
 
 

Application of dynamic vibration 
absorbers on double-deck circular 

railway tunnels to mitigate 
railway-induced ground-borne 

vibration 
 by   

Behshad Noori 
 

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l 
UPCommons       (http://upcommons.upc.edu/tesis)      i      el      repositori      cooperatiu      TDX   
( h t t p : / / w w w . t d x . c a t / ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual 
únicament per a usos privats  emmarcats en activitats d’investigació i docència. No s’autoritza 
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc 
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra  
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació 
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom 
de la persona autora. 

 
 

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons 
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- 
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual 
únicamente para usos privados enmarcados en actividades de investigación y docencia. No  
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde  
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una 
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al 
resumen de presentación de la tesis como a sus  contenidos. En la utilización o cita de partes     
de la tesis  es obligado  indicar  el nombre de la    persona autora. 

 
 

WARNING On having consulted this thesis you’re accepting the following use conditions: 
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons 
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale- 
attribute=en) has been authorized by the titular of the intellectual property rights only for private 
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not 
authorized neither its spreading nor availability from a site foreign to the UPCommons service. 
Introducing its content in a window or frame foreign to the UPCommons service is not authorized 
(framing). These rights affect to the presentation summary of the thesis as well as to its contents. 
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. 

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en


Departament d'Enginyeria

Mecànica

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Application of dynamic vibration absorbers on

double-deck circular railway tunnels to mitigate

railway-induced ground-borne vibration

by

Behshad Noori

directed by

Robert Arcos Villamaŕın
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Abstract

Application of dynamic vibration absorbers on

double-deck circular railway tunnels to mitigate

railway-induced ground-borne vibration

by Behshad Noori

This dissertation is concerned with investigating the efficiency of dynamic vibra-

tion absorbers (DVAs) as measures to mitigate ground-borne vibrations induced

by railway traffic in double-deck tunnels. The main topics of the dissertation are

the coupling of a set of longitudinal distributions of DVAs to the interior floor of a

double-deck tunnel dynamic model, the computation of the response of this cou-

pled system due to train traffic and obtaining the optimum design parameters of

the DVAs to minimize this response. To address the first concern, a methodology

for coupling a set of longitudinal distributions of DVAs to any railway subsys-

tem in the context of a theoretical dynamic model of railway infrastructure is

developed. The optimum design parameters of the DVAs are obtained using an

optimization process based on a genetic algorithm. The effectiveness of the DVAs

is assessed by two response parameters, which are used as objective functions to

be minimized in the optimization process: the energy flow radiated upwards by

the tunnel and the maximum transient vibration value (MTVV) in the building

near the tunnel. The model used to compute the former is a two-and-a-half di-

mensional (2.5D) semi-analytical model of a train-track-tunnel-soil system that

considers a full-space soil model, and the one used to compute the latter is a

hybrid experimental-numerical model of a train-track-tunnel-soil-building system.

In the hybrid model, a numerical model of the track-tunnel system based on 2.5D

coupled finite element-boundary element formulation along with a dynamic rigid

multi-body model of the vehicle is used to compute the response in the tunnel

wall, and then, the response in the building is computed using experimentally ob-

tained transfer functions between the tunnel wall and the building. The triaxial

response in the building is used to compute the MTVV. An alternative option

to evaluate the MTVV in a building is to use a fully theoretical model of the

train-track-tunnel-soil-building system. In the context of this modeling strategy,
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a computationally efficient method to calculate the 2.5D Green’s functions of a

layered soil is also presented. The results show that the DVAs would be an ef-

fective mitigation measure for railway-induced vibrations in double-deck tunnels

as reductions up to 6.6 dB in total radiated energy flow and up to 3.3 dB in the

vibration inside a nearby building are achieved in the simulations presented in this

work.
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Chapter 1. Introduction 2

This chapter begins with a brief introduction to the underground railway-induced

vibration problem and justifies the necessity of introducing novel countermeasures

for new tunnel designs to tackle this problem. The main objectives and the struc-

ture of the dissertation are also presented briefly in this chapter.

1.1 Justification of the research

Underground railway systems play a major role in transporting passengers within

urban and suburban areas. However, the vibrations caused by trains circulation

in underground tunnels are one of the major sources of ground-borne vibrations.

These vibrations propagate through the soil and structural foundations into nearby

buildings, resulting in vibration and re-radiated noise in the buildings. These

can cause discomfort for residents of the buildings, affect the operation of sensi-

tive equipment and damage buildings with structural weakness, i.e. old historical

buildings.

Several countermeasures have been proposed and applied in practice to address

underground-railway induced vibration problems. These vibration mitigation mea-

sures can be categorized according to the location at where they are applied: i) the

source; ii) the propagation path and iii) the receiver. Mitigation measures at the

source mainly target the mechanisms of ground-borne vibration generation to re-

duce the forces appearing in the vehicle-track interaction and their transmission

to the surroundings. The ones applied at the propagation path are all based on

the idea of interrupting the propagation path of waves through the soil. The ones

applied at the receiver or building are based on the installation of resilient elements

like rubber blocks or steel springs between the building and its foundation.

In recent years, innovative tunnel structure designs have been constructed in sev-

eral cities worldwide. Double-deck circular tunnel is one of these new designs, in

which the tunnel is divided into two sections by an interior floor supported on the

tunnel walls. Trains can circulate along both sections of the tunnel. Line 9 (L9)

of Barcelona metro is one of the projects in which this new design has been con-

sidered and finally implemented. Fig. 1.1 shows a cross-section of a double-deck

tunnel section with platforms in L9 [1].
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Fig. 1.1: A cross-section of the double-deck tunnel with platforms in L9 [1].

Various experimental measurements showed that the levels of vibration induced

in nearby buildings due to train circulations in the upper section of the tunnel are

10 dB larger than the ones induced by trains pass-by in the lower section.

Introducing effective countermeasures for vibrations induced due to train pass-by

over the upper section of a double-deck tunnel is one of the main challenges for

this type of infrastructures. There are four reasons behind this issue:

1. In order to explain the 10 dB difference between the vibration induced by

train passage at upper and lower sections, theoretical studies about the dy-

namic response of double-deck tunnels were done. Comparing the vibrations

radiation from this type of tunnel due to the line load applied on the interior

floor with the one from the simple circular tunnels showed clear differences

with respect to the pattern and the magnitude of the radiated vibration

by both structures [5, 6]. A smooth vibrations radiation pattern has been

observed for the simple circular tunnel, however, the ones radiated form a

double-deck tunnel include sharp peaks;

2. Floating slab track system, one of the most common and effective counter-

measures applied at the source, cannot be used for the upper section due to

geometrical limitations;

3. Only a few studies have been reported on measures to mitigate ground-borne

vibration for double-deck tunnels [7, 8];
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4. The efficiency of common vibration countermeasures applied in the vibration

path has not been assessed for this type of tunnel.

A well-established system that has been widely used to control the vibration of me-

chanical, civil and aerospace structures is the dynamic vibration absorbers (DVAs),

also known as tuned mass dampers (TMDs). DVAs have been used to address some

issues in the railway-induced vibration field such as the vibration of car-bodies of

a low-floor train at a certain frequency [9], rail radiated noise [10] and growth of

rail corrugation [11]. However, the application of DVAs as a countermeasure for

ground-borne railway-induced vibrations has not been considered yet, being the

present thesis the first study on the matter.

Thus, this dissertation is focused on the application of DVAs on the interior floor

of double-deck tunnel infrastructures to mitigate ground-borne vibrations induced

by the train pass-by over the upper section of the tunnel. The potential of DVAs

as a vibration countermeasure for this specific case is investigated for the full- and

half-space models of the soil. The full-space model is more appropriate to generally

evaluate the effect of DVAs by controlling the vibration energy radiated upwards by

the tunnel structure. On the other hand, the half-space model would be convenient

to study the vibration mitigation for specific buildings. General methodologies

for simulating and optimizing the performance of DVAs are developed. These

methodologies can also be employed to evaluate the performance of DVAs in any

underground railway infrastructure.

1.2 Outline of the dissertation

The dissertation is divided into six chapters. In this chapter, the motivation to do

this research is explained and the contents of each chapter are outlined as well.

Chapter 2 is concerned with presenting a review on previous research works re-

garding prediction models for ground-borne vibrations induced by underground

railways. Moreover, different methods to address railway-induced vibration prob-

lems are discussed in this chapter. In addition, an introduction to the concept of

the DVAs as vibration countermeasures and their applications in different fields,

specifically, in railway-induced noise and vibration field, are presented.
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Chapter 3 focuses on general methodology to evaluate the efficiency of DVAs as

vibration countermeasures by controlling the vibration energy radiated upwards

by the tunnel structure due to the train traffic. This chapter begins with a de-

scription of a semi-analytical model of a train-track-tunnel-soil system where the

locally surrounding soil is modelled as a full-space. Afterward, a methodology

to couple DVAs to any subsystem of railway infrastructure and the application

of this methodology for the case of a double-deck tunnel is explained. Moreover,

the optimization approach used to determine the optimal parameters of DVAs is

explained and the objective function used in the optimization process is defined.

Finally, the efficiency of optimal DVAs as a countermeasure to minimize the energy

flow radiated upwards by the tunnel is investigated.

The efficiency of DVAs in vibration control of a particular building over the double-

deck tunnel in L9 of Barcelona metro is assessed in chapter 4. A hybrid model

of the train-track-tunnel-soil-building system is initially described. Following the

methodology for coupling DVAs to the interior floor of a double-deck tunnel and

optimization process described in the previous chapter, the efficiency of the appli-

cation of the optimized DVAs on the interior floor of the L9 double-deck tunnel

in minimizing the maximum vibration transient (MTVV) value in a particular

building is evaluated.

The potential of DVA as a vibration countermeasure for underground railway-

induced ground-borne vibration problems can be also investigated considering that

the model of the soil is a half-space. With this attitude, the efficiency of the DVAs

on reducing the soil surface vibration or the vibration field in a building (if a

building dynamic model is used on this regard) can be simulated. In this approach,

an accurate and computationally efficient modeling of the wave propagation in

the layered half-space is one of the key elements. A new method to calculate

Green’s functions for two-and-a-half dimensional (2.5D) elastodynamic problems

in homogeneous and horizontally layered half-spaces subjected to point loads is

presented in chapter 5.

The conclusions from this investigation are summed up in chapter 6. Some guide-

lines for future works are also pointed out in the same chapter.
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This literature review consists of five sections. It begins with a general introduc-

tion to the ground-borne vibrations induced by underground railway traffic and

its generation mechanisms. Then, a review of previous research works regarding

half-space modeling strategies and the prediction models for ground-borne vibra-

tion induced by underground railways is presented. Afterward, several vibration

mitigation measures proposed to address railway-induced ground-borne vibration

problem are reviewed, and their advantages and drawbacks are detailed. Finally,

the concept behind the DVA as a vibration mitigation measure and its applications

in different fields, specifically in the framework of the underground railways, are

discussed.

2.1 Railway ground-borne vibration problem

Over the past decades, underground railway networks are expanding considerably

as not only they provide faster and cheaper communication means in comparison

with the other type of transportation, but also they can solve the traffic conges-

tion and air pollution issues. However, the ground-borne vibrations induced by

underground railways are of great concern in modern societies. The vibrations

generated due to the train pass-by in tunnels propagates through the soil into the

nearby buildings as shown in Fig. 2.1. These vibrations can be directly perceived

by inhabitants of the nearby buildings as vibratory motions of the building walls,

ceilings, and floors which are significant in a frequency range of 1 to 80 Hz [12–14],

and can make disturbances as re-radiated noise mainly in a frequency range of

16 to 250 Hz [15]. Both vibratory surfaces and re-radiated noises can negatively

affect the quality of day-to-day life of the dwellers of these buildings [16], and can

cause sensitive equipment malfunction [17].

There are two excitation mechanisms that mostly contribute to the vibration in-

duced by railway traffic: i) the quasi-static excitation ii) the dynamic excitation.

The former is induced by the static component of the moving loads applied by the

train to the track and is of great importance for high-speed trains. The latter can

be attributed to various mechanisms [18], mainly the wheel/rail unevenness and

the longitudinal variability of the track’s mechanical parameters. Noteworthy, the

response of a building to the excitation would also depend on the characteristics of
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the building and its foundation, distance from the excitation source, and geology

of the area.

Fig. 2.1: Schematize of ground-borne vibration propagation.

2.2 Soil dynamics: Half-space modeling strate-

gies

The propagation of elastic waves is one of the most important topics in such fields

as seismology, soil dynamics, noise and vibration, and soil-structure interaction.

Specifically, the fundamental solutions for homogeneous and layered elastic solid

media are of great interest in ground modeling. The fundamental solutions, also

known as Green’s functions, of these types of problems provide the relation be-

tween stresses or displacements at the receiver-points due to the sources acting

within medium. A useful domain for longitudinally invariant problems is the

2.5D domain, in where the 3D Green’s functions are expressed in terms of the

wavenumber associated to the invariant direction and the two remaining spatial

coordinates.
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Regarding to homogeneous elastic solid media modeling, a semi-analytical solu-

tion of a homogeneous half-space subjected to a spatially harmonic line load with

sinusoidal varying amplitude was presented by Tadeu et al. [19]. This solution was

presented subsequent to the Green’s functions for 2.5D elastodynamic problem in

full-space developed by Tadeu and Kausel [20]. These analytical expressions have

been employed by numerous authors in various problems such as railway-induced

vibration [21, 22], acoustics [23, 24] and soil-structure interaction [25]. The useful-

ness of the method in many engineering applications demonstrates its significant

value.

Numerous researches have also focused on determining the solution for the isotropic

layered media which provides better representation of the dynamic response of the

soil in comparison to the homogeneous one. Some of the major studies on the

subject were reviewed in details by Nayfeh [26]. Green’s functions for an isotropic

layered half-space have been determined by Waas et al. [27], Kausel [28] and

Oliveira and Kausel [29] by employing Thin Layer Method (TLM). Van Der Hi-

jten employed Cagniard-de Hoop method to solve differential equation of the wave

motion in the layered medium in order to obtain the Green’s functions [30]. The

dual vector representation of the wave motion equation and the Precise Integration

Method (PIM) are the other methods which have been used to calculate Green’s

functions for a layered half-space in wavenumber-frequency domain [31, 32]. The

propagator matrix method or transfer matrix method, proposed firstly by Thom-

son [33] to model horizontally isotropic layered media, has been also used by several

authors [34–36] to find the dynamic response of the system. Due to computational

instabilities of the method, different reformulations have been presented, like re-

flection and transmission coefficients method [37]. A survey of the computationally

efficient improvements of the method was presented by Lowe [38]. Assembling the

global matrix of the system with employing the elemental stiffness matrices of the

layers, known as stiffness matrix method, was presented by Kausel and Roësset

[39]. More computationally efficient versions of his method have been presented

later [40–42]. For longitudinally invariant problems, numerous authors obtained

the 2.5D Green’s functions from the stiffness matrix method of Kausel and Roësset

[3, 4]. François et al. [43] used the 2.5D Green’s functions in a 2.5D boundary

element formulation as an alternative to the 2.5D fundamental solution of a homo-

geneous full-space. Hussein et al. [22] employed these 2.5D Green’s functions as a

part of a methodology to calculate underground railway-induced vibration from a
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tunnel embedded in a layered half-space.

2.3 Railway-induced vibration prediction mod-

els

Accurate prediction models should be used to assess the efficiency of mitigation

measures for railway-induced ground-borne problems. Numerical, hybrid models

and semi-analytical models can provide the desired level of accuracy.

In the framework of numerical models, there are different existing modeling al-

ternatives: a three-dimensional (3D) coupled Finite Element-Boundary Element

Methods (FEM-BEM) approach [44], a 3D periodic FEM-BEM approach [45] and

2.5D approaches based on FEM-BEM [46–48], based on the Method of Funda-

mental Solutions (MFS) coupled with FEM [49] and based on a scaled boundary

FEM coupled with FEM [50]. The 2.5D approach has been employed in most of

the existing models. It considers that the track, the tunnel and the ground can be

approximately treated as a longitudinally invariant structures.

Hybrid models that combine numerical methodologies with empirical models/ex-

perimental measurements can provide an increment on the accuracy with respect

to conventional numerical models for specific sites [51, 52]. A higher level of

confidence in predicted results is expected in hybrid models as some sources of

uncertainties related to the input parameters would be addressed by the use of ex-

perimental measurements. Kouroussis et al. [53] proposed a hybrid experimental-

numerical approach to enhance ground-borne vibration predictions accuracy in the

presence of rail discontinuities, such as switches, crossings and rail joints. Lopez-

Mendoza et al. [54] presented a model to predict ground-borne vibration levels

within structures near railway lines for the cases where the free-field response due

to train pass-by is known. For the existing railway lines, this model along with

the in situ measurements can be used to make a hybrid prediction model. Kou et

al. [55] developed two hybrid models based on separating source and propagation

mechanism, where each can be quantified using in situ measurements or prediction

models results.

Another alternative that stands out because of their computational benefits are

the semi-analytical models. In this category, probably the most well-established
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Fig. 2.2: A cross-section of a double-deck tunnel with superstructures proposed
by Clot et al. [2].

models for at-grade trains and for underground railway traffic are the one presented

by Sheng et al. [56] and the Pipe-in-Pipe (PiP) model [57, 58], respectively.

In the context of the double-deck tunnel, a 2.5D semi-analytical model of a double-

deck tunnel embedded in a full-space presented by Clot et al. [2] is one of the few

proposed models. A schematic representation of the track-tunnel-soil system used

in this model is shown in Fig. 2.2. The track consist of two rails connected to

the interior floor of the double-deck tunnel structure by means of direct fixation

fasteners (DFF), and the tunnel is assumed to be embedded in a homogeneous full-

space. The system is considered to be invariant in the longitudinal direction, i.e.,

the train’s circulation direction. In this model, the rails are modelled as Euler-

Bernoulli beams of infinite length. The DFF are represented by a continuous

mass-less distribution of springs and dashpots. The interior floor is modeled as a

homogeneous isotropic thin strip plate with a rectangular cross-section. The tunnel

and soil subsystems are described using the PiP model, developed by Forrest

and Hunt [57], which assumes that they can be represented as an infinite thin

cylindrical shell and as a infinite homogeneous elastic media, respectively.
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2.4 Railway-induced ground-borne vibration coun-

termeasures

Several solutions have been proposed to address the problem of ground-borne vi-

bration induced by railways. Targeting the mechanisms of ground-borne vibration

generation in order to reduce transmitted forces by the vehicle to the track would

be the most efficient approach. For instance, rail grinding [59] can be employed

to eliminate the vibration caused by roughness or unevenness at the wheel-rail

interface. Due to high cost of these maintenance actions, countermeasures are

necessary to address railway-induced ground-borne vibration problem at a more

reasonable cost. The mitigation measures can be categorized according to the

location at where they are applied: i) the source; ii) the receiver and iii) the

propagation path.

Mitigation measures at the source mainly target the track and its resiliency to

reduce vibration transmission into the ground. An effective measure to reduce

the vibration at the point of the emission is using floating-slab track (FST). Dif-

ferent methods have been proposed for modeling of FST with continuous and

discontinuous slabs [60–62]. The efficiency of FST as a mitigation measure has

been investigated using different methods [63, 64]. The FSTs are efficient in re-

ducing the vibration at the frequencies above its resonance frequency [65]. The

insertion of resilient materials beneath the ballast and sub-ballast is another com-

monly used countermeasure for ballasted tracks. The efficiency of ballast mats

and under-ballast mats depend on the range of the frequencies which are intended

to be isolated [66]. Other source isolation measures include under-sleeper pads

[67] and soft railpads [68]. However, one should note that introducing resilient

elements on the track to modify its stiffness, aiming vibration attenuation at high

frequencies, may amplify the vibration level at low frequencies [69].

Damping treatments, localized stiffening or mass addition are some mitigation

measures at receivers, i.e. buildings, that can be used to reduce the post-construction

vibration. The base isolation, which is based on the installation of resilient ele-

ments like rubber blocks or steel springs between the building and its foundation,

is another effective method to reduce the transmission of vibration into buildings.

However, this countermeasure would be cost effective if it is incorporated during
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the design phase [69]. A review of different methods employed to predict base iso-

lation performance was discussed by Talbot and Hunt [70]. The difference between

pre- and post-construction vibration levels need to be considered in assessment of

base isolation performance [71]. The box-in-box technique is another method to

mitigate the vibration at the receiver. In this method, a particular part of the

building is mounted on isolation bearings to isolate it from the rest of the building

[72]. The efficiency of a FST, base isolation and box-in-box arrangement in miti-

gating subway traffic induced ground-borne noise and vibration in buildings have

been compared by Fiala et al., and it has been found that the former is the most

effective mechanism [73].

The countermeasures applied at the propagation path are all based on the same

idea of interrupting the propagation of waves through the soil. Wave-impeding

blocks (WIP) [74], subgrade stiffening [75] and wave barriers [76] are the most

common mitigation measures in the category. The latter category includes vibra-

tion isolation screens [77], open/in-filled trenches [78] and rows of piles [79]. These

countermeasures are more effective for reducing ground-borne vibrations due to

trains running at-grade rather than in the underground tunnels.

In the framework of the double-deck tunnels, only a few studies have been reported

on measures to mitigate ground-borne vibration. Modification of the rail pads

stiffness/damping values and implementation of an elastomeric mat between the

interior floor and the tunnel structure are two mitigation measures studied by

Clot et al. [7]. In their work, a 2.5D semi-analytical model of a double-deck

tunnel, previously developed by the authors in [2], was used to investigate the

effectiveness of a elastomeric mat to be added between the interior floor and the

tunnel wall in reducing the upwards radiated energy flow from a double-deck tunnel

subjected to a moving harmonic load [80]. It is found out that while in the absence

of the vehicle, the modification of the rail pads stiffness/damping values cannot

be completely understood, implementation of the elastomeric mat would be an

effective countermeasure. Recently, Clot et al. [8] computed the response of the

previously developed models to a train pass in order to study the efficiency of the

implementation of an elastomeric mat in more real scenario. It was found that

implementing a soft elastomeric mat results in a considerable reduction of the soil

vibration velocity.
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2.5 Dynamic vibration absorbers

A well-established system that has been widely used to control the vibration of

mechanical, civil and aerospace structures is the DVA. In the last century, the ap-

plication of DVAs as passive, active and semi-active countermeasures to attenuate

undesirable vibration has been extensively studied [81, 82]. Some of the prominent

application of DVAs around the globe are the ones in Taipei World Financial Cen-

ter (also known as Taipei 101) [83], Millennium bridge [84] and Doha sport city

tower[85]. DVA works as a secondary oscillatory system applied on a primary sys-

tem at where the vibration needs to be controlled. DVAs are usually modelled as

a single-degree-of-freedom (SDOF). The concept of a DVA was outlined by Watts

in 1883 [86]. However, the practical design of DVA, as a spring-supported mass,

was proposed by Frahm in 1911 [87]. Later, a damping element were introduced

to DVAs to widen the controlled frequency range [88]. DVAs can be used to atten-

uate the vibration at a specific frequency or over a particular range of frequencies.

In the former case, the natural frequency of the DVA should be tuned to the spe-

cific frequency, and the damping should be chosen as low as possible [89]. In the

latter case, in which the host structure is considered as a SDOF system with the

parameters of the selected mode, an optimization criterion is required. Optimum

selection of the parameters of a DVA (mass, natural frequency and damping coef-

ficient) has been investigated in many studies [88, 90–94] as the effectiveness of a

DVA in vibration attenuation depends on its parameters.

Recently, DVAs have been used to address some issues in railway-induced vibration

field. A study on the effectiveness of DVAs in suppressing the low-frequency

vibrations of FST with discontinuous slabs was conducted by Zhu et al. [95] using

a FEM model. They used two DVAs to minimize first- and second-mode vibrations

of a slab which was treated as a SDOF system with the parameters of the selected

mode, and the optimal parameters of DVAs were found using fixed-point theory

[96]. Reducing the vibration of car-bodies of a low-floor train at certain frequency

by means of a DVA was investigated by Wang et al. [9], in which DVA was found

to be an effective countermeasure for excessive vertical vibration of car-bodies.

TMDs have been also found to be effective in reducing the rail radiated noise.

Thompson et al. [10] designed TMDs of steel masses and elastomeric material

with high damping loss factor, placed at both sides of the rail. The system of

absorbers results in reduction of radiated noise by about 5–6 dB. These TMDs
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were reported to be effective in decreasing rail corrugation growth if they can

fully suppress the pinnedpinned resonance [11]. Ho et al. developed multiple

TMDs each consisting of a mass sandwiched between resilient materials [97]. This

multiple mass–spring system has been put into practice and the system is found

to be effective not only in attenuating rail vibration and tunnel noise level [97] but

also in decreasing rail corrugation growth [98].

DVA parameters are crucial factors in their performance as a vibration mitigation

measure. Several types of optimization procedures with analytical or numerical

approaches can be considered to determine the optimal value of DVAs parameters.

A complete review of some of the well-established theories for optimal tuning of

DVAs can be found in [81]. Typically, the host structure is referred to the structure

on which the DVAs are applied. Most of the analytical optimization procedures

employed to find optimal value of DVAs parameters consider a SDOF system as

the model of the host structure [93]. In these methodologies, the parameters of

this SDOF model are obtained from the dominant mode of the host structure

response. However, there are other optimization procedures in which there is

no need to determine beforehand which mode is needed to be controlled. Among

those, genetic algorithms (GA) have been widely used for tuning DVAs parameters

in order to accomplish an optimal reduction of the vibration in specific locations

of the system or in a global point of view. Some of the studies that apply GA for

this purpose are [93, 99–102].
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3.1 Introduction

The aim of this chapter is to investigate the efficiency of DVAs as a vibration

abatement solution for railway-induced vibrations in the framework of a double-

deck circular railway tunnel infrastructure. A previously developed semi-analytical

model of the track-tunnel-ground system is employed to calculate the energy flow

resulting from a train pass-by. A methodology for the coupling of a set of lon-

gitudinal distributions of DVAs over a railway system is presented as a general

approach, as well as its specific application for the case of the double-deck tunnel

model. In the basis of this model, a Genetic Algorithm (GA) is used to obtain

the optimal parameters of the DVAs to minimize the vibration energy flow radi-

ated upwards by the tunnel. The parameters of the DVAs set to be optimized are

the natural frequency, the viscous damping and their positions. The results show

that the DVAs would be an effective countermeasure to address railway induced

ground-borne vibration as the total energy flow radiated upwards from the tun-

nel can be reduced by an amount between 5.3 and 6.6 dB with optimized DVAs

depending on the type of the soil and the train speed.

The rest of the chapter is organized as follows: In section 3.2, the vehicle-track-

tunnel-soil model is described; section 3.3 is dedicated to details regarding the

coupling of DVAs to an underground railway infrastructure model. The opti-

mization method to determine the optimal parameters of the DVAs to minimize

energy flow radiated upwards for the case of an underground double-deck tunnel

railway infrastructure is presented in section 3.4. The efficiency of a set of DVAs

as a vibration countermeasure applied to the specific case studies to minimize the

radiated energy flow is discussed in section 3.5.

3.2 Modeling of the vehicle-track-tunnel-soil sys-

tem

This section starts by recapitulating the considered 2.5D semi-analytical model of

a double-deck tunnel embedded in a full-space [2]. This model provides the 2.5D

Green’s functions of the system due to loads applied on the rails and on the interior

floor, which are required to couple the train and the DVAs to the system and to

compute the train pass-by response. Then, the considered train-track interaction
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model is described, followed by an explanation of how this model is employed to

determine the response of the system due to a train pass-by.

3.2.1 Track-tunnel-soil model

A scheme of the model considered for the track-tunnel-soil system is shown in

Fig. 3.1. The track consists of two rails connected to the interior floor of the

double-deck tunnel structure by means of direct fixation fasteners, and the tunnel

is assumed to be embedded in a homogeneous full-space. The system is considered

to be invariant in the longitudinal direction, i.e., the direction in which the train

circulates.
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Fig. 3.1: A scheme of a double-deck tunnel and its subsystems embedded in a
full-space.

The rails are modeled as Euler-Bernoulli beams of infinite length separated by a

distance dr. The DFF are represented by a continuous mass-less distribution of

springs, with a stiffness per unit length kf , and dashpots, with a viscous damping

per meter cf . The interior floor is modeled as a homogeneous isotropic thin strip

plate with a rectangular cross-section. The tunnel and soil subsystems are de-

scribed using the PiP model, developed by Forrest and Hunt [57], which assumes

that they can be represented as an infinite thin cylindrical shell and as an infinite

homogeneous elastic medium, respectively.
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3.2.2 Vehicle-track coupling

There are two excitation mechanisms that mostly contribute to the vibration in-

duced by railway traffic: i) the quasi-static excitation ii) the dynamic excitation.

The former is induced by the static component of the moving loads applied by

the train to the track and is of great importance for high-speed trains. The latter

can be attributed to various mechanisms [18], mainly the wheel/rail unevenness

and the longitudinal variability of the track’s mechanical parameters. Since the

present investigation is done in the context of urban railway infrastructure, the

vertical dynamic excitation caused by the rail unevenness is considered as the main

excitation source. It is assumed that the unevenness of the rails is uncorrelated

between them [103].

Consider a moving frame of reference associated to a train motion. Due to the

Doppler effect, the frequency components of the time signals seen from the per-

spective of this moving frame of reference (ω̃) are different from the ones related to

a fixed frame of reference (ω) [104]. All the derivation presented in this section is

based on the moving coordinate system, thus, all the variables represented in the

frequency domain are associated to the frequency ω̃, except when it is specifically

mentioned otherwise. Capital letters notation is used to denote variable in the

frequency domain.

The vertical displacements of the two rails in the frequency domain due to the

wheel/rail contact forces can be represented byZ
w/r
r1

Z
w/r
r2

 =

H
w/r
r1r1 H

w/r
r1r2

H
w/r
r2r1 H

w/r
r2r2


F

w/r
r1

F
w/r
r2

 , (3.1)

where Z
w/r
r1 and Z

w/r
r2 are the vertical displacements of the left and right rails,

respectively, at all the vehicle axle positions, H
w/r
r1r1 and H

w/r
r2r2 are the direct recep-

tance matrices of the left and right rails, respectively, at all the axles positions,

H
w/r
r2r1 = H

w/r
r1r2 is the cross receptance matrix between the left and right rails at

all axle positions, F
w/r
r1 and F

w/r
r2 are the vectors of wheel/rail interaction forces

associated to the left and right rails, respectively; and the response of the two half
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vehicles can be written byZ
w/r
v1

Z
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H
w/r
v1 0

0 H
w/r
v2


F

w/r
r1

F
w/r
r2
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where Z
w/r
v1 and Z

w/r
v2 are the vertical displacements of vehicle wheels in contact

with the left and right rails, respectively, and H
w/r
v1 and H

w/r
v2 are the receptances

of each half vehicle at all the vehicle axle positions. Eqs. (3.1) and (3.2) can easily

be compacted to

Zw/r
r = Hw/r

r Fw/r, Zw/r
v = −Hw/r

v Fw/r. (3.3)

Consider now that the 2.5D Green’s functions associated to the studied railway

infrastructure system are obtained on the basis of a double Fourier transform (FT)

defined by

Ḡ(kx, ω) =

∫ +∞

−∞

∫ +∞

−∞
g(x, t)ei(kxx−ωt)dxdt. (3.4)

where x, t, kx and ω represent the longitudinal coordinate, the time, the wavenum-

ber associated to the longitudinal coordinate and the frequency seen from a fixed

frame of reference, respectively. Combined bar and capital letters notation is used

to denote variables in the wavenumber-frequency domain on a fixed frame of ref-

erence. Taking this into account, the elements of the receptance matrices required

to construct H
w/r
r can be computed by

Hw/r
rirj ,nm

=
1

2π

∫ +∞

−∞
H̃rirje

−ikx(x̃n−x̃m)dkx, (3.5)

where H
w/r
rirj ,nm is the (n,m) element of the matrix H

w/r
rirj , x̃n and x̃m are the longi-

tudinal coordinates of the n-th and m-th axles, respectively, seen from the point

of view of the moving frame of reference, and H̃rirj is the 2.5D Green’s function

of the system defined in the (kx, ω̃) domain that relates the vertical motions of

the rails ri and rj. A 2.5D Green’s function defined in the (kx, ω̃) domain can be

obtained from the one defined in the (kx, ω) domain by H̃(kx, ω̃) = H̄(kx, ω̃+kxvt),

being vt the speed of the train. Note that combined ∼ and capital letters nota-

tion is used to denote variables in the wavenumber-frequency domain on a moving

frame of reference. The vehicle receptance matrix is obtained by means of the

dynamic model of the vehicle, which in this investigation is considered to be the
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two-dimensional (2D) multi-degree-of-freedom rigid body model presented by Lei

and Noda [105]. A 3D model of each car consists of two uncoupled 2D models

separately applied on each rail. A global train is modeled as a set of Nc identical

cars.

Assuming a linearized Hertz contact, the wheel/rail interaction forces can be ob-

tained in the frequency domain by using

Fw/r = kH

(
Zw/r
v − Zw/r

r + Er

)
, (3.6)

where kH is the stiffness of the linearized Hertzian spring, considered to be the

same in all the wheel/rail contacts, and Er is the vector of complex amplitudes

of rails unevenness at all the wheel/rail contacts. Combining Eq. (3.6) with Eq.

(3.3) one can obtain a transfer function in the frequency domain between the

unevenness of the rails and the dynamic wheel/rail interaction forces, which may

be written as

Fw/r =
(
Hw/r
v + Hw/r

r + k−1H I
)−1

Er, (3.7)

where I is the identity matrix.

Once the wheel/rail interaction forces are computed, the response at an arbitrary

position l of the railway infrastructure system due to the passage of the train can

be found using the expression

ul(x̃, t) =
2∑
i=1

1

2π

∫ +∞

−∞

Na∑
n=1

[
1

2π

∫ +∞

−∞
H̃lriF

w/r
ri,n

e−ikx(x̃−x̃n)dkx

]
eiω̃tdω̃, (3.8)

where ul(x̃, t) is the displacement response at l position of the railway infras-

tructure system, H̃lri is the 2.5D Green’s function in the wavenumber-frequency

domain that relates the displacement response at that arbitrary position l with

a force applied in the i-th rail, x̃ is the longitudinal coordinate associated to the

moving frame of reference, Na is the number of axles of the train and F
w/r
ri,n is

the wheel/rail interaction force associated to the i-th rail and the n-th axle. An

equivalent expression for the soil tractions can be obtained by simply replacing

the displacement Green’s functions with those for the tractions in Eq. (3.8). The
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expression of the soil vibration velocity can be written similarly to Eq. (3.8) as

vl(x̃, t) =
2∑
i=1

1

2π

∫ +∞

−∞

Na∑
n=1

[
1

2π

∫ +∞

−∞
i(ω̃ + kxvt)H̃lriF

w/r
ri,n

e−ikx(x̃−x̃n)dkx

]
eiω̃tdω̃,

(3.9)

3.3 Application of DVAs on an underground rail-

way system

This section starts with the explanation of a methodology which can be used

to couple a set of DVAs to any subsystem of a railway infrastructure. Then, the

application of this methodology for the case of the double-deck tunnel is explained.

DVAs can be applied on different subsystems of a railway infrastructure, such as

the tunnel or the track. For example, Fig. 3.2 shows a cross-section of a track with

one longitudinal distribution of DVAs. Consider M longitudinal distributions of

DVAs, where each distribution has Nm DVAs, being m = 1, 2, . . . ,M . The total

amount of DVAs, then, is
∑M

m=1Nm. In the following the n-th DVA of the m-th

distribution is represented by dmn.

kf ,cf

d

f ,cf

r

k
kf ,cf

DVA DVA DVA DVA DVADVA

m

k
   
c

dm

dm dm

Fig. 3.2: A track system with one longitudinal distribution of DVAs.

Considering each DVA as a SDOF system, as shown in Fig. 3.3, the equation of

motion of the n-th DVA of the m-th distribution can be written as

− cdmn
(
żcdmn − żdmn

)
− kdmn

(
zcdmn − zdmn

)
= mdmn z̈dmn , (3.10)

where zcdmn and zdmn are the displacement of the DVA and the displacement of

the system at the position of the DVA, respectively, in a direction perpendicular

to the surface on which DVAs are applied. mdmn , kdmn and cdmn are the mass,

stiffness and viscous damping coefficient of dmn.
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dmn

c

dmn dmn

dmn

dmn

Fig. 3.3: DVAs modeled as a SDOF.

Using a FT, the equation of motion can be transformed to the frequency domain

− ω2mdmnZdmn + iωcdmn
(
Zc
dmn − Zdmn

)
+ kdmn

(
Zc
dmn − Zdmn

)
= 0. (3.11)

Then, assuming that all DVAs of the m-th distribution have the same mass mdm ,

stiffness kdm and damping coefficient cdm , the relation between the displacement

of the DVA Zc
dmn

and the displacement of the system at the position of the DVA

Zdmn can be found as

Zc
dmn =

kdm + iωcdm
−mdmω

2 + kdm + iωcdm
Zdmn . (3.12)

The forces applied to the system due to the DVAs of the m-th distribution can be

written as

fdm(x, t) =
Nm∑
n=1

(
kdm + cdm

∂

∂t

)
δ(x− xdmn)

(
zcdmn − zdmn

)
, (3.13)

where xdmn is the position of dmn in the longitudinal direction. These forces can

be transformed to the wavenumber-frequency domain using Eq. (3.4), resulting in

F̄dm(kx, ω) =
Nm∑
n=1

(kdm + iωcdm) eikxxdmn
(
Zc
dmn − Zdmn

)
. (3.14)

Finally, by introducing Eq. (3.12) into Eq. (3.14), the forces applied to the interior

floor by the DVAs can be rewritten as

F̄dm(kx, ω) =
Nm∑
n=1

k∗dmeikxxdmnZdmn , (3.15)

where

k∗dm =
ω2mdm(kdm + iωcdm)

−ω2mdm + iωcdm + kdm
. (3.16)
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Therefore, the forces applied to the system by all M distributions of DVAs can be

written in matrix form as

F̄d = ΓdK
∗
dZd, (3.17)

where

F̄d =



F̄d1

F̄d2
...

F̄dm
...

F̄dM


, Zd =



Zd1

Zd2
...

Zdm

...

ZdM


, (3.18)

where Zdm is a vector which contains the displacements of the system at the

positions of all the DVAs of the m-th distribution. The other matrices are defined

as

K∗d =



K∗d1
K∗d2

. . .

K∗dm
. . .

K∗dM


, (3.19)

where K∗dm is a Nm ×Nm matrix defined by k∗dmI; and

Γd =



Γd1

Γd2

. . .

Γdm

. . .

ΓdM


, (3.20)

where

Γdm =
{

eikxxdm1 eikxxdm2 · · · eikxxdmNm
}
. (3.21)

In the following, it is assumed that the force is applied only on one of the rails.

For the case of the two forces applied on the two rails, linear superposition can be

held. Moreover, the following derivation is based on the moving frame of reference,
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as explained in section 3.2.All the variables represented in the frequency domain

in this section are thus associated to the frequency ω̃. The system’s response at

the position of the DVAs can be obtained from

Z̃d = H̃drF̃r + H̃ddF̃d, (3.22)

where H̃dr refers to the 2.5D Green’s function for the displacement of the system at

the DVAs positions due to a force on the rail seen in the moving frame of reference

in the absence of the DVAs; F̃r is a force applied on the rails in the moving frame

of reference; and H̃dd refers to the 2.5D Green’s function for displacements of

the system at the DVAs positions due to a force applied on the DVAs positions.

Replacing F̃d with its equivalent from Eq. (3.17), Eq. (3.22) can be rewritten in

the form of 2.5D Green’s functions as

H̃d
dr = H̃dr + H̃ddΓdK̃

∗
dH

d
dr, (3.23)

where H̃d
dr is the 2.5D Green’s function that relates the displacement in the DVAs

positions with a force in the rails seen in the moving frame of reference in the

presence of the DVAs and Hd
dr is its inverse FT over the defined wavenumber

by using the same structure as Zd in Eq. (3.18). Transforming Eq. (3.23) to

the space-frequency domain by applying an inverse FT over the wavenumber and

evaluating the transformed equation at the positions of the DVAs one can obtain

the expression

Hd
dr = Hdr + HddK

∗
dH

d
dr, (3.24)

where

Hdr =



Hd1r

Hd2r

...

Hdmr

...

HdMr


, (3.25)

being Hdmr the receptances of the system at the DVAs positions of m-th distribu-

tion due to the force applied on one of the rails, defined as

Hdmr =
1

vt
H̄dmrΓ

T
dm , (3.26)
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and where

Hdd =



Hd1d1 Hd1d2 · · · Hd1dp · · · Hd1dM

Hd2d1 Hd2d2 · · · Hd2dp · · · Hd2dM
...

...
. . .

...
. . .

...

Hdmd1 Hdmd2 · · · Hdmdp · · · HdmdM
...

...
. . .

...
. . .

...

HdMd1 HdMd2 · · · HdMdp · · · HdMdM


, (3.27)

being Hdmdp a Nm ×Np matrix which contains receptance matrices of the system

at the DVAs positions of the m-th distribution due to the forces applied on the

system at the DVAs positions of the p-th distribution. Each element of these

matrices can be determined by

Hdmdp,jq =
1

2π

∫ +∞

−∞
H̃dmdp,jqe

ikx(x
j
dm
−xqdp )dkx, (3.28)

j = 1, 2, . . . , Nm, q = 1, 2, . . . , Np,

where xjdm is the position of j-th DVA in the m-th distribution in the longitudinal

direction, and xqdp is the position of q-th DVA in the p-th distribution in the

longitudinal direction.

Finally, operating Eq. (3.24), the receptance of the system at the DVAs positions

in the presence of the DVAs can be obtained as

Hd
dr = (I−HddKd)

−1 Hdr. (3.29)

Having these receptances, one can obtain the 2.5D Green’s functions of the system

at any arbitrary position l due to the force applied at the rail in the presence of

the DVAs as

H̃d
lr = H̃lr + H̃ldΓdK̃

∗
dH

d
dr. (3.30)

where the H̃lr refers to the 2.5D Green’s function of the system in the absence

of the DVAs. It is noteworthy that this methodology considers a strong coupling

approach, in which the DVAs affect the response of the rails.

In this chapter, the application of the DVAs is studied in the context of a double-

deck tunnel. Using the process explained previously, M longitudinal distribution
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of DVAs can be coupled to the interior floor of this type of tunnels. Fig. 3.4 shows

a cross-section of the double-deck tunnel model with one longitudinal distribution

of DVAs, which is the model that will be used in the following sections.

DVA DVA DVA DVA DVADVA

kf ,cf

d

kf ,cf

r
m

k

dm

dm dm
c kf ,cf

Fig. 3.4: The track-tunnel-soil model in full-space with one distribution of
DVAs.

3.4 DVAs optimization approach

A global optimization approach based on GA is used in this chapter to obtain

the optimum parameters of DVAs as countermeasures for underground railway-

induced ground-borne vibration. Design variables that affect the performance of

DVAs are: number of DVAs distributions, position of DVAs distributions, num-

ber of DVAs in each distribution, distance between two consecutive DVAs in each

distribution, DVAs masses, DVAs natural frequencies and DVAs damping coeffi-

cients. In the optimization process, the effectiveness of DVAs is assessed by their

performance in minimizing energy flow radiated upwards.

The mean power flow radiated upwards from a tunnel towards nearby buildings

was proposed by Hussein and Hunt [106] as a criterion to evaluate the performance

of vibration countermeasures. Studies of power flow and energy flow that radiate

upwards from a double-deck tunnel are presented by Clot et al. [5] and [80],

respectively. The radiated energy flow is the one used in this study to assess the

efficiency of DVAs and, in the following, it is explained how to compute it.

For a double-deck tunnel, the vibration energy radiating upwards through a cylin-

drical strip (shown in Fig. 3.5) at any arbitrary cross section xe due to the passage
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of the train can be determined by integrating the power flow that crosses through

the cylindrical strip as

E = rm ∆x

∫ θ2

θ1

∫ +∞

−∞
v(xe, θ, t) · τ (xe, θ, t)dtdθ, (3.31)

where v and τ are the soil vibration velocity and tractions, respectively, at the

strip due to the train pass-by. Tractions here refer to the stresses projected to the

cylindrical strip surface.

xD

q
1

q
2

r
m

Fig. 3.5: A finite cylindrical strip through which the radiated energy flow is
calculated.

To assess the performance of the DVAs by using the energy flow criterion, it

is necessary to compute the vibration energy radiating upwards for the cases in

which the DVAs are applied to the system and in which they are not. For the

case without DVAs, the displacement and traction Green’s functions that relates

the response on the soil at the cylindrical strip due to a force applied on the i-th

rail can be obtained using the model explained in subsection 3.2.1. These Green’s

functions can be used to obtain the response on the soil at the cylindrical strip

due a train pass-by by applying the formulation presented in subsection 3.2.2 and,

finally, to obtain the energy flow radiated upwards by the tunnel using Eq. (3.31).

For the case in which the DVAs are coupled to the tunnel’s interior floor, the same

procedure can be followed using the Green’s functions that accounts for the DVAs

application, which can be found by following section 3.3.
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3.5 Application and results

In this section, the efficiency of the application of the optimized DVAs on the

interior floor of the double-deck tunnel in minimizing the energy flow radiated

upwards by the tunnel is investigated. The considered mechanical properties for

the different subsystems are described first in subsection 3.5.1. Then, in sub-

section 3.5.2, it is explained how the required Green’s function have been com-

puted, concerning the position of the receivers, possible position of DVAs and

the wavenumber-frequency sampling. The train pass-by response is computed in

subsection 3.5.3. In subsection 3.5.4, optimized parameters of DVAs to minimize

energy flow radiated upwards are computed by using the previously explained op-

timization procedure explained previously, and the effects of the optimized DVAs

are discussed.

3.5.1 Parameters used to model subsystems

Two types of soil are considered, soft soil and hard soil. Their mechanical param-

eters are summarized in Table 3.1. The mechanical and geometric parameters of

the tunnel and the interior floor can be found in Tables 3.2 and 3.3, respectively.

Typical values of reinforced concrete are used to model the tunnel and the interior

floor.

Table 3.1: Mechanical parameters used to model the soil.

Soil parameters Values for soft soil Values for hard soil

Young modulus (MPa) 15 550

Density (kg m-3) 1600 2000

Poisson ratio (-) 0.49 0.3

P-wave damping ratio (-) 0.05 0.03

S-wave damping ratio (-) 0.05 0.03
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Table 3.2: Mechanical parameters used to model the tunnel.

Tunnel parameters Values

Young modulus (GPa) 50

Density (kg m-3) 3000

Poisson ratio (-) 0.175

Thickness (m) 0.4

Interior radius (m) 5.65

Table 3.3: Mechanical parameters used to model the interior floor.

Interior floor parameters Values

Young modulus (GPa) 30

Density (kg m-3) 3000

Poisson ratio (-) 0.175

Thickness (m) 0.5

Width (m) 10.9

The track consists of two identical rails separated at a constant distance of 1.5

m and a continuous mass-less distribution of springs-dashpots as a model of the

fasteners. Their parameters are given in Tables 3.4 and 3.5.

Table 3.4: Mechanical parameters used to model the rail.

Rail parameters Values

Young modulus (GPa) 207

Density (kg m-3) 7850

Cross-section area (m2) 6.93·10-3

Second moment of area (m4) 23.5·10-6

Table 3.5: Mechanical parameters used to model the fastener.

Fasteners parameters Values

Uniformly distributed stiffness (N m-2) 20·106

Uniformly distributed viscous damping (N s m-2) 10·103
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The considered train consists of two identical 3D models of the vehicle, shown in

Fig. 3.6. The distance between the wheels of a bogie, bogies of a same car and

bogies of two consecutive cars are 2.2 m, 15 m and 7 m, respectively. The param-

eters of the 2D vehicle models referred to in subsection 3.2.2 are: mw represents

the mass of the combined wheel and 1/2-axle system; mbog and Jbog represent the

mass and mass of inertia of a 1/2-bogie, respectively; kps and cps represent the

stiffness and viscous damping, respectively, of the primary vehicle suspension sys-

tem; mc and Jc represent the mass and mass of inertia of a 1/2-car body; and kss

and css represent the stiffness and viscous damping, respectively, of the secondary

vehicle suspension system. The values for these parameters can be found in Table

3.6.

Fig. 3.6: Train configuration.

Table 3.6: Mechanical parameters used to model the train.

Vehicle parameters Values Vehicle parameters Values

mw (kg) 950 kH (N m-1) 109

mbog (kg) 4700 kps (N m-1) 14·105

Jbog (kg m2) 1300 cps (N s m-1) 9·103

mc (kg) 22500 kss (N m-1) 6·105

Jc (kg m2) 55·104 css (N s m-1) 21·103

3.5.2 Computation of the Green’s functions

The track-tunnel-soil model presented in subsection 3.2.1, along with the parame-

ters of the subsystems given in the previous section, is used to compute the Green’s

functions required for coupling the vehicle and DVAs to the track and the interior

floor, respectively, and for computing the energy flow radiated upwards due to the

passage of the train. The computation of the energy flow radiated upwards takes

into account a set of receivers on the soil at a semicircle concentric with the tunnel
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and with the radius rs = 12 m. A total amount of 21 receivers with an angular

resolution of 9π/20 rad are spread out across the semicircle. For the coupling

between the DVAs and the interior floor, 20 receivers along the y coordinate over

the interior floor are considered. They are the possible DVAs positions that are

considered in the optimization process. These receivers are equidistantly spread

out across the interior floor considering a space resolution of 0.5 m, and a distance

of 0.5 m from each edge of the interior floor. The receivers in the soil and the

interior floor, denoted by dm and sl, respectively, are shown in Fig. 3.7.

d1 d2 d20
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s
1
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dm
y
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rs

Fig. 3.7: Geometrical scheme of the receivers located at the soil and at the
interior floor.

The Green’s functions have been computed for the moving loads with the speeds

of vt = 20 and 25 m s−1, which represent typical and maximum train speeds for

underground urban railways, respectively. The wavenumber-frequency sampling

is developed assuming a maximum frequency of interest, seen from a fixed frame

of reference, of ωmax = 80 Hz. To compute the corresponding maximum frequency

of interest seen from the perspective of the moving frame of reference ω̃max, the

expression

ω̃max = ωmax

(
1 +

vt
β

)
, (3.32)

from [104] is used here, where β is the speed of S-waves in the soil.

It is proposed to computationally solve Eqs. (3.8) or (3.9) by using a fast Fourier

Transform (fft) routine. Consider that the train response is computed at x = 0.
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Taking into account that the moving frame of reference is defined as x̃ = x− vtt,
one can define the sampling vectors for x̃ and t in the basis of the fft as

x̃n = −∆x̃
[
−N/2 . . . n− 1−N/2 . . . N/2− 1

]
(3.33)

and

tn = ∆t
[
−N/2 . . . n− 1−N/2 . . . N/2− 1

]
, (3.34)

respectively, where ∆x̃ = vt∆t. Thus, the corresponding sampling for kx and ω̃

should be

kxn = −∆kx

[
−N/2 . . . n− 1−N/2 . . . N/2− 1

]
, (3.35)

and

ω̃n = ∆ω̃
[
−N/2 . . . n− 1−N/2 . . . N/2− 1

]
, (3.36)

respectively, where ∆ω̃ = vt∆kx. Applying a 2D fft over this sampling strategy,

the diagonal of the resulting 2D matrix for the specific receiver contains the time

response at x = 0.

The assumption for which the train response is computed at x = 0 comes from the

fact that, in pure 2.5D models, the time response at any arbitrary x is always the

same as the one computed at x = 0 but delayed in time. However, when the DVAs

are coupled to the system, the resulting model is no longer longitudinally invariant

since it includes a periodical system, which induces a periodical behavior on the

time response. Therefore, x = 0 represents only one of the possible time responses

existing within a periodicity. However, the soil response is not significantly affected

by this periodical behaviour due to the distance between the track and the receivers

in comparison with the longitudinal distance between DVAs. Thus, x = 0 is taken

as the representative time signal for the train response.

3.5.3 Train pass-by response

In this study, the unevenness profiles of the two rails are held to be uncorrelated.

As shown by Ntotsios et al. [103], unevenness spectral content of wavelengths

shorter than 3 m should be considered uncorrelated. The train speeds studied in

this chapter imply that for frequencies larger than ≈ 8 Hz (most of the frequency



Chapter 3. Control of vibration energy flow by means of DVAs 34

range of interest for railway-induced vibrations), the unevenness profiles of the

two rails are deemed to be uncorrelated. They are modeled using a stochastic ran-

dom process that is characterized by its power spectral density (PSD) [107] which

depends on the rail quality. According to the Federal Railroad Administration

(FRA), the unevenness of the rails can be grouped into six classes depending on

the rail quality. Class 3 track is used in here.

Fig. 3.8 shows the time histories of the vertical rail velocity at x = 0 of the left

rail, in the absence of DVAs, due to the train passage at speeds of 20 and 25 m s−1.

The passage of the train, which has a total of eight axles, can be seen through the

eight peaks appearing in the figure. It is apparent that the vertical rail velocity of

the rail grows by increasing the train speed. Furthermore, considering the velocity

and the length of the train, the time it takes for the train to pass corresponds to

the distance between the peaks in time.
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Fig. 3.8: Time history of the vertical velocity of the left rail due to the train
passing at speeds of (a) vt = 20 m s−1 and (b) vt = 25 m s−1.

Fig. 3.9 shows the time history of the radial velocity of the hard soil at the receiver

s10, i.e. located at θ = π/2 and rs = 12 m, due to train passing at speeds of 20

and 25 m s−1. In this case, due to the distance between the receiver and the track,

the passage of the train axles cannot be clearly identified as compared with the

rail response.

Fig. 3.10 shows the frequency spectrum of the radial velocity for the hard and

soft soil at the receiver s10, located at θ = π/2 rad and rs = 12 m, due to the

passage of the train at the speeds of 20 and 25 m s−1. It can be observed that
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Fig. 3.9: Time history of the radial velocity of the soil at θ = π/2 and rs = 12
m due to the train passing at speeds of (a) vt = 20 m s−1 and (b) vt = 25 m

s−1.

the dominant spectral content is in a narrow frequency band for the four cases.

Observing the same behavior at the other receivers implies that DVAs would be

suitable vibration isolation measures. However, they would be less efficient for the

soft soil cases as the dominant frequency band is wider.

3.5.4 Optimum parameters of DVAs

Only one distribution of DVAs is considered in this study. Moreover, the distance

between any two consecutive DVAs in a distribution is assumed to be the same.

The DVAs in a distribution are considered to have the same mass. Its value, to-

gether with the minimum distance between the DVAs and the number of them,

are defined in the pre-design stage (common practice in designing DVAs [108])

by ensuring that the static tensions to which the interior floor is subjected would

stay approximately unchanged after adding DVAs. Thus, the transverse position

of DVAs distribution at the interior floor, the distance between two consecutive

DVAs, the natural frequency of the DVAs and viscous damping of the DVAs are

defined as variables in the optimization process in which the Matlab Global Opti-

mization Toolbox [109] is employed. GA searches for the optimal values of these

parameters that can minimize the energy flow radiated upwards from the cylin-

drical strip due to the passage of the train. The upper and lower bounds of these
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Fig. 3.10: Frequency spectrum of the radial velocity for the hard soil (top)
and soft soil (bottom) at θ = π/2 rad and rs = 12 m due to the train passing

at speeds of (a,c) vt = 20 m s−1 and (b,d) vt = 25 m s−1.

design variables and the value of the parameters defined in the pre-design stage

are given in the following:

1. Number of DVAs distributions M : Only one longitudinal distribution of

DVAs is considered.

2. Transverse position of DVAs distribution yd. It can be chosen from 20 pos-

sible positions defined previously in subsection 3.5.2.

3. Distance between two consecutive DVAs ld: It is defined as a discrete vari-

able, which can be chosen from 1 m to 8 m as the lower and upper bounds

of this design variable, respectively, with a space step of 0.5 m. The space

step has been restricted to 0.5 m because of the size of the DVAs to be used.
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4. The mass of the DVAs md: It is defined in the pre-design stage. All DVAs

in a distribution are assumed to have the same mass of 800 kg.

5. Number of DVAs in a distribution N : It is also defined in the pre-design

stage, taking a value of 15 DVAs.

6. The natural frequency of the DVAs fd: It is defined as a discrete variable that

can be chosen from the values of the fixed frame frequency (i.e. seen from

the fixed frame of reference) given by the wavenumber-frequency sampling

defined in subsection 3.5.2.

7. The viscous damping of the DVAs cd: It is defined as a discrete variable with

lower and upper bounds of 5 kN s m−1 and 500 kN s m−1, respectively. It

is considered to be a total amount of 316 possible values linearly distributed

between the defined bounds.

An optimization process based on GA has been carried out to minimize the energy

flow radiated upwards due to the application of a distribution of DVAs. The

following four cases have been studied: Case H25: hard soil and train speed of

vt = 25 m s−1; Case H20: hard soil and train speed of vt = 20 m s−1; Case

S20: soft soil and train speed of vt = 20 m s−1 and Case S25: soft soil and train

speed of vt = 25 m s−1. The resulting optimum values of the DVAs parameters

and the associated insertion loss (IL) on the radiated energy flow are presented in

Table 3.7. The IL was computed as

IL = 10 log10

(
E

E ′

)
, (3.37)

where E and E ′ represent the radiated energy without and with the application

of the DVAs.

Table 3.7: The optimum values of DVAs parameters and resulting IL.

Case yd (m) ld (m) fd (Hz) cd (kN s m−1) IL (dB)

H20 3.55 7.5 31.52 14.09 6.2

H25 -2.45 4.5 28.83 27.07 6.6

S20 1.05 7 31.17 20.65 5.3

S25 -3.45 6 31.6 27.76 5.8
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Fig. 3.11 shows the mean power flow radiated upwards from the cylindrical strip

with and without DVAs in the time domain for the four studied cases. The total

radiated energy with and without DVAs is also given for each case. This mean

power flow has been computed using the velocities and tractions over the cylindri-

cal strip at xe = 0, which is defined in accordance with the space-time sampling

previously defined in subsection 3.5.2. The expression to compute the mean power

flow can be derived from Eq. (3.31) and it is

P (t) = rm ∆x

∫ θ2

θ1

v(xe, θ, t) · τ (xe, θ, t)dθ. (3.38)
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Fig. 3.11: Mean power flow radiated upwards over the cylindrical strip in the
time domain for the cases (a) H20, (b) H25, (c) S20 and (d) S25. The grey and
black lines represent the results with and without DVAs, respectively. The total

radiated energy is presented for each case.
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As generally expected, the radiated energy increases for both soft and hard soil

when the speed of the train increases. The comparison of the radiated power flow

or the total radiated energy with and without the application of DVAs indicates

that using DVAs results in a notable decrease in radiated power flow or total

radiated energy for all studied cases. For all the studied cases, Fig. 3.11 shows

that the mean power flow becomes negative-valued at specific instants of time.

This behavior of the mean power flow radiated upwards by a double-deck tunnel

was previously observed by Clot [6] for the case of a quasi-static point load. A

meaningful explanation of this phenomenon is that the elastic surface waves that

travel along the tunnel cavity exhibit a particle motion very similar to the one

presented by Rayleigh surface waves [110].

Fig. 3.12 shows the energy spectral density (ESD) of the previously computed

mean power flow, with and without DVAs, for the four studied cases. As expected,

the results of computing the total radiated energy using ESD is the same value

previously achieved from the mean power flow in the time domain. It can be

observed in Fig. 3.12 that the most significant energy content is concentrated in a

frequency range between 25 to 35 Hz. It is noteworthy that the optimized natural

frequencies of DVAs have been obtained in this range of frequency, which makes

them effective in minimizing the radiated energy. The range of frequency in which

most of the energy content is found and at which the DVAs are effective can be

seen more clearly in Fig. 3.13, which represents ESD in one-third octave band for

the considered cases with and without application of DVAs. The presented octave

bands are normalized with the length of the time signal, which is 8.54 seconds.



Chapter 3. Control of vibration energy flow by means of DVAs 40

10 20 30 40 50 60 70 80

Frequency [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

E
S

D
 [
J
/H

z
]

×10-2 (a)

E = 0.0209 J

E
′
= 0.0050 J

10 20 30 40 50 60 70 80

Frequency [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

E
S

D
 [
J
/H

z
]

×10-2 (b)

E = 0.0344 J

E
′
= 0.0075 J

10 20 30 40 50 60 70 80

Frequency [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

E
S

D
 [
J
/H

z
]

×10-2 (c)

E = 0.0196 J

E
′
= 0.0058 J

10 20 30 40 50 60 70 80

Frequency [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

E
S

D
 [
J
/H

z
]

×10-2 (d)

E = 0.0368 J

E
′
= 0.0097 J

Fig. 3.12: ESD for cases (a) H20, (b) H25, (c) S20 and (d) S25. The grey and
black lines represent the results with and without DVAs, respectively. The total

radiated energy is also presented for each case.

In order to study the radiation pattern of the energy flow, the energy radiated

through the cylindrical strip has been computed as a function of θ, for all studied

cases and with and without the application of DVAs, using

E(θ) = rm ∆x

∫ +∞

−∞
v(0, θ, t) · τ (0, θ, t)dt. (3.39)

The results are shown in Fig. 3.14. One thing to note is that depending on the

type of the soil, the energy flow radiation pattern would differ. For hard soil cases,

the energy mostly radiates over the center of the strip, however, for the soft soil

cases, it radiates mostly over the sides of the strip. For both cases, DVAs are

significantly affecting the θ distribution of the radiation pattern. This is because
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Fig. 3.13: One-third octave bands for cases (a) H20, (b) H25, (c) S20 and (d)
S25. The grey and black lines represent the results with and without DVAs,

respectively.

the mode shapes of the interior floor, which are modified by the application of the

DVAs, are strongly related with the radiation pattern distribution, as discussed

previously by Clot et al. [5] in a 2D power flow analysis of the double-deck tunnel

subjected to a harmonic line load.
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Fig. 3.14: Energy radiated over cylindrical strip in J as a function of θ for
cases (a) H20, (b) H25, (c) S20 and (d) S25. The grey and black lines represent

the results with and without DVAs, respectively.

In order to investigate the relation between the natural frequency of the optimal

DVAs and the dynamical behavior of the original system, two figures are presented.

On the one hand, Fig. 3.15 shows the radial velocity Green’s functions of the hard

soil case at three receivers located at θ = 0, θ = π/2 and θ = π rad, and at a

radius of 12 m due to the force applied on the right rail. The red areas show local

maximums of the velocity Green’s functions and they represent an approximation

to the dispersion curves of the system. From this approximation, three propagation

modes of the interior floor coupled to the tunnel-soil system can be observed: the

first and the third are anti-symmetric (not observed at θ = π/2) and the second

is symmetric (the only one appearing at θ = π/2). The inclined dashed black

lines plotted in Fig. 3.15 represent combinations of kx and ω of constant ω̃ for the

specific speed of 25 m s−1. On the other hand, Fig. 3.16 shows dynamic wheel-rail

interaction forces for the same case study but considering 20 m s−1 and 25 m s−1.

For both figures, the computations have been done without considering coupled

DVAs. Comparing these two figures with the results shown in Table 3.7, where

the natural frequency of the optimal DVAs for the hard soil case is 31.52 Hz for

vt = 20 m s−1 and 28.83 Hz for vt = 25 m s−1, one can observe that the DVAs

are targeting the second propagation mode of the track-interior floor-tunnel-soil

system. This can be deduced because of two reasons: firstly, the inclined black

lines of constant ω̃ have a slope far from the tangents to the dispersion curves
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except for wavenumbers close to zero, resulting in that the frequency associated

to these propagation modes is mostly the one of the 2D problem; secondly, the

contact forces have a significant amount of spectral energy close to the resonance

frequency associated to the second propagation mode for the 2D case.
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Fig. 3.15: The radial velocity Green’s functions of the hard soil in dB (dB
reference 1 m N−1s−1) at the receivers located at rs = 12 m and (a) θ = 0, (b)
θ = π/2 rad and (c) θ = π rad for vt = 25 m s−1. Inclined dashed black lines

denote points of constant ω̃ for the specific speed of 25 m s−1.
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Fig. 3.16: Contact forces caused by wheel-rail interaction associated to vt = 20
m s−1 (grey) and vt = 25 m s−1 (black).

The effect of the DVAs on the dynamic response of the rails is also studied. Fig.

3.17 shows the one-third octave band spectrum of the vertical velocity of the left
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rail with and without DVAs, for two different train speeds. It can be seen from

the figures that the application of DVAs on the interior floor of the tunnel has

little effect on the dynamic response of the track. Because of that, the train-track

dynamic forces can be computed before the optimization process, only once. If the

track is already constructed, these forces can be obtained using a hybrid approach

[52] that enhance the accuracy of the DVAs efficiency prediction. However, it is

important to highlight that this result is only associated to the present problem

parameters. In cases where the DVAs natural frequency is similar to the rail/fas-

teners natural frequency, this conclusion is no longer valid.
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Fig. 3.17: One-third octave band spectrum of the vertical velocity of the left
rail in dB (dB reference 10−8 m s−1) for the train speeds of (a) vt = 20 m s−1

and (b) vt = 25 m s−1. The grey and black lines represent the results with and
without DVAs, respectively.
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4.1 Introduction

This chapter is concerned with investigating the application of DVAs in a double-

deck tunnel as measures to mitigate ground-borne vibrations in a building, which

are induced by the railway traffic of the double-deck tunnel underneath the build-

ing. For this purpose, a hybrid experimental-numerical model of a train-track-

tunnel-soil-building system is used. In this hybrid model, a numerical model of

the track-tunnel system based on a 2.5D coupled FE-BE approach along with a

dynamic rigid multi-body model of the vehicle is used to compute the response in

the tunnel wall. Then, the response in the building is computed using experimen-

tally obtained transfer functions between the tunnel wall and the building floor.

The optimum design parameters of the DVAs are obtained using an optimization

process based on the GA. The effectiveness of the DVAs is assessed by a response

parameter, MTVV in the building near the tunnel, which is used as an objective

function to be minimized in the optimization process. The triaxial response in

the building is used to compute the MTVV. The natural frequency, the viscous

damping and the positions of the DVAs are considered as design parameters in the

optimization procedure. DVAs are found to be efficient vibration countermeasures

in the framework of the double-deck tunnel infrastructures as a reduction of 3.3

dB in the MTVV in the building is achieved due to the application of the DVAs

on the interior floor of the tunnel.

The rest of the chapter is organized as follows. In section 4.2, the hybrid numerical-

experimental model is described. The optimization process and design parameters

of the DVAs are detailed in section 4.3. The performance of optimized DVAs

in minimizing MTVV in the building is presented in section 4.4. Noteworthy,

the methodology proposed in section 3.3 is employed here to couple DVAs to the

interior floor.

4.2 Hybrid vibration prediction model

A hybrid model of the train-track-tunnel-soil-building system is used to calculate

the response of the system in the building due to train pass-by. In this model, the

vibration response of the tunnel wall is computed using a theoretical prediction

model of the train-track-tunnel-soil system. Then, the response at the building
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first floor is computed using experimentally obtained transfer functions between

the tunnel wall and the building. The theoretical prediction model of the train-

track-tunnel-soil system includes numerical model of the tunnel-soil subsystem

based on a 2.5D FE-BE approach [111] (briefly explained in subsection 4.2.1),

a semi-analytical model of the track coupled to the interior floor of the tunnel

(outlined in subsection 4.2.2) and a train-induced response model (summarized in

subsection 4.2.3).

4.2.1 Modeling of tunnel-soil system

A coupled 2.5D FE-BE formulation approach is used to model tunnel-soil system.

The particular 2.5D FE-BE approach used in this work is the one presented by

Ghangale et al. [111]. In this method, the 2.5D boundary element method (BEM)

and the 2.5D finite element method (FEM) are used to model the soil and the

tunnel, respectively. Then, the subsystems are coupled by enforcing continuity of

displacements and stresses on the interface between them. This model is used to

obtain the response of a set of evaluators located in the tunnel/soil system. On

one hand, the evaluators that should be selected for the simulations explained in

this chapter are the FE nodes that should be in contact with the rails, the FE

nodes considered to be candidates for a DVA placement and the FE nodes where

the final response of the simulation is required. On the other hand, the forces that

should be applied at the model are vertical forces at the FE nodes that should

be in contact with the rails and vertical forces in the FE nodes considered to be

candidates for a DVA placement.

4.2.2 Modeling of track-interior floor system

A semi-analytical model of a track system consisting of two rails supported by the

fasteners is derived in this section. The rails are modeled as two identical Euler-

Bernoulli beams of infinite length and the fasteners are modeled as continuously

distributed linear massless viscous springs. The equations that define the dynamic

behavior of the rails excited by moving harmonic vertical point loads with the same
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excitation frequency ω̃ and the same speed vt can be expressed in the wavenumber-

frequency domain as [112]

(
ErIrk

4
x − ρrSrω2

)
Z̄r + (kf + iωcf )

(
Z̄r − Z̄fr

)
= 2πδ

(
ω̃ − (ω − kxvt)

)
Fr, (4.1)

where

Z̄r =

Z̄r1Z̄r2

 , Z̄fr =

Z̄fr1Z̄fr2

 , Fr =

Fr1Fr2

 ,

and where Er is the Young’s modulus of the rail material, Ir is the second moment

of inertia of the rail cross section, ρr is the density of the rail material, Sr is the

rail cross-sectional area and kf and cf are the stiffness and viscous damping of

the fasteners, respectively. For i = 1, 2, Fri is the amplitude of the vertical load

applied on the i-th rail and Z̄ri and Z̄fri are the vertical displacement of the i-th

rail and the equivalent vertical displacement of the interior floor below the i-th

rail, respectively. This equivalent vertical displacement is obtained by averaging

the responses at the FE nodes of the interior floor that should be in contact with

the rails induced by the set of vertical forces applied at these nodes.

Thus, the equivalent response of the interior floor below the rails due to the equiv-

alent forces applied by the fasteners of the first rail (F̄fr1 ) and second rail (F̄fr2 )

is given by

Z̄fr = H̄frfrF̄fr , (4.2)

where

F̄fr =

F̄fr1F̄fr2

 and H̄frfr =

H̄fr1fr1
H̄fr1fr2

H̄fr2fr1
H̄fr2fr2

 , (4.3)

being H̄frifrj
, for i, j = 1, 2, the Green’s functions of the interior floor below the

i-th rail due a force applied on the interior floor below the j-th rail. The 2.5D

numerical model of the soil-tunnel system explained in the previous subsection is

used to compute the Green’s functions H̄frfr .

The equivalent forces applied by the fasteners on the interior floor below the rails

can be obtained by

F̄fr = (kf + iωcf )
(
Z̄r − Z̄fr

)
. (4.4)

By replacing the equivalent fastener forces in Eq. (4.2) with the ones from Eq.
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(4.4) and rearranging the resulting equation, the relation between the displace-

ments of the interior floor below the rails and the displacements of the rails can

be obtained as

Z̄fr = T̄frrZ̄r (4.5)

where

T̄frr =

(
1

kf + iωcf
I + H̄frfr

)−1
H̄frfr , (4.6)

being I the identity matrix.

By substituting Eq. (4.5) into Eq. (4.1), then equation of motion of the rails in

the wavenumber-frequency domain can be written as[(
ErIrk

4
x − ρrSrω2

)
I + K̄rf

]
Z̄r = 2πδ

(
ω̃ − (ω − kxvt)

)
Fr, (4.7)

where

K̄rf =
(
kf + iωcf

) (
I− T̄frr

)
, (4.8)

Thus, the Green’s function of the rails on the moving frame of reference due to a

force applied on the rails can be defined as

H̃rr =

[(
ErIrk

4
x − ρrSr (ω̃ + kxvt)

2
)

I + K̃rf

]−1
, (4.9)

where K̃rf = K̃rf (kx, ω̃) = K̄rf (kx, ω̃ + kxvt).

On one hand, the Green’s function of the system at any arbitrary position of the

tunnel due to a force applied on the rails can be obtained by

H̃tr = H̃tfrK̃rfH̃rr, (4.10)

being

H̃tr =
{

H̃r
tr1

H̃r
tr2

}
, H̃tfr =

{
H̃tfr1

H̃tfr2

}
, (4.11)

where H̃tfr are the Green’s functions of the tunnel structure due to forces applied

on the interior floor below the rails. On the other hand, the Green’s functions of

the system at any arbitrary position due to external forces applied at any arbitrary

position of the tunnel in the presence of the rails can be written as

H̄r
te = H̄te + krtH̄tfrH̄fre (4.12)
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where the sub-index e represents the external loading and

krt =
(
kf + iωcf

)( kf + iωcf
ErIrk4x − ρrSrω2 + kf + iωcf

− 1

)
, (4.13)

and where H̄te are the Green’s functions of the system at the tunnel due to external

forces in the absence of the rails, H̄tfr are the Green’s functions of the system at

the tunnel due to the force applied on the interior floor below the rails and H̄fre

are the Green’s functions of the system at the interior floor below the rails due

to the external loads in the absence of the rails. Finally, the Green’s functions

associated to the response of the rails due to external loading can be written as

H̄r
re = krrH̄fre, (4.14)

where

krr =
kf + iωcf

ErIrk4x − ρrSrω2 + kf + iωcf
. (4.15)

Eqs. (4.12) and (4.14) are not defined in the moving frame of reference because

the external loads, in this case applied by the DVAs, are not moving with the

train. The Green’s functions H̄tfr , H̄te and H̄fre can be computed using the 2.5D

numerical model of the tunnel-soil system based on FE-BE formulation explained

in subsection 4.2.1.

4.2.3 Modeling of train-track interaction

In the context of the urban railway infrastructures, the dynamic excitation due

to dynamic train-track interaction is the mechanism which contributes the most

in the railway-induced vibration. It can be generated by several mechanisms,

such as variation of the track’s mechanical parameters and the wheel and track

unevenness. The latter is considered as main excitation mechanism in this section.

A detailed derivation of the train-track interaction model employed can be found

in the section 3.2.2.
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4.2.4 Building response prediction

The vibration transmission between the tunnel wall and the building can be mod-

eled using experimentally obtained vibration transfer functions [113, 114]. This

transfer function is based on the ratio between cross-power spectrum and power

spectrum [114].

To generate the transfer functions, the response of the tunnel wall and the building

floor due to the train pass-by need to be measured simultaneously using triaxial

accelerometers (or a set of three single-axial accelerometers that gives triaxial

vibration). Then, a single input spectrum in the frequency domain Üt(ω) can be

approximately obtained using triaxial information at the tunnel wall as

Üt =
√
|Ütx|2 + |Üty |2 + |Ütz |2, (4.16)

being Ütx , Üty and Ütz the spectra of the vibration acceleration measured at the

tunnel wall in x, y and z directions, respectively, in the frequency domain. A single

output signal in the frequency domain Üb(ω) can also be approximately obtained

using triaxial information measured at the building floor as

Üb =
√
|Übx|2 + |Üby |2 + |Übz |2, (4.17)

being Übx , Üby and Übz the spectra of the vibration acceleration measured at the

building floor in x, y and z directions, respectively, in the frequency domain. As

both input and output signals are transient signals, the transfer function between

the tunnel wall and the building can be obtained by

Ttb(ω) =
Etb(ω)

Ett(ω)
(4.18)

where Etb(ω) is the cross-energy spectrum between Üt and Üb, and Ett is the energy

spectrum of Üt.

Noteworthy, it is assumed here that the application of DVAs would not affect the

transfer function between tunnel wall and the building. So, the transfer function,

obtained in the absence of DVAs, could be also used after the application of DVAs.

This assumption is considered based on the work of Arcos et al. [112], in which

a similar hybrid model approach was used to compute the optimal rail fastener
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stiffness. It was shown that the transfer functions between tunnel wall and the

building are not significantly affected by changing the stiffness of the fasteners.

4.3 DVAs optimization approach

A global optimization approach similar to the one explained in section 3.4 is used

here to obtain the optimum parameters of DVAs. The only difference with that

approach is that the objective function to be minimized in the optimization pro-

cess is the MTVV in the building near the tunnel. As before, the number of

DVAs distributions, the position of DVAs distributions, number of DVAs in each

distribution, distance between two consecutive DVAs in each distribution, DVAs

masses, DVAs natural frequencies and DVAs damping coefficients are design vari-

ables. Computing the MTVV in the building for the system with DVAs, MTVViso,

consists of the following calculations:

1. The Green’s function of the system at the tunnel wall due to a force applied

on the rails, by means of Eq. (4.10);

2. The response of the system at the tunnel wall due to train pass-by, using the

Green’s function computed in step 1 and Eq. (3.8);

3. The response of the building due to the train pass-by using the experimen-

tally obtained transfer function between the tunnel wall and the building

floor and the response at the tunnel wall obtained in step 2;

4. The MTVV in accordance with [14].

The optimization process used in this work minimizes the MTVViso. Minimizing

the MTVViso results on a maximization of the IL associated to the MTVV in the

building, as it is stated by

IL = 20 log10

(
MTVVuniso

MTVViso

)
, (4.19)

where MTVVuniso is the MTVV in the building floor in the absence of DVAs. Its

calculation consist of the following computations:
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1. The Green’s function of the system at the tunnel wall due to a force applied

on the rails, by means of Eq. (4.10);

2. The response of the system at the tunnel wall due to train pass-by, using the

Green’s function computed in step 1 and Eq. (3.8);

3. The response of the building due to the train pass-by using the experimen-

tally obtained transfer function between the tunnel wall and the building

floor and the response at the tunnel wall obtained in step 2;

4. The MTVV in accordance with [14].

4.4 Application and results

The proposed methodology is employed to investigate the efficiency of application

of optimized DVAs in minimizing the ground-borne vibrations in the case study

of L9 Barcelona metro. The study is done in particular building nearby to a

L9 stretch where the existing level of vibration due to common train traffic is

severe. In that L9 section, the tunnel is double-decked and the circulations that

are inducing high vibration levels are the ones running over the upper floor of the

tunnel.

4.4.1 Computation of the Green’s functions of the tun-

nel/soil system

The 2.5D FE-BE model of the particular section of double-deck tunnel used for

2.5D numerical studies is shown in Fig. 4.1. The model consists of the tunnel and

the soil discretized by linear triangular finite elements and linear elastodynamic

boundary elements, respectively. The criteria of minimum of six elements per

wavelength is considered, assuming that the wavelength is the one associated to

the S-waves of each medium. The tunnel has an inner radius and thickness of

5.65 m and 0.4 m, respectively, and the thickness of the interior floor is 0.5 m.

The mechanical parameters used for the tunnel and the interior floor are the

ones associated to reinforced concrete. They are summarized in Table 4.1. The

mechanical parameters associated to the soil can also be found in Table 4.1.
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Fig. 4.1: Mesh of the 2.5D FE-BE model of the double-deck tunnel for the
specific section studied. The boundary element nodes are shown by diamonds.
The FE nodes used to couple the rails (three nodes for each rail, r1 and r2), the
ones used to evaluate the response of the system at the tunnel wall (t1 and t2),
and the ones considered as possible positions of DVAs (d1 to d12) are shown by

circles.

Table 4.1: Mechanical parameters used to model the tunnel/interior floor
system and soil.

Parameters Tunnel/interior floor Soil

Young’s modulus (GPa) 31 0.18

Density (kg m-3) 2500 2100

Poisson’s ratio (-) 0.2 0.3

P-wave damping ratio (-) 0.01 0.025

S-wave damping ratio (-) 0.01 0.025

This model has been used to compute the Green’s functions required to couple the

rails and the DVAs to the interior floor, as well as the Green’s functions required

to compute the response of the system due to train pass-by. In order to couple

the rails to the interior floor, the Green’s function of the system at the position of

the fasteners due to the force applied at those positions are needed, as explained

in subsection 4.2.2. For each rail, three nodes have been considered to couple
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the rails to the interior floor. They are shown by circles in Fig. 4.1, as r1 and

r2. Then, equivalent responses and applied forces are computed for each rail by

averaging the obtained Green’s functions. The fasteners are modelled as uniformly

distributed viscous springs with stiffness and viscous damping of 20·106 N m-2 and

10·103 N s m-2, respectively. The parameters used to model the rails can be found

in Table 4.2. To compute the response of the system due to train pass-by, two

FE nodes at each side of the tunnel wall has been considered, shown by circles in

Fig. 4.1 as t1 and t2. The rest of the FE nodes shown by the circles in Fig. 4.1

represent the nodes used to couple DVAs to the interior floor. These are the 12

possible transverse positions of the DVAs that are considered in the optimization

process.

Table 4.2: Parameters used to model the rails.

Rail parameters Values

Young’s modulus (GPa) 207

Density (kg m-3) 7850

Cross-section area (m2) 6.93·10-3

Second moment of area (m4) 23.5·10-6

The Green’s functions have been computed for a train speed of vt = 16.67 m

s−1, which is the speed of the train in L9 Barcelona metro at the section where

the efficiency of DVAs is being studied. Regarding the wavenumber-frequency

sampling, the maximum frequency of interest seen from a fixed frame of reference is

considered to be fmax = 80 Hz. The corresponding maximum frequency of interest

seen from the perspective of the moving frame of reference ω̃max is obtained using

expression proposed in [104] as ω̃max = ωmax

(
1 + vt/β

)
, where β is S-wave speed in

the soil. Uniformly distributed samples of 211 points from 0 to ω̃max have been used

as a sampling vector of the frequency, and the sampling vector for wavenumber

has been obtained according to the relation ∆ω̃ = vt∆kx, where ∆ω̃ and ∆kx are

the frequency and wavenumber steps of the selected sampling, respectively. More

details about the sampling strategy can be found at section 3.5.2.
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4.4.2 Train pass-by response prediction

The vertical dynamic excitation caused by rail unevenness is considered as the

main source of the excitation. The unevenness profiles of the two rails are held to

be uncorrelated here, as proposed in previous chapter. The unevenness profiles of

the rails are modeled using stochastic random processes characterized by its power

spectral density (PSD) [107]. According to the Federal Railroad Administration

(FRA), the unevenness of the rails can be grouped in six classes depending on the

rail quality [115]. Class 3 track is used in this study.

After the computation of the Green’s functions and the wheel-rail interaction

forces, the response of the system due to the train pass-by can be computed.

The considered train consists of five identical cars. Each car is represented as two

uncoupled 2D models independently applied on each rail, as shown in Fig. 4.2. The

distance between the wheels of a bogie, bogies of the same car and bogies of two

consecutive cars are 2 m, 11.37 m and 4.9 m, respectively. The other parameters of

the 2D vehicle models are: mw, which represents the mass of the combined wheel

and 1/4-axle system; mbog and Jbog, that represent the mass and the moment

of inertia of a 1/2-bogie, respectively; kps and cps, which represent the stiffness

and viscous damping, respectively, of the primary vehicle suspension system; mc

and Jc, which represent the mass and moment of inertia of a 1/2-car body; and

kss and css, which represent the stiffness and viscous damping, respectively, of

the secondary vehicle suspension system. The values for these parameters can be

found in Table 4.3.
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Fig. 4.2: Schematic of 2D MDOF rigid body model of each car.

Table 4.3: Mechanical parameters used to model the train.

Train parameters Values Train parameters Values

mw (kg) 705 kH (N m-1) 109

mbog (kg) 1730 kps (N m-1) 12.4·105

Jbog (kg m2) 824 cps (N s m-1) 10·103

mc (kg) 20961 kss (N m-1) 8.12·105

Jc (kg m2) 45.85·104 css (N s m-1) 15·103

The time history of the vertical velocity of both rails at x = 0 due to train pass-by

is shown in Fig. 4.3 for case where the DVAs are not applied. The passage of the

train can be seen through the peaks associated to the 20 axles that are appearing

in the figure. As the geometry of the system is not symmetric (as shown in Fig.

4.1), the responses of the rails are different between them.
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Fig. 4.3: Time history of the vertical velocity of the rail r1 (a) and the rail r2
(b), at x = 0, in the absence of DVAs.

Fig. 4.4 shows the frequency spectrum and time history of the vertical velocity due

to train passage evaluated at the position d3 on the interior floor, which is located

at (x, y, z) = (0,−0.2,−0.5) m with respect to the coordinates presented in Fig.

4.1, in the absence of the DVAs. It can be seen from the frequency spectrum that

the frequency content is mostly concentrated in the frequency range between 20

Hz to 40 Hz.
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Fig. 4.4: Time history (a) and frequency spectrum (b) of the vertical velocity
of the interior floor d3.

Fig. 4.5 shows the time history and the frequency spectrum of the vertical and

horizontal velocity due to the train passage evaluated at the position t1 on the

tunnel wall, which is located at (x, y, z) = (0,−5,−2.1) m, in the absence of the

DVAs. It can be observed again that the frequency content is mostly concentrated

in the frequency range of 20 Hz to 40 Hz. This should be attributed to the
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frequency spectrum of the dynamic wheel-rail interaction forces, since it has most

of the spectral energy concentrated in that frequency range, as can be observed

in Fig. 4.6. Moreover, as discussed in section 3.5.4, the presence of a propagation

mode of the interior floor within this range of frequency could even magnify the

concentration of spectral energy at the mentioned frequency range.
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Fig. 4.5: Time history (a) and frequency spectrum (b) of the velocity of the
tunnel wall at t1 associated to y direction. Superimposed (in gray) time history

and frequency spectrum of the vertical velocity at t1.
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Fig. 4.6: Wheel-rail interaction contact force at the first wheel.
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4.4.3 Experimental measurements required for the hybrid

model

Vibration measurements have been performed in the building where the vibrations

intended to be reduced (targeted building) and inside the double-deck tunnel un-

derneath the building. The in-situ vibration measurements have been used in the

following to substantiate the numerical results obtained previously in subsection

4.4.2 and to determine the tunnel-building transfer function to model the vibration

propagation between the tunnel wall and the targeted building.

The configuration of the accelerometers for the vibration measurements inside the

tunnel and the building is shown in Fig. 4.7. The measurement setup consists of

three accelerometers on the interior floor (a1, a2 and a3), two accelerometers on

the tunnel wall (a4 and a5) and three accelerometers on the floor of the targeted

building (b1, b2 and b3). They have been used to simultaneously record the time

history of the vibrations of the interior floor, tunnel wall and the building, respec-

tively, caused by train pass-by. A 12-channel Siemens LMS XS Scadas is the data

acquisition system used for measurements inside the tunnel and the building. The

time history vibrations at the interior floor, at the tunnel wall and at the building

have been simultaneously recorded for five train passes with a speed of 16.67 m/s.

During the measurements, no train was circulating over the lower section of the

double-deck tunnel and the road traffic in the vicinity of the building was light.
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Fig. 4.7: Schematic representation of the setup of accelerometers used for the
vibration measurements inside the tunnel (a). Accelerometers used to record
time history of the tunnel wall (b), the interior floor (c) and the building (d)

due to train pass-by.

Fig. 4.8 shows the vertical vibration acceleration spectra of the interior floor

obtained using the proposed numerical prediction model at the points d3 and d12

and the vibration measurements at the points a1 and a3. The points a1 and d3

represent the same location for both theoretical and experimental cases: (x, y, z) =

(0,−0.2,−0.5) m. In the same way, the points a3 and d12 represent an evaluator

at (x, y, z) = (0,−3.5,−0.5) m. For both positions, the approximate agreement

between the experimental and numerical results is observed for the frequency range

between 25 Hz to 63 Hz, where the agreement between the results is generally

within 8 dB. The numerical model prediction does not show good agreements with

the experimental one for the frequencies above 63 Hz and below 20 Hz. The lack
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of information about actual rail roughness profile and the soil parameters, along

with the assumption that the model is longitudinally invariant (the interior floor

consists on precast finite slabs and the particular coupling conditions between

them cannot be neglected) are some of the parameters which are affecting the

accuracy of the results of the numerical model.
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Fig. 4.8: One-third octave band spectra of the vertical vibration acceleration of
the interior floor for the passage of the train in dB (dB reference 10−6 m s−2): (a)
Numerical prediction response (dashed black line) at d3, five measured responses
(gray lines) and the average of measured responses (dashed black line) at a1; (b)
Numerical prediction response (dashed black line) at d12, five measured response
(gray lines) and the average of measured responses (dashed black line) at a3.

Fig. 4.9 shows the computed and the measured vibration acceleration spectra of

the tunnel wall in y direction due to train pass-by. At some frequencies, a reason-

able agreement between the computed and measured results have been observed.

However, at the frequency of 31.5 Hz, the simulation is clearly overestimating the

vibration acceleration level. In general, the level of the agreement for the tunnel

wall evaluator is less than the one for the case of the interior floor. This can be

attributed to the fact that the soil properties are much more significant for the

response of the tunnel wall rather than for the interior floor. Therefore, a better
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agreement would be achieved by defining soil properties more accurately, since in

the the present model, the soil data is obtained from general geotechnical studies

used in the L9 project. To solve this issue, in this thesis it is proposed to apply a

correction factor on the numerically obtained response of the tunnel wall to fit the

real response of the system. This correction factor would be the ratio between the

measured and the computed response on the tunnel wall in the frequency domain

(narrow band). Following the assumption explained in section 4.2.4, it is also as-

sumed that the application of DVAs would not affect significantly the correction

factor.
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Fig. 4.9: One-third octave band spectra of the vibration acceleration of the
tunnel wall in y direction in dB (dB reference 10−6 m s−2). Dashed black
line, gray lines and solid black line represent numerical prediction response, five

measured responses and the average of measured responses, respectively.

In the hybrid model presented in this section, the vibration propagation between

the tunnel wall and the targeted building is modeled using experimentally ob-

tained transfer functions. These transfer functions can be computed based on

the methodology explained in subsection 4.2.4, which requires the simultaneous

vibration measurements in the tunnel wall and the targeted building. Using the

proposed methodology, the transfer function has been computed for five train pass-

by measurements, and their average is used as the main transfer function. These

transfer functions and their average are shown in Fig. 4.10, where a frequency

resolution of 0.5 Hz is used.
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Fig. 4.10: Experimentally obtained transfer functions between the tunnel wall
and the targeted building (gray lines) and average of all transfer functions (black

line).

In order to compare the response on the building floor obtained experimentally

and using the hybrid method, the following steps should be accounted for:

• Experimental response in the building: A single vibration acceleration spec-

trum of the targeted building floor can be obtained by Eq. (4.17) using the

triaxial response of the building through experimental measurements.

• Response in the building by using the hybrid model: To obtain a single

acceleration spectrum in the building by using the hybrid mode, four steps

should be folloowed:

1. The triaxial response at the tunnel is computed by means of the 2.5D

FE-BE approach;

2. The correction factor is applied to fit the simulated response with the

experimental one at the tunnel wall;

3. The single acceleration spectrum at the tunnel wall should be computed

using Eq. (4.16);

4. The computed transfer function between the tunnel wall and the build-

ing is applied to obtain the vibration acceleration spectrum at the build-

ing floor.

Fig. 4.11 shows the predicted vibration acceleration spectrum of the targeted

building obtained by following this methodology and the ones obtained using the
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vibration measurements. As expected, a good agreement between the results can

be observed because of the application of the correction factor previously pre-

sented.
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Fig. 4.11: One-third octave band spectra of the vibration acceleration at the
targeted building floor in dB (dB reference 10−6 m s−2). Dashed black line, gray
lines, and solid black line represent numerical prediction response, five measured

responses and the average of measured responses, respectively.

4.4.4 Application of DVAs

Only one distribution of DVAs is considered in this study. Among design variables,

the mass of the DVAs and the number of DVAs in the distribution are defined in the

pre-design stage (a common practice in designing DVAs [108]), ensuring that the

static tensions to which the interior floor is subjected would stay approximately

unchanged after adding DVAs. The remaining design variables, which are the

transverse position of the DVAs distribution at the interior floor yd, the distance

between two consecutive DVAs ld, the natural frequency of the DVAs fd and

viscous damping of the DVAs cd are defined in the optimization process, based on

GA, aiming to minimize the MTVV in the targeted building due to the passage of

the train. For the optimization purpose, the Matlab Global Optimization Toolbox

[109] has been used. The upper and lower bounds of these design variables and the

value of the parameters defined in the pre-design stage are given in the following:

• yd can be chosen from 12 possible positions, shown in Fig. 4.1.

• ld is defined as a discrete variable, which can be chosen from 1 m to 8 m at

intervals of 0.5 m. The space step has been restricted to 0.5 m because of
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the size of the DVAs to be used. The distance between any two consecutive

DVAs in distribution is assumed to be similar.

• md is defined in the pre-design stage. All DVAs are assumed to have the

same mass of 800 kg.

• Number of DVAs per distribution is also defined in the pre-design stage,

taking a value of 10 DVAs.

• fd is defined as a discrete variable that can be chosen from 1 Hz to 80 Hz at

intervals of 0.2 Hz.

• cd is defined as a discrete variable that can be chosen from 31 kN s m−1 and

800 kN s m−1 at intervals of 12 kN s m−1.

An optimization process has been performed to minimize the MTVV in the tar-

geted building due to the application of a distribution of DVAs in the interior

floor of the double-deck tunnel. A reduction of 3.3 dB in the MTVV at the tar-

geted building has been achieved by applying one distribution of 10 DVAs with

the parameters presented in Table 4.4.

Table 4.4: The optimum values of DVAs parameters and resulting IL.

yd (m) ld (m) fd (Hz) cd (kN s m−1) IL (dB)

-3.1 6 56.8 91.8 3.3

The vibration acceleration spectrum of the targeted building due to the train pass-

by over the upper section of the tunnel has been computed before and after the

application of optimal DVAs. The results are shown in Fig. 4.12.
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Fig. 4.12: One-third octave band spectra of the vibration acceleration of the
targeted building in dB (dB reference 10−6 m s−2) before (solid black line) and

after (dashed black line) the application of the DVAs in the tunnel.
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5.1 Introduction

A computationally efficient method to calculate Green’s functions for 2.5D elasto-

dynamic problems in homogeneous and horizontally layered half-spaces subjected

to a harmonic load is presented in this section [116]. Exact expressions of the 3D

stiffness matrix method for isotropic layered media in Cartesian coordinates are

used to determine stiffness matrices for a horizontal layer and a half-space. In the

absence of interfaces, virtual interfaces are considered at the positions of external

loads. The analytic continuation is used to find the displacements at any receiver

point placed within a layer. The responses of a horizontally layered half-space

subjected to a unit harmonic load obtained using the present method are com-

pared with those calculated using a well-established methodology, achieving good

agreement. In addition, this Green’s functions are used to present an extension for

the fictitious force method [22]; and the results obtained using the new extension

of the method and the original one is compared.

The remainder of the chapter is organized as follows. First, the derivation of the

3D stiffness matrices for the cases of a single layer and a lower/upper half-space

is outlined in section 5.2. Afterwards, it is explained how to employ the stiffness

matrices to compute 2.5D Green’s functions in section 5.3. The 2.5D Green’s

functions for homogeneous and layered half-spaces calculated by employing the

present method are compared with those obtained by using the method developed

by Tadeu et al. [19] and calculated by following the methodology based on stiffness

matrix method described in [3], respectively, in section 5.4. Moreover, an extension

of the fictitious force method is explained in section 5.4.

5.2 3D Stiffness matrices in Cartesian coordi-

nates

A brief explanation of the derivation of the expressions for the 3D stiffness matrices

of a single layer and a lower half-space is presented in this section. Kausel presented

the elements of the stiffness matrices for the plane strain case [117]. The same

process is followed for the case of 3D wave propagation, resulting in the closed-

form expressions for the elements of stiffness metrics in the wavenumber-frequency

domain in Cartesian coordinates (x, y, z).
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The motion within a 3D, homogeneous, isotropic and elastic medium can be writ-

ten as [118]

(λ+ µ)∇∇ · u− µ∇×∇× u + ρf = ρ
∂2u

∂t2
, (5.1)

where u and f are the vectors of the displacements and the body forces, respec-

tively, ρ is the density of the medium, λ and µ are Lamé’s first and second param-

eters, ∇ represents the Nabla operator and t stands for the time. Assuming the

gravity as only body forces, it can be neglected by describing the motion about an

equilibrium position. The displacement field in terms of the scalar (Φ) and vector

(Ψ) potentials can be written as

u = ∇Φ +∇×Ψ, (5.2)

in which the gauge condition is assumed to be ∇ ·Ψ = 0, for convenience. So, the

elastic wave equation can be written as

∇2Φ =
1

α2

∂2Φ

∂t2
and ∇2Ψ =

1

β2

∂2Ψ

∂t2
, (5.3)

where α and β represent the phase velocities of the P- and S-waves, respec-

tively. By transforming Eq. (5.3) to the wavenumber-frequency domain (kx, ky, ω)

through applying a 3D Fourier transform of the form

F̂ (kx, ky, z, ω) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x, y, z, t)ei(kxx+kyy−ωt)dxdydt, (5.4)

where kx and ky are the wavenumbers associated to the x and y coordinates, the

scalar and vector Helmholtz equations can be found as

d2Φ̂

dz2
+ υ2αΦ̂ = 0,

d2Ψ̂

dz2
+ υ2βΨ̂ = 0 (5.5)

respectively, where

υα =
√
k2xy − k2α, υβ =

√
k2xy − k2β, (5.6)

and

kxy =
√
k2x + k2y, kα =

ω

α
, kβ =

ω

β
. (5.7)
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The general solution of Eq. (5.5) is

Φ̂ = Aα1e
υαz + Aα2e

−υαz, Ψ̂ =


Aβ1e

υβz + Aβ2e
−υβz

Aβ3e
υβz + Aβ4e

−υβz

Aβ5e
υβz + Aβ6e

−υβz

 , (5.8)

being Aα1 , Aα2 , Aβ1 , Aβ2 , Aβ3 , Aβ4 , Aβ5 and Aβ6 unknown constants. Substituting

the general solutions of the Helmholtz equations into the transformed form of Eq.

(5.2) in the wavenumber-frequency domain results in general displacements as

Û = R1E
−1
z a1 + R2Eza2. (5.9)

Capital letters and ˆdenote that the variables are defined in the (kx, ky, ω) domain,

where ω is the angular frequency and kx and ky are the wavenumbers along the

x and y directions, respectively. a1 and a2 are vectors of unknown arbitrary

constants. R1, R2, Ez and E−1z are calculated from

R1 =



1 −ky
kx

−υβ
kx

ky
kx

1 0

−υα
kx

0 1


, (5.10)

R2 =



1 −ky
kx

υβ
kx

ky
kx

1 0

υα
kx

0 1


, (5.11)

Ez =


eυαz

eυβz

eυβz

 (5.12)

and
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E−1z =


e−υαz

e−υβz

e−υβz

 (5.13)

respectively.

The stresses in horizontal planes can be written as a function of the displacements

[117]. Using the displacements defined in Eq. (5.9), the solution for the stresses

can be written as

T̂z = µ
(
−Q1E

−1
z a1 + Q2Eza2

)
, (5.14)

where Q1 and Q2 are defined as

Q1 =



2υα −υβky
kx

−kx −
υ2β
kx

2υαky
kx

υβ −ky

−
k2xy
kx
−
υ2β
kx

0 2υβ


(5.15)

and

Q2 =



2υα −υβky
kx

kx +
υ2β
kx

2υαky
kx

υβ ky

k2xy
kx

+
υ2β
kx

0 2υβ


(5.16)

respectively.
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5.2.1 Stiffness matrix of a layer

Consider Fig. 5.1, a free horizontal homogeneous, isotropic and elastic layer with

arbitrary thickness h is subjected to arbitrary distributed tractions Pu and Pl on

the upper and lower interfaces, respectively.

p
u

p
l

z
y

x h/2

h/2

Fig. 5.1: Free body diagram of a layer without body forces.

The displacements and tractions at the upper and lower interfaces can be found

by evaluating Eqs. (5.9) and (5.14) at these interfaces asÛu

Ûl

 =

R1Eh/2 R2E
−1
h/2

R1E
−1
h/2 R2Eh/2

a1

a2

 (5.17)

and P̂u

P̂l

 = µ

 Q1Eh/2 −Q2E
−1
h/2

−Q1E
−1
h/2 Q2Eh/2

a1

a2

 . (5.18)

respectively.

Combining the displacements and tractions by eliminating the constants and per-

forming the matrix operations analytically, the stiffness matrix of the layer can be

written in closed-form expressions asP̂u

P̂l

 =

K̂11 K̂12

K̂21 K̂22

Ûu

Ûl

 , (5.19)

where closed-form expressions for the elements of this stiffness matrix are

K̂11 =
µ

D

k2β
k2xy

A1 + µA2, (5.20)

K̂12 =
µ

D

k2β
k2xy

A3 + µA4, K̂21 = K̂T
12, (5.21)
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K̂22 = K̂11 ◦


1 1 −1

1 1 −1

−1 −1 1

 . (5.22)

In the above equations, µ is Lamé’s second parameter, the superscript T denotes

the transpose operator, ◦ is the Hadamard product and coefficient D is calculated

from:

D = 2e(υβ−υα)h − 2CαCβ +

(
k2xy
υαυβ

+
υαυβ
k2xy

)
BαBβ, (5.23)

Bα =
1− e−2υαh

2
, Bβ =

1− e−2υβh

2
, (5.24)

Cα =
1 + e−2υαh

2
, Cβ =

1 + e−2υβh

2
. (5.25)

Matrices A1, A2, A3 and A4 are obtained from:

A1 =



k2x
υβ
D1

kxky
υβ

D1 kxD3

kxky
υβ

D1

k2y
υβ
D1 kyD3

kxD3 kyD3

k2xy
υα

D2


, (5.26)

D1 = BβCα −
υαυβ
k2xy

BαCβ, D2 = BαCβ −
υαυβ
k2xy

BβCα, (5.27)

D3 = e−(υα+υβ)h − CαCβ +

(
k2xy
υαυβ

)
BαBβ, (5.28)

A2 =


υβ

k2y
k2xy

Cβ
Bβ

−υβ
kxky
k2xy

Cβ
Bβ

−2kx

−υβ
kxky
k2xy

Cβ
Bβ

υβ
k2x
k2xy

Cβ
Bβ

−2ky

−2kx −2ky 0


, (5.29)
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A3 =


−k

2
x

υβ
D4 −kxky

υβ
D4 kxD6

−kxky
υβ

D4 −
k2y
υβ
D4 kyD6

−kxD6 −kyD6 −
k2xy
υα

D5


, (5.30)

D4 = Bβe−υαh − υαυβ
k2xy

Bαe−υβh, D5 = Bαe−υβh − υαυβ
k2xy

Bβe−υαh, (5.31)

D5 = Bαe−υβh − υαυβ
k2xy

Bβe−υαh, (5.32)

D6 = Cβe−υαh − Cαe−υβh, (5.33)

and

A4 =


−υβ

k2y
k2xy

e−υβh

Bβ

υβ
kxky
k2xy

e−υβh

Bβ

0

υβ
kxky
k2xy

e−υβh

Bβ

−υβ
k2x
k2xy

e−υβh

Bβ

0

0 0 0


. (5.34)

5.2.2 Stiffness matrix of a lower half-space

Consider a homogeneous, isotropic and elastic lower half-space, Fig. 5.2, subjected

to an arbitrarily distributed traction Pu. As Sommerfeld radiation condition has

p
u

z

y

x

Fig. 5.2: Free body diagram of a lower half-space without body forces.

to be satisfied (Φ → 0 and Ψ → 0 when z → ∞), the displacement and the
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traction can be written, respectively, as

Ûu = R1a1 and P̂u = µQ1a1. (5.35)

By eliminating the arbitrary constants vector, a1, the displacements and traction

at the upper interface can be related by means of the stiffness matrix which can

be found from

K̂h = µQ1R
−1
1 . (5.36)

Closed-form expressions for the elements of the stiffness matrix of a lower half-

space, K̂h, are

K̂h =
µ

k2xy − υαυβ


k2yυβα + k2βυα −kxkyυβα kxDH

−kxkyυβα k2xυβα + k2βυα kyDH

kxDH kyDH k2βυβ

 , (5.37)

where

υβα = υβ − υα, DH = 2υαυβ − υβ2 − k2xy. (5.38)

5.3 2.5D Green’s functions for homogeneous and

layered half-spaces

Consider an arbitrarily layered half-space with an arbitrary distribution of receiver

points and sources located within the half-space. Based on the methodology pro-

posed in this chapter, the following steps must be taken to obtain the 2.5D Green’s

functions that relate all the desired receiver points and sources:

1. Add a virtual interface for every source that has not been placed on any of

the physical layer interfaces.

2. Follow the same approach used in the finite element method to assemble

the global stiffness matrix for the layered media, K̂ in Eq. (5.39), while

considering physical and virtual interfaces.
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3. Use the concept of analytic continuation, as described by Kausel [117], to

obtain the displacements at receiver points within a layer, i.e. those not

located at physical or virtual interfaces, in terms of the layers’ interface

displacements. Then, by means of the inverse of the global stiffness matrix,

Ĥ(kx, ky, ω) which defines the displacements of all the receiver points as a

function of the tractions at the sources’ location can be constructed.

4. Compute the 2.5D Green’s functions of the system H̄, in the (kx, y, ω) do-

main, accounting for all the selected receiver points and sources by applying

an inverse Fourier transform (FT) in the y direction on Ĥ(kx, ky, ω).



P̂1

P̂2

...

P̂j

...

P̂N



=



K̂l1
11 K̂l1

12 0 . . . 0

K̂l1
21 K̂l1

22 + K̂l2
11 K̂l2

12 . . . 0

0 K̂l2
21 K̂l2

22 + K̂l3
11

. . .
...

...
...

. . .
. . . K̂

l(N−1)

12

0 0 . . . K̂
l(N−1)

21 K̂
l(N−1)

22 + K̂h


︸ ︷︷ ︸

K̂



Û1

Û1

...

Ûi

...

ÛN


(5.39)

Eq. (5.39) governs the tractions-displacements relation in all interfaces of a N -

layered half-space. Ûi represents the three components (ordered according to x, y

and z) of displacements and P̂j represents the three components of forces on the i

and j interfaces, respectively, considering the surface as the first interface. In the

global stiffness matrix K̂, where each element is a 3 × 3 matrix, stiffness matrix

elements of the nth layer are denoted by the superindex ln and K̂h is the stiffness

matrix of a lower half-space.

In the following, 2.5D Green’s functions for a homogeneous and layered half-space

subjected to a buried harmonic load are determined by using the proposed method

and they are compared, in terms of accuracy and computational efficiency, with

those calculated by using well-established solutions. For the case of a homogeneous

half-space, the Green’s functions are compared with the ones obtained using a

semi-analytical solution developed by Tadeu et al. [19]; the actual formulation of

this semi-analytical solution can compute 2.5D Greens’ functions between only two

positions in the soil. However, the present method can find the Greens’ functions
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between multiple positions in the soil. For the case of a layered half-space, the

results are compared with the ones obtained using cylindrical formulation of the

stiffness matrix method [39] which needs more numerical operation in comparison

with the present method.

5.4 Results and discussion

As noted previously, different methods have been proposed in the literature to

compute the 2.5D Green’s functions of homogeneous and layered half-spaces. In

this section, it is explained how the present method can decrease the computational

costs of calculating the 2.5D Greens’ functions, besides its accuracy is evaluated

through comparisons between the Greens’ functions obtained using the proposed

method and previously derived methodologies for the following cases:

Case 1: Surface response of a homogeneous half-space subjected to a buried load;

Case 2: Buried response of a homogeneous half-space subjected to a buried load;

Case 3: Buried response of a layered half-space subjected to a buried load;

Case 4: An extension of the fictitious force method.

For the cases 1 and 2, both associated to a homogeneous half-space, the 2.5D

Green’s functions calculated by employing the proposed method have been com-

pared with the ones obtained using a semi-analytical solution, developed by Tadeu

et al. [19]. In Tadeu’s method, a set of 2.5D imaginary forces is considered to

simulate the free surface on a homogeneous full-space. These imaginary sources

can be found by imposing the free surface boundary condition of zero stresses on

the surface. The summation of the 2.5D Green’s functions for a homogeneous

full-space [20] with the motions resulting from the imaginary sources lead to the

2.5D Green’s functions of a homogeneous half-space.

For the case of a layered half-space, the 2.5D Green’s functions computed by using

the present method are compared with the ones obtained by means of the stiff-

ness matrix method in cylindrical coordinates [39]. From a computational point of

view, the two methods follow different schemes. In the proposed method, the com-

putational steps are: i) inversion of the global matrix based on 6 × 6 elementary
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matrices; ii) an inverse FT along ky; and iii) a one-dimensional (1D) interpolation.

On the other hand, the method based on stiffness matrices in cylindrical coordi-

nates was developed according to the following steps: i) inversion of the global

matrices associated with P-SV and SH waves, separately, to obtain the Green’s

functions in the (kr, ω) domain; ii) computation of the Green’s functions in the

(r, θ, ω) domain by means of an inverse Hankel transform and an inverse Fourier

series expansion in the radial and circumferential directions, respectively; iii) a 2D

interpolation process to find the Green’s functions in the (x, y, ω) domain; and

iv) a numerical FT along x to obtain the 2.5D Green’s functions in the (kx, y, ω)

domain.

In order to compare the accuracy of the computed 2.5D Green’s functions with

the new method against previous well-established methodologies, an almost ex-

act solution of the 2.5D Green’s functions have to be computed for each case of

first three cases. This almost exact solution (reference solution from here on) is

computed using Tadeu’s method [19] for homogeneous half-spaces and the one

described in [3] for layered half-spaces. The reference solution is obtained by sub-

sequently increasing the sampling points and reducing the spacing between them

until the solution converges to a sufficiently accurate value. Then, to quantify the

accuracy of an arbitrary 2.5D Green’s function, an averaged relative error against

the reference solution is used. This relative error is computed for each frequency

by averaging the results along the wavenumber using the root mean square.

5.4.1 Case 1: Surface response of a homogeneous half-

space subjected to a buried load

In Fig. 5.3 an example of the case 1 is shown. As there is only one applied

load, only one virtual interface, shown as a dashed line, is added at where the

buried load is placed. Therefore, the homogeneous half-space is divided into a

homogeneous layer and a lower half-space with the same mechanical parameters.

The 2.5D Green’s functions can be obtained using the process described in section

5.3. For this example, the global stiffness matrix of the system can be written as

K̂ =

K̂l1
11 K̂l1

12

K̂l1
21 K̂l1

22 + K̂h

 . (5.40)
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z

y

x

Fig. 5.3: A homogeneous half-space with a virtual interface ( dashed lines)
placed at the position of the buried load; the receiver-point placed on the surface.

In the following, the numerical parameters used in the computation of the Greens

functions are presented. The frequency sampling vector have the range of [1, 100]

Hz, with the increments of 1 Hz. The receiver-point and the load are located

at (yr, zr) = (4, 0) m and (yf , zf ) = (2, 10) m, respectively. The selected sam-

pling vector for kx has 29 points with increments of 0.01 rad/m. The inverse

Fourier transform used for moving from the (kx, ky, ω) domain to the 2.5D do-

main, (kx, y, ω), is computed using the fast Fourier transform. The mechanical

parameters of the soil used in the calculations are given in Table 5.1. Noteworthy,

complex-valued Lamé parameters are used to transform the elastic media into a

viscoelastic one, being Dp and Ds in Table 5.1 the hysteretic damping ratios for

P- and S-waves.

Table 5.1: Mechanical parameters used to model the soil in sections 5.4.1 and
5.4.2

Soil parameters Values

E (MPa) 300

ρ (kg m-3) 2000

ν (-) 0.2

Dp (-) 0.03

Ds (-) 0.03

In Fig. 5.4, a comparison between the results obtained using Tadeu’s method and

the new one for the parameters previously defined is shown. For this comparison,

the ky sampling used in the new method is based on increments of 0.04 rad/m

and 210 points. For Tadeu’s method, a set of imaginary sources is used which

represents the same sampling used for the new method, taking 210 points and a

distance between imaginary sources of 0.1534 m. The results presented in this
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figure are the ones obtained at 30 Hz. As shown, both methods have a good

agreement on the results.

To check the accuracy of the 2.5D Green’s functions computed using the new

method for a range of frequencies, a reference solution, calculated based on a

convergence error of 10−8, is used. For the reference solution, this relative error

is ensured for each frequency and wavenumber. The relative errors of the new

method and Tadeu’s method against this reference solution are shown in Fig. 5.5.

The errors obtained with both methods are similar, which implies that the new

method is as accurate as the Tadeu’s methodology.

5.4.2 Case 2: Buried response of a homogeneous half-space

subjected to a buried load

An example of the case 2 is shown in Fig. 5.6. There are no interfaces at positions

of the receiver-point and applied load. A virtual interface, shown as dashed line,

is added at where the load is placed. Therefore, like case 1, the homogeneous

half-space is divided into a homogeneous layer and a lower half-space; the global

stiffness matrix is the same as the one of the case 1, Eq. 5.40. However, the

elements of the stiffness matrix are not the same as case 1, because the position

of the force has been changed.

The 2.5D Green’s functions for case 2 can be obtained through using analytic

continuation and the inverse of the global stiffness matrix, following the process

explained in section 5.3.

The numerical parameters used in the computation of the Green’s functions are

presented in the following. The selected frequency sampling vector have the range

of [1, 100] Hz, with the increments of 1 Hz. The receiver-point and load are placed

at (yr, zr) = (4, 3) m and (yf , zf ) = (2, 10) m, respectively. 29 points with the

increments of 0.01 rad/m are used to sample kx. The inverse Fourier transform

used for moving from the (kx, ky, ω) domain to the 2.5D domain, (kx, y, ω), is

computed using the fast Fourier transform. The mechanical parameters of the soil

used in the calculations are given in Table 5.1. Noteworthy, complex-valued Lamé

parameters are used in order to transform the elastic media into a viscoelastic one,

being Dp and Ds in Table 5.1 the hysteretic damping ratios for P- and S-waves.
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Fig. 5.4: Amplitude (a) and phase values (b) of the 2.5D Green’s functions
at 30 Hz for case 1. Solid and dotted lines are used to represent the results

obtained using Tadeu’s method and the new one, respectively.
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Fig. 5.5: Relative errors of the 2.5D Green’s functions with respect to the
reference solution for new method (solid lines) and for Tadeu’s method (dashed

lines) for case 1.

z

y

x

Fig. 5.6: A homogeneous half-space with buried receiver-point and buried load;
the virtual interface ( dashed lines) placed at the position of the buried load.

A comparison between the results calculated using Tadeu’s method and the new

one for the parameters defined previously is shown in Fig. 5.7. The results pre-

sented in this figure are the ones obtained at 30 Hz. For this comparison, the ky

sampling used in the new method is based on increments of 0.04 rad/m and 210

points. For Tadeu’s method, a set of imaginary sources is used which represents

the same sampling used for the new method, taking 210 points and a distance

between imaginary sources of 0.1534 m. As shown, a good agreement is obtained

between the results of the two methods.

To check the accuracy of the 2.5D Green’s functions computed using the new
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Fig. 5.7: Amplitude (a) and phase values (b) of the 2.5D Green’s functions
at 30 Hz for case 2. Solid and dotted lines are used to represent the results

obtained using Tadeu’s method and the new one, respectively.
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method for a range of frequencies, a reference solution, calculated based on a

convergence error of 10−8, is used. For the reference solution, this relative error

is ensured for each frequency and wavenumber. The relative errors of the new

method and Tadeu’s method against this reference solution are shown in Fig. 5.8.

The errors obtained with both methods are similar, which implies that the new

method is as accurate as the Tadeu’s methodology.
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Fig. 5.8: Relative errors of the 2.5D Green’s functions with respect to the
reference solution for new method (solid lines) and for Tadeu’s method (dashed

lines) for case 2.

5.4.3 Case 3: Buried response of a layered half-space sub-

jected to a buried load.

An example of case 3 is shown in Fig. 5.9. A virtual interface, represented by the

dashed line, is added where the load is applied. A receiver-point is located within

the first physical layer of the layered half-space. Therefore, the three-layered half-

space is divided into the one with three homogeneous layers and a lower half-space.

In the following, the numerical parameters used in the computation of the Green’s

function are presented. The receiver point and the source were placed at (yr, zr) =
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z

yx

Fig. 5.9: A three-layered half-space with the virtual interfaces, dashed lines,
considered for buried load and receiver-point.

(6, 8) m and (yf , zf ) = (2, 23) m, respectively. We calculated the 2.5D Green’s

functions for this particular case. A sampling vector with 29 points and incre-

ments of 0.01 rad/m was selected for kx. To transform the Green’s functions from

(kx, ky, ω) domain to the 2.5D domain (kx, y, ω), the inverse fast Fourier transform

(FFT) is carried out over a set of 210 values of ky with increments of 0.04 rad/m.

The mechanical parameters of the soil used in the calculations are given in Ta-

ble 5.2. Hysteretic damping ratios Dp and Ds corresponding to P- and S-waves,

respectively, were used to account for viscoelasticity. The selected frequency sam-

pling vector have the range of [1, 100] Hz, with the increments of 1 Hz.

Table 5.2: Mechanical parameters used to model the soil in section 5.4.3.

Soil parameters 1st layer values 2nd layer values 3rd layer values

E (MPa) 366 390 420

ρ (kg m-3) 2000 2200 2500

ν (-) 0.3 0.25 0.2

Dp (-) 0.03 0.03 0.03

Ds (-) 0.03 0.03 0.03

Fig. 5.10 features a comparison between the results obtained using the new method

and the ones computed by means of the stiffness matrix method in cylindrical co-

ordinates [39] for the parameters previously defined is shown. For this comparison,

the ky sampling used in the new method is based on increments of 0.04 rad/m and

210 points. The values presented in the figure correspond to a frequency of 30 Hz.

As can be noted, this is good agreement between two sets of results.

Fig. 5.11 shows an example of a sampling grid for computing the 2.5D Green’s

function with the proposed method. The y axis could be linear or logarithmic,

depending on the sampling used for the FT. Interpolation is only needed along
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Fig. 5.10: Amplitude (a) and phase values (b) of the 2.5D Green’s functions
at 30 Hz for case 3. Solid and dotted lines are used to represent the results
obtained using the stiffness matrix method in cylindrical coordinate [3] and the

new one, respectively.
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the y direction, since the required positions may not coincide with the sampling

associated with the FT.

Fig. 5.12 is an example of a sampling grid for the method based on stiffness matri-

ces in cylindrical coordinates. Black solid points represent the sampling associated

with the direct output of the method. Grey circles correspond to the required sam-

pling points. This example considers the same sampling along x for any required

y value. The data obtained directly from this method must be translated from a

cylindrical to a Cartesian sampling grid using 2D interpolation. This process will

generally induce larger numerical errors than the proposed method, particularly

for large values of y, due to the geometrical relationship between cylindrical and

Cartesian coordinate systems.

k
x
[r
ad

m
−
1
]

y [m]

kxn

kxi

kx0
ynyiy0

Fig. 5.11: Sampling grid obtained directly using the proposed method (black
solid points). The required points are denoted by grey circles.

5.4.4 Case 4: An extension of the fictitious force method

The fictitious force method is an extension of the PiP model to calculate the vibra-

tion induced by a tunnel embedded in a layered half-space. In the following, the

fictitious force method is explained briefly; A detailed overview of the methodol-

ogy can be found in [22]. Consider a tunnel embedded in a layered half-space. The

near-field dynamic behavior of a tunnel-soil system can be assumed to be the one
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Fig. 5.12: Sampling grid obtained directly from the method based on the
stiffness matrices in cylindrical coordinates (black solid points). The required

points are denoted by grey circles.

associated to a tunnel embedded in a full-space with the mechanical parameters

of the layer that contains the tunnel in the original model. Besides, the model is

defined in the basis of a 2.5D approach, which means that the system is assumed

to be invariant along the longitudinal direction, therefore, the 3D problem can

be decomposed into a set of 2D models which depend on the wavenumber along

the invariant direction. The fictitious force method consists of the following three

steps:

1. Calculating tunnel-soil interface displacements: The tunnel-soil interface dis-

placements due to a point load on the tunnel invert is calculated using the

PiP model [57]. It is assumed that the tunnel is embedded in a homoge-

neous full-space with the mechanical parameters of the layer that contains

the tunnel;

2. Calculating equivalent forces: A set of equivalent forces which are able to

reproduce the tunnel-soil interface displacements in a full-space (without the

embedded tunnel) are determined. 2.5D Green’s functions for a homogeneous

full-space, developed by Tadeu and Kausel [20], are employed;
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3. Calculating responses at receivers due to the equivalent forces: The response

at the receivers can be computed through multiplying the equivalent forces

by the required 2.5D Green’s functions of the layered half-space.

Fig. 5.13 shows a schematic representation of these steps. The third step is compu-

tationally more expensive than the two first steps. In the fictitious force method,

these 2.5D Green’s functions of the half-space, i.e. third step, are evaluated by

means of the stiffness matrix method in cylindrical coordinates [39, 117]. The

computational efficiency and accuracy of this method can be increased using new

2.5D Green’s functions for a layered half-space, presented in this section, in the

third step.

Consider Fig. 5.14, in which a tunnel with outer radius and thickness of 3 m

and 0.25 m, respectively, buried in a layered half-space is presented. an algorithm

that computes the 2.5D Green’s functions of a layered half-space based on the
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Fig. 5.13: Schematic representation of (a) first (b) second and (c) third step
of the fictitious force method.
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new presented method is used in the third step of the fictitious force method to

calculate far-field displacements of a tunnel buried in a layered half-space. After

this, the results are compared with the ones obtained through the methodology

that uses the stiffness matrix method in cylindrical coordinates.

z

y
x

Fig. 5.14: A circular tunnel embedded in a layered half-space.

The mechanical parameters of the soil and the tunnel are given in Tables 5.3 and

5.4. A numerical example has been carried out in the basis of this system. The

PiP model has been employed to calculate the displacement fields at 20 positions

at tunnel-soil interface due to a load applied at the tunnel invert. The tunnel is

assumed to be embedded in a full-space with mechanical parameters of the 2nd

layer. Then, the virtual forces have been computed at r =1 m at 20 positions by

means of 2.5D Green’s functions for the full-space [20]. Finally, the responses at

the receiver-points due to the virtual forces have been computed using the 2.5D

Green’s functions for the layered half-space evaluated by means of the stiffness

matrix method in Cartesian and cylindrical coordinates. The latter has been

computed using the ElastoDynamics Toolbox (EDT) [4].

The amplitudes of the three displacement fields at the receiver-point, placed at

(yrp, zrp) = (10, 6) m, are plotted versus kx in Fig 5.15-a for a frequency of 60 Hz.

|Hij| represents the response in the i direction due to the force acting along the

j direction. Their related phase values, ϕij, are plotted in Fig 5.15-b. As it can

be seen, the Hxz is antisymmetric but Hyz and Hzz are symmetric with respect

to the kx. The same comparisons has been provided for the receiver-point placed
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Table 5.3: Mechanical parameters used to model the soil in section 5.4.4.

Soil parameters 1st layer values 2nd layer values

E (MPa) 446 286

ρ (kg m-3) 1980 1980

ν (-) 0.49 0.49

Dp (-) 0.06 0.06

Ds (-) 0.06 0.06

Table 5.4: Mechanical parameters used to model the tunnel in sections 5.4.4.

Tunnel parameters Values

E (GPa) 50

ρ (kg m-3) 2500

ν (-) 0.3

Dp (-) 0.03

Ds (-) 0.03

at (yrp, zrp) = (10, 0) m. The results are shown in Fig 5.16. As it was expected,

increasing the y results in disagreement between the results of the two methods.
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Fig. 5.15: Amplitude (a) and phase values (b) at (yrp, zrp) = (10, 6) at 60
Hz. Solid and dotted lines are used to represent the results obtained using the

present method and using EDT [4], respectively.
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Fig. 5.16: Amplitude (a) and phase values (b) at (yrp, zrp) = (10, 0) at 60
Hz. Solid and dotted lines are used to represent the results obtained using the

present method and using EDT [4], respectively.
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In this chapter, the summary of the main findings of this research is presented.

Moreover, a number of recommendations for further research on the topic is pro-

posed.

6.1 Conclusions

In this dissertation, the potential of DVAs as a measure to address underground

railway-induced ground-borne vibration problems in the context of double-deck

tunnels is investigated. For this purpose, first, a methodology for coupling a set

of longitudinal distributions of DVAs to any railway subsystem in the context of

a theoretical dynamic model of a railway infrastructure is developed. Then, this

methodology is used to couple a set of DVAs to the interior floor of a double-

deck tunnel. Afterward, the response of this coupled system due to train traffic is

computed and the optimum design parameters of the DVAs are obtained using an

optimization process based on a genetic algorithm to minimize this response.

Two approaches have been followed to assess the performance of DVAs as vibration

countermeasures: i) Evaluation the efficiency of DVAs in mitigation of the energy

flow radiated upwards by the tunnel; ii) Assessment of the capability of the DVAs

in minimizing MTVV in a building near an underground railway infrastructure.

Results obtained regarding each approach is summed up in the following.

Regarding the first approach, a 2.5D semi-analytical model of a train-track-tunnel-

soil system that considers a full-space soil model is used. The performance of one

longitudinal distribution of optimized DVAs has been evaluated for two different

types of soil and two different train speeds. In all of the four cases, they have

been found to be efficient in reducing the total energy flow radiated by the tunnel.

The obtained ILs of the total radiated energy flow due to the application of DVAs

for the four cases show that the harder the soil is and the faster the train is, the

more effective the optimized DVAs are. In the best scenario, a reduction of 6.6

dB in the total radiated energy flow has been achieved. The results show that

DVAs provide significant vibration attenuation benefits by tuning their optimum

natural frequencies to be set down in the range of frequency where most of the

spectral energy content is concentrated. It is also found that the mode shapes of

the interior floor are modified after the application of DVAs. The affectation on

the mode shapes can strongly modify the energy flow radiation pattern from the
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tunnel. In contrast, this does not considerably affects the dynamic response of the

rails.

For the second approach, a hybrid experimental-numerical model of a train-track-

tunnel-soil-building system is employed. In the hybrid model, a numerical model of

the tunnel-soil system based on 2.5D coupled FE-BE approach, a semi-analytical

model for the track and a dynamic rigid multi-body model of the vehicle are

used to compute the response in the tunnel wall. Then, the response in the

building is computed using experimentally obtained transfer functions between

the tunnel wall and the building floor. This hybrid model provides sufficient

level of accuracy in the response prediction of the building only if the parameters

of the system are accurately known. In case that high accuracy in the input

parameters can be achieved, it is proposed to use a correction factor of the tunnel

wall vibration spectrum which has been assumed to be not very dependent of the

DVAs application. It is found that using one distribution of ten optimal DVAs

results in a reduction of 3.3 dB in MTVV inside the building.

It is expected that using more than one longitudinal distribution of DVAs would

result in a greater reduction either in the total radiated energy flow or the MTVV

inside the building. It should be noted that DVAs would be a more cost-effective

solution for existing underground railway networks than, for example, vibration

isolation screens, building base isolation or fasteners retrofitting, as the imple-

mentation and manufacturing of DVAs would be cheaper than other vibration

countermeasures.

In this dissertation, a computationally efficient method for calculating 2.5D Green’s

functions in the wavenumber-frequency domain for a homogeneous and layered

half-spaces has been also presented. This method is based on explicit expressions

of the 3D stiffness matrices for layered isotropic media in Cartesian coordinates

defined in the (kx, ky, ω) domain. If there is no receiver-point within the layers, the

2.5D Green’s functions in the (kx, y, ω) domain can be found by applying an inverse

Fourier transform in the y direction on the inverse of the global stiffness matrix,

calculated with the mentioned 3D stiffness matrices in the (kx, ky, ω) domain. If

there are receiver-points within the layers, the analytic continuation, described by

Kausel [117], need to be employed to obtain the 2.5D Green’s functions.

For the case of a homogeneous half-space, the 2.5D Green’s functions calculated
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using the proposed method are compared with the semi-analytical solution de-

veloped by Tadeu et al. [19]. A very good agreement between the results has

been achieved. The new method can be used to compute the Green’s functions at

multiple receiver-points due to multiple loads by using fast Fourier transform algo-

rithms, which is a more computationally efficient procedure than Tadeu’s method.

However, Tadeu’s method could also be implemented using fast Fourier trans-

form algorithms, although this implementation would still be less simple and effi-

cient than the proposed method implementation because of the complexity of the

Tadeu’s formulation.

For the case of a layered half-space, the results obtained through the present

method are in good agreement with those obtained using the method based on

stiffness matrices in cylindrical coordinates. The present method can be used to

improve the accuracy of the required interpolations, especially for large values of y.

In addition, this method requires fewer numerical steps to obtain the 2.5D Green’s

functions of the system. In general, this more streamlined process should result

in a more computationally accurate method. The proposed Green’s functions for

the layered half-space has been employed to present an extension of the fictitious

force method. In a general point of view, the new methodology is more compu-

tationally efficient than the previous one because of the fewer numerical integral

transformations. The results of applying the fictitious force method using both

methodologies are compared and a very good agreement is obtained.

As a general conclusion for the present thesis, the potential of DVAs a counter-

measures for ground-borne vibrations induced by underground railway traffic is

proved at least for the case of double-deck tunnel infrastructre. Reductions up

to 6.6 dB in total energy flow radiated by the tunnel and up to 3.3 dB in the

vibration inside a nearby building demonstrate this statement.
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6.2 Further work

In the following, some further researches on the present topic are proposed:

1. Considering the results obtained from this investigation, the foremost action

would be the application of DVAs prototypes in a real case study in order

to evaluate their efficiency practically. This study is currently in progress

for the L9 of Barcelona metro. For this purpose, first, the limitation of

the numerical model is going to be addressed aiming of getting a better

agreement between prediction and experimental results. Model updating

techniques will be used in this regard.

2. In this context, an study of the validity of the correction factor used for the

practical application of the DVAs in L9 Barcelona metro is another future

work that it is intended to perform.

3. In this study, the application of only one distribution of DVAs has been

studied. However, it is expected that using more than one longitudinal dis-

tribution of DVAs would result in a greater vibration reduction. Noteworthy,

determining the optimal value for more than one distribution of DVAs re-

quire a more computationally efficient optimization algorithm.

4. As the objective function defined in the optimization process plays a crucial

role in defining the optimal parameters of DVAs and their efficiency, other

objective functions rather than the ones used in this investigation would be

considered to evaluate the efficiency of DVAs.

5. As this study is the first of its kind, a general approach in optimization

process has been employed. However, a deeper investigation on the relation

between the propagation modes of the interior floor and the DVAs natural

frequency can be developed. An analytical optimization approach to control

these propagation modes would be an interesting topic to follow.

6. In terms of computational efficiency, the present methodology can be im-

proved in various directions. This should be an important research line in

the future in order to simplify the DVAs effectiveness predictions.

7. Preliminary studies showed that DVAs also could be an effective counter-

measures to control underground railway-induced ground-borne vibration
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from simple tunnel. However, basic models have been used in these previous

studies. Using a more accurate model to evaluate the efficiency of DVAs for

simple tunnel, as the ones presented in this thesis for double-deck tunnels,

is another interesting topic to follow.

8. Studying the application of DVAs to control ground-borne vibration caused

by surface railway traffic can be taken into consideration for further studies.
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