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Abstract

The occurrence of new disease-causing viruses is tightly linked to the specialisa-

tion of viral sub-populations towards new host types. Mathematical modelling

provides a quantitative framework that can aid with the prediction of long-term

processes such as specialisation. Due to the complex nature of intra- and inter-

specific interactions present in evolutionary processes, elaborate mathematical

tools such as bifurcation analysis must be employed while studying population

dynamics. In this thesis, a hierarchy of population models is developed to un-

derstand the onset and dynamics of specialisation and their dependence on the

parameters of the system. Using a model for a wild-type and mutant virus that

compete for the same host, conditions for the survival of only the mutant sub-

population, along with its coexistence with the wild-type strain, are determined.

Stability diagrams that depict regions of distinct dynamics are constructed in

terms of infection rates, virulence and the mutation rate; the diagrams are ex-

plained in terms of the biological characteristics of the sub-populations. For

varying parameters, the phenomenon of intersection and exchange of stability

between different periodic solutions of the system is observed and described in

the scope of the competing wild-type and mutant strains. In the case of several

types of hosts being available for competing specialist and generalist strains,

regions of bistability exist, and the probabilities of observing each state are

calculated as functions of the infection rates. A strange chaotic attractor is

discovered and analysed with the use of Lyapunov exponents. This, combined

with the stability diagrams, shows that the survival of the generalist in a stable

environment is an unlikely event. Furthermore, the case of N � 1 different

strains competing for different types of host cells is studied. For this case, a

counterintuitive and non-monotonic dependence of the specialisation time on

the burst size and mutation rate is discovered as a result of carrying out a re-

gression analysis on numerically obtained data. Overall, this work makes broad

contributions to mathematical modelling and analysis of pathogen dynamics and

evolutionary processes.



Resum

L’aparició de nous virus causants de malalties està estretament lligada a l’especialització

de subpoblacions virals cap a nous tipus d’amfitrions. La modelització matemàtica pro-

porciona un marc quantitatiu que pot ajudar amb la predicció de processos a llarg termini

com pot ser l’especialització. A causa de la naturalesa complexa que presenten les inter-

accions intra i interespećıfiques en els processos evolutius, cal aplicar eines matemàtiques

complexes, com ara l’anàlisi de bifurcacions, al estudiar dinàmiques de població. Aquesta

tesi desenvolupa una jerarquia de models de població per poder comprendre l’aparició i

les dinàmiques d’especialització, i la seva dependència dels paràmetres del sistema. Util-

itzant un model per a un virus de tipus salvatge i un virus mutat que competeixen pel

mateix amfitrió, es determinen les condicions per a la supervivència únicament de la sub-

població mutant, juntament amb la seva coexistència amb el cep de tipus salvatge. Els

diagrames d’estabilitat que representen regions de dinàmiques diferenciades es construeixen

en termes de taxa d’infecció, virulència i taxa de mutació; els diagrames s’expliquen en

base a les caracteŕıstiques biològiques de les subpoblacions. Per a paràmetres variables,

s’observa i es descriu el fenomen d’intersecció i intercanvi d’estabilitat entre diferents solu-

cions sistemàtiques i periòdiques en l’àmbit dels ceps de tipus salvatge i els ceps mutants

en competència directa. En el cas de que diversos tipus d’amfitrions estiguin disponibles

per a ser disputats per ceps especialitzats i generalistes existeixen regions de biestabilitat, i

les probabilitats d’observar cada estat es calculen com funcions de les taxes d’infecció. S’ha

trobat un rar atractor caòtic i s’ha analitzat amb l’ús d’exponents de Lyapunov. Això, com-

binat amb els diagrames d’estabilitat, mostra que la supervivència del cep generalista en un

entorn estable és un fet improbable. A més, s’estudia el cas dels diversos ceps N � 1 que

competeixen per diferents tipus de cèl·lules amfitriones. En aquest cas s’ha descobert una

dependència no monotònica, contraria al que es preveia, del temps d’especialització sobre

la mida inicial i la taxa de mutació, com a conseqüència de la realització d’un anàlisi de

regressió sobre dades obtingudes numèricament. En general, aquest treball fa contribucions

àmplies a la modelització matemàtica i anàlisi de la dinàmica dels patògens i els processos

evolutius.



Resumen

La aparición de nuevos virus causantes de enfermedades está estrechamente ligada a la

especialización de las subpoblaciones virales hacia nuevos tipos de anfitriones. La mod-

elización matemática proporciona un marco cuantitativo que puede ayudar a la predicción

de procesos a largo plazo como la especialización. Debido a la naturaleza compleja que pre-

sentan las interacciones intra e interespećıficas en los procesos evolutivos, aplicar herramien-

tas matemáticas complejas, tales como el análisis de bifurcación, al estudiar dinámicas de

población. Esta tesis desarrolla una jerarqúıa de modelos de población para poder compren-

der la aparición y las dinámicas de especialización, y su dependencia de los parámetros del

sistema. Utilizando un modelo para un virus de tipo salvaje y un virus mutado que compiten

por el mismo anfitrión, se determinan las condiciones para la supervivencia únicamente de

la subpoblación mutante, junto con su coexistencia con la cepa de tipo salvaje. Los dia-

gramas de estabilidad que representan regiones de dinámicas diferenciadas se construyen

en términos de tasa de infección, virulencia y tasa de mutación; los diagramas se explican

en base a las caracteŕısticas biológicas de las subpoblaciones. Para parámetros variables, se

observa y se describe el fenómeno de intersección e intercambio de estabilidad entre difer-

entes soluciones sistemáticas y periódicas en el ámbito de las cepas de tipo salvaje y las

cepas mutantes en competencia directa. En el caso de que varios tipos de anfitriones estén

disponibles para ser disputados por cepas especializadas y generalistas existen regiones de

biestabilidad, y las probabilidades de observar cada estado se calculan como funciones de

las tasas de infección. Se ha encontrado un raro atractor caótico y se ha analizado con el uso

de exponentes de Lyapunov. Esto, combinado con los diagramas de estabilidad, muestra

que la supervivencia de la cepa generalista en un entorno estable es un hecho improbable.

Además, se estudia el caso de los varias cepas N � 1 que compiten por diferentes tipos

de células anfitrionas. En este caso se ha descubierto una dependencia no monotónica,

contraria a lo que se prevéıa, del tiempo de especialización sobre el tamaño inicial y la

tasa de mutación, como consecuencia de la realización de un análisis de regresión sobre

datos obtenidos numéricamente. En general, este trabajo hace contribuciones amplias a

la modelización matemática y el análisis de la dinámica de los patógenos y los procesos

evolutivos.
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Chapter 1

Viral dynamics

1.1 Epidemics caused by pathogens

In the fifth century BC, Hippocrates employs the adjective epidemios to mean “which

circulates or propagates in a country” [108], and, in his legendary Corpus Hippocraticum,

titles seven out of 62 treatises Epidemics [65]. Interestingly Hippocrates, the Father of

Medicine, does not use for the title of those specific books a well-established term of that

period, the word nosos - disease. Approximately at the same time, Plato uses epidemeo

in the context of “to return home after a voyage, to be in town”. Knowing this, we can

understand why Hippocrates prefers the word epidemics which implies “previous occurrence

elsewhere” to describe the wide-spread occurrence of similar clinical symptoms [86].

Throughout history, wide-spread diseases have been following humans, animals, and

plants, with repeated occurrences of similar conditions. Attempts to explain the causes of

such outbreaks were limited by the technology available at the time and, sometimes, the

imagination and general beliefs of people. Before Vibrio cholerae was isolated in 1854 [98],

epidemics of cholera were commonly explained by blood, phlegm, and yellow and black bile

imbalances that were believed to be the consequence of the lifestyle of the sick. Commoners

aside, it took great effort to convince the scientific community of the pathogenic causes of

cholera. The deliberate consumption of bacteria cultures by opponents of the hypothesis,

which was supposed to illustrate an inconsistency of the latter, ended up supporting the

pathogenic theory of epidemics at a great cost.

Another big step towards understanding the nature of wide-spread diseases lay in dis-

covering the contagiousness of such epidemics and in the determination of the main carriers.

As famously illustrated by Dr John Snow during the repeated occurrence of cholera in Lon-

don, certain public water pumps appeared to be hotbeds of greater cholera mortality rate
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than others. With the use of epidemiological maps, he showed that the water can be a

carrier of the disease. The difference in sources that supplied city pumps became a singular

factor determining safety of consumable water. It was noticed that pumps supplied from

the higher parts of the river delivered safe water, and the river parts containing wastes,

which came from sewer channels, supplied the deadliest of pumps [118].

Nowadays, an epidemic stands for any outbreak of a disease that spreads rapidly through-

out the population. Some widely common conditions in humans without a known pathogenic

origin, such as obesity, are listed as epidemics, too. However, over the last two decades,

roughly all of the outbreaks that have been of clinical and public health importance were

caused by emerging pathogens and, more specifically, by viruses [24]. These epidemics in-

clude the outbreak of Severe Acute Respiratory Syndrome (SARS) coronavirus [110], which

in 2003 led to more than 8000 human infections. Severe cases of SARS infection often

progress rapidly, leading to respiratory distress and require intensive care. Another re-

cently detected human coronavirus, Erasmus Medical Center (HCoV-EMC) [14, 146, 131], is

known to have, firstly, a weak species barrier and, secondly, replicate faster than SARS [63],

which are the warnings of a possible epidemic. An epidemic that spreads throughout

the world is referred to as pandemic. In 2009, a pandemic occurred after the repetitive

emergence of the influenza virus led to a generation of drug-resistant sub-type known as

A(H1N1)pdm09 [119, 125]. Since 2013, another sub-type A(H7N9) known as avian influenza

virus [43] has infected 1567 people with 615 deaths in China. For a constantly evolving and

seasonally re-occurring virus like influenza, the international spread is almost a certainty.

The weak species barrier mentioned above indicates that a virus can infect different

species and switch between host types. Most diseases caused by viruses have been transmit-

ted to the human population from surrounding animals either via consumption of untreated

animal products or via direct interaction. Due to the overall small dimensions and large

quantities of virus particles in one host, transmission of a single virus particle – a virion – to

a new type of host in a shared habitat is a highly probable event. However, it is the survival

of the virion in a new type of host which determines the likelihood of transmission. If a

virion infects the new type of host successfully, then the virus has a chance of transmitting

between individuals of that species. In medicine and biology, the term transmission refers

to the passing of a virus from one individual to another. Depending on the type of virus,

the transmission can happen via different routes: direct contact, droplet contact, airborne

transmission, etc. Some virus types can also be transmitted through vectors – intermediate

carriers – such as mosquitoes and ticks. The time between the virion transmission and oc-

currence of symptoms is called incubation period of viral infection. The incubation period
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of some viruses, such as the human immunodeficiency virus (HIV), can be as long as several

years which contributes to the wide spread of viral diseases all over the globe.

1.2 Virus and host cell interaction

First discovered as “an exceedingly small parasitic microorganism” during a study of tobacco

mosaic disease [59], viruses can be found in almost every living organism on the planet.

Most of the virus types are 20− 300 nanometres in size with rare exceptions being giants,

which slightly exceed the size of a cell and infect amoebas. In general, most of the virions

on Earth are found in marine life, including other microorganisms such as bacteria [124].

It is important to understand the mechanisms that lead to the appearance, survival, and

evolution of virus populations despite the fact that not all viruses cause a disease. It is

believed that virulence – the damage-causing property of a pathogen – is a consequence of

co-evolution between the immune response of a host and, in our case, the virus [41, 51, 32].

The structure, shape, and composition of a virus varies depending on the type. All

virions, however, have a protein shell called the capsid, which surrounds the genome of the

virus and accommodates enzymes. The genome is formed of RNA or DNA strains. Based

on recent studies, viral strains contain slight differences even for the virions of the same

type and harvested from the same plant or animal [145]. The differing strains of the same

virus are referred to as variants. These variants are also referred to as quasispecies within

the field of evolutionary virology [31, 113, 114]. The enzymes of the virus catalyse processes

inside the host cell. For example, an enzyme called retroviral integrase plays an important

role in incorporating the viral genetic material, i.e. RNA, of a retrovirus into the genome of

the host in the form of viral DNA. Some viruses have envelopes, which are mostly obtained

from the membrane of the cell they infected; the similarity between the envelope of a virion

and the membrane of a cell may allow the virus to avoid the immune system [45]. Envelopes

also contain viral proteins that conduct different roles. For instance, glycoproteins identify

and connect the virion to the surface of a cell membrane allowing the viral capsid to enter

inside the host cell. Since viruses lack autonomous reproduction mechanisms, they rely on

their host for survival: after entering a host cell, the virion exploits the machinery and

resources of the host cell by the use of the cellular enzymes to replicate its own genome

and assemble new virions. The average number of virions produced by one cell is called the

burst size. A more detailed description of this process is illustrated in Figure 1.1 for the

case of the family of retroviruses mentioned above.

Not all viral infections lead to an immediate replication of viral genome; the stage of

virion production by an infected cell is called a lytic cycle. A dormant stage after the
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Figure 1.1: Replication of retroviruses,
such as human immunodeficiency virus
type 1 (HIV-1). After the retrovirus en-
ters a host cell, reverse transcriptase con-
verts the retroviral RNA genome into
double-stranded DNA. This viral DNA
then migrates to the nucleus and be-
comes integrated into the host genome.
Viral genes are transcribed and trans-
lated. New virus particles assemble,
exit the cell, and can infect another
cell. — The image is used by per-
mission from Springer Nature Customer
Service Centre GmbH (License Num-
ber: 4505870941555). Original Figure 1
was first published in [103] by Y. Pom-
mier et.al. Integrase inhibitors to treat
HIV/AIDS. Nat. Rev. Drug Discov.,
4(3):236, 2005.
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integration of a viral genome into a genome of the cell is called a lysogenic cycle and is

characterised by a normal multiplication of the infected cell. This process is controlled

by viral genes, and can be destabilised by e.g. a mutagen [123], and lead to a lytic cycle

after several generations of cell division [144]. Viruses such as bacteriophage lambda and

HIV can propagate in both ways. In case of HIV, the lysogenic cycle contributes to a

longer incubation period and might lead to a greater number of transmissions due to lower

probability of detection, which is believed to be one of the main difficulties in finding a cure

for AIDS [102]. In this manuscript, mostly the lytic cycle is being discussed.

Due to the size difference between virions and host cells, in combination with the abun-

dance of viral particles, single cells can be infected by several virions. An infection of a

single cell by more than one virion of the same viral type is called coinfection, and the

average number of virions spent to accomplish a successful infection is called the multi-

plicity of infection. However, some animals or plants can be a host for different types

of pathogens. The process of sequential infection of a cell of an organism by virions of

far origins is called a superinfection. Although this discussion might diverge from classic

definitions for host-parasite scale, it does present the idea of coinfection and superinfection

and, more importantly, rescale the processes to a single-cell level. In this thesis, only the

coinfection of a host cell is considered.

1.3 Virus evolution

For every set of given environmental conditions, there are certain characteristics of an or-

ganism that can provide it with a reproductive advantage. Commonly, those characteristics

are detectable and help the organism to interact with the environment. The organism can

even be classified based on its unique features, also referred to as a phenotype of the or-

ganism. Natural selection acts on the phenotype. The heritable background – the genome

– of the advantageous phenotype may become more common in a population due to the

reproductive success. With time, this process can result in populations that are suitable

for particular ecological niches (microevolution). Moreover, the ecological segregation may

eventually lead to speciation, that is the emergence of new species (macroevolution).

The grand role in evolution of organisms is played by fitness and related ideas such as

fitness landscapes and evolutionary optima. Nevertheless, the concept of fitness is often

context dependent [28]. It is widely accepted to consider the fitness of a species as a

measure of overall reproductive success. In the case of viral populations, the fitness of the

viral strains can safely be related to infectivity of the virions. Fitness in virology is closely

related to the concept of the basic reproduction number, which constitutes the number of
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new transmissions that a single transmission can create. In terms of cell-virion dynamics,

the basic reproduction number can be determined as the average number of infectious

virus particles created from a single infected cell. Usually, the basic reproduction number

is proportional to the burst size and the infection rate.

The combination of very large population sizes, short generation times, and lack of proof-

reading mechanisms during genome replication confer viral populations with an extremely

high evolutionary plasticity that allow them to quickly adapt to environmental changes

such as new host species, presence of antiviral drugs, new transmission routes, or to new

vectors [5]. This tremendous evolvability, coupled with densely populated animal and plant

susceptible hosts (in many cases lacking genetic variability for resistance to infection), are

the reasons for the persistence and emergence of new viral diseases or the re-emergence of

new strains with novel properties of already known diseases. The continuous emergence of

new mutants leads to an overlap in existence of wild-type and mutant genotypes of the same

virus within individual infected hosts [130, 72]. This cloud of mutants is usually known as

a viral quasispecies [5] and it constitutes the target of selection, instead of the individual

viral genomes. The reservoir of coexisting genetic variants may lead to the emergence of

new genotypes with different host ranges, pathologies, and epidemiological properties that

may result in outbreaks [37, 142].

With the development of high-coverage, ultra-deep sequencing techniques, it is now

possible to characterise in great detail virus genetic diversity along the course of infection

of individual hosts, demonstrating the coexistence of multiple mutant genotypes within

individual hosts, some even during long periods of time [11, 58, 67]. Furthermore, some of

these studies have also shown that dynamics are highly complex and do not only depend on

the differences in replicative fitness among individual variants, but on other parameters such

as the size and frequency of within-host bottlenecks, complementation of strains, fixation of

additional mutations on the same genotype, epistasis, the availability of beneficial mutations

(which indeed depends on the degree of adaptation to the host), the load of deleterious

mutations, or clonal interference among coexisting beneficial mutations [2, 26, 78, 69].

Depending on the envelope and capsid structure, some viruses infect only one type of

host, while other viruses can infect several different types of hosts. In the scope of this

thesis, if a virus can infect only one type of cell, then it is called a specialist. In foreign

environments, a specialist virus slowly loses its infectivity and brings no harm to its host.

When a virus can infect different types of cells, regardless of whether the same or several

different host species are being infected, the virus is called a generalist. Empirical studies

have shown that generalist viruses have a lower success rate with a specific type of a host cell

in comparison to a virus which is specialised towards that cell type [61, 36]. This exchange
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between proficiency in one trait, e.g. a greater ability to infect one specific cell type, and

another, e.g. average ability to infect many types of cells, is called a fitness trade-off and

is a result of the finite energy capacity of organisms including viruses. The generalist has

been described as the “jack-of-all trades” which is “master of none” [138], referring to the

benefits provided for specialist viruses as a result of the fitness trade-off. However, in cases

of scarcity of certain type of cells or competition with fitter specialised viruses, the generalist

may switch hosts and find other niches to occupy and, therefore, can have better chances

of persisting in the environment. These dynamics lead to different scenarios that can occur

in the evolutionary studies of viruses.

1.4 Mathematical models of population dynamics

Population ecology studies the interaction between competing, cooperating, or otherwise re-

lated populations along with the effect of the environment on the interaction patterns [64].

By the use of mathematical models, the dynamics of population interactions can be ex-

plored using multitude of mathematical and computational tools within the framework of

Dynamical Systems Theory. A main attraction of population dynamics is the possibility

of long-term realistic and precise predictions that models can provide. Historically, most

of the models that describe population dynamics have been based on phenomenology. The

classic equation of logistic growth is a great example of a phenomenological model:

dx

dt
= βx

(
1− x

K

)
, (1.1)

where x is the population size. The intrinsic growth rate β is a cumulative rate of change

of the population size. In the absence of external mechanisms, such as artificial harvest of

individuals from the studied population, there is always a limit to how large a population

can grow without causing the destruction of its environment. That load, K, is called

the carrying capacity of the environment, and it leads to the limitation of the population

growth. The equation (1.1) is used to describe the self-regulating growth of a population.

When it was initially proposed in 1845 by Verhulst [132], no justification of the model

was given, which illustrates the “describing but not explaining the mechanisms” nature

of phenomenological models. The dependency of the intrinsic growth rate and carrying

capacity on the characteristics of individuals in the population is uncertain, and therefore

can be misleading in some cases [111].

Although any model is understandably a simplification of reality, some phenomena can

be understood and described better when studied by individual-based models [111]. Due
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to the use of mechanisms in individual processes, models of such kind are referred to as

mechanistic or first principle models [38]. The main reason for switching from solely phe-

nomenological models to more mechanistic models is the idea that selection works through

individuals. The survival of a species may depend on differences in reproductive success of

individuals. In the case of viral dynamics, where an infection can be started by a single

virion, the properties shown by individuals are of great importance and must be taken into

account.

In this thesis, the individual-level interaction processes are modelled using the law of

mass action [95, 101, 60]. The origin of the mass action principle lays in chemical reactions,

where the rate of a reaction is proportional to the product of the concentrations of the

reactants. This non-linearity can give rise to complex dynamics such as chaos. Interaction

between individuals in population ecology are observed to be quite elaborate and, therefore,

can be considered using the law of mass action: virus particles and uninfected cells are

reactants, and the infected cells are the product of the reaction [92, 126]. This approach

was taken in the famous Lotka-Volterra predator-prey model [82, 133]. Moreover, empirical

studies have shown that, for example, elimination of virion targets by immune CD8+ T cells

follows the law of mass action [42].

Strictly speaking, the mutation of even the most simple organisms such as viruses is

a highly complicated procedure that is driven by various external and internal processes.

Therefore, modelling the mutation can be done in various ways [83, 21]. In the scope of this

thesis, a mutation is a change in a genome of a virus that is sufficient to differ the wild-type

strain from all the mutants produced in the next generations. Mutation is modelled by

the flow of one population (wild-type) to another (mutants) or, in a more general case, via

a diffusion operator.

1.5 Goals and hypotheses

The process of specialisation is closely related to the coexistence and competition of different

strains of a virus. In order to study the underlying processes and causes of these phenomena,

different mathematical and computational models will be developed and analysed. Each

system is dedicated to explaining certain processes. The following questions are challenged

throughout the thesis.
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1.5.1 Specialisation leads to the appearance of new viral subtypes

How do new viruses appear? Despite the absence of proof-reading mechanisms in mutating

viral strains, a continuous distribution of all possible genetic variations is never observed in

nature. On the contrary, it is common to find specific branching and clustering of variants.

To answer the question of specialisation, it is important to understand that the viruses are

always subjected to changing ecological environments and are shaped by the interaction

with their hosts. Viral populations can adapt to new environments either by selection on

standing genetic variation, that is the presence of different combinations of genes resulting

in different phenotypic traits in a population, or by selection on new mutations [12]. By

means of either, specialisation towards different host cell types can drift the viral strains

away from one another. Several generations of selective growth in different hosts and/or

host cell types can result in an accumulation of too many suitable mutations for new niches

in variants of the same origin. We hypothesise that specialisation, eventually, leads to a

phenotypic divergence of the variants and emergence of new viruses.

1.5.2 Low mutation rates lead to intraspecific competition

How does mutation rate affect the process of specialisation? In an abundance of susceptible

host cells and different cell types, the specialisation time depends on the parameters of

the system such as burst size and mutation rate. Understandably, a high mutation rate

must lead to faster specialisation of populations towards different hosts. Likewise, a greater

burst size must lead to quicker specialisation too. However, we aim to illustrate that the

qualitative dependence of the specialisation time on system parameters, such as the burst

size, is not the same for small and large mutation rates. Predictably, the combination of

high mutation rates and growing burst sizes leads to a faster specialisation time. On the

contrary, viral specialisation slows down with growing burst size for a fixed low mutation

rate. We hypothesise that intraspecific competition between variants of close origin [47], i.e.

clonal interference or, simply put, interspecific competition in terms of viral quasispecies,

can slow down the process of specialisation of the virus population with low mutation rates

and increasing burst sizes.

1.5.3 Coexistence is possible with a fitter wild-type strain

How can variants in the same environment that have similar properties coexist instead of

out-competing one another? The appearance of a mutant usually plays against the wild-

type strain because of the intraspecific competition. Moreover, the mutant strains are more

fit to the environment due to selection [7]. We will illustrate that for a wild-type virus to
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survive the competition with mutant strains, the wild-type either has to be more infectious

than the mutant strains or it has to have access to other host cell types. We illustrate

that the weak species barrier, that is, a weak host-cell-types barrier of a virus, offers an

advantage in the presence of fitter competitors. We also aim to show that, in certain cases,

the behaviour of the system with generalist wild-type and specialist mutant-type strains

cannot be predicted even in a deterministic setup due to the presence of a strange chaotic

attractor.

Alongside with above stated questions, many other queries will be discussed. The main

goal of this thesis, however, remains in the development of mathematical tools for under-

standing mechanisms that drive viral specialisation. In Chapter 2, the relevant mathe-

matical concepts and derivations used to address these issues are described. Examples of

simple models for a viral population interacting with a susceptible host cell population are

discussed in Chapter 3, where the effect of different growth rates of susceptible cells on

dynamics is considered. The most realistic model from Chapter 3 is employed to study the

dynamics of populations of two viral strains with a shared host cell population in Chapter 4.

By introducing a second type of host cell, the dynamics of a generalist and a specialist virus

populations are considered in Chapter 5. The modelling specifics of increasing number of

variants are defined and solved in Chapter 6, where a host cell population is shared be-

tween different variants of a virus. These modifications enable a model to be developed

that considers multiple populations of healthy cell types that can be infected by the differ-

ent variants, which differ from one another with two phenotypic characteristics. This model

is used to study the specialisation time in Chapter 7. The thesis concludes in Chapter 8

with general discussion of main results obtained from this research.
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Chapter 2

Mathematical tools and concepts

By a broad definition of it in mathematics, a dynamical system describes units which vary

in time, t. The units may be for instance a location in space or a temperature, or as in this

thesis, population sizes. A mathematical model which is constructed to depict the change

of population quantities in time must exploit some form of dynamical equations, such as dif-

ference equations, where time is considered in discrete steps, or differential equations, which

treat time as a continuous variable. Moreover, while studying a complicated relationship

between different populations, not a single equation but a system of such equations may

be involved. When the processes depicted in the model are simple enough, it is possible

to obtain solutions of the system of differential equations analytically. However, nonlinear

differential equations often cannot be solved analytically and numerical approaches as well

as other techniques are required. A large part of dynamical systems theory deals with un-

derstanding the long-term behaviour of solutions, which can either tend to stationary values

that are constant in time, become periodic in time, or even be highly irregular and aperiodic

if the system is chaotic. There are a large number of tools that have been developed to

understand the qualitative behaviour of solutions, and the description of the most crucial

concepts are provided below.

2.1 Linear stability analysis

The concept of approximating values of a function around a certain point with a tangent

vector paves the way for conducting a linear stability analysis. An ideological core of linear

stability analysis is in considering a generalised version of a tangent to a function. Assume,
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that the following system of differential equations is being considered

dv(t)

dt
= M(v(t)), (2.1)

with equilibria vi, which satisfy M(vi) = 0 for each i = 1, . . . , n, where n is the number of

equilibria. For sufficiently small δ, the system can be linearized around vi by substituting

v(t) with vi + δ v̂(t) in (2.1), for each i = 1, . . . , n. Straightforward substitution on the left

hand side (LHS) and a Taylor expansion that follows the substitution on the right hand

side (RHS) of the equation (2.1) yields the following:

LHS:
dv(t)

dt
=

d(vi + δ v̂(t))

dt
=

dvi
dt

+
dδ v̂(t)

dt
,

RHS: M(vi + δ v̂(t)) = M(vi) + DM
∣∣
vi
δ v̂(t) + . . . = M(vi) + J(vi) δ v̂(t) + . . . ,

(2.2)

where J is the matrix of every first-order partial derivative of a vector-valued function M ,

i.e. the Jacobian matrix. Since equilibrium vi satisfies the equation (2.1) for all i = 1, . . . , n,

the term v̇i from the LHS and M(vi) from the RHS can be cancelled leading to the following

simplified form:
d v̂(t)

dt
= J(vi) v̂(t) +O(δ). (2.3)

After neglecting the small terms that are O(δ) in size, the solution of differential equa-

tion (2.3) can be obtained by writing

v̂(t) = ŵ eλt, (2.4)

whose straightforward substitution in (2.3) results in

λ ŵ = J ŵ. (2.5)

By definition, λ is an eigenvalue of J and ŵ is an eigenvector of J . The eigenvalues of

the Jacobian matrix evaluated at equilibrium vi, that is λ from det(J(vi) − Iλ) = 0, are

exploited to determine the type and stability of this equilibrium. The Lyapunov theorem

states that if Re(λ) > 0, then v̂(t) = ŵeλt grows exponentially in time, so the equilibrium

point vi is unstable, and if Re(λ) < 0, then v̂(t) = ŵeλt converges to a finite value at

t → +∞, therefore leading to a stable equilibrium vi. Among all, it is worthy of noting

a special kind of equilibria, a hyperbolic equilibrium, which is a solution of M(vi) = 0 at
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which its Jacobian has no eigenvalue with real part equal to zero. Hyperbolic equilibria are

known to be “sturdy”, i.e. a small change in parameter values will not lead to a change in

stability (which would be the case if the real part was equal to zero – a change in parameter

values could lead to the point becoming stable or unstable depending on how the system

shifts) [122]. In relation to local stability of quilibrium points, the Hartman-Grobman

theorem [50, 48] states that linearization of a system around a hyperbolic equilibrium

provides faithful description of its stability. According to this theorem, when all of the

eigenvalues of the Jacobian have non-zero real part, the equilibrium can be characterised

by the largest (first-order) term of its Taylor expansion and its stability is not affected by

nonlinear terms.

Linear stability analysis plays an important role in this thesis, and is employed through-

out the manuscript in Chapters 3, 4, 5, and 6.

2.2 Existence and stability of periodic solutions

A periodic solution corresponds to a type of trajectory of a dynamical system which repeats

itself in time. More specifically, if v∗(t) is a non-constant solution of (2.1), and if there is a

positive and minimal T such that v∗(t) = v∗(t+T ) for all t, then v∗(t) is a periodic solution

of (2.1). The period of this solution is T . Each periodicity interval [t, t+T ] provides v∗(t) in

the variable space which is referred to as a periodic orbit or – as an isolated object – a limit

cycle. Sometimes it is possible to prove that a limit cycle exists or cannot exist analytically

using the techniques discussed below [49]. For an autonomous (time-invariant, i.e. M does

not explicitly depend on time) planar vector field, index theory can be used to show that

inside the region enclosed by a periodic orbit there must be at least one equilibrium. In

case there is only one equilibrium, it must be a sink (stable node), source (unstable node),

or center. If every equilibria inside the periodic orbit is hyperbolic, then there must be an

odd number 2m + 1 of equilibria, of which m are saddles and m + 1 are sinks or sources.

The theory is beneficial for showing that a periodic orbit does not exist in a region of

phase space because a periodic orbit cannot exist without appropriate equilibria. Dulac’s

criterion or the Bendixson–Dulac theorem states that if there exists a differentiable

function φ such that the divergence of the vector field φM with respect to the state variables

has the same sign everywhere except possibly in a set of measure 0, then the autonomous

system v̇ = M(v) has no non-constant periodic solutions lying entirely within the region.

The theorem requests a physical interpretation of periodic solutions and applies Green’s

theorem for the proof. Dulac’s criterion is a generalised form of Bendixson’s criterion,

which corresponds to φ = 1 in the body of the theorem above. These criteria can be
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Figure 2.1: Illustration of a Poincaré map P on S: vi+1 = P (vi) and vk∗ = P (vk∗). Note,
that dashed curves mean appearance of trajectories behind S, where S is the Poincaré
section transversal to the flow.

useful for showing that a periodic orbit cannot exist in a region of a phase plane. When a

geometrical approach is plausible, the Poincaré-Bendixson theorem can be convenient.

It implies that if a trajectory enters and does not leave a closed and bounded region of planar

phase space which contains no stationary solution v, then the trajectory must approach a

periodic orbit as t −→∞. This approach can sometimes be used to establish the existence

of a stable periodic orbit for a planar vector field.

Poincaré maps can be an intuitive and useful concept to study the stability of periodic

solutions. To describe the simplified Poincaré map for an N -dimensional system (2.1),

imagine an (N−1)-dimensional subspace, S, which is transverse to the flow of trajectories of

the system. Following a trajectory, we observe it intersecting S without loss of generality at

v1. For long enough time (positive or negative), the same trajectory might intersect S more

than once at vk, where k ≥ 1. The sequence of trajectory intersections with S, v1,v2, . . . ,vk,

form the Poincaré map vk = P (vk−1) on S for all k. When these intersections occur for the

same trajectory repeatedly, we may have a periodic solution or chaos. If a trajectory starting

from vk∗ on S returns to vk∗ after some time T , that is vk∗ = P (vk∗), then the system has a

periodic solution of period T . Moreover, by checking whether slightly perturbed trajectories

cross S and asymptotically approach or diverge from vk∗ , we can determine the stability

of the periodic solution corresponding to vk∗ in N -dimensional space, see Figure 2.1. More

specifically, we suppose that ∆v0 is an infinitesimal perturbation that keeps vk∗ + ∆v0 on

the same S. After another i+ 1 returns to S, ignoring the small O(||∆vi||2) terms at each

iteration, we have the following mapping on S

vk∗ + ∆vi+1 = P (vk∗ + ∆vi) = P (vk∗) + [LP (vk∗)]∆vi +O(||∆vi||2). (2.6)

The LP (vk∗) is an (N−1)×(N−1) matrix called the linearized Poincaré map. If Cj are some

15



scalars, ej are basis eigenvectors, and λj are eigenvalues of LP (vk∗) for j = 1, . . . , N − 1,

then perturbations on S can be found by

∆vi+1 =
N−1∑
j=1

(λj)
iCjej . (2.7)

These λj are called characteristic or nontrivial Floquet multipliers of a limit cycle, and

the limit cycle is linearly stable if and only if |λj | < 1 for all j = 1, . . . , N − 1. Classically,

a total of N Floquet multipliers are considered, with the last one being λ = 1, which

corresponds to perturbations along the periodic solution. If a limit cycle is stable, then

all numerical integration for any initial conditions from the basin of attraction of the limit

cycle will converge to the limit cycle for large enough t.

With mathematical models of complicated processes, it is often impossible to find and

study equations for periodic solutions v(t) analytically. Therefore, periodic orbits are usu-

ally searched for using numerical methods. The problem of locating (stable or unstable)

periodic orbits for an autonomous vector field can be reformulated so that a variant of the

Newton-Raphson algorithm can be used to numerically solve ϕT (v)− v = 0 for v and

T , where ϕT (v) is a trajectory which ends at v after a time T [99]. However, the topology

of high dimensional flows is hard to visualise, and even with a decent starting guess for

the shape and location of a periodic orbit, methods like the Newton-Raphson algorithm are

likely to fail [73]. More robust numerical methods to locate a cycle can be formulated as

a periodic boundary-value problem (BVP) on a fixed interval. Usually, the period of

the cycle, T , is unknown and thus by considering T as a parameter in (2.1) we obtain the

following system of equations:

du(τ)

dτ
= TM(u(τ)), (2.8a)

u(0) = u(1), (2.8b)

Ψ[u] =

∫ 1

0
〈u(τ), U̇(τ)〉dτ = 0, (2.8c)

where T is a time-scaling factor, τ is the new time variable on the interval [0, 1], and u(τ)

satisfies the periodic boundary condition, which alone does not define the periodic solution

uniquely. When there is a need for selection of the unique representation of the periodic

solution, a phase condition, Ψ[u] = 0, has to be added, where Ψ[u] is a scalar functional

defined on the periodic solution. There are many ways of defining the phase condition.
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The phase condition used in (2.8c) is called integral phase condition, where U(τ) is a

reference period-one solution, and operator 〈·, ·〉 is a classical inner product [29]. In order

to solve the BVP, it must be reduced to a finite-dimensional problem. This can be done

by the use of various techniques. The method of shooting reduces the BVP to an initial

value problem and calculates different trajectories using a procedure that iterates over

various initial conditions until the boundary conditions are satisfied. For N -dimensional

systems, the method provides a system of (N + 1) scalar equations with N equations for

the components of v(t) and one equation for the period T . The system can be solved with

a Newton-like method, and a successful result would be the periodic solution vk∗ and the

value of T . On the pessimistic side, the numerically obtained results may be different from

exact solutions due to errors caused by strong growth in unstable directions. An attempt

to decrease this error accumulation naturally leads to the method of multiple shooting,

which considers the superposition of n correspondence maps from Sn, where Si are dividing

the time interval into n subintervals. Despite having a better algorithmic stability, increasing

n is numerically expensive and even then the method may fail due to the accumulation of

error for large systems. When computational efficiency is not a priority, the method of

finite differences can be applied. This method discretizes the derivative in (2.8a) at τj by

finite differences for j = 0, . . . , n−1. The system (2.8) turns into nN + 1 discrete system of

equations, which can be solved by Newton-like methods. Versions of this method are often

used and they often can provide a sufficiently accurate result. However, finite difference

methods require accurate initial guesses and large n. Furthermore, these methods may fail to

converge to a periodic solution since they are sensitive to error accumulation from unstable

directions in the case of high-dimensional systems. The method used in this thesis allows for

the computation of both stable and unstable periodic solutions, and is called orthogonal

collocation [52]. In summary, this method considers the BVP (2.8) by introducing the

discretization of the interval [0, 1] into n sub-intervals:

0 = τ0 < τ1 < ... < τn = 1, (2.9)

and then searches for an approximate solution that is a piece-wise differentiable, continu-

ous function which is a vector-polynomial u(j)(τ) with a maximal degree m within every

subinterval [τj , τj+1], for j = 0, . . . , n− 1. That is, within each sub-interval an approximate

solution satisfies the system (2.8a) at m collocation points:

τj = τj,0 < τj,1 < τj,2 < ... < τj,m = τj+1. (2.10)
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The unknown polynomial u(j)(τ) can be represented through the interpolation:

u(j)(τ) =

m∑
i=0

u(j)(τj,i) lj,i(τ), (2.11)

where lj,i(τ) are Lagrange basis polynomials. The non-trivial placing of the collocation

points in the sub-intervals [τj , τj+1] is to minimise the approximation error; it is known that

the optimal choice is to place them as Gauss points, which are the roots of the mth degree

Legendre polynomial relative to the sub-interval. The periodicity condition (2.8b) and the

phase condition (2.8c) are also discretized, and the latter employs Lagrange quadrature

coefficients in the approximation of the integral. The Legendre polynomials compose the

orthogonal system on the interval (thus the name of the method), and collocation at their

numerically obtained and known roots provide an extremely accurate approximation of the

smooth solution of (2.8):

||u(τj)− u(j)(τj,0)|| = O(h2m), (2.12)

as h = max0≤j≤n−1 |τj+1 − τj | −→ 0 [71, Sec. 10.1].

In the scope of the studied models, the limit cycles are of a great importance for biological

interpretations. Their existence and stability are vigorously studied in Chapters 4 and 5.

2.3 Bifurcation analysis

The effect of varying parameters on the studied quantities is a main concern of mathemat-

ical modelling. The change in dynamics as a function of the model parameters becomes a

crucial issue in biological dynamical systems. Sometimes, qualitatively different dynamical

behaviours of the model can be observed for different intervals of a parameter. These changes

in dynamics of the system are referred to as bifurcations. The goal of bifurcation analysis is

to construct bifurcation diagrams. The bifurcation diagram divides the parameter space

into regions within which the system shows a qualitative behaviour characteristically diverg-

ing from the neighbouring areas. The boundaries separating these areas are the bifurcation

points. Overall, the bifurcation analysis can be computationally and methodologically chal-

lenging. For the necessary numerical simulations of processes discussed in Chapters 3 to 6,

the programming language MATLAB and its toolbox MatCont [27] are employed. More

theoretical background of the bifurcation analysis is provided below.

The Kupka-Smale theorem lists three generic characteristics of a dynamical sys-

tem: (i) hyperbolic equilibrium points, (ii) hyperbolic periodic equilibria, and (iii) transver-

sal intersections of stable and unstable manifolds of equilibrium points and periodic or-
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bits [68, 120]. The changes in these Kupka-Smale conditions lead to different bifurcation

types. The codimension of a type of bifurcation is defined as the minimal number of parame-

ter families in which that bifurcation type occurs. Codimension-one bifurcations correspond

to a single failure of the Kupka-Smale conditions. For example, the saddle-node, transcriti-

cal, and Andronov-Hopf bifurcations (further referred to as Hopf bifurcation) correspond to

a change along an equilibrium that occurs for one varying parameter. When all eigenvalues

of an equilibrium have strictly negative real parts, then for the given parameters, that equi-

librium is stable. For a certain combination of parameters, two equilbria with different sta-

bility might non-destructively collide and, moreover, with variation of parameters above the

critical combination one of the equilibria can lose its stability while the other one becomes

stable. This “stability exchange” around the critical parameter combination corresponds to

the transcritical bifurcation of intersecting equilibria. The saddle-node bifurcation

is a collision and disappearance of two equilibria, or appearance of two branches of equilibria

depending on the direction of the varying parameter. In N -dimensional phase space, with

N ≥ 2, the Jacobian matrix at the saddle-node bifurcation has a simple zero eigenvalue

with the real parts of other eigenvalues being positive or negative. The Hopf bifurca-

tion leads to the emergence of a periodic solution, which may be stable or unstable. It is

worth mentioning that there are subcases of bifurcation types, too; for instance, the Hopf

bifurcation can be subcritical or supercritical [71]. The supercritical Hopf, for instance,

changes a stable equilibrium to unstable and provides a stable periodic orbit around the

unstable equilibrium. The fold limit cycle bifurcation is sometimes called a saddle node

of limit cycles because it starts two new, stable and unstable, limit cycles for the varying

parameter and corresponds to a position where the stable and unstable limit cycles meet

in the phase space. There are also global bifurcations such as homoclinic bifurcation of

equilibria, homoclinic tangencies of stable and unstable manifolds of periodic solutions, and

heteroclinic bifurcation of equilibria and periodic solutions. Other types of codimension-one

bifurcations can be found in systems with quasiperiodic oscillations or chaotic dynamics.

Increasing the codimension makes the classification of bifurcation types even more diffi-

cult. However, five types of codimension-two bifurcations of equilibria are considered classic:

Bautin bifurcation, Bogdanov-Takens bifurcation, cusp bifurcation, Hopf-Hopf bifurcation,

and fold-Hopf bifurcation. The Bautin bifurcation is sometimes referred to as a gener-

alised Hopf bifurcation. It is a bifurcation of an equilibrium at which the critical equilibrium

has a pair of purely imaginary eigenvalues and the first Lyapunov coefficient for the Hopf

bifucation is zero. This bifurcation connects branches of sub- and supercritical Hopf bi-

furcations in the parameter space. For parameter values close to the Bautin bifurcation,

the system has two limit cycles which collide and disappear via a saddle node bifurcation

19



of periodic orbits. The Bogdanov-Takens bifurcation is a bifurcation of an equilibrium

point at which the critical equilibrium has two zero eigenvalues. For parameter values close

to the standard Bogdanov-Takens bifurcation, the system has two equilibria, one of which

is a saddle and another one is not a saddle, that collide and disappear via a saddle node

bifurcation. The non-saddle equilibrium undergoes a Hopf bifurcation generating a limit

cycle. This cycle degenerates into a homoclinic orbit and disappears via a saddle homo-

clinic bifurcation. The cusp bifurcation is characterised by two branches of saddle-node

bifurcation curves meeting tangentially, which on a two-dimensional bifurcation diagram

forms a sharp cusp. For parameter values close to cusp bifurcation points, the system can

have three equilibria which collide and disappear pairwise via saddle node bifurcations.

In general, the cusp bifurcation implies the presence of a hysteresis in the system. The

Hopf-Hopf bifurcation, or the double-Hopf bifurcation, is a bifurcation of an equilibrium

point at which the critical equilibrium has two pairs of purely imaginary eigenvalues. The

bifurcation point in the parameter plane lies at a transversal intersection of two curves of

Hopf bifurcations. Usually, two branches of torus bifurcations emanate from the Hopf-Hopf

bifurcation point. The fold-Hopf bifurcation is a bifurcation of an equilibrium at which

the critical equilibrium has a zero eigenvalue and a pair of purely imaginary eigenvalues.

This bifurcation is also called the zero-Hopf bifurcation, the saddle node Hopf bifurcation

or the Gavrilov-Guckenheimer bifurcation. The bifurcation point in the parameter plane

lies at a tangential intersection of curves of saddle node bifurcations and Hopf bifurcations.

When a branch of torus bifurcations emanate from the zero-Hopf point, a rich variety of

additional global bifurcations can take place and can lead to the birth of strange chaotic

attractors that exist in localised regions of parameter space.

2.4 Chaos

By definition, stochastic processes are not considered in deterministic systems. Hence, a

deterministic model should produce the same output for a given set of parameters and

initial values of variables. Moreover, a deterministic system should produce similar outputs

for almost identical initial conditions. However, not all deterministic models allow for

the strict prediction of their future states. Knowing all vi that turns the right-hand side

of (2.1) into zero, finding the conditions for their stability, and mapping basins of attractions

in case of a bistability might not be enough to predict the behaviour of the system for

certain scenarios. Chaos, in dynamical systems, is a long-term non-periodic behaviour of a

deterministic system that has a strong dependence on initial conditions. This means that

nearby initial conditions do not lead to trajectories that remain close to each other for large
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times. Incidentally, above mentioned Poincaré-Bendixson theorem then implies that chaos

cannot exist in planar phase space. Thus, the minimal dimensionality of an autonomous

system of nonlinear differential equations that allows the appearance of chaotic behaviour

is three.

A classical way of quantifying chaos is by means of the so-called Lyapunov exponents.

This elegant method monitors the long-term evolution of an infinitesimal N -sphere of initial

conditions for a dynamical system. If the system tends to chaotic behaviour for large times,

the sphere becomes an N -ellipsoid due to the trajectories diverging exponentially. The ith

Lyapunov exponent is then defined in terms of the length of ith principal axis pi(t) of the

ellipsoid:

εi = lim
t−→∞

1

t
log2

pi(t)

pi(0)
, (2.13)

where the εi are ordered and form a vector of Lyapunov exponents ε. Every positive

exponent corresponds to a “stretching direction” of the system which leads to the divergence

of close trajectories. This means that the long-term behaviour of an initial condition that is

slightly different from an observed trajectory cannot be strictly predicted; thus the chaos.

The search for the Lyapunov exponents is typically conducted by numerical integration

of the nonlinear equations of the system starting from a given initial condition within

the basin of attraction of the chaotic attractor and as described in Ref. [141]. The full

nonlinear system (2.1) and the equations that result from its linearization are simultaneously

integrated in time using a set of N initial conditions that define a set of N orthonormal

vectors. These N orthonormal vectors define the principal axes of the initial N -sphere.

The solutions to the linearized equations describe the evolution and growth of the principal

axes and enable the Lyapunov exponents to be calculated. However, it is important to

recall that, while each of the initial N orthonormal vectors diverges in magnitude with

time, in a chaotic system they also tend to align themselves in the local direction of fastest

growth. The collapse of the vectors towards a common direction causes the tangent space

orientation of all axes vectors to become indistinguishable. Therefore, the repeated use of

the Gram-Schmidt reorthonormalization procedure on the vector frame is required. The

frequency of reorthonormalization is known to be irrelevant as long as a magnitude and an

orientation of divergences does not exceed computer limitations.

Biological and, especially, epidemiological systems are not unfamiliar with chaotic dy-

namics [34, 25]. An interesting and novel example of chaos identified in the population

dynamics of specialist and generalist viral strains is discussed in Chapter 5.
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2.5 Solving partial differential equations

Consider the following system of partial differential equations (PDEs):

∂v(s, t)

∂t
= M

(
v,
∂v

∂s
,
∂2v

∂s2

)
, (2.14)

with initial condition:

v(s, 0) = v0(s), (2.15)

and certain boundary conditions. Technically, the solution of a PDE problem is a function

that defines the dependent variable v in terms of the independent variables s and t, thus

solving the PDE problem means finding a function that satisfies simultaneously (2.14) and

all of its auxiliary conditions. The solutions to a PDE can be found using either analytical

or numerical methods. While analytical solutions are exact expressions for v(s, t), they are

generally difficult to derive for all but a narrow spectrum of PDE problems. As in the case

of a complicated nonlinear system of algebraic equations, the solution of elaborate systems

of PDEs are usually obtained numerically. The numerical solution is considered to be an

approximation to the analytical solution. The method of lines (MOL) is a technique used

for the calculation of accurate numerical solutions of time-dependent PDEs. The principle

of the MOL is in replacing the spatial derivatives in the PDE with algebraic approximations,

thus yielding a system of ordinary differential equations. To illustrate the basic idea, allow

the spatial domain of the function to be discretized by m (equidistant) inner points, that

is 0 = s0 < s1 < ... < si < ... < sm < sm+1 = 1 for corresponding i = 0, . . . ,m + 1. Then,

the first partial derivative of v with respect to s can be calculated by the second-order

approximation at i as such:

∂v(s, t)

∂s
≈ vi+1(t)− vi−1(t)

2∆s
+O(∆s2), (2.16)

where ∆s = 1/(m + 1) for i = 1, . . . ,m. If present in the PDE problem, a second partial

derivative is approximated, for example, using a centered difference formula with second-

order error:

∂2v(s, t)

∂s2
≈ vi+1(t)− 2vi(t) + vi−1(t)

∆s2
+O(∆s2), (2.17)

and so on. Henceforth, the spatial derivatives are discretized with respect to the spatial

independent variables, and only the initial-value variable, time, remains. Eventually, with

only one remaining independent variable, we have an enlarged system of ODEs that approx-

imates the original system of PDEs. The challenge is in performing a correct construction
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of the system of ODEs with attention to its initial and boundary conditions. The initial

condition requires a fairly straightforward discretization. Boundary conditions differ de-

pending on the processes described in the problem, and thus different approaches might be

necessary. For a no-flux boundary condition, values of fictitious points can be obtained from

equation (2.16) with the centered finite difference approximation at i = 0 and i = m+ 1:

∂v(s, t)

∂s
≈ v1(t)− v−1(t)

2∆s
= 0 and

∂v(s, t)

∂s
≈ vm+2(t)− vm(t)

2∆s
= 0, (2.18)

which yields

v−1 = v1 and vm+2 = vm. (2.19)

Further, the system of ODEs can be integrated by any suitable numerical method. This

shows one of the important features of the MOL, that is the exploitation of well-established

numerical procedures for ODEs to solve elaborate systems of PDEs [115]. For more elaborate

models, the classical method of finite differences can be exploited, too.

In Chapters 6 and 7, PDEs are used to formulate models of population dynamics. To

obtain numerical solutions to these models, the programming languages MATLAB and

Python are employed. Certain calculations in Chapter 7 – as the regression analysis de-

scribed further below – require use of computational clusters, and for that BASH scripts

are coded.

2.6 Regression analysis

Numerical simulations can help us to understand the behaviour of a complex phenomenon

for any set of introduced parameter values. Finding real-life values of the parameters can

become a challenge in its own. Luckily, in most cases the estimation of a relationship

between the variables is of more interest rather than individual outcomes of mechanistic

models. There is, usually, a question that includes free and dependent variables. The an-

swer to that question requires the quantitative description of an effect that the change in

the free variable poses over the dependent variables. Regression analysis provides concen-

trated information about the general trends in behaviour of the dependent variables. From

rather straightforward simulations, we can observe if multiple parameters are affecting the

qualitative behaviour of the system. In that case, we can employ regression analysis in an

iterative way.

For example, consider a population that changes in order to occupy certain resource

niches. The successful niche occupation requires some amount of time, which we denote
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by T . Assume, that time T depends on parameters, a and b, and maybe more, which

are not given and may have broad domains. First, by fixing all parameters except a at

approximate values, we can conduct a regression analysis: a acts as a free variable and

T as a dependent variable. That is, we calculate T as a function of a for densely chosen

data points a1 < a2 < . . . < ap, for large enough p. Regression analysis can be considered

as a highly visual tool, because it implicates plots of studied variables. Depending on

the general shape of the scattered plot of T (ai), it is possible to employ a corresponding

regression technique. Assume that the scattered plot vaguely resembles a linear function. In

such a case, values of T (ai) for all i = 1, . . . , p can be characterised by two numbers in total:

the slope and intercept of the linear function that the values of T (ai) are clustered around.

Moreover, depending on the model, the most interesting information can be concentrated

singularly in one number, e.g. the slope L, which summarises the effect the parameter a

has over the niche occupation time T as a general trend. In this case, large and positive

L would mean that a slight increase in parameter a leads to a rapid increase in time T ,

therefore suggesting that a is greatly important parameter. On the other hand, a small

and negative value of L would mean that a slight increase in a leads to a slow decrease

in T showing robustness and inverse proportionality of the studied variable T towards

parameter a. Depending on the specifics of the model, some variations of a least squares

method are used to find the linear function; these methods minimise the sum of (weighted)

squared differences between the scattered plot and the regression function. Going back to

the example: after obtaining the first linear function, we save its slope L as the regression

value. Then we choose and change slightly the second parameter of interest, b, and conduct

the same process of linear regression with respect to ai, for i = 1, . . . , p. Each iteration for

bj from b1 < b2 < . . . < bq for large enough q, provides us, for instance, with a single value

of the slope, L(bj) for j = 1, . . . , q. By doing this, we obtain quantitative representation of

the effect that parameters a and b have on the time it takes for a population to occupy a

niche.

In the scope of this thesis, we must deal with nonlinear regression problems. That is, the

scattered plot of T (ai) does not necessarily resemble a linear function after straightforward

calculations. In such a case, the first approach can be the use of nonlinear regression func-

tions. By doing so, we can obtain very accurate approximations of the scattered plot, but

the method requires tracking several parameters that characterise the regression function,

instead of just one, e.g. L. This can be inconvenient for further iterations. The second

approach lays in the linearization of the problem itself. This approach includes altering the

studied model or its domain in a way that scattered plot of the dependent variable becomes

linear. The most frequently used linerization techniques can be divided into transformation
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and segmentation methods. The segmentation method allows the use the linear regression

for sub-domains of independent variables of the regression analysis. This method is very

suitable for systems that have a threshold value in their independent variables yet may not

be very convenient for an iterative approach. Similarly, the transformation methods require

caution since even the most appropriate model alterations lead to a change in data values

and their interpretations, as well as to a change in the structure of errors and domains.

This method can be useful, however, when we observe clear tendency such as exponential

growth or trigonometric trend. Then, plotting the logarithm or an inverse trigonometric

function of the studied variable may lead to a suitable conditions for the linear regression

analysis.

Regression analysis is a very powerful tool with great applications in data analysis. In

Chapter 7, we use the regression analysis to determine the time it takes for a population to

split into different sub-populations. There, critical parameter combinations are found that

change the trend of the split time drastically.

2.7 Stochastic modelling

Stochasticity can occur in population dynamics because of environmental and/or demo-

graphic reasons [3]. Environmental stochasticity corresponds to random changes that hap-

pen to the studied population, while demographic stochasticity refers to population fluctu-

ations due reproductive processes that especially affects small populations. The frequent

change of temperature is a perfect example of environmental stochasticity since it may af-

fect the process of cell growth, therefore, leading to a fluctuation in the virus population

size due to the unavailability of susceptible cells.

From a mathematical perspective, the stochasticity is modelled by introducing fluctua-

tions into a deterministic system [44]. At the end of this thesis, we overview a combination

of the environmental and/or demographic stochasticity types which affects the infection

rate of a pathogen population. First, we consider the infection rate as a function of every

sub-type si of a pathogen, α(si) for i = 1, . . . , N . Next, we generate an instance of Brownian

motion (e.g. by the Wiener process) for every si, and thus α(si, t) varies with time. The

random variable of the infection rate at time t, that is α(si, t), has a normal distribution

whose mean is the infection rate at time t = 0 and whose variance is δ2 t, where δ is the

“speed” of the Brownian motion. Note that the infection rate of each pathogen sub-type is

independent of the infection rates of the other sub-types. This approach provides the possi-

bility to control the intensity of infection rate perturbations for each sub-type of a pathogen
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population autonomously. The use of the stochastic mathematical models applied in viral

dynamics is illustrated in Chapter 8.
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Part II

Modelling viral evolution:

population dynamics of a single

viral strain
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Chapter 3

Growth rate-based pursuit for a

basic model

In this chapter we consider a basic model of viral dynamics. The choice of a simple model

will allow for better understanding of the dynamics of the considered processes. The ef-

fects of qualitatively different growth rates of a susceptible, uninfected cell population on

the behaviour of the whole system are studied thoroughly. Modelling the growth rate of

the uninfected cell population in different ways is sufficient to illustrate the main set of

qualitatively different behaviours. Starting from a simple constant influx rate, we develop

gradually the growth rate up to a logistic growth. The main purpose of this chapter is

to pinpoint the most reliable model for further development of more elaborated systems

incorporating further biological complexity.

3.1 Basic model

The basic model of viral dynamics has three state variables: the population of uninfected

cells, x; the population of infected cells, y; and the population of free virus particles, also

called virions, z. These quantities describe sizes of the populations either in vivo or in

vitro, depending on how the flow, A, of uninfected cells is modelled. The system we are

considering in many ways mimics the classical model of viral dynamics [95]. Free virus

particles infect uninfected cells at infection rate α. The infection decreases the uninfected

cell population and increases the infected cell population at a rate proportional to the

product of uninfected cells and viral load abundance, which yields αzx. The infection rate

α can be regarded as the probability of successful infection. The average number of virions
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required for a successful infection process is called the multiplicity of infection (MOI). In

this model, the MOI is chosen to be a constant ν ≥ 1. Outflow and death of infected cells

occurs at a rate γ, which can be considered as the virulence of the virus. Free virions are

produced by the infected cells at a rate κγy, for a burst size κ, and are removed from the

system at a rate ζz.

The evolution of the interacting populations is described by the following system of

ODEs which, in turn, is based on the Nowak and May model of HIV dynamics [95]:

ẋ = A− α z x,

ẏ = α z x− γ y,

ż = κγ y − ν α z x− ζ z.

(3.1)

This slightly updated classic model of virus dynamics, provides a starting point for

modelling the dynamics of specialisation of viral strains. In the following sections, we

consider different growth rates, A, of the uninfected cell population and their effect on the

dynamics.

3.2 Growth rate as a constant flow

The simplest approach is to consider a combination of influx and outflow as a constant flow

of uninfected cells. Justification for usage of constant flow is modelling virus replication in a

system where the total population of uninfected cells incomparably surpasses the population

of virus and can be controlled (e.g. harvested from a Petri dish). Setting A = β in (3.1)

gives the following ODE system

ẋ = β − α z x,

ẏ = α z x− γ y,

ż = κγ y − ν α z x− ζ z.

(3.2)

System (3.2) has a single equilibrium defined by the values {x∗, y∗, z∗} that yield ẋ =

ẏ = ż = 0, which is given by:

x∗ =
ζ

α(κ− ν)
, y∗ =

β

γ
, z∗ =

β(κ− ν)

ζ
. (3.3)
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From the crucial condition of non-negative population sizes, we obtain restrictions for

the parameters: α > 0, κ − ν > 0, γ > 0, ζ > 0, and β ≥ 0. The case κ = ν corresponds

to the absence of an equilibrium solution, i.e. in this case, the solution to (3.2) behaves as

x ≈ βt, y = 0, z = 0 for large t. To avoid the possibility of an “explosion” of the uninfected

cell population and the extinction of the viral populations, in the scope of model (3.2), we

consider only κ which is strictly more than ν. It is clear that the y∗ and z∗ components

are linearly proportional to β, meaning that larger β creates an environment with a greater

capacity for the viral population.

For the linear stability analysis, we consider the Jacobian of the system (3.2) evaluated

at the equilibrium solution obtaining:

J =


−αβ (κ−ν)

ζ 0 − ζ
κ−ν

αβ (κ−ν)
ζ −γ ζ

κ−ν

−ν αβ (κ−ν)
ζ γ κ − ζ κ

κ−ν

 .

However, the eigenvalues of J are too complicated to obtain analytically. Numerical analysis

predicts that for large enough β the equilibrium {x∗, y∗, z∗} is stable; and, depending on

parameters, is either a sink or a stable spiral.

3.3 Constant influx and decay of uninfected cells

The next step is to introduce into the system a death rate for uninfected cells, δ. Although

the rest of the model remains the same as in (3.2), there are some changes in the dynamics

of the model due to the addition of the death term. The ODEs now read:

ẋ = β − α z x− δ x,

ẏ = α z x− γ y,

ż = κγ y − ν α z x− ζ z.

(3.4)

System (3.4) has two equilibrium points:

v1 := {x = β/δ, y = 0, z = 0} ;

v2 :=

{
x =

ζ

α (κ− ν)
, y =

β (κ− ν)α− δ ζ
α (κ− ν)γ

, z =
β (κ− ν)α− δ ζ

α ζ

}
.

(3.5)
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Here and further, the asterisks are ignored in equilibrium points that have designated names.

The first equilibrium point, v1, corresponds to a virus-free state of the system, when the

uninfected cells population attain the maximum carrying capacity of the environment while

infected cell population and virus population are zero. The second solution, v2, stands for

the virus abundant case. For biological meaningfulness, apart from an essential requirement

of positive α, γ, δ, and ζ, it is necessary to keep

κ > ν (3.6)

and

βα(κ− ν) ≥ δζ. (3.7)

These constraints enforce non-negative population sizes. We see that in order for the virus-

abundant solution v1 to be biologically meaningful, the burst size must be strictly more

than the multiplicity of infection. Numerical checks on eigenvalues show that the equilibrium

states are a stable node and a saddle. A transcritical bifurcation occurs when βα(κ−ν) = δζ,

and the steady states switch their stability. However, it might be comme il faut to admit

that one of the equilibria enters the biologically meaningful (i.e. positive) phase space when

βα(κ− ν) = δζ, that is why both equilibria cannot switch their stability when, biologically

speaking, the virus abundant steady state never existed “before” the collision of steady

states, after which it “becomes” stable.

There is a widely accepted method of linking the basic reproductive ratio, usually noted

as R0, to the growth or decay of viral population. If the basic reproductive ratio is greater

than one we observe growth of the studied population. To determine the basic reproductive

ratio for this model, we consider inequality (3.7), where the parameter combination that

corresponds to equality in (3.7) holds importance for epidemiological discussion. Let us call

that parameter combination R0:

R0 =
βα(κ− ν)

δζ
(3.8)

In terms of inequality (3.7), for this mathematical model of viral dynamics, both equilibria

exist in biologically meaningful phase space when R0 ≥ 1. By numerically checking the

signs of eigenvalues when R0 > 1 and R0 < 1, we confirm that R0 is the basic reproductive

ratio. Indeed, it resembles the basic reproductive ratio from the classic models and has

the same properties: it is proportional to all quantities that promote the growth of the

viral population in the equations of the system and inversely proportional to almost all

quantities that suppress the growth of the viral population. Most importantly, if R0 > 1,

then system (3.4) has a stable viral abundant state.
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3.4 Birth and death of uninfected cells

This section considers the case when uninfected cells multiply and die at rates β > 0 and

δ > 0, respectively. This is an intuitively realistic version of an independent, undisturbed

system. The population dynamics are modelled as follows:

ẋ = β x− α z x− δ x,

ẏ = α z x− γ y,

ż = κγ y − ν α z x− ζ z.

(3.9)

This model has two equilibria:

v0 := {x = 0, y = 0, z = 0} ;

v1 :=

{
x =

ζ

α (κ− ν)
, y =

ζ (β − δ)
α (κ− ν)γ

, z =
β − δ
α

}
.

(3.10)

By introducing the exponential growth rate, we can model a system where all populations

can become extinct. It is biologically justified, and we must allow the possibility of this

pessimistic scenario. Along with the trivial equilibrium v0, there is a virus-abundant state

v1. To study the local behaviour of the system around the equilibria, let us consider the

linearization of the model. The Jacobian matrix of model (3.9) is

J =


β − α z − δ 0 −αx

α z −γ αx

−αν z γ κ −αν x− ζ

 .

For the trivial solution, v0, we can find the eigenvalues (which are the diagonal elements of

the triangular Jacobian matrix at the solution):

Λ =


β − δ

−γ

−ζ

 .

The eigenvalues at v1 are rather complicated, so we will calculate them numerically further

below. Based on Λ and Figure 3.1 (a), we can be sure that the trivial solution is always
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(a) Λ at the trivial solution v0 (b) Λ at the nontrivial solution v1

Figure 3.1: Real and imaginary parts of eigenvalues at equilibria for the system (3.9). Other
parameters are fixed at α = 1, δ = 0.5, γ = 1, κ = 4, ν = 2, ζ = 1.

a saddle with a one-dimensional unstable manifold (dimW u(v0) = 1) if the birth rate of

uninfected cells, β, is greater than their death rate, δ. The zero solution becomes stable if

there are more uninfected cells dying out than appearing in the system. So, for increasing β,

the trivial solution changes from a stable node to a saddle point, while the virus-abundant

solution changes from a saddle to an unstable spiral. For β > δ, there are no stable equilbria

and, therefore, the solution does not have a steady state in this parameter regime.

The virus abundant solution is biologically relevant, that is, all components of v1 are

non-negative, if:

• β ≥ δ, uninfected cell’s birth rate is larger than its death rate;

• κ > ν, the burst size of a virus is greater than its MOI;

• α > 0, virus infects the uninfected cells;

• γ > 0, infected cells also have positive death rate;

• ζ ≥ 0, virus is removed from the system at a non-negative rate.

However, it is possible to obtain a combination of parameters corresponding to different

conditions than those listed above for which the populations will still remain positive, e.g.

see the second steady state. Although it is mathematically relevant, biologically it would

drive us away from purposeful discussion. Say, the first condition does not hold, i.e. the

birth rate of uninfected cells is smaller than their death rate, β ≤ δ. This would force the

infection rate (or fitness) α to be negative in order to have non-negative z. Furthermore,

if one comes up with an explanation for negative fitness, we will face either ζ or κ − ν

being non-positive/negative, in order to have positive population size of uninfected cells.
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A “negative death rate of viral population” is another way of saying that there is a total

amount of virus based growth of the population, which is admittedly more suitable for

cells, because the virus alone lacks the machinery for self-production. In comparison to the

negative death rate, “burst size of a virus is smaller than multiplicity of infection” would be

a more reasonable path to take, although the burst size is usually greater than the MOI. If

we agree on β ≤ δ, α < 0, and κ < ν, for non-negative ζ, in order to keep y non-negative, γ

has to be less than zero. Some viruses are known for increasing the fitness of their host by

infecting it [112], which mathematically lead to a negative death rate of infected cells. Since

we do not understand what, in given terms, is negative fitness, we stick with the itemised

list of conditions above.

Biological relevance by no means implies stability of the equilibrium. So far, we noted

the stability of the trivial solution for small β. For the chosen parameters, the real part

of at least one eigenvalue at v0 for all β is non-negative, see in Figure 3.1 (b). In order to

understand if the nontrivial equilibrium becomes a locally asymptotically stable equilibrium

at any parameter combination, consider the characteristic polynomial of the system, which

is defined as det(J − λI) = 0. For det(J − λI) = 0, one gets:

P (λ) = λ3 +
(κ γ − γ ν + ζ κ)

κ− ν
λ2 − ν (β − δ) ζ

κ− ν
λ+ (β − δ) γ ζ = 0. (3.11)

From the simulations in Figure 3.1, we see that a real and positive eigenvalue exists for

β < δ with the other two eigenvalues being real and negative. In order for the system to

gain stability around its nontrivial equilibrium, the positive eigenvalue must cross zero and

the others must remain negative. It is worth noting, that there are actually two ways in

which v1 could become stable: either λ = 0 or Re(λ) = 0 with Im(λ) 6= 0, assuming that

the other eigenvalues have negative real part. The second case is equivalent to search for,

as shown further, nonexistent Hopf bifurcation: consider eigenvalue λ = i ω, where ω must

be real; Re(P (i ω) = 0) and Im(P (i ω) = 0) yield contradicting conditions for ω to be real,

i.e. β > δ and δ > β, respectively. Therefore, the virus-free state v1 does not undergo a

Hopf bifurcation. Going back to λ = 0, we obtain from equation (3.11) the following:

(β − δ)γζ = 0. (3.12)

This combination is out of the agreed biologically meaningful parameter space. Therefore,

for all biologically meaningful parameter combinations the virus abundant state is unstable.

To be able to observe stable nontrivial equilibria, the model must be altered.
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3.5 Logistic growth

The previous model is intuitively easy to understand: uninfected cells proliferate and die

with a constant rate and also serve as a resource for the production of virus copies. How-

ever, real-life systems usually have restrictions on the availability of resources [22]. For

instance, the uninfected cells share space and nutrients with each other and thus there is

a competition between them. Exponential growth models can be useful only at the early

stages of a growth of the population when few cells are present and thus intraspecific com-

petition is negligible. Due to the absence of biological mechanisms restricting the growth of

uninfected cells in the previous modelling approach, the solution of model (3.9) “explodes”

for most cases, meaning that the number of uninfected cells would go to infinity. In order

to avoid uninteresting results, we introduce competition among uninfected cells, which can

be considered as intraspecific competition. For the kind of processes being modelled here,

the carrying capacity of the environment, K, needs to be introduced. The carrying capacity

might be an amount of an environmental characteristic available for uninfected cells, for ex-

ample, in vitro added nutrients and/or available space in a Petri dish. We will assume that

the reproduction of uninfected cells is proportional to the growth rate, β, population size,

x, and unused fraction of the carrying capacity, (1− x/K). Under these assumptions, and

accounting for the death rate of competing uninfected cells, δx, the current model becomes:

ẋ = β x(1− x/K)− α z x− δ x,

ẏ = α z x− γ y,

ż = κγ y − ν α z x− ζ z.

(3.13)

The system (3.13) has three equilibria:

v0 := {x = 0, y = 0, z = 0} ;

v1 :=

{
x =

(β − δ)K
β

, y = 0, z = 0

}
;

v2 :=

{
x =

ζ

α (κ− ν)
, y =

ζ ((β − δ)(κ− ν)αK − β ζ)

α2(κ− ν)2γ K
, z =

(β − δ)(κ− ν)αK − β ζ
α2(κ− ν)K

}
.

The trivial state v0 stands for the case when no population survives; a virus-free state,

v1, leads to an abundance of uninfected cells growing to the maximum carrying capacity

of the system; a virus-abundant state, v2, has nonzero values for all three populations.

There are a couple of obvious parameter relations for which the equilibria would intersect
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or coalesce. For example, if the growth rate and the death rate of uninfected cells are

equal, β = δ, then the virus-free state would match with the trivial state, i.e. v0 = v1;

if (β − δ) (κ− ν)αK = β ζ, then the virus-abundant state would coalesce with the virus-

free state, i.e. v1 = v2. These combinations are strong candidates for bifurcation points

involving collisions of fixed points. To study the dynamics of the model, we investigate the

stability of its equilibria using linear stability analysis. The Jacobian of the model (3.13) is

the following matrix:

J =


β − α z − δ − 2β x/K 0 −αx

α z −γ αx

−αν z γ κ −αν x− ζ

 .

Even though the Jacobian is quite simple, the eigenvalues, needed for the linear stability

analysis, are complicated for the nonzero solutions. However, as in the previous case, we

have a simple expression of the eigenvalues at the trivial solution:

Λ =


β − δ

−γ

−ζ

 .
The trivial solution becomes unstable when the growth rate is larger than the death rate of

the uninfected cell population. In order to know more about the stability of the solutions,

we study the dependency of the eigenvalues on parameters numerically. Our first attempt

is to vary β fixing other parameters. Over a biologically meaningful range, the virus-free

solution begins as a node and changes from stable to unstable at increasing β. At the same

range, the second solution changes from a saddle to a stable node.

Let us fix β large, resulting in the presence of a stable v1, and study the system tuning

the infection rate, α. We investigate the system by numerically calculating all eigenvalues

for varying α, and simultaneously tracking the value of viral load component, z. As it is

clear from Figure 3.2, for increasing α, the virus-free solution loses its stability (illustrated in

Figure 3.3 (a)) and becomes a saddle, see the red curve of Re(Λ) crossing zero from below.

At that exact value of α, the virus-abundant solution (in black) changes from a locally

asymptotically saddle to a stable node (illustrated in Figure 3.3 (b)). Further increases

in α lead to the eigenvalues at v2 becoming imaginary, transforming this equilibrium into

a spiral attractor (illustrated in Figure 3.3 (c)). The stability of v2 changes again when

α = 1.7 and the real part of the complex eigenvalues becomes positive. This transition from
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a stable spiral into a stable periodic orbit is called a Hopf bifurcation, which is characterised

by the Jacobian matrix having a single pair of complex conjugate eigenvalues with zero real

part, and results in the creation of a stable periodic orbit.

Two types of bifurcations were found to occur in system (3.13): transcritical and Hopf bi-

furcations. To look at the changes occurring in the dynamics of the model, a two-dimensional

bifurcation diagram has been constructed in the parameter space (α, γ). The lines inside

this space represent the Hopf (blue) and transcritical (orange) bifurcations (see Figure 3.4).

By checking eigenvalues of the Jacobian, it is feasible to get the exact values of bifurcation

points. The bifurcation diagram shown in Figure 3.4 is divided by two curves into three

regions, conditionally named left, middle, and right. The left area satisfies the case when

for all values of parameters, the system exhibits an abundance of uninfected cells in the

absence of virus and infected cells, i.e. the equilibrium v1 is stable. The middle region

is separated from left one by a transcritical bifurcation curve, meaning that by crossing

that curve the steady states v1 and v2 interchange their stability. The virulence of the

virus (interpreted as γ) seems to play a little role if its fitness is lower than some threshold

value and the population of virus is destined to extinction. The threshold values is given

by α = β ζ/ (β − δ) (κ− ν)K, whose independence from γ determines its constant appear-

ance on the bifurcation diagram. The middle region has a stable virus-abundant solution.

Moreover, if the parameter pair (α, γ) is close to the line of transcritical bifurcations, then

state v2 is a stable node, and if the pair is close to the right region then the the steady

state is an asymptotically stable point which is approached via damped oscillations. In the

right region, which is separated from the middle region by a Hopf bifurcation curve, all

equilibria are unstable and there exists a stable periodic orbit around the virus-abundant

solution. This means that for all parameters in the right region, all populations are positive

and change periodically. For γ = 1, the four mentioned behaviours of system (3.13), namely

stable virus-free state, stable virus-abundant node, stable virus-abundant spiral, and stable

periodic orbit, are illustrated in Figure 3.5.

3.6 Nondimensionalization

Before moving to more complicated models, it is useful to first select a base model from

those considered in this chapter, which will be further developed in subsequent chapters. We

then show how the number of parameters can be reduced in the base model by performing

a nondimensionalisation. The most rich, yet realistic, dynamics are provided by model

(3.13). It is also the most epidemiologically truthful model listed so far. Reducing the

number of free parameters and finding the persistent relations among them can be done
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Figure 3.2: Upper plot: numerically obtained values of z (viral load) component of the
solution for t → ∞ with initial condition x = 1, y = 0, z = 0.5 for different values of α.
For small values of α, the virus-free state persists. For 0.5 < α < 1.7, the stable virus-
abundant state is shown in stars. For greater values of α, the virus-abundant state loses
stability gaining a stable periodic orbit. Blue and orange points correspond to maximum
and minimum values of the stable periodic orbit, respectively. Lower plot: Blue lines
correspond to the eigenvalues of the Jacobian at v0, red lines stand for the eigenvalues
at the virus-free solution, v1, and black lines correspond to the eigenvalues of the virus-
abundant solution of (3.13), given by v2. Fixed parameters used for these simulations:
β = 5, δ = 0.5, γ = 1, κ = 4, ν = 2, ζ = 1.
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Figure 3.3: Solutions of model (3.13) schematically represented in the biologically mean-
ingful phase space for three different values of α increasing from panel (a) to panel (c),
and corresponding to stability of different equilibrium points, v1 and v2. The blue, red,
and black circles represent the trivial, virus-free, and virus-abundant solutions, respectively.
Three initial conditions for each plot are chosen randomly. The arrows along curves indicate
the direction of the trajectories.

Figure 3.4: Two-dimensional bifurcation diagram for model (3.13), using α and γ as control
parameters. Fixed parameters used for these simulations: β = 5, δ = 0.5, κ = 4, ν =
2, and ζ = 1.
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(a) v1 is a sink, α = 0.5 (b) v2 is a sink, α = 0.8

(c) v2 is a stable spiral, α = 1.5 (d) v2 has a stable periodic orbit, α = 3

Figure 3.5: Numerical solutions of model (3.13) for four values of α, corresponding to
four different behaviours of the system. Three initial conditions for each plot are chosen
randomly. The blue, red, and black circles represent the trivial, virus-free, and virus-
abundant solutions, respectively. Fixed parameters used for these simulations: β = 5, δ =
0.5, γ = 1, κ = 4, ν = 2, ζ = 1.
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by a nondimensionalization of the model (3.13). In terms of the old variables t, x, y, z, new

variables t̄, x̄, ȳ, z̄ are defined in the following way:

t = (β − δ)−1t̄, x =

(
1− δ

β

)
K x̄, y =

(
1− δ

β

)
K ȳ, z =

(
1− δ

β

)
κK z̄.

New non-dimensional parameters substitute the corresponding old parameters as follows:

ᾱ =
κK

β
α, γ̄ =

γ

β − δ
, ν̄ =

ν

κ
, ζ̄ =

ζ

β − δ
.

Ignoring bars merely for notational convenience, we obtain the nondimensionalized system

ẋ = x(1− x)− α z x,

ẏ = α z x− γ y,

ż = γ y − ν α z x− ζ z.

(3.14)

The system (3.14) has three equilibria:

v0 := {x = 0, y = 0, z = 0} ;

v1 := {x = 1, y = 0, z = 0} ;

v2 :=

{
x =

ζ

α (1− ν)
, y =

ζ ((1− ν)α− ζ)

α2(1− ν)2γ
, z =

(1− ν)α− ζ
α2(1− ν)

}
.

(3.15)

As expected, by undergoing the same analysis, we find that model (3.14) leads to results

quantitatively matching with those of model (3.13) for ranges of parameters and variables

chosen according to the nondimensionalization. A discussion of these results is omitted

to avoid repetition. However, in comparison to its superior – in the sense of the straight-

forwardness of biological interpretation – parent model, the number of free parameters of

system (3.14) decreased to four. Keeping the number of free parameters minimised is a

useful trait for the extended systems based on model (3.13).
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Chapter 4

Coexistence of wild-type and

mutant viral strains

The main results of this chapter are published in Nurtay A, Hennessy MG,

Sardanyés J, Alsedà L, Elena SF. 2019 Theoretical conditions for the coexistence

of viral strains with differences in phenotypic traits: a bifurcation analysis. R.

Soc. open sci. 6: 181179. http://dx.doi.org/10.1098/rsos.181179. The more

detailed discussion of this work is presented here, below.
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In this chapter, two different strains of a virus are introduced: the wild-type (wt) and

mutant strains. This allows us to model the evolutionary mechanisms which determine the

long-term coexistence of different genetic variants and strains that, in principle, compete for

the same resources (e.g. susceptible cells). Understanding the evolutionary forces of such

intraspecific competition or strain coexistence are a crucial component for understanding

the long-term fate and composition of viral populations and for a thoughtful design of

more robust control strategies for known and future outbreaks [121]. Consequently, the

coexistence of evolving pathogens has been the target of extensive research [79, 39, 104, 117].

In the mathematical theory of population genetics, mutation, which is understood as any

change in the genome of an organism, is often modelled as a “flow” between populations of

initial wt individuals and emerging mutant individuals [8, 18, 109, 30]. Here, we introduce

mutation into a mathematical model in a similar way although avoiding forceful restrictions

put upon mutant strains and allowing the mutant virus to have similar characteristics as

the wt virus. The difference between mutant and wt strains occurs when focusing the study

on specific phenotypic characteristics. One of the main characteristics to focus on when

investigating the survival of a population in dynamical systems that present competition or

coexistence [94, 93, 75], is fitness. In the case of virus evolution, fitness is often considered

to be proportional to the infection rate of the virus [80, 140, 136]. It is known that infection

rates differ between strains, a fact that has significant implications for the evolution of

virulence and strain coexistence in nature [137]. Even the balance between genetic diversity

and competition is believed to be achieved due to the possibility of coexistence among strains

with differences in infection rates [9]. In other words, a direct competition for infecting

available cells mediates the stable coexistence only when competitive abilities in viral clones

satisfy certain pairwise asymmetries [46]. A secondary phenotypic characteristic that can

differ between viral strains is their strategy for exploiting the host cell, i.e. their virulence

[107]. The evolution of virulence has received great attention from theoreticians, particularly

on the coevolution between resistance and virulence traits and their combined effect on

host and virus dynamics [15, 139]. However, understanding the evolution of virulence for

coexisting viral strains still requires attention due to the complexity of the underlying

evolutionary and dynamical processes, being inherently nonlinear. Many of the models

brought forward to explain the evolution of virulence take into consideration the processes

of coinfection and superinfection [96, 23, 33, 17], where the host is infected simultaneously

or sequentially by more than one pathogen strain. Here and further, infection will be

modelled at the single-cell level and coinfection will therefore be neglected. The benefit of

this approach is that analytical insights into coexistence of viral strains can be obtained.
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The purpose of this chapter is to illustrate, by means of a dynamical mathematical

model, the conditions for coexistence of viral strains that considers both a wt viral strain

and its mutants. We present analytical and numerical results focusing on the parameters

related to the differential phenotypic traits of the wt and mutant strains. Conditions for

coexistence and invasion have previously been studied using a mathematical model of one

host shared between two competing parasites [54]. However, this model did not incorporate

the mutation of viruses as a factor, and thus neglected the input of new strains into the

system. Nearly all mathematical models in epidemiology that detect various dynamical

behaviours with multi-strain infections illustrate the necessity of numerical approaches and

the dependency of such models on a large number of parameters [62, 91, 10, 1, 16]. A

classical approach used in epidemiology [84] to circumvent this difficulty is to introduce

dimensionless parameter groups, such as the basic reproduction number R0, as in Ref. [135].

However, the number of dimensionless groups can still become large as additional complexity

is introduced into the model, as is the case here. Thus, we perform a bifurcation analysis

to systematically track how the dynamics of the system change as multiple parameters are

varied. In general, the study of parameters in terms of their effect on the stability of certain

states of a model is a highly effective way to gain important insights into the investigated

system [81, 53, 85].

4.1 Modelling mutation and coexistence

Assume that the wt strain of a virus, z, infects a susceptible cell, x, and creates an infected

cell, y, which is linked to the wild type of the pathogen. The infected cell y mostly generates

the wt strains, but with rate µ it produces other types of virus. Since strains can change and

mutations occur predominantly during the replication and production of daughter virions by

an infected cell, the mutation of virus is considered as a population decay/growth of infected

cells. All viral strains differing from the wt are called mutant strains, z�. Now, both virus

types, z� and z, infect the susceptible cell population, x, and infected cells become linked

to the viral strain, y� and y. Via infected cells the virus replicates and produces its own

type of virions. Moreover, as cells from the infected population y mutate with rate µ into

cells of population y�, the size of the latter population increase at the same rate µ. This,

implicitly, affects the growth of the population of mutant strain z�. The other processes are

the same as in model (3.13), which hold for each type of strain. The time evolution of the
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interacting population is described as follows:

ẋ = β x(1− x/K)− α� z� x− α z x− δ x,

ẏ� = α� z� x+ µy − γ� y�,

ẏ = α z x− µy − γ y,

ż� = κ� γ� y� − ν� α� z� x− ζ� z�,

ż = κ γ y − ν α z x− ζ z.

(4.1)

Initial conditions for the system (4.1) are non-negative values:

x(0) = X, y�(0) = Y �, y(0) = Y, z�(0) = Z�, z(0) = Z.

Short-hand notation for the five-dimensional vector of initial conditions is v(0) = {X,Y �, Y, Z�, Z}.
If not mentioned otherwise, all the numerical simulations will have Y � = 0 and Y = 0 due

to the initial portion of the infected cells in a simulated batch being zero. Usually, we

introduce only healthy cells and the necessary strains of virus allowing the infected cells to

appear during the simulations. This system has four equilibria:

{x = 0, y� = 0, y = 0, z� = 0, z = 0};{
x =

(β − δ)K
β

, y� = 0, y = 0, z� = 0, z = 0

}
;{

x =
ζ�

α� (κ� − ν�)
, y� =

(K (β − δ) (κ� − ν�)α� − β� ζ) ζ�

K (κ� − ν�)2 (α�)2γ�
, y = 0,

z� =
K (β − δ) (κ� − ν�)α� − β� ζ�

K (κ� − ν�) (α�)2
, z = 0

}
;{

x =
ζ(γ + µ)

Aα
, y� =

Bµζ(C + α�γκ�ζ)

A2C(α)2γ�K
, y =

Bζ(C − α�µκ�ζ)

A2C(α)2K
,

z� =
Bµκ�ζ

ACαK
, z =

B(C − α�µκ�ζ)

AC(α)2K

}
;
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where

A = γ�κ− (µ+ γ)ν;

B = (γ�κ− (µ+ γ)ν) (β − δ)Kα− βζ (µ+ γ) ;

C = αζ� (γ�κ− (µ+ γ)ν)− α�ζ (γ(κ� − ν�)− µν�) .

Nondimensionalization simplifies model (4.1), and old variables in terms of new non-dimensional

variables would be as follows:

t = (β − δ)−1t̄, x =

(
1− δ

β

)
K x̄, yi =

(
1− δ

β

)
K ȳi, zi =

(
1− δ

β

)
κ�K z̄i,

and new non-dimensional parameters substitute corresponding old parameters:

ᾱi =
κ�Kαi

β
, ν̄i =

νi

κ�
, κ̄ =

κ

κ�
, µ̄ =

µ

β − δ
, p̄i =

pi

β − δ
,

where p stands for all other parameters, namely: γ�, γ, ζ�, and ζ. Here, i over variables and

parameters stands either for a square � or its absence.

The nondimensionalization puts its restrictions onto the model, but these restrictions

are biologically justified. For example, taking β > δ, as shown later, forces the trivial

equilibrium to be unstable. However, letting the growth rate of uninfected cells being

strictly greater than death rate of uninfected cells is an acceptable trade. Ignoring bars,

as before with system (3.14), for a better appearance of the current model, we obtain the

nondimensionalized system

ẋ = x(1− x)− α� z� x− α z x,

ẏ� = α� z� x+ µy − γ� y�,

ẏ = α z x− µy − γ y,

ż� = γ� y� − ν� α� z� x− ζ� z�,

ż = κγ y − ν α z x− ζ z.

(4.2)

The equilibria of the model remains qualitatively the same and in terms of non-dimensional
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parameters, who have lost their bars for aesthetic purposes, look as follows:

v0 := {x = 0, y� = 0, y = 0, z� = 0, z = 0};

v1 := {x = 1, y� = 0, y = 0, z� = 0, z = 0};

v2 :=

{
x =

ζ�

α� (1− ν�)
, y� =

(α� (1− ν�)− ζ�) ζ�

(α�)2 (1− ν�)2 γ�
, y = 0,

z� =
α� (1− ν�)− ζ�

(α�)2 (1− ν�)
, z = 0

}
;

v3 :=

{
x =

ζ(γ + µ)

Aα
, y� =

Bµζ(C + α�γζ)

A2C(α)2γ
, y =

Bζ(C − α�µζ)

A2C(α)2
,

z� =
Bµζ

ACα
, z =

B(C − α�µζ)

AC(α)2

}
;

where

A = γκ− (µ+ γ)ν;

B = − ((ν − κ)α+ ζ) γ − µ (αν + ζ) ;

C = − (ζ (ν − κ)α− α ζ (ν − 1)) γ − µ (−αν ζ + αν ζ) .

The trivial state, v0, corresponds to the case when all populations go extinct. At the

virus-free state, v1, only the population of uninfected cells have a positive size with other

populations being zero. The third solution, which is the wt-free state v2, describes a case

when the mutant strain outcompetes the wt strain, the population of which is zero, and

the infected cells corresponding to wt strain is also zero with all other populations having

nonzero values. The coexistence state, v3, is the most elaborate one because neither of the

populations at this state is a constant zero. Further we study the stability of these four

states.
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4.1.1 Differences in infection rates

Linear stability analysis close to the equilibrium points can elucidate the overall dynamics

of the system (4.2). First, consider the Jacobian matrix for a vector v := {x, y�, y, z�, z}:

J =



−α� z� − α z − 2x+ 1 0 0 −αx −α� x

α z −γ − µ 0 αx 0

α� z� µ −γ� 0 α� x

−α ν z κ γ 0 −αν x− ζ 0

−α� ν� z� 0 γ� 0 −α� ν� x− ζ�


Straightforward calculations for the trivial solution yield eigenvalues

Λ0 = (1,−ζ,−ζ�,−γ�,−γ − µ)T . (4.3)

For all the agreed values of parameters, the trivial solution v0, as mentioned before, is

always unstable, i.e. a saddle. The instability of v0 hints on possible stability of the next

equilibrium. Although it is still possible to find analytical expressions for the eigenvalues

of the equilibrium v1, they are not as presentable as Λ0. In order to perform the stability

analysis for this equilibrium, it is more useful to consider the characteristic polynomial of

the Jacobian at v1. The polynomial det(J − λI) = 0 can be regrouped in the form of three

factors P1(λ) · P2(λ) · P3(λ) = 0, where λ is an eigenvalue:

(λ+ 1)︸ ︷︷ ︸
P1

·

· (λ2 + (αν + γ + µ+ ζ)λ− αγ κ+ αγ ν + αµν + γ ζ + µ ζ)︸ ︷︷ ︸
P2

·

· (λ2 + (α� ν� + γ� + ζ�)λ+ α� γ� ν� − α� γ� + γ� ζ�)︸ ︷︷ ︸
P3

= 0

(4.4)

The first factor provides a constant eigenvalue, λ = −1, which reserves the possibility for

stability of v1. Although the next two factors P2 and P3 do not provide obvious eigenvalues,

they can lead to a hint for bifurcation points. Based on our knowledge of two kinds of

bifurcations that appear in the previous models, which are similar to this one, we may

expect to find transcritical and Hopf bifurcations. A Hopf bifurcation for the equilibrium
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v1 is impossible because this would require a complex conjugate pair of eigenvalues with

zero real part, which in terms of P2 and P3 means that their linear coefficients must be

zero. However, both linear coefficients, αν + γ + µ + ζ of P2 and α� ν� + γ� + ζ� of

P3, are strictly positive. A transcritical bifurcation occurs when the Jacobian has a zero

eigenvalue and two equilibria non-destructively collide. In terms of the quadratic expressions

for eigenvalues, which have positive linear coefficients, we equate their free terms (i.e. their

constant coefficients) to zero to obtain a pair of eigenvalues, one of which is zero and the

other is nonzero, for each of the P2 and P3. In other words, by solving P2(λ = 0) = 0 and

P3(λ = 0) = 0, we obtain conditions for the transcritical bifurcation:

−αγ κ+ αγ ν + αµν + γ ζ + µ ζ = 0,

α� γ� ν� − α� γ� + γ� ζ� = 0.

(4.5)

These conditions can be rewritten as R0 = 1, where

R0 :=
α

ζ

(
κ

1 + µγ−1
− ν
)
, (4.6)

and, similarly, as R�

0 = 1, where

R�

0 :=
α�

ζ�
(1− ν�) . (4.7)

It will be shown below that R0 and R�

0 are the basic reproductive numbers for the wt and

mutant strains, respectively. When R0 = 1, the virus-free state v1 and the coexistence state

v3 intersect. By expanding v3 around R0 = 1, we find that it has negative components when

R0 < 1 and thus lies outside of the biologically meaningful phase space. However, all of

the components of v3 become positive when R0 > 1. Likewise, expanding the equilibrium

around R�

0 = 1 shows that this condition corresponds to points where the virus-free state

v1 and wt-free state v2 intersect. For R�

0 < 1, some components of v2 are negative; for

R�

0 > 1, all components are positive. In the case when both R0 = R�

0 = 1 hold, there

is a triple intersection of v1, v2, and v3. Furthermore, the Jacobian has a double zero

eigenvalue at this point, indicating the onset of a non-degenerate or degenerate Bogdanov-

Takens bifurcation. As will be shown in Section 4.3, the Bogdanov-Takens bifurcations in

this model are of degenerate type. More generally, we find that v2 and v3 intersect when
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R�

0 = R0, that is, when

α

ζ

(
κ

1 + µγ−1
− ν
)

=
α�

ζ�
(1− ν�). (4.8)

Thus, there are three curves of transcritical bifurcations defined by R0 = 1, R�

0 = 1, and

R�

0 = R0, all of which simultaneously intersect at the DBT point. Whenever either of these

combinations holds, there is a bifurcation point. Expressing from (4.6) and (4.7) α and α�,

respectively, yields

αtr =
γ ζ + µ ζ

γ(κ− ν)− µ ν
, α�

tr =
ζ�

1− ν�
. (4.9)

The obtained expressions would be equivalent if there was no µ (keeping in mind that κ

was taken as a ratio of κ and κ�). By substituting the expression for α� into v2 we see

it becoming equal to v1. Similarly, substituting the expression for α into v3, we see it

becoming equal to v1, too. By checking numerically the signs of eigenvalues around these

points, we can conclude that (4.9) are the transcritical bifurcation points between v1 and

v3 and between v1 and v2, respectively.

Based on these findings, we can begin to schematically sketch the one- and two-dimensional

bifurcation diagrams: the constant equilibrium v1 crosses v2 at value of α�

tr and the transcrit-

ical bifurcation leads to these equilibria exchanging their stability. Along another parameter

axis, v1 crosses v3 at value of αtr and it also swaps their stability. The two-dimensional

bifurcation diagram with α and α� on the axis, shown in Figure 4.1, depicts four regions

separated from one another by a horizontal and vertical line representing curves of transcrit-

ical bifurcations defined by the expressions in (4.9). The lines separating the four regions

in Figure 4.1 are horizontal and vertical because the expressions for αtr and α�

tr in (4.9) are

mutually independent. The values of the other parameters are set to

µ = 0.1, κ = 1, γ� = γ = 0.25, ν� = ν = 0.5, ζ� = ζ = 0.2222. (4.10)

By numerically calculating the eigenvalues near the intersection of the two bifurcation

curves, we find that region I with smaller values of both parameters is the region where

the equilibrium v1 is stable. Right after crossing the boundary into region II, v3 becomes

stable. According to the eigenvalues of the Jacobian for parameters of region III, v2 is

stable here . Note, that these stability are calculated close to the bifurcation curves, and

stability and type of equilibria might change with further increasing parameters as we see

below.
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Figure 4.1: Two-dimensional bifurcation diagram with analytically obtained transcritical
bifurcation (dashed) lines. The feasible region of parameter space is divided into four sub-
regions by the transcritical bifurcation. Thin dotted lines indicate the chosen values of
parameters for the one-dimensional bifurcation diagrams displayed below in Figure 4.2.
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To examine the stability of wt-free state v2, we obtain the eigenvalues from the char-

acteristic polynomial computed from det(J(v2) − λI) = 0. This equation can be fac-

torised and rewritten as Q2(λ) · Q3(λ) = 0, where Q2 and Q3 are quadratic and cubic

polynomials in λ, respectively. The exact form of Q2 is not required here. We write

Q3(λ) = aλ3 + bλ2 + cλ+ d = 0, where

a = α�(1− ν�)2,

b = (1− ν�) (α� γ�(1− ν�) + ζ�(α� + 1)) ,

c = ζ�
(
(ν�)2α� + (ζ� − α� − γ�)ν� + ζ� + γ�

)
,

d = (1− ν�)ζ�γ�(α�(1− ν�)− ζ�).

(4.11)

Following the analysis scheme discussed earlier, to obtain conditions for Hopf bifurcations

of v2, we search for a purely imaginary pair of eigenvalues. Setting Q3(λ = ±iω) = 0,

we obtain the critical condition for a Hopf bifurcation, ad = bc, with ω =
√
d/b being

the angular frequency of the emerging periodic orbits (POs). Interestingly, for this Hopf

bifurcation, there is no dependence on parameters associated with the wt virus strain. For

all biologically meaningful solutions of ad = bc, the mutant viral strain has the potential

to gain periodic behaviour through the creation of a stable PO. The other factor, Q2(λ),

provides no possibility for a Hopf bifurcation due to a strictly positive linear coefficient in

the quadratic polynomial.

In order to determine the behaviour of all the equilibria, let us consider cross sections

of Figure 4.1: one-dimensional bifurcation diagrams. The indicators (thin, dotted lines) on

Figure 4.1 show chosen cross sections of the bifurcation diagram at fixed value of parameters.

The difference between the four states can be easily illustrated by considering only the first

component of solutions, x, see Figure 4.2. This justifies the use of the uninfected cell

population for all one-dimensional bifurcations of this Chapter, if not specified otherwise.

That being said, there is an equilibrium which is not presented in these bifurcation diagrams.

The trivial equilibrium is unstable for all values of parameters.

In Figure 4.2 (a, b) one-dimensional bifurcation diagrams are plotted for fixed values

of α� = 0.3 < α�

tr and α = 0.7 < αtr. For small values of these parameters there is

always a stable equilibrium, and for both of the one-dimensional bifurcation diagrams, that

stable equilibrium is v1. This matches with the results of linear stability analysis and

shows that with parameters α� −→ 0+, α −→ 0+, the stability of v1 stays the same in the

whole region I. Although there is a transcritical bifurcation between v2 and v3 in region

I, this bifurcation happens to biologically meaningless equilibria and, moreover, does not
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(a) α� = 0.3 (b) α = 0.7

Figure 4.2: One-dimensional bifurcation diagrams as cross sections of Figure 4.1 with spec-
ified transcritical bifurcation points (‘BP’) and Hopf bifurcation points (‘H’). These dia-
grams show the change in a population of uninfected cells (first components of equilibria).
Dashed lines indicate unstable equilibria, while solid lines correspond to stable equilibria.
An equilibrium or a periodic orbit is plotted in blue when all the components of it have
biologically meaningful (positive) values, otherwise it is plotted in orange. Round markers
show maximum and minimum of periodic orbits.

change the stability of v2 and v3. With growing values of parameters there are standard

transcritical bifurcations (marked as BP), which are determined analytically in (4.9). As

mentioned above, at increasing α, the stability of v1 shifts to v3. The same dynamics can

be observed in the bifurcation diagram increasing α�. In this case, stable v1 meets at the

transcritical point the unstable equilibrium v2, and both change their stability. Increasing

the values of parameters even further along the stable v3 and v2, we find supercritical Hopf

bifurcations. These Hopf bifurcations provide stable periodic orbits around the equilibria for

all the values of parameters after the bifurcations and inevitably affect the two-dimensional

bifurcation diagram. The bifurcations found in these one-dimensional diagrams can be

continued in the two-dimensional bifurcation diagram, which more qualitatively different

regions to the parameter space.

Figure 4.3 is an improved version of the previous two-dimensional bifurcation diagram.

Additionally to the transcritical bifurcations (dashed lines) from Figure 4.1, new-found

continuations of Hopf bifurcations (solid curves) are plotted. Part of the horizontal Hopf

bifurcation line divides region III into two regions: IIIa, for which v2 changes from a

stable node to a stable spiral at increasing α�, and IIIb, for which there are stable periodic

orbits around v2. The shorter Hopf bifurcation curve separates regions II and IV into

two subregions each. Region IIa contains parameters for which equilibrium v3 is stable,

and with increasing α turns from a stable node into a stable spiral. As soon as the Hopf
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Figure 4.3: Two-dimensional bifurcation diagram with transcritical (dashed) and Hopf
(solid) bifurcations. The parameter space is divided into eight sub-regions. The thin dot-
ted lines indicate the values of the parameters chosen to build the bifurcation diagram of
Figure 4.4. Blue and orange represent curves of bifurcations that occur inside and outside
of biologically meaningful phase space.
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(a) α� = 1 (b) α = 2

Figure 4.4: One-dimensional bifurcation diagrams where transcritical bifurcation points
(‘BP’) and Hopf bifurcation points (‘H’) are marked. Blue lines and blue markers stand
for biologically meaningful solutions, otherwise, equilibria and periodic orbits (POs) are
plotted in orange. Round markers show maximum and minimum of POs. Solid lines and
filled markers stand for stable equilibrium and stable POs, respectively.

curve is crossed into region IIb, v3 develops, stable periodic orbits around itself. At this

stage of the analysis, we cannot be certain about the behaviour of the system in other

regions without running simulations. To illustrate the non-trivial dynamics that can occur

consider, for example, region IV . Remember that in IIIa the equilibrium v2 is stable, and

that IIIa and IV are separated by a transcritical bifurcation. We also know that in IIa the

equilibrium v3 is stable, and IIa and IV are also separated by a transcritical bifurcation.

This knowledge would seem enough to guess that IV should accommodate parameters for

which v1 is stable again. However, this scenario is far from being the case (see below).

Let us consider one-dimensional bifurcation diagrams for parameter values of new re-

gions. In Figure 4.4 (a), we see a bifurcation diagram for a fixed value of α�

tr < α� = 1.0 <

α�

H, and varying α we cross regions IIIa, IV , and IV c. This bifurcation diagram shows

that for smaller values of α (read ‘region IIIa’), the equilibrium v2 is stable. To describe

the bifurcations of the plot in a sequenced manner, we have to recall that equilibrium v1 is

unstable for region IIIa. At the analytically found transcritical bifurcation, (as before) v1

intersects newly biologically meaningless v3, and this does not affect the overall dynamics

of the system. Going back to the stable v2, we see that it later undergoes the transcritical

bifurcation with v3. This transition is happening inside region IV ; following the direction of

growth of α, the stable v3 becomes unstable in region IV c while developing stable periodic

orbits around itself, and v3 has the same Hopf bifurcation it develops transitioning from

IIa to IIb (see Figure 4.2 (a)). The transcritical bifurcation between v2 and v3 must occur

after αtr and before αH, i.e. in region IV .
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In Figure 4.4 (b), a bifurcation diagram for a fixed value of αtr < α = 2.0 < αH is

shown. Similar to Figure 4.4 (a), but varying α� throughout the regions IIa, IV , and

V , we study the stability and behaviour of the equilibria. The unstable equilibrium v1 at

first undergoes a transcritical bifurcation with v2, which is unstable and not biologically

meaningful. This point matches with an orange – biologically meaningless – transcritical

bifurcation between regions IIa and IV in Figure 4.3, and does not affect the stability of the

equilibria due to high dimensionality of the equilibrium points. Although this bifurcation

does not change the stability of either of the equilibria, the transition brings v2 into the

biologically meaningful variable space. After that, the same unstable v2 has a transcritical

bifurcation with v3, which has been stable throughout IIa and IV . At the latter bifurcation,

v3 becomes biologically meaningless and unstable. Meanwhile, v2 turns stable (first – node,

then – spiral), and eventually becomes unstable after its Hopf bifurcation and gains a

stable periodic orbit in region V . Note that the second Hopf bifurcation marked along

negative v3 on Figure 4.4 (b) has biologically meaningless orbits which were dropped while

plotting. Mathematically speaking, periodic orbits are there, and parameter values for the

bifurcations can be found along the orange curve of Hopf bifurcation in Figure 4.3.

With these findings we improve the two-dimensional bifurcation diagram, see Figure 4.5.

There is indeed a transcritical bifurcation between equilibria v2 and v3 separating the region

IV into IV a and IV b. The behaviour of the system at parameter values of region IV can be

summed up in the following way: Due to the biologically meaninglessness of the transcritical

bifurcation between the regions IIIa and IV a, parameters from both of those regions affect

the dynamics of the system in the same manner, i.e. the equilibrium v2 is stable in IIIa

and IV a. For similar reasons, the equilibrium v3 is stable in regions IIa and IV b.

One end of the continuation of the transcritical bifurcation between v2 and v3 meets two

other transcritical bifurcations at a Bogdanov-Taken (BT) point and prolongs into region

I. Region I does not gain any new features because neither v2 nor v3 are biologically

meaningful here (orange, dashed line), that is region I stays a region where equilibrium v1

is stable. The other end of the continuation of the transcritical bifurcation between v2 and

v3 at larger values of parameters meets two Hopf bifurcations at the Zero-Hopf (ZH) point

and prolongs even further into region V . At this stage of discussion, we try to gain insights

of the dynamics in region V by considering cross sections of the bifurcation diagram as was

done before. We will examine one-dimensional bifurcation diagrams for parameters crossing

regions IIIa, V , V a, and regions IIb, IV c, V a, and V .

By increasing α for the fixed value of α� = 2.32, we obtain one-dimensional bifurcation

diagram of Figure 4.6 (a). Neither of the equilibria is stable throughout the plot. However,

from Figure 4.2 (b), we know that for large values of α�, the unstable equilibrium v2 has
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Figure 4.5: Two-dimensional bifurcation diagram with transcritical bifurcations (dashed)
and Hopf bifurcations (solid). The parameter space is divided into at least ten sub-regions.
Thin dotted lines indicate the chosen values of parameters for the following one-dimensional
bifurcation diagrams. Blue and orange represent curves of bifurcations that occur inside
and outside of biologically meaningful phase space.

(a) α� = 2.32 (b) α = 4.5

Figure 4.6: One-dimensional bifurcation diagrams with at least two periodic orbits in each.
Neither of the equilibria is stable (dashed curves and lines), however, there are always stable
and biologically meaningful periodic orbits throughout the plots (filled and blue markers).
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periodic orbits around it. Therefore, the unstable v2 has the stable (filled) and biologically

meaningful (blue) periodic orbit markers around it. Increasing α, we notice a transcritical

bifurcation between v1 and v3. Further, there are two consecutive biologically meaningless

Hopf bifurcations along the homogeneously unstable v3. These Hopf bifurcations occur

exactly at parameter values of α in the biologically meaningless (orange) curve of Hopf

bifurcation for the fixed α� in Figure 4.5. Increasing α after the last Hopf point, we find

a transcritical bifurcation of v2 and v3. This transcritical bifurcation does not change the

stability, but after it, both v2 and v3 are in the biologically meaningful variable space.

Following the growing α even further, we finally find a transcritical bifurcation of periodic

orbits (not shown: occurs for much greater values of α). The stable periodic orbit around

v2 meets the unstable periodic orbit created at the last Hopf bifurcation of biologically

meaningless v3. The transcritical bifurcation of periodic orbits change stability of inter-

secting periodic orbits. For all values of α after the critical value, there are only stable and

biologically meaningful periodic orbits around v3.

In Figure 4.6 (b), we consider a vertical cross section of the two-dimensional bifurcation

diagram (see Figure 4.5) for a large value of α fixed. Gradually increasing α�, we can observe

a transcritical bifurcation between unstable equilibria v1 and v2 that does not lead to an

exchange of stability. Meanwhile, i.e. for small values of α�, v3 has stable periodic orbits.

At the critical value of α�

H , the unstable equilibrium v2 gains unstable yet biologically

meaningful periodic orbits around itself. Short after that, the stable periodic orbits of

v3 intersect unstable periodic orbits around v2 and the periodic orbits exchange stability.

Moreover, after the transcritical bifurcation of periodic orbits, some components of unstable

periodic orbits of v3 become negative, making it biologically meaningless. By increasing the

value of α� a little more, we see an intersection of v2 and v3. This transcritical bifurcation

puts unstable v3 (and its recently unstable periodic orbits) out of the biologically meaningful

variable space. This leads us back to the previously noted matter, that for very large values

of α� (read region V ), there are stable and biologically relevant periodic orbits around v2.

By analysing the last two bifurcation diagrams, we found intersections of periodic orbits.

From the available results, we can deduce the existence of a curve of transcritical bifurcations

of periodic orbits between the horizontal Hopf bifurcation line (of equilibrium v2) and

transcritical bifurcation of equilibria v2 and v3. By numerically continuing the intersection

of periodic orbits on the two-dimensional bifurcation diagram, we see in Figure 4.7 that the

curve of transcritical bifurcations of periodic orbits, which dividing the region into V a and

V b, collide with the degenerate Zero-Hopf point. So far the α and α� parameter space is

divided into following regions:

• Region I: v1 is a stable node;
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Figure 4.7: Two-dimensional bifurcation diagram with biologically differing regions. Solid
lines stand for supercritical Hopf bifurcations, dashed lines are transcritical bifurcations
of equilibria, and a star-marked curve is the transcritical bifurcations of periodic orbits.
Region I has v1 as a stable node; region II has stable v3; region III has stable v2; regions
IV and V a have stable periodic orbits around v3; regions V b and V c have stable periodic
orbits around v2.

• Region II: v3 is a stable node or stable spiral;

• Region III: v2 is a stable node or stable spiral;

• Region IV : v3 has stable periodic orbits;

• Region V a: v3 has stable periodic orbits, v2 has unstable periodic orbits;

• Region V b: v2 has stable periodic orbits, v3 has unstable periodic orbits;

• Region V c: v2 has stable periodic orbits.

The wt strain of virus throughout this section had parameter values that were 10% less than

those of the mutant strain of virus�. In order to see how this affected the overall dynamics

of the system, we compare the bifurcation diagram on Figure 4.7 with a bifurcation diagram

(see Figure 4.8 (a)) for the case when all the parameters are equal. Two parameters are
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(a) µ = 0.1 (b) µ = 0.2

Figure 4.8: Two-dimensional bifurcation diagram for system (4.2) with biologically differing
regions for equal parameters. Solid lines indicate supercritical Hopf bifurcations, dashed
lines are transcritical bifurcations of equilibria, and a star-marked curve is the transcritical
bifurcations of periodic orbits. Region I has v1 as a stable node; region II has stable v3;
region III has stable v2; regions IV and V a have stable periodic orbits around v3; regions
V b and V c have stable periodic orbits around v2.

worth mentioning separately: κ is a ratio of the dimensional κ of the wild-type virus to

κ� and in case of equal parameter values the dimensionless κ should be 1. The constant

µ is a single uncoupled parameter. In fact, two strains of virus can be differentiated only

by a flow of the population from one strain (“generalist”) to another strain (“specialist”)

at rate µ. Almost no qualitative effect of different values of coupled parameters can be

seen from comparison of Figures 4.7 and 4.8 (a). A slight change in the curvature of the

Hopf bifurcation curve and an increase in the slope of transcritical bifurcation of equilibria

are worth noting, although are not crucial for the discussion. The next intuitive question

would lie in studying the effect of mutation parameter µ. The slight change in µ leads to

quantitative differences in the bifurcation diagram (see Figure 4.8 (b)), but qualitatively

the bifurcation diagrams remain the same.

4.1.2 Virulence-based study

We obtained a two-dimensional bifurcation diagram illustrating a transcritical bifurcation

of periodic orbits. This study was based on our interest in the role of the infection rate in

the population dynamics. We now study the effect of the strains’ virulence (parametrised

by γ and γ�) on the dynamics of the system by building bifurcation diagrams. The infection

rates are chosen to be from the different regions of the two-dimensional bifurcation diagram

shown in Figure 4.8 (a), which are based on the reference values γ� = γ = 0.25. The other
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parameters are fixed to

µ = 0.1, κ = 1, ν� = ν = 0.5, ζ� = ζ = 0.2222. (4.12)

We focus on Regions I, II, and V of Figure 4.8 (a) as a starting point, covering all the

other regions from there.

We begin with the case where the infection rates are chosen to coincide with Region

I at the virulence reference values. These infection rates therefore correspond to basic

reproduction numbers that are less than one. From the definition of R�

0, we see that the

basic reproduction number of the mutant is independent of the virulence. Thus, changes in

γ� or γ cannot increase R�

0 beyond one. Therefore, Regions III and V , where the mutant-

type virus persists at the expense of the wt virus becoming extinct, cannot be entered. The

basic reproduction number for the wt virus is an increasing function of the virulence of the

wt virus. In the limit of very large virulence, γ → ∞, we find that R0 → α(κ − ν)/ζ.

Thus, if the infection rate α is so small that the limit of R0 is less than one, then it will

not be possible to leave Region I and both strains of the virus will always become extinct.

However, if α is sufficiently large and the basic reproduction number increases beyond one,

then a change in dynamics will be observed as γ is increased. By solving R0 = 1, a critical

value of the virulence of the wt virus is obtained:

γcrit =
µ

κ (ζα−1 + ν)−1 − 1
. (4.13)

Equation (4.13) is the condition for a transcritical bifurcation between the virus-free state

v1 and the coexistence state v3 and defines the boundary between Regions I and II. Thus,

only for values of γ > γcrit will the virus persist in the system for this choice of infection

rates.

The stability diagram for α = 0.5 and α� = 0.1 has been numerically computed and

is shown in Figure 4.9 (a). These values of the infection rate correspond to Region I at

the reference values of the virulence; see Figure 4.8 (a). As predicted, Regions III and V

are absent from the stability diagram. However, Region IV is also missing. Thus, for this

choice of infection rates, only Regions I and II can be entered by changing the values of

the virulence. Regions I and II are separated by a straight dash line given by the critical

condition (4.13).

We now consider infection rates given by α = 3, α� = 1, which correspond to Region

II at the reference virulence; see Figure 4.8 (a). The resulting stability diagram in terms

of the virulence is shown in Figure 4.9 (b). The choice of α� = 1 along with the values
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(a) α = 0.5, α� = 0.1 (b) α = 3, α� = 1 (c) α = 0.5, α� = 2

Figure 4.9: Two-dimensional bifurcation diagrams for γ versus γ� at different sets of in-
fection rates. Parameter values are given by (4.12) and (a) α = 0.5, α� = 0.1; (b) α = 3,
α� = 1; and (c) α = 0.5, α� = 2. Dashed and solid lines correspond to transcritical and
Hopf bifurcations, respectively. Region I: stability of trivial solution; Region III: stability
of wt-free state; Region II: stability of coexistence state; Region V : stable periodic orbit
(PO) around the wt-free state; Region IV : stable PO around the coexistence state.

of the parameters in (4.12) leads to R�

0 = 2.25. Thus, variations in the virulence cannot

bring the system to Region I and at least one type of virus will always persist. A transition

between Regions III and II can occur via the transcritical bifurcation between the wt-free

and coexistence states v2 and v3. The critical condition for this transcritical bifurcation

depends only on the virulence of the wt viral strain. Thus, the transition between Regions

III and II appears as the vertical dashed line in Figure 4.9 (b). Interestingly, this figure

shows that as the virulence of the wt virus is increased, the system transitions from Region

II to Region IV and then back to Region II. These transitions occur via supercritical

Hopf bifurcations, denoted by solid lines. This scenario corresponds to the so-called bubble

bifurcation (found in other epidemiological systems see e.g. [74]), in which the system is in

a stationary state, then enters into an oscillating one, and finally goes back to a stationary

state as the control parameter is changed.

To understand why Region V does not appear in the stability diagrams on Figure 4.9 (a)

and (b), we first recall that Region V is separated from Region III by a Hopf bifurcation

curve of the wt-free state v2. This Hopf curve has been calculated analytically from the

equality ad = bc, where a, b, c, and d are given in (4.11), and is a quadratic expression for γ�

independent of γ and α. Solving ad = bc to find γ�

crit (not shown due to complexity of the

expression) at the values of infection rates chosen for Figures 4.9 (a) and (b), we notice they

are outside of the positive parameters space. In fact, only for values of the mutant-type

infection rate that satisfy

α� >
ζ�

1− ν�

(
1 +

1

ν�

)
, (4.14)

equivalent to α� > 1.3332 for the chosen parameters, does the Hopf curve of v2 appear on
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a γ versus γ� stability diagram; see Figure 4.9 (c). Greater values of α� lead to increases in

the area of Region V under Region III.

The stability diagrams of Figure 4.9 indicate the impact of virulence on the complexity

of the dynamics. Clearly, the virulence of the mutant strain does not affect the survival of

the wt strain. That is, increases in γ� do not lead to an appearance or disappearance of

the wt strain. However, the survival of the mutant strain does not appear to depend on

γ� either. Importantly, the virulence of the wt strain, γ, strongly controls the dynamics

and the persistence of the wt strain. As can be seen for small values of γ, this strain can

become extinct as shown in Figure 4.9 (b). In other words, even for a superior infection

rate of the wt viral strain, there is a threshold of γ that must be surpassed in order for

this strain to exist. For inferior values that are below this threshold, the survival of the wt

strain is impossible because the rate of wt virion production, i.e. the death of rate infected

cells, is insufficient. The qualitative behaviour of solutions, i.e. whether the populations of

wt strains undergo oscillations or stabilise to a certain value, depends on the virulence in a

nontrivial way. As shown in Figure 4.9 (b), there is an interval of values for γ for which the

system has a stable PO governing the coexistence of strains, marked as Region IV . Outside

of this interval, the populations reach stable stationary states.

4.1.3 The effect of heterogeneity in mutation rates

Most of the previous analyses were conducted for the mutation rate fixed at µ = 0.1. We

now consider the effect of µ on the dynamics. This is a key parameter that has been largely

investigated within the framework of the error threshold [35, 20] and lethal mutagenesis [19]

in quasispecies theory. In general, the coexistence of two strains requires the basic repro-

duction number of the wt virus to be greater than one, R0 > 1, which can be interpreted

as a condition on the mutation rate:

µ < γ

(
κ

ζα−1 + ν
− 1

)
. (4.15)

Hence, for two strains to coexist, the mutation rate must be sufficiently small. This result

supports a conjecture that excess mutation exhausts the population of the wt strain, thereby

leading to a process similar to the well-known error catastrophe [20]. We would expect that

a gradual increase of the mutation rate contributes to a better success of the mutant strain

as the frequency of mutants generated de novo increases. The right-hand side of (4.15) is an

increasing function of α, reflecting the fact that a greater rate of infection by the wt virus

will offset a greater mutation rate. A stability diagram in terms of the mutation rate µ and

the wt infection rate α is shown in Figure 4.10 (a) for the case of α� = 0.1. The dashed line
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marking the boundary between Regions I and II, and also defining the region of coexisting

populations, has been obtained by replacing the inequality with equality in (4.15). As the

infection rate α increases, the boundary between Regions I and II reaches a horizontal

asymptote given by

µc = γ
(κ
ν
− 1
)
. (4.16)

For mutation rates that satisfy µ < µc, Regions II and IV can be entered from Region

I by increases in the infection rate, promoting coexistence. However, for µ > µc, only

the wt-free state can occur. Hence, Eq. (4.16) defines a critical, finite mutation rate at

which coexistence no longer becomes possible due to extinction of the wt virus due to the

outcompetition by the mutant strains. To explore this in more detail, we have repeated

the stability diagram shown in Figure 4.8 (a) using a value of µ = 0.5 > µc. The stability

diagram changes drastically, becoming that shown in Figure 4.10 (b), and contains only

three regions: I, III, and V . The stability diagrams in Figures 4.8 (a) and 4.10 (b) are

linked through the fact that as the mutation rate increases, the BT bifurcation shifts to the

right, eventually tending to infinity as the critical value is approached.

Finally, Figures 4.10 (c) and (d) illustrate how the equilibrium populations of infected

cells and viral strains change with increasing mutation rate µ. Specifically, we have used

α = 3 and α� = 1, in both panels. As µ increases beyond the point where (4.15) is satisfied,

the population of mutants (virions and infected cells) outcompetes the wt populations, see

Figure 4.10 (c) and (d). This phenomenon is similar to the error threshold defined in

quasispecies theory. Here we show that mutation is not only involved in this shift, but also

depends (at the infection-cell level) on virulence, burst size, and multiplicity of infection.

4.2 Modelling backward mutation

Ideally, we would like to have a model that is simple and flexible enough to be able to

study and observe as many variations of the dynamics as possible. These kind of models

are usually impossible to study analytically, which would provide a deeper understanding

effects of the underlying processes. However, throughout the development of the model by

keeping continuance between two consecutive schemes, we can always rely on the patterns in

results of a simpler model as a hint. There are many ways to model mutation. This section

approaches the task by considering the mutation as a partial, possibly implicit, transfer from

one population of viral strains to another. The directed flow, as in models (4.1) and (4.2),

can be designed as simple as an exponential addend with the same rate in two equations,

one – positive – and another – negative. This implies strict limits on the behaviour of every
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(a) α� = 0.1 (b) µ = 0.5

(c) (d)

Figure 4.10: (a,b) Two-dimensional stability diagrams with a pair of bifurcation curves:
transcritical bifurcations (dashed) and supercritical Hopf bifurcations (solid). We use α� =
0.1 and consider stability diagram over parameters α versus µ. (b) We set µ = 0.5 > µc
and rebuild the α versus α� stability diagram. As before, Region I: stability of virus-free
solution; Region III: stability of wt-free state; Region II: stability of coexistence state;
Region V : stable periodic orbit (PO) about wt-free state; Region IV : stable PO about
coexistence state. In the lower panels we display one-dimensional bifurcation diagrams for
(c) infected cell and (d) viral strain populations versus µ; note, that only stable equilibria
(solid curves) and stable POs (filled markers) are shown. We set α = 3.0 and α� = 1.0 and
track the outcompetition of the wt strains by the mutant ones at increasing µ, resulting in
a type of error-threshold found after the oscillatory and static coexistence scenarios for µ
satisfying (4.15).
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strain, and although this approach has all the rights to exist, we try to relax the artificial

differentiation of wt and mutant strains by giving them similar equations. By allowing

for backwards mutation in viral population, modelled implicitly through infected cells, we

obtain the following model:

ẋ = β x(1− x/K)− α� z� x− α z x− δ x,

ẏ� = α� z� x+ µy − µy� − γ� y�,

ẏ = α z x+ µy� − µy − γ y,

ż� = κ�γ� y� − ν� α� z� x− ζ� z�,

ż = κγ y − ν α z x− ζ z,

(4.17)

Model (4.17), being similar to (4.1), describes the dynamics of one uninfected cell popula-

tion, x, two strains of virus, z� and z, and infected cell populations linked to their strains of

virus, y� and y. Nonetheless, there is a difference: the mutation is modelled as a primitive,

two-points discretization of the diffusion operator. The Laplace operator is widely used to

model heat transfer along a physical space. There is an intuitive way to imagine mutation

as a transfer of population (heat) along not physical space, as in case of the heat transfer,

but along phenotype space. If there are in total N strains of virus in a model, then muta-

tion for each strain could be defined as ∆yi ≈ yi+1 − 2yi + yi−1 for each i = 2, . . . , N − 1,

∆yi ≈ yi+1 − yi for i = 1, and ∆yi ≈ yi − yi−1 for i = N . More on this approach will

be discussed in Section 6.1. Yet, while considering only two strains, mutations have form

∆y ∼ y� − y and ∆y� ∼ y − y�, and multiplying them by the mutation rate we obtain ad-

dends for the right hand side of ẏ and ẏ�. Here, distances between strains in denominators

of discretization of Laplace operator are ignored for simplicity of discussion.

As it has been shown on previous models, correct nondimensionalization simplifies the

equations without loss in quality of the results. The old variables in terms of new non-

dimensional variables are

t = (β − δ)−1t̄, x =

(
1− δ

β

)
K x̄, yi =

(
1− δ

β

)
K ȳi, zi =

(
1− δ

β

)
κ�K z̄i,

and new non-dimensional parameters replace corresponding old parameters as follows

ᾱi =
κ�Kαi

β
, ν̄i =

νi

κ�
, κ̄ =

κ

κ�
, µ̄ =

µ

β − δ
, p̄i =

pi

β − δ
,

66



where p, as before, stands for parameters γ�, γ, ζ�, and ζ; i over variables and parameters

corresponds to a square (�) or its absence. These are the exact substitutions for obtaining

non-dimensional parameters and variables as in (4.2); non-dimensional model also look very

similar to (4.2):

ẋ = x(1− x)− α� z� x− α z x,

ẏ� = α� z� x+ µy − µy� − γ� y�,

ẏ = α z x+ µy� − µy − γ y,

ż� = γ� y� − ν� α� z� x− ζ� z�,

ż = κγ y − ν α z x− ζ z.

(4.18)

The introduction of a slight change into the model, as in addition of a contrary flow of the

population instead of one-way flow, affects tremendously, as we will see, the ability to study

the system analytically. Although solutions of model (4.18) cannot be found analytically,

with the knowledge from the previous model, we can check whether equilibria v0 and v1 of

(4.2) fit as solution of (4.18). Simple substitution yields that model (4.18) indeed has at

least two equilibria:

v0 := {x = 0, y� = 0, y = 0, z� = 0, z = 0};

v1 := {x = 1, y� = 0, y = 0, z� = 0, z = 0};

To study these two equilibria, consider the Jacobian matrix of (4.18) given by:

J =



1− α� z� − α z − 2x 0 0 −αx −α� x

α� z� µ −γ� − µ 0 α� x

α z −γ − µ µ αx 0

−α� ν� z� 0 γ� 0 −α� ν� x− ζ�

−α ν z κ γ 0 −αν x− ζ 0


. (4.19)

The eigenvalues of Jacobian matrix at the trivial equilibrium v0 can easily be obtained

analytically, being:

67



Λ0 =



1

√
ζ� ζ

−
√
ζ� ζ

µ+
√

(µ+ γ) (µ+ γ�)

µ−
√

(µ+ γ) (µ+ γ�)


. (4.20)

The positive components of Λ0 guarantee that the trivial equilibrium remains unstable for

all values of the parameters. Unfortunately, the eigenvalues of the Jacobian at v1 are not

so easy to obtain. Although obtaining eigenvalues from the polynomial det(J(v1)−λI) = 0

is not feasible, it is good to keep in mind that we are interested in eigenvalues of certain

type. For example, there are a number of bifurcations that may occur if the eigenvalues are

equal to zero. By forcing λ to be zero, we obtain certain combination of parameters from

det(J) = 0. By solving that combination for a parameter, we obtain a surface in parameter

space which depicts a bifurcation curve:

α� =
K1α+K2

K3α+K4
, (4.21)

where

K1 = ((ν − κ)(µ+ γ�)γ + γ�µν)ζ�,

K2 = ζζ�((µ+ γ)γ� + γµ),

K3 = ((ν − κ)γ + µν)(1− ν�)γ� − µν�γ(ν − κ),

K4 = ζ((1− ν�)(µ+ γ)γ� − γµν�).

(4.22)

In an attempt of recreating critical values for α� and α as in (4.9), we obtain (4.21). However,

in comparison to (4.9), critical values of α� and α for this model are not independent (see

Figure 4.11).

Let us fix the parameters as follows:

µ = 0.1, γ� = 0.25, γ = 0.25, κ = 1.0,

ν� = 0.5, ν = 0.5, ζ� = 0.2222, ζ = 0.2222.

(4.23)
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= 0.3

Figure 4.11: Two-dimensional bifurcation diagram for system (4.18) illustrating (4.21).
Thin, black dotted lines show cross sections for one-dimensional bifurcation diagrams. Blue
dashed curves correspond to the transcritical bifurcation.
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Figure 4.12: One-dimensional bifurcation diagram of model (4.18) for α� = 0.3. Other pa-
rameters are fixed as in (4.23). Dashed curves correspond to unstable equilibria, while solid
curves correspond to stable equilibria. Round markers indicate maximum and minimum
of periodic orbits, and, if filled, markers show the stability of the periodic orbits. Colours
blue and orange indicate all-positive and some-negative components, respectively, of both
equilibria and periodic orbits.

For the set of parameters chosen above, one-dimensional cross sections are analysed as

before. Figure 4.12 displays a one-dimensional bifurcation diagram at α� = 0.3 and varying

α. Notice that there is a qualitative resemblance with previous bifurcation diagrams. In

this case, as for three-equation model (3.13), the bifurcation diagrams reveal a transcritical

bifurcation (marked BP – branching point) and a Hopf bifurcation (labelled as H). The

transcritical bifurcation uncovers the existence of a third equilibrium, v2, whose components

are all non-zero. Moreover, from this bifurcation diagram, we conclude that (4.21) is, in fact,

a transcritical bifurcation between equilibria v1 and v2. Further increasing the bifurcation

parameters, equilibrium v2 undergoes the Hopf bifurcation, which creates a stable periodic

orbit.

Continuing critical values of parameters at Hopf points in a two-dimensional bifurcation

diagram, we obtain Figure 4.13. The studied parameter space is divided into four regions.
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Figure 4.13: Two-dimensional bifurcation diagram for system (4.18) showing transcritical
bifurcation in dotted curves and Hopf bifurcation in solid. Thin dotted lines show the cross
sections chosen for one-dimensional bifurcation diagrams. Other parameters are fixed as
in (4.23).

So far we know how the system behaves at regions I, III and partially at region II. Region

I contains parameters for which the equilibrium v1 is a stable node, and for the parameters

of region III, v2 is a stable node or a stable spiral. For all values of parameters close to

the Hopf curve separating regions III and II, the equilibrium v2 develops a periodic orbit.

Let us consider one-dimensional bifurcation diagrams for larger fixed value of α or α�, due

to the symmetry they should mirror each other.

The one-dimensional bifurcation diagram for fixed α� and growing α consists of three

equilibria excluding the trivial solution, see Figure 4.14. All equilibria are unstable (dashed

curves), and v2 has a stable periodic orbit around it for the smallest values of α. The

stability of the periodic orbit appears to be interrupted around the point where v1 has a

transcritical bifurcation (BP) with a new equilibrium, named v3. We know it is not v2,

because v3 has negative components (indicated with orange as in the previous plots) and has

its own unstable orbit created at Hopf bifurcation. The transcritical bifurcation of v1 and
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Figure 4.14: One-dimensional bifurcation diagram as cross sections of Figure 4.13 at α� = 6
and other parameters are fixed as in (4.23). Dashed curves correspond to equilibria, round
markers indicate maximum and minimum of periodic orbits. Filled markers state stable
periodic orbits. Colours blue and orange indicate all-positive and some-negative components
respectively of both equilibria and periodic orbits.

v3 does not change their stability. However, the equilibrium v3 = {x, y�, y, z�, z} undergoing

the transcritical bifurcation with v1 = {1, 0, 0, 0, 0}, at the point of bifurcation changes signs

of its components from sign(v3) = {+,+,−,+,−} to sign(v3) = {+,−,+,−,+}.
To explore how the two-dimensional bifurcation diagram given by Figure 4.8 (a) trans-

forms into Figure 4.15 (a) as backwards mutation is added, we now consider a model whereby

the “forwards” and “backwards” mutation rates are unequal. In dimensionless terms, this
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(a) µ� = 10−1 and µ = 10−1 (b) µ� = 10−3 and µ = 10−1

Figure 4.15: Codimension two bifurcation diagrams in terms of the wt and mutant virus
infection rates α and α� when backwards mutation is possible. The mutation rates are
(a) µ� = 10−1 and µ = 10−1 and (b) µ� = 10−3 and µ = 10−1. Dashed and solid lines
correspond to transcritical and Hopf bifurcations, respectively. Blue denotes biologically
feasible equilibria undergoing the bifurcations (all components non-negative), while colour
orange denotes bifurcations of equilibria with negative components. The non-patterned,
polka-dot, and chequerboard pattern correspond to virus-free, stationary coexisting, and
oscillatory coexisting states, respectively.

model is given by

ẋ = x(1− x)− α� z� x− α z x,

ẏ� = α� z� x+ µy − µ�y� − γ� y�,

ẏ = α z x+ µ�y� − µy − γ y,

ż� = γ� y� − ν� α� z� x− ζ� z�,

ż = κγ y − ν α z x− ζ z.

(4.24)

We consider the case when µ� = 10−3 � µ so that backwards mutation is slow and can be

considered as a small perturbation to the original dimensionless system (4.1). The resulting

two-dimensional bifurcation diagram is shown in Figure 4.15 (b). We see that the vertical

and horizontal lines of transcritical bifurcations defined by R0 = R�

0 = 1, which intersected

at right angles in Figure 4.8 (a) have now merged into two separate branches that do not

intersect each other. The curves of Hopf bifurcations, which also intersected in the case of

uni-directional mutation, have also merged into two distinct non-intersecting branches. The

role of backwards mutation can be studied by re-building the two-dimensional bifurcation

diagram shown in Figure 4.7 with different mutation rates.
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The two-dimensional bifurcation diagrams in Figures 4.15 (a) and (b) reveal that back-

ward mutation results in several important changes to the dynamics. Importantly, the

behaviour of the system can be described using three main states: the virus-free state

(analogous to Region I and displayed in white in Figure 4.15), stationary coexistence all

populations (polka dot pattern in Figure 4.15, analogous to Region II), and oscillatory

coexistence of all the populations (chequerboard pattern in Figure 4.15, analogous to Re-

gion IV ). Furthermore, the BT and the ZH bifurcations have vanished, the latter of which

implies that the curve of TPO bifurcations no longer exists either. Finally, the transcritical

bifurcation between the wt-free and coexistent states v2 and v3 has vanished as well. The

resulting stability diagram, shown in Figure 4.15 by patterns, is now considerably simpler

and involves only analogues of Regions I, II, and IV . Thus, the only virus-persistent states

are those in which both virus strains coexist. The wt-free state can no longer occur due to

the creation of the wt virus through backwards mutation.

In summary, we have studied a mathematical model of population dynamics of two viral

strains infecting a single population of host cells. Unlike previous models of parasite-host-

like interaction (e.g. [95]), we consider the emergence of a second strain by mutation from

a single strain introduced into the system. The mechanism of virus replication forces the

consideration of two types of infected cells, one for each viral strain, in the model. We

analysed the system of differential equations and its solutions. By studying parameters

space, we identified five different regions, each characterised by distinct dynamics: (Region

I) the virus-free state which maximises the population of host cells, (Region III) the

stationary existence of mutant virus with nonzero cell populations supporting it, (Region

II) the stationary persistence of both viral strains with nonzero cell populations, (Region V )

the oscillating existence of the mutant virus and corresponding cell populations but extinct

wt virus population, and finally, (Region IV ) the oscillating coexistence of all populations.

The population of the mutant-type virus exists as long as the mutation rate of the wt

strain is positive. The broken symmetry between the wt and mutant strains is clear from

the stability diagrams based on infection rates. From our results, we observe that survival

of the wt virus is essential for coexistence. However, the growth of wt virus population

jeopardises its persistence in the system by creating its own competitor: the mutant-type

virus. Moreover, the larger the mutation rate, the greater the infection rate of the original

wt strain should be in order to remain in the system. Interestingly, in the context of the

model, we discovered there is a maximum, critical value of the mutation rate which allows

for the persistence of the wt strain and hence coexistence. Values of the mutation rate that

are higher than the critical value make coexistence impossible even for the most infectious

wt strain. Furthermore, our model shows that the concept of the error threshold may not be
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considered as a one-parameter driven effect, i.e. based solely on the mutation rate [35, 20].

The critical value of mutation is shown here to be proportional to the virulence and burst

size of the wt virus and proportionally inverse to its multiplicity of infection. Hence, our

results extend the phenomenon of the error threshold at the infected cell population level.

4.3 Degenerate Bogdanov-Takens and zero-Hopf bifurcations

This is an additional section to discuss the technical background of the codimension-two

bifurcations mentioned in this chapter. Normal form theory provides a means of predicting

the local dynamics that occur near a given bifurcation. This is possible because the local

structure of a bifurcation is model independent and thus can be immediately determined

from pre-existing analyses of simpler systems of equations. The simplest system of equations

that completely captures the dynamics of a particular bifurcation is called the normal form.

The conducted numerical studies on the system (4.2) revealed that the Bogdanov-Takens

(BT) and zero-Hopf (ZH) bifurcations are non-standard in the sense that the local dynamics

do not agree with those predicted by their normal forms. Such a mismatch can occur

when one of the terms in the normal form equations vanishes due to its coefficient being

equal to zero, implying that an extended system of equations needs to be considered. We

now examine the normal forms of the BT and ZH bifurcations in order to rationalise the

discrepancies between the two-dimensional bifurcation diagram shown in Figure 4.7 and

those predicted from normal form theory.

The local bifurcation diagram near a BT point can be determined from the normal form

equations given by:

ξ̇0 = ξ1, (4.25a)

ξ̇1 = β1 + β2ξ0 + a2ξ
2
0 + b2ξ0ξ1, (4.25b)

provided that the coefficients a2 and b2 are not equal to zero, a2b2 6= 0, [71, Sec. 8.4]. The

quantities β0 and β1 in Eqs. (4.25) play the role of bifurcation parameters, with β0 = β1 = 0

corresponding to the BT point. The bifurcation diagram of system (4.25) consists of curves

of saddle-node and Hopf bifurcations, neither of which were detected near the BT point in

the local analysis of models considered in this chapter, as well as curves of global bifurcations

involving homoclinic orbits. The procedure outlined by Kuzetnsov [70] enables the normal

form coefficients to be related to the model studied here. Remarkably, the coefficient a2 can

be calculated analytically and is found to be equal to zero for all parameter combinations.
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Thus, the BT bifurcation occurring in our model is always degenerate and the local dynamics

will be different from those of Eqs. (4.25).

The vanishing of a2 can be rationalised in terms of the number of equilibria at the DBT

point. An equilibrium analysis shows that (4.25) will only have two equilibria at the DBT

point β0 = β1 = 0 if a2 6= 0; however, the model under study has three. Thus, a2 = 0

is needed to capture the triple equilibrium at the DBT point in our model. This also

suggests that higher-order terms must be included in (4.25) in order for it to capture the

DBT bifurcation in the model investigated here. While an extended system of normal form

equations for degenerate BT bifurcations is proposed in Kuznetsov [70], it cannot capture

the transcritical bifurcations found in the original model, suggesting that an alternative form

is required. However, due to the simple nature of the local dynamics near the degenerate

BT point, which can be obtained analytically from the full model, we do not pursue this

point further.

The Poincaré normal form of a ZH bifurcation can be written as [71, Sec. 8.5]

v̇ = γ(β) +
1

2
G200(β)v2 +G011(β)|w|2 +

1

6
G300(β)v3 +G111(β)v|w|2, (4.26a)

ẇ = Λ(β)w +H110(β)vw +
1

2
H210(β)v2w +

1

2
H021(β)w|w|2, (4.26b)

where β = (β1, β2) is a vector of bifurcation parameters. Analyses of the normal form

equations for the ZH bifurcation show that local dynamics depend on the values of the

normal form coefficients Hijk and Gijk. A common feature between the various cases is that

the ZH bifurcation occurs at the tangential intersection of curves of saddle-node and Hopf

bifurcations. However, Figure 4.7 shows that the zero-Hopf bifurcation in our model lies

at a transversal intersection of curves of transcritical and Hopf bifurcations. Furthermore,

none of the normal forms predict that a curve of TPO bifurcations should emanate from

a ZH point. The calculation of the three normal form coefficients for the DZH bifurcation

is rather involved and must be performed numerically. We find that the normal form

coefficient G011(0) = 0 across a range of parameter values, indicating the ZH bifurcation is

degenerate. The normal form equations for degenerate ZH bifurcations are not well known

and previous studies have focused on different cases [127, 128]. Tigan et al. [129] showed

that a degenerate ZH bifurcation with G011(0) = 0 occurs in a Rössler-type system and

used averaging theory to detect periodic orbits, leaving the structure of global bifurcations

unresolved. We believe, as far as we know, that this is the first time when a curve of TPO

bifurcations has been observed to emanate from a degenerate ZH bifurcation of this type.

Determining the corresponding normal form is an interesting task for future work.
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Chapter 5

Dynamical system with different

cell types and mutant viral strains

For specialisation to exist as a concept of model, diverse sources must be presented. In this

chapter, specialisation is introduced as adaptation towards a type of cell the viral strains

infect predominantly. Specifically, we introduce two types of susceptible cells for an evolving

viral population with different infection rates. When virus infects mostly one type of cell it

is called a specialist, while if it infects different kinds of cells in comparable amounts then

the virus is called a generalist. We study the dynamics of a simplified model for a generalist

strain brought into system with two types of cells with the possibility to adapt towards a

better niche. In extension of Chapter 4, bifurcation analysis is applied.

5.1 The model

Consider two different types of cells, x1 and x2, coexisting in a finite system with carrying

capacity K. The uninfected cells x1 and x2 have growth and death rates β1, δ1 and β2, δ2,

respectively. Throughout this chapter, β1 6= β2 and δ1 6= δ2 to differentiate two types of

cell population; allowing β1 and δ1 to be equal to β2 and δ2 would mean considering the

same type of cell population twice, which we avoid. Both types of cells can be infected by

a strain of virus z, hereinafter referred to as a generalist, with a rate α, while only one of

the cell types, x1, can be infected by z�, a specialist, with a rate α�. The rate of infection

is being considered as a property of the virus strain, and is different from the incident rate
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in a population of susceptible organisms. Consider these α and α� as the probabilities of

a virion meeting and infecting a susceptible cell in the blood flow, in a tissue or in vitro.

It is assumed that the generalist may specialise towards the first cell type once the cell is

infected. Meanwhile, the second cell type remains susceptible for the generalist strain only.

The part of the system describing dynamics of cell populations is modelled as follows:

ẋ1 = β1 x1

(
1− x1 + x2

K

)
− x1 α z − x1 α

� z� − δ1 x1, (5.1a)

ẋ2 = β2 x2

(
1− x1 + x2

K

)
− x2 α z − δ2 x2. (5.1b)

Cells become linked to the strain of virus they were infected by, i.e. uninfected cells of type

x1 after being infected by z� become infected cells y�

1, uninfected cells of type x1 and x2

after being infected by z become infected cells y1 and y2, respectively. The growth of the

population of infected cells is assumed to be driven by the infection only, that is, the infected

cells do not proliferate. From a biological perspective, these kind of infections are called

lytic and they lead to exploitation of an infected cell by a virus after infection opposing

the lysogenic infections. During the lysogenic cycle, the virus incorporates its genome into

the genetic code of the infected cell and the infected cell grows by division as a healthy cell

for several generations. The effect of infection on the death rate of the cell population is

depicted by the change in death rates of infected cells. Moreover, the effect of particular

virus is also preserved and, overall, the death rates of infected cells y�

1, y1, and y2 are γ�

1,

γ1, and γ2, respectively. We also consider mutation of z into z� with rate µ described by

the transfer from population of y1 to y�

1 since most of the mutations of viral strains occur

during replication and transcription processes inside an infected cell. This flow corresponds

to mutation of a generalist strain z into a specialist strain z�. The dynamics of infected

cells can be modelled as follows:

ẏ�

1 = α� z� x1 + µy1 − γ�

1 y
�

1, (5.1c)

ẏ1 = α z x1 − µy1 − γ1 y1, (5.1d)

ẏ2 = α z x2 − γ2 y2. (5.1e)
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The specialist infected cells y�

1 has burst size κ�, while generalist infected cells y1 and y2

have burst sizes κ1 and κ2, respectively. We let ν� and ν denote the multiplicity of infection

(MOI) of z� and z, respectively. Viral populations decrease at rates ζ for the generalist

strain and ζ� for the specialist strain. Under these assumptions, the changes in sizes of the

viral populations can be described as follows:

ż� = κ�γ�

1 y
�

1 − ν� α� z� x1 − ζ� z�, (5.1f)

ż = κ1 γ1 y1 + κ2γ2 y2 − ν α z(x1 + x2)− ζ z. (5.1g)

Initial conditions of nonnegative values for v = {x1, x2, y
�

1, y1, y2, z
�, z}must be provided:

x1(0) = X1, x2(0) = X2, y
�

1(0) = Y �

1 , y1(0) = Y1, y2(0) = Y2, y
�

1(0) = Z�, y1(0) = Z. (5.2)

The nondimensionalization of system (5.1) is performed by introducing dimensionless

variables that are based on characteristic timescales and population sizes. The quantity β1−
δ1 describes the effective growth rate of first uninfected cell type and its inverse, (β1−δ1)−1,

is used to define the characteristic time scale of the system. In a virus-free environment,

the total maximum size of the uninfected cell populations x1 is x̃max = (1 − δ1/β1)K.

Hence, characteristic population scales for both uninfected and infected cell populations are

directly related to x̃max. Moreover, dimensionless variables for virus population sizes are

proportional to x̃max, yet they are re-scaled with respect to the burst size. The latter is

required due to a difference in sizes and measurement units of the viral loads and the cell

populations in the system. We therefore nondimensionalize the variables according to

t = (β1 − δ1)−1t̄, xi =
β1 − δ1

β1
K x̄i, yji =

β1 − δ1

β1
K ȳji , zj =

β1 − δ1

β1
κ�K z̄j ,

where i = 1, 2 and j stands for the viral strain type. New non-dimensional parameters

replace corresponding old parameters:

β̄1 =
β2 − δ2

β1 − δ1
, β̄2 =

β2

β1
, ᾱj =

κ�K

β1
αj , ν̄j =

νj

κ�
, κ̄i =

κi
κ�
, p̄ =

p

β1 − δ1
,

where p stands for all other parameters, namely: µ, γ�

1, γ1, γ2, ζ�, ζ, and j shows the type of

the strain. By omitting the bars for simplicity, we obtain the following nondimensionalized
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Table 5.1: Schematic representation of the nine equilibria solutions to (5.3).

Equilibrium name x1 x2 y�

1 y1 y2 z� z

v0 trivial 0 0 0 0 0 0 0
v1 v-free-1 x1 0 0 0 0 0 0
v2 gen-free-1 x1 0 y�

1 0 0 z� 0
v3 coex-1 x1 0 y�

1 y1 0 z� z
v4 v-free-2 0 x2 0 0 0 0 0
v5 spec-free 0 x2 0 0 y2 0 z
v6 gen-free-2 x1 x2 y�

1 0 0 z� 0
v7 coex-2 x1 x2 y�

1 y1 y2 z� z
v8 coex-3 x1 x2 y�

1 y1 y2 z� z

system:

ẋ1 = x1 (1− x1 − x2)− x1 α z − x1 α
� z�, (5.3a)

ẋ2 = x2 (β1 − β2(x1 + x2))− x2 α z, (5.3b)

ẏ�

1 = α� z� x1 + µy1 − γ�

1 y
�

1, (5.3c)

ẏ1 = α z x1 − µy1 − γ1 y1, (5.3d)

ẏ2 = α z x2 − γ2 y2, (5.3e)

ż� = γ�

1 y
�

1 − ν� α� z� x1 − ζ� z�, (5.3f)

ż = κ1 γ1 y1 + κ2γ2 y2 − ν α z(x1 + x2)− ζ z, (5.3g)

The model (5.3) has nine solutions, which are only summarised in Table 5.1 due to the

excess complexity of the full expressions. The first four solutions match the solutions of

system (4.2) with the size of the four new populations being zero. This similarity illustrates

that the model (5.3) contains the model (4.2). Indeed, if the newly introduced second type

of cell x2 and the corresponding generalist infected cell y2 are zero, then the model (5.3) is

equivalent to (4.2). We will exploit the results from the previous chapter to understand the

dynamics of the extended model focusing on the determining how the addition of new cell

and virus types affect the behaviour of the system.

5.2 Linear stability analysis and bifurcations

To gain insights into the general behaviour of model (5.3), we examine the local stability

of the equilibria solutions and identify points where bifurcations occur. We note that
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due to the high dimensionality of the system, these bifurcation points may not lead to

changes in the behaviour of the system. For instance, if two equilibria intersect for a

certain parameter set and first eigenvalues λ1[1] and λ2[1] of those equilibria u1 and u2

exchange signs, the bifurcation is detected; however, this might not lead to exchange of

stability between the two equilibria u1 and u2 because other eigenvalues, e.g. λ1[4] or

λ2[2], can remain positive after the bifurcation preventing the change of stability. The

further use of numerical analysis enables the location of the bifurcation points that lead to

qualitative changes to be determined. The local stability of the solutions may provide the

initial structure of the stability diagram. A classical way to study the stability of equilibria

is by means of linear stability analysis. Linearising the system around the equilibrium v we

obtain the Jacobian of system (5.3), which is shown in (5.6). There is an elegant way to find

possible boundaries of stability regions on a parameter space and these boundaries match

the transcritical bifurcations. Therefore, alongside with the investigation of local stability,

we will consider candidates for transcritical bifurcations, i.e. an intersection of solutions for

certain parameter sets, which may lead to the exchange of stability between the involved

solutions.

At the trivial solution v0, a straightforward calculation provides the following eigenval-

ues:

Λ0 = (1,−ζ�,−ζ,−γ�

1,−γ1 − µ,−γ2, β2)T . (5.4)

The first eigenvalue λ = 1 is constant due to our choice of nondimensionalization. The

biologically justified method of nondimensionalization forces the trivial solution to be a

saddle for all biologically relevant values of the parameters.

At the first virus-free state v1 (v-free-1), we obtain the following characteristic polyno-

mial for the eigenvalues λ: P1(λ) · P2(λ) · P3(λ) · P4(λ) · P5(λ) = 0, where

P1(λ) = λ+ 1,

P2(λ) = λ+ γ2,

P3(λ) = β1 − β2 − λ,

P4(λ) = −λ2 + (−αν − γ1 − µ− ζ)λ+ ((κ1 − ν)γ1 − µ ν)α+ ζ(γ1 + µ),

P5(λ) = λ2 + (α�ν� + γ�

1 + ζ�)λ+ (α�(ν� − 1) + ζ�)γ�

1.

(5.5)

The first two factors yield negative eigenvalues λ = −1 and λ = −γ2, giving rise to the

possibility of stability for the first virus-free state. Third eigenvalue λ = β1 − β2 leads

to a case where growth rates of uninfected cells must be compared. If β2 > β1 then
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

1− α�z� − αz − 2x1 − x2 −x1 0 0 0 −α� x1 −αx1

β2 x2 β1 − αz − β2 x1 − 2β2 x2 0 0 0 0 −αx2

α� z� 0 −γ�

1 µ 0 α� x1 0

α z 0 0 −µ− γ1 0 0 αx1

0 α z 0 0 −γ2 0 αx2

−α� ν� z� 0 γ�

1 0 0 −α� ν� x1 − ζ� 0

−ν α z −ν α z 0 γ1 κ1 γ2 κ2 0 −ν α (x1 + x2)− ζ



(5.6)

The Jacobian matrix J for the system (5.3) at v = {x1, x2, y
�

1, y1, y2, z
�, z}.
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v1 can be stable, if β2 < β1 then v1 cannot be stable, and if β2 = β1 then v1 must

undergo one of the zero-eigenvalue bifurcations (e.g. saddle-node, transcritical, pitchfork).

The fourth, quadratic, factor P4(λ) provides combination of parameters corresponding to a

zero-eigenvalue bifurcation:

αv1,1 := α =
γ1 + µ

(κ1 − ν)γ1 − µν
ζ. (5.7)

The last factor, P5(λ), yields another parameter set for a zero-eigenvalue bifurcation:

α�

v1,2
:= α� =

ζ�

1− ν�
. (5.8)

The zero-eigenvalue bifurcations of v1, αv1,1 and α�

v1,2
, to a great extent resemble the trans-

critical bifurcations of the virus-free state from model (4.2). As will be shown further, these

parameter combinations are indeed two of the three curves which intersect at a degenerate

Bogdanov-Takens bifurcation.

For the first generalist-free state v2 (gen-free-1), we conduct a similar analysis and find

that it has three parameter combinations that lead to a zero eigenvalue and does not have

strictly positive constant eigenvalues. The first zero-eigenvalue bifurcation of the gen-free-1

state is

α�

v2,1
:= α� =

ζ�

1− ν�
. (5.9)

Notice, that at α�

v2,1
, the gen-free-1 state undergoes zero-eigenvalue bifurcation when at the

same parameter combination, α�

v1,2
, the v-free-1 state is also subjected to a zero-eigenvalue

bifurcation. Moreover, the values of v1 and v2 are equal when α� = ζ�/(1 − ν�). This

is a strong evidence that v1 and v2 intersect and exchange stability at α�

v2,1
, however,

this conclusion can be drawn only after numerical check of signs of all eigenvalues of both

equilibria before and after α�

v2,1
. The gen-free-1 state has a second

α�

v2,2
:= α� =

β2

β1

ζ�

1− ν�
, (5.10)

and third

α�

v2,3
:= α� = α

ζ�

ζ

(κ1 − ν)γ1 − µν
(γ1 + µ)(1− ν�)

. (5.11)

set of parameters which lead to a zero eigenvalue. Further analysis will reveal that other

equilibria undergo a zero-eigenvalue bifurcation at these exact combinations of parameters.
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We now consider the first coexistence state v3 (coex-1) that has a complicated character-

istic polynomial. However, it is still possible to recover analytical parameter combinations

which correspond to zero eigenvalues. The coex-1 state undergoes zero-eigenvalue bifurca-

tions at

αv3,1 := α =
γ1 + µ

(κ1 − ν)γ1 − µν
ζ, α�

v3,2
:= α� = α

ζ�

ζ

(κ1 − ν)γ1 − µν
(γ1 + µ)(1− ν�)

, (5.12)

and

α�

v3,3
:= α� =

ζ�

ζ

K2
0 (β1 − 1)α−K0 ζ(β2 − 1)(γ1 + µ)

K0K1 α+K2
, (5.13)

where

K0 = (κ1 − ν)γ1 − µν,

K1 = (β1 − 1)(1− ν�)γ1 + (1 + (β1 − 1) ν�)µ,

K2 = (γ1 + µ)((1 + ν�(β2 − 1))µ− (1− ν�)(β2 − 1)γ1)ζ.

(5.14)

We see that αv1,1 matches αv3,1 . This implies that both v1 and v3 undergo a zero-eigenvalue

bifurcation at αv3,1 ; by substituting αv3,1 into v3 and v1, we observe that v3 and v1 intersect.

It is also clear that the coex-1 state, v3, undergoes another zero-eigenvalue bifurcation at

α�

v3,2
when the gen-free-1 state, v2, undergoes a similar bifurcation at α�

v2,3
. Checking the

values of v3 and v2 at α�

v3,2
, we hypothesize that v3 and v2 have a transcritical bifurcation

at α�

v3,2
. At this point, we know that v3 might have transcritical bifurcations with v1 and

v2, and if the two transcritical bifurcations intersect, then a codimension-two bifurcation

can take place. From the previous occurrence of codimension-two bifurcations in system

(4.2), we know that this bifurcation is an analogue of the degenerate Bogdanov-Takens

bifurcation. This bifurcation exists, in terms of infection rates, when the following equations

hold simultaneously:

α =
γ1 + µ

(κ1 − ν)γ1 − µν
ζ, α� =

ζ�

1− ν�
. (5.15)

Considering the second virus-free state v4 (v-free-2), we learn that, despite its simple

appearance, eigenvalues of the system at v4 are not convenient to study. Thus, we construct
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a characteristic polynomial: β−2
2 ·Q1(λ) ·Q2(λ) ·Q3(λ) ·Q4(λ) ·Q5(λ) ·Q6(λ) = 0, where

Q1(λ) = λ+ ζ�,

Q2(λ) = λ+ γ1 + µ,

Q3(λ) = γ�

1 + λ,

Q4(λ) = β1 + λ,

Q5(λ) = β2 λ+ β1 − β2,

Q6(λ) = β2λ
2 + ((ζ + γ2)β2 + ν β1α)λ+ γ2 (ζ β2 − β1(κ2 − ν)α).

(5.16)

The first four eigenvalues, λ = −ζ�, λ = −γ1 − µ, λ = −γ�

1, and λ = −β1, provide a

possibility for the v-free-2 state to be stable. The first compound factor is β2 λ + β1 − β2,

and it stipulates that for v4 to be stable, β2 must be less than β1. Here, we may have a

“switch” between v-free-1 and v-free-2 states. Recall that v-free-1 could become stable only

if β2 is greater than β1. The last factor of the characteristic polynomial for v4 provides the

following candidate for a zero-eigenvalue bifurcation:

αv4,1 := α =
β2

β1

ζ

κ2 − ν
. (5.17)

The next equilibrium, the specialist-free state v5 (spec-free) depicts the only case of the

generalist population surviving alone. The existence of this state is the major difference

between systems (5.3) and (4.2). The spec-free state has a nonzero generalist population

z, which due to the specifics of modelling, mutates into specialist population z�. As we ob-

served before, survival of the wild-typed strain (an analogue of the generalist in model (4.2))

without a mutant strain was unlikely. However, introducing the second, only-generalist sus-

ceptible type of cell entirely changed the outcome. Whenever v5 is stable, the system

predicts the survival of the generalist in the long run with an extinct specialist popula-

tion. In order to find when v5 is stable, we consider the characteristic polynomial for the

eigenvalues λ:
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1

(α)2(κ2 − ν)3
(λ+ ζ�)(λ+ γ1 + µ)(γ�

1 + λ)·(
α (κ2 − ν)2λ3 + (κ2 − ν)((ακ2 + β2)ζ + γ2α (κ2 − ν))λ2+

(β2(κ2 + ν)ζ − (κ2 − ν)(αβ1ν − β2γ2))ζλ+ (κ2 − ν)(β1α (κ2 − ν)− ζβ2)γ2ζ

)
·

(
α (κ2 − ν)λ+ (κ2 − ν)(β1 − 1)α− ζ(β2 − 1)

)
.

(5.18)

Neither the fraction nor the following three factors affect the stability of the spec-free state,

v5. However, the next, cubic factor implies that a zero-eigenvalue bifurcation occurs when

αv5,1 := α =
β2

β1

ζ

κ2 − ν
. (5.19)

Matching αv5,1 with αv4,1 , we expect a transcritical bifurcation of v-free-2 and spec-free

states at points of parameter space corresponding to αv5,1 . The last, linear expression for

the eigenvalue crosses zero when the following condition holds:

αv5,2 := α =
β2 − 1

β1 − 1

ζ

κ2 − ν
. (5.20)

The last analytically computable equilibrium solution, the generalist-free state v6 (gen-

free-2), has a complicated characteristic polynomial. Nevertheless, it is possible to recover

two parameter combinations for zero-eigenvalue bifurcations:

α�

v6,1
:= α� = α

β2ζ
� (κ1 γ1 − κ2(µ+ γ1))

(1− ν�)(µ+ γ1)(β1ζ − β1α(κ2 − ν))
(5.21)

and

α�

v6,2
:= α� =

β2

β1

ζ�

1− ν�
. (5.22)

The condition α�

v6,2
is equal to α�

v2,2
meaning that gen-free-2 and gen-free-1 state intersect

and undergo the zero-eigenvalue bifurcation simultaneously. All analytically found param-

eter combinations are schematically plotted in Figure 5.1. Here and further, we call a curve

of transcritical bifurcations between equilibria vi and vj in the two-dimensional bifurcation

diagram Tij.
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Figure 5.1: Schematic representation of analytically found parameter combinations leading
to a zero-eigenvalue bifurcation. Cases when two equilibria have the same parameter com-
bination are the strong candidates for a transcritical bifurcation, and are marked Tij on
the plot, where i and j are vector numbers of the corresponding equilibria from Table 5.1.
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Table 5.2: List of transcritical bifurcations with analytically obtained expressions.

bifurcation marker Tij combination of parameters analytical names

T12 α� = ζ�

1−ν� α�

v1,2
α�

v2,1

T13 α = γ1+µ
(κ1−ν)γ1−µν ζ αv1,1 αv3,1

T23 α� = α ζ
�

ζ
(κ1−ν)γ1−µν
(γ1+µ)(1−ν�) α�

v2,3
α�

v3,2

T26 α� = β2
β1

ζ�

1−ν� α�

v2,2
α�

v6,2

T37 α� = ζ�

ζ
K2

0 (β1−1)α−K0 ζ(β2−1)(γ1+µ)
K0K1 α+K2

α�

v3,3
-

T45 α = β2
β1

ζ
κ2−ν α�

v4,1
α�

v5,1

T57 α = β2−1
β1−1

ζ
κ2−ν αv5,2 -

T67 α� = α β2ζ� (κ1 γ1−κ2(µ+γ1))
(1−ν�)(µ+γ1)(β1ζ−β1α(κ2−ν)) α�

v6,1
-

5.3 Bifurcation analysis

In the previous section, some of the parameter combinations were left without a match, e.g.

α�

v6,2
and α�

v3,3
. This is because we did not consider the solutions which correspond to v7

coex-2 and v8 coex-3 states due to their complicated appearance. The parameter combina-

tions which lead to zero-eigenvalue bifurcations of v7 and v8 are analysed numerically. In

order to proceed, first, let us fix all the parameters except the infection rates as follows:

β1 = 1.5, β2 = 2, µ = 0.1, γ�

1 = γ1 = γ2 = 0.25,

κ1 = κ2 = 1, ν� = ν = 0.5, ζ� = ζ = 0.2222.

(5.23)

With these parameters fixed, we find that α�

v3,3
, αv5,2 , and α�

v6,1
correspond to intersections

of the equilibrium solutions v3, v5, and v6 with v7, the coex-2 state. The list of trans-

critical bifurcations and their analytically obtained expressions can be found in Table 5.2.

All transcritical bifurcations are plotted in Figure 5.2. In order to understand which of

these bifurcations change stability of the states, we construct one-dimensional bifurcation

diagrams as cross sections along fixed infection rates at the regions bounded by the trans-

critical bifurcations. In case of model (4.2) from the previous chapter, the x component was

different for all of its four equilibria. Conversely, the model considered in this chapter does

not allow the equilibrium vectors to be distinguished by tracking a single component along

88



Figure 5.2: Analytically and numerically found parameter combinations leading to a zero-
eigenvalue bifurcation. Transcritical bifurcation are marked Tij on the plot, where i and
j are vector numbers of the corresponding equilibria from Table 5.1. Orange colour indi-
cates biologically meaningless values of corresponding equilibria with negative coordinates.
Parameters are fixed as in (5.23).
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a parameter. Thus we must either track several variables at once or consider a measure

to describe the vectors. The populations studied in this model form a vector in a normed

vector space with, for example, the following norm:

Vi = ||vi|| =
√
x2

1 + x2
2 + (y�

1)2 + y2
1 + y2

2 + (z�)2 + z2, (5.24)

where i = 0, . . . , 8. Therefore, in further plots if not mentioned otherwise Vi with i = 0, . . . , 8

stands for the length of the corresponding vector from Table 5.1, vi. The definition of the

norm might lead to seemingly intersecting curves on a plot, which may happen when the

vectors lay on a sphere of the same radius in a seven-dimensional variable space. This will

be recognised and will be handled accordingly. When plotting periodic orbits we adapt the

same norm for maxima and minima of the periodic orbit.

In terms of Figure 5.2, by fixing α� at different values and varying α we can construct

one-dimensional bifurcation diagrams. The first diagram illustrates the behaviour in the

regions below T12, it corresponds to a fixed value of α� at 0.2 and varying values of α

(see Figure 5.3). Due to the expected complexity of the bifurcation diagram, we only show

biologically meaningful values. When α� = 0.2, there are three equilibria which at some

point become stable. For small values of α, the v-free-1 state v1 remains stable until it

crosses and exchanges stability with coex-1 state v3 at α = 1.04. This matches with our

analytically obtained prediction and corresponds to T13. The stable equilibrium v3 then

intersects and exchanges stability with the coex-2 state v7 at α = 1.82 where coex-2 gains

stability but some of its components become negative and thus it becomes biologically

meaningless, and therefore is not shown in Figure 5.3. The intersection point of v3 and

v7 was predicted by αv3,3 and corresponds to a maximum of α for the bistable interval.

Following the same unstable (dashed) curve of v7 backwards, we notice that it intersects

and changes stability of spec-free state v5 at α = 0.89. This was also predicted by αv5,2

and corresponds to the minimum α of the bistable interval. Between the minimum and

maximum values of the bistable interval we witness two different types of bistability: v-

free-1 state v1 and spec-free state v5 are simultaneously stable, and then coex-1 state v3

and spec-free state v5 are both stable. Furthermore, the spec-free state v5 gains stable

periodic orbits at a supercritical Hopf bifurcation. The Hopf bifurcation of the coex-1 state

v3, as we have seen in the more simple model (4.2), does exist but its periodic orbits is

unstable and does not intersect any other periodic orbits.

To explore the regions between T12 (α� = 0.45) and T26 (α� = 0.59) of Figure 5.2, let

us fix α� = 0.53 and consider a one-dimensional bifurcation diagram varying α, which is

shown in Figure 5.4. This one-dimensional bifurcation diagram is understandably similar
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Figure 5.3: One-dimensional bifurcation diagram depicting the norm of all biologically
meaningful equilibria, Vi for i = 0, . . . , 8, for a fixed value of α� = 0.2. Solid and dashed
lines correspond to stable and unstable equilibria, respectively. Filled and empty markers
represent stable and unstable periodic orbits, which do not intersect at increasing values
of α. The three stars at α = 0.89, α = 1.04, α = 1.82 are transcritical bifurcations
corresponding to T57, T13, and T37 of Figure 5.2, respectively.
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Figure 5.4: One-dimensional bifurcation diagram depicting the norm of biologically mean-
ingful equilibria, Vi for i = 0, . . . , 8, for fixed α� = 0.53. Solid and dashed curves stand
for stable and unstable equilibria, respectively. Filled markers and empty markers corre-
spond to stable and unstable periodic orbits. It is worth noting that the periodic orbits do
not intersect for larger values of α. The three stars at α = 0.89, α = 1.23, α = 1.44 are
transcritical bifurcations corresponding to T57, T23, and T37 of Figure 5.2, respectively.
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to the one in Figure 5.3. However, there is one difference: the gen-free-1 state v2 is stable

for small values of α, whereas the v-free state v1 is now unstable. With increasing α, the

spec-free state v5 also becomes stable at αv5,2 , which is equal to 0.89 for parameter values

fixed at (5.23). This bistability is a peculiar finding which states that at these parameter

values, depending on the initial conditions, the system may either lose all generalists or it

may lose all specialists. Further, at T23, which corresponds to α = 1.23, the bistability

shifts towards the stable coex-1 state v3 and the stable spec-free state v5. The bistability

interval is limited by the transcritical bifurcation of v3 and v7 at αv3,3 and followed by

distinctly stable v5. The spec-free state v5 still produces the stable periodic orbit through

a supercritical Hopf bifurcation.

Crossing T26 upwards, i.e. increasing α�, leads to a gain of stability by the gen-free-2

state v6 and lost of stability by the gen-free-1 state v2. The difference between the two is

that gen-free-1 state has only x1 uninfected cell population to support the existence of viral

population while gen-free-2 state allows existence of both x1 and x2 in the equilibrium. The

reason why an increase in the infection rate of the specialist, α�, from 0.53 to 0.62 leads

to appearance of x2 in the equilibrium state can be explained by recalling that x1 and x2

share the same carrying capacity of the system. When specialist gets better at infecting

its host cell, that is x1, the number of uninfected cells of type x1 decreases which allows

x2 uninfected cell population to survive. That is why T26 can be considered as a critical

value of infection rate of the specialist strain which allows the existence of the specialist-

insusceptible cell population. In order to check for other significant changes brought by

T26 (α� = 0.59), we fix value of α� = 0.62 and vary α. The one-dimensional bifurcation

diagram depicting the dynamics of the system is shown in Figure 5.5. For small values of

α, the gen-free-2 state v6 is stable. Further, we notice that the stable gen-free-2 state v6 is

accompanied by the stable spec-free state v5 after α = 0.89 which corresponds to T57. The

bistability interval ends at α = 1.305 where the gen-free-2 state v6 undergoes a transcritical

bifurcation with the coex-2 state v7. Increasing α further, we observe the same outcome as

before: the stable spec-free state v5 undergoes a supercritical Hopf bifurcation and produces

the stable periodic orbit around itself for large values of α.

The bifurcation analysis will be continued at the value of α� = 1. The one-dimensional

bifurcation diagram is shown in Figure 5.6. This cross section has a very rich set of dynamics

which are seen more clearly when enlarged in Figure 5.7. At small values of α, none of the

equilibria are stable. The similarly small values of α previously (for α� = 0.62, see Figure

5.5) led to the stable gen-free-2 state v6, however now (at α� = 1) the gen-free-2 state

is unstable and instead has a stable periodic orbit. This means that somewhere between

α� = 0.62 and α� = 1, the gen-free-2 state undergoes a Hopf bifurcation. Following the
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Figure 5.5: One-dimensional bifurcation diagram illustrating the norm of biologically mean-
ingful equilibria, Vi for i = 0, . . . , 8, for fixed α� = 0.62. Solid and dashed curves stand for
stable and unstable equilibria, respectively. Filled markers and empty markers stand for
stable and unstable periodic orbits, respectively, that do not intersect for larger values of
α. Two stars at α = 0.89 and α = 1.305 are transcritical bifurcations corresponding to T57
and T67 of Figure 5.2, respectively.
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Figure 5.6: One-dimensional bifurcation diagram for the norm of biologically meaningful
equilibria, Vi for i = 0, . . . , 8, at fixed α� = 1.0. Solid and dashed curves stand for stable
and unstable equilibria, respectively. Filled markers and empty markers stand for stable
and unstable periodic orbits, respectively, which do not intersect at increasing values of α.
The red star at α = 0.877 corresponds to a saddle-node bifurcation of coex-2 and coex-3
states. The black star at α = 0.89 is the transcritical bifurcation corresponding to T57.
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growth of α in Figure 5.6, we observe a saddle-node bifurcation, which creates coex-2 and

coex-3 states at α = 0.877, marked with a red star. Here, two branches of equilibria,

v7 (stable) and v8 (unstable), appear. The stable branch, v7, undergoes a transcritical

bifurcation with the spec-free state v5 at α = 0.89 which leads to a stability of v5. The

second branch, v8, soon after the saddle-node bifurcation, undergoes a subcritical Hopf

bifurcation at α = 0.879 which creates an unstable periodic orbits around v8. The unstable

equilibrium v8 further intersects v6 where some of its components leave the biologically

meaningful variable space. Meanwhile, for all values of α roughly less than 1, the gen-free-2

state v6 has its stable periodic orbit. Therefore, between α = 0.877 and α = 0.89 there is

a bistable region where depending on initial conditions the system may stabilise at either

periodic orbits of v6 or the equilibrium v7. Starting at α = 0.89 and until the instability

of periodic orbits, the bistability region accommodates the equilibrium v5 and the periodic

orbit of v6. We notice that the periodic orbit of v6 loses its stability approximately around

an intersection point with periodic orbit of v8. This will be discussed in Section 5.4. Further

increase of α leads to individually stable spec-free state v5 undergoing the supercritical Hopf

bifurcation.

An elaborate set of dynamics is observed when the infection rate of the specialist strain

is increased above 1. This case is important from a biological perspective because spe-

cialisation is known to be accompanied by the rise of fitness of a population [116, 76].

The one-dimensional bifurcation diagram presented in Figure 5.8 corresponds to a value of

α� = 2. As is shown in Figure 5.8, there is neither distinctly stable equilibria nor stable

periodic orbits for small values of α. As will be discussed in Section 5.4, a strange chaotic

attractor exists in this region. For α approximately between 0.75 and 0.78, stable periodic

orbit around the coex-2 state v7 exists, see Figure 5.9. The appearance of the periodic orbits

in the one-dimensional bifurcation diagram occurs via a saddle-node bifurcation of periodic

orbits (also called a limit point of cycles, fold, or saddle-node of cycles) at α = 0.757 and

indicated with triangles in Figure 5.9. When increasing α to the critical value of 0.757, two

periodic orbits emerge: one stable and one unstable. The stable periodic orbit converges

towards a supercritical Hopf bifurcation of the coex-2 state v7, while the unstable periodic

orbit approaches the extrema of the periodic orbit around gen-free-2 state v6. The super-

critical Hopf bifurcation of v7 leads to this equilibria becoming stable at the point where

the stable periodic orbit vanishes. As α is further increased, the stable coex-2 state v7

undergoes the well-known transcritical bifurcation with the spec-free state v5, marked with

a black star. For all values of α following α = 0.89, the spec-free state v5 and, later, its

periodic orbit is stable, see Figure 5.8.
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Figure 5.7: Enlarged view of Figure 5.6. The red star indicates the saddle-node bifurca-
tion of coexistence states v7 and v8, while the black star correspond to the transcritical
bifurcation of the spec-free state v5 and the coex-2 state v7.
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Figure 5.8: One-dimensional bifurcation diagram for a fixed value of α� = 2. Solid curves
and filled markers stand for stable equilibria and stable periodic orbits, respectively. Dashed
curves and empty markers illustrate unstable equilibria and unstable periodic orbits. The
black star at α = 0.89 is the transcritical bifurcation of v5 and v7. For enlarged part around
α = 0.89 see Figure 5.9.
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Figure 5.9: Enlarged view of Figure 5.8. Triangles denote the saddle-node bifurcation of
periodic orbits of the coex-2 state v7.
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Figure 5.10: Two-dimensional bifurcation diagram for system (5.3) with bifurcation parameters α and α�. Other parameters are fixed as
in (5.23). Dashed curves correspond to transcritical bifurcations. Solid curves represent Hopf bifurcations. Dotted curves correspond to
limit points of equilibria (LP) and cycles (LPC). Colour blue stands for biologically meaningful values of equilibria and periodic orbits
undergoing the bifurcations, while orange curves correspond to bifurcations occurring in negative phase space. A bifurcation marked with
Tij is a transcritical bifurcation of vi and vj equilibria. Bifurcation curves marked with Hk are curves of Hopf bifurcation of equilibrium
vk. LP7 and LPC7 are limit point of v7 and limit point of cycles around v7, respectively. The green stars locate the codimension-two
bifurcations such as generalised Hopf bifurcation (GH), zero-Hopf bifurcation (ZH), Bogdanov-Takens bifurcation (BT), and degenerate
Bogdanov-Takens bifurcation (DBT).
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Information gathered from the bifurcation analysis and the continuation of all bifurca-

tions along both α and α� allow the construction of a two-dimensional bifurcation diagram

for system (5.3), which is shown in Figure 5.10. To clarify the nature of this and following

plots, we must recall that there are fourteen parameters and seven independent variables in-

volved in the dynamics of the system. Fixing other parameters than α and α� is a generous

yet necessary sacrifice of generality, which allows us to approach mapping the qualitatively

different dynamics on a feasible diagram. The two-dimensional bifurcation diagrams are,

in fact, two-dimensional cross sections of the fourteen-dimensional parameter space. There

are three main bifurcations considered on the plot in Figure 5.10: the transcritical, the

Hopf, and the limit point (of cycles and equilibria). The transcritical bifurcation curves

are shown in dashed, and as before, have a label, Tij, which shows that the bifurcation

affects equilibria vi and vj . Bold, solid curves stand for Hopf bifurcations and have labels,

Hk, depicting equilibria vk undergoing the bifurcation. The thin dotted curve labelled LP7

is a theoretical threshold of coex-2 and coex-3 states since it is a saddle-node bifurcation

of v7 and v8. The thin dotted curve labelled LPC7 is a limit point of cycles that appear

around v7. In Figure 5.10, as before, blue depicts biologically relevant values of variable

components of all equilibria involved in a bifurcation. Note that there is a fair resemblance

with bifurcation diagram of (4.2), in fact all behavioural traits which are seen in (4.2) model

can be found in (5.3).

One interesting feature brought upon the dynamics by the introduction of the second,

generalist-only susceptible cell is bistability. Regions bounded by the bifurcation curves

may contain more than one stable equilibria and periodic orbit. With this result, the de-

pendency of the long-term behaviour of the system on initial conditions must be considered,

and usually basins of attractions are studied. The full basins of attraction for the consid-

ered model must be plotted on a seven-dimensional phase space. Besides, for the classical

construction of basins of attraction, a seven-dimensional hypercube of initial conditions

must be studied. For the purpose of this discussion, instead of computing classical basins

of attraction, we take a probabilistic approach to study the dynamics over two-dimensional

parameter space. We consider initial conditions for susceptible cell populations and infected

cell populations that remain constant and alter initial values of viral loads. Initial values of

uninfected cell populations are fixed to be at maximum of carrying capacity of the system,

that is x1(0) = 1.0 and x2(0) = 0.75. Infected cell populations are nonexistent at time

zero. The viral strain populations z and z� are taken from a certain grid from 0 to 1 each.

The probability of becoming attracted towards each equilibrium is mapped in Figure 5.11

with different colours. Additional to the mapped stability of equilibria as p(vi), there is
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Figure 5.11: Stability map for equilibria vi, i = 0, . . . , 7. Colours of regions illustrate the probability of the system stabilising at the
given equilibria when started from different initial conditions (only z�(0) and z(0) were sampled). White areas correspond to stability of
periodic orbits or chaos.
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a non-periodic (e.g. chaotic) behaviour whose probability is considered as 1 − p(vi) for

appropriate i = 1, . . . , 8 and is left in Figure 5.11 white for simplicity reasons.

In Figure 5.11, region (1) contains values of infection rates, α and α�, that ensure

stability of the v-free state v1 for all possible initial conditions. The system does not allow

persistence of the virus strains since neither of them is fit enough to survive. Upon increasing

the infection rate of the specialist strain, α�, the behaviour of the system from region (1)

shifts into regions (2) and (6) for smaller values of infection rate of the generalist strain,

and into regions (2+5) and (6+5) for slightly larger α. Both (2) and (6) accommodate the

equilibria corresponding to scenarios where the specialist persists and the generalist dies

out, i.e. the gen-free-1 state v2 and the gen-free-2 state v6. The threshold for survival of

the specialist was found and lays between regions (1) and (2). The bistability regions (2+5)

and (6+5) provide almost equal chances of system tending towards v2 or v5 and v6 or v5,

respectively. The combination of (2+5) and (6+5), forming a comparably thin, hexagonal

shaped region, can be of great epidemiological interest. These regions provide almost equal

chances for the survival of a solitary specialist population with generalist population going

extinct and, vice versa, the survival of the generalist strain and elimination of the specialist

population. By examining Figure 5.11, it may seem obvious that in regions (2+5) and (6+5),

the spec-free state v5 has higher probability of becoming the main equilibria on narrow,

right side of the hexagon, that corresponds to higher infection rates of the generalist. On

the contrary, the left side of the hexagon, with lower values of α, provides higher chances for

survival of gen-free-1 and gen-free-2 states. One of the boundaries of the hexagon is defined

by a line of transcritical bifurcations which has DBT and BT bifurcations at the ends of

the segment. This bifurcation exchanges stability between v2 and v3, and leads to a larger

hexagon of region (3+5). In region (3+5) the coex-1 state v3 and the spec-free state v5 share

chances of becoming the main stable equilibria depending on initial conditions. Only the

lower left corner of region (3+5) guarantees the stability of v3 for all initial conditions. For

increasing values of both α and α�, the probability of coexistence of both strains decreases

and the probability of the solitary survival of the generalist population increases. The

latter probability reaches 100% at the transcritical bifurcation between v3 and v7, where

coex-1 state v3 loses its stability to biologically meaningless coex-2 state v7. For values of

α and α� above the transcritical bifurcation T37 lays the region (5). The spec-free state

v5 occupies a large region which depends strongly on the infection rate of the generalist

strain. The maximum value of α for region (5) is defined by the Hopf bifurcation of v5.

For values greater than the Hopf bifurcation value of α, in region (5c), the periodic orbit

around v5 is stable for all values of α�. The minimum value of α for region (5) is at the

transcritical bifurcation with the coex-2 state v7. The transcritical bifurcation between v5
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and v7 separates regions (5) and (7). The thin, vertical region (7) holds α and α� that lead

to the stability of the coex-2 state for all initial conditions. Curiously, regions of coexistence

occupy comparably small parts of the stability map. The first example of a region with

stable periodic orbits (5c) was discussed above. The second example is located at values

of α� greater than Hopf bifurcation of v6, the H6 line, and for values of α less than of the

curve LP7. There, a periodic orbit around v6 is stable in all of the region (6c) for any

nontrivial initial conditions. The region (6c) may exceed over H2 line. The region above

Hopf bifurcation of v2, the H2 line, for smaller values of α has low yet positive probability

of hosting stable v1 and v4 in a seemingly random manner. The dynamics of this region is

discussed in Section 5.4. Interestingly, v8 is not stable for any pair of (α, α�).

5.4 Chaos in the model of virus specialisation

The dynamics of the system in particular areas of the stability map are uncertain, e.g. for

small values of α in Figure 5.8 where none of the equilibria or periodic orbits are stable. From

the results of taking horizontal cross sections for one-dimensional bifurcation diagrams, we

can conclude there is an absence of stable objects for low infection rates of the generalist, α,

and high infection rates of the specialist, α�. Vertical cross-sections reveal loss of stability

by all equilibria and periodic orbits in the region, too. In order to understand the dynamics

of the system for small α and large α�, we compute the time series for a fixed value of

α = 0.5 and four, gradually increasing, values of α� at 0.7, 1.2, 1.6, and α� = 2, the results

of which are shown in Figure 5.12. Each plot illustrates the time series starting at two,

biologically meaningful initial conditions where the second initial condition is a very small

perturbation of the first initial condition. At α� = 0.7, the system corresponds to region (6c)

of Figure 5.11. These parameters lead to a stable periodic orbit around the gen-free-2 state

v6, see Figure 5.12 (a). At α� = 1.2, the periodic orbit shows irregularity which is evident

on its emerging second peaks, and at α� = 1.6 a period doubling becomes conspicuous, see

Figure 5.12 (b) and (c). Further at α� = 2.0, two major changes are observed: first, a

hypothesised cascade of period doubling is affecting the periodic orbit in an intricate way

leading to aperiodic cycles, while, second, close initial conditions of two simulations are

leading to cycles of dissimilar shape and period starting at the time horizon of t = 1500,

see Figure 5.12 (d). The obtained numerical results thus seem to indicate the presence of

chaotic dynamics, which emerge for high values of the infection rate of the specialist and

comparably low infection rate of the generalist.

To study chaos in more detail, we calculate Lyapunov exponents. Assume, that first and

second initial conditions provide vi.c.1(t) and vi.c.2(t), respectively, and in Figure 5.12 (d),
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(a) α� = 0.7

(b) α� = 1.2

(c) α� = 1.6

(d) α� = 2

Figure 5.12: Time series of system (5.3) for four different values of α�. Infection rate
α = 0.5 and other parameters are fixed as (5.23). Initial conditions used for simulations:
{x1(0) = 1, x2(0) = 0.75, y�

1(0) = 0, y1(0) = 0, y2(0) = 0, z�(0) = 0.5, z(0) = 0.5} and
{x1(0) = 1, x2(0) = 0.75, y�

1(0) = 0, y1(0) = 0, y2(0) = 0, z�(0) = 0.5001, z(0) = 0.5001}.
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Figure 5.13: Maximal Lyapunov exponents for the dynamical system (5.3) at different
infection rates. Parameters of the system are fixed as in (5.23). All simulations have the
same time length, t = 5000. Chaotic behaviour of the system corresponds to approximate
values of infection rates 1.5 ≤ α� ≤ 3.

they diverge as |vi.c.1(t) − vi.c.2(t)| ≈ emax(ε)t|vi.c.1(0) − vi.c.2(0)|, where ε is a vector of

Lyapunov exponents and thus has the same dimension as the vector v(t). The measure of the

diverging solutions ε from a very close initial conditions is used to quantitatively illustrate

the existence of chaos. In our notations, when any component of the vector ε is positive, the

solutions vi.c.1(t) and vi.c.2(t) diverge exponentially. Finding positive Lyapunov exponents

for each parameter combination provides approximate boundaries of the parameter space

which lead the system to chaotic behaviour. First, we fix the infection rate of the generalist

strain at a certain value, and then calculate all Lyapunov exponents for infection rates of

the specialist for 100 values of α� ∈ (0, 5). By changing the value of the fixed infection rate

of the generalist and repeating the procedure, we obtain and plot the maximal Lyapunov

exponent in Figure 5.13. As shown in the plot, three values of infection rate of the generalist

are chosen to be α = 0.1, α = 0.3, α = 0.8 and different colours correspond to each value.

Stochasticity along the trajectories of maximal Lyapunov exponents is the result of variation

of the strength of the exponential divergence. For α = 0.1 and α = 0.3 the calculations

show a range of α� that lead to positive maximal Lyapunov exponents. However, the light

blue trajectory of α = 0.8 leads to stable non-chaotic behaviour in the system, since the

largest Lyapunov exponents are non-positive. The subintervals of both α and α� that lead

to existence of positive Lyapunov exponents are approximate boundaries of infection rates

for chaos in the system. In order to determine the chaotic areas, we map the positive values

of maximal Lyapunov exponents along different values of both α and α�, see Figure 5.14.

Interestingly, the certain positive values are present only for 0 < α ≤ 0.7 and 1.5 ≤ α� ≤ 3,
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Figure 5.14: Values of the maximal Lyapunov exponents (MLE) for the dynamical system
(5.3) at different infection rates are depicted with colour. Parameters of the system are
fixed as in (5.23). All simulations have the same time length, t = 5000. Chaotic behaviour
of the system corresponds to only positive values of the MLE, which are depicted on this
plot for approximate values of infection rates 0 < α ≤ 1 and 1.5 ≤ α� ≤ 3. In the next
figure we display a zoom inside this region.
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Figure 5.15: Enlarged part of maximal Lyapunov exponents for the dynamical system (5.3).
Parameters of the system are fixed as in (5.23). All simulations have the same time length,
t = 5000.

which can be considered a chaotic window which is followed by an existence of a periodic

behaviour (see Figure 5.15). Since the Lyapunov exponents are trustworthy only as t −→∞,

we repeated the calculations for α� > 3 fixing larger time intervals for simulations, which

changed the results of Figure 5.14 only negligibly. The strange chaotic attractor is shown

in several projections of the phase space in Figure 5.16.

The system of equations (5.3) exhibits the most diverse behavioural traits studied so

far in this work. Nevertheless, the results of this chapter are consistent with the previous

findings. For small values of infection rates, the infection-free states are dominant. This

agrees with the understanding of the viral infectiousness and basic reproductive number:

until the infection rates increase the basic reproductive number above one, the virus-free

state remains stable. As soon as the infection rate of a generalist or a specialist crosses

the critical value, the corresponding population of the generalist or the specialist prevails.

The generalist-specialist model is similar to the wild-type and mutant model of Chapter 4:

the main similarity being the assumption of directional mutation from the wild-type to the
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Figure 5.16: Three-dimensional projections of the attractors for system (5.3) at parameter
values fixed as in (5.23). First row, (a), (b), (c), correspond to α = 0.5, α� = 2.0. Second
row, (d), (e), (f), correspond to α = 0.7, α� = 2.2. Notice that strange attractors are found
in (a), (b), (d), and (e).

mutant strain and from the generalist to the specialist strain. The key difference between

the two models is that the introduction of the generalist requires the addition of the second

type of a target cell so that a diversity of resources can be available. Recalling the results of

the model of the wild-type and mutant strains sharing the same target cell population, we

know that the mutant strain remains stable or coexists with the wild-type strain whenever

the basic reproductive ratio for the mutant and wild-type strains exceeds one. Drawing the

parallel of those results with the outcome of current generalist and specialist model, we see

the notable effects of the introduction of the second target cell type. The existence of the

second cell population that is susceptible to the generalist type, as the study have shown,

allows the stable and lone existence of the generalist. There are still regions of coexistence

on the stability map, however in comparison to the results of the model for wild-type and

mutant strains, the generalist can exists without the specialist despite the mutational “leak”

of the population.
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Part III

Specialisation of viral strains
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Chapter 6

Modelling viral diversity

Viral diversity is known to be a key obstacle in the way of curing and finally eradicating

diseases caused by almost all viruses [134, 105], for example, HIV [77] and Hepatitis C

virus [106]. Understanding the mechanisms driving viral heterogeneity is crucial for deter-

mining effective ways of preventing outbreaks. From a mathematical perspective, there are

many ways to model and analyse the patterns of genetic diversity observed in viral popu-

lations. In this chapter, we consider a method of modelling the viral diversity in scope of

the population dynamics, where m+ 1 different variants are considered. The population of

different viral strains is placed in an environment where a population of susceptible cells is

provided. In this framework, strains differ from one another by their infectiousness. The

goals of this chapter are (i) generalise the previously developed model of two strains to

m + 1 strains, (ii) derive a model based on partial integro-differential equations by taking

the continuum limit as m→∞, and (iii) compare the dynamics of the derived model, which

describes an infection-supplied evolution process of the heterogeneous viral population, with

the dynamics of the model with two viral strains.
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6.1 Mutation as a diffusion process in phenotypic space

First, recall the nondimensional model of symmetrical mutation of two different strains and

one shared host considered in Chapter 4, and given by:

ẋ = x(1− x)− α� z� x− α z x,

ẏ� = α� z� x+ µy − µy� − γ� y�,

ẏ = α z x+ µy� − µy − γ y,

ż� = γ� y� − ν� α� z� x− ζ� z�,

ż = κγ y − ν α z x− ζ z.

(6.1)

This nondimensionalized model was extensively studied in Section 4.2. Here, the mutation

of strains z� and z is modelled via flow in infected cells y� and y with rate µ. For greater

number of strains m � 1, a similar technique can be used. We assume that a population

of virus which consists of different strains is diverse enough for the different strains to be

distributed along some characteristic axis. Each value on this characteristic axis identifies

a specific strain of virus. Allowing the sequencing of different viral strains over an axis or

interval is a very generous assumption, however if the property has a measurable nature,

then sorting a physical measurement along an interval becomes a task of mapping from large

yet finite subset of R to [0, 1] ∈ R. By increasing the number of measurements describing

the strains, the interval will appear more and more dense. Without loss of generality and

for clarity in the proceeding discussion, we call the interval enabling the identification of all

strains a phenotype space. For example, consider the envelope glycoprotein (Env) of HIV-1,

whose gene product consists of a complex of two subunits, gp120 and gp41. This protein is

incorporated into virions that bud to the cell surface of infected T cells. The Env is crucial

to viral infectivity. The density of Env on virions can be measured by immunofluorescence

microscopy and subcellular membrane fractionation techniques [90]. Different infectivity

may be considered as a characteristic which differs one strain from another and thus the

density of mature gp120-gp41 products can be mapped along a unit interval S = [0, 1].

Having defined the phenotype space, we are now able to incorporate mutation into a

general model of m + 1 strains. On this phenotype space the population of infected cells,

y(s, t), and phenotype dependent viral load, z(s, t), can be defined. This is a generalisation

of the two-strain case given by (6.1): the two types of viral strains z(t) and z�(t) now

correspond to values of z(s, t) at two specific points s, s� ∈ S, that is z = z(s, t) and

z� = z(s�, t). Figure 6.1 illustrates a scheme by which the mutation of the strains is
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Figure 6.1: Scheme of a model with two phenotypes of virus z(s) and z(s�). The mutation
of strains into each other occurs within the infected cells y(s) and y(s�).

modelled in (6.1). In this context, the mutation for each of the strains is proportional to

the difference in infected cell populations y(s) and y(s�):

∆y(s�) ≈ y(s)− y(s�),

∆y(s) ≈ y(s�)− y(s).

(6.2)

The difference arises from a conservation argument: the change in y is due to flow in

minus flow out; the flow (or mutation) rate is µ for both strains. The addition of a third

phenotype, s? ∈ S, follows a similar rule, see Figure 6.2. The mutation rate of every

phenotype is proportional to the change in sizes of infected cell populations y(s), y(s�), and

y(s?):

∆y(s) ≈ y(s?)− 2y(s) + y(s�),

∆y(s�) ≈ y(s)− 2y(s�) + y(s?),

∆y(s?) ≈ y(s)− 2y(s?) + y(s�),

(6.3)

that obey the conservation principle for the total size of infected cell populations. That is,

∆y(s) + ∆y(s�) + ∆y(s?) = 0, so populations are conserved by mutation. Increasing the

number of strains considered in the model up to m+ 1 provides the following finite system
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Figure 6.2: Schematic illustration of the interactions between populations in the case of
three phenotypes.

of equations due to the discrete phenotype space:

ẋ = x(1− x)− x
m∑
i=0

αi zi,

ẏi = αi zi x+ µ(yi+1 − 2yi + yi−1)− γi yi,

żi = κi γi yi − νi xαi zi − ζi zi,

(6.4)

where i = 0, 1, . . . ,m. In order to describe the general case of m + 1 strains along the

phenotype space, we can define s = i/m so that i = 0 corresponds to s = 0 and i = m gives

s = 1. Therefore, the lattice spacing in the phenotype space can be measured as

h =
1

m
, (6.5)

and stand for the “phenotypic distance” between adjacent subpopulations of virus or in-

fected cells. Consequently, the phenotypic space contains m equidistant subintervals: 0 =

s0 < s1 < . . . < si < . . . < sm−1 < sm = 1. The discrete populations are grouped into pi,

where p = y for infected cells and p = z for virus. The susceptible cell population does not

depend on the viral strains and thus is not discretized with respect to i.
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Now we consider the limit m → ∞, which turn discrete populations pi into continuous

populations p̄(s). The relationship between pi and p̄(s) is given by

pi =
1

m
p̄

(
i

m

)
= h p̄(ih) = h p̄(s). (6.6)

Definition (6.6) approximates values of pi by the area of a rectangle with height p̄(s) and

width h. The factor h that appears in front of p̄ ensures that the total size of the population

p is conserved in the continuum limit. Suppose, that

m∑
i=0

pi = P. (6.7)

Then

P =
m∑
i=0

pi =
m∑
i=0

p̄(ih) · h→
∫ 1

0
p̄(s)ds, (6.8)

when m → ∞ and thus h → 0. Therefore,
∫ 1

0 p̄(s)ds = P , and the discrete and contin-

uous populations have the same total size. In other words, h is an approximation of the

differential. Based on the discussed notations, the following is true:

pi+1 = hp̄((i+ 1)h) = hp̄(s+ h),

pi−1 = hp̄((i− 1)h) = hp̄(s− h).

(6.9)

This allows us to find the continuum limit of pi+1 − 2pi + pi−1:

pi+1 − 2pi + pi−1 = h (p̄(s+ h)− 2p̄(s) + p̄(s− h))→

→ h

(
h2∂

2p̄(s)

∂s2

)
= h3∂

2p̄(s)

∂s2
,

(6.10)

where h→ 0. Recalling that expressions above for p̄(s) are true for both ȳ(s) and z̄(s), and

assuming that the infection rate αi is the only parameter that varies from strain to strain,

we find that the continuum limit for model (6.4) when m→∞ is

dx

dt
= x(1− x)− x

∫ 1

0
α(s)z̄(s)ds,

∂ȳ

∂t
= xα(s) z̄(s) + µ̄

∂2ȳ(s)

∂s2
− γ ȳ(s),

∂z̄

∂t
= κ γ ȳ(s)− ν xα(s) z̄(s)− ζ z̄(s),

(6.11)
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Figure 6.3: Left: Population of viral strains defined on a phenotype space continuously.
Right: Populations interaction scheme for virus population of phenotypes s ∈ S, z̄(s), and
the infected cell population, ȳ(s).

where µ̄ = µh2, see Figure 6.3. Moreover, when the no-flux boundary condition ∂ȳ(s, t)/∂s =

0 is used at s = 0 and s = 1, we have

∫ 1

0

∂2ȳ(s, t)

∂s2
ds =

[
∂ȳ(s, t)

∂s

]1

0

= 0, (6.12)

which ia the continuous analogue of the discrete conservation law,
∑

i ∆y(si) = 0.

Therefore, by applying the diffusion operator to model mutation, we generalise the

ODE-based model for the case of m > 2 different evolving viral phenotypes. All parameters

of the discrete model except the mutation rate remain the same in the continuous model;

the mutation rate is scaled with respect to the second order of the phenotype distance.

Exploiting the phenotype space S allows us to replace certain parameters of fixed values

with functions that vary over S. For instance, the infectiousness for every strain may

vary and thus the infection rate can be considered a function, α(s), for every entry of

the phenotype space s ∈ S. In terms of (6.1), α(s) is a phenotype-dependent function

which remains 0 everywhere except two values of s, forming a profile with two spikes of

infection rate values. In the next section, we show that this logical transition from ODE-

based systems into PDEs does not alter the qualitative picture of the dynamics nor change

the bifurcation structure. Simplified models can provide meaningful insights into elaborate

models and the complicated systems we consider further can rely on discretization that

secures the specifics of processes which are being studied.
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6.2 Modelling of evolving viral strains with one susceptible

cell type

By means of the phenotype space, we model the change in size of a viral population, z(s, t),

for all phenotypes s ∈ S. A virus cannot replicate and evolve without the machinery of a

host cell. Due to the specific replication cycle, the model has to include the interactions of

at least three populations. First, the population of uninfected susceptible cells, x(t), which

has a growth rate β limited by a carrying capacity K. The population of uninfected cells

decreases either when it becomes infected by viral strains z(s, t), due to the competition for

the resources with the second population, or by natural decay at rate δ. Infections occur

at rate α(s) and depends on the virus strains. The viral population infects the susceptible

cell population and, third, the infected cell population inherits the phenotype of the strain,

y(s, t). We state that infection is the only process that increases the population of infected

cells, that is, after an infection the cells do not multiply. The infection also affects the

decay of susceptible cells, which is dependent on the virus virulence, γ. The diffusion term

represents the mutations of viral strains which occur during the replication and production

of virions by the infected cell. In the scope of this model, we assume that the production of

virions is proportional to the virulence and happens at burst rate κ for each infected cell. On

average, it takes ν free virus particles of the same strain to guarantee the infection process.

In the absence of coinfection by a different strain, this rate ν can be seen as a multiplicity

of infection (MOI). Finally, free virions lose their infectivity (and/or are flushed from the

system) at a rate ζ.

Based on the mechanisms described above, the interaction of viral strains with a host

cell can be studied by the following system of partial integro-differential equations (PIDEs):

dx(t)

dt
= βx(t)

(
1− x(t)

K

)
− x(t)

∫ 1

0
α(s) z(s, t) ds− δx(t),

∂y(s, t)

∂t
= x(t)α(s) z(s, t) + µ∆y(s, t)− γ y(s, t),

∂z(s, t)

∂t
= κ γ y(s, t)− νx(t)α(s) z(s, t)− ζ z(s, t).

(6.13)

The initial condition for susceptible cell population is chosen to be equal to the equilibrium

value of the population at the absence of any pathogen in the system:

x(0) =

(
1− δ

β

)
K, (6.14)
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while the infected cell population is absent at the beginning, i.e. y(s, 0) = 0. The initial

condition for the viral population is a constant:

z(s, 0) = z0. (6.15)

The virus population size and the corresponding infected cell population size are spatial-

variable-dependent functions and, thus, the boundary conditions must be introduced. Ac-

knowledging the fact that phenotypic mapping to the interval may have various restraints,

for the sake of discussion we apply no-flux boundary conditions for the infected cell popu-

lation:
∂y(s, t)

∂s

∣∣∣∣
s=0,1

= 0. (6.16)

The choice of the boundary condition ensures that mutation does not lead to a net loss or

gain of infected cells.

The model can be simplified by introducing dimensionless variables that are based on

characteristic timescales and population sizes. The quantity β − δ describes the effective

growth rate of uninfected cells and its inverse, (β− δ)−1, is used to define the characteristic

time scale of the system. The population variables are scaled with respect to the maximum

size of the uninfected cells population:

t = (β − δ)−1t̄, x =

(
1− δ

β

)
K x̄, y =

(
1− δ

β

)
K ȳ, z =

(
1− δ

β

)
κK z̄,

where t̄, x̄, ȳ(s), and z̄(s) are non-dimensional variables. The non-dimensional parameters

replace previous parameters as follows

ᾱ(s) =
κK α(s)

β
, µ̄ =

µ

β − δ
, γ̄ =

γ

β − δ
, ζ̄ =

ζ

β − δ
, ν̄ =

ν

κ
. (6.17)

Upon omitting the bars for convenience, the nondimensional system looks as follows:

dx(t)

dt
= x(t) (1− x(t))− x(t)

∫ 1

0
α(s) z(s, t) ds,

∂y(s, t)

∂t
= x(t)α(s) z(s, t) + µ∆y(s, t)− γ y(s, t),

∂z(s, t)

∂t
= γ y(s, t)− νx(t)α(s) z(s, t)− ζ z(s, t).

(6.18)

The model (6.18) matches the continuum limit of ODE-based system of equations ob-

tained earlier in (6.11) with κ = 1 and µ being a small parameter. This allows us to use
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the same parameters and initial conditions in the PDE model (6.18) and the ODE model

of Section 4.2, allowing for a systematic comparison if the models. To illustrate that, more

detailed study of the model (6.18) is required.

6.3 Analyses and results

A first approach to understand the dynamics of a system of equations lays in analysing its

equilibria. Finding the equilibria of (6.18) analytically is not feasible yet two of its steady

solutions can easily be guessed. The trivial state, {x, y, z} = {0, 0, 0}, and the virus-free

state, {x, y, z} = {1, 0, 0}, both turn the right-hand side of system (6.18) into zero. To

determine the stability of the trivial state, we consider a slightly perturbed equilibrium

and check if the solution tends towards the original trivial state when the perturbation

coefficient approaches zero. As shown below, for determining the stability of the trivial

equilibrium, a study of the first equation, for x(t), is sufficient. For the equilibrium point

{x0, y0, z0} = {0, 0, 0}, consider a point infinitely close to it: {x̃, ỹ, z̃} = {x0 + ε x, y0 +

ε y, z0 + ε z} = {ε x, ε y, ε z}, where ε → 0. Substitution of the perturbed equilibrium

{x̃, ỹ, z̃} into (6.18), where the equation for x looks as follows:

dx̃(t)

dt
= x̃(t) (1− x̃(t))− x̃(t)

∫ 1

0
α(s) z̃(s, t) ds, (6.19)

leads to
dε x(t)

dt
= ε x(t) (1− ε x(t))− ε x(t)

∫ 1

0
α(s) ε z(s, t) ds, (6.20)

Simplifying (6.20), gives

dx(t)

dt
= x(t)− ε (x(t))2 − ε x(t)

∫ 1

0
α(s) z(s, t) ds. (6.21)

In taking the limit ε→ 0, we obtain

dx(t)

dt
= x(t). (6.22)

The first component of the solution, x, illustrates how the system behaves along time in

the direction of x: x(t) = et + C, for all C ∈ R. In this case of trivial equilibrium, the

exponential dependency on time of either components of the solution implies the instability

of the studied equilibrium. Moderately perturbing the equilibrium we obtained an expo-

nential divergence from the trivial equilibrium, which by all means classifies the equilibrium

as unstable. Moreover, the trivial equilibrium of (6.18) is unstable for all possible values
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of all parameters. Predictably, the result matches with instability of the trivial equilibrium

of the model involving two strains, (6.1). All other equilibria must be studied numerically

due to their complexity.

Let us examine how the system behaves for certain fixed values of parameters. For

simplicity, we assume the infection rate of strains α(s) are zero everywhere except at two

different values of s, that is:

α(s) =


α1 when s = s1,

α2 when s = s2,

0 otherwise,

(6.23)

where s1 6= s2. The other parameters are equal to those used for the bifurcation analysis of

the model (6.1), given by:

µ = 0.1 · h2, γ = 0.25, ν = 0.5, ζ = 0.2222,

where h is the phenotype distance and states that the mutation rate is a small parameter

for the system (6.18). For a fixed value of α1 = 0.3 at s = 0.33 and for three different values

of α2 at s = 0.66 from (6.23), we ran numerical simulations using the initial conditions

x(0) = 1, y(s, 0) = 0, z(s, 0) = 1. (6.24)

Figure 6.4 displays that the viral load z(s, t) is changing in time. When the infection rates

of the strains corresponding to s = 0.33 and s = 0.66 are small, the virus cannot persist

in the system (see Figure 6.4 (a)). Increasing the infection rate of the strain corresponding

to s = 0.66 leads to a survival of the strain (see Figure 6.4 (b)). Further increase in the

infection rate brings a periodic behaviour of the fittest strain while the other strain fails

as before (see Figure 6.4 (c)). In a deliberate attempt to mimic the interaction of two

strains studied in Section 4.2, we achieved the predictably similar outcome: increasing the

infection rate brings the system from a virus-free state to a stationary existence and, further,

to periodic existence of the strains which are fit enough for the system.

In order to find the parameter intervals corresponding to different behaviours of the

fittest strains, we construct a one-parameter bifurcation diagram. Figure 6.5 (a) illustrates

the shift in stability of the system from one equilibrium to another due to the varying

parameter, α2. We compare this with the bifurcation diagram of system (6.1) displayed in
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(a) α1 = 0.3, α2 = 0.3 (b) α1 = 0.3, α2 = 1 (c) α1 = 0.3, α2 = 2

Figure 6.4: Three different time series are shown for the virus population, z(s, t), where the
population size is depicted by colour. The initial and boundary conditions are the same for
all three cases. In all cases, the strain corresponding to s = 0.33 does not persist at the end
of the simulations. The system stabilises at the following states: (a) virus-free state, (b)
steady existence of the fittest viral strain, and (c) periodic existence of viral strain with a
higher infection rate.

Figure 6.5 (b). The value of α� = 0.3 is fixed at α1 = 0.3. The qualitative similarity between

the two models is obvious. Apart from a smother transition between steady equilibrium

and periodic solution, the behaviour of the PDE- (see Figure 6.5 (a)) and ODE-based (see

Figure 6.5 (b)) models are qualitatively identical.

6.4 Fitness landscape analysis

The reproduction rate of a virus is proportional to the number of successful infections

that virions accomplish. Depending on phenotypic characteristics of viral strains, different

strains can have different infectiousness. Thus, every viral strain defined on the phenotype

space can be assigned a fitness value represented by the infection rate. The concept of

visualising reproductive success started in early thirties of the XXth century [143] and was

named as fitness landscapes or adaptive landscapes. In the previous section, we explored

the behaviour of the model considering two strains with nonzero infection rates in the whole

phenotype space. Broadening this concept, consider a distribution of infection rates. This

distribution is defined over the phenotype space and has local maxima which are consistent

with the most successful strains. Here and further, we use concepts of the fitness landscape

and function of infection rate interchangeably.

Our goal in this section is to observe how the behaviour of the system changes when

the fitness landscape is a distribution of values rather than a couple of single spikes. As an

infection rate for the following test, we first consider the Gaussian approximation of two,
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(a) PDEs (b) ODEs

Figure 6.5: One-dimensional bifurcation diagrams for systems (6.18) and (6.1) shown on
plots (a) and (b), respectively. Fixed parameters are α1 = 0.3 and α� = 0.3 , and bifurcation
parameters are α2 and α. Solid lines correspond to stable equilibria while markers stand
for maximum and minimum of periodic orbits. All other corresponding parameters of the
models are fixed and equal.

scaled Dirac’s delta functions centred at s1 and s2:

α(s) = α1δ(s− s1) + α2δ(s− s2) ≈ α1√
2πε

e
−(s−s1)

2

2ε2 +
α2√
2πε

e
−(s−s2)

2

2ε2 , (6.25)

where ε is small and controls the width of the peaks. Dirac’s delta function is chosen

because the area underneath it is always equal to one. This property of the delta function

provides an easy scaling to control the total infectiousness of the studied virus population.

The fitness landscape, with α1 = 0.03 and α2 = 0.1 is plotted in Figure 6.6. Here, for visual

separation of two peaks, ε is defined as 1.1m−1, where m = 60 is a discretization along the

phenotype space used in the method of lines. Approximations of the Dirac’s delta functions

are centred around s1 = 0.33 for α1 and s2 = 0.66 for α2. If we fix α1 = 0.03 and vary α2,

we observe the change of behaviour for strains defined around s2.

Using the same parameters, initial and boundary conditions as in the previous section,

we run simulation for system (6.18), the result of which is shown in Figure 6.7. In comparison

to the dynamics of the system with infection rates defined as single spikes, the time series

profile of the system is much smoother along s. For small values of infection rates, the virus-

free state persists. For greater α2, steady and periodic viral persistence can be observed.

Although there are several surviving strains in Figures 6.7 (b) and (c) that are clustered

around s = 0.66, we prefer not to use term “coexistence” because the surviving strains

are too similar phenotypically to one another. For a fixed value of α1 and varying α2,

the one-dimensional bifurcation diagram can be constructed, as shown in in Figure 6.8.
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Figure 6.6: Distribution of infection rate with two peaks.

(a) α1 = 0.03, α2 = 0.03 (b) α1 = 0.03, α2 = 0.1 (c) α1 = 0.03, α2 = 0.2

Figure 6.7: Three different time series are shown for the virus population, z(s, t), where the
population size is depicted by colour. The initial and boundary conditions are the same for
all three cases. In all cases, the strain corresponding to s = 0.33 does not persist at the end
of the simulations. The system stabilises at the following states: (a) virus-free state, (b)
steady existence of the fittest viral strains, and (c) periodic existence of viral strain with
the highest infection rates.
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Figure 6.8: One-dimensional bifurcation diagram of the model (6.18) with infection rate
depicted in (6.25). Here, the scaling parameter α1 = 0.03. To illustrate the bifurcations,
x component of equilibria was chosen. Solid lines stand for steady equilibrium, and round
markers correspond to maxima and minima of the periodic orbits.

As in the previous case, we see three distinct states depending on the value of α2. The

transcritical bifurcation slightly above α2 = 0.03 includes an exchange of stability between

the virus free-state and the virus-persistent state. Further, the Hopf bifurcation brings a

periodic orbit around freshly unstable virus-persistent state. The stable, periodic behaviour

is continuous for all values of α2 exceeding α2 = 0.0918.

To understand how the system behaves when both peaks vary, we build a two-dimensional

bifurcation diagram, see Figure 6.9. As was predicted before, small values of infection rate

do not allow the persistence of virus, leading to the existence of a region I, where the

virus-free state is stable. Dashed lines in blue corresponding to the transcritical bifurca-

tions separate the virus-free state from the virus-persistent states. There are two regions

corresponding to this behaviour, both marked as II. Depending on the larger infection rate

of phenotypes, the viral strains survive around that phenotype. These steady states border

the periodic states and are separated by the Hopf bifurcation in solid blue lines. Periodic
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Figure 6.9: Two-dimensional bifurcation diagram for model (6.18) using the infection rate
given by (6.25). Region I stand for virus free state, regions III are virus-persistent stationary
state, and regions III are oscillatory persistence of virus population. Red line, region IV,
corresponds to coexistence of distinct clusters of viral strains.
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(a) α1 = α2 = 0.05 (b) α1 = α2 = 0.2

Figure 6.10: Coexistence of two clusters of phenotypically distinct strains of virus. Colours
indicate the sub-population size of viral strains.

states of virus persistence, marked as III, occupy the largest areas of the plot. The red line

separating the coupled regions correspond to the only values of α1 and α2 that lead to coex-

istence of the strains around phenotypes s1 and s2. Moreover, the coexistence style repeats

the style of viral persistence it is adjacent to. For instance, the infection rate coefficients

α1 = α2 = 0.05 lead to two phenotypically different clusters of strains, see Figure 6.10 (a).

The larger infection rate coefficients α1 = α2 = 0.2 bring two clusters of phenotypically

far strains oscillating in the positive phase space, see Figure 6.10 (b). The most counter-

intuitive result of these simulations is the strong manifestation of competition between

different strains. Since all of the strains share susceptible cells, the success of one strain

immediately leads to a failure of all the other clusters of strains in the system. The slightest

deviation from the diagonal line, brings an extinction of all strain clusters except the clus-

ter of the fittest strains. Clustered survival also has an important consequence: the strains

closest to the fittest one in a load tend to win the competition with more fit, yet distant,

strains under some assumptions. That is, imagine that distant phenotypes have infection

rates which obey the following assumption: α(s1) < α(s2). Then viral strain z(s2 + ε) for

small ε may survive in the long run, while z(s1) vanishes, although α(s1) > α(s2 + ε).

Overall, this test shows the consistency between “continuous” and discrete models of

viral dynamics. Interestingly, the general dynamics are dictated by the maximum of the

infection rate yet every strain performs with respect to its individual infection rate. More-

over, the model (6.18) is consistent with respect to the discretization used for the numerical

simulations. That is, for different values of m in a discretization, the one-dimensional

bifurcations do not change noticeably.
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Chapter 7

Specialisation of viral strains

among multiple host species

7.1 Background

In this chapter, we consider viral evolution by adaptive radiation in complex fitness land-

scapes using the framework of host-virus systems. Most of the research done on host-parasite

associations has been formulated in terms of a co-evolutionary scheme in which parasites

were given the role of a passive follower agent [6, 88, 100]. However, parasites, also being

under Darwinian selection, have their own evolutionary capabilities. Moreover, viruses re-

produce at a faster rate than their hosts. It means more generations of viruses compare

to fewer generations of host species, which yields a prevailing quantitative appearance of

genetic variations in the viral population over the host population. Differences in genera-

tion time and high mutation rates motivate the necessity of studying parasite evolution as

a main subject.

The occurrence of specialisation by a virus appears to be common: specialisation of

HIV-1 [147, 57] and strong connections of bacteriophages to a specific bacterial species [55,

13, 40, 56, 89] are examples of this. In the case of HIV-1, there is a hypothesis explaining the

long transmission period in most cases of infection by viral evolution. More precisely, spe-

cialisation of the HIV-1 towards specifics of the T-cells within a host. In order to illustrate

this process, we can use a mathematical formulation recently suggested for modelling viral

evolution [66], which can be extended to study the onset of specialisation. Although exper-

imental data on the subject exists, theories that explain host-range evolution in viruses are

not well developed. The development of a simple and convenient mathematical approach
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that can be used to illustrate viral evolution is the aim of this chapter. Furthermore, the

model is used to explore how the number of generations necessary for specialisation to occur

depends on the parameters of the system. Simulations were written in Python using finite

differences to approximate derivatives and Simpson’s rule to perform numerical integration.

The chapter is concluded with an elaborate use of regression analysis on multiple parame-

ters to define a qualitative change in the functional dependence of specialisation time of a

virus population.

7.2 Modelling specialisation towards a cell

The model that we formulate in this chapter is initially an extension of a previous model

of viral evolution [66], which, in turn, is based on the Nowak and May model of HIV-1

dynamics [95]. The Nowak and May model utilises the concept of a parasite with a free

infectious stage [4] and was specifically developed to describe the dynamics of HIV-1 within

a host. It is noteworthy that this model is based on a set of clearly identified assumptions

and hypotheses (so called “first principles”) and, therefore, the results and parameters can

be easily and immediately interpreted. In other words, the model is mechanistic, and for

this reason constitutes a sound base for further development. In terms of the previous

chapter, we are developing the model (6.13). The new model contains the following partial

integro-differential equations (PIDEs):

dxi(t)

dt
= λi − xi(t)

∫
s∈S

αi(s) z(s, t) ds− δi xi(t),

∂yi(s, t)

∂t
= αi(s)xi(t)z(s, t)− γi yi(s, t) + µ∆yi(s, t), (7.1)

∂z(s, t)

∂t
=

N∑
i=1

κi yi(s, t)− ν αi(s)xi(t)z(s, t)− ζ z(s, t),

where i = 1, . . . , N correspond to different types of susceptible and potentially infected cells.

By introducing several cell types, we create a possibility for viral strains to exploit one or

all of the susceptible cells, and thus specialise or generalise, respectively. The influx of sus-

ceptible cells are λi, and the per capita retreat (natural death) rates are δi for i = 1, . . . , N .

This simplified growth rate of susceptible cells is sufficient for the purpose of this chapter.

The background studies of the effective growth rate λ− δx for one susceptible cell type and

one viral strain were conducted in Section 3.3. Here, N types of susceptible cells, xi, are

available for all strains of viral population, z(s), to infect according to the corresponding

infection rates αi(s) for i = 1, . . . , N and viral phenotypes s ∈ S. Separate αi allow the
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model to capture the unique characteristics of each type of susceptible cell while the de-

pendency of each αi(s) on phenotype space determines the success rate of viral strains in

infecting each type of available susceptible cell. Cross infections are left out of the scope of

discussion, and thus the average number of virions of the same strain required to accomplish

a successful infection is the multiplicity of infection, ν. Each infected cell carries a memory

about the strain it was infected by, y(s, t). This allows the mutation of viral strains in

the population of infected cells, where most of the mutations occur to be modelled, with

a mutation rate µ. The natural apoptosis rate of cells is altered after the infection, and

therefore the death rate of the infected cell population, γi, is different from the death rate of

the corresponding uninfected cells. Since the process of virion release does not necessarily

destroy the host cell, we do not specify the connection between decay rate of infected cells γi

and the exact amount of infected cells involved in the production of virions. We assume that

γi = γvir.
i + γsys.

i + γapop.
i , which represents the combination of all possible decay scenarios

for a population of infected cells: it might be either due to virulence or as a result of an

immune system attack or, as before, because of the pre-programmed natural death of cells.

In this model, we consider a lytic cycle of viral reproduction, and thus the burst size, κi, is

associated with every infected cell type. The average outflow of the virus from the system

occurs at rate ζ. For the sake of clarity, the descriptions of the parameters and variables

of (7.1) with arbitrarily fixed parameters and initial conditions are listed in the table below:
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Symbol Short description (Initial) value Units

t time 0 day

s phenotype (space) variable between 0− 1 -

xi(t) susceptible cell type i ∼ 102 cells
ml

yi(s, t) infected cell type i 0 cells
ml

z(s, t) viral load 100 for s = s∗ copies
ml

λi influx rate of susceptible cells ∼ 108 cells
ml·day

αi(s) infection rate between ∼ 101 ml
copies·day

δi death rate of susceptible cells ∼ 106 1
day

γi death rate of infected cells ∼ 100 1
day

µ mutation rate of virus via inf. cells ∼ 10−3 1
day

κi birth rate of virus by inf. cell i ∼ 103 copies
cells·day

ν multiplicity of infection ∼ 10−4 copies
cells

ζ outflow rate of virus 103 1
day

From the previous chapter we know that the mutation rate µ is a small parameter. Nondi-

mensionalization of system (7.1) gives the following:

µ

δi

dxi(t)

dt
= 1− αmaxi

αmax1

δ1

δi
xi(t)

∫
s∈S

αi(s) z(s, t) ds− xi(t),

∂yi(s, t)

∂t
=

γi
µ

(xi(t)αi(s) z(s, t)− yi(s, t)) + ∆yi(s, t), (7.2)

µ

ζ

∂z(s, t)

∂t
=

N∑
i=1

λi αmaxi κi
ζ δi γi

yi(s, t)−

(
ν

ζ

N∑
i

λi αmaxi
δi

αi(s)xi(t) + 1

)
z(s, t),

where 0 ≤ αi(s) ≤ 1 and [αi] = 1, while [αmaxi ] = ml
copies·day . Here, the model is written

on the time-scale of mutation. Information about the magnitude of the studied parameters

can affect the analysis, and sometimes simplify the model drastically. For example, using

the parameters in the table above, we find that the mutation rate is much smaller than the

death rates of susceptible cells and the virus,

µ/δi � 1, µ/ζ � 1. (7.3)
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These inequalities show that the left-hand sides of the first and third equations in (7.2) can

be set to zero, resulting in a simplified model given by

xi(t) =
1

Ai
∫
s∈S αi(s) z(s, t) ds+ 1

,

∂yi(s, t)

∂t
= Bi (xi(t)αi(s) z(s, t)− yi(s, t)) + ∆yi(s, t), (7.4)

z(s, t) =

∑N
i=1Ci yi(s, t)∑N

i Diαi(s)xi(t) + 1
,

where

Ai =
αmaxi
αmax1

· δ1

δi
, Bi =

γi
µ
, Ci =

λi αmaxi κi
ζ δi γi

, Di =
ν

ζ

λi αmaxi
δi

(7.5)

for all i = 1, . . . , N . However, due to the validity of the reduction depending strongly

on other parameter values, we leave analysing this model for future discussion. Without

specific knowledge about parameter values, in general for model (7.2) it is possible to obtain

a scaled basic reproduction number to characterise the main growth and evolution rate of

the viral population:

R̃0 =
N∑
i

R̃0i =
N∑
i

λi αmaxi κi
ζ δi γi

. (7.6)

This combination of parameters is found by nondimensionalization of the initial system.

It is worth noting that with proper adjustments due to the change in the burst size, this

expression is equivalent to the basic reproduction number (3.8) found in Chapter 3. As a

main difference, the expression (7.6) now depends on the number of populations described

in the model. Further in this chapter, for simplicity in simulations and illustrations, we limit

the model to two types of susceptible cells. In this case, the interaction between variables

is described by the following (dimensional) equations:

dx1(t)

dt
= λ1 − x1(t)

∫
s∈S

α1(s) z(s, t) ds− δ1 x1(t),

dx2(t)

dt
= λ2 − x2(t)

∫
s∈S

α2(s) z(s, t) ds− δ2 x2(t),

∂y1(s, t)

∂t
= x1(t)α1(s) z(s, t)− γ1 y1(s, t) + µ∆y1(s, t),

∂y2(s, t)

∂t
= x2(t)α2(s) z(s, t)− γ2 y2(s, t) + µ∆y2(s, t)

∂z(s, t)

∂t
= κ1 y1(s, t) + κ2 y2(s, t)− (ν1x1(t)α1(s) + ν2x2(t)α2(s) + ζ) z(s, t).

(7.7)

131



Initial conditions for model (7.7) are

x1(0) =
λ1

δ1
, x2(0) =

λ2

δ2
, y1(s, 0) = 0, y2(s, 0) = 0. z(s, 0) = Z(s), (7.8)

where the susceptible cells are given the maximum steady state value which can be achieved

in the absence of the virus; and the standard no-flux boundary conditions

∂y1(s, t)

∂s

∣∣∣∣
S̄

= 0 and
∂y2(s, t)

∂s

∣∣∣∣
S̄

= 0, (7.9)

are applied for functions y1(s, t) and y2(s, t) defined on S = [0, 1]× [0, 1] with boundaries S̄.

Apart from fixed parameters, the model should be complemented with a fitness landscape,

that is a weighted sum of functions αi(s), i = 1, 2. We stipulate without loss of generality

that αi(s), i = 1, 2, are Gaussian functions defined on the two-dimensional phenotype space

S with different means, e.g. (s1, s2) = (0.25, 0.75) and (s1, s2) = (0.75, 0.25), and a variance

σ2 that allows to distinguish the peaks. This assumption provides the possibility for the

virus to increase its efficiency of exploiting one of the susceptible cells at the expenses of

decreasing the efficacy of exploiting the other. Therefore, the costs of adaptation to one

or another cell type can be regulated by defining the parameters αi(s), i = 1, 2. Based on

the goal of every particular case, the process of niche occupation can be defined in different

ways. In this chapter, we assume that there are two niches – corresponding to the number

of provided cell types. Susceptible cells x1 and x2 can be infected at a rate α1(s) and α2(s)

by each viral phenotype s = (s1, s2). By defining the αi(s) as a normal distribution with

different means we introduce possible niches. The process of “niche being occupied” should

be understood in a way that there is a big enough sub-population of the virus, e.g. z(ŝ, t)

where connected ŝ ⊂ S, infecting mostly one type of the cells. Specifically, we arrange a

percentage in order to test whether a niche is occupied or not. For instance, if at least

15% of total viral strains are found around the mean of α1(s), then the niche corresponding

to the type of susceptible cells x1 is considered occupied. Moreover, if the sum of the

viral sub-populations which occupy both niches is greater than the rest, then we claim that

specialisation of virus towards the susceptible cells has occurred.

132



7.3 Results

The parameter values for the numerical simulations are fixed as:

λ1 = λ2 = 1.2 · 108, δ1 = δ2 = 1.04 · 106, γ1 = γ2 = 0.71,

µ = 0.001, κ1 = κ2 = 1.5 · 103, ν1 = ν2 = 10−4, ζ = 103.

(7.10)

For comprehensibility, we consider niches defining efficiencies α1(s) and α2(s) that have

peaks which are symmetric with respect to the diagonal s1 = s2. That is, for the case

N = 2 with:

α1(s1, s2) = exp (−0.001 · ((s1 − 0.25)2 + (s2 − 0.75)2)),

α2(s1, s2) = exp (−0.001 · ((s1 − 0.75)2 + (s2 − 0.25)2)).

(7.11)

The no-flux boundary conditions are applied at all boundaries. The initial condition for sus-

ceptible and infected cells are chosen to be x1(0) = λ1/δ1 cells/ml, x2(0) = λ2/δ2 cells/ml,

y1(s1, s2, 0) = y2(s1, s2, 0) = 0 cells/ml, and initial viral population is equal to zero every-

where but at a point:

Z(s1, s2, 0) =


1 copies

ml for (s1, s2) = (1/3, 1/3),

0 copies
ml otherwise.

For the parameter values (7.10), that lead to the stable coexistence of phenotypically sep-

arate sub-populations, the dynamics are depicted in Figure 7.1. The infection rate (7.11)

is shown in Figure 7.1 (a). Figures 7.1(b) to 7.1(f) illustrate the distribution of the vi-

ral population z(s1, s2, t) for different times: 1 (7.1(b)), 250000 (7.1(c)), 500000 (7.1(d)),

1000000 (7.1(e)), and 1800000 (7.1(f)) for this landscape. The segregation of the popula-

tion into two sub-populations which then evolve towards further specialisation in consuming

a specific resource is clearly seen in Figures 7.1(d) − 7.1(f). From previous chapters, the

behaviour of diverging viral sub-populations and the dependency of the type of equilibria

on parameters such as infection rate became known. We understand that the maximum

value of the infection rate, when other parameters are fixed, dictates the type of equilibrium

the system stabilises to. The numerical simulations shown in Figure 7.1 indicate that the

phenotypes corresponding to local maxima of the fitness landscape, along with the neigh-

bouring strains, become the most successful strains. This leads to an interesting question
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(a) α1(s1, s2) + α2(s1, s2) (b) t = 1

(c) t = 250000 (d) t = 500000

(e) t = 1000000 (f) t = 1800000

Figure 7.1: The infection rate used in simulations (Figure 7.1 (a)), and densities of dis-
tribution of viral variants z(s1, s2, t) in the phenotype space after given numbers of time
generations, t (Figure 7.1 (b)-7.1 (f)). Segregation of the viral population into two sub-
populations according to target cells type can be seen in panels (b) to (f). Note, that the
maximum values of z(s1, s2, t) in each plot are different.
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about the dependence of the specialisation time on the parameters in the system. Due

to its importance, the question of specialisation time is the main interest of this chapter.

However, the specialisation time depends on many parameters that are not available in

most cases. In the following section, we consider a useful tool that allows a quantitative

determination of critical parameter combinations that lead to a qualitative change in the

functional dependence of the specialisation time.

7.4 Regression analysis to characterise specialisation processes

In scope of this chapter, specialisation is the process of the viral population occupying

different niches (host types). The population of virus is introduced into the system as a few

virions of the same strain in the middle of the phenotype space. The virions are provided

with two types of susceptible cells to infect. The infection rates for each susceptible cell

type are predetermined and fixed for all possible strains of the system. With sufficient

infection rates, it is possible to set the conditions in such a way that the persistence of a

non-zero virus population is a robust feature that is not destroyed when the parameter are

varied. Depending on the values of parameters, specialisation occurs at finite yet different

time ranges. In this section, we study the qualitative change in specialisation time brought

by quantitative change in parameters.

The phenotype space is defined as a square with two axes s1 and s2. The fitness

landscape, which has two local maxima, is defined on the phenotype space. The simplified

division of the phenotype space into three parts (two for peaks and one for the valley

between) allows the sub-populations of virus to be tracked according to their phenotype.

The local maxima of the fitness landscape are enclosed in the upper-left and lower-right

triangles, leaving the valley between the peaks to occupy a prolonged hexagon. Since each

of the maxima correspond to the largest infection of the susceptible cells, undoubtedly,

the upper-left and lower-right triangles host the phenotypes of the most specialised strains.

Therefore, the phenotype space S = [0, 1]× [0, 1] is divided into three regions: the specialist-

1 region being upper-left triangle, the specialist-2 region being lower-right triangle, and the

stripe of the phenotype space separating them which corresponds to generalist strains. We

calculate the time required for the specialist-1 and specialist-2 regions to each accommodate

at least 15% of the total viral population and define this to be the specialisation time.

Regression analysis allows the relationship between a dependent variable and an inde-

pendent variable to be approximately determined in terms of a prescribed function. As

the dependent variable we take the studied quantity of specialisation time. As for the in-

dependent variable any parameter of the system, defined in a relevant range, is suitable.
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As a result of the regression analysis, we gain a quantifiable measure of the dependence of

the specialisation time on various parameters: this can be a single equation summarising

the relationship between a parameter and the specialisation time or even a single number

stating the slope of a linear dependence, which, in general, is called a regression value.

Furthermore, the regression analysis can be employed iteratively. We can study a possible

change in the regression value by varying another parameter. This leads to concentrated

information on the effect of two-parameter variations on the specialisation time.

System (7.7) has fourteen parameters in total, two of which – the infection rates – are

functions of the phenotype space. With an acceptable loss of generality, we fix all parameters

except κ1 and κ2 and let burst sizes of both infected cells to be equal to an average value

κ1 = κ and κ2 = κ. In this first iteration, we calculate the specialisation time, T , for more

than ten different average burst sizes of infected cells, κ, which are shown as the blue dots

in Figure 7.2 (a). Note that axes are in log scale, that is, we plot y = log T as a function of

x = log κ. The green curve in the panel of Figure 7.2 (a) is a non-linear function that has

been fitted to the obtained data. This function is:

y = y0 + bx+ cxd + lx−d. (7.12)

The values of y0, b, c, l, and d are found to minimise the difference between the scattered

plot and the fitting function.

In Figure 7.2 (a), with an increasing value of κ, the specialisation takes more generations

to occur. There is an approximately linear dependency between log κ and log T with a

positive slope. However, this is only true for the given set of parameters. To explore how

the specialisation time varies with the burst size at different points in parameter space,

we treat the mutation rate as a second free parameter. More specifically, we sample ten

different values of the mutation rate, µ, in the next iteration of the regression analysis.

For each value of the mutation rate, we conduct the first iteration of the analysis with the

regression variable κ. By calculating the specialisation time for varying κ, we find a fitting

function for every µ, which are shown as green lines in Figure 7.2. For the small values of

µ = 10−9, 10−8, 10−7, 10−6, 10−5, and even 10−4, the specialisation time is proportional to

the burst size: the dependence is almost linear having a positive slope. Interestingly, around

µ = 10−3 this correlation changes. For values of the mutation rate exceeding µ = 10−3,

there is a clear linear, inverse dependence between log κ and log T . For faster mutation

rates, increase in the burst size leads to a quicker specialisation.

To graph this change, the regression parameters y0, b, c, l, and d of the fitting function

with respect to µ are plotted in Figures 7.3 (a) - (e). Please note, that the horizontal
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axes correspond to µ. Perfectly fitting an elaborate function to data is computationally

expensive. Fortunately, sometimes a simple linear fitting can give as much information

as a perfectly fit curve. Figure 7.3 (f) plots the slope of a straight-line fit through the

data shown in Figure 7.2 versus the different mutation rates. We can uniquely identify the

critical value of the mutation rate where the qualitative change in the T and κ relation

occurs. When the curve in Figure 7.3 (f) crosses zero, the proportionality switches from

direct to inverse. Figures 7.3 (a) - (e) illustrate the parameters of the fitting function (7.12),

and are a very good example of the excess but unnecessary information that can be obtained

from a regression analysis.

For very small µ, the dynamics are limited by the mutation rate, and increasing the burst

size of the population does not contribute to faster evolution and, in fact, delays the onset

of specialisation. Although this phenomenon may seem counter-intuitive at first glance, we

suggest that it might be explained by diversity factors causing interspecific competition.

For larger µ, other biological processes are limiting the dynamics, and we see expected

inverse proportionality between burst size of the population and the specialisation time.

The effect of the viral burst on the specialisation time varies depending on the mutation

rate. However, the gradual increase of the mutation rate matches with overall decrease in

the specialisation time.

The motivation for this research was to illustrate the evolution of host-specialist viruses.

Among the thousands of known viruses, we chose HIV-1 for our model because it is one of

the most virulent parasites, which causes approximately million deaths annually according

to the World Health Organisation and with almost 37 million people persistently infected

by HIV-1. Throughout the history of mathematical biology a great number of models have

been suggested to describe the evolution of viruses. Prevailing research is done, however,

using phenomenological models. However, flexible frameworks are required in order to

connect the large amount of data collected on the subject with mathematical tools. The

ideal framework should allow for the possibility of interpreting both input parameters and

results. The model developed in this chapter is mechanistic; it allows an easy change of

components according to the goal of the research.

The main question leading to this research was about the transmission period of HIV-1

observed all through its history. It is expected that the transmission period of an infection

should decrease after years of existence of the virus, if not defeated completely. It is believed

that the natural selection of viral strains should increase the efficiency of virions. However in

the case of HIV-1/AIDS, even after decades of existence of the virus, HIV-1 still has the same

long post-incubation period. A hypothesis aimed to explain this phenomena is based on an

assumption that the virion evolves within a host; that is, a virus increasing its efficiency
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through host specialisation has a slower efficiency after transmission. We constructed a

method to identify the qualitative change in specialisation time using a symmetric fitness

landscape and parameters which are chosen for illustrative purposes only and are unrelated

to a real-life situation. Although the parameters were chosen for illustrative purposes, the

results of the model provide interesting insights into the dynamics of viral specialisation

and can form the basis for more comprehensive future studies.
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(a) µ = 10−9 (b) µ = 10−8

(c) µ = 10−7 (d) µ = 10−6

(e) µ = 10−5 (f) µ = 10−4
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(g) µ = 10−3 (h) µ = 10−2

(i) µ = 10−1 (j) µ = 100

Figure 7.2: Ordinate axis of all plots measure y = log Tµ(κ) and abscissa axis of all plots
is x = log κ. Each plot is calculated for a different value of the parameter µ. Blue dots
are numerically obtained data, and green curves correspond to the fitting function y =
y0 + bx+ cxd + lx−d.
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(a) y0 (b) b

(c) c (d) d

(e) l (f) b for linear (only) fitting

Figure 7.3: (a) - (e) the parameters for the regression function (7.12); (f) the slope of the
linear regression function.

141



Part IV

General conclusions

142



Chapter 8

Discussion and conclusions

8.1 Discussion

In this work, mathematical models of viral evolution were developed and studied by em-

ploying the powerful discipline of dynamical systems. It was shown that a wide range of

questions in population dynamics can be answered by means of deterministic models based

on ordinary differential equations. Sophisticated mathematical tools such as bifurcation

theory were employed to analyse the behaviour of the proposed systems. To the best of

our knowledge, the iterated regression technique, which was developed in the scope of the

thesis for the analysis of numerical data, has not been previously implemented in the field.

More importantly, the systematic approach developed in this work can now be used for

other similar setups.

In Chapter 3, the sensitivity of a classic mathematical model of viral dynamics to a

change in a specific term was studied. The virus greatly depends on its host cell for survival

and evolution. However, the host cell itself is subjected to a certain environment and the

population size of host cells depends on external factors too. General growth and death

rates of the susceptible cell population were altered in the search for the most realistic and

biologically meaningful model. It was shown that the combination of phenomenological

and mechanistic approaches led to dynamics that most closely mimic those observed in real

life [87]. This part of the study was crucial for determining the core model that was to be

used to explore the hypotheses stated at the beginning of the thesis.

In general, the idea behind competing species rests on scarcity of common resources.

The concept of competing viral strains is associated with a scarcity of susceptible cells and

the level of infectivity that the strains display. Since the work focuses on the evolution of

one virus, the competition that occurs between different variants of the population has to be
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taken into account. In the case when a viral strain competes against its own mutants, the

dynamics are more complicated in comparison to the case of two independent competitors.

By means of a mathematical model, the conditions for coexistence of mutant and wild-type

strains were found and described in Chapter 4 (see also [97]). It was shown that the survival

and persistence of the wild-type strain might crucially depend on the infectivity of mutants.

Due to the mutation-related decay in the size of wild-type strain population, the mutant

population gets an advantage if the infection rates of mutant and wild-type strains are equal.

Therefore, coexistence of wild-type and mutant variants is possible only when the infection

rate of mutants is low. Moreover, the model predicts the impossibility of coexistence when

the mutation rates exceed a critical value. This critical value depends proportionally on

the virulence and burst size of the wild-type strain and it is inversely proportional to the

multiplicity of infection of the wild-type variant. The fact that bigger burst sizes and

smaller MOIs might allow a higher mutation rate in the system of coexisting mutant and

wild-type strains is not surprising. The counter-intuitive part is that greater virulence

allows coexistence to occur for greater mutation rates. This combination of parameters

provides an upper bound for the mutant and wild-type coexistence that clearly depends

on the characteristics of the wild-type strain itself. Therefore, it has been illustrated that

coexistence, that is also a persistence of the wild-type, is possible only for the wild-type

strains that possess certain strict characteristics. This aligns with the ever-changing nature

of species, including viruses, and is embodied in a simple mathematical model.

If another type of susceptible cell is present in the system and only one of the strains

has the ability to infect it, then the competition dynamics change. The model for this

setup was constructed and studied in Chapter 5. Specialists and generalists were forcefully

introduced by allowing only one of the two strains to infect both cell types (generalist), while

the other strain, called the specialist, can infect only one cell type. We allow the wild-type

strain to be the generalist and the mutant strain to be the specialist. Interestingly, even

in the scope of this model, specialisation is persistent. There is one equilibrium where

“the generalist” outcompetes the specialist, however, it only happens after the cell type

susceptible to the specialist becomes extinct. Consequently, the specialist dies out. It can

be explained partially by the excess infectivity of the specialist strain, that exhausts the

only resource available to it. For lower infection rates of the specialist, the generalist can

outcompete the specialist if the infection rate of the generalist is high enough. Then, “the

generalist” persists alone, where quotes are referring to the fact that there is only one type

of cell available for it to infect. Therefore, the specialist is present as long as its susceptible

cell type exists in the system. On the other hand, the generalist can become extinct (be

outcompeted by the specialist) even when there is an abundance of cells that can be infected
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by the generalist but not the specialist. It is noteworthy that the remarkable performance of

the specialist, in this case, does not require its high infectivity rate. Overall, an adaptation

towards the host cell in a stable environment leads to the specialisation of viral strains.

The mutation rate not only limits the possibility of coexistence from above, as mentioned

earlier, but it also affects the specialisation time. It has been shown in Chapter 7, that the

combination of burst size and mutation rate has a nontrivial effect on specialisation speed.

As expected, a higher mutation rate speeds up the adaptation process. Moreover, increase

of the burst size creates a bigger viral population which should, in theory, lead to faster

specialisation. However, when a low mutation rate is combined with a gradually increasing

burst size, instead of causing the expected faster specialisation, the specialisation time

gradually increases. In other words, specialisation slows down with higher burst sizes when

the mutation rate is low. This can be explained by the competition that occurs between

virions of the same variants. When the fixed mutation rate does not allow a quick change

along the gradient of the fitness landscape, an accumulation of the virions of the same

strain creates the delay. Therefore, as it was hypothesised, a low mutation rate of the virus

population leads to interspecific competition and this competition slows down the overall

specialisation time. Moreover, the method used to determine this phenomenon can provide

a quantitative information about the critical values of the parameter combinations studied

here.

Other results were obtained in relation to the existence of bistability and chaos in the

model considering specialisation from Chapter 5. Although neither of these phenomena is

rare in population dynamics, discovering windows of chaos and bistability in the stability

diagrams provided deeper insights into specialist-generalist interactions. For example, it

was determined that when the infection rate of a specialist is approximately three times

larger than the infection rate of a generalist, in scope of the model, it is impossible to predict

the behaviour of the system in the long term. When, vice versa, the infection rate of the

generalist is three times larger than the infection rate of the specialist, then the system

becomes bistable: system might stabilise at either the coexistence or specialist-free state.

This bistability indicates a strong dependence on the initial sizes of the populations. With

increasing infection rate of the generalist strain in the bistable region, a gradual increase

in the probability of the generalist outcompeting the specialist was found. A decrease of

the infection rate of the generalist in the bistable region leads to higher probability of

coexistence. This decrease occurs until the infection rate of the generalist strain reaches a

critical lower value, below which only the virus-free state can be stable.
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8.2 Future work

In this part of the discussion, some models and their preliminary results are listed with

the purpose of illustrating important possible further developments. Due to the complex

processes evolved in viral specialisation and depending on future research aims, these models

can be modified subsequently.

8.2.1 Lysogenic cycle

Throughout the thesis, the consideration of the lytic cycle has been a matter of choice.

The case of lysogenic infection, nevertheless, can be easily incorporated into the system.

Consider the familiar model of the three populations x, y, and z from Chapter 3:

ẋ = β x(1− x/K)− α z x− δ x,

ẏ = α z x− γ y,

ż = κγ y − ν α z x− ζ z,

(8.1)

where γ has been considered a virulence. The rate γ, in fact, states the fraction of all

infected cells that are involved in virion production, which is the lytic cycle. The remainder

of the infected cell population is either involved in mutation process, as it was shown in

more complex models from Chapters 4 and 5, or conveniently ignored. In case of lysogenic

infection, the infected cell can behave as uninfected cell for several generations. Under

certain assumptions, the model of such phenomenon, therefore, can be written as follows:

ẋ = β x(1− x/K) + (1− γ) y − α z x− δ x,

ẏ = α z x− γ y − (1− γ) y,

ż = κγ y − ν α z x− ζ z.

(8.2)

Here, all infected cells either produce virions, with a rate γ, or join the uninfected cell pop-

ulation, with a rate 1−γ. This change introduced into the model leads to a modification of

the equilibria. Predictably, the model (8.2) has three equilibria, which mimic the equilibria

of model (8.1): trivial equilibrium, virus-free equilibrium, and virus-abundant equilibrium.

There are two slight differences between equilibria of two models. First, all burst size en-

tries in the equilibria of (8.2) are scaled by factor of γ. Second, the virus population size

in the virus-abundant equilibrium of (8.2) is also scaled by factor of γ. Despite the obvious
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quantitative difference, the introduction of the lysogenic cycle in this simplified way does

not affect the qualitative outcome of system (8.1). However, the model is still valid, and,

depending on the goals of the studies, can be used for deeper analyses. Another approach

can be taken to model the lysogenic cycle. By introducing separate populations of prolifer-

ating infected cells, w, it is possible to describe the interaction of populations with dormant

infections more precisely:

ẋ = β x

(
1− x+ w

K

)
− αx z − δ x,

ẏ = α (x+ w) z + ρw − y,

ẇ = β w

(
1− x+ w

K

)
+ (1− γ) y − ρw − αw z − δ w,

ż = κ γ y − ν α z (x+ w)− ζ z.

(8.3)

In this case, uninfected cells share the environmental resources with proliferating infected

cells. After infection, the cells either lyse as before with rate γ or increase the size of prolifer-

ating infected cell population with rate 1−γ. Depending on the presence of certain chemicals

or radiation, the dormant infection can switch to lytic cycle, which happens with proba-

bility ρ. This model has four different equilibria {x, y, w, z}, which can be labelled as the

trivial equilibrium {0, 0, 0, 0}, virus-free equilibrium {x∗, 0, 0, 0}, uninfected cell-free equi-

librium {0, y∗, w∗, z∗}, and the virus-abundant equilibrium {x∗, y∗, w∗, z∗}, where starred

population sizes are not constant zeros and can be found analytically. This model and its

equilibria are ideologically similar to the model from Chapter 4, which studied coexistence

of two different strains. In this case, however, it is the uninfected cell population and pas-

sively infected cell population that show either independent persistence in the system or

the coexistence. Further analysis is left out of scope of this thesis.

8.2.2 Stochastic models

Stochasticity is important in virus dynamics due to finite population sizes; demographic

noise can play a crucial role in the survival of populations, especially when the population

size is small. Moreover, due to general environmental noise and not fully understood ro-

bustness of the involved processes, some interactions in virus dynamics are subjected to

perturbations of the surrounding conditions. The uncertainty in the interaction of popula-

tions can be studied by means of stochastic models. Up to this point, only deterministic

models have been considered. The deterministic approach allows for better understanding

147



Figure 8.1: Left: Fixed part of the fitness landscape defined as a sum of two infection rate
functions (Gaussians). Right: The development of clustered generalist strains when the
fitness landscape is stochastically perturbed.

of the dynamics, however the obtained models and the observed results can be oversimpli-

fied. For instance, as a result of the model from Chapter 7, the viral population specialises

towards the niches by clustering at evolutionary optima of the fitness landscape. In that

case, the infection rate α(s) was defined as a fixed function on a phenotype space s. Ow-

ing to an average performance of separate virions at each phenotype, the infection rate,

in fact, might considerably fluctuate every few generations. Therefore, to capture these

perturbations, the infection rate could be modified accordingly as:

α(s, t) = α(s) +Wτ (s, t), (8.4)

where Wτ is a Wiener process of comparatively small amplitude approximated by a random

walk with biologically meaningful time-step τ . Interestingly, the specialisation process might

suffer from the random perturbations: instead of occupying the fitness maxima on the

phenotype space, the virus population might reside in valleys of the fitness landscape, as

shown in Figure 8.1. These variants are called generalists because, in the scope this thesis,

the valleys of the fitness landscape correspond to modest infection rates of the variants that

nevertheless infect several cell types simultaneously.

It was impossible to obtain the persistence of only the real generalists under the condi-

tions of the deterministic model. It has been illustrated, that the appearance of specialists

is inevitable, and that is due to the inner competition and the spread of the mutation along

a higher gradient of the fitness landscape. Despite the competition and the mutation along

the fitness gradient that is present in nature, the generalists do exist. This can be explained
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by the hypothesis that generalism can be more profitable for a population under unstable

environmental conditions. The preliminary results of the stochastic simulations coincide

with this explanation. More detailed analysis on this topic is left for future work.

8.3 Summary

The appearance of species has been one of the most intriguing questions of the natural sci-

ences for centuries, and is nowadays one of the most promising challenges of mathematical

modelling. The rise of new species, including disease-causing pathogens, can be studied by

means of population ecology. Predictability and comparative cost-effectiveness of mathe-

matical models make the latter appealing for studies of population dynamics. In this work,

I tried to broaden the spectrum of tools used for the analysis of biological processes and

illustrated the use of such tools to answer diverse questions. The possibility of obtaining

biological interpretations from the results played an important role, and the outcomes of the

work produced both methodological and conceptual insights into mathematical modelling

for viral evolution.

In this thesis, examples of simple ordinary differential equation (ODE) models for a viral

population interacting with a susceptible host cell population were discussed first, where

the effect of different growth and death rates of the susceptible cell population on dynamics

of the system was considered. Then, the most realistic model was employed to explore

the dynamics of two viral populations which shared a host cell population. Further, by

introducing the second type of host cell population, the generalist-specialist dynamics were

considered. The ODE system was then converted into a system of partial integro-differential

equations (PIDEs) in order to model a viral population with a large number of variants.

The ODE and PIDE systems were shown to have the same qualitative dynamics. The PIDE

model was then used to describe a system composed to several variants and two types of

susceptible cells. The variants in this case differed with respect to more than one phenotypic

characteristic. The specialisation time was computed as a function of the mutation rate

and burst size. Resultantly, exotic types of bifurcations were discovered and explained in

terms of biological phenomena, and regions of chaos and bistability of a specialising viral

population were discovered. All the hypotheses were shown to be relevant and confirmed to

be true. This work, therefore, makes worthwhile contributions to mathematical modelling

and analysis of evolutionary processes and substantially to the field of mathematical biology.
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[22] À. Calsina and J. Saldaña. A model of physiologically structured population dynamics

with a nonlinear individual growth rate. J. Math. Biol., 33(4):335–364, 1995.

[23] C. Castillo-Chavez and J. X. Velasco-Hernandez. On the relationship between evolu-

tion of virulence and host demography. J. Theor. Biol., 192(4):437–444, 1998.

[24] C. Y. Chiu. Viral pathogen discovery. Curr. Opin. Microbiol., 16(4):468–478, 2013.

151



[25] D. S. Coffey. Self-organization, complexity and chaos: the new biology for medicine.

Nat. Med., 4(8):882–885, 1998.

[26] J. M. Cuevas, A. Willemsen, J. Hillung, M. P. Zwart, and S. F. Elena. Temporal

dynamics of intrahost molecular evolution for a plant RNA virus. Mol. Biol. Evol.,

32(5):1132–1147, 2015.

[27] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, and B. Sautois. New

features of the software matcont for bifurcation analysis of dynamical systems. Math.

Comput. Model. Dyn. Syst., 14(2):147–175, 2008.

[28] M. Doebeli, Y. Ispolatov, and B. Simon. Point of view: Towards a mechanistic

foundation of evolutionary theory. Elife, 6:e23804, 2017.

[29] E. Doedel, H. B. Keller, and J. P. Kernevez. Numerical analysis and control of

bifurcation problems (i): bifurcation in finite dimensions. Int. J. Bifurcat. Chaos, 1

(03):493–520, 1991.

[30] H. M. Doekes, C. Fraser, and K. A. Lythgoe. Effect of the latent reservoir on the

evolution of HIV at the within-and between-host levels. PLoS Comput. Biol., 13(1):

e1005228, 2017.

[31] E. Domingo. Quasispecies theory in virology. J. Virol., 76(1):463–465, 2002.

[32] N. K. Duggal, A. Bosco-Lauth, R. A. Bowen, S. S. Wheeler, W. K. Reisen, T. A.

Felix, B. R. Mann, H. Romo, D. M. Swetnam, A. D. Barrett, et al. Evidence for

co-evolution of West Nile virus and house sparrows in North America. PLoS Negl.

Trop. Dis., 8(10):e3262, 2014.

[33] C. Dye, B. G. Williams, M. A. Espinal, and M. C. Raviglione. Erasing the world’s

slow stain: strategies to beat multidrug-resistant tuberculosis. Science, 295(5562):

2042–2046, 2002.

[34] D. J. Earn, P. Rohani, and B. T. Grenfell. Persistence, chaos and synchrony in ecology

and epidemiology. Proc. R. Soc. Lond. B Biol. Sci., 265(1390):7–10, 1998.

[35] M. Eigen. Selforganization of matter and evolution of biological macromolecules.

Naturwissenschaften, 58:465–523, 1971.

[36] S. F. Elena, P. Agudelo-Romero, and J. Lalić. The evolution of viruses in multi-host
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Nouveaux mémoires de l’académie royale des sciences et belles-lettres de Bruxelles, 18:

14–54, 1845.

[133] V. Volterra. Variazioni e Fluttuazioni del Numero D’individui in Specie Animali

Conviventi. C. Ferrari, 1927.

[134] B. D. Walker and B. T. Korber. Immune control of HIV: the obstacles of HLA and

viral diversity. Nat. Immunol., 2(6):473, 2001.

[135] X. Wang and W. Wang. An HIV infection model based on a vectored immunopro-

phylaxis experiment. J. Theor. Biol., 313:127–135, 2012.

[136] J. S. Weitz, G. Li, H. Gulbudak, M. H. Cortez, and R. J. Whitaker. Viral fitness

across a continuum from lysis to latency. bioRxiv, page 296897, 2018.

[137] S. M. White, J. P. Burden, P. K. Maini, and R. S. Hails. Modelling the within-host

growth of viral infections in insects. J. Theor. Biol., 312:34–43, 2012.

[138] M. C. Whitlock. The red queen beats the jack-of-all-trades: the limitations on the

evolution of phenotypic plasticity and niche breadth. Am. Nat., 148:S65–S77, 1996.

160



[139] G. Wild, A. Gardner, and S. A. West. Adaptation and the evolution of parasite

virulence in a connected world. Nature, 459(7249):983, 2009.

[140] D. Wodarz and D. N. Levy. Multiple HIV-1 infection of cells and the evolutionary

dynamics of cytotoxic T lymphocyte escape mutants. Evolution, 63(9):2326–2339,

2009.

[141] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov

exponents from a time series. Physica D, 16(3):285–317, 1985.

[142] M. Woolhouse, D. Haydon, and R. Antia. Emerging pathogens: the epidemiology and

evolution of species jump. Trends Ecol. Evol., 20:238–244, 2005.

[143] S. Wright. The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evo-

lution, volume 1. The American Naturalist, 1932.

[144] T.-T. Wu, E. J. Usherwood, J. P. Stewart, A. A. Nash, and R. Sun. Rta of murine

gammaherpesvirus 68 reactivates the complete lytic cycle from latency. J. Virol., 74

(8):3659–3667, 2000.

[145] C. Wymant, M. Hall, O. Ratmann, D. Bonsall, T. Golubchik, M. de Cesare, A. Gall,

M. Cornelissen, C. Fraser, STOPHCV Consortium, The Maela Pneumococcal Col-

laboration, and The BEEHIVE Collaboration. Phyloscanner: inferring transmission

from within-and between-host pathogen genetic diversity. Mol. Biol. Evol., 35(3):

719–733, 2017.

[146] A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D. Osterhaus, and R. A. Fouchier.

Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl.

J. Med., 367(19):1814–1820, 2012.

[147] R. Zorenos dos Santos and S. Coutinho. On the dynamics of the evolution of the HIV

infection. Technical report, 2000.

161


	Títol de la tesi: Mathematical modelling of pathogen specialisation
	Nom autor/a: Anel Nurtay


