
Exploiting Task-Based

Programming Models

for Resilience

Luc Jaulmes

Barcelona, 2019

Advisors: Marc Casas Guix,

Miquel Moretó Planas

A thesis submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy

in the Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Abstract

Hardware errors become more common as silicon technologies shrink and become
more vulnerable, especially in memory cells, which are the most exposed to errors.
Permanent and intermittent faults are caused by manufacturing variability and
circuits ageing. While these can be mitigated once they are identified, their con-
tinuous rate of appearance throughout the lifetime of memory devices will always
cause random unexpected errors. In addition, transient faults are caused by effects
such as radiation or small voltage/frequency margins, and there is no efficient way
to shield against these types of events.

Other constraints related to the diminishing sizes of transistors, such as power
consumption and memory latency have caused the microprocessor industry to turn
to increasingly complex processor architectures. To solve the difficulties arising
from programming such architectures, new programming models have emerged
that rely on runtime systems. These systems form a new intermediate layer on
the hardware-software abstraction stack, that performs tasks such as distributing
work across computing resources: processor cores, accelerators such as GPUs and
FPGAs, etc. These runtime systems dispose of a lot of information, both from the
hardware and the applications, and offer thus many possibilities for optimisations.

This thesis proposes solutions to the increasing fault rates in memory, across
multiple resilience disciplines, from algorithm-based fault tolerance to hardware
error correcting codes, through OS reliability strategies. These solutions rely for
their efficiency on the opportunities presented by runtime systems.

The first contribution of this thesis is an algorithmic-based resilience technique,
allowing to tolerate detected errors in memory. This technique allows to recover
data that is lost by performing computations that rely on simple redundancy
relations identified in the program. The recovery is demonstrated for a family of
iterative solvers, the Krylov subspace methods, and evaluated for the conjugate
gradient solver. The runtime can transparently overlap the recovery with the

i

Abstract

computations of the algorithm, which allows to mask the already low overheads of
this technique.

The second part of this thesis proposes a metric to characterise the impact
of faults in memory, which outperforms state-of-the-art metrics in precision and
assurances on the error rate. This metric reveals a key insight into data that is
not relevant to the program, and we propose an OS-level strategy to ignore errors
in such data, by delaying the reporting of detected errors. This allows to reduce
failure rates of running programs, by ignoring errors that have no impact.

The architectural-level contribution of this thesis is a dynamically adaptable
Error Correcting Code (ECC) scheme, that can increase protection of memory
regions where the impact of errors is highest. A runtime methodology is presented
to estimate the fault rate at runtime using our metric, through performance mon-
itoring tools of current commodity processors. Guiding the dynamic ECC scheme
online using the methodology’s vulnerability estimates allows to decrease error
rates of programs at a fraction of the redundancy cost required for a uniformly
stronger ECC. This provides a useful and wide range of trade-offs between redun-
dancy and error rates.

The work presented in this thesis demonstrates that runtime systems allow to
make the most of redundancy stored in memory, to help tackle increasing error
rates in DRAM. This exploited redundancy can be an inherent part of algorithms
that allows to tolerate higher fault rates, or in the form of dead data stored in
memory. Redundancy can also be added to a program, in the form of ECC. In all
cases, the runtime allows to decrease failure rates efficiently, by diminishing recov-
ery costs, identifying redundant data, or targeting critical data. It is thus a very
valuable tool for the future computing systems, as it can perform optimisations
across different layers of abstractions.

ii

Resumen

Los errores en memoria se vuelven más comunes a medida que las tecnologías de
silicio reducen su tamaño. La variabilidad de fabricación y el envejecimiento de los
circuitos causan fallos permanentes e intermitentes. Aunque se pueden mitigar una
vez identificados, su continua tasa de aparición siempre causa errores inesperados.
Además, la memoria también sufre de fallos transitorios contra los cuales no se
puede proteger eficientemente. Estos fallos están causados por efectos como la
radiación o los reducidos márgenes de voltaje y frecuencia.

Otras restricciones coetáneas, como el consumo de energía y la latencia de la
memoria, obligaron a las arquitecturas de computadores a volverse cada vez más
complejas. Para programar tales procesadores, se desarrollaron modelos de pro-
gramación basados en entornos de ejecución. Estos sistemas forman una nueva
abstracción entre hardware y software, realizando tareas como la distribución del
trabajo entre recursos informáticos: núcleos de procesadores, aceleradores, etc. Es-
tos entornos de ejecución disponen de mucha información tanto sobre el hardware
como sobre las aplicaciones, y ofrecen así muchas posibilidades de optimización.

Esta tesis propone soluciones a los fallos en memoria entre múltiples disciplinas
de resiliencia, desde la tolerancia a fallos basada en algoritmos, hasta los códigos de
corrección de errores en hardware, incluyendo estrategias de resiliencia del sistema
operativo. La eficiencia de estas soluciones depende de las oportunidades que
presentan los entornos de ejecución.

La primera contribución de esta tesis es una técnica a nivel algorítmico que
permite corregir fallos encontrados mientras el programa su ejecuta. Para corregir
fallos se han identificado redundancias simples en los datos del programa para
toda una clase de algoritmos, los métodos del subespacio de Krylov (gradiente
conjugado, GMRES, etc). La estrategia de recuperación de datos desarrollada
permite corregir errores sin tener que reinicializar el algoritmo, y aprovecha el

iii

Resumen

modelo de programación para superponer las computaciones del algoritmo y de la
recuperación de datos.

La segunda parte de esta tesis propone una métrica para caracterizar el impacto
de los fallos en la memoria. Esta métrica supera en precisión a las métricas de
vanguardia y permite identificar datos que son menos relevantes para el programa.
Se propone una estrategia a nivel del sistema operativo retrasando la notificación
de los errores detectados, que permite ignorar fallos en estos datos y reducir la
tasa de fracaso del programa.

Por último, la contribución a nivel arquitectónico de esta tesis es un esquema
de Código de Corrección de Errores (ECC por sus siglas en inglés) adaptable
dinámicamente. Este esquema puede aumentar la protección de las regiones de
memoria donde el impacto de los errores es mayor. Se presenta una metodología
para estimar el riesgo de fallo en tiempo de ejecución utilizando nuestra métrica,
a través de las herramientas de monitorización del rendimiento disponibles en los
procesadores actuales. El esquema de ECC guiado dinámicamente con estas esti-
maciones de vulnerabilidad permite disminuir la tasa de fracaso de los programas
a una fracción del coste de redundancia requerido para un ECC uniformemente
más fuerte.

El trabajo presentado en esta tesis demuestra que los entornos de ejecución
permiten aprovechar al máximo la redundancia contenida en la memoria, para
contener el aumento de los errores en ella. Esta redundancia explotada puede ser
una parte inherente de los algoritmos que permite tolerar más fallos, en forma
de datos inutilizados almacenados en la memoria, o agregada a la memoria de un
programa en forma de ECC. En todos los casos, el entorno de ejecución permite
disminuir los efectos de los fallos de manera eficiente, disminuyendo los costes de
recuperación, identificando datos redundantes, o focalizando esfuerzos de protec-
ción en los datos críticos.

iv

Contents

Abstract i

Resumen iii

Contents viii

1 Introduction 1

1.1 Thesis Objectives and Contributions 4
1.1.1 Algorithmic-Based Exact Forward Recovery 4
1.1.2 Quantifying the Risk of Error in Memory 5
1.1.3 Dynamically Adaptable ECC 6

1.2 Thesis Outline . 6

2 Background 9

2.1 Evolution and Prospectives for DRAM 9
2.1.1 Causes for Faults in DRAM 10
2.1.2 Error Correcting Codes for DRAM Memories 12
2.1.3 DRAM Error Rate Studies 13
2.1.4 Summary . 14

2.2 Programming Models and Runtime Systems 15
2.2.1 A Brief History of Parallel Programming 15
2.2.2 Task-based Programming Models 16
2.2.3 Data-flow Task-based Programming Models 17
2.2.4 Parallel Runtime Systems 19

2.3 Application-Level Fault Tolerance 21
2.3.1 Checkpointing and Rolling Back 21
2.3.2 Checkpointless Algebraic Recoveries 22
2.3.3 Detecting Errors . 23

v

CONTENTS

2.3.4 Application Sensitivity to Faults 24

2.4 Evaluating Vulnerability of Data in Memory 25

2.4.1 Metrics for Memory Vulnerability 25

2.5 Dynamically Adaptable ECC Protection 26

2.5.1 Sampling to Identify Memory Access Patterns 27

2.5.2 Variable Strength ECC schemes 27

3 Methodology 29

3.1 Injecting Errors . 29

3.1.1 DUE Injection . 29

3.1.2 Injecting Bit Flips . 30

3.1.3 Assessing the Impact of ECC 31

3.2 Simulation Infrastructure . 31

3.3 Benchmarks . 32

3.3.1 The Conjugate Gradient Benchmark 34

3.3.2 Remaining Benchmarks . 35

4 Algorithmic Recoveries 37

4.1 Introduction . 37

4.2 Exact Interpolation Recovery . 39

4.2.1 Error Detection and Reporting 39

4.2.2 Extracting Redundancies of Linear Solvers 40

4.2.3 Block Decomposition . 41

4.2.4 Dealing with Multiple Errors 42

4.3 Applying Recoveries to Iterative Solvers 43

4.3.1 Making Redundancies Explicit 43

4.3.2 Preconditioned algorithms 47

4.3.3 Implementing Recovery with Asynchrony 48

4.3.4 Recovery on Distributed Memory Systems 52

4.4 Other Recovery Approaches . 53

4.4.1 Trivial Forward Recovery . 53

4.4.2 Rollback Recovery . 53

4.4.3 Lossy Restart . 54

4.5 Evaluation . 56

4.5.1 Techniques Overheads . 57

vi

CONTENTS

4.5.2 Convergence . 58

4.5.3 Shared-Memory Performance 59

4.5.4 Scaling Results . 62

4.6 Analysis of Data Loss Granularity 63

4.6.1 Impact of page size depending on matrix size 64

4.6.2 Overall Page Size Evaluation 65

4.7 Conclusions . 67

5 Vulnerability Analysis 69

5.1 Introduction . 69

5.2 Metric Definition . 70

5.2.1 Linking Program Outcome and Vulnerability 70

5.2.2 Existing Metrics for Memory Vulnerability 71

5.2.3 Accounting for False DUE 71

5.2.4 Vulnerability under Transient Fault Models 72

5.3 Evaluation . 73

5.3.1 Comparing Metrics and Fault Injections 73

5.3.2 Quantifying the Correlation Between Metric and DUE . . . 76

5.3.3 Memory Page Comparison 78

5.4 Delaying Error Reporting . 79

5.5 Saving DRAM Refresh Energy . 81

5.5.1 Overwriting as a Runtime Contract 82

5.5.2 Prospective Gains from Skipping Refresh 83

5.6 Conclusion . 85

6 Dynamically Adaptable ECC Protection 87

6.1 Introduction . 87

6.2 A Metric for Memory Vulnerability 89

6.2.1 Modelling Faults in Memory 89

6.2.2 Memory Vulnerability at the CPU level 90

6.2.3 Difference between CPU and Memory Vulnerability 91

6.3 Dynamic Estimation of Vulnerability 92

6.3.1 Identify Memory Access Patterns 93

6.4 WITSEC Adaptable ECC . 94

6.4.1 Different ECC Strengths . 95

vii

CONTENTS

6.4.2 WITSEC ECC Organization 95
6.4.3 WITSEC-aware Memory Controller 96
6.4.4 Discussion of Hardware Design Decisions 98
6.4.5 Related Variable Strength ECC schemes 100

6.5 Experimental Setup . 100
6.5.1 Online Tool Experimental Framework 101

6.6 Evaluation . 102
6.6.1 Overheads . 102
6.6.2 Distribution of Data per Vulnerability Level 104
6.6.3 Evaluation of Dynamically Guiding WITSEC ECC 106

6.7 Conclusion . 108

7 Conclusions 111

7.1 Conclusions . 111
7.1.1 Overlapping Algorithmic Recoveries 111
7.1.2 Identifying Memory Vulnerability 113
7.1.3 Adapting ECC Dynamically 114
7.1.4 Redundancy-Aware Runtime Systems 115

7.2 Publications . 116
7.3 Financial and Technical Support . 117

A Online Vulnerabiliy Analysis Reproducibility Artifacts 119

A.1 Runtime Instrumentation of Applications 119
A.2 Estimating Vulnerability through Sampling 120

A.2.1 Sampling configuration . 120
A.3 Error Injections . 122

A.3.1 Installation . 123

B TaskSim Simulation Reproducibility Artifacts 125

Bibliography 127

List of Figures 149

List of Tables 151

Glossary 153

viii

Chapter 1
Introduction

Throughout recent decades, computing has become exponentially more powerful,
efficient, and present in our daily lives. This is due to the many ways in which the
design of microprocessors has followed exponential laws, such as Moore’s law. In
1965, Gordon Moore observed that the transistor density in an integrated circuit
doubled every year, and he projected that it would continue to do so for the next
decade [Moore 1965]. Amazingly, the transistor count per microprocessor has
continued following an exponential growth until today, as illustrated in Figure 1.

The reduction in transistor sizes that allowed this exponential growth unfor-
tunately comes with undesirable side effects. One of those issues are spontaneous
non-reproducible errors appearing in circuits, which when tested later still operate
correctly. These errors can thus not be linked to defects in the hardware. As
early as 1975, unexpected triggering of circuits in communication satellites are

1

10

100

1k

10k

100k

1M

10M

100M

1G

 1960 1970 1980 1990 2000 2010

Tr
an

si
st

or
s

(K
)

Date

Transistor count
Moore's Law

Frequency (MHz)
Dennard Scaling

Core count

Figure 1.1: Evolution of microprocessors
The number of transistors grows exponentially, as does the frequency until around 2005. The
initial extrapolation from Moore [1965] is reproduced in the bottom left corner.

1

attributed to interferences from cosmic rays [Binder et al. 1975]. In 1978, Intel
detect and report errors in dynamic memories due to alpha particles [May and
Woods 1978], and Ziegler and Landford predict the impact of cosmic rays on a
64KB Dynamic Random Access Memory (DRAM) in 1979 [Ziegler and Lanford
1979]. They estimated a fault rate of 7 errors per 1012 hours of DRAM device
operation at sea level, and around 1.4 errors per 109 hours, at 10 km altitudes.
Expressed in the FIT (Failures In Time) unit, which represents 1 error per 109

hours, the rates are respectively 0.007 FIT and 1.4 FIT per device.

Such faults, called soft faults or transient faults, are due to particle strikes
that drain electrons in their wake and thus create a charge that interferes with
the normal operation of a circuit. Soft faults leave the circuit intact, and can
not be prevented. They are different from permanent faults or intermittent faults,
also called hard faults, which are reproducible as they are due to hardware defects.
While DRAM constructors typically do not publish the fault rates that affect their
technologies, a 2015 study reveals soft error rates for 2 supercomputers of 75.24
FIT and 36.57 FIT per DRAM device [Sridharan et al. 2015]. In other words, these
supercomputers experience a soft error every 5h23min and 15h49min respectively.

The strong increase in fault rates due to particle strikes is due to the minia-
turisation as well as the reduction of operating voltages. The main parameter
governing the appearance of a fault is the critical charge Qcrit, which is the min-
imum charge necessary to cause a circuit to malfunction. This critical charge
decreases with the voltage and the size of components, and will thus continue to
decrease as feature sizes decrease and power limitations constrain the design of
new microprocessors. Furthermore, techniques to reduce leakage power such as
increasing threshold voltage [Degalahal et al. 2004], or decreasing supply voltage
to be close to threshold voltage [Kaul et al. 2012], will further deteriorate the fault
rates. Current reliability techniques are unable to cope with expected fault rates,
as they impose an upper limit on scalability called the Reliability Wall [Yang et
al. 2012], which bars the way to building exaflop-capable supercomputers.

While all transistors can be subject to soft faults, memory cells are among the
most vulnerable hardware components [Mukherjee et al. 2003]. They are typically
protected by Error Correcting Codes (ECC) [Reed 1954] implemented at the hard-
ware level. The widespread Single-Error Correct Double-Error Detect (SECDED)

2

CHAPTER 1. INTRODUCTION

ECC can for example detect and correct all single bit flips. It can also detect, but
not correct, when two bits are flipped in the same codeword.

Moore’s Law has remained true for a long time, partly as a visionary prediction
and partly as a self-fulfilling prophecy. However, other similar empirical laws have
broken down. Dennard’s Law, which described the gains in power and switching
frequency obtainable from reducing transistor sizes, lasted for 30 years [Bohr 2007].
The end of this law, commonly called Power Wall, is mainly due to increased
current leakage, and has resulted in the stagnation of microprocessor operating
frequencies. Converting more transistors into more performance after the Power
Wall requires executing work in parallel, rather than executing the same work
faster. In consequence, the industry has turned to multi-core processors since
around 2005, as can be seen on Figure 1, and further to accelerators such as
Graphical Processing Units (GPUs). Similarly, the slower scaling of memory as
compared to microprocessors has caused an increase in latency of memory accesses.
This increased gap is called the Memory Wall [Wulf and McKee 1995], and has been
the cause for increasing cache sizes and complex memory hierarchies – including
non-uniform hierarchies, where some cores have faster access to some part of the
memory than others.

These evolutions have caused a paradigm shift in programming, from sequen-
tial programs being accelerated by the hardware evolutions, to parallel programs
needing to spread their workload across the different Processing Elements (PEs,
cores and accelerators). The earlier parallel programming models, such as pthreads
and MPI [Gropp et al. 1994], were presented as libraries. They require all of this
work repartition to be performed manually, as their constructs (threads and ranks,
respectively) map directly to hardware resources such as cores. Thus, program-
ming a machine becomes increasingly more complex with the number of cores per
processor, the number of different core types, and the complexity of the memory
hierarchy. The ability to build machines with a peak performance of 1018 floating
point operations per second (1 exaflop/s), commonly called exascale, is planned to
be reached by 2021 using extremely distributed machines [ETP4HPC 2017]. There-
fore, programming models have emerged centred around more hardware-agnostic
constructs, such as tasks, which are units of work that can then be scheduled on
processing units. Such programming models often take the form of language ex-

3

1.1. THESIS OBJECTIVES AND CONTRIBUTIONS

tensions or entirely new languages [Chamberlain et al. 2007; Blumofe et al. 1995;
Duran et al. 2011].

A number of complex problems are created by the scheduling of work across
PEs, such as ensuring that the distribution of work is balanced, scheduling tasks in
a way that minimises data movement, etc. Furthermore, a program whose parallel
execution is tailored for a given architecture will need optimising again for a dif-
ferent architecture, thereby creating a new problem of performance portability. To
take these burdens away from the programmer, the hardware-software abstraction
stack is extended by these programming models with a new intermediate layer,
called the runtime system [Casas et al. 2015]. The programmer then only needs to
express how the work may be split up in tasks, and the runtime system performs
the scheduling of work transparently, according to predefined policies, heuristics
or strategies. Runtime systems have been used for many dynamic optimisations,
such as accelerating critical tasks, prefetching or partitioning caches, and managing
scratchpad memories [Castillo et al. 2016; Papaefstathiou et al. 2013; Manivan-
nan et al. 2016; Alvarez et al. 2015]. Indeed, the position of a runtime system,
having information both about the software and hardware, provides an incredible
opportunity to perform optimizations on modern systems.

1.1 Thesis Objectives and Contributions

The main goal of this thesis is to use the opportunity presented by runtime systems
to mitigate the reliability issues raised by increasing fault rates. In particular,
the aim is to have a multi-disciplinary approach, developing strategies ranging
from software-based fault tolerance to hardware proposals, all enhanced by the
intervention of the runtime system, to diminish the overall failure rates due to soft
errors in main memory.

1.1.1 Algorithmic-Based Exact Forward Recovery

The first contribution of this thesis is an algorithmic-based strategy to recover
from Detected and Uncorrected Errors (DUE), presented in Chapter 4. Such errors
are detected by ECC, but can not be corrected transparently. The responsibility
of reacting against DUE is handed to the software stack. Some straightforward

4

CHAPTER 1. INTRODUCTION

approaches, such as crashing the affected process, are ineffective except against
very low fault rates.

The proposed strategy consists of identifying algorithmic redundancies in the
form of relations between data. The discarded or corrupted data can then be
restored by recomputing or inverting the appropriate relations. This has the ad-
vantage over the most generic technique, which consists in rolling back the program
state to a previously taken checkpoint, that it preserves the progress done by the
program. Alternately, application-specific techniques exist, such as restarting a
program with its latest values as initial guess. Our exact recovery however allows
to maintain the algorithmic properties of the program, contrary to restart recov-
eries. This forward and exact recovery is thus doubly advantageous, and can be
applied to an entire class of algorithms, the Krylov-subspace methods.

The error correction in itself, which is the recomputation of the data lost due
to the DUE, can further be masked as well. The contribution proposes to overlap
the error correction with the solver’s normal workload. This is performed by
encapsulating the error correction code inside a task, and leveraging the asynchrony
of task-based programming models. The runtime system can then schedule the
recovery work during load imbalance of the normal solver, without programmer
intervention, which completely masks overheads for most error rates.

1.1.2 Quantifying the Risk of Error in Memory

The second contribution of this thesis tackles the need to quantify the risk of error
due to faults in memory and is detailed in Chapter 5. The particularity of memory
is that error characterisations can only be done at the scale of the program, as the
impact of an error only depends on how data is accessed.

The Architectural Vulnerability Factor (AVF) is a common way of character-
ising the impact of circuits on a program’s outcome. The literature shows many
metrics and proxies for the error risk due to a fault in memory, including the AVF
with a scope limited to memory. The proposal extends this metric, the Memory
Vulnerability Factor (MVF), to take into account false errors. These are reported
errors which would have no impact on the program if they were ignored. The
resulting metric is called False Error Aware MVF (FEA). In practice, MVF rep-
resents the probability of accessing data, while FEA represents the probability of
consuming data.

5

1.2. THESIS OUTLINE

FEA, MVF, and other related metrics are measured using a cycle-accurate
simulator, and compared against the effects of injecting faults in a program’s data,
which are measured in native parallel runs. The only metrics that provide upper
bounds on the error risk are MVF and FEA, and the latter provides a tighter
bound. Based on this finding, the contribution proposes a hardware-enabled OS-
level mechanism to ignore false errors in memory. The reduction in fault rate due
to false errors is quantified using the previously validated metrics.

1.1.3 Dynamically Adaptable ECC

The third contribution of this thesis, presented in Chapter 6, is a methodology
to dynamically identify vulnerable parts of memory during a program’s execu-
tion. The runtime methodology proposed in this contribution relies on the FEA
metric previously established, and can be used for offline analysis of a program’s
vulnerable data (e.g. to select regions for algorithmic protection) or for other
optimizations, such as data placement.

The proposed methodology relies on modern and readily available Performance
Monitoring Unit (PMU) capabilities. It consists in sampling load and store instruc-
tions to identify streaming memory access patterns, from which the average vul-
nerability of data can be extrapolated. The proposed methodology is implemented
in a real Power8-based system, demonstrating its feasibility and low overhead.

At the circuit level, error mitigation techniques are applied to the most critical
elements, which are identified using architectural vulnerability analysis. Likewise,
the data in memory where faults have the strongest impact should be protected
in priority to improve reliability at low cost. Therefore, the contribution includes
a hardware proposal for a dynamically adaptable ECC, designed to increase ECC
protection for the most vulnerable memory regions. The dynamically guided ECC
strength using the vulnerability identification allows to find a number of interesting
trade-offs between decreasing error probability and increasing the cost of ECC
protection.

1.2 Thesis Outline

The contents of this thesis are organised as follows:

6

CHAPTER 1. INTRODUCTION

Chapter 2 reviews the background in DRAM, and shared memory programming
models’ runtime systems, exposing their main characteristics, issues, and opportu-
nities. It then reviews the state-of-the-art related to each of the multidisciplinary
resilience techniques presented in this thesis.

Chapter 3 introduces the error injection methodology used to perform the ex-
periments described in this thesis, as well as the simulation infrastructure and
benchmarks used to evaluate the proposals presented in this work.

Chapter 4 presents the algorithmic recovery technique that allows to recover
from DUE, and the novel runtime-enabled overlapping of undisturbed computation
from the algorithm with the recovery computations.

Chapter 5 presents the new FEA metric to better characterise the probability
of an error in memory causing a program to fail, as well as an OS-level technique
to reduce DUE rates from memory leveraging key insight developed from the FEA
metric.

Chapter 6 proposes a methodology to estimate FEA online using sampling of
memory instructions. The chapter also introduces WITSEC, a hardware proposal
for a dynamically adaptable two-level ECC scheme, used to protect in priority
data that is identified as requiring more protection, by the implementation of the
runtime methodology on a real system.

Finally, chapter 7 concludes this dissertation by stating its main contributions,
and providing an overview of possibilities for future research derived from the work
presented in this thesis.

7

1.2. THESIS OUTLINE

8

Chapter 2
Background

In this chapter, we present the background and give an overview of the state-of-
the-art of resilience techniques related to DRAM errors.

2.1 Evolution and Prospectives for DRAM

DRAM is the memory type used in computers as the main memory, for its low
cost and high capacity. This memory is not persistent, meaning that the values
stored in memory are not preserved if the power is switched off. The data also
needs to be periodically refreshed while the power remains on.

In DRAM, data in stored in cells that can each hold 1 bit of information, and
that consist of 1 transistor and 1 capacitor, as illustrated in Figure 2.1. To read
or write to a cell, the corresponding word line (2) needs to be activated, switching
on the transistor (3). To read the contents of the cell, the voltage alteration of the
bit line (1) due to connecting the capacitor (4) is sensed and amplified. To store
a bit in the cell, the bit line (1) is driven to the desired voltage until the capacitor
(4) is charged. The capacitors of each DRAM cell leak charge over time, requiring
the contents to be periodically refreshed.

DRAM technology sizes shrink exponentially, at a slower pace than transis-
tors [Sunami 2008]. As DRAM technology becomes denser, the cell capacitance
and voltage also decrease, to diminish power consumption and allow faster opera-
tion. The first DRAM technologies such as Fast-Page Mode DRAM used a 5.0V
supply voltage, which has decreased until 1.1V standardised in the Low-Power
Double Data Rate 4 (LPDDR4) DRAM [JEDEC 2014], and sub-1.0V designs have
already been proposed [Cho et al. 2013]. Similarly, the capacitance has reduced
from 100fF to about 30fF in the time that the memory cell size has reduced by

9

2.1. EVOLUTION AND PROSPECTIVES FOR DRAM

Figure 2.1: DRAM cell Figure 2.2: DRAM trench capacitor cross-section.
Reproduced from Sunami [2008].

10,000×. This much slower decrease is due to the strong impact of cell capacitance
on the efficiency of sensing voltage variations on the bit line [Hong 2010].

The architecture of DRAM is organised in memory modules, which are circuit
boards holding DRAM chips. Each DRAM chip outputs a number of bits at a
time, which is referred to as the width of the chip. Common chip widths are 4, 8
or 16 bits nowadays.

2.1.1 Causes for Faults in DRAM

The soft error probability in a DRAM cell can be decomposed in the probability
for a cell to be hit by a particle, and the probability that this event causes the
stored bit to change value. The slow decrease in capacitance and voltage has
caused the critical charge to decrease by about an order of magnitude since the
beginnings of DRAM, as the stored charge is capacitance × voltage. At the same
time, the probability of being hit by an energetic particle has evolved with the
cell’s surface. This probability decreases as device density increases – however the
die size has remained constant [Sunami 2008]. That is, the decrease in memory cell
size has been compensated by the increasing number of memory cells, causing the
overall Soft Error Rate (SER) of DRAM to remain roughly constant [Baumann
2005]. This trend seems to come to an end. To maintain storage capacitance while
decreasing sizes, the DRAM industry has had to create deep capacitors, such as
the trench capacitor whose cross-section is displayed in Figure 2.2. Aspect ratios of
capacitors for 20nm DRAM sizes are of the order of 70:1, with an oxide layer of 5Å,
which already represent significant challenges [Hong 2010]. Thus the capacitance

10

CHAPTER 2. BACKGROUND

of DRAM cells is at risk of decreasing again, and the overall SER will increase
accordingly.

Another class of errors, due to manufacturing defects and process variability,
are known as hard faults. These faults are either permanent or intermittent, and
affect a number of cells that do not function within the specification. The main
mechanism causing individual DRAM cells to fail is through leaking charge. Each
cell has a leakage current that defines its retention time. If this retention time is
smaller than the period at which DRAM data is refreshed, the data in the cell is
lost. A similar problem is variation in the write recovery time [Kang et al. 2014],
which causes cells to be slower to charge than the timing requirement. Leakage
current is known to be proportional to temperature, and also varies over time for
some cells. This is known as Variable Retention Time (VRT) [Restle et al. 1992],
and cells affected by it may transition back and forth between functioning within
specification and losing data.

The intuitive response for hard errors is to use sparing techniques. Supplemen-
tary rows or columns can be built in DRAM chips, using laser fuses to disable and
replace faulty rows and columns [Schuster 1978; Nair et al. 2013]. At low error
rates, entire rows or columns can be decommissioned to mask a single faulty cell.
Redundant Bit Steering (RBS) is a similar technique that uses a spare DRAM
chip, to replace a chip with an identified chip or pin error at runtime [HPEC
2013]. Techniques have been proposed to support higher error rates and be more
cost-effective. SECRET stores Error Correcting Pointers (ECPs) in DRAM, which
store the address of a failing bit and a replacement for this bit [Lin et al. 2012].
ArchShield uses a reserved area in DRAM to replicate 8-byte words that contain
faulty DRAM cells, and to keep a map of these words [Nair et al. 2013]. CiDRA
places a small SRAM cache in each DRAM device to replace addresses associated
with faulty cells [Son et al. 2015]. All of these approaches have the downside of
requiring a profiling of which cells in DRAM are malfunctioning.

Another approach, which tackles the retention time problem, is to adjust the
refresh rate per DRAM row to the retention time of the leakiest cell in each row.
However, this is problematic as profiling needs to be done continuously, since
DRAM cells start displaying VRT behaviour throughout the lifetime of the DRAM
device. This has been identified by Qureshi et al. [2015], who simultaneously pro-
posed AVATAR, a refresh scheme that adjusts dynamically to the appearance of

11

2.1. EVOLUTION AND PROSPECTIVES FOR DRAM

VRT behaviour of DRAM cells. This is done by upgrading all rows that present an
error to the refresh group with highest refresh rate, as soon as the error is encoun-
tered. A yearly retention testing can then downgrade DRAM rows to lower refresh
rates, if they were misidentified as having low retention times (i.e. suffered from a
soft error). Ultimately, unexpected faults can not be prevented, thus redundancy
needs to be added to detect and correct such faults.

2.1.2 Error Correcting Codes for DRAM Memories

Reliability and availability are major concerns for servers and supercomputers. As
such, machines built for those purposes have long used ECCs to ensure that no
errors occur in memory, especially without being detected. Such codes are now
available on machines for personal use, all the way to mobile devices [Micron 2017].

Until the early 1990s, parity was the standard for memory protection [IBM
1999]. To tolerate higher fault-rates, SECDED ECC was put in place. SECDED
protection can be achieved for a 64 bit word with a systematic code (i.e. where the
initial data is unmodified) with a truncated Hamming code and a parity bit, for
a cost of 8 redundancy bits [Hsiao 1970]. That is, to store data in memory using
this SECDED code, 72 bits of storage are required for every 64 bits of data. This
redundancy has been stored in separate DRAM chips on the same DIMM, creating
the industry standard 72-bit wide DIMM, composed of 18 4-bit wide chips or 9
8-bit wide chips. Similarly, parity was implemented with a separate 1-bit wide
DRAM chip.

With increasing error rates, and chances of having larger granularity errors,
ChipKill-level protection was adopted [Dell 1997]. ChipKill-level protection means
that the failure of an entire DRAM chip can be tolerated. This can be achieved
by interleaving SECDED codes, however this creates an impractical configuration.
With 4-bit wide chips, 72 DRAM chips need to be accessed simultaneously, forming
a channel of 256 data bits and 32 check bits. This approach is detrimental to
system performance and energy efficiency. Another approach is to use a code with
symbols that correspond to the output of a single chip, instead of a single bit.
Then, a Single-Symbol Correcting (SSC) code provides ChipKill-level protection.
This has been proposed with 8-bit symbols on 4-bit wide chips. Double-ChipKill
protection, also called Double Device Data Correction (DDDC), is provided with
a combination of SSC and RBS [Kim et al. 2015].

12

CHAPTER 2. BACKGROUND

Facing the increasing fault rates, constructors have now proposed on-die ECC,
where both the ECC encoder and decoder and the redundancy bits are located
inside each DRAM chip [Kang et al. 2014; Oh et al. 2014], instead of using a sep-
arate chip. This approach increases redundancy by an additional 6.25% or 12.5%,
depending on the scheme, and is proposed as a complement to the previously dis-
cussed DRAM-level ECCs. Academic proposals have quickly shown however that
exposing the full amount of supplementary redundancy is much more efficient than
applying independent layers of ECC [Nair et al. 2016; Gong et al. 2018].

In practice, ECCs correct errors transparently and, on modern x86 and AMD64
architectures, report them in dedicated registers [Intel 2017; AMD 2018]. When an
error is detected but can not be corrected, a machine check exception is triggered
that the Operating System (OS) has to handle. Most OSs simply kill the program
that accesses the memory location containing the DUE. Improvements include
supporting errors in pages mapped from a file that are unmodified, and tracking
the number of Corrected Errors (CEs), which indicate a higher risk of a future
DUE. In both cases, the contents of the offending memory page can be placed at
a different physical location in memory (respectively reloaded or copied), and the
program can keep running with its virtual address space updated to point to the
new physical location. Memory pages can be blacklisted from further use [Kleen
2010]. If an error can not be detected by an ECC, or if it is miscorrected, then
Silent Data Corruption (SDC) occurs.

Additionally to ECC, replication techniques can be used at a wider scope to
catch SDC or recover from DUE. Replication can consist in storing several copies
of the same data at different locations in memory, as fail-over if errors are detected
or to detect errors. Intel for example offers Memory Mirrorring, which consists in
replicating data across two different DRAM DIMMs [Intel 2011].

2.1.3 DRAM Error Rate Studies

Theoretical fault rates and probabilities are known through simulations and lab-
oratory experiments such as soft error measurement under accelerated particle
beams [JEDEC 2007]. Real-world fault rates however need to be gathered over
large periods of time and statistically significant amounts of hardware. All research
groups use slightly different methodologies and terminologies. One key distinction
is between the event which is called a fault, and its symptom which is called an

13

2.1. EVOLUTION AND PROSPECTIVES FOR DRAM

error. A fault is a number of bits changing value unexpectedly, either a single time
or repeatedly at the same location. An error is an access to a memory location
that returns a value different from the value that was previously stored at that
location.

Many studies rely on error logs of real machines. A single fault, soft or hard,
can cause a large number of errors, which are then repeatedly reported in error
logs. In fact, Sridharan and Liberty [2012] report that the Jaguar supercomputer
encounters a fault (either new or re-activating a hard fault) every 5.64 hours on
average, while the system reports an error every 10 seconds on average. In a more
recent study, Levy et al. [2018] report for the Cielo supercomputer that ageing
does not seem to impact the DDR3 DRAM fault rate of 3 vendors, over the 5
years lifetime of the machine. They also show that correctable faults are not good
predictors for uncorrectable errors, meaning that uncorrectable errors will appear
as random events. Finally, Levy et al. also note that at least 27% of machine down
events (i.e. nodes becoming unavailable for use) are due to memory DUE.

Bautista-Gomez et al. [2016] perform a study on a machine without ECC,
storing known data and fetching it later to compare it against the expected value.
The advantage of this approach is that it is unbiased by multiple reporting of error
in logs. They report an error every 10 minutes on average for the machine, and
show that while single bit errors remain the majority, multiple bit corruptions are
common occurrences, and correlate with other simultaneous single errors in the
same machine, as well as with time of day. Bautista-Gomez et al. do not distinguish
between soft and hard errors, however their analysis of spatial correlation only
identifies 4 nodes as having either an overall DIMM failure (numerous repeated
errors spread out) or a weak bit, i.e. a single bit that intermittently displays the
same error – which is typical of a retention error.

2.1.4 Summary

Fault rates are on the rise due to many combined factors, both for soft (thus
random) and hard (thus spatially correlated) faults. These rising rates and the
current solutions are problematic to successfully reach the next era of computing,
exascale [Cappello et al. 2009; Cappello et al. 2014]. While only ECCs can cope
with random faults in DRAM, many techniques are proposed to handle hard faults.
These proposals either provision sufficient ECC redundancy to tackle all types of

14

CHAPTER 2. BACKGROUND

errors and uniformly ensure low DUE and SDC rates, or mitigate hard faults by
targeted techniques, such as faster refresh, sparing, or retirement. In this latter
case, which is much less wasteful of resources, hard faults may well only appear once
as a random error, before being profiled and mitigated, either by faster refresh or
a smart sparing approach. These mitigations techniques make hard faults behave
like soft errors, in the sense that they only appear once. Thus, the work in this
thesis will focus on random independent errors to either handle when ECC fails,
thus encounters DUEs, or to apply ECC in a cost-effective way.

2.2 Programming Models and Runtime Systems

2.2.1 A Brief History of Parallel Programming

Parallel programming begins years before the appearance of the first chip multipro-
cessor. The first mention of getting “several results at the same time” dates back
to 1842 [Menabrea 1842], and supercomputers in the late 80s started taking on the
shape of many interconnected processors, each with its own RAM, as described by
Hillis [1981]. To program these machines, data needs to be communicated from
one node to the next. A standardised interface was proposed to perform these
tasks and to abstract away the network’s specifics [MPI Forum 1993]. MPI is
still the de-facto standard to this day for distributed memory computing in High
Performance Computing (HPC).

With the advent of chip multiprocessors in the 2000s, a new model of paral-
lelism became predominant: shared memory. In this model, all the cores of the
multiprocessor are organised under a common memory hierarchy, and can share
virtual address spaces. This allows the usage of the same memory in multiple cores
without requiring explicit messages to send the data from one core to the other.
In this paradigm, the programmer does not have to keep track of the location of
data and ensure its coherence any more.

The earliest and the simplest shared memory programming models are the
thread libraries offered by the OS [Nichols et al. 1996; Beveridge and Wiener
1997]. Some programming languages offer thread libraries as well [Oaks and Wong
2009; Stroustrup 2013], to provide a portable interface wrapping the low-level
parallelism tools provided by the OS. The constructs in these libraries are software

15

2.2. PROGRAMMING MODELS AND RUNTIME SYSTEMS

threads, and synchronisation primitives. Threads map directly to the hardware
in the same way that an MPI process maps to a node in distributed memory
programming models. Here, a software thread is a stream of instructions, and
maps to a core in the context of a multiprocessor. Through the shared memory
model and synchronization, threads can communicate. However the repartition of
work across the threads needs to be performed explicitly by the programmer. This
paradigm for parallel programming is also called the fork-join model, as there is
an explicit moment when parallelism starts (a fork) and when it ends (a join).

The current de-facto standard for parallel programming on shared memory
multiprocessors is a fork-join model, OpenMP [OpenMP Board 2005]. OpenMP
is a standard specification that allows to declare parallel constructs in C, C++
and Fortran using simple and portable compiler directives. These directives are
supported by the vast majority of modern compilers and OSs for shared memory
multiprocessors. In an OpenMP program, a single thread is used in sequential
regions of the program, and at the start of the program. Then, parts of the pro-
grams that are annotated with directives by the programmer are executed across
several threads. The main parallelism constructs are:

• parallel regions, which are executed in every thread,

• parallel sections, which are distributed across threads to be executed,

• parallel loops, which declare that iterations of a loop can be executed inde-
pendently of one another, and can thus be distributed across threads similarly
to sections.

Further key directives exist to perform synchronisation, such as atomic values
and critical sections, which ensure that only a single thread at a time respectively
modifies a value or executes a portion of the code. This allows to ensure consistency
in the shared memory, by avoiding data races.

2.2.2 Task-based Programming Models

Departing from constructs that represent the hardware resources, the notion of
task provides a higher level abstraction for parallel programming. A task is a unit
of work that can be executed by any core, much like an OpenMP parallel section,
or an iteration in an OpenMP parallel loop. These tasks can then be executed

16

CHAPTER 2. BACKGROUND

immediately or deferred to be executed later. This subdivision of the work coupled
with mapping tasks to computing resources dynamically allows to solve problems
such as load balancing and expressing parallelism in recursive algorithms with very
little programming effort. Much like the out-of-order execution of instructions in
a processor, the decomposition of a parallel program in tasks allows for much
more flexibility in the way that the computations are performed. A program with
tasks is no longer using a fork-join model, where some parts of the program are
parallel and some sequential. In the task-based paradigm, cores are resources much
like floating point units, and work is scheduled onto such resources. That is, the
execution is always parallel, and the throughput is limited by the amount of work
that is available.

Examples of early task-based programming models are Cilk [Blumofe et al.
1995] for shared memory programming models, and Charm++ for distributed
memory programming model [Kale and Krishnan 1993]. Evolutions include OpenMP
3.0 [OpenMP Board 2008], which includes basic tasking constructs. As opposed
to these approaches that extend existing languages with libraries or compiler di-
rectives, some programming models are entirely new languages [Chamberlain et
al. 2007]. There exist many other programming models targeting the exascale era,
with a variety of subtleties (global vs. local view of data and control flows, different
levels of asynchrony, etc.) [Gropp and Snir 2013]. All these novel programming
models, as well as recent evolutions of historic programming models, have in com-
mon that they require a runtime system, which is a software library that supports
the programming model. These libraries perform all the work that the program-
mer does not need to explicitly express any more, and in particular the scheduling
of tasks onto hardware resources according to load balancing constrains.

However, this asynchronous approach is limited due to the lack of ordering
between tasks. Therefore, only tasks that perform the same types of operations or
independent operations can be executed in parallel.

2.2.3 Data-flow Task-based Programming Models

For any program to be fully expressed as tasks, it is necessary to be able to enforce
ordering between the computations performed in different tasks. Such scheduling
constraints are called dependencies. Tasks are created ahead of time, and placed
in a Task Dependency Graph (TDG). This direct acyclic graph has tasks as nodes,

17

2.2. PROGRAMMING MODELS AND RUNTIME SYSTEMS

and dependencies between tasks as edges. A task without any predecessors in the
graph is ready to be executed, and can be scheduled onto one of the hardware
resources that the runtime system has at its disposal. When a task is finished, it
is removed from the graph, and all its successors now have one less predecessor.
The program execution then simply continues until the TDG is empty.

Dependencies can be declared with asynchronous constructs. Modern program-
ming languages such as C++11 [ISO 2011] and ECMAScript 6 [Ecma 2015] include
constructs which represent the result of a computation that is not yet performed.
Accessing this result, or explicitly waiting for the computation, then interrupts
the current task until the result is available. While these techniques allow for
some parallelism to be exploited, they are more geared towards asynchrony and
interruptibility. A more explicit way of expressing dependencies are data-flow de-
pendencies. These are at the heart of OmpSs [Duran et al. 2011], an OpenMP
forerunner that expands its tasking constructs to explore their capabilities, and
have been included in the OpenMP 4.0 standard [OpenMP Board 2013]. Rather
than waiting for the result of a task one at a time, this approach consists of declar-
ing at task creation which data a task requires as input, and which data it produces
as output. The runtime system then infers the dependencies between tasks from
the data that each task accesses.

An example of the syntax of such data-flow is presented in the listing in Fig-
ure 2.3, where every kernel function has been annotated to become a task with a
#pragma directive. The program then instantiates a task that consists in execut-
ing a kernel, instead of directly calling the functions. The execution of the parent
task then stops when it reaches the taskwait directive, similarly to waiting for an
asynchronous result, and resumes when all the tasks have finished executing. We
can see data dependencies declared with in(...) which mean that the tasks will
take this data as input, and as inout(...), meaning that the task will use this
data both as input and output. From these annotations, the runtime can define
the dependencies. For example, all the trsm kernels depend on the previous potrf
kernel due to the Ah[k][k] dependency. On the task dependency graph on the
right of Figure 2.3, each task instance is a separate circle, with the colour indicat-
ing the task type. The dependencies between tasks are represented by arrows, and
the dependencies from potrf to trsm kernels are thus the arrows from yellow to

18

CHAPTER 2. BACKGROUND

Figure 2.3: Cholesky source code with OmpSs data-flow tasks annotated.
An example TDG is also displayed for a 5-by-5 blocked matrix, with colour-coded tasks.

1 for (int k = 0; k < nt; k++) {
2 // Diagonal Block factorization
3 #pragma omp task inout([ts][ts](Ah[k][k]))
4 potrf(Ah[k][k], ts, ts);
5
6 // Triangular systems
7 for (int i = k + 1; i < nt; i++)
8 #pragma omp task inout([ts][ts](Ah[k][i]))

↪→ in([ts][ts](Ah[k][k]))
9 trsm(Ah[k][k], Ah[k][i], ts, ts);

10
11 // Update trailing matrix
12 for (int i = k + 1; i < nt; i++) {
13 for (int j = k + 1; j < i; j++)
14 #pragma omp task inout([ts][ts](Ah[j][i]))

↪→ in([ts][ts](Ah[k][i]), [ts][ts](Ah[k][j]))
15 gemm(Ah[k][i], Ah[k][j], Ah[j][i], ts , ts);
16
17 #pragma omp task inout([ts][ts](Ah[i][i]))

↪→ in([ts][ts](Ah[k][i]))
18 syrk(Ah[k][i], Ah[i][i], ts, ts);
19 }
20 }
21 #pragma omp taskwait

k=0

k=1

k=2

k=3

k=4

Blocks updated by tasks,
per outer loop iteration

Task Dependency Graph

magenta tasks. Dependencies can also be declared as out(...) or one of many
other dependency types [BSC PM 2018].

2.2.4 Parallel Runtime Systems

The runtime is a software layer that orchestrates the parallel execution of a pro-
gram. It is thus in charge of managing threads and hardware resources, the pool
of tasks, tracking the dependencies, and choosing the scheduling of the tasks. To-
gether with the programming model, this provides the end user with a high-level,
clean, and abstract interface for any underlying hardware. Indeed, these roles
taken on by the runtime system allow the programming model to be extended
for more complicated architectures than symmetric multiprocessors without bur-
dening the programmer. For example, some architectures are heterogeneous, with
some cores being faster or more powerful than others. Accelerators provide even
more heterogeneous hardware, with for example GPUs or FPGAs, that often have
their own dedicated memory. The simplicity of a task-based programming model
makes using accelerators very easy. If a program provides implementations of a
single task for various different hardware resources, the runtime can then schedule
the task either onto a core or an accelerator, and handle the data movement that

19

2.2. PROGRAMMING MODELS AND RUNTIME SYSTEMS

this requires transparently [Bueno et al. 2011; Planas et al. 2013; Bueno et al.
2013].

Runtime systems bring many features for tasks, similarly to what modern pro-
cessors perform for instructions, such as out-of-order execution. Concepts such as
pipelining and speculative execution then seem natural to explore for tasks [Valero
et al. 2014; Brumar et al. 2017]. Runtimes can optimise their scheduling work
using additional information such as task criticality, for example exploiting het-
erogeneous hardware to diminish the execution time of a program, by scheduling
first tasks that are the most critical [Chronaki et al. 2015; Castillo et al. 2016;
Chronaki et al. 2017]. The research in the domain of runtime optimisations is rich
and promising, as runtime systems have been used for other purposes that are
beyond their initial goal.

For example, runtime systems are used to manage non-computational resources
such as I/O and checkpointing [Jia et al. 2017], and overlap their use with compu-
tations, similarly to what is presented for recoveries in the algorithmic contribution
of this thesis, in Section 4 [Jaulmes et al. 2015]. The task dependency information
of runtime systems can be used as well, and many proposals use it to manage the
cache hierarchy: partitioning last-level caches [Pan and Pai 2015], evicting dead
blocks [Manivannan et al. 2016], selecting insertion policies dynamically [Dimić
et al. 2017], guiding prefetchers [Papaefstathiou et al. 2013], and optimising data
movement for producer-consumer patterns [Manivannan et al. 2013; Manivannan
and Stenström 2014]. The same information can be used to manage scratchpad
memories [Bellens et al. 2006; Alvarez et al. 2015] or heterogeneous memory sys-
tems [Liu et al. 2017; Alvarez et al. 2018]. Caheny et al. propose to use the runtime
scheduling and data allocation information to reduce cache-coherence traffic [2016;
2018a], and to deactivate coherence for data that is identified by the runtime as
not requiring it [2018b]. Conversely, the runtime can also move computation to
where the data resides, instead of adjusting the memory hierarchy, e.g. by parti-
tioning task dependency graphs [Sánchez Barrera et al. 2018]. The core functions
of runtime systems are themselves being accelerated in hardware, such as manag-
ing task dependencies and scheduling tasks [Kumar et al. 2007; Etsion et al. 2010;
Tan et al. 2016; Tan et al. 2017; Castillo et al. 2018] and optimising core-to-core
queue-based communications [Sanchez et al. 2010; Wang et al. 2016].

20

CHAPTER 2. BACKGROUND

All of these optimisations exploit runtime information to perform optimisa-
tions bridging several abstraction levels, and while some can be performed with
existing hardware, some require extending the hardware capabilities to be runtime-
aware [Casas et al. 2015]. Thus, the goal of this thesis is to leverage the capabil-
ities presented by the emergence of runtime systems, to tackle the problems due
to DRAM error rates presented in Section 2.1.

2.3 Application-Level Fault Tolerance

In HPC, computations often require many nodes over long periods of time. In
that context, the risk of a computation being interrupted due to a failure is high,
and restarting the computation has a high cost. For example, a program could
run into a software error, some node could malfunction, or the program could be
killed after encountering a DUE. A study on the Blue Waters supercomputer [Di
Martino et al. 2014] shows that a failure happened on average every 4.2 hours,
with system-wide outages every 160 hours on average.

2.3.1 Checkpointing and Rolling Back

To guard against such events, techniques such as checkpointing are commonly
used. Checkpointing consists in writing the state of a program to persistent stor-
age in such a way that it can be loaded later, and that the computation can be
continued from this state. Then, in the case of a failure, only the computations
performed since the last checkpoint are lost. Recovering the state from the latest
checkpoint is known as a rollback, and is categorised as a backwards recovery as it
consists in going back to a previous state. The state-of-the-art libraries providing
checkpointing capabilities are SCR [Moody et al. 2010] and FTI [Bautista-Gomez
et al. 2011]. Given the cost (in time) to write and load checkpoints and the Mean
Time Between Failures (MTBF), the optimal checkpointing rate can be computed
to minimise a job’s expected execution time [Bougeret et al. 2011]. Recent work
has focused on multi-level checkpointing to differently handle errors with different
granularity, and models for these checkpointing strategies [Di et al. 2017].

In general, it is interesting to write as little data as possible to disk, as this is a
slow process. Optimisations include incremental checkpointing, which consists in
writing only the data that changed since the last checkpoint [Gioiosa et al. 2005].

21

2.3. APPLICATION-LEVEL FAULT TOLERANCE

Another approach is to modify the application to be able to write and restart with
only the minimal amount of data that allows to restart the computation. Such an
algorithm-specific technique has been presented by Chen [2013] for the family of
solvers that we will investigate in Chapter 4, the Krylov subspace methods.

2.3.2 Checkpointless Algebraic Recoveries

Algorithms can be extended for resilience as a means to recover from a failure.
Instead of relying on a checkpoint to restore the state, the program identifies
that it has encountered an error and lost some data, and recovers from it. The
usual model for error detection in HPC is the fail-stop model: in a multiple node
execution, one of the processes is interrupted. This can be due to the node crashing
or the process being killed, and results in a localised loss of data. This naturally
leads to the proposal for a Fault-Tolerant Message Passing Interface (FT-MPI),
that hands control back due to a node having stopped, in order to recover data
from this part of the program [Fagg et al. 2001].

Chen [2011] proposes a partly algebraic recovery method for Krylov solvers
with matrix A and right-hand side b, solving for Ax = b. Upon a fail-stop error,
most vectors are recovered from MPI messages, which are logged for this purpose
as a sort of implicit checkpoint, except the iterate x which is seldom passed in
MPI messages. The exact arithmetic relation between the residual r and x, thus
r = b − Ax, is used to recover x without checkpointing it, by factorising the
diagonal block of the matrix that was stored on the node encountering the failure.

Langou et al. [2007] introduced the Lossy Approach with the block-Jacobi step
interpolation. This restart method, designed for an MPI fail-stop error model,
is extensively discussed in Section 4.4.3. Agullo et al. [2013; 2016b] extended
this work by introducing least-squares methods for the interpolation, and further
studying strategies to minimise computations and communications in recoveries in
the case of multiple simultaneous errors. These trade-offs can naturally be applied
to the interpolations we use, if needed. Agullo et al. [2016a] have further extended
restart recoveries relying on lost data interpolation to eigensolvers, and to hybrid
solvers such as MaPHyS [2015].

22

CHAPTER 2. BACKGROUND

2.3.3 Detecting Errors

Algorithms can be extended for resilience beyond recovering from identified errors,
instead detecting SDC by identifying and checking program invariants. Chen [2013]
proposed to use two application specific invariant relations to catch undetected
errors in CG and its derived method BiCGStab, which are the (bi-)orthogonality
of search directions, and the relation between gradient and iterate. This consists in
using inherent redundancy, by identifying a relation (||b− Ax− r|| = 0 with our
notations) that remains true in exact arithmetic during the program execution,
as leveraged in the algorithmic contribution of this thesis. Agullo et al. [2018]
evaluate this relation as an SDC detector, while precisely bounding this relation’s
error due to accumulated round-offs in finite arithmetic. Agullo et al. compare
this “reduction gap” detection to other techniques, including one using a bounding
relation between an algorithmic parameter, α, and the eigenvalues of the matrix.
Liang et al. [2017] similarly detect soft faults online in the fast Fourier transform.

Instead of finding existing invariants in programs, to recover or identify errors,
invariants can be added into algorithms to detect errors. Such invariants can
be checksum values that are transformed in the same way than the data of the
program. For example, Huang and Abraham [1984] propose adding a row that is
the sum of all the other rows in a matrix. The result of a matrix multiplication
then also contains a last value which is the sum of all the other values, and can be
used to verify the validity of the multiplication. Similar approaches exist for other
operations such as QR and LU factorizations [Davies and Chen 2013; Heroux
et al. 2005]. This approach adds little memory space overhead at the price of
computational overhead. However, checks on finite precision numbers (as opposed
to bitwise checks) are sensible to round-off errors.

Subasi et al. [2016] use machine learning, specifically support vector machine
supervised learning, to detect SDCs by monitoring state variables that are declared
by the application programmer. This technique is only partly application-specific,
as it is a runtime library performing the SDC detection. However the programmer
does need to specify which variables to use for SDC detection, and more impor-
tantly, the SDC detector has to be trained for the detection of errors with each
selected program. That is, the programmer does not specify invariants that exist
within the program, however the machine learning approach identifies application-

23

2.3. APPLICATION-LEVEL FAULT TOLERANCE

specific redundancy between the state variables of a program. This is what allows
it to detect whether a snapshot is potentially suffering from SDC. Other tech-
niques such as AID [Di and Cappello 2016] take advantage of the range of possible
outcomes of SDC to only detect errors that have a significant impact, for a large
number of HPC applications. Furthermore, generic SDC detector strategies can be
combined with techniques such as replication to maximise error detections while
allowing more variability in the data, i.e. removing false positives [Berrocal et al.
2017].

2.3.4 Application Sensitivity to Faults

Bridges et al. [2012a] identify application-level resilience that is not due to inherent
redundancy, but stems from the nature of the preconditioning operation. Indeed,
a preconditioner is often a heuristic, and in the restarted GMRES solver it only
defines a new search direction in which to expand the Krylov subspace. Thus
selecting a poor vector does not affect the correctness of the GMRES iterations,
and only risks causing the solver to converge slower. Consequently, the authors
propose the Fault Tolerant GMRES consisting of GMRES iterations, run safely,
enclosing a preconditioner which may run unreliably and return inexact values.
This unreliability may be due to storing the data in a less reliable region of memory,
for example. The protection proposed for GMRES in Section 4.3.1.2 of this thesis
protects all vectors of GMRES, and this work by Bridges et al. suggests that we
might not need to recover preconditioned vectors exactly, instead replacing lost
data with an approximation and protecting exactly only the vectors basis.

Another technique to identify which parts of an application are more resilient
is to inject errors, and measure the program’s outcome to determine their impact.
Elliott et al. [2014] evaluate the sensitivity of the GMRES solvers while Bron-
evetsky and Supinski [2008] use 6 different linear algebra solvers. Both studies
demonstrate the necessity of detecting errors with inexpensive application-level
checks, in the absence of other techniques. Casas et al. [2012] identify pointers as
the most sensitive data structures in the algebraic multigrid solver and propose
triplicating them as a protection measure.

A number of studies present frameworks for error injections. Li et al. [2012]
present BIFIT, an error injection tool to target specific locations and times of the
program’s data and execution time, later used in the evaluation of a statically

24

CHAPTER 2. BACKGROUND

adjustable ECC proposal [Li et al. 2013], using algorithm-based fault tolerance to
detect and correct errors that are not covered by ECC. The tool relies on Pin [Luk
et al. 2005], an instrumentation framework made available by Intel. Luo et al.
[2014] inject faults by running the application inside of a debugger. Finally, Gupta
et al. [2018] use FaultSim, a Monte-Carlo model-based simulator, which allows to
measure the MVF exactly – however ignoring the application-specific impact of
memory errors. In particular, in Gupta et al.’s work, loading an uncorrectable or
undetected error is equated with program failure.

2.4 Evaluating Vulnerability of Data in Memory

The idea of identifying more vulnerable parts of a program’s data is not limited
to algorithmic approaches. Indeed, such a determination would allow to select for
example whether to place data in a more or less reliable memory location [Chen
et al. 2005; Gupta et al. 2018]. However, generalising this for any program is not
straightforward and requires gathering information through other means than the
theoretical analysis of an algorithm. To identify reliable and vulnerable memory
segments, e.g. for a programmer writing compile-time annotations, this reliability
needs to be quantified. To do this, metrics of vulnerability have been developed.

2.4.1 Metrics for Memory Vulnerability

Program-agnostic approaches have attempted to follow the example of how relia-
bility decisions were guided at the chip level. Mukherjee et al. [2003] have devised
a metric to model the error rate of any component of a computing system, the
AVF. This metric quantifies whether a given bit matters for reliability, using the
probability that a fault at this bit may cause an error in the final outcome of
a program. Averaging this value per component for various workloads indicates
which components require error mitigating techniques. For example, a specula-
tive component such as a branch predictor will never affect reliability, while an
instruction decode unit has a major impact on any program.

It is worth noting that the AVF is dependent on the scope in which it is
defined [Mukherjee 2008, Chapter 3.2]. That is, if we limit the analysis of the
AVF to memory, then the AVF of a bit is the probability that a fault at this bit
causes the memory subsystem to return an erroneous value, i.e. a value different

25

2.5. DYNAMICALLY ADAPTABLE ECC PROTECTION

from the one stored at this location. This does not take into account what the
program does with the erroneous value, and is thus an upper bound on the full-
system AVF. Thus, limiting the AVF analysis to memory classifies a bit that
is later loaded as vulnerable (or required for Architecturally Correct Execution
(ACE), in Mukherjee et al.’s terminology). This loaded bit is vulnerable whatever
the outcome of the program after loading this bit with a wrong value: the value
may be ignored, have a negligible impact, cause an incorrect result or even crash
the program. To underline this key distinction, we call Memory Vulnerability
Factor (MVF) the AVF scoped to memory only, thus the probability that a bit
causes an incorrect value to be returned from memory. In the remainder of this
work, we call AVF the probability that a bit causes an incorrect outcome of the
program, thus considering the full system running a program as the default scope
for the AVF.

Yu et al. [2014] define the Data Vulnerability Factor (DVF) per data structure
d, defined as the multiplication of the structure’s size Sd, the program execution
time T , the number of accesses to this structure in memory Nha, and the overall
fault rate FIT : DV Fd = FIT · T · Sd ·Nha. They then use mathematical models
to compute the DVF based on memory access patterns. This does obviously not
take into account the relative timing of the memory accesses, nor whether faults are
consumed or overwritten. Luo et al. [2014] use the safe ratio, which is the fraction
of time that data resides in memory before being overwritten. This is the same
as the MVF, except that it chooses to quantify the opposite of vulnerability. The
MVF and the safe ratio sr are related by MV F + sr = 1. Gupta et al. [2018] use
two metrics, initially measuring the MVF, defined as “the average duration that
data is stored in memory before being loaded”. They then use a proxy metric,
which is the ratio of stores (ST) to loads (LD), thus ST/LD, for the purpose of
their runtime page-placement algorithm.

2.5 Dynamically Adaptable ECC Protection

In order to adapt the memory protection dynamically, it is necessary to measure
our vulnerability metric dynamically. In order to do so, PMUs can be used to
identify memory access patterns. This is explained in detail in Section 6.4. PMUs
have been used for similar analyses, either at runtime or offline.

26

CHAPTER 2. BACKGROUND

2.5.1 Sampling to Identify Memory Access Patterns

PMUs allow to gather information about program executions, through the sam-
pling of addresses accessed by memory instructions. Servat et al. [2015] and
Giménez et al. [2014] correlate these accesses with memory regions identified at
runtime, to detect memory access patterns and visualise memory bottlenecks. The
low-overhead instrumentation techniques allow the authors to gain insights and
tune applications offline, but are not used for runtime optimisations.

A dynamic use of the POWER5’s PMU capabilities has been presented by Tam
et al. [2009] to log memory instructions. From this log of addressees gathered
dynamically, the applications’ miss rate curves can be computed online. This
information is then used to partition cache resources among different applications
running simultaneously.

2.5.2 Variable Strength ECC schemes

Managing to measure vulnerability at runtime is enabled through PMUs, however
adapting ECC strength dynamically is not possible with commodity hardware. At
best, two hardware memory resources with different reliability features can be used,
and the vulnerability-based decision is then to decide the placement of data on one
or the other of these resources. Luo et al. [2014] choose to recommend whether to
place data in a DIMM without ECC, with parity, or with SECDED ECC, while
Gupta et al. [2018] choose to place data either in High Bandwidth Memory (HBM)
or slower but more reliable DRAM, in a hybrid memory architecture setup.

Academic proposals exist for ECC schemes for DRAM with variable strength,
however none use dynamic online guidance. Virtualized ECC [Yoon and Erez 2010]
stores a first tier ECC code, mainly to detect errors. Yoon and Erez then store
a second tier ECC code, used in the case of uncorrected errors in the first level,
in addressable memory. Similarly to Virtualized ECC, Odd-ECC [Malek et al.
2017] uses two tiers of error correction. However, Odd-ECC relies on a pre-defined
arrangement in memory at a 256KB granularity. A 256KB region selected for
higher protection has less memory usable by the program, as part of it is reserved
for ECC. This organisation is less flexible than a page-table level mapping as used
in Virtualized ECC. Runtime-adaptable ECC schemes have been devised for other

27

2.5. DYNAMICALLY ADAPTABLE ECC PROTECTION

hardware than DRAM, such as caches [Alameldeen et al. 2011; Paul et al. 2011],
and NAND memories [Yuan et al. 2015].

Finally, a cache in the memory controller has been proposed to store meta-data
of Error Correction Pointers [Lin et al. 2012].

28

Chapter 3
Methodology

In this chapter, the experimental methodology used in this thesis is explained. The
first section covers the error injection mechanisms common to all contributions of
this thesis, while the second section describes the simulation infrastructure used
to measure vulnerability precisely. Finally, we present the benchmarks that are
used throughout this work.

3.1 Injecting Errors

All error injections are performed in native parallel runs on the same real system.
Errors are injected using a separate thread, at a random time during the Region
Of Interest (ROI) of the benchmark. The prologue, which consists of generating
the program’s input, and the epilogue, which consists of verifying the program’s
output, are not considered for error injections. The injector thread simply sleeps
for the selected amount of time, then injects the error using one of the two possible
mechanisms: DUE or bit flip injection.

The type of error that is injected depends on the error model that is used.
At the application-level, we assume ECC is in place and simulate what happens
whenever it fails, that is when a DUE occurs. At lower levels, when studying
the sensitivity of applications to errors in their data and evaluating the impact of
ECC, we inject bit flips in a program’s data and classify the outcome of its run.

3.1.1 DUE Injection

Currently, OSs retire full memory pages upon a DUE [Kleen 2010]. It is worth
noting that this error model is generalisable to more types of DUE, as long as the

29

3.1. INJECTING ERRORS

extent of the potentially corrupted data can be identified. This is always the case
for memory DUE. Since the Linux Kernel 2.6.32, hardware poisoning of a memory
page can be triggered through various means, such as the madvise system call.

To simulate errors we use the mprotect system call available in Linux kernels
to change the authorizations of the targeted memory page. This is more practical
than triggering a real hardware retiring of a memory page, and behaves identically:
the program receives a signal at the time it accesses the memory page. We recover
in the same way as we would from a real error: in a signal handler, we request a
new memory page at the same virtual address through means of the mmap system
command. All the recoveries operate exactly in the same way as they would if a
real DUE took place. For the solver, there is no difference between real hardware
DUE and our error injection mechanism.

3.1.2 Injecting Bit Flips

To inject bit flips, we select a 64 bit word in the targeted application-level data, as
this is the granularity at which the most common ECCs, SECDED and ChipKill,
operate. Two types of faults can be injected, either a number of bit flips, where
random bits in the selected 64 bit word are flipped, or a DUE. For bit flips, we
pick at random the selected number of bits in the word, and flip them in the
targeted word at the moment of the error injection. A DUE consists in poisoning
the data, and always causes an incorrect program outcome if and only if the data
is consumed. In practice, it consists of inserting a NaN in floating-point data or a
very high value for integer data. This is useful both to measure the exact failure
rate due to DUE, and to get an upper bound on failure rates due to bit flips and
ECC miscorrections.

We verify analytically that the results of consuming a DUE is indeed always
an incorrect outcome. In most cases, integer data is used to index other arrays, in
which case injecting a high value causes the program to crash from a segmentation
fault. Otherwise, we ensure that incorrect integer data causes an incorrect result,
such as a non-existing category for a benchmark performing classification, etc.
Similarly, we ensure that verifications on floating point numbers fail for unexpected
NaN values, keeping in mind that comparisons against NaN values always return
false. For example, verifying that a value v is smaller than a threshold ε needs to
be rewritten from if(v< ε) to if(!(v≥ ε)).

30

CHAPTER 3. METHODOLOGY

Each experiment consists of a single fault injection. The program runs until it
finishes abnormally or until completion, in which case the validity of the solution
is checked. In the case of benchmarks that have a built-in check of the solution,
we always verify the solution using non-modified input data. Otherwise, we com-
pare against the output of a reference run in which no faults are injected. The
experiments’ outcomes are classified using the taxonomy described in Section 6.2.1
and Figure 6.2: ok and slow (successes), and hang, wrong, and crash (failures).
An experiment is classified as hang after failing to complete within 10 times the
reference execution time. Finally, an experiment is classified as slow if the pro-
gram runs for at least 20% more time than the reference run, or performs at least
2 more iterations than the reference for iterative benchmarks.

3.1.3 Assessing the Impact of ECC

In error-injecting experiments with a dynamically adaptive ECC scheme, we check
the selected ECC strength at the moment of the fault injection. If the ECC corrects
more bit flips than are injected, we count the outcome as ok. Otherwise, we use
the outcome of the experiment, in which we injected the error.

We combine the results of experiments with different numbers of bit flips, using
a relative fault rate of 0.01 between successive numbers of flips [Mitra et al. 2014].
That is, we suppose double bit flips are 100× less frequent than single bit flips,
and triple bit flips 10, 000× less frequent. This allows us to measure the overall
probability of failure in the event of a fault, for every possible combination of ECC
levels, without needing to postulate a fault probability.

3.2 Simulation Infrastructure

To be able to gather precise information about when data reaches or is fetched
from memory, we use a cycle-accurate simulator. We extend TaskSim [Rico et al.
2011; Rico et al. 2012], a task-trace based multicore simulator, to compute the
exact memory vulnerability ratings of data. Its infrastructure relies on task-based
execution models to generate detailed traces for each task, including the basic
blocks that are executed and memory addresses that are accessed. TaskSim’s mul-
ticore architecture simulator then simulates parallel runs in detail by fetching and
simulating all instructions, using a simple core model and a full memory hierarchy.

31

3.3. BENCHMARKS

Table 3.1: TaskSim cache parameters
cache shared assoc. size latency MSHRs
L1D private 8-way 32kB 4 cycles 32
L2 private 8-way 256kB 12 cycles 32
L3 shared 16-way 20MB 28 cycles 128

The simulator also relies on a real runtime system, to schedule the tasks across
the simulated hardware. The memory is simulated using Ramulator [Kim et al.
2016]. TaskSim has also been extended to allow multi-level simulation encompass-
ing multi-node executions of MPI programs [Grass et al. 2016].

To compute the various vulnerability metrics, we capture all loads and stores
and the time at which they reach main memory. We then update at each access
the necessary counters per memory location: time before stores, time before loads
whose contents are directly overwritten, time before remaining loads, and number
of loads and stores. From this data, we can compute all the vulnerability metrics
that we consider. We only update these counters during the ROI and compute all
metrics at a 64 bit granularity, which is the granularity used for SECDED and a
subset of the granularity commonly used in ChipKill-level ECC. Finally, we also
report for each memory page of a benchmark the average fraction of time it resides
in cache.

We trace applications on an Intel x86_64 Xeon E5-2670 and simulate a multi-
core architecture whose configuration mirrors the Xeon E5-2670’s characteristics.
It consists of 8 cores running at a frequency of 2.6GHz, each with a reorder buffer
of 192 entries, and one thread per core. The memory hierarchy’s parameters are
summed up in Table 3.1. All cache levels have 64B lines, write-back and write-
allocate policies, are non inclusive, and track outstanding misses in Miss Status
Handling Registers (MSHRs). Ramulator simulates 4GB of DDR4 DRAM mem-
ory, organised in one rank of 4Gb x8 chips clocked at 2400MHz.

3.3 Benchmarks

For the purpose of the work presented in this thesis, we use 14 parallel bench-
marks, which are listed in Table 3.2. All benchmarks are written using the OmpSs
programming model, with tasks that use real data-flow dependencies. The source
codes of all the benchmarks are available online [Jaulmes 2019].

32

CHAPTER 3. METHODOLOGY

Ta
bl
e
3.
2:

B
en
ch
m
ar
ks

us
ed

fo
r
ev
al
ua

ti
on

T
he

la
st

co
lu
m
n
in
di
ca
te
s
w
he
th
er

th
e
be

nc
hm

ar
k’
s
ou

tp
ut

ve
ri
fic
at
io
n
is

bu
ilt
-in

(3
)
or

do
ne

co
m
pa

ri
ng

w
it
h
th
e
ou

tp
ut

of
a
re
fe
re
nc

e
ru
n
(7
).

N
am

e
B
en
ch
m
ar
k
de
sc
ri
pt
io
n

C
at
eg
or
y

In
pu

t
si
ze

B
ui
lt
-in

ou
tp
ut

ve
ri
fic
at
io
n

B
la
ck
sc
ho

le
s

O
pt
io
n
pr
ic
in
g
[C
ha

sa
pi
s

et
al

.
20
15
]

P
ar
ti
al

D
iff
er
en
ti
al

E
qu

at
io
n

40
0M

op
ti
on

s
3

C
ho

le
sk
y

C
ho

le
sk
y
fa
ct
or
iz
at
io
n

D
en
se

lin
ea
r
al
ge
br
a

81
92
×
81
92

m
at
ri
x

3
C
G

C
on

ju
ga
te

G
ra
di
en
t

Sp
ar
se

lin
ea
r
al
ge
br
a

16
M
i×

16
M
im

at
ri
x

3
D
G
E
M
M

M
at
ri
x
m
ul
ti
pl
ic
at
io
n

D
en
se

lin
ea
r
al
ge
br
a

51
20
×
51
20

m
at
ri
x

3
F
F
T

Fa
st

Fo
ur
ie
r
T
ra
ns
fo
rm

Sp
ec
tr
al

m
et
ho

d
St
oc
kh

am
,2

M
ip

oi
nt
s

7
G
au

ss
-S
ei
de
l

H
ea
t
di
ffu

si
on

,G
au

ss
-S
ei
de
ls

ol
ve
r

St
ru
ct
ur
ed

gr
id

45
00
×
45
00

gr
id

7
Ja

co
bi

H
ea
t
di
ffu

si
on

,J
ac
ob

is
ol
ve
r

St
ru
ct
ur
ed

gr
id

45
00
×
45
00

gr
id

7
K
N
N

K
-n
ea
re
st

ne
ig
hb

ou
rs

M
ac
hi
ne

le
ar
ni
ng

50
0K

po
in
ts

tr
ai
ni
ng

,5
k
te
st
in
g
se
ts

7
K

M
ea
ns

K
-m

ea
ns

cl
us
te
ri
ng

M
ac
hi
ne

le
ar
ni
ng

10
0K

po
in
ts
,3

0
di
m
en
si
on

s,
8
cl
us
te
rs

7
N
-b
od

y
A
st
ro
ph

ys
ic
al

si
m
ul
at
io
n

N
-b
od

y
m
et
ho

d
16
K
ip

ar
ti
cl
es
,1

00
it
er
at
io
ns

3

P
R
K
2
st
en
ci
l

P
ar
al
le
lR

es
ea
rc
h
K
er
ne
ls

st
en
ci
l

[W
ijn

ga
ar
t
an

d
M
at
ts
on

20
14
]

St
en
ci
lo

pe
ra
ti
on

16
K
i×

16
K
ig

ri
d,

13
0
it
er
at
io
ns

3

R
ed
-b
la
ck

H
ea
t
di
ffu

si
on

,r
ed
-b
la
ck

so
lv
er

St
ru
ct
ur
ed

gr
id

45
00
×
45
00

gr
id

7
SM

I
Sy

m
m
et
ri
c
m
at
ri
x
in
ve
rs
e

D
en

se
lin

ea
r
al
ge
br
a

46
08
×
46
08

m
at
ri
x

3
St
re
am

St
re
am

T
ri
ad

[M
cC

al
pi
n
19
95
]

M
em

or
y
ba

nd
w
id
th

be
nc
hm

ar
k

19
2M

B
3

33

3.3. BENCHMARKS

3.3.1 The Conjugate Gradient Benchmark

We present in detail the Conjugate Gradient (CG) benchmark Hestenes and Stiefel
[1952] and Saad [2003], as it is the main code used for the evaluation of the algo-
rithmic techniques, and will serve as a motivating example for the other chapters.
Shewchuk [1994] also provides an in-depth and accessible introduction to CG. The
algorithm’s pseudo-code is presented in Listing 3.1.

Listing 3.1: Conjugate Gradient (CG) pseudo code
1 εold ⇐ +∞ , p′ ⇐ 0
2 f o r t in 0..tmax :
3 r ⇐ b− Ax i f t ≡ 0 (mod 50) e l s e r − αq
4 ε⇐ ||r||2
5 i f ε < tol : break
6 β ⇐ ε/εold
7 p⇐ βp′ + r
8 q ⇐ Ap
9 ||p||2A ⇐ 〈q, p〉

10 α⇐ ε/||p||2A
11 x⇐ x+ αp
12 εold ⇐ ε
13 swap (p ,p′)

CG solves Ax = b for x, where A is a sparse Symmetric Positive Definite (SPD)
matrix. b, x, r, p, p′, and q are vectors, and ε, εold, α and β are scalars. The matrix
A is stored in memory in compressed sparse row format. Thus, we refer to it as 3
separate data structures: the rows Ar, columns Ac, and values Av.

CG is implemented using OmpSs, a task-based data-flow programming model,
with tasks each generating one block of each of the vectors or sums (in the case
of reductions). We use two copies of p and swap their pointers (line 13) to allow
delaying tasks that depend on one copy, such as x⇐ x+ αp. This allows the
runtime to ignore the false dependency due to overwriting p, and to overlap x’s
update with operations that incur load imbalance such as 〈p, q〉, thus improving
scalability. The periodic recomputation of r allows to limit the accumulation of
round-off errors in the r = b − Ax relation, and the convergence threshold tol is
set to ||b||2 10−20 to make the stopping criterion ||b− Ax||/||b|| < 10−10.

34

CHAPTER 3. METHODOLOGY

Two alternate implementations are also used, one with a block-Jacobi precon-
ditioner (see Section 4.3.2), and an implementation that can scale up to over a
thousand of cores. For this latter implementation, we use a hybrid implementa-
tion where the node-level parallelism is leveraged using MPI while the intra-node
(shared-memory) parallelism remains exploited by the asynchronous task-based
data-flow programming model OmpSs. The CG solver only requires the following
additions:

• Global MPI reductions after the local reductions,

• Exchanging locally updated parts of p with nodes depending on it.

This new exchange task takes place after updating p and before computing q

(between lines 7 and 8 on Listing 3.1), while the MPI reductions occur after the
local reductions (norm of r line 4, and A-norm of p line 9). In practice, the
MPI calls for those reductions are placed inside the tasks that compute β and α,
respectively.

For the single node implementation, we measure solving 9 matrices selected
from the University of Florida sparse matrix collection [Davis and Hu 2011]. They
are well-conditioned matrices for CG selected among the biggest of each family
of SPD matrices. For the MPI + OmpSs implementation, we solve Poisson’s
equation in 3D using a 27 point stencil discretization, which is also used in the
HPCG benchmark [Heroux et al. 2013], with a system size of 5123 unknowns for
the multiple-node setup. This matrix is also used when CG is used as part of a
larger collection of benchmarks. We then use a single node and a smaller number
number of unknowns (2563), as shown in Table 3.2.

3.3.2 Remaining Benchmarks

For the purpose of the work presented in this thesis, we use parallel benchmarks
from various origins, selected because they represent a varied set of application
types, and because they can all have the validity of their output verified. All
benchmarks are written for a shared-memory environment using the OmpSs pro-
gramming model, except N-body which can run on several nodes, as using an
MPI + OmpSs hybrid programming model. The verification of the outputs is pre-
served from the original code for all the benchmarks that had built-in verifications,
and we list here how each verification works.

35

3.3. BENCHMARKS

Cholesky computes the factorisation of an SPD matrix A of dimension n into
an upper triangular matrix L, such that LTL = A. The built-in verification takes
this matrix L and checks that ||L

TL−A||∞
n ||A||∞ < 60 εBLAS.

SMI computes the inverse of an SPD matrix by first factorising the matrix A
using Cholesky, then inverting L and finally multiplying the obtained triangular
matrix with its transposed, to compute A−1 = (L−1)T (L−1). The built-in verifica-
tion checks with the same threshold as Cholesky that ||Id−AA−1||1

n ||A||1 ||A−1||1 < 60 εBLAS.
Both Blackscholes and DGEMM verify that every individual value in the

result deviates by less than 10−4 from the expected result. In DGEMM, the input
matrices are set statically and the expected output matrix is thus known analyti-
cally, while in Blackscholes the expected option prices are generated together with
the input data for each option.

N-body checks the final positions of each simulated astrophysical body against
those of a reference run, and checks that the average relative error per component
of the position is at most 8× 10−6.

For K-means, we compare the resulting metric that the algorithm is minimiz-
ing, the within-cluster sum of squares, and check that it is not higher. For KNN,
we verify that all the points to be classified are attributed to the same class.

Finally, the Stream and PRK2 Stencil benchmarks can both compute the
expected results of their computations, and internally verify that the average rela-
tive error is less than 10−8. All the remaining benchmarks similarly output floating
point values, and we check that the average relative error compared to a reference
run is less than 10−8.

36

Chapter 4
Algorithmic Recoveries

4.1 Introduction

As memory errors become more frequent, so is the probability of encountering a
DUE. When such an error happens, the software stack needs to handle the error.
Some straightforward approaches like cancelling the affected process or relocating
a faulty memory page to another physical location may be effective against low
fault rates, but they are insufficient against the predicted rates that processors
will suffer in the future. Also, very aggressive resilience strategies like process
triplication are completely impractical unless we face very high fault rates [Ferreira
et al. 2011]. Therefore, intermediate solutions that recompute an approximation
of the lost data [Langou et al. 2007] or that save the process state in a checkpoint
with a certain frequency have been extensively used [Moody et al. 2010; Sorin et al.
2002; Chen 2013]. However, most of these solutions involve backward recoveries,
discarding useful computations, and thus incur significant slowdowns.

The application itself may be able to handle the error and terminate cleanly [Bland
et al. 2013] or perform some sort of recovery procedure relying on Algorithmic-
Based Fault Tolerance (ABFT), which has been extensively applied to MPI pro-
grams [Fagg et al. 2001; Langou et al. 2007; Casas et al. 2012], as well as shared
memory programming models [Wong et al. 2010; Subasi et al. 2015]. While the
majority of ABFT techniques are geared towards error detection, such as discussed
in Section 2.3.3, algorithmic approaches have also demonstrated to provide more
efficient recoveries than backward recovery techniques like checkpointing-rollback.
However, most ABFT recovery techniques so far suffer from two main drawbacks:
being very application dependent, and still incurring significant overheads. In this
chapter we aim to reduce the impact of these two issues which have avoided the

37

4.1. INTRODUCTION

wide-spread usage of algorithmic resilience. The proposed ABFT methods to deal
with DUE are based on very simple algebraic relations that do not require any
kind of deep understanding of the algorithm and can be almost always derived for
iterative methods. When a DUE is signalled, we always discard the whole memory
page where affected data resides, as OSs do for bus and memory ECC errors, and
recompute the discarded data using the algebraic relations that we derived. The
cost of this recovery is proportional to the page size, and we evaluate the proposed
ABFT methods for all possible sizes from 4K bytes up to 2M bytes. The over-
heads related to recovering data are reduced by overlapping them with algorithmic
computations. Since the responsibility of such overlapping is left to the runtime
system, we do not significantly increase the programming burden.

This chapter proposes an integrated resilience approach, where the error de-
tection is performed by hardware mechanisms that report DUE to the OS, which
identifies lost data at a memory page level and triggers a signal caught by the
application. We use the OmpSs task-based data-flow programming model [Du-
ran et al. 2011], in which serial code is split into several pieces, called tasks, that
are dynamically scheduled according to data dependencies explicitly expressed by
the programmer. We combine the OmpSs annotations with MPI to scale our im-
plementation up to over thousand cores. We demonstrate the feasibility of our
approach by applying it to relevant iterative methods of the Krylov subspace fam-
ily: CG, Bi-Conjugate Gradient Stabilised (BiCGStab), and Generalised Minimal
RESidual (GMRES) [Barrett et al. 1994], and implementing it for CG. The main
contributions of this chapter are:

• A general resilience solution for DUE based on straightforward algorithmic
recoveries. With the lowest error injection rate considered, corresponding to
one expected error per baseline execution time, the overhead of this technique
is 5.40%, whereas that of the checkpointing-rollback technique is close to
55%.

• An asynchronous and programmer transparent variant of our recovery imple-
mentation that reduces the overhead down to 2.24% under the lowest error
rate, and that offers a trade-off between low overhead and convergence rate
for higher error rates.

38

CHAPTER 4. ALGORITHMIC RECOVERIES

• A mathematical proof showing that the Lossy Approach by Langou et al.
[2007], an interpolation-restart strategy, is the best of all the restart tech-
niques in the literature.

• An exhaustive and comprehensive evaluation, using real world matrices, of
our method against a more sophisticated algorithm-specific restart method,
derived from the Lossy Approach, and checkpointing-rollback mechanisms.
We consider different parallel scenarios from 8 up to 1024 cores and we show
that our methods always improve the performance of the above mentioned
state-of-the-art methods.

• This chapter further studies the effect of page sizes, from 4KB up to 2MB,
on the overheads of the techniques. Our algorithmic methods outperform
the state-of-the-art on average up to 512KB page sizes. For bigger sizes,
our methods still perform better for the bigger matrices of the test set, and
perform similarly to the Lossy Restart method on small matrices where a
full vector can fit inside a single memory page.

The rest of this chapter is organised as follows: Section 4.2 explains how to re-
cover from hardware detected memory errors by using inherent redundancy, while
Section 4.3 shows how to use this redundancy to make Krylov subspace methods
resilient, as well as implementation details of this methodology for CG. Section 4.4
introduces the methods with which we compare our recoveries, and the next sec-
tions provide the experimental evaluation in Section 4.5, and the evolution of
these results with page sizes in Section 4.6. Section 4.7 provides our concluding
remarks.

4.2 Exact Interpolation Recovery

4.2.1 Error Detection and Reporting

Due to the advent of faults, many processors have specific registers dedicated to
signalling errors to the OS layer. On modern x86 and AMD64 architectures for
example, a memory controller discovering data that is incoherent with the ECC,
while accessing or periodically scrubbing it, reports it in a specific register [In-
tel 2017; AMD 2018]. For memory pages, when the corrected errors exceed a

39

4.2. EXACT INTERPOLATION RECOVERY

threshold, the OS transparently relocates the page at another physical location.
When a DUE is reported, the OS kills the affected process. This feature is known
as memory page retirement on Solaris, and soft or hard page offlining in Linux
kernels [Kleen 2010; Tang et al. 2006].

In practice, application termination after a page failure is done by a SIGBUS

signal. This signal can be caught and also specifies the failing memory addresses.
By catching the signal and requesting a new hardware page at the same virtual
address, the program can continue executing without further errors. Thus, to
be resilient against memory DUE, an HPC application simply has to be able to
replace lost data.

We classify all data as either static if it does not change during execution time
(matrix, preconditioners, right-hand side), or dynamic if it may be modified. Static
data is assumed to be saved to a reliable backing store, from which it is reloaded
when errors are detected, similarly to other work using memory-page level fault
models [Bridges et al. 2012b]. While there typically is not enough information
available in the solver to recover static data, there may likely be where the matrix
was generated or read. Alternately, such data could be protected by software ECC
at low cost, by exploiting the fact that this second ECC tier only needs to correct,
and not detect errors [Yoon and Erez 2010]. Thus, only dynamic data needs to be
made recoverable.

4.2.2 Extracting Redundancies of Linear Solvers

Linear iterative solvers perform operations like matrix-vector multiplications q =

Ap, linear combinations u = αv + βw, and combinations of the above, e.g. the
very common residual r = b − Ax, where A is a matrix while q, p, u, w, r, b and
x are vectors and α and β are scalars. In many cases the left and right hand side
of these operations coexist during the whole execution of the solver.

In some cases, we know that such a relation between vectors holds true (minus
round-off errors) without having to recompute them. For example, if we define x′ =
x+αp and r′ = r−αq with the above notations, then r′ = b− Ax′. Finally, similar
relations can hold true by construction, without ever having been computed. By
analysing an iterative solver, we find redundancies expressed in terms of explicit
or implicit relations between data.

40

CHAPTER 4. ALGORITHMIC RECOVERIES

Table 4.1: Block recoveries for operations q = Ap, v = αv + βw and r = b− Ax
Block relation, recover left side Inverted relation, recover right side
qi =

∑n−1
j=0 Aijpj Aiipi = qi −

∑
j 6=iAijpj

ui = αvi + βwi wi = (ui − αvi)/β
ri = bi −

∑n−1
j=0 Aijxj Aiixi = bi − ri −

∑
j 6=iAijxj

Trivially, if any vector r, q, u is lost or partially corrupted, it can be recovered
by recomputing the relation involving that vector. Given the inverses of A, α, β
and other potential operands of a relation, it would also be possible to recover a lost
or corrupted p, v, w, t or x. However, solving Ap = q for p or Ax = b−r for x is as
expensive as running the whole iterative method. The matrix A can not be inverted
either in the general case, due to numerical and computational considerations.
However, recoveries based on such redundancy relations are applicable if only a
small portion of the data structures involved in a relation is lost. This is the case
with our error model since modern hardware is able to report errors at memory
page level. In order to operate at such fine grain level, the redundancies must be
expressed in terms of relations between small blocks of data.

4.2.3 Block Decomposition

The relations exposed previously, decomposed in n blocks, are listed in Table 4.1.
We use the normal block relation to recover the left-hand side of a relation, and the
inverse of this relation for the right-hand side. In the event this inverse relation
relies on a diagonal block of the matrix, we need to use a solver to recompute
the lost data. If we know that a diagonal block is non-singular, e.g. when A

is SPD, we solve the inverse block relations with a direct solver. Otherwise we
solve this relation in the sense of least squares for the full columns of the matrix
corresponding to the lost memory page as input, similarly to what Agullo et al.
do for restart methods [Agullo et al. 2013].

The formula for xi’s recovery, shown at the bottom of the right hand side of
Table 4.1 has been used by Chen [Chen 2011] to recover the iterate, in complement
of implicit checkpointing methods. Our approach requires no checkpoints however,
as we protect all vectors with interpolation methods – as detailed in Section 4.3.1
for CG, BiCGStab, GMRES, and in Section 4.3.2 for their preconditioned variants.
Exploiting these relations for recovery is a novel idea, since all previous work on

41

4.2. EXACT INTERPOLATION RECOVERY

making Krylov-subspace solvers fault-tolerant relies on a fail-stop failure model in
a distributed memory environment. The required information to use redundancy
of linear relations is then not available since corresponding parts of different vectors
are lost simultaneously.

Furthermore, the granularity of the blocks of lost data in our recoveries is very
different from the one in the context of process failure, which allows different and
faster recoveries. Indeed, our block decomposition is dictated by the underlying
layers (hardware detection, OS, runtime) that do the DUE reporting. This means
the block size that we use as granularity for recovery is a memory page. For a
typical off-the-shelf machine, memory pages are 4K bytes, though bigger pages
can be used in HPC settings – provided architectural support, such as the 2MB
“huge pages” on x86. We evaluate our technique for any power of 2 sized page from
4KB to 2MB, thus for data losses from 512 to 262,144 double precision floating-
point values.

Any DUE in our data protected by relations can thus be rectified by applying
a small amount of computations, at worst factorising a diagonal block of a matrix
if one is used by that relation. This is a forward recovery scheme, since we can
continue executing the program with our interpolated replacement data and the
data that is not affected by the error. When A’s diagonal block is non-singular or
a linear relation is used, we can even guarantee the exact same data as was lost for
all relations (up to rounding errors), thus guarantee the same convergence rate as
when the algorithm is not subject to faults. These recovery operations are usually
small compared to the total computations, since matrix dimensions reach up to
more than a million rows for real-life problems, as available in the University of
Florida sparse matrix collection [Davis and Hu 2011].

4.2.4 Dealing with Multiple Errors

Our approach requires no assumptions on simultaneous errors. Indeed, our tech-
niques can easily handle multiple errors (discovered simultaneously) in most situ-
ations. Errors can always be recovered if they affect different instances of blocked
linear relations expressed in Table 4.1. However, if simultaneous errors impact a
single relation we have two possible scenarios:

42

CHAPTER 4. ALGORITHMIC RECOVERIES

1 Simultaneous errors in a single vector are not a problem for our recovery
strategy. This is trivial for vectors recovered from linear relations, and
straightforward for submatrix relations [Langou et al. 2007]. For two failed
blocks i and j, we can combine both block relations:(

Aii Aij

Aji Ajj

)(
xi

xj

)
=

(
bi − ri −

∑
k 6=i,j Aikxk

bj − rj −
∑

k 6=i,j Ajkxk

)

This relation is extendable to any number of blocks, with an increasing sub-
matrix size to be factorised.

2 Simultaneous errors on related data, e.g. both qi and pi for a given i in a
q = Ap relation. Assuming no other relationship allows to recover these
data, we may fall back to a restart method, e.g. the Lossy Restart which is
adapted from the Lossy Approach [Langou et al. 2007] to fit our error model
(see Section 4.4.3). The frequency of occurrence of simultaneous errors is
discussed in Section 4.5.3.

In conclusion, our forward interpolation recovery relies on very simple redun-
dancy relations that are easy to identify in any iterative method, and that can
efficiently be used at memory page level. This recovery can deal with multiple
errors, but that may imply a more expensive computation or, at worst, the usage
of a restart method as fallback.

4.3 Applying Recoveries to Iterative Solvers

4.3.1 Making Redundancies Explicit

DUE are reported when a faulty operation is made or when trying to access data
that is corrupted. Even for data corruption discovered by the OS while periodically
scrubbing memory pages, no error is signalled until that data is accessed, in the
hope the page will be freed.

So in order to make an iterative solver resilient with our technique, it is sufficient
to find for each operand of each operation done by the solver a relation

• that either allows to recover the operand, and then compute the result of the
operation,

43

4.3. APPLYING RECOVERIES TO ITERATIVE SOLVERS

Listing 4.1: CG pseudo code with redundancy relations

1 εold ⇐ +∞
2 r ⇐ b− Ax
3 f o r t in 0..tmax
4 ε⇐ ||r||2
5 i f ε < tol : break
6 β ⇐ ε/εold
7 p⇐ βp+ r
8 q ⇐ Ap
9 α⇐ ε/ < q, p >

10 x⇐ x+ αp
11 r ⇐ r − αq
12 εold ⇐ ε

r = b− Ax

p = A−1q r = b− Ax
see 4.3.1.1
q = Ap p = A−1q
p = A−1q x = A−1(b− r)
q = Ap r = b− Ax

• or that allows to compute the result without this operand – that is, finding
an alternate formulation.

Note that the main difference between this work and previous application-level
recoveries for the same iterative solvers is the error model: since we do not consider
complete failure of a node, we do not incur the loss of a part of every vector, which
would render the relations we use here inapplicable. Over the next Sections we
explain in detail how three commonly used iterative methods, CG, BiCGStab, and
GMRES, can be protected using redundancy relations.

4.3.1.1 Conjugate Gradient

The pseudo-code for CG is given in Listing 4.1 [Saad 2003], with the relations used
for recovering each accessed data annotated on the right. Relations are written
as whole-matrix relations for the sake of readability, but we use the memory page
grained system described previously. Whenever possible, the relation that last
produced data is used, which is not possible when data is updated in place. By
construction, the algorithm conserves the relation r = b − Ax, and we can define
an alternate way of computing q besides performing Ap from the update formula
of p⇐ βp+r, which is q ⇐ βq+Ar. When computing q, if a page of p is missing, q
can be computed using this alternate formulation. When the whole matrix-vector
multiplication is done, p can be recovered using p = A−1q, in order to continue
computations. However, it is impossible to use this relation when updating p. Let

44

CHAPTER 4. ALGORITHMIC RECOVERIES

us consider the blocked formulation:

pi = A−1
ii

(
qi −

∑
j 6=i

Aijpj
)

At this stage in the update of p, all pages p0..pi−1 are at iteration t + 1, and all
pages pi+1..pn−1 are at iteration t.

We have two possibilities for recovery:

1 Postpone the recovery and compute qi at iteration t+ 1 using βq+Ar, then
factorise Aii to get p.

2 Perform double buffering, thus have two copies of a vector, either p or q,
and use them alternately from one iteration to the next to remove in place
updates.

The first option, though possibly more elegant, would imply taking rather
considerable distances from the original algorithm. It is also arguable that the
βq+Ar operation might need to be protected, since a matrix-vector multiplication
is the most computationally intensive and longest operation in a CG iteration.
The latter option is beneficial to the performance of the algorithm, regardless of
resilience considerations, as explained in Section 3.3.1. We thus opted for double
buffering p, and unrolled the loop to use two p vectors alternately, as illustrated
in Listing 4.2. Code unchanged by this transformation is skipped. This solution
adds redundancy to the method at the cost of some minimal memory overhead.

4.3.1.2 Generalised Minimal RESidual

The code for GMRES is available in Listing 4.3. Each iteration of GMRES consists
of running the Arnoldi method - the part creating an orthogonal basis of vectors
spanning (r, Ar, ..., A(m−1)r) and an associated upper-Hessenberg matrix H - fol-
lowed by a QR decomposition of this matrix H through Givens rotations. We may
then increment the iterate by the solution y of miny||r −Hy||.

Protecting the biggest part of the data, which is the vk vectors, is straightfor-
ward thanks to the Hessenberg matrix. At any time, we have at step t,

l > 0 and l < t⇒ vl =
1

hl,l−1

(
Avl−1 −

l−1∑
k=0

hk,l−1v
k

)

45

4.3. APPLYING RECOVERIES TO ITERATIVE SOLVERS

Listing 4.2: CG with p double-buffered

1 f o r t in 0..tmax
2 · · ·
3 p1 ⇐ βp2 + r
4 q ⇐ Ap1

5 α⇐ ε/ < q, p1 >
6 x⇐ x+ αp1

7 · · ·
8 t++
9 p2 ⇐ βp1 + r

10 q ⇐ Ap2

11 α⇐ ε/ < q, p2 >
12 x⇐ x+ αp2

13 · · ·

Listing 4.3: GMRES pseudo code

1 f o r t in 0..tmax
2 r ⇐ b− Ax
3 v0 ⇐ r/||r||2
4 f o r l in 0..m− 1
5 w ⇐ Avl

6 f o r k in 0..l
7 hk,l ⇐< w, vk >
8 w ⇐ w − hk,lvk
9 hl+1,l ⇐ ||w||2

10 vl+1 ⇐ w/hl+1,l

11 s o l v e H = QR
12 y ⇐ R−1QT ||r||2e1

13 x⇐ x+
∑m−1

l=0 ylv
l

14 check convergence

Thus the redundancy kept in the Hessenberg matrix’ elements allows us to
recover any Arnoldi vector under our error model.

Note that it is possible (and usual) to build the QR decomposition of the Hes-
senberg matrix H as the Arnoldi method goes, by computing the Givens rotation
that corresponds to each new vector of the Arnoldi method. Q is thus computed
as the set of Givens rotations, and QT ||r||2e1 is also updated at every step. Thus
we could use the relation H = QR by keeping a copy of H even while building R:

• Givens rotations are easily deducible from H, thus Q and R are recoverable
from H

• Givens rotations are easily invertible, since inverting a rotation means rotat-
ing by the opposite angle. Thus H is recoverable from Q and R.

Even though space is a limiting factor in GMRES, the H and R matrices are
respectively upper Hessenberg and upper triangular of size m(m + 1), thus much
smaller than the set of Arnoldi vectors of size mn (with m << n). Agullo et al.
consider H to be stored (and solved) redundantly [Agullo et al. 2013], which would
then need no further protection. This also indicates that keeping the matrix H
has a reasonable cost.

46

CHAPTER 4. ALGORITHMIC RECOVERIES

Listing 4.4: BiCGStab pseudo code with redundancies listed

1 g, r, p⇐ b− Ax
2 ρ⇐< g, r >
3 f o r t in 0..tmax
4 q ⇐ Ad
5 α⇐ ρ/ < q, r >
6 s⇐ g − αq
7 t⇐ As
8 ω =< t, s > / < t, t >
9 x⇐ x+ αp+ ωs

10 g ⇐ s− ωt
11 check convergence
12 ρold ⇐ ρ
13 ρ⇐< g, r >
14 β ⇐ ρ/ρold ∗ α/ω
15 p⇐ g + β(p− ωq)

p double-buffered
q = Ad
g = b− Ax q = Ad
s = g − αq
t = As s = A−1t
x = A−1(b− g) p = A−1q
t = As s = A−1t

g = b− Ax

q = Ad p = A−1q

4.3.1.3 Bi-Conjugate Gradient Stabilised

BiCGStab is one of the generalizations of CG to matrices that are non-SPD. The
pseudo-code for this method and the relations that may be used to make it resilient
are presented in Listing 4.4, similarly to what has been done for CG. r is static,
along with the usual A and b. BiCGStab exhibits more redundancies than CG,
and only an example set of relations that can be used is shown.

With q = Ap, s = g − αq and t = As, updating g can be rewritten g ⇐
g − αAp − ωAs. Thus we have another way of computing g if for example q is
faulty, but we also verified that the algorithm still conserves g = b− Ax.

Note that other assignments can also be expressed as slightly more complicated
updates, we have e.g. s⇐ s− ωt− αq. The reverse also holds true, from the
update of x we may get a direct relation such as x = A−1(b− s+ ωt)

4.3.2 Preconditioned algorithms

The described recovery techniques can be straightforwardly applied to the same
algorithms with a preconditioner. To preserve the generality of our approach, and
to avoid preconditioners specifics, we consider a generic preconditioning operation
“solveMu = v”,M being the preconditioning matrix. To derive protected versions

47

4.3. APPLYING RECOVERIES TO ITERATIVE SOLVERS

of the preconditioned algorithms we have to protect all the linear operations in-
volving the preconditioned vectors. Protecting the execution of the preconditioner
itself is beyond the scope of this work, but a topic of complementary work, de-
scribing for example how to effectively protect multi-grid preconditioning [Casas
et al. 2012].

To recover part of a preconditioned vector, there is no general way to avoid
re-applying the preconditioner. Therefore, the prerequisite for the recovery to be
cheap is the ability to perform a partial application of the preconditioner, that is,
to apply the preconditioner to a small subset of v such that all lost data in u is
recovered. If M is a block-diagonal matrix, solving Mu = v only on the set of
blocks that supersedes the lost data achieves this. If M is a fixed point method’s
matrix, the sparse set of elements in v that contribute to the lost portion of u is
sufficient. If M denotes a multigrid method, we consider the nodes of the coarsest
grid that participate to producing lost data, then we only need the inputs that
contribute to these nodes for recovery. In any case, re-running the preconditioner
completely is a viable, though slow, forward recovery for u. Finally, a corrupted v
after a “solve Mu = v” operation is always recoverable without using the equation
Mu = v. This is an important point since M is not always explicitly formed.

This can be made explicit by looking at the preconditioned versions of CG,
BiCGStab, and GMRES, which are shown in Listings 4.5, 4.6 and 4.7. We can
easily observe that in both CG and BiCGStab the preconditioned vectors z, p
and s always exist at the same time as their non-preconditioned counterparts,
r, p and g, because the latter are still used in the solver. Thus we can always
recover the preconditioned vectors as discussed in the previous paragraph. All
the relations protecting operations that involve z or r in CG, and p, s, d or g
in BiCGStab are detailed next to the code of the preconditioned versions. For
preconditioned GMRES, shown in Listing 4.7, the main redundancy relation from
its non-preconditioned counterpart linking all the vk is still valid. The only addition
is the need for r to be conserved for the possible recovery of x.

4.3.3 Implementing Recovery with Asynchrony

CG and BiCGStab are harder to protect, as they require both redundancy relations
and double buffering approaches to be fully protected, while GMRES just requires
redundancies. For this reason, as well as because CG is a very popular method

48

CHAPTER 4. ALGORITHMIC RECOVERIES

Li
st
in
g
4.
5:

P
re
co
nd

it
io
ne
d
C
G

1
ε o
ld
⇐

+
∞

2
r
⇐

b
−
A
x

3
fo

r
t

in
0.
.t
m
a
x

4
so

lv
e
M
z

=
r

5
ρ
⇐
<
z,
r
>

6
β
⇐

ρ
/ρ

o
ld

7
p
⇐

β
p

+
z

8
q
⇐

A
p

9
α
⇐

ε/
<
q,
p
>

10
x
⇐

x
+
α
p

11
r
⇐

r
−
α
q

12
ρ
o
ld
⇐

ρ

r
=
b
−
A
x

M
z

=
r

M
z

=
r

Li
st
in
g
4.
6:

P
re
co
nd

it
io
ne
d
B
iC
G
St
ab

1
g
,r
,p
⇐

b
−
A
x

2
ρ
⇐
<
g
,r
>

3
fo

r
t

in
0.
.t
m
a
x

4
so

lv
e
M
d

=
p

5
q
⇐

A
d

6
α
⇐

ρ
/
<
q,
r
>

7
r
⇐

g
−
α
q

8
so

lv
e
M
s

=
r

9
t
⇐

A
s

10
ω

=
<
t,
r
>
/
<
t,
t
>

11
x
⇐

x
+
α
d

+
ω
s

12
g
⇐

r
−
ω
t

13
ρ
o
ld
⇐

ρ
14

ρ
⇐
<
g
,r
>

15
β
⇐

ρ
/ρ

o
ld
∗
α
/ω

16
p
⇐

g
+
β

(p
−
ω
q)

p
do

ub
le
-b
uff

er
ed

M
d

=
p

r
=
g

+
ω
t

M
s

=
r

r
=
g
−
α
q

d
=
A
−

1
q,
M
s

=
r

r
=
g
−
α
q

r
=
g

+
ω
t

p
do

ub
le
-b
uff

er
ed

Li
st
in
g
4.
7:

P
re
co
nd

it
io
ne
d
G
M
R
E
S

1
fo

r
t

ln
0.
.t
m
a
x

2
r
⇐

b
−
A
x

3
so

lv
e
M
z

=
r

4
v

0
⇐

z/
||z
|| 2

5
fo

r
l

in
0.
.m
−

1
6

u
⇐

A
v
l

7
so

lv
e
M
w

=
u

8
fo

r
k

in
0.
.l

9
h
k
,l
⇐
<
w
,v

k
>

10
w
⇐

w
−
h
k
,l
v
k

11
h
l+

1
,l
⇐
||w
|| 2

12
v
l+

1
⇐

w
/h

l+
1
,l

13
so

lv
e
H

=
Q
R

14
y
⇐

R
−

1
Q
T
||z
|| 2
e 1

15
x
⇐

x
+
∑ m−

1
l=

0
y l
v
l

r
=
b
−
A
x

M
z

=
r

x
=
A
−

1
(r
−
b)

49

4.3. APPLYING RECOVERIES TO ITERATIVE SOLVERS

for solving SPD matrix equations in the HPC context, we select it to test our
approach. We implement two versions of CG, one without a preconditioner and
a second one using a block-Jacobi preconditioner. Any conclusion obtained from
our experiments with CG can be trivially extended to the other two since they
constitute a similar and simpler use-cases respectively, and to their preconditioned
versions as explained in Section 4.3.2.

We start by presenting the implementation of CG for a shared-memory model,
and extend it to a distributed memory systems in Section 4.3.4.

4.3.3.1 Conjugate Gradient’s Parallel Decomposition

The pseudo-code for CG is given in Listing 3.1, and its parallelization in tasks is
done by strip-mining as shown in Figure 4.1a, with each set of tasks being named
after the value or vector it outputs. Dependencies between tasks are generated
from annotations to the sequential code, and represented by arrows on this graph.
Tasks are then scheduled asynchronously by the runtime according to this data-
flow. Some dependencies that do not affect the ordering or scheduling of tasks are
not drawn for the sake of clarity.

Sets of tasks depicted in white represent operations that are strip-mined into
as many parallel tasks as available threads. Blue tasks (after converging arrows)
depend on all the previous tasks (because of a reduction operation) and represent
a single task producing a scalar value. They are thus de facto synchronization
points. The lattice-like arrows describe the fact that each following task depends
on each previous task, as the block-row matrix-vector multiplication takes a whole
vector as input for each single block as output.

4.3.3.2 Packing Recovery Tasks out of the Critical Path

We divide those relations in blocks as described in Section 4.2.2 and maintain an
atomic bitmask (e.g. an int) per block of failure granularity, thus per memory
page. Each data vector and task output is represented by a bit in this mask. Thus,
if a task T works on a page p of a vector, it can check whether (one of) its inputs(s)
is corrupted, and if so skip the computation while marking the bitmask with the bit
representing T ’s output. We similarly skip computations that have inputs whose
computation was skipped, due to their inputs being corrupted. This is necessary as
to keep track of when errors happen and avoid overwriting data potentially needed

50

CHAPTER 4. ALGORITHMIC RECOVERIES

for recovery, and works especially well with linear relations (which are the majority
of considered relations). There is a memory overhead directly proportional to the
size of the linear system n to store this information.

Skipping computations is critical for reductions, because a floating point accu-
mulation can be irremediably corrupted by adding (or multiplying by) +/-inf or
nan. Through a thread-private sig_atomic_t variable, each task is made aware
of interruptions, and only contributes a page-level accumulation to the task-level
one when no errors were reported. For this page based division to be valid, the
reduction needs to be associative, which is always guaranteed since it is already
required for the strip-mining into tasks.

While errors are not corrected, the skipping of computations that depend on
not-produced data propagates through the different tasks. When reaching a scalar
task, skipping dependent computations would mean stop progressing completely.
Thus we have to recover errors before the said scalar tasks. The graph in Fig-
ure 4.1b shows the modified cycle with the green tasks where recoveries take place:
replacing lost data and recomputing skipped computations.

Each recovery task recovers the inputs and outputs of normal tasks which point
to it with dashed lines. Recovery tasks are always added to the execution flow of
the program and check the global variables for signalled errors. If none occurred,
the recovery tasks do nothing.

The more conservative approach allows the recovery tasks to execute in the
critical path, that is, waiting for all computations that do not need lost data to

q

〈p, q〉

α

xr
ε

β

p

(a) textbook version

q

〈p, q〉

α
x

r
ε

β

p

r1

r3

r2

(b) with recovery tasks

Figure 4.1: Task decomposition of CG. Circles represent tasks producing the data
inscribed on them, with white sets of tasks for strip-mined operations and blue for
tasks producing a scalar, and full arrows representing data dependencies. Green
tasks implement recoveries of the tasks linked to them with dashed arrows.

51

4.3. APPLYING RECOVERIES TO ITERATIVE SOLVERS

T1

T2

T3

T4
time

q

q

q

q

〈p, q〉

〈p, q〉

〈p, q〉

〈p, q〉

αr1 r

r

r

r

(a) FEIR, in critical path

T1

T2

T3

T4
time

q

q

q

q

r1

r

r

r

r

〈p, q〉 α

〈p, q〉

〈p, q〉

〈p, q〉

(b) AFEIR, overlapped

Figure 4.2: Traces illustrating the scheduling of recovery tasks

finish and only then run the recovery, as illustrated in Figure 4.2a. This option
makes no compromise on the coverage of faults, since all the tasks (thus potential
error discoveries) have finished executing when the recovery starts, as we will see
with high error injection rates in Section 4.5.3. We call this technique Forward
Exact Interpolation Recovery (FEIR).

Because dashed lines represent communication through atomic global bitmasks
rather than dependencies, recovery tasks can execute concurrently to CG tasks,
which do not touch the memory pages to be recovered, either skipping them or
working on unrelated data. This allows to overlap computations and recover-
ies, thereby reducing overheads; however errors discovered between recovery tasks
and the following scalar task are not recoverable. Thus we execute r1 and r2

asynchronously as late as the scheduler allows us to schedule them, which means
concurrently with < p, q > and ε respectively, and with a lower priority as to start
all reduction tasks first, see Figure 4.2b. Faults discovered after the recovery tasks
start being executed can not be corrected. This technique is the Asynchronous
Forward Exact Interpolation Recovery (AFEIR).

The parallelization strategy for the preconditioned CG is exactly the same as
for the non-preconditioned CG. The only added recovery technique is the partial
“solve Mu = v”, as explained in Section 4.3.2, which is easy to perform since
block-Jacobi is a blocked preconditioner.

4.3.4 Recovery on Distributed Memory Systems

The recovery methods described so far apply to shared memory models, in a sin-
gle node or in a partitioned global address space for example. We list here the
few modifications needed to extend our resilient methods to distributed memory
programming models like MPI, which we will use to evaluate how the recovery

52

CHAPTER 4. ALGORITHMIC RECOVERIES

techniques impact the scaling of the application in highly parallel scenarios. We
use our hybrid implementation of CG where the node level parallelism is leveraged
using MPI and the intra-socket parallelism is exploited by the asynchronous task-
based data-flow programming model, OmpSs. The necessary additions, which are
two MPI reductions after the local reductions and exchanging parts of p, modify
the task graph as follows:

• Global MPI reductions, occur during the α and β tasks (see Figure 4.1).

• A new exchange task to exchange locally updated parts of p with neighbour-
ing nodes depending on it, instead of the lattice-like dependencies between
tasks p and q.

For our FEIR and AFEIR methods, we instantiate a second r1 recovery task to
be executed before our new exchange task, to avoid sending potentially failed and
non-corrected data. Finally, MPI communications added inside the task recovering
the x vector, r3, request and perform exchanges of parts of x when needed for
recovery, since this vector is not exchanged at every iteration.

4.4 Other Recovery Approaches

4.4.1 Trivial Forward Recovery

The trivial forward recovery consists in simply keeping the program running, by
allocating new (uninitialised) memory for corrupt or lost data. This is the mini-
mum required, due to the OS retiring affected memory pages, and no other actions
are taken. While an error in a part of the data that is not reused later would be
masked, we lose all guarantees on convergence.

4.4.2 Rollback Recovery

Checkpointing is applied only to dynamic data in CG, to be fair in our comparison
of methods, and to be consistent with the assumptions on which the DUE recovery
relies. Each Processing Element (PE) periodically writes to its local disk the values
of the iterate and search direction vectors it has at that given moment (x and p),
which is the minimum to allow rolling back. The checkpointing rate is computed

53

4.4. OTHER RECOVERY APPROACHES

for each experiment to minimise execution time, taking into account the time to
write and read checkpoints, the MTBE, and no downtime [Bougeret et al. 2011].

There is no need to use a parallel file system, since we assume that the program
will not crash (as we catch the errors). At rollback, each PE restores the vector
portions that were saved to its local disk at the last checkpoint.

Checkpoints and rollbacks are global, that is, they involve all the PEs of a par-
allel run. In a distributed memory scenario, we perform a global MPI reduction
once per iteration to decide whether a rollback is needed. This global commu-
nication is executed simultaneously with the α MPI reduction to avoid further
synchronization overheads.

4.4.3 Lossy Restart

Langou et al. [2007] present a forward recovery method for the fail-stop model of
an MPI process, the Lossy Approach, applicable to all Krylov-subspace methods.
To compensate for the loss of a part of the iterate x, a step of the block-Jacobi is
used, which relies only on static data and the remaining parts of x. This operation
is similar to our recovery for the iterate, while discarding the residual in the block
relation. After such an interpolation, a restart is necessary since the residual r is
outdated and not easily deducible.

We adapt this Lossy Approach into a recovery for our error model, that we
name the Lossy Restart:

1 If part of the iterate is lost we use the interpolation from the Lossy Approach.
With i the failed block:

Aiixi = bi −
∑
j 6=i

Aijxj

2 We restart the method with either the intact or the newly interpolated iterate
as initial guess.

Before comparing these methods, let us consider theoretical results presented
on this interpolation, by noting x∗ the solution of the system b = Ax∗, x the iterate,
xI the newly interpolated iterate, e = x∗−x and eI = x∗−xI the respective errors,
and r = b−Ax and rI = b−AxI the respective residuals. Langou et al. show the
following:

54

CHAPTER 4. ALGORITHMIC RECOVERIES

Theorem 1. The interpolation is contracting for a constant
ci = (1 + ||A−1

ii ||
∑

j 6=i ||Aij||)1/2, thus ||eI || ≤ ci||e||.

This result grants the block-Jacobi’s fixed point property: if x = x∗, then
xI = x∗, since e = 0. For A SPD, Agullo et al. [2013] show the following:

Theorem 2. With A symmetric positive definite, the interpolation diminishes the
A-norm of the error: ||eI ||A ≤ ||e||A.

This is a stronger result, as it additionally guarantees that the A-norm of
the error, which decreases along the iterations in CG, keeps decreasing through
interpolation recoveries. Thus a CG (or PCG) algorithm made resilient with the
Lossy Approach strategy is guaranteed to have a monotonically decreasing error.

From here on, we will restrict ourselves to SPD matrices and show that the
block-Jacobi step does not just give better replacement data, but the best possible
– in the short run.

Theorem 3. For A SPD, the interpolation minimizes the A-norm of the error
||eI ||A over all possible values for xIi

The proof of our theorem relies on the transformation of the error implied by
the linear interpolation, pIi : e → eI being a linear projection, orthogonal for the
norm || · ||A

Proof. By construction, the residual at xI for the block i is rIi = bi−
∑n−1

j=0 Aijx
I
j =

0. Let us also notice that r = b− Ax = A(x∗ − x) = Ae and similarly rI = AeI .

Now let us show that the kernel and image of pIi are orthogonal for A:

∀e ∈ <, < pIi (e), e− pIi (e) >A =< eI , e− eI >A

=< AeI , e− eI >

=
n−1∑
j=0

< rIj , ej − eIj >

This is always zero, since for j = i, rIj = 0 and for j 6= i, xIj = xj thus ej = eIj . It
then comes clearly that:

||e||A = ||pIi (e)||A + ||(Id− pIi)(e)||A

55

4.5. EVALUATION

where pIi (e) depends solely on the ej (thus xj) with j 6= i. Hence the minimum of
this norm for all possible xi, or ei, is reached in pIi (e).

We can also deduce this from Theorem 2 and the fact that the unknown part
of x is in the kernel of pIi . ||eI ||A ≤ ||e||A then holds for any xi, hence the min
relation of our theorem.

Restarting the solver, with a good or unmodified initial guess, still harms the
superlinear convergence of CG, which relies on the fact that the sequence of iterates
x minimizes at each iteration the norm ||x∗ − x||A on a sequence of increasing
subspaces. However, this disturbance may benefit methods who have a tendency
to stagnate (such as GMRES).

All recoveries based on restarting are identical as long as the iterate is un-
touched, and trade in convergence properties for simplicity of recovery in the same
way. It is to be expected that such methods would behave very similarly to the
Lossy Restart, though always worse in the short run, hence it is the only restart
method against which to compare.

4.5 Evaluation

We run experiments on an Intel® Xeon® E5-2670, with one thread on each of its 8
cores. Our evaluation is done on two versions of CG, a non-preconditioned version
to show the hardest case possible, and one using a block-Jacobi preconditioner.
Due to the wide variety of preconditioners available for CG, it is impossible for us
to evaluate every single one. We list in Section 4.3.2 the desirable properties of
preconditioners for an efficient recovery. The block-Jacobi is simple to implement,
and trivially applicable to a subset of a vector. We select it also because, if its
block size coincides with the memory page size, the factorization of diagonal blocks
for the recovery of single errors is already computed. Thus we will use diagonal
blocks of 512 by 512 elements, which coincides with 4KB page sizes.

We compare the following methods: our Forward Exact Interpolation Recovery
(FEIR) without asynchrony (recovery tasks in the critical path), our Asynchronous
FEIR (AFEIR), the Lossy Restart, checkpointing-rollback to local disk, and trivial
forward recovery. The optimal checkpointing rate is used whenever errors are
injected, and no fallback is used for FEIR or AFEIR: simultaneous errors on related
data are simply ignored (see Section 4.2.4).

56

CHAPTER 4. ALGORITHMIC RECOVERIES

Table 4.2: Resilience methods’ overheads, no errors
Lossy trivial AFEIR FEIR ckpt 1K ckpt 200

overhead 0.00% 0.00% 0.23% 2.73% 17.62% 46.20%

Table 4.3: Increase of time spent per state for FEIR methods
imbalance runtime useful

AFEIR 4.30% 8.11% 1.90%
FEIR 25.06% 7.84% 2.78%

4.5.1 Techniques Overheads

From here on, the “ideal” CG will refer to our version of CG with no resilience
mechanisms nor error injections.

We present in Table 4.2 the harmonic means of overheads for all methods in ab-
sence of faults, compared to the ideal CG. The Lossy Restart and trivial techniques
have no overhead when no errors are injected, since catching the error, replacing
memory pages and ordering a restart is done in a signal handler which is never
called. To give a sense of checkpointing cost we arbitrarily consider checkpointing
periods of 1000 and 200 CG iterations. This is because the optimal checkpoint-
ing rate without injecting errors would be to never write checkpoints. Outside of
these overhead measurements, we use the optimal checkpointing rate explained in
Section 4.4.2. The corresponding overhead raises from 17.62% to 46.20% as the
checkpointing frequency increases, which constitutes a significant cost.

The overheads associated to the AFEIR and FEIR techniques are much smaller
since they are associated to activities like task creation or scheduling, that are much
cheaper than writing data to disk. The asynchronous nature of the AFEIR tech-
nique allows to compensate much of the overhead incurred by the FEIR technique.
We can see in Table 4.3 a detailed breakdown of what is involved in the overheads
of the FEIR and AFEIR methods, expressed as the increase of the proportion of
time spent in each state while the solver is running: either idle, thus suffering load
imbalance, or performing runtime work, such as creating and scheduling tasks,
or finally executing tasks, thus doing computations for the solver. Executing the
recovery tasks in the critical path obviously increases the load imbalance.

Most of the runtime overhead of FEIR and AFEIR techniques could be removed
if application-level resilience were supported by the runtime, instantiating recovery
tasks only when DUE are signalled.

57

4.5. EVALUATION

-10

-5

0

 0 10 20 30 40 50 60 70

lo
g(

er
ro

r)

time (s)

AFEIR
FEIR

Lossy
ckpt
Ideal

 29 30 31

Figure 4.3: CG convergence for different resilience methods with matrix thermal2
and same single error injection in the iterate x around t = 30s

4.5.2 Convergence

Figure 4.3 illustrates the convergence of CG for a sample scenario consisting of
a single error injection. The x-axis represents the time and the y-axis shows
the execution progress in terms of the logarithm of the residual norm defined as
||Ax− b||/||b||, updated at each iteration. The ideal CG is represented by the cyan
line; all the other experiments have a single error injected 30 seconds after the
beginning of the execution at a certain memory page that contains a portion of
the iterate x. Before the error is injected, each resilience method pays its typical
overhead in absence of faults. The purple line corresponding to the checkpointing
mechanism is the one with more overhead, which is consistent with the analysis
presented in Section 4.5.1, as we use a checkpointing frequency of 1000 iterations.
At the time of the error, it already incurs a 9.12% slowdown. Once the error is in-
jected, the checkpointing mechanism rolls back a certain number of iterations and
resumes progress from there. The Lossy Restart, represented by the blue line, has
an immediate reduction in the error thanks to its block-Jacobi step interpolation,
but converges slower afterwards because restarting harms CG’s superlinear con-
vergence. The FEIR and AFEIR methods recover the lost data by using an exact
interpolation and keep progressing. The overhead paid by the AFEIR technique
is significantly smaller than the one paid by FEIR, since asynchrony allows most
of the recovery work to be overlapped with other computations.

58

CHAPTER 4. ALGORITHMIC RECOVERIES

1%

10%

100%

1000%

1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50

1%

10%

100%

1000%

0.5% 0.5%

af_shell8 cfd2 consph Dubcova3 ecology2 parabolic_fem qa8fm thermal2 thermomech CG mean PCG mean

Pe
rf

or
m

an
ce

 S
lo

w
do

w
n

AFEIR FEIR Lossy ckpt trivial

Figure 4.4: Comparison of the execution time for resilience methods and matrices,
varying error injection rates

4.5.3 Shared-Memory Performance

Figure 4.4 shows an exhaustive evaluation of the performance slowdown associated
to the 5 resilience mechanisms listed in Section 4.5: trivial, checkpointing-rollback,
Lossy Restart, FEIR and AFEIR. We consider the same 9 input matrices as for
the overhead measures, and 6 error injection scenarios per matrix and method,
which means that we provide an evaluation of 270 different experiments. Each
experiment has been run over 50 times and Figure 4.4 reports their harmonic
mean, and standard deviation as error bars. In each repetition, the errors have
been injected randomly at different times and memory pages. On the x-axis of
Figure 4.4 we display the name of the considered matrices and, for each matrix,
the error injection frequency normalised to the ideal CG’s convergence time τ for
that matrix. A value nmeans an error frequency of n

τ
, thus an MTBE of τ

n
. In other

words, n is the expected number of errors injected during the ideal convergence
time τ . The convergence times per matrices range from 60ms to 54s, meaning
the MTBE ranges from 54s down to 1.33ms. These very high error rates allow
to stress test all the recovery methods, while the overheads analysis presented
in Section 4.5.1 gives indications on which techniques to prefer when errors are
less likely. The y-axis is displayed in logarithmic scale and shows the measured
performance slowdown in percentage for each experiment, with respect to the ideal
CG. A slowdown close to 0 means the resilient CG converges at a speed close to

59

4.5. EVALUATION

that of the ideal one, whereas a bigger slowdown means its convergence is slower.
The convergence threshold is 10−10.

We have run the exact same 270 experiments with the block-Jacobi Precon-
ditioned CG (PCG), and report the mean of those results, displayed at the right
hand side of Figure 4.4.

The trivial method reacts badly against few errors and its convergence times
diverge extremely fast, with overheads over 200% with a normalised error fre-
quency of 5 only. For PCG, the overheads of the trivial recovery reach 50% with
a normalised frequency of 2 and become larger than 700% for frequencies of 10
or more. The checkpointing scheme reacts better than the trivial method, with
substantial overheads that tend to increase slower, ranging on average from 55% to
433% for CG and from 60% to 752% for PCG. These convergence times are close
to the expected values from the checkpointing frequency computation [Bougeret
et al. 2011]. The Lossy Restart behaves better on average than the trivial method
and the checkpointing schemes. Regarding CG, it has an overhead of 8.4% with
one expected error per ideal convergence time, reaching up to 87% and 170%
against 20 and 50 times higher frequencies respectively, whereas for PCG these
overheads are 12.80% and 500% for normalised frequencies of 1 and 20. This bet-
ter behaviour of the lossy mechanisms with respect to checkpointing and trivial
techniques is already reported in the literature [Agullo et al. 2013], and the fact
that our experimental framework has reproduced known results demonstrates its
accuracy and reliability. This is matrix specific however, as non-ABFT methods
are clearly outperformed for af_shell8 or cfd2 but have overheads similar to Lossy
for thermal2.

The most important fact of our evaluation is that methods FEIR and AFEIR
behave much better than the current state-of-the-art resilience techniques for it-
erative solvers. When applied to CG, FEIR has an overhead of 5.37% and 29.68%
under normalised frequencies of 1 and 50, whereas AFEIR has overheads of 3.59%
and 50.47% respectively for the same error rates. On PCG, FEIR and AFEIR have
an overhead of 5.36% and 2.72% with the smallest frequency, and reach 40.55%
and 48.55% with the largest.

While FEIR has a roughly constant overhead on most matrices, the impact of
recoveries in the critical path can be seen where execution times are the shortest,
such as for Dubcova3 and especially qa8fm and thermomech. As recoveries run

60

CHAPTER 4. ALGORITHMIC RECOVERIES

on a per iteration basis, the error rates per iteration determine the chances of
encountering errors on related data and during recovery tasks. Under injection
frequencies of 20 and 50, both qa8fm and thermomech experience over 0.2 and 0.6
errors per iteration, which significantly pulls up the mean overheads. Such extreme
cases, which correspond to MTBEs of 5ms and less, could be dealt with by using
more recoveries per iteration, or a fallback method for unrecoverable errors. These
matrices also show that Lossy Restart is most efficient on fast converging problems.
Finally, these matrices and fault rates are the only ones that display occurrences
of multiple simultaneous corrections on related data. This is due both to the high
error rates and the small sizes of the matrices, causing the relative size of a page
in a vector to be significant.

AFEIR is slower than FEIR for high error injection rates, because errors hap-
pening between the end of a recovery task and its following scalar task are unre-
coverable. That is the time between the end of r1 or r2 and the beginning of α
and β respectively, as illustrated by Figure 4.2b. With very high error injection
rates, the probability of an error happening during these time windows may cause
the contribution of a memory page to 〈p,q〉 or ε (see Figure 4.1b) to be ignored.
Depending on the matrix and the actual data lost, this might have a significant
impact, as matrix ecology2’s behaviour shows. The FEIR method is not at risk
of discovering an error after a recovery task ran, because these tasks start after
all computations are done. However, both methods are still vulnerable during
the recovery’s execution. There is thus a trade-off between the low overheads of
AFEIR at frequencies of 10 and less, and a more conservative approach, FEIR,
which trades in some convergence speed for safer recoveries and is thus useful at
higher error rates. Given an execution trace of the CG solver, the probability of
missing an error with AFEIR could be quantified, as it corresponds to the number
of pages that are touched during the load imbalance preceding the execution of a
recovery task. As the injection rate is normalised to the execution time, this prob-
ability is higher with a smaller number of iterations, but also with matrices that
suffer from higher load imbalance. The same trade-off applies to the PCG results
for low error injection rates. The precomputed factorization of diagonal blocks
reduces recovery time, thus a block-Jacobi preconditioner weakens this trade-off
for high error injection rates. It is to be expected that when using a preconditioner

61

4.5. EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024 64 128 256 512 1024
1 error per run 2 errors per run

sp
ee

du
p

w
.r.

t.
Id

ea
l o

n
64

 c
or

es

cores

AFEIR
FEIR

Lossy
ckpt

trivial
Ideal

Linear

Figure 4.5: Speedup of the MPI+OmpSs resilient CGs

whose partial application is computationally hard (see Section 4.3.2), the average
recovery time will increase and this trade-off will become stronger.

4.5.4 Scaling Results

In this section, an evaluation of the scalability of our recovery techniques is per-
formed with a hybrid MPI + OmpSs implementation. Experiments are run in the
MareNostrum supercomputer, whose nodes contain two Intel Xeon CPU E5-2670
sockets. Each MPI rank is mapped to one 8-core socket, running 1 OmpSs thread
per core. We consider runs on 8, 16, 32, 64 and 128 sockets (64 to 1024 cores),
since we need 8 sockets to fit the matrix in memory.

We present in Figure 4.5 a complete evaluation in terms of speedup, injecting
one and two errors per run. The speedups are computed taking the execution
time of an ideal CG on the smallest possible core count, 64, as a reference. We
display data concerning the FEIR, AFEIR, Lossy Restart, checkpointing and triv-
ial techniques, and include the ideal CG’s and linear speedups for reference. Our
MPI+OmpSs CG implementation achieves a parallel efficiency of 80.17% on 1024
cores in a faultless run, which highlights its quality in terms of parallel perfor-
mance.

AFEIR and FEIR techniques clearly overcome the trivial and the checkpoint-
ing techniques, achieving speedups of 10.01 and 7.50 respectively when 1 error is
injected and 6.03 and 7.65 against two errors on 1024 cores. The Lossy Restart

62

CHAPTER 4. ALGORITHMIC RECOVERIES

0

1

2

3

4

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

lo
g 1

0
nu

m
be

r o
f b

lo
ck

s

memory page size (B)

thermal2
ecology2

parabolic_fem
af_shell8

thermomech_dM
Dubcova3

cfd2
qa8fm

Figure 4.6: Subdivision of CG vectors in blocks, with one block per page

achieves speedups of 8.17 and 4.82 respectively on 1024 cores. It is worth noting
that only a few tens of iterations are required to achieve convergence for the 27-
point stencil matrix, which causes any overhead to be important compared to the
ideal execution time, but also makes this matrix the ideal workload for a restart
method. Even in this case, restarting is as costly if not more than our FEIR and
AFEIR methods’ overheads. Regarding checkpointing, writing vectors to disk al-
ready causes the checkpointing to perform significantly worse than our baseline,
and when injecting errors its speedups stay below a third of the ideal CG, close to
that of the trivial method.

4.6 Analysis of Data Loss Granularity

While the checkpointing scheme recovers full vectors, the algorithmic techniques
recover or replace data at the memory page level, which is usually 4KB. However,
some systems use different page sizes, and some HPC codes rely on huge pages
(2MB) to improve performance, hence we present an in-depth study of the impact
of varying page sizes on recoveries and convergence rates.

The impact of using huge pages on the ideal performance (without resilience
methods nor error injections) was evaluated as well, however details are left out
due to space constraints. Overall, the number of TLB misses decreased drastically
with negligible impact on convergence time.

The number of pages, thus blocks of data erased by a single error, per vector
(b, x, r, p, q, see Listing 3.1) are displayed in Figure 4.6. At the biggest page
sizes, a single page may contain a vector entirely, thus full vectors can be erased

63

4.6. ANALYSIS OF DATA LOSS GRANULARITY

0%

100%

200%

300%

400%

500%

1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50

4KB 64KB 1MB 4KB 64KB 1MB 4KB 64KB 1MB

qa8fm af_shell8 thermal2

Pe
rf

or
m

an
ce

 s
lo

w
do

w
n

Page size, normalized fault injection rate

AFEIR
FEIR

Lossy

Figure 4.7: Overheads of algorithmic techniques for 3 selected matrices and 3 page
sizes, presented linearly

by a single error, as is the case for qa8fm and cfd2 starting at 1MB page sizes,
and Dubcova3 and thermomech_dM at a page size of 2MB. In this case, the Lossy
recovery consists of solving the problem by factorising directly the whole matrix
until the resulting vector is not subject to faults.

4.6.1 Impact of page size depending on matrix size

To show the different impact of page size on different matrices, we display in
Figure 4.7 the overheads for 3 different page sizes and 3 matrices: the smallest,
qa8fm, the biggest, thermal2, and an intermediate one, af_shell8, which appear
respectively at the bottom, middle and top of Figure 4.6. These matrices represent
all possible behaviours that we observed. The plotted values are, as in previous
Figures, average performance slowdown compared to the “ideal” baseline execution
time, and this data is a subset of the data that will be presented in Figure 4.8.
Each point corresponds to the harmonic mean of up to 70 runs divided by the
ideal time, where each configuration consists of a recovery method, matrix, page
size, and fault injection rate.

The overall tendency is the same as previously: FEIR and AFEIR perform
significantly better than Lossy in most scenarios, with the notable exception of
big page sizes for small matrices. However, looking at differences per matrix sizes,
we note that all methods diverge for qa8fm under high fault injections rates, except
FEIR with 4KB pages which incurs a 141% slowdown. For af_shell8, until 64KB

64

CHAPTER 4. ALGORITHMIC RECOVERIES

2%

10%

100%

1000%

10000%

1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50
1 2 5 10 20 50

2%

10%

100%

1000%

10000%

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1M 2M average

Pe
rf

or
m

an
ce

 S
lo

w
do

w
n

AFEIR FEIR Lossy trivial

Figure 4.8: Evolution of the overheads of algorithmic techniques for page sizes
from 4KB to 2MB, varying error injection rates

pages the FEIR and AFEIR methods stay below 11% while Lossy peaks at 60%,
and with 1MB pages the fault rates are similar until a fault injection rate of 5 faults
per run, with quick divergence after that. The biggest matrix, thermal2, behaves
similarly as FEIR and AFEIR have low slowdowns for page sizes of 4KB and 64KB
while Lossy’s slowdown seems roughly proportional to the fault injection rate, until
307%. With 1MB pages we see a similar divergence to previous matrices for Lossy,
while the increase in slowdowns is slower for FEIR and AFEIR with 254% and
171% respectively.

This Figure allows to illustrate that the bigger the matrix, the better FEIR
and AFEIR perform in comparison to Lossy. This is in part due to bigger matrices
usually having worse convergence [Hestenes and Stiefel 1952]. Such matrices will
incur more slowdown from restarting than from exact recoveries, such as FEIR’s
and AFEIR’s. Coincidentally, dividing a vector into more blocks due to a matrix
being bigger also reduces the probability of having two faults affect related data,
which adversely impacts FEIR and AFEIR as explained in Section 4.2.4.

4.6.2 Overall Page Size Evaluation

Figure 4.8 presents the average overheads of all algorithmic techniques (trivial,
FEIR, AFEIR, Lossy) for CG, with different page sizes. We repeat for all page
sizes ranging from 4KB to 2MB the full evaluation done in Figure 4.4 for each

65

4.6. ANALYSIS OF DATA LOSS GRANULARITY

matrix, technique (except checkpointing), and fault injection rate, for a total of
2160 different configurations. We use the same methodology as explained in Sec-
tion 4.5 and compute the harmonic means of slowdowns (convergence time divided
by baseline execution time) for each configuration of up to 70 runs. We then report
the harmonic means of all the matrices’ slowdowns. That is, every point is the
average of all the averaged runs of all the matrices, for that page size and fault
injection rate. The first graph “4KB” coincides with the graph titled “CG mean”
in Figure 4.4.

Overall, the trade-off between asynchronous and critical-path recoveries dis-
cussed in Section 4.5.3 is still applicable up to 64KB page sizes, above which FEIR
and AFEIR show similar performances. The high cost of recoveries for 128KB
page sizes and above makes the choice of overlapping recoveries largely irrelevant.
Both methods outperform the Lossy Restart strategy significantly up to 512KB
page sizes, above which all the convergence times are similar, and even to the
advantage of Lossy for an error injection rate of 50 with 2MB page sizes.

At the same time, all forward recovery methods (FEIR, AFEIR and Lossy)
still outperform by far the trivial method, even though it does not perform any
computation. The trivial method often does not converge at all, as is the case with
normalised error injection rates over 5 with page sizes of 128KB or more.

With increasing page sizes comes an increasing cost of computations during
recoveries, and we can indeed see how increasing recovery costs drive convergence
times up for all algorithmic techniques. The minimum slowdowns of AFEIR,
FEIR and Lossy are all around 28% for a single expected fault per run at 2MB
pages against 4.2%, 5.5% and 11.2% respectively with 4KB pages. This means
all methods still outperform checkpointing, whose overhead for a single expected
fault is 55% as presented in the previous Section. Maximums values increase,
and for 1MB pages the slowdowns of FEIR, AFEIR and Lossy are 1072%, 1146%
and 1516.59%. As in Section 4.5.3, these high numbers are mostly driven by the
overheads of small matrices.

The different techniques are affected differently by the page size modification.
For similar convergence rates, the Lossy recovery has higher rates of converging
runs than FEIR and AFEIR. However, these runs are also on average much longer
(up to 1000 times), and their duration has much higher variability. This is ex-
pected as with both the FEIR and AFEIR techniques several simultaneous faults

66

CHAPTER 4. ALGORITHMIC RECOVERIES

may cause a failure to recover, whereas Lossy only relies on static data and thus
can always continue solving. The smaller relative differences between the expected
convergence times of all methods indicate that with high page sizes, the conver-
gence time is dominated by recoveries.

With increasing page sizes, all interpolation recoveries become less performant,
however the exact ones (FEIR, AFEIR) still outperform the Lossy approach, and
all these techniques remain better than the checkpointing approach for low fault
rates.

4.7 Conclusions

This chapter demonstrates that hardware DUE reporting can be exploited jointly
with redundancy relations to protect iterative solvers paying a very low cost. Our
two proposed methods, FEIR and AFEIR, overcome the state-of-the-art techniques
in terms of overheads. They are moreover based on very simple relations that do
not require deep algorithmic understanding, whereas an algorithmic technique like
the Lossy Approach [Langou et al. 2007] is harder to derive. Varying page sizes up
to 2MB has shown that our methods retain lower expected convergence times than
the current state-of-the-art, until the edge case where vectors fit in a single mem-
ory page. At that moment, all methods become roughly equivalent due to single
errors erasing full vectors. In short, our methods’ efficiency is increasing with ma-
trix size, relative to state-of-the-art methods. These straightforward low-overhead
recoveries open the door to wide-spread use of algorithmic-based techniques to
protect iterative methods when DUE detection is available. On the other hand,
one could apply this technique even more efficiently if provided with the unaffected
data on the memory page. If, instead of allocating a new page on encountering
a DUE, the OS allowed to migrate all non-affected value to a new page, then the
size of the recovery becomes trivial: a single ECC word, thus 64B at most with
current ECCs.

Second, the contribution demonstrates that by overlapping recovery with al-
gorithmic computation, overheads can be drastically reduced. Under high error
rates, of roughly more than 0.1 errors per second, the overlapping stops paying
off since the chances of getting errors on non-protected computations increase,
even though this trade-off is largely matrix specific. The FEIR technique provides

67

4.7. CONCLUSIONS

then better performance. In any case, task-based data-flow programming models
have interesting properties for resilience, not only because of inherently splitting
programs into tasks, but also because overlapping computations and recoveries is
done without explicit programmer intervention. Runtime support for application-
level resilience could reduce the overheads by injecting recovery tasks only when
errors are encountered – this would also increase AFEIR’s coverage by executing
the recovery later, and still asynchronously.

Our resilience method opens the door to interesting trade-offs when SDC comes
into play. Since we cover with very low overhead nearly all memory page fail-
ures, an ECC that focuses more on detecting than correcting errors would reduce
SDC [Kim et al. 2015], while delegating some correction to the application level.
This work will hopefully encourage future architectural, OS and runtime features
to expose errors at the application level whenever lower level recoveries fail, al-
lowing resilience aware applications to resist significantly higher fault rates than
applications oblivious to resilience.

68

Chapter 5
Vulnerability Analysis

5.1 Introduction

In memory subsystems, all storage bits are uniformly protected with the same level
of ECC. This means that bits in memory that will have no impact on the program
are protected at the same expense than bits that will have a major impact on
the program’s outcome. This is because it is impossible to statically assess which
storage bits are more likely to affect program reliability. Indeed, as the placement
of data in memory can change at every program execution, all bits in DRAM are
interchangeable. Thus, to quantify the risk of error in memory, it is necessary to
use a metric at the scale of a single program execution, depending on the data
stored at a given bit, and on the way the program uses this data.

In this chapter, we examine the Memory Vulnerability Factor (MVF), which
is a special case of the AVF [Mukherjee et al. 2003], with the scope of analysis
limited to memory. It is targeted at approximating the probability of error in
a program, and has been used under different names in the literature. We then
extend this metric to take into account false errors, which are reported but would
otherwise have no impact on the program being run. The MVF metric is dynamic,
adapting to program behaviour, yet is not application-specific as it can be used
for any program. We measure it using a cycle-accurate simulator, as well as all
previous generalisations of AVF to memory [Yu et al. 2014; Luo et al. 2014; Gupta
et al. 2018]. We compare these metrics to the probability of an architecturally in-
correct program outcome due to a fault in its data, obtained from real-world fault
injections. These experiments demonstrate that the false error aware memory vul-
nerability metric correlates best with the probability of an architecturally incorrect
program outcome, and gives a consistent upper bound on this probability.

69

5.2. METRIC DEFINITION

This chapter is organised as follows: in Section 5.2 we define the vulnerability
metrics for memory, and present in Section 5.3 the comparison between sensitiv-
ity to faults and the vulnerability ratings. The insight about false errors gained
from this new vulnerability metric allows to reduce failure rates by delaying error
reporting, which we quantify in Section 5.4. In Section 5.5, we present early re-
sults of similarly inspired savings in DRAM refresh energy, before presenting our
concluding remarks in Section 5.6.

5.2 Metric Definition

The goal of quantifying memory vulnerability is to assess which bits matter to the
correct execution of a program. In order to do this, we first present a classification
of the possible outcomes of a program, then introduce the vulnerability metrics
from the literature. We then present the False Error Aware (FEA) vulnerability
metric, by analysing how false errors can in fact be ignored.

5.2.1 Linking Program Outcome and Vulnerability

We categorise the outcome of a program as correct when its execution is indistin-
guishable from an execution without errors. This includes executions with errors
that are corrected, ignored, or benign (thus have no measurable impact on the
final state). Incorrect executions may be due to a program that finishes running
improperly (e.g. crash), stops making progress, finishes but returns an incorrect
result, or finishes and returns a correct result but having performed more work
than a non-faulty execution. The goal of assessing vulnerability in memory is to
know, dynamically, which bits have a higher likelihood of causing an incorrect
outcome. We also call incorrect outcomes failures.

When encoding data with ECC, data bits are stored together with redundant
bits, as an ECC codeword. This makes computing a per-bit metric such as vul-
nerability slightly more complex. For example a SECDED code means any single
bit error in the codeword is correctable [Hamming 1950]. However, the bits in
the codeword still affect the state of the program. To reflect this, we attribute to
an ECC codeword stored in memory the average vulnerability of all the bits in
the unencoded data. This allows to quantify the importance of the data that is
encoded beyond the simple ECC strength considerations. The properties of the

70

CHAPTER 5. VULNERABILITY ANALYSIS

AVF are also maintained: the structure’s value is still the average of that of all its
bits. Thus, in order to assess the real impact of faults in data stored in memory,
we need to measure the program outcomes when injecting faults in the unencoded
data bits.

5.2.2 Existing Metrics for Memory Vulnerability

We reuse all the metrics that are presented in Section 2.4.1:

• MVF, which is the AVF scoped to memory only, and coincides with the
probability of loading data from memory. MVF is the fraction of time a
memory location contains data that will be loaded

• DVF [Yu et al. 2014], which is the product of the program execution time
T , the size Sd and number of accesses Nha,d per memory structure, and the
fault rate:

DV Fd = FIT · T · Sd ·Nha,d

It is worth noting that the fault rate FIT and T do not vary per data
structure, thus the differences between DVF among various data structures
is only due to their size and number of accesses Sd ·Nha,d.

• The store-to-load ratio ST/LD [Gupta et al. 2018]. The authors state that
“most periods of data ‘deadness’ end in a write, so more writes indicate more
dead intervals.”

5.2.3 Accounting for False DUE

MVF is overestimating the probability of a bit affecting the program outcome, by
counting as vulnerable data that is fetched only to be overwritten. Let us consider
a write or a set of writes that spans a full ECC word (thus 8B for SECDED or 16B
for ChipKill-level ECC [Dell 1997]). In a cache with a write-allocate policy, if these
writes cause a cache miss, data will be fetched from memory. Any miscorrected
errors in this ECC word are masked by the new data being written. Similarly, any
uncorrectable errors would be masked as well, if they did not trigger an exception.
These are called false errors. Contrarily to benign errors, which affect the program
in a negligible way, false errors are caused by faults in data that is not consumed

71

5.2. METRIC DEFINITION

by the program. Thus, in a system without ECC, or with an ECC scheme that
has no DUE [Abdoo and Cabello 1996], MVF incorrectly categorises that data as
vulnerable, as it is based only on fetching the data.

Thus we can write off false errors, as they should not affect the program
state. Accordingly, we differentiate between MVF, whose definition is given in
Section 2.4.1 and which limited to what happens in memory, and False Error
Aware MVF (FEA). FEA is the fraction of time a memory location contains data
that will be consumed. That is, we consider a memory location as safe not only
when it is next accessed by a store, but also when it is next accessed by a load
whose contents will be overwritten without being used. The data is considered
vulnerable in memory only before a load whose contents will be used.

5.2.4 Vulnerability under Transient Fault Models

Both the MVF and FEA metrics relate naturally to the probability of consuming
a fault, under the common hypotheses for transient fault models.

If we suppose that faults happen as a random memoryless process, we can
model them using an exponential model, with λ the average fault arrival rate.
This assumption is commonly made [Li et al. 2007], and is a particular case of
the gamma and Weibull distributions, which are also often observed [Levy et al.
2018]. Formally, we define for any location in memory S and U , the sets of safe and
unsafe accesses to that location (i.e. respectively stores and loads for MVF), and ta
and fa, the time and the number of faults consumed by any access a respectively.
Since safe accesses overwrite faults, we have a ∈ S ⇒ fa = 0. For unsafe accesses,
we consider the period pa before an access a. This lasts pa = ta − tprev(a), where
prev(a) = max{b ∈ S ∪ U |tb < ta}. Thus for unsafe accesses, we have:

P (fa > 0) = 1− P (fa = 0) = 1− e−λpa

Hence the overall probability of consuming a fault is P (F) =
∑

u∈U(1− e−λpu). If
we reasonably assume that faults are rare, i.e. that the program execution time T
is such that λT � 1, then we can approximate P (F) ≈ λ

∑
u∈U pu, which is the

total time spent before unsafe accesses multiplied by λ.

The vulnerability V is the fraction of time a memory location contains data
that is unsafe, thus with the same notations, V = 1

T

∑
u∈U pu. We then have

72

CHAPTER 5. VULNERABILITY ANALYSIS

P (F) ≈ λTV , which confirms the intuition of the vulnerability V being propor-
tional to the probability of consuming a fault in memory.

The DVF metric can be formulated as λT (SdNha,d), confirming that only the
size and number of accesses per data structure should be used to compare DVF
against other vulnerability metrics, as indicated in Section 5.2.2.

5.3 Evaluation

In this section, we compare program’s sensitivity to errors against MVF, FEA, and
other metrics used by related work. To perform this comparison, we examine out-
comes when injecting faults in native runs of 12 parallel benchmarks, and measure
vulnerability ratings precisely using a cycle-accurate simulation infrastructure.

The simulator setup is presented in Section 3.2, and the mechanisms to in-
ject errors in native runs and classify an experiment’s outcome are detailed in
Section 3.1. The benchmarks used are a subset of the benchmarks presented in
Section 3.3.

5.3.1 Comparing Metrics and Fault Injections

The results of fault injections in real runs are presented as bars in Figure 5.1,
while the various vulnerability ratings obtained from cycle-accurate simulations
are presented as lines. The bars represent the probability of an incorrect program
outcome, and are obtained from fault injections, with whiskers on top of the bars
representing the 95% confidence interval for the failure probability. Benchmarks
are sorted in increasing failure probability for DUE. The vulnerability metrics,
displayed as lines, are MVF, defined in Section 2.4.1 and similar to the safe ra-
tio [Luo et al. 2014], FEA, defined in Section 5.2.3, the store-to-load ratio [Gupta
et al. 2018], and finally DVF [Yu et al. 2014] in the separate graph above.

The failure probabilities are varied per benchmark and per data structure
within each benchmark. First, failures are always increasing with the number
of bits flipped, except for the transition from 2 to 3 bit flips for CG which is
roughly constant. Similarly, we should note that the probability of a failure due
to a DUE is always bigger than for any number of bit flips, sometimes by several
orders of magnitude. This is a known phenomenon, called derating [Mukherjee et
al. 2003]. At every level of the vulnerability analysis, only a portion of the errors

73

5.3. EVALUATION

have an impact: only some transistor errors make a gate misbehave, gates affect
the circuits they compose only a part of the time, only some circuits have an effect
on the operation being performed, ans so on. As such, the vulnerability factor is a
derating factor at the level of memory analysis, and the difference between DUE
vulnerability and bit flip vulnerability corresponds to the algorithmic derating fac-
tor for that bit. Indeed, with the DUE error model, as soon as the bit is consumed
we consider it the program execution a failure, while in the bit flip error model we
let the program run with its data silently corrupted and measure the outcome.

Some benchmarks are very tolerant to faults, such as KNN, which uses training
points which are assigned a class, and classifies a different set of points based on the
classes of their nearest neighbours. Indeed, a bit flip in the biggest data structure,
which is the set of points used for training, modifies at most one point, which in
itself does not significantly alter the outcome of the classifications. Benchmarks
such as Cholesky, Jacobi, Gauss-Seidel and Red-black are more resilient to bit flips
due to the nature of their data. Modifying a single of many floating point values is
likely to only have a small impact on the final outcome. The outcome can however
be significantly perturbed if this error is significant for Red-black and Gauss-Seidel,
as indicated by the high failure probabilities for DUE. On the more vulnerable side
of the spectrum, modifying any data in the precise computations of Blackcholes or
the numerically unstable SMI directly impacts the output computations. Similarly,
the biggest data structures in CG on are the matrix values, columns and rows. The
two latter of those data structures are integer data, and used to index the values,
thus even a single bit flip can cause the benchmark to crash. Finally, the impact
of the numerical stability of the algorithm shows that the sensitivity to faults is a
very application-dependent behaviour, as Cholesky and SMI solve similar problems
with comparable input sizes, but have very different sensitivities to faults.

The various vulnerability metrics are presented as lines in Figure 5.1. MVF
(unbroken line) and FEA (dashed line) often have the same value, and always
provide an upper bound on the failure probability for all error types. FEA gives a
much tighter bound for the Jacobi, FFT and Stream benchmarks, and a slightly
tighter bound for Blackscholes and CG. This is due to these benchmarks having
data structures being overwritten and not updated, thus false errors that can
be ignored. Overall, FEA correlates very well with the failure probability for
DUE injections, and noticeably overestimates the vulnerability only of KNN and

74

CHAPTER 5. VULNERABILITY ANALYSIS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

KNN FFT
Stre

am
Jacobi

Blackscholes

Cholesky

DGEMM SMI CG

PRK2 stencil

Gauss-Seidel

Red-black

Average

Fa
ilu

re
 p

ro
ba

bi
lit

y,
 V

ul
ne

ra
bi

lit
y

1 flip
2 flips
3 flips
DUE

FEA
MVF
LD / (LD + ST)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

KNN FFT
Stre

am
Jacobi

Blackscholes

Cholesky

DGEMM SMI CG

PRK2 stencil

Gauss-Seidel

Red-black

Average

1e7
1e9

1e11
1e13

Fa
ilu

re
 p

ro
ba

bi
lit

y,
 V

ul
ne

ra
bi

lit
y

DVF

1e7
1e9

1e11
1e13

Figure 5.1: Incorrect outcome frequency when injecting faults in real runs (as
bars), and simulation-based vulnerability ratings per benchmark (as lines).

Blackscholes. This is due to the fact that these benchmarks have a relatively
small memory footprint, thus with an important error masking effect from the
cache. The only two other benchmarks where FEA differs from the DUE fault
rate are Cholesky and SMI, which are two benchmarks respectively factorising
and inverting a symmetric matrix. In these benchmarks, the diagonal blocks are
fetched entirely from memory, however only half of this data is used and thus
affects the program outcome. The unused data that is fetched is not overwritten
however, thus FEA does not identify it as safe. The reason why unimportant
data is accessed is unclear, as the accesses are part of Lapack library calls. All
remaining benchmarks have an average FEA value very close to the average failure
frequency when injecting DUE. As such, it also gives a good proxy and consistent
upper bound for the bit flip error injections.

As the store-to-load ratio ST/LD [Gupta et al. 2018] is unbounded and in-
versely correlated to the vulnerability, we normalise it as LD/(LD + ST), and
present this value as the dotted line in Figure 5.1. This transformation maintains
the relative ordering of the ratings’ values (in opposite direction), while bringing
them back in the interval [0, 1]. We see several problems with this load-to-store
ratio: KNN, which is a very safe benchmark, is rated with maximal vulnerability.
Furthermore, the load-to-store ratio also under-estimates the vulnerability of sev-
eral benchmarks, and can thus not be safely used as an upper bound on failure
probability. On Cholesky, Gauss-Seidel and Red-black, this metric severely under-
estimates the probability of failure due to a DUE. Looking at errors caused by bit
flips, this metric correctly rates Gauss-Seidel and Red-black lower than FFT and
Stream, and those lower than Blackscholes and CG. However as many benchmarks

75

5.3. EVALUATION

contradict this correlation. PRK2 stencil is rated as one of the safest benchmarks,
even though it is the third most vulnerable for single bit flips and second most
vulnerable for triple bit flips, and SMI is rated with an average load-to-store vul-
nerability while it is the most vulnerable benchmark for bit flips. While this metric
might be a useful heuristic for online optimisations, due to the fact it is simple to
compute, it is easy to see that it lacks the timing information to satisfyingly inform
on vulnerability. One example is the iterate of CG, which is an iterative method
that updates this vector at every iteration to get closer to the solution. The load-
to-store ratio sees as many loads as stores, and thus rates it with a value of 50%,
the lowest data structure of the whole benchmark. However the store immediately
follows the load, as the iterate is simply updated, and a whole iteration subsides
before the next update. Thus the iterate is in fact one of the most vulnerable data
structures of CG, with 70% of failures for double bit flips and 96% for DUEs.

The DVF metric [Yu et al. 2014] is not bounded either and its values are high
and very spread out, hence we display them on a log scale at the top of Figure 5.1.
The main factor impacting the DVF of a data structure is its size, which causes
benchmarks such as CG and PRK2 stencil to be rated with high DVF, however
Blackscholes has low DVF while being the second most vulnerable benchmark for
bit flips. Similarly, DVF correlates poorly with the probability of failures due to
DUE, as Red-black, Gauss-Seidel and DGEMM are rated with middle to low DVF
values comparing to other benchmark. Finally, the fact that the metric is not
bounded makes it harder to use at runtime, as the metric only has meaning when
comparing values relative to each other, making it impossible to set thresholds on
DVF values for example.

5.3.2 Quantifying the Correlation Between Metric and DUE

We report in Figure 5.2 the Pearson correlation coefficients between all the vulner-
ability metrics and the failure rate. In systems with any level of ECC, DUE is the
more likely type of error to be encountered, thus we only compare here the failure
rate due to DUE injections. For each pair of metrics, the correlation is computed
using all of the data structure values from every benchmark, normalised for data
structure size within each benchmark. Metrics are sorted using the magnitude of
correlation with DUE. In addition to the metrics used so far, we display the orig-
inal ST/LD metric from Gupta et al. [Gupta et al. 2018], which allows to verify

76

CHAPTER 5. VULNERABILITY ANALYSIS

0.91 0.75 0.47 -0.43 0.24

0.91 0.77 0.37 -0.33 0.22

0.75 0.77 0.49 -0.54 0.17

0.47 0.37 0.49 -0.98 -0.24

-0.43 -0.33 -0.54 -0.98 0.27

0.24 0.22 0.17 -0.24 0.27

DUE FEA MVF ST/LD LD
(LD+ST) DVF

DVF

 LD
(LD+ST)

ST/LD

MVF

FEA

DUE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Correlations between the failure rate from DUE injections and the
various vulnerability metrics.

that the normalised version, LD/(LD + ST), gives the same information. Indeed,
both metrics correlate with a factor of −0.98, meaning a very strong negative
linear correlation.

Confirming our previous observations, the DVF is the metric correlating the
worst with DUE fault rates. Furthermore, it correlates weakly (≤ 0.27) with all
other metrics. While the DVF provides some information on vulnerability, it seems
to be the less suitable metric. The ST/LD and LD/(LD + ST) metrics correlate
with the DUE failure rate with coefficients of 0.47 and −0.43 respectively. These
two metrics use the same information, however it seems that the distribution of
the non-normalised version is slightly better at informing on vulnerability. Inter-
estingly, Gupta et al. verify the relevance of the ST/LD metric by comparing it
against a MVF value obtained from simulation, and report a correlation of −0.32.
This is contrary to our findings, even when computing the correlation with MVF
per memory page instead of per data structure (respectively 0.37 for ST/LD and
−0.40 for LD/(LD + ST)). It is worth noting however that in their work, Gupta
et al. use benchmarks from different suites, for which they report much lower MVF
(ranging from 1.7% to 22.5%) than what we measure for our benchmarks. This
difference could be the cause for the discrepancy between the results. However,
the opposite signs of correlations for this metric do not bode well for its reliability
as an indicator.

77

5.3. EVALUATION

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

6.8e6
7.5e6
8.3e6
9.1e6

Fa
ilu

re
 p

ro
ba

bi
lit

y,
 V

ul
ne

ra
bi

lit
y

DUE

FEA
MVF
LD / (LD + ST)

DVF

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

6.8e6
7.5e6
8.3e6
9.1e6

Figure 5.3: Failure frequencies from DUE injections and vulnerability metrics, for
200 random memory pages in FFT.

The MVF metric correlates rather well with FEA (0.77) and with the DUE
failure rate (0.75), while FEA correlates really well with DUE (0.91). This confirms
that the FEA improves the precision from MVF, and that the timing information
which is exploited by these two metrics only is key in providing useful information
on memory reliability.

5.3.3 Memory Page Comparison

Finally, to take a more detailed look at the differences between the metrics, we
measure the DUE failure rate and report all metrics for 200 randomly selected
memory pages from the FFT benchmark, presented in Figure 5.3. This Figure
is the analogue of Figure 5.1 presenting averages per memory page instead of
per benchmark, sorted on the memory page address. These pages are selected
uniformly at random in the two data structures where FEA and MVF differ, which
represent 80% of the benchmark’s memory footprint. The 95% confidence intervals
are presented as whiskers on top of the bars, and are all less than 5 percentage
points, while vulnerability metrics are displayed as lines.

This figure reveals that the MVF, DVF and LD/(LD + ST) metrics are roughly
constant within a data structure. FEA behaves exactly as MVF on most data
structures, which is why we have selected here data structures which have loads
to memory whose contents are overwritten without being consumed. Thus FEA
is capable of correlating much better with the error injection outcomes overall by
using the behaviour of these memory pages, and it is apparent that even within the
data structure the FEA metric correlates much better with the error outcome than
the other metrics. Furthermore, the measured FEA values per memory page are

78

CHAPTER 5. VULNERABILITY ANALYSIS

almost always above the mean failure frequency, and are always above the lower
bound of the confidence interval. Thus we can say with 95% confidence that FEA
provides an upper bound on the DUE injection rate. Finally, FEA identifies much
more varied behaviour in memory than the other metric, meaning that this metric
provides a much wider range of possibilities to exploit for memory vulnerability
applications.

5.4 Delaying Error Reporting

The metrics evaluation reveals that there are a number of benchmarks where the
impact of false errors significantly causes the failure probability to be overesti-
mated. To ignore these false errors, we propose to delay the reporting of any error
until it is actually consumed. This is a common pattern in resilience, used for
example to handle DUEs in memory discovered during scrubbing. An applica-
tion likely to access that erroneous data is not terminated preventively, but only
whenever it attempts to access the location of the error [Kleen 2010]. Similarly at
the architectural level, delaying a machine check exception due to an incorrect in-
struction allows to avoid exceptions for instructions that do not affect correctness
(no-ops, prefetches, etc.), or whose results are either not committed or ultimately
do not affect the program [Weaver et al. 2004].

Scrubbing errors and accessing incorrect data with a load are explicitly listed
as recoverable uncorrected errors, with respectively optional and required software
action [Intel 2017; AMD 2018]. However, there is no mention of how errors detected
in DRAM are handled when accessing incorrect data indirectly, such as overwriting
it or accessing neighbour data such as another word in the same cache line. The
error codes leave the possibility for these errors to be reported as optional-action
uncorrected errors until they are overwritten, after which they would appear as
requiring no action for recovery.

In the case that deferring error reporting does not exist for errors in fetched
DRAM values, we outline two simple mechanisms to support it. As modern mi-
croarchitectures already track poisoned data from other causes, this tracking can
be reused and possibly expanded to mark lines that contain errors originating in
DRAM. For example, marking data in cache as both dirty and poisoned would stop

79

5.4. DELAYING ERROR REPORTING

a load to this cache line to attempt to re-fetch from memory, instead triggering
the appropriate machine check exception.

Alternately, on hardware where DUE in memory are reported immediately as
uncorrectable and unrecoverable, the OS can ignore false errors by relying on the
machine check exception mechanism. If the DUE location is directly accessed, the
DUE should only be reported for a load, and ignored for a store. If the DUE
location is accessed indirectly however, such as a word in the same cache line
than the data that is accessed, the OS can catch the machine check exception and
track the next memory access to this address. As soon as the ECC word has been
overwritten, the OS can definitively ignore the DUE and stop tracking accesses to
this location. On the other hand, if an access loads the ECC word that has not
been reported, the OS should propagate the reporting of the DUE.

To track accesses to a location with low overhead, hardware watchpoints are
available on commodity hardware and supported by modern OSs [Intel 2017; AMD
2018; IBM 2015b]. These watchpoints raise an exception when a monitored mem-
ory location is accessed, and impose no overhead for non-monitored accesses. Kr-
ishnan [2009] reports overheads of the order of 5ms to register an address across
all processors of a 24-CPU Xeon MP system, around 200µs to unregister a watch-
point, and around 2µs to handle a triggered watchpoint exception, while accessing
an address that is not monitored incurs no overhead.

We can quantify the reduction in the DUE rate using the previous metrics. Let
FITUF be the rate of faults causing uncorrectable errors (for example double bit
flips for SECDED). In current systems, as soon as the location of an uncorrectable
error is accessed, a DUE is triggered. Thus, since the average probability of access-
ing data isMV F , the DUE rate isMV F ×FITUF . If we delay reporting the error
to ignore false errors as proposed, the DUE rate becomes FEA×FITUF , as errors
are only triggered when data is consumed and FEA is the average probability of
consuming data.

We present in Figure 5.4 the reduction in DUE rate that can be achieved
with the proposed mechanism to delay and possibly ignore false DUE. A number
of benchmarks have their average DUE rate reduced by over 45%: Stream with
45.4%, FFT with 48.1%, and Jacobi with 50.5%. FFT (using the Stockham algo-
rithm) and Jacobi are benchmarks that can not perform in-place computations.
Instead, these algorithms use additional memory to store results of intermediate

80

CHAPTER 5. VULNERABILITY ANALYSIS

0.01%

0.1%

1%

10%

100%

DGEMM SMI

PRK2 stencil

Red-black

Gauss-Seidel

Cholesky
KNN CG

Blackscholes
Stream FFT

Jacobi

Average

Figure 5.4: Gains in DUE rate when ignoring false errors

computations, which creates memory accesses that overwrite data. Other bench-
marks only overwrite a single of their data structures, such as CG and Blackscholes.
The remaining benchmarks have no or negligible amounts of data (less than 0.1%)
that is accessed without being consumed. Overall, over 12 benchmarks, the aver-
age reduction in DUE rate is of 12.75%, for a proposal that imposes no overhead
in a scenario without errors, and the low overhead of a hardware watchpoint in
the event of a delayed DUE.

5.5 Saving DRAM Refresh Energy

A major obstacle in the future of DRAM is the Refresh Wall [Stuecheli et al. 2010;
Qureshi et al. 2015]. This is due to multiple simultaneous factors: having more
data in memory to refresh, at an ever faster pace due to increased leakage power,
and the duration of a refresh operation increasing due to write recovery time [Kang
et al. 2014]. Refresh power already constitutes an important part of the DRAM
power, and other sources of power consumption in DRAM are diminishing. For
example, optimisations such as low voltage swing terminated logic [JEDEC 2016]
and power efficient data encoding [Seol et al. 2016] considerably reduce the I/O
power consumption of DRAM.

The refresh rate is adjusted so that nearly all cells function without losing data.
This means that the refresh rate is provisioned for the most leaky cells acceptable.
Thus, a number of refresh schemes propose to adapt to the hardware variability,
refreshing more often rows with leakier cells, and refreshing at lesser frequencies

81

5.5. SAVING DRAM REFRESH ENERGY

rows that exhibit better retention times. One such proposal is AVATAR [Qureshi
et al. 2015], which adapts dynamically to cells that start displaying VRT.

A complementary approach is to adapt the refresh rate to software variability.
That is, identify portions of memory that are unused, and avoid refreshing those.
This is already implemented in hardware for lower-power states. Partial Array
Self Refresh (PASR) is a low-power mode where only a subset of the banks of the
LPDDR are self-refreshed, and the data in the other banks is lost [Elpida 2005].
For normal DRAM usage, this idea was first proposed abstractly by Ohsawa et al.
[1998], and embodied in proposals to identify and avoid refreshing allocated-but-
uninitialised or freed memory [Isen and John 2009], and memory in the OS’s pool
of unallocated pages [Baek et al. 2014]. However, opportunities to avoid refreshing
data that is allocated and used by the program remain.

Indeed, as the difference between MVF and FEA underlines, a number of pro-
grams have data stored in memory only to be overwritten. A runtime system can
use the semantic knowledge it has of future accesses, through data-flow depen-
dencies of tasks, to know which data to stop refreshing without risking to lose
information from the solver.

5.5.1 Overwriting as a Runtime Contract

A task may declare some memory regions as their inputs and outputs. For example,
the triad task in Listing 5.1 shows a function creating a set of tasks that compute
an array a from two arrays b and c. In order to execute in the correct order, the
task declaration (line 4) declares, for each task working on a block of size bs of
the arrays:

• in(b[j;bs], c[j;bs]): the task needs to wait for the blocks of arrays b

and c to be computed,

• out(a[j;bs]): the task computes the corresponding block of array a.

If a task modifies a value, instead of computing it from scratch, this should be
expressed as simultaneously an input and an output dependency. The shorthand
for this type of dependency is inout() (see also Section 2.2.2). This should be
used when the value is updated (e.g. incremented). In particular, if only a subset
of the declared range is overwritten and the rest is left untouched by a task, then:

82

CHAPTER 5. VULNERABILITY ANALYSIS

Listing 5.1: Triad task of the stream benchmark
1 void triad(unsigned N, double a[N], double b[N], double c[N], double scalar ,

↪→ unsigned bs)
2 {
3 for (unsigned j = 0; j < N; j += bs)
4 #pragma omp task in(b[j;bs], c[j;bs]) out(a[j;bs]) label(triad_kernel)
5 for (unsigned i = j; i < j + bs && i < N; i++)
6 a[i] = b[i] + scalar * c[i];
7 }

• either the whole region needs to be declared as input and output

• or only the parts of the region that are modified should be marked an output.

This is so that the correct ordering of tasks is enforced, and that the semantic
information provided by the tasks is correct.

From this, we can conclude that when entering a task with a memory region
declared as output, this region will be fully overwritten. With input dependencies,
several tasks can access a single memory region simultaneously or in arbitrary
order. Output dependencies however create either read-after-write or write-after-
write dependencies, thus a strict ordering in tasks before and after a task with an
output dependency. Thus, when the next task accessing a memory region in the
task graph has this memory region declared as an output dependency, we know
that it is the only task to be the next to access this data. Since we also know that
all the data in the memory region will be overwritten, looking ahead in the Task
Dependency Graph (TDG) allows to find out which data can be discarded safely
by the program.

5.5.2 Prospective Gains from Skipping Refresh

Using the TaskSim infrastructure presented in Section 3.2, we simulate the poten-
tial grains from skipping refreshes. Data that can be discarded is identified using
the state-of-the-art ESKIMO technique [Isen and John 2009] to identify unini-
tialised or freed memory, and by looking ahead in the task graph to identify task
outputs. The non-refreshed memory locations only start being refreshed again
when it is next accessed. We know the next access is always a store, as the data
will be overwritten, and verify that this is the case during the simulation.

We measure refreshes that can be skipped, by measuring the amount of con-
tiguous data for which refreshes can be skipped at a DRAM row granularity, and

83

5.5. SAVING DRAM REFRESH ENERGY

0%

10%

20%

30%

40%

50%

Bodytrack
Canneal

Dedup
Facesim

Fluidanimate

Freqmine LU
Gauss

Red-black

Cholesky
x264

DGEMM

Streamcluster

Swaptions
MD5

Facesim MD

Blackscholes CG
Stream FFT

Jacobi

Fr
ac

tio
n

of
 re

fr
es

he
s

sk
ip

pe
d

Benchmark

Uninitialised and freed data (ESKIMO) Identified output in TDG lookahead

Figure 5.5: Fractions of DRAM refreshes that can be skipped per benchmark,
cumulating state-of-the-art (ESKIMO) and proposed TDG lookahead techniques
to identify inconsequential data

the duration for which refreshes can be skipped using a 64ms refresh period. In our
configuration, a DRAM row represents 1KB. That is, for each region R of size SR
for which we identify that refresh can be skipped at a time TR, we have

⌊
SR

1KB

⌋
rows.

For each of these rows, the number of saved refreshes is
⌊

Time(next store to row)−TR
64ms

⌋
.

However, for fair comparison, we have to compare the number of saved refreshes
to the number of refreshes that can be attributed to the benchmark. We compute
this using the duration of the program ∆, and the memory footprint M of the
program, as measured using the massif tool of valgrind [Nethercote et al. 2006].
We round these numbers up respectively to the refresh duration of 64ms and the
size of a DRAM subarray, which is 512KB [Kim et al. 2012]. Then, the fraction of
refreshes skipped is computed for each benchmark as:

1⌈
∆

64ms

⌉ ⌈
M

512KB

⌉ · ∑
Region R

(⌊
SR

1KB

⌋ ∑
row i∈R

⌊
Time(next store to row i)− TR

64ms

⌋)

Results are presented in Figure 5.5, and include results from benchmarks
presented in Section 3.3, from the PARSEC benchmark suite parallelised using
OmpSs [Chasapis et al. 2015], and a Molecular Dynamics (MD) simulation, using
the Lennard-Jones potential. Benchmarks are sorted in increasing order for the

84

CHAPTER 5. VULNERABILITY ANALYSIS

fraction of refreshes skipped. It is apparent that a number of benchmarks make
good use of their allocated memory, as no potential savings can be found by ei-
ther technique. Most benchmarks that show a good reduction in DUE rate in
Section 5.4, such as Jacobi, FFT, Stream, and CG in a lesser measure, also have
a high fraction of refreshes that can be skipped. This shows that overwriting data
in memory allows refreshes to be skipped, as long as the duration between the last
access and the next store is long enough. ESKIMO manages to pick up a number
of regions for which to skip refreshes that are not caught by the task output ap-
proach, especially for C++ benchmarks whose memory is not managed manually,
such as Facesim, Swaptions, and Streamcluster. It is interesting to see that the
two approaches are usually exclusive. Only one benchmark shows potential gains
for both approaches, which is Blackscholes.

5.6 Conclusion

A number of metrics aim at quantifying the risk associated with encountering an
error in data in memory. Comparing these metrics with the likelihood of incorrect
program outcomes due to a fault in memory indicates that the metric we introduce
in this chapter, FEA, is the most accurate one and gives a consistent upper bound
on failure probability. This can be explained by the fact that it takes into account
timing effects, as opposed to DVF or store-to-load ratios, and the fact that it
takes into account errors in data that is inconsequential, as opposed to MVF. This
work further exploits the insight on inconsequential data by proposing to track
DUE until they are consumed or ignored, instead of directly reporting the errors.
This technique would significantly decrease error rates due to DUE in memory, by
12.75% on average and as much as 50.5% for the Jacobi solver. We also present a
runtime technique to anticipate which data stored in memory is inconsequential,
and promising prospective results for DRAM refresh savings. Finally, this work
opens the door to runtime-level optimizations that can now accurately model the
risk associated with any given data.

85

5.6. CONCLUSION

86

Chapter 6

Dynamically Adaptable ECC Protection

6.1 Introduction

ECC, which is necessary to detect and correct random errors in memory, comes
with overheads in terms of storage space and thus power consumption. This in-
creased power cost constitutes an important constraint in areas from HPC [Kaul
et al. 2012] to mobile devices [Micron 2017], making it undesirable to uniformly
increase ECC strength as an answer to increasing fault rates. It is then preferable
to protect against transient faults by selectively applying strong ECC to high-risk
memory regions only, while cheaper protection can be used on lower risk parts.
For this to be possible, we develop in this chapter a methodology to automatically
and dynamically quantify the vulnerability of the different portions of data stored
in memory.

Data accesses to a given memory location are a key factor in the probability of
encountering an error at this location. For example, data that is overwritten by
subsequent stores or that is never consumed by an application has no impact on
the program state, as illustrated in Figure 6.1. Being able to detect this kind of
behaviour enables the use of different levels of ECC protection.

The key idea of this chapter is to exploit the opportunity presented by runtime
systems to adapt ECC protection dynamically using online estimates of memory
vulnerability. These estimates are obtained by deploying low-overhead sampling
techniques to analyse the memory access patterns of parallel applications on real
systems. These online sampling techniques incur very low overheads and are able
to precisely estimate the vulnerability of data stored in memory. This information
is then exploited to dynamically target the most vulnerable memory pages for

87

6.1. INTRODUCTION

timeCPU ST LD ST LD ST LD LD

memory

Figure 6.1: Vulnerability timeline for a memory location.
Stores (ST) to a memory location overwrite the data it contains, while loads (LD)
retrieve it. Time before a store is safe (in hatched green), but before a load it is
vulnerable (in solid red), as the first fault (depicted by a black lightning bolt) has
no effect, while the second affects both subsequent loads.

increased ECC protection, with the aim of reducing the failure probability while
minimising the memory storage overhead.

The main contributions presented in this chapter are:

• A runtime sampling methodology to estimate the vulnerability of memory
regions online. This methodology is independent of hardware, as it relies on
runtime-level information, requiring only the ability to sample instructions
randomly. It is also independent of software, as it estimates the vulnerabil-
ity of memory by analysing access patterns, requiring no application-level
knowledge.

• A runtime-adjustable ECC scheme, WITSEC (WITSEC Is Targeted Stronger
Error Correction), which can increase protection for dynamically selected
memory pages, to tolerate one more bit flip than a uniform baseline. WIT-
SEC is entirely implementable in the memory controller.

• An in-depth evaluation of the impact of selectively increasing memory pro-
tection based on our vulnerability estimates, implemented for a Power8
processor, and measured on 11 parallel benchmarks. Guiding WITSEC with
our vulnerability estimates allows for a wide range of trade-offs between fail-
ure probability and redundancy. This allows to choose just the minimal
redundancy for a target probability of error, or to minimise the error proba-
bility under some budget for redundant storage, without having to pick only
between uniform ECCs.

This chapter is organised as follows: Section 6.2 presents the fault model and
defines memory vulnerability. In Section 6.3, we present our sampling-based mem-
ory vulnerability estimation methodology, and in Section 6.4 the adaptable ECC,

88

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

WITSEC. In Section 6.5 we describe the experimental setup, in Section 6.6 we
present the evaluation, and conclude in Section 6.7.

6.2 A Metric for Memory Vulnerability

In order to know which data in memory benefits from stronger ECC protection
mechanisms, we first need to look at the mechanisms of failures caused by faults
in memory.

6.2.1 Modelling Faults in Memory

This work focuses on transient faults, as they always require some level of ECC to
be applied. Alternative and more efficient techniques exist to correct permanent
faults, such as sparing components, but there is no efficient way to protect memory
against effects such as particle strikes. Thus, all data in memory is always at risk of
having some bits flipped. We refer to the number of bits flipped as the multiplicity
of the fault: single faults correspond to one bit flipped, double faults to two, and
so on.

The effects of overwriting or consuming faults, and the cascade of possible
consequences, are represented in Figure 6.2. At the top of this diagram, the access
to a memory location, which defines its vulnerability. A fault that is consumed
is called an error, which may be transparently corrected by ECC, leading to an
ok outcome. Alternately, errors can cause DUEs, which raise a machine check
exception. Finally, errors may go undetected and cause SDC if there are more bits
flipped than the ECC can tolerate.

Finally, the impact on the running program, shown at the bottom of Figure 6.2,
can be classified as:

• ok: Indistinguishable from an execution without faults.

• slow: The program finished with a correct result, but performed more work
than a non-faulty execution.

• hang: The program stopped making progress.

• wrong: The program finished, yielding an incorrect result.

89

6.2. A METRIC FOR MEMORY VULNERABILITY

crashwrongok slow hang

ECC

fault: single or multiple bits flippedMemory

Program
outcome

undetected
error (SDC)

uncorrected
error (DUE)

corrected
error

overwritten
safe: fault

consumed
vulnerable: fault

no error

success failure

Vulne-
rability

store load

Figure 6.2: Taxonomy of resilience: faults cause errors, which can affect the pro-
gram outcome based on memory accesses, ECC, and application-dependent be-
haviour. In bold, the level corresponding to the vulnerability metric.

• crash: The program finished running improperly.

We classify the outcomes ok and slow as successes, and the outcomes hang, wrong,
and crash as failures.

This cross-level view from faults to success or failure of a program highlights
that whether data is vulnerable does not quantify the effect of an error. This is due
to not taking into account application-specific effects such as the propagation or
significance of an error. Instead, it captures the effects of memory access patterns
and indicates the probability of consuming a fault, thus giving an upper bound
on the failure probability. By being independent of application-level information,
vulnerability can be used at the runtime level, for any workload.

6.2.2 Memory Vulnerability at the CPU level

The vulnerability metric we use is FEA, introduced in Section 5.2.3, as it is shown
in Section 5.3 that this metric is the one that correlates best with failure proba-
bilities, and also displays most disparities between different data structures. This
makes it the thus the best metric to identify opportunities for adjusting ECC. We
will refer to FEA simply as “vulnerability” in this chapter, which is thus for each
memory location to the fraction of time it contains data that will be consumed.
In Figure 6.1, the vulnerability of a memory location is displayed visually, as the
portion of the timeline coloured in solid red. The arrows represent the transfers of
data for a particular memory location over time, between memory and the CPU.

90

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

CPU

memory

cache

timeLD ST LDtimeLD ST LDtimeLD LDLD
(a) (b) (c)

write-backwrite-through

Figure 6.3: Difference between vulnerability at memory level, and the value com-
puted from instructions, which always has higher vulnerability.
At memory and CPU level we represent in hatched green the safe time, and in
solid red the vulnerable time. The boxes at cache level represent the time that the
considered data resides in cache: in white, clean, and in black, modified. In the
first scenario, the data is not modified, while in the second it is directly written
through to memory. In the last scenario, the modified data needs to be written
back to memory. All scenarios show either more vulnerable time at CPU level, or
more safe time at memory level.

This figure shows how the duration before a memory access is categorised as safe
or vulnerable, depending on whether the access is a store or a load.

6.2.3 Difference between CPU and Memory Vulnerability

We call CPU-level vulnerability the vulnerability computed using load and store
instructions executed instead of requests reaching memory. The vulnerability of
data differs at CPU and memory level, as caches serve part of the requests emitted
by the CPU. However, the CPU-level vulnerability can be safely used, as it gives
us a conservative estimate of the vulnerability at the memory level.

Indeed, the vulnerability metric at the CPU level is always higher than at the
memory level. This is illustrated in Figure 6.3, which displays the vulnerability at
memory and CPU levels, and the time data spends in cache, based on loads and
stores. A cache line that is not modified, as in Figure 6.3 (a), is rated vulnerable
for a longer period than it is vulnerable in memory. Similarly, a modified line with
a write-through policy is safe until the last store, and any subsequent accesses
make this cache line seem more vulnerable than it is in memory, as depicted in
Figure 6.3 (b). Finally, Figure 6.3 (c) illustrates how a write-back policy delays the
stores to a cache line until its eviction from last-level cache, which increases the
safe duration in memory when compared to the CPU level. The difference between

91

6.3. DYNAMIC ESTIMATION OF VULNERABILITY

vulnerable time measured at CPU and memory levels is at most the duration for
which the data resides in the cache hierarchy.

6.3 Dynamic Estimation of Vulnerability

In order to use the vulnerability metric during program execution, we need to esti-
mate the vulnerability in real time. In this section, we present a generic methodol-
ogy that allows to perform this vulnerability estimation on existing hardware, by
relying only on the instrumentation tools built in the hardware, runtime and Oper-
ating System (OS). This online vulnerability analysis can be used offline to inform
the programmer on which structures to protect with algorithmic techniques, for
example. Our evaluation uses the online vulnerability estimation to guide ECC
strength dynamically.

We identify memory regions, which are contiguous ranges in memory that are
allocated or used together, from runtime and OS library calls. The Performance
Monitoring Unit’s (PMU) random sampling capabilities, which are available on
many different architectures [IBM 2015a; Intel 2017], allow us to record load and
store addresses and their respective timestamps. We then combine all this infor-
mation to estimate the vulnerability of each memory region, thus the fraction of
time that a memory region contained data that was loaded. While PMUs adver-
tise their sampling capabilities as being “random” sampling of instructions, their
documentation does not specify the criteria of randomness and therefore guarantee
the fairness of this selection. In Section 6.5.1, we characterise the distribution of
obtainable samples on the hardware that we use.

Organisation of Memory Access Sampling. To control the overhead of sam-
pling memory instructions, we organise it in phases. Outside sampling phases the
sampling process is completely disabled, and our methodology incurs no overhead.
During sampling phases, we only record a fraction of the samples that are gener-
ated. There are thus three parameters that control this mechanism: the duration
of sampling phases, the delay between phases, and the number of skipped samples
for every recorded sample.

92

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

A
dd

re
ss

 c
ce

ss
ed

 b
y

sa
m

pl
e

Time of sample in sampling phase

samples
clusters
lines

Figure 6.4: Synthetic example of the KHT algorithm, showing samples, 4 clusters
and 2 identified lines, for a single sampling phase and single memory region.

6.3.1 Identify Memory Access Patterns

The set of recorded sampled instructions is a subset of the instructions that were
executed. To compute the vulnerability of a memory region from the samples,
we need to extrapolate memory access patterns from the recorded data. When
analysing the recorded memory accesses, we classify them by thread, memory re-
gion, and whether they are loads or stores. Plotting samples reveals the streaming
memory access patterns which appear as aligned points, in the 2D space with the
accessed addresses inside the memory region on the y-axis and time on the x-axis,
as represented in Figure 6.4. We identify aligned points, and thus streaming mem-
ory patterns, by using a kernel-based Hough transform voting algorithm [Fernandes
and Oliveira 2008].

The key idea of the Hough transform to detect aligned points is to consider
potential lines with different slopes for each point, and to compute how many
points belong to each potential line. This voting scheme’s complexity is linear
with the number of samples as well as with the number of considered slopes.
The kernel-based algorithm is optimised for real-time performance: instead of
considering individual points, it operates on clusters of approximately collinear
points [Fernandes and Oliveira 2008]. Votes are cast only for slopes close to that
of the best-fitting line of each cluster, and according to a model of the uncertainty
from associating the best-fitting line to the cluster. We represent 4 clusters in
Figure 6.4, and the votes for the lines from all clusters identify 2 lines in total
from the recorded samples.

Clusters are identified by recursively subdividing strings of points, until the
maximum deviation inside each cluster is sufficiently low. The lower half of Fig-

93

6.4. WITSEC ADAPTABLE ECC

ure 6.4 shows one cluster subdivided in two at the sample with the maximum
deviation. We use the algorithm’s implementation available online [Fernandes
2008].

We extrapolate lines identified by this algorithm as access patterns that will
stream linearly the whole memory region. This allows to estimate the vulnerabil-
ity of addresses in memory regions for which no instructions were recorded. To
extrapolate, we extend any identified line, using a linear interpolation, until it
spans the whole considered memory region. Thus a stream in a given region can
be summed up by three parameters: whether it consists of loads or stores, the
time at which it accesses the lowest address in the region, and the time at which
it accesses the highest. We then combine for each region all the identified streams,
from all threads and all types (load or store), and compute the average vulnera-
bility, which is the fraction of the time after any stream and before a stream of
loads.

By supposing data access patterns repeat over time, we can use this estimated
vulnerability value to predict the future vulnerability of each memory region. This
supposition is generally accepted for HPC workloads, which often consist of scien-
tific codes such as iterative solvers, or large-scale simulations of physical phenom-
ena. In fact, it is sufficient that data has the same sort of use over time, and thus
approximately the same vulnerability level, even though the access pattern does
not repeat. Furthermore, changes in behaviour during an application’s execution
time can be accounted for by a new sampling phase to adjust the vulnerability
rating accordingly.

6.4 WITSEC Adaptable ECC

The memory vulnerability can be used to adjust the ECC strength dynamically.
To enable this, we present an ECC scheme that allows extending a uniform N-flips
ECC with N+1 correction capability for selected pages at runtime. It is worth
mentioning that our vulnerability approach remains a general methodology, which
can be used to guide an offline analysis useful for an application programmer, or
any other runtime-adaptable ECC scheme on existing platforms.

94

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

6.4.1 Different ECC Strengths

We consider three ECC strengths, which are perfect binary codes with even Ham-
ming distances: Single Error Correct (SEC), Double Error Correct (DEC), and
Triple Error Correct (TEC). We also consider using no ECC, thus Zero Error Cor-
rect (ZEC). While codes with uneven Hamming distances are commonly used, as
they allow to detect one more bit flip than they can correct, DUE-less codes are
also used [Abdoo and Cabello 1996]. DUEs are reported even for benign and false
errors, which have no impact if ignored. Thus, using an ECC with DUE artifi-
cially causes much higher failure rates, due to faults in overwritten or otherwise
unimportant data. The vulnerability analysis can be done taking DUE into ac-
count, however this requires tracking and ignoring these false errors [Jaulmes et
al. 2019c]. Thus, for the sake of simplicity, we consider codes that can cause only
corrected or silent errors.

The most commonly used ECC is a SECDED that encodes 64 bits of data on
72 bits using a Hamming (127, 120) code truncated to (71, 64) with an additional
parity bit [Hamming 1950], thus with 8 redundant bits. We use as SEC code
the same truncated Hamming (71, 64) code without the parity bit, that is, our
SEC code requires 7 bits of redundancy per 64-bit word. To work at the same
granularity for all ECC levels, we choose Bose–Chaudhuri–Hocquenghem (BCH)
codes [Hocquenghem 1959] for DEC and TEC protection: a BCH (127, 113) code
with 14 bits of redundancy and a BCH (127, 106) with 21 redundant bits, respec-
tively truncated to (78, 64) and (85, 64). Thus, every supplementary ECC level
requires 7 more bits per 64 bit word.

6.4.2 WITSEC ECC Organization

WITSEC Is Targeted Stronger Error Correction (WITSEC). We choose an approach
that uses a uniform ECC correcting N bit flips as a baseline, and extends protection
for some memory regions identified as more vulnerable at runtime.

This choice is motivated by the fact that saving and reallocating redundancy
is not efficient. Indeed, diminishing the redundancy for some region implies ex-
posing the program to faults with lesser multiplicity, which have a much higher
rate. Instead, we only ever increase redundancy using addressable memory as
supplementary ECC storage.

95

6.4. WITSEC ADAPTABLE ECC

Thus, we use as a baseline a uniform ECC with its redundancy bits stored in a
widened data path, as is done currently with SECDED. We then extend protection
for some memory regions identified as more vulnerable at runtime, by protecting
those with an ECC correcting N+1 flips. In order to do so, we reuse the bits
from the baseline as well as additional redundancy in decoupled storage. As these
additional bits are part of N+1-ECC codewords, they require no ECC encoding of
their own, and can be stored using the full baseline’s data + ECC width. That is,
for a SEC baseline of 64 data bits + 7 redundancy bits, the ECC can use 71 bits
to store supplementary ECC bits instead of 64.

Supplementary bits are organised in blocks, one per page with extended pro-
tection, addressing bits in-block with the word position in-page. This organisation
allows a large amount of flexibility and only requires 448B of storage to provide
extended protection for a full 4kB page, as extending protection means storing 7
supplementary bits per word. (7bits/64bit word× 4kB page = 448B.) For each
page, it is sufficient to store its ECC strength, and the address of the decoupled
ECC storage. The OS and runtime are in charge of allocating and maintaining
the mapping to this decoupled storage. Updating ECC strength, to increase or
decrease the protection, requires re-encoding the ECC and can be done whenever
data is next updated, or next accessed for data identified as read-only.

6.4.3 WITSEC-aware Memory Controller

Figure 6.4.2 presents a memory controller extended with the structures in grey to
support WITSEC. We show extended-protection codewords and requests to data
under extended protection in shades of green, and show baseline protection in
white. Any additional requests required to fetch supplementary ECC blocks are
also shown in grey.

Extended Protection Page to ECC Block Mapping. This structure stores the
physical addresses of extended-protection pages and corresponding supplementary
ECC blocks. Each entry in this structure stores the physical address of a page,
and the physical address of an ECC Block. These addresses are updated by the
runtime through a memory-mapped register, with memory it allocated to that
effect. Each entry requires 2 · log2(adressable memory)− log2(page size) bits, e.g.
62 bits for a 128GB DRAM channel and 4kB pages. For each incoming request,
the memory controller looks up the ECC level of the corresponding page, marked

96

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

Baseline prot. page

data ECC

Extended prot. page Suppl. ECC blocks

ECC ECC ECC ECC

ECC

O
n-

C
hi

p
B

us
: D

ec
od

ed
 d

at
a N EC codec

D
R

A
M

 D
at

a
B

us
: E

nc
od

ed
 d

at
a

N+1 EC codec

data ECC ECC
Block
Cache

DRAM Bus Scheduler

DRAM Address/Command Bus

LLC/peripherals Requests

Extended Protection Page
to ECC Block Mapping

Memory Controller
Configuration Registers

Check ECC level

M
em

or
y

C
on

tr
ol

le
r

D
R

A
M

Insert LD to
ECC block

Write-back
dirty ECC

block as ST

Remove LD
to cached

ECC blocks
Requests Buffer

ST Baseline prot.
LD Baseline prot.

LD Extended prot.
LD Suppl. ECC block

...

...LD Extended prot.

data 1 ECC1
data 2 ECC2
data 3 ECC3
data 4 ECC4

data 5 ECC5
data 6 ECC6
data 7 ECC7
data 8 ECC8

ECC5 ECC6 ECC7 ECC8
ECC ECC ECC ECC

Suppl. ECC line

Extended prot. line

Baseline prot. line

(D)

(C)

(A)

(B)

Figure 6.5: DRAM and runtime-aware controller implementing WITSEC
ECC-encoded data is stored in DRAM, with Baseline protection codewords numbered 1–4, and
Extended protection numbered 5–8 and coloured in shades of green, with supplementary bits
in decoupled locations in memory. The memory controller respectively passes these codewords
to the N-Error Correct (N-EC) and (N+1)-EC encoders and decoders (codecs). In grey, added
structures required to support WITSEC. All solid arrows (marked A, B, and D) represent new
data and control flow for loads. For stores the path is exactly the same in opposite direction,
except supplementary ECC blocks are not loaded but written back, as depicted by the dashed
arrow (marked C).

(A) in Figure 6.4.2, and chooses the right codec to use. The memory controller also
inserts load requests to corresponding supplementary ECC blocks for extended-
protection loads, marked (B) in Figure 6.4.2.

N+1 EC codec. An extended-ECC codec is required to decode the N+1-ECC
codewords. Low-power low-latency decoding strategies exist for multi-bit ECC,
for example Fougstedt et al. report less than 0.06pJ/bit, and 8.7ns to decode DEC
BCH codes with 511 bits block size, synthesised on 28nm [Fougstedt et al. 2017],
which are small overheads compared to DRAM access delays.

ECC Block Cache. To reduce extra loads and stores to supplementary ECC
blocks, we further extend the memory controller with a write-back cache. This
cache serves part of the loads to supplementary ECC blocks as illustrated with
the arrow (D) in Figure 6.4.2, and coalesces stores. The eviction of blocks simply

97

6.4. WITSEC ADAPTABLE ECC

consists in inserting a store to the corresponding supplementary ECC block in
the requests buffer (marked (C) on Figure 6.4.2). Furthermore, extended ECC
blocks can be written to memory using partial (or masked) writes. Such writes
have an input mask specifying parts of data that should be ignored in a write
command [JEDEC 2013]. Thus, extended ECC blocks can be written to DRAM
without needing to first fetch other neighbouring data in memory.

6.4.4 Discussion of Hardware Design Decisions

Due to the decorrelated storage architecture for supplementary ECC redundancy,
a single memory access may need to access two separate access location. This in
turn may have an impact on performance. However, the alternative way of storing
an adjustable amount of redundancy is to store data and ECC next to each other,
which has several drawbacks. First, this requires that the data be fully moved in
memory to adjust the amount of interleaved redundancy every time that the ECC
strength is adjusted. However repeatedly reading writing from a single DRAM
row is slow as it incurs delays to switch between reading and writing. Thus, a
better implementation of this adjustable would require moving the data from one
physical location to another, which can already be implemented using two DRAM
DIMMs with different reliability characteristics. Second, this organisation modifies
the alignment of data and makes accessing it much more complicated, in particular
by having physical pages with various possible sizes, thus potentially different from
the virtual pages that translate to them.

For the most efficient implementation of WITSEC, accesses to data and supple-
mentary ECC should be paralleliseable. To minimise the energy the energy spent
on those two accesses and the number of DRAM rows thrashed by these paired
accesses, the granularity at which this parallelism is offered should be as small as
possible. For example, it is preferable to activate two banks rather than two ranks.
Hardware constructors have now adopted Sub-Array Level Parallelism [Kang et al.
2014], thus whenever possible supplementary ECC blocks should be allocated in
sub-arrays inside the same bank as the data they cover. As supplementary ECC
bits are distributed in memory in a much denser way than the data they protect (7
bits per ECC word, vs. 64, 71 or 78 for data and baseline ECC), a much larger of
number of neighbour accesses will map to a single DRAM row. Thus, the number
of row misses will be much smaller.

98

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 32 64 96 128 160 192 224 256

hi
t r

at
e

WITSEC cache size (64B lines)

Blackscholes
CG
DGEMM
Gauss-Seidel
Jacobi
K-means
KNN
Red-black
SMI

Average

Figure 6.6: Impact of WITSEC cache size on its miss-rate

In particular, all the row hits for DRAM load will be row hits for the associated
supplementary ECC bits with very high probability in the case of an open-row
policy, while the latency of a row miss will be increased for a closed-row policy,
though only by a fraction of this latency due to the Sub-Array or bank parallelism.

The cache size also will have an impact on minimising the additional latency due
to supplementary requests. The trade-off will be between the amount of power that
maintaining the cache costs and the delay incurred by requesting supplementary
ECC blocks. Supposing all of the data structures of a benchmark need to be
tracked we are able to measure the worst-case efficiency of the cache. Using the
TaskSim setup displayed in Section 3.1, we compute at every memory access the
reuse distance From this reuse distance and a given cache size, we can deduce
whether the access would have been a hit or a miss in an LRU cache.

We present these results in Figure 6.4.4. The hit rates all tend to an upper
bound which correspond to the mandatory misses, without any prefetching or
similar optimisations. All benchmarks except Blackscholes and SMI have steep
increases in their hit rates for less than 32 cache lines, that is 128B of cache
memory. Blackscholes reaches a 90% hit rate in the WITSEC cache for about 80
cache lines, while SMI has a hit rate that remains below 70% until 160 lines but
is already above 60% at a size of 24 cache lines.

For all of these benchmarks, the amount of memory for which supplementary
redundancy needs to be tracked will be much less than what is measured here.
This is because WITSEC aims at targeting only part of the memory footprint for

99

6.5. EXPERIMENTAL SETUP

extended protection, not the entirety of it, thus any realistic scenario will have
lower reuse distances and thus higher hit rates. From these results it seems that
a cache size containing 64 lines of memory, thus only 512B, should be a good
trade-off to maximise the cache’s efficiency while keeping it small and fast.

6.4.5 Related Variable Strength ECC schemes

Two main adaptable ECC schemes for DRAM could be guided by our memory
vulnerability estimation methodology, and be used as stand-ins for WITSEC, pro-
vided they are extended to allow runtime-adaptability.

The main differences with Virtualized ECC [Yoon and Erez 2010] is that it
uses a first tier ECC code, mainly to detect errors, and the second tier codes in
the case of uncorrected errors in the first level. WITSEC on the opposite always
has a single tier of ECC, that can be of one of two different strengths, that is
always accessed fully. The cache in the memory controller allows to mitigate the
performance impact of accessing the supplementary ECC blocks, and is similar
to what Lin et al. [2012] propose to store meta-data of ECPs. This means in
particular that the additional redundancy required is much smaller for WITSEC
than for Virtualized ECC.

Similarly to Virtualized ECC, Odd-ECC [Malek et al. 2017] uses two tiers of
error correction, with a pre-defined arrangement in memory at a 256KB granularity
rather than allowing the fully flexible page-table level mapping used in Virtualized
ECC. The drawbacks of this organisation with data and ECC tiers located next
to each other are discussed in the Setcion [ssec:design-impact].

6.5 Experimental Setup

To evaluate our general methodology on a real system, we choose one of its pos-
sible uses: to adapt WITSEC ECC protection dynamically. We implement on a
Power system the necessary tools to recommend which portions of memory to
protect in priority. In this section, we present the experimental setup used for
the implementation of the dynamic vulnerability estimates using sampling. The
error injection methodology is explained in Section 3.1, and the whole evaluation
is performed with the benchmarks presented in Section 3.3.

100

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

6.5.1 Online Tool Experimental Framework

We evaluate the solution on an IBM Power8 based system (PowerNV 8335-GTB
model) [Sinharoy et al. 2015]. The system has 256GB of DDR3 CDIMM memory
running at 2.4GHz. The Power8 processor in this system has 10 cores running
at 4.00GHz, each has 64kB L1 data and 32kB L1 instruction caches, a 512kB L2
cache and an 8MB L3 cache. The system runs a Red Hat Enterprise Linux Server
7.3 OS with the kernel version 3.10.0. We compile all the benchmarks with GCC
7.1.0. Our implementation’s source code is available online [Jaulmes 2018].

save registers
move stack frame,

read SPRs,
save sample to

thread-local buffer

reset
counters

buffer full
yes

no

restore registers,
stack pointer

deactivate
sampling

Figure 6.7: EBB handler

Recording Memory Accesses. We setup the PMU to
countmarked loads and stores, and to trigger an Event-
Based Branch (EBB) on counter overflow [IBM 2015b].
Marked instructions are instructions that are randomly
selected by the hardware and populate Special Purpose
Registers (SPRs) with information such as the type
of instruction and the virtual address accessed. An
EBB is an interrupt in user space, and we use a hand-
written assembly routine, summarised in Figure 6.7, to
record the content of the relevant SPRs. Once setup,
the sampling can be enabled and disabled by flipping
bits in SPRs directly, thus without requiring a system
call. According to the ISA specification, no EBB can
be triggered during another EBB [IBM 2015a].

The PMU only selects random loads and stores as marked instructions for a
short time every 16ms, as shown in Figure 6.8. We call this a sampling burst, which
is entirely controlled by the hardware, as opposed to a sampling phase, which is
the time during which we enable sampling, as explained in Section 6.3. This means
that memory access patterns lasting less than 16ms will most probably not appear
in any recorded samples.

Sampling phases are started and stopped periodically, by setting a timer to
deliver a SIGALRM signal. Since the PMU configurations are thread-local, the
sampling enabling and disabling instructions need to be run in every thread, which
we manage by broadcasting the same signal to the other threads. The thread
awoken by the timer then waits for all other threads to toggle their sampling

101

6.6. EVALUATION

 0
 2500
 5000

0 50 100 150 200 250 300 350 400Sa
m

pl
e

co
un

t

execution time (ms)

sampling phase STs in 1ms LDs in 1ms

Figure 6.8: Number of recorded samples per millisecond over time, summed over
all threads, running using 8 threads
Samples are only recorded during sampling phases, which are set to last a little over 50ms in
this example. However, the hardware random sampling mechanism functions in bursts, and only
marks a few thousand instructions during less than 1ms and every 16ms on average.

configuration, and also performs the analysis of the samples recorded during a
sampling phase at the end of that phase. Vulnerability values are computed per
memory region, as described in Section 6.3.1. We discretise the vulnerability rating
into 101 categories, of the form ∀t ∈ [0..100] t

100
≤ V < t+1

100
. The last category is

thus the single value V = 100%.

6.6 Evaluation

In this section, we first report the overheads of our online vulnerability estimates,
and then study the capabilities of our methodology to adjust ECC strength dy-
namically with WITSEC. Reliability gains and trade-offs against storage overhead
can be achieved by extending the ECC protection of the most vulnerable pages,
for various parallel benchmarks.

We have validated the values reported by the online vulnerability method-
ology against accurately simulated values of vulnerability, which are presented
in previous work [Jaulmes et al. 2019c]. The comparison of per-page averages
demonstrates the estimation methodology is accurate, as will be highlighted by
the overall evaluation in Section 6.6.3. Furthermore, the vulnerability estimation
methodology tends to conservatively over-estimate vulnerability ratings whenever
it lacks accuracy.

6.6.1 Overheads

The cost of estimating vulnerability online is two-fold: the cost of recording sam-
ples, and that of analysing them, thus estimating the vulnerability. We measure
the overhead of sampling at 0.86µs/sample, using CG on a single thread, sampling
continuously, and having disabled vulnerability estimation.

102

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

0%

2%

4%

6%

8%

10%

12%

2 5 10 50 20
0 2 5 10 50 20
0 2 5 10 50 20
0

100% 50% 10%

O
ve

rh
ea

d

Fraction of time spent sampling; Sample period

Figure 6.9: Evolution of total overhead, varying the sampling period and phases

 0%

20%

40%

60%

80%

100%

Black
sc

holes CG

DGEMM

Gauss
-Seidel

Jaco
bi

K-m
eans

KNN

N-body

PRK2 st
encil

Red-black SMI

Pe
rc

en
ta

ge
 o

f d
at

a

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Vu
ln

er
ab

ili
ty

Figure 6.10: Distribution of vulnerability ratings across each benchmark’s memory

The total overhead of estimating vulnerability online, sampling and analysis
together, is presented in Figure 6.9. Average overheads range from 8.6% down
to 3.1% with no delay between sampling phases, with the maximum measured at
11.9%. When maintaining sampling phase durations of 500ms and increasing the
delay between sampling phases, overheads decrease close to linearly. Overheads
range from 3.8% down to 1.3% when sampling 50% of the time, thus waiting 500ms
between phases. When sampling 10% of the time, which corresponds to waiting
4.5s between sampling phases, overheads become very low, with 75% of overhead
values below 0.5% as soon as we sample every 5 or less marked instructions. Sam-
pling only 50% of the time does not affect the results’ quality by much, however
using only 10% hides some accesses to some data structures altogether due to the
bursty behaviour of the POWER8 PMU.

For the remainder of our work, we will maximise the precision of our technique
by using a sampling period of 2 enabled 50% of the time. It is worth noting that

103

6.6. EVALUATION

a sampling period of 2 means recording half of the randomly selected instructions,
which is only a small subset of the total instructions in the program. To achieve
50% of time with sampling enabled, we schedule sampling phases lasting 500ms,
and the same delay in-between sampling phases. This means the majority of over-
heads of the chosen configuration range between 3.2% and 3.8% of the execution
time, as presented on Figure 6.9.

6.6.2 Distribution of Data per Vulnerability Level

In order to measure the average vulnerability ratings from the online implementa-
tion of our methodology, we record, for each benchmark, the vulnerability ratings
for each identified memory region and at each sampling phase over 100 runs. The
breakdown of the average distribution of vulnerability across memory is presented
in Figure 6.10. We only represent 6 coarse categories of vulnerability, for the sake
of readability. The full results contain 101 categories, as explained in Section 6.4.1.
The last category is the single value V = 100%, and the other categories displayed
have the same 20% size.

Figure 6.10 reveals that the considered benchmarks represent a varied set of
workloads in terms of vulnerability. The machine learning benchmarks, K-means
and K-nearest neighbours, use training data sets which are only ever read, and
are orders of magnitude bigger than any other data structure, thus showing a
100% vulnerable memory footprint. Some benchmarks are very imbalanced, such
as Blackscholes, DGEMM, or CG, which has close to 90% of its data always rated
100% vulnerable, due to the matrix being an overwhelming portion of CG’s data
and being only ever accessed by loads. SMI and PRK2 stencil are more balanced,
though most of their data set is still vulnerable. On the other hand, N-body,
Gauss-Seidel and Red-black seem to have different vulnerability ratings distributed
rather uniformly across their memory. Finally, the Jacobi has most of its data
non-vulnerable, which is due to it having two copies of the problem space, and
alternating their uses at each iteration, hence having always half of its data being
safe at any given time.

This information can already be useful as-is, for an application programmer to
choose which regions to protect with algorithmic techniques, or to perform data
placement choices on devices with different reliability characteristics. Our further

104

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

evaluation uses this varied vulnerability to choose memory regions for increased
ECC protection.

-7

-6

-5

-4

-3

-2

-1

 0

0% 20% 40% 60% 80% 0% 20% 40% 60% 80% 0% 20% 40% 60% 80%
ZEC SEC DEC TEC

lo
g

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

Added Redundancy

Gauss-Seidel
Jacobi
Red-black

(a) Gauss-Seidel, Jacobi, Red-black

-7

-6

-5

-4

-3

-2

-1

 0

0% 20% 40% 60% 80% 0% 20% 40% 60% 80% 0% 20% 40% 60% 80%
ZEC SEC DEC TEC

lo
g

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

Added Redundancy

N-body
PRK2 stencil
SMI

(b) N-body, PRK2 stencil, SMI

-7

-6

-5

-4

-3

-2

-1

 0

0% 20% 40% 60% 80% 0% 20% 40% 60% 80% 0% 20% 40% 60% 80%
ZEC SEC DEC TEC

lo
g

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

Added Redundancy

CG
DGEMM

(c) CG, DGEMM

Figure 6.11: WITSEC trade-offs between redundancy (i.e. ECC storage) and
reliability, in 5% vulnerability increments.
Uniform ECC levels are drawn as vertical lines, and each point is an available reliability-overhead
trade-off. For each benchmark, going from one given point to the next one to the right means
adding extended protection to data with the next vulnerability level: the left-most points per
box are uniform ECCs, with no extended protection. The next ones extend protection for data
with V = 100%, the next ones V ≥ 95%, then 90%, etc.

105

6.6. EVALUATION

6.6.3 Evaluation of Dynamically Guiding WITSEC ECC

In order to drive dynamic ECC decisions, we use the WITSEC scheme, intro-
duced in Section 6.4. To select which pages to protect with stronger ECC, we set
a threshold on vulnerability ratings. Pages with vulnerability ratings above this
threshold are then selected for extended protection. For example, we may use a
baseline of ZEC (thus no ECC) and a threshold of V ≥ 90%, above which data
will be protected with SEC. For all of the possible ECC protection scenarios that
WITSEC can offer, we compute the amount of redundancy needed, and the prob-
ability of suffering a failure (hang, wrong or crash). The amount of redundancy is
the storage required for the selected ECC configuration.

We evaluate each benchmark for each threshold from 0% to 100% and display
our results on Figure 6.11. The figure is organised in three sub-figures, grouping
benchmarks together by their vulnerability repartition as identified in Section 6.6.2.
On the y axis we depict the logarithm of the failure probability in the event of a
fault. On the x axis we display the redundancy required for each configuration,
normalised to the amount of redundancy needed to uniformly apply SEC. As
protection levels are linear in redundancy (respectively 7, 14 and 21 bits per word
for SEC, DEC and TEC, see Section 6.4.1), the amount of redundancy needed for
DEC and TEC are respectively exactly twice and three times that of SEC. Each
point corresponds to a different threshold, with points on the solid vertical lines
on the left-hand side of the boxes being the uniform baselines, where no data has
extended protection.

The first thing to note is that our methodology allows for a wide range of trade-
offs, offering intermediate levels of protection by extending protection to a part
of the memory footprint. Jacobi, Red-black, and Gauss-Seidel in particular offer
trade-offs with reductions of failure probability early on. Results for benchmarks
with more imbalanced vulnerability distribution require more protection before
reducing failure probability significantly, as demonstrated by SMI and N-body,
and in a lesser measure PRK2 stencil. Finally, the benchmarks that have an
important part of their data rated V = 100% (see Figure 6.10), such as CG and
DGEMM, do not offer many possibilities for redundancy trade-offs.

The available trade-offs for Gauss-Seidel, Jacobi and Red-black are shown
on Figure 6.11a. These benchmarks have their vulnerability evenly distributed

106

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

amongst data structures, which causes the trade-offs to be rather evenly dis-
tributed along the x axis. The main feature of those benchmarks however, is
the impact of protecting data rated 100% vulnerable. In these configurations,
WITSEC achieves steep reductions in terms of failure probability with very small
increases in redundancy. For example, Jacobi gets its failure probability reduced
by 4× when protecting its most-vulnerable data with SEC against a ZEC base-
line, while Gauss-Seidel achieves a 22% reduction. This behaviour corresponds
to protecting the boundary conditions of the heat diffusion domain. In general,
injecting errors in this part of the data is significantly more likely to cause a wrong
output than in any other part, where the main outcome is a slower convergence.
Furthermore, this sensitive and small section of memory is well identified by our
methodology, which enables increasing the protection of this region to achieve
significant vulnerability improvements at a very small extra cost with respect to
configurations applying ECC uniformly.

Looking at benchmarks with more imbalanced vulnerability distribution, such
as N-body, SMI and PRK2 stencil, we see on Figure 6.11b that the redundancy
levels which correspond to extending protection only for V = 100% are around
41% for PRK2 stencil, 22% for SMI and 9% for N-body. This still allows for a
wide range of trade-offs, adding more redundancy to gain better failure rates. If
given a reliability target of a failure probability of 10−3 for PRK2 stencil, we can
apply a SEC baseline, protecting with DEC data rated with V ≥ 85%, which
corresponds to 51% of supplementary redundancy and a failure probability of
9.4 × 10−4. This still corresponds to saving 49% of redundancy in memory when
compared to the next uniform ECC achieving a failure rate below 10−3, which is
DEC. This demonstrates that only part of all the data requires stronger protection
to reach reliability goals that are in-between uniform ECC levels of reliability.

For DGEMM and CG, trade-offs shown on Figure 6.11c are available starting
around 80% and 90% supplementary ECC overhead respectively, with reductions
in error rates around 14× for CG, and 1.2× for DGEMM. These results are driven
by the fact that most of the data is rated with a vulnerability of 100%, which
causes a big gap between the baseline configuration and the next available trade-
off. Extending protection to less vulnerable data then reduces the failure rate
further.

107

6.7. CONCLUSION

Overall, a wide range of possibilities is opened for trade-offs between error
protection and ECC overhead, while always maintaining a low overhead. For any
reliability threshold, we can find the best configuration to achieve dynamically
that level of protection with the minimum overhead. Conversely, if a power budget
limits the amount of redundancy, online vulnerability ratings identify dynamically
which data to protect more in order to minimise the failure probability.

6.7 Conclusion

In this chapter we present a methodology to estimate memory vulnerability online
and WITSEC, a dynamically adaptable ECC scheme to adjust memory protection
accordingly. With low execution time overhead – 3.47% on average – and func-
tioning on real hardware, our methodology allows to explore trade-offs between
ECC overhead and protection, by efficiently and precisely targeting the most vul-
nerable parts of memory for increased protection. Given a reliability target of how
unlikely we want our application to fail in the event of a fault, we can protect
only memory rated more vulnerable than a threshold, to reach the desired failure
probability with minimal overhead – much smaller than that of a stronger ECC
applied uniformly. This is possible by applying ECC with a much finer granu-
larity, targeting data that requires it most. Most importantly, our method never
decreases ECC protection, which could present a risk in case of mis-estimating
vulnerability, instead only increasing ECC protection in a smart way.

This methodology can be used for other purposes, such as guiding data place-
ment or informing a programmer which data structures to protect with algorithmic
techniques. The methodology could further be extended in several ways, for ex-
ample to support DUE or hard errors. Furthermore, exploring more applications
would allow to confront our results to more varied and more complicated access
patterns, and to applications whose behaviour changes over time. Gains in memory
overhead for redundancy should translate rather directly to energy savings, though
we would require an implementation of WITSEC, our adaptable ECC scheme, to
precisely measure this effect. Future work includes measuring the energy and per-
formance of a hardware WITSEC implementation, to compare it against hardware
integrated ECC, and exploring different error models, e.g. from different technolo-
gies. For example, if errors of multiple bits were to be as probable as single bit

108

CHAPTER 6. DYNAMICALLY ADAPTABLE ECC PROTECTION

errors, it could be interesting to combine ZEC directly with DEC or TEC rather
than only SEC, while using related work such as VS-ECC instead of WITSEC
could be more adapted to target burst error models.

Finally, it is clear that strong PMU capabilities enable powerful runtime tools.
A runtime-aware architecture needs to facilitate dynamic cross-level optimisations.
For this, such an architecture needs to disclose information such as memory access
patterns to the higher levels of the hardware-software abstraction stack. At the
very least, runtime optimisations such as the one proposed in this chapter would
benefit hugely from more control on how instructions are sampled.

109

6.7. CONCLUSION

110

Chapter 7
Conclusions

The work presented in this thesis has demonstrated various ways in which runtime
systems can be used to exploit redundancy efficiently, tackling problems caused
by DRAM soft error rates, and thus improving the reliability of a computing
system. This chapter summarises the main conclusions from these contributions,
and presents some lines of future research that this work has opened. It then
lists the publications that are an outcome of this thesis, as well as financial and
technical acknowledgements.

7.1 Conclusions

7.1.1 Overlapping Algorithmic Recoveries

At the algorithmic level, the runtime system has allowed to mask the overhead of
recovering from an error. Using a real-world DUE fault model, the retirement of
memory pages by the OS due to a DUE in memory, we have presented an algorith-
mic recovery that is both an exact and a forward recovery, FEIR. This algorithmic
recovery relies on straightforward redundancy relations identified between data
structures of an algorithm, for any Krylov subspace solver. Such invariants can be
easily derived, and are often used in related work as detectors for SDC. Compared
to the state-of-the-art, the properties of the recovery guarantee a better conver-
gence of the protected solver, and thus a better mean time to solution. This better
convergence is achieved by recovering lost data exactly, as opposed to restart-based
techniques that constitute the state-of-the-art of algorithm-specific recoveries. We
further preserve all computations done until the error is detected, as opposed to

111

7.1. CONCLUSIONS

backwards error recoveries such as checkpointing, which are the state-of-the-art
for more general techniques.

While the proposed recovery mechanism FEIR outperforms the state-of-the-
art in terms of time to solution, this technique still suffers from an overhead for
recovering lost data. Using the expressiveness of the OmpSs task-based program-
ming model, and leveraging its runtime scheduler, we encapsulate the recovery
computations in a task, and run this recovery asynchronously. Without further
programmer intervention, the runtime system overlaps the recovery tasks with
the solver’s computations by exploiting load imbalance that exists in the solver.
This technique, AFEIR, outperforms FEIR by offering even lower average times
to solution for all except the highest simulated fault rates. The overhead of both
techniques grows with the size of memory pages, demonstrating that for large
memory pages, a finer grain hardware retirement technique implemented at the
OS level would be beneficial.

Future avenues of research opened by this work include extrapolating redun-
dancy relations from invariants, to build algorithmic recoveries for other algo-
rithms. This will expand the use of low-overhead recoveries exploiting DUE.
Potential invariants have already been identified in QR, LU, and matrix multi-
plication [Huang and Abraham 1984; Davies and Chen 2013; Heroux et al. 2005].

This contribution underlines the potential of algorithmic-based resilience. Pro-
gramming models could be extended to support algorithmic recoveries out of the
box, by providing a way to express how to recover lost data. Instantiating recovery
tasks only when errors are detected would remove the last small overhead incurred
by algorithmic recoveries. Furthermore, providing a unifying framework to ex-
press both checking the validity and recovering corrupted data would enable more
wide-spread use of algorithmic resilience techniques. Such a programming model
extension has been proposed to perform checksum verification and checkpointing
of task inputs and outputs [Subasi et al. 2015]. Beyond allowing the programmer
to express resilience mechanisms easily, the programming models’ runtime system
should ensure that the control flow of the application remains valid, by recovering
from any potential crash, identifying lost or corrupted data, and triggering the
appropriate recoveries.

Finally, as the application can recover from memory page retirement at a very
high rate, more risk can be taken with data placement in memory, using devices

112

CHAPTER 7. CONCLUSIONS

with lower fault rates or checkpointing only for the memory that can’t be recovered
algorithmically. Alternately, a new strategy against SDC becomes available. The
application could diminish drastically its probability of silent errors by treating
corrected errors as DUE. By doing so, the probability of SDC due to an ECC
miscorrection is avoided. This approach allows the error coverage for multiple bit
flips to be drastically increased.

7.1.2 Identifying Memory Vulnerability

At the runtime level, we identify and quantify the risk of suffering from an error
in data stored in memory by introducing a new metric, FEA. This metric is an
upper bound on error rates, tighter and correlating much better with error rates
than other metrics. Thus the FEA metric is useful to guide many reliability-based
decisions. Furthermore, an important insight was gained from the metric: false
DUE should be ignored in an error analysis of memory. This insight has lead to
a simple OS-level proposal for delaying the reporting of memory DUE. This pro-
posal allows to reduce failure rates of applications due to DUE in memory, with
drastic reductions (close to 50%) for a number of algorithms that can not com-
pute values in-place. Such algorithmic restrictions create memory access patterns
overwriting data in memory, and thus data that is stored in memory that is in fact
inconsequential.

Two of the research lines made possible by this work already have been or are
in the process of being investigated. The first of these research direction leverages
the powerful correlation between the FEA metric and the vulnerability of data –
that is the probability of an application failure due to an error at a given bit. The
work done on this topic is presented in the last chapter of this thesis.

Another research direction born from the work on the FEA metric exploits
the knowledge of inconsequential data stored in memory, as that data does not
need to be refreshed. Indeed, refreshing data in DRAM is costly both in power
and in memory bandwidth. These problems are exacerbated by decreasing power
budgets, increasing storage sizes, and technical difficulties in scaling the DRAM
technology to smaller sizes. This research direction is currently work in progress,
but preliminary work shows promising results that correlate with the reductions
in the DUE rates obtained by the proposal presented in this work.

113

7.1. CONCLUSIONS

The AVF, and thus related metrics such as MVF and FEA, typically overesti-
mate error rates due to faults in data by up to an order of magnitude. Further work
could include extending the FEA metric to gain more insight into what data needs
to be protected in priority. The hardware could also be extended to gather infor-
mation on memory accesses, and directly provide the runtime with an estimation
of this vulnerability metric.

7.1.3 Adapting ECC Dynamically

The last contribution consists of a hardware proposal for a dynamically adaptable
ECC scheme using addressable memory as supplementary redundancy, WITSEC.
Complementing this ECC scheme, we propose as part of this third contribution a
methodology to measure dynamically at runtime the vulnerability of data. Specifi-
cally, the proposed methodology estimates the FEA metric by extrapolating mem-
ory access patterns from sampled loads and store instructions. This estimate is
demonstrated to be an upper bound on the FEA metric, as it is the vulnerability
as perceived from the CPU level.

The whole dynamic methodology has been implemented on a real machine,
using the PMU capabilities of the Power8 processor. The code of this imple-
mentation is released online, and has been evaluated by combining WITSEC and
results from fault injection experiments in native runs. This demonstrates that the
methodology can be implemented on commodity hardware with a low execution
time overhead. Furthermore, the evaluation revealed that using WITSEC to ex-
tend protection of memory regions that are identified as most vulnerable allows for
a wide variety of trade-offs between ECC overhead and failure rates. The ECC can
be applied to targeted regions, and at a much smaller granularity than increasing
the ECC strength uniformly, to decrease the failure rate at a fraction of the cost
of a uniformly stronger ECC.

This methodology can be improved for better accuracy, by correlating ac-
cess patterns with code phases using techniques such as piece-wise linear regres-
sions [Servat et al. 2014], or by computing which accesses are served by caches and
which reach memory using models such as those developed by Yu et al. [2014].
This could be especially relevant for other purposes that require less real-time per-
formance, such as profiling the application statically. A static vulnerability profile
can help decide data placement between two hardware locations with different er-

114

CHAPTER 7. CONCLUSIONS

ror rates, or choose which data structures of the application should be protected
using application-level techniques such as discussed in the previous chapters of this
work: algorithmic recoveries, checksum verifications, etc. Finally, such a profile
can also indicate whether a significant amount of data is stored in memory with
no further use, indicating that the algorithm could be optimised with for example
a loop-fusion approach to reduce its memory footprint.

The methodology developed for memory access pattern identification can be
used for resilience beyond the computation of the FEA metric and estimation
of vulnerability of data. Similar work has identified memory access pattern and
their evolution over time for correlation with application source code for advanced
analytics [Giménez et al. 2014; Servat et al. 2015]. Such an application-specific
memory access pattern identification, correlated with the task information, is a
very powerful tool. This information could be used for example to check that tasks
behave within their normal parameters, accessing only data that is listed explicitly
in data dependencies or that is normally accessed by this task. Deviating from
this behaviour could raise an important flag at the runtime level, as a symptom
that an error could have occurred, increasing the recall of symptom-based error
detection techniques [Hari et al. 2009]. More powerful yet, such instrumentation
allows to know which data has been modified by a task affected by an error. In this
way, the effects of tasks whose control flow might have changed from the expected
behaviour can be identified. This is a very promising step towards ensuring the
containment of an error, which is a thorny issue in a shared memory environment.

7.1.4 Redundancy-Aware Runtime Systems

Redundancy is the only protection against random faults, and optimising its use
will allow for less reliable DRAM memories, either from future process technologies
or improving the yield of current ones. The work presented in this thesis demon-
strates that hardware-software cooperation enables to use redundancy much more
efficiently. Reporting errors at a fine granularity allows to correct them in a timely
and low-overhead fashion, while powerful PMUs allow invaluable information to
be gathered on an application. Hardware that can be dynamically adjusted at
runtime allows the software to adjust the redundancy in memory, or reduce its en-
ergy consumption, instead of simply detecting and optimising the use of existing
redundancy.

115

7.2. PUBLICATIONS

All such advanced techniques allow to better tolerate faults in memory, and
need to be implemented at the runtime level. Runtime systems already embody
the cooperation between hardware and software, as they have information on both
to support programming models’ features and provide them with performance,
performance portability, support for heterogeneous computing platforms, etc. Fur-
thermore, exposing all the resilience and instrumentation capabilities of modern
hardware directly to the end programmer would be counter-productive and de-
feat the purpose of layered abstractions provided by programming models and
instruction sets. Thus, in order to continue reaping the benefits of Moore’s law
and enable the next era of computing, runtime systems need to be aware of re-
silience constraints, managing and providing redundancy to safely tolerate future
fault rates.

7.2 Publications

This section lists the publications linked to the research presented in this thesis.
The first list contains the publications derived directly from the work presented,
while the second list presents related publications. The final list presents the code
developed in this thesis that is made publicly available.

Publications of the Thesis:

• L. Jaulmes, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, and M. Valero
(2015), “Exploiting Asynchrony from Exact Forward Recovery for DUE in
Iterative Solvers,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’15, ACM,
53:1–53:12, isbn: 978-1-4503-3723-6. doi: 10 . 1145 / 2807591 . 2807599.
Nominated for the best paper award.

• L. Jaulmes, M. Moretó, E. Ayguadé, J. Labarta, M. Valero, and M. Casas
(2018), “Asynchronous and Exact Forward Recovery for Detected Errors in
Iterative Solvers,” IEEE Transactions on Parallel & Distributed Systems,
vol. 29, no. 9, pp. 1961–1974, issn: 1045-9219. doi: 10.1109/TPDS.2018.

2817524

• L. Jaulmes, M. Moretó, M. Valero, and M. Casas (2019c), “Memory Vul-
nerability: A Case for Delaying Error Reporting,” presented at the 12th

116

https://doi.org/10.1145/2807591.2807599
https://doi.org/10.1109/TPDS.2018.2817524
https://doi.org/10.1109/TPDS.2018.2817524

CHAPTER 7. CONCLUSIONS

Workshop on Programmability and Architectures for Heterogeneous Multi-
cores, Multiprog 2019

• L. Jaulmes, M. Moretó, M. Valero, and M. Casas (2019a), “A Vulnerability
Factor for ECC-protected Memory,” currently under review at IOLTS 2019

• L. Jaulmes, M. Moretó, M. Valero, and M. Casas (2019b), “Adapting ECC
Protection Dynamically using Online Estimation of Memory Vulnerability,”
currently under review at PACT 2019

Other Publications:

• M. Casas, M. Moretó, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes, L.

Jaulmes, O. Palomar, O. Unsal, A. Cristal, E. Ayguadé, J. Labarta, and M.
Valero (2015), “Runtime-Aware Architectures,” in European Conference on
Parallel Processing, Euro-Par 2015, Springer, Berlin, Heidelberg, pp. 16–27,
isbn: 978-3-662-48095-3. doi: 10.1007/978-3-662-48096-0_2

• D. Richards and L. Jaulmes (2014), “CoMD in Chapel: The Good, the
Bad, and the Ugly,” in Chapel Lightning Talks, Birds-of-a-Feather session at
SC’14

Publicly Available Code:

• L. Jaulmes (2016). Resilient CG implementation, GitHub, https://github.
com/lucjaulmes/resilient_cg (visited on 01/23/2019)

• L. Jaulmes (2018). Online sampling-based vulnerability estimator, GitHub,
https://github.com/lucjaulmes/online_vulnerability (visited on
11/01/2018)

• L. Jaulmes (2019). OmpSs Fault Tolerance Benchmarks, GitHub, https:
//github.com/lucjaulmes/ompss_fault_tolerance_benchmarks (visited
on 01/23/2019)

7.3 Financial and Technical Support

This thesis has been supported by the Spanish Ministry of Education, Culture and
Sports under grant FPU2013/06982, by the RoMoL ERC Advanced Grant (GA

117

https://doi.org/10.1007/978-3-662-48096-0_2
https://github.com/lucjaulmes/resilient_cg
https://github.com/lucjaulmes/resilient_cg
https://github.com/lucjaulmes/online_vulnerability
https://github.com/lucjaulmes/ompss_fault_tolerance_benchmarks
https://github.com/lucjaulmes/ompss_fault_tolerance_benchmarks

7.3. FINANCIAL AND TECHNICAL SUPPORT

321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry
of Science and Innovation (contract TIN2015-65316-P), and by the Generalitat de
Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272).

The authors would like to thank Francesc Martínez Palau for his precious help
and support with the TaskSim infrastructure. The authors would also like to thank
Harald Servat and Ramon Bertran for their help in deciphering respectively the
Intel and Power8 PMUs’ capabilities.

118

Appendix A
Online Vulnerabiliy Analysis

Reproducibility Artifacts

In this appendix we describe how to reproduce the results from the online vulnera-
bility analysis framework. We describe the common runtime-instrumentation part
in Section A.1, the sampling-based vulnerability estimation (specific to POWER8)
in Section A.2, and the error injection in Section A.3.

A.1 Runtime Instrumentation of Applications

We rely on preloading to instrument code at runtime without application-level
knowledge. This allows to intercept any calls to library functions, in particular
memory allocation and freeing, and task-creation functions from the task-based
data-flow programming model. These functions’ (e.g. malloc, free) are wrapped
by functions in our code that record the address ranges used, and call the initially
intended code.

To identify the ROI we use the same mechanism, by modifying the benchmark
applications to call external library functions at the start and end of their ROI, as
for example in the PARSEC benchmarks. We use two functions that for this pur-
pose: start_measure() and stop_measure(int it), which by default measure
and report the time elapsed between the two calls. it is the number of iterations,
-1 can be used to indicate it is not applicable.

We used gcc ≥ v6.2, and the Mercurium source-to-source v2.0.0 compilers to
compile benchmarks. The framework, which is publicly available [Jaulmes 2018],
has been tested on Linux (with kernels ≥ v3.0.101), with the Nanos++ runtime
system v0.10. The code works on any hardware, even though the sampling (and

119

A.2. ESTIMATING VULNERABILITY THROUGH SAMPLING

thus estimating vulnerability) features require a Power8 processor. These fea-
tures are enabled by default, and can be disabled, for example to compile on x86
systems, by running:

$ make NO_SAMPLING =1

To execute an application with the preloaded instrumentation, run:

$ LD_PRELOAD=libvulnerability.so <benchmark >

This will output statistics such as execution time (in µs) to standard output, and
the list of identified memory regions in the ./maps file.

A.2 Estimating Vulnerability through Sampling

Estimating vulnerability through sampling is part of the library described in Sec-
tion A.1, we only describe here what is specific to sampling and vulnerability
estimation. This part relies the sampling capabilities of the POWER8 PMU capa-
bilities and the KHT algorithm.

A.2.1 Sampling configuration

The core of the vulnerability estimate mechanism is the EBB handler depicted in
Figure 6.7, which allows to read the virtual address of pseudo-randomly selected
registers. It shifts the stack pointer by 512B (as recommended in Section 2.2.2.
The Stack Frame of the ABI Specification [IBM 2015a]) to save General Purpose
Registers (GPRs) 1 – 4. With those, the handler reads the SPRs listed in Table A.1
and saves their values in a thread-local buffer. If the buffer is full, the handler
deactivates sampling, otherwise it resets the marked instruction count to overflow
in sample_period events. Finally, it restores the GPRs 1–4 and stack pointer.

The sampling setup is performed in the library’s constructor function, thus
before the program is loaded. The PMU setup to enable EBB handlers on marked
loads and stores is described in Section 6.5.1, and we detail the register-level con-
figuration corresponding to this setup in Table A.2. This setup is achieved using
the perf_event_open system call, with the values of Table A.3. Once setup, the
sampling can be enabled and disabled by flipping bits in the MMCR0 and BESCR

SPRs directly using the mfspr and mtspr (Move From/To SPR) instructions, thus

120

APPENDIX A. ONLINE VULNERABILIY ANALYSIS
REPRODUCIBILITY ARTIFACTS

Table A.1: Registers used for sampling
register value
SDAR effective address of instruction target
SIER metadata of instruction (LD or ST, etc.)
PMC5 number of instructions executed
TB wall-clock time with 512MHz resolution

Table A.2: Registers used for PMU setup

Setup (with perf_event_open for MMCR registers)
register value
MMCR0 0x0000000050184043
MMCR1 0x00000000000000e0
MMCRA 0x0000000000000001
EBBHR address of EBB handler

Enabling counters (start of sampling phase)
PMC4 0x80000000 - sample_period
BESCRS 0x8000000100000000
MMCR0 0x0000000004000000

Disabling counters (end of sampling phase)
BESCRR 0x8000000100000000
MMCR0 0x0000000080000000

without requiring a system call. These instructions are also used to set the EBBHR
register. The BESCRS and BESCRR registers are shorthands allowing to respectively
Set and Reset bits in the BESCR register.

Estimating vulnerability through sampling requires the KHT algorithm [Fer-
nandes and Oliveira 2008], which is available online [Fernandes 2008], and a
POWER8 processor. The instrumentation framework has the same outputs as
described in Section A.1, with the addition of average vulnerability per region in
the regions list, and statistics per sampling phase on the standard output, such as
number of samples and distribution of vulnerability across regions.

The library’s parameters listed below can be adjusted at compile-time to trade
overhead for precision of vulnerability estimates.

• The sampling period can be set by overriding the value in the Makefile:

$ make SAMPLE_PERIOD =2

• The phases durations and intervals are set by the arguments passed to
timer_settime, in vulnerability.c:

121

A.3. ERROR INJECTIONS

Table A.3: perf configuration to setup EBB
Values marked with * are or-ed together in a single perf_event_open call, and the value

marked with † is similarly added to every call.
config value Description
MRK_INST_CMPL 0x00401e0* Count marked instructions in PMC4
RUN_INST_CMPL 0x00500fa Count run instructions in PMC5
RUN_CYC 0x00600f4 Count run cycles in PMC6
sampling mode 0x4000000* Select Random Instruction Sampling mode, with

Loads and Stores as eligible instructions
EBB 1 << 63 † Use EBBs, enable PMCs 5-6 and allow unprivi-

leged access to MMCR0 (with MMCR0.PMCC=0b10)

424 /∗ Re−arm timer f o r ’ payo f f ’ phase ∗/
425 struct i t ime r sp e c spec_toggle = { . i t_ i n t e r v a l = {0} , . i t_value = { . tv_nsec =

↪→ 500000000}};
426 t imer_sett ime (next_toggle , 0 , &spec_toggle , NULL) ;

430 /∗ Re−arm timer f o r l e a rn i ng phase ∗/
431 struct i t ime r sp e c spec_toggle = { . i t_ i n t e r v a l = {0} , . i t_value = { . tv_nsec =

↪→ 500000000}};
432 t imer_sett ime (next_toggle , 0 , &spec_toggle , NULL) ;

• The parameters passed to the KHT algorithm are also set in vulnerability.c:

966 const s i ze_t c luster_min_size = 10 ;
967 const double c luster_min_deviat ion = 2 . 0 , de l ta_theta = 0 .25 , delta_rho =

↪→ 4096 , kernel_min_rel_height = 0 . 9 , n_sigmas = 2 . 0 ;

A.3 Error Injections

We only describe the specificities of error injection here, as it is part of the library
described in Section A.1. Error injections can run on any platform, taking care to
disable vulnerability estimates on platforms that do not support it.

To inject errors, the library must be loaded to instrument the benchmark as
in Section A.1. Parameters for the error injection are set as classic command
line parameters, passed through the INJECT environment variable. In the example
below, we inject a double bit flip (-n 2) in a random position inside the first
identified memory region (-v 0), which we undo at the end of the ROI (-u). The
error is injected at a random time within 12000ns of the ROI’s start (-m 12000).

122

APPENDIX A. ONLINE VULNERABILIY ANALYSIS
REPRODUCIBILITY ARTIFACTS

$ export INJECT="-n 2 -v 0 -u -m 12000"

$ LD_PRELOAD=libvulnerability.so <benchmark >

The library will print which bit(s) it will flip, and at which time in the ROI. When
flipping the bits, the library prints a message, containing the current vulnerability
rating of the targeted memory region if sampling is enabled. This message allows to
verify both that the error was indeed injected, and whether it would be corrected
or not given a vulnerability threshold for WITSEC’s extended protection. The
benchmarks’ output and result verification differ for each benchmark, and include
the crashing of the program due to the injected error.

A.3.1 Installation

Simply compile and install Nanos++ and Mercurium as per their documentation,
then run make in the root directories of all the libraries and benchmarks.

How software can be obtained. Nanos++ and Mercurium are available
online at https://pm.bsc.es/ompss-downloads/.
The library implementing our online vulnerability estimates and a modified KHT
are available on github [Jaulmes 2018].

Hardware dependencies. The online vulnerability estimates through sam-
pling require the POWER8 PMU capabilities.

Software dependencies. The online vulnerability estimates require that the
ELF v2 ABI is used, which is assumed in the EBB handler. Furthermore, setting
up the counters through perf_event_open requires a reasonably recent Linux
kernel (tested with v3.10.0).

123

https://pm.bsc.es/ompss-downloads/

A.3. ERROR INJECTIONS

124

Appendix B
TaskSim Simulation Reproducibility

Artifacts

During tracing, TaskSim automatically detects the ROI of PARSEC benchmarks.
We have added symbols aliasing PARSEC ROI markers to the ones used in our
benchmarks to support detection of ROIs out of the box with TaskSim:

1 void __parsec_roi_begin () __attribute__ ((no in l i n e , a l i a s (" start_measure "))) ;
2 void __parsec_roi_end () __attribute__ ((no in l i n e , a l i a s (" stop_measure"))) ;

To use the vulnerability statistics with which TaskSim was extended, the con-
figuration file must be extended to contain the values listed below in the selected
section. For example, to perform statistics at memory level, the Perfect module:

1 [Perfect]

2 # none, time, access, or histogram

3 vulnerability_stat = time

4 # granularity of stats

5 vulnerability_ignoredlsb = 6

6 # cycles count between stats outputs

7 vulnerability_period = 100000000

8 # discretisation of vulnerability (histogram only):

9 # bin N has vuln s.t.: N/n_bins <= vuln < (N+1)/n_bins

10 vulnerability_bins = 100

This can be done at several different modules in the memory hierarchy, such as
cache controllers or cores, or the Ramulator module if TaskSim relies on Ramulator
for its memory model. The time statistic allows to compute the vulnerability
(MVF and FEA) by reporting the average number of cycles before each event:
store, load with intent to overwrite, load, and end of simulation. The access

statistic reports the number of loads and stores, which allows to compute the DVF

125

and LD/ST ratios. The none statistic disabled computing the vulnerability and
the histogram shows the distribution of vulnerability values across each memory
region, instead of the average.

The simulations were run with the TaskSim multicore simulation infrastruc-
ture, which is currently not publicly available, compiled using gcc 7.1, on a Linux
environment, with the Nanos++ task-based data-flow runtime system. The re-
quired hardware for tracing is an x86 or ARM processor, while any hardware can
be simulated. TaskSim is run with the values listed above set appropriately in the
configuration file:

$ tasksim <configuration file > <trace file >

TaskSim outputs statistics to the standard output, including a filename of the
form vulnerability.<unique suffix>, which contains the vulnerability statis-
tics requested in the configuration file.

126

Bibliography

Abdoo, D. G. and Cabello, J. D. (1996), “Error correction system for n bits using
error correcting code designed for fewer than n bits,” U.S. Patent 5490155 A,
U.S. Classification 714/763, 714/785, 714/E11.046; International Classification
G06F11/10; Cooperative Classification G06F11/1028; European Classification
G06F11/10M1P.

Advanced Micro Devices (AMD), Inc. (2018), “AMD64 Architecture Programmer’s
Manual Volume 2: System Programming,” Publication # 24593, Revision 2.30.

Agullo, E., Giraud, L., Salas, P., and Zounon, M. (2016a), “Interpolation-Restart
Strategies for Resilient Eigensolvers,” SIAM Journal on Scientific Computing,
vol. 38, no. 5, pp. C560–C583, issn: 1064-8275. doi: 10.1137/15M1042115.

Agullo, E., Cools, S., Fatih-Yetkin, E., Giraud, L., and Vanroose, W. (2018), “On
soft errors in the Conjugate Gradient method: sensitivity and robust numerical
detection,” Inria Bordeaux Sud-Ouest, Research Report RR-9226.

Agullo, E., Giraud, L., Guermouche, A., Roman, J., and Zounon, M. (2013), “To-
wards resilient parallel linear Krylov solvers: recover-restart strategies,” INRIA,
Research Report RR-8324.

Agullo, E., Giraud, L., Guermouche, A., Roman, J., and Zounon, M. (2016b),
“Numerical recovery strategies for parallel resilient Krylov linear solvers,” Nu-
merical Linear Algebra with Applications, vol. 23, no. 5, pp. 888–905, issn:
1099-1506. doi: 10.1002/nla.2059.

Agullo, E., Giraud, L., and Zounon, M. (2015), “On the Resilience of Parallel
Sparse Hybrid Solvers,” in 22nd International Conference on High Performance
Computing, HiPC, pp. 75–84. doi: 10.1109/HiPC.2015.9.

Alameldeen, A. R., Wagner, I., Chishti, Z., Wu, W., Wilkerson, C., and Lu,
S.-L. (2011), “Energy-efficient Cache Design Using Variable-strength Error-
correcting Codes,” in Proceedings of the 38th Annual International Symposium

127

https://doi.org/10.1137/15M1042115
https://doi.org/10.1002/nla.2059
https://doi.org/10.1109/HiPC.2015.9

BIBLIOGRAPHY

on Computer Architecture, ISCA ’11, ACM, pp. 461–472, isbn: 978-1-4503-
0472-6. doi: 10.1145/2000064.2000118.

Alvarez, L., Casas, M., Labarta, J., Ayguadé, E., Valero, M., and Moreto, M.
(2018), “Runtime-Guided Management of Stacked DRAM Memories in Task
Parallel Programs,” in Proceedings of the 32nd International Conference on
Supercomputing, ICS ’18, ACM, pp. 218–228, isbn: 978-1-4503-5783-8. doi:
10.1145/3205289.3205312.

Alvarez, L., Moretó, M., Casas, M., Castillo, E., Martorell, X., Labarta, J., Ayguadé,
E., and Valero, M. (2015), “Runtime-Guided Management of Scratchpad Mem-
ories in Multicore Architectures,” in Proceedings of the 24th International Con-
ference on Parallel Architectures and Compilation Techniques, PACT ’15, pp. 379–
391, isbn: 978-1-4673-9524-3. doi: 10.1109/PACT.2015.26.

Baek, S., Cho, S., and Melhem, R. (2014), “Refresh Now and Then,” IEEE Trans-
actions on Computers, vol. 63, no. 12, pp. 3114–3126, issn: 0018-9340. doi:
10.1109/TC.2013.164.

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., and Van der Vorst, H. (1994), Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods. So-
ciety for Industrial Mathematics, isbn: 978-0-89871-328-2. doi: 10.1137/1.
9781611971538.

Baumann, R. (2005), “Soft errors in advanced computer systems,” IEEE Design
Test of Computers, vol. 22, no. 3, pp. 258–266, issn: 0740-7475. doi: 10.1109/
MDT.2005.69.

Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., and
Matsuoka, S. (2011), “FTI: High performance Fault Tolerance Interface for
hybrid systems,” in Proceedings of the Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’11, pp. 1–12. doi: 10.1145/
2063384.2063427.

Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., and McIntosh-Smith, S. (2016),
“Unprotected Computing : A Large-Scale Study of DRAM Raw Error Rate
on a Supercomputer,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’16, IEEE,
55:1–55–11. doi: 10.1109/SC.2016.54.

128

https://doi.org/10.1145/2000064.2000118
https://doi.org/10.1145/3205289.3205312
https://doi.org/10.1109/PACT.2015.26
https://doi.org/10.1109/TC.2013.164
https://doi.org/10.1137/1.9781611971538
https://doi.org/10.1137/1.9781611971538
https://doi.org/10.1109/MDT.2005.69
https://doi.org/10.1109/MDT.2005.69
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1109/SC.2016.54

BIBLIOGRAPHY

Bellens, P., Perez, J. M., Badia, R. M., and Labarta, J. (2006), “CellSs: a Pro-
gramming Model for the Cell BE Architecture,” in Proceedings of the 2006
ACM/IEEE Conference on High Performance Networking and Computing, SC ’06,
pp. 5–5, isbn: 0-7695-2700-0. doi: 10.1109/SC.2006.17.

Berrocal, E., Bautista Gomez, L., Di, S., Lan, Z., and Cappello, F. (2017), “Toward
General Software Level Silent Data Corruption Detection for Parallel Applica-
tions,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 12,
pp. 3642–3655, issn: 1045-9219. doi: 10.1109/TPDS.2017.2735971.

Beveridge, J. and Wiener, B. (1997), Multithreading Applications in Win32: The
Complete Guide to Threads. Addison-Wesley Longman Publishing Co., Inc.,
isbn: 978-0-201-44234-2.

Binder, D., Smith, E. C., and Holman, A. B. (1975), “Satellite Anomalies from
Galactic Cosmic Rays,” IEEE Transactions on Nuclear Science, vol. 22, no. 6,
pp. 2675–2680, issn: 0018-9499. doi: 10.1109/TNS.1975.4328188.

Bland, W., Du, P., Bouteiller, A., Herault, T., Bosilca, G., and Dongarra, J. J.
(2013), “Extending the scope of the Checkpoint-on-Failure protocol for forward
recovery in standard MPI,” Concurrency and Computation: Practice and Expe-
rience, vol. 25, no. 17, pp. 2381–2393, issn: 1532-0634. doi: 10.1002/cpe.3100.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H.,
and Zhou, Y. (1995), “Cilk: an Efficient Multithreaded Runtime System,” in
Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’95, ACM, pp. 207–216, isbn: 0-89791-700-6.
doi: 10.1145/209936.209958.

Bohr, M. (2007), “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper,”
IEEE Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13, issn:
1098-4232. doi: 10.1109/N-SSC.2007.4785534.

Bougeret, M., Casanova, H., Rabie, M., Robert, Y., and Vivien, F. (2011), “Check-
pointing strategies for parallel jobs,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
SC ’11, 33:1–33:11, isbn: 978-1-4503-0771-0. doi: 10.1145/2063384.2063428.

Bridges, P. G., Ferreira, K. B., Heroux, M. A., and Hoemmen, M. (2012a), “Fault-
tolerant Linear Solvers via Selective Reliability.” arXiv: 1206.1390.

Bridges, P. G., Hoemmen, M., Ferreira, K. B., Heroux, M. A., Soltero, P., and
Brightwell, R. (2012b), “Cooperative Application/OS DRAM Fault Recovery,”

129

https://doi.org/10.1109/SC.2006.17
https://doi.org/10.1109/TPDS.2017.2735971
https://doi.org/10.1109/TNS.1975.4328188
https://doi.org/10.1002/cpe.3100
https://doi.org/10.1145/209936.209958
https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1145/2063384.2063428
https://arxiv.org/abs/1206.1390

BIBLIOGRAPHY

in Euro-Par 2011 Parallel Processing Workshops, Springer-Verlag, pp. 241–250,
isbn: 978-3-642-29739-7. doi: 10.1007/978-3-642-29740-3_28.

Bronevetsky, G. and Supinski, B. R. de (2008), “Soft error vulnerability of iterative
linear algebra methods,” in Proceedings of the 22nd International Conference on
Supercomputing, ICS ’08, ACM, pp. 155–164. doi: 10.1145/1375527.1375552.

Brumar, I., Casas, M., Moreto, M., Valero, M., and Sohi, G. S. (2017), “ATM:
Approximate Task Memoization in the Runtime System,” in Proceedings of
the IEEE 31st International Parallel and Distributed Processing Symposium,
IPDPS, pp. 1140–1150. doi: 10.1109/IPDPS.2017.49.

BSC Programming Models (2018). OmpSs Specification, http://pm.bsc.es/
ompss-docs/spec/OmpSsSpecification.pdf (visited on 11/19/2018).

Bueno, J., Martinell, L., Duran, A., Farreras, M., Martorell, X., Badia, R. M.,
Ayguade, E., and Labarta, J. (2011), “Productive Cluster Programming with
OmpSs,” in European Conference on Parallel Processing, Euro-Par 2011, Springer,
pp. 555–566, isbn: 978-3-642-23400-2. doi: 10.1007/978-3-642-23400-2_52.

Bueno, J., Martorell, X., Badia, R. M., Ayguadé, E., and Labarta, J. (2013), “Im-
plementing OmpSs Support for Regions of Data in Architectures with Multiple
Address Spaces,” in Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS ’13, pp. 359–368, isbn:
978-1-4503-2130-3. doi: 10.1145/2464996.2465017.

Caheny, P., Alvarez, L., Derradji, S., Valero, M., Moretó, M., and Casas, M.
(2018a), “Reducing Cache Coherence Traffic with a NUMA-Aware Runtime
Approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 5, pp. 1174–1187, issn: 1045-9219. doi: 10.1109/TPDS.2017.2787123.

Caheny, P., Alvarez, L., Valero, M., Moretó, M., and Casas, M. (2018b), “Runtime-
assisted Cache Coherence Deactivation in Task Parallel Programs,” in Proceed-
ings of the International Conference for High Performance Computing, Net-
working, Storage, and Analysis, SC ’18, 35:1–35:12.

Caheny, P., Casas, M., Moretó, M., Gloaguen, H., Saintes, M., Ayguadé, E., Labarta,
J., and Valero, M. (2016), “Reducing cache coherence traffic with hierarchical
directory cache and NUMA-aware runtime scheduling,” in Proceedings of the
25th International Conference on Parallel Architecture and Compilation Tech-
niques, PACT ’16, pp. 275–286. doi: 10.1145/2967938.2967962.

130

https://doi.org/10.1007/978-3-642-29740-3_28
https://doi.org/10.1145/1375527.1375552
https://doi.org/10.1109/IPDPS.2017.49
http://pm.bsc.es/ompss-docs/spec/OmpSsSpecification.pdf
http://pm.bsc.es/ompss-docs/spec/OmpSsSpecification.pdf
https://doi.org/10.1007/978-3-642-23400-2_52
https://doi.org/10.1145/2464996.2465017
https://doi.org/10.1109/TPDS.2017.2787123
https://doi.org/10.1145/2967938.2967962

BIBLIOGRAPHY

Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B., and Snir, M. (2009), “To-
ward Exascale Resilience,” International Journal of High Performance Com-
puting Applications, vol. 23, no. 4, pp. 374–388, issn: 1094-3420. doi: 10.1177/
1094342009347767.

Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., and Snir, M. (2014),
“Towards Exascale Resilience: 2014 update,” Supercomputing Frontiers and In-
novations, vol. 1, no. 1, pp. 5–28, issn: 2313-8734. doi: 10.14529/jsfi140101.

Casas, M., Moretó, M., Alvarez, L., Castillo, E., Chasapis, D., Hayes, T., Jaulmes,
L., Palomar, O., Unsal, O., Cristal, A., Ayguadé, E., Labarta, J., and Valero,
M. (2015), “Runtime-Aware Architectures,” in European Conference on Parallel
Processing, Euro-Par 2015, Springer, Berlin, Heidelberg, pp. 16–27, isbn: 978-
3-662-48095-3. doi: 10.1007/978-3-662-48096-0_2.

Casas, M., Supinski, B. R. de, Bronevetsky, G., and Schulz, M. (2012), “Fault
resilience of the algebraic multi-grid solver,” in Proceedings of the 26th In-
ternational Conference on Supercomputing, ICS ’12, ACM, pp. 91–100, isbn:
978-1-4503-1316-2. doi: 10.1145/2304576.2304590.

Castillo, E., Alvarez, L., Moreto, M., Casas, M., Vallejo, E., Bosque, J. L., Bei-
vide, R., and Valero, M. (2018), “Architectural Support for Task Dependence
Management with Flexible Software Scheduling,” in IEEE 24th International
Symposium on High Performance Computer Architecture, HPCA, pp. 283–295.
doi: 10.1109/HPCA.2018.00033.

Castillo, E., Moretó, M., Casas, M., Alvarez, L., Vallejo, E., Chronaki, K., Badia,
R., Bosque, J. L., Beivide, R., Ayguadé, E., Labarta, J., and Valero, M. (2016),
“CATA: Criticality Aware Task Acceleration for Multicore Processors,” in Pro-
ceedings of the IEEE 30th International Parallel and Distributed Processing
Symposium, IPDPS, pp. 413–422. doi: 10.1109/IPDPS.2016.49.

Chamberlain, B., Callahan, D., and Zima, H. (2007), “Parallel Programmabil-
ity and the Chapel Language,” International Journal of High Performance
Computing Applications, vol. 21, no. 3, pp. 291–312, issn: 1094-3420. doi:
10.1177/1094342007078442.

Chasapis, D., Casas, M., Moretó, M., Vidal, R., Ayguadé, E., Labarta, J., and
Valero, M. (2015), “PARSECSs: Evaluating the Impact of Task Parallelism
in the PARSEC Benchmark Suite,” ACM Transactions on Architecture and

131

https://doi.org/10.1177/1094342009347767
https://doi.org/10.1177/1094342009347767
https://doi.org/10.14529/jsfi140101
https://doi.org/10.1007/978-3-662-48096-0_2
https://doi.org/10.1145/2304576.2304590
https://doi.org/10.1109/HPCA.2018.00033
https://doi.org/10.1109/IPDPS.2016.49
https://doi.org/10.1177/1094342007078442

BIBLIOGRAPHY

Code Optimization, TACO, vol. 12, no. 4, 41:1–41:22, issn: 1544-3566. doi:
10.1145/2829952.

Chen, G., Kandemir, M., Irwin, M. J., and Memik, G. (2005), “Compiler-directed
Selective Data Protection Against Soft Errors,” in Proceedings of the 2005
Asia and South Pacific Design Automation Conference, ASP-DAC ’05, ACM,
pp. 713–716, isbn: 978-0-7803-8737-9. doi: 10.1145/1120725.1121000.

Chen, Z. (2011), “Algorithm-based recovery for iterative methods without check-
pointing,” in Proceedings of the 20th International Symposium on High Perfor-
mance Distributed Computing, HPDC ’11, ACM, pp. 73–84, isbn: 978-1-4503-
0552-5. doi: 10.1145/1996130.1996142.

Chen, Z. (2013), “Online-ABFT: An Online Algorithm Based Fault Tolerance
Scheme for Soft Error Detection in Iterative Methods,” in Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’13, ACM, pp. 167–176, isbn: 978-1-4503-1922-5. doi: 10.
1145/2442516.2442533.

Cho, Y.-C., Bae, Y.-C., Moon, B.-M., Eom, Y.-J., Ahn, M.-S., Lee, W.-Y., Cho,
C.-R., Park, M.-H., Jeon, Y.-J., Ahn, J.-O., Choi, B.-K., Kang, D.-K., Yoon,
S.-H., Yang, Y.-S., Park, K.-I., Choi, J.-H., Lee, J.-B., and Choi, J.-S. (2013),
“A Sub-1.0V 20nm 5Gb/s/pin post-LPDDR3 I/O interface with Low Voltage-
Swing Terminated Logic and adaptive calibration scheme for mobile appli-
cation,” in Symposium on VLSI Circuits Digest of Technical Papers, VLSIC,
pp. C240–C241, isbn: 978-1-4673-5531-5. doi: 10.1109/VLSIC.2013.6578678.

Chronaki, K., Rico, A., Badia, R. M., Ayguadé, E., Labarta, J., and Valero, M.
(2015), “Criticality-Aware Dynamic Task Scheduling for Heterogeneous Archi-
tectures,” in Proceedings of the 29th International Conference on Supercom-
puting, ICS ’15, ACM, pp. 329–338, isbn: 978-1-4503-3559-1. doi: 10.1145/
2751205.2751235.

Chronaki, K., Rico, A., Casas, M., Moretó, M., Badia, R. M., Ayguadé, E., Labarta,
J., and Valero, M. (2017), “Task Scheduling Techniques for Asymmetric Multi-
Core Systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 7, pp. 2074–2087, issn: 1045-9219. doi: 10.1109/TPDS.2016.2633347.

Davies, T. and Chen, Z. (2013), “Correcting soft errors online in LU factorization,”
in Proceedings of the 22nd international symposium on High-performance par-

132

https://doi.org/10.1145/2829952
https://doi.org/10.1145/1120725.1121000
https://doi.org/10.1145/1996130.1996142
https://doi.org/10.1145/2442516.2442533
https://doi.org/10.1145/2442516.2442533
https://doi.org/10.1109/VLSIC.2013.6578678
https://doi.org/10.1145/2751205.2751235
https://doi.org/10.1145/2751205.2751235
https://doi.org/10.1109/TPDS.2016.2633347

BIBLIOGRAPHY

allel and distributed computing, HPDC ’13, ACM, pp. 167–178, isbn: 978-1-
4503-1910-2. doi: 10.1145/2493123.2462920.

Davis, T. A. and Hu, Y. (2011), “The University of Florida Sparse Matrix Collec-
tion,” ACM Transactions on Mathematical Software, vol. 38, no. 1, 1:1–1:25,
issn: 0098-3500. doi: 10.1145/2049662.2049663.

Degalahal, V., Ramanarayanan, R., Vijaykrishnan, N., Xie, Y., and Irwin, M.
(2004), “The effect of threshold voltages on the soft error rate [memory and
logic circuits],” in 5th International Symposium on Quality Electronic Design,
2004. Proceedings, pp. 503–508. doi: 10.1109/ISQED.2004.1283723.

Dell, T. J. (1997), “A White Paper on the Benefits of Chipkill-Correct ECC for
PC Server Main Memory,” IBM Microelectronics Division, white paper.

Di Martino, C., Kalbarczyk, Z., Iyer, R. K., Baccanico, F., Fullop, J., and Kramer,
W. (2014), “Lessons Learned from the Analysis of System Failures at Petascale:
The Case of Blue Waters,” in 44th International Conference on Dependable
Systems and Networks, DSN 2014, IEEE, pp. 610–621. doi: 10.1109/DSN.
2014.62.

Di, S. and Cappello, F. (2016), “Adaptive Impact-Driven Detection of Silent Data
Corruption for HPC Applications,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 10, pp. 2809–2823, issn: 1045-9219. doi: 10.
1109/TPDS.2016.2517639.

Di, S., Robert, Y., Vivien, F., and Cappello, F. (2017), “Toward an Optimal On-
line Checkpoint Solution under a Two-Level HPC Checkpoint Model,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp. 244–259,
issn: 1045-9219. doi: 10.1109/TPDS.2016.2546248.

Dimić, V., Moretó, M., Casas, M., and Valero, M. (2017), “Runtime-Assisted
Shared Cache Insertion Policies Based on Re-reference Intervals,” in European
Conference on Parallel Processing, Euro-Par 2017, Springer, pp. 247–259, isbn:
978-3-319-64203-1. doi: 10.1007/978-3-319-64203-1_18.

Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X.,
and Planas, J. (2011), “OmpSs: a Proposal for Programming Heterogeneous
Multi-Core Architectures.,” Parallel Processing Letters, vol. 21, no. 2, pp. 173–
193, issn: 0129-6264. doi: 10.1142/S0129626411000151.

Ecma International (2015), “ECMAScript 2015 Language Specification,” Standard
ECMA-262.

133

https://doi.org/10.1145/2493123.2462920
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/ISQED.2004.1283723
https://doi.org/10.1109/DSN.2014.62
https://doi.org/10.1109/DSN.2014.62
https://doi.org/10.1109/TPDS.2016.2517639
https://doi.org/10.1109/TPDS.2016.2517639
https://doi.org/10.1109/TPDS.2016.2546248
https://doi.org/10.1007/978-3-319-64203-1_18
https://doi.org/10.1142/S0129626411000151

BIBLIOGRAPHY

Elliott, J., Hoemmen, M., and Mueller, F. (2014), “Evaluating the Impact of SDC
on the GMRES Iterative Solver,” in Proceedings of the IEEE 28th International
Parallel and Distributed Processing Symposium, IPDPS, pp. 1193–1202, isbn:
978-1-4799-3800-1. doi: 10.1109/IPDPS.2014.123.

Elpida Memory, Inc. (2005), “Low Power Function of Mobile RAM: Partial Array
Self Refresh (PASR),” Technical Note E0597E10, Ver. 1.0.

Etsion, Y., Cabarcas, F., Rico, A., Ramirez, A., Badia, R. M., Ayguadé, E.,
Labarta, J., and Valero, M. (2010), “Task Superscalar: An Out-of-Order Task
Pipeline,” in Proceedings of the 43rd Annual ACM/IEEE International Sym-
posium on Microarchitecture, MICRO 43, pp. 89–100. doi: 10.1109/MICRO.
2010.13.

European Technology Platform for High Performance Computing ETP4HPC (2017),
“Third Strategic Research Agenda,” European Multi-annual HPC Technology
Roadmap SRA 3.

Fagg, G. E., Bukovsky, A., and Dongarra, J. J. (2001), “Fault Tolerant MPI for
the HARNESS Meta-computing System,” in Computational Science — ICCS
2001, Alexandrov, V. N., Dongarra, J. J., Juliano, B. A., Renner, R. S., and
Tan, C. J. K., Eds. (2001), ICCS 2001, Springer, pp. 355–366, isbn: 978-3-540-
42232-7. doi: 10.1007/3-540-45545-0_44.

Fernandes, L. A. F. (2008). Kernel-Based Hough Transform, http://www2.ic.
uff.br/~laffernandes/projects/kht/ (visited on 10/31/2018).

Fernandes, L. A. F. and Oliveira, M. M. (2008), “Real-time line detection through
an improved Hough transform voting scheme,” Pattern Recognition, vol. 41,
no. 1, pp. 299–314, issn: 0031-3203. doi: 10.1016/j.patcog.2007.04.003.

Ferreira, K., Stearley, J., Laros, J. H., Oldfield, R., Pedretti, K., Brightwell, R.,
Riesen, R., Bridges, P. G., and Arnold, D. (2011), “Evaluating the viability
of process replication reliability for exascale systems,” ACM Press, p. 1, isbn:
978-1-4503-0771-0. doi: 10.1145/2063384.2063443.

Fougstedt, C., Szczerba, K., and Larsson-Edefors, P. (2017), “Low-Power Low-
Latency BCH Decoders for Energy-Efficient Optical Interconnects,” Journal of
Lightwave Technology, vol. 35, no. 23, pp. 5201–5207, issn: 0733-8724. doi:
10.1109/JLT.2017.2764679.

Giménez, A., Gamblin, T., Rountree, B., Bhatele, A., Jusufi, I., Bremer, P.-T., and
Hamann, B. (2014), “Dissecting On-node Memory Access Performance: A Se-

134

https://doi.org/10.1109/IPDPS.2014.123
https://doi.org/10.1109/MICRO.2010.13
https://doi.org/10.1109/MICRO.2010.13
https://doi.org/10.1007/3-540-45545-0_44
http://www2.ic.uff.br/~laffernandes/projects/kht/
http://www2.ic.uff.br/~laffernandes/projects/kht/
https://doi.org/10.1016/j.patcog.2007.04.003
https://doi.org/10.1145/2063384.2063443
https://doi.org/10.1109/JLT.2017.2764679

BIBLIOGRAPHY

mantic Approach,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’14, IEEE Press,
pp. 166–176, isbn: 978-1-4799-5500-8. doi: 10.1109/SC.2014.19.

Gioiosa, R., Sancho, J. C., Jiang, S., Petrini, F., and Davis, K. (2005), “Trans-
parent, Incremental Checkpointing at Kernel Level: a Foundation for Fault
Tolerance for Parallel Computers,” in Proceedings of the ACM/IEEE SC2005
Conference on High Performance Networking and Computing, SC ’05, pp. 9–9.
doi: 10.1109/SC.2005.76.

Gong, S.-L., Kim, J., Lym, S., Sullivan, M., David, H., and Erez, M. (2018), “DUO:
Dual Use of On-chip Redundancy for High Reliability,” in IEEE 24th Interna-
tional Symposium on High Performance Computer Architecture, HPCA. doi:
10.1109/HPCA.2018.00064.

Grass, T., Allande, C., Armejach, A., Rico, A., Ayguadé, E., Labarta, J., Valero,
M., Casas, M., and Moreto, M. (2016), “MUSA: A Multi-level Simulation Ap-
proach for Next-Generation HPCMachines,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis, SC ’16, pp. 526–537. doi: 10.1109/SC.2016.44.

Gropp, W., Lusk, E., and Skjellum, A. (1994), Using MPI: Portable Parallel Pro-
gramming with the Message-passing Interface. MIT Press, isbn: 978-0-262-
57104-3.

Gropp, W. and Snir, M. (2013), “Programming for Exascale Computers,” Com-
puting in Science and Engineering, vol. 15, no. 6, pp. 27–35, issn: 1521-9615.
doi: 10.1109/MCSE.2013.96.

Gupta, M., Sridharan, V., Roberts, D., Prodromou, A., Venkat, A., Tullsen, D.,
and Gupta, R. (2018), “Reliability-Aware Data Placement for Heterogeneous
Memory Architecture,” in IEEE 24th International Symposium on High Per-
formance Computer Architecture, HPCA, pp. 583–595. doi: 10.1109/HPCA.
2018.00056.

Hamming, R. (1950), “Error Detecting and Error Correcting Codes,” Bell System
Technical Journal, vol. 29, pp. 147–160,

Hari, S. K. S., Li, M.-L., Ramachandran, P., Choi, B., and Adve, S. V. (2009),
“mSWAT: low-cost hardware fault detection and diagnosis for multicore sys-
tems,” in Proceedings of the 42nd Annual IEEE/ACM International Symposium

135

https://doi.org/10.1109/SC.2014.19
https://doi.org/10.1109/SC.2005.76
https://doi.org/10.1109/HPCA.2018.00064
https://doi.org/10.1109/SC.2016.44
https://doi.org/10.1109/MCSE.2013.96
https://doi.org/10.1109/HPCA.2018.00056
https://doi.org/10.1109/HPCA.2018.00056

BIBLIOGRAPHY

on Microarchitecture, MICRO 42, ACM, pp. 122–132. doi: 10.1145/1669112.
1669129.

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda,
T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger,
A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A.,
and Stanley, K. S. (2005), “An Overview of the Trilinos Project,” ACM Trans-
actions on Mathematical Software, vol. 31, no. 3, pp. 397–423, issn: 0098-3500.
doi: 10.1145/1089014.1089021.

Heroux, M. A., Dongarra, J., and Luszczek, P. (2013), “HPCG Technical Specifi-
cation,” Sandia National Laboratories, Sandia Report SAND2013-8752.

Hestenes, M. R. and Stiefel, E. (1952), “Methods of conjugate gradients for solv-
ing linear systems,” Journal of Research of the National Bureau of Standards,
vol. 49, no. 6, pp. 409–436,

Hillis, W. D. (1981), “The Connection Machine,” Massachusetts Institute of Tech-
nology Artificial Intelligence Laboratory, A.I. Memo No. 646.

Hocquenghem, A. (1959), “Codes Correcteurs d’Erreurs,” Chiffres, vol. 2, pp. 147–
156,

Hong, S. (2010), “Memory technology trend and future challenges,” in International
Electron Devices Meeting Technical Digest, IEDM, pp. 12.4.1–12.4.4. doi: 10.
1109/IEDM.2010.5703348.

HPEC (2013), “How Memory RAS Technologies Can Enhance the Uptime of HP
ProLiant Servers,” Technical white paper 4AA4-3490ENW.

Hsiao, M. Y. (1970), “A Class of Optimal Minimum Odd-weight-column SEC-DED
Codes,” IBM Journal of Research and Development, vol. 14, no. 4, pp. 395–401,
issn: 0018-8646, 0018-8646. doi: 10.1147/rd.144.0395.

Huang, K.-H. and Abraham, J. A. (1984), “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Transactions on Computers, vol. 33, no. 6, pp. 518–
528, issn: 0018-9340. doi: 10.1109/TC.1984.1676475.

IBM Corporation (1999), “Enhancing IBM Netfinity Server Reliability: IBM Chip-
kill Memory,” white paper.

IBM Corporation (2015a), “OpenPOWER ABI for Linux Supplement for the
Power Architecture 64-bit ELF V2 ABI,” Specification, Version 1.1.

IBM Corporation (2015b), “Power ISA,” Specification, Version 2.07 B.

136

https://doi.org/10.1145/1669112.1669129
https://doi.org/10.1145/1669112.1669129
https://doi.org/10.1145/1089014.1089021
https://doi.org/10.1109/IEDM.2010.5703348
https://doi.org/10.1109/IEDM.2010.5703348
https://doi.org/10.1147/rd.144.0395
https://doi.org/10.1109/TC.1984.1676475

BIBLIOGRAPHY

Intel Corporation (2011), “Intel® Xeon® Processor E7 Family: Reliability, Avail-
ability, and Serviceability,” Data Center Group, Intel, white paper.

Intel Corporation (2017), “Intel® 64 and IA-32 Architectures Software Developer
Manual Volume 3: System Programming Guide,” 325384, version 052.

International Organization for Standardization (ISO), Technical Committee SO/IEC
JTC 1/SC 22 (2011), “Standard for Programming Language C++,” Interna-
tional Standard ISO/IEC 14882:2011.

Isen, C. and John, L. (2009), “ESKIMO - energy savings using semantic knowledge
of inconsequential memory occupancy for DRAM subsystem,” in Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, pp. 337–346. doi: 10.1145/1669112.1669156.

Jaulmes, L. (2016). Resilient CG implementation, GitHub, https://github.com/
lucjaulmes/resilient_cg (visited on 01/23/2019).

Jaulmes, L. (2018). Online sampling-based vulnerability estimator, GitHub, https:
//github.com/lucjaulmes/online_vulnerability (visited on 11/01/2018).

Jaulmes, L. (2019). OmpSs Fault Tolerance Benchmarks, GitHub, https : / /

github . com / lucjaulmes / ompss _ fault _ tolerance _ benchmarks (visited
on 01/23/2019).

Jaulmes, L., Casas, M., Moretó, M., Ayguadé, E., Labarta, J., and Valero, M.
(2015), “Exploiting Asynchrony from Exact Forward Recovery for DUE in It-
erative Solvers,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’15, ACM, 53:1–
53:12, isbn: 978-1-4503-3723-6. doi: 10.1145/2807591.2807599.

Jaulmes, L., Moretó, M., Ayguadé, E., Labarta, J., Valero, M., and Casas, M.
(2018), “Asynchronous and Exact Forward Recovery for Detected Errors in It-
erative Solvers,” IEEE Transactions on Parallel & Distributed Systems, vol. 29,
no. 9, pp. 1961–1974, issn: 1045-9219. doi: 10.1109/TPDS.2018.2817524.

Jaulmes, L., Moretó, M., Valero, M., and Casas, M. (2019a), “A Vulnerability
Factor for ECC-protected Memory,” currently under review at IOLTS 2019.

Jaulmes, L., Moretó, M., Valero, M., and Casas, M. (2019b), “Adapting ECC
Protection Dynamically using Online Estimation of Memory Vulnerability,”
currently under review at PACT 2019.

Jaulmes, L., Moretó, M., Valero, M., and Casas, M. (2019c), “Memory Vulnerabil-
ity: A Case for Delaying Error Reporting,” presented at the 12th Workshop on

137

https://doi.org/10.1145/1669112.1669156
https://github.com/lucjaulmes/resilient_cg
https://github.com/lucjaulmes/resilient_cg
https://github.com/lucjaulmes/online_vulnerability
https://github.com/lucjaulmes/online_vulnerability
https://github.com/lucjaulmes/ompss_fault_tolerance_benchmarks
https://github.com/lucjaulmes/ompss_fault_tolerance_benchmarks
https://doi.org/10.1145/2807591.2807599
https://doi.org/10.1109/TPDS.2018.2817524

BIBLIOGRAPHY

Programmability and Architectures for Heterogeneous Multicores, Multiprog
2019.

JEDEC Solid State Technology Association (2007), “Test Method for Alpha Source
Accelerated Soft Error Rate,” JEDEC Standard JESD89-2A.

JEDEC Solid State Technology Association (2013), “DDR4 SDRAM,” JEDEC
Standard JESD79-4A, Revision A.

JEDEC Solid State Technology Association (2014), “Low Power Double Data Rate
4 (LPDDR4),” JEDEC Standard JESD209-4.

JEDEC Solid State Technology Association (2016), “0.6 V Low Voltage Swing
Terminated Logic (LVSTL06),” JEDEC Standard JESD8-29.

Jia, Z., Treichler, S., Shipman, G., Bauer Michael, B., Watkins, N., Maltzahn, C.,
McCormick, P., and Aiken, A. (2017), “Integrating External Resources with a
Task-Based Programming Model,” in 24th IEEE International Conference on
High Performance Computing, HiPC, pp. 307–316. doi: 10.1109/HiPC.2017.
00043.

Kale, L. V. and Krishnan, S. (1993), “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of the Eighth Annual Confer-
ence on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’93, ACM, pp. 91–108, isbn: 0-89791-587-9. doi: 10.1145/165854.
165874.

Kang, U., Yu, H.-S., Park, C., Zheng, H., Halbert, J., Bains, K., Jang, S., and
Choi, J. S. (2014), “Co-Architecting Controllers and DRAM to Enhance DRAM
Process Scaling,” in The Memory Forum.

Kaul, H., Anders, M., Hsu, S., Agarwal, A., Krishnamurthy, R., and Borkar,
S. (2012), “Near-threshold voltage (NTV) design — Opportunities and chal-
lenges,” in Proceedings of the 49th annual Design Automation Conference,
DAC, pp. 1149–1154. doi: 10.1145/2228360.2228572.

Kim, J., Sullivan, M., and Erez, M. (2015), “Bamboo ECC: Strong, safe, and
flexible codes for reliable computer memory,” in IEEE 21st International Sym-
posium on High Performance Computer Architecture, HPCA, IEEE, pp. 101–
112, isbn: 978-1-4799-8930-0. doi: 10.1109/HPCA.2015.7056025.

Kim, Y., Seshadri, V., Lee, D., Liu, J., and Mutlu, O. (2012), “A Case for Ex-
ploiting Subarray-Level Parallelism (SALP) in DRAM,” in Proceedings of the

138

https://doi.org/10.1109/HiPC.2017.00043
https://doi.org/10.1109/HiPC.2017.00043
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/2228360.2228572
https://doi.org/10.1109/HPCA.2015.7056025

BIBLIOGRAPHY

39th Annual International Symposium on Computer Architecture, ISCA ’12,
pp. 368–379. doi: 10.1109/ISCA.2012.6237032.

Kim, Y., Yang, W., and Mutlu, O. (2016), “Ramulator: a Fast and Extensible
DRAM Simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1, pp. 45–
49, issn: 1556-6056. doi: 10.1109/LCA.2015.2414456.

Kleen, A. (2010), “mcelog: memory error handling in user space,” presented at the
Linux Kongress, Lehmanns, pp. 159–166, isbn: 978-3-86541-398-7.

Krishnan, P. (2009), “Hardware Breakpoint (or watchpoint) usage in Linux Ker-
nel,” in Proceedings of the Linux Symposium, pp. 149–158.

Kumar, S., Hughes, C. J., and Nguyen, A. (2007), “Carbon: Architectural Support
for Fine-grained Parallelism on Chip Multiprocessors,” in Proceedings of the
34th Annual International Symposium on Computer Architecture, ISCA ’07,
ACM, pp. 162–173, isbn: 978-1-59593-706-3. doi: 10.1145/1250662.1250683.

Langou, J., Chen, Z., Bosilca, G., and Dongarra, J. (2007), “Recovery Patterns
for Iterative Methods in a Parallel Unstable Environment,” SIAM Journal on
Scientific Computing, vol. 30, no. 1, pp. 102–116, issn: 1064-8275. doi: 10.
1137/040620394.

Levy, S., Ferreira, K. B., DeBardeleben, N., Siddiqua, T., Sridharan, V., and Base-
man, E. (2018), “Lessons Learned from Memory Errors Observed over the Life-
time of Cielo,” in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis, SC ’18, 43:1–43:12.

Li, D., Chen, Z., Wu, P., and Vetter, J. S. (2013), “Rethinking Algorithm-based
Fault Tolerance with a Cooperative Software-hardware Approach,” in Proceed-
ings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC ’13, ACM, 44:1–44:12, isbn: 978-1-4503-
2378-9. doi: 10.1145/2503210.2503226.

Li, D., Vetter, J. S., and Yu, W. (2012), “Classifying Soft Error Vulnerabilities in
Extreme-scale Scientific Applications Using a Binary Instrumentation Tool,” in
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, IEEE Computer Society Press, 57:1–
57:11, isbn: 978-1-4673-0804-5. doi: 10.1109/SC.2012.29.

Li, X., Adve, S. V., Bose, P., and Rivers, J. A. (2007), “Architecture-Level Soft
Error Analysis: Examining the Limits of Common Assumptions,” in 37th Inter-

139

https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1145/1250662.1250683
https://doi.org/10.1137/040620394
https://doi.org/10.1137/040620394
https://doi.org/10.1145/2503210.2503226
https://doi.org/10.1109/SC.2012.29

BIBLIOGRAPHY

national Conference on Dependable Systems and Networks, DSN 2007, pp. 266–
275. doi: 10.1109/DSN.2007.15.

Liang, X., Chen, J., Tao, D., Li, S., Wu, P., Li, H., Ouyang, K., Liu, Y., Song,
F., and Chen, Z. (2017), “Correcting Soft Errors Online in Fast Fourier Trans-
form,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’17, ACM, 30:1–30:12, isbn:
978-1-4503-5114-0. doi: 10.1145/3126908.3126915.

Lin, C.-H., Shen, D.-Y., Chen, Y.-J., Yang, C.-L., andWang, M. (2012), “SECRET:
Selective error correction for refresh energy reduction in DRAMs,” in IEEE
30th International Conference on Computer Design, ICCD, pp. 67–74. doi:
10.1109/ICCD.2012.6378619.

Liu, H., Chen, Y., Liao, X., Jin, H., He, B., Zheng, L., and Guo, R. (2017), “Hard-
ware/Software Cooperative Caching for Hybrid DRAM/NVM Memory Archi-
tectures,” in Proceedings of the International Conference on Supercomputing,
ICS ’17, 26:1–26:10, isbn: 978-1-4503-5020-4. doi: 10.1145/3079079.3079089.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace,
S., Reddi, V. J., and Hazelwood, K. (2005), “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’05, ACM, pp. 190–200, isbn: 978-1-59593-056-9. doi:
10.1145/1065010.1065034.

Luo, Y., Govindan, S., Sharma, B., Santaniello, M., Meza, J., Kansal, A., Liu,
J., Khessib, B., Vaid, K., and Mutlu, O. (2014), “Characterizing Application
Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-
Reliability Memory,” in 44th International Conference on Dependable Systems
and Networks, DSN 2014, IEEE, pp. 467–478, isbn: 978-1-4799-2233-8. doi:
10.1109/DSN.2014.50.

Malek, A., Vasilakis, E., Papaefstathiou, V., Trancoso, P., and Sourdis, I. (2017),
“Odd-ECC: On-demand DRAM Error Correcting Codes,” in Proceedings of the
International Symposium on Memory Systems, MEMSYS ’17, ACM, pp. 96–
111, isbn: 978-1-4503-5335-9. doi: 10.1145/3132402.3132443.

Manivannan, M., Negi, A., and Stenström, P. (2013), “Efficient Forwarding of
Producer-Consumer Data in Task-Based Programs,” in 42nd International Con-

140

https://doi.org/10.1109/DSN.2007.15
https://doi.org/10.1145/3126908.3126915
https://doi.org/10.1109/ICCD.2012.6378619
https://doi.org/10.1145/3079079.3079089
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/DSN.2014.50
https://doi.org/10.1145/3132402.3132443

BIBLIOGRAPHY

ference on Parallel Processing, ICPP, pp. 517–522. doi: 10.1109/ICPP.2013.
64.

Manivannan, M., Papaefstathiou, V., Pericàs, M., and Stenström, P. (2016), “RADAR:
Runtime-assisted dead region management for last-level caches,” in IEEE 22nd
International Symposium on High Performance Computer Architecture, HPCA,
pp. 644–656. doi: 10.1109/HPCA.2016.7446101.

Manivannan, M. and Stenström, P. (2014), “Runtime-Guided Cache Coherence
Optimizations in Multi-core Architectures,” in Proceedings of the IEEE 28th
International Parallel and Distributed Processing Symposium, IPDPS, pp. 625–
636, isbn: 978-1-4799-3800-1. doi: 10.1109/IPDPS.2014.71.

May, T. C. and Woods, M. H. (1978), “A New Physical Mechanism for Soft Errors
in Dynamic Memories,” in 16th International Reliability Physics Symposium,
pp. 33–40. doi: 10.1109/IRPS.1978.362815.

McCalpin, J. D. (1995), “Memory Bandwidth and Machine Balance in Current
High Performance Computers,” IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, pp. 19–25,

Menabrea, L. F. (1842), “Notions sur la Machine Analytique de M. Charles Bab-
bage,” Bibliothèque Universelle de Genève, nouvelle série, vol. 41, pp. 352–376,

Micron Technology, Inc. (2017), “ECC Brings Reliability and Power Efficiency to
Mobile Devices,” white paper.

Mitra, S., Bose, P., Cheng, E., Cher, C.-Y., Cho, H., Joshi, R., Kim, Y. M., Lefurgy,
C. R., Li, Y., Rodbell, K. P., Skadron, K., Stathis, J., and Szafaryn, L. (2014),
“The resilience wall: Cross-layer solution strategies,” in Proceedings of Technical
Program - 2014 International Symposium on VLSI Technology, Systems and
Application (VLSI-TSA), pp. 1–11. doi: 10.1109/VLSI-TSA.2014.6839639.

Moody, A., Bronevetsky, G., Mohror, K., and Supinski, B. R. de (2010), “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing System,” in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pp. 1–11, isbn: 978-1-4244-7559-9.
doi: 10.1109/SC.2010.18.

Moore, G. (1965), “Cramming More Components Onto Integrated Circuits,” Elec-
tronics, vol. 38, no. 8, pp. 114–117,

Mukherjee, S. S., Weaver, C., Emer, J., Reinhardt, S. K., and Austin, T. (2003), “A
Systematic Methodology to Compute the Architectural Vulnerability Factors

141

https://doi.org/10.1109/ICPP.2013.64
https://doi.org/10.1109/ICPP.2013.64
https://doi.org/10.1109/HPCA.2016.7446101
https://doi.org/10.1109/IPDPS.2014.71
https://doi.org/10.1109/IRPS.1978.362815
https://doi.org/10.1109/VLSI-TSA.2014.6839639
https://doi.org/10.1109/SC.2010.18

BIBLIOGRAPHY

for a High-Performance Microprocessor,” in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 36, IEEE
Computer Society, pp. 29–, isbn: 0-7695-2043-X. doi: 10.1109/MICRO.2003.
1253181.

Mukherjee, S. (2008), Architecture Design for Soft Errors. Morgan Kaufmann Pub-
lishers Inc., isbn: 978-0-12-369529-1.

Nair, P. J., Kim, D.-H., and Qureshi, M. K. (2013), “ArchShield: Architectural
Framework for Assisting DRAM Scaling by Tolerating High Error Rates,” in
Proceedings of the 40th Annual International Symposium on Computer Archi-
tecture, ISCA ’13, ACM, pp. 72–83, isbn: 978-1-4503-2079-5. doi: 10.1145/
2485922.2485929.

Nair, P. J., Sridharan, V., and Qureshi, M. K. (2016), “XED: Exposing On-Die
Error Detection Information for Strong Memory Reliability,” in Proceedings of
the 43rd Annual International Symposium on Computer Architecture, ISCA ’16,
pp. 341–353. doi: 10.1109/ISCA.2016.38.

Nethercote, N., Walsh, R., and Fitzhardinge, J. (2006), “Building Workload Char-
acterization Tools with Valgrind,” in Proceedings of the 2006 IEEE Interna-
tional Symposium on Workload Characterization, IISWC 2006, isbn: 1-4244-
0508-4. doi: 10.1109/IISWC.2006.302723.

Nichols, B., Buttlar, D., Farrell, J., and Farrell, J. (1996), PThreads Programming:
A POSIX Standard for Better Multiprocessing. O’Reilly Media, Inc., isbn: 978-
1-56592-115-3.

Oaks, S. and Wong, H. (2009), Java Threads, 3rd, isbn: 978-0-596-00782-9.
Oh, T.-Y., Chung, H., Cho, Y.-C., Ryu, J.-W., Lee, K., Lee, C., Lee, J.-I., Kim,

H.-J., Jang, M. S., Han, G.-h., Kim, K., Moon, D., Bae, S., Park, J.-Y., Ha,
K.-S., Lee, J., Doo, S.-Y., Shin, J.-B., Shin, C.-H., Oh, K., Hwang, D., Jang,
T., Park, C., Park, K., Lee, J.-B., and Choi, J. S. (2014), “A 3.2Gb/s/pin 8Gb
1.0V LPDDR4 SDRAM with integrated ECC engine for sub-1V DRAM core
operation,” in International Solid-State Circuits Conference Digest of Technical
Papers, ISSCC, IEEE, pp. 430–431, isbn: 978-1-4799-0918-6. doi: 10.1109/
ISSCC.2014.6757500.

Ohsawa, T., Kai, K., and Murakami, K. (1998), “Optimizing the DRAM Refresh
Count for Merged DRAM/Logic LSIs,” in Proceedings of the 1998 International

142

https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1145/2485922.2485929
https://doi.org/10.1145/2485922.2485929
https://doi.org/10.1109/ISCA.2016.38
https://doi.org/10.1109/IISWC.2006.302723
https://doi.org/10.1109/ISSCC.2014.6757500
https://doi.org/10.1109/ISSCC.2014.6757500

BIBLIOGRAPHY

Symposium on Low Power Electronics and Design, ISLPED ’98, ACM, pp. 82–
87, isbn: 978-1-58113-059-1. doi: 10.1145/280756.280792.

OpenMP Architecture Review Board (2005), “OpenMP Application Programming
Interface,” Specification, Version 2.5.

OpenMP Architecture Review Board (2008), “OpenMP Application Programming
Interface,” Specification, Version 3.0.

OpenMP Architecture Review Board (2013), “OpenMP Application Programming
Interface,” Specification, Version 4.0.

Pan, A. and Pai, V. S. (2015), “Runtime-driven Shared Last-level Cache Man-
agement for Task-parallel Programs,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
SC ’15, ACM, 11:1–11:12, isbn: 978-1-4503-3723-6. doi: 10.1145/2807591.
2807625.

Papaefstathiou, V., Katevenis, M. G., Nikolopoulos, D. S., and Pnevmatikatos, D.
(2013), “Prefetching and Cache Management Using Task Lifetimes,” in Proceed-
ings of the 27th International Conference on Supercomputing, ICS ’13, ACM,
pp. 325–334, isbn: 978-1-4503-2130-3. doi: 10.1145/2464996.2465443.

Paul, S., Cai, F., Zhang, X., and Bhunia, S. (2011), “Reliability-Driven ECC Al-
location for Multiple Bit Error Resilience in Processor Cache,” IEEE Transac-
tions on Computers, vol. 60, no. 1, pp. 20–34, issn: 0018-9340. doi: 10.1109/
TC.2010.203.

Planas, J., Badia, R. M., Ayguadé, E., and Labarta, J. (2013), “Self-Adaptive
OmpSs Tasks in Heterogeneous Environments,” in Proceedings of the IEEE
27th International Symposium on Parallel and Distributed Processing, IPDPS,
pp. 138–149, isbn: 978-1-4673-6066-1. doi: 10.1109/IPDPS.2013.53.

Qureshi, M. K., Kim, D.-H., Khan, S., Nair, P. J., and Mutlu, O. (2015), “AVATAR:
A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” in 45th
International Conference on Dependable Systems and Networks, DSN 2015,
pp. 427–437. doi: 10.1109/DSN.2015.58.

Reed, I. S. (1954), “A class of multiple-error-correcting codes and the decoding
scheme,” Transactions of the IRE Professional Group on Information Theory,
vol. 4, no. 4, pp. 38–49, issn: 2168-2690. doi: 10.1109/TIT.1954.1057465.

143

https://doi.org/10.1145/280756.280792
https://doi.org/10.1145/2807591.2807625
https://doi.org/10.1145/2807591.2807625
https://doi.org/10.1145/2464996.2465443
https://doi.org/10.1109/TC.2010.203
https://doi.org/10.1109/TC.2010.203
https://doi.org/10.1109/IPDPS.2013.53
https://doi.org/10.1109/DSN.2015.58
https://doi.org/10.1109/TIT.1954.1057465

BIBLIOGRAPHY

Restle, P. J., Park, J. W., and Lloyd, B. F. (1992), “DRAM variable retention
time,” in International Electron Devices Meeting Technical Digest, IEDM, pp. 807–
810. doi: 10.1109/IEDM.1992.307481.

Richards, D. and Jaulmes, L. (2014), “CoMD in Chapel: The Good, the Bad, and
the Ugly,” in Chapel Lightning Talks, Birds-of-a-Feather session at SC’14.

Rico, A., Cabarcas, F., Villavieja, C., Pavlovic, M., Vega, A., Etsion, Y., Ramirez,
A., and Valero, M. (2012), “On the Simulation of Large-scale Architectures
Using Multiple Application Abstraction Levels,” ACM Transactions on Archi-
tecture and Code Optimization, vol. 8, no. 4, 36:1–36:20, issn: 1544-3566. doi:
10.1145/2086696.2086715.

Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramirez, A., and Valero, M. (2011),
“Trace-driven simulation of multithreaded applications,” in IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS, pp. 87–
96. doi: 10.1109/ISPASS.2011.5762718.

Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, ser. Other Titles in
Applied Mathematics. Society for Industrial and Applied Mathematics, isbn:
978-0-89871-534-7. doi: 10.1137/1.9780898718003.

Sánchez Barrera, I., Moretó, M., Ayguadé, E., Labarta, J., Valero, M., and Casas,
M. (2018), “Reducing Data Movement on Large Shared Memory Systems by
Exploiting Computation Dependencies,” in Proceedings of the 2018 Interna-
tional Conference on Supercomputing, ICS ’18, ACM, pp. 207–217, isbn: 978-
1-4503-5783-8. doi: 10.1145/3205289.3205310.

Sanchez, D., Yoo, R. M., and Kozyrakis, C. (2010), “Flexible Architectural Support
for Fine-grain Scheduling,” in Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XV, ACM, pp. 311–322, isbn: 978-1-60558-839-1. doi: 10.1145/
1736020.1736055.

Schuster, S. E. (1978), “Multiple Word/Bit Line Redundancy for Semiconductor
Memories,” IEEE Journal of Solid-State Circuits, vol. 13, no. 5, pp. 698–703,
issn: 0018-9200. doi: 10.1109/JSSC.1978.1051122.

Seol, H., Shin, W., Jang, J., Choi, J., Suh, J., and Kim, L.-S. (2016), “Energy
Efficient Data Encoding in DRAM Channels Exploiting Data Value Similar-
ity,” in Proceedings of the 43rd Annual International Symposium on Computer
Architecture, ISCA ’16, pp. 719–730. doi: 10.1109/ISCA.2016.68.

144

https://doi.org/10.1109/IEDM.1992.307481
https://doi.org/10.1145/2086696.2086715
https://doi.org/10.1109/ISPASS.2011.5762718
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1145/3205289.3205310
https://doi.org/10.1145/1736020.1736055
https://doi.org/10.1145/1736020.1736055
https://doi.org/10.1109/JSSC.1978.1051122
https://doi.org/10.1109/ISCA.2016.68

BIBLIOGRAPHY

Servat, H., Llort, G., González, J., Giménez, J., and Labarta, J. (2014), “Iden-
tifying Code Phases Using Piece-Wise Linear Regressions,” in Proceedings of
the IEEE 28th International Parallel and Distributed Processing Symposium,
IPDPS, pp. 941–951. doi: 10.1109/IPDPS.2014.100.

Servat, H., Llort, G., González, J., Giménez, J., and Labarta, J. (2015), “Low-
Overhead Detection of Memory Access Patterns and Their Time Evolution,” in
European Conference on Parallel Processing, Euro-Par 2015, Springer, pp. 57–
69, isbn: 978-3-662-48095-3. doi: 10.1007/978-3-662-48096-0_5.

Shewchuk, J. R. (1994), “An introduction to the conjugate gradient method with-
out the agonizing pain,” School of Computer Science, Carnegie Mellon Univer-
sity, Computer Science Technical Report CMU-CS-94-125.

Sinharoy, B., Norstrand, J. A. V., Eickemeyer, R. J., Le, H. Q., Leenstra, J.,
Nguyen, D. Q., Konigsburg, B., Ward, K., Brown, M. D., Moreira, J. E., Lev-
itan, D., Tung, S., Hrusecky, D., Bishop, J. W., Gschwind, M., Boersma, M.,
Kroener, M., Kaltenbach, M., Karkhanis, T., and Fernsler, K. M. (2015), “IBM
POWER8 processor core microarchitecture,” IBM Journal of Research and De-
velopment, vol. 59, no. 1, 2:1–2:21, issn: 0018-8646. doi: 10.1147/JRD.2014.
2376112.

Son, Y. H., Lee, S., O, S., Kwon, S., Kim, N. S., and Ahn, J. H. (2015), “CiDRA:
A cache-inspired DRAM resilience architecture,” in IEEE 21st International
Symposium on High Performance Computer Architecture, HPCA, pp. 502–513.
doi: 10.1109/HPCA.2015.7056058.

Sorin, D. J., Martin, M. M. K., Hill, M. D., and Wood, D. A. (2002), “SafetyNet:
improving the availability of shared memory multiprocessors with global check-
point/recovery,” in Proceedings of the 29th Annual International Symposium
on Computer Architecture, ISCA ’02, pp. 123–134. doi: 10.1109/ISCA.2002.
1003568.

Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K. B., Stearley, J., Shalf,
J., and Gurumurthi, S. (2015), “Memory Errors in Modern Systems: The Good,
The Bad, and The Ugly,” in Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XX, ACM, pp. 297–310, isbn: 978-1-4503-2835-7. doi: 10.1145/
2694344.2694348.

145

https://doi.org/10.1109/IPDPS.2014.100
https://doi.org/10.1007/978-3-662-48096-0_5
https://doi.org/10.1147/JRD.2014.2376112
https://doi.org/10.1147/JRD.2014.2376112
https://doi.org/10.1109/HPCA.2015.7056058
https://doi.org/10.1109/ISCA.2002.1003568
https://doi.org/10.1109/ISCA.2002.1003568
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1145/2694344.2694348

BIBLIOGRAPHY

Sridharan, V. and Liberty, D. (2012), “A Study of DRAM Failures in the Field,” in
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, IEEE Computer Society Press, 76:1–
76:11, isbn: 978-1-4673-0804-5. doi: 10.1109/SC.2012.13.

Stroustrup, B. (2013), The C++ Programming Language, 4th. Addison-Wesley
Professional, isbn: 978-0-321-56384-2.

Stuecheli, J., Kaseridis, D., C.Hunter, H., and John, L. K. (2010), “Elastic Re-
fresh: Techniques to Mitigate Refresh Penalties in High Density Memory,” in
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 43, IEEE Computer Society, pp. 375–384, isbn:
978-0-7695-4299-7. doi: 10.1109/MICRO.2010.22.

Subasi, O., Arias, J., Unsal, O., Labarta, J., and Cristal, A. (2015), “NanoCheck-
points: A Task-Based Asynchronous Dataflow Framework for Efficient and
Scalable Checkpoint/Restart,” in 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, PDP ’15, pp. 99–102. doi:
10.1109/PDP.2015.17.

Subasi, O., Di, S., Bautista-Gomez, L., Balaprakash, P., Unsal, O., Labarta, J.,
Cristal, A., and Cappello, F. (2016), “Spatial Support Vector Regression to De-
tect Silent Errors in the Exascale Era,” in Proceedings of the 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid,
pp. 413–424. doi: 10.1109/CCGrid.2016.33.

Sunami, H. (2008), “The Role of the Trench Capacitor in DRAM Innovation,”
IEEE Solid-State Circuits Society Newsletter, vol. 13, no. 1, pp. 42–44, issn:
1098-4232. doi: 10.1109/N-SSC.2008.4785691.

Tam, D. K., Azimi, R., Soares, L. B., and Stumm, M. (2009), “RapidMRC: Ap-
proximating L2 Miss Rate Curves on Commodity Systems for Online Optimiza-
tions,” in Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XIV,
ACM, pp. 121–132, isbn: 978-1-60558-406-5. doi: 10.1145/1508244.1508259.

Tan, X., Bosch, J., Jiménez-González, D., Álvarez-Martínez, C., Ayguadé, E., and
Valero, M. (2016), “Performance Analysis of a Hardware Accelerator of Depen-
dence Management for task-based Dataflow Programming Models,” in Interna-
tional Symposium on Performance Analysis of Systems and Software, ISPASS,
pp. 225–234. doi: 10.1109/ISPASS.2016.7482097.

146

https://doi.org/10.1109/SC.2012.13
https://doi.org/10.1109/MICRO.2010.22
https://doi.org/10.1109/PDP.2015.17
https://doi.org/10.1109/CCGrid.2016.33
https://doi.org/10.1109/N-SSC.2008.4785691
https://doi.org/10.1145/1508244.1508259
https://doi.org/10.1109/ISPASS.2016.7482097

BIBLIOGRAPHY

Tan, X., Bosch, J., Vidal, M., Álvarez, C., Jiménez-González, D., Ayguadé, E., and
Valero, M. (2017), “General Purpose Task-Dependence Management Hardware
for Task-Based Dataflow Programming Models,” in Proceedings of the IEEE
31st International Parallel and Distributed Processing Symposium, IPDPS, pp. 244–
253. doi: 10.1109/IPDPS.2017.48.

Tang, D., Carruthers, P., Totari, Z., and Shapiro, M. W. (2006), “Assessment of
the effect of memory page retirement on system RAS against hardware faults,”
in 36th International Conference on Dependable Systems and Networks, DSN
2006, IEEE, pp. 365–370. doi: 10.1109/DSN.2006.13.

The MPI Forum (1993), “MPI: a message passing interface,” in Proceedings of the
1993 ACM/IEEE conference on Supercomputing, SC ’93, ACM, pp. 878–883,
isbn: 978-0-8186-4340-8. doi: 10.1145/169627.169855.

Valero, M., Moreto, M., Casas, M., Ayguadé, E., and Labarta, J. (2014), “Runtime-
Aware Architectures: A First Approach,” Supercomputing Frontiers and Inno-
vations, vol. 1, no. 1, pp. 29–44, issn: 2313-8734. doi: 10.14529/jsfi140102.

Wang, Y., Wang, R., Herdrich, A., Tsai, J., and Solihin, Y. (2016), “CAF: Core to
Core Communication Acceleration Framework,” in Proceedings of the 25th In-
ternational Conference on Parallel Architectures and Compilation Techniques,
PACT ’16, pp. 351–362, isbn: 978-1-4503-4121-9. doi: 10.1145/2967938.
2967954.

Weaver, C., Emer, J., Mukherjee, S. S., and Reinhardt, S. K. (2004), “Techniques
to reduce the soft error rate of a high-performance microprocessor,” in Proceed-
ings of the 31st Annual International Symposium on Computer Architecture,
ISCA ’04, pp. 264–275. doi: 10.1109/ISCA.2004.1310780.

Wijngaart, R. F. V. d. and Mattson, T. G. (2014), “The Parallel Research Kernels,”
in IEEE High Performance Extreme Computing Conference, HPEC, pp. 1–6.
doi: 10.1109/HPEC.2014.7040972.

Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., Supinski, B. R. de,
and Churbanov, A. (2010), “Towards an Error Model for OpenMP,” in Beyond
Loop Level Parallelism in OpenMP: Accelerators, Tasking and More, IWOMP
2010, Springer, pp. 70–82, isbn: 978-3-642-13216-2. doi: 10.1007/978-3-642-
13217-9_6.

147

https://doi.org/10.1109/IPDPS.2017.48
https://doi.org/10.1109/DSN.2006.13
https://doi.org/10.1145/169627.169855
https://doi.org/10.14529/jsfi140102
https://doi.org/10.1145/2967938.2967954
https://doi.org/10.1145/2967938.2967954
https://doi.org/10.1109/ISCA.2004.1310780
https://doi.org/10.1109/HPEC.2014.7040972
https://doi.org/10.1007/978-3-642-13217-9_6
https://doi.org/10.1007/978-3-642-13217-9_6

BIBLIOGRAPHY

Wulf, W. A. and McKee, S. A. (1995), “Hitting the Memory Wall: Implications of
the Obvious,” SIGARCH Computer Architecture News, vol. 23, no. 1, pp. 20–
24, issn: 0163-5964. doi: 10.1145/216585.216588.

Yang, X., Wang, Z., Xue, J., and Zhou, Y. (2012), “The Reliability Wall for
Exascale Supercomputing,” IEEE Transactions on Computers, vol. 61, no. 6,
pp. 767–779, issn: 0018-9340. doi: 10.1109/TC.2011.106.

Yoon, D. H. and Erez, M. (2010), “Virtualized and Flexible ECC for Main Mem-
ory,” in Proceedings of the 15th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS XV, ACM,
pp. 397–408, isbn: 978-1-60558-839-1. doi: 10.1145/1736020.1736064.

Yu, L., Li, D., Mittal, S., and Vetter, J. S. (2014), “Quantitatively Modeling Ap-
plication Resilience with the Data Vulnerability Factor,” in Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’14, IEEE Press, pp. 695–706, isbn: 978-1-4799-5500-8.
doi: 10.1109/SC.2014.62.

Yuan, L., Liu, H., Jia, P., and Yang, Y. (2015), “An adaptive ECC scheme for
dynamic protection of NAND Flash memories,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP, pp. 1052–1055. doi:
10.1109/ICASSP.2015.7178130.

Ziegler, J. F. and Lanford, W. A. (1979), “Effect of Cosmic Rays on Computer
Memories,” Science, vol. 206, no. 4420, pp. 776–788, issn: 0036-8075, 1095-
9203. doi: 10.1126/science.206.4420.776.

148

https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/TC.2011.106
https://doi.org/10.1145/1736020.1736064
https://doi.org/10.1109/SC.2014.62
https://doi.org/10.1109/ICASSP.2015.7178130
https://doi.org/10.1126/science.206.4420.776

List of Figures

1.1 Evolution of microprocessors . 1

2.1 DRAM cell . 10

2.2 DRAM trench capacitor cross-section 10

2.3 Cholesky source code with OmpSs data-flow tasks annotated 19

4.1 Task decomposition of CG . 51

4.2 Traces illustrating the scheduling of recovery tasks 52

4.3 CG convergence example . 58

4.4 Comparison of the execution time for resilience methods and ma-
trices, varying error injection rates 59

4.5 Speedup of the MPI+OmpSs resilient CGs 62

4.6 Subdivision of CG vectors in blocks, with one block per page 63

4.7 Algorithmic techniques cost for 3 selected page sizes 64

4.8 Algorithmic techniques cost varying page size and error injection rate 65

5.1 Comparing simulated vulnerability metrics to real-world error out-
comes . 75

5.2 Correlations between the failure rate from DUE injections and the
various vulnerability metrics. 77

5.3 Failure frequencies from DUE injections and vulnerability metrics,
for 200 random memory pages in FFT. 78

5.4 Gains in DUE rate when ignoring false errors 81

5.5 Fractions of DRAM refreshes that can be skipped per benchmark . 84

6.1 Vulnerability timeline for a memory location 88

6.2 Taxonomy of resilience . 90

6.3 Difference between vulnerability at memory and CPU levels 91

149

LIST OF FIGURES

6.4 Synthetic example of the KHT algorithm 93
6.5 DRAM and runtime-aware controller implementing WITSEC 97
6.6 Impact of WITSEC cache size on its miss-rate 99
6.7 EBB handler . 101
6.8 Number of recorded samples per millisecond over time 102
6.9 Overhead of sampling methodolgy implemented on Power8 103
6.10 Distribution of vulnerability ratings across each benchmark’s memory103
6.11 WITSEC trade-offs between redundancy and reliability 105

150

List of Tables

3.1 TaskSim cache parameters . 32
3.2 Benchmarks used for evaluation . 33

4.1 Block recoveries for operations q = Ap, v = αv + βw and r = b− Ax 41
4.2 Resilience methods’ overheads, no errors 57
4.3 Increase of time spent per state for FEIR methods 57

A.1 Registers used for sampling . 121
A.2 Registers used for PMU setup . 121
A.3 perf configuration to setup EBB 122

151

LIST OF TABLES

152

Glossary

ABFT Algorithmic-Based Fault Tolerance
ACE Architecturally Correct Execution
AFEIR Asychronous Forward Exact Interpolation Recovery
AVF Architectural Vulnerability Factor [Mukherjee et al. 2003]
BCH Bose–Chaudhuri–Hocquenghem error correcting code
BiCGStab Bi-Conjugate Gradient Stabilised
BSC Barcelona Supercomputing Center
CE Corrected Errors
CG Conjugate Gradient
DDDC Double Device Data Correction
DDR Double Data Rate
DEC Double Error Correct
DIMM Dual Inline Memory Module
DRAM Dynamic Random-Access Memory
DUE Detected Uncorrected Error
DVF Data Vulnerability Factor [Yu et al. 2014]
EBB Event-Based Branch
ECC Error Correcting Code
ECP Error Correcting Pointer
FEA False Error Aware memory vulnerability factor
FEIR Forward Exact Interpolation Recovery
FT-MPI Fault-Tolerant MPI
GMRES Generalised Minimal RESidual
GPR General Purpose Register
GPU Graphical Processing Unit
HPC High-Performance Computing
LD Load

153

Glossary

LPDDR Low Power DDR
MPI Message Passing Interface
MSHR Miss Status Handling Registers
MTBE Mean Time Between Errors
MTBF Mean Time Between Failures
MVF Memory Vulnerability Factor
N-EC N-Error Correct
OS Operating System
PCG Preconditioned CG
PE Processing Element
PMU Performance Monitoring Unit
RBS Redundant Bit Steering
ROI Region Of Interest
RS Reed-Solomon error correcting code
SDC Silent Data Corruption
SEC Single Error Correct
SECDED Single-Error Correct Double-Error Detect
SER Soft Error Rate
SPD Symmetric Positive Definite
SPR Special-Purpose Registers
SSC Single-Symbol Correct
ST Store
TDG Task Dependency Graph
TEC Triple Error Correct
VRT Variable Retention Time
WITSEC WITSEC Is Targeted Stronger Error Correction
ZEC Zero Error Correct

154

	Abstract
	Resumen
	Contents
	Introduction
	Thesis Objectives and Contributions
	Algorithmic-Based Exact Forward Recovery
	Quantifying the Risk of Error in Memory
	Dynamically Adaptable ECC

	Thesis Outline

	Background
	Evolution and Prospectives for DRAM
	Causes for Faults in DRAM
	Error Correcting Codes for DRAM Memories
	DRAM Error Rate Studies
	Summary

	Programming Models and Runtime Systems
	A Brief History of Parallel Programming
	Task-based Programming Models
	Data-flow Task-based Programming Models
	Parallel Runtime Systems

	Application-Level Fault Tolerance
	Checkpointing and Rolling Back
	Checkpointless Algebraic Recoveries
	Detecting Errors
	Application Sensitivity to Faults

	Evaluating Vulnerability of Data in Memory
	Metrics for Memory Vulnerability

	Dynamically Adaptable ECC Protection
	Sampling to Identify Memory Access Patterns
	Variable Strength ECC schemes

	Methodology
	Injecting Errors
	DUE Injection
	Injecting Bit Flips
	Assessing the Impact of ECC

	Simulation Infrastructure
	Benchmarks
	The Conjugate Gradient Benchmark
	Remaining Benchmarks

	Algorithmic Recoveries
	Introduction
	Exact Interpolation Recovery
	Error Detection and Reporting
	Extracting Redundancies of Linear Solvers
	Block Decomposition
	Dealing with Multiple Errors

	Applying Recoveries to Iterative Solvers
	Making Redundancies Explicit
	Preconditioned algorithms
	Implementing Recovery with Asynchrony
	Recovery on Distributed Memory Systems

	Other Recovery Approaches
	Trivial Forward Recovery
	Rollback Recovery
	Lossy Restart

	Evaluation
	Techniques Overheads
	Convergence
	Shared-Memory Performance
	Scaling Results

	Analysis of Data Loss Granularity
	Impact of page size depending on matrix size
	Overall Page Size Evaluation

	Conclusions

	Vulnerability Analysis
	Introduction
	Metric Definition
	Linking Program Outcome and Vulnerability
	Existing Metrics for Memory Vulnerability
	Accounting for False DUE
	Vulnerability under Transient Fault Models

	Evaluation
	Comparing Metrics and Fault Injections
	Quantifying the Correlation Between Metric and DUE
	Memory Page Comparison

	Delaying Error Reporting
	Saving DRAM Refresh Energy
	Overwriting as a Runtime Contract
	Prospective Gains from Skipping Refresh

	Conclusion

	Dynamically Adaptable ECC Protection
	Introduction
	A Metric for Memory Vulnerability
	Modelling Faults in Memory
	Memory Vulnerability at the CPU level
	Difference between CPU and Memory Vulnerability

	Dynamic Estimation of Vulnerability
	Identify Memory Access Patterns

	WITSEC Adaptable ECC
	Different ECC Strengths
	WITSEC ECC Organization
	WITSEC-aware Memory Controller
	Discussion of Hardware Design Decisions
	Related Variable Strength ECC schemes

	Experimental Setup
	Online Tool Experimental Framework

	Evaluation
	Overheads
	Distribution of Data per Vulnerability Level
	Evaluation of Dynamically Guiding WITSEC ECC

	Conclusion

	Conclusions
	Conclusions
	Overlapping Algorithmic Recoveries
	Identifying Memory Vulnerability
	Adapting ECC Dynamically
	Redundancy-Aware Runtime Systems

	Publications
	Financial and Technical Support

	Online Vulnerabiliy Analysis Reproducibility Artifacts
	Runtime Instrumentation of Applications
	Estimating Vulnerability through Sampling
	Sampling configuration

	Error Injections
	Installation

	TaskSim Simulation Reproducibility Artifacts
	Bibliography
	List of Figures
	List of Tables
	Glossary

