), 175-181. http://doi.org/10.1093/ijlct/ctp025) p. 176.

² Sinha, R., Lennartsson, M., & Frostell, B. (2016). Environmental footprint assessment of building structures: A comparative study. Building and Environment, pp. 104, 162-171.

³ United Nations. (2009). Buildings and Climate Change: Summary for Decision-Makers, 1-62. http://doi.org/10.1127/0941-2948/2006/0130

⁴ Mercader, M. P., Ramírez de Arellano, A., & Olivares, M. (2012). Modelo de cuantificación de las emisiones de CO2 producidas en edificación derivadas de los recursos materiales consumidos en su ejecución. Informes de La Construcción, 64(527), 401-414. http://doi.org/10.3989/ic.10.082

Pacheco-Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials, 29, 512-519. http://doi.org/10.1016/j.conbuildmat.2011.10.054

⁶ OCDE. Environmental sustainable building - challenges and policies. Paris, France; 2003. p. 194. Retrieved from: Pacheco-Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials, 29, 512-519. http://doi.org/10.1016/j.conbuildmat.2011.10.054. p. 516.

⁷ United Nations. (2009). Buildings and Climate Change: Summary for Decision-Makers, 1-62. <u>http://doi.org/10.1127/0941-</u> $\frac{2948/2006/0130}{8}$ Thormark, C. (2006). The effect of material choice on the total energy need and recycling potential of a building. Building and

Environment, 41(8), 1019–1026. <u>http://doi.org/10.1016/j.buildenv.2005.04.026</u>, p. 1025. ⁹ Venkatarama Reddy, B. V. (2009). *Sustainable materials for low carbon buildings*. International Journal of Low-Carbon

Technologies, 4(3), 175-181. http://doi.org/10.1093/ijlct/ctp025. p. 175.

¹⁰ Cabeza, LF, Barreneche, Miró, L., Morera, JM, Bartolí, E, & Fernández, A. Inés. (2013). Low carbon and low embodied energy *materials in buildings: a review.* Renewable and Sustainable Energy Reviews, 23, 536–542. p. 538 ¹¹ Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J. C., Farahani, E., Susanne, K., ... Zwickel, T. (2014). *Climate Change*

^{2014:} Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 671-723. <u>http://doi.org/10.1017/CBO9781107415416</u> ¹² Venkatarama Reddy, B. V. (2009). *Sustainable materials for low carbon buildings*. International Journal of Low-Carbon

Technologies, 4(3), 175-181. http://doi.org/10.1093/ijlct/ctp025

¹³ Hendriks, Worrell, E., De Jager, D., Blok, K., & Riemer, P. (2004). Emission reduction of greenhouse gases from the cement industry, 1-11. Retrieved from http://www.wbcsdcement.org/pdf/tf1/prghgt42.pdf

¹⁴ Gartner E. Industrially interesting approaches to 'low-CO2'' cements. Cem Concr Res 2004;34(9):1489–98.

Taylor, M., Tam, C., & Gielen, D. (2006). Energy Efficiency and CO 2 Emissions from the Global Cement Industry. IEA-WBCSD Workshop, Cement Energy Efficiency Industry (September). Retrieved from http://www.iea.org/work/2006/cement/taylor_background.pdf

Aubert, J. E., Maillard, P., Morel, J. C., & Al Rafii, M. (2015). Towards a simple compressive strength test for earth bricks? Materials and Structures, (APRIL). http://doi.org/10.13140/RG.2.1.4641.4242

Komnitsas, K. A. (2011). Potential of geopolymer technology towards green buildings and sustainable cities. Procedia

Engineering, 21, 1023–1032. <u>http://doi.org/10.1016/j.proeng.2011.11.2108</u>²¹ Nazari, A., Sanjayan, J. G., & Van Deventer, J. S. J. (2017). Chapter 10 – *Progress in the Adoption of Geopolymer Cement*. In Handbook of Low Carbon Concrete (pp. 217-262). http://doi.org/10.1016/B978-0-12-804524-4.00010-5

Pacheco-Torgal, F. (2015). Handbook of alkali-activated cements, mortars and concretes. United Kingdom: Woodhead Pub.

²³ Davidovits, J. (2015). Geopolymer, Chemistry and Applications. (J. Davidovits, Ed.) (4th ed.). Saint-Quentin: Institut

Géopolymère. ²⁴ Provis, J. L., & van Deventer, J. S. J. (2009). *Geopolymers. Structures, Processing, Properties and Industrial Applications.* CRC Press, Woodhead Publishing, Great Abington, Cambridge, UK. http://doi.org/10.1533/9781845696382

Davidovits, J. (2015). Geopolymer, Chemistry and Applications. (J. Davidovits, Ed.) (4th ed.). Saint-Quentin: Institut Géopolymère. ²⁶ Provis, J. L., & van Deventer, J. S. J. (2009). *Geopolymers. Structures, Processing, Properties and Industrial Applications*. CRC

Press, Woodhead Publishing, Great Abington, Cambridge, UK. <u>http://doi.org/10.1533/9781845696382</u>

Wan, Q., Rao, F., & Song, S. (2017). Reexamining calcination of kaolinite for the synthesis of metakaolin geopolymers - roles of Non-Crystalline recrystallization dehydroxylation and Journal of Solids 74-80 460 http://doi.org/10.1016/j.jnoncrysol.2017.01.024

Liew, Y. M., Heah, C. Y., Mohd Mustafa, A. B., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer *cements: A review.* Progress in Materials Science, 83, 595–629. http://doi.org/10.1016/j.pmatsci.2016.08.002. p. 597

Lahoti, M., Wong, K. K., Tan, K. H., & Yang, E. H. (2018). Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Materials and Design, 154, 8–19. http://doi.org/10.1016/j.matdes.2018.05.023

You, S., Ho, S. W., Li, T., Maneerung, T., & Wang, C.-H. (2018). Techno-economic analysis of geopolymer production from the coal fly ash with high iron oxide and calcium oxide contents. Journal of Hazardous Materials, (August). http://doi.org/https://doi.org/10.1016/j.jhazmat.2018.08.089

³¹ Assi, L., Ghahari, S. A., Deaver, E. E., Leaphart, D., & Ziehl, P. (2016). Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions. Construction and Building Materials, 123, 806-813. http://doi.org/10.1016/j.conbuildmat.2016.07.069

³² Chen, X., Zhu, G. R., Wang, J., & Chen, Q. (2018). Effect of polyacrylic resin on mechanical properties of granulated blast *furnace slag based geopolymer.* Journal of Non-Crystalline Solids, 481(July), 4–9. http://doi.org/10.1016/j.jnoncrysol.2017.07.003

Luna-Galiano, Y., Leiva, C., Villegas, R., Arroyo, F., Vilches, L., & Fernández-Pereira, C. (2018). Carbon fiber waste geopolymer-composites. incorporation in blast furnace slag Materials Letters. 233. 1 - 3. http://doi.org/10.1016/J.MATLET.2018.08.099

⁴ Karthik, A., Sudalaimani, K., Vijayakumar, C. T., & Saravanakumar, S. S. (2018). Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self cured geopolymer mortars. Journal of Hazardous Materials, (August). http://doi.org/10.1016/j.jhazmat.2018.08.078

Rowles, M., & O'Connor, B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry, 13(November), 1161-1165. http://doi.org/10.1039/b212629j ³⁶ Selmani, S., Sdiri, A., Bouaziz, S., Joussein, E., & Rossignol, S. (2017). *Effects of metakaolin addition on geopolymer prepared*

from natural kaolinitic clay. Applied Clay Science, 146(June), 457–467. http://doi.org/10.1016/j.clay.2017.06.019

Tironi, A., Castellano, C. C., Bonavetti, V., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2015). Blended Cements Elaborated with Kaolinitic Calcined Clays. Procedia Materials Science, 8, 211–217. http://doi.org/10.1016/j.mspro.2015.04.066 ³⁸ Hwang, C. L., Huynh, T. P. (2015). Effect of alkali-activator and rice husk ash content on strength development of fly ash and

residual husk ash-based and rice geopolymers. Construction Building Materials. 101. 1-9.http://doi.org/10.1016/j.conbuildmat.2015.10.025

³⁹ Ye, N., Yang, J., Liang, S., Hu, Y., Hu, J., Xiao, B., & Huang, Q. (2016). Synthesis and strength optimization of one-part geopolymer based on red mud. Construction & Building Materials, 111, 317–325. ⁴⁰ Tuyan, M., Andiç-Çakir, Ö., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and

microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering, 135(November 2016), 242-252. http://doi.org/10.1016/j.compositesb.2017.10.013

Passuello, A., Rodríguez, E. D., Hirt, E., Longhi, M., Bernal, S. A., Provis, J. L., & Kirchheim, A. P. (2017). Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. Journal of Cleaner Production, 166, 680-689. http://doi.org/10.1016/j.jclepro.2017.08.007

¹⁵ Habert, G., & Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites, 31(6), 397–402. <u>http://doi.org/10.1016/j.cemconcomp.2009.04.001</u>

Nazari, A., & Sanjayan, J. G. (2017). Handbook of Low Carbon Concrete. Butterworth-Heinemann. Retrieved from https://www.sciencedirect.com/science/book/9780128045244. p.195.

Habert, G., & Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites, 31(6), 397-402. http://doi.org/10.1016/j.cemconcomp.2009.04.001

⁴² Collins, F. G., Turner, L. K., & Collins, F. G. (2017). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction & Building Materials, 43(January 2013), 125–130. http://doi.org/10.1016/j.conbuildmat.2013.01.023

⁴³ Wan, Q., Rao, F., & Song, S. (2017). Reexamining calcination of kaolinite for the synthesis of metakaolin geopolymers - roles of dehydroxylation and recrystallization. Journal of Non-Crystalline Solids, 460, 74–80. <u>http://doi.org/10.1016/j.jnoncrysol.2017.01.024</u>

⁴⁵ Liew, Y. M., Heah, C. Y., Mohd Mustafa, A. B., & Kamarudin, H. (2016). *Structure and properties of clay-based geopolymer cements: A review*. Progress in Materials Science, 83, 595–629. <u>http://doi.org/10.1016/j.pmatsci.2016.08.002</u>. p. 597

⁴⁶ Lemougna, P. N., MacKenzie, K. J. D., & Melo, U. F. C. (2011). Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceramics International, 37(8), 3011–3018. http://doi.org/10.1016/j.ceramint.2011.05.002

⁴⁷ Liew, Y. M., Heah, C. Y., Mohd Mustafa, A. B., & Kamarudin, H. (2016). *Structure and properties of clay-based geopolymer cements: A review*. Progress in Materials Science, 83, 595–629. <u>http://doi.org/10.1016/j.pmatsci.2016.08.002</u>

⁴⁸ Slaty, F., Khoury, H., Wastiels, J., & Rahier, H. (2013). *Characterization of alkali activated kaolinitic clay*. Applied Clay Science, 75–76, 120–125. <u>http://doi.org/10.1016/j.clay.2013.02.005</u>
 ⁴⁹ Hounsi, A. D., Lecomte-Nana, G., Djétéli, G., Blanchart, P., Alowanou, D., Kpelou, P., ... Praisler, M. (2014). *How does Na, K*

⁴⁹ Hounsi, A. D., Lecomte-Nana, G., Djétéli, G., Blanchart, P., Alowanou, D., Kpelou, P., ... Praisler, M. (2014). *How does Na, K alkali metal concentration change the early age structural characteristic of kaolin-based geopolymers*. Ceramics International, 40(7 PART A), 8953–8962. <u>http://doi.org/10.1016/j.ceramint.2014.02.052</u>
 ⁵⁰ Esaifan, M., Rahier, H., Barhoum, A., Khoury, H., Hourani, M., & Wastiels, J. (2015). *Development of inorganic polymer by*

⁵⁰ Esaifan, M., Rahier, H., Barhoum, A., Khoury, H., Hourani, M., & Wastiels, J. (2015). Development of inorganic polymer by alkali-activation of untreated kaolinitic clay: Reaction stoichiometry, strength and dimensional stability. Construction and Building Materials, 91, 251–259. <u>http://doi.org/10.1016/j.conbuildmat.2015.04.034</u>
⁵¹ Diatel L. Warr, L. N. Bertmer, M. Stoudel A. Cresthoff, C. H. & French, K. (2017). The interval of a stability of the stability.

⁵¹ Dietel, J., Warr, L. N., Bertmer, M., Steudel, A., Grathoff, G. H., & Emmerich, K. (2017). *The importance of specific surface area in the geopolymerization of heated illitic clay*. Applied Clay Science, 139, 99–107. http://doi.org/10.1016/j.clay.2017.01.001

⁵² Hu, N., Bernsmeier, D., Grathoff, G. H., & Warr, L. N. (2017). *The influence of alkali activator type, curing temperature and gibbsite on the geopolymerization of an interstratified illite-smectite rich clay from Friedland*. Applied Clay Science, 135, 386–393. http://doi.org/10.1016/j.clay.2016.10.021

⁵³ Aldabsheh, I., Khoury, H., Wastiels, J., & Rahier, H. (2015). *Dissolution behavior of Jordanian clay-rich materials in alkaline solutions for alkali activation purpose*. Part I. Applied Clay Science, 115, 238–247. <u>http://doi.org/10.1016/j.clay.2015.08.004</u>
 ⁵³ Review, A. L., Force, A. I. R., & Directorate, M. (2012). ALKALI-ACTIVATED GEOPOLYMERS: A LITERATURE REVIEW.

Air Force USA.p.09. ⁵⁴ Hounsi, A. D., Lecomte-Nana, G. L., Djétéli, G., & Blanchart, P. (2013). *Kaolin-based geopolymers: Effect of mechanical activation and curing process.* Construction and Building Materials, 42, 105–113. http://doi.org/10.1016/j.conbuildmat.2012.12.06

⁵⁵ Guide to the brick sector (CTG043). Industrial energy efficiency accelerator (IEEA), Carbon trust. Available at: https://www.carbontrust.com/media/206484/ctg043-brick-industrial-energy-efficiency.pdf

⁵⁶ LJ Villa (2013) Evaluation of the thermal efficiency of a tunnel oven for the production of ceramic sanitary pieces at the production site #1 Fanaloza Penco (in Spanish), Facultad de Ingeniería, Universidad del Bío-Bío, Chile.

⁵⁷ Slaty, F., Khoury, H., Wastiels, J., & Rahier, H. (2013). *Characterization of alkali activated kaolinitic clay*. Applied Clay Science, 75–76, 120–125. p.120. Recuperado en octubre 2017 de: http://doi.org/10.1016/j.clay.2013.02.005.

⁵⁸ Slaty, F., Khoury, H., Wastiels, J., & Rahier, H. (2013). op. cit. p.122.

⁵⁹ Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Bnhussain, M., Luqman, M., Khairul Nizar, I., ... Liew, Y. M. (2013). *Kaolin-based geopolymers with various NaOH concentrations*. International Journal of Minerals, Metallurgy and Materials, 20(3), 313–322. http://doi.org/10.1007/s12613-013-0729-0 p.320

16

⁴⁴ Borges, P. H. R., Banthia, N., Alcamand, H. A., Vasconcelos, W. L., & Nunes, E. H. M. (2016). *Performance of blended metakaolin/blastfurnace slag alkali-activated mortars*. Cement and Concrete Composites, 71, 42–52. http://doi.org/10.1016/j.cemconcomp.2016.04.008

Anexo 2.0 "Materiales de arcilla geo-polimerizada: Tecnologías para la arquitectura del futuro". Artículo sobre geopolímeros y geopolímeros a base de arcilla, presentado en la Jornada de doctorat del programa de Tecnologia de l'Arquitectura, de l'Edificació i de l'Urbanisme el 2 JULIOL 2018.

Materiales de arcilla geo-polimerizada: Tecnologías para la arquitectura del futuro

<u>Calderón-Peñafiel J.C.</u>^{a b c}, Rosell J.R.^{a b}, Avellaneda J.^{a c}

^a Departamento de Tecnología de la Arquitectura, ^b Laboratorio de Materiales, ^b Escola Politècnica Superior d'Edificació de Barcelona (EPSEB). ^cEscola Tècnica Superior d' Arquitectura de Barcelona. ^a Universitat Politècnica de Catalunya (UPC), Campus Sud, Barcelona, Spain.

arq.juan carlos calderon @gmail.com

Este artículo tiene la intención de exponer de manera sintética y a modo de resumen el trabajo de investigación presentado en la Jornada de Doctorado del programa de Tecnología de la Arquitectura, de la Edificación y del Urbanismo de la Universitat Politècnica de Catalunya. La arcilla es el material más utilizado en la historia de la arquitectura, pese a ello, no ha sido posible dotarla de características resistentes comparables a las del hormigón a base de cemento Portland mediante estrategias de "estabilización" convencional. Esta investigación se enfocó en el estudio de materiales experimentales de arcilla polimerizada mediante procedimientos análogos a la "geopolimerización". El propósito principal fue probar si los materiales de arcilla polimerizada podrían utilizarse como materiales de construcción que cumplan requerimientos mecánicos y ambientales modernos. Como objetivos complementarios se planteó: comparar el comportamiento de diferentes tipos de arcilla, diferentes tipos de activador alcalino, diferentes proporciones y procedimientos de fabricación, optimizar las variables que intervienen en la fabricación del material tomando en cuenta la resistencia a compresión simple final y la energía incorporada. El estudio se desarrolló en dos partes: la primera enfocada en la revisión bibliográfica y la segunda en una campaña experimental. Como resultado se obtuvieron probetas de arcilla polimerizada resistente al agua con altas resistencias a compresión (20-30 MPa) y menor impacto ambiental que materiales convencionales de uso masivo como el ladrillo cerámico. Se confirmó la viabilidad de implementación de materiales a base de arcilla polimerizada en el futuro de la arquitectura y la construcción.

Palabras clave: arcillas, tierra, aluminosilicatos, geopolímeros, materiales.

1. Introducción

Los polímeros (geo-polímeros) a base de arcillas son materiales fabricados con procedimientos análogos a los de geopolimerización. "Geopolimerización" es el término utilizado para hacer referencia a la reacción química que se produce al mezclar aluminosilicatos con activadores alcalinos concentrados (o menos frecuentemente con ácidos), comúnmente hidróxidos y/o silicatos alcalinos, con lo cual se obtiene una nueva red molecular polimérica formando materiales denominados "geopolímeros" [1].

El término "geopolímero" fue acuñado por el científico Joseph Davidovits y empezó a utilizarse en la década de 1970. Existen diferentes tipos de geopolímeros: los más estudiados hasta la fecha han sido fabricados a partir de cenizas volantes [2] escorias de alto horno [3], metacaolín [4] y otras materias primas ricas en aluminosilicatos altamente reactivos [5]. Los geopolímeros son materiales que presentan características sobresalientes en cuanto a su resistencia mecánica, resistencia al fuego y resistencia a agentes corrosivos. Investigaciones sobre impacto ambiental [6] demuestran que los geopolímeros son una alternativa a materiales con

gran cantidad de energía incorporada [7] como es el caso del hormigón a base de cemento Portland, que es el material de construcción más utilizado en el mundo [8].

Para la fabricación de geopolímeros la materia prima comúnmente utilizada está compuesta por aluminosilicatos, osea materiales ricos en alúmina (Al₂O₃, óxido de aluminio) y sílice (SiO₂, óxido de silicio). Es preferible que los aluminosilicatos se encuentren en una fase amorfa reactiva y constituyan más del 70% de la composición del material precursor, debido a que estos elementos desempeñan un papel importante como fuente de iones Al³⁺ y Si⁴⁺ [9].

Por otro lado, la arcilla es el aglomerante más utilizado en la historia de la humanidad: el Departamento de Energía de los Estados Unidos estima que más de la mitad de la población mundial vive en casas de arcilla sin cocer construidas con tecnologías vernáculas (adobe, tierra apisonada, bahareque, etc.) [10].

El atractivo de la arcilla natural como material de construcción radica en su bajo impacto ambiental, su

disponibilidad y sus características. El lado negativo está marcado por la baja resistencia que comúnmente adquiere en comparación con materiales procesados (ladrillos de arcilla cocida, concreto a base de cemento Portland, cerámica, etc.). Esta es la principal razón por la que adolece de una imagen deficiente, no cumple con algunos estándares de productividad y calidad, no pasa muchas de las pruebas de durabilidad y requerimientos técnicos superados por materiales industriales. Además, las estructuras a base de arcilla natural comúnmente requieren un alto mantenimiento ya que son propensas a la erosión bajo la lluvia, al fácil deterioro de sus superficies, al agrietamiento ante pequeños esfuerzos de tracción y/o compresión y a un crítico comportamiento ante acciones dinámicas en zonas sísmicas: pueblos enteros han sido destruidos por inundaciones y terremotos.

En la mayoría de países industrializados la arcilla sin cocer es un material de construcción poco frecuente. En los países en vías de desarrollo poco a poco se remplaza la construcción con arcilla natural por prácticas constructivas emuladas de los países desarrollados, principalmente porque la arcilla está vinculada con la pobreza [11]. En el ámbito de la arquitectura existe la creencia generalizada de que la arcilla es un material completamente explorado y superado pero en realidad es uno de los materiales menos estudiados y menos entendidos [12].

La búsqueda de estrategias para dotar a los materiales a base de arcilla de características más resistentes se remonta a la prehistoria. Productos como la orina, la sangre, el estiércol, la goma arábiga, el jugo de agave, el betún natural, la caseína proveniente de la leche, las fibras vegetales y animales, la arena, el yeso, la cal, las cenizas, las puzolanas, etc. [13] son ejemplos de algunos "estabilizantes" de arcilla utilizados empíricamente por constructores.

Recientemente la problemática ambiental ha volcado el interés científico hacia el estudio de mecanismos de estabilización de la arcilla para su utilización como material de construcción "moderno". Investigaciones sobre la influencia de agregados de plantas y fibras, mezclas con cal, diferentes mezclas de estabilizantes alternativos, cenizas, adición de cemento, metacaolín, residuos industriales, etc. son muestra de un gran abanico de estudios llevados a cabo en los últimos años. En este contexto los "estabilizadores" de la arcilla de uso más frecuente son el cemento, la cal y el betún, que comúnmente se agregan en proporciones que van del 5 al 15% en peso [14]. El cemento es el "estabilizante" más utilizado aunque estudios recientes no recomiendan su empleo y evidencian problemas inherentes a compatibilidad e impacto ambiental [15].

La resistencia a la compresión se ha considerado a menudo la característica mecánica más importante de los materiales de construcción [16], por tanto el principal desafío ha sido y sigue siendo el uso de la menor cantidad de energía para la obtención de materiales más resistentes. Un estudio realizado en 2015 [17] recoge datos de diferentes estrategias de "estabilización" de arcilla: los resultados muestran que puede adquirir resistencias a la compresión que oscilan entre 0,39 MPa para bloques sin estabilizar y 6,5 MPa para bloques estabilizados con un 20% de cemento. Esto demuestra que la resistencia a compresión simple obtenida con materiales a base de "estabilizadas" arcillas mediante estrategias convencionales está muy por debajo de la resistencia a la compresión estándar del hormigón a base de cemento Portland (20 MPa o más).

En la actualidad la combinación de técnicas de análisis (DRX, SEM, FRX, TG, ADL, etc.) hace caracterizaciones químico-estructurales posible mucho más precisas de las partículas de cristales individuales de arcilla, estando aún lejos de conocer por completo la compleja estructura físico-química [18]. De todos modos, estos avances han permitido el desarrollo de tecnologías alternativas: procesos microbiológicos [19], nanotecnología [20] geopolimerización [21] activación alcalina [22], etc. y se han convertido en herramientas que han definido los nuevos horizontes en el desarrollo de los materiales a base de arcilla. De hecho, los minerales de arcilla empiezan a ser entendidos como "nanomateriales" naturales" con gran potencial para dispersarse como partículas de unidades de tamaño nanométrico en fases poliméricas, formando nuevos 'nanocompuestos' materiales con propiedades termomecánicas superiores [23].

La posibilidad de utilizar diferentes fuentes de aluminosilicatos en la fabricación de geopolímeros ha propiciado el estudio de materiales precursores alternativos. En el caso de las arcillas generalmente se parte de un proceso previo de alteración térmica que amplifica las características reactivas naturales del material, tal como sucede con el metacaolín (caolín calcinado a más de 500°C). También se ha demostrado que los suelos puzolánicos tratados con soluciones alcalinas dan como resultado materiales similares a los geopolímeros a base de metacaolín, debido a las elevadas temperaturas a las que la materia prima fue expuesta por actividad volcánica [24]. "Materiales de arcilla geo-polimerizada: Tecnologías para la arquitectura del futuro"

Objetivos:

La geo-polimerización de arcillas naturales presenta desafíos, sobre todo porque los aluminosilicatos presentes en las arcillas son poco reactivos en comparación a los aluminosilicatos presentes en cenizas volantes o metacaolín, y porque existen diferentes tipos de arcilla que difieren en composición química y mineralógica, lo cual complejiza el problema. Los estudios sobre "geopolímeros" de arcilla natural son relativamente recientes pero aportan información relevante sobre: el proceso de polimerización en las arcillas, la influencia del ratio alúmina/sílice, la concentración de hidróxidos alcalinos y/o el comportamiento de Na y K.

A diferencia de estudios previos el propósito principal de esta investigación fue probar si las arcillas, sin ser sometidas a un proceso de deshidroxilación previo o a uno posterior de alteración por "calcinación", pueden ser utilizadas mediante procedimientos análogos a la geopolimerización para la fabricación de materiales de construcción que cumplan requerimientos mecánicos y ambientales modernos.

Como objetivos secundarios se plantearon: comparar el comportamiento de diferentes tipos de arcilla, diferentes tipos de activador alcalino, diferentes proporciones y diferentes procedimientos de fabricación. También se planteó optimizar las variables que intervienen en la fabricación del material, tomando en cuenta la resistencia a compresión simple y el impacto medioambiental, para finalmente plantear posibles aplicaciones y usos en la arquitectura.

A continuación se describen y se justifican los procedimientos aplicados a esta investigación, los resultados generales y las conclusiones.

2. Metodología y materiales

El desarrollo del trabajo se dividió en dos partes: la primera etapa fue la revisión del estado del arte y la segunda el diseño y desarrollo de la campaña experimental.

La revisión del estado del arte, en la primera parte, incluyó un análisis del rol de la arcilla en la historia de la arquitectura y las estrategias tradicionales de estabilización. En segundo lugar se estudiaron los minerales de arcilla (clasificación, composición, estructura atómica, etc.) con el objetivo de comprender las características del material para aplicar los principios de geo-polimerización. En tercer lugar se incluyó un estudio sobre geopolimerización: antecedentes históricos, terminología, estructura, rol de los aluminosilicatos y los activadores alcalinos, proceso de síntesis, mecanismos de reacción, impacto medioambiental, etc. Finalmente, el estudio se enfocó en las investigaciones sobre geopolimerización de arcillas, se recogieron criterios rectores y experiencias determinantes para el diseño y desarrollo de la campaña experimental. Esta última se desarrolló teniendo como referencia la normativa española vigente.

Materiales:

La arcilla fue utilizada como material base, conglomerante principal y como fuente de aluminosilicatos inorgánicos. Se escogieron cuatro tipos de arcilla (suministradas por *Argiles Colades S.A.* del sector de *La Bisbal d'Empordá*, Girona-Barcelona) con los siguientes nombres comerciales: Arcilla BEIG PEN/F, Arcilla ROJA, Arcilla LILA y Caolín MD-25.

Las arcillas fueron caracterizadas mediante los siguientes análisis: determinación del límite líquido, determinación del límite plástico, análisis por difracción de rayos X (DRX), análisis termogravimétrico (TG), análisis por fluorescencia de rayos X (FRX), análisis granulométrico (ADL) y análisis por microscopía electrónica de barrido (SEM).

La arena se utilizó como relleno, mejoró la trabajabilidad de la mezcla y aportó indirectamente sílice al polímero. La arena utilizada fue suministrada por *Àrids per a la Indústria i la Depuració, S.L.*-Barcelona (arena silícea (Standard) L-105115).

Como solvente principal se utilizó agua desionizada suministrada por Adesco S.A. (Barcelona). Los activadores alcalinos utilizados fueron hidróxido de sodio, hidróxido de potasio y silicato de sodio suministrado por LabKem (Barcelona). También se hicieron algunas pruebas utilizando óxido de calcio (CL-90Q suministrado por Cales de Pachs S.A. Barcelona) como estabilizante adicional.

Diseño experimental:

Para el diseño de experimentos fue necesario considerar como variables los materiales precursores (arcilla, arena, agua y los diferentes aditivos alcalinos), las condiciones de fabricación (característica y tiempo de amasado) y las condiciones de curado (temperatura y tiempo).

"Materiales de arcilla geo-polimerizada: Tecnologías para la arquitectura del futuro"

El diseño de experimentos se dividió en dos partes. La primera parte constituyó una etapa de experimentación piloto basada en datos recolectados del estado del arte: en esta etapa se realizaron 66 mezclas y se fabricaron 198 probetas. El objetivo principal de los ensayos preliminares fue tener un primer acercamiento al comportamiento de los materiales precursores ante diferentes mezclas con activadores alcalinos, disminuir el nivel de incertidumbre, observar la trabajabilidad del material y finalmente analizar la influencia de las variables en la resistencia a compresión simple del material compuesto.

Los experimentos de la segunda etapa se diseñaron a partir de los resultados obtenidos en la primera etapa y se dividieron en seis campañas, con un total de 106 mezclas y 319 probetas fabricadas. Para el diseño de experimentos *(DOE)* de cada una de estas etapas se usó el software *Minitab17*. La intención de cada campaña fue determinar el valor óptimo de las diferentes variables que intervienen en la resistencia a compresión simple del material.

Elaboración de probetas:

Los procedimientos experimentales, los equipos y los materiales variaron según cada experimento. De todos modos el procedimiento general se dividió en tres etapas: primero la preparación de los activadores alcalinos; segundo la preparación del polímero en donde intervinieron principalmente los materiales precursores, el activador alcalino y en algunos casos aditivos; finalmente la etapa de curado en la que algunas probetas fueron expuestas a temperatura (80°C-100°C) y luego almacenadas bajo condiciones ambientales. Los equipos utilizados pueden dividirse en dos grupos: por un lado están las máquinas (amasadora automática, estufa y agitador magnético) y, por otro, equipos básicos de laboratorio (recipientes, moldes, utensilios, etc).

Caracterización de geo-polímeros de arcilla:

Todas las probetas fabricadas bajo diferentes condiciones y dosificaciones, tanto en la primera como en la segunda parte experimental, fueron ensayadas a flexión y compresión simple. Además, con el objetivo de determinar las propiedades del material optimizado, se realizaron varios análisis de caracterización: difracción de rayos X (DRX), análisis termogravimétrico (TG), análisis por microscopía electrónica de barrido (SEM), porosimetría de mercurio, porosidad, densidad aparente y densidad relativa, succión capilar, permeabilidad al vapor de agua, módulo de elasticidad dinámico (MOE), resistencia mecánica, durabilidad, lixiviación y comportamiento térmico.

3. Resultados y conclusiones

Las probetas experimentales de arcilla polimerizada alcanzaron resistencias a compresión simple entre 20 y 30 MPa (dependiendo de cada mezcla). Los resultados demostraron que el material optimizado es resistente al agua. Un análisis de ciclo de vida determinó que el impacto ambiental de la fabricación de probetas experimentales a base de arcilla polimerizada es menor que el impacto de ladrillos de arcilla cocida.

Los resultados detallados serán expuestos en el documento final de tesis. Esta es una investigación en fase "alfa", por tanto es importante señalar que los resultados obtenidos no pueden considerarse una panacea, más bien constituyen un aporte al desarrollo científico al reducir el nivel de incertidumbre y abrir futuras líneas de estudio que ayuden a la optimización de la tecnología y a su aplicación en la arquitectura.

A modo de conclusión se puede decir que los minerales de arcilla natural, sin tratamientos previos de deshidroxilación o tratamientos posteriores de cocción a alta temperatura, pueden ser utilizados como materiales precursores fuente de aluminosilicatos en la fabricación de materiales polimerizados mediante tecnologías análogas a la geopolimerización.

Se concluyó que los diferentes tipos de arcilla se comportan de manera distinta ante el mismo tipo de activación alcalina. Esto prueba que no existe una formulación universal aplicable a todas las arcillas, sino que cada tipo de arcilla requiere un diseño de mezcla específico para una correcta polimerización.

Por otro lado, se concluye que:

- La adición de pequeños porcentajes CaO, a pesar de ser prescindible su utilización, aporta al incremento de la resistencia y consolidación del polímero.
- El uso de silicato de sodio es prescindible ya que esto aminora el impacto medioambiental del material.
- La exposición a 80°C durante 4-24 horas favorece el proceso de polimerización sin representar una carga energética que penalice sustancialmente el material en comparación a materiales de uso masivo, que requieren temperaturas superiores a

"Materiales de arcilla geo-polimerizada: Tecnologías para la arquitectura del futuro"

1000°C (como derivados del cemento Portland o los mampuestos cerámicos).

- · Es posible fabricar polímeros a base de arcilla a temperatura ambiente mediante el uso de estabilizantes adicionales que funcionen como agentes defloculantes, como por ejemplo hexametafosfato sódico y/o "captadores" de agua (por ejemplo la "cal viva").
- · Para la fabricación de geopolímeros a base de arcilla es posible usar diferentes activadores alcalinos y diferentes métodos de fabricación. La elección de los materiales de partida y los procesos utilizados influirán en la resistencia al agua y en el comportamiento mecánico.

Finalmente se concluye que los materiales de arcilla polimerizada podrían constituir una alternativa tecnológica coherente con la realidad ambiental y con los desafíos a los que se encara la arquitectura del nuevo milenio. Las características del material abren varias posibilidades en cuanto a su aplicación en elementos constructivos: mampuestos, piezas prefabricadas de diferente formato, elementos estructurales, materiales de impresión 3D, etc.

Referencias.

Building Materials, 29, 512-519.

 ¹² Morel, J. C., Aubert, J. E., Millogo, Y., Hamard, E., & Fabbri, A.
 ¹² Morel, J. C., Aubert, J. E., Millogo, Y., Hamard, E., & Fabbri, A.
 (2013). Some observations about the paper "earth construction: Lessons from the past for future eco-efficient construction" by F. Pachecofrom the past for future eco-efficient construction" by F. Pacheco-Torgal and S. Jalal. Construction and Building Materials, 44, 419–421. http://doi.org/10.1016/j.conbuildmat.2013.02.054
¹³ Minke, G. (2001). Manual de construcción en tierra : la tierra como material de construcción y su aplicación en la arquitectura tradicional. Montevideo : Nordan-Comunidad. Retrieved from http://cataleg.upc.edu/record=b1323040~S1*cat pp. 47-59.
¹⁴ Gallipoli, D., Bruno, A. W., Perlot, C., & Mendes, J. (2017). A geotechnical perspective of raw earth building. Acta Geotechnica, 12(3), 463–478. http://doi.org/10.1007/s11440-016-0521-1
¹⁵ Damme, H. Van, & Houben, H. (2017). Earth concrete . Stabilization revisited. Cement and Concrete Research Journal.
¹⁶ Aubert, J. E., Maillard, P., Morel, J. C., & Al Rafi, M. (2015). Towards ¹⁶ Aubert, J. E., Maillard, P., Morel, J. C., & Al Rafti, M. (2015). Towards a simple compressive strength test for earth bricks ? Towards a simple compressive strength test for earth. Materials and Structures, (APRIL). compressive strength test for earth. Materials and Structures, (APKIL). http://doi.org/10.13140/RG.2.1.4641.4242 ¹⁷ Alam, I., Naseer, A., & Shah, A. A. (2015). Economical stabilization of clay for earth buildings construction in rainy and flood prone areas. Construction and Building Materials, 77, 154–159. Construction and Building Materials, 77, 154–159. http://doi.org/10.1016/j.conbuildmat.2014.12.046 ⁱⁱⁱ Bergaya, F., & Lagaly, G. (2013). General introduction: Clays, clay minerals, and clay science. Developments in Clay Science, 5, 1–19. http://doi.org/10.1016/B978-0-08-098258-8.0001-8. p 1. ¹⁹ Achal, V., Mukherjee, A., Kumari, D., & Zhang, Q. (2015). Earth-Science Reviews Biomineralization for sustainable construction – A review of processes and applications. Earth Science Reviews, 148, 1–17. http://doi.org/10.1016/j.earscirev.2015.05.008 ²⁰ F. Pacheco-Torgal, M. V. Diamanti, A. N. and C.-G. G., & Oxford. (2013). Nanotechnology in eco-efficient construction. (Woodhead ²⁰ F. Pacheco-Torgal, M. V. Diamanti, A. N. and C.-G. G., & Oxford. (2013). Nanotechnology in eco-efficient construction. (Woodhead Publishing Limited, Ed.).
 ²¹ Provis, J. L., & van Deventer, J. S. J. (2009). Geopolymers. Structures, Processing, Properties and Industrial Applications. CRC Press, Woodhead Publishing, Great Abington, Cambridge, UK. http://doi.org/10.1533/9781845696382
 ²² Pacheco-Torgal, F. (2015). Handbook of alkali-activated cements, mortars and concretes. United Kingdom: Woodhead Pub.
 ²³ Bergaya, F., & Lagaly, G. (2013). Handbook of clay science. Elsevier., p. XX

²⁷ Dergaya, F., & Lagary, G. (2017).
p. XX
²⁸ Lemougna, P. N., MacKenzie, K. J. D., & Melo, U. F. C. (2011).
Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceramics International, 37(8), 3011–3018.
http://doi.org/10.1016/j.ceramint.2011.05.002

¹ Davidovits, J. (2015). Geopolymer, Chemistry and Applications. (J. Davidovits, Ed.) (4th ed.). Saint-Quentin: Institut Géopolymère.
² Lahoti, M., Wong, K. K., Tan, K. H., & Yang, E. H. (2018). Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. *Materials and Design*, *154*, 8–19. http://doi.org/10.1016/j.matdes.2018.05.023
³ Luna-Galiano, Y., Leiva, C., Villegas, R., Arroyo, F., Vilches, L., & Fernández-Pereira, C. (2018). Carbon fiber waste incorporation in blast furnace slag geopolymer-composites. *Materials Letters*, *233*, 1–3. http://doi.org/10.1016/J.MATLET.2018.08.099
⁴ Selmani, S., Sdiri, A., Bouaziz, S., Joussein, E., & Rossignol, S. (2017). Effects of metakaolin addition on geopolymer prepared from natural kaolinitic clay. *Applied Clay Science*, *146*(June), 457–467. http://doi.org/10.1016/j.conbuildmat.2015.10.025
⁶ Olins, F. G., Turner, L. K., & Collins, F. G. (2017). Carbon dioxide equivalent (CO 2 -e) emissions : A comparison between geopolymer and OPC cement concrete and OPC cement construction & Building Materials, 43(January 2013), 125–130.

<sup>and OPC cement concrete and OPC cement concrete. Construction & Building Materials, 43(January 2013), 125–130.
http://doi.org/10.1016/j.conbuildmat.2013.01.023
Nazari, A., & Sanjayan, J. G. (2017). Handbook of Low Carbon Concrete. Butterworth-Heinemann. Retrieved from https://www.sciencedirect.com/science/book/9780128045244. p.195.
Hendriks, Worrell, E., De Jager, D., Blok, K., & Riemer, P. (2004). Emission reduction of greenhouse gases from the cement industry, 1–11. Retrieved from http://www.wbcsdcement.org/pdf/tf1/prghgt42.pdf
² Liew, Y. M., Heah, C. Y., Mold Mustafa, A. B., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83, 595–629.
¹⁰ Avrami, E., Guillaud, H., & Hardy, M. (2008). Terra Literature Review: An Overview of Research in Earthen Architecture Conservation. (A. Escobar, Ed.). Los Angeles: Institute, The Getty Conservation. Retrieved from</sup>

from

https://getty.edu/conservation/publications_resources/pdf_publication s/pdf/terra_lit_review.pdf#page=34 ¹¹ Pacheco-Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and

Anexo 3.0 "La tierra: un material compuesto".

Artículo enfocado en la tierra, un material de construcción compuesto de una serie de minerales (silicatos) unidos por la arcilla, conglomerante principal que pertenece a la familia de los filosicatos.

La tierra: un material compuesto

CONTENIDO

LA TIERRA: UN MATERIAL COMPUESTO

Antecedentes

Reseña histórica

Innovación tecnológica: la tierra como material contemporáneo Innovación de elementos y sistemas constructivos Innovación del material Limitantes Características Componentes Componentes gaseosos Componentes líquidos Componentes sólidos Propiedades

Plasticidad

- Compactibilidad
- Cohesión Clasificación granulométrica
- Clasificación mineralógica Silicatos Filosilicatos

ANTECEDENTES

La tierra, material comúnmente conocido con el nombre de suelo, barro, lodo y diversos coloquialismos que dependen de los dialectos geográficos, se define como la parte no pétrea de la corteza terrestre que se puede excavar sin explosivos [1].

En la arquitectura, la tierra es el material que se obtiene del suelo y está compuesto por diferentes minerales que tienen como principal conglomerante la arcilla. Esta última permite fabricar elementos constructivos que se moldean en estado plástico y endurecen al secarse. Por tanto, en esta investigación, la palabra "tierra" es utilizada como

¹ Torrijo Echarri, F. J., & Cortés Gimeno, R. (2007). Los suelos y las rocas en ingeniería geológica: herramientas de estudio. Universidad Politécnica de Valencia. Valencia. p. 05.

sinónimo de materiales compuestos a base de arcilla.

La gran disponibilidad de arcillas a nivel mundial es la principal razón por la que la "tierra", a lo largo de la historia, se convirtió en el material de construcción más utilizado. El *Departamento de Energía de los Estados* Unidos estima que más de la mitad de la población global continúa viviendo en casas de "tierra" sin cocer construidas con tecnologías vernáculas (adobe, tierra apisonada, bahareque, etc.) [1], mientras que cifras de la *UNESCO* señalan que son más de dos mil millones de personas y aproximadamente el 10% de edificaciones del patrimonio mundial arquitectónico [2].

De cualquier forma, estos datos, aparentemente alentadores para los entusiastas del material, evidencian que la tendencia marcada en el pasado por el uso común de la "tierra" cruda en la construcción cambió a partir del advenimiento de los materiales y la arquitectura moderna. La "tierra", con la arcilla como conglomerante principal, poco a poco ha sido y es desplazada por materiales procesados que muestran mejores características resistentes.

En las últimas décadas la problemática ambiental ha provocado un resurgimiento en el interés de tecnologías de construcción a base de arcilla sin cocer, que hasta ahora, han seguido aplicándose mediante los mismos principios utilizados milenios atrás (Fig.2.1.1).

El propósito de este capítulo es doble. En primer lugar, analizar el rol de los materiales

de construcción a base de arcilla sin cocer (comúnmente denominados "tierra") mediante una reseña histórica y un análisis de limitantes e innovaciones tecnológicas del material. En segundo lugar, realizar un primer acercamiento a estos materiales mediante el estudio de sus componentes, propiedades, clasificación granulométrica y clasificación mineralógica como precedentes al estudio de las arcillas.

Fig. 2.1.1 (Izquierda) Muro de "tierra" apisonada en la antigua ciudad de Chan Chan - Perú, construido aproximadamente hace 2600 años. Fig. 2.1.2. (Derecha) Muro de "tierra" apisonada en la casa *Lehmhaus Rauch*, en el poblado de Schlins - Austria, construida por Martin Rauch en el año 2008.

RESEÑA HISTÓRICA

Los antecedentes histórico-tecnológicos de la construcción con "tierra" han sido poco estudiados. En la mayoría de los casos han sido difíciles de identificar ruinas en contexto arqueológico [3]. La mayor parte de las edificaciones de "tierra"

¹ Avrami, E., Guillaud, H., & Hardy, M. (2008). *Terra Literature Review: An Overview of Research in Earthen Architecture Conservation.* (A. Escobar, Ed.). Institute, The Getty Conservation. Los Angeles. Recuperado en Octubre 2016 de: https://getty.edu/conservation/publications_resources/pdf_publications/pdf/terra_lit_review.pdf#page=34. p XI.

² L. Eloundou, T. Joffroy. (2013). *Earthen Architecture in today's World, in Proceedings of the UNESCO International Colloquium on the Conservation of World Heritage Earthen Architecture*, UNESCO Publishing. Recopilado de: Damme, H. Van, & Houben, H. (2017). *Earth concrete . Stabilization revisited*. Cement and Concrete Research Journal.p.2.

³ Pastor Quiles, María (2016). *Aproximación al estudio arqueológico de la construcción con tierra y a su aplicación a la arquitectura prehistórica*, V Jornadas de Investigación de la Facultad de Filosofía y Letras de la Universidad de Alicante. Universidad de Alicante.

construidas en la antigüedad, al terminar su ciclo funcional con la ayuda del hombre o de los agentes climáticos, se desintegraron y volvieron a formar parte de la naturaleza. Esto ha repercutido en una pérdida irreversible de información de la arquitectura y las técnicas constructivas empleadas por las civilizaciones antiguas que activamente usaron la "tierra" como material de construcción.

Los vestigios más antiguos registrados hasta ahora están en Medio Oriente, en la región de la actual Irán, Irak, Jordania, Siria, Israel, Líbano y Turquía (Fig. 2.2.1, Fig. 2.2.2, Fig. 2.2.3). En estos lugares se ha encontrado evidencia arqueológica de edificaciones permanentes que datan de hace más de 10.000 años atrás [1].

Diferentes técnicas y métodos de construcción se desarrollaron por influencia directa del clima, la vegetación y las condiciones geológicas y tecnológicas de cada región. En lugares en donde han existido abundantes fuentes de madera o piedra, la "tierra" ha sido utilizada en sistemas de construcción mixtos (modelos tectónicos y estereotómicos), mientras que en lugares en los que la madera o la piedra han sido escasos, la "tierra" ha sido empleada para la conformación de estructuras portantes y envolventes (modelos estereotómicos) (Fig. 2.2.4).

Los constructores de la antigüedad aprovecharon la ventaja de preparar piezas de tamaño reducido y perfeccionaron el proceso de compactación y secado. Además el uso de materiales como la paja y otros "estabilizantes", se incorporaron mediante un proceso paulatino de experimentación de la técnica.

De cualquier modo, la historia ha demostrado que los avances tecnológicos en la construcción con barro crudo no fueron suficientemente rápidos y eficaces para satisfacer las crecientes demandas de la arquitectura y la construcción en función del tiempo. Con el paso de los años la "tierra" fue desplazada por materiales procesados que

Fig. 2.2.1. En la región de Medio Oriente que corresponde a la actual Irán, Irak, Jordania, Siria, Israel, Líbano y Turquía se han encontrado los vestigios más antiguos de construcción con tierra hasta hoy.

Fig. 2.2.2. Ruinas de antiguas viviendas. Los hallazgos arqueológicos en la antigua ciudad Cananea de Jericó, demuestran el uso de diferentes técnicas de construcción con tierra en murallas y edificios de vivienda, hace más de 10.000 mil años.

Fig. 2.2.3. Vestigios de Çatalhöyük. En su apogeo este asentamiento de la época neolítica llegó a cubrir 13 hectáreas. En sus capas inferiores (y más antiguas) el yacimiento data de hace más de10.000 años atrás, y las más recientes de 7.700 años atrás.

¹ Schroeder, H. (2016). *Sustainable Building With Earth* (Springer). Switzerland. p. 02.

Fig. 2.2.4. Ejemplos de obras arquitectónicas ancestrales construidas con "tierra", dan testimonio del dominio de diferentes técnicas de construcción en diferentes épocas y lugares del mundo. Además evidencian que la línea de tendencia marcada en el pasado por el uso común de la tierra cruda como material de construcción, llegó a un punto de inflexión a partir del advenimiento de los materiales y la arquitectura 'moderna': la tierra poco a poco ha sido y es desplazada por materiales industrialmente procesados.

alcanzaban resistencias similares a la piedra y podían moldearse previamente. Un claro ejemplo de este fenómeno fue la fabricación de ladrillos de arcilla cocida que, desde el punto de vista de la resistencia mecánica, la resistencia a la humedad y a otros agentes, constituyó un avance en la tecnología de la construcción. Las propiedades cerámicas que adquiría la arcilla al ser sometida a altas temperaturas fue conocida desde hace más de 5.000 años, pero no fue sino hasta la revolución industrial que la producción y uso del ladrillo cerámico se masificó a una escala sin precedentes, desplazando a la piedra y a los bloques de arcilla cruda (adobes) y convirtiéndose en el mampuesto más utilizado. El arribo de los materiales "modernos" (encabezados por el hormigón y acero) patrocinaron una nueva concepción de los modelos arquitectónicos y urbanos en los que la "tierra" cruda, como material de construcción, parecía no tener cabida. El hormigón se convirtió en el material de construcción más utilizado en el mundo y la academia (por ejemplo disciplinas como la Arquitectura y la Ingeniería) volcó su atención hacia los materiales industrializados.

A partir de la década de 1970, con el advenimiento de la problemática medioambiental, un minoritario grupo de actores de la construcción retomaron el interés por el uso y el estudio de la "tierra". Un de este tipo de iniciativa fue la conformación de CRAterre que, desde 1979, ha destacado como una de las principales organizaciones dedicadas a la investigación y divulgación de conocimiento, con énfasis en la recuperación y difusión de técnicas tradicionales de construcción con barro (Fig.2.2.5).

INNOVACIÓN TECNOLÓGICA: LA TIERRA COMO MATERIAL CONTEMPORÁNEO

Hay pocos registros de innovación de la "tierra" como material. Como ejemplos pueden señalarse el desarrollo de máquinas diseñadas para comprimir bloques de "tierra", la implementación de métodos de encofrados para muros de "tierra" apisonada y el uso de diferentes tipos de "estabilizantes" [1]. En países en los que más se usa la arcilla cruda como material de construcción, gran parte de las técnicas aplicadas en la actualidad no han sido modificadas o innovadas sustancialmente (Fig. 2.3.1). El adobe, la tapia, el cob, el bahareque, la quincha, etc. (Fig. 2.2.5), siguen fabricándose y utilizándose con los mismos principios empleados durante milenios.

Hasta ahora, los principales actores en el ámbito de la construcción con "tierra" (CRATERRE, ICOMOS, ISCEAH, WHEAP, RED PROTERRA, etc.) han puesto especial énfasis en la recuperación y difusión de técnicas tradicionales con programas de rehabilitación del patrimonio y ayuda social en diferentes países y sectores en vías de desarrollo. En una escala menor y menos fructífera se ha trabajado en la innovación de mecanismos de optimización de la técnica y la materia prima, en algunos casos, implementando tecnologías complementarias y sistemas de construcción mixtos.

De hecho, en la mayoría de ocasiones, la innovación tecnológica actual viene dada por

Fig. 2.2.5. Ejemplos de técnicas populares de construcción con "tierra" que siguen utilizándose en todo el mundo.

¹ Minke,G. (2009). *Building with earth: design and technology* of a sustainable architecture. Basel [etc.] : Birkhäuser. Recuperado en Octubre 2016 de: http://cataleg.upc.edu/record=b1360313~S1*cat, 72-76.

Fig. 2.3.1. La "rueda de la tierra" (originalmente propuesta por *CRAterre*) ejemplifica los diferentes modos de aplicación del material en la construcción. En la mayoría de países en vías de desarrollo la tierra se utiliza mediante tecnologías tradicionales, mientras que en países industrializados las tecnologías tradicionales se han modificado mediante el uso de herramientas, máquinas y sistemas de producción .

el uso de herramientas, máquinas, materiales y tecnologías que son incorporadas y que se utilizan para la optimización del material, el elemento constructivo y/o el sistema constructivo según cada caso.

A continuación el análisis de la innovación de la construcción en "tierra" se divide en dos partes. Por un lado se examina la innovación de elementos de

construcción y sistemas constructivos y por otra la innovación o "estabilización de la materia prima (la "tierra").

Innovación de elementos y sistemas de construcción

En el caso de mampuestos de barro crudo (adobe) la innovación ha consistido en pasar del moldeado

Fig. 2.3.2a Los bloques convencionales de tierra compactados (BTC) alcanzan una resistencia a la compresión que oscila entre 2 y 6,5 MPa dependiendo el tipo de estabilización y el porcentaje de aditivo utilizado. Esta resistencia es baja comparada con la resistencia del hormigón o los ladrillos cerámicos (mayores a 20MPa).

manual del bloque a moldearlo mediante el uso de prensas mecánicas que garanticen una mejor compactación (por ejemplo el BTC, Fig. 2.3.2a) [1]. Algo similar ha ocurrido con los bloques o elementos extrusionados [2] que mediante el uso de máquinas extrusoras, en algunos casos, se ha garantizado una mejor productividad y control de calidad del producto final (Fig. 2.3.2b).

En el caso de la tapia, el uso de martillos neumáticos y sistemas de encofrado moderno han ayudado notablemente a reducir los tiempos de producción y a garantizar la calidad de compactación del material [3]. Además, con el

1 Calderón P., J. C. (2013). *Tecnologías para la fabricación de bloques de tierra de gran resistencia*. Tesis de máster. Tecnología de la Arquitectura la Edificación y el Urbanismo. Universidad Politécnica de Catalunya.

2 Heath, A., Walker, P., Fourie, C., & Lawrence, M. (2009). Compressive strength of extruded unfired clay masonry units. Proceedings of the Institution of Civil Engineers - Construction Materials, 162(3), 105–112. Recuperado en Octubre 2016 de: http:// doi.org/10.1680/coma.2009.162.3.105.

3 Maniatidis, V., & Walker, P. (2003). *A Review of Rammed Earth Construction*. In D. of A. & C. Engineering (Ed.), DTI Project Report (p. 80). Bath: University of Bath. Recuperado en Octubre 2016 de: https://researchportal.bath.ac.uk/en/publications/a-review-of-rammed-earth-construction.

Bloque de tierra tradicional

Tapial de tierra. Sistema tradicional

Tapial de tierra. Sistema "innovado"

Fig. 2.3.2b La innovación de los elementos y sistemas constructivos con tierra ha sido principalmente impulsada por la implementación de tecnología, es decir, uso de herramientas y maquinaría que ha facilitado y optimizado la aplicación del material. uso de estas tecnologías complementarias ha sido posible producir elementos prefabricados de tierra compactada de diferente tamaño y formato [1]. En el caso de las estructuras con entramados de fibras, la proyección de barro mediante compresores y dispersores ha servido para aminorar los tiempos de fabricación y controlar los acabados [2]. En definitiva, la tecnología contemporánea (máquinas y herramientas) han facilitado las acciones de modelar, cortar, comprimir, apilar, verter, mezclar, excavar, cubrir, rellenar, revocar, etc.

Por otra parte, la "tierra" y los elementos de construcción de "tierra" han empezado a utilizarse en sistemas de construcción mixtos. Así, el "BTC anti-sísmico", el "adobe anti-sísmico", "la tapia anti-sísmica", la "quincha metálica", "los elementos de tierra con refuerzo de hormigón", los "elementos de tierra con refuerzo metálico", "los elementos de tierra con refuerzo metálico", "los elementos de tierra con aislamiento y/o calefacción incorporada", etc. forman parte de un gran abanico de tecnologías auxiliares de la construcción con barro [3]. Es decir, se han empezado a utilizar tecnologías constructivas y materiales complementarios como estrategias de "innovación" intentando garantizar un mejor desempeño mecánico y de resistencia en general (Fig. 2.3.3).

Innovación del material

La búsqueda de estrategias para dotar de características más resistentes a la "tierra" como material de construcción, se remonta a la prehistoria. Productos como la orina, la sangre, el estiércol, la goma arábiga, el jugo de agave, el betún natural, la caseína proveniente de la leche, las fibras vegetales y animales, la arena, el yeso,

³ Hall, M. R., Lindsay, R., & Krayenhoff, M. (2012). *Modern earth buildings : materials, engineering, construction and applications.* (ELSEVIER, Ed.) (1st Edition). Woodhead Publishing.

Fig. 2.3.3 En la actualidad se utilizan tecnologías constructivas y materiales complementarios como estrategias de apoyo e "innovación" que permiten superar los limitantes del material y de las tecnologías tradicionales.

¹ Pan, W. (2012). Prefabrication and Automation in Rammed Earth Building Construction. In Proceedings of the CIB IAARC W119, Workshop 2012 (pp. 57–61). Munich, Germany. Recuperado en Octubre 2016 de: https://bit.ly/2FkddBx.

² Minke, G. (2009). op. cit.

la cal, las cenizas, las puzolanas, etc. [1,2], son ejemplos de algunos "estabilizantes" de arcilla utilizados empíricamente por constructores de todos los tiempos.

Las advertencias sobre el cambio climático y los problemas derivados del calentamiento global captaron el interés de los actores de la construcción y universidades en todo el mundo. Esto ha repercutido en el estudio científico de mecanismos de estabilización de la arcilla para su utilización como material de construcción "moderno" [3]. Investigaciones sobre la influencia de agregados de plantas y fibras, mezclas con cal, uso de cenizas, adición de cemento, uso de metacaolín, uso de residuos industriales, etc., son muestras de un gran abanico de estudios llevados a cabo en los últimos años, pero sin repercusiones notables en aplicaciones que cumplan las demandas actuales de la arquitectura y la construcción (Fig. 2.3.4).

Actualmente los "estabilizantes modernos" de la tierra de uso más frecuente son el cemento, la cal y el betún que comúnmente se agregan en proporciones que van del 5 al 15% en peso [4]. De estos, el cemento Portland es el más utilizado aunque estudios recientes no recomiendan su empleo y evidencian problemas inherentes a incompatibilidad e impacto ambiental [5,6].

3 Venkatarama Reddy, B. V., & Latha, M. S. (2014). *Retrieving clay minerals from stabilised soil compacts*. Applied Clay Science, 101, 362–368. Recuperado en Octubre 2016 de: http://doi.org/10.1016/j. clay.2014.08.027.

4 Gallipoli, D., Bruno, A. W., Perlot, C., & Mendes, J. (2017). *A geotechnical perspective of raw earth building*. Acta Geotechnica, 12(3), 463–478. Recuperado en Octubre 2016 de: http://doi. org/10.1007/s11440-016-0521-1.

5 Damme, H. Van, & Houben, H. (2017). *Earth concrete*. *Stabilization revisited*. Cement and Concrete Research Journal.

6 Gallipoli, D., Bruno, A. W., Perlot, C., & Mendes, J. (2017). op. cit.

"Hormigones" de arcilla con fluidificantes químicos

"Bio polímeros" y "bio mineralización" de arcillas

"Polimerización" de arcillas

Fig. 2.3.4 En los últimos años, el interés por alcanzar un mayor entendimiento de la tierra y sus componentes ha decantado en estudios enfocados en la innovación del material: biomineralización, polimierización, nanocompuestos, uso de defloculantes, etc. forman parte de una serie investigaciones con las que se inagura el nuevo milenio.

¹ Minke, G. (2001). Manual de construcción en tierra : la tierra como material de construcción y su aplicación en la arquitectura tradicional. Montevideo : Nordan-Comunidad. Recuperado en Octubre 2016 de: http://cataleg.upc.edu/record=b1323040~S1*cat pp. 47-59.

² Houben, H., & Guillaud, H. (1994). *Earth construction* : *a comprehensive guide*. London : Intermediate Technology Publications. Recuperado en Octubre 2016 de: http://cataleg.upc.edu/ record=b1189617~S1*cat pp. 73-103.

De todos modos, los bloques de tierra cruda normalmente alcanzan resistencias a la compresión que oscilan entre 0,39MPa para bloques sin estabilizar y 6,5MPa para bloques estabilizados con un 20% de cemento [1]. Estas cifras están muy por debajo de la resistencia estándar del hormigón a base de cemento Portland o ladrillos cocidos modernos (20MPa).

LIMITANTES

La resistencia mecánica y la humedad son las razones principales por las cuales la "tierra" cruda adolece de una imagen deficiente, no cumple con algunos estándares de productividad y calidad y no pasa muchas de las pruebas de durabilidad y requerimientos técnicos superados por materiales industriales [2].

Además, las estructuras a base de barro comúnmente requieren un alto mantenimiento ya que son propensas a la erosión bajo la lluvia, al fácil deterioro de sus superficies, al agrietamiento ante pequeños esfuerzos de tracción y/o compresión y a un crítico comportamiento ante acciones dinámicas

2 Damme, H. Van, & Houben, H. (2017). op. cit.

Fig. 2.4.1 Destrucción de casas de adobe en el terremoto de Irán de 2003.

en zonas sísmicas [3]. La historia ha demostrado que pueblos enteros (Fig. 2.4.1) han sido destruidos por inundaciones [4] y terremotos [5].

CARACTERÍSTICAS

La "tierra" es un material compuesto por diferentes elementos y su composición depende de varios factores que son el resultado de un largo proceso de formación. Los suelos se diferencian según sus partículas que varían en tamaño y/o estructura mineral, dotando al material de propiedades específicas.

Esto lo convierte en un material complejo, que al contrario de la creencia popular, requiere un minucioso estudio para su correcta caracterización, aplicación y/o innovación.

Componentes

Componentes gaseosos

La "tierra" normalmente contiene aire en las cavidades libres entre partículas sólidas y líquidas. Generalmente los componentes del aire son nitrógeno, oxígeno, dióxido de carbono y en algunos casos metano. El aire no aporta a la resistencia, al contrario, contribuye a la porosidad y reduce la densidad del material. Los orificios vacíos ocupados por aire pueden ser ocupados por agua en forma de vapor.

3 Miccoli, L., Müller, U., & Fontana, P. (2014). *Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob*. Construction and Building Materials, 61, 327–339. Recuperado en Octubre 2016 de: http://doi.org/10.1016/j. conbuildmat.2014.03.009.

4 Guettala, A., Abibsi, A., & Houari, H. (2006). Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Construction and Building Materials, 20(3), 119–127. Recuperado en Octubre 2016 de: http://doi.org/10.1016/j. conbuildmat.2005.02.001.

5 Blondet, M., & Aguilar, R. (2007). *Seismic Protection of Earthen Buildings*. In Conferencia Internacional en ingeniería sísmica. (pp. 482–777). Lima. Recuperado en Octubre 2016 de: http://www.cismid-uni.org .

¹ Alam, I., Naseer, A., Shah, A. A. (2015). *Economical stabilization of clay for earth buildings construction in rainy and flood prone areas*. Construction and Building Materials, 77, 154–159. http://doi.org/10.1016/j.conbuildmat.2014.12.046.
Componentes líquidos

El principal líquido constituyente del suelo es el agua y algunas sustancias disueltas en ella tales como azúcares, alcohol, ácidos, bases y sales. Generalmente en la naturaleza, el constituyente líquido proviene de la lluvia o de fuentes naturales de agua.

El agua puede cambiar las propiedades físicas del barro (Fig. 2.5.1). Activa la capacidad aglutinante de la arcilla y dota al material de la plasticidad necesaria para su manipulación. Existen diferentes tipos de agua presentes en la tierra: agua de cristalización o agua estructural, agua absorbida y agua capilar o agua de poros. El agua estructural está químicamente enlazada y se elimina calentando la tierra a temperaturas que pueden ir de 400°C a 900°C. El agua absorbida y capilar se elimina a temperaturas que van desde 50°C a 120°C [1].

Si la tierra se humedece se expande y si se seca se contrae. El efecto que produce el agua repercute

1 Minke, G. (2009). op. cit. p. 21.

Fig. 2.5.1 La tierra está compuesta por diferentes elementos. El agua es el principal factor responsable del cambio de estado (líquido, plástico, sólido).

directamente en varias propiedades de la tierra, de ellas, las mas representativas son: la cohesión, expansión del material, contracción, plasticidad, y la función que cumple como disolvente de diferentes elementos como sodio, magnesio, calcio, etc., facilitando la redistribución de sus compuestos.

Componentes sólidos

Los constituyentes sólidos son insolubles en agua y se pueden dividir en constituyentes orgánicos e inorgánicos. Los componentes sólidos orgánicos representan las substancias orgánicas provenientes de plantas y animales y pueden dividirse en: plantas y animales vivos, desechos de animales, plantas y animales en descomposición y humus. En un suelo extraído en una profundidad menor a 40cm por lo general encontraremos materia orgánica y humus. La tierra que se ha de utilizar como material de construcción debe estar libre de estas sustancias, pues no forman parte del material apto para construcción debido a su condición degradable (Fig.2.5.2).

Dentro de los componentes sólidos inorgánicos se pueden distinguir dos grupos de minerales: los minerales no degradados, que son idénticos

Fig. 2.5.2 El material para la construcción debe estar libre de materia orgánica.

en características a la roca de la que se derivan y constituyen las diferentes partículas minerales (arcilla, arena, grava y rocas; generalmente representan la mayor parte del suelo o tierra) y los minerales degradados, que son el resultado de la degradación química de los minerales de la roca original.

Al utilizar la "tierra" como material de construcción, los limos, la arena y otros agregados constituyen material de relleno.

La arcilla es el principal aglomerante del resto de partículas y sus características y propiedades dependen de su composición química y mineralógica.

Propiedades

La mayoría de las propiedades del barro varían de acuerdo a los diferentes elementos que lo componen. La granulometría de dichos elementos y la estructura mineral de los componentes internos y externos juegan un papel determinante en el comportamiento y propiedades del material.

Plasticidad

La plasticidad es la propiedad que permite moldear ciertos suelos aplicando fuerzas externas y mantener las formas adquiridas aun cuando la humedad y dichas fuerzas desaparecen. Los suelos tienen diferente plasticidad dependiendo de su composición. Las arenas y los limos tienen una plasticidad baja mientras que suelos con alto contenido de arcillas tienen una plasticidad mayor debido a sus propias características.

La plasticidad de un suelo, así como los límites entre diferentes estados de consistencia, están determinados por los límites de *Atterberg* que define los límites de plasticidad: máximo y mínimo. Si sobrepasamos el límite máximo de plasticidad el material adquiere fluidez y pierde su capacidad de mantener la forma. Si el material tiene un porcentaje de humedad por debajo del límite mínimo de plasticidad, la masa terrosa se vuelve

Fig. 2.5.3 Ejemplos de diferentes tipos de suelo compuestos por diferentes tipos de partículas que determinan su comportamiento. Es necesario conocer la composición, características y propiedades del suelo seleccionado para su correcta aplicación, evitando aquellos con contenido degradable (materia orgánica).

y no se puede moldear. La diferencia entre los dos porcentajes límites de humedad (máximo y mínimo) se llama número o índice de plasticidad [1].

Compactibilidad

La compactibilidad de un suelo define su máxima capacidad para compactarse según una energía de compactación y un grado de humedad dados. A medida que aumenta la densidad de un suelo, se reduce su porosidad y puede penetrar menos agua. Esta propiedad es el resultado de la interpenetración de los granos, que a su vez resulta en una reducción del agua. La compactibilidad de un suelo se mide mediante la prueba de compactación Proctor [2].

Cohesión

La cohesión de un suelo es una expresión de la capacidad de sus granos (Fig. 2.5.3) para permanecer juntos cuando se aplica un esfuerzo de tracción sobre el material. La cohesión depende de las propiedades adhesivas o de cementación del mortero que une los granos entre sí. La cohesión se mide mediante una prueba de tracción en condiciones húmedas [3].

Clasificación granulométrica

Un suelo normalmente se clasifica según el tamaño de sus partículas (Fig.2.5.4) que generalmente se determina mediante el uso de tamices. Según el tamaño de partícula los componentes sólidos de la "tierra" o suelo se pueden clasificar en rocas, grava, arena, limo, arcillas y coloides. La proporción y distribución de estos componentes determinan la estructura, textura y a su vez las propiedades de los suelos. Los granos de un tamaño mayor de 0.06 mm pueden ser apreciados a simple vista o con ayuda de una lupa; los comprendidos entre 0.06 y 2 micras, que pueden ser examinados con la ayuda del microscopio, forman la fracción fina; los menores de 2 micras constituyen la fracción muy fina. Se requiere el uso del microscopio electrónico para percibir su forma y su estructura laminar.

La mayoría de los suelos naturales contienen partículas de dos o más fracciones. Las características particulares de un suelo compuesto están principalmente determinadas por las propiedades de la fracción más fina. La fracción gruesa actúa como un agregado o parte inerte de un suelo compuesto con participación entre el 80 y 90% del peso seco total, la parte decisiva o activa la constituye el 10% o 20% del resto formado por los finos [4].

4 Jiménez Salas, J. A., Justo Alpañés, J. L., & Serrano González, A. A. (1971). *Geotécnia y cimientos*. Madrid : Rueda. p. 14.

Fig. 2.5.4 Clasificación popular según la granulometría de los suelos.

¹ Houben, H., & Guillaud, H. (1994). op. cit. p. 32.

² Ibídem p. 33.

³ Ibíd.

Las arenas y las gravas se denominan suelos de grano grueso y los limos y arcillas, suelos de arano fino. Los suelos de grano grueso son suelos sin cohesión que exhiben plasticidad cero. Los suelos de grano fino, especialmente las arcillas, son plásticos y son la base de los materiales de construcción de "tierra" (Fig. 2.5.5). Para los suelos de grano fino la clasificación adicional se lleva a cabo utilizando un hidrómetro o un análisis de sedimentación que utiliza la ley de Stokes para la caída de partículas individuales de pequeño tamaño (limos y arcillas) [1].

El análisis por difracción de rayos X (DRX) o el análisis de la distribución de tamaños de partículas

Ibíd.

Fig.	2.5.5	Clasificación	de	los	suelos	según	el	tamaño	de	partícula.
<u> </u>										

mm.

mm.

mm.

mediante difracción láser (ADL) son técnicas ampliamente utilizadas para un análisis de tamaño de partículas más exhaustivo. Los instrumentos que se emplean en esta técnica son particularmente atractivos por su capacidad de analizar tamaños de partículas en el rango de 0.02 a 2.000 micras. La adquisición rápida de datos y la facilidad de verificación son dos factores importantes en comparación al los análisis de sedimentación convencional [2].

Clasificación mineralógica

La "tierra" es un material compuesto por diferentes tipos de silicatos (Fig.2.5.6).

Silicatos

Los silicatos forman parte de la mayoría de las rocas, arenas y arcillas, de hecho, el 95% de la corteza terrestre está formada por silicatos [3]. Su composición y estructura se relacionan directamente con la naturaleza de la roca madre y los factores ambientales que les dio origen [4].

Los silicatos son el grupo de minerales más rico en especies. La unidad básica de los silicatos está formada por cuatro átomos de oxígeno y un átomo de silicio, por tanto, el oxígeno es el elemento más abundante de la corteza terrestre seguido por el silicio [5].

En general, los silicatos no tienen aspecto metálico y se caracterizan por su elevada dureza. Su clasificación se establece en varios conjuntos

Dominguez, J., & Schifter, I. (1995). "Las arcillas: el 4 barro noble" en: La ciencia para todos. [en línea] México: Fondo de Cultura Económica, vol.3: Química. Recuperado en octubre 2016 de: 17/07/2018: https://bit.ly/2zL97zT

mm. (2µ)

² Hall, M. R., Lindsay, R., & Krayenhoff, M. (2012). op. cit p 158.

Rubio, S. A., & Lopez, M. (2012). Minerales y Rocas. 3 Recuperado en Octubre 2016 de: http://www2.montes.upm.es/Dptos/ dsrn/Edafologia/aplicaciones/GIMR/index.php.

⁵ Ibídem.

La "tierra" es un material compuesto por diferentes tipos de silicatos

Clasificación de los Silicatos				
Grupo	Subdivisión	Ejemplos		
		Olivino		
	Nesosilicatos verdaderos	Granate		
		Circón		
		Silicatos de aluminio		
Nacaciliaataa		Andalucita		
Nesosincatos	Cubaccellisates	Distena o Cianita		
	Supreositicatos	Sillimanita o Fibrolita		
		Estaurolita		
		Esfena		
	Nesolilicatos - Sorosilicatos	Epidota		
Sorosilicatos		Epidotas		
Ciclosilicatos		Berilo		
olciosilicatos		Turmalina		
Inosilicatos	Piroxenos	Augita		
		Hiperstena		
	Antibalaa	Actinota		
	Aniidoles	Hornblenda		
	Familia da la acalinita	Caolinita		
	Familia de la caolínita	Serpentina		
		Pirofillita		
		Talco		
	Familia de las micas y de las	Muscovita		
	arcillas micáceas	Illita		
Filosilicatos		Biotita		
		Vermiculita		
	Familia de las cloritas	Clinocloro		
	Familia de la sepiolita	Sepiolita		
	Familia de las arcillas	Halloysitas		
	desordenadas	Esmectitas		
	Mineralas I. Oʻli	Cuarzo		
	Minerales de Silice	Ópalo		
Testesilisetes	E-Mar. 1	Monoclínicos u		
rectosilicatos	Feidespatos	Triclínicos o		
	F .(1)	Nefelina		
	Feldespatoides	Leucita		

Fig.2.5.6 Los silicatos representan el grupo mineral más amplio, abarcando el 95% de los componentes de la corteza terrestre.

Fig.2.5.7 Esquema de las macro y micro partículas constituyentes de la tierra, en este ejemplo arcillas (silicatos-filosilicatos).

y subconjuntos en función de su estructura (Fig.2.5.6), determinada en cada caso por la manera de agrupación de tetraedros de silicatos (SiO₄). En cualquier tipo de silicatos el silicio puede ser remplazado parcialmente por el aluminio obteniéndose así aluminosilicatos [1].

Filosilicatos y arcillas

Los filosilicatos se caracterizan por una estructura laminar. Los minerales arcillosos o simplemente las arcillas son filosilicatos que por sus características son de relevante importancia para la "tierra" como material de construcción y para la ciencia de materiales en general.

Las arcillas se caracterizan por estar formadas por partículas muy finas de forma aplanada y con una superficie especifica elevada (Fig.2.5.7). Son minerales de alteración y se forman a partir de otros minerales silicatados mediante un proceso de alteración química. Otros filosilicatos que no son minerales arcillosos, tienen origen ígneo o metamórfico [2].

A medida que se profundiza en el estudio de la tierra, se evidencia el error que supone abordar este material de construcción, como si se tratase de un material homogéneo, de composición invariable, que no demanda rigor técnico, y que responde a soluciones constructivas y tecnológicas universales.

Para entender el comportamiento de materiales térreos y proponer estrategias de optimización e innovación, tanto del material como de elementos y sistemas constructivos, es necesario el estudio de las arcillas: el tema que se aborda a continuación.

Rubio, S. A., & Lopez, M. (2012). op. cit.

Ibídem.

1

2

CREDITOS DE IMAGENES

- Fig. 2.0.1. La tierra es un material compuesto diferentes tipos de silicatos, entre ellos, los filosilicatos (arcillas) son el conglomerante principal. Fotografía: Isabella Breda, 2015, in occasione di PORTONI APERTI _ XVIII Festa della Ceramica – Nove (VI), Tessitura, Recuperado en Octubre 2018 de http://www.isabellabreda.it/ilmestiere-dellarte-_-mulino-de-bortoli-_-novevi/
- Fig. 2.1.1. (Izquierda) Muro de tierra apisonada en la antigua ciudad de Chan Chan - Perú, construido aproximadamente hace 2600 años. Recuperado en Octubre 2018 de: http://www.welcomeperutravel. com/espanol/fotos-peru/trujillo/muro-chan-chan.html
- Fig. 2.1.2. (Derecha) Muro de tierra apisonada en la casa Lehmhaus Rauch, en el poblado de Schlins -Austria, construida por Martin Rauch en el año 2008. Recuperado en Octubre 2018 de: http://tectonicablog. com/wp-content/uploads/2009/11/MG_3539-455x303.jpg.
- Fig. 2.2.1. En la región de Medio Oriente que corresponde a la actual Irán, Irak, Jordania, Siria, Israel, Líbano y Turquía se han encontrado los vestigios más antiguos de construcción con tierra hasta hoy. Recuperado en Octubre 2018 de: https://maps.google. com/.
- Fig. 2.2.2. Ruinas de antiguas viviendas. Los hallazgos arqueológicos en la antigua ciudad Cananea de Jericó, demuestran el uso de diferentes técnicas de construcción con tierra en murallas y edificios de vivienda, hace más de 10.000 mil años. Recuperado en Octubre 2018 de: http://arqueolugares.blogspot.com.es/2011/01/jerico-tell-es-sultan-palestina.html.
- Fig. 2.2.3. Vestigios de Çatalhöyük. En su apogeo este asentamiento de la época neolítica llegó a cubrir 13 hectáreas. En sus capas inferiores (y más antiguas) el yacimiento data de más de10.000 años y las más recientes de 7.700 años atrás. Recuperado en Octubre 2018: https://scotthaddow.files.wordpress. com/2012/06/panosouth.jpg.
- Fig. 2.2.4. Ejemplos de obras arquitectónicas ancestrales construidas con "tierra", dan testimonio del dominio de diferentes técnicas de construcción en diferentes épocas y lugares del mundo. Además evidencian que la línea de tendencia marcada en el pasado por el uso común de la tierra cruda como material de construcción, llegó a un punto de inflexión a partir del advenimiento de los materiales y la arquitectura 'moderna': la tierra poco a poco ha sido y es desplazada por materiales industrialmente procesados.

A) Zigurat de Úr (6.500 años). Recuperado en Octubre 2018 de: https://bit.ly/2EP573D

B) Zigurat de Choga Zanbil (3.250 años). Recuperado en Octubre 2018 de: https://bit.ly/2Sw3FX1

C) Arg-é Bam (2.500 años). Recuperado en Octubre de 2018 de: https://bit.ly/2Sw3FX1

D) Shunet El Zebib (4.780 años). Recuperado en Octubre de 2018 de: https://bit.ly/2CMCim2

E) Tumba de Rejmira (3.500 años). Recuperado en Octubre de 2018 de: https://bit.ly/2JIM6ol F) Mohenio Daro (5.000 años). Recuperado en Octubre de 2018 de: https://bit.ly/2Ay64ZY

G) El arca de Bukhara (2.000 años). Recuperado en Octubre de 2018 de: https://bit.ly/2Jnsb8k

H) La gran muralla China (1.500 años). Recuperado en Octubre de 2018 de: https://bit.ly/2Ay72p4

I) Fujian Tulou (800 años). Recuperado en Octubre de 2018 de: https://bit.ly/2F2bLnB

J) Almacenes Ramesseum (3.000 años). Recuperado en Octubre de 2018 de: https://bit.ly/2SuurPb

K) Ventarrón - Templo (3.500 a.C.). Recuperado en Octubre de 2018 de: https://bit.ly/2EZr7ZE

L) Huacas de Sol y Luna (2.000 años). Recuperado en Octubre de 2018 de: https://bit.ly/2zfBMJY

M) Chan Chan (2.600 años). Recuperado en Octubre de 2018 de: https://bit.ly/2SqY6c9

N) Muros de la Álcazaba (1.000 años). Recuperado en Octubre de 2018 de: https://bit.ly/2Dbq7jx

O) El Pueblo de Taos (1.000 años). Recuperado en Octubre de 2018 de: https://bit.ly/2COotDx

- Fig. 2.2.5. Ejemplos de técnicas populares de construcción con "tierra" que siguen utilizándose en todo el mundo. Recuperado en Octubre de 2018 de: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. pp. 28,29,42,43,70,82,90.
- Fig. 2.3.1. La "rueda de la tierra" (originalmente propuesta por CRAterre) ejemplifica los diferentes modos de aplicación del material en la construcción. En la mayoría de países en vías de desarrollo la tierra se utiliza mediante tecnologías tradicionales, mientras que en países industrializados las tecnologías tradicionales se han modificado mediante el uso de herramientas, máquinas y sistemas de producción. Figura de autor a partir de: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p 26
- Fig. 2.3.2a. Los bloques convencionales de tierra compactados (BTC) alcanzan una resistencia a la compresión que oscila entre 2 y 6,5 MPa dependiendo el tipo de estabilización y el porcentaje de aditivo utilizado. Esta resistencia es baja comparada con la resistencia del hormigón o los ladrillos cerámicos (20Mpa). Fotografía de autoría propia. Festival Grains d'Isère 2015 (Les Grands Ateliers, Villefontaine).
- Fig. 2.3.2b. La innovación de los elementos y sistemas constructivos con tierra ha sido principalmente impulsada por la implementación de tecnología, es decir, uso de herramientas y maquinaría que ha facilitado y optimizado la aplicación del material. Se muestra:

A. Bloque de tierra tradicional. Recuperado en Octubre de 2018: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p. 44

B. Bloque de tierra "innovado". Recuperado en Octubre de 2018: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p. 44

C. Tapial de tierra. Sistema tradicional. Recuperado en Octubre de 2018: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p. 30. D. Tapial de tierra. Sistema "innovado". Recuperado en Octubre de 2018: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p. 30 • Fig. 2.3.3. En la actualidad se utilizan tecnologías constructivas y materiales complementarios como estrategias de apoyo e "innovación" que permiten "superar" los limitantes del material y de las tecnologías tradicionales. Se muestra:

A. Bahareque. Sistema de construcción mixto tradicional. Fotografía de autoría propia. Festival Grains d'Isère 2015 (Les Grands Ateliers, Villefontaine).

B. Estructura metálica y aplicación de barro proyectado. Sistema de construcción mixto "innovado". Recuperado en Octubre de 2018: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p.71

C. Quincha. Sistema de construcción mixto tradicional. Recuperado en Octubre de 2018: https://bit. ly/2qfBvCm.

D. "Quincha metálica" Sistema de construcción mixto "innovado". Fotografía de autoría propia. Festival Grains d'Isère 2015 (Les Grands Ateliers, Villefontaine).

 Fig. 2.3.4. En los últimos años, el interés por alcanzar un mayor entendimiento de la tierra y sus componentes ha decantado en estudios enfocados en la innovación del material: biomineralización, polimerización, nanocompuestos, uso de defloculantes, etc. forman parte de una serie investigaciones con las que se inaugura el nuevo milenio. Se muestra:

A. "Hormigones de arcilla". Recuperado en Octubre de 2018 de: MOEVUS-DORVAUX, M., et al. (2016). Béton d'Argile Environnemental. CRAterre. Villefontaine. p. 69 B. "Bio polímeros" y "bio mineralización" de arcillas. Recuperado en Octubre de 2018 de: Vissac, A. (2017), et al. Argiles & Biopolymères. CRAterre. Villefontaine. pp. 21, 22,

C. "Polimerización" de aluminosilicatos de arcillas. Recuperado en Octubre de 2018 de: https:// moorepartners.ca/floored/

- Fig. 2.4.1. Destrucción de casas de adobe en el terremoto de Irán de 2003. Recuperado en Octubre de 2018 de: Blondet, M., & Aguilar, R. (2007). SEISMIC PROTECTION OF EARTHEN BUILDINGS. In Conferencia Internacional en ingeniería sísmica. (pp. 482–777). Lima. Recuperado de: http://www.cismiduni.org. p. 2
- Fig. 2.5.1. La tierra está compuesta por diferentes elementos. El agua es el principal factor responsable del cambio de estado (líquido, plástico, sólido). Recuperado en Octubre de 2018 de: Houben, H., & Guillaud, H. (1994). Earth construction : a comprehensive guide. London : Intermediate Technology Publications. Recuperado de http://cataleg.upc.edu/ record=b1189617~S1*cat p. 22.
- Fig. 2.5.2. El material para la construcción debe estar libre de materia orgánica. Recuperado en Octubre de 2018 de: Houben, H., & Guillaud, H. (1994). Earth construction : a comprehensive guide. London : Intermediate Technology Publications. Recuperado de http://cataleg.upc.edu/record=b1189617~S1*cat p. 20.
- Fig. 2.5.3. Ejemplos de diferentes tipos de suelo compuestos por diferentes tipos de partículas que

determinan su comportamiento. Es necesario conocer la composición, características y propiedades del suelo seleccionado para su correcta aplicación, evitando aquellos con contenido degradable (materia orgánica). Recuperado en Octubre de 2018: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p. 104.

- Fig. 2.5.4. Clasificación popular según la granulometría de los suelos. Recuperado en Octubre de 2018 de: Houben, H., & Guillaud, H. (1994). Earth construction : a comprehensive guide. London : Intermediate Technology Publications. Recuperado de http://cataleg.upc.edu/ record=b1189617~S1*cat p. 21.
- Fig. 2.5.5. Clasificación de los suelos según el tamaño de partícula. Recuperado en Octubre de 2018: Fontaine, L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p. 102.
- Fig.2.5.6. Los silicatos representan el grupo mineral más amplio, abarcando el 95% de los componentes de la corteza terrestre. Autoría propia a partir de: Rubio, S. A., & Lopez, M. (2012). Minerales y Rocas. Recuperado de: http://www2.montes.upm.es/Dptos/dsrn/Edafologia/ aplicaciones/GIMR/index.php y L., & Anger, R. (2009). Bâtir en terre Du grain de sable à l'architecture. Belin. p. 159.
- Fig.2.5.7. Esquema de las macro y micro partículas constituyentes de la tierra, en este ejemplo arcillas (silicatos-filosilicatos). Recuperado en Octubre de 2018 de: Houben, H., & Guillaud, H. (1994). Earth construction : a comprehensive guide. London : Intermediate Technology Publications. Recuperado de: http://cataleg.upc.edu/record=b1189617~S1*cat p. 26.

Anexo 4.0 Descripción de análisis y ensayos

DESCRIPCIÓN DE ANÁLISIS Y ENSAYOS

A continuación se describen los análisis realizados en la campaña experimental y aplicados en la caracterización de materiales precursores y "geopolímeros".

Análisis por difracción de rayos X (DRX)

Los rayos X se definen como una radiación electromagnética de longitud de onda corta causada por la desaceleración de electrones de elevada energía o por transiciones electrónicas que implican electrones de los orbitales internos de los átomos. La interacción entre el vector eléctrico de la radiación X y los electrones de la materia por la que pasa da lugar a una dispersión. Cuando los rayos X son dispersados por un cristal, se observan interferencias entre los rayos dispersados debido a que las distancias entre los centros de dispersión son del mismo orden de magnitud que la longitud de onda de la radiación, dando como resultado una difracción [1].

El ensayo DRX consiste en medir la desviación que sufre un haz de rayos X cuando incide sobre las partículas. Los ángulos de desviación están

Detalles del ensayo DRX:

Sample preparation methodology:

Manual pressing of some of the received powder materials, by means of a glass plate to get a flat surface, in cylindrical standard sample holders of 16 millimetres of diameter and 2.5, 1.5 or 0.5 millimetres of height.

Instrument and experimental conditions:

PANalytical X'Pert PRO MPD Alpha1 powder diffractometer in Bragg-Brentano $\theta/2\theta$ geometry of 240 millimetres of radius Cu K_{a1} radiation (λ = 1.5406 Å). Work power: 45 kV – 40 mA. Focalizing Ge (111) primary monochromator Sample spinning at 2 revolutions per second Variable automatic divergence slit to get an illuminated length in the beam direction of 10 millimetres. Mask defining a length of the beam over the sample in the axial direction of 12 millimetres. Diffracted beam 0.04 radians Soller slits X'Celerator Detector: Active length = 2.122 °. $\theta/2\theta$ scan from 4 to 80° 2 θ with step size of 0.017° and measuring time of 80 seconds per step.

estrechamente relacionados con la distancia entre los planos de la red cristalina del material, siguiendo la ley de *Bragg.* Con un análisis DRX es posible identificar algunos compuestos cristalinos de un material. Cada estructura cristalina genera un único patrón de difracción. La Difracción de Rayos X (DRX) es una técnica no destructiva, lo que permite la recuperación del material estudiado sin ningún tipo de deterioro [2].

Los análisis DRX fueron realizados en los Centres Científics i Tecnològics de la Universitat de Barcelona, con un equipo PANalytical X'Pert PRO MRD (Fig. 6.4.1).

Análisis por fluorescencia de rayos X (FRX)

La fluorescencia de rayos X es un análisis que se usa para detectar la composición química de un material que ha sido excitado al ser expuesto a rayos X de alta energía o rayos gamma.

Tanto los rayos X como los gamma pueden ser suficientemente energéticos para desprender electrones fuertemente ligados en los orbitales internos del átomo. Esto genera energía mediante emisión de un fotón, que es igual a la diferencia de energía entre los dos orbitales que intervienen. La radiación emitida es característica de los átomos componentes del material.La fluorescencia de rayos

Ibíd.

2

Fig. 6.4.1 (derecha) Equipo de Análisis por difracción de rayos X (PANalytical X'Pert PRO MRD diffractometer). Fig. 6.4.2 (izquierda) Equipo de análisis por fluorescencia de rayos X (Panalytical, Axios PW 4400/40 sequential wavelength - dispersive X-ray spectrophotometer (WDXRF)).

¹ Bouzón Orgeira, N. (2015). Activadores Alcalinos Alternativos a Partir De La Ceniza De Cáscara De Arroz Para La Preparación De Geopolímeros. Doctorado. Universitat Politècnica de València. p.67. Recuperado en octubre 2016 de: https://riunet.upv.es/ handle/10251/54126.

X tiene como finalidad principal el análisis químico elemental, tanto cualitativo como cuantitativo, de los elementos comprendidos entre el flúor (F) y el uranio (U) de muestras sólidas y líquidas [1].

Los análisis FRX fueron realizados en los Centres Científics i Tecnològics de la Universitat de Barcelona, con un equipo Panalytical, Axios PW 4400/40 sequential wavelength-dispersive X-ray spectrophotometer (WDXRF) (Fig. 6.4.2).

Análisis termogravimétrico (ATG)

El análisis termogravimétrico es una técnica en la que continuamente se recogen datos de la masa de una muestra colocada en una atmósfera controlada en función de la temperatura y tiempo, aumentando la temperatura de la muestra (normalmente de forma lineal con el tiempo), la línea que representa la masa en función del tiempo y la temperatura se denomina termograma o curva de descomposición térmica. En esta curva (ATG) refleja las variaciones de masa que son características de las reacciones químicas que se producen durante el experimento a medida que aumenta el tiempo y la temperatura [2].

La derivada termogravimétrica (DTG) muestra información sobre la velocidad de pérdida o ganancia de masa en función de la temperatura y del tiempo. Esta curva permite identificar con mayor facilidad las variaciones de masa, en especial cuando las pérdidas son muy pequeñas o también cuando existen procesos químicos con temperaturas muy próximas [3].

El análisis termogravimétrico (ATG) fue realizado mediante un equipo SDT Q600 de TA Instruments, en una atmósfera de aire y un caudal de gas de 100 ml·min-1. La cantidad de muestra en los ensayos realizados es especificada en cada caso. Se ha procedido inicialmente a equilibrar la temperatura del equipo a 30 °C, y calentar posteriormente hasta 1000 °C a una velocidad de 10 °C·min-1. Los análisis ATG fueron realizados en el Departamento de Ciencia de Materiales y Química Física de la *Universitat de Barcelona* (Fig.6.4.3).

Análisis de la distribución de tamaños de partículas mediante difracción láser (ADL)

El Análisis de Partículas por Difracción de Rayos Láser (ADL) es una técnica empleada para la determinación de la distribución del tamaño de partículas de un material, comúnmente denominada granulometría láser. Es una técnica de medición de tamaño de partículas que van desde cientos de nanómetros hasta varios milímetros a partir de la variación angular de la luz dispersada cuando un rayo láser pasa a través de una muestra de partículas.

Las partículas grandes dispersan la luz en ángulos pequeños y las partículas pequeñas dispersan la luz en ángulos grandes. Luego se analizan los datos de la intensidad de dispersión angular para calcular el tamaño de las partículas responsables de crear el patrón de dispersión. La información

1 *Ibídem*. p.65.

2 *Ibídem*. p.72.

Fig. 6.4.3 Equipo SDT Q600 de TA Instruments.

3 Formosa, J. (2012). *Tesis: Formulaciones de nuevos morteros y cementos especiales basadas en subproductos de magnesio.* Universitat de Barcelona. p. 70.

Fig. 6.4.4 Equipo de análisis de la distribución de tamaños de partículas mediante difracción láser Mastersizer 2000 Malvern PANalytical.

es procesada aplicando modelos ópticos, que consideran las partículas como esferas, reflejando así, la distribución del tamaño de partículas [1].

Los análisis ADL (Fig. 6.4.4) fueron realizados en el Institute of Earth Sciences Jaume Almera of the Spanish Scientific Research Council (ICTJA-CSIC) en Barcelona, con un equipo Mastersizer 2000 Malvern PANalytical.

Análisis por microscopía electrónica de barrido (SEM)

La microscopía electrónica de barrido (SEM) proporciona información morfológica y topográfica sobre la superficie de los sólidos que son necesarias para entender el comportamiento del material, así como información cuantitativa y cualitativa sobre la composición elemental de las diversas áreas de una superficie. Una imagen SEM, expone la superficie de una muestra sólida que es barrida con un haz de electrones. Proceso que se repite hasta completar el análisis del área deseada. Al barrer la superficie con electrones de energía elevada se producen diversos tipos de señales. Las muestras para estos análisis deben cumplir dos condiciones: estar secas y ser conductoras [2].

las muestras se recubrieron con paladio-platino. El voltaje de emisión del haz de electrones fue entre 15 y 20 Voltios Los análisis SEM fueron realizados en los *Centres Científics i Tecnològics de la Universitat de Barcelona,* con un equipo JSM-7010F Field Emission Scanning Electron Microscope (Fig. 6.4.5).

1	Bouzón	Orgeira,	Ν.	(2015)	op.cit.	p.64.

2 *Ibídem*. p.69.

Fig. 6.4.5 Equipo de análisis SEM JSM-7010F Field Emission Scanning Electron Microscope.

Determinación del límite líquido de un suelo por el método del aparato de Casagrande (UNE 103103:1994)

Para la determinación del límite líquido de un suelo se tomó como referencia la norma UNE 103103:1994. Esta norma determina el procedimiento mediante la utilización del aparato o cuchara de *Casagrande* (Fig. 6.4.6).

Se define límite líquido, a los efectos de esta norma, como la humedad que tiene un suelo amasado con agua y colocado en una cuchara normalizada, cuando un surco, realizado con un acanalador normalizado, que divide dicho suelo en dos mitades, se cierra a lo largo de su fondo en una distancia de 13mm, tras haber dejado caer 25 veces la mencionada cuchara desde una altura de 10mm sobre una base también normalizada, con una cadencia de dos golpes por segundo [3].

La determinación del límite líquido de las arcillas se llevó a cabo en el Laboratorio de materiales de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB).

Determinación del límite plástico de un suelo. (UNE 103104:1993)

Para la determinación del límite plástico de las arcillas se utilizó como referencia la norma UNE 103104:1993. Esta norma tiene por objeto

3 Asociación Española de Normalización y Certificación (1986- ...). (1999). *Geotecnia : ensayos de campo y de laboratorio*. Madrid : AENOR. Recuperado en Octubre 2017 de: http://cataleg.upc. edu/record=b1267849~S1*cat pp. 99-107.

Fig. 8.4.6 Aparato de Casagrande.

Fig. 6.4.7 Izquierda: determinación del límite plástico de arcillas conforme a la norma UNE 103104:1993. Derecha: equipo AutoPore V Series Mercury Porosimeters para análisis de porosimetría por inyección de mercurio.

especificar el método para la determinación del límite plástico de un suelo, definido a los efectos de esta norma como la humedad más baja con la que pueden formarse con un suelo cilindros de 3mm de diámetro, rodando dichos cilindros entre los dedos de la mano y una superficie liza, hasta que los cilindros empiecen a resquebrajarse (Fig. 6.4.7 Izquierda) [1].

La determinación del límite plástico de las arcillas se llevó a cabo en el Laboratorio de materiales de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB).

Porosimetría de Mercurio

La porosimetría por inyección de mercurio (Hg) es una técnica utilizada en la caracterización del sistema macroporoso de los materiales. Se basa en la aplicación de presión para forzar la filtración de mercurio en la red porosa del material.

Este análisis se utiliza en el estudio de materiales que presentan macroporos y mesoporos y se puede llegar a medir poros de hasta 6 nm; con este análisis se determina el área, el volumen de macro y mesoporos y se calcula la distribución de la porosidad del material [2].

El análisis de porosimetría de mercurio (Fig. 6.4.7 derecha) se realizó en el Departamento de Química de la Universidad de Navarra.

Porosidad y densidad (método convencional)

Para la determinación de la densidad del material se tomó como referencia la norma UNE-EN 772-13 [3]. También se tomó en cuenta la norma europea UNE-EN 1936 que especifica métodos de determinación de la densidad real, de la densidad aparente y de la porosidad abierta y total de la piedra natural [4].

La determinación de porosidad, densidad aparente y densidad relativa de los geopolímeros escogidos se llevó a cabo en el Laboratorio de materiales de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB) (Fig. 6.4.8).

Determinación de la absorción de agua por capilaridad

Para la determinación de la absorción de agua por capilaridad se tomó como referencia la norma UNE-EN 772-11. Esta norma europea describe un método para determinar el coeficiente de absorción

2 Recuperado en Octubre 2017 de: http://www.incar.csic.es/ porosimetria-de-mercurio.

- 3 Recuperado en Octubre 2017 de: https://bit.ly/2vKeYjp.
- 4 Recuperado en Octubre 2017 de: https://bit.ly/2M5EABO.

Fig. 6.4.8 Determinación de la porosidad y la densidad según las instrucciones establecidas en las norma correspondientes.

¹ Asociación Española de Normalización y Certificación (1986- ...). (1999). Geotecnia : ensayos de campo y de laboratorio. Madrid : AENOR. Recuperado en Octubre 2017 de: http://cataleg.upc. edu/record=b1267849~S1*cat pp. 109-110.

Fig. 6.4.9 Izquierda: determinación de la absorción de agua por capilaridad conforme a la norma UNE-EN 772-11. Derecha: determinación de la permeabilidad al vapor del agua conforme a la norma UNE-EN ISO 12572.

de agua por capilaridad de las piezas para fábrica de albañilería de hormigón, de hormigón celular curado en autoclave, de piedra natural y de piedra artificial, y la tasa inicial de absorción de agua de las piezas de arcilla cocida para fábrica de albañilería [1].

La determinación de la absorción por capilaridad (Fig. 6.4.9 Izquierda) de los geopolímeros escogidos se llevó a cabo en el Laboratorio de materiales de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB).

Permeabilidad al vapor de agua

Para la determinación de la permeabilidad al vapor de agua se tomó como referencia la norma UNE-EN ISO 12572: Prestaciones higrotérmicas de los productos y materiales para edificios. Determinación de las propiedades de transmisión de vapor de agua.

Esta norma especifica un método basado en ensayos de plato para determinar la permeabilidad al vapor de agua de los productos de edificación y la permeabilidad de los materiales de construcción bajo condiciones isotermas. Se especifican diferentes tipos de condiciones de ensayo. Los principios generales son aplicables a todos los materiales y productos de edificación higroscópicos

Recuperado en Octubre 2017 de: https://bit.ly/2M7bp12.

y no higroscópicos [2].

La determinación de la permeabilidad al vapor de agua de los geopolímeros escogidos se llevó a cabo en el Laboratorio de materiales de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB).

Determinación del módulo de Young dinámico (MOE) por excitación de la vibración por impulso

El módulo de Young se obtiene utilizando el método simple para determinar el módulo de Young dinámico a partir de una excitación por impacto descrito por J. Rosell y I. Cantalapiedra [2010] [3] y sustentado en la Norma ISO 12680 [4]. Este método, basado en la aplicación y medición de ondas acústicas generadas a partir de impactos para analizar la frecuencia de resonancia en las probetas, constituye un ensayo no destructivo.

Las probetas utilizadas según RILEM de formato 4x4x16cm son pesadas y medidas antes de ser

2 Recuperado en Octubre 2017 de: https://bit.ly/2vMAwMo.

3 Rosell, J. R., & Cantalapiedra, I. R. (2011). Método simple para determinar el módulo de Young dinámico a partir de una excitación por impacto aplicado a morteros de cal y cemento Simple method of dynamic Young 's modulus determination in lime and cement mortars. Materiales de Construcción, 301, 39–48. http://doi.org/10.3989/ mc.2010.53509.

4 Norma UNE-EN ISO 12680-1: "Métodos de ensayo para productos refractarios. Parte 1: Determinación del módulo de Young diná- mico (MOE) por excitación de la vibración por impulso" (2007).

Fig. 6.4.10 Para la determinación del módulo de Young dinámico (MOE) se tomó como referncia la norma UNE-EN ISO 12680-1.

¹

excitadas mediante pequeños impactos, con un martillo con un peso aproximado del 5% de la probeta, para evitar el desplazamiento de la misma por acción de los golpes (Fig. 6.4.10a). Las frecuencias generadas por el impacto son captadas con un micrófono en ambiente de laboratorio (20 ± 2°C; 10% HR) y luego procesadas mediante un software que analiza la señal mediante la transformada rápida de Fourier (FFT) que proporciona el valor de la velocidad de frecuencia longitudinal de la vibración. Para el cálculo de los resultados se siguen los procedimientos establecidos para análisis mediante vibraciones transversales [1]. Para el cálculo del módulo de elasticidad no se ha considerado un coeficiente de Poisson hipotético.

La determinación del MOE (Fig.6.4.10b) de los geopolímeros escogidos se llevó a cabo en el Laboratorio de materiales de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB).

Determinación de la resistencia mecánica

La resistencia mecánica de un cuerpo, determina su capacidad de soportar fuerzas (según el material y la geometría). Todos los "geopolímeros" fabricados en esta campaña experimental fueron sometidos a ensayos de resistencia a flexión y compresión en el Laboratorio de materiales de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB).

Las condiciones del laboratorio, los equipos empleados y los procedimientos de los ensayos toman como referencia la norma UNE-EN 196-1. Para la aplicación de carga se utilizó una prensa automática multiensayo electromecánica de 300 kN con control en desplazamiento, deformación y carga (Mecánica Científica REF. 42 0440-ESP (Fig.6.4.11)), y los dispositivos respectivos para el ensayo de flexión (Fig.6.4.13) y compresión (Fig.6.4.15).

Resistencia a flexión

Para la determinación de la resistencia a flexión se tomaron como referencia las normas UNE-EN 196-1, UNE-EN 1015-11 y UNE-EN 12390-5. Se ensayaron probetas prismáticas de formato RILEM de formato 4x4x16cm. a una velocidad de 50N/s. Para todos los ensayos se utilizó el método del punto central de carga, sometiendo las probetas a un momento flector mediante la aplicación de una carga a través de un rodillo superior y dos rodillos inferiores. Se registró la carga máxima alcanzada y se calculó la resistencia a flexión [2]. La resistencia a flexión viene dada por la fórmula:

$$f_{\rm cf} = \frac{3 \times F \times l}{2 \times d_1 \times d_2^2}$$

Donde fcf es la resistencia a flexión en MPa; F es la carga máxima en N; l es la distancia entre los dos rodillos soportes en mm; y d1 y d2 son las dimensiones laterales de la sección en mm. La resistencia a flexión se expresa con una aproximación de 0,1 MPa.

2 Recuperado en Octubre de 2017 de: https://bit.ly/2vK6KsB.

Fig. 6.4.12 Probeta y dispositivo de carga normalizado para la determinación de la resistencia a flexión.

¹ Rosell, J. R., & Cantalapiedra, I. R. (2011) cita a Ricardo, M. y Baettig, P.: "Determinación del módulo de elasticidad de la madera mediante vibraciones transversales", Maderas. Ciencia y tecnología, vol. 3(1-2), pp. 44-51 (2001).

Fig. 6.4.11 - Izquierda - Prensa utilizada en los ensayos a flexión y compresión. (Mecánica Científica REF. 42 0440-ESP) y Fig. 6.4.13 - Derecha - Imágenes de ensayo a flexión.

Fig. 6.4.14 Gráfico con esquema de los tipos de roturas satisfactorias en ensayo a compresión.

Roturas satisfactorias de probetas.

Fig. 6.4.15 Imágenes de ensayo a compresión.

Resistencia a compresión

Para la determinación de la resistencia a compresión se tomaron en cuenta las normas UNE-EN 196-1, UNE-EN 772-1, UNE-EN 12390-3, 1015-11 y UNE-EN 12390-4. Se ensayaron probetas prismáticas. Las probetas se comprimen mediante dos platos de apoyo de 40mm x 40mm empujados por la máquina de ensayo conforme a la norma EN ISO 6507-1 y EN 1015-11 (Fig.6.4.14). La carga se aplica constante y progresivamente a un ritmo comprendido entre 50 N/s y 500 N/s de tal modo que la rotura se lleva a cabo en un lapso que oscila entre 20s y 90s. Se registra la carga máxima alcanzada por la probeta y se calcula la resistencia a compresión del material [1].

La resistencia a compresión está dada por la ecuación:

$$f_{\rm c} = \frac{F}{A_{\rm c}}$$

donde fc es la resistencia a compresión en MPa; F es la carga máxima de rotura en N; Ac es el área transversal de la probeta sobre la que actúa la fuerza de compresión en mm². La resistencia a compresión se expresa con una aproximación de 0,1MPa.

Determinación de la durabilidad mediante ensayo de erosión acelerada Swinburne (SAET)

Para la determinación de la durabilidad mediante ensayo de erosión acelerada *Swinburne (SAET)* se tomó como referencia la norma UNE 41410:2008.

Esta norma especifica un ensayo que tiene por objeto determinar si los bloques de tierra comprimida utilizados en fábricas sometidas a exposición severa son aptos o no, para ello se ensayan dos bloques enteros elegidos de manera aleatoria, curados durante 28 días y expuestos a una corriente continua de agua durante 10 minutos. En la figura (Fig. 6.4.16) se muestra un esquema

1

Fig. 6.4.16 Esquema del equipo para el ensayo de erosión acelerada Swinburne (SAET).

del equipo a utilizar [1].

La determinación de la durabilidad mediante ensayo de erosión acelerada Swinburne (SAET) se llevó a cabo en el Laboratorio de materiales de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB).

Análisis de lixiviación

Para realizar el ensayo de lixiviación se tomó

como referencia la norma UNE-EN 15863: Caracterización de residuos. Ensayo de comportamiento durante la lixiviación para la caracterización básica [2]. Esta norma europea se aplica para determinar el comportamiento en la lixiviación de residuos monolíticos en condiciones dinámicas. Este test tiene como objetivo determinar la liberación de los componentes inorgánicos de un residuo monolítico en función del tiempo, cuando se pone en contacto con una solución acuosa (lixiviante). Los análisis de lixiviación (Fig.6.4.17) fueron realizados en el Departamento de Ciencia de Materiales y Química Física de la Universitat de Barcelona.

Análisis del comportamiento térmico

Para la determinación de las propiedades térmicas del material se utilizó un equipo Quickline 30 *(Thermal properties analyzer)* (Fig. 6.4.18). Se midió la transmitancia térmica de probetas cúbicas de 10cm de lado fabricadas con el "geopolímero" señalado en cada caso. También se revisó la norma UNE-EN1745:2002: Fábrica de albañilería y componentes para fábrica. Métodos para determinar los valores térmicos de proyecto, norma europea que especifica procedimientos para determinar las propiedades térmicas de la fábrica de albañilería y de las piezas para fábrica [3].

¹ Recuperado en Octubre de 2017 de: http://www.aenor.es/ aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0042285#. Wx6iri0rxZ0.

Fig. 6.4.17 Análisis de lixiviación.

2 Recuperado en Octubre de 2017 de: http://www.aenor.es/ aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0042285#. Wx6iri0rxZ0.

3 Recuperado en Octubre de 2017 de: http:// www.aenor.es/aenor/normas/normas/fichanorma. asp?tipo=N&codigo=N0051621&pdf=#.WwQ8Gy8rzX8.

Fig. 6.4.18 Equipo Quickline 30 (Thermal properties analyzer) utilizado para el análisis del comportamiento térmico.

La determinación de las propiedades térmicas del material se llevó a cabo en el Laboratorio del fuego de la Escola Politècnica Superior d'Edificació de Barcelona (EPSEB).

Análisis del Impacto ambiental

La investigación y el análisis del comportamiento ambiental de los bloques experimentales de arcilla polimerizada desarrollados en esta tesis, fue un trabajo de co-autoría con J.R. Rosell del Departament de Tecnologia de l'Arquitectura de la Universitat Politècnica de Catalunya; A. Torres-Rivas y M. Palumbo del Departament d'Enginyeria Química de la Universitat Rovira i Virgili; y D. Boer del Departament d'Enginyeria Mecànica de la Universitat Rovira i Virgili. La investigación realizada está detallada en el artículo: "Compressive strength and embodied environmental impact of experimental polymerized-clay brick" adjuntado en el apartado: Anexo 1.0.

El impacto ambiental incorporado de los bloques experimentales de arcilla polimerizada se evaluó utilizando la metodología de evaluación del ciclo de vida (ACV). El objetivo del ACV fue doble. Primero, evaluar qué combinación de las composiciones y procesos de producción probados en el laboratorio, mostraron simultáneamente un mejor desempeño ambiental y mecánico. En segundo lugar, evaluar los impactos ambientales asociados a la producción de bloques experimentales de arcilla polimerizada en comparación con productos de construcción fabricados a partir de arcilla: ladrillos de arcilla cocida y bloques de tierra comprimida (BTC). Por lo tanto, el alcance del análisis de ACV se limitó al proceso de producción, teniendo en cuenta los impactos asociados con las materias primas utilizadas en cada caso y la energía consumida durante el proceso de producción.

La energía consumida durante el proceso de producción se estimó bajo la hipótesis de que los ladrillos experimentales se fabricaron a escala industrial. Se utilizó la base de datos Ecoinvent 3.4 para determinar los impactos ambientales asociados de cada materia prima y los procesos de producción.

Los resultados obtenidos se expresaron utilizando el método de ponderación ReCiPe (puntos finales). Para lograr el primer objetivo, se evaluaron los impactos ambientales (puntos) y las resistencias a la compresión (MPa) de las muestras.

Para el segundo objetivo del ACV, se compararon los impactos ambientales asociados con la producción de los materiales comparados. En el caso de las BTC, solo se consideró el impacto asociado con las materias primas, ya que su proceso de producción no implica el uso de calor. Los resultados relevantes se exponen más adelante en el apartado 6.13: Análisis del impacto ambiental.

Imágenes utilizadas:

- Fig. 6.4.1. Equipo de Análisis por difracción de rayos X (PANalytical X'Pert PRO MRD diffractometer). Recuperado el 06-08-2018 de: https://bit.ly/20Mlsao
- Fig. 6.4.2. Equipo de análisis por fluorescencia de rayos X (Panalytical, Axios PW 4400/40 sequential wavelength dispersive X-ray spectrophotometer (VVDXRF)). Recuperado el 06-08-2018 de: https:// bit.ly/2KrPrRr
- Dii.ly/2KITIKI
 Fig. 6.4.3. Equipo SDT Q600 de TA Instruments. Recuperado 06-08-2018 de: https://bit.ly/2AHuboK
 Fig. 6.4.4. Equipo de análisis de la distribución de tamaños de partículas mediante difracción láser Mastersizer 2000 Malvern PANalytical. Recuperado el 06-08-2018 de: https://bit.ly/2M6Sxzf
- Fig. 6.4.5. Equipo de análisis SEM JSM-7010F Field Emission Scanning Electron Microscope. Recuperado el 06-08-2018 de: https://goo.gl/ images/hN4SGn
- Fig. 6.4.6. Aparato de Casagrande. Recuperado el 06-08-2018 de: https://goo.gl/images/hN4SGn Fig. 6.4.7. Izquierda: determinación del límite plástico de arcillas conforme a la norma UNE 103104:1993. Recuperado el 06-08-2018 de: https://goo.gl/images/yM4ocs. Derecha: equipo AutoPore V Series Mercury Porosimeters para análisis de porosimetría por invección de mercurio. Recuperado el 06-08-2018 de: http://www.micromeritics. com/Product-Showcase/AutoPore-V.aspx
- Fig. 6.4.8. Para la determinación de la porosidad y la densidad es importante pesar las muestras correctamente, siguiendo las instrucciones establecidas en las norma correspondientes. Recuperado el 06-08-2018 de: https://goo.gl/images/DTV7j1
- Fig. 6.4.9. Izquierda: determinación de la absorción de agua por capilaridad conforme a la norma UNE-EN 772-11. Derecha: determinación de la permeabilidad al vapor del agua conforme a la norma UNE-EN ISO 12572. (Autoría propia)
- Fig. 6.4.10. Información recuperada de Rosell, J. R., & Cantalapiedra, I. R. (2011). Método simple para determinar el módulo de Young dinámico a partir de una excitación por impacto aplicado a morteros de cal y cemento. Materiales de Construcción, 301, 39–48. http://doi. org/10.3989/mc.2010.53509. Imagen (Autoría propia) Fig. 6.4.11. Prensa utilizada en los ensayos a flexión y compresión. (Mecánica Científica REF. 42 0440-ESP) (Autoría propia)
- (Mecanica Cientifica KET: 42 0440-ESF) (Auforia propia)
 Fig. 6.4.12. Probeta y dispositivo de carga normalizado para la determinación de la resistencia a flexión. Recuperado el 06-08-2018 de normas UNE-EN 196-1:2005 y EN 12390-5:2009.
 Fig. 6.4.13. Imagen de ensayo a flexión. (Autoría propia)
 Fig. 6.4.14. Gráfico con esquema de los tipos de roturas satisfactorias en ensayo a compresión. Recuperado el 06-08-2018 de norma UNE-EN 12300-2 2000.
- EN 12390-3:2009.
- Fig. 6.4.15. Imagen de ensayo a compresión. (Autoría propia)
- Fig. 6.4.16. Gráfico del equipo para el ensayo de erosión acelerada Swinburne (SAET). Recuperado el 06-08-2018 de norma UNE 41410.2008
- Fig. 6.4.17. Análisis de lixiviación. (Autoría propia) Fig. 6.4.18. Equipo Quickline 30 (Thermal properties analyzer) utilizado para el análisis del comportamiento térmico. Recuperado el 06-08-2018 de https://bit.ly/2CR9bzo

PROCEDIMIENTOS EXPERIMENTALES Y EQUIPOS

Los equipos requeridos se dividen en dos grupos, por un lado están las máquinas: amasadora automática, estufa y agitador magnético; por otro lado equipos básicos de laboratorio: recipientes, moldes, utensilios, etc. A continuación se explica cada uno de los procesos y se señalan los equipos y materiales utilizados en la campaña experimental.

6.8.1 Preparación del activador alcalino

Equipos:

- Guantes de látex;
- Guantes de protección al calor;
- Agitador magnético (Selecta Agimatic Ref.243);
- Balanza de laboratorio (Electronic scale 5000g);
- Vasos de precipitado (1500 ml);
- Matraz de Erlenmeyer con tapa (2000 ml);
- Cucharón (40 ml). (Fig. 6.8.1.1).

Materiales:

-
$$Na_2SiO_{3;}$$

- Agua destilada.w

Procedimiento:

La solución alcalina se prepara mezclando NaOH o KOH con agua destilada con el siguiente procedimiento (Fig. 6.8.1.2):

1. Se calculan las proporciones según la molaridad y la cantidad de solución alcalina requerida. Se utilizan guantes de látex en todo el proceso.

2. Se pesa el agua en vasos de precipitación.

 Se pesa y agrega poco a poco el hidróxido metálico (es decir las perlas de NaOH o KOH, manipulándolas con el cucharón) al agua destilada.
 Debido a la reacción exotérmica entre el agua y el hidróxido metálico, se manipula el vaso con guantes de protección al calor y se lo coloca en el agitador magnético para mezclar la solución durante 5 minutos a 2000 rpm.

5. Cuando se hayan disuelto por completo las perlas de NaOH o KOH (según el caso) se deja enfriar la solución a temperatura ambiente por 24 horas.

6. Una vez fría, se añade Na₂SiO₃ en la proporción correspondiente (o no, según el caso) se coloca nuevamente el vaso en el agitador magnético por otros 5 minutos mezclando la solución a 2000rpm. 7. La solución obtenida se deposita en el matraz, se tapa y almacena durante 24 horas antes de su utilización.

6.8.2 Preparación de geo-polímero

Equipos:

- Guantes de látex
- Amasadora (Mecánica científica E095).
- Balanza de laboratorio (Electronic scale 5000g).
- Vasos de precipitado (1500 ml).
- Bol de aluminio (3000 ml).
- Cucharón (20 mĺ).
- Espátula (Fig. 6.8.2.1)

Materiales:

- Arcilla;
- Arena;
- Solución alcalina;
- Aditivo, (si corresponde).

Procedimiento:

El mortero se prepara mezclando los materiales precursores de aluminosilicatos (arena y arcilla) con la solución alcalina (NaOH o KOH) y en los casos que correspondan con aditivos (tales como CaO o CaSO₄·2H₂O) con el siguiente procedimiento (Fig. 6.8.2.2):

1. Se pesan los materiales que intervienen en base al diseño de experimento correspondiente. La solución alcalina se coloca en un vaso y los precursores de aluminosilicatos en un bol. En caso de utilizar aditivos se pesan en un recipiente de

Fig. 6.8.1.1 Equipo necesario para la preparación del activador alcalino.

Fig. 6.8.1.2 Esquema de procedimiento de elaboración del activador alcalino.

Fig. 6.8.2.2 Esquema de procedimiento de preparación de polímero.

igual forma. Se utilizan guantes de látex en todo el proceso de elaboración de la solución alcalina.

2. Se vierte la arcilla y la arena en el recipiente de la amasadora, se asegura la sujeción en la máquina y se mezcla durante dos minutos a 140 rpm.

3. A continuación se agrega poco a poco la solución alcalina que ha sido preparada y pesada previamente a la mezcla en la proporción correspondiente y si es el caso se agrega el aditivo.

4. Se mezclan los materiales durante 5 minutos a 285 rpm.

6.8.3 Procedimientos de fabricación de probetas

Equipos:

- Guantes de neopreno;
- Molde triple para probetas RILEM de 4x4x16cm;
- Espátula (Fig. 6.8.3.1).

Materiales:

- Polímero (paso anterior);
- Desencofrante.

Procedimiento:

1. Se pone desencofrante en los moldes.

2. Se deposita el polímero (previamente elaborado) en las respectivas celdas del molde. En caso de que la mezcla sea muy plástica se vierte directamente y se compacta dejando caer el molde 7 veces desde la parte frontal y 7 veces desde la posterior desde una altura de 1cm, si la mezcla es poco plástica se coloca directamente con las manos utilizando la presión de los dedos o la espátula para esparcir uniformemente. Finalmente se enrasa con la espátula (Fig. 6.8.3.2).

6.8.4 Procedimiento de curado

Equipos:

- Guantes de protección al calor;
- Estufa.

Procedimiento:

1. A continuación, haciendo uso de los guantes

Fig. 6.8.2.1 Equipo necesario para la preparación del polímero.

Fig. 6.8.3.2 Esquema de procedimiento de fabricación de probetas y curado.

Fig. 6.8.3.1 Equipo necesario para moldeo de probetas y curado.

de protección al calor, se colocan los moldes en la estufa precalentada con temperatura constante (80°C, 100°C, 120°C según el caso) durante el tiempo determinado (2h, 4ĥ, 8h, 24h, 48h según cada caso). Si el DOE señala lo contrario se dejan secar las probetas a temperatura y condiciones ambientales durante el tiempo estipulado en cada caso.

2. Finalmente se sacan los moldes de la estufa (si es el caso) y se dejan enfriar el tiempo que sea necesario. A continuación se desmoldan las probetas y se almacenan durante el tiempo señalado (14 y 28 días, según cada caso) a temperatura ambiente y en condiciones constantes.

Imágenes utilizadas:

- Fig. 6.8.1.1. Equipo necesario para la preparación del activador . alcalino. Autoría propia.
- Fig. 6.8.1.2. Esquema de procedimiento de elaboración del activador alcalino. Autoría propia.
- Fig. 6.8.2.1. Equipo necesario para la preparación del polímero. Autoría propia.
- Fig. 6.8.2.2. Esquema de procedimiento de preparación de polímero. Autoría propia. Fig. 6.8.3.1. Equipo necesario para moldeo de probetas y curado.
- Autoría propia
- Fig. 6.8.3.2. Esquema de procedimiento de fabricación de probetas y curado. Autoría propia.

Anexo 6.6.1.1 Determinación del límite líquido y determinación del límite plástico de arcilla Tipo A

Datos recolectados para la determinación del límite líquido y determinación del límite plástico

Determinación del límite líquido Arcilla A				
Muestra	A1	A2		
Numero de golpes	23,00	33,00		
Tara cuenco	27,00	30,80		
Tara cuenco + muestra + H2O (gr)	31,70	37,60		
Tara + muestra seca (gr)	30,50	35,90		
Agua	1,20	1,70		
Suelo	3,50	5,10		
% de Humedad	34,29	33,33		
Límite líquido	A	34,2		
Limite plástico	A	20,3		
Indice de plasticidad	А	13,9		

Determinación del límite plástico Arcilla A				
Muestra	A1	A2		
Tara cuenco	27,00	30,80		
Tara cuenco + muestra + H2O (gr)	36,20	36,30		
Tara + muestra seca (gr)	34,60	35,40		
Agua	1,60	0,90		
Suelo	7,60	4,60		
% de Humedad	21,05	19,57		
Limite plástico	А	20,3		

Nu Tai mu (gr Tai Su Su

Mu

Lín Lin Inc pla

Mu

Nu

Та

Ta mu

(gr

Ta se

Determinación	del	límite	Arcilla	в
Determinuoion	aci	mmuc	/	

Determinación del límite plástico Arcilla B

Ag Sud % d Lín Lin

pla

Anexo 6.6.1.2 Información suministrada por el distribuidor de arcilla Tipo A

ARGILES COLADES S.A.

6.6.1.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo A

6.6.1.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo A

Matched by	Tip width [°2Th.]	Rel. Int. [%]	d-spacing [Å]	FWHM [°2Th.]	Height [cts]	Pos. [°2Th.]
01-074-1	0,7834	0,36	14,58614	0,6528	84,20	6,0544
00-029-14	0,0979	2,37	9,98227	0,0816	555,93	8,8514
01-080-0886; 01-074-17	0,3427	2,91	7,20287	0,2856	683,49	12,2783
01-080-08	0,1224	1,60	4,99310	0,1020	376,42	17,7492
01-080-0886; 01-074-1732; 01-071-15	0,2938	2,61	4,46707	0,2448	612,33	19,8594
00-046-1045; 01-074-17	0,0979	17,56	4,25751	0,0816	4119,61	20,8476
01-080-0886; 01-074-17	0,2938	3,91	3,57364	0,2448	916,43	24,8957
00-046-1045; 00-029-14	0,0979	100,00	3,34512	0,0816	23454,09	26,6266
01-080-0886; 01-074-17	0,0979	2,42	3,24820	0,0816	567,33	27,4364
01-080-08	0,1469	1,83	3,19583	0,1224	430,25	27,8950
01-071-1:	0,1224	1,56	3,03339	0,1020	366,21	29,4216
01-080-0886; 01-074-17	0,4896	0,89	2,70141	0,4080	208,10	33,1353
01-080-0886; 01-074-1732; 01-071-1	0,2938	3,19	2,56101	0,2448	748,34	35,0088
01-080-0886; 01-074-17	0,4896	2,35	2,51801	0,4080	550,18	35,6265
00-046-1045; 01-074-17	0,0979	10,65	2,45818	0,0816	2499,00	36,5239
01-080-0886; 01-074-1732; 01-071-1	0,3917	1,42	2,38214	0,3264	332,54	37,7330
01-080-0886; 01-071-1	0,5875	1,95	2,33875	0,4896	458,26	38,4603
00-046-1045; 01-080-0886; 01-074-1732; 01-071-1	0,0979	8,65	2,28245	0,0816	2027,99	39,4478
00-046-1045; 01-080-0886; 01-074-1732; 01-071-1	0,0734	5,35	2,23770	0,0612	1255,64	40,2704
00-046-1045; 01-080-0886; 01-074-1732; 01-071-1	0,1224	8,04	2,12854	0,1020	1886,09	42,4326
01-080-0886; 01-074-1732; 01-071-1	0,2448	2,19	1,99767	0,2040	513,52	45,3619
00-046-1045; 01-080-0886; 01-074-17	0,0979	6,08	1,98078	0,0816	1425,65	45,7704
00-046-10	0,1224	18,82	1,81872	0,1020	4415,22	50,1163
00-046-1045; 01-080-0886; 00-029-1489; 01-074-17	0,0979	7,38	1,67247	0,0816	1730,72	54,8486
00-046-1045; 01-080-0886; 01-074-1732; 01-071-1	0,0979	3,44	1,65964	0,0816	807,82	55,3088
00-046-1045; 01-080-0886; 01-074-1732; 01-071-1	0,1224	18,65	1,54223	0,1020	4373,90	59,9301
01-080-0886; 01-074-1732; 01-071-1	0,2938	3,79	1,49088	0,2448	888,45	62,2190
00-046-1045; 01-080-0886; 01-074-1732; 01-071-1	0,1224	3,79	1,45347	0,1020	888,63	64,0072
00-046-10	0,1224	9,86	1,38268	0,1020	2312,08	67,7117
00-046-1045; 01-080-08	0,0979	10,90	1,37554	0,0816	2557,53	68,1114
00-046-1045; 01-080-08	0,0979	7,14	1,37245	0,0816	1673,84	68,2856
00-046-1045; 01-071-1:	0,1224	3,97	1,28850	0,1020	932,09	73,4287
00-046-10	0,0979	4,96	1,25642	0,0816	1162,39	75,6265
00-046-1045; 01-071-1:	0,1224	2,80	1,22880	0,1020	656,85	77,6390
00-046-1045; 01-071-1:	0,1224	5,38	1,20031	0,1020	1261,62	79,8447
00-046-10	0,1224	4,79	1,18439	0,1020	1123,55	81,1401
00-046-10	0,1224	6,32	1,18065	0,1020	1481,74	81,4512
00-046-1045; 01-071-1:	0,0979	3,73	1,15343	0,0816	876,00	83,8004
00-046-10	0,1469	4,88	1,08207	0,1224	1144,95	90,7755
00-046-10	0,1958	2,19	1,04819	0,1632	512,92	94,5946
00-046-10	0,1958	1,92	1,04421	0,1632	451,27	95,0699
00-046-10	0,1224	3,19	1,03488	0,1020	749,33	96,2048
00.046.14	0.1460	2.22				

Anexo 6.6.1.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo A

Anexo 6.6.1.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo A

Anexo 6.6.1.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo A

Anexo 6.6.1.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo A

258

ANEXOS 6.6.1.7

ANEXOS 6.6.1.7

muestra + H2O (gr)			Tara + muestra	34,60	35,40
Tara + muestra	30,50	35,90	seca (gr)	1.60	0.90
seca (gr)			Agua	1,00	0,90
Agua	1,20	1,70	Suelo	7,60	4,60
Suelo	3,50	5,10	% de Humedad	21,05	19,57 EXOS
% de Humedad	34,29	33,33			0.0.2.1
Anexo 6.6.2.1 Determino	ación del límite l	íquido y det	erm uimatejáístide l límite	plástico d e arcille	а Тіро 2 8,3

Límite líquido	А	34,2
Limite plástico	А	20,3

Datos**plasticidad**tados para la determinación del límite líquido y determinación del límite plástico

Determinación del límite Arcilla B				
Muestra	B1	B2		
Numero de golpes	20,00	26,00		
Tara cuenco	30,60	25,60		
Tara cuenco + muestra + H2O (gr)	36,30	31,90		
Tara + muestra seca (gr)	34,60	30,10		
Agua	1,70	1,80		
Suelo	4,00	4,50		
% de Humedad	42,50	40,00		
Límite líquido	В	40,8		
Limite plástico	В	25,4		
Indice de plasticidad	В	15,4		

Determinación del límite plástico Arcilla B				
Muestra	B1	B2		
Tara cuenco	25,60	30,60		
Tara cuenco + muestra + H2O (gr)	33,50	38,00		
Tara + muestra seca (gr)	31,80	36,60		
Agua	1,70	1,40		
Suelo	6,20	6,00		
% de Humedad	27,42	23,33		
Limite plástico	В	25,4		

Gráfico del Límite Líquido - Arcilla B

3

Anexo 6.6.2.2 Información suministrada por el distribuidor de arcilla Tipo B

ARGILES COLADES S.A. Crta C-66 km 12; P.I. Rissec Sud; Avinguda Puntuiï nº33 17121 Corçà (Girona) ESPAÑA Tel. 972 630 102 - Fax. 972 630 855 info@argilescolades.com Anexo 6.6.2.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo B

Plot of Identified Phases:

Anexo 6.6.2.3 Análisis por difracción de rayos X (DRX) ARCILLA B

Matched by	Tip width [°2Th.]	Rel. Int. [%]	d-spacing [Å]	FWHM [°2Th.]	Height [cts]	Pos. [°2Th.]
01-086-036	0,3917	1,98	14,54981	0,3264	430,25	6,0696
00-042-030	0,0979	11,65	9,97768	0,0816	2527,07	8,8555
01-080-088	0,0979	2,32	7,07346	0,0816	502,76	12,5038
01-080-0886; 00-042-030	0,0979	6,54	4,99153	0,0816	1417,75	17,7548
01-080-0886; 01-086-036	0,2938	1,79	4,46514	0,2448	387,76	19,8680
00-046-1045; 01-086-0369; 00-042-030	0,0979	14,92	4,25814	0,0816	3236,22	20,8444
00-042-0305; 01-076-089	0,1469	1,52	4,03335	0,1224	329,70	22,0202
00-042-0305; 01-076-089	0,2938	0,99	3,86580	0,2448	215,57	22,9874
00-042-030	0,1958	1,48	3,77776	0,1632	321,49	23,5306
01-080-0886; 00-042-0305; 01-076-089	0,2448	1,73	3,67316	0,2040	375,37	24,2107
01-080-088	0,1958	2,47	3,57851	0,1632	535,85	24,8612
00-042-030	0,2938	2,10	3,48427	0,2448	456,15	25,5448
00-046-1045; 01-086-0369; 00-042-0305; 01-076-089	0,0979	100,00	3,34538	0,0816	21686,79	26,6245
00-046-1045; 00-042-030	0,0979	16,88	3,32774	0,0816	3660,99	26,7682
01-080-0886; 00-042-030	0,0734	8,94	3,24643	0,0612	1939,01	27,4517
00-042-0305; 01-076-089	0,0734	12,94	3,23574	0,0612	2805,21	27,5441
01-076-089	0,1469	18,43	3,19264	0,1224	3997,82	27,9234
01-086-036	0,1224	10,61	3,03423	0,1020	2300,58	29,4132
01-080-0886; 00-042-030	0,1958	2,36	2,99190	0,1632	512,14	29,8390
01-076-089	0,1469	1,55	2,93262	0,1224	336,48	30,4566
01-080-088	0,1469	1,77	2,86139	0,1224	383,56	31,2339
01-080-0886; 01-086-0369; 01-076-089	0,2938	3,11	2,56100	0,2448	675,37	35,0090
01-080-0886; 01-076-089	0,1469	3,35	2,49373	0,1224	725,57	35,9852
00-046-1045; 01-086-0369; 01-076-089	0,0979	9,67	2,45802	0,0816	2098,08	36,5263
01-080-088	0,3917	1,03	2,38127	0,3264	223,31	37,7473
00-046-1045; 01-080-0886; 01-076-089	0,0979	9,55	2,28251	0,0816	2070,74	39,4466
00-046-1045; 01-080-0886; 01-076-089	0,0734	4,38	2,23788	0,0612	949,52	40,2671
01-080-0886; 01-076-089	0,1469	1,49	2,16404	0,1224	323,93	41,7039
00-046-1045; 01-080-0886; 01-086-0369; 01-076-089	0,1224	8,24	2,12905	0,1020	1786,06	42,4221
01-080-0886; 01-086-0369; 01-076-089	0,1469	2,08	2,09279	0,1224	450,83	43,1937
01-080-0886; 01-076-089	0,2448	7,09	1,99647	0,2040	1537,11	45,3907
00-046-1045; 01-080-0886; 01-086-0369; 01-076-089	0,0979	5,69	1,98074	0,0816	1234,45	45,7714
01-080-0886; 01-086-0369; 01-076-089	0,2448	2,02	1,91180	0,2040	437,83	47,5215
01-080-0886; 01-086-036	0,1714	2,04	1,87467	0,1428	441,90	48,5225
01-080-0886; 01-086-0369; 01-076-089	0,0979	1,76	1,85040	0,0816	381,71	49,2008
00-046-1045; 01-076-089	0,0979	19,48	1,81861	0,0816	4225,41	50,1196
00-046-1045; 01-080-0886; 01-086-036	0,3917	1,09	1,80226	0,3264	237,37	50,6061
00-046-1045; 01-080-0886; 01-076-089	0,0979	6,86	1,67247	0,0816	1487,55	54,8485
00-046-1045; 01-080-0886; 01-086-0369; 01-076-089	0,0979	2,98	1,65973	0,0816	646,85	55,3054
01-080-0886; 01-086-0369; 01-076-089	0,3917	1,39	1,64720	0,3264	301,47	55,7626
01-080-0886; 01-076-089	0,2938	1,34	1,60259	0,2448	290,87	57,4567
00-046-1045; 01-080-0886; 01-086-0369; 01-076-089	0,0979	16,51	1,54214	0,0816	3581,55	59,9337
01-086-0369; 01-076-089	0,2938	1,51	1,52443	0,2448	326,76	60,7028
01-080-0886; 01-086-036	0,3917	2,17	1,50043	0,3264	471,64	61,7792
00-046-1045; 01-080-0886; 01-086-0369; 01-076-089	0,0979	2,74	1,45321	0,0816	595,16	64,0199
01-080-0886; 01-086-0369; 01-076-089	0,2938	0,96	1,43963	0,2448	207,23	64,6970
00-046-1045; 01-086-036	0,1224	9,08	1,38264	0,1020	1969,69	67,7141
00-046-1045; 01-080-0886; 01-086-036	0,0979	10,89	1,37545	0,0816	2361,37	68,1164
00-046-1045; 01-080-0886; 01-086-036	0,0979	6,87	1,37251	0,0816	1489,11	68,2823
01-080-0886; 01-086-036	0,2938	1,56	1,35327	0,2448	338,43	69,3906
01-086-036	0,3917	1,00	1,33956	0,3264	216,59	70,2048
00-046-104	0,1224	3,25	1,28837	0,1020	705,12	73,4371
00-046-104	0,0979	4,81	1,25637	0,0816	1043,15	75,6303
00-046-104	0,1469	2,69	1,22878	0,1224	582,56	77,6406
00-046-104	0,1224	4,21	1,20010	0,1020	913,18	79,8614
00-046-104	0,1714	3,34	1,18433	0,1428	724,20	81,1449
00-046-104	0,1958	7,08	1,18070	0,1632	1535,32	81,4467
00-046-104:	0,1224	3,51	1,15345	0,1020	762,19	83,7983
00-046-104	0,1714	4.47	1,08208	0,1428	968.38	90,7739
00-046-104	0,1958	2.06	1,04807	0,1632	446.44	94,6087
00-046-104	0 1958	1.93	1 04415	0 1632	418 59	95 0764
00-040-104.	0,1200	1,75	1,07415	0,1052		22,0704
00.044 104	() [269		114/285	0.1224	552.05	96 2060
00-046-104	0,1469	2,55	1,03486	0,1224	553,95	96,2069

Page: 1 of 1

ANEXOS 6.6.2.3

Anexo 6.6.2.3 Análisis por difracción de rayos X (DRX) ARCILLA B

Anexo 6.6.2.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo B

Anexo 6.6.2.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo B

Anexo 6.6.2.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo B

ANEXOS 6.6.2.7

Anexo 6.6.2.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo B

Anexo 6.6.2.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo B

Anexo 6.6.3.1- Determinación del límite líquido y determinación del límite plástico de arcilla Tipo C

Determina	ción del límite líqui	do Arcilla C	Determina	ación del	límite plásti	ico Arcilla C	
Muestra	C1	C2	Muestra	C1		C2	
Numero de golpes	15,00	25,00	Tara cuenco		30,10	25	5,20
Tara cuenco	25,20	30,10	Tara cuenco +		36,70	32	2,90
Tara cuenco + muestra + H2O	29,60	35,70	muestra + H2O (gr)	_			
(gr) Tara + muestra	28,40	34,20	Tara + muestra seca (gr)		35,40	31	1,60
seca (gr)			Agua		1,30	1	1,30
Agua	1,20	1,50	Suelo		5,30	6	6,40
Suelo	3,20	4,10	% de Humedad		24,53	20	0,31
% de Humedad	37,50	36,59					
			Limite plástico		С	2	22,4
Límite líquido	С	36,0					
Limite plástico	С	22,4					
Indice de	c	13,6					
Determina	ción del límite líqui qµido - Arcilla С 25.00	do Arcilla D ∽ D2 30.00	Determina Muestra Tara cuenco	ación del D1	límite plásti 29,40	ico Arcilla D D2 75	5,80
Determina Muestra Límite Lí Numero de golpes Tara cuenco	ción del límite líqui q⊎ido - Arcilla C 25,00 29,40	do Arcilla D ∽ D2 30,00 75,80	Determina Muestra Tara cuenco Tara cuenco +	ación del D1	límite plásti 29,40 38,90	ico Arcilla D D2 75 84	5,80
Determina CMuestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O	ción del límite líqui q⊌ido - Arcilla (25,00 29,40 35,60 ≌	do Arcilla D D2 30,00 75,80 %8₽,≨0 8	Determina Muestra Tara cuenco Tara cuenco + H∪ME ^{muestra} + H2O (gr) Tara	ación del I D1	límite plásti 29,40 38,90	ico Arcilla D D2 දී දී දුදි	5,80
Determina Muestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O	ción del límite líqui q⊎ido - Arcilla (25,00 29,40 35,60 ℃	do Arcilla D 202 30,00 75,80 %8 کچوں 8	Determina Muestra Tara cuenco Tara cuenco + H∪ME (gr) Tara muestra + H2O (gr) Tara muestra	ación del D1	límite plásti 29,40 38,90	ico Arcilla D D2 75 84	5,80
Determina CMuestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) Tara +fmuestra seça (gr)	ción del límite líqui q⊎ido - Arcilla (25,00 29,40 35,60 ℃	do Arcilla D - D2 30,00 75,80 %8 P,£0 5	Determina Muestra Tara cuenco Tara cuenco + H∪ME ^{muestra} + H2O (gr) Tara † muestra secal(gr)	ación del D1	límite plásti 29,40 38,90	ico Arcilla D D2 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5,80 4,70 2,30
Determina CMUESTra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) 7 Tara +Imuestra seca (gr) Agua	ción del límite líqui qµido - Arcilla (25,00 29,40 35,60 29,40 35,60	do Arcilla D - D2 30,00 75,80 %8₽₽£0 8 779.70	Determina Muestra Tara cuenco Tara cuenco + H∪ME UPD Tara + H2O (gr) Tara - muestra Seca (gr)	ación del D1	límite plásti 29,40 38,90	co Arcilla D D2 75 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5,80 4,70 2,30
Determina Muestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) Tara +Imuestra seca (gr) Agual Suelo	ción del límite líqui q⊌ido - Arcilla (25,00 29,40 35,60 ℃ 33,50 2,10 2,10	do Arcilla D - D2 30,00 75,80 %8 P,\$50 \$ 79,70 79,70 1,70 3,90	Determina Muestra Tara cuenco Tara cuenco + H∪MEDAD (gr) Tara + H2O (gr) Tara + muestra seca (gr) Agua Suelo Suelo	ación del	límite plásti 29,40 38,90 38,90 36,40 1,25	ico Arcilla D D2 75 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5,80 4,70 2,40 8,60 4,85
Determina CMuestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) 1 Tara + muestra seca (gr) Agual Suelo % de Humedad	ción del límite líqui q⊌ido - Arcilla (25,00 29,40 35,60 ≥ 33,50 2,10 4,10 51,22	do Arcilla D -D2 30,00 75,80 %8₽£0 5 79,70 79,70 7 79,70 7 79,70 7 79,70 7 79,70 7 79,70 7 7 9,70 7 7 9,70 7 7 9,70 7 7 9,70 7 7 9,70 7 7 9,70 7 7 9,70 7 7 7 9,70 7 7 7 9,70 7 7 7 9,70 7 7 7 9,70 7 7 7 9,70 7 7 7 9,70 7 7 7 9,70 7 7 7 9,70 7 7 7 7 9,70 7 7 7 9,70 7 7 7 9,70 7 7 9,70 7 7 7 9,70 7 7 9,70 7 7 9,70 7 7 7 9,70 7 7 9,70 7 7 7 9,70 7 7 9,70 7 7 7 9,70 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Determina Muestra Tara cuenco Tara cuenco + H∪MENJEStra + H2O (gr) Tara Tara seca (gr) Agua Suelo Suelo	ación del D1	límite plásti 29,40 38,90	ico Arcilla D D2 75 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5,80 4,70 5 2 4,85 4,85
Determina CMUESTRA Límite Lím	ción del límite líqui qµido - Arcilla (25,00 29,40 35,60 29,40 35,60 2,10 4,10 51,22	do Arcilla D 	Determina Muestra Tara cuenco Tara cuenco + H∪ ME ^{muestra} + H2O (gr) Tara + muestra secal(gr) Agua Suelo Suelo Suelo Limite plástico	ación del D1	límite plásti 29,40 38,90	ico Arcilla D D2 75 84 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5,80 4,70 2,30 4,85 4,85
Determina CMUestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) 1 Tara + Imuestra seca (gr) Agual Suelo % de Humedad Limite Ilguido	ción del límite líqui q⊌ido - Arcilla (25,00 29,40 35,60 ℃ 33,50 2,10 4,10 51,22	do Arcilla D -D2 30,00 75,80 %87,50 5 79,70 1,70 43,59 43,59	Determina Muestra Tara cuenco Tara cuenco + H∪ME ^{muestra} + H2O (gr) Tara + muestra seca (gr) Suelo Suelo Suelo Suelo Limite plástico	ación del l	límite plásti 29,40 38,90 7,00 7,00 35,71 35,71	ico Arcilla D D2 75 84 85 95 95 95 95 95 95 95 95 95 95 95 95 95	5,80 4,70 2,30 4,85 4,85
Determina CMUestra Límite Lí Numero de golpes Tara cuenco + muestra + H2O (gr) / Tara + Huestra seca (gr) Agual Suelo % de Humedad Limite Ilquido Limite Ilquido	ción del límite líqui quido - Arcilla (25,00 29,40 35,60 8 33,50 2,10 4,10 51,22	do Arcilla D -D2 -30,00 75,80 	Determina Muestra Tara cuenco Tara cuenco + HUMENJEStra + H2O (gr) Tara Secal(gr) Agua Suelo Suelo Suelo Suelo Limite plástico	ación del D1	límite plásti 29,40 38,90	ico Arcilla D D2 75 84 5 5 6 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 7 7 7 8 7 7 8 7 7 8 7 75 84 75 75 84 75 84 75 84 75 84 75 84 75 84 75 75 84 75 75 75 75 75 75 75 75 75 75 75 75 75	5,80 4,70 5,80 4,70 5,80 4,85 4,85
Determina CMUESTA Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) 7 Tara +Imuestra seca (gr) Agual Suelo % de Humedad 1 Limite Ilquido Limite plástico Infrice de	ción del límite líqui qµido - Arcilla (25,00 29,40 35,60 29,40 35,60 2,10 4,10 51,22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do Arcilla D - D2 30,00 75,80 - %8 P,\$0 - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Determina Muestra Tara cuenco Tara cuenco + H∪ ME ^{muestra} + H2O (gr) Tara + muestra secal(gr) Agua Suelo Suelo Limite plástico	ación del l	límite plásti 29,40 38,90 	ico Arcilla D D2 75 84 35 36 36 36 36 36 36 36 36 36 36 36 36 36	5,80 4,70 2,30 4,85 4,85 4,85
Determina Muestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) 1 Tara + muestra seca (gr) Agual Suelo % de Humedad 1 Límite Ilquido Limite plástico metro de golpes 1 Límite Ilquido	ción del límite líqui q⊌ido - Arcilla (25,00 29,40 35,60 ≷ 4,10 4,10 51,22	do Arcilla D -D2 30,00 75,80 %8,P,£0 6 79,70 1,70 4,3,90 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,3,59 4,5,50 4	Determina Muestra Tara cuenco Tara cuenco + H∪ME ^{muestra} + H2O (gr) Tara - muestra secal(gr) Agua Suelo Suelo Limite plástico	ación del D1	límite plásti 29,40 38,90 7,00 35,71 35,71 35,71 1,2,53 7,00 35,71 1,2,53 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,0	ico Arcilla D D2 75 84 85 85 85 85 85 85 85 85 85 85 85 85 85	5,80 4,70
Determina CMuestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) 1 Tara + H2O (gr) 2 Tara el muestra seca (gr) Agual Suelo % de Humedad Limite Ilquido Limite plástico Indice de plasticidad	ción del límite líqui qµido - Arcilla (25,00 29,40 35,60 29,40 35,60 29,40 35,60 29,40 35,10 2,10 4,10 51,22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do Arcilla D -D2 -30,00 75,80 	Determina Muestra Tara cuenco Tara cuenco + H∪MEUHETA + H2O (gr) Tara - muestra Suelo Suelo Suelo Limite plástico	ación del D1	límite plásti 29,40 38,90 	ico Arcilla D D2 75 84 8 8 8 8 8 8 8 8 8 8 8 8 8	
Determina CMUESTA Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) - Tara +Imuestra seca (gr) Agual Suelo % de Humedad I Limite Ilquido Limite plástico Indice de plasticidad - I	ción del límite líqui qµido - Arcilla (25,00 29,40 35,60 21,40 35,60 22,40 35,60 22,40 35,60 2,10 4,10 51,22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do Arcilla D 	Determina Muestra Tara cuenco + H∪ME ^{muestra +} H2O (gr) Tara + muestra secal(pt) Agua Suelo Limite plástico		límite plásti 29,40 38,90 7,00 35,71 35,71 35,71	ico Arcilla D D2 75 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Determina CMuestra Límite Lí Numero de golpes Tara cuenco + muestra + H2O (gr) 1 Tara + muestra seca (gr) Agual Suelo % de Humedad Limite Ilquido Limite plástico mitice de plasticidad 1	ción del límite líqui q⊌ido - Arcilla (25,00 29,40 35,60 35,60 2,10 4,10 51,22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do Arcilla D -D2 30,00 75,80 %82,£0 %82,£0 %82,£0 %82,50 43,52 43,52 43,52 43,52 43,52 447,52 547,54	Determina Muestra Tara cuenco Tara cuenco + HUMENJEStra + H2O (gr) Tara muestra seca (gr) Suelo Suelo Suelo Limite plástico	ación del 1	límite plásti 29,40 38,90 7,00 7,00 35,71 35,71 35,71 1,2,50 7,00 35,71 1,2,50 1,2,50 7,00 1,2,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1	ico Arcilla D D2 75 84 85 85 85 85 85 85 85 85 85 85 85 85 85	
Determina CMuestra Límite Lí Numero de golpes Tara cuenco Tara cuenco + muestra + H2O (gr) Tara + H2O (gr) Agual Suelo % de Humedad Limite Ilquido Limite Ilquido Limite plástico Indice de plasticidad	ción del límite líqui qµido - Arcilla (25,00 29,40 35,60 29,40 30,60 29,40 30,60 29,40 30,60 29,40 30,60 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,00000000	do Arcilla D -D2 30,00 75,80 %8,P,£0 8 79,70 1,70 43,59 43,59 43,59 43,59	Determina Muestra Tara cuenco + H∪MEUHStra + H2O Tara - muestra Secal (9r) Agua Suelo Suelo Limite plástico Limite plástico	ación del 1	límite plásti 29,40 38,90 	ico Arcilla D D2 75 84 0 0 0 0 0 0 0 0 0 0 0 0 0	5,80 4,70 5,80 4,85 4,85 4,85 4,85 4,85 4,85 4,85 4,85

Anexo 6.6.3.2 Información suministrada por el distribuidor de arcilla Tipo C

Valoración Arcilla illítica - calcária, Color en crudo rojo fuerte Anexo 6.6.3.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo C

Anexo 6.6.3.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo C

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Tip width [°2Th.]	Matched by
6,1606	163,05	0,4896	14,33496	0,83	0,5875	01-074-1732; 00-012-040
8,8573	1011,61	0,1020	9,97574	5,16	0,1224	00-029-148
12,5301	656,04	0,0612	7,05867	3,35	0,0734	01-080-088
17,7499	638,87	0,1020	4,99290	3,26	0,1224	01-080-088
18,8155	229,24	0,1632	4,71247	1,17	0,1958	00-012-040
19,8867	515,64	0,2448	4,46098	2,63	0,2938	01-080-0886; 01-074-173
20,8582	3263,96	0,0612	4,25535	16,65	0,0734	00-046-1045; 01-074-173
22,9564	247,67	0,2448	3,87094	1,26	0,2938	01-074-173
23,8182	331,41	0,1632	3,73280	1,69	0,1958	01-080-088
25,2104	755,28	0,0816	3,52973	3,85	0,0979	01-074-173
25,4887	589.63	0.2448	3,49182	3.01	0.2938	01-074-173
26,6370	19605,05	0,0816	3,34383	100,00	0,0979	00-046-1045; 00-029-148
27 4428	630 71	0 1632	3 24745	3 22	0 1958	01-080-0886: 01-074-1732: 00-012-040
27 8938	734.04	0 1632	3 19597	3 74	0 1958	01-080-088
29,0000	1912 24	0.1020	3 03282	9.75	0.1224	00-012-040
29 8605	659.41	0 1224	2 98979	3 36	0 1469	01-080-0886 01 074 172
30 7800	520.28	0 1224	2,20213	3,50	0.1460	01-074-1722-00-012-040
31,7809	320,38	0,1224	2,90245	2,00	0.1469	01-074-1732; 00-012-040
22,0201	4/0,20	0,1224	2,80204	2,43	0.2449	01-080-0880; 00-012-040
32,0301	540,97	0,2040	2,79205	1,74	0,2448	01-080-088
35,1/96	150,42	0,4896	2,697/91	0,77	0,58/5	01-080-0886; 01-0/4-1/32; 00-012-040
35,0307	951,20	0,1836	2,55946	4,85	0,2203	01-080-0886; 01-0/4-1/32; 00-012-040
35,9906	565,03	0,1224	2,49337	2,88	0,1469	01-080-0886; 01-074-173
36,5348	2069,59	0,0816	2,45747	10,56	0,0979	00-046-1045; 01-074-1732; 00-012-040
37,7490	340,09	0,4080	2,38117	1,73	0,4896	01-080-0886; 01-074-173
39,4556	2494,76	0,0816	2,28201	12,73	0,0979	00-046-1045; 01-080-0886; 01-074-173
40,2814	1094,69	0,0816	2,23712	5,58	0,0979	00-046-1045; 01-080-0886; 01-074-173
41,0382	177,84	0,4896	2,19759	0,91	0,5875	01-080-0886; 01-074-173
42,4377	1770,71	0,0816	2,12830	9,03	0,0979	00-046-1045; 01-080-0886; 01-074-173
43,1796	457,69	0,1020	2,09344	2,33	0,1224	01-080-088
45,3844	1005,75	0,1632	1,99673	5,13	0,1958	01-080-0886; 01-074-173
45,7839	1191,84	0,0816	1,98023	6,08	0,0979	00-046-1045; 01-080-0886; 01-074-173
47,5372	308,84	0,1632	1,91121	1,58	0,1958	01-080-0886; 01-074-173
48,5299	452,67	0,1224	1,87441	2,31	0,1469	01-080-0886; 01-074-1732; 00-012-040
50,1276	4012,85	0,0816	1,81834	20,47	0,0979	00-046-104
54,8597	1371,15	0,1020	1,67215	6,99	0,1224	00-046-1045; 01-080-0886; 01-074-1732; 00-029-148
55,3115	732,71	0,1020	1,65956	3,74	0,1224	00-046-1045; 01-080-0886; 01-074-173
55,7784	394,21	0,1632	1,64677	2,01	0,1958	01-080-0886; 01-074-1732; 00-012-040
59,9405	3182,65	0,1020	1,54199	16,23	0,1224	00-046-1045; 01-080-0886; 01-074-173
60,6977	354,89	0,2448	1,52455	1,81	0,2938	01-080-0886; 01-074-1732; 00-012-040
61,8049	558,70	0,2448	1,49987	2,85	0,2938	01-080-0886; 01-074-173
64,0080	724,44	0,1224	1,45345	3,70	0,1469	00-046-1045; 01-080-0886; 01-074-173
65,8397	135,61	0,4896	1,41738	0,69	0,5875	00-046-1045; 01-080-0886; 01-074-173
67,7186	2015,68	0,1224	1,38256	10,28	0,1469	00-046-104
68,1238	2237,77	0,1020	1,37532	11,41	0,1224	00-046-1045; 01-080-088
68,2884	1612,20	0,0816	1,37240	8.22	0,0979	00-046-1045; 01-080-088
69.3865	333 93	0.3264	1.35334	1 70	0.3917	01-080-088
73 4494	798 17	0 1020	1 28819	4 07	0 1224	00-046-104
75 6240	981 69	0 1020	1 25622	5.01	0 1224	00-040-104
77 6270	501,00	0,1020	1,20002	2.07	0.1224	00-040-104
70.9577	1172.21	0,1020	1,22882	2,97	0,1224	00-046-104
/9,8577	11/3,21	0,0816	1,20015	5,98	0,0979	00-046-104
81,1484	860,41	0,1020	1,18429	4,39	0,1224	00-046-104
81,4580	980,79	0,1224	1,18057	5,00	0,1469	00-046-104
83,8023	943,29	0,1224	1,15341	4,81	0,1469	00-046-104
90,8023	1120,69	0,1020	1,08182	5,72	0,1224	00-046-104
94,6110	464,62	0,1632	1,04805	2,37	0,1958	00-046-104
95,0592	458,88	0,1632	1,04429	2,34	0,1958	00-046-104
96,1964	624,31	0,1632	1,03494	3,18	0,1958	00-046-104

1

Anexo 6.6.3.3 Análisis por difracción de rayos X (DRX) ARCILLA C

Anexo 6.6.3.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo C

280

Anexo 6.6.3.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo C

Anexo 6.6.3.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo C

Anexo 6.6.3.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo C

283

ANEXOS 6.6.3.7

Anexo 6.6.3.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo C

	Tara + muestra			seca (gr)	, -	
	seca (gr)	28,40	34,20	Agua	1,30	1,30
	Agua	1,20	1,50	Suelo	5,30	6,40
	Suelo	3,20	4,10	% de Humedad	24,53	20,8
	% de Humedad	37,50	36,59			6
Ane	xo 6.6.4.1- Dete Límite líquido	erminación del l c	ímite líquido y de 36,0	eterminación del 1	ímite plástico d <mark>e</mark>	arcilla Tipo²Đʻ
	Limite plástico	С	22,4			
	Indice de	С	13,6			
Date	os ମଣ୍ଟିଓାମ୍ଟିସ ados	para la determi	nación del límite	líquido y determi	inación del límite	plástico
	Determina	ación del límite líqui	do Arcilla D	Determina	ación del límite plásti	co Arcilla D
	Muestra	D1	D2	Muestra	D1	D2
	Numero de golpes	25,00	30,00	Tara cuenco	29,40	75,80
	Tara cuenco	29,40	75,80	Tara cuenco +	38,90	84,70
	Tara cuenco + muestra + H2O (gr)	35,60	81,40	(gr) Tara + muestra	36,40	82,40
	Tara + muestra seca (gr)	33,50	79,70	seca (gr) Agua	2,50	2,30
	Agua	2,10	1,70	Suelo	7,00	6,60
	Suelo	4,10	3,90	% de Humedad	35,71	34,8
	% de Humedad	51,22	43,59			
				Limite plástico	D	35,3
	Límite líquido	D	47,9			
	Limite plástico	D	95.9			
			35,3			
	Indice de plasticidad	D	12,6			
Grá	Indice de plasticidad fico del Límite Lí	p quido - Arcilla D)			
Grá	Indice de plasticidad fico del Límite Lí	quido - Arcilla D) % DE 1 %	HUMEDAD	50 60 70	08 00 00
Grá	Indice de plasticidad fico del Límite Lí	quido - Arcilla D	% DE	HUMEDAD	50 minutes	80 100
Grá	Indice de plasticidad	quido - Arcilla D) % DE %	HU ME DAD	20 20 20 20 20 20 20 20 20 20	
Grá ō	Indice de plasticidad	quido - Arcilla E	% DE	HUMEDAD	50 20	80 100
Grá	Indice de plasticidad	quido - Arcilla D	% DE			
Grá	fico del Límite Lí	quido - Arcilla D	% DE	HUMEDAD	20	80 80 90 90 90 90 90 90 90 90 90 9
Grá	Indice de plasticidad	quido - Arcilla D	33,3 12,6			
Grá Io NUMERO	fico del Límite Lí	quido - Arcilla D	% DE	HUMEDAD		80 90 •••••••••••••••••••••••••••••••••
Grá IO NUMERO DE	Indice de plasticidad	quido - Arcilla D	% DE	HU ME DAD		
G IO NUMERO DE G	fico del Límite Lí	quido - Arcilla D	% DE	HUMEDAD		
G IO NUMERO DE GOLF	Indice de plasticidad	quido - Arcilla D	% DE	HU ME DAD		
G IO NUMERO DE GOLPES	Indice de plasticidad	quido - Arcilla D	% DE			
G 10 NUMERO DE GOLPES	Indice de plasticidad	quido - Arcilla D	% DE	HUMEDAD		
G IO NUMERO DE GOLPES 3	Indice de plasticidad	quido - Arcilla D	% DE			
G 10 NUMERO DE GOLPES 30	Indice de plasticidad	quido - Arcilla D	% DE	HUMEDAD		
G IO NUMERO DE GOLPES 30	Indice de plasticidad	quido - Arcilla D	% DE			

Anexo 6.6.4.2 Información suministrada por el distribuidor de arcilla Tipo D

Muestra	PEN CAOLIN A		QUÍMICA	(Análisis	Elemental,
Na₂O	0,000	expresado en %)			
MgO	0,000				
Al ₂ O ₃	30,900				
SiO ₂	52,300				
P ₂ O ₅	0,000				
SO₃	0,000				
K ₂ O	3.390				
CaO	0,100				
TiO ₂	0,000				
Cr ₂ O ₃					
MnO	0,000				
Fe ₂ O ₃	1,540				
PPC	8,400				
acterístic	as físicas				
acterístic	as físicas				
racterístic	as físicas >80% 6.5 - 7				
acterístic Incura Iida al fueg	as físicas >80% 6.5 - 7 10,30%	+/-1			
acterístic Incura Iida al fueg Inedad	as físicas >80% 6.5 - 7 10,30% <1% 2.61 a/a	+/-1 m ³			
acterístic cura ida al fueg iedad sidad icidad	as físicas >80% 6.5 - 7 10,30% - <1% 2,61 g/c	+/-1 m ³			
acterístic cura ida al fueg edad sidad icidad Límite líc	as físicas >80% 6.5 - 7 10,30% - <1% 2,61 g/c quido 55,5%	+/-1 m ³			
da al fueg edad idad cidad Límite líc Límite pla	as físicas >80% 6.5 - 7 10,30% <1% 2,61 g/c quido 55,5% ástico 29,0%	+/-1 m ³			
teterístic da al fueg dad idad cidad Límite líc Límite pla Índice de	as físicas >80% 6.5 - 7 10,30% - <1% 2,61 g/c quido 55,5% ástico 29,0% e plasticidad 26,5%	+/-1 m ³			
acterístic cura ida al fueg edad cidad cidad Límite líc Límite pla Índice de	as físicas >80% 6.5 - 7 10,30% <1% 2,61 g/c quido 55,5% ástico 29,0% e plasticidad 26,5%	+/-1 m ³			
acterístic cura ida al fueg edad sidad icidad Límite líc Límite pla Índice de	as físicas >80% 6.5 - 7 10,30% - <1% 2,61 g/c quido 55,5% ástico 29,0% e plasticidad 26,5%	+/-1 m ³			
acterístic cura ida al fueg edad sidad icidad Límite líc Límite pla Índice de	as físicas >80% 6.5 - 7 10,30% <1% 2,61 g/c quido 55,5% ástico 29,0% e plasticidad 26,5%	+/-1 m ³			
acterístic cura ida al fueg edad sidad icidad Límite líc Límite pla Índice de	as físicas	+/-1 m ³			
acterístic cura ida al fueg edad cidad Límite líc Límite pla Índice de	as físicas	+/-1 m ³			
acterístic cura ida al fueg edad cidad cidad Límite líc Límite pla	as físicas >80% 6.5 - 7 10,30% - <1% 2,61 g/c 2,61 g/c 4 4 4 2,61 g/c 2 4 4 2 4 2 4 2 5 5 5 5 6 5 5 5 6 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,5% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,5% 2 9,5% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,0% 2 9,5% 2 9,0% 2 9,5% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 2 9,0% 1 1 1 9,0% 1 1 1 1 1 1 1 1 1 1 1 1 1	+/-1 m ³			
acterístic cura da al fueg edad idad cidad Límite líc Límite pla Índice de	as físicas >80% 6.5 - 7 10,30% - <1% 2,61 g/c quido 55,5% ástico 29,0% e plasticidad 26,5%	+/-1 m ³			
acterístic cura da al fueg edad idad cidad Límite líc Límite pla Índice de	as físicas 6.5 - 7 10,30% - (0,10,30% - (1%) 2,61 g/c 2,61 g/c 29,0% 29,0% 29,0% 20,5%	+/-1 m ³			
acterístic cura da al fueg edad idad cidad Límite líc Límite pla	as físicas	+/-1 m ³			

Anexo 6.6.4.3 Análisis por difracción de rayos X (DRX) de arcilla Tipo D

Anexo 6.6.4.3 Análisis por difracción de rayos X (DRX) ARCILLA D

Matched by	Tip width [°2Th.]	Rel. Int. [%]	d-spacing [Å]	FWHM [°2Th.]	Height [cts]	Pos. [°2Th.]
00-029-1489	0,1469	8,22	9,97526	0,1224	1173,38	8,8577
01-080-088	0,1958	70,86	7,15420	0,1632	10120,68	12,3621
01-076-094	0.1224	5.68	4.99117	0.1020	811.42	17.7561
01-080-0885; 01-076-094	0,1224	3,40	4,46778	0,1020	485,75	19,8562
01-080-0885; 01-076-0948; 00-029-148	0,1958	3,00	4,36299	0,1632	428,10	20,3381
00-046-1045: 00-002-0083: 01-076-094	0.0734	16.35	4.25831	0.0612	2335.06	20.8436
00-046-1045: 00-019-0932: 01-076-094	0 1224	5 31	4 22620	0 1020	757.81	21 0037
01-080-0885: 00-019-0932: 01-076-094	0.3917	2 43	3 84531	0.3264	347 19	23 1116
01_080_0885; 00_019_0932	0.3917	2 53	3 73246	0.3264	361 39	23 8204
01.080.0885:00.019.0922:00.002.0082:01.076.094	0.2203	100.00	3 57611	0.1826	14282.30	24,8781
00.010.002-0085.01-070-094	0,2205	100,00	2 49977	0.1630	692.45	24,0701
00.046 1045 00.010 0022 00.020 149	0.1938	4.78	3.46677	0.1032	12666.60	25.5114
00-046-1045, 00-019-0932, 00-029-148	0,1224	20.52	3,34343	0,1020	2022.61	20,0239
00-046-1045; 00-019-0932; 00-029-148	0,0979	20,53	3,32/39	0,0816	2932,61	26,//11
00-019-093	0,1469	5,10	3,29439	0,1224	729,03	27,0444
00-019-0932; 01-076-094	0,1714	7,98	3,24565	0,1428	1139,47	27,4583
01-076-094	0,1958	2,71	3,20359	0,1632	386,50	27,8261
00-019-0932; 01-076-094	0,1714	3,36	2,98995	0,1428	480,06	29,8589
00-019-0932; 01-076-094	0,2448	1,40	2,90468	0,2040	200,63	30,7567
00-002-008	0,1958	1,91	2,86349	0,1632	272,23	31,2104
01-076-094	0,1958	1,69	2,79478	0,1632	240,71	31,9981
01-080-0885; 00-019-0932; 01-076-094	0,1469	4,78	2,56937	0,1224	682,90	34,8913
01-080-0885; 00-019-0932; 01-076-0948; 00-029-1489	0,1958	2,95	2,53327	0,1632	420,71	35,4048
01-080-0885: 00-019-0932: 01-076-094	0.1714	6.12	2,49676	0.1428	874.05	35.9401
00-046-1045: 00-002-0083: 01-076-094	0.1224	8.62	2 45821	0 1020	1231.64	36 5234
01-080-0885: 01-076-094	0 1958	18 44	2 38434	0.1632	2634.14	37 6968
01_080_088	0.3427	7.09	2 34213	0.2856	1012.69	38 4026
01-080-085-01-076-004	0,0427	1.09	2,54215	0.1622	682.07	20 2264
00.046 1045: 01.080 0885: 00.010 0022: 01.076 004	0,1938	4,70	2,29462	0.0016	082,07	20 4447
00-046-1045; 01-080-0885; 00-019-0932; 01-076-094	0.0979	0,89	2,28262	0,0816	984.05	39,4447
00-046-1045; 01-080-0885; 01-076-094	0,0979	4,27	2,23796	0,0816	610,04	40,2656
01-080-0885; 00-019-0932; 00-002-0083; 01-076-094	0,3917	0,90	2,19138	0,3264	128,20	41,1598
01-080-0885; 00-019-0932; 01-076-094	0,0979	2,60	2,16081	0,0816	371,85	41,7691
00-046-1045; 01-080-0885; 00-019-0932; 01-076-094	0,0979	7,75	2,12902	0,0816	1107,43	42,4226
01-080-0885; 00-019-0932; 00-002-0083; 01-076-094	0,1714	13,62	1.99815	0,1428	1945,48	45,3503
00-046-1045; 01-080-0885; 00-019-0932	0,1224	6,06	1,98084	0,1020	865,73	45,7690
01-080-0885; 00-002-008	0,7834	1,68	1.93544	0,6528	240,09	46,9060
01-080-0885; 00-019-0932	0,3917	1,49	1.84155	0,3264	213,42	49,4532
00-046-1045; 01-080-0885; 00-019-0932; 00-002-008	0,1224	16,19	1,81884	0,1020	2312,82	50,1130
00-046-1045; 01-080-0885; 00-019-0932	0,1958	2,59	1,80476	0,1632	369,77	50,5314
01-080-0885; 00-019-0932	0,1958	12,44	1,78918	0,1632	1777.22	51,0027
00-046-1045: 01-080-0885: 00-029-1489	0.1224	8.90	1.67272	0.1020	1271.24	54.8395
00-046-1045; 01-080-0885; 00-019-0932	0,3917	7,32	1,66033	0,3264	1045,86	55,2836
01-080-0885: 00-019-0932: 00-002-008	0.1958	3.40	1.64746	0.1632	485.00	55.7529
01_080_0885; 00_019_0932; 00_002_008	0 3427	4 70	1 62070	0.2856	671.33	56 7561
01.080.089	0.3427	1.00	1 58547	0.2856	283.00	58 1261
00.046 1045 01.080.088	0.1224	17.24	1.54220	0.2850	265.55	50 0260
01-080-088	0,1224	17,24	1,54250	0,1020	2401,02	(2.2459
01-080-088	0.1714	4,97	1,49030	0.1420	(42.25	64 0007
00-046-1045; 01-080-088:	0,1714	4,50	1,45344	0,1428	643.35	64,0087
01-080-0885: 00-002-008:	0.1958	6.41	1.43065	0.1632	915.90	65.1529
01-080-0885; 00-002-008;	0,5875	1,60	1,40699	0,4896	228,90	66,3888
00-046-104	0,1469	9,10	1,38287	0,1224	1299,48	67,7012
00-046-1045; 01-080-088	0,1224	9,96	1,37567	0,1020	1423,08	68,1038
00-046-1045: 01-080-0885: 00-002-008	0.0979	9.18	1.37254	0.0816	1310.90	68.2809
01-080-088	0,2938	2,95	1,35365	0,2448	421,28	69,3683
01-080-0885; 00-002-008	0,3427	6,78	1,34107	0,2856	967.93	70,1139
01-080-088	0,4406	7,02	1,30900	0,3672	1001,93	72,0960
00-046-1045: 01-080-088	0,1469	3.50	1,28872	0,1224	499.63	73,4138
00-046-1045: 01-080-088:	0.1469	4 83	1.25653	0.1224	689 25	75.6191
01 000 000	0.4896	2 11	1 24841	0.4080	301 57	76 1986
00.046.1045.01.000.000	0.1460	2,11	1 22014	0.100	404.25	77 6124
00-046-1045; 01-080-088;	0,1469	2,83	1,22916	0.1224	404,25	//.0124
00-046-1045; 01-080-088:	0,1224	6,58	1,20055	0,1020	940,34	/9.8254
01-080-088	0,2448	4,58	1,19242	0,2040	654,42	80,4805
00-046-1045; 01-080-088;	0,1224	3,98	1,18452	0,1020	567,88	81,1289
00-046-1045; 01-080-088	0,1469	5,31	1,18079	0,1224	758,05	81,4394
00-046-1045; 01-080-088	0,1469	3,47	1,15359	0,1224	495,50	83,7855
00-046-1045; 00-002-008	0,1224	5,11	1,08206	0,1020	730,10	90,7767
00-046-104	0,2938	1,93	1,04441	0,2448	275.87	95,0453
00-046-104	0,1469	2,18	1,03516	0,1224	311,26	96,1698
00-002-008	0 2938	1 71	1 02198	0 2448	244 26	97 8299
J0 002 000.						

1

Analisis DRX - LISTA DE PICOS- FRACCION TOTAL

Anexo 6.6.4.3 Análisis por difracción de rayos X (DRX) ARCILLA D

Anexo 6.6.4.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo D

Anexo 6.6.4.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo D

Anexo 6.6.4.6 Análisis granulométrico mediante difracción láser (ADL) de arcilla Tipo D

ANEXOS 6.6.4.7

Anexo 6.6.4.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D

Anexo 6.6.4.7 Análisis por microscopía electrónica de barrido (SEM) de arcilla Tipo D

\sim	-	\sim	~	٨
G	E	C	ر	٠A

	Campaña - ENSAYO Geo A																							
			Ari	dos						-	Activad	lores a	Icalinos				•		Mezclado		Cur	ado		R.C.
Código	Código de Mezcla	Arcilla T	ïpo A	Arena s	silícea	H2O+N relación	aOH en a arcilla	Agı	Ia	Activ	vador Alc	alino	Adit	ivo 2	% A.A respect masa arcil	A.A oala de lla	% A.A respect masa fin blog	A.A oala aldel ue	Mezcla	Cura	ido A	Cura	ido B	fc
	Ref.	La Bis	bal	Sibe	lco	Alca	alino	H2	0		NaOH		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	
Geo A-01	GEO01	750,0	100	750,0	100,0	39,0	292,5	243,8	32,5	5	48,8	20,0	29,3	3,9	78,1	10,4	78,1	5,2	300seg.	80	2	20	28	3,9
Geo A-02	GEO02	750,0	100	750,0	100,0	44,0	330,0	275,0	36,7	5	55,0	20,0	33,0	4,4	88,0	11,7	88,0	5,9	300seg.	80	2	20	28	3,3
Geo A-03	GEO03	750,0	100	750,0	100,0	39,0	292,5	208,9	27,9	10	83,6	40,0	29,3	3,9	112,9	15,0	112,9	7,5	300seg.	80	2	20	28	5,1
Geo A-04	GEO04	750,0	100	750,0	100,0	44,0	330,0	235,7	31,4	10	94,3	40,0	33,0	4,4	127,3	17,0	127,3	8,5	300seg.	80	2	20	28	3,8
Geo A-05	GEO05	750,0	100	750,0	100,0	39,0	292,5	243,8	32,5	5	48,8	20,0	58,5	7,8	107,3	14,3	107,3	7,2	300seg.	80	2	20	28	3,6
Geo A-06	GEO06	750,0	100	750,0	100,0	44,0	330,0	275,0	36,7	5	55,0	20,0	66,0	8,8	121,0	16,1	121,0	8,1	300seg.	80	2	20	28	2,9
Geo A-07	GEO07	750,0	100	750,0	100,0	39,0	292,5	208,9	27,9	10	83,6	40,0	58,5	7,8	142,1	18,9	142,1	9,5	300seg.	80	2	20	28	7,8
Geo A-08	GEO08	750,0	100	750,0	100,0	44,0	330,0	235,7	31,4	10	94,3	40,0	66,0	8,8	160,3	21,4	160,3	10,7	300seg.	80	2	20	28	6,2
Geo A-09	GEO09	750,0	100	750,0	100,0	39,0	292,5	243,8	32,5	5	48,8	20,0	29,3	3,9	78,1	10,4	78,1	5,2	300seg.	120	2	20	28	7,5
Geo A-10	GEO10	750,0	100	750,0	100,0	44,0	330,0	275,0	36,7	5	55,0	20,0	33,0	4,4	88,0	11,7	88,0	5,9	300seg.	120	2	20	28	7,4
Geo A-11	GEO11	750,0	100	750,0	100,0	39,0	292,5	208,9	27,9	10	83,6	40,0	29,3	3,9	112,9	15,0	112,9	7,5	300seg.	120	2	20	28	7,4
Geo A-12	GEO12	750,0	100	750,0	100,0	44,0	330,0	235,7	31,4	10	94,3	40,0	33,0	4,4	127,3	17,0	127,3	8,5	300seg.	120	2	20	28	6,5
Geo A-13	GEO13	750,0	100	750,0	100,0	39,0	292,5	243,8	32,5	5	48,8	20,0	58,5	7,8	107,3	14,3	107,3	7,2	300seg.	120	2	20	28	4,2
Geo A-14	GEO14	750,0	100	750,0	100,0	44,0	330,0	275,0	36,7	5	55,0	20,0	66,0	8,8	121,0	16,1	121,0	8,1	300seg.	120	2	20	28	2,9
Geo A-15	GEO15	750,0	100	750,0	100,0	39,0	292,5	208,9	27,9	10	83,6	40,0	58,5	7,8	142,1	18,9	142,1	9,5	300seg.	120	2	20	28	6,1
Geo A-16	GEO16	750,0	100	750,0	100,0	44,0	330,0	235,7	31,4	10	94,3	40,0	66,0	8,8	160,3	21,4	160,3	10,7	300seg.	120	2	20	28	4,6
Geo A-17	GEO17	750,0	100	750,0	100,0	39,0	292,5	243,8	32,5	5	48,8	20,0	29,3	3,9	78,1	10,4	78,1	5,2	300seg.	80	4	20	28	4,8
Geo A-18	GEO18	750,0	100	750,0	100,0	44,0	330,0	275,0	36,7	5	55,0	20,0	33,0	4,4	88,0	11,7	88,0	5,9	300seg.	80	4	20	28	3,8
Geo A-19	GEO19	750,0	100	750,0	100,0	39,0	292,5	208,9	27,9	10	83,6	40,0	29,3	3,9	112,9	15,0	112,9	7,5	300seg.	80	4	20	28	5,5
Geo A-20	GEO20	750,0	100	750,0	100,0	44,0	330,0	235,7	31,4	10	94,3	40,0	33,0	4,4	127,3	17,0	127,3	8,5	300seg.	80	4	20	28	4,5
Geo A-21	GEO21	750,0	100	750,0	100,0	39,0	292,5	243,8	32,5	5	48,8	20,0	58,5	7,8	107,3	14,3	107,3	7,2	300seg.	80	4	20	28	3,7
Geo A-22	GEO22	750,0	100	750,0	100,0	44,0	330,0	275,0	36,7	5	55,0	20,0	66,0	8,8	121,0	16,1	121,0	8,1	300seg.	80	4	20	28	3,6
Geo A-23	GEO23	750,0	100	750,0	100,0	39,0	292,5	208,9	27,9	10	83,6	40,0	58,5	7,8	142,1	18,9	142,1	9,5	300seg.	80	4	20	28	7,0
Geo A-24	GEO24	750,0	100	750,0	100,0	44,0	330,0	235,7	31,4	10	94,3	40,0	66,0	8,8	160,3	21,4	160,3	10,7	300seg.	80	4	20	28	6,8
Geo A-25	GEO25	750,0	100	750,0	100,0	39,0	292,5	243,8	32,5	5	48,8	20,0	29,3	3,9	78,1	10,4	78,1	5,2	300seg.	120	4	20	28	8,4
Geo A-26	GEO26	750,0	100	750,0	100,0	44,0	330,0	275,0	36,7	5	55,0	20,0	33,0	4,4	88,0	11,7	88,0	5,9	300seg.	120	4	20	28	10,4
Geo A-27	GEO27	750,0	100	750,0	100,0	39,0	292,5	208,9	27,9	10	83,6	40,0	29,3	3,9	112,9	15,0	112,9	7,5	300seg.	120	4	20	28	8,5
Geo A-28	GEO28	750,0	100	750,0	100,0	44,0	330,0	235,7	31,4	10	94,3	40,0	33,0	4,4	127,3	17,0	127,3	8,5	300seg.	120	4	20	28	5,9
Geo A-29	GEO29	750,0	100	750,0	100,0	39,0	292,5	243,8	32,5	5	48,8	20,0	58,5	7,8	107,3	14,3	107,3	7,2	300seg.	120	4	20	28	11,8
Geo A-30	GEO30	750,0	100	750,0	100,0	44,0	330,0	275,0	36,7	5	55,0	20,0	66,0	8,8	121,0	16,1	121,0	8,1	300seg.	120	4	20	28	6,4
Geo A-31	GEO31	750,0	100	750,0	100,0	39,0	292,5	208,9	27,9	10	83,6	40,0	58,5	7,8	142,1	18,9	142,1	9,5	300seg.	120	4	20	28	5,5
Geo A-32	GEO32	750,0	100	750,0	100,0	44,0	330,0	235,7	31,4	10	94,3	40,0	66,0	8,8	160,3	21,4	160,3	10,7	300seg.	120	4	20	28	8,2
			-	-			_							~										

	Total de materiales utilizados en campaña - ENSAYO Geo A												
	Arido	os	Activadores alcalinos										
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+NaOH en relación a arcilla M5	H2O+NaOH en relación a arcilla M10	Agua destilada	Activador Alcalino	Aditivo 2						
	Argilescolades	Sibelco	Alcalino	Alcalino	H2O	NaOH	Na ₂ SiO ₃						
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)						
GEO A	24000,0	24000,0	4980,0	4980,0	7707,1	2252,9	1494,0						

Observaciones - ENSAYO Geo A

Objetivo: analizar los factores que afectan a la resistencia a compresión, y de qué manera lo hacen. Características: Intervienen las siguientes variables: % NaOH (mínimo 39% y máximo 44%), molaridad (mínimo 5M y máximo 10M), % Na2SiO3 (mínimo 10% y máximo 20%), temperatura (mínimo 80 y máximo 120), y tiempo de exposición a la temperatura (mínimo 2 horas y máximo 2 horas). Constantes: arcilla-arena, mate new constantes: arcilla-arena, 20°C-28 días. La plasticidad de las mezclas varía según la cantidad de agua que contienen. Las mezclas son más fáciles de manejar con las dosificaciones que contienen

menor cantidad de activador alcalino, mientras que las muestras que tienen más contenido de activador alcalino son viscosas y se pegan a las manos.

GEO-B

	Campaña - ENSAYO Geo B (1parte)																							
			Ario	dos			Activadores alcalinos N									Mezclado		Cur	ado		R.C.			
Código	Código de Mezcla	Arcilla T	ipo A	Arena s	ilícea	H2O+N relación	aOH en a arcilla	Agu	a	Activ	vador Alca	alino	Adit	ivo 2	% A./ respect masa arci	A.A oala de lla	% A.A respecto masa fin bloqu	A.A bala aldel ue	Mezcla	Cura	ndo A	Cura	ado B	fc
	Ref.	La Bis	bal	Sibel	со	Alca	alino	H20	C		NaOH		Na ₂	SiO ₃	Tota	al	Tota	ıl	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	IVII G
GEO-B02	GEO- B02	750,0	100	750,0	100,0	35,8	268,2	223,5	29,8	5	44,7	20,0	0,0	0,0	268,2	35,8	44,7	2,9	300seg.	80	24	20	14	15,9
GEO-B05	GEO- B05	750,0	100	750,0	100,0	41,7	312,9	223,5	29,8	10	89,4	40,0	62,6	8,3	375,5	50,1	152,0	9,2	300seg.	80	24	20	14	17,3
GEO-B01	GEO- B01	750,0	100	750,0	100,0	41,7	312,9	223,5	29,8	10	89,4	40,0	0,0	0,0	312,9	41,7	89,4	5,6	300seg.	80	24	20	14	25,7
GEO-B06	GEO- B06	750,0	100	750,0	100,0	35,8	268,2	223,5	29,8	5	44,7	20,0	53,6	7,1	321,8	42,9	98,3	6,2	300seg.	80	24	20	14	20,2

	Total de materiales utilizados en campaña - ENSAYO Geo B (1 parte)											
	Arido	os	Activadores alcalinos									
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+NaOH en relación a arcilla M5	H2O+NaOH en relación a arcilla M10	Agua destilada	Activador Alcalino	Aditivo 2					
	Argilescolades	Sibelco	Alcalino	Alcalino	H2O	NaOH	Na ₂ SiO ₃					
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)					
GEO B	3000,0	3000,0	536,4	625,8	894,0	268,2	116,2					

Observaciones - E	NSAYO Geo E	3
--------------------------	-------------	---

Objetivo: El objetivo de esta campaña es analizar factores que afectan a la resistencia a compresión, y de qué manera. Características: Intervienen las siguientes variables: molaridad (mínimo 5M y máximo 10M), el porcentaje de activador alcalino (NaOH), el porcentaje de Na2SiO3 (mínimo 0% y máximo 20%), el resto de factores serán constantes: arcilla-arena, 20°C-14 días. Las mezclas son más fáciles de manejar con las dosificaciones que contienen menor cantidad de activador alcalino, las muestras con más activador alcalino son viscosas y se pegan a las manos.

								c	am	baña	a - EN	SAY	O Ge	o B (2	parte	e)								
			Ari	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.C.
Código R	Código de Mezcla	Arcilla T	ipo A	Arena s	ilícea	H2O+N relación	aOH en a arcilla	Agu	ia	Activ	ador Alc	alino	Adit	ivo 2	% A.A respect masa arcil	A.A o a la de la	% A.A respect masa fin bloq	A.A o a la nal del ue	Mezcla	Cura	ido A	Cura	ado B	fc
	Ref.	La Bis	bal	Sibel	со	Alca	alino	H20	C		кон		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	WI a
GEO-B04	GEO- B04	750,0	100	750,0	100,0	38,1	286,1	223,5	29,8	5	62,6	28,0	0,0	0,0	286,1	38,1	62,6	4,0	300seg.	80	24	20	14	15,1
GEO-B07	GEO- B07	750,0	100	750,0	100,0	46,5	348,7	223,5	29,8	10	125,2	56,0	69,7	9,3	418,4	55,8	194,9	11,5	300seg.	80	24	20	14	18,1
GEO-B03	GEO- B03	750,0	100	750,0	100,0	46,5	348,7	223,5	29,8	10	125,2	56,0	0,0	0,0	348,7	46,5	125,2	7,7	300seg.	80	24	20	14	29,3
GEO-B08	GEO- B08	750,0	100	750,0	100,0	38,1	286,1	223,5	29,8	5	62,6	28,0	57,2	7,6	343,3	45,8	119,8	7,4	300seg.	80	24	20	14	12,4

		Total de	materiales utilizados e	en campaña - ENSAYO G	Geo B (2 parte))	
	Arido	os		Activ	adores alcalir	ios	-
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+NaOH en relación a arcilla M5	H2O+NaOH en relación a arcilla M10	Agua destilada	Activador Alcalino	Aditivo 2
g-	Argilescolades	Sibelco	Alcalino	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO B	3000,0	3000,0	572,2	697,3	894,0	375,5	126,9

Observaciones - ENSAYO Geo B

Objetivo: El objetivo de esta campaña es analizar factores que afectan a la resistencia a compresión, y de qué manera. Características: Intervienen las siguientes variables: molaridad (mínimo 5M y máximo 10M), el porcentaje de activador alcalino (KOH), el porcentaje de Na2SiO3 (mínimo 0% y máximo 20%), el resto de factores serán constantes: arcilla-arena, 20°C-14 días. Las mezclas son más fáciles de manejar con las dosificaciones que contienen menor cantidad de activador alcalino, las muestras con más activador alcalino son viscosas y se pegan a las manos.

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. f c hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

GEO-C

							(Cam	pañ	a de e	ensa	iyos -	ENS	AYO G	ieo (C1							
		Ario	dos							Activad	dores a	Icalinos						Mezclado		Cur	ado		R.C.
Código	Código Arcilla Tipo A Arena sil				H2O+K relación	COH en a arcilla	Agı destil	ia ada	Activ	vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A o a la de la	% A.A respect masa fin bloq	A.A oala aldel ue	Mezcia	Cura	do A	Cura	ido B	fc
	La Bisbal Sibelco					alino	H20	o		кон		Na ₂	SiO ₃	Tota	al	Tota	ıl	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	IVII a
GEO C1 01	(Gramos) % (Gramos) a GEO C1 01 750,0 100 750,0 11			100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	0,0	0,0	125,2	16,7	125,2	7,7	300seg.	80	24	30	14	16,9
GEO C1 02	750,0	100	750,0	100,0	52,7	395,2	253,1	33,8	10	142,0	18,9	0,0	0,0	395,2	52,7	142,0	8,6	300seg.	80	24	30	14	12,7
GEO C1 03	750,0	100	750,0	100,0	58,9	442,0	283,1	37,8	10	158,9	21,2	0,0	0,0	158,9	21,2	158,9	9,6	300seg.	80	24	30	14	9,1
GEO C1 04	750,0	100	750,0	100,0	65,2	488,8	313,1	41,8	10	175,7	23,4	0,0	0,0	175,7	23,4	175,7	10,5	300seg.	80	24	30	14	7,2

		Total de ma	teriales utilizados en ca	ampaña - ENSAYO (Geo C1	
	Ario	dos		Activa	dores alcalinos	
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
_	Argilescolades	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO C1	3000,0	3000,0	1674,4	1072,6	601,8	0,0

Observaciones - ENSAYO Geo C1

Objetivo: comparar el comportamiento de probetas bajo acción de diferente porcentaje de activador alcalino (NaOH y KOH). Características: Variables: porcentaje de activador alcalino (NaOH + KOH). Constantes: arcilla-arena, KOH-M10, 80°C-24H y 14 días-30°C. Las mezclas 01-02 tienen plasticidad adecuada para su manejo. Las mezclas 03-04 son viscosas y difíciles de trabajar manualmente, se adhieren a las manos con facilidad.

							(Cam	pañ	a de e	ensa	iyos -	ENS	AYO G	ieo (C2							
		Ari	dos							Activad	dores a	Icalinos						Mezclado		Cur	ado		R.C.
Código	Código Arcilla Tipo A Arena silíce La Bisbal Sibelco			ilícea	H2O+H relación	(OH en a arcilla	Agu destil	ia ada	Activ	vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A oala de lla	% A.A respect masa fin bloq	A.A o a la al del ue	Mezcla	Cura	ado A	Cura	ado B	fc
	La Bis	bal	Sibel	со	Alca	alino	H20	C		кон		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MRo
	La Bisbal Sibelo					(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	°C	Días	ivir a
GEO C2 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	69,7	9,3	194,9	26,0	194,9	11,5	300seg.	80	24	30	14	14,9
GEO C2 02	750,0	100	750,0	100,0	52,7	395,2	253,1	33,8	10	142,0	18,9	79,0	10,5	474,2	63,2	221,0	12,8	300seg.	80	24	30	14	9,6
GEO C2 03	750,0	100	750,0	100,0	58,9	442,0	283,1	37,8	10	158,9	21,2	88,4	11,8	247,3	33,0	247,3	14,2	300seg.	80	24	30	14	6,8
GEO C2 04	750,0	100	750,0	100,0	65,2	488,8	313,1	41,8	10	175,7	23,4	97,8	13,0	273,5	36,5	273,5	15,4	300seg.	80	24	30	14	5,4

		Total de ma	teriales utilizados en c	ampaña - ENSAYO (Geo C2	
	Ario	dos		Activa	dores alcalinos	
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
	Argilescolades	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO C2	3000,0	3000,0	1674,4	1072,6	601,8	334,9

Observaciones - ENSAYO Geo C2

Objetivo: comparar el comportamiento de probetas bajo acción de diferente porcentaje de activador alcalino (NaOH y KOH) con adición constante de silicato de sodio.

Características: Variables: porcentaje de activador alcalino (NaOH + KOH). Constantes: arcilla-arena, KOH-M10, Na2SiO3, 80°C-24H y 14 días-30°C. Mezcla 01 plasticidad adecuada para trabajar con la mano. Mezcla 02 más viscosa, difícil de trabajar con la mano. Mezcla 03 más líquida, viscosa y difícil de trabajar. 04 más líquida, puede ser vertida con facilidad.

GEO-C

							C	Cam	pañ	a de e	ensa	iyos -	ENS	AYO G	ieo (C3							
		Ario	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.C.
Código	Código Arcilla Tipo A Arena silí La Bisbal Sibelco					(OH en a arcilla	Agu destil	ia ada	Acti	vador Alc	alino	Adit	ivo 2	% A.A respect masa arcil	A.A oala de la	% A.A respect masa fin bloq	A.A b a la al del ue	Mezcla	Cura	ido A	Cura	ido B	fc
	La Bis	bal	Sibel	со	Alca	alino	H ₂ C	2		кон		Na ₂	SiO ₃	Tota	ai	Tota	ıl	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	IVII CI
GEO C3 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	0,0	0,0	125,2	16,7	125,2	7,7	300seg.	80	0	30	14	3,6
GEO C3 02	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	0,0	0,0	125,2	16,7	125,2	7,7	300seg.	80	7	30	14	10,7
GEO C3 03	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	0,0	0,0	125,2	16,7	125,2	7,7	300seg.	80	14	30	14	18,8
GEO C3 04	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	0,0	0,0	125,2	16,7	125,2	7,7	300seg.	80	24	30	14	20,5

		Total de ma	teriales utilizados en c	ampaña - ENSAYO (Geo C3	
	Ario	dos		Activa	dores alcalinos	
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
	Argilescolades	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO C3	3000,0	3000,0	1393,4	892,6	500,8	0,0
		•	•			

Observaciones - ENSAYO Geo C3

Objetivo: comparar el comportamiento de probetas bajo acción de diferente tiempo de exposición a 80°C. Características: Variables: Tiempo de exposición de probetas a 80°C. Constantes: arcilla-arena, KOH-M10, 80°C y 14 días-30°C. La mezcla es plástica, algo viscosa, a pesar de que se pega a los dedos, es maleable.

							(Cam	pañ	a de e	ensa	iyos -	ENSA	AYO G	ieo	C4							
		Ario	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.C.
Código	Código Arcilla Tipo A Arena silícea H2O+KOH en de de									vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A o a la de la	% A.A respect masa fin bloq	A.A o a la al del ue	Mezcla	Cura	ido A	Cura	ado B	fc
	La Bis	bal	Sibel	со	Alca	alino	H ₂ O	0		кон		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	ivir a
GEO C4 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	69,7	9,3	194,9	26,0	194,9	11,5	300seg.	80	0	30	14	4,5
GEO C4 03	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	69,7	9,3	194,9	26,0	194,9	11,5	300seg.	80	7	30	14	9,4
GEO C4 04	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	69,7	9,3	194,9	26,0	194,9	11,5	300seg.	80	14	30	14	15,7
GEO C4	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	69,7	9,3	194,9	26,0	194,9	11,5	300seg.	80	24	30	14	16,5

		Total de ma	teriales utilizados en ca	ampaña - ENSAYO (Geo C4	
	Ario	dos		Activa	dores alcalinos	
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
Ū	Argilescolades	Sibelco	Alcalino	H2O	КОН	Na₂SiO₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO C4	3000,0	3000,0	1393,4	892,6	500,8	278,8

Observaciones - ENSAYO Geo C4

Objetivo: comparar el comportamiento de probetas bajo acción de diferente tiempo de exposición a 80°C con la adición de silicato de sodio. Características: Variables: Tiempo de exposición de probetas a 80°C. Constantes: arcilla-arena, KOH-M10, Na2SiO3, 80°C y 14 días-30°C. La mezcla es plástica, algo viscosa, a pesar de que se pega a los dedos, es maleable.

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. fc hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

GEO-C

							(Cam	pañ	a de e	ensa	yos -	ENSA	AYO G	ieo (C5							
		Ario	dos							Activa	lores a	Icalinos						Mezclado		Cur	ado		R.C.
Código	Arcilla T	ipo A	Arena s	ilícea	H2O+H relación	OH en a arcilla	Agu destil	ia ada	Acti	vador Alc	alino	Adit	ivo 2	% A.A respect masa arcil	A.A oala de la	% A.A respecto masa fin bloqu	A.A b a la al del ue	Mezcla	Cura	do A	Cura	ido B	fc
	La Bisbal Sibelco					lino	H20	o		кон		Na ₂	SiO ₃	Tota	al	Tota	ıl	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MBo
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	Seg.	°C	Horas	°C	Días	IVIF a
GEO C5 01	750,0	100	750,0	100,0	43,1	323,3	223,1	29,8	8	100,2	13,4	0,0	0,0	100,2	13,4	100,2	6,3	300seg.	80	24	30	14	14,7
GEO C5 02	750,0	100	750,0	100,0	43,1	323,3	207,1	27,6	10	116,2	15,5	0,0	0,0	116,2	15,5	116,2	7,2	300seg.	80	24	30	14	17,4
GEO C5 03	750,0	100	750,0	100,0	43,1	323,3	193,2	25,8	12	130,1	17,3	0,0	0,0	130,1	17,3	130,1	8,0	300seg.	80	24	30	14	18,0
GEO C5 04	750,0	100	750,0	100,0	43,1	323,3	181,1	24,1	14	142,2	19,0	0,0	0,0	142,2	19,0	142,2	8,7	300seg.	80	24	30	14	19,3

		Total de ma	ateriales utilizados en c	ampaña- ENSAYO (Geo C5	
	Ari	dos		Activa	dores alcalinos	
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
	Argilescolades	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO C5	3000,0	3000,0	1293,1	804,5	488,6	0,0

Observaciones - ENSAYO Geo C5

Objetivo: comparar el comportamiento de probetas bajo acción de diferente molaridad de KOH (concentración). Características: Variables: Molaridad de KOH. Constantes: arcilla-arena, porcentaje de activador alcalino (KOH+H2O), 80°C y 14 días-30°C. Las mezclas son poco plásticas, algo secas, algo difíciles de compactar manualmente.

	Campaña de ensayos - ENSAYO Geo C6																						
Aridos Activadores alcalinos														Mezclado	Curado				R.C.				
Código	Arcilla Tipo A		Arena silícea		H2O+KOH en relación a arcilla		Agı destil	Agua destilada		Activador Alcalino		Adit	ivo 2	% A.A.A respecto a la masa de arcilla		% A.A.A respecto a la masa final del bloque		Mezcla	Curado A		Curado B		fc
	La Bisbal		Sibelco		Alcalino		H ₂ O		кон		Na ₂	SiO ₃	Total		Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa	
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	wir a
GEO C6 01	750,0	100	750,0	100,0	43,1	323,3	223,1	29,8	8	100,2	13,4	64,7	8,6	164,9	22,0	164,9	9,9	300seg.	80	24	30	14	10,5
GEO C6 02	750,0	100	750,0	100,0	43,1	323,3	207,1	27,6	10	116,2	15,5	64,7	8,6	180,9	24,1	180,9	10,8	300seg.	80	24	30	14	11,8
GEO C6 03	750,0	100	750,0	100,0	43,1	323,3	193,2	25,8	12	130,1	17,3	64,7	8,6	194,8	26,0	194,8	11,5	300seg.	80	24	30	14	14,7
GEO C6 04	750,0	100	750,0	100,0	43,1	323,3	181,1	24,1	14	142,2	19,0	64,7	8,6	206,9	27,6	206,9	12,1	300seg.	80	24	30	14	15,7

Total de materiales utilizados en campaña - ENSAYO Geo C6												
Ario	dos	Activadores alcalinos										
Arcilla Tipo A micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2							
Argilescolades	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃							
(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)							
3000,0	3000,0	1293,1	804,5	488,6	258,8							
	Arcilla Tipo A micro 200µ Argilescolades (Gramos) 3000,0	Total de ma Aritida Tipo A micro 200µ Arena 250µ Argilescolades Sibelco (Gramos) (Gramos) 3000,0 3000,0	Total de materiales utilizados en c. Arcilla Tipo A micro 200µ Arena 250µ H2O+KOH en relación a arcilla Argilescolades Sibelco Alcalino (Gramos) (Gramos) (Gramos) 1293,1	Total de materiales utilizados en campaña - ENSAYO de compaña - ENSAYO de com	Total de materiales utilizados en campaña - ENSAYO Geo C6 Arido Arido Activador Alcalino Arcilla Tipo A micro 200µ Arena 250µ H20+KOH en relación a arcilla Agua destilada Activador Alcalino Argilescolades Sibelco Alcalino H20 KOH (Gramos) (Gramos) (Gramos) (Gramos) (Gramos) 3000,0 3000,0 1293,1 804,5 488,6							

Observaciones - ENSAYO Geo C6
Objetivo: comparar el comportamiento de probetas bajo acción de diferente molaridad de KOH (concentración), con adición de silicato de sodio.
Características: Variables: Molaridad de KOH. Constantes: arcilla-arena, porcentaje de activador alcalino (KOH+H2O), Na2SiO3, 80°C y 14 días-30°C.
Las mezclas son plásticas, adecuadas para el trabajo manual.

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. fc hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

GEO-D

	Campaña de ensayos - ENSAYO Geo D1																						
		Ario	dos			Activadores alcalinos												Mezclado	Curado			R.C.	
Código	Arcilla Tipo A		Arena silícea		H2O+KOH en relación a arcilla		Agua destilada		Acti	Activador Alcalino		Aditivo 2		% A.A.A respecto a la masa de arcilla		% A.A.A respecto a la masa final del bloque		Mezcla	Cura Ho	do A - rno	Cura Nor	do B - mal	fc
	La Bisbal		Sibelco		Alcalino		H ₂ O		кон		CaO		Tota	Total Total		al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa	
	(Gramos)	%	(Gramos)	%	%	(Gramos)	(Gramos)	%	м	(Gramos)	%	(Gramos)	%	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	wir a
GEO D1 01	750,0	100	750,0	100,0	48,7	365,6	238,5	31,8	10	127,1	16,9	45,0	6,0	172,1	22,9	172,1	10,3	300seg.	80	24	30	14	16,9
GEO D1 02	750,0	100	750,0	100,0	48,7	365,6	238,5	31,8	10	127,1	16,9	75,0	10,0	440,6	58,7	202,1	11,9	300seg.	80	24	30	14	21,6
GEO D1 03	750,0	100	750,0	100,0	48,7	365,6	238,5	31,8	10	127,1	16,9	105,0	14,0	232,1	30,9	232,1	13,4	300seg.	80	24	30	14	22,0
GEO D1 04	750,0	100	750,0	100,0	48,7	365,6	238,5	31,8	10	127,1	16,9	135,0	18,0	262,1	34,9	262,1	14,9	300seg.	80	24	30	14	22,7

Total de materiales utilizados en campaña - ENSAYO Geo D1													
Ario	dos	Activadores alcalinos											
Arcilla Tipo A micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2								
Argilescolades	Sibelco	Alcalino	H2O	кон	CaO								
(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)								
3000,0	3000,0	1462,5	954,0	508,5	360,0								
	Arcilla Tipo A micro 200µ Argilescolades (Gramos) 3000,0	Total de ma Arcilla Tipo A micro 200µ Arcillescolades Arena 250µ Argilescolades Sibelco (Gramos) (Gramos) 3000,0 3000,0	Total de materiales utilizados en ca Arcilla Tipo A micro 200µ Arena 250µ H2O+KOH en relación a arcilla Argilescolades Sibelco Alcalino (Gramos) (Gramos) (Gramos) 3000,0 3000,0 1462,5	Total de materiales utilizados en campaña - ENSAYO de compaña - ENSAYO de com	Total de materiales utilizados en campaña - ENSAYO Geo D1 Arcila Tipo A micro 200µ Arena 250µ H20+KOH en relación a arcilla Agua destilada Activador Alcalino Argilescolades Sibelco Alcalino H2O KOH (Gramos) (Gramos) (Gramos) (Gramos) (Gramos) 3000,0 3000,0 1462,5 954,0 508,5								

Observaciones - ENSAYO Geo D1
Objetivo: comparar el comportamiento de las probetas con la adición de CaO en diferentes proporciones.
Características: se utiliza la siguiente variable: CaO (6%,10%, 14%, 18%) y se mantienen constantes: arcilla-arena, porcentaje de activador alcalino, y
condiciones de curado.

Las mezclas son casi secas, al límite plástico. Son difíciles de compactar manualmente.

	Campaña de ensayos - ENSAYO Geo D2																						
		Ari	dos			Activadores alcalinos												Mezclado	Cur		rado		R.C.
Código	Arcilla Tipo A		Arena silícea		H2O+KOH en relación a arcilla		Agua destilada		Acti	Activador Alcalino		Adit	Aditivo 2 / resp m		% A.A.A respecto a la masa de arcilla		% A.A.A respecto a la masa final del bloque		Cura Ho	do A - rno	Cura Noi	do B - mal	fc
	La Bisbal		Sibelco		Alcalino		H2O		кон		Ca	10	Tota	al	Total		285 rpm	Temp.	Tiempo	Temp.	Tiempo	MBa	
	(Gramos)	%	(Gramos)	%	%	(Gramos)	(Gramos)	%	м	(Gramos)	%	(Gramos)	%	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	IVII a
GEO D2 01	750,0	100	750,0	100,0	48,7	365,6	238,5	31,8	10	127,1	16,9	45,0	6,0	172,1	22,9	172,1	10,3	300seg.	0	0	30	14	10,6
GEO D2 02	750,0	100	750,0	100,0	48,7	365,6	238,5	31,8	10	127,1	16,9	75,0	10,0	440,6	58,7	202,1	11,9	300seg.	0	0	30	14	11,6
GEO D2 03	750,0	100	750,0	100,0	48,7	365,6	238,5	31,8	10	127,1	16,9	105,0	14,0	232,1	30,9	232,1	13,4	300seg.	0	0	30	14	10,4
GEO D2 04	750,0	100	750,0	100,0	48,7	365,6	238,5	31,8	10	127,1	16,9	135,0	18,0	262,1	34,9	262,1	14,9	300seg.	0	0	30	14	10,2

Total de materiales utilizados en campaña - ENSAYO Geo D2													
Ario	los	Activadores alcalinos											
Arcilla Tipo A micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2								
Argilescolades	Sibelco	Alcalino	H2O	кон	CaO								
(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)								
3000,0	3000,0	1462,5	954,0	508,5	360,0								
	Arcilla Tipo A micro 200µ Argilescolades (Gramos) 3000,0	Total de ma Arcilla Tipo A micro 200µ Arcallas Tipo A micro 200µ Arena 250µ Argilescolades Sibelco (Gramos) (Gramos) 3000,0 3000,0	Total de materiales utilizados en ca Arcilla Tipo A micro 200µ Arena 250µ H2O+KOH en relación a arcilla Argilescolades Sibelco Alcalino (Gramos) (Gramos) (Gramos) 3000,0 3000,0 1462,5	Total de materiales utilizados en campaña - ENSAYO de maña - ENSAYO de Arcila Aridos Activa Arcilla Tipo A micro 200µ Arena 250µ H2O+KOH en relación a arcilla Agua destilada Argilescolades Sibelco Alcalino H2O (Gramos) (Gramos) (Gramos) (Gramos) 3000,0 3000,0 1462,5 954,0	Total de materiales utilizados en campaña - ENSAYO Geo D2 Arcila cinos Arcilla Tipo A micro 200µ Arena 250µ H2O+KOH en relación a arcilla Agua destilada Activador Alcalino Argilescolades Sibelco Alcalino H2O KOH (Gramos) (Gramos) (Gramos) (Gramos) (Gramos) 3000,0 3000,0 1462,5 954,0 508,5								

Observaciones - ENSAYO Geo D2

Objetivo: comparar el comportamiento de las probetas con la adición de CaO en diferentes proporciones, sin uso de horno. Características: se utiliza la siguiente variable: CaO (6%,10%, 14%, 18%) y se mantienen constantes: arcilla-arena, porcentaje de activador alcalino, y condiciones de curado.

Las mezclas son casi secas, al límite plástico. Son difíciles de compactar manualmente.

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. La "cal viva" (CaO) es utilizada como aditivo adicional, con el objetivo de captar agua y generar calor. *f* c hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).
GEO-E

							(Cam	pañ	a de e	ensa	iyos -	ENS	AYO G	ieo l	E1							
	Aridos Activadores alcalinos Mezciado Curado R. Image: Im															R.C.							
Código	Código Arcilla Tipo B Arena silicea H2O+KOH en relación a arcilla destilada Activador Alcalino Aditivo 2 Masa de arcilla Mezcla Curado A Curado B fi															fc							
	La Bis	bal	Sibe	lco	Alca	alino	H ₂ C	C		кон		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.C	Días	ivir a
GEO E1 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	0,0	0,0	348,3	46,4	125,2	7,7	300seg.	80	24	30	14	2,1
GEO E1 02	750,0	100	750,0	100,0	53,1	398,4	223,1	29,8	14	175,3	23,4	0,0	0,0	175,3	23,4	175,3	10,5	300seg.	80	24	30	14	2,7

		Total de ma	teriales utilizados en c	ampaña - ENSAYO (Geo E1	
	Ari	dos		Activa	dores alcalinos	
Código	Arcilla Tipo B	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
	La Bisbal	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO E1	1500,0	1500,0	746,8	446,3	300,5	0,0

Observaciones - ENSAYO Geo E1
Objetivo: comparar el comportamiento de arcilla tipo B bajo la acción de diferentes porcentajes de activador alcalino
Características: se utiliza la siguiente variable: Porcentaje de activador alcalino, KOH (10M y 14M) y se mantienen constantes: arcilla-arena, y condiciones de curado.
Las mezclas son poco plásticas.

							(Cam	pañ	a de e	ensa	yos -	ENSA	AYO G	ieo I	E2							
		Ari	dos	Į.						Activad	lores a	Icalinos						Mezclado		Cur	ado		R.C.
Código Arcilla Tipo B Arena silícea H2O+KOH en relación a arcilla destilada Activador Alcalino Aditivo 2 % A.A.A respecto a la masa final del masa final del bioque Del curado A Curado B f															fc								
	La Bis	bal	Sibe	lco	Alca	alino	H ₂ C	D		кон		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPo
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	.C	Días	ivir a
GEO E2 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	69,7	9,3	418,0	55,7	194,9	11,5	300seg.	80	24	30	14	2,0
GEO E2 02	750,0	100	750,0	100,0	53,1	398,4	223,1	29,8	14	175,3	23,4	79,7	10,6	255,0	34,0	255,0	14,5	300seg.	80	24	30	14	1,7

		Total de ma	teriales utilizados en c	ampaña- ENSAYO (Geo E2					
	Ari	dos		Activa	dores alcalinos					
Código	Arcilla Tipo B	Arena silícea	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2				
	La Bisbal	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃				
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)				
GEO E2	1500,0	1500,0	746,8	446,3	ao E2 Iores alcalinos Activador Alcalino KOH Na ₂ SiO ₃ (Gramos) (Gramos) 300,5 149,4					

Observaciones - ENSAYO Geo E2

Objetivo: comparar el comportamiento de arcilla tipo B bajo la acción de diferentes porcentajes de activador alcalino y la adición de silicato de sodio. Características: se utiliza la siguiente variable: Porcentaje de activador alcalino, KOH (10M y 14M) y se mantienen constantes: arcilla-arena, porcentaje de silicato de sodio y condiciones de curado. Las mezclas son poco plásticas.

302

GEO-E

							(Cam	pañ	a de e	ensa	iyos -	ENSA	AYO G	ieo I	Ξ3							
	Aridos Mezclado Curado R.C. Unable of the second seco															R.C.							
Código	Código Arcilla Tipo C Arena silicea H2O+KOH en H2O+KOH en cellada Activador Alcalino Aditivo 2 Salar respecto a la masa final destilada Curado A Curado B fC															fc							
	La Bis	sbal	Sibe	lco	Alca	alino	H ₂ C	2		кон		Na ₂	SiO ₃	Tota	al	Tota	al 🛛	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MDe
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	IVIPa
GEO E3 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	0,0	0,0	348,3	46,4	125,2	7,7	300seg.	80	24	30	14	1,9
GEO E3 02	750,0	100	750,0	100,0	53,1	398,4	223,1	29,8	14	175,3	23,4	0,0	0,0	175,3	23,4	175,3	10,5	300seg.	80	24	30	14	2,0

		Total de ma	teriales utilizados en c	ampaña - ENSAYO (Geo E3	
	Ario	dos		Activa	dores alcalinos	
Código	Arcilla Tipo C micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
	Argilescolades	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO E3	1500,0	1500,0	746,8	446,3	300,5	0,0

Observaciones - ENSAYO Geo E3

Objetivo: comparar el comportamiento de arcilla tipo C bajo la acción de diferentes porcentajes de activador alcalino Características: se utiliza la siguiente variable: Porcentaje de activador alcalino, KOH (10M y 14M) y se mantienen constantes: arcilla-arena, y condiciones de curado. Las mezclas son poco plásticas.

							(Cam	pañ	a de e	ensa	iyos -	ENSA	AYO G	ieo l	E4							
	Aridos Activadores alcalinos Mezclado Curado R.C. Image:															R.C.							
Código	iódigo Arcilla Tipo C Arena silicea H2O+KOH en relación a arcilla destilada Activador Alcalino Aditivo 2 [%] A.A.A. respecto a la masa de masa final del bloque Mezcia Curado A Curado B fc															fc							
	La Bis	bal	Sibe	lco	Alca	alino	H ₂ C	c		кон		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPo
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	°C	Días	ivir a
GEO E4 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	69,7	9,3	418,0	55,7	194,9	11,5	300seg.	80	24	30	14	2,2
GEO E4 02	750,0	100	750,0	100,0	53,1	398,4	223,1	29,8	14	175,3	23,4	79,7	10,6	255,0	34,0	255,0	14,5	300seg.	80	24	30	14	1,4

		Total de ma	teriales utilizados en c	ampaña - ENSAYO (Geo E4										
	Aridos Activadores alcalinos Arcilla Tipo C Arcel														
Código	Arcilla Tipo C micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2									
	Argilescolades	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃									
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)									
GEO E4	1500,0	1500,0	746,8	446,3	300,5	149,4									

Observaciones - ENSAYO Geo E4

Objetivo: comparar el comportamiento de arcilla tipo C bajo la acción de diferentes porcentajes de activador alcalino y la adición de silicato de sodio. Características: se utiliza la siguiente variable: Porcentaje de activador alcalino, KOH (10M y 14M) y se mantienen constantes: arcilla-arena, porcentaje de silicato de sodio y condiciones de curado. Las mezclas son poco plásticas.

La Arcilla Tipo B tiene un ratio SiO_2/Al_2O_3 igual a 3,48. La Arcilla Tipo C tiene un ratio SiO_2/Al_2O_3 igual a 3,19. La Arcilla Tipo D tiene un ratio SiO_2/Al_2O_3 igual a 1,82. % A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. *f* c hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

GEO-E

							(Cam	pañ	a de e	ensa	iyos -	ENSA	AYO G	ieo I	E5							
	Aridos Activadores alcalinos Mezclado Curado R.C															R.C.							
Código	Arcilla Tipo D Arena silicea H2O+KOH en relación a arcilla Agua destilada Activador Alcalino Aditivo 2 % A.A.A respecto a la masa final del bloque Mezcla Curado A Curado B fc															fc							
	La Bis	bal	Sibe	lco	Alca	alino	H ₂ C	C		кон		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	,C	Horas	°C	Días	wir a
GEO E5 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	0,0	0,0	348,3	46,4	125,2	7,7	300seg.	80	24	30	14	9,1
GEO E5 02	750,0	100	750,0	100,0	53,1	398,4	223,1	29,8	14	175,3	23,4	0,0	0,0	175,3	23,4	175,3	10,5	300seg.	80	24	30	14	5,5

		Total de ma	teriales utilizados en c	ampaña - ENSAYO (Geo E5	
	Ario	dos		Activa	dores alcalinos	
Código	Arcilla Tipo D micro 200µ	Arena 250µ	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
	Argilescolades	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO E5	1500,0	1500,0	746,8	446,3	300,5	0,0

Observaciones - ENSAYO Geo E5

Objetivo: comparar el comportamiento de arcilla tipo D bajo la acción de diferentes porcentajes de activador alcalino Características: se utiliza la siguiente variable: Porcentaje de activador alcalino, KOH (10M y 14M) y se mantienen constantes: arcilla-arena, y condiciones de curado. Las mezclas son plásticas y se pueden manejar manualmente.

							(Cam	pañ	a de e	ensa	iyos -	ENSA	AYO G	ieo I	E 6							
		Arie	dos							Activad	dores a	Icalinos						Mezclado		Cur	ado		R.C.
Código Arcilla Tipo D Arena silícea H2O+KOH en relación a arcilla Agua destilada Activador Alcalino Aditivo 2 % A.A. respecto a la masa final del bloque % A.A. % A.A.															fc								
	La Bis	bal	Sibe	co	Alca	alino	H ₂ C	C		кон		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPo
	(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	ivir a
GEO E6 01	750,0	100	750,0	100,0	46,4	348,3	223,1	29,8	10	125,2	16,7	69,7	9,3	418,0	55,7	194,9	11,5	300seg.	80	24	30	14	9,7
GEO E6 02	750,0	100	750,0	100,0	53,1	398,4	223,1	29,8	14	175,3	23,4	79,7	10,6	255,0	34,0	255,0	14,5	300seg.	80	24	30	14	5,9

		Total de ma	teriales utilizados en ca	ampaña - ENSAYO (Geo E6	
	Ario	dos		Activa	dores alcalinos	
Código	Arcilla Tipo D	Arena silícea	H2O+KOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
5	La Bisbal	Sibelco	Alcalino	H2O	кон	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO E6	1500,0	1500,0	746,8	446,3	300,5	149,4

Observaciones - ENSAYO Geo E6

Objetivo: comparar el comportamiento de arcilla tipo D bajo la acción de diferentes porcentajes de activador alcalino y la adición de silicato de sodio. Características: se utiliza la siguiente variable: Porcentaje de activador alcalino, KOH (10M y 14M) y se mantienen constantes: arcilla-arena, porcentaje de silicato de sodio y condiciones de curado. Las mezclas son plásticas y se pueden manejar manualmente.

La Arcilla Tipo B tiene un ratio SiO_2/Al_2O_3 igual a 3,48. La Arcilla Tipo C tiene un ratio SiO_2/Al_2O_3 igual a 3,19. La Arcilla Tipo D tiene un ratio SiO_2/Al_2O_3 igual a 1,82. % A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. *f* c hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

GEO-FP

							С	amp	baña	a de e	nsa	yos - I	ENSA	YO G	eo F	PA							
		Ario	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.C.
Código	Arcilla T	ïpo A	Arena s	silícea	H2O+N relación	aOH en a arcilla	Agı destil	ia ada	Acti	vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A o a la de lla	% A.A respecto masa fin bloq	A.A o a la ial del ue	Mezcla	Cura	ido A	Cura	ido B	fc
	La Bisbal Sibelco Alco					alino	H20	D		NaOH		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
	La Bisbal Sibelco Alcalino (Gramos) % (Gramos) % (Gramos) (Gramos)						(Gramos)	%	м	(Gramos)	%	(Gramos)	%	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	WI a
GEO FP 01	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	0,0	0,0	89,3	11,9	89,3	5,6	300seg.	80	24	30	14	15,67
GEO FP 02	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	0,0	0,0	312,4	41,7	89,3	5,6	300seg.	80	24	30	14	10
GEO FP 03	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	0,0	0,0	89,3	11,9	89,3	5,6	300seg.	80	24	30	14	
GEO FP 04	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	0,0	0,0	89,3	11,9	89,3	5,6	300seg.	80	24	30	14	15,76

			Materiales - ENSAY	O Geo FPA		
	Ario	dos		Activa	dores alcalinos	
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+NaOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
	Argilescolades	Sibelco	Alcalino	H2O	NaOH	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO FP	3000,0	3000,0	1249,6	892,6	357,0	0,0

Observaciones - ENSAYO Geo FPA

Objetivo: fabricación de 12 bloques para ensayos complementarios. Características: dosificación homogénea y factores constantes en todos las probetas

Al momento de mezclar los precursores, puede observarse que las mezclas GEO FP01 - FP04 están al límite de plasticidad tendiendo a secas. Al mezclar los precursores de GEO P05-P08 puede observarse que la mezcla es plástica, con una plasticidad adecuada para la manipulación con la mano.

							С	amp	baña	ı de e	nsa	yos - I	ENSA	YO Ge	eo F	РВ							
		Ari	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.C.
Código	Arcilla 1	Гіро А	Arena s	silícea	H2O+N relación	aOH en a arcilla	Agı destil	ia ada	Acti	vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A to a la i de lla	% A.A respect masa fin bloq	A.A o a la al del ue	Mezcla	Cura	ido A	Cura	ado B	fc
	La Bis	sbal	Sibe	lco	Alca	alino	H ₂ C	C		NaOH		Na ₂	SiO ₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MBa
	(Gramos)	%	(Gramos)	%	%	(Gramos)	(Gramos)	%	М	(Gramos)	%	(Gramos)	%	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	°C	Días	ivir a
GEO FP 05	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	80	24	30	14	-
GEO FP 06	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	80	24	30	14	11,86
GEO FP 07	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	80	24	30	14	-
GEO FP 08	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	80	24	30	14	9,32

			Materiales - ENSAY	O Geo FPB		
	Ari	dos		Activa	dores alcalinos	
Código	Arcilla Tipo A micro 200µ	Arena 250µ	H2O+NaOH en relación a arcilla	Agua destilada	Activador Alcalino	Aditivo 2
	Argilescolades	Sibelco	Alcalino	H2O	NaOH	Na ₂ SiO ₃
	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)	(Gramos)
GEO FP	3000,0	3000,0	1249,6	892,6	357,0	250,0

Observaciones - ENSAYO Geo FPB
Objetivo: fabricación de 12 bloques para ensayos complementarios.
Características: dosificación homogénea y factores constantes en todos las probetas.
Al momento de mezclar los precursores, puede observarse que las mezclas GEO FP05-FP08 son plásticas, adecuadas para la manipulación.

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. fc hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

Pruebas piloto

							Ca	mpañ	a de	e en	sayos	pre	elimin	ares -	ENSA	٩YO	P01							
			Ari	dos							Activad	lores a	lcalinos						Mezclado		Cur	ado		R.c.
Código	Código de Mezcla	Arcilla T	ipo A	Arena s	ilícea	H2O+N relación	aOH en a arcilla	Agu	a	Acti	vador Alc	alino	Adit	ivo 2	% A.A respect masa arcil	A.A oala de la	% A.A respecto masa fin bloqu	LA bala aldel ue	Mezcla	Cura	ido A	Cura	ido B	fc
	ref.	La Bis	bal	Sibel	со	Alci	alino	H20	c		NaOH		Na ₂	SiO3	Tota	al	Tota	ıl	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.C	Días	ivii a
P01-01	001A-1 P	1000,0	100	250,0	25,0	25,0	250,0	240,4	24,0	1	9,6	1,0	0,0	0,0	9,6	1,0	9,6	0,8	300seg.	80	24	23	21	1,0
P01-02	001A-2 P	1000,0	100	500,0	50,0	25,0	250,0	240,4	24,0	1	9,6	1,0	0,0	0,0	9,6	1,0	9,6	0,6	300seg.	80	24	23	21	0,9
P01-03	001A-3 P	1000,0	100	1000,0	100,0	25,0	250,0	240,4	24,0	1	9,6	1,0	0,0	0,0	9,6	1,0	9,6	0,5	300seg.	80	24	23	21	0,5
P01-04	001A-4 P	1000,0	100	1500,0	150,0	25,0	250,0	240,4	24,0	1	9,6	1,0	0,0	0,0	9,6	1,0	9,6	0,4	300seg.	80	24	23	21	0,7

							Ca	mpañ	a de	e en	sayos	s pre	limin	ares -	ENS	٩YO	P02							
			Ari	dos							Activad	lores a	lcalinos						Mezclado		Cur	ado		R.c.
Código	Código de Mezcla	Arcilla T	ïpo A	Arena s	ilícea	H2O+N relación	aOH en a arcilla	Agu	a	Acti	vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A oala de la	% A.A respecto masa fin bloqu	LA bala aldel ue	Mezcla	Cura	ido A	Cura	ido B	fc
	ref. La Bisbal Sibelco		со	Alca	alino	H20	C		NaOH		Na ₂	SiO3	Tota	al	Tota	ıl	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa		
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.C	Días	ivii a
P02-01	003A-1	1200,0	100	300,0	25,0	31,2	375,0	360,6	30,0	1	14,4	1,2	0,0	0,0	14,4	1,2	14,4	1,0	300seg.	80	24	23	21	1,7
P02-02	003A-2	1000,0	100	500,0	50,0	37,5	375,0	360,6	36,1	1	14,4	1,4	0,0	0,0	14,4	1,4	14,4	1,0	300seg.	80	24	23	21	1,4
P02-03	003A-3	700,0	100	700,0	100,0	53,6	375,0	360,6	51,5	1	14,4	2,1	0,0	0,0	14,4	2,1	14,4	1,0	300seg.	80	24	23	21	1,3
P02-04	003A-4	508,8	100	763,2	150,0	73,7	375,0	360,6	70,9	1	14,4	2,8	0,0	0,0	14,4	2,8	14,4	1,1	300seg.	80	24	23	21	1,1

							Ca	mpañ	a de	e en	sayos	s pre	limin	ares -	ENS	AYO	P03							
			Ari	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.c.
Código	Código de Mezcia ref. Arcilla Tipo A Arena silicea H2O+NaOH en relación a arcilla Agua Activador Alcalino Aditivo 2 %A. respec- mas; arcil La Bisbal Sibelco Alcalino H2O NaOH Na2SIO ₃ Tot													A.A oala de la	% A.A respecto masa fin bloqu	LA bala aldel ue	Mezcla	Cura	ndo A	Cura	ado B	fc		
	ref.	La Bisbal Sibelco			со	Alca	alino	H20	c		NaOH		Na ₂ s	SiO3	Tota	al	Tota	ıl	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MDa
		ref. La Bisbal Sibelco (Gramos) % (Gramos) arc			% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.c	Horas	.C	Días	ivir- a
P03-01	002A-1	866,7	100	433,3	50,0	37,5	325,0	232,1	26,8	10	92,9	10,7	0,0	0,0	92,9	10,7	92,9	6,7	300seg.	100	24	23	18	10,9
P03-02	002A-2 650,0 100 650,0 100,0			50,0	325,0	232,1	35,7	10	92,9	14,3	0,0	0,0	92,9	14,3	92,9	6,7	300seg.	100	24	23	18	15,9		
P03-03	002A-3	520,0	100	780,0	150,0	62,5	325,0	232,1	44,6	10	92,9	17,9	0,0	0,0	92,9	17,9	92,9	6,7	300seg.	100	24	23	18	7,2

							Ca	mpañ	ia de	e en	sayos	s pre	limin	ares -	ENS	AYO	P04							
			Ari	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.c.
Código	IO Código de Arcilla Tipo A Arena silicea H2O+NaOH en ref. La Bisbal Sibelco Alcalino H										vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A o a la de lla	% A.A respecte masa fin bloq	LA bala aldel ue	Mezcia	Cura	ido A	Cura	ido B	fc
	igo Mezcla ref. La Bisbal Sibelco			со	Alc	alino	H2	0		NaOH		Na ₂	SiO3	Tota	al	Tota	ıl	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa	
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.C	Días	ivir a
P04-01	1Y	750,0	100	750,0	100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	100	96	23	14	22,7
P04-02	2Y	750,0	100	750,0	100,0	57,0	427,5	305,4	40,7	10	122,1	16,3	85,5	11,4	207,6	27,7	207,6	12,2	300seg.	100	96	23	14	8,7
P04-03	3Y	750,0	100	750,0	100,0	66,7	500,0	357,1	47,6	10	142,9	19,0	100,0	13,3	242,9	32,4	242,9	13,9	300seg.	100	96	23	14	5,4

							Ca	mpañ	a de	e en	sayos	s pre	limin	ares -	ENS	٩YO	P05							
			Ario	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.c.
Código	Código de Mezcla	Arcilla T	ipo A	Arena s	ilícea	H2O+N relación	aOH en a arcilla	Agu	a	Acti	vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A oala de la	% A.A respecto masa fin bloq	A.A o a la al del ue	Mezcla	Cura	ido A	Cura	ado B	fc
	Mezcla ref. La Bisbal Sibelco (Gramos) % (Gramos)			co	Alca	alino	H20	C		NaOH		Na ₂	SiO3	Tota	al	Tota	al 🛛	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa	
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.c	Horas	.C	Días	ivii ei
P05-01	002A0	750,0	100	750,0	100,0	50,0	375,0	267,9	35,7	10	107,1	14,3	0,0	0,0	107,1	14,3	107,1	6,7	300seg.	-	-	30	14	2,4
P05-02	002A-3	750,0	100	750,0	100,0	50,0	375,0	267,9	35,7	10	107,1	14,3	0,0	0,0	107,1	14,3	107,1	6,7	300seg.	110	4	30	14	5,0
P05-03	002A-1	750,0	100	750,0	100,0	50,0	375,0	267,9	35,7	10	107,1	14,3	0,0	0,0	107,1	14,3	107,1	6,7	300seg.	110	7	30	14	5,0
P05-04	002A-2	750,0	100	750,0	100,0	50,0	375,0	267,9	35,7	10	107,1	14,3	0,0	0,0	107,1	14,3	107,1	6,7	300seg.	110	24	30	14	22,5

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. fc hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

Pruebas piloto

							Ca	mpañ	a de	e en	sayos	pre	limin	ares -	ENS	٩YO	P06							
			Ari	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.c.
Código	Código de Mezcla	Arcilla T	ïpo A	Arena s	ilícea	H2O+N relación	aOH en a arcilla	Agu	a	Acti	vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A oala de la	% A.A respect masa fin bloq	A.A o a la nal del ue	Mezcla	Cura	ido A	Cura	ado B	fc
	Image: Terf. La Bisbal Sibelco Alcalino H2O NaOH Na_2SiO3 Total Total 285 rpt Tempo Tiempo MPa (Gramps) % (Gramps) % (Gramps) % (Gramps) % (Gramps) % Sard 'C Horas O MPa																							
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.С	Horas	.C	Días	wir a
P06-01	001A-0	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	-	-	30	14	4,4
P06-02	001A-1	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	110	2	30	14	5,3
P06-03	001A-2	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	110	7	30	14	20,7
P06-04	001A-3	750,0	100	750,0	100,0	41,7	312,4	223,1	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	110	24	30	14	29,0

							Ca	mpar	ia de	e en	sayos	s pre	limin	ares -	ENS	AYO	P07							
			Ari	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.c.
Código	Código de Mezcla	Arcilla T	lipo A	Arena s	ilícea	H2O+N relación	aOH en a arcilla	Agu	a	Acti	vador Alc	alino	Adit	ivo 2	% A./ respect masa arci	A.A oala de la	% A.# respect masa fin bloq	A.A o a la al del ue	Mezcia	Cura	ido A	Cura	ado B	fc
	Image: Part of the state		со	Alc	alino	H2	0		NaOH		Na ₂	SiO3	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa		
	Artilia Tipo A Arcilia Tipo A Arena silizazio La Bisbai Sibieto (Gramos) % (Gramos) a A1-1 857,1 100 642,9 7 A1-2 750,0 100 750,0 1 A1-3 666,7 100 833,3 1 A1-4 600,0 100 900,0 1			% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.С	Horas	.C	Días	ivii a	
P07-01	A1-1	857,1	100	642,9	75,0	41,7	357,1	255,1	29,8	10	102,0	11,9	71,4	8,3	173,4	20,2	173,4	10,4	300seg.	100	4	30	14	25,6
P07-02	A1-2	Arcilla Ti> A Arena silic Image: Image		100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	100	4	30	14	22,7	
P07-03	A1-3	666,7	100	833,3	125,0	41,7	277,8	198,4	29,8	10	79,4	11,9	55,6	8,3	135,0	20,2	135,0	8,3	300seg.	100	4	30	14	22,4
P07-04	A1-4	600,0	100	900,0	150,0	41,7	250,0	178,6	29,8	10	71,4	11,9	50,0	8,3	121,4	20,2	121,4	7,5	300seg.	100	4	30	14	24,9

							Can	npaña	ı de	ens	ayos	prel	imina	res - I	ENSA	YO	P00X1							
			Arie	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.c.
Código	Código de Mezcla	Arcilla T	ipo A	Arena s	ilicea	H2O+N relación	aOH en a arcilla	Agu	ıa	Activ	vador Alc	alino	Adit	ivo 2	% A./ respect masa arci	A.A oala de lla	% A./ respect masa fin blog	∖.A oala aldel ue	Mezcia	Cura	ido A	Cura	ido B	fc
	ref.	La Bis	bal	Sibel	co	Alca	lino	H ₂ O	o		NaOH		Na ₂	SiO3	Tot	al	Tota	al 🛛	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcila	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	ъ	Horas	°C	Días					
P00X1-01	1	1000,0	100	500,0	50,0	36,0	360,0	360,0	36,0	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	300seg.	-	-	23	28	2,4
P00X1-02	2	1000,0	100	500,0	50,0	36,0	360,0	200,0	20,0	20	160,0	16,0	0,0	0,0	160,0	16,0	160,0	9,6	300seg.	80	6	23	28	5,0
P00X1-03	3	1000,0	100	500,0	50,0	46,0	460,0	300,0	30,0	13	160,0	16,0	0,0	0,0	160,0	16,0	160,0	9,6	300seg.	80	6	23	28	2,0
P00X1-04	4	1000,0	100	500,0	50,0	52,0	520,0	360,0	36,0	11	160,0	16,0	0,0	0,0	160,0	16,0	160,0	9,6	300seg.	80	6	23	28	1,4

							Carr	npaña	de	ens	ayos	preli	mina	res - E	INSA	(O F	00X2							
			Ario	dos							Activad	lores a	Icalinos			AYO PO0X2 Mezclado Curato AAA A cecto al a sa de mesofinal dollar respecto al a bloque Mezcla Curato A Total 7014 285 rpm Temp. Temp. Temp. Temp. Curato A 00 14,7 146,6 8,9 300seg. 100 24 23 ,6 19,5 146,6 8,9 300seg. 100 24 23 ,6 29,3 146,6 8,9 300seg. 100 24 23		ado		R.c.				
Código	Código de Mezcla	Arcilla T	ipo A	Arena s	ilícea	H2O+N relación	aOH en a arcilla	Agu	a	Acti	vador Alc	alino	Adit	ivo 2	% A.A respect masa arcil	A.A oala de la	% A.A respect masa fin bloq	A.A o a la al del ue	Mezcla	Cura	ido A	Cura	ido B	fc
	Kodigo Mezci Arcilia Tipo Areas Sibel (Gramos) 0X2-01 001X-1 1000,0 100 500,0 10X2-02 001X-3 500,0 100 750,0		со	Alca	alino	H ₂ C)		NaOH		Na ₂	SiO3	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa		
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.C	Días	IVIF 6
P00X2-01	Image: Product of the system Image: Product of the system <t< th=""><th>500,0</th><th>50,0</th><th>51,3</th><th>513,0</th><th>366,4</th><th>36,6</th><th>10</th><th>146,6</th><th>14,7</th><th>0,0</th><th>0,0</th><th>146,6</th><th>14,7</th><th>146,6</th><th>8,9</th><th>300seg.</th><th>100</th><th>24</th><th>23</th><th>14</th><th>7,2</th></t<>		500,0	50,0	51,3	513,0	366,4	36,6	10	146,6	14,7	0,0	0,0	146,6	14,7	146,6	8,9	300seg.	100	24	23	14	7,2	
P00X2-02	Código Mezcia ref. Arcila Tipo A (Gramos) Arena Sib (Gramos) 0 01X-1 1000,0 100 500,0 0 001X-2 750,0 100 750,0		750,0	100,0	68,4	513,0	366,4	48,9	10	146,6	19,5	0,0	0,0	146,6	19,5	146,6	8,9	300seg.	100	24	23	14	8,4	
P00X2-03	001X-3	500,0	100	1000,0	200,0	102,6	513,0	366,4	73,3	10	146,6	29,3	0,0	0,0	146,6	29,3	146,6	8,9	300seg.	100	24	23	14	2,1

		С	am	paña	de e	nsay	os p	relim	inaı	es	- P00)	(3 -	Prueb	a de a	aditiv	os (ar	cilla térmio	am	ent	e acti	vada)			
				Arid	los			Agu	a				Estabiliz	zantes			Mezclado				Curado			Resist.
Código	Código de Mezcla	Arcilla T	ïpo A	Arena s	ilícea	Arcil activa 750°C	la da a x4h	H₂C	þ		Aditivo 1	I	Aditi	vo 2	Con re a la ma del blo	specto sa final que (%)	Mezcla		с	urado A		Cura	ido C	fc
	ref.	La Bis	bal	Sibel	со	La Bis	bal	Destil	ada		NaOH		Na ₂ S	SiO ₃	То	tal	285 rpm	Horno	Molda	Temp.	Tiempo total	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	Seg.	Homo	morde	.с	Horas	.с	Días	Promedio
P00X3-01	1Z	0,0	0	750,0	100,0	750,0	100,0	305,3	40,7	10	122,1	16,3	85,5	11,4	957,6	127,7	300seg.	Si	no	100	24	23	11	24,8
P00X3-02	2Z	375,0	50	375,0	100,0	750,0	100,0	305,3	27,1	10	122,1	10,9	85,5	11,4	957,6	127,7	300seg.	Si	no	100	24	23	11	8,1
P00X3-03	зz	500,0	67	250,0	33,3	750,0	100,0	305,3	24,4	10	122,1	9,8	85,5	11,4	957,6	127,7	300seg.	Si	no	100	24	23	11	7,6

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. f c hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

Pruebas piloto

	Campaña de ensayos preliminares - P00X4 - Prueba de aditivos (arcilla térmicamente activada) Código de Mezcla ref. Aridos Agua Estabilizantes Mezclado Curado Curado Cur																							
				Arid	los			Agu	ıa				Estabili	zantes			Mezclado				Curado			Resist.
Código	Código de Mezcla	Arcilla T	їро А	Arena s	silícea	Arcil activad 750°C	la daa x4h	H ₂ O	D		Aditivo '	1	Aditi	vo 2	Con re a la ma del blo	specto sa final que (%)	Mezcia		с	urado A		Cura	ado C	fc
	Campaña de Código de Meccia ref. Arcila Tipo A Arcila Sibelco (Gramos) Arena silicea Meccia (Gramos) 100X4-01 IGP 0.0 0 1000.0 200, 200, 200, 200, 200, 200, 200, 200,						bal	Destil	ada		NaOH		Na ₂	SiO3	То	tal	285 rpm	Hor	Mol	Temp.	Tiempo total	Temp.	Tiempo	MPa
	Código de Meccia ref. Arcilia Tipo A activ La Bisbal Arena silice Sibelco Aren activ 7550 ℃ (Gramos) % (Gramos) % (Gramos) arela arela (Gramos) 0X4-01 16P 0,0 0 1000,0 200,0 500,0						% arcilla	(Gramos)	% arcilla	м	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	Seg.	no	de	.c	Horas	.C	Días	Promedio
P00X4-01	Código Maccia ref. Arcilia Tipo A Arena silices A acti 750 La Bisbal Sibelco La grams 500 4-01 IGP 0,0 0 1000,0 200,0 500						100,0	305,4	61,1	10	122,1	24,4	85,5	17,1	707,6	70,8	300seg.	Si	no	100	4	23	11	-
P00X4-02	2GP	0,0	0	1125,0	300,0	375,0	100,0	305,4	81,4	10	122,1	32,6	85,5	22,8	582,6	51,8	300seg.	Si	no	100	4	23	11	-
P00X4-03	3GP	0,0	0	1300,0	650,0	200,0	100,0	305,4	152,7	10	122,1	61,1	85,5	42,8	407,6	31,4	300seg.	Si	no	100	4	23	11	-

_

							Carr	npaña	de	ens	ayos	prel	imina	res - E	ENSA	YOF	P00X5							
			Aridos Aridos Aricila Arena 3mm H2O+NaOH en relación a arcilla Agua Activador Alcalino Aditivo 2 respecto a la masa díra bloque bloque																Mezclado		Cur	ado		R.C.
Código	Código de Mezcla	Arcill	a	Arena 3	3mm	H2O+N relación	aOH en a arcilla	Agu	ia	Activ	ador Alc	alino	Aditi	vo 2	% A.A respect masa arcil	A.A oala de la	% A.A respecto masa fin bloqu	.A bala aldel ue	Mezcla	Cura	ido A	Cura	do B	fc
	ref.	La Bis	bal	Sibel	co	Alca	lino	H ₂ C	>		NaOH		Na ₂ s	SiO ₃	Tota	al	Tota	ı	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	(Gramos)	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	°C	Horas	,C	Días	ivir-a		
P00X5-01	000A-0	750,0	100	750,0	100,0	50,0	375,0	375,0	50,0	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	300seg.	-	-	30	14	1,4
P00X5-02	000A-1	750,0	100	750,0	100,0	50,0	375,0	375,0	50,0	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	300seg.	100	4	30	14	1,1
P00X5-03	000A-2	750,0	100	750,0	100,0	50,0	375,0	375,0	50,0	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	300seg.	100	24	30	14	1,1
P00X5-04	000A-3	750,0	100	750,0	100,0	50,0	375,0	375,0	50,0	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	300seg.	100	24	30	14	1,1
P00X5-05	000A-4	750,0	100	750,0	100,0	36,7	275,0	275,0	36,7	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	300seg.	100	24	30	14	1,6

						Car	npaña	a de e	nsa	yos	s preli	imir	nares	- EN	ISAYO	D P00	X6 -	Prueb	a d	e adit	ivos	5					
			Ari	dos									Activador	es alc	alinos							Mezclado		Cur	ado		R.C.
Código	Código de Mezcla	Arcilla 1 A	Гіро	Arena s	ilícea	H2O+ rela a	NaOH en ación a rcilla	Agı	ia	Acti	vador Alc	alino	Aditiv	o 2		Aditivo 3		% A.A respect masa arcil	A a la de la	% A.A respecto masa fi del blo	.A o a la inal que	Mezcia	Cur	ado A	Cur	ado B	fc
	ref.	La Bisl	bal	Sibel	со	Al	calino	H ₂	D		NaOH		Na₂Si	O 3	C	iferentes		Tota	ıl	Tota	ı	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcila	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcill	(Gramos)	% arcill	(Gramos)	%	Tipo	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.c	Días	in a
P00X6-01	001B-0	750,0	100	750,0	100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	0,0	0,0	0,0	151,8	20,2	151,8	9,2	300seg.	80	48	30	21	35,2
P00X6-02	001B01	750,0	100	750,0	100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	12,0	1,6	Sikame nt FF.	151,8	20,2	163,8	9,8	300seg.	80	48	30	21	32,6
P00X6-03	001B02	750,0	100	750,0	100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	12,8	1,7	Sikame nt 165 ES	151,8	20,2	164,6	9,9	300seg.	80	48	30	21	32,3
P00X6-04	001B03	750,0	100	750,0	100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	7,5	1,0	ViscoCr ete 125	151,8	20,2	159,3	9,6	300seg.	80	48	30	21	23,6

	Campaña de ensayos preliminares - ENSAYO PO0X8 Código de Mezcia ref. Aridos Aridos Activadore alcalinos Mez % A.A.A respecto a la masa de arcilia Mez Activador Alcalino La Bisbal Sibelco Alcalino H2O+NaOH en relación a arcilia Agua Activador Alcalino Aditivo 2 respecto a la masa de arcilia respecto a la masa final do bleque Mez bleque La Bisbal Sibelco Alcalino H2O NaOH Na ₂ SlO ₃ Total Total Total 28 (Gramos) % (Gramos) % arcilia (Gramos) gracilia M (Gramos) % d(Gramos) % d(Gramos)<																							
	Código de mescayos preliminares - ENSAYO PO0X8 Código de mesca Aridos Aridos Activadores alcalinos Mescado Curado R. Código de mesca Arcilla Tipo A Arena silicea diametro 3mm H20+NaOH en arcilla Agua Activador Alcalino Aditivo 2 respecto a la mass final del most final d															R.c.								
Código	Código de Mezcla	Arcilla T	ïpo A	Arena s diámetro	ilícea 3mm	H2O+N relación	aOH en a arcilla	Agu	ia	Acti	vador Alc	alino	Adit	ivo 2	% A./ respect masa arcil	A.A oala de la	% A.A respect masa fin blog	A.A o a la nal del ue	Mezcia	Cura	ido A	Cura	ido B	fc
	ref.	La Bis	bal	Sibel	со	Alca	alino	H2	D		NaOH		Na ₂	SiO3	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.C	Días	ini u
P00X8-01	A3-1	857,1	100	642,9	75,0	41,7	357,1	255,1	29,8	10	102,0	11,9	71,4	8,3	173,4	20,2	173,4	10,4	300seg.	100	4	30	14	19,2
P00X8-02	A3-2	750,0	100	750,0	100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	100	4	30	14	20,2
P00X8-03	A3-3	666,7	100	833,3	125,0	41,7	277,8	198,4	29,8	10	79,4	11,9	55,6	8,3	135,0	20,2	135,0	8,3	300seg.	100	4	30	14	21,7
P00X8-04	A3-4	600,0	100	900,0	150,0	41,7	250,0	178,6	29,8	10	71,4	11,9	50,0	8,3	121,4	20,2	121,4	7,5	300seg.	100	4	30	14	19,3

							Carr	npaña	de	ens	ayos	preli	imina	res - E	INSA	(O F	200X9							
	Aridos Activadores alcalinos Mezclado Código de de de de Arcilla Tipo A arcilla Tipo A Area silicea diámetro 3mm.Femp relación a arcilla Agua Activador Alcalino Aditivo 2 % A.A.A respecto a la masa final france de masa final france de masa final france de final Mezcla Mezcla Curado A															Cur	ado		R.c.					
Código	ligo de la construir de la con															A.A o a la al del ue	Mezcia	Cura	ido A	Cura	ado B	fc		
	ref.	La Bis	bal	Sibel	co	Alc	alino	H2	0		NaOH		Na ₂	SiO₃	Tota	al	Tota	al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.C	Días	ivii a
P00X9-01	A4-1	857,1	100	642,9	75,0	41,7	357,1	255,1	29,8	10	102,0	11,9	71,4	8,3	173,4	20,2	173,4	10,4	300seg.	100	4	30	14	7,0
P00X9-02	A4-2	750,0	100	750,0	100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	100	4	30	14	5,2
P00X9-03	A4-1	666,7	100	833,3	125,0	41,7	277,8	198,4	29,8	10	79,4	11,9	55,6	8,3	135,0	20,2	135,0	8,3	300seg.	100	4	30	14	5,5
P00X9-04	A4-2	600,0	100	900,0	150,0	41,7	250,0	178,6	29,8	10	71,4	11,9	50,0	8,3	121,4	20,2	121,4	7,5	300seg.	100	4	30	14	6,6

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. fc hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

Pruebas piloto

							Cam	paña	de	ens	ayos į	oreli	mina	res - E	NSA	(O F	900X9							
			Ari	dos							Activad	lores a	Icalinos						Mezclado		Cur	ado		R.c.
Código	digo de de la cella Tipo A Arena silicea diámetro 3mm-6mm H20+NaOH en relación a arcilla Agua Activador Alcalino Aditivo 2 respecto a la masa final del bloque															Mezcla	Cura	ido A	Cura	ido B	fc			
	Godigo Mezcla ref. Arcilla Tipo A Arriva Siniba diametro 3mm-6mm H2ONAOH en relación a arcilla Agua Activador Alcalino Aditivo 2 respecto a la masa final di bloque La Bisbal Sibelco Alcalino H2O NaOH Na ₂ SiO ₃ Total Total															al	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa		
		(Gramos)	%	(Gramos)	% arcilla	% arcilla	(Gramos)	(Gramos)	% arcilla	М	(Gramos)	% arcilla	(Gramos)	% arcilla	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.С	Días	IVII G
P00X9-01	igo de Merci. (Gramos) Normality of % Constrained Sime-form relacion a arci Alcalino 9-01 A4-1 857.1 100 642.9 75.0 41.7 357.								29,8	10	102,0	11,9	71,4	8,3	173,4	20,2	173,4	10,4	300seg.	100	4	30	14	7,0
P00X9-02	A4-2	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	151,8	20,2	151,8	9,2	300seg.	100	4	30	14	5,2					
P00X9-03	A4-1	666,7	100	833,3	125,0	41,7	277,8	198,4	29,8	10	79,4	11,9	55,6	8,3	135,0	20,2	135,0	8,3	300seg.	100	4	30	14	5,5
P00X9-04	A4-2	600,0	100	900,0	150,0	41,7	250,0	178,6	29,8	10	71,4	11,9	50,0	8,3	121,4	20,2	121,4	7,5	300seg.	100	4	30	14	6,6

						Can	npaña	de ei	nsay	/os	preli	min	ares -	EN	SAYO	P00)	(10 -	Pruel	oas	aleato	oria	s					
			Ari	dos									Activador	es alc	alinos							Mezclado		Cur	ado		R.C.
Código	Código de Mezcla	Arcilla 1 A	Tipo	Arena s	ilícea	H2O+ rela ai	NaOH en Ición a rcilla	Agu	ia	Acti	vador Alc	alino	Aditiv	o 2		Aditivo 3		% A.A respecte masa arcil	.A bala de a	% A.A respecto masa fi del blo	.A ala nal que	Mezcia	Cur	ado A	Cura	ado B	fc
	Camp igo Codigo Mezcia ref. Arilla Tipo (Gramos) Arena silicea H20+Na relaci arelaci arelaci arelaci 0-01 00X-2 750.0 100 750.0 100,0 24.0 1 0-02 00X-6 750.0 100 750.0 100,0 41.0 3 0-03 00X-7 750.0 100 750.0 100,0 40,0 3 0-04 00X-8 750.0 100 750.0 100,0 40,0 3 0-06 00X-9 750.0 100 750.0 100,0 40,0 3 0-04 00X-8 750.0 100 750.0 100,0 40,0 3 0-06 00X-10 750.0 100 750.0 100,0 40,0 3							H2	D		NaOH		Na₂Si	O 3		Varios		Tota	ı	Tota	I I	285 rpm	Temp.	Tiempo	Temp.	Tiempo	MPa
		(Gramos)	%	(Gramos)	% arcill	% arcilla	(Gramos)	(Gramos)	% arcilla	м	(Gramos)	% arcill	(Gramos)	% arcill	(Gramos)	%	Tipo	(Gramos)	%	(Gramos)	%	Seg.	.C	Horas	.C	Días	ivii u
P00X10-01	00X-2	750,0	100	750,0	100,0	24,0	180,0	128,6	17,1	10	51,4	6,9	40,0	5,3	180,0	24,0	Agua de mar	91,4	12,2	271,4	15,3	300seg.	110	24	30	14	10,0
P00X10-02	00X-6	750,0	100	750,0	100,0	41,7	312,5	223,2	29,8	10	89,3	11,9	62,5	8,3	75,0	10,0	Cal viva	151,8	20,2	226,8	13,1	300seg.	110	-	30	14	29,6
P00X10-03	00X-7	750,0	100	900,0	120,0	46,9	351,5	251,0	33,5	10	100,4	13,4	70,3	9,4	10,0	1,3	Hexam etafosf ato	170,7	22,8	180,7	9,9	300seg.	110	72	30	14	21,4
P00X10-04	00X-8	750,0	100	750,0	100,0	40,0	300,0	214,3	28,6	10	85,7	11,4	60,0	8,0	10,0	1,3	Hexam etafosf ato	145,7	19,4	155,7	9,4	300seg.	110	72	30	14	25,4
P00X10-05	00X-9	750,0	100	750,0	100,0	40,0	300,0	214,3	28,6	10	85,7	11,4	60,0	8,0	10,0	1,3	Hexam etafosf ato	145,7	19,4	155,7	9,4	300seg.	110	72	30	14	25,0
P00X10-06	00X-10	750,0	100	750,0	100,0	50,0	375,0	267,9	35,7	10	107,1	14,3	75,0	10,0	75,0	10,0	Cal F plus	182,1	24,3	257,1	14,6	300seg.	110	-	30	14	31,2
P00X10-07	00X-11	750,0	100	750,0	100,0	50,0	375,0	267,9	35,7	10	107,1	14,3	75,0	10,0	75,0	10,0	Cal viva	182,1	24,3	257,1	14,6	300seg.	110	-	30	14	26,1

La Arcilla Tipo A tiene un ratio SiO_2/Al_2O_3 igual a 2,62. %A.A.A (Activador Alcalino + Aditivo 2) es la cantidad total de aditivos. *f* c hace referencia a la resistencia a compresión (R.c) obtenida con la mezcla (más detalles en el apartado resultados).

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-A

					ļ	Resist	encia I	/lecáni	ca - Ca	ampaña	a - EN	SAYO (Geo A						
	Dia de rotura		Rotura Fle	exión (fcf)		F	Rotura Com	presión <i>f A</i>	4	1	Rotura Con	npresión f	В	Din	nensiones ((Ac)	fA / Ac	fB / Ac	f¢
Código	lotara	(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	f A	f B	Promedio fAyfB
Geo A-01	15/11/17	617,82	657,04	843,37	1,7	6541,00	4844,46	6403,71	5929,72	6384,10	5354,40	5883,96	5874,15	38,00	40,00	1520,00	3,90	3,86	3,9
Geo A-02	15/11/17	676,66	706,08	686,46	1,7	5903,57	5481,89	4314,90	5233,46	4844,46	4952,33	4511,04	4769,28	38,00	40,00	1520,00	3,44	3,14	3,3
Geo A-03	15/11/17	588,40	539,36	558,98	1,4	7256,88	7580,50	8423,87	7753,75	8031,61	7737,41	7845,28	7871,43	38,00	40,00	1520,00	5,10	5,18	5,1
Geo A-04	15/11/17	696,27	666,85	549,17	1,6	5472,08	6178,16	5874,15	5841,46	5442,66	6138,93	5158,27	5579,96	38,00	40,00	1520,00	3,84	3,67	3,8
Geo A-05	15/11/17	657,04	657,04	666,85	1,6	6119,32	4991,56	4942,53	5351,13	5687,83	5462,28	5609,38	5586,49	38,00	40,00	1520,00	3,52	3,68	3,6
Geo A-06	15/11/17	490,33	441,30	519,75	1,2	4766,01	4334,52	4118,77	4406,43	4099,16	4540,46	4864,07	4501,23	38,00	40,00	1520,00	2,90	2,96	2,9
Geo A-07	21/11/17	1108,15	990,47	951,24	2,5	10973,59	12356,32	11758,11	11696,00	12199,41	11591,40	11944,44	11911,75	38,00	40,00	1520,00	7,69	7,84	7,8
Geo A-08	21/11/17	1206,21	843,37	1068,92	2,6	7335,34	11238,36	9757,57	9443,76	7600,12	10973,59	9806,60	9460,10	38,00	40,00	1520,00	6,21	6,22	6,2
Geo A-09	21/11/17	1323,89	392,26	1647,51	2,8	11620,82	11611,01	10551,90	11261,25	11542,37	13484,08	9277,04	11434,50	38,00	40,00	1520,00	7,41	7,52	7,5
Geo A-10	21/11/17	1500,41	1608,28	1412,15	3,7	10345,96	11326,62	11964,05	11212,21	11287,40	11650,24	11365,85	11434,50	38,00	40,00	1520,00	7,38	7,52	7,4
Geo A-11	21/11/17	931,63	1078,73	862,98	2,4	10748,03	10914,75	13739,05	11800,61	10149,83	10120,41	11581,59	10617,28	38,00	40,00	1520,00	7,76	6,99	7,4
Geo A-12	21/11/17	1068,92	951,24	941,43	2,4	7776,63	9198,59	10708,81	9228,01	10571,51	10551,90	10179,25	10434,22	38,00	40,00	1520,00	6,07	6,86	6,5
Geo A-13	22/12/01	1108,15	951,24	931,63	2,5	7403,98	5491,70	6325,26	6406,98	7384,37	5207,30	6668,49	6420,05	38,00	40,00	1520,00	4,22	4,22	4,2
Geo A-14	22/12/01	784,53	735,50	764,91	1,9	4618,91	4040,32	4922,91	4527,38	4344,32	4020,71	4658,14	4341,05	38,00	40,00	1520,00	2,98	2,86	2,9
Geo A-15	22/12/01	931,63	951,24	1010,08	2,4	9022,07	7825,67	11483,53	9443,76	9757,57	8835,75	9041,69	9211,67	38,00	40,00	1520,00	6,21	6,06	6,1
Geo A-16	22/12/01	657,04	588,40	549,17	1,5	6168,35	7835,47	6795,97	6933,27	7031,33	6864,62	7001,91	6965,95	38,00	40,00	1520,00	4,56	4,58	4,6
Geo A-17	15/11/17	951,24	1049,31	892,40	2,4	7384,37	7737,41	6845,01	7322,26	7364,76	7796,25	6658,68	7273,23	38,00	40,00	1520,00	4,82	4,79	4,8
Geo A-18	15/11/17	715,88	813,95	637,43	1,8	5374,02	6374,29	5148,47	5632,26	5560,34	6442,94	5972,22	5991,83	38,00	40,00	1520,00	3,71	3,94	3,8
Geo A-19	15/11/17	804,14	872,79	823,75	2,1	7580,50	8904,39	8404,26	8296,38	8443,48	9178,98	7845,28	8489,25	38,00	40,00	1520,00	5,46	5,59	5,5
Geo A-20	15/11/17	804,14	853,17	735,50	2,0	7806,05	7119,59	5883,96	6936,54	7305,92	6364,48	6227,19	6632,53	38,00	40,00	1520,00	4,56	4,36	4,5
Geo A-21	15/11/17	1000,27	813,95	1019,89	2,3	5854,54	5020,98	5874,15	5583,22	6874,43	5609,38	4962,14	5815,31	38,00	40,00	1520,00	3,67	3,83	3,7
Geo A-22	15/11/17	1029,69	941,43	588,40	2,1	5511,31	5481,89	5442,66	5478,62	5403,44	5315,18	5344,60	5354,40	38,00	40,00	1520,00	3,60	3,52	3,6
Geo A-23	21/11/17	990,47	980,66	872,79	2,3	5756,47	12189,60	12209,22	10051,77	9963,51	11601,21	12169,99	11244,90	38,00	40,00	1520,00	6,61	7,40	7,0
Geo A-24	21/11/17	1019,89	951,24	1117,95	2,5	10306,74	10836,29	11081,46	10741,50	10365,58	9541,82	10198,86	10035,42	38,00	40,00	1520,00	7,07	6,60	6,8
Geo A-25	21/11/17	1216,02	1353,31	1676,93	3,5	14101,89	7041,14	12405,35	11182,79	14788,35	14749,13	13631,17	14389,55	38,00	40,00	1520,00	7,36	9,47	8,4
Geo A-26	21/11/17	1725,96	1480,80	1333,70	3,7	17975,50	15425,78	13719,43	15706,90	14886,42	17857,82	14788,35	15844,20	38,00	40,00	1520,00	10,33	10,42	10,4
Geo A-27	21/11/17	1274,86	1225,83	1265,05	3,1	13729,24	12650,51	14219,57	13533,11	13336,98	10630,35	12787,81	12251,71	38,00	40,00	1520,00	8,90	8,06	8,5
Geo A-28	21/11/17	1000,27	745,30	980,66	2,2	8806,33	9394,72	8816,13	9005,73	9080,91	9796,79	7492,24	8789,98	38,00	40,00	1520,00	5,92	5,78	5,9
Geo A-29	22/12/01	2049,58	2343,78	2226,10	5,4	16141,66	16377,02	17857,82	16792,17	20633,09	16641,80	19623,01	18965,96	38,00	40,00	1520,00	11,05	12,48	11,8
Geo A-30	22/12/01	1343,50	1470,99	1833,83	3,8	12366,12	8825,94	10512,68	10568,25	10551,90	7943,35	7776,63	8757,29	38,00	40,00	1520,00	6,95	5,76	6,4
Geo A-31	22/12/01	804,14	402,07	598,20	1,5	8443,48	8394,45	9424,14	8754,02	8227,74	7825,67	7943,35	7998,92	38,00	40,00	1520,00	5,76	5,26	5,5
Geo A-32	22/12/01	n/a	n/a	n/a	n/a	14307,63	11076,26	14088,95	13157,61	9793,66	11901,58	13164,18	11619,81	38,00	40,00	1520,00	8,66	7,64	8,2

~

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-A

. .

	Fle	xión	
	Rotura Fle	exión (fcf)	
Código	Carga Promedio	Desv. Estandar	Desv. Estandar
	N	Ν	%
Geo A-01	706,1	120,51	17,07
Geo A-02	689,7	14,98	2,17
Geo A-03	562,2	24,68	4,39
Geo A-04	637,4	77,84	12,21
Geo A-05	660,3	5,66	0,86
Geo A-06	483,8	39,63	8,19
Geo A-07	1016,6	81,66	8,03
Geo A-08	1039,5	183,20	17,62
Geo A-09	1121,2	651,70	58,12
Geo A-10	1506,9	98,23	6,52
Geo A-11	957,8	110,22	11,51
Geo A-12	987,2	70,94	7,19
Geo A-13	997,0	96,75	9,70
Geo A-14	761,6	24,68	3,24
Geo A-15	964,3	40,83	4,23
Geo A-16	598,2	54,60	9,13
Geo A-17	964,3	79,27	8,22
Geo A-18	722,4	88,44	12,24
Geo A-19	833,6	35,36	4,24
Geo A-20	797,6	59,11	7,41
Geo A-21	944,7	113,66	12,03
Geo A-22	853,2	233,51	27,37
Geo A-23	948,0	65,30	6,89
Geo A-24	1029,7	83,79	8,14
Geo A-25	1415,4	236,65	16,72
Geo A-26	1513,5	198,16	13,09
Geo A-27	1255,2	25,95	2,07
Geo A-28	908,7	141,89	15,61
Geo A-29	2206,5	148,08	6,71
Geo A-30	1549,4	254,41	16,42
Geo A-31	601,5	201,06	33,43
Geo A-32	n/a	n/a	n/a

	Comp	resion	
	Rotura Fle	xión (fcf)	
Código	Carga Promedio	Desv. Estandar	Desv. Estandar
	Ν	Ν	%
Geo A-01	5901,9	679,86	11,52
Geo A-02	5001,4	597,25	11,94
Geo A-03	7812,6	397,75	5,09
Geo A-04	5710,7	415,35	7,27
Geo A-05	5468,8	446,25	8,16
Geo A-06	4453,8	324,21	7,28
Geo A-07	11803,9	493,56	4,18
Geo A-08	9451,9	1651,37	17,47
Geo A-09	11347,9	1390,46	12,25
Geo A-10	11323,4	543,28	4,80
Geo A-11	11208,9	1352,47	12,07
Geo A-12	9831,1	1147,19	11,67
Geo A-13	6413,5	927,48	14,46
Geo A-14	4434,2	362,57	8,18
Geo A-15	9327,7	1225,21	13,14
Geo A-16	6949,6	535,79	7,71
Geo A-17	7297,7	461,99	6,33
Geo A-18	5812,0	535,79	9,22
Geo A-19	8392,8	606,98	7,23
Geo A-20	6784,5	738,34	10,88
Geo A-21	5699,3	699,60	12,28
Geo A-22	5416,5	76,88	1,42
Geo A-23	10648,3	2546,94	23,92
Geo A-24	10388,5	536,80	5,17
Geo A-25	12786,2	2948,13	23,06
Geo A-26	15775,6	1748,75	11,09
Geo A-27	12892,4	1252,65	9,72
Geo A-28	8897,9	784,76	8,82
Geo A-29	17879,1	1867,19	10,44
Geo A-30	9662,8	1790,82	18,53
Geo A-31	8376,5	568,42	6,79
Geo A-32	12388.7	1781.49	14.38

Re	sistencia I	Mecánica -	ENSAYO G	eo A
	Rotura Fle	exión (fcf)	Rotura Con	npresión fc
Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	fcf	%	fc	%
Geo A-01	1,7	17	3,9	12
Geo A-02	1,7	2	3,3	12
Geo A-03	1,4	4	5,1	5
Geo A-04	1,6	12	3,8	7
Geo A-05	1,6	1	3,6	8
Geo A-06	1,2	8	2,9	7
Geo A-07	2,5	8	7,8	4
Geo A-08	2,6	18	6,2	17
Geo A-09	2,8	58	7,5	12
Geo A-10	3,7	7	7,4	5
Geo A-11	2,4	12	7,4	12
Geo A-12	2,4	7	6,5	12
Geo A-13	2,5	10	4,2	14
Geo A-14	1,9	3	2,9	8
Geo A-15	2,4	4	6,1	13
Geo A-16	1,5	9	4,6	8
Geo A-17	2,4	8	4,8	6
Geo A-18	1,8	12	3,8	9
Geo A-19	2,1	4	5,5	7
Geo A-20	2,0	7	4,5	11
Geo A-21	2,3	12	3,7	12
Geo A-22	2,1	27	3,6	1
Geo A-23	2,3	7	7,0	24
Geo A-24	2,5	8	6,8	5
Geo A-25	3,5	17	8,4	23
Geo A-26	3,7	13	10,4	11
Geo A-27	3,1	2	8,5	10
Geo A-28	2,2	16	5,9	9
Geo A-29	5,4	7	11,8	10
Geo A-30	3,8	16	6,4	19
Geo A-31	1,5	33	5,5	7
Geo A-32	n/a	n/a	8,2	14

					Resi	stencia	a Mecá	nica	- Campa	ıña - El	NSAYO) Geo I	B - F	Parte A						
	Dia de		Rotura Fl	exión (fcf)			Rotura Con	npresión	f A		Rotura Cor	npresión f	в		Dimensior	es (Ac)	fA/A	.c fE	3 / Ac	fc
Código	rotura	(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N) (mn) (mm) (mm	1 2) MPa	N	1Pa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	fA	BM1	BM2	BM3	f	B d1	d2	Ac	f A	1	fB	Promedio fAyfB
GEO-B02	14/02/18	n/a	n/a	n/a	n/a	22669,52	23902,51	25652,4	40 24074,81	26229,03	21337,20	24996,14	24187	7,46 38	00 40	00 1520	0,00 15,	84	15,91	15,9
GEO-B05	14/02/18	n/a	n/a	n/a	n/a	20591,51	24717,73	28008,7	73 24439,32	27233,22	25503,24	31558,33	28098	3, 26 38	00 40	00 1520),00 16,	08	18,49	17,3
GEO-B01	14/02/18	n/a	n/a	n/a	n/a	37792,48	36828,00	39224,3	34 37948,27	45279,33	35654,84	39224,34	40052	2, 83 38	00 40	00 1520	0,00 24,	97	26,35	25,7
GEO-B06	14/02/18	n/a	n/a	n/a	n/a	32264,30	27282,94	36768,3	38 32105,21	27282,94	31429,17	29559,84	29423	3,98 38	00 40	00 1520	0,00 21,	12	19,36	20,2
	F	lexiór	ı		1		С	ompi	resión			R	esis	tencia	Necán	ca - E	NSAYO	Geo	BP	01
	Rotura	Flexión (fcf)				R	otura Flex	xión (fcf)					Rotur	a Flexión (j	cf)	Rotu	ra Com	presión	fc
Código	Carga Promedic	D Est	esv. andar	Desv. Estandar		Código	Ca Prom	rga iedio	Desv. Estandar	Desv. Estanda	ar	Códig	10	MPa	Desv.	Estandar	MPa		Desv. I	Estandar
	N		N	%			,	4	Ν	%				fcf		%	f¢			%
GEO-B02		n/a	n/a	n/a	1	GEO-B	24	131,1	1868,60	7	,74	GEO-B	802		n/a	n/a		15,9		8
GEO-B05		n/a	n/a	n/a	1	GEO-B	26	6268,8	3664,97	13	,95	GEO-E	305		n/a	n/a		17,3		14
GEO-B01		n/a	n/a	n/a	1	GEO-B	39	9000,6	3373,32	8	,65	GEO-E	301		n/a	n/a		25,7		9
GEO-B06		n/a	n/a	n/a		GEO-B	30	0764,6	3589,75	11	,67	GEO-E	306		n/a	n/a		20,2		12
			reille 💧	Arono	4	A No			Quand					- Po	tura Car	nrogiór		60		
Caracteri de Mues	stica stra	• 4	rcilia 🛡	Arena	Agua		Л	1	Curad Femperatura	80°C					tura Flex	tión (fcf	f) MPa fo	f		
GEO-B	801								Horas	24	-	050	200							
Material (G	Gramos)		12	5 % 2 %					Curad	o B		GEO-E	502				fcn	náxima	alcanz	ada
Arcilla	750,0				41	1 %		1	l'emperatura	23°C		GEO-E	305						ļ	
Arena	750,0								Días	14 día:	6	GEO-E	301	fc rango	referencia	BTC "est	tabilizado"	fc re	ferenci	al
Agua	223,5		41	%					Resistenci	ia (MPa)		GEO-F	306		/			horm (Port	ligón ce land)	omún
NaOH	89,4							1	Compresión	25,7	- 1		0	0 38	+ 75 ·	1 3 16	50 188	22.5	26 1	3 30 0
Na2SIO3	0,0								Buena	~				,0 0,0	7,0	1,0 10	5,0 10,0	22,0	20,0	5 00,0
					Resi	stenci	a Mecá	inica	- Campa	aña - E	NSAY	O Geo	B - F	Parte B			_		_	
	Dia de rotura		Rotura F	lexión (fcf)			Rotura Co	mpresión	fA		Rotura Con	npresión f	в		Dimension	es (Ac)	fA / A	c fE	Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N	l) (mn	i) (mm) (mm	12) MPa	N	1Pa	MPa Bromedio
	Fecha	FM1	FM2	FM3	fct	AM1	AM2	AM3	J A	BM1	BM2	BM3	f E	3 d1	d2	Ac	f A	1	в	fAyfB
GEO-B04	4 14/02/18	n/a	a n/a	n/a	n/a	24628,30	21237,76	6 22301,	68 22722,58	23922,32	21665,33	24220,54	23269	9, 39 38	.00 40	00 1520	0,00 14,	95	15,31	15,1
GEO-B07	7 14/02/18	n/a	a n/a	n/a	n/a	28108,27	26557,16	8 28515,	83 27727,08	26984,63	28515,83	26557,16	2735	2,54 38	00 40	00 1520	0,00 18,	24	18,00	18,1
GEO-B03	3 14/02/18	n/a n/a	a n/a	n/a n/a	n/a	15977.99	19935.25	43251, 5 18523.	03 44961,23 39 18145.54	42694,31	44424,39	45527,93	4421	7.22 38	.00 40	00 1520	0,00 29, 0.00 11.	94	29,09 12.89	29,3
020-000													1				,		,	,.
	. 1	lexió	n				C	Comp	resión	_			R	esister	icia Me	cánic	a - Geo	B P()2	
	Rotur	a Flexión	(fcf)				R	otura Flex	xión (fcf)					Rotur	a Flexión (j	cf)	Rotu	ra Com	presión	fc
Código	Carga Promed	io E	Desv. standar	Desv. Estandar		Código	Pror	rga nedio	Desv. Estandar	Desv. Estand	ar	Códig	10 L	MPa	Desv.	Estandar	MPa		Desv. B	Standar
	N		N	%				N	Ν	%				fcf		%	fc			%
GEO-B04	4	n/a	n/a	n/a	а	GEO-B	04 2	2996,0	1439,87	6	6,26	GEO-E	304		n/a	n/a		15,1		6
GEO-B07	7	n/a	n/a	n/a	а	GEO-B	07 2	7539,8	945,28		3,43	GEO-E	307		n/a	n/a		18,1		3
GEO-B03	3	n/a	n/a	n/a	a	GEO-B	03 4	4588,4	1821,56	4	4,09	GEO-E	303		n/a	n/a		29,3		4
GEO-B08	В	n/a	n/a	n/a	а	GEO-B	08 1	8871,4	2690,61	14	4,26	GEO-E	308		n/a	n/a		12,4		14
Caracter	íctios	• •	rcilla	Arena	Aqua	а 🔴 ко	ЭН		Curad	οA	I F			Rot	ura Com	nresión	fc MPa	fc		
de Mues	stra	• /			- nyua			1	Temperatura	80°C				Rot	ura Flex	ón (fcf)	MPa fcf	, .		
GEO-B	303								Horas	24	1	GEO.P	104							
				7 %							- I	GLO-D				1 1				

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-B

	Fle	xión				Com	presión			1	Resistenci	a Mecánica	a - Geo B P	02
	Rotura Fle	xión (fcf)				Rotura F	lexión (fcf)				Rotura Fle	exión (fcf)	Rotura Con	npresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar		Código	Carga Promedio	Desv. Estandar	Desv. Estandar		Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	N	%			Ν	N	%			fcf	%	f¢	%
GEO-B04	n/a	n/a	n/a		GEO-B04	22996,	0 1439,87	6,26		GEO-B04	n/a	n/a	15,1	6
GEO-B07	n/a	n/a	n/a		GEO-B07	27539,	8 945,28	3,43	1	GEO-B07	n/a	n/a	18,1	3
GEO-B03	n/a	n/a	n/a		GEO-B03	44588,	4 1821,56	4,09		GEO-B03	n/a	n/a	29,3	4
GEO-B08	n/a	n/a	n/a		GEO-B08	18871,4	4 2690,61	14,26		GEO-B08	n/a	n/a	12,4	14
Caracterís	itica	Arcilla	Arena 📢	Agua	🗕 кон		Curado	A	[Rotura	Compresión	fc MPa fc	
de Muest	tra						Temperatura	80°C			Rotura	Flexión (fcf)	MPa fcf	
GEO-BO	03					1	Horas	24						

-																			
		_		i	Resiste	encia N	Necáni	ca - Ca	ampaña	a de er	nsayos	- ENS	AYO G	eo C1			_		
	Dia de rotura		Rotura Fl	exión (fcf)		1	Rotura Con	npresión f	A		Rotura Cor	npresión f	в	Din	nensiones	(Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	fA	BM1	BM2	BM3	f B	d1	d2	Ac	fΑ	fВ	Promedio fAyfB
GEO C1 01	07/05/18	2746,50	2326,90	2251,39	6,0	23430,30	26575,70	29463,70	26489,90	22991,00	23504,10	27897,00	24797,37	38,00	40,00	1520,00	17,43	16,31	16,9
GEO C1 02	07/05/18	2326,90	2361,22	2036,89	5,5	21673,10	18997,90	19193,50	19954,83	18896,60	19785,50	17678,20	18786,77	38,00	40,00	1520,00	13,13	12,36	12,7
GEO C1 03	07/05/18	1637,07	1637,07	1762,33	4,1	15526,40	13855,00	13865,30	14415,57	12243,70	12830,50	14577,40	13217,20	38,00	40,00	1520,00	9,48	8,70	9,1
GEO C1 04	07/05/18	1084,51	1108,54	1178,89	2,8	11190,00	11178,00	11485,20	11284,40	10816,00	10634,10	10802,20	10750,77	38,00	40,00	1520,00	7,42	7,07	7,2

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-C1

	Fle	xión			C	Comp	resión		Re	sistencia M	lecánica -	ENSAYO G	ieo C1
	Rotura Fle	exión (fcf)			R	Rotura Fle	exión (fcf)			Rotura Fl	exión (fcf)	Rotura Co	mpresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Códi	o Ca Pro	Carga omedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	N	%			N	Ν	%		fcf	%	fc	%
GEO C1 01	2441,6	266,74	10,92	GEO 01	C1 2	25643,6	2722,21	10,62	GEO C1 01	6,0	11	16,9	11
GEO C1 02	2241,7	178,17	7,95	GEO 02	C1 1	19370,8	1321,58	6,82	GEO C1 02	5,5	8	12,7	7
GEO C1 03	1678,8	72,32	4,31	GEO 03	C1 1	13816,4	1179,19	8,53	GEO C1 03	4,1	4	9,1	9
GEO C1	1124,0	49,05	4,36	GEO	C1	11017,6	318,81	2,89	GEO C1	2,8	4	7,2	3

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-C2

				I	Resiste	encia N	/lecáni	ca - Ca	mpaña	a de er	nsayos	- ENS	AYO G	eo C2					
	Dia de rotura		Rotura Fle	exión (fcf)		1	Rotura Con	npresión f	A		Rotura Cor	npresión f	в	Din	nensiones	(Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fВ	Promedio fAyfB
GEO C2 01	07/05/18	1278,55	2441,87	2165,59	4,8	19704,80	22949,80	21498,10	21384,23	24816,80	22759,30	23869,60	23815,23	38,00	40,00	1520,00	14,07	15,67	14,9
GEO C2 02	07/05/18	1463,75	n/a	1067,35	2,1	16471,90	14257,83	14390,40	15040,04	16142,40	17777,80	13789,80	15903,33	38,00	40,00	1520,00	9,89	10,46	10,2
GEO C2 03	07/05/18	974,69	923,21	1101,67	3,7	10060,90	10465,90	10774,80	10433,87	10628,90	10098,70	9789,79	10172,46	38,00	40,00	1520,00	6,86	6,69	6,8
GEO C2 04	07/05/18	784,21	844,27	n/a	2,0	9122,26	7095,67	8518,23	8245,39	9048,48	8120,12	7250,11	8139,57	38,00	40,00	1520,00	5,42	5,35	5,4

				_									
	Fle	xión				Comp	resión		Re	sistencia N	lecánica - I	ENSAYO G	eo C2
	Rotura Fle	exión (fcf)				Rotura Fle	exión (fcf)			Rotura Fle	exión (ƒcf)	Rotura Con	npresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar		Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	Ν	Ν	%			N	Ν	%		fcf	%	fc	%
GEO C2 01	1962,0	607,79	30,98		GEO C2 01	22599,7	1803,90	7,98	GEO C2 01	4,8	31	14,9	8
GEO C2 02	1265,6	280,30	22,15		GEO C2 02	15471,7	1564,60	10,11	GEO C2 02	2,1	22	10,2	10
GEO C2 03	999,9	91,85	9,19		GEO C2 03	10303,2	379,23	3,68	GEO C2 03	3,7	9	6,8	4
GEO C2 04	814,2	42,47	5,22		GEO C2 04	8192,5	871,74	10,64	GEO C2 04	2,0	5	5,4	11

03 GEO C3 04

1206,9

137,17

Anexo 6.9.3 Resistencia a la compresión y flexión de geo-polímeros a base de arcilla

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-C3

				R	lesist	encia N	lecánio	ca - Ca	mpañ	a de en	sayos	- ENS	AYO G	eo C3					
	Dia de rotura		Rotura F	lexión (fcf)			Rotura Com	presión <i>f l</i>	4	6	Rotura Cor	npresión f	В	Dir	nensiones (Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	f A	f B	Promedio f A y f B
GEO C3 01	07/05/18	743,02	689,83	3 n/a	1,8	5280,14	5305,88	5607,89	5397,97	5729,73	5460,32	5534,11	5574,72	38,00	40,00	1520,00	3,55	3,67	3,6
GEO C3 02	07/05/18	1822,39	1628,49	9 1225,23	3,8	16928,40	15787,20	14199,90	15638,50	16188,80	16772,20	17441,40	16800,80	38,00	40,00	1520,00	10,29	11,05	10,7
GEO C3 03	07/05/18	2196,48	1888,14	1 2131,27	5,1	30069,50	31164,30	17693,70	26309,17	30924,10	31900,50	29887,60	30904,07	38,00	40,00	1520,00	17,31	20,33	18,8
GEO C3 04	07/05/18	1335,05	1062,21	1223,51	3,0	34479,60	33412,30	34936,10	34276,00	34402,40	37882,90	37486,10	36590,47	38,00	40,00	1520,00	22,55	24,07	23,3
	F	lexiór	1		1 [Cor	npres	ión		1 [R	esister	ncia M	ecánic	a - ENS	SAYO (Geo C3	3
	Rotur	a Flexión ((fcf)				Rotur	a Flexión (fcf)				R	otura Flexi	ón (fcf)		Rotura C	ompresión	fc
Código	Carga Promedi	o Est	Desv. andar	Desv. Estandar	1	Código	Carga Promedi	o Esi	esv. andar	Desv. Estandar		Código	MP	a (Desv. Estand	lar	MPa	Desv. E	standar
	N		N	%			N		N	%			fc	f	%		fc	9	6
GEO C3 01	71	6,4	37,61	5,25		GEO C3 01	548	6,3	174,39	3,1	8	GEO C3 01		1,8		5	3,6		3
GEO C3 02	155	8,7	304,64	19,54		GEO C3 02	1621	9,7	1146,09	7,0	7	GEO C3 02		3,8		20	10,7		7
GEO C3	207	2,0	162,50	7,84		GEO C3	2860	6,6	5396,94	18,8	7	GEO C3		5,1		8	18,8		19

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-C4

03 GEO C3 04

5,13

3,0

11

23,3

5

03 GEO C3 04

35433,2

1817,61

11,37

				-		onaia N	lacánia					TNO		04					
			_	-	Kesist	encia N	lecanic	ca - Ca	ampan	a de er	isayos	- EN3	ATU G	eo C4	_	_		_	
	Dia de rotura		Rotura Fl	exión (fcf)		F	Rotura Com	presión f	A	1	Rotura Con	npresión f	В	Din	nensiones	(Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	fВ	d1	d2	Ac	fA	fВ	Promedio fAyfB
GEO C4 01	07/05/18	609,18	545,68	955,81	1,7	6625,48	7390,82	6764,45	6926,92	7315,32	6290,86	6443,59	6683,26	38,00	40,00	1520,00	4,56	4,40	4,5
GEO C4 02	07/05/18	830,89	1295,58	1350,49	2,9	13125,70	13565,00	16178,50	14289,73	13537,50	14618,60	14332,00	14162,70	38,00	40,00	1520,00	9,40	9,32	9,4
GEO C4 03	07/05/18	2069,50	2042,04	2132,99	5,1	23682,50	22726,70	25309,30	23906,17	22296,00	23862,70	25338,50	23832,40	38,00	40,00	1520,00	15,73	15,68	15,7
GEO C4 04	O C4 04 07/05/18 2426,43 2273			2047,19	5,5	29772,60	25148,26	24374,10	26431,65	26489,90	23260,40	21060,50	23603,60	38,00	40,00	1520,00	17,39	15,53	16,5
	_										-	_							-
	. F	lexiór	ו 		_		Co	mpres	sión			F	lesiste	ncia M	ecánio	a - EN	SAYO	Geo C	4
	Rotur	a Flexión (fcf)				Rotu	ra Flexión	(fcf)					Rotura Flex	tión (fcf)		Rotura C	ompresión	fc
Código	Carga Promed	io Es	Desv. tandar	Desv. Estandar		Código	Carga Promeo	a dio E	Desv. standar	Desv. Estandar		Código	N	IPa	Desv. Esta	ndar	MPa	Desv.	Estandar
	N		N	%			N		N	%			j	cf	%		fc		%
GEO C4 01	70	3,6	220,75	31,3	в	GEO C4 01	68	05,1	454,41	6,	68	GEO C4	4	1,7		31	4,9	5	7
GEO C4 02	115	i9,0	285,46	24,6	3	GEO C4 02	142	26,2	1104,47	7,	76	GEO C4 02	1	2,9		25	9,4	4	8
GEO C4 03	208	1,5	46,65	2,2	4	GEO C4 03	238	69,3	1268,69	5,	32	GEO C4 03	4	5,1		2	15,	7	5
GEO C4 04	224	9,1	190,81	8,4	в	GEO C4 04	250	17,6	2964,97	11,	85	GEO C4 04	4	5,5		8	16,	5	12

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-C5

				F	Resiste	encia N	lecáni	ca - Ca	mpaña	a de er	isayos	- ENS	AYO G	eo C5					
	Dia de rotura		Rotura Fl	exión (fcf)			Rotura Cor	npresión f	A	1	Rotura Con	npresión f	в	Din	nensiones	(Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	f A	f B	Promedio f A y f B
GEO C5 01	07/05/18	1475,76	n/a	1748,61	4,0	22035,20	21237,20	22371,50	21881,30	22433,30	22438,40	23672,20	22847,97	38,00	40,00	1520,00	14,40	15,03	14,7
GEO C5 02	07/05/18	1990,56	1369,37	2167,31	4,5	25031,30	28550,80	26429,90	26670,67	24681,30	26567,10	27766,60	26338,33	38,00	40,00	1520,00	17,55	17,33	17,4
GEO C5 03	07/05/18	2850,28	2421,28	2321,75	6,2	27909,10	29673,10	25947,70	27843,30	26258,30	27169,50	27728,90	27052,23	38,00	40,00	1520,00	18,32	17,80	18,1
GEO C5 04	07/05/18	2659,80	2259,97	2661,52	6,2	32890,60	23351,40	29690,30	28644,10	35112,80	27553,60	27368,50	30011,63	38,00	40,00	1520,00	18,84	19,74	19,3

	Fle	xión			Comp	resión		R	esistencia	Mecánica ·	ENSAYO	Geo C5
	Rotura Fl	exión (fcf)		Rotura Flexión (fcf) Código Carga Desv. Promedio Fstandar Fstandar				Rotura Flo	exión (fcf)	Rotura C	ompresión fc	
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Código Carga Desv. Promedio Estandar		Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	Ν	%		Ν	N	%		fcf	%	fc	%
CE0.05				CEO CE				CEO CE				
01	1612,2	192,93	11,97	01	22364,6	787,35	3,52	01	4,0	12	14,7	4
GEO C5 02	1842,4	419,09	22,75	GEO C5 02	26504,5	1502,27	5,67	GEO C5 02	4,5	23	17,4	6
GEO C5 03	2531,1	280,86	11,10	GEO C5 03	27447,8	1340,63	4,88	GEO C5 03	6,2	11	18,1	5
GEO C5 04	2527,1	231,34	9,15	GEO C5 04	29327,9	4218,89	14,39	GEO C5 04	6,2	9	19,3	14

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-C6

	Resistencia Mecánica - Campaña de ensayos - ENSAYO Geo C6																		
	Dia de rotura		Rotura Fle	exión (fcf)		F	Rotura Con	npresión f	4	1	Rotura Con	npresión f	в	Dim	iensiones (Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	f B	Promedi ofAyf B
GEO C6 01	07/05/18	1796,65	1520,38	2278,85	4,6	17010,70	14690,70	15147,10	15616,17	16648,60	15140,30	17475,80	16421,57	38,00	40,00	1520,00	10,27	10,80	10,5
GEO C6 02	07/05/18	1774,35	1848,13	1861,86	4,5	15596,70	20068,60	17798,40	17821,23	17839,60	17467,20	18656,40	17987,73	38,00	40,00	1520,00	11,72	11,83	11,8
GEO C6 03	07/05/18	1774,35	2151,87	2644,36	5,4	21158,30	22764,50	22467,60	22130,13	23989,70	24959,20	18876,00	22608,30	38,00	40,00	1520,00	14,56	14,87	14,7
GEO C6 04	07/05/18	2256,54	2256,54	2508,79	5,8	24890,60	21616,50	25891,00	24132,70	22970,40	24494,20	22872,60	23445,73	38,00	40,00	1520,00	15,88	15,42	15,7

	Fle	xión			Comp	oresión		Re	esistencia	Mecánica -	ENSAYO (Geo C6
	Rotura Fle	exión (fcf)			Rotura Fle	exión (fcf)			Rotura Fle	exión (fcf)	Rotura Co	ompresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	Ν	Ν	%		N	Ν	%		fcf	%	fc	%
GEO C6 01	1865,3	383,87	20,58	GEO C6 01	16018,9	1166,09	7,28	GEO C6 01	4,6	21	10,5	7
GEO C6 02	1828,1	47,06	2,57	GEO C6 02	17904,5	1468,42	8,20	GEO C6 02	4,5	3	11,8	8
GEO C6 03	2190,2	436,27	19,92	GEO C6 03	22369,2	2152,62	9,62	GEO C6 03	5,4	20	14,7	10
GEO C6 04	2340,6	145,64	6,22	GEO C6 04	23789,2	1572,19	6,61	GEO C6 04	5,8	6	15,7	7

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-D1

				F	Resiste	encia N	lecáni	ca - Ca	mpaña	a de er	isayos	- ENS	AYO G	eo D1					
	Dia de rotura		Rotura Fle	exión (fcf)			Rotura Com	npresión f	A	1	Rotura Con	npresión f	в	Dim	iensiones (Ac)	fA / Ac	fB / Ac	fc
Código	JO (N) (N) (N) M					(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	f A	fВ	Promedio f A y f B
GEO D1 01	09/05/18	2574,00	2577,43	2102,10	6,0	32156,20	26290,90	21887,60	26778,23	28284,90	23993,10	21356,60	24544,87	38,00	40,00	1520,00	17,62	16,15	16,9
GEO D1 02	09/05/18	2103,82	2493,35	2839,98	6,1	31145,40	33752,00	32669,20	32522,20	32648,60	33734,90	32954,10	33112,53	38,00	40,00	1520,00	21,40	21,78	21,6
GEO D1 03	09/05/18	3466,32	3205,49	3279,28	8,2	35660,20	28518,20	36463,30	33547,23	33086,20	33314,50	33897,90	33432,87	38,00	40,00	1520,00	22,07	22,00	22,0
GEO D1 04	09/05/18	1252,68	2148,43	2776,49	5,1	37858,40	36904,30	32461,60	35741,43	35042,50	27861,00	36799,70	33234,40	38,00	40,00	1520,00	23,51	21,86	22,7

	Flex	xión			Comp	oresión		Re	esistencia	Mecánica -	ENSAYO (Geo D1
	Rotura Fle	exión (fcf)			Rotura Fle	exión (fcf)			Rotura Fle	exión (fcf)	Rotura Co	ompresión <i>f</i> c
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código Carga Desv. Desv. Promedio Estandar Estandar		Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar	
	N	N	%		N	Ν	%		fcf	%	fc	%
GEO D1 01	2417,8	273,45	11,31	GEO D1 01	25661,6	4123,53	16,07	GEO D1 01	6,0	11	16,9	16
GEO D1 02	2479,1	368,29	14,86	GEO D1 02	32817,4	957,08	2,92	GEO D1 02	6,1	15	21,6	3
GEO D1 03	3317,0	134,45	4,05	GEO D1 03	33490,1	2779,54	8,30	GEO D1 03	8,2	4	22,0	8
GEO D1 04	2059,2	765,81	37,19	GEO D1 04	34487,9	3764,92	10,92	GEO D1 04	5,1	37	22,7	11

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-D2

				F	Resiste	encia N	lecáni	ca - Ca	ampaña	a de er	isayos	- ENS	AYO G	eo D2					
	Dia de		Rotura F	lexión (ƒcf)		F	Rotura Com	npresión f	A	I	Rotura Con	npresión f	В	Din	nensiones ((Ac)	fA / Ac	fB / Ac	fc
Código	Totara	(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	f A	fВ	Promedio f A y f B
GEO D2 01	09/05/18	1439,73	1084,51	1283,57	3,1	16276,30	16060,10	16386,10	16240,83	15833,50	14905,20	17419,10	16052,60	38,00	40,00	1520,00	10,68	10,56	10,6
GEO D2 02	09/05/18	1453,45	1716,00	1676,53	4,0	16595,50	18109,00	17302,40	17335,63	18459,00	17127,40	17952,80	17846,40	38,00	40,00	1520,00	11,41	11,74	11,6
GEO D2 03	09/05/18	1202,92	1209,78	1455,17	3,2	16027,50	15047,60	16010,30	15695,13	15615,60	15902,20	16646,90	16054,90	38,00	40,00	1520,00	10,33	10,56	10,4
GEO D2 04	09/05/18	1386,53	1487,77	1336,77	3,5	16914,60	14105,50	15454,30	15491,47	17573,60	13082,80	16242,00	15632,80	38,00	40,00	1520,00	10,19	10,28	10,2
		loviću			1		0						 :-+	naia N	la a á mi			C	.
		·lexior	۱ ــــــــــــــــــــــــــــــــــــ		1			ompre	sion			-	resiste	encia w	lecani		ISATU	Geo D	2
	Rotur	a Flexión (fcf)				Ro	tura Flexio	ón (fcf)					Rotura Fle	exión (ƒcf)		Rotura C	compresió	n fc
Código	Carga Promedi	o Est	esv. andar	Desv. Estandar		Código	Car Prom	rga edio	Desv. Estandar	Desv. Estanda	ır	Código	• 🗖	MPa	Desv. Est	andar	MPa	Desv.	Estandar
	N		N	%			N	1	Ν	%				fcf	%		fc		%
GEO D2 01	126	9,3	178,04	14,03	i.	GEO D	2 16	6146,7	817,32	5	,06	GEO D	02	3,1		14	10	,6	5
GEO D2 02	161	5,3	141,57	8,76		GEO D	2 17	'591,0	698,84	3	,97	GEO E	02	4,0		9	11	,6	4
GEO D2	128	93	143 70	11 15		GEO D	2 15	875.0	527 26	3	32	GEO D	02	32		11	10	4	3

527,26

1709,85

3,32

10,99

03 GEO D2

04

3,2

3,5

11

5

10,4

10,2

3

11

GEO D2

03 GEO D2

15875,0

15562,1

03 GEO D2

04

1289,3

1403,7

143,70

76,95

11,15

5,48

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-E1, <u>GEO-E2 y GEO-E3</u>

				F	Resiste	encia N	lecáni	ca - Ca	mpaña	de en	sayos	- ENS/	AYO Ge	eo E1					
	Código						Rotura Com	presión f A	A	F	Rotura Com	presión ƒ E	3	Dim	ensiones (Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	(N) (N) (N) Min Fecha FM1 FM2 FM3 for				fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fΑ	fВ	Promedi ofAyf B
GEO E1 01	10/05/18	509,65	274,56	492,49	1,0	3510,94	2815,96	2982,41	3103,10	3565,85	2580,87	3323,90	3156,87	38,00	40,00	1520,00	2,04	2,08	2,1
GEO E1 02	10/05/18	221,36	312,31	260,83	0,7	3766,62	4224,80	4420,42	4137,28	4187,04	4137,28	4264,26	4196,19	38,00	40,00	1520,00	2,72	2,76	2,7

	Fle	xión	
	Rotura Fle	exión (fcf)	
Código	Carga Promedio	Desv. Estandar	Desv. Estandar
	N	Ν	%
GEO E1 01	425,6	131,06	30,80
GEO E1 02	264,8	45,61	17,22

	Comp	resión	
	Rotura Fle	xión (fcf)	
Código	Carga Promedio	Desv. Estandar	Desv. Estandar
	N	Ν	%
01	3130,0	398,65	12,74
GEO E1 02	4166,7	218,45	5,24

Re	esistencia I	Mecánica -	ENSAYO G	eo E1
	Rotura Fle	exión (ƒcf)	Rotura Co	mpresión fc
Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	fcf	%	fc	%
050 54				
01	1,0	31	2,1	13
GEO E1 02	0,7	17	2,7	5

				l	Resist	encia N	/lecáni	ca - Ca	ampañ	a de er	nsayos	- ENS	AYO G	eo E2					
	Dia de rotura		Rotura Fle	exión (fcf)		F	Rotura Com	presión f /	A	F	Rotura Com	presión f E	3	Dim	ensiones	Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fВ	Promedio f A y f B
01 GEO E2	10/05/18	247,10	212,78	0,00	0,6	2958,39	3085,37	3193,48	3079,08	2752,47	3069,93	2824,54	2882,31	38,00	40,00	1520,00	2,03	1,90	2,0
GEO E2 02	10/05/18	253,97	221,36	229,94	0,9	2687,26	2805,66	2625,48	2706,13	2740,45	2694,12	2263,41	2565,99	38,00	40,00	1520,00	1,78	1,69	1,7

	Fle	xión			Comp	resión		Re	sistencia M	Aecánica -	ENSAYO G	ieo E2
	Rotura Fl	exión (ƒcf)		Rotura Flexión (fcf) Código Carga Desv. Desv.				Rotura Fle	exión (ƒcf)	Rotura Co	mpresión fc	
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	Ν	%		Ν	И	%		fcf	%	fc	%
GEO E2 01	153,3	133,86	87,32	GEO E2 01	2980,7	168,03	5,64	GEO E2 01	0,6	87	2,0	6
GEO E2	235,1	16,90	7,19	GEO E2	2636,1	192,16	7,29	GEO E2	0,9	7	1,7	7

				F	Resiste	encia N	lecáni	ca - Ca	mpaña	a de er	isayos	- ENS	AYO G	eo E3					
	Dia de rotura		Rotura Fle	exión (fcf)		F	Rotura Com	presión f A	A	F	Rotura Corr	npresión f	В	Dim	iensiones (Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	f A	fВ	Promedio f A y f B
GEO E3	10/05/18	444,44	408,41	501,07	1,7	2537,97	3468,04	2723,29	2909,77	2855,43	2915,49	2723,29	2831,40	38,00	40,00	1520,00	1,91	1,86	1,9
GEO E3 02	10/05/18	338,05	338,05	216,22	0,7	3178,04	3047,62	2977,26	3067,64	3020,16	3145,43	2845,13	3003,57	38,00	40,00	1520,00	2,02	1,98	2,0

	Fle	xión				Comp	resión		Res	istencia M	ecánica - E	NSAYO Ge	eo E3
	Rotura Fle	exión (ƒcf)				Rotura Fle	exión (fcf)			Rotura Fle	xión (fcf)	Rotura Con	npresión <i>f</i> c
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	t I	Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	N	%			N	N	%		fcf	%	fc	%
050 50					050 50				 				
01 GEO E3	451,3	46,71	10,35		GEO E3 01	2870,6	320,38	11,16	GEO E3 01	1,7	10	1,9	11
GEO E3	297,4	70,34	23,65		GEO E3 02	3035,6	120,35	3,96	GEO E3 02	0,7	24	2,0	4

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-E4, GEO-E5 y GEO-E6

				I	Resiste	encia M	Necáni	ca - Ca	ampañ	a de er	nsayos	- ENS	AYO G	eo E4					
	Dia de rotura		Rotura Fle	exión (fcf)		F	Rotura Com	presión f	A	1	Rotura Con	npresión f	В	Din	nensiones (Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fВ	Promedio fAyfB
GEO E4 01	10/05/18	461,60	392,96	429,00	1,6	2997,85	3601,89	2975,55	3191,76	3540,11	3680,32	3214,07	3478,17	38,00	40,00	1520,00	2,10	2,29	2,2
GEO E4 02	10/05/18	305,45	277,99	284,86	1,1	2148,43	1786,36	2230,80	2055,20	2335,48	2134,71	2426,43	2298,87	38,00	40,00	1520,00	1,35	1,51	1,4
Flexión Compresión Resistencia Mecánica - ENSAYO Geo E											Geo E	4							
	Rote	ura Flexión	ı (fcf)				Ro	tura Flexió	n (fcf)					Rotura Flex	kión (fcf)		Rotura C	ompresiór	fc
Código	Carg Prome	a dio E	Desv. standar	Desv. Estandar		Código	Car Prom	ga edio	Desv. Estandar	Desv. Estanda	ır	Código	N	IPa	Desv. Esta	ndar	MPa	Desv.	Estandar
	Código Carga Desv. Desv. Promedio Estandar Estandar N N N %						N		N	%			t	cf	%		fc		%
GEO E4 01	4	27,9	34,33	8,0	02	GEO E4 01	4 3	335,0	313,06	ç	,39	GEO E	1	1,6		8	2,	2	9
GEO E4 02	2	89,4	14,29	4,9	94	GEO E4 02	4 2	177,0	221,55	10	,18	GEO E	4	1,1		5	1,	4	10

				i	Resiste	encia M	/lecáni	ca - Ca	ampaña	a de er	nsayos	- ENS	AYO G	eo E5					_
	Dia de rotura		Rotura Fle	exión (fcf)			Rotura Con	npresión f	A	I	Rotura Con	npresión <i>f</i> I	B	Dim	iensiones (Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fΑ	fВ	Promedio fAyfB
01	15/05/18	1650,79	1681,68	1492,92	4,0	7334,19	15032,20	13619,90	11995,43	15275,80	16525,10	15172,90	15657,93	38,00	40,00	1520,00	7,89	10,30	9,1
GEO E5 02	15/05/18	597,17	612,61	461,60	1,4	15605,30	6996,14	6610,04	9737,16	6833,12	6719,86	7212,36	6921,78	38,00	40,00	1520,00	6,41	4,55	5,5

	Fle	xión			Comp	resión		Re	esistencia I	Necánica -	ENSAYO (Geo E5
	Rotura Fle	exión (fcf)			Rotura Fle	exión (fcf)			Rotura Fle	exión (fcf)	Rotura Co	mpresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	Ν	%		N	N	%		fcf	%	fc	%
01 GEO E5	1608,5	101,25	6,29	01 GEO E5	13826,7	3311,86	23,95	GEO E5 01	4,0	6	9,1	24
GEO E5	557,1	83,09	14,91	GEO E5	8329,5	3570,71	42,87	GEO E5	1,4	15	5,5	43

				I	Resiste	encia I	/ lecáni	ca - Ca	ampañ	a de ei	nsayos	- ENS	AYO G	ieo E6					
	Dia de rotura		Rotura Fle	exión (fcf)		I	Rotura Com	npresión f	Ą	F	Rotura Com	npresión f I	3	Din	nensiones	(Ac)	fA / Ac	fB / Ac	fc
Código	Ī	(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fВ	Promedio fAyfB
CEO E6																			
01	15/05/18	1312,74	1853,28	1520,38	3,9	15111,10	14023,20	14663,20	14599,17	13362,50	13438,00	17594,20	14798,23	38,00	40,00	1520,00	9,60	9,74	9,7
GEO E6 02	15/05/18	988,42	971,26	1087,95	2,5	8657,23	9801,80	6932,65	8463,89	8724,15	9748,61	10193,10	9555,29	38,00	40,00	1520,00	5,57	6,29	5,9

	Fle	xión			Comp	resión		 Re	sistencia M	Aecánica -	ENSAYO C	Geo E6
	Rotura Fle	exión (fcf)			Rotura Fle	exión (fcf)			Rotura Fle	exión (ƒcf)	Rotura Co	ompresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	N	%		Ν	Ν	%		fcf	%	fc	%
GEO E6 01	1562,1	272,68	17,46	GEO E6 01	14698,7	1573,93	10,71	GEO E6 01	3,9	17	9,7	11
GEO E6 02	1015,9	63,01	6,20	GEO E6 02	9009,6	1191,11	13,22	GEO E6 02	2,5	6	5,9	13

Ensayos complementarios

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental GEO-FP

	_				Resi	stenci	a Mec	ánica -	Camp	oaña - I	ENSA	YO Ge	o FP						
	Dia de rotura		Rotura Fle	exión (fcf)		F	Rotura Con	npresión f	A	R	otura Com	npresión f	в	Dim	nensiones	(Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	ВМЗ	f B	d1	d2	Ac	fΑ	fВ	Promedio f A y f B
GEO-FP1	14/02/18	2067,78	2076,36	2386,96	5,4	22797,10	25216,60	26913,80	24975,83	13527,20	23670,50	80747,30	22648,33	38,00	40,00	1520,00	16,43	14,90	15,7
GEO-FP4	14/02/18	2508,79	2175,89	1842,99	5,4	25367,70	26040,30	23260,40	24889,47	21753,80	23898,80	23397,70	23016,77	38,00	40,00	1520,00	16,37	15,14	15,8
GEO-FP6	14/02/18	2007,72	1978,55	2019,73	4,9	20554,30	18193,10	19097,40	19281,60	18788,50	17954,50	13558,10	16767,03	38,00	40,00	1520,00	12,69	11,03	11,9
GEO-FP8	14/02/18	1566,71	n/a	1738,31	4,1	15567,60	14009,40	14493,40	14690,13	14527,70	12741,30	13666,20	13645,07	38,00	40,00	1520,00	9,66	8,98	9,3

	Flex	xión			Comp	resión		R	esistencia	Mecánica	- ENSAYO	Geo F
	Rotura Fle	exión (fcf)			Rotura Fle	exión (fcf)			Rotura Flo	exión (fcf)	Rotura Co	mpresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	Ν	N	%		N	Ν	%		fcf	%	fc	%
GEO-FP1	2177,0	181,85	8,35	 GEO-FP1	23812,1	5770,95	24,24	GEO-FP1	5,4	8	15,7	24
GEO-FP4	2175,9	332,90	15,30	GEO-FP4	23953,1	1548,27	6,46	GEO-FP4	5,4	15	15,8	6
GEO-FP6	2002,0	21,18	1,06	GEO-FP6	18024,3	2371,36	13,16	GEO-FP6	4,9	1	11,9	13
GEO-FP8	1652,5	121,34	7,34	GEO-FP8	14167,6	949,38	6,70	GEO-FP8	4,1	7	9,3	7

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental PO1

				Resis	tencia	Mecár	nica - C	Campa	ña de e	ensayo	s preli	minare	es - EN	SAYO	P01				
	Dia de rotura		Rotura Fle	xión (fcf)		I	Rotura Com	npresión f	4	I	Rotura Com	npresión f l	в	Din	iensiones ((Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fΒ	Promedio f A y f B
P01-01	20/06/17	245,17	225,55	176,52	0,5	1529,83	1500,41	1569,06	1533,10	1363,12	1274,86	1951,51	1529,83	38,00	40,00	1520,00	1,01	1,01	1,0
P01-02	20/06/17	186,33	156,91	147,10	0,4	1618,09	1235,63	1343,50	1399,07	1451,38	1166,99	1470,99	1363,12	38,00	40,00	1520,00	0,92	0,90	0,9
P01-03	20/06/17	107,87	98,07	78,45	0,2	784,53	676,66	804,14	755,11	647,24	794,33	647,24	696,27	38,00	40,00	1520,00	0,50	0,46	0,5
P01-04	20/06/17	117,68	127,49	127,49	0,3	1127,76	970,85	1078,73	1059,11	921,82	1088,53	1216,02	1075,46	38,00	40,00	1520,00	0,70	0,71	0,7

	Fle	xión	
	Rotura Fle	exión (fcf)	
Código	Carga Promedio	Desv. Estandar	Desv. Estandar
	N	N	%
P01-01	215,7	35,36	16,39
P01-02	163,4	20,41	12,49
P01-03	94,8	14,98	15,80
P01-04	124,2	5,66	4,56

	Comp	resión	
	Rotura Fle	exión (fcf)	
Código	Carga Promedio	Desv. Estandar	Desv. Estandar
	N	N	%
P01-01	1531,5	233,67	15,26
P01-02	1381,1	165,89	12,01
P01-03	725,7	76,21	10,50
P01-04	1067,3	106,60	9,99

	Resistencia	Mecánica - E	NSAYO P01	
	Rotura Fle	xión (fcf)	Rotura Con	npresión fc
Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	fcf	%	fc	%
P01-01	0,5	16	1,0	15
P01-02	0,4	12	0,9	12
P01-03	0,2	16	0,5	11
P01-04	0,3	5	0,7	10

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental PO2

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental PO3

		_		Resis	tencia	Mecái	nica - C	Campa	ña de e	ensayo	s preli	iminar	es - EN	SAYO	P03				_
	Dia de rotura		Rotura Fle	xión (fcf)		1	Rotura Con	npresión f	A	,	Rotura Con	npresión f I	3	Dim	ensiones (Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	f A	fВ	Promedio f A y f B
P03-01	20/06/17	1166,99	1088,53	1157,18	2,8	14768,74	18102,98	18769,83	17213,85	17338,07	14425,51	16259,34	16007,64	38,00	40,00	1520,00	11,32	10,53	10,9
P03-02	20/06/17	1618,09	1353,31	1372,92	3,6	25153,93	22898,41	24487,08	24179,81	25173,54	22957,25	23928,10	24019,63	38,00	40,00	1520,00	15,91	15,80	15,9
P03-03	20/06/17	1451,38	961,05	1000,27	2,8	9090,72	9561,44	12640,71	10430,95	10757,84	10591,13	12876,07	11408,34	38,00	40,00	1520,00	6,86	7,51	7,2

	Flex	xión			Comp	oresión			Resistencia	Mecánica - E	ENSAYO P03	
0/ /	Rotura Fle	exión (fcf)	Dony	0	Rotura Fle	exión (fcf)	Decu		Rotura Fle	exión (fcf)	Rotura Con	npresión fc
Codigo	Promedio	Estandar	Estandar	Codigo	Promedio	Estandar	Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	N	%		N	N	%	-	fcf	%	fc	%
P03-01	1137,6	42,75	3,76	P03-01	16610,7	1772,52	10,67	 P03-01	2,8	4	10,9	11
P03-02	1448,1	147,53	10,19	P03-02	24099,7	1019,05	4,23	P03-02	3,6	10	15,9	4
P03-03	1137,6	272,48	23,95	P03-03	10919,6	1556,50	14,25	P03-03	2,8	24	7,2	14

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental PO4

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental PO5

				Resis	tencia	Mecár	nica - C	ampa	ña de e	ensayo	s preli	minare	əs - EN	SAYO	P05				
	Dia de rotura	Dia de rotura Elexión (fcf)				F	Rotura Com	presión f	۹.		Rotura Com	ipresión f I	3	Dim	iensiones (Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fВ	Promedio f A y f B
P05-01	19/07/17	98,07	107,87	127,49	0,3	3697,09	3755,93	3991,29	3814,77	3540,18	3618,64	3530,38	3563,06	38,00	40,00	1520,00	2,51	2,34	2,4
P05-02	18/07/17	353,04	519,75	441,30	1,1	7757,02	7090,17	7639,34	7495,51	7737,41	7560,89	8149,28	7815,86	38,00	40,00	1520,00	4,93	5,14	5,0
P05-03	18/07/17	323,62	382,46	558,98	1,0	8374,84	6825,39	7962,96	7721,06	8257,16	7394,18	7139,20	7596,85	38,00	40,00	1520,00	5,08	5,00	5,0
P05-04	19/07/17	1412,15	1569,06	2167,26	4,2	32401,01	30949,63	37765,22	33705,28	33656,25	29566,90	40471,84	34565,00	38,00	40,00	1520,00	22,17	22,74	22,5

Resistencia (MPa)

Compresión 22,5

1

Buena

	Fle	xión			Comp	resión		Γ		Resistencia	Mec
	Rotura FI	exión (fcf)			Rotura Fle	xión (fcf)		-			
Código	Carga	Desv.	Desv.	Código	Carga	Desv.	Desv.			Rotura F	lexión (
	Promedio	Estandar	Estandar	-	Promedio	Estandar	Estandar		Código	MPa	Des
	N	N	%		N	N	%			fcf	
P05-01	111,1	14,98	13,48	P05-01	3688,9	172,15	4,67	t	P05-01	0,3	
P05-02	438,0	83,40	19,04	P05-02	7655,7	343,41	4,49	Ī	P05-02	1,1	
P05-03	421,7	122,48	29,05	P05-03	7659,0	632,11	8,25	Ī	P05-03	1,0	
P05-04	1716,2	398,47	23,22	P05-04	34135,1	4185,31	12,26	Ī	P05-04	4,2	
						_					
Caracte	erística	Arcilla	🖲 Arena 😑	Agua 🗕 N	aOH	с	urado A			Botura	Comr
de Mu	estra					Tempera	tura 110°C			Rotura	Flexic
P05	-04		1.0/			Hora	s 24		P05-01		
Material	(Gramos)		14 %			c	urado B		F 03-01		
Arcilla	1000,0					Tempera	tura 23°C		P05-02		
Arena	500,0	00		F7 0/		Días	14 días				/

Agua 240,4

2SiO3 0,0

NaOH 9,6

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental PO6

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental PO7

				Resis	tencia	Mecái	nica - C	Campa	ña de e	ensayo	os prel	iminar	es - EN	SAYO	P07				
	Dia de rotura		Rotura Fle	exión (fcf)		1	Rotura Con	npresión f	A	F	Rotura Con	ipresión ƒ I	3	Din	ensiones	(Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	fВ	d1	d2	Ac	fA	f B	Promedio fAyfB
P07-01	27/07/17	3226,37	1980,93	3363,66	7,0	40618,94	42472,38	40452,23	41181,18	42050,70	36372,68	37206,24	38543,21	39,00	40,00	1560,00	26,40	24,71	25,6
P07-02	27/07/17	3324,44	3157,73	3648,06	8,3	29900,32	35990,22	33195,34	33028,63	33803,35	41511,34	38245,74	37853,48	39,00	40,00	1560,00	21,17	24,27	22,7
P07-03	27/07/17	2235,90	3520,57	1833,83	6,2	34803,62	30979,05	34764,40	33515,69	33126,69	31273,25	39226,40	34542,11	38,00	40,00	1520,00	22,05	22,73	22,4
P07-04	27/07/17	3952,06	4197,22	3569,60	9,6	33067,86	41413,27	40932,75	38471,29	36490,36	37392,57	38235,93	37372,95	38,00	40,00	1520,00	25,31	24,59	24,9
	Código P07-01 P07-02 P07-03 P07-04	Dia de rotura P07-01 27/07/17 P07-02 27/07/17 P07-03 27/07/17 P07-04 27/07/17	Picture (N) Fecha FM1 P07-01 27/07/17 3226,37 P07-02 27/07/17 3324,44 P07-03 27/07/17 235,90 P07-04 27/07/17 325,00	Part of the state of	Partial Partial <t< th=""><th>Resistance Portul CNU EVULUE MUI 100 0.0 0.0 MPa Portul FML FML FML Portul 2010717 3226.37 1909.03 306.06 7.0 PO7-00 270717 3224.4 157.73 364.06 6.8 PO7-03 27.0717 235.05 152.05 153.33 6.6 PO7-04 27.0717 3952.06 4197.22 3569.06 6.9</th><th>Resistantial University Partial Colspan="4">Result International University Result International University</th><th>Relative substantial description Relative substantial description Control descripation Control descripti</th><th>Resistantial Resistantial Resistanti Resistanti Resistantial Resistantial Resistantial Resistantial</th><th>Resistantial definition of the second definition of the secon</th><th>Relative substantial colspan="4">Relative substantin colspan="4">Relative substantial colspan="4"</th><th>Resistencia Necărier și se se</th><th>Prioritality in the second sec</th><th>Besistencia Uscanizatione uso uso uso uso uso uso uso uso uso uso</th><th>Retrice Selection Selection</th><th>resistencial versistencial ve</th><th>Besistencia classical c</th><th>Base Set in the se</th><th>Basic Biological Sector Sect</th></t<>	Resistance Portul CNU EVULUE MUI 100 0.0 0.0 MPa Portul FML FML FML Portul 2010717 3226.37 1909.03 306.06 7.0 PO7-00 270717 3224.4 157.73 364.06 6.8 PO7-03 27.0717 235.05 152.05 153.33 6.6 PO7-04 27.0717 3952.06 4197.22 3569.06 6.9	Resistantial University Partial Colspan="4">Result International University Result International University	Relative substantial description Relative substantial description Control descripation Control descripti	Resistantial Resistanti Resistanti Resistantial Resistantial Resistantial Resistantial	Resistantial definition of the second definition of the secon	Relative substantial colspan="4">Relative substantin colspan="4">Relative substantial colspan="4"	Resistencia Necărier și se	Prioritality in the second sec	Besistencia Uscanizatione uso	Retrice Selection	resistencial versistencial ve	Besistencia classical c	Base Set in the se	Basic Biological Sector Sect

	Flex	xión			Comp	resión				Resistencia	Mecánica - E	NSAYO P07	
	Rotura Fle	xión (fcf)			Rotura Fle	exión (fcf)							
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Carga Promedio	Desv. Estandar	Desv. Estandar	t		Rotura Fi	exion (fct)	Rotura Con	npresion fc
	N	N	%		N	N	%	1	Código	MPa	Desv. Estandar	MPa	Desv. Estandar
										fcf	%	fc	%
P07-01	2857,0	761,79	26,66	P07-01	6792,7	383,77	5,65		P07-01	7,0	27	25,6	6
P07-02	3376,7	249,31	7,38	P07-02	8226,1	1119,25	13,61		P07-02	8,3	7	22,7	14
P07-03	2530,1	881,01	34,82	P07-03	32249,0	4216,01	13,07		P07-03	6,2	35	22,4	13
P07-04	3906,3	316,30	8,10	P07-04	45175,7	4743,35	10,50		P07-04	9,6	8	24,9	10
								•					
_		Aroillo	Aron	 A qua		Curad	0.4			Detune (omprosión f	(MD-)	

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX1

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX2

			i	Resiste	encia M	lecáni	ca - Ca	ampañ	a de er	nsayos	prelin	ninares	- ENS	AYO P	00X2				
	Dia de rotura		Rotura Fle	exión (fcf)		F	Rotura Com	npresión f I	4	1	Rotura Con	npresión f	в	Din	nensiones	(Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	fA	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fВ	Promedio f A y f B
P00X2-01	20/06/17	696,27	1137,57	1098,34	2,4	10865,71	9453,56	11140,30	10486,52	9453,56	11581,59	13268,33	11434,50	38,00	40,00	1520,00	6,90	7,52	7,2
P00X2-02	20/06/17	764,91	558,98	843,37	1,8	13327,17	12562,25	12925,10	12938,17	14278,41	10581,32	12915,29	12591,67	38,00	40,00	1520,00	8,51	8,28	8,4
P00X2-03	20/06/17	500,14	598,20	637,43	1,4	2951,79	3726,51	3059,66	3245,98	3000,82	2941,98	3667,67	3203,49	38,00	40,00	1520,00	2,14	2,11	2,1

	Flex	kión			Comp	resión		Re	sistencia	Mecánica -	ENSAYO F	P00X2
	Rotura Fle	xión (ƒcf)			Rotura Fle	exión (fcf)			Rotura FI	exión (fcf)	Rotura Co	mpresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	MPa	Desv. Estandar	MPa	Desv. Estanda
	N	N	%		N	N	%		fcf	%	fc	%
P00X2-01	977,4	244,25	24,99	P00X2-01	10960,5	1434,91	13,09	P00X2-01	2,4	25	7,2	
P00X2-02	722,4	146,88	20,33	P00X2-02	12764,9	1221,82	9,57	P00X2-02	1,8	20	8,4	
P00X2-03	578,6	70,72	12,22	P00X2-03	3224,7	368,73	11,43	P00X2-03	1,4	12	2,1	
Caracteri de Mue	ística	Arcilla	🕒 Arena 🥚	Agua 🔴 NaOH		Curado	D A		Botu	ra Compresió ra Flexión (fc	n fc MPa fc f) MPa fcf	
Caracteri de Mue	ística stra	Arcilla	Arena	Agua 🔴 NaOH		Curade	A 100°C		Rotu	ra Compresió ra Flexión (fc	n fc MPa fc f) MPa fcf	
Caracteri de Mue P00X2	ística Istra	Arcilla	Arena	Agua 🔴 NaOH		Curado Temperatura Horas	A 100°C 24	P00X2-01	Rotu	ra Compresió ra Flexión (fc	n fc MPa fc f) MPa fcf ima alcanzada	
Caracteri de Mue P00X2 Material	ística stra !-01 Gramos)	Arcilla	Arena	Agua NaOH		Curado Temperatura Horas Curado	A 100°C 24 B	P00X2-01	Rotu	ra Compresió ra Flexión (fc	n fc MPa fc f) MPa fcf ima alcanzada	
Caracteri de Mue P00X2 Material (/ Arcilla	istica stra !-01 Gramos) 750,0	Arcilla 1	• Arena • 7 % %	Agua 🔶 NaOH 37 %		Curado Temperatura Horas Curado Temperatura	DA 100°C 24 DB 23°C	P00X2-01	Rotu	ra Compresió ra Flexión (fc fc máx	n fc MPa fc f) MPa fcf ima alcanzada c rango referenci TC "estabilizado"	al
Caracteri de Mue P00X2 Material ((Arcilla Arena	istica stra -01 Gramos) 750,0 750,0	 Arcilla 18 	• Arena • 7 %	Agua • NaOH		Curado Temperatura Horas Curado Temperatura Días	DA 100°C 24 DB 23°C 14 días	P00X2-01 P00X2-02	Rotu	ra Compresió ra Flexión (fc fc máx	n fc MPa fc f) MPa fcf ima alcanzada c rango referenci TC "estabilizado"	al
Caracteri de Mue P00X2 Material Arcilia Arena Agua	istica stra P-01 Gramos) 750,0 750,0 366,4	Arcilla	• Arena • 7 %	Agua • NaOH		Curado Temperatura Horas Curado Temperatura Días Resistencia	24 100°C 24 23°C 14 dias a (MPa)	P00X2-01 P00X2-02 P00X2-03	Rotu	ra Compresió ra Flexión (fc fc máx	n fc MPa fc f) MPa fcf ima alcanzada c rango referenci TC "estabilizado" fc referencia común (Port	al , l hormigón (and)
Caracteri de Mue P00X2 Material Arcilla Arena Agua NaOH	istica stra P-01 Gramos) 750,0 366,4 146,6	Arcilla	Arena 7 % % 37 %	Agua 🌒 NaOH		Curado Temperatura Horas Curado Temperatura Días Resistencia Compresión	100°C 24 23°C 14 dias a (MPa) 8,4	P00X2-01 P00X2-02 P00X2-03	Rotu	ra Compresió ra Flexión (fc	n fc MPa fc f) MPa fcf ima alcanzada c rango referenci TC "estabilizado" fc referencia común (Port	al , al hormigón land)

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX3

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX5

				Resiste	encia I	Mecáni	ca - Ca	impañ	a de ei	nsayos	prelir	ninares	5 - ENS	AYO P	00X5				
	Dia de rotura		Rotura Fl	exión (fcf)		F	Rotura Com	presión f	A	R	otura Con	npresión f E	3	Dim	ensiones ((Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fВ	Promedio fAyfB
P00X5-01	19/07/17	225,55	245,17	215,75	0,6	1745,57	2284,94	1833,83	1954,78	2284,94	2383,00	2059,39	2242,44	38,00	40,00	1520,00	1,29	1,48	1,4
P00X5-02	18/07/17	196,13	196,13	166,71	0,5	1980,93	1971,13	1421,96	1791,34	1931,90	1323,89	1745,57	1667,12	38,00	40,00	1520,00	1,18	1,10	1,1
P00X5-03	19/07/17	166,71	156,91	205,94	0,4	1755,38	1961,32	1588,67	1768,46	1539,64	1706,35	1814,22	1686,74	38,00	40,00	1520,00	1,16	1,11	1,1
P00X5-04	19/07/17	156,91	147,10	156,91	0,4	1421,96	1529,83	1922,09	1624,63	1539,64	1725,96	1637,70	1634,43	38,00	40,00	1520,00	1,07	1,08	1,1
P00X5-05	19/07/17	176,52	294,20	215,75	0,6	2814,49	2490,88	2275,13	2526,83	2314,36	2794,88	2177,07	2428,77	38,00	40,00	1520,00	1,66	1,60	1,6
	F	exión					Co	mpres	ión			F	Resiste	encia N	lecánio	ca - EN	ISAYO	POOXS	5
	Rotura	Flexión (fo	:f)				Rotu	ra Flexión	(fcf)					Rotura Flex	ción (fcf)		Rotura Co	ompresión	fc
Código	Carga Promedio	De Esta	sv. ndar	Desv. Estandar		Código	Carga Promeo	io Es	Desv. Itandar	Desv. Estandar		Código	N	Pa	Desv. Estar	ndar	MPa	Desv.	Estandar
	N	١	1	%			N		N	%				rct	%		fc		%
P00X5-01	228	,8	14,98	6,55		P00X5-01	20	98,6	263,28	12,5	5	P00X5-0	1	0,6		7	1,4	4	13
P00X5-02	186	,3	16,99	9,12	1	P00X5-02	17:	29,2	290,49	16,8	0	P00X5-0	2	0,5		9	1,1	1	17
P00X5-03	176	,5	25,95	14,70	1	P00X5-03	17:	27,6	153,61	8,8	9	P00X5-0	13	0,4		15	1,1	1	9
P00X5-04	153	,6	5,66	3,68		P00X5-04	. 16:	29,5	176,67	10,8	4	P00X5-0	4	0,4		4	1,1	1	11
P00X5-05	228	,8	59,92	26,19	1	P00X5-05	24	77,8	272,87	11,0	1	P00X5-0	15	0,6		26	1,6	6	11
Caracterí de Mues	stica stra	Ar	cilla 🔵	Arena 🧲	Agua	NaO	н	Ter	Curado nperatura	100°C				Rotura Rotura	a Compr a Flexiór	resión fo n (fcf) M	c MPa fc IPa fcf		
P00X5-	-05								Horas	24		P00X5-	01 F		fe	c máxima	alcanzada		
Material (Gramos)			5%					Curado	в		P00X5-	02 🖡						
Arcilla 7	750,0				42	%		Ter	nperatura	23°C		P00X5-	03 📔			fc rai BTC	ngo referen "estabilizad	cial o"	
Arena 7	750,0								Días	14 dias		P00X5-	04 🕨			/			
Agua 2	275,0		42 9	%				R	esistencia	a (MPa)		P00X5-	05				fc referenc común (Por	ial hormig rtland)	ón
NaOH	0,0							Cor	npresión	1,6			1	29 5	57 84	1 11 1	13.8 10	66 19	3 22 0
	001							D	oficianto	v			0,2	-,	.,. 0,-	,.	.0,0 11		- <u>-</u> <u>-</u> , J

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX6

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX7

			l	Resiste	encia M	lecáni	ca - Ca	ampañ	a de er	isayos	prelin	ninares	- ENS	AYO P	00X7				
	Dia de rotura	Rotura Flexión (fcf)					Rotura Con	npresión f	A		Rotura Con	npresión f	в	Din	nensiones ((Ac)	fA / Ac	fB / Ac	fc
Código		(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	fВ	Promedio f A y f B
P00X7-01	27/07/17	2539,91	1814,22	2275,13	5,5	30371,04	30125,88	27723,26	29406,72	32587,33	31420,35	29047,15	31018,28	38,00	40,00	1520,00	19,35	20,41	19,9
P00X7-02	27/07/17	1902,48	1588,67	1520,02	4,1	28076,30	25948,26	24536,11	26186,89	29262,89	25810,97	27468,29	27514,05	38,00	40,00	1520,00	17,23	18,10	17,7
P00X7-03	27/07/17	1725,96	2039,77	2853,72	5,4	24604,76	26948,54	27752,68	26435,32	21407,81	24261,53	24026,17	23231,84	38,00	40,00	1520,00	17,39	15,28	16,3
P00X7-04	27/07/17	1843,64	1206,21	1804,41	4,0	24742,05	27056,41	27448,67	26415,71	21760,85	26360,14	21986,40	23369,13	38,00	40,00	1520,00	17,38	15,37	16,4

	Flex	kión			Comp	oresión			Re	sistencia I	Mecánica -	ENSAYO F	P00X7
	Rotura Fle	xión (fcf)			Rotura FI	exión (fcf)				Rotura Fle	exión (fcf)	Rotura Cor	npresión fc
Código	Carga Promedio	Desv. Estandar	Desv. Estandar	Código	Carga Promedio	Desv. Estandar	Desv. Estandar		Código	MPa	Desv. Estandar	MPa	Desv. Estandar
	N	N	%		N	N	%			fcf	%	fc	%
P00X7-01	2209,8	367,24	16,62	P00X7-01	30212,5	1713,81	5,67		P00X7-01	5,5	17	19,9	6
P00X7-02	1670,4	203,90	12,21	P00X7-02	26850,5	1729,45	6,44	1	P00X7-02	4,1	12	17,7	6
P00X7-03	2206,5	582,07	26,38	P00X7-03	24833,6	2269,87	9,14	1	P00X7-03	5,4	26	16,3	9
P00X7-04	1618,1	357,23	22,08	P00X7-04	24892,4	2515,78	10,11	1	P00X7-04	4,0	22	16,4	10
Caracter	istica	Arcilla	Arer	na 💛 Agua		Curad	o A	[Rotu	ra Compresió	n fc MPa fc	-
de Mue	stra	NaOH	Na2	SiO3		Temperatura	100°C			Rotu	ra Flexión (fo	f) MPa fcf	
P00X7	-01					Horas	4		P00X7-01		fc máx	kima alcanzada	
Material (Gramos)		5 % %			Curad	оB						
Arcilla	857,1	15	¥0	11 %		Temperatura	23°C		P00X7-02		fc ra	ngo referencial B	тс
Arena	642,9			-10-17 /O		Días	14 días		P00X7-03		"esta	bilizado"	

Compre

ia (MPa)

19,9

~

P00X7-04

Agua 255,1

714

NaOH 102,0

al hormigó

común (Portland)

0,0 2,8 5,5 8,3 11,0 13,8 16,5 19,3 22,0

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX8

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX9

Código	Dia de rotura		Rotura F	lexión (fcf)		R	otura Compr	esión ƒ A	L .	F	Rotura Compresión f B				nensiones (fA / Ac	fB / Ac	fc			
	[(N)	(N)	(N)	MPa	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(N)	(mm)	(mm)	(mm2)	MPa	MPa	MPa		
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	f A	f B	f A y		
P00X9-01	29/07/17	588,40	490,33	490,33	1,3	10434,22	9345,69 11	081,46	10287,12	10277,32	10493,06	12326,90	11032,43	38,00	40,00	1520,00	6,77	7,26			
P00X9-02	29/07/17	333,42	343,23	323,62	0,8	6864,62	7786,44 7	276,50	7309,19	8678,84	9747,76	7276,50	8567,70	38,00	40,00	1520,00	4,81	5,64			
P00X9-03	29/07/17	333,42	323,62	372,65	0,8	10277,32	7335,34 7	825,67	8479,44	8119,86	8963,23	7345,14	8142,75	38,00	40,00	1520,00	5,58	5,36			
P00X9-04	29/07/17	529,56	421,68	362,84	1,1	8737,68	10640,16 11	140,30	10172,71	12140,57	8933,81	8296,38	9790,26	38,00	40,00	1520,00	6,69	6,44			
Código			· ·																		
	Carga Promedio	arga Desv. omedio Estandar		Desv. Estandar	4	Código	Carga Promedio		Desv. standar	Estanda	r	Código	N	(Pa	Desv. Esta	indar	MPa	Desv.	Estanda		
	N	1	N	%			N		N	%				fcf	%		fc		%		
P00X9-01	523	,0	56,62	10,83		P00X9-01	10659	9,8	990,85	9,	30	P00X9-	01	1,3		11	7,	0			
P00X9-02	333	,4	9,81	2,94		P00X9-02	2 7938	3,4	1083,92	13,	65	P00X9-	02	0,8		3	5,	2			
	343	,2	25,95	7,56		P00X9-03	8 8311	1,1	1135,67	13,	66	P00X9-	03	0,8		8	5,	5			
P00X9-03				10.00		P00X9-04	9981	1,5	1544,19	15,	47	P00X9-)4	1,1		19	6,	6			
P00X9-03 P00X9-04	438	,0	84,55	19,30																	
P00X9-03 P00X9-04	438	,0	84,55	19,30	1																
P00X9-03 P00X9-04 Caracterís	438	,0	Arcilla	Aren	a	e Agua			Curado	A				Rotura	Compr	esión fo	MPa fc				
P00X9-03 P00X9-04 Caracterís de Muest	438 tica ra	0,	Arcilla NaOH	 Aren Na29 	a SiO3	e Agua		Tem	Curado peratura	A 100°C				Rotura	a Compr a Flexión	esión fc (fcf) M	MPa fc Pa fcf				
P00X9-03 P00X9-04 Caracterís de Muest P00X9-0	438 tica tra	0,0	Arcilla NaOH	• Aren • Na2s	a SiO3	• Agua	•	Tem	Curado peratura loras	A 100°C 4		P00X9-	01	Rotura Rotura	a Compro a Flexión	esión fc i (fcf) M fc máxin	MPa fc Pa fcf na alcanza	la			

14 días

7

х

Compresión

P00X9-03

P00X9-04

fcn

0,0 2,8 5,5 8,3 11,0 13,8 16,5 19,3 22,0

común (Portland)

642,9

255.1

102,0

71,4

33 %

	Dia de		Rotura Fi	exión (fcf)	_		Rotura Con	npresión f	A	5	Rotura Compresión f B			Dimensiones (Ac)			fA / Ac	fB / Ac	fc
Código	rotura	(N)	(N) (N) (N)			(N)	(N)	(N) (N)		(N)	(N)	(N) (N)		(mm) (mm) (mm2)		(mm2)	MPa	MPa	MPa
	Fecha	FM1	FM2	FM3	fcf	AM1	AM2	AM3	f A	BM1	BM2	BM3	f B	d1	d2	Ac	fA	f B	Promedio fAyfB
P00X10-01	19/07/17	1225,8	568,78	1078,73	2,4	16200,50	16357,41	13954,79	15504,23	14131,31	14199,96	16377,02	14902,76	38,00	40,00	1520,00	10,20	9,80	10,0
P00X10-02	19/07/17	5413,2	3942,25	4932,72	11,8	50003,85	52014,21	29772,84	43930,30	50592,25	50347,08	37608,31	46182,55	38,00	40,00	1520,00	28,90	30,38	29,6
P00X10-03	31/07/17	1931,9	2481,07	1755,38	5,1	34568,27	32901,14	29262,89	32244,10	33607,22	34989,95	30174,91	32924,03	38,00	40,00	1520,00	21,21	21,66	21,4
P00X10-04	31/07/17	1657,3	2 1922,09	1608,28	4,3	37274,89	40363,97	39128,33	38922,40	37716,18	37333,73	39520,60	38190,17	38,00	40,00	1520,00	25,61	25,13	25,4
P00X10-05	31/07/17	2039,7	7 1323,89	1255,24	3,8	35254,73	39599,05	37010,11	37287,96	43551,11	37451,41	34970,34	38657,62	38,00	40,00	1520,00	24,53	25,43	25,0
P00X10-06	19/07/17	1755,3	8 1529,83	1637,70	4,0	44639,64	44286,61	46522,51	45149,59	51631,75	50258,83	47110,91	49667,16	38,00	40,00	1520,00	29,70	32,68	31,2
P00X10-07	-	3608,8	3000,82	3216,56	8,1	45375,14	37206,24	40207,06	40929,48	39275,43	34107,35	42207,61	38530,13	38,00	40,00	1520,00	26,93	25,35	26,1
Rotura Flexión (fcf)			13457		Comp Rotura Fir		ra Flexión ((fcf)	THEO		R	kesis(e	Rotura Flez	exión (fcf)		Rotura C	ompresión fc		
Codigo	Promed	io E	itandar N	Estandar %		Codigo	Promed	io Es	tandar N	Estandar %		Codigo	n f	/Pa fcf	Desv. Esta %	ndar	MPa fc	Desv. E	Estandar %
P00X10-01	95	57,8	344,82	36,00	F	200X10-01	1520	03,5	1218,08	8,0		P00X10-	01	2,4		36	10,		8
P00X10-02	476	32,7	750,08	15,75	5 F	00X10-02	4505	56,4	9171,55	20,3	5	P00X10-	02	11,8		16	29,	3	20
P00X10-03	205	56,1	378,46	18,41	F	200X10-03	3258	84,1 :	2354,01	7,2	2	P00X10-	03	5,1		18	21,	1	7
P00X10-04	172	29,2	168,81	9,76	F	200X10-04	3855	56,3	1293,62	3,3	3	P00X10-	04	4,3		10	25,	1	3
P00X10-05	153	39,6	434,49	28,22	2 F	00X10-05	3797	72,8	3205,11	8,4	•	P00X10-	05	3,8		28	25,		8
P00X10-06	164	\$1,0	112,81	6,87	-	200X10-06	4740	38,4	2974,78	6,2	7	P00X10-	06	4,0		7	31,	2	6
P00X10-07	327	75,4	308,25	9,41	F	200X10-07	3972	29,8	3909,57	9,8	•	P00X10-	07	8,1		9	26,	1	10
Caracteri de Mues	stica stra	•	Arcilla NaOH	Arer	na SiO3	 Agua 		Те	Curad	io A -				Rotur Rotur	a Comp a Flexió	resión fe n (fcf) N	c MPa fo IPa fcf	:	
P00X10	-06								Horas			P00X10-	-01		-				
Material (Gramos)			5 % %					Curad	lo B		P00X10-	-02		for	ango refere	encial BTC		
Arcilla	50,0		14 9	•	38	%		Ter	mperatura	23°C		P00X10-	-03		- est	abilizado" 4	c méxime	ehernede	
Arena	50,0								Días	14 días		P00X10	-05				- mpound i		
								F	Resistenc	ia (MPa)		P00X10-	-06		fc re horm	ferencial igón comú	η		
Agua	107,9																		
Agua NaOH	107,1			38 %				Co	ompresión	31,2	1	P00X10-	-07		(Port	land)	21.0.0		0 25 0

Datos recolectados de los diferentes ensayos de flexión y compresión, Campaña experimental POOX10

Muestra - GEO-E101 fabricada a parir de la arcilla Tipo B

Muestra - GEO-E301 fabricada a parir de la arcilla Tipo C

Muestra - GEO-E501 fabricada a parir de la arcilla Tipo D

Muestra - GEO-B01 fabricada a parir de la arcilla Tipo A

Muestra - GEO-B03 fabricada a parir de la arcilla Tipo A

Muestra- GEO-B07 fabricada a parir de la arcilla Tipo A

Muestra - GEO-D102 fabricada a parir de la arcilla Tipo A

Muestra - GEO-D202 fabricada a parir de la arcilla Tipo A

Muestra - GEO-FPA04 fabricada a parir de la arcilla Tipo A

Muestra - P00X10-07 fabricada a parir de la arcilla Tipo A

ATG de muestra GEO-B03 fabricada a parir de la arcilla Tipo A

Comparación entre ATG de arcilla Tipo A y muestra polimerizada

ATG de muestra Arcilla Tipo A y GEO-B03

ATG de muestra GEO-B07 fabricada a parir de la arcilla Tipo A

Comparación entre ATG de arcilla Tipo A y muestra polimerizada

ATG de muestra Arcilla Tipo A y GEO-B07

ATG de muestra GEO-D102 fabricada a parir de la arcilla Tipo A

Comparación entre ATG de arcilla Tipo A y muestra polimerizada

ATG de muestra Arcilla Tipo A

ATG de muestra Arcilla Tipo A y GEO-D102

ATG de muestra GEO-D0202 fabricada a parir de la arcilla Tipo A

Comparación entre ATG de arcilla Tipo A y muestra polimerizada

ATG de muestra Arcilla Tipo A

ATG de muestra Arcilla Tipo A y GEO-D0202

ATG de muestra GEO-E101 fabricada a parir de la arcilla Tipo B

Comparación entre ATG de arcilla Tipo A y muestra polimerizada

ATG de muestra Arcilla Tipo B

ATG de muestra Arcilla Tipo B y GEO-E101

Anexo 6.12.3 Análisis SEM de geo-polímeros a base de arcilla

345

Anexo 6.12.3 Análisis SEM de geo-polímeros a base de arcilla

Muestra - GEO-B03 fabricada a parir de la arcilla Tipo A

Anexo 6.12.3 Análisis SEM de geo-polímeros a base de arcilla

Muestra - GEO-B07 fabricada a parir de la arcilla Tipo A

Anexo 6.12.3 Análisis SEM de geo-polímeros a base de arcilla

Muestra - GEO-D101 fabricada a parir de la arcilla Tipo A

Muestra - GEO-D102 fabricada a parir de la arcilla Tipo A

Anexo 6.12.3 Análisis SEM de geo-polímeros a base de arcilla

Muestra - GEO-D202 fabricada a parir de la arcilla Tipo A

Muestra - GEO-D202 fabricada a parir de la arcilla Tipo A

Anexo 6.12.3 Análisis SEM de geo-polímeros a base de arcilla

Muestra - GEO-FP04 fabricada a parir de la arcilla Tipo A

Muestra - GEO-FP04 fabricada a parir de la arcilla Tipo A

Anexo 6.12.3 Análisis SEM de geo-polímeros a base de arcilla

Muestra - GEO-FP06 fabricada a parir de la arcilla Tipo A

Anexo 6.12.3 Análisis SEM de geo-polímeros a base de arcilla

Muestra - P00X10-07 fabricada a parir de la arcilla Tipo A

x 130.000

Muestra - P00X10-07 fabricada a parir de la arcilla Tipo A

|--|

Muestra - GEO-D202 fabricada a parir de la arcilla Tipo A

Muestra -	GEO-FPO)1 fabricada	a parir	de la	arcilla	Tipo /	4

Muestra - GEO-FP06 fabricada a parir de la arcilla Tipo A

"T"(h1/2)

GEO-FP07-01 fabricada a parir de la arcilla Tipo A

GEO-FP07-02 fabricada a	parir de la arcilla	ı Tipo A
-------------------------	---------------------	----------

-	6 4 8 C					
Dat	0S		17/6/10	"Mo" (Ka):		0.21665
Mue	na. estra:		Geo EPB7-02	"S" (m*2):		0.0030184
Wide	Hora	Tiempo (min)	"T"(h1/2)	"Mi"(Kg)	"Mi"(g)	m"(Kg/m*2)
	10.01	1	0 129099445	0 21892	218.92	0.75205
	10:09	9	0.387298335	0.22143	221.43	1,58362
	10:16	16	0,516397779	0,22456	224,56	2,62059
	10:49	36	0,774596669	0,22855	228,55	3,94249
	11:04	49	0,903696114	0,23242	232,42	5,22462
	11:21	64	1,032795559	0,23608	236,08	6,43719
12:01		81	1,161895004	0,23903	239,03	7,41452
	13:45	121	1,420093894	0,24107	241,07	8,09038
	9,00 y = R ²	= 6,301x - 0,47 = 0,9771	Ca 42	pilaridad H		<i>.</i>
D(kg/m2)	6,75				-	
	4,50			•		
	2,25	./	-			
	0,00	0	,40	0,80	1,20	1,60
"T"(h1/2)						

"T"(h1/2)

GEO-FP07-03 fabricada a parir de la arcilla Tipo A

Dat	OS		47/0/40	UN 4 - U /IZ - \-		0.04004
Mue	estra:		Geo FPB7-04	"S" (m*2):		0,00290864
	Hora	Tiempo (min)	"T"(h1/2)	"Mi"(Kg)	"Mi"(g)	m"(Kg/m*2)
	10:01	1	0,129099445	0,21945	219,45	0,89733
	10:09	9	0,387298335	0,22224	222,24	1,85654
	10:16	16	0,516397779	0,22551	225,51	2,98077
-	10:49	36	0,774596669	0,22952	229,52	4,35943
-	11:04	49	0,903696114	0,23377	233,77	5,82059
-	11:21	64	1,032795559	0,23759	237,59	7,13392
-	12:01	121	1,101895004	0,23971	239,71	8 21346
			C	unilaridad H		
			CC	рпапааа п		
	^{9,00} y =	6,4321x - 0,1	955			-
	R ²	= 0,9663			•	
	6 75			10	•	
2)	0,75					
				-		
, E	1.50		-			
by by	4,50		/	•		
D						
			-			
	2,25					
	_/					
		-				
	0,00		od Morene			
	0,00	0	,40	0,80	1,20	1,60
				"T"/L1 /0)		
				1 (N1/Z)		

GEO-FP07-05 fabricada a parir de la arcilla Tipo A

Dat	os					
Fec	ha:		17/6/18	"Mo" (Kg):		0,21755
Mue	estra:	Tiampa	Geo FPB7-05	"S" (m*2):		0,00300564
_	Hora	(min)	"T"(h1/2)	"Mi"(Kg)	"Mi"(g)	m"(Kg/m*2)
	10:0	1 1	0,129099445	0,21985	219,85	0,76523
	10:0	9 9	0,387298335	0,22253	222,53	1,65689
	10:1	6 16	0,516397779	0,22566	225,66	2,69826
	10:4	9 36	0,774596669	0,23004	230,04	4,15552
	11:0	4 49	0,903696114	0,23365	233,65	5,35660
	11:2	1 64	1,032795559	0,23678	236,78	6,39797
	12:0	1 81	1,161895004	0,23923	239,23	7,21311
	10.4	5 121	1,420033034	0,24130	241,30	0,12003
			Co	pilaridad H		
800						
	9,00 y = 6,2162x - (689			
	R	² = 0,9854				·
	6,75 -					
m2)						
				-		
6	4,50 +			-		
Ň						
10000						
	0.05		-			
	2,25					
	0.00					
	0,00 -	0 0	10	0.00	1.00	1.40
	0,0	0 0	,40	0,80	1,20	1,60
				"T"/b1/2)		
				1 (117 Z)		

Date	os					
Fec	ha:		17/6/18	"Mo" (Kg):		0,2194
Mue	estra:		Geo FPB7-06	"S" (m*2):		0,0028812
4	Hora	Tiempo (min)	"T"(h1/2)	"Mi"(Kg)	"Mi"(g)	m"(Kg/m*2)
	10:0)1 1	0,129099445	0,22172	221,72	0,80522
	10:0	9	0,387298335	0,22454	224,54	1,78398
	10:1	16 16	0,516397779	0,22916	229,16	3,38748
	10:4	19 36	0,774596669	0,23478	234,78	5,33805
	11.0	21 6A	1 032705550	0,23003	230,03	7 71206
	12:0	04	1,161895004	0,24260	242.60	8.05220
	13:4	15 121	1,420093894	0,24324	243,24	8,27433
	10,00	y = 6,673x - 0,02	222	apilaridad H		/
	2272727	R² = 0,9453				•
D(kg/m2)	7,50			•		
	5,00			•		
	2,50		•			
	0,00		10	0.00	1.00	
	0,	.00 (,40	0,80	1,20	1,00
				"T"(h1/2)		

Permeabilidad al vapor de agua - GEO-FP02-01 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP02-02 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP02-03 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP02-04 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP02-05 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP02-06 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP05-01 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP05-02 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP05-03 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - Geo GEO-FP05-04 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP05-05 fabricada a parir de la arcilla Tipo A

Permeabilidad al vapor de agua - GEO-FP05-06 fabricada a parir de la arcilla Tipo A

Anexo 6.12.8 Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla

(MOE) - GEO-FP02-01 fabricada a parir de la arcilla Tipo A

					D	eterminació	n del mód	ulo de elas	ticidad din	ámico (MOE)				
(1) ref.	Lesli	ie, J. R. and	Chessma	n, W.J. (194	9). " An ultrasor	ic method of s	studying det	erioration and	d cracking in	concrete estru	ictures" J. Am.	Concr. Inst.,	21 (1), 17-3	35	
(2) ref.	UNE	EN-ISO 12	680-1		1.0										
(3) ref.	Vipu	lanandan C.	, Garas V	(2008); "Ele	ctrical resistivity	, Pulse Veloci	ty, and comp	pressive prop	erties of car	bon fiber-reinfo	rced cement r	nortar"; Jourr	nal of mater	als in civil eng	ineering.
Nº p	Nº proveta		a SEPARACIO		Peso	altura	anchura base	Longitud	Flexión. Cara1	Flexión. Cara2	freq. longitudinal	velocitat de pas sò maretilet long.	MOE MPa flex. cara 1	MOE MPa flex. cara 2	MOE MPa longitudinal
Geo	FP2-1	1	m	m	a	mm	mm	mm	Hz	Hz	Hz	m/seq	(2) ref	(2) ref.	1
	1		a	35.5	472.86	39.44	39.75	158.91	377	4 3847	3673	1193 95	1410	1 1474	3 2528
			b	87.5	112,00	39.71	39.85	158.93	382	2 3863	3680	1100,00	cor	sidera	considera
d	+		c	35.5	-	39.81	39.77	158 21	374	3 3846	3778		Po	isson	Poisson
-			d	79.3		39.86	39.72	158.3	375	3 3833	3828				(3) ref.
									362	2 3771	3839		-		2692
- a	D								379	1 3880	3788		<u>.</u>		no consid.
	1		Std.	Desv.	-				69.106921	37.4806616	71.87396376		<u>.</u>		Poisson
Poisson	hipot	.(µ)	mitja	anes	472.86	39,71	39,77	158,59	375	1 3840	3764		-		(1) ref.
0	,16	sensibilitat		ibilitat	0,01	0,01	0,01	0,01	5 - S.	1 1	1				
	1	err. Mes. rel		es. rel.	2,11E-05	2,52E-04	2,51E-04	6,31E-05	2,67E-0	4 2,60E-04	2,66E-04	2,23E-02			1
			err. a	ccid.					79,4581820	43,09474584	82,63968836				
			err. Accid. relatiu						2,12E-0	2 1,12E-02	2,20E-02				
			ERF	ROR									660,2	9 396,4	2 3,01
VOLUME	EN	DENSIDAD	D SE	AREA CCIÓN	altura/ longidud Cara 1	anchura/ longidud Cara 2	a		b	J cara 1	J cara 2	d d	T1	cara 1	T1 cara 2
cm ³		kg/m ³		cm ²						adimens.	adimens.	ēs -	a	limens.	adimens.
250	,44	1888,	15												
															STD
	_			1579,17	0,25	0,2	5	9,07	6,73	0,0251	0,025	52 0,	8680	1,398	1,399
5,66E	-04	5,87E-(04 5	,03E-04	3,15E-04	3,14E-0	4 -		-	4,74E-05	4,76E-0			2,71E-03	2,71E-03

(MOE) - GEO-FP02-02 fabricada a parir de la arcilla Tipo A

					D	eterminació	n del mód	ulo de elas	ticidad dina	ámico (MOE)				
(1) ref.	Les	lie, J. R. a	and Che	ssman, W.J. (194	9). " An ultrasor	nic method of s	studying det	erioration and	d cracking in	concrete estru	ctures" J. Am.	Concr. Inst.,	21 (1), 17-3	5	
(2) ref.	UNE	E-EN-ISO	12680-	1											
(3) ref.	Vipu	lanandar	n C., Ga	ras V,(2008); "Ele	ctrical resistivity	, Pulse Veloci	ty, and comp	pressive prop	erties of carb	on fiber-reinfo	prced cement r	mortar"; Journ	nal of materia	als in civil eng	ineering.
Nº I	Nº provet		SEPAF	RACIÓ SUPORTS	e Peso	altura	anchura base	Longitud	Flexión. Cara1	Flexión. Cara2	freq. longitudinal	velocitat de pas sò maretllet long.	MOE MPa flex. cara 1	MOE MPa flex. cara 2	MOE MPa longitudinal
Geo	FP2-	2		mm	q	mm	mm	mm	Hz	Hz	Hz	m/seg	(2) ref.	(2) ref.	
-			а	35.4	470.44	40.01	39.8	158.39	3661	3883	3616	1160.61	13606	14504	2393
	4		b	87.4		39.01	39.83	158.36	3698	3750	3750	1100,01	con	sidera	considera
d	+		- C	35.4		39.52	39.69	158 11	3689	3847	3734		Po	isson	Poisson
(III)			d	79.1		39.49	39.75	158.14	3690	3830	3701		-		(3) ref.
							00,10	100,11	3663	3811	3550		-		2549
a	b	0							3684	3790	3651		1		no consid.
	1		8	Std. Desv.	-				15.1745400	46 1854955	76 26270385		1		Poisson
Poisso	n hipo	t.(µ)		mitjanes	470.44	39.51	39.77	158.25	3681	3819	3667		<u>.</u>		(1) ref.
	0,16			sensibilitat	0,01	0,01	0,01	0,01	1	1	1				1
			e	err. Mes. rel.	2,13E-05	2,53E-04	2,51E-04	6,32E-05	2,72E-04	2,62E-04	2,73E-04	2,42E-02			
	1			err. accid.		13			17,4474760	53,1034433	87,68580096		8		
			err.	Accid. relatiu					4,74E-0	1,39E-02	2,39E-02				
				ERROR									189,94	468,01	2,89
VOLUM	EN	DENSI	PENSIDAD AREA SECCIÓN		altura/ longidud Cara 1	anchura/ longidud Cara 2	a		b	J cara 1	J cara 2	d	T1	cara 1 T	1 cara 2
cm ³		kg/m	n ³	cm ²		-				adimens.	adimens.	5	ad	imens.	adimens.
24	8,63	189	92,14												
															STD
				1571,11	0,25	0,2	5	9,07	6,73	0,0248	0,025	54 0,	8680	1,396	1,401
5,68	E-04	5,89	9E-04	5,05E-04	3,16E-04	3,15E-0-	4 -		-	4,71E-05	4,79E-0		2	,71E-03	2,71E-03

Anexo 6.12.8 Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla

					D)eterminació	n del mód	ulo de elas	ticidad dina	ámico (MOE)				
(1) ref.	Les	lie, J. R. a	and Che	ssman, W.J. (194	9). " An ultrasor	nic method of :	studying det	erioration and	d cracking in	concrete estru	uctures" J. Am.	Concr. Inst.,	21 (1), 17-3	5	
(2) ref.	UNI	E-EN-ISO	12680-	-1											
(3) ref.	Vipu	lanandar	n C., Ga	ras V,(2008); "Ele	ectrical resistivity	y, Pulse Veloci	ity, and comp	pressive prop	erties of cart	oon fiber-reinfo	orced cement r	nortar"; Jour	nal of materi	als in civil eng	ineering.
N°	N⁰ proveta		a SEPARACIÓ SUPO		S Peso	altura	anchura base	Longitud	Flexión. Cara1	Flexión. Cara2	freq. longitudinal	velocitat de pas sò maretllet long.	MOE MPa flex. cara 1	MOE MPa flex. cara 2	MOE MPa longitudina
Ge	o FP2-	2		mm	g	mm	mm	mm	Hz	Hz	Hz	m/seg	(2) ref.	(2) ref.	
			а	35.5	472.48	39.9	39.93	158.33	3800	3868	3683	1161 38	1339	1 14294	236
	1		b	87.4		39.81	40.18	158 14	3650	3866	3666	1101,00	cor	sidera	considera
d	-		c	35.5		39,91	40,19	158 58	3659	3858	3662		Po	isson	Poisson
			d	79.2		39.57	40.12	158.26	3703	3 3791	3676			T	(3) ref.
									3658	3 3821	3661		-		252
a	D	0							3667	3798	3658				no consid.
			3	Std. Desv.					56.9681197	3 34,8405893	9.770704512			-	Poisson
Poisso	on hipo	t.(µ)		mitjanes	472,48	39,80	40,11	158,33	3690	3834	3668		1		(1) ref.
	0,16	S		sensibilitat	0,01	0,01	0,01	0,01	1	1 1	1				- Destruction
			e	err. Mes. rel.	2,12E-05	2,51E-04	2,49E-04	6,32E-05	2,71E-04	1 2,61E-04	2,73E-04	3,40E-03			
		err. accid.		err. accid.					65,5011552	29 40,0592272	11,23422076				
		3	err	Accid. relatiu					1,78E-02	02 1,04E-02	04E-02 3,06E-03		WARD WARDOW		13
				ERROR									535,2	2 362,16	5 2,8
VOLUN	VOLUMEN		DAD	AREA SECCIÓN	altura/ longidud Cara 1	anchura/ longidud Cara 2	a		b	J cara 1	J cara 2	d d	T1	cara 1	Г1 cara 2
cm ³		kg/m ³		cm ²					1	adimens.	adimens.		ac	timens.	adimens.
25	2,70	186	59,70												
															STE
				1596,08	0,25	0,2	5	9,07	6,73	0,0254	0,026	51 0,	8680	1,401	1,407
5,64	E-04	5,85	5E-04	5,01E-04	3,14E-04	3,13E-0	4 -		-	4,79E-05	4,89E-0			2,71E-03	2,71E-03

(MOE) - GEO-FP02-03 fabricada a parir de la arcilla Tipo A

(MOE) - GEO-FP02-04 fabricada a parir de la arcilla Tipo A

					D	eterminació	n del mód	ulo de elas	ticidad diná	mico (MOE)				
1) ref.	Les	lie, J. R. a	nd Che	ssman, W.J. (194	9). " An ultrasor	nic method of	studying det	erioration and	d cracking in c	oncrete estru	ctures" J. Am	Concr. Inst.,	21 (1), 17-35	i.	
2) ref.	UNI	E-EN-ISO	12680-	1											
3) ref.	Vipu	lanandan	C., Ga	ras V,(2008); "Ele	ectrical resistivity	, Pulse Veloci	ty, and comp	pressive prop	erties of carbo	on fiber-reinfo	rced cement	mortar"; Jour	nal of materia	ls in civil eng	ineering.
Nº proveta		ta SEPAR/		RACIÓ SUPORTS	S Peso	altura	anchura base	Longitud	Flexión. Cara1	Flexión. Cara2	freq. longitudinal	velocitat de pas sò maretllet long.	MOE MPa flex. cara 1	MOE MPa flex. cara 2	MOE MPa longitudina
Geo FP2-2		2		mm	g	mm	mm	mm	Hz	Hz	Hz	m/seg	(2) ref.	(2) ref.	
			а	35.5	477.66	40.62	39.89	158.8	3725	3831	3702	1178 45	13448	14351	243
1	2		b	87.6		40.52	40	158 81	3716	3850	3715		cons	idera	considera
d	-		c	35.5		40.04	39.9	158 59	3719	3855	3690		Pois	son	Poisson
-			d	79.4	-	40.08	39.99	158.6	3714	3717	3744				(3) ref.
1								,.	3722	3802	3713				259
a	D	C							3713	3837	3713				no consid.
6				Std. Desv.					4,708148963	51,64752333	17.97127337				Poisson
Poisso	n hipo	t.(µ)		mitjanes	477,66	40,32	39,95	158,70	3718	3815	3713		-		(1) ref.
(0,16	100 - 100 - 10 - 10 - 10 - 10 - 10 - 10		sensibilitat	0,01	0,01	0,01	0,01	1	1	1				
			e	err. Mes. rel.	2,09E-05	2,48E-04	2,50E-04	6,30E-05	2,69E-04	2,62E-04	2,69E-04	5,90E-03	1		
				err. accid.					5,413364489	59,38360722	20,66312129			8	
	8		err.	Accid. relatiu	1	3			1,46E-03	1,56E-02	5,57E-03				1
				ERROR									98,88	510,39	2,9
VOLUM	EN	DENSIDAD		AREA SECCIÓN	altura/ longidud Cara 1	anchura/ longidud Cara 2	a		b J	I cara 1	J cara 2	2 d	T1	cara 1 1	1 cara 2
cm ³		kg/m	1 ³	cm ²					i	adimens.	adimens		adi	mens.	adimens.
255	5,57	186	9,02												
								_							STD
				1610,38	0,25	0,2	5	9,07	6,73	0,0263	0,025	55 0,	8680	1,409	1,402
5,618	-04	5,82	E-04	4,98E-04	3,11E-04	3,13E-0	4 -	-	-	4,92E-05	4,80E-0		2	70E-03	2,70E-03

Anexo 6.12.8 Determinación del módulo de elasticidad dinámico MOE de geo-polímeros a base de arcilla

(MOE) - GEO-FP02-05 fabricada a parir de la arcilla Tipo A

					D	eterminació	n del mód	ulo de elas	ticidad din	ámico (MOE)				
(1) ref.	Les	ie, J. R. ar	nd Ches	ssman, W.J. (194	9). " An ultrasor	nic method of s	studying det	erioration and	d cracking in	concrete estru	ictures" J. Am.	Concr. Inst.,	21 (1), 17-	35	
(2) ref.	UNE	E-EN-ISO	12680-	1											
(3) ref.	Vipu	lanandan	C., Gar	as V,(2008); "Ele	ctrical resistivity	, Pulse Veloci	ty, and comp	pressive prop	erties of carl	bon fiber-reinfo	rced cement n	nortar"; Journ	nal of mater	ials in civil eng	gineering.
Nº provet		eta SEP/		ACIÓ SUPORTS	6 Peso	altura	anchura base	Longitud	Flexión. Cara1	Flexión. Cara2	freq. longitudinal	velocitat de pas sò maretllet long.	MOE MPa flex. cara	MOE MPa 1 flex. cara 2	MOE MPa longitudinal
Geo	FP2-	2		mm	a	mm	mm	mm	Hz	Hz	Hz	m/sea	(2) ref.	(2) ref.	
	1		9	35.5	477.64	40.36	30.75	159 59	356	1 3700	3670	1122.55	1205	1210	2250
	3		h	87.5	477,04	40,30	20.01	150,50	249	1 3/00	3424	1122,00	1200	nsidera	considera
d	+			35.5	-	40,37	39,91	158.5	349/	4 347	5 3475		P	oisson	Poisson
1	3 y		d	79.3		40,42	35,75	158.54	340	6 3/96	3480			Jogon	(3) ref
			u	10,0		40,2	51,12	150,04	349	3400	3484			-	2206
a	b	c			-				340	2 3610	3404		-	-	no consid
1.1			20	Std Deev					20.0177726	105 620706	119 0006599		-	-	Poisson
Poisso	hino	t (u)		mitianes	477.64	40.34	30.28	158 55	30,0177720	3 103,033730	3540		1	-	(1) ref
1 01000	16	(P)		sensibilitat	0.01	0.01	0.01	0.01	330	1 1	1			-	(1)101.
	1	err, Mes.		rr. Mes. rel.	2 09E-05	2 48E-04	2 55E-04	6.31E-05	2.86E-0	4 2 80E-04	2.82E-04	3 90E-02	-		
	-	er		err. accid.	2,002.00	2,102 01	2,002 01	0,012.00	34,5140192	121.463175	56 136.7103312	0,002.02	5		
	8			Accid. relatiu					9,85E-03	3 3 40E-02	3.86E-02		8		18
				ERROR							0,000 02		292,3	948,9	5 2,76
VOLUM	EN	DENSIDAD		AREA SECCIÓN	altura/ longidud Cara 1	anchura/ longidud Cara 2	a		ь	J cara 1	J cara 2	d	T1	cara 1	T1 cara 2
cm ³		kg/m ³		cm ²						adimens.	adimens.	8	a	dimens.	adimens.
251	,22	1901,25													
															STD
			_	1584,56	0,25	0,2	5	9,07	6,73	0,0265	0,024	12 0,	8680	1,410	1,390
5,66E	-04	5,86	E-04	5,02E-04	3,11E-04	3,18E-0	4 -			4,94E-05	4,61E-0)5 -		2,70E-03	2,71E-03

(MOE) - Geo FPA2-06

					D	eterminació	n del mód	ulo de elas	ticidad din	ámico (MOE)				
(1) ref.	Les	ie, J. R. a	nd Che	ssman, W.J. (194	9). " An ultrasor	nic method of s	studying det	erioration and	d cracking in	concrete estru	ictures" J. Am.	Concr. Inst.,	21 (1), 17-	35	
(2) ref.	UNE	E-EN-ISO	12680-	1	-										
(3) ref.	Vipu	lanandan	C., Ga	ras V,(2008); "Ele	ctrical resistivity	, Pulse Velocit	ty, and comp	pressive prop	erties of carl	bon fiber-reinfo	rced cement r	mortar"; Journ	nal of mater	ials in civil eng	ineering.
N°	Nº proveta		SEPAR	RACIÓ SUPORTS	6 Peso	altura	anchura base	Longitud	Flexión. Cara1	Flexión. Cara2	freq. longitudinal	velocitat de pas sò maretllet long.	MOE MPa flex. cara	MOE MPa I flex. cara 2	MOE MPa longitudinal
Ge	FP2-	2		mm	a	mm	mm	mm	Hz	Hz	Hz	m/sea	(2) ref.	(2) ref.	
			а	35.5	479.89	40.51	39.99	158 74	370	3800	3689	1183 81	1363	2 1414	8 2472
	2		b	87.6	475,05	40.3	39.9	158 72	367	3 3789	3759	1100,01	co	sidera	considera
d	d		с С	35.5	-	40.45	30.02	158.5	5 37	8 3802	3798		P	oisson	Poisson
-	1	2 N	d	79.3		40,43	39.96	158.62	377	8 3680	3683				(3) ref.
					-	10,00	00,00	100,02	378	3 3705	3781			-	2632
a	b	c			-				375	1 3821	3676				no consid
				Std Desv	-				43 494444	1 50 7204758	54 52705750			-	Poisson
Poisso	n hino	t (u)		mitianes	479.89	40 32	39.94	158 65	373	7 3781	3731		2		(1) ref
1 01000	0.16	sensibili		sensibilitat	0.01	0.01	0.01	0.01	515	1 1	1			-	(1)101
-			e	rr, Mes. rel.	2.08E-05	2.48E-04	2 50E-04	6.30E-05	2.68E-0	4 2.64E-04	2.68E-04	1.71E-02	-		-
			err. accid.				-,		50.0093095	59 58.3177008	62.69445573			0	-
	8		err. Accid. relatiu			3			1.34E-0	2 1.54E-02	1.68E-02		1		
	1		ERROR										425.3	499.2	7 2.94
												10			
VOLUM	EN	DENSIDAD		AREA SECCIÓN	altura/ longidud Cara 1	anchura/ longidud Cara 2	a		ь	J cara 1	J cara 2	d	Т1	cara 1	F1 cara 2
cm ³		kg/n	n ³	cm ²						adimens.	adimens.	2	a	dimens.	adimens.
25	5,51	187	8,16												
															STD
				1610,58	0,25	0,2	5	9,07	6,73	0,0264	0,025	56 0,	8680	1,409	1,402
5,61	E-04	5,82	E-04	4,98E-04	3,11E-04	3,13E-04	4 -			4,93E-05	4,81E-(2,70E-03	2,70E-03