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Abstract

The understanding and control of light-matter interactions at the nanoscale are of
great importance for the design of efficient and compact nanophotonic devices for
diverse applications such as energy production, communications, and biomedicine.
It is also a fruitful playground for academic investigations at the intersection of light
(photon), electron, and atomic-lattice (phonon) interactions.

Graphene, a truly two-dimensional material composed of carbon atoms, possessing
extraordinary electrical, thermal, and optical properties, has emerged as a promising
platform for strong light-matter interaction, which makes graphene a promising can-
didate as a major building block for the next-generation nanophotonic devices.

In this thesis, we aim to explore several novel designs of nanostructures based on
graphene to realize various functionalities. We briefly introduce the fundamental
concepts and theoretical models used in this thesis in Chapter 1. Following the macro-
scopic analytical method outlined in the first chapter, in Chapter 2 we show that
simple simulation methods allow us to accurately describe the optical response of
plasmonic nanoparticles, including retardation effects, without the requirement of
vast computational resources.

We then move to our proposed first type of device: optical modulators. We explore
graphene sheets coupled to different kinds of optical resonators to enhance the light
intensity at the graphene plane, and so also its absorption, which can be switched
on/off and modulated through varying the level of doping, as explored in Chapter 3.
Unity-order changes in the transmission and absorption of incident light are predicted
upon electrical doping of graphene.

Heat deposition via light absorption can severely degrade the performance and limit
the lifetime of nano-devices (e.g., aforementioned optical modulators), which makes
the manipulation of nanoscale heat sources/flows crucial. In Chapter 4, we exploit
the extraordinary optical and thermal properties of graphene to show that ultrafast
radiative heat transfer can take place between neighboring nanostructures facilitated
by graphene plasmons, where photothermally induced effects on graphene plasmons
are taken into account. Our findings reveal a new regime for the nanoscale thermal



management, in which non-contact heat transfer becomes a leading mechanism of
heat dissipation.

Apart from the damage caused by heat deposition, generated thermal energy can be
in fact used as a tool for photodetection (e.g., silicon bolometers for infrared pho-
todetection). In Chapter 5, we show that the excitation of a single plasmon in a
graphene nanojunction produces profound modifications in its electrical properties
through optical heating, which we then use to demonstrate an efficient mid-infrared
photodetector working at room temperature based on theoretical predictions that are
corroborated in an experimental collaboration with the group of Prof. Fengnian Xia
in Yale University.

Finally, in Chapter 6, we show through microscopic quantum-mechanical simulations,
introduced in the first chapter, that both the linear and nonlinear optical responses
of graphene nanostructures can be dramatically altered by the presence of a single
neighboring molecule that carries either an elementary charge or a small permanent
dipole. Based on these results, we claim that nanographenes can serve as an efficient
platform for detecting charge- or dipole-carrying molecules.

In summary, in this thesis we first develop a universal macroscopic analytical model
to calculate the optical response of plasmonic nanoparticles. By using this method
along with atomistic quantum-mechanical simulations, we explore and propose a
series of nanophotonic devices based on graphene, ranging from optical modulators
to sensors displaying different types of functionalities. We hope that these proposals
can provide deep insight and general guidance for the development of next-generation
ultra-compact nanophotonic devices.






Resumen

La comprension y el control de la interaccion luz-materia en la nanoescala son de gran
importancia para el disefio de dispositivos nanofotdnicos eficientes y compactos, con
aplicaciones en campos tan dispares como la produccion de energia, las comunica-
ciones, el control de calidad o la biomedicina. Asimismo, la nanofoténica es también
un campo fructifero para la investigacion académica, por ejemplo en el estudio funda-
mental de la interaccion entre la luz (fotones) y las particulas presentes en la materia,
como los electrones y los fonones.

Entre todos los materiales utilizados en nanofotdnica, el grafeno (un material ver-
daderamente bidimensional compuesto de dtomos de carbono), gracias a sus extraor-
dinarias propiedades eléctricas, térmicas y opticas, ha surgido como una plataforma
prometedora para una interaccion fuerte entre la luz y la materia, convirtiéndolo en
un candidato prometedor e importante en el disefio de la préxima generacién de
dispositivos nanofoténicos.

En esta tesis, pretendemos explorar varios disefios novedosos de nanoestructuras
basadas en grafeno, con diversas funcionalidades. Tras presentar brevemente los con-
ceptos fundamentales y los modelos tedricos utilizados en esta tesis en el Capitulo 1,
en el Capitulo 2 mostramos la posibilidad de describir la respuesta de nanoparticu-
las plasménicas (incluyendo efectos de retardo) mediante métodos de simulacién
semi-analiticos sencillos y sin la necesidad de emplear grandes recursos computa-
cionales.

Posteriormente, empleamos estos modelos en el desarrollo de un primer tipo de dis-
positivo: moduladores épticos. Afiadiendo laminas de grafeno acopladas a diferentes
tipos de resonadores 6pticos, podemos mejorar la intensidad de la luz en el plano del
grafeno, y por lo tanto también su nivel de absorcién, la cual puede ser modulada a
voluntad mediante el nivel de dopado electrostatico del grafeno, como se explora en
el Capitulo 3. Los modelos empleados predicen cambios en la transmisién del orden
de la unidad, produciendo asi la absorcidn total por parte del dispositivo de la luz
incidente.

En esta clase de dispositivos, asi como en todos los dispositivos nanofoténicos, la
produccién de calor mediante la absorcién de la luz puede degradar severamente



su rendimiento, asi como limitar su vida util, lo que hace que la manipulacién de la
fuente y el flujo de calor en la nanoescala sea una componente crucial del desarrollo.
En el Capitulo 4, empleamos las extraordinarias propiedades 6pticas y térmicas del
grafeno para mostrar que puede tener lugar una transferencia ultrarrdpida de calor
radiativo entre nanoestructuras vecinas, facilitada por los plasmones del grafeno, los
cuales a su vez experimentan efectos fototérmicos asociados con este proceso de
disipacion. Nuestros hallazgos revelan un nuevo régimen para la energia térmica a
nanoescala, en la que la transferencia de calor radiativa se convierte en el mecanismo
principal de disipacién de calor.

Ademas de los dafios causados por la deposicion de calor, la energia térmica generada
puede ser de hecho usada como herramienta para la fotodeteccion: tal es el caso, por
ejemplo, de los bolémetros de silicona, empleados para la fotodeteccion por infrarro-
jos. En el Capitulo 5, mostramos que la excitacién de un solo plasmén en una unién
de grafeno altera radicalmente sus propiedades eléctricas debido al calentamiento
optico. Este hecho puede ser empleado para demostrar el funcionamiento eficaz de
un fotodetector en la region media de los infrarrojos a temperatura ambiente, tanto a
través de predicciones tedricas como su corroboracién experimental (en colaboraciéon
con el grupo del Prof. Fengnian Xia de la Universidad de Yale).

Finalmente, en el Capitulo 6, mostramos a través de simulaciones mecanico-cudnticas
(introducidas en el Capitulo 1), que tanto la respuesta éptica lineal como la no lineal de
las nanoestructuras de grafeno pueden ser dramdticamente alteradas por la presencia
de una sola molécula vecina que transporte o bien una carga elemental o un dipolo
permanente. En base a estos resultados, afirmamos que las estructuras de grafeno
nanoscépicas podrian ser una plataforma eficiente para detectar moléculas portadoras
de carga o dipolos.

En resumen, en esta tesis primero desarrollamos un modelo analitico con caracter
universal para calcular la respuesta 6ptica de las nanoparticulas plasmonicas a es-
cala macroscépica. Usando este método, en conjunto con simulaciones mecdnico-
cuanticas de la estructura atémica, exploramos y proponemos una serie de disposi-
tivos nanofotdnicos basados en el grafeno (desde moduladores épticos a sensores)
con toda una serie de funcionalidades aumentadas. Esperamos que estas propues-
tas puedan proporcionar una profunda visién y orientacion para el desarrollo de la
préxima generacion de dispositivos ultracompactos basados en nanofoténica.
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1. INTRODUCTION

Optics is the science of light, which has been visible and accessible to everyone since
ancient times. Indeed, many developments in optics, such as the invention of the
laser as a coherent light source, the successful reduction of optical losses in optical
fibers, and the revolutionary introduction of semiconductor-based photonic devices,
have been central to the formulation of fundamental scientific principles as well as
various modern technologies, ranging from submarine communications cables deep
in the ocean to highly-integrated biosensors on a chip, therefore covering a manifestly
diverse range of applications and permitting us to explain a wide range of natural
phenomena on purely rational grounds.

Among all the advances in the field of optics, the emergence of the fascinating field
of nanophotonics provides a prolific platform to investigate light-matter interactions
at the nanoscale. When the characteristic size of the structure is comparable to the
wavelength of light, a plethora of extraordinary optical effects are triggered, such as en-
hanced light absorption/scattering from colloidal nanostructures,[*! sub-wavelength
light focusing,!?! and perfect lens.®]

In the wake of this background, plasmons, the collective oscillations of electrons
in metals, have acquired major importance in the field of nanophotonics. They pos-
sess the ability of concentrating light down to nanometer-sized regions, where the
optical field intensity can be amplified by several orders of magnitude.[*] These prop-
erties have been extensively used to develop sensing techniques that can detect the
presence of single molecules,’>°! enhance optoelectronic devices for light harvest-
ing,1'% 1] spectrometry,['2-14] and photocatalysis,'>2%] trigger efficient nonlinear pro-
cesses at the nanoscale,?'"2%) and assist tumor diagnosis/treatment,?*25 among
other feasts.

As an introduction to understand these applications, and further as a background
on which the main findings of this thesis are based, in this chapter we begin by re-
viewing some fundamentals of plasmonics in the macroscopic and classical regime,
and introduce a powerful theoretical framework to describe the optical response of
plasmonic nanostructures. We continue with a microscopic and quantum description
to characterize the linear/nonlinear plasmonic response of nanostructures with di-
mensions comparable to the electron mean free path. We conclude by introducing
the foundations of nanoscale heat transport induced by plasmons.

1.1 Fundamentals of plasmonics

1.1.1 C(lassical electromagnetism

From a classical and macroscopic point of view, in order to study light-matter interac-
tions, light can be described as an electromagnetic wave, generated by free charge p



1.1 Fundamentals of plasmonics

and current j density distributions. Such interactions can be described by Maxwell’s

macroscopic equations, which we write in Gaussian units (used throughout this thesis)
[26]
as

V -D(r,t) =4np(r,t), (1.1a)
V-B(r,t) =0, (1.1b)
V x E(r,t) = _1 iB(r, t), (1.10)
cat
V xH(r, t) = 1iD(r, t)+ 4—T[j(r, t), (1.1d)
cadt c

where E is the electric field, D is the electric displacement field, H is the magnetic
field, B is the magnetic induction, and c is the speed of light in vacuum. By combining
Egs. 1.1a and 1.1d, one can find that local conservation of charge can be obtained
from Maxwell’s equations as

S0+ V 0 =0, 1.2)

which is known as the continuity equation.

The effect of the bound charge and current densities in matter is incorporated into the
electric displacement and magnetic fields, which essentially specify the dependence of
polarization and magnetization inside a material on the electric and magnetic fields,
leading to the so-called constitutive relations that express D and B in terms of E and
H. Specifically, in a homogenous, isotropic, non-magnetic, and linear material, the
constitutive relations can be expressed as

D(r,t) = J f dr'dt’e(r—r', t —t')E(r', t), (1.3a)
B(r,t) = H(r, t), (1.3b)

where e(r—1/,t —t’) is the permittivity (dielectric or response function) of the mate-
rial.

Equation 1.3a describes nonlocality in both space and time, which means that the
electric displacement field induced at the space point r and time ¢t may depend on
the electric field at different space-time points r’ # r and t’ # t. From the causality
condition, the electric displacement field D(r, t) at time t cannot depend on the electric
field E(r/, t') at later times t’, and it follows that e(r—1', t —t') = 0 if t < t’. We now
perform a time-Fourier transform according to

E(r, ) = f dtE(r, t)el“t, (1.4
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which allows us to work in frequency space w, so that the time dependence t —t’ of
the response function € translates to a frequency w dependence according to

D(r,w) = J dre(r—1, w)E(r, w). (1.5)

In this scenario, we say that the medium is temporally dispersive (i.e., the permittivity
depends on frequency). Additionally, the spatial dispersion, also known as nonlocality,
plays a pivotal role only under extreme conditions, such as when the characteristic
length of the structure approaches the few-nanometer/sub-nanometer range. In the
local approximation we have e(r—1/, w) = 6(r —r')e(w) in a homogenous medium,
and thus, the constitutive relations given in Eq. 1.3 reduce in the frequency domain
to

D(r, w) = e(w)E(r, ), (1.6a)
B(r, w) = H(r, w). (1.6b)

Maxwell’s equations together with the continuity equation displayed in Egs. 1.1 and
1.2 can be also rewritten in the frequency domain after applying the time-Fourier
transform (see Eq. 1.4) as

V-D(r,w) =4np(r,w), (1.7a)
V-B(r,w) =0, (1.7b)
V x E(r, w) = ikB(r, w), (1.7¢)
V X H(r, ) = —ikD(r, ) + Zi(r, ), (1.7d)
V- jr, w) =iwp(r, ), (1.7e)

where k = w/c is the wave vector of light.

When the system is composed of more than one material, the electromagnetic fields
must satisfy a series of interface conditions at the boundaries separating every two
media. These boundary conditions can be derived from the integral forms of Maxwell’s
equations as!?°]

n;, x (E;—E;) =0, (1.8a)
ny, - (D, —D;) =4no,, (1.8b)
n;,-(B,—B;)=0, (1.80)

4,
n;, x (Hy—H;) = — s (1.8d)

where n;, is the normal vector pointing from medium 1 to the medium 2, and o,/j;
is the surface charge/current density at the interface.

10
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Applying the interface conditions displayed in Eq. 1.8, one can obtain the so-called
Fresnel coefficients describing the reflection and transmission of light at a planar
interface between two materials in terms of reflection r and transmission t coefficients
as

ki —kyo
=1L "2l te=1+r,, 1.9a
* kg +kyy ° ’ ( )
€k —€1ky €3 ky 1
r= 21 T1al t,=1\22L(1-r,), (1.9b)
Poegky ) +erky) P €1 k. p)

where the subscript s/p corresponds to s/p-polarized light (electric/magnetic fields
perpendicular to the plane of incidence), and k;; = /k2€; — kﬁ is the normal com-

ponent (perpendicular to the interface) of the wave vector in the medium i (of per-
mittivity €;) with the parallel component of the wave vector k| conserved across the
interface.

1.1.2 Dielectric functions of noble metals

Noble metals play a particularly important and active role in the field of plasmonics,
serving as the building blocks for many plasmonic nanosystems (see next subsection).
Their optical response in a broad frequency range can be understood as a gas of free
electrons moving in a fixed background of positively charged ions. In particular, gold,
silver, and copper exhibit a Drude-like response!l?”] that can be characterized through
the permittivity

0)2

€m(w) =€, — w(Tpir—l)’ (1.10)
where 7 is the relaxation time of the electron gas, €, accounts for the residual po-
larization of the background of positive ion cores and interband transitions, and
wp, = 4/4mne?/m, is the plasma frequency with e the elementary charge, n the elec-
tron density, and m, the electron mass. Values of the parameters €y, w,,, and 7 are
shown in Table 1.1 for common good plasmonic metals. This model provides a rea-
sonable description of the measured dielectric function'®®! using constant values of
€, for wavelengths above the interband transitions (solid and dotted curves in Fig.
1.1). Those transitions contribute with a polarization component to the real part of €,
(the €, term in Eq. 1.10) and also with an increase in the imaginary part (i.e., actual
excitations) at short wavelengths below ~ 370 nm, ~ 500 nm, and ~ 550 nm for Ag,
Au, and Cu, respectively. In those regions, Eq. 1.10 can be still applied by including
a frequency dependence in €;, as shown in Fig. 1.1 (dashed curves) and Table 1.1
(see caption). Typically, we are interested in the frequency range w < w,/ /€, where
noble metals are dominated by a Drude-like behavior, so their character remains
metallicity, defined as Re {€,,} < O here, while [Re{e,}|> |[Im{e,}|.

11



1. INTRODUCTION
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i i o r
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Figure 1.1: Dielectric functions of noble metals. We show the dielectric functions of
gold, silver, and copper taken from tabulated measured data (solid curves) compared
with the Drude model (Eq. 1.10, dotted curves) and a more accurate analytical fit
(dashed curves) using the parameters listed in Table 1.1. Adapted from Ref. [29].

o, Ht 1 7© o, ht7!  How,
& o) (V) fs) A B C e (@) (V)

Au 9.5 9.06 0.071 9.3 0.132 -1.755 20.43 243 0.0716 1.52
Ag 40 9.17 0.021 31 -9.71 -1.111 13.77 4.02 0.0760 18.5
Cu 8.0 8.88 0.103 64 -436 -1.655 1231 2.12 0.0528 5.43

Table 1.1: Parameters entering the Drude dielectric function e,(w) = €, — wg Jew(w+

it™!) with either a constant value of e, (Fig. 1.1, dotted curves) or with this
constant replaced by an w-dependent analytical fitting function ey(w) = A +
Blog[(w; —w—it71)/(w; + w +it71) ]+ C exp(—w/w,) (Fig. 1.1, dashed curves)
for gold, silver, and copper. Adapted from Ref. [29].
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1.1 Fundamentals of plasmonics

1.1.3 Surface plasmon polaritons

Surface plasmon polaritons (SPPs) are surface waves propagating at the interface
between a dielectric (of permittivity €4, which is typically real and positive) and a
metal (of permittivity e, with a small positive imaginary part and a negative real
part), confined in the direction perpendicular to the interface. They originate from
the surface charge oscillations coupled to the incident electromagnetic field at the
interface. Since they are the eigensolutions/eigenmodes of the metal-dielectric in-
terfaces, they are subject to Maxwell’s equations in the absence of external sources,
which in the wave-equation representation reduce to

V x V x E(r, w) — k%e(r, w)E(r, w) = 0. (1.11)

Additionally, these eigenmodes correspond to the poles of the Fresnel coefficients
given in Eq. 1.9. Therefore, for the s-polarization, we have kq, = —k,, |, which contra-
dicts the mode confinement requirement Im {k4; } > 0 and Im {k,,; } > O. In contrast,
for p-polarization, we find e k| = —€ekq, (this means that SPPs only exist at inter-
faces between two materials of opposite signs of Re {e}) and obtain the dispersion
relation of SPPs as

o | €en€q

k

=— . 1.12
PP e\ en téEq (1.12)

Figure 1.2 shows the dispersion relation of SPPs at an air-gold interface, where
we use the Drude model (Eq. 1.10 with parameters €, = 9.5, hiw, = 9.06¢eV, and
fit™! = 0.071eV as listed in Table 1.1) to describe the gold permittivity. In the low-
frequency range (mid-infrared or below), the dispersion follows closely the light line,
with slightly higher plasmon wave vector than that of light, and the surface wave is
widely extended along the direction perpendicular to the interface. When the energy
of the surface mode approaches fiw,/ /€y, + €4, the dispersion starts to depart and
bend from the light line, and eventually a maximum Re {kspp} is reached, which sets a
lower bound on the SPP wavelength A,, = 27/Re {kspp
Re {kspp} > k implies that well-confined SPPs cannot directly couple to free radiation.
The quantity A/, with A the light wavelength in the ambient environment, pro-
vides a measure of the mode confinement perpendicular to the interface. Another
important quantity known as the propagation length of SPPs is determined by the
imaginary part of the wave vector as Lg,, = 1/2Im {kspp}, which is defined as the
distance where the intensity of the SPP decays to 1/e ~ 1/2.718 of its initial value.
As shown in Fig. 1.2, 1/Im {kspp} reaches its minimum while Re {kspp} reaches its
maximum, which implies a tradeoff between the propagation length and the mode
confinement for SPPs.

}. The momentum mismatch

13
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Figure 1.2: Dispersion relation of surface plasmon polaritons at an air-gold in-
terface. We show the real and imaginary parts of the SPP wave vector kg, given by
Eg. 1.12, at an air-gold interface. We use Eq. 1.10 to characterize the gold permittivity
with parameters (constant €, = 1) listed in Table 1.1.

1.1.4 Localized surface plasmons

When the geometry of the metal-dielectric structure is transformed from a planar
interface to a closed or half-closed form object (e.g., metallic nanoparticles), SPPs
supported by those metallic nanoparticles are termed as localized surface plasmons
(LSPs). They are again the eigensolutions of Maxwell’s equations in the absence of
external sources satisfying appropriate boundary conditions defined by the geometry
of the nanoparticles.

LSPs can directly interact with free radiation due to the geometric constraint of
nanoparticles, providing an effective momentum to assist the coupling. In general,
when the particles are small compared with the light wavelength, the optical response
of those plasmonic nanoparticles can be characterized in terms of the extinction o**,
scattering 0°°®, and absorption o cross-sections, given as

_ 4nw

ext __ ‘/E Clm{a}’ (1133)
h
8 4
o5 — 73-[;: | |2’ (1.13b)
oS — gext _ o (1.130)
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Figure 1.3: Generic characteristics of localized surface plasmons supported by
nanoparticles. In an illuminated nanoparticle (a nanorod of a 10 nm width, contour
indicated by a dashed line, the extinction spectrum o ®* of which is shown in the
bottom panel), under the influence of the external optical electric field E**, at the
resonance wavelength (~ 731 nm, see bottom panel) conduction electrons move in an
oscillatory motion back and forth between the ends of the structure, where induced
charges pile up (blue (positive) and green (negative) curves of thickness proportional
to the induced surface-charge density) and the total field E is enhanced (underlying
density plot). The orientation of E (field lines, also parallel to the induced current
inside the metal) is nearly perpendicular to the surface in the regions of maximum
enhancement. Adapted from Ref. [29].
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where «a is the polarizability of the nanoparticle, and €y, is the permittivity of the host
medium.

As an example, we discuss the first dipolar LSP mode supported by a gold nanorod
(with a permittivity given by Eq. 1.10), the extinction cross-section of which is shown
in the bottom panel of Fig. 1.3. Under the influence of the oscillatory external electric
field E®** of the incident light, at the resonance wavelength (~ 731 nm, see bottom
panel) conduction electrons in an illuminated nanoparticle move in its interior and
give rise to charge pileup at the surface, as illustrated in the top panel of Fig. 1.3.
This charge accumulation produces in turn an enhanced electric field E (density plot
and field lines in the top panel of Fig. 1.3), which has maximum intensity in the
proximity of the particle. The induced part of E is nearly perpendicular to the surface,
and because of the continuity of the normal electric displacement, the magnitude of E
is drastically reduced when moving from outside to inside the particle. Interestingly,
the region where the inner field is maximum is roughly situated near the particle
center, away from the surface charge pileup. Intuitively, this is expected because the
current must be proportional to the field in the metal, which flows in such a way that
the surface charge oscillates at the ends of the particle. Like E, the induced current
j"d is divergence-less in the metal (V - j™ = 0), so that, in virtue of the continuity
equation, there is no induced charge in the bulk of the particle. However, the current
is maximum in the central region, which is also the place where there is more power
dissipation (o< |E|?) via inelastic coupling of the plasmon to electron-hole pairs in
the metal. The dynamics of this type of decay is a complex process,!**] which can be
described through a phenomenological relaxation time.

1.1.5 Graphene plasmonics

In the last decade, graphene, a two-dimensional (2D) honeycomb lattice consisting of
carbon atoms, has emerged as a very promising material due to its unique mechanical,
electric, magnetic, and thermal properties with a plethora of exciting applications
pursued by both the academia and industry.**-33] Those extraordinary properties
derive from its peculiar band structure where the conduction and valence bands
touch each other at the Dirac points.[**] Close to the Dirac points, the dispersion
relations for electrons and holes (with energy E and in-plane wave vector k) become
linear and symmetric, given by E = shvg |k|, where s = £ indicates the conduction
(+) and the valence (—) bands, respectively, and vy ~ ¢/300 is the Fermi velocity in
the material. The band structure of graphene near the Dirac point is illustrated in Fig.
1.4a.

Another unique property of graphene lies in its strong tunability, thanks again to its
peculiar band structure near the Dirac point. Through electrical gating>"! or chemical
doping,®*! its Fermi level Ej, (relative to the Dirac point) can be largely changed, trans-
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Figure 1.4: Dispersion relation of surface plasmon polaritons in graphene. (a)
Band structure of graphene near the Dirac point. (b) We show the surface conductivity
of graphene calculated under local-RPA by Eq. 1.14 (solid curves, with E; = 0.3¢eV]
T = 300K, and #t~! = 10meV), compared with the Drude model given by Eq. 1.17.
(c) We show the loss function Im {rp}, given by Eq. 1.18, for an extended free-standing
graphene sheet, the surface conductivity of which is shown as solid curves in panel

(b).

forming graphene from a “semiconductor” (with a zero bandgap, Ey ~ 0) to a metal
(Eg # 0). The Fermi level E; and the Fermi wave vector kg are related to the density
of injected charge carriers n by Ez = hvg4/mtn and kp = 4/7tn, respectively.

The optical response of graphene can be characterized by its surface conductivity,
given in the local limit (parallel wave vector k; — 0) of the random-phase approxi-

mation (local-RPA) as!3>-38]

e i [ (7 fo(E)— fr(~E)
O'(CU) —ﬂhz (0) + i,rfl) {‘U, JO dE 1 —4E2/ [hz(w N 17—1)2] } , (1.14)

where f; = 1/[1+ e=W/ksT] is the Fermi-Dirac distribution, 7 is the inelastic decay
time, and

pP = u+ 2k T log (1 + e7#/ksT) (1.15)

is a temperature-dependent effective Drude weight that accounts for intraband tran-
sitions.[3%) The integral term in Eq. 1.14 represents the contribution from interband
transitions. Besides the explicit dependence on temperature T, we note that there is
an additional dependence through the chemical potential u, given as!“]

u= \/ \/ (Ep)* + (21og? 4)2 (kgT)*—(21og®4) (ks T)*. (1.16)
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The first term inside the bracket of Eq. 1.14 corresponds to the intraband transitions,
whereas the second term corresponds to the interband ones. As displayed by solid
curves in Fig. 1.4b, interband transitions arise when ficw ~ 2E; (assuming u ~ Ep at
low temperatures), which leads to a sudden increase in the real part of the surface
conductivity Re {o’}. Under the conditions fiw < Ep and kzT < Ep, Eq. 1.14 can be
simplified to a Drude-like surface conductivity (shown as dashed curves in Fig. 1.4b)
for doped graphene

e? iEg

_—. 1.17
nh? w+it! ( )

o(w)=

Therefore, similar to noble metals, doped graphene can support SPPs but at compara-
bly lower frequencies (infrared or terahertz range). They have been experimentally
observed by either far-field optical spectroscopy*'**! or a near-field imaging tech-
nique,!**%] presenting strong dynamic tunability by electrically varying the doping
level. The dispersion relation of SPPs in graphene can be obtained again from the
pole of the Fresnel reflection coefficient for p-polarized light (similar to Eq. 1.9 for
metal-dielectric interfaces), which reads

4no
_ €oky) —€1ko) + ke ko)

< , (1.18)
€xky) +erky) + 77k ko)

where €, is the permittivity of the material above/below the graphene sheet, and
k; | is the normal component (perpendicular to the graphene sheet) of the wave vec-
tor in the corresponding material. One can obtain the dispersion relation of SPPs in
graphene by plotting the loss function, defined as Im {rp }, as shown in Fig. 1.4c, where
the light line is indistinguishable from the y-axis, indicating a deep sub-wavelength
confinement (k.,, > k, with k the wave vector in the ambient environment) of
graphene SPPs.

Spp

Another important feature of graphene SPPs is their long lifetime compared with other
plasmonic systems (e.g., noble metals or highly-doped semiconductors), leading to a
larger value of the quality factor Q, = Re {kspp} /Im {kspp} in encapsulated graphene

heterostructures, especially at cryogenic temperatures.[4%47]

1.2 Theoretical modeling of localized surface plasmons
in the electrostatic limit and beyond

As discussed in the previous section, the lateral size of plasmonic nanoparticles is

typically sub-wavelength. Therefore, their optical response is treated in the so-called

quasistatic limit. However, in general, it’s important to take the retardation effects
into account because accurate control over the optical response of metal nanoparticles

18
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beyond

and their associated plasmons is currently enabling many promising applications in
areas as diverse as biosensing and photocatalysis. In this context, here we present a
powerful theoretical framework that can be used to accurately describe the optical
response of plasmonic nanoparticles in an analytical manner, including retardation
effects.

1.2.1 Optical electric fields in the presence of a particle

We consider a homogeneous three-dimensional (3D) metal particle of local isotropic
permittivity e.,(w) placed in a uniform host medium of permittivity e,(w) and ex-
posed to an external electric field E*‘(r, w). For monochromatic light, the full time-
dependent electric field is given by 2Re{E(r, w)e !}, and similarly for other quan-
tities. A current j™(r, w) is induced in the particle, which permits writing the total
electric field as(*®]
i elkhlr—r’l
E(r,0) =E™(r,0)+ — (kX% +V®V)- J.df‘ v M, w),  (1.19)
wey |r -1 |
where ky, = /€, w/c is the light wave vector in the host medium, and .#; is the 3 x 3
identity matrix. Equation E.3 allows us to obtain a self-consistent relation for the
electric field by expressing the induced current j™(r, ) = f (r)o (w)E(r, w) in terms
of the effective metal conductivity

o(w) =—iwley(w)—ey(w)] /47

and a filling function f (r) thatis 1 for r inside the metal and takes a vanishing positive
value outside of it. Inserting these expressions into Eq. E.3, we obtain

1kh|r—r’|
E(r, w) = E™(r, w) + e )(kzﬂg +Vev)- fd%’f(r) = |1z(r ,w), (1.20)
where 4
T
P

Now, multiplying both sides of Eq. 1.20 by 4/f (r) and defining &(r, w) = +/f (r) E(r, w),
we find

E(r,w) = E(r, w) + ! Jdgr’/l(r, r)-&(r,w), (1.21)
Pm(w)
where
1kh|r—r\
M, Y) = FOf () (K22 +V®V) -y (1.22)
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is a linear symmetric operator.

We intend to solve the eigenmodes of Eq. 1.21 through a perturbative manner, and
the strength of the perturbation is defined by the power order of the size parameter
s = kyL /27 with L the characteristic length of the plasmonic nanoparticle. Detailed
theoretical derivation can be found in Appendix A.

1.2.2 Electrostatic limits in two dimensions: plasmon wave func-
tions

As we have seen in the previous section, typically SPPs in graphene are extremely
confined (deep sub-wavelength). The optical response of 2D graphene nanostruc-
tures is well-described in the electrostatic limit because the characteristic size of the
nanostructure is small compared with the incident light wavelength. Following the
theoretical framework presented in the previous subsection, we can formulate a self-
consistent relation for the electric field similar to Eq. 1.21 in two dimensions and find
the eigenmodes for the electric fields. Moreover, due to the two-dimensionality, it is
more convenient for us to define another set of eigensolutions, named plasmon wave
functions (PWFs), which correspond to the induced charge distributions associated
with the eigenmodes for the electric fields. More details about the PWF formalism
can be found in Appendix A.

1.3 Microscopic treatment of plasmonic materials

When the characteristic length of the nanostructure is comparable to (or smaller
than) the electron mean free path, the classical and macroscopic description of the
optical response of plasmonic nanostructures, as presented in Section 1.1, based on
solving Maxwell’s equations using homogeneous permittivities, is not valid. In this
section, we review a microscopic quantum description of the plasmonic response of
nanostructures (few nanometers in size; neglect retardation effects) based on the
Hartree-Fock approximation and the random-phase approximation (RPA).[*951 In
addition, we provide a formalism to describe the nonlinear plasmonic response using
a perturbative approach toward the end of this section.

1.3.1 Hartree-Fock equations

The many-body Hamiltonian for a system composed of N interacting electrons in the
presence of nuclei fixed in a spatial configuration (under the rigid lattice approxima-
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tion) can be written ast49->1]
2
He= 2 h(m)+3 1.23
Z (r) Zm_rl/ 123
[y
where
2
h(r) = —— + Vyya (1) (1.24)
2m,

with r;, p;, and m, denote the electron position, momentum, and mass, respectively.
V,ua Tepresents the potential produced by the nuclei. We intend to describe the ground-
state of the many-electron system, given by Eq. 1.23, with a single determinant state
(i.e., neglecting configuration interactions) constructed by the one-electron wavefunc-
tions v ; (x) with x indicating both the spatial r and spin s coordinates (i.e., x = (r,s)).
If we enforce the minimization of the total electron energy, we obtain a set of nonlinear
equations, known as the Hartree-Fock equations(#°->1]

where Vi = Vi + V, is the Hartree-Fock interaction Hamiltonian, with Hartree and
exchange operators defined as

N
Vg (x) = ezf dx'v(r, r')Z |1/Jj, (x’)|2 Y;(x) (1.26)
F

and

N
Veth () = —¢> f dx'v(r,¥) D by (O, () (x), (1.27)
j/

respectively. In the above expressions, v(r,1’) = 1/ |r—1’| gives the spatial depen-
dence of the Coulomb interaction between electrons, and the index j indicates the
one-electron electronic states of the system, with energies fie;.

Now, we consider a periodic arrangement of atoms (forming a crystal lattice), which
are represented by orbitals |l,s) located at the atomic sites r;. The wave functions v);
are expressed in terms of these orbitals through the expansion

¥ () = 1) = D aslLs), (1.28)
s

where the coefficients a;;; give the amplitude of orbital |1, s) projected in the state |j).
The expansion coefﬁc1ents satisfy the orthogonality condition

* —
E :ajlsaj'ls =0jjs

s
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and the closure relation

E a]ls jl's! = 511/’55/,

J

with & the Kronecker delta. Using the above expressions, and replacing the continuous
variable r by r;, after taking the spin degeneracy into account, Egs. 1.26 and 1.27 can
be expressed into a set of matrix elements as

Vil = 2¢°6y, ZVW ij |aﬂ~ (1.29)

1

and

N
)
Vel =—€“vip ijaﬂa;‘l,, (1.30)
J
respectively, where [A];; indicates the matrix element (i, j) of A, vy = v (r;, 1), and
f; is the occupation level of the state j according to the Fermi-Dirac statistics.

The one-electron density matrix can be defined as!>?
P (X, X, f) = Zl.b] Xy (X/)ij/,
i’

keeping in mind that the matrix elements p;; are time-dependent quantities. Using
Eg. 1.28, we can also express the density matrix elements in terms of the site orbitals
as

P = l|p|l ZPJJ/CI ’l”

and find the complementary relation p;; = =D Pual la 1. The equation of motion
for the density matrix is given by!>?]

ap i
ih— =[H, © 1.31
~ =[H.pl— - —(p—p), (1.31)
where H is the system Hamiltonian, 7 is the phenomenological relaxation time, and
p© is the equilibrium density matrix (i.e., p at t — —o0). In graphene, the optical
response is dominated by electrons in the 7 band, which can be characterized by

a tight-binding Hamiltonian with a hopping energy of 2.8 eV between neighboring
orbitals.[3335 53]
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1.3 Microscopic treatment of plasmonic materials

1.3.2 Linear response theory

In the linear response regime, it is assumed that the external perturbing potential
¢** is small enough so that higher-order terms in the perturbation expansion of the
density matrix can be neglected. We use this assumption to describe the first-order
(linear) response. Expressed in state representation, the density matrix equation of
motion (see Eq. 1.31) is

. _ Z ©)
lh_at —_ (Hjj//pj//j/ _pjj//Hj//j/ - ZT (pj]/_p]]/) (1.32)
i

if
=hejpj —Meppjy — o7 (pij’ )(j))) —e Z (¢JJ"pJ"J —Pjj Py )

where we have used H = Hy, —e¢, with H, the unperturbed Hamiltonian (H, |j} =
he;|j)) and ¢ = ¢+ = the total potential acting on the system, which is the sum
of the potential from the induced charge distribution ¢™™@ and the external potential
¢ due to the applied electric field.

To first order, Eq. 1.32 then becomes

ap(l) o

_ (1) n W 1) (0 0) (1)
i—2 =ni(e; =) plj) = 5Pl - Z (6509 —pD9%)).  33)
Note that the total potential is also taken to first order due to its dependence on the
density matrix through ¢, The equilibrium density matrix is given by p](?,) =fibjj,
and thus the equation of motion becomes

i
— 7 =h(e—e;) Pl — 5Pl —e(fr = £) 8} (1.34)

We assume the time dependence of the external potential to be harmonic, i.e., ¢ *** o<
e t, This allows us to write

e ¢

(1) i’

pii =—=(fi—f) , ) (1.35)
7 f w+i/2t1—(g;—¢;)

To obtain the first-order induced charge density p™ = 2epl 1 after converting the

density matrix to the site representation by using ¢;; = =>,a aj aj ¢y, we find

d
le eXt"‘ZXlz' 3
_ ext (€))
—Z}(”/¢l, _ZCZX”/VZ’INPI//Z/U
G G
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where
262 a]la*,la*l,a]/l/
0 J1j
th =7 2 =) — (1.36)
f 7 (,0+1/2T—(8j—8j/)
is the non-interacting susceptibility and qﬁli“d =—2e>, vy pl(,ll?. In matrix form, the
above expression for the induced charge density becomes
pind — X0¢ — X0¢ext + XOmed.
Since vp'™ = ¢ — ¢, we find
d) — (1 _ V)(O)_l ¢ext.
The induced charge density is then obtained as
pind=x0(1—\/x0)_l ¢eXt=X¢eXt’ (1.37)

where we obtain the susceptibility y = y° (1 —v xo)_l under the so-called random-
phase approximation (RPA). We can then calculate the polarizability as

1
a=— ) xip;, (1.38)
93

where E, is the amplitude of the incident field, and x; are the projections of the atomic
sites along the direction of the incident field.

1.3.3 Nonlinear response

Since the plasmonic resonances produce strong electromagnetic field enhancement,
which assists the originally weak nonlinear processes to be also significantly enhanced,
it is natural to explore the nonlinear optical response (e.g., high harmonic generation)
of plasmonic nanosystems.

Following a previously developed formalism,[?*! which we summarize here for com-
pleteness, the density matrix can be expanded in harmonics of the incident continuous
wave (CW) radiation as
p= Z pns e—iswr
2
n,s

where n is the order of perturbation (n = 1,2,3,...) and [s| < n is the harmonic

order. Using the above expression, the density matrix equation of motion Eq. 1.32
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becomes
hZ(sw+i/2T)p]'.‘;,e_is‘° —h Zp (1.39)
n,s
n's’ ns 4n's’\ —iswt —is'wt
_eZZZ( JJ”pJ”J —Pjijr i”j’)e e,
j” ns n's
where =ya aja; ¢ and
5= 5, (8,1 +801) —2e > vipplk, (1.40)

14

i.e., the external field only contains components at the fundamental frequency. After
identifying the terms with the same e *“* dependence on both sides of Eq. 1.39, we
can write the equation for p , as a sum of the self-consistent part and the term that
depends on lower expansion orders, n" j j,,

a* 137y ¢l ’}s)
(0) ns
Pl === ey 1% (1.41)
I 23w+1/2r (e;—¢) & 2
where
e Z Z e G i
J ! n—n’s—s’
Ny =—= Pl . (1.42)
Y R n=ls'=—n' 11’ W + I/ZT - (Sf - Ej')

To solve the above expression, we use the same approach implemented for the lin-

ear response (see above). We begin by using the identity pl(lo,) = 2ujj 4;14; ,Z,p(o) =

. . .
j @1@;, f; to move to the site representation

pr;———ZZ

]] 1

Jla ,l,a Z,,a i

‘ //+ a// /; (1'43)
sw+1/2r—( ! Z Gty ”

the diagonal elements of which are given by
1 *
Pl =55 2L G@IB + D janaymy, (1.44)
l/ ]Jl

where xﬁ, is the non-interacting RPA susceptibility given in Eq. 1.36. With the total
potential given in Eq. 1.40, together with the definition of the induced charge density
Py = —2ep;;’, we find ¢™ expressed in matrix form as

oS [1—\1)(0(50))]71 B, (1.45)
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where

lns = (PIE:Xt(Sn’l (55’_1 + 55’1) —2e Z Vi Z aﬂ/a;‘,l,n;‘;,. (146)

14 ji’

With the external potential given above, we compute the diagonal elements of the
density matrix (in the site representation) using Eq. 1.44, and we can also compute
the full density matrix using Eq. 1.41. Finally, the polarizability of order s can be
computed from

2e
al = —% 2LTP (1.47)
0 1
where E, is the amplitude of the incident field. Especially, for the linear response
(s = 1), a® can be also obtained from Eq. 1.38.

1.4 Fundamentals of nanoscale heat transport

Active control and manipulation of energy dissipation and transport in nanoscale
systems are crucial for application to areas ranging from the design of nanoelectrome-
chanical systems!®* to photothermal cancer therapy,!** nanocatalysis,[°®! informa-
tion storage,'>”) and drug delivery.l®] Besides, understanding the interaction between
electrons and phonons in different systems is of great importance from a fundamental
research viewpoint. In this section, we present several basic concepts of nanoscale
heat transport that becomes useful in subsequent chapters.

1.4.1 Nanoscale thermal sources

The excitation of plasmons enhances light absorption in plasmonic nanoparticles, and
subsequently the absorbed light energy is converted into heat energy. In this way, this
plasmon-assisted photothermal process is emerging as a powerful tool to engineer
nanoscale thermally activated applications. The generated heat power density can be
expressed as!®]

p(r) = flm{e(r, )} [E@®), (1.48)
T

where e(r, w) is the position- and light-frequency-dependent permittivity of the com-
posite material, while E(r) is the amplitude of the optical electric field (i.e., E(r)e ¢ +
E*(r)el®t gives the full time-dependence of the electric field); Eq. 1.48 reveals that
only regions of the material with nonvanishing Im{e} can directly couple optical en-
ergy into heat, typically dominated by electronic excitations. Note that the generated
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1.4 Fundamentals of nanoscale heat transport

heat power P2 can be calculated as

PS(w) = J drp™(r) = 0 s, (1.49)

where o, is the absorption cross-section of the plasmonic nanoparticle and I is the
incident light intensity.

Another important aspect to mention is that by manipulating either Im {e(r, w)}
through choosing the proper composite material or E(r) through designing the con-
figuration of the nanostructure, a high degree of nanoscale control over the thermal
source can be accomplished.

1.4.2 Two-temperature model

To a good approximation, immediately after the external optical pump is applied,
the optically excited electrons are in a non-thermal (non-equilibrium) state at the
very initial stage. After a characteristic time of 10s-100s femtoseconds, they reach
a thermalized state at an elevated temperature T, due largely to electron-electron
interactions.[®%3] Here, we typically have an elevated electron temperature T, much
higher than the lattice one T}, and a two-temperature model describing the space-time
dynamics between T, and T can be formulated as!®*]

dT,

e dte =p™ 4+ V. (k. VT.)—H (T, T), (1.50)
dT,

CIE =V-(xVT)+H(T, T)) —B(T), Tp), (1.51)

where T, is the ambient temperature, C, and C, are the electron and lattice heat capac-
ities, k. and k; are the electron and lattice thermal conductivities, H (T,, T;) describes
electron-phonon coupling, and B (T, T,) accounts for the thermal out-coupling to
the environment. Note that the dependence of H (T,, T}) and B (T, Ty) on the tem-
peratures is nontrivial, defined by the details of the system under study. Under CW
illumination, the temperatures reach a steady-state regime, in which the left-hand
sides of Egs. 1.50 and 1.51 vanish, leading to

—V - (k,VT.)=p*™ —H(T,,T), (1.52)
=V (VT) =H (T, T}) —B(T), Ty) . (1.53)

Specifically, in graphene, due to its two-dimensional nature, its electronic heat capacity
is rather small, which leads to a very short thermal response time. The heat capacity
is needed to relate the electronic thermal energy Q to the electronic temperature T,.
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Figure 1.5: Graphene electronic heat. We show the dependence of the thermal coef-
ficient 8 on Eg/kgT,, as calculated from Eq. 1.55. This parameter permits obtaining
the electronic heat per unit of graphene area as f3 (ks T.)®/(fivg)? (Eq. 1.54). The inset
shows f3 in a linear scale. Adapted from Ref. [40].

The surface density of electronic thermal energy in the material can be expressed
[40]
as

(kT.)*
(fve)2

Q_
Z_ﬁ

(1.54)

where the thermal coefficient

2[ (%, 1 1 1( E \°
p= ;[L X dx(ex+u/kBTe+1 + eX—H/kBTe+1)_§(kBTe) (1.55)

explicitly depends on u/kgT., which is in turn a function of Ez/kgT, (see Eq. 1.16),
so we find that 8 is only a function of Ez/kgT.. Numerical evaluation of Eq. 1.55
yields the results shown in Fig. 1.5. For Ep < kgT,, we have f§ ~ 2.2958.

1.4.3 Near-field radiative heat transfer

In the nanoscale, besides conventional heat conduction, non-contact radiative heat
transfer can play an important role. When the separation distance between two objects
is smaller than a characteristic length ~ 2xtfic/kgT (i.e., the thermal wavelength at
temperature T), radiative heat transfer is dominated by additional channels mediated
by evanescent waves.[%-%7) These can produce rates exceeding the black-body limit
by several orders of magnitude, enhanced by the near-field coupling of resonances
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1.4 Fundamentals of nanoscale heat transport

supported by the nanostructures, thus emerging as a potentially relevant transfer
mechanism in solid-state devices. In the following, we are going to present the theory
of radiative heat transfer.

Here, we consider two structures labeled by the index £ = 1, 2, each of them assumed
to be in internal thermal equilibrium at a temperature T,. Radiative heat transfer
can take place if T; # T,, mediated by electromagnetic interaction at characteristic
frequencies ~ kyT,/H.[%) We further assume the corresponding light wavelengths
~ 2nfic/kgT, to be much smaller than the size of the structures. The response of
the latter can be then described in the quasistatic limit through their susceptibilities
x0(1, 1, w), which are defined as the induced charge density distribution at r produced
by a unit point charge oscillating with frequency w at r’. The charge density induced
in the £ structure by a monochromatic potential ¢ (r) exp(—iwt) + c.c. is then given
by f a3y, (r, v, )¢ (r') exp(—iwt) + c.c.

We express the net power received by structure 2 as the work P,_; done on 2 by
charges fluctuating in 1 minus the work P;_, done on 1 by charges fluctuating in
2. It is enough to calculate the latter in detail because the former is simply obtained
by interchanging the subindices 1 and 2 in the resulting expression. We start from
P, = —<f d3rji(r,t) - Vy(r, t)), which is the work exerted by the electric field
—V ¢, (r, t) produced by fluctuations in 2, acting on the current j; (r, t) of 1. Here, {...)
denotes the average over thermal fluctuations. After some lengthy but straightforward
algebra, we find

Ply= JJ d(;)z)(;) _’(”+‘°/”< f d’rd®r’ p, (r, w)v(r,t)p,(r, w’)>

. dodow’ e ,
:1J ) we @t (5 () v+ py(w)). (1.56)

The last line of Eq. 1.56 implicitly defines a matrix notation in which r and r’ are used
as matrix indices, while the dot indicates matrix multiplication.

The self-consistent charges p, produced by the fluctuating charge p g are now obtained
from the relations

P1=X1"V Py  Pa=X2'V'p1+pL,

where we work in the frequency domain and use the matrix notation introduced
above. Inserting the solution of these equations into Eq. 1.56, we find

dwda) il

f &r f & ([12(e) v - A)- pX)] |, e, ) [A) - )] |,):
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where
A=(F—yy vy, -v) (1.58)

whereas .# is the unit matrix (i.e., 5(r—r’)). Now, the average over thermal fluctuations
can be carried out using the fluctuation-dissipation theorem[®-72]

(p1(r, ) (¥, ")) = —4mhS 1 §(w + ') [ny(w) +1/2] Im{y,(r,¥, )},
(1.59)

where n,(w) = [exp(hiw/kgT;) — 1] is the Bose-Einstein distribution at temperature
T, (i.e., for structure ¢).

A detailed self-contained derivation of Eq. 1.59 is offered in Appendix B. We find Eq.
1.57 to reduce to
2n (7 ;
Pl ,=— wdw(ny+1/2) Tr[AT-v-Im{y,} v-A-Im{y,}],  (1.60)
U
0
where Tr[...] stands for the trace, T refers to the conjugate transpose. Finally, the net
power received by 2 is obtained from

Py=Pye1 =Py
20 [ :
=— wdw(nl—nz)Tr[A ~v~Im{xl}-v'A-Im{X2}:|, (1.61)
0

where the matrix A (see Eq. 1.58) accounts for multiple scattering between the
two structures. From the invariance of the expression in the square brackets of Eq.
1.61 under exchange of the subindices 1 and 2, we confirm the expected result P; =

_Pz.

Finally, for structures separated by a large distance d compared to their sizes, in
virtue of induced-charge neutrality (i.e., f d3r y,(r,r’, ) = 0 for each £), the leading
contribution to v is the dipole-dipole interaction. Specifically, for parallel disks placed
in vacuum, neglecting multiple scattering (i.e., taking A = .#), we find from Eq.
1.61

P, ~ A wdw (n; —ny) Im{a; Hm {a,}, (1.62)
nd® |,
where
a(w)= —f x d3rf x' a3 y,(r, 7, w) (1.63)

is the polarizability of disk £ along a direction x parallel to it.
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2.1 Introduction

2.1 Introduction

Metal nanoparticles exhibit extraordinary optical properties inherited from the ability
of their conduction electrons to sustain collective oscillations known as plasmons,
which are key ingredients in those applications. Most notably, (i) plasmons inter-
act strongly with light; (ii) they are robust against imperfections, inhomogeneities,
environmental noise; (iii) their frequency and spatial extension are sensitive to the
dielectric environment; (iv) the optical electric field can be largely amplified near a
nanoparticle when irradiated by light tuned to one of its plasmon resonances; and (v)
the optical enhancement can be confined down to a nanometer-sized region, much
smaller than the incident light wavelength.

However, despite being the workhorse of plasmonics research, noble metals unfor-
tunately present relatively large inelastic losses, thus limiting plasmon lifetimes in
metallic nanostructures'?®) and leading to a severe reduction in the optical confine-
ment. Recently, highly-doped graphene has emerged as an outstanding plasmonic
materiall®%36-41-45.73-79] that simultaneously provides strong field confinement with
relatively lower loss.[“¢] More importantly, plasmons in graphene are sustained by
a small number of charge carriers compared to those of traditional noble metals, a
property that makes them amenable to display new phenomena, including an unprece-
dented electro-optical response. Indeed, active tunability of the plasmon resonance
frequency has been achieved via electrical gating.[41-4%7475.77.78]

These extraordinary properties are of paramount importance for a wide range of
applications, such as optical sensing and modulation,>®8%81] the enhancement of
nonlinear optical processes,[21:2%82-84] photocatalysis,!'>2% and photothermal ther-
apies.?*2%] In these applications, the precise spectral positioning of plasmon reso-
nances is needed to achieve optimal performance. It is commonly achieved by fabri-
cating noble metal nanostructures with specific sizes and morphologies.

In this context, experiments based upon colloid synthesis and nanofabricated struc-
tures are assisted by less efficient numerical electromagnetic modeling, which supplies
predictive simulations, but not the kind of physical intuition needed for exploration
of new ideas, such as one finds when simple mathematical expressions can describe
a problem. Therefore, an efficient, ideally analytical, theoretical model is highly de-
manded to describe the plasmonic response of nanoparticles.

In this chapter, we first present and extend a simple analytical simulation method
that allows us to accurately describe the optical response of three-dimensional metal
nanoparticles, including retardation effects, without the requirement of large com-
putational resources. More precisely, we show that plasmonic extinction spectra are
described through a small set of real numbers for each nanoparticle shape, which we
tabulate for a wide selection of common morphologies. Remarkably, these numbers
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2. ADVANCED ANALYTICAL MODELING OF LOCALIZED SURFACE PLASMONS

are independent of size, composition, and environment. We further present a com-
pilation of nanoplasmonic experimental data that are excellently described by the
simple mathematical expressions here introduced. Toward the end of this chapter,
we further adapt our theoretical model to the two-dimensional regime to study the
optical response of graphene structures with arbitrary morphologies based on the
concept of plasmon wave functions (PWFs).

2.2 Analytical model

Since a comprehensive description of the theoretical framework to model localized
surface plasmons (LSPs) is provided in Section 1.2 and Appendix A, in the current sec-
tion a brief discussion is given to summarize the main results presented there.

2.2.1 Electrostatic limit

In what follows, we consider illumination with monochromatic light of frequency w,
so that the time dependence of the electric field is given by E(r, t) = E(r, w)e '“" +
E*(r, w)e'®!. Additionally, we focus on homogeneous 3D metallic particles with a
characteristic length of L, with the metal described through its frequency-dependent
permittivity €, (w). This is the so-called local approximation (i.e., the assumption that
the dielectric displacement e,,(w)E(r, w) depends exclusively on the electric field at
the same position r), which only breaks down for very small particles(®®! (typically
< 10nm for noble metals) and also in the presence of either sharp tips or narrow
gaps between metals (< 1nm).[8%87]

For small particles compared with the light wavelength, retardation effects are neg-
ligible and the optical response can be simulated by solving Poisson’s equation V -
e(r, w)E(r, w) = 0, where €(r, w) = €,,(w)f (r) + (1 — f(r))e(w), €, is the permittiv-
ity of the host dielectric, and f (r) is a filling function that takes a value of 1 inside
the particle and 0 elsewhere. Modal expansions have been used for a long time to
obtain semi-analytical formulations of this electrostatic limit.[?%-3888-92] They essen-
tially rely on the existence of a complete, orthogonal set of real eigenmodes E;(r) and
eigenvalues €; labeled by j and satisfying

V-[ef(®+1—f@]E;(x)=0.

In other words, E; is the self-standing electrostatic field for a particle of the same
geometry placed in vacuum and filled with a medium of permittivity €;. Remarkably,
these modes are independent of material composition.

34



2.2 Analytical model

The particle polarizability along a symmetry direction also admits an expansion in
terms of contributions from different eigenmodes as

-1
_ €n : 1 _ 1
a(w)_4nzvj(em/eh—l ej—l) ’ 21

where
2

Vv;i=(1/1% (2.2)

J.dBI‘f(r)E,-(r)

are mode volumes. For example, for each of the symmery axes | = x,y,z of an
ellipsoid, there is only one electrostatic dipolar mode, and in turn, also only one term
(j=1) in Eq. 2.1, with V; =V and €; = 1—1/L;, where L, = (a,a,a,/2) fooo ds(s +
a?) (s +a?)(s+ a)zl)(s +a?)]7"/? is the corresponding depolarization factor*®! and
a,,y . are the half-axis lengths.

2.2.2 Retardation corrections

We now extend the electrostatic limit to include effects derived from the finite size of
the particle relative to the free-space light wavelength A. In particular, we use the size
factor s = ,/€;,L/A as a convenient perturbation parameter that already incorporates
the reduction of the wavelength in the host medium relative to free space due to
the refractive index ,/€;,. The polarizability of Eq. 2.1 can be rigorously corrected
as

-1
G LI Y
MM—4nZN@®%Qd%_1 %{IA&ﬂ : (2.3)

where A;(s) and B;(s) are s-dependent functions. Here, we are interested in practice
in situations for which s is not too large (see results below), so it is natural to ex-
pand these functions in power series of s. We note that the plasmon resonances are
shifted and broadened due to the presence of nonzero real and imaginary parts in A;,
respectively, for which we derive the expansion

4%V,
J
A] =aj252+ 3L3 S3+aj4s4+..., (24)
where
_ (2mi)" 3 3./ /
= Ty | C 0 | @) 25)

x{(n=3)r—r|"*[(r—r)-E;®)][(r—1)-E;1)]
+(1—n)r—r/|"E;(x) - E;(r)}.
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Figure 2.1: Analytical model parameters for selected particle morphologies. We
show the resonant permittivity €;, the mode volume V; normalized to the particle
volume V, and the two retardation parameters a;, and a,, for the lowest-order dipole
plasmon of rods, triangles, and cubic cages as a function of aspect ratio R. We define R
and the polarization direction (double arrows) in the upper insets. Symbols for €, are
obtained by fitting the numerically calculated absorption spectra in the electrostatic
limit. The rest of the symbols for other parameters are computed by integrating the
electrostatic mode fields as shown in Egs. 2.2 and 2.5, except the triangular symbols
for V;, which are extracted from the peaks in the noted spectra for comparison. Solid
curves represent analytical interpolations (see Table 2.1).
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shape €, e V,/V a1 00
—1.73R"

rod —5.3296 0.896 6.92/(1—¢;)  6.69/(e;—1)
— 1.12 — —T1.24

riangle 0—'?53 Ofgsais 557/(1—¢;)  6.83/(e;—1)
_0.0678R202  O:008RT g 0405259

cage 3.4 +0.103R o1 _13.9

] +0.316 :

Table 2.1: Fitting functions for e;, V; /V, a;,, and a,, corresponding to selected particle
morphologies as a function of aspect ratio R (as defined in Fig. 2.1).

Additionally, the correction in the resonance strengths (the numerator of Eq. 2.3) is
small for the values of s under consideration, so we can safely approximate B; ~ 1.
As we show in the results presented below, we can describe the far-field scattering
(through a in Eq. 2.3) for metal nanoparticles including retardation using the set of
four real numbers €}, V;, a;, and aj,.

The resonant permittivities €; are found by fitting the position and strength of the
peak associated with mode j in the absorption spectrum of the particle, calculated in
the electrostatic limit. The near field E; is then taken as the induced field computed
when the light frequency is tuned to the absorption maximum. Upon normalization
of the field according, we further compute the mode volume V; from Eq. 2.2, and
aj, and a;, from Eq. 2.5. We plot these four parameters in Fig. 2.1 for three com-
mon morphologies (rods with hemispherical caps at the tips, equilateral triangles,
and cubic cages), as a function of aspect ratio R (see upper insets). We also provide
analytical R-dependent fits in Table 2.1. Additional sets of parameters are provided
in Appendix C (Fig. C.1 and Table C.1) for other geometries. The latter is used in the
analytical calculations of Fig. 2.8. For axially symmetric structures, the electrostatic
modes are obtained using the boundary element method (BEM), 94 whereas for other
morphologies we use a finite-difference method (COMSOL). As expected, we observe
a trend toward larger negative values of €; with increasing R (i.e., with decreasing
metal volume for fixed length), which implies a redshift in plasmon frequency as the
metal shapes are thinned. Additionally, the lowest-order plasmon mode generally con-
tributes with a large fraction to the total volume, indicating that this is the dominant
mode in the spectrum.

2.2.3 Plasmon frequency

Plasmons are associated with resonant values of the dielectric function of the metal
close to one of the eigenvalues €;, which are negative real numbers. Losses in actual
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metals are proportional to Im{e,} > 0, implying finite plasmon lifetimes. It is instruc-
tive to approximate €,(w) ~ €,,(w;) + €/ (w;)(w — w;) around the real frequency
wj, defined by Re{e,,(w;)} = ey€;, where the prime denotes differentiation with re-
spect to the argument. In the absence of retardation, the complex plasmon frequency
&; must satisfy €,,(&;) = €,€;, which, using the above approximation and assuming
Im{e,} < |epl,leads to &; ~ w;—i/27;, where 7; = Re{e’m(wj)}/lm{em(wj)}. From
the physical condition“®] Re{e,, + we, } 20, we find 7; > 0. Additionally, the time

dependence of the intensity oc |e719if|> = ¢t/%i clearly reveals 7; as the plasmon
lifetime.

Among common materials, the condition of relatively small Im{e,,} is best satisfied
by noble metals in the visible and near-infrared spectral regimes. In particular, gold,
silver, and copper, exhibit a Drude-like response that can be characterized by the
expression given in Eq. 1.10 as

wz

en(w)=¢€,— oa(TpiT—l) (2.6)

with parameters €y, w,,, and T as shown in Table 1.1. This model provides a reasonable
description of the measured dielectric function®®] using constant values of €, for
wavelengths above the interband transitions. At longer wavelengths, the lifetime of
nonretarded plasmons is directly inherited from the Drude model (t B 7).

Retardation enters through A;(s) Eq. 2.4, which for small values of the size parameter
s (i.e., |A;] < 1), using Eq. 2.6 to calculate the corresponding pole of Eq. 2.3, leads
to the complex plasmon frequency

w A en(e; —1)? i
o N —P 1__)M _ 2.7)
€p ehEJ 2 €p — €ELE;

j
This expression predicts both a frequency redshift (note that the a;, term in Eq. 2.4 is

positive, see Fig. 2.1) roughly proportional to —e},(L/A)?, accompanied by an increase
in plasmon linewidth from 1/7 to

4n2wp V; efl/z(ej —1)?

2.8
3 A3 (ep—ene; )2’ (2.8)

1
T

where the second term accounts for the contribution of radiative damping.
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Figure 2.2: Analytical description of light extinction by gold and silver nanorods.
We illustrate the power of the present analytical method by comparing extinction
spectra calculated either with the analytical model (solid curves) or via numerical
solution of Maxwell’s equations[94] (broken curves) for gold (a,b) and silver (c,d)
nanorods immersed in water. We consider several aspect ratios R for fixed length
L =50nm in (a,c) and various rod lengths L for fixed aspect ratio R =4 in (b,d).
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2.3 Optical response for different morphologies

2.3.1 Extinction spectra

Gold and silver nanorods are among the most common anisotropic nanoparticles, for
which colloid synthesis protocols are well established.[®>] Rod-like particles are also
extensively fabricated by nanolithography for plasmonic studies, offering a broader
versatility in the choice of material and particle location at the expense of a lower
degree of control over size and defects. We thus put our analytical method to the
test by comparing its ability to predict plasmons for a vast range of nanorod sizes
and aspect ratios. We concentrate on modes with polarization along the length of the
rods, as these are more sensitive to retardation and shape effects. Figure 2.2 presents
a study for gold and silver nanorods (e, taken from measured datal?8]) embedded
in water (e, = 1.77). We plot extinction cross-section spectra calculated from Eq.
1.13

2
Ve A
using the polarizability of Eq. 2.3 with the parameters of Table 2.1 (solid curves).
These results are compared with full numerical solutions of Maxwell’s equations ob-
tained from the BEM!®#] (dashed curves). We concentrate on the region around the
lowest-order dipolar mode, for which the analytical model is found to be in excel-
lent agreement with the full numerical results. In particular, it accurately predicts
the redshift in plasmon energy with increasing aspect ratio R and rod length L for
both metals under consideration. The redshift with R was anticipated in Fig. 2.1 from
the evolution of the mode permittivity €; and is generally known to be the result of
a shape-dependent depolarization. In contrast, the redshift with L originates from
retardation: as the size increases, it takes a longer time for the electromagnetic field
generated by induced changes in one end of the rod to reach the other end, thus
reducing the frequency at which they oscillate collectively. Additionally, plasmons in
silver nanorods are blue shifted with respect to those in gold, for the same geometry,
as a result of weaker d-band screening (i.e., €, is smaller in silver, see Eq. 2.6 and
Table 1.1). Also, gold plasmons are broader because the intrinsic lifetime 7 is shorter
in this material.

o™ (w)= Im{a(w)}, 2.9)

2.3.2 Plasmon wavelength and width

An overview of the resonance wavelengths for gold rods and triangles as a function of
size and aspect ratio is presented in Fig. 2.3a-b, where we observe again a systematic
redshift with increasing L and R. A similar trend is observed for other types of particles
composed of gold (Fig. 2.3c-d). In all cases, the agreement between analytical (solid
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Figure 2.3: Overview of the analytical model performance: plasmon wavelengths.
We show the resonance wavelength corresponding to the maximum optical extinction
for various types of gold nanoparticles embedded in water with either fixed aspect ratio
(a,c) or fixed size length (b,d) as obtained from our analytical model (solid curves) or
from fully numerical solution of Maxwell’s equations (broken curves). Results from
the simple Drude-model expression of Eq. 2.7 are shown as dotted curves (plasmon
wavelength taken as 27tc/Re{®;}).
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Figure 2.4: Overview of the analytical model performance: quality factors. We
show the plasmon quality factor Q under the same conditions as in Fig. 2.3. Dotted
curves are obtained from the simple analytical approximation Q = Re{®;}/Aw; (Egs.
2.7 and 2.8) with €, = 9.5 in (a) and (b) and with a frequency-dependent €,(w) in
the rest of the panels (see Table 1.1).

curves) and numerical (dashed curves) calculations is excellent. Remarkably, the
shape and size dependence of the plasmon wavelengths are also well predicted by
approximating the metal response in the Drude limit (i.e., with a constant value of
€}, to represent interband transitions (dotted curves in Fig. 2.3, calculated from Eq.
2.7).

In general, plasmons with longer lifetime emerge as narrower features in the spectra,
and they are associated with stronger near fields. A quantification of these properties
is provided by the plasmon quality factor Q = w/Aw, which we define as the ratio of
peak frequency to the full width at half maximum (FWHM) of the plasmon feature
in the extinction spectrum. This quantity is also equal to 27t times the number of
self-sustained plasmon charge oscillations before the near-field intensity decreases
by a factor of e after the external illumination ceases. Quality factors in the range of
a few tens are common in noble metals nanoparticles, as illustrated in the summary
presented in Fig. 2.4 for different particle morphologies and compositions. Once more,
excellent agreement in plasmon width is observed between the analytical model and
full numerical calculations. In contrast to the systematic redshift of the plasmon with
increasing size and aspect ratio, the quality factor exhibits a more complex behavior,
which can be understood from the interplay between the L and R dependences of the
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Figure 2.5: Plasmon quantum yield. We show the ratio between electric-scattering
and extinction cross-sections at the peak extinction frequency under the same condi-
tions as in Fig. 2.3. Dotted curves correspond to the approximate expression of Eq.
2.10, where we use the analytically fitted permittivities of Table 1.1 (for a frequency-
dependent €}, (w) term).

plasmon lifetime (see Eq. 2.8): for fixed R (Fig. 2.4a,c), the quality factor decreases
with increasing L as a result of radiation losses; for fixed size (Fig. 2.4b,d), there
is a relatively mild dependence with aspect ratio that is inherited from the redshift
(higher resonant —Re{e,}) with increasing R. Incidentally, the simple expressions
of Egs. 2.7 and 2.8 constitute an excellent approximation to calculate the quality
factor as Q = Re{®;}/Aw; (Fig. 2.4, dotted curves), which works well for gold rods
and triangles even when taking a constant value of the interband contribution to the
permittivity (e, = 9.5), although a frequency-dependent e,(w) (see Table 1.1 for a
detailed expression) is necessary to obtain good agreement in the rest of the cases
(Fig. 2.4c-d).

2.3.3 Plasmon quantum yield

Plasmons are extensively used to modify the lifetime and emission characteristics
of point emitters such as molecules and quantum dots. Before we analyze plasmon-
emitter coupling in more detail (see below), let us consider an important figure of
merit that characterizes plasmons in this respect: the fraction of energy emanating
from them in the form of propagating light. This is the so-called quantum yield of the
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2. ADVANCED ANALYTICAL MODELING OF LOCALIZED SURFACE PLASMONS

plasmon, which can be extracted from far-field measurements as the ratio between
elastic-scattering and extinction cross-sections. For small particles described through
their polarizability, the extinction cross-section is given by Eq. 2.9, whereas the elastic
scattering cross-section reduces tol%! o5 = (1287° /3A%)|a(w)|? (see also Eq. 1.13).
The ratio between these two quantities (i.e., the quantum yield) then becomes

_ o*(w)  167° /&, 1
Cot(w) 323 Im{—1/a(w)}
3 _1
~ [1 + 34 Im{ L }j| . (2.10)
4m2 eV €h— €m

The approximate expression at the end of Eq. 2.10 is obtained by making use of
Eq. 2.3, assuming that a single mode j = 1 dominates the scattering spectra. It is
remarkable that the retardation parameters a,, and a;, do not appear explicitly in
this result.

The quantum yield is plotted in Fig. 2.5 as a function of particle size and aspect
ratio for gold nanorods and nanotriangles. We find again an excellent agreement be-
tween the analytical model (solid curves) and numerical electromagnetic simulations
(broken curves), for which Y is computed as the ratio of cross sections at the peak
frequency of 0. Additionally, excellent agreement is obtained with the analytical
approximation of Eq. 2.10 (dotted curves), using Eq. 2.6 for €, with the frequency-
dependent fits of €,(w) given in Table 1.1. These results confirm the expected increase
in quantum yield with increasing particle size (Fig. 2.5a) because the radiative loss
channel becomes more relevant due to stronger coupling to radiation (i.e., the par-
ticle dipole roughly scales linearly with particle volume). Additionally, the quantum
yield decreases with increasing aspect ratio for a fixed size (Fig. 2.5b) because of the
combination of two effects: the volume is reduced, thus making the plasmon dipole
smaller; and the plasmon redshift discussed above contributes to make the particle
comparatively smaller in front of the emission wavelength, therefore reducing the
relative contribution of radiation losses.

2.4 Overview comparison with experiments

We illustrate the versatility of the analytical model to cope with other types of metals in
Fig. 2.6, where we compare experiments taken from Zoric et al.”7] for lithographically-
patterned gold, platinum, and aluminum nanodisks (upper panels) with theory (lower
panels). Excellent results are obtained, except for very small aluminum disks, where
the presence of a self-limited oxide layer!®”] (not accounted for in theory) can in-
fluence the optical response. We stress that the simulations are obtained using just
the entries for disks in Table C.1 of Appendix C, which are independent of size and
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Figure 2.6: Comparison of measured (upper panels) and analytically-calculated
(lower panels) spectra for disks of varied sizes and compositions. We show exper-
imental spectra taken from Zoric et al.17] for disks lithographically patterned on gold,
platinum, and aluminum (see insets), compared with calculations performed using
our analytical model. Calculations use the measured dielectric functions for Au,?%]
Pt,198) and AL[®®] The disk thickness is 20 nm in all cases, while the disk diameter
varies from ~50-550 nm, ~40-500 nm, and ~70-550 nm in Au, Pt, and Al, respectively.
We take the host permittivity €, = 1.26 as the average value between air and the
supporting glass substrate.
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Figure 2.7: Analytical description of plasmons in graphene islands of different
morphology. We present the extinction cross-section for (a) disks, (b) triangles, (c)
ribbons, (d) hexagons, and (e) squares. In each figure, analytical results obtained us-
ing the plasmon wave function (PWF) of the lowest-order dipolar mode (solid curves)
are compared with numerical simulations (symbols) for different combinations of
characteristic size D, graphene Fermi energy Eg, and surrounding dielectric permittiv-
ity € (see color-coded legend). We describe the graphene surface conductivity using
the Drude model (Eq. 1.17), adopting a phenomenological inelastic damping energy
it~ =20meV (i.e., T ~ 33fs) and considering normally-impinging light polarized
in the direction indicated in the inset of panel (a).

material, and they cover a wide range of aspect ratios R = 2 — 27. Also, the optical
response of dewetted nanoparticles has been successfully described by this analytical

model.[89]

2.5 Plasmon wave functions in different graphene mor-
phologies

The optical response of graphene nanoislands is well-described in the electrostatic
limit, as their plasmon resonance wavelengths typically appear in the infrared regime,
where the light wavelength is much larger than the plasmon wavelength of the ma-
terial.[®®°?) In Section 1.2.2 and Appendix A, an eigenmode expansion method has
been adopted to express the linear optical response of a graphene nanostructure in
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Figure 2.8: Thickness dependence of the PWF analytical parameters. We present
the eigenvalue 1; and normalized dipole moment {; for the lowest-order dipolar
plasmon mode of disks, triangles, ribbons, hexagons, and squares (see symbols, which
are color-coded with the borders of the upper inset figures) as a function of the
normalized effective graphene thickness t/D, where the characteristic size D of a
structure is indicated in the upper insets along with the light polarization direction
(double arrow). Symbols for 1; are obtained by fitting the numerically computed
extinction spectra in the electrostatic limit, while ¢; is calculated using Eq. A.23.
Solid curves, color-coded to the borders of the upper inset figures, correspond to the
fitted expressions provided in Table 2.2.

terms of its supported plasmon modes. Alternatively, one can associate a plasmon
mode j with its induced charge distribution, which we refer to as the plasmon wave
function (PWF) of mode j.['°] We demonstrate the power of the PWF formalism in
Fig. 2.7. In the spectral region dominated by the lowest-order plasmon mode (j = 1)
supported by graphene islands of different morphology, we compare extinction spec-
tra predicted in the analytical PWF description (solid curves) with those obtained
upon a fully-numerical finite-element solution of Maxwell’s equations (dashed curves).
We find excellent agreement among analytical and numerical results, regardless of
the nanostructure characteristic size D, graphene Fermi energy Ej, or dielectric per-
mittivity of the surrounding environment € (see colored labels). Here and in what
follows in this chapter, we describe the graphene surface conductivity in the Drude
approximation (see Eq. 1.17), adopting a phenomenological inelastic damping rate
fit™! =20meV (ie., T ~ 33fs, see Eq. 1.17).

The analytical model used to produce the results presented in Fig. 2.7 is based on
two parameters: the plasmon mode eigenvalue n; and dipole moment {;, where the
index j is a mode index and in this figure we focus on j = 1, the lowest-order plasmon
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disk hexagon | triangle | square ribbon
a, | 0.03801 0.03846 0.07418 | 0.05537 | 0.02326
b, -8.569 -9.105 -9.106 -7.795 -8.878
Cy -0.1108 -0.1066 -0.1615 | -0.1495 | -0.09208
a; | -0.01267 | -0.008482 1 -2.752 | -0.01572
b, -45.34 -62.02 -0.2826 | 0.09027 | -39.21
c; | 0.8635 0.7787 -0.4563 | 0.9258 0.9588

Table 2.2: Fitting functions for n; = a, exp(bnx) +c, and {; = a, exp(ng) + ¢y
corresponding to graphene islands of different morphologies as a function of the
normalized thickness x = t/D. We apply these expressions for all morphologies
considered in Fig. 2.8 except the graphene square, for which we have {; = acx2 +
ng + C(.

supported by each of the graphene islands under consideration. These two parame-
ters are independent of the material properties, and in fact, they are determined by
geometrical features alone. This means that the PWF treatment can also be used to
describe other nanostructured 2D materials characterized by an isotropic surface con-
ductivity. More precisely, the eigenvalue 7; corresponds to the resonant value of the
quantity n = io(w)/Dwe, where o(w) is the graphene conductivity. Using the Drude
model for graphene conductivity (Eq. 1.17), the plasmon frequency of mode j can be
analytically resolved in terms of the eigenvalue as®8! w ~ w;— it™!/2 with

o = e/h Ep
7 /~mmEe \ D’

Plasmons are then associated with negative eigenvalues 7n; < 0. This expression ex-
plains why the analytical model undergoes a minor redshift of the plasmon resonance
peaks in all cases considered in Fig. 2.7 when the average surrounding permittivity e
increases from 1 to 1.35. We note that according to Eq. 2.11 the resonance positions
for structures with the same value of 4/Er/De should coincide, as illustrated by the
green and blue curves.

(2.11)

The results of Fig. 2.7 correspond to islands of zero thickness. However, the charge
that is optically induced on the graphene as the result of the excitation of a plasmon
spans a finite thickness determined by the spatial extension of the out-of-plane carbon
p orbitals. A value of ~ 0.34nm is typically used, corresponding to the inter-plane
distance in graphite. Although this is an ad hoc parameter, it has been used in many
prior studies of graphene plasmonics. Then, the thickness of the island ¢ has a finite
value that can influence the plasmons. We thus present in Fig. 2.8 the dependence of
the eigenvalue and dipole-moment parameters on the normalized thickness t/D. We
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Figure 2.9: Classical vs quantum PWFs. (a) Density plots of the PWFs for the lowest-
order (j = 1) dipole mode are presented in the top row for several graphene geome-
tries using the classical quasistatic model, whereas in the bottom row we show the
induced charge distributions at the spectral position of the lowest-order plasmon res-
onance computed using an atomistic quantum model (see Section 1.3). Blue and red
colors represent charges of opposite signs. (b) PWFs of the first three lowest-order
(j = 1—3, see labels) plasmon modes in graphene ribbons along the transversal
ribbon direction x are obtained using the classical model (solid curves). The induced
charge distribution from the quantum model is presented as symbols for the two
dipole-active bright modes (j = 1,3). The orientation of the incident light is along
the ribbon width. In the quantum calculations we take D = 10nm, 8.8 nm, 15nm,
10nm, and 20 nm for the disk, square, triangle, hexagon, and ribbon, respectively (see
upper insets of Fig. 2.8). These values correspond to ~ 2000 — 3000 carbon atoms
for the finite islands.

find that the mode eigenvalue, which determines the plasmon resonance frequency,
is more sensitive to variations of t /D, while the mode dipole moment {; is relatively
robust. We thus conclude that the spectral position of a plasmon resonance predicted
for a graphene nanostructure described with a nonzero thickness is more prone to
inaccuracy unless a proper treatment of the thickness parameter is performed. In-
cidentally, the mode eigenvalues 7, are obtained by fitting numerically-computed
extinction spectra in the electrostatic limit for the lowest-order plasmon mode, while
{; is calculated using Eq. A.23. We also provide t/D-dependent fits (solid curves in
Fig. 2.8) in Table 2.2.

We present in Fig. 2.9 the spatial distributions of PWFs pl(é ) as a function of the
normalized in-plane position vector 6 = R/D corresponding to the lowest-order
plasmon mode contained in the collection of graphene structures considered here.
In the upper row of Fig. 2.9a, we present PWFs obtained using the classical model,
with blue and red colors representing charges of opposite sign, so that the charge
neutrality condition f d26 p1(§ ) = 0 is evident upon inspection. For comparison, the
induced charge distributions of the same modes obtained from an atomistic quantum
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Figure 2.10: Plasmon-induced transparency in paired graphene ribbons. (a) Op-
tical response of individual graphene ribbons of widths D = 22nm (blue curves)
and 51 nm (red curves) under normal incidence with light polarization across the
width of the ribbon. We assume E; = 1eV in all cases. The peak in extinction around
0.55 eV corresponds to the lowest-order plasmon mode in the smaller ribbon, while
the contribution from the larger ribbon is negligible in the frequency range shown. (b)
Decay-rate enhancement for an external unit dipole p*** placed 2 nm away from the
edge of the ribbons considered in panel (a). The dipole is oriented along the ribbon
width. (c) Optical response of dimers composed of the two ribbons presented in panel
(a) separated by an edge-to-edge distance d in a co-planar configuration. When the
separation distance d decreases from 50 to 3 nm (see labels), a transparency window
appears around 0.55 eV in the extinction spectra as a result of the interaction between
the j = 1 mode (lowest-order dipole mode) in the smaller ribbon and the j = 2 mode
(first dark mode) in the larger one. Our analytical results (solid curves) agree well
with numerical simulations (broken curves) in all cases.

model, introduced in Section 1.3, for graphene islands with lateral sizes on the order
of ~ 10nm are presented in the lower row of Fig. 2.9a. We denote these induced
charges associated with the plasmons as quantum PWFs. The similarity between PWFs
obtained from the classical and quantum models clearly indicates that the concept
also holds in the quantum regime. In Fig. 2.9b, PWFs for the first three lowest-order
plasmon modes (j = 1 — 3, see labels) are shown for a 1D graphene nanoribbon,
where the j =2 mode, yielding {, =0, is a dark plasmon.

2.6 Graphene-nanostructure interactions and plasmon-
induced transparency

We consider a system composed of multiple graphene structures, indexed by n and
centered at the positions r,. We now define 6 = (r; —r,)/D,, where r| indicates
the in-plane position vector of the corresponding island and D, is a characteristic
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normalization length. We also define the eigenvalue 7,;, eigenmode &, > PWF p,;, and
mode dipole moment 4 nj for the plasmon mode j associated with the corresponding
graphene island n. Then, the self-consistent electric field &, having contributions from
each island, can be expressed as & = an anjgnj. From Egs. A.17-A.19, we obtain the

self-consistent expression

€
a,i(w)= C.. + Vo
nj Dn/nnj—Dn/n(n)(w) nj ;2 nj,n’'j’ 4n’j

for the expansion coefficients a,;(w), where C,; = —Dnznj -E* and nW(w) =
ic™(w)/(D, we) with the conductivity 0™ () of island n. Here,

D2 [ ox( oa Puj(B)ow(8)
V”j’”/jlz_fdzejdze = =
€ |D,0 — D, 6" +d,,I|

describes the interaction between plasmon modes j and j’ in two islands separated
by a vector d,,,, =1, —1,,. After solving for all a,;’s, the total induced dipole moment

can be expressed as
tot __ E : 3. 7
p = Dn anj gnj .
nj

Eventually, the extinction cross-section of the whole system can be calculated as

4w
ot (0)) — mlm{(EeXt)* . ptot}‘ (2.12)

As a way to demonstrate the versatility of above PWF formalism for interacting
graphene nanostructures, we study the optical response of graphene structures in-
teracting with external elements or with one another, as shown in Fig. 2.10. In Fig.
2.10a we first present the optical extinction spectra of isolated graphene nanoribbons
with different widths D, both of which are doped to E; = 1 eV, and we include modes
up to j < 3 (see Fig. 2.9b). The decay-rate enhancement for an external unit dipole
P (solid curves, shown in Fig. 2.9b) is calculated analytically from Eq. A.25. In the
frequency range shown, a prominent peak associated with the j = 1 dipolar mode
supported in the smaller ribbon (D = 22 nm, blue curves) appears around 0.55 eV,
whereas the contribution from the larger ribbon (D = 51 nm, red curves) is negligible
at that energy. However, as shown in Fig. 2.10b, where we simulate the decay rate
of an oscillating unit dipole p*** in the presence of either ribbon, a resonance feature
appears in the spectrum for the larger one, which corresponds to its j = 2 dark mode.
This dark mode plays an important role when considering the optical response of a
dimer formed by the co-planar combination of the two ribbons, with an edge-to-edge
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separation distance d, as shown in Fig. 2.10c. The interaction between the bright
and dark plasmonic modes in the small and large ribbons, respectively, results in a
transparency window appearing around 0.55 eV, which becomes more pronounced
as the separation distance decreases from d = 50nm to d = 3nm. This phenomenon
is known as plasmon-induced transparency, and has several applications, including
slow light generation.['"-192] We note that results based on the PWF formalism are
found to be in excellent agreement with fully-numerical simulations.

2.7 Conclusions

As a solution to the complex electromagnetic problem and the sometimes involved
details of the optical response presented by metallic nanoparticles, we have extended
an analytical model capable of describing such a response accurately when compared
with both state-of-the-art numerical methods and experimental data. Remarkably,
each particle shape requires only four real numbers to describe the extinction spec-
trum, wavelength, width, and quantum yield associated with each of its plasmons.
These quantities are computed by means of simple analytical expressions involving
those real parameters, which are valid for any composition and size of the particles.
Importantly, plasmon broadening and redshifts due to retardation are correctly de-
scribed for a wide variety of particle sizes and morphologies.

The analytical model takes negligible computation time and can be readily applied to
any particle shape once the noted parameters are available. As a suggested application
to sensing, this method allows a fast assessment of the ability of a given nanoparticle
morphology to detect changes in the dielectric environment (i.e., the permittivity
of the host medium €, which enters the analytical expressions explicitly) through
observed variations in the plasmonic response. Insight into inhomogeneities of a
colloidal sample can be gained by comparing measurements of the optical extinction
to calculated values convoluted with distributions of particle size and aspect ratio, for
which the analytical model presents clear advantages. A similar optimization scheme
could be applied to systems for surface-enhanced Raman spectroscopy (SERS). The
model may also be used to engineer particle shape, in order to render a desired
balance between quantum-yield and strength of coupling to localized optical emitters,
with potential applications in nanoscale quantum optics. Optical heating assisted by
plasmons (thermoplasmonics) may also benefit from this analytical theory.

Finally, we further adapt the theory to two-dimensional materials for studying the
optical response of graphene structures with arbitrary morphologies based on plasmon
wave functions (PWFs). The present model is analytical and characterizes a plasmon
resonance in a given geometry using only two real-valued parameters. The spatial
distribution of PWFs calculated from classical modeling is found to be in excellent
agreement with those obtained from atomistic quantum-mechanical simulations, even
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for structures of small (~ 10 nm) lateral size. We apply our analytical model to the
study of graphene ribbon dimers, which accurately describes the plasmon-induced
transparency that arises when bright and dark modes couple strongly. We note that
the present analytical PWF formalism is universal and can be applied to model the
optical response of other two-dimensional materials or thin films using their local 2D
conductivities as input.
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Light modulation with graphene
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3. LIGHT MODULATION WITH GRAPHENE

3.1 Introduction

Fast electro-optical modulation of visible and near-infrared (NIR) light is important
for a wide variety of applications, ranging from communications, considering the
exponential growth of the data traffic in the last decade, to sensing and smart windows.
No fundamental limit appears to prevent us from designing wavelength-sized devices
capable of controlling the light phase and intensity at gigahertz (and even terahertz)
speeds in those spectral ranges. However, this problem remains largely unsolved,
despite recent advances in the use of quantum wells and phase-change materials for
that purpose. Currently available approaches result in rather bulky devices, suffer
from low integrability, and can hardly operate at the low power consumption levels
and fast switching rates required by microelectronic drivers.

A possible strategy to achieve visible-NIR (vis-NIR) light modulation consists in ex-
ploiting the switching off of graphene absorption when it transits from undoped
to doped states: indeed, undoped graphene absorbs 2.3% of the incident light over
the vis-NIR rangel'%%104] a5 a result of direct electron-hole pair transitions between
its lower occupied Dirac cones and the upper unoccupied cones (two inequivalent
ones in every Brillouin zonel®>%)); in contrast, when doped to a Fermi energy Ey,
an optical gap of size 2E; opens up in which absorption is drastically reduced via
Pauli blocking.!19%:19] Electrical gating has been used to show Ey ~ 1€V doping,!'%°]
which in principle enables intrinsically fast vis-NIR light modulation. However, the
poor amount of absorption produced by this material is limited by its atomic thick-
ness, and consequently, order-one modulation requires coupling it to either strong
optical resonances or large structures in which a substantial effect builds up. The
latter strategy has been followed to demonstrate active modulation in the NIR light
transmitted through graphene-loaded waveguides!'°”) and photonic crystals, 108:109]
although the resulting structures are rather bulky and extend over many optical wave-
lengths.

In this chapter, we first explore graphene sheets coupled to dielectric planar cavities
operating under either tunneling or Fabry-Perot resonant transmission conditions, as
well as Mie modes in silicon nanospheres and lattice resonances in metal particle
arrays to enhance the light intensity at the graphene plane, and so is its absorption,
which can be switched and modulated through varying the level of doping. Unity-order
changes in the transmission and absorption of vis-NIR light is produced upon electrical
doping of graphene. We also show that planar nanostructures patterned in ultrathin
metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-
infrared spectral regions. Substantial variations in the reflection and absorption of
incident light take place when the plasmons are tuned on- and off-resonance with
respect to externally incident light to produce a remarkable modulation depth in both
transmission and reflection.
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Figure 3.1: Graphene optical switch based on resonant tunneling transmission.
(a) Doping-induced absorption switching effect: we compare undoped graphene (up-
per scheme, Fermi level at the Dirac point), which can absorb photons (vertical arrow)
over a broad spectral range via interband electron transitions, and doped graphene
(lower scheme), in which Pauli exclusion blocks photon absorption when the Fermi
energy Ep exceeds half the photon energy. (b) Planar multilayer structure considered
for resonant tunneling transmission of light, including a central BN planar waveguide
(not to scale) and two single-layer graphene films intercalated at the BN/SiO, inter-
faces. (c) Potential in the equivalent Schrodinger model. (d) Electric field intensity
normalized to the external light intensity for an incidence angle of 71° and a free-
space wavelength of 689 nm. Light is s- (TE) polarized and incident from the left.
Results for different levels of doping are offered (see legend in (e)). (e) Transmission
spectra of the multilayer structure at 71° incidence for different levels of doping. (f)
Transmission as a function of incidence angle and wavelength for doped and undoped
graphene.
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3.2 Graphene optical switch based upon resonant tun-
neling transmission

Due to the strong tunability of graphene, its optical absorption can be switched on/off
via electrical doping. In its undoped state it absorbs a fraction ma ~ 2.3% of the
incident 1light19%1%4] over a broad spectral range within the vis-NIR as a result of
direct electron-hole pair transitions between its lower occupied Dirac cones and the
upper unoccupied cones (two inequivalent ones in every Brillouin zonel3%3]). In
contrast, when electrically doped, an optical gap is opened that suppresses vertical
optical transitions for photon energies below 2|Eg|, where Ej is the change in Fermi
energy relative to the undoped state (see Fig. 3.1a).

We illustrate the concept of resonant switching and modulation of graphene absorp-
tion by coupling to a high-quality-factor planar cavity. In particular, we consider
the multilayer structure depicted in Fig. 3.1b, consisting of a high-refractive-index
boron nitride (BN) planar waveguide (ngy = 2.1) flanked by low-index silica spacers
(nsio, = 1.457). The waveguide hosts guided modes that can be resonantly coupled
to light of well-defined parallel wave vector (i.e., for a collimated incident beam). In
our case, light is incident from the left under total internal reflection conditions at the
BF11-SiO, interface (ngp; = 1.61). The evanescent spill out of light intensity pene-
trating inside the left silica spacer can reach the BN waveguide, where it is amplified
to further extend towards the rightmost interface. In the absence of absorption, full
transmission can always be achieved at a resonant wavelength that depends on the
incidence angle. This phenomenon, known as resonant tunneling transmission, was
previously explored with electron waves.[''%) There is a complete analogy between
TE light propagation in the planar structure under consideration and the evolution
of an electron according to Schrédinger equation.[''!] The equivalent electron has
energy E and evolves along a potential profile as shown in Fig. 3.1c. The latter is
directly related to the refractive index, with the higher index corresponding to lower
values of the potential. The presence of a bound state is always guaranteed in a one-
dimensional cavity, and so is the existence of a full transmission resonance when this
bound state lies inside the potential barrier..''%] Under complete-transmission condi-
tions, the intensity has to decay exponentially from the waveguide to the far medium
(i.e., across the rightmost silica barrier), to reach the same value as the incident inten-
sity, so that the near field has to be strongly amplified at the central waveguide. This
type of enhancement, which is clearly illustrated in Fig. 3.1d, has been experimentally
corroborated by measuring a > 100-fold increase in the fluorescence from quantum
dots placed near the central waveguide under resonance conditions in a structure
similar to the one considered here.['1!]

The structure under consideration (Fig. 3.1b) contains a graphene film on either side
of the central BN waveguide. Besides its high index of refraction, the choice of BN
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3.3 Graphene optical switch based upon dielectric resonators

for the central waveguide is convenient because this combination of materials is com-
patible with high-quality graphene,'''2) which can be realistically described with the
models for the conductivity o given in Eq. 1.14. Nevertheless, we assume a conser-
vative value of the graphene mobility u = 2000 cm?/(V's) in this chapter. Note that
the relaxation time 7 can be estimated as wEg/evg? in the DC limit. When the carbon
layer is highly doped (Er = 1.1€V), it becomes nearly lossless (i.e., small Re{c'}) at
the waveguide resonance wavelength, so that the peak transmission reaches ~ 95%
(Fig. 3.1e) and the light intensity enhancement at the waveguide exceeds a factor of
140. In contrast, in the undoped state, the carbon layer becomes lossy (i.e., nearly
real o ~ e2/4H), so the enhancement is strongly suppressed, and the transmission
drops to very small values. The extinction ratio (i.e., the ratio of transmissions in
doped and undoped states) is > 15dB. The transmission can be in fact tuned con-
tinuously between these two extreme values by varying the level of doping (see Fig.
3.1e). The decrease in transmission produced when moving from highly doped to
undoped graphene is due to both absorption and reflection, as the local change in the
response of the carbon layer produces a departure from the conditions of resonant
tunneling.

The wavelength of operation of this modulator is essentially determined by the waveg-
uide mode, as coupling to the BF11 media is just producing a slight shift. Under-
standably, the reflection minimum is observed to be only mildly modified when the
rightmost glass is removed. Obviously, the resonance wavelength also depends on
the angle of incidence and it can be pushed down to the visible regime (Fig. 3.1f),
although the maximum transmission decreases towards smaller wavelengths due to
the gradual involvement of interband transitions in the graphene.

3.3 Graphene optical switch based upon dielectric res-
onators

The concept of the tunneling structure in Fig. 3.1 can be extrapolated to other types
of resonators in which the incident field also undergoes a large enhancement at a
position decorated with graphene. A particularly convenient implementation of this
idea is presented in Fig. 3.2, as it allows operating under normal incidence conditions.
More precisely, we replace the tunneling structure by a Fabry-Perot (FP) frequency-
selective filter, consisting of a cavity flanked by two non-absorbing, nearly perfectly
reflecting mirrors. In practical devices, one generally uses Bragg mirrors such as those
sketched in Fig. 3.2a, which are easy to fabricate by multilayer deposition. We consider
a separation between the FP mirrors that produces a single resonant transmission
peak in the 730 — 748 nm spectral region. At resonance, light is trapped inside the
cavity, so it makes many passes through it before escaping, thus generating a large
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Figure 3.2: Graphene optical switch based on dielectric resonators. (a) Fabry-
Perot resonator incorporating a tunable graphene layer inside the cavity flanked by
two Bragg mirrors (see inset for a sketch of the period and labels for geometrical and
optical parameters). (b,c) Normal-incidence transmittance (b) and reflectance (c)
for different levels of doping. (d) Geometry and parameters of a triangular array of
silicon spheres near graphene. (e¢) Normal-incidence transmission through the sphere
array without graphene for different lattice periods P. The wavelength is shown both
normalized to the sphere radius R (lower scale) and for R = 300nm (upper scale).
(f) Absorbance of the array when it is placed near undoped graphene (silicon-carbon
distance d = R/150) under normal incidence. The lattice period is P = 800 nm. We
compare two different approximations for the graphene conductivity (full random-
phase approximation[®>3¢] (RPA) and local-RPA[®®)) with a semi-analytical model.
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3.3 Graphene optical switch based upon dielectric resonators

field enhancement at several interference nodes. We place the graphene at one of
those nodes. An interplay between absorption (imaginary part of the susceptibility)
and polarization (real part) in the graphene is then taking place, leading to large
(but not totally complementary) modulations in reflection and transmission, similar
to those discussed above for the tunneling device. Similar performance is obtained
by filling the cavity with glass and reducing its size, thus configuring a more robust
structure.

The transmission/reflection and field enhancement of planar multilayers (results
shown in Figs. 3.1 and 3.2b-c) are obtained through a standard transfer matrix ap-
proach. In particular, we use the reflection and transmission coefficients for a plane
wave of parallel wave vector k| incident from medium 1 on a graphene layer of con-
ductivity o placed at the interface with another medium 2, which upon direct solution
of Maxwell’s equations for the s- (TE) polarization under consideration are found to
be[48] riz = (kzl_kz2+gs)/(kz1 +kzz+gs) and tiz = 2kzl/(kzl +kzz+gs), respectively,
where g, = 4now/c? and kyj =4 k%€;— kﬁ +i0*. For completeness, we give the co-
efficients for p- (TM) polarization: r, = (e5k,; — €1k,5 + 8p)/(€2k;1 + €1ky + &)
and t7, = 2,/€16,k,1/(€sk;y + €1k,p + &), Where g, = 4nok,k,»/w. Incidentally,
the sign of the square root is chosen to yield positive real values. These expres-
sions also describe the coefficients of interfaces without graphene, simply by taking
8 =8, =0.

As illustrated in Fig. 3.2e, we consider the silicon spheres to be arranged in a triangu-
lar lattice, which we simulate using a layer-KKR approach.[*'3] This method relies on
an expansion of the electromagnetic field in terms of spherical vector waves around
the particles and plane waves near the graphene. The scattering by the spheres then
involves multiplication by Mie coefficients, whereas the graphene enters through its
reflection coefficients (see above). Plane and spherical waves are analytically trans-
formed into each other, giving rise to a self-consistent system of equations projected
on the coefficients of the sphere multipoles. Translational lattice symmetry is used to
reduce the number of plane waves to those of a discrete set corresponding to differ-
ent diffraction orders (i.e., two waves of orthogonal polarizations for each reciprocal
lattice vector).

Interestingly, there is strong interaction between the particles for the lattice spacings
P under consideration, which can be intuitively quantified from the fact that the ex-
tinction cross section of the sphere equals the area of a circle of diameter 1.75 um.
The transmission of the particle array experiences dramatic spectral variations as P is
changed, eventually generating a narrow transmission peak, which is relatively close,
but not on top of the lowest-order Wood anomaly, occurring when the wavelength is
equal to the period at normal incidence; we thus attribute this feature to the interac-
tion between Mie modes of the spheres, as the wavelength is close (but not right on)
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3. LIGHT MODULATION WITH GRAPHENE

a lattice resonance that narrows the resulting spectral feature. A similar mechanism
leading to sharp, narrow asymmetric resonances has already been described in the
context of cavity-waveguide coupling.[''#] The absorbance associated with this nar-
row peak is boosted, approaching 50% with undoped graphene (Fig. 3.2f), whereas
doped graphene shows comparatively negligible absorbance.

In the layer-KKR simulation method,!'*3! the homogeneous graphene film enters
through its reflection and transmission coefficients for different diffracted orders (i.e.,
a collection of propagating and evanescent plane waves, each of them corresponding
to a fixed value of the parallel wave vector). This allows us to use the full random-
phase approximation (RPA) conductivity!®>*®] o (k, w), which includes nonlocal ef-
fects associated with finite parallel wave vectors k; corresponding to those diffracted
orders. Because the size of the spheres and the lattice periods under consideration
are large compared with vz/w (i.e., the ratio of the graphene Fermi velocity to the
light frequency, ~ 0.8 nm for a wavelength of 1.5 um), nonlocal effects are in fact
negligible, which explains why we obtain the same results on the scale of the figure
by just using the value o = e?/eh for the conductivity in undoped graphene instead
of the full RPA. The same argument explains why plasmons are not excited here in
doped graphene. Additionally, we obtain very similar results with the semi-analytical
model given as

50~ naf dxdy |E||/E0|2, 3.1

where a is the fine structure constant, E; is the parallel component of the total electric
field, E, is the incident field, and we apply by averaging the parallel electric-field
intensity enhancement over a unit cell. The intensity in the semi-analytical model is
calculated without the graphene, just to provide insight into the absorption process.
However, when we calculate it including the carbon layer, the absorbance A predicted
by Eq. 3.1 cannot be told apart on the scale of the figure from the one given by the
far-field transmittance and reflectance (i.e., A= 1— T —R), thus corroborating the
numerical accuracy of our calculations.

3.4 Enhanced graphene optical absorption and switch-
ing by coupling to lattice resonances

We now discuss the absorption enhancement produced by lattice resonances, for
which strong scatters such as metallic particles are preferable. Although metals intro-
duce additional losses, their absorbance is relatively small in the NIR, so graphene
can still make a big difference. This is corroborated in Fig. 3.3, where we consider
a graphene layer decorated with a 2D square array of gold spheres surrounded by
silica for different values of the lattice spacing P. The transmission (Fig. 3.3b) and
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Figure 3.3: Enhanced tunable graphene absorption by coupling to lattice reso-
nances in 2D metal particle arrays. (a) A square array of gold spheres (radius R)
placed above graphene (2nm gold-to-carbon separation). The entire system is as-
sumed to be embedded in silica (¢ = 2.25). (b,c) Normal-incidence transmission (b)
and reflection (c) spectra for R = 80nm and different lattice periods P with either
doped (broken curves, E; = 1€eV) or undoped (solid curves) graphene. The spectra
are dominated by lattice resonances occurring near a free-space light wavelength
A ~ Py/e. (d) Peak wavelength with doped graphene (right scale) and transmission
at that wavelength with either doped or undoped graphene (left scale) as a function
of gold sphere radius for a period P = 500 nm. (e) Same as (d) for silver particles.
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3. LIGHT MODULATION WITH GRAPHENE

reflection (Fig. 3.3c) spectra (computed by the layer-KKR approach) of these struc-
tures exhibit sharp features emerging near the Wood anomaly condition (i.e., when
the wavelength in the surrounding dielectric is close to the period, or equivalently,
when a diffraction order becomes grazing), which can be easily understood in terms
of lattice resonances.[11>116] As the period is increased, these features move to the
red, where the metal is less lossy, and consequently, the resonances become narrower.
The additional absorption produced by the undoped graphene then becomes more no-
ticeable, eventually causing a decrease in peak transmittance of ~ 60%, accompanied
by a 28-fold reduction in reflectance.

3.5 Active modulation of visible light with ultrathin
graphene-metal hybrid films (UGMs)

3.5.1 Tunable plasmon quenching in ultrathin UGMs

It is instructive to first discuss plasmons in extended ultrathin graphene-metal hybrid
films (UGMs), the dispersion relation of which can be easily obtained by tracing the
reflectance of p-polarized light as a function of the parallel component of the wave
vector k; and photon energy.

The k|-dependent reflection coefficient rgGM for p-polarized light incident on the
sandwich structure of Fig. 3.4a can be simply constructed from the air-graphene-
metal reflection (rgn = A,/ A;m) and transmission (tg, = 2/€,k /A;m) coeffi-
cients, the metal-graphene-air reflection (rmg = A;g / A;g) and transmission (tmg =
2/€nk /AT g) coefficients, and the metal-silica reflection coefficient (r,; = (e k| n—
emkis)/(€sk m +€mk ). Here €y =1, €, and € are the permittivities of air, metal,

and silica, respectively; k; = \/ (w/c)?e; —kﬁ +1i0* is the normal wave vector in
medium j = 0, m, s, with the square root chosen such that Im{k, ;} > 0; and we have
defined A7, = enkjg £k m+A AL, =kimEenkio+A and A= 4104k ok /.
From a simple multiple-scattering analysis, we find 1) = ryp+t g tmge®nt /(1—
FmsTmg€ '), where t is the metal thickness.

We plot the resulting reflectance |r*¥!|* for doped and undoped graphene in Fig.
3.4b. Despite the relatively large thickness of the silver layer compared to the mono-
layer carbon film, it is clear that undoped graphene produces a stronger plasmon
damping by coupling to interband transitions,[''7) while the opened optical gap in
the doped graphene leaves the plasmons almost intact below ~ 2E;. External doping
can therefore considerably modulate the plasmon strength in UGMs. Obviously, most
of the region explored in Fig. 3.4b is far from the light cone, and this indicates that
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Figure 3.4: Tunable plasmon quenching in ultrathin graphene-metal hybrid films
(UGMs). (a) Sketch of a UGM consisting of a graphene monolayer on top of an
ultrathin silver film (thickness t = 1 nm), supported in turn by a silica substrate (e =
2). (b) Plasmon dispersion of the structure in (a) when the graphene is either undoped
(Ep = 0, left) or highly doped (E; = 0.7 €V, center; Ez = 1€V, right), as illustrated
by the photon-energy and parallel-wave-vector dependence of the reflectance for p-
polarization. Interband transitions produce strong plasmon quenching in the undoped
structure when the photon energy exceeds 2E; (i.e., above the yellow lines). We
model graphene with the local-RPA conductivity (see Eq. 1.14) assuming a mobility
@ = 2000 cm?/(V's), while silver is described by its measured permittivity.[?8) The
light cone (dashed lines) is shown as a reference.
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Figure 3.5: Optical switch based upon a periodic array of silver/graphene UGM
ribbons. (a) Scheme of the structure under consideration. The ribbon array (metal
thickness t = 1 nm, width W = 50 nm, period P = 100 nm, embedded in silica, € = 2)
is illuminated under normal incidence with transversal polarization. (b,c) Extinction
(b) and reflection (c) spectra for either doped (red curves, Ez = 1eV) or undoped (blue
curves, Er = 0) graphene, showing ~ 26% (~ 36%) modulation depth in extinction
(reflection) at 0.92 eV photon energy. Full numerical simulations (dashed curves) are
in good agreement with analytical theory (solid curves).

additional sources of momentum are needed to access plasmons from the external
illumination, for example by nanostructuring the film, as we will see below.

3.5.2 Tunable light modulation through UGM ribbon arrays

In order to more efficiently couple incident light to the plasmons in UGMs, we study
the effect of patterning it into a periodic array of ribbons. These structures are sim-
ulated using a finite element method in the frequency domain (COMSOL), and the
numerical results are compared to a simple analytical model, where we approximate
the transversal ribbon polarizability per unit length a/L by the contribution of the
lowest-order dipolar plasmon, which yields(®® (see Section 2.5)

a 0.889 ¢ W?

L 145—ioWe/o’
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(UGMs)

where W is the ribbon width, € is the permittivity of the homogeneous environment,
and the surface conductivity 0 = o, + 0 is the sum of metal and graphene contri-
butions. The latter is given by Eq. 1.14, while we calculate the former as

iwt

Om="—_ (1 - em) 5

4
where t and €, are the thickness and permittivity of the ultrathin metal. We take
€., from optical measurements.[?®} Under the conditions of Fig. 3.5a, the reflection

and transmission coefficients of the array for normal-incidence p-polarized light
(38,77]
are

array __ —is
P (a/L)"' =G’
array __ 9 __ ..array
tp =1 o s
where S =27ntw/ (CPJE), G~2m?/ (3P26) +iS, and P is the array period.

We consider a graphene-silver ribbon array embedded in silica shown in Fig. 3.5a
(ribbon width W = 50 nm, array period P = 100 nm, silver thickness t = 1nm)
and study the extinction (1 — T) and reflection of normally-incident light polarized
across the ribbons. The resulting spectra have prominent characteristics associated
with the lowest-order dipolar mode of the ribbon,[*®] corresponding approximately
to the condition that the width W is half the plasmon wavelength in the planar film
at that energy (i.e., kH ~ 1/W in Fig. 3.4b). The effect of doping is three-fold: (1) the
plasmon peak is blue shifted, (2) the extinction and reflection maxima increase, and
(3) the resonance line shape becomes narrower for larger Ez. Therefore, an extinction
(a reflection) modulation depth of ~ 26% (~ 36% ) is observed at a photon energy
~ 0.92 eV by changing from undoped graphene to E; = 1 eV. The effects of doping lead
to the suppression of damping channels (interband transitions) at photon energies
below 2Eg. In addition, it is expected that the increase in the number of available
free carriers produced by doping will cause the noted blue shift. Remarkably, despite
the simplicity of the analytical model (Fig. 3.5b, solid curves), it is in an excellent
agreement with the full numerical calculations (dotted curves), except for a small
blue shift in the latter. In particular, the relative effect of doping should be the same
for both types of simulations.

The tunable modulation of light in reflection and absorption for the class of struc-
tures shown in Fig. 3.4a is a robust effect that occurs up to a relatively large metal
thickness, as shown in Fig. 3.6. These results clearly show that an increase (decrease)
in reflectance (absorbance) occurs when Fermi energy exceeds about half the plas-
monic energy for each of the three metal thicknesses considered. At the same time,
the plasmonic resonance becomes narrower and slightly blue shifted in all cases. It
is important to note that in addition to the width of the ribbon, the thickness of
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Figure 3.6: Tunable light modulation through UGM ribbon arrays. We show the
normal-incidence reflectance (top) and absorbance (bottom) analytically calculated
for the structure considered in Fig. 3.5a (graphene-silver ribbons in silica, width
W = 50 nm, period P = 100 nm) with different metal thicknesses t =1 — 3 nm (left
to right) as a function of graphene Fermi energy (horizontal axis) and photon energy
(vertical axis).
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Figure 3.7: Dependence of light modulation on the choice of metal and metal
thickness. Here we consider a periodic array of metal ribbons (W = 50nm, P =
100nm) on top of a continuous graphene sheet. (a) Peak extinction energy with
highly doped (solid curves) and undoped (dashed curves) graphene as a function
of metal thickness for different noble metals. (b) Metal thickness dependence of the
modulation depth for transmission (solid curves, left scale) and reflection (dashed
curves, right scale), defined in terms of the normal-incidence, p-polarization trans-
mittance and reflectance coefficients for undoped (T, and R;) and doped (T; and R;)
graphene, evaluated at the peak photon energy of the doped structure.

the silver offers another degree of freedom to control the plasmon energy. Moreover,
the absorbance for t = 1 nm and undoped graphene reaches the maximum value of
50%, which is possible for optically thin films.['*®) In addition, the modulation depth
extracted from these results can be as high as ~ 23% in absorption and ~ 59% in
reflection.

3.5.3 Dependence of light modulation on the type of metal

Although silver is the least lossy noble metal in the spectral region considered, gold
and copper can also do a fairly good job in UGMs. In Fig. 3.7 we present an overview of
the plasmon energy corresponding to the maximum extinction as a function of metal
thickness for these three different metals. These results are obtained for a periodic
array of metal ribbons (W = 50nm, P = 100 nm) on an extended graphene sheet
(with and without doping). Plasmon energy increases with the thickness (i.e., when
the aspect ratio of the ribbons decreases) and takes similar values for the three metals,
as they also have similar conduction electron densities, although silver plasmons are
slightly blue shifted because the d-band screening is less efficient in this material.
Moreover, as the thickness increases, the structure is less sensitive to doping since
graphene has to compete with a comparatively larger metal volume.

The modulation depth (Fig. 3.7b), defined as the relative change in transmission (or
reflection) between doped and undoped structures (see vertical axis labels), is an
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important parameter to consider potential applications. Obviously, this quantity de-
grades when the thickness of the metal is large, again because the weight of graphene
is comparatively lower, so it is submerged by the metal. Within the small thickness
limit, the transmittance increases, which also results in a reduction in the depth of the
transmission modulation, while the reflection modulation reaches values well above 1
for all three metals, and approaches ~ 6 for silver. We therefore conclude that optimal
modulation in reflection is obtained for the thinnest metallic films, while maintain-
ing reasonable modulation in transmission. Clearly, silver has the best performance
among the noble metals for the modulation of vis-NIR light, reaching a depth that
exceeds 90% in transmission for metal thicknesses between 1 and 5nm and >100%
in reflection below 3 nm.

3.6 Conclusions

In conclusion, monolayer graphene can be used to produce unity-order changes in the
transmission, reflection, and absorption of light down to the vis-NIR domain when
comparing its electrically doped and undoped states. It should be emphasized that the
calculations here presented for geometries containing only graphene and dielectrics
are scalable, so that the main requirement is that the graphene can be switched back
and forth between E; = 0 and Ep > E,/2, where E, is the photon energy under
operation; provided this condition is satisfied, all geometrical lengths and the light
wavelength can be scaled by a common factor, leading to the same values for the
transmission and absorption. For example, the modulation at 700 nm wavelength
predicted in Fig. 3.1 with doping up to E; = 1.1eV can be also extrapolated to the
1550 nm telecom wavelength with doping up to E; = 0.5eV after scaling all lengths
by a factor of ~ 2.

Interestingly, we find that undecorated graphene in a planar multilayer dielectric
structure can modulate transmission near the point of resonant tunneling under to-
tal internal reflection, with absolute changes exceeding 90% and an extinction ratio
> 15dB. Similar levels of modulation are found for graphene placed inside a realistic
Fabry-Perot cavity. Large vis-NIR modulation depths are also predicted in a graphene
layer decorated with periodic arrays of silicon or gold particles. Obviously, the depth
of modulation is reduced by coupling to impurities in low-quality graphene, where
optical losses can be still significant under high doping. Nonetheless, we find a sub-
stantial degree of modulation even in the presence of large residual absorption (e.g.,
~ 50% modulation in the device of Fig. 3.1 when the residual optical loss amounts
to 14% of the ideal absorption-free highly doped material).

We also demonstrate that graphene can be used to modulate the optical response
of thin metals, taking advantage of both the strong spectral weight of the resulting
plasmons in the hybrid structure and the comparatively large volume of the carbon
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film when the metal thickness is reduced to only a few nanometers. Graphene doping
causes a suppression of interband transitions, and in consequence, a reduction of
plasmon damping, which is accompanied by blue shifts due to the addition of doping
charges. We find a remarkable > 90% modulation depth in transmission by using
graphene-loaded silver ribbon arrays for metal thicknesses in the 1 —5nm range and
lateral dimensions of tens of nanometers, which are attainable with currently available
lithographies. The modulation of reflection is even more dramatic for metal thickness
below 3 nm. The plasmon energies cover the 1—1.8 eV photon energy interval for these
thicknesses, thus enabling the design of wide-spectral-range devices. Additionally, a
continuous graphene layer appears to be advantageous to increase the modulation
depth, and thus, only the thin metal film needs to be patterned.

The mechanisms here considered for light modulation by graphene can be integrated
into devices spanning only a few square microns in size, so they require a relatively
small amount of doping charge to operate. We thus anticipate that these systems
will be able to modulate vis-NIR light at high speeds with a minute consumption of
power, typical of capacitive devices. This is an advantage with respect to alternative
commutation devices based on quantum-wellsl"**} and phase-change materials.[12°]
The large electro-optical response of graphene combined with its small volume is thus
ideal attributes for the design of fast optical modulators and switches operating in
the vis-NIR, which can benefit from the coupling to optical resonators such as those
explored in this chapter. These findings open a new avenue for the development
of compact electro-optical components such as tunable light filters, switches, and
sensors in the vis-NIR spectral region, that are appealing for micro integration and
mass production.
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4. NANOSCALE THERMAL MANAGEMENT WITH GRAPHENE

4.1 Introduction

Heat deposition via light absorption in nanostructures constitutes a useful tool for
controlling nanoscale thermal sources,®% 12171231 with potential application in pho-
tothermal therapy;!>> 124 125] nanoimaging,[12%127] nanocatalysis,°®! data storage,'>”]
and hot-electron devices.['>128] Importantly, plasmons in metallic nanostructures en-
able resonant enhancement of photothermal effects, which can be manipulated down
to the nanometer scale.[°% 121 Recently, highly doped graphene has emerged as an out-
standing two-dimensional material capable of supporting extremely confined surface
plasmons that can be actively tuned by varying its Fermi energy through electrical gat-
ing and chemical doping, with application in optical modulation,[78118129.130] Jjght
detection,[#1-42:131-133] an{ sensing.['34-136] Additionally, the photothermal response
of graphene is particularly appealing because of the combination of the following
three properties: (i) the low number of electrons needed to sustain plasmons in this
material compared with conventional three-dimensional metallic structures; (ii) its
low electronic heat capacity; and (iii) the strong variation of its optical response pro-
duced by electronic heating. Properties (i) and (ii) lead to unusually high electron
temperatures under resonant pumping conditions,[*-°) while properties (ii) and
(iii), which originate in the conical electronic bands of graphene,*® give rise to an
extraordinary photothermal response.

On the other hand, energy dissipation in nanoscale devices produces heat accumula-
tion that can result in structural damage and poor performance. Understandably, heat
management constitutes an important aspect when designing thermoelectric,'%”]
optoelectronic,'*®] electromechanical,'**) and photovoltaict'4?! elements. However,
the relatively slow thermal conduction in most materials!'#! imposes a serious lim-
itation. Finding new means of cooling nanostructures is therefore critical. An inter-
esting possibility is provided by coupling to radiative degrees of freedom. Indeed,
the absorption and emission of radiation by a material structure contributes to reach
thermal equilibrium with other surrounding structures and the electromagnetic envi-
ronment. This is the dominant cooling channel for thermally isolated (non-contact)
structures,!'#?] in which energy is released through the emission of photons with
wavelengths ~ A, =~ 2nfic/kgT (i.e., the thermal wavelength at temperature T).
When the structures are separated by vacuum gaps of large size compared with A,
the Planck and Kirchhoff laws determine the exchanged power.l'*}] In contrast, for
neighboring objects separated by a small distance compared with A, radiative heat
transfer is dominated by evanescent waves.[°>%7] As these waves are incapable of
propagating energy, their associated transfer rates can exceed the black-body limit
by several orders of magnitude, enhanced by the near-field coupling of resonances
supported by the nanostructures, thus emerging as a potentially relevant transfer
mechanism in solid state devices.
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4.2 Non-contact thermal management

In the first part of this chapter, we exploit the extraordinary optical and thermal
properties of graphene to show that ultrafast radiative heat transfer can take place
between neighboring nanoislands. The commonly accepted scheme for dissipation of
the thermal energy produced by electronic and optical inelastic losses (i.e., energy
transfer to valence and conduction electrons of the system, followed by relaxation into
phonons and subsequent heat flow into the surrounding media) is here challenged by
the radiative transfer mechanism taking place between neighboring structures within
femtosecond timescales, thus overcoming electron relaxation into the atomic lattice.
Using attainable graphene nanostructure designs, we find that ultrafast radiative heat
transfer produces thermalization of two neighboring islands that results in >50% of
the electronic heat of the hot one being radiatively transferred to its colder neigh-
bor. This extraordinary phenomenon is made possible by the large plasmonic field
concentration that mediates the coupling between the neighboring graphene struc-
tures, as well as by the low specific electronic heat of this materiall®®] (see Section
1.4.2).

In the second part of this chapter, we investigate the photothermally induced optical
response of graphene and reveal a radically different behavior (different strength of
electron-phonon coupling) in clean and disordered layers leading to unprecedented
plasmonic behavior. More precisely, we account in a self-consistent manner for the
interplay between optical absorption, heat dissipation, and spatial modification of the
electron temperature and optical conductivity under optical pumping, and find that
weak electron-phonon coupling in clean graphene results in high electron tempera-
tures, while the lattice stays near the ambient level. We exploit this effect to predict
(i) a dramatic photothermal modulation of plasmons in graphene ribbons and (ii)
the existence of plasmons that couple efficiently to external light in homogeneous
extended graphene by photothermally patterning a periodic modulation of the optical
response.

4.2 Non-contact thermal management

In the nanoscale, when the separation distance between two structures is smaller
than ~ 2mhc/kg T, non-contact radiative cooling can have huge impacts in many
nanoscale systems, even become a dominant heat dissipation channel while other
channels are inactivated. In this section, we present an interesting scenario: we enter
a regime where radiative heat transfer becomes ultrafast in a system composed of
two graphene disks.
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T2, Er2

T1, EF1 ¢

Figure 4.1: Sketch of the structure considered for ultrafast radiative heat transfer.
We study heat transfer between two parallel coaxial graphene disks placed in vacuum
and separated by a small distance d. Each disk £ = 1, 2 is characterized by its diameter
D,, Fermi energy Ep,, and electron temperature T,, with T; > T,.

4.2.1 Radiative heat transfer between graphene nanodisks

We focus on the system depicted in Fig. 4.1, consisting of two parallel coaxial graphene
nanodisks of diameters D; and D,, separated by a distance d between carbon planes,
doped to Fermi levels Ep; and Ep,, and having electronic temperatures T; > T,. For
simplicity, we consider the disks to be placed in vacuum. Heat is radiatively transferred
from the hotter disk to the colder one as a result of thermal fluctuations in both
disks, whose interaction is mediated by their self-consistent electromagnetic response.
In fact, for the small size of the structures under consideration compared with the
thermal wavelengths Ay, (with { = 1,2), retardation and magnetic response effects
can be dismissed, so we only need to deal with charge fluctuations and their Coulomb
interaction.

We calculate the heat transfer power (HTP) as the net balance of the work done by
the thermally fluctuating charges of the hotter disk on the colder one minus the work
done on the former by the fluctuating charges of the latter. This leads to a classical
electromagnetic expression involving thermal fluctuations, which are evaluated by
means of the fluctuation-dissipation theorem.[”"-72] A detailed description has been of-
fered in Section 1.4.3, leading to a compact expression (Eq. 1.61) that is proportional
to the integral over the exchanged frequency w. The integrand consists of the differ-
ence between the Bose-Einstein occupation numbers n, = [exp(ficw/kgT;) —1]" of
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the two disks at their respective temperatures T,, multiplied by a loss function that
is determined by the disk susceptibilities y,. The latter are dominated by plasmonic
modes, which allow us to formulate a description in terms of plasmon wave functions
(PWFs)[9:190] (see also Section 1.2.2). Only the lowest-order PWFs contribute sig-
nificantly to the HTP for the range of geometrical parameters under consideration.
Their explicit form, as well as full details on the PWF-based susceptibilities, are given
in Appendix D. For coaxial disks (Fig. 4.1), we find that modes of different azimuthal
number m do not mix, so we can separate their contributions to the HTP received by
disk 2 as

2 oo oo )
P, = ?h Z(Z—Emo)f wdw(n; —ny) Tr|:Amr v Im{y "} v™ AT Im{xé”}}
m=0 0
4.1

(and also P; = —P,), where Tt[... ] stands for the trace, the matrix A™ = (4 — " -
vyt v™)~! accounts for multiple scattering between the disks, v™ describes their
mutual Coulomb interaction, and . is a unit matrix. The matrices v"™ and y" contain
elements projected on the PWFs with m azimuthal symmetry (see Appendix D for
detailed expressions). Incidentally, the leading (2 — & ,,o) factor reflects the fact that
m and —m modes yield the same contribution.

In this formalism, the optical response of graphene is described through its surface
conductivity o, for which we adopt the local-RPA model(3%144145] (see Eq. 1.14 in
Section 1.1.5). We remark that besides the explicit dependence of n, on T,, the tem-
perature enters o through the chemical potential as well (see Eq. 1.16).

Incidentally, as the HTP of Eq. 4.1 is an integrated quantity, it is not too sensitive to
the model used for the graphene conductivity o. The small d region is most sensitive
to elements of the formalism such as the inclusion of multiple scattering in the optical
response of the disks (A™ matrices in Eq. 4.1). Here, we assume At™! = 10meV
throughout this section. We stress that the relatively high temperatures under consid-
eration (thousands of degrees) refer to the electronic gas of the material, which can
be reached by optical pumping in the ultrafast regime.[14%]

The disk separation dependence of the HTP is studied in Fig. 4.2a (solid curves)
for 20nm graphene disks doped to a Fermi level E; = 0.2 eV, with the hotter disk
at different temperatures T, (see labels) and the colder one at room temperature
T, = 300K. In general, higher temperatures T; lead to larger HTE due in part to the
(n; —ny) factor in Eq. 4.1. At large separations d > D,, only dipole-dipole interactions
between the disks contribute efficiently to the transfer, leading to a 1/d® dependence,
in agreement with the asymptotic expression of Eq. 1.62.

As a reference, we compare these results with the HTP for gold disks of the same
diameter (Fig. 4.2a, broken curves), which we describe through an effective surface
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Figure 4.2: Thermal and optical properties associated with radiative heat trans-
fer. (a) Dependence of the radiative heat transfer power (HTP) on the separation
distance d between two graphene nanodisks (solid curves) compared with two gold
nanodisks (dashed curves, disk thickness t = 2nm). The HTP is plotted for different
values of T; (see legend), while the cold disk is at ambient temperature T, = 300K.
The arrows indicate the HTP between two blackbodies (at temperatures T; and T,
respectively) of an area equal to that of the present disks. (b) Optical absorption
cross-section o,;,, normalized to the graphene area for one of the graphene disks
considered in (a) as a function of photon energy fico and temperature T. The dashed
line corresponds to Wien’s law, ficwo &~ 2.82kpT. (c) Temperature dependence of the
electronic heat capacity for one of the graphene (blue curve) and gold (red curve,
taken from Ref. [147]) nanodisks considered in (a). (d) Illustrative example of the
femtosecond dynamics of the electronic thermal energy in two graphene nanodisks
under the conditions of (a), with initial temperatures T; = 1000K and T, = 300K.
The electronic thermal energy is shown for both the initially hot (orange curve) and
cold (cyan curve) nanodisks, as well as their sum (black curve).

78



4.2 Non-contact thermal management

conductivity obtained from the measured dielectric function!®®) €, as o, = iwt(1—
€au)/ 47, where we take a thickness t = 2nm. This approximation, which is reasonable
because we are considering a small value of t compared with the diameter (20 nm),
allows us to apply the same formalism as for graphene (Eq. 4.1). Despite the larger
thickness of the gold disks, their HTP is much smaller than for graphene. In fact,
plasmons in the graphene disks lie in the mid-infrared region for the parameters
under consideration (i.e., their energies are commensurate with kg T;), while those of
the gold disks appear at much higher energies, and thus do not contribute efficiently
to the heat transfer. This mismatch is partly alleviated at the highest temperature
under consideration (T; = 5000K), for which gold and graphene disks exhibit similar
HTPs in the large d limit.

As an additional comparison, the left arrows in Fig. 4.2(a) show an estimate obtained
from the Stefan-Boltzmann law('*8! for radiative heat transfer between two black-
bodies of an area equal to that of the present disks. As anticipated above, graphene
outperforms blackbodies by several orders of magnitude.

The strength of their optical response influences the ability of the disks to transfer
energy radiatively. This is examined in Fig. 4.2b, where we plot the absorption cross-
section of one of the graphene disks considered in Fig. 4.2a. An intense plasmon
feature is observed in the 0.2-0.4 eV region, whose temperature dependence is inher-
ited from the conductivity (Eq. 1.14). The dashed line in Fig. 4.2b shows the relation
between the temperature and the photon energy according to Wien’s law (i.e., the
value of fiw at the maximum of w>n,(w) as a function of T,). This is relevant for the
analysis of Eq. 4.1, in which a factor w n,(w) appears explicitly, whereas the remain-
ing w? factor comes from the low w limit of the Im{ x,'} matrices. Additionally, the
response functions entering the trace in Eq. 4.1 display maxima near the plasmons,
and therefore, the overlap between the dashed line and the plasmon in Fig. 4.2b
indicates that this excitation contributes efficiently to the HTP

The electronic heat capacity provides a relation between the temperature and the
amount of energy stored in the electron gas. In this respect, graphene is also advanta-
geous relative to traditional plasmonic materials such as gold because its heat capacity
is orders of magnitude smaller (Fig. 4.2¢c) as a result of its conical band structure,
in contrast to the parabolic dispersion of gold conduction electrons. In consequence,
cooling the graphene electrons requires transferring a smaller amount of heat, thus
making the process potentially faster.

4.2.2 Ultrafast radiative heat transfer regime

We study the heat transfer dynamics by considering the electronic heat Q, deposited on
each graphene disk £ and the evolution of these quantities according to the equations

79



4. NANOSCALE THERMAL MANAGEMENT WITH GRAPHENE

a Heat transfer power 106w) (b
Dhoon foem O 055
v ©
S
0.5 600 04&
035
— _ -
< 0o <500 g
X o~
= K 023g
0.5 400 0.4 3]_3
T1=600 K %
300 L . . o &
400 600 800 1000 0 200 - 400f 600 800
T1 (K) ime (fs)

Figure 4.3: Temperature and temporal dependences of radiative heat transfer.
(a) HTP between two graphene nanodisks (20 nm diameter, 0.2eV Fermi energy,
d = 1nm separation) as a function of T; and T, for the geometry of Fig. 4.1. Solid
black curves represent the evolution of the electron temperatures in the two nanodisks
for different initial conditions. Dashed curves indicate the times (see labels) along
the evolution of the solid curves from either the vertical or the horizontal axes of
the plot. We assume an inelastic relaxation time (electron-lattice coupling) of 1 ps
. (b) Temporal evolution of the electron temperature T, in the colder disk (initially
at T, = 300K, left vertical scale, solid curves) and the transferred energy fraction
from disk 1 to disk 2 (right vertical scale, dashed curves) for different initial electron
temperatures of the hotter disk T; (see labels).

Q1 =—T,,Q1 +P, (4.2a)
Qz = _T;}}Qz + P2, (4.2b)

where P, are the transfer powers given by Eq. 4.1, while 7, is a phenomenological
electron relaxation time (to phonons) that we approximate as 1 ps, a value of the
order of what is observed in pump-probe experiments.!14%150]

As an illustrative example, we show in Fig. 4.2d the evolution of Q, according to Eqs.
4.2 for the two graphene disks considered in Fig. 4.2a when they are prepared at
initial temperatures T; = 1000K and T; = 300K: the cold disk more than doubles
its electronic energy after ~ 200fs of evolution (peak of cyan curve), when it has
gained nearly the same amount of energy as the one dissipated to the atomic lattice
(decay of black curve). Notably, the disks reach mutual thermal equilibrium after only
~ 250fs, well before full relaxation takes place.

A more detailed study of the heat transfer dynamics is presented in Fig. 4.3 for 20 nm
graphene disks separated a distance of 1 nm and doped to a Fermi energy of 0.2 eV.
The color plot of Fig. 4.3a shows the HTP as a function of the temperatures in the two
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Figure 4.4: Ultrafast radiative heat transfer induced by optical pumping. (a) Nor-
malized absorption cross-sections o, of two graphene nanodisks (20 nm diameter,
d = 1nm separation) at the same initial temperature of 300 K but doped with differ-
ent Fermi energies (see inset). (b) Time evolution of the electron temperatures T;
and T, (left vertical scale, solid curves) and transferred energy fraction (right vertical
scale, dashed curve) after optical pumping (150 mJ/m? light fluence, 0.17 eV photon
energy, as indicated by the red arrow of (a)).

disks. Obviously, the diagonal of this plot corresponds to zero transfer, when the two
particles have the same temperature. The solid black curves represent the evolution of
the disk temperatures starting from initial conditions at the plot axes (i.e., with one of
the disks at 300 K and the other one at higher temperatures). The evolution is along the
direction of the arrows, with positions at specific times indicated by the dashed curves.
Interestingly, the evolution toward the diagonal (thermal equilibrium) is characterized
by a significant increase in the temperature of the colder disk (AT ~ 400K) within
the first 100-200 fs, much faster than relaxation to the atomic lattice. This evolution
involves the transfer of a large fraction of electronic heat to the colder disk, as shown
in Fig. 4.3b: when the disks are prepared at 1000 K and 300K initial temperatures,
nearly 50% of the electronic heat of the hot disk is transferred to the cold one within
the first ~ 200fs.

In practical implementations, optical pumping with femtosecond laser pulses grants
us access into the ultrafast regime, allowing us to reach high electron temperatures
such as those considered in this section.['51-153] Additionally, the amount of optically
absorbed energy depends on the pump frequency relative to the plasmons of the
system.['>*] This idea can be exploited to pump neighboring graphene disks in such
a way that one of them absorbs much more energy than the other, just by tuning
the pump laser near the plasmon of one of the disks and away from the plasmons
of the other disk. We thus need disks of either different diameters or different Fermi
levels. We consider the latter possibility, which can be realized in practice through
the variation in intrinsic doping produced by an asymmetric dielectric environment,
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or also by creating different potential landscapes through an asymmetric doping
geometry. The system under investigation is depicted in the inset of Fig. 4.4a: two
20 nm graphene disks, separated by 1 nm, initially placed at 300 K, and doped to Fermi
energies 0.2eV and 0.3 eV, respectively. We consider optical pumping at a photon
energy of 0.17 eV with a fluence of 150 mJ/m?. The pulse energy is closer to the lower
doping disk (Fig. 4.4a), and thus, this is the one that reaches a higher temperature.
For simplicity, we assume instantaneous pumping (i.e., a 6-function temporal profile
of the pulse), which rapidly elevates the electron temperatures to T; ~ 1200K and
T, ~ 500K (Fig. 4.4b, left end). Ultrafast radiative heat transfer is again observed,
leading to mutual equilibrium between the disks (T; ~ T,) within ~ 500fs, which is
accompanied by nearly 60% of the electronic heat of disk 1 being transferred to disk
2. We remark that higher than 50% transferred energy fraction is made possible by
the doping asymmetry, which directly affects the heat capacity (see Fig. 1.5 in Section
1.4.2).

4.3 Photothermal manipulation of plasmons in graphene

In the last section, we explore an interesting phenomenon in the regime of non-contact
heat transfer. In this section, we step to heat conduction in the electron/phonon sub-
systems of graphene using a two-temperature model (see Section 1.4.2) under optical
pumping. More precisely, we account in a self-consistent manner for the interplay
between light absorption and heat conduction, and find that weak electron-phonon
coupling in clean graphene results in high electron temperatures.

4.3.1 Plasmon enhanced photothermal effect in a graphene rib-
bon

Here, we also adopt the local random-phase approximation (local-RPA) to describe
the temperature-dependent optical conductivity of graphene o(w), combined with a
two-temperature model,'®*) as presented in Section 1.4.2, to characterize the position-
dependent electron and lattice temperatures (T, and T;) under CW illumination in
the steady-state regime of heat dissipation. The model incorporates the 2D in-plane
thermal electron and lattice conductivities (k. and x;, obtained from their bulk coun-
terparts by multiplying by the graphene thickness t = 0.33nm) to self-consistently
calculate the spatial temperature distributions, which are imprinted on the opti-
cal conductivity o through its dependence on T,.[3%4%145.155] Electron-phonon cou-
pling (i.e., H (T,, T}) in Egs. 1.52 and 1.53) is accounted for by a power-density cou-
pling g (T, — T;) for clean graphene and A(T> — T?) for disordered graphene,[1°6-160]
where g and A are material-quality-dependent constant coefficients. Additionally,
we phenomenologically introduce thermal coupling from the graphene lattice to
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Figure 4.5: Plasmon photothermal effect in a graphene ribbon. (a) Normalized
normal-incidence absorption cross-section spectra at the spectral peak for a nanorib-
bon (width W = 300nm, E; = 0.4eV, g = 3.84 x 10*W/m?K, embedded in €, = 4.4)
made of either clean or disordered graphene (solid curves), based on a self-consistent
description of heat dissipation for an incident light intensity I'™ = 100 MW/m?. (b)
Variation of the electron temperature across the ribbon for clean and disordered
graphene. We find the lattice temperature to be close to the assumed ambient value of
300K. Clean graphene reaches higher electron temperature than disordered graphene
because it has a much weaker electron-photon coupling.

the substrate (i.e., B(T,, T}) in Eq. 1.53) through a term G (T, —T,), where G is a
thermal boundary conductance and T, is the ambient temperature. In our simula-
tions, we take T, = 300K and assume parameter values consistent with reported
measurements: g ~ 10*W/m?K, A = 2.24W/m?K?, and G = 5 MW/m?K;[161-163]
K1/t = 100W/mK;164165) and x, = 0.1x,.11%) Specific values for the Fermi en-
ergy Ep and the Ep-dependent coefficient g are given in the figure captions. Regard-
ing optical damping, we assume a conservative inelastic scattering time T = 66fs
(1t™! = 10meV) in both clean and disordered graphene in this section. We use
a finite element method for the latter and iterate the electromagnetic and thermal
solutions until self-consistency is achieved typically after ~ 10 iterations. We con-
sider graphene either supported or embedded in an isotropic dielectric of permittivity
€ = 4.4,

We first study a graphene ribbon (width W = 300 nm) under normal-incidence illu-
mination with transversal polarization (inset to Fig. 4.5a). A prominent plasmon is
observed in the absorption spectrum of Fig. 4.5a for low light intensity (dashed curve).
The spectrum remains nearly unchanged at a high intensity (1™ = 100 MW/m?) in
disordered graphene (solid red curve), whereas the plasmon peak undergoes a ~ 10%
redshift in clean graphene (solid blue curve). We attribute this different behavior to
the much weaker electron-phonon coupling in clean graphene,®! which leads to an
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Figure 4.6: Light-intensity dependence of the plasmon photothermal effect. (a)
Absorption spectra of the graphene nanoribbon considered in Fig. 4.5 for a wide se-
lection of light intensities. The spectra are dominated by the lowest-order transverse
plasmon, the frequency of which is shown in the inset as a function of electron tem-
perature. (b) Space-averaged temperatures (lattice T; and electrons T,) as a function
of light intensity at the absorption peak frequencies of (a). We present results for both
clean (solid curves) and disordered (dashed curves) graphene.

elevated electron temperature T, ~ 1400K, in stark contrast to the mild increase in
T, for disorder graphene, as shown in Fig. 4.5b.

When varying the incident light intensity in the '™ =1-100 MW /m? range, we find a
systematic redshift and broadening of the absorption peak in the clean graphene rib-
bon (Fig. 4.6). Further increase in intensity up to 200 MW /m? produces a large distor-
tion in the absorption spectrum, resulting from the non-monotonic temperature depen-
dence of both the graphene conductivity and the resulting transverse ribbon plasmon
energy. The latter admits the analytical expression!*! fiw, = (e/ /=70, €,) v/ uP /W
(see Eq. 2.11), where 1, = —0.0687 is an eigenvalue corresponding to the lowest-
order dipolar transverse plasmon, while u® = u + 2k, T, log(l +e kBTE) and u =
Eg [(1 + 54)1/2 — 52]1/2, with & = (21og® 4)(ky T,/ Ez)?, are the temperature-corrected
Drude weight and chemical potential, respectively!“] (see Egs. 1.15 and 1.16). This
expression (solid curve in the inset to Fig. 4.6a) is in excellent agreement with the
computed spectral peaks (symbols) when using the calculated spaced-averaged values
of T, as input. Note that the non-monotonic temperature dependence of the spectral
peaks is solely inherited from the temperature dependence of the Drude weight (see
explicit expression above), which undergoes a reduction (increase) with increasing
temperature when kg T, < u (kg T, > u).[4]

Remarkably, under these attainable conditions, the electrons reach a temperature
above 2500K in clean graphene, while the lattice remains near the ambient level
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(Fig. 4.6b). We stress again that this is in stark contrast to disordered graphene, for
which the spectra remain nearly unchanged within the considered intensity range
and the electron temperature hardly exceeds 400K (Fig. 4.6b) due to a more efficient
electron-phonon coupling.

We obtain further insight into the photothermal response of clean graphene by adopt-
ing the reasonable assumption T; ~ T, which effectively decouples the lattice from
the electronic system, so that heat dissipation is fully described through

v'Kev(Te_TO)_g(Te_TO)w_pabi (4.3)
where p* is the power density of optical absorption. Further assuming a constant
value of k., this equation allows us to obtain a characteristic electronic-heat-diffusion
distance D, = y/k./g. Indeed, a measure of the degree of heat localization is provided
by the electron temperature profile produced by a line heat source, T,(x) oc e *I/Pe,
as a function of distance x to it. Under the conditions of Figs. 4.5 and 4.6, we have
D. ~ 293 nm~ W, which explains why T, is nearly uniform across the ribbon, unlike
the cosine-like p transversal profile associated with the dipolar plasmon under
consideration. The uniformity of T, now allows us to write the analytical estimate
T, = Ty + I'™(0?® /Area)/g for clean graphene, represented in Fig. 4.6b (symbols,
with o3 /Area taken at the peak frequencies of Fig. 4.6a), in excellent agreement
with full numerical simulations (solid blue curve).

4.3.2 Photothermal patterning of extended graphene

Plasmon confinement in graphene has so far been achieved through lateral pattern-
ing (e.g., in ribbons”®13%)) 'inhomogeneous doping,'®”! or nanostructured dielectric
environments.[1%®] These approaches require the use of nanolithography, which is
generally detrimental for the graphene quality. Motivated by the above study for
graphene ribbons, we explore next a radically different method for producing and ac-
tively tuning plasmon confinement in extended, unpatterned graphene that does not
require nanostructuring: spatially modulated optical heating can be applied by pro-
jecting an on-demand pump pattern, thus configuring an inhomogeneous graphene
optical response capable of trapping plasmons and molding their spatial profiles with
a resolution limited by far-field diffraction to roughly half the pump wavelength
A’pump/ 2.

We demonstrate the feasibility of this concept by considering an extended clean
graphene sheet (Ep = 0.3 eV doping, supported on a substrate €},), on which a pump
light grating is formed by interfering two coherent s-polarized CW plane waves (A, =
785nm, intensity Iy,, =5—160GW/ m? each, incidence angles £6 = +5.6°). The
in-plane electric-field pump intensity is then 41, cos [27‘5 sin 6(x/ kpump)], where
we take the beam directions to lie on the plane formed by the surface normal and the
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Figure 4.7: Photothermal patterning of a homogeneous graphene sheet. We con-
sider an extended doped clean graphene sheet (Ez = 0.3eV, g = 1.21 x 10*W/m?K,
substrate €, = 4.4) exposed to a light intensity grating of 4 um period, formed by the
interference of two CW 785 nm pump plane waves of equal intensity (I, each). (a)
Spatial variation of the self-consistent electron temperature produced by the pump
with I, =5GW/ m? (solid red curve, left scale) and resulting optical conductivity
(blue curves, right scale) at a probing frequency of 7.2 THz. The ambient temperature
level (300K) is shown for reference (broken red line). (b,c) Near-field intensity plots
in a plane transversal to the graphene at the peak plasmon frequencies shown in (d)
for Iymp = 20GW/m? (A) and 160 GW/m? (B). (d) Absorption spectra probed in the
THz region with (solid curves) and without (dashed curve) light grating pumping for

various values of I,ny,.
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in-plane x axis. Incidentally, we obtain a graphene absorbance (4mRe{c}/c)|t,|> ~
0.002 — 0.008 from the local-RPA conductivity o, with t; ~ 2/(1 + ,/€},). This result
deviates from the T, = 0 behavior1%194] ~ 0,023 tSZ: thermal smearing of graphene
interband transitions causes a reduction in the absorption of visible light over the
range of I, under consideration. The resulting self-consistent electron temperature
T, reaches high values (~ 7200K for 5GW/m?) and displays a periodic pattern with
a max-to-min contrast ratio ~ 2.5 (Fig. 4.7a). This imparts a periodic pattern on
the optical conductivity, effectively transforming the optical response of the extended
graphene layer into that of a graphene ribbon array, which can be also regarded as a
thermally imprinted grating. When examining the absorption spectra as a function
of probe frequency in the THz region (Fig. 4.7d, for normal incidence and probe
polarization across the ribbons), a prominent resonance peak is observed, shifting up
in frequency as the pump intensity is increased. Interestingly, the resonant near-field
probe intensity distribution, shown in Fig. 4.7, reveals plasmon confinement in the
minima of T, regions, where Re{c} reaches a minimum (i.e., low inelastic losses),
while Im{co} is also minimum and configures an effective plasmon potential well. The
depth of such potential well can be estimated through max(Im{c})/min(Im{c}), a
larger value of which indicates a more confining well. Also, the quality factor of the
resonance [~ Im{c}/Re{c}] increases when raising the pump intensity, as observed
in Fig. 4.7d.

4.4 Conclusions

In the first part of this chapter, our prediction of ultrafast radiative heat transfer in
graphene provides a fundamentally unique scenario: radiative coupling is capable of
evacuating electronic heat from a nanoisland to a surrounding structure fast enough
to prevent substantial relaxation into the atomic lattice. This is accomplished with
attainable geometrical and material parameters: tens of nanometers in lateral size D
in structures that can be patterned through state-of-the-art lithography!'34 1] and
bottom-up synthesis;[17°172] tenths of electronvolts Fermi energy Eg, controllable
through electrical gating;[19%1%] and electron temperatures T of thousands of degrees
reached by ultrafast optical pumping.[146173]

Our choice of parameters leads to graphene plasmon energies that are commensurate
with kT (i.e., they overlap the broad spectral peak of thermal emission). As a conse-
quence, the characteristic time interval Tgyp required to radiatively transfer a sizable
fraction of the electronic heat energy is reduced to the femtosecond domain. A simple
dimensional analysis reveals that the HTP is proportional to E/D, provided the ratios
of disk diameters and temperatures, as well as d/D and the quantity E;/DT?, are
kept constant. The optimum temperature at which maximum transfer takes place
scales as T o< +/Egp/D. Additionally, we find the scaling Tpyp o< EzD® with Fermi
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energy and lateral size, and therefore, low doping levels and small sizes enable faster
cooling.

An interesting possibility consists in combining more than two structures. This could
be used to accelerate the rate of heat evacuation and achieve greater control over the
spatial flow of radiative heat transfer. Higher transfer rates could be also obtained
through lateral shape optimization or by relying on other carbon allotropes such as
carbon nanotubes. Additionally, similar fast transfers should be enabled by a wide
range of existing atomic-scale materials capable of sustaining confined optical ex-
citationst'7#) (e.g., exciton polaritons in dichalcogenides). Besides the fundamental
interest of this line of research, electronic cooling via radiative heat transfer consti-
tutes a promising avenue to effectively suppress relaxation to the atomic lattice, thus
preventing thermal damage in nanoscale devices. Also note that the ultrafast radiative
heat transfer phenomenon here investigated can be actively switched on and off by
gating the graphene structures.

In the second part of this chapter, we have shown that the characteristic weak electron-
phonon coupling in clean graphene allows us to reach high electron temperatures
well above the lattice temperature, which in turn stays near ambient levels under
CW illumination conditions. This produces strong photothermal modulation in the
graphene optical response, which we exploit to predict large plasmon shifts in ribbons.
We further postulate this effect as an efficient way of dynamically imprinting a spatial
modulation of the optical response in extended homogeneous graphene, whereby
a spatially patterned optical pump is used to locally heat graphene electrons, thus
tailoring an on-demand nanoscale response. We illustrate this concept by showing res-
onant absorption in a photothermally imprinted grating, whose plasmons can couple
to far-field radiation, unlike those of homogenous graphene. Besides circumventing
the requirement of nanostructuring, this approach can potentially enable fast plasmon
modulation relying on the ability to shape the light pumping beams. Our findings are
crucial for the design of nanoscale photothermal sources based on graphene.
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5.1 Introduction

5.1 Introduction

As discussed in previous chapters, graphene has recently emerged as an excellent plas-
monic material, which combines large field confinement and enhancement!'”%! with
relatively low losses(*®] and the ability to tune the plasmons electricallyl#!-4574.75.77.78]
or magnetically.l7®] In particular, electrical doping using gates can change the Fermi
energy of the carbon layer by as much as E; ~ 1eV from its undoped state,'°® thus
opening a 2E; optical gap and effectively sustaining well-behaved plasmons up to
energies ~ Ep. A unique characteristic of plasmons in this material is that they are
sustained by a comparatively small number of electrons.[8! We thus expect that the
excitation of a plasmon in a graphene nanostructure will significantly modify the
population of the electronic levels, to the extent that its electrical properties will be
strongly affected. Plasmons quickly decay into hot electrons, leading to observable
photocurrents,[1>*176:177] and eventually thermalize to an elevated electron temper-
ature in extended graphene.[151-153]

In this chapter, we first show that the excitation of a single plasmon in a graphene
nanostructure produces profound modifications in its electrical properties, which we
then use to detect the presence of the plasmon. Our quantum-mechanical calculations
confirm the excellent performance of graphene quantum dots!'78! for on-chip elec-
trical detection of single plasmons. More precisely, we find a twofold increase in the
electrical current passing across a nanographene junction when one of its plasmons
is excited. Furthermore, we scale up the size of the nanostructure and demonstrate
an efficient mid-infrared photodetector working at room temperature, together with
our experimental collaborators.

5.2 Ballistic electrical detection of graphene plasmons

5.2.1 Theoretical model

Our proposed structure is based on the concept of molecular junctions,'79-183] as
illustrated in Fig. 5.1a, where a graphene hexagon quantum dot (GHQD) is contacted
to two semi-infinite graphene sheets that act as electrodes. The GHQD (2 nm side
length) is connected to these electrodes through two carbon-carbon bonds on either
side, thus configuring a nanojunction.

Here, we simulate the optical response of graphene by using the random-phase ap-
proximation to calculate the noninteracting susceptibility,1*? in which the electronic
states j are obtained from a nearest-neighbors tight-binding model with a hopping
energy of t = 2.8eV (see Section 1.3 for more details). We consider realistic lev-
els of doping and graphene quality, with an intrinsic electron lifetime T =66fs (i.e.,
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5. LIGHT DETECTION WITH GRAPHENE

fit~! = 10meV). In order to include the effect of the DC biased contacts, we supple-
ment the tight-binding Hamiltonian Hy with the an electrostatic potential set up by
such bias, including the potential resulting from the static response of the GHQD. The
electronic states of the system are then calculated following a series of self-consistent
iterations until convergence in the Hartree term incorporating the DC potential is
achieved.

The external perturbation from the incident light is introduced through a potential
¢ (r) = —r - E*™, where E** is the light electric field. This allows us to calculate the
absorption cross-section o, obtained from Eq. 1.38.

After excitation and subsequent decay of plasmons in the GHQD, the system is ther-
malized within 10s fs. We compute the electron temperature as(>®]

Te — |:Finaabs (hVF)2 :|3 i

5.1
2.3Ak; G-

where F,, is the incident light fluence, vy ~ 10°m/s is the Fermi velocity, ky is the
Boltzmann constant, and A is the graphene area. Then, we can calculate the chemical
potential by requiring that the Fermi-Dirac distribution f7 (E;) conserves the number
of electrons and describes an excess of energy equal to the absorbed energy (ab-
sorption cross-section times light fluence, see below) relative to the ground state.
A temperature-dependent Hartree term is also obtained, incorporating the electron
distribution fr (E;).

We evaluate current-voltage (I-V) curves using the well-known expression!!79:184-186]

[ee]

_x dE T (E,V) [fr,(E—p)— fr.(E—pg)], (5.2)

I
—0Q

where u; = Ez —eV /2 and ug = Ep + eV /2 are the electrochemical potentials in the
two contacts, which are assumed to remain in local equilibrium, E is the electron
energy, fr (E) = [1+exp(E/ky T.)]™" is the Fermi-Dirac distribution at an electron
temperature T, of electrodes, and T (E, V) is the transmission function!'3?! (see Ap-
pendix E). We assume an initial temperature (before illumination) T, = 300K in this
section.

We have calculated the density of state (DOS) at the edge of a doped semi-infinite
graphene sheet by direct summation of tight-binding electron states in ribbons of
increasing width. We find the result to be nearly indistinguishable from the DOS
for infinite graphene, which in the range of electron energies E under consideration
(—t < E < t) reduces to the analytical expression[®*]

_8 1 i X
=l \/4(1+x)2—(x2—1)2(p(2’4q4(1+x)2—(x2—1)2)’ &2
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5.2 Ballistic electrical detection of graphene plasmons

where x = |E/t| and ® (7t/2, y) is the complete elliptic integral of the first kind.

The average number of plasmons excited in the nanojunction by an incident pulse of
fluence Fj, is given by
— F inT abs

P fiw,

5.4

where fiw), is the plasmon energy and o, is the absorption cross-section. We further
define the plasmon-to-charge conversion efficiency as the ratiol'87-188]

|i0n — iOl thAteff

n= > (5.5)
€ Finaabs

which gives the additional number of electrons circulating through the junction as a
result of plasmon excitations, normalized to the number of exciting plasmons (i.e.,
each excited plasmon produces the circulation of 1 additional electrons through
the junction during its lifetime). Here, i,, and i, are the currents under resonant
illumination and in the absence of illumination, respectively, while At is an effective
time interval during which the electron gas remains at an elevated temperature after
pulse irradiation. We take At.; = 200fs as a conservative estimate.!14%150]

5.2.2 Toward single plasmon detection

We assume the entire structure to be doped to a Fermi level of 0.8 eV and consider
an external illumination with polarization perpendicular to the junction. For this
polarization, the plasmons excited in the GHQD should have the bulk of their induced
charge piled up near the sides of the hexagon that are far from the semi-infinite
contacts. Therefore, these plasmons are indeed similar to those of the isolated hexagon
(i.e., without the contact). We thus neglect the contacts in the optical response and
focus on the central part of the nanojunction in order to simplify our analysis. A
pronounced plasmon resonance is observed at ~ 1€V in the simulated absorption
spectrum (Fig. 5.1b), which has a dipolar nature (see inset).

We now calculate the electrical I-V response of the nanojunction for different inci-
dent photon energies using the Landauer formalism,['8+18] formulated in Eq. 5.2. In
particular, we show the current right after light pulse irradiation and subsequent ther-
malization of the electron gas at an elevated temperature T,. The results are shown
in Fig. 5.1c. When the external illumination (30 mJ/ m? fluence) is resonant with the
dominant GHQD plasmon observed in Fig. 5.1b, a clear amplification of the current
i, is observed (red curve) compare with the current i g for off-resonance illumination
(blue curve) or the current i, in the absence of external light (dashed curve). The
maximum variation predicted by this figure between on- and off-resonance conditions
corresponds to a factor of 2 in the observed current.
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Figure 5.1: Electrical detection of plasmons in a graphene hexagon quantum dot
(GHQD) nanojunction. (a) We show a sketch of the structure under consideration,
consisting of a GHQD connected to two semi-infinite graphene sheets that operate as
electrical contacts. Currents are measured under an applied direct current (DC) bias
across the nanojunction, possibly in the presence of plasmons excited by external light
that is polarized along the perpendicular direction. (b) Calculated absorption cross-
section of a single GHQD doped to a Fermi energy Er = 0.8 eV. A pronounced plasmon
resonance peak is observed at ~ 1 eV photon energy, whose associated induced charge
in shown as an inset. (¢) Calculated current as a function of bias voltage in the
presence of external illumination for two different photon energies, corresponding to
on- and off-resonance conditions relative to the prominent plasmon shown in (b) (red
and blue curves, respectively). The current in the absence of external illumination is
shown as a dashed curve. (d) Electron energy levels (left scale, horizontal lines) of the
GHQD in the presence of external illumination under on- and off-resonance conditions
(right and left panels, respectively). We also show the density of states (DOS, orange
curves, lower scale) of extended graphene, the electron temperature T, right after
irradiation (labels), and the level occupancy (upper scale, green dots). The latter is
dramatically reduced near the Fermi level (0.8 V) under resonant illumination (right
panel).
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Figure 5.2: Toward single plasmon detection. (a) Calculated current as a function
of incident light fluence (lower scale) for different DC bias voltages in the same
structure as in Fig. 5.1a. We consider a resonant photon energy ico = 1.06eV. (b)
Plasmon-to-charge conversion efficiency as a function of incident light fluence. The
fluence-dependent number of excited plasmons and the electron temperature right
after laser pulse irradiation are shown as upper scales in (a) and (b), respectively.

As expected, the current scales linearly with the DC applied voltage (Fig. 5.1c). The
slope of these curves is related to the number of available electronic levels contained
in the central GHQD for energies lying in between the Fermi levels of the two gates, as
shown in Fig. 5.1d. Actually, we can obtain further insight into the plasmon-enhanced
conductivity of the nanojunction by examining the distribution of GHQD energy levels
with and without excited plasmons (Fig. 5.1d). In the absence of external illumination
or under off-resonance conditions (Fig. 5.1d, left panel), the island shows several unoc-
cupied electronic states right above the Fermi level. When switching to on-resonance
illumination, the occupancy of these energy levels is dramatically modified (Fig. 5.1d,
right panel, green dots) as a result of energy absorption from the optical pulse. This
effect is more pronounced for states that are closer to the unbiased Fermi energy,
which therefore contribute more efficiently to modify the electrical conductivity of
the GHQD, leading to amplification of the currents when plasmons are excited. An-
other element that controls the obtained current is the electronic density of states
(DOS, given in Eq. 5.3) of the graphene contacts (Fig. 5.1d, lower scales), which
evolves rather smoothly over the relevant range of electron energies.

The number of plasmons that are required to be excited in the GHQD in order to
observe a detectable variation in the current across the junction is an important pa-
rameter that permits us to assess the performance of the device. We show in Fig. 5.2a
the dependence of the current on light fluence under on-resonance illumination con-
ditions (hw = 1.06 V) for different DC bias voltages applied across the nanojunction.
All curves display a similar linear increase of the current with light fluence, although
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Figure 5.3: Plasmometer based on a GHQD junction. (a) Variation of the electric
current through the device of Fig. 5.1a (color scale) as a function of both incident
photon energy and Fermi energy for a fixed DC bias voltage of 0.1 V and a light fluence
of 30mJ/m?. (b) Absorption cross-section of the GHQD under the same condition as
in (a).

larger voltages produce more intense currents and reveal a nonlinear dependence of
the elevated electron temperature. We also show the average number of plasmons
sustained by the GHQD (upper scale), as estimated from the optical absorption cross-
section, and the plasmon energy. These results indicate that the device is capable of
detecting single-plasmons. Nevertheless, the current shows a monotonic increase with
light fluence, which should directly permit correlating the readout of an ammeter with
the number of plasmons excited by the optical pulse in the graphene nanoisland. We
thus propose to exploit the graphene nanojunction as a plasmometer with a sensitivity
down to the single-plasmon level.

An important figure of merit for our plasmometer is the so-called plasmon-to-charge
conversion efficiency 1),['87-188] defined in Eq. 5.5, which gives the number of addi-
tional electrons that circulate through the junction as a result of the excitation of one
plasmon. As a conservative estimate of 1, we assume that the electron stays at the
initial elevated temperature during 200 fs, which is of the order of what is observed
in pump-probe experiments.['4%150] Remarkably, the efficiency reaches values of 8
electrons per plasmon (Fig. 5.2b), which is around 18 times larger than previously
obtained results for plasmons propagating along silver nanowires.!'® Additionally, a
negative correlation between efficiency and light fluence is observed, consistent with
previous experimental studies.!188]

5.2.3 Toward a tunable plasmometer

Via chemical doping or electrical gating, the spectral position of the plasmon reso-
nance supported by our proposed device (Fig. 5.1a) can be varied over a wide spectral
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Figure 5.4: Size dependence of the plasmometer performance. We present the
optical absorption cross-section (left scales) and the electric current through the plas-
mometer device (right scales) as a function of incident photon energy for GHQDs of
different side lengths (4, 2, and 1 nm, from top to bottom).

range, as shown in Fig. 5.3b. It is reassuring to observe that the corresponding elec-
trical signal (Fig. 5.3a) shows a similar dependence on both the doping level and
the photon energy as the optical absorption of the GHQD (Fig. 5.3b), further sup-
porting the ability of the nanojuction to serve as a plasmometer (i.e., as a nanoscale
spectrometer from the point of view of the external illumination). We note that the
stronger spectral variations of electrical current are observed at higher Fermi energies
due to the availability of a denser set of electronic states that are influenced by op-
tical heating. Remarkably, the variation of the electric current follows rather closely
the evolution of the occupancy of electron states in the vicinity of the Fermi level
(similar to that shown in Fig. 5.1d), with strong features emerging near the plasmon
resonances.

An alternative way of shifting the plasmon energy consists in changing the size of

the GHQD. A series of nanoscale devices similar to the one considered above could
then act simultaneously to detect different light wavelengths. As we show in Fig. 5.4,
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when the size of the GHQD decreases, the main plasmon resonance moves to higher
photon energies, thus covering the near-infrared spectral region. Importantly, the
resonance features in the electrical spectra also shift to higher photon energies (Fig.
5.4, right scale) and actually coincide with the resonance peaks in the absorption
cross-section (left scale). This further corroborates the excellent performance of the
proposed nanojunction as a spectral plasmometer device.

5.3 Efficient detection of mid-infrared light at room
temperature

Inspired by the theoretical predictions presented in the last section, we continue our
design for the plasmometer, eventually leading to an efficient mid-infrared photode-
tector as we show in this section. Note that the experimental results presented here
are from our collaborators.

5.3.1 Operating mechanism and device characterizations

Our designed structure is shown in Fig. 5.5a, the experimental images of which are
displayed in Fig. 5.5f. It is composed of two metal electrodes and a photoactive
channel, which consists of multiple graphene-disk plasmonic resonators (GDPRs)
connected by graphene nanoribbons (GNRs). The graphene structure is on a 60 nm
diamond-like carbon (DLC) thin film grown on a silicon substrate. GDPRs serve both
as sources of thermalized carriers produced by plasmonic resonances therein and
leads to GNRs. Due to the significant mismatch between the geometrical dimensions
of GDPRs and GNRs, the electrical conductance of the device is dominated by that of
GNRs, which possess attractive transport properties. First of all, lateral confinement
produces a bandwidth of ~ T/W (T ~ 0.5eV-nm with W the GNR width!18%190]).
furthermore, the fabrication process generates a high degree of edge roughness in
GNRs, which in turn introduces disordered localized potentials!8%-19%) to affect the
carrier transport therein.

For low or moderate T,, the carrier transport is dominant by the nearest-neighbor
hopping (NNH)['?) with a characteristic thermal activation energy ky Tyxg. On the
other hand, for sufficiently high T, carrier thermal excitation (TCE) directly over the
potential obstacles provides an additional transport channel'8%19%:193] characterized
by a higher activation energy kg Trcg- Both NNH and TCE processes are sensitive to
T,. Figures 5.5b-e illustrate the operating principle of our device on the basis of these
concepts. The excitation and the subsequent decay of plasmons (eventually increasing
the electron temperature) are identified as a thermal activation mechanism of the
electrical conductivity in the device.
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Figure 5.5: Device design and operation principle. (a) Schematic of the proposed
device, composed of graphene-disk plasmonic resonators (GDPRs, red circles) con-
nected by quasi-1D graphene nanoribbons (GNRs). (b) Cartoon illustrating the dis-
order potential (solid curve) around the chemical potential before photoexcitation.
The grey shadowed area denotes the states occupied by electrons, whereas filled and
open circles refer to electrons and holes associated with thermal smearing at room
temperature. (c) After photoexcitation on resonance with the graphene plasmons,
electron-hole pairs are produced, resulting in a higher charge-carrier temperature T,.
(d) Mlustration of thermal-carrier excitation (TCE) transport, in which electrons with
higher thermal energy can overcome the localized potential barriers. (e) Illustration
of nearest-neighbor hopping (NNH) transport, in which thermalized electrons evanes-
cently hop between neighboring localized states under the driving external electric
field. We use electrons to illustrate the principles of carrier transport for conceptual
simplicity. (f) Optical image of the device (left) and false-color scanning electron
micrograph of the graphene region (right). (g, h) Infrared extinction spectra of the
graphene area for incident light polarization perpendicular (g) and parallel (h) to
the GNRs. Insets of (g) and (h) show simulated electric-field distributions (|E| / |E,|)
at the corresponding plasmon resonance. The solid-red curve in (g) is the calculated
graphene absorption.
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Figure 5.6: Temperature dependence of carrier transport and photocurrent gen-
eration. (a) Conductance (G) versus environment temperature (T,) for our graphene-
plasmon device (square symbols) compared with unpatterned graphene (circles). We
use 3-layer graphene and a device of 40 x 40 um? area in both cases. Due to the
small channel resistance, the conductance of unpatterned graphene devices is ac-
quired with a bias voltage Vj, = 10mV using a four-point probe configuration that
eliminates the effect of contact resistance. The blue-dashed curve is a theoretical
fit from Eq. 5.6. (b) Measured (AG/AT,) /G, for both the graphene-plasmonic and
unpatterned-graphene devices with V;) = 1V. (¢) T, dependence of the photocurrent
in the plasmonic device under 12.2 um excitation with incident power P, . = 230 uW
(blue) and 660 uW (red). Inset: calculated electron (solid curve) and phonon (dashed
curve) temperature increases (AT, and AT)) under P;,. = 660 uW. The incident light
is polarized parallel to the GNRs.

In the experiment, the doping level of the stacked graphene is E; ~ —0.45eV. The
diameter of the GDPR is 210nm, and the length and width of the GNR are 60 nm
and 20 nm, respectively. Measured infrared extinction spectra are presented for the
incident light polarized either perpendicularly (Fig. 5.5g) or parallel (Fig. 5.5h) to
the GNR. In the inserts of Figs. 5.5g-h, we provide simulated near-field distributions
at plasmonic resonances. For both polarization directions, GDPRs support the first
dipolar plasmonic modes (insets of Figs. 5.5g-h) that create an absorption peak at
a wavenumber of ~ 820cm™!, in an excellent agreement with the analytical model
(solid red curve in Fig. 5.5g, see Section 2.5). When the light polarization is parallel
to GNRs, the FWHM of the plasmonic absorption peak covers a wavelength range
spanning from 10 to 16 um.

Figure 5.6a (square symbols) shows the conductance G of the device shown in Fig. 5.5
as a function of the ambient temperature (77—400K), measured at a low bias voltage
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V;, = 10mV such that the Joule heating is negligible and the device operates near the
thermal equilibrium (T, = T, = T,). The device has a total size of 40 x 40 um?. We
find that the electrical conductance shows two different behaviors in the measured
temperature range: a NNH low-temperature behavior from 77 to 300K; and a TCE
behavior at high temperatures when electrons acquire enough thermal energies to be
excited and cross the disordered potentials. We can model G (T,) as a sum of these
two contributions as,

G (T.) = Byyue ™i/2TeN + Broge™Tree/2Te (1 —N), (5.6)

with fitting parameters Byyy = 186.79uS, Brcg = 276.17 uS, Tyny = 42.8K, and
Trcg = 306.2K. In addition, we introduce another T, dependent function N =
[exp(10T,/T*—10)+1]"", in which T* = 342K acts as a characteristic tempera-
ture that separates the two regimes. The measured data are well reproduced by Eq.
5.6 (dashed curve in Fig. 5.6a) and the fitted activation temperatures are reasonably
consistent with those of previous studies.['8*-192] The thermal coefficient of conduc-
tance (AG/AT,) /Gy, where G, is the channel conductance in the absence of external
illumination, displayed in Fig. 5.6b indicates the device responsivity. It presents a fac-
tor of >20 increase over a wide temperature range with respect to the measurement
done on an unstructured 3-layer graphene sheet.

To evaluate in more detail the infrared photoresponse of our device, it is essential
to determine the increase in electron temperature AT, due to Joule heating and
light absorption. Here, we again adopt a two-temperature model to characterize the
electron T, and the lattice T temperatures in graphene. In the steady-state limit,
we find the total absorbed power P = SaA(Te3 — Tlg). The conservation of the heat
flow imposes the conditionA(Te3 — TIS) = k (T, — T,), where the cooling pathway due
to carrier diffusion to the metal contacts is incorporated in the effective active area
S,. Here, A is the electron-lattice coupling coefficient, dominated by the disorder-
assisted supercollision cooling,['*” while « is the coefficient of heat dissipation to the
substrate. The direct solution of these two equations allows us to write the electron
temperature as (see Sections 1.4.2 and 4.3)

P I
T, = +T, | + : (5.7)
S,k S.A

From Egs. 5.6 and 5.7, we obtain the calculated mid-infrared photoresponse shown
in Fig. 5.6¢c (dashed curves), which agrees well with the measured photocurrents
(symbols in Fig. 5.6¢) at a fixed bias voltage of 1V, Here, we take A= 7.89 Wm 2K >
and k = 1MW/m?K by assuming that the thermal conductivity of DLC is around
0.15W/mK.["%* The inset in Fig. 5.6¢c shows complete solutions of T, and Tj, dis-
playing a rise in electron temperature AT, = T, — T, ~ 1.72K at T, = 300K for an
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incident power P;,. = 660 uW. Note that the in-plane thermal conductivity, limited by
phonons, of the GNR (~ 80 W/mK)!'%*) is much larger than the thermal conductivity
of the DLC, which leads to a negligible temperature gradient along the GNR, so we
assume a uniform value of T, in the graphene nanostructure for our analysis.

5.3.2 Device scaling

When scaling down the device area Sg4, an increase in Joule heating is created from
the increased electrical power per unit area in the device V;,I,/S4. Under the same
measurement conditions as in Fig. 5.6 with P,,. = 660 uW and V}, = 1V, we note
that devices with a smaller footprint area enter into the TCE regime at a much lower
ambient temperature (~ 340K, ~ 280K, and ~ 250K for 40 x 40 ,urnz, 10x 10 ,urnz,
and 5 x 5um? devices, respectively), as shown in Fig. 5.7a-c by shaded areas, which
is well described by the theory (dashed curves in Fig. 5.7a-c).

In order to further understand the role of Joule heating, we also studied the relation-
ship between the photocurrent and V;. For the 10 x 10 um? device at T, = 77K, the
responsivity shows two distinct regimes (the two slopes in the blue symbols in Fig.
5.7d, moving from NNH to TCE regime with the increase of 1})). In contrast, for the
5 x 5um? device under the same conditions, a voltage of 1V is sufficient to drive the
device into the TCE regime without further changing the responsivity (red dashed
curve in Fig. 5.7d). Note that the Joule heating plays an important role here not only
for its ability to thermally bring the device operating in the TCE regime which offers
greater responsivity, but also to increase the power dynamic range of the device. In
Fig. 5.7e, Al is shown as a function of the total incident power P, and the actual in-
cident power on the device, from which the external responsivity AIS/ (Pi,.S4), with
S the area of the beam spot, is extracted to be 16 mA/W at room temperature. It is
obvious that the device works more linearly as a function of the incident light power
when operating in the TCE regime (T, = 300K) with respect to the NNH regime
(T, = 77K). Considering the exceptionally low electronic heat capacity of graphene
(see Sections 1.4.2 and 4.2), we predict that the device remains operational at GHz
light modulation frequencies.

5.4 Conclusions

In summary, in the first part of this chapter, we have shown through state-of-the-art
quantum-mechanical simulations that a compact graphene nanojunction (several tens
of nanometers in size) constitutes a ballistic device capable of yielding the number
of plasmons excited in a central graphene island with a sensitivity down to the single
plasmon level. The conductivity of the junction is shown to be severely modified by
the presence of excited plasmons, thus permitting a direct readout of the number of
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Figure 5.7: Device scalability and effect of Joule electron heating on the respon-
sivity. (a-c) Dependence of the photocurrent AI on environment temperature for
devices of (a) 40 x 40 um?, (b) 10 x 10 um?, and (c) 5 x 5um? area using fixed inci-
dence power P;,. = 660 uW, bias voltage V;, = 1V, and light polarization (parallel to
the GNRs). (d) Dependence of AT on V;, for the 10 x 10 um? (circles) and 5 x 5 um?
(squares) devices at an environment temperature T, = 77 K. Dashed lines are guides
to the eye. (e) Al as a function of P, for the 5 x 5 um? device. The upper horizontal
scale shows the power actually impinging on the device area. Filled (open) symbols
represent data acquired at T, = 300K (77 K). The red-solid curve is the theoretical
result.
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such excitations through a measurement of the electric current for a given bias volt-
age applied between the gates on either side of the junction. This strong dependence
of a nanographene quantum dot conductivity on its optical excitation state is inher-
ited from the peculiar band structure of this material, through essentially the same
mechanism that endows it with a strong electro-optical tunability: small changes in
the electronic structure are amplified through the participation of a large number
of conduction electrons in the optical response,!*®] but also in the electric transport
properties.

In the second part of this chapter, after scaling up the junction in size, we access the
mid-infrared spectral region and demonstrate, together with our experimental collab-
orators, an un-cooled and extremely sub-wavelength device that can efficiently detect
mid-infrared light with a broad operational bandwidth (at GHz light modulation
frequencies). Our design therefore holds great potential for on-chip nanophotonic de-
vices comprising photodetectors, spectrometers, and sensors, as well as for nanoscale
quantum devices that benefit from its ability to resolve single plasmons.
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6.1 Introduction

6.1 Introduction

Localized surface plasmon (LSPs) have attracted considerable attention in the nanopho-
tonics community due to their pivotal role in optical sensing applications such as
antibody-antigen,[1?6-1%8] gas [199:200] and pH[201:.292] sensors. These excitations also
enable the detection and chemical identification of single molecules through their
enhancement of molecule-specific Raman scattering intensities.[>%2%3] LSPs are rou-
tinely observed in noble metal nanostructures, appearing as pronounced spectral
features in their optical absorption and scattering spectra. Plasmon-based sensing
heavily relies on the ability of these collective modes to confine and strongly amplify
the optical near-field. These properties are equally responsible for the large nonlinear
optical response observed in metal nanoparticles,[?1:204-208] which has inspired alter-
native mechanisms for nonlinear plasmonic sensing. For instance, the aggregation of
gold nanoparticles caused by targeted heavy metal ions,!?°°! Escherichia coli bacte-
ria,?1°) or Alzheimer’s disease biomarkerst?!!] can be detected through an increase
in second-harmonic generation (SHG). Additionally, third-harmonic generation has
been recently claimed to offer great sensitivity to the dielectric environment compared
to the linear response.[?!?]

Doped graphene is widely recognized as a promising material platform for plasmonics,
capable of supporting electrically tunable plasmons with higher quality factors and
spatial confinement than those of metal nanoparticles.[41-4%73.79:213] Moreover, tun-
able graphene plasmons, so far observed at mid-infrared and THz frequencies, provide
the strong near-electric-field confinement needed for sensing.['3*214-216] In particu-
lar, graphene plasmons have been demonstrated to reveal vibrational fingerprints of
biomolecules.'>*] Additionally, the anharmonic electron motion associated with the
Dirac cones of this materiall®>>3] gives rise to an extraordinary nonlinear response in
extended samples.[217-218] 1.SPs in graphene nanoislands have been predicted to pro-
duce unprecedentedly high harmonic generation and wave mixing,*>2'°] indicating
their strong capability for nonlinear optical sensing.

In this chapter, we show through atomistic quantum-mechanical simulations, provided
in Section 1.3, that both the linear and nonlinear optical response of graphene nanois-
lands can be dramatically altered by the presence of a single neighboring molecule that
carries either an elementary charge or a permanent dipole of only a few Debye. As a
proof-of-principle demonstration, we focus on small graphene nanohexagons (GNHs),
similar to those produced with high-quality through chemical synthesis.[?2%221] Our
calculations indicate that the presence of an analyte can significantly modify the distri-
bution of conduction electrons in GNHs that are a few nanometers in lateral size,[222]
leading to new plasmonic features in their linear optical response. This interaction
may also break the nanoisland inversion symmetry, thus enabling plasmon-enhanced
SHG.[?%3] Analyte-induced plasmon features in the absorption spectra and increased
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6. PLASMONIC SENSING WITH GRAPHENE

SHG intensities occur even for initially undoped GNHs, suggesting that nanographenes
can serve as a tunable and efficient platform for detecting charge- or dipole-carrying
molecules.

6.2 Principle of operation

The small size of the GNHs under consideration demands an atomistic level of de-
scription to simulate their linear and nonlinear optical response.[?224] Following the
theoretical framework described in Section 1.3, we approximate their electronic struc-
ture using a nearest-neighbors tight-binding model.[*% %3] The resulting one-electron
wave functions are inserted into the random-phase-approximation susceptibility+% 5]
to yield the response of the GNHs.[?24] A straightforward generalization of this mean-
field approach is followed to obtain the SHG response.[?3] The interaction with the
static charge or dipole of the analyte is included as an external potential, which adds
up to the Hartree potential (neglecting exchange). The latter is found self-consistently
following a customary iterative procedure that yields the ground state of the nanois-
land in the presence of the analyte. We include inelastic processes in the response
through a phenomenological relaxation lifetime 7, assuming a conservative value
T =13fs (i.e., it~ ! = 50 meV).

The charge-carrier distribution of a graphene nanostructure can be significantly al-
tered by the presence of a neighboring charge or dipole,[??? even when the structure is
electrically neutral (i.e., undoped). In particular, a charge- or dipole-carrying molecule
can produce this effect (Fig. 6.1a). The resulting modifications in the plasmonic re-
sponse emerge as significant changes in the linear absorption spectrum triggered by
the presence of these types of analytes (Fig. 6.1b), thus providing the basis for an op-
tical sensor. We illustrate this effect in Fig. 6.1b, which shows the absorption spectra
of a neutral GNH with and without a neighboring molecule carrying an elementary
charge. In this example, the analyte induces a blue shift of the prominent absorption
peak and creates new features at lower photon energies. Even more dramatic changes
are produced in the nonlinear response, which we show in Fig. 6.1c by examining
the SHG nonlinear polarizability of the GNH. For the bare nanoisland (blue curve),
SHG is strictly forbidden due to inversion symmetry,'??*} while in the presence of the
analyte (red curve), this symmetry is broken and we observe an intense SHG response
for fundamental frequencies near the plasmon resonances of Fig. 6.1b.

6.3 Linear sensing

A more detailed analysis is presented in Fig. 6.2, which shows absorption cross-section
spectra of GNHs in the presence of a charge-carrying analyte, represented by an
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Figure 6.1: Linear and nonlinear optical sensing with nanographene. (a) Illustra-
tion of an armchair-edged graphene nanohexagon (GNH) interacting with a charge-
or dipole-carrying analyte (the white arrow indicates a permanent dipole moment).
The molecule induces asymmetry in the nanohexagon conduction electron distribu-
tion, which can be detected by measuring either the change in the optical absorption
spectrum or the onset of a second-harmonic signal. (b,c) Linear absorption cross-
section (b) and second-harmonic polarizability (c) of the GNH in the absence (blue
curves) or presence (red curves) of a nearby charge-carrying molecule. The analyte
produces new resonance features and spectral shifts in the linear response. Addition-
ally, it enables a large second-harmonic response from the nanohexagon, otherwise
prevented by symmetry in its absence.

elementary charge (Q*' = e) placed at a distance d,. from the graphene edge. The
external charge produces static changes in the valence electron density (Fig. 6.2,
top insets), which lead to modifications in the optical response. Specifically, in an
undoped GNH of side length L = 1 nm, with the external charge located d, = 0.5 nm
away from one of the hexagon corners, the static conduction charge displays a highly
asymmetric distribution as shown in Fig. 6.2a. This causes new plasmonic modes to
appear at 1.6 and 1.9 eV, which display dipolar patterns in their associated induced-
charge distributions (see insets). Additionally, the dominant peak of the unexposed
nanoisland (d, — o0), which also shows a dipolar pattern, undergoes a slight blue
shift. Obviously, these effects are reduced in magnitude when the analyte is further
away from the GNH (d,, = 2 nm curves). When moving to a larger nanoisland (L =
2 nm, Fig. 6.2¢), we observe equally substantial spectral shifts and emerging features
caused by the analyte.

When the GNH is highly doped (Q = —4e, corresponding to a Fermi energy ~ 1€V for
L = 1nm, Fig. 6.2b), the charge-carrier distribution is initially centrosymmetric (see
top inset), with charge accumulation at the hexagon edges due to Coulomb repulsion.
The analyte then induces a small asymmetry, which is insignificant compared to the
intrinsic doping. Consequently, only minor spectral changes are observed, even at a
short GNH-molecule distance d, = 0.5nm, which nearly disappear for d, = 2nm.
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Figure 6.2: Sensing of charge-carrying analytes through linear optical absorption
by nanographenes. We show the linear absorption cross-section of single GNHs
exposed to an individual singly-charged analyte (Q®* = e) placed in the graphene
plane at different distances d,. from the carbon edge (see legend in (c)). Doped (b)
and undoped (a,c) nanohexagons are considered with different side lengths L (see
labels). Conduction charge distributions are plotted above each corresponding panel
for d, = 0.5nm. Optically induced charge distributions are shown in (a) for three
dominant resonances (blue and red indicate charges of opposite signs). Spectra for

unexposed graphene correspond to d,, — ©0.
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Figure 6.3: Sensing of dipolar molecules through the linear optical absorption
of nanographenes. We show the linear absorption cross-section of individual GNHs
exposed to a single analyte carrying a permanent dipole (p®** = 50D in (a-c); p™' =
5D in (d-f)) placed at different distances d, above the hexagon center (see inset to
(d)). Doped (b,e) and undoped (rest of the panels) nanohexagons are considered
with different side lengths L, as indicated by labels. Conduction charge distributions
are plotted above (a-c) for d, = 0.5 nm. Optically induced charge distributions are
shown in (a) for three dominant resonances. Unexposed graphene is represented by
d, — oo.

High initial doping is thus detrimental for linear-absorption sensing. Nevertheless,
we have considered here singly-charged analytes, while typical charge-carrying an-
alytes, such as heavy metal ions, can hold many electrons, producing more intense
modifications in the nanohexagon absorption, even when it is doped.

In a similar fashion, GNHs can serve as detectors for dipolar analytes, which we
represent as point dipoles p***. We note for reference that small molecules (e.g., some
toxic contaminants) have typical permanent dipoles of a few Debyes!??*! (e.g., 1.83D
in hydrogen fluoride, 2.98 D in hydrogen cyanide, and 10.6 D in hydrogen cyanide
trimer). For illustration, we first consider the effect of a larger dipole p™** = 50D
(a characteristic value of ZnSe and CdSe nanocrystalst?2%227]) placed at different
distances d, above the hexagon center (see inset to Fig. 6.3d); this is an academic
exercise, as the size of a structure carrying such large dipoles exceeds the small
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Figure 6.4: Nonlinear sensing of charged and dipolar analytes. We show second-
harmonic polarizability spectra of single GNHs in the presence of an individual singly-
charged (a-c) or dipole-carrying (d-f) molecule. Results for charged (dipolar) analytes
are obtained using the same parameters as in Fig. 6.2a-c (Fig. 6.3d-f).

separation distances under consideration. We find the linear optical absorption Fig.
6.3a-c to be modified in a qualitatively similar manner as by the charged analyte
(Fig. 6.2), with dipolar resonances appearing again in the spectra. However, when
considering a smaller permanent dipole p** = 5D (i.e., like in the simple molecules
noted above), the linear absorption is rather insensitive to the analyte, even for very
small separation distances (Fig. 6.3d-f), so linear response is not useful for sensing
such molecules.

6.4 Nonlinear sensing

In contrast, the GNH nonlinear response undergoes large modifications for both
charge- and dipole-carrying analytes, as we show in Fig. 6.4, where we present second-
harmonic polarizability spectra corresponding to the systems considered in Figs. 6.2
and 6.3. In the absence of the analyte (d, — ©9), no signal is generated due to
inversion symmetry. However, the presence of an elementary charge (Fig. 6.4a-c) or
a dipole of 5D (Fig. 6.4d-f), which are typical values for small molecules, produces
a substantial SHG response. Like in previous studies,[?*) this response is enhanced
by plasmons of the nanostructure, particularly by the new resonances that emerge
due to the GNH-molecule interaction. In fact, the values of the SHG polarizability
shown in Fig. 6.3 are comparable to those measured for ~ 10 — 20 nm noble-metal
nanostructures,??-231] which are among the best currently available nonlinear mate-
rials. We remark that in contrast to the insensitivity of the linear optical response to a
dipole p*** = 5D (Fig. 6.3d-f), the dipolar analyte generates an intense SHG response
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(Fig. 6.4d-f) comparable to that created by a charged analyte (Fig. 6.4a-c), although
it quickly vanishes at distances of a few nanometers.

6.5 Conclusions

In summary, we have demonstrated through atomistic quantum-mechanical simula-
tions that nanographenes can serve as optical sensors of charge- and dipole-carrying
analytes with single-molecule sensitivity. We find substantial changes in the optical
absorption spectra induced by the presence of the analytes. Additionally, a strong SHG
signal is enabled even in centrosymmetric nanographenes, whose second-harmonic
response disappears in the absence of the external perturbation produced by the
analyte. The remarkably high sensitivity that we observe in these nanostructures is
inherited from the intrinsically large electro-optic tunability of graphene, which offers
an extra degree of control to optimize the sensing capability.

As a practical realization, nanographene structures could be passivated with thin
insulating layers, which would protect them from undesired chemical interactions
(e.g., charge transfer) in the complex environment of the analyte. As an example,
nanographenes could be deposited on a dielectric substrate, and then covered with
a subnanometer passivating layer that enables large graphene-analyte electrostatic
interactions as considered in this chapter. Colloidal dispersions of nanographenes
constitute another option, for which electrical doping produced by charge transfer
from the analytes or other surrounding molecules should be taken into consideration.
While the averaging effect due to the random spatial distribution of the analytes rela-
tive to the GNHs is very detrimental for linear sensing, this is not the case for nonlinear
sensing. It is worth mentioning that the ability to detect charge- or dipole-carrying
analytes, such as hydrogen cyanide or heavy metal ions, which are extremely toxic
substances, is crucial for the protection of human health and the natural environ-
ment. The method explored here constitutes an attractive avenue in this direction. It
should be noted that an advantage of SHG sensing lies in its robustness against unde-
sired electrical doping and variations in size and morphology of the nanographenes,
provided they are centrosymmetric. We remark that the present results rely on very
conservative values of the inelastic damping, and therefore, higher-quality graphene
nanostructures should contribute to enhance and sharpen the optical linear and non-
linear signals. Overall, the scheme proposed here constitutes a radical departure from
existing optical sensing approaches and holds great potential for pushing the limits
of detectability well beyond what is currently achievable.
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Conclusion and outlook

In summary, in this thesis we exploit the extraordinary electrical, thermal, and optical
properties of graphene to explore multiple novel designs of graphene-based nanosys-
tems with different types of functionalities.

The main results of this thesis are as follows:

* Universal analytical modeling of plasmonic nanoparticles. In Chapter 2 we
develop a simple analytical method to accurately calculate the optical response
of plasmonic nanoparticles, in which retardation effects are taken into account
through a perturbation manner. The plasmonic extinction spectra are described
through a small set of real numbers that only depend on the shape of each
nanoparticle.

The analytical model is computationally efficient and can be readily applied
to any plasmonic nanoparticle shape once the aforementioned parameters are
provided. As a potential application for sensing, this method serves as an ef-
ficient tool to estimate the capability of monitoring changes in the dielectric
environment through observed variations in the plasmonic response for a given
nanoparticle morphology.

* Light modulation with graphene. In Chapter 3, we show that monolayer
graphene, coupled to other optical resonators, can be used to produce unity-
order changes in the transmission, reflection, and absorption of light in the
vis-NIR domain through varying its doping level.

The mechanisms considered here for light modulation using graphene are highly
integratable. A device, based on these mechanisms, of only a few square microns
in size, can operate under a relatively low doping load. Therefore, these systems
are expected to be able to modulate visible-NIR (vis-NIR) light at a relatively
high speed with minimal power consumption. Our findings open a new path for
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the development of compact electro-optical components such as tunable vis-NIR
light filters, switches, and sensors, which are appealing for micro integration
and mass production.

Nanoscale thermal management with graphene. In Chapter 4 we predict
a fundamentally unique scenario: via non-contact heat transfer, the electronic
thermal energy in one hotter object can efficiently transfer to the electrons in
another colder object before it decays into phonons.

We also show that high electron temperatures well above the lattice tempera-
ture can be obtained in clean graphene due to its characteristic weak electron-
phonon coupling, which produces sizable plasmon frequency shifts in graphene
ribbons because of the strong photothermal modulation. We further exploit
this effect as an efficient way to spatially modulate the surface conductivity of
an extended graphene sheet through a spatially patterned optical pump to lo-
cally heat graphene electrons, thus dynamically controlling its resulting optical
response.

Our findings are crucial for the design of nanoscale photothermal sources based
on the use of graphene, with potential application in photothermal therapies and
efficient non-contact cooling in nanosystems, such as nanoelectromechanical
systems.

Light detection with graphene. In Chapter 5 we show that a compact ballistic
device based on a graphene nanojunction is capable of electrically detecting
plasmons excited in its central graphene island with a sensitivity down to the
single plasmon level. The conductivity of the junction is shown to be severely
modified by the presence of graphene plasmons through optical heating.

After scaling up the junction in size, we access the mid-infrared spectral region
and demonstrate an extremely sub-wavelength device that can efficiently detect
mid-infrared light and operate at room temperature. Our design therefore holds
great potential for on-chip nanophotonic devices comprising photodetectors,
spectrometers, and sensors, as well as for integrated quantum devices in view
of its ability to resolve single plasmons.

Plasmonic sensing with graphene. Finally, in Chapter 6 we demonstrate
through atomistic quantum-mechanical simulations that nanographenes can
serve as efficient optical sensors capable of detecting charge- and dipole-carrying
analytes with single-molecule sensitivity.

We find substantial changes in the linear optical absorption spectra induced
by the presence of the analytes. Additionally, due to the external perturbation
produced by the analyte, a strong second-harmonic signal arises even in cen-
trosymmetric nanographenes. Our proposed scheme constitutes a completely
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novel optical sensing approach and holds great potential for advancing the
detectability of highly-integrated optical sensors.

Future nanophotonic devices shall go "fast" and "small". Since the 5G (fifth generation)
era is coming, fast optical devices, such as light modulators, switches, and detectors,
are highly desirable to meet the standard bandwidth of this new era. Additionally,
wafer-scale integration of optical circuits/components is of great importance not only
due to its ability to enhance the operation speed, but also to minimize the energy
consumption of optical devices. Therefore, the combination of "fast" and "small" would
trigger plenty of emerging and fascinating possibilities, ranging from on-chip optical
sensors for monitoring swift bioreactions to smart optoelectronic navigators for the
automatic drive control, nano-sized light sources for highly-integrated optical circuitry
and subwavelength bio-imaging, as well as efficient passive radiative coolers for global
energy conservation. In this regard, we hope our proposals presented in this thesis
can serve as a helpful guidance for future nanophotonic devices.
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APPENDIX A

A.1 Electrostatic limit

Following the theoretical framework described in Section 1.2.1, in the electrostatic
limit (i.e., c = oo, when the incident light wavelength is much larger than the char-
acteristic length of the nanostructure), Eq. 1.22 becomes

1

MO, 1) = /f()f ) VeV ,
lr—r|

where .#© is a real symmetric operator that consequently admits an orthogonal set
of real eigenmodes &; = VF E; and eigenvalues u; satisfying

&(r) = “ider’/ﬂ(o)(r, 1) (1), (A.1)
J
D&M &) =1%6(r—1)5%. (A3)
j

The last expression (completeness relation) must be understood in the subspace of
electrostatic fields (i.e., irrotational and divergenceless vector distributions). These re-
lations allow us to expand the solution of Eq. 1.21 in terms of electrostatic eigenmodes
as

-1
E(r,w)= . [1 - eme/e—j_l} C(w)E;(r) A4

j i1

with expansion coefficients

Cje“(w) = % JdSrf(r) E;(r) - E™(r, w).

In Eq. A.4 we define the mode permittivity €; through the relation u; = 4n(e; —
1D

A.2 Perturbative solution including retardation

A direct extension of Egs. A.1-A.4 permits us to express the general solution of
Maxwell’s equations in terms of kj,-dependent complex eigenmodes é_’a =Jf ]:Zj and
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eigenvalues (i; of the symmetric operator ./, which satisfy

é(r) = I fd3r’jz(r r)-&.(r), (A.5)
f 25 (r)- é’ (r)=

Zé é’ r)—L 5(r—r')4, (A.6)
j

where the last expression (completeness) is valid in the subspace of divergenceless
vector fields (i.e., solutions satisfying the Coulomb law V - E inside the nanoparticle).
The solution for the field now becomes

CeXt(w) .
E(r’”)zz 1= (en/en—Dity 7 A7
where
Ce’“(w)— ! Jd3rf(r)E (1) - E*Y(r, w). (A.8)

We intend to express the retarded eigenmodes and eigenvalues in terms of the elec-
trostatic modes. For this purpose, we take s = kL /27 = ,/€,,L/ A as a size parameter
and write the perturbation expansion

M r) = MO )+ Y M),
n=2
where we find the n = 1 term to be zero, while the n > 2 terms are given by
A = (25 FOFE)

/|n —5

=21 [(n=3)x—r)®(x—1r)+(1—n)r—r

One can use the expansion fi; = ,u(o) + ,u(l) + ,u(z) + u(3) + -+ for the eigenvalues and

a similar one for the eigenmodes. After lengthy but stralghtforward algebra, we can
express the eigenvalues (n > 2, note that fi N( )~ 0and é’( ) — =0) as

i =Mj+4TL'A]-(S)=4TE[(6j—1)_1 +Aj(s)] (A.9)
with
A(s) =D as" (A.10)
n=2
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and
_ (2mi)" 3 3./ /
"= G 2L fd rf(r)fd r f(r) (A.11)
x{(n=3)r—r|"*[(r—r)-E,®)][(r—1) - E,@) ]+ QA —n)lr—r|"°E;x) - E;)}.

In this expression, the retardation corrections of the eigenvalue j are entirely ex-
pressed in terms of the electrostatic mode with the same index j.

A.3 Light plane-wave scattering

We consider an incident plane wave propagating along z and polarized along x, which
is taken to be a symmetry direction of the plasmonic nanoparticle. We can find, in
the far-field limit (i.e., k,r > 1 and r > r’), the induced dipole moment p = p, %
with

_ EhEO Z (fd?’rf(r) ij(r)eikhz) (fdgl‘f(l‘) ij(r)e—ikhz)

1/(em/en—1)—1/(e; —1)—A;(s) > (A12)

where we consider far-field emission along z as well. The numerator in this expression
receives retardation corrections both from the mode fields E;, and from the phase

factors e**+*_ In practice, we can define the mode volume V; as

V= % (J d’rf(r) E"jx(r)eikhz) (J d3rf(r) ij(r)eikhz) . (A.13)

and immediately find the mode volume in the electrostatic limit as

2
1
ij =7 fd?’rf(r) Ej (1) . (A.14)
This allows us to express the dipole p, = aE, in terms of the polarizability
Yi
(A.15)

_ 5
alw) = ZJ: 1/(em/en—1)—1/(€;— 1) —A(s)’

Importantly, in virtue of the closure relation given by Egs. A.3 and A.6, both the
mode volumes defined in either retarded or electrostatic regime satisfy the sum rule
2, V=V and 3;;V? =V, where V is the total volume of the particle. Additionally,
the a;; coefficient (see Eq. A.11) can be expressed in terms of the corresponding
mode volume.

After knowing the polarizability given in Eq. A.15, we can finally calculate the extinc-
tion, the scattering, and the absorption cross-sections following Eq. 1.13.
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A.4 Two-dimensional limit: plasmon wave functions

In the two-dimensional limit, we intend to find the electric field E produced by a
planar graphene structure in response to an impinging optical field E*, expressing
it in frequency domain w as the solution of the self-consistent equation

io(w) d*R’

E(R,w)=E* (R, w) +
( ) (R, w) we(w) ® | R-F|

Ve f(R)E(R,w).  (A.16)

Here, e(w) is the average permittivity of the materials on either side of the graphene
plane, while f (R) is again the filling function that is 1 when the in-plane 2D position
vector R lies within the graphene structure and O elsewhere (a vanishing positive
number in practice). It should be noted that we are formulating the self-consistent
electric field E in the graphene plane and the surface conductivity o(w) can be com-
puted using either Drude or local-RPA models. Defining the normalized 2D in-plane
vectors 6 = R/D and g(é) =Dn/f (é)E (§, a)), where D is a characteristic length of
the geometry under consideration (e.g., the side length of the graphene island), Eq.
A.16 can be recast as

&(9) :é’ext(é)m(w)fdzéf M(6,6")- 88", (A.17)

where 1 (w) =io/(wDe) and

M(6,8)=1/F(6)f(6')Vz8V;

is a real and symmetric operator. In consequence, M admits a set of real eigenmodes
&; (9) and eigenvalues 1/7; defined through

§(®) =n; f d*6' M(8,6")- &,(6"), (A.18)
such that the eigenmodes satisfy the orthogonality condition
fdzé 8(6)-8,(0)=5; (A.19)

and the closure relation
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where .#, denotes the 2 x 2 identity matrix in the sub-space of quasistatic electric-field
solutions. Using the above eigenmodes, we write the solution to Eq. A.17 as

where the expansion coefficients are given by
C;= f %6 ,6)- (6, w). (A.20)

From the closure relation, we have 5‘*”“(@, W)= ;i Cj (w) 5‘3(@ ), which allows us to
express the induced field as
C; o o=

’ (6).

#ind é’ —
O = D 1

We now define the plasmon wave function (PWF)

pi(B)=V5-VF(0)E (), (A.21)

which corresponds to the induced charge distribution of the plasmon eigenmode j.
Using the continuity equation along with Eq. A.16, we can write the induced charge
density p™ as

C
1nd _
(0 w)= E —1/7), —1/n(w)pl( ) (A.22)

Now, for a uniform electric field E*** associated with a light plane wave that acts on the
graphene structure (we remind that D is small compared with the light wavelength
so we can neglect the propagation phase in the incident field), we find, upon an
integration of Eq. A.20 by parts, C; = —Z - E®, where

= J d*8p;(0)d (A.23)

is a parameter that plays the role of the mode dipole moment. From the induced
charge density, we calculate the induced dipole moment as

pind (a)) — DBJdZé’pind(é,w) é"
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while comparing the above expression with the definition of the polarizability p™? (e) =
a(w) - E** and using Eq. A.22, we obtain the 2 x 2 in-plane polarizability tensor
a(w),

el
= 32 7
a(w)=e¢€D j 1/77(0))_1/"7]" (A.24)

Finally, we can calculate the extinction, the scattering, and the absorption cross-
sections following Eq. 1.13 as in the previous section.

In this thesis, we also consider the decay rate I' of a unit dipole p*™* oscillating at

frequency w and located at the position r in an inhomogeneous space (e.g., in the
presence of a graphene nanostructure), which is given by232!

=T+ %Im {(p=)" - EM}, (A.25)

where T, = 40°® [p=t|* /3c3h is the dipole decay rate in free space. We evaluate this
expression in the presence of a graphene island by integrating the induced charge (Eq.
A.22) weighted by the Coulomb interaction to yield the induced electric field

indrp/
. R'/D, w
EM(r, w)=—V, dZR/L//)
[r—R/|

evaluated at an arbitrary position r from the PWF defined on the graphene island.
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We provide a brief derivation of the fluctuation-dissipation theorem (FDT)[®%70] for
fluctuations of the charge density in the frequency domain p'l(r,w). We start by
considering a system characterized by its charge density p(r, t) and described through
the Hamiltonian H = H, + H;, where H,, is the unperturbed term, while

Hy = f d’rp(r, )¢(r, 1)

accounts for the time-dependent interaction between p and an external electric po-
tential ¢(r, t). Using first-order perturbation theory under the assumption that H;
vanishes in the t — —oo limit, we can write the eigenstates of the perturbed system

as
t

1Y () ~ [m) — %J dt’Hy(t") |m),

—00
where |m) is the eigenstate of H, with energy E,, (i.e., Hy|m) = E,, |[m)). Summing
the contributions from all perturbed states |, (t)), we obtain the expectation value
of the charge density induced by H; as

(pind(r’ t)) = (p(l‘, t)) - (p(r,—oo))

. t —E,/kgT
=— % Lo dt’J d3r; eT (m|[p(r, ), p(¥', )] Im) S (x', t')

. t
z—%f dt/fdsfx(r,r“, o', t),

where Z =Y. e En/ksT g the partition function at temperature T, while y (r,r/, t') is
the electric susceptibility of the system. The latter can be expressed in the frequency
domain by taking the Fourier transform of the above expressions:

~En/kyT _ o=En/kT

. 1 e
/ —_ / twt _ /
x(r,r,w)—fdtx(r,r,t)e = 2 2, (mlp)In) (nl p () Im) g

(B.1)
where we have used p(r,t) = eot/Tp(r)e ™ t/M a5 well as the closure relation

> In) (nl= 2.

At this point, we follow a similar procedure for calculating the self correlations of the
fluctuating charge density p'l(r, w). We find

(p(r, w)p(r', ")) = J dedt’ ete’t (pfl(r, t)p(r, "))

1 . I . /
— Z J ditdt’ el@tel®’t Ze—Em/kBTel(Em—En)(t—t )/h <m| p(l‘) |Tl> <Tl| P(I‘/) |m>

m,n

=218(w + w’)S(w),
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where
S(w)= 228 3" T {m p(e) ) (nl p () Im) S(heo + By, — ).

m,n

Comparing this expression with Eq. B.1, we obtain S(w) = —2# [n(w)+1] Im{y (r,1/, w)},
where n(w) = [e@/*T —1]71 is the Bose-Einstein distribution function. We conclude
that

(pl(r, )P, ")) = —4nhs (w + w') [n(w) + 1] Im{y (¢, r, w)}.

Additionally, interchanging pfl(r, w) and pl(r’, w’), we have
(p"(r, )p"(r', ")) = —4nh6(w + ') n(w) Im{x (¥', ¥, )}.

Finally, noting that y(r,r’,w) = y(r,r, w), the expectation value of the physically
meaningful symmetrized correlation becomes

("¢, )", )y = 5 [ (07, @), ) + ("¢, )", )]

=—4nhd(w + ') [n(w) + %] Im{y(¥,r, w)}.

This is the FDT used in Eq. 1.59 in Section 1.4.3, where we drop the ’sym’ subscript
for clarity.
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€ Vi/V ayp a4
llipsoid —0.871 0.994 5.52/(1—e,) —9.75/R>53
€ll1pso1 —1.35R1'54 . . €1 .
. —0.687 0.648
bicone —2.54R1S  —0.441/RO657 1.34/(1—€;) 1.04/(e;—1)
. —0.479
disk 1 36R0O872 0.944 7.05/(1—e;) —10.9/R%*8
. 1.39 0.514
ring —1.31 R1.73 +207/R267 724/(1 - 61) 191/(61 - 1)
. . 1.43 1.96
blpyramld —4.52R1'12 _1.73/R0.207 289/(1 - El) 179/(61 - 1)
drod —2.28 0.904 —0.573 0.213
squaredrod  _j 47R149  _0.411/R*?®  +3.31/R®7¥  —13.1/R%Y
lind —1.59 0.883 —1.05 0.0796
cyhnder —1.96R*  —0.149/R>%7  +3.02/R*%*  —9.08/R%08

Table C.1: Fitting functions for the parameters considered in Fig. C.1.

Following the description in Section 2.2, here we present the resonant permittivities
€; found by fitting the position and strength of the peak associated with mode j in the
absorption spectrum of the particle, the mode volume V; from Eq. 2.2, and a;, and
aj, from Eq. 2.5 in Fig. C.1 for seven morphologies (in addition to the ones shown in
Fig. 2.1), as a function of aspect ratio R (see upper insets). We also provide analytical
R-dependent fits in Table C.1.
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Figure C.1: Model parameters for various additional particle morphologies. We
show the resonant in-vacuum permittivity €;, the mode volume V;, and two of the
expansion coefficients a;, in Eq. 2.4, as a function of aspect ratio R, for the lowest-
order dipole mode (j = 1) of five selected morphologies (see upper insets). Symbols:
€, values extracted by fitting the corresponding absorption spectra (computed in the
electrostatic limit), V; values calculated from Eq. 2.2, and a;, and a4 values obtained
from Eq. 2.5. Solid curves: analytical fitting functions given in Table C.1. Symbol and
curve colors correspond to the different shapes of the upper insets.
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D.1 Description of graphene islands through plasmon
wave functions (PWFs)

Here, we apply the plasmon wave function (PWF) formalism to two parallel graphene
islands placed in a homogeneous medium of permittivity e and separated by a vertical
distance d = |z, — 2| along their normal direction z. It is then convenient to use an
eigenmode expansion for the response of each island ¢.[°% 101 This allows us to define
a complete set of PWFs p,; and real eigenvalues 7,;, where j is a mode index. More
precisely, the susceptibility of the ¢ island, taking to be in the z = 2, plane, admits the
rigorous exact expansion!®’]

p4;(0)p;(8) )
2@, )= 9321 /n“;_l /j?m( S 6z =260 — =), (D.1)

where j runs over eigenmodes, we use the notation r = (D, §,z), 6 is an in-plane
coordinate vector normalized to a characteristic length of the structure D, (we use
the diameter for disks), and

0O (w) = L&) (D.2)

€ O.)DZ

incorporates the response of the graphene through its local conductivity o,(w). It
should be noted that the latter depends on £ via the level of doping and the tem-
perature (see below). The PWFs and their eigenvalues satisfy the orthogonality rela-

tion[%%
fdz sz 951(9)%(9) _@ (D.3)
|G —a] N '

For islands with the same geometrical shape (e.g., disks), the PWFs and eigenvalues
are independent of size D,, even if D; # D,.

We can readily use Eq. D.1 to evaluate the heat transfer rate according to Eq. 1.61.
With some straightforward redefinitions, these equations remain the same, but now
the coefficients of the matrices that they contain are labeled by eigenmode indices
j instead of spatial coordinates r. More precisely, y, becomes a diagonal matrix of
coefficients

—5 € 1
Xejjo = Ojj D; 1/’742j _ 1/,,,(@)’

while the matrix elements of the Coulomb interaction reduce to

DZDZ (8)py (6
fd efdze’ p“f )p“f ) (D.4)
VD8 — D, 02 + d?
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Figure D.1: Radial components of the disk PWFs. We show p,,,(6) as defined in
Egs. D.6 for several low values of m and v (see also Table D.1).

when the operators to the left and right of v are referred to islands £ and ¢/, respectively.
Incidentally, in this work we focus on disk dimers that share the same axis of symmetry;
an eventual lateral displacement b between the islands is however easy to implement
by adding it to D, 6— Dg,é/ in the above expression.

In this PWF formalism, inserting Eq. D.1 into Eq. 1.63, we find that the polarizability
of a graphene island along a given in-plane symmetry direction x is given by

;2
a(w)=eD?» —— L (D.5)

where {; = f 0, d26 Ie) j(é ) is a normalized plasmon dipole moment.

D.2 PWFs for disks

In the disk geometry, the azimuthal number m provides a natural way of classifying
the PWFs. More precisely, we can label them using a double index (mv) and separate
the radial and azimuthal dependences as

Py (0) = Py (6) cos(mpg), (m=0), (D.6a)
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P51 (0) = Py (8)sin(mepg),  (m=1), (D.6b)

We insist that these PWFs are the same for both disks in a dimer, as they are indepen-
dent of disk size, and therefore, we drop the disk index £ for them. We also note that
the PWFs are doubly degenerate for m > 0 (i.e., they share the same eigenvalue 7,,,
and radial component p,,,(0) for both sine and cosine azimuthal dependences). We
obtain the radial component p,,,(8) by solving the Maxwell equations numerically
using the boundary-element method®*! (BEM) for a self-standing disk of small thick-
ness t ~ D/300 compared with its diameter D. The disk is described by a dielectric
function € = 1 + 4mio /wt, where ¢ is the Drude graphene conductivity (the actual
model used for o is irrelevant, as the PWFs depend only on geometry and not on
the specifics of the material). In the limit of small damping, the plasmons emerge as
sharp, spectrally-isolated features in the local density of optical states (LDOS).[213]
We average the LDOS over a set of off-center locations in order to access different
m’s efficiently. The radial components of the PWFs are then retrieved from the in-
duced charge density, while the eigenvalues are derived from the resonance condition
Nmy = Re{io/wD} at the corresponding LDOS peak maximum.

By construction, p;, , and p;  (see Egs. D.6) are mutually orthogonal according to
Eq. D.3. Additionally, PWFs with different m’s are automatically orthogonal. For the
remaining pairs of wave functions that share both the value of m and the azimuthal
dependence (either sine or cosine), Eq. D.3 reduces to

1/2 1/2
—47'CV nmvnmv’J 6do pmv(e) f Q/delpmv’(el)
0 0

T cos(myp) —(1/2)6,,
xf d (me)=(/2mo_ _5 D.7)
0 \/92+9/2—299’c05(p

Our calculated radial PWFs, already normalized according to Eq. D.7, are shown in
Fig. D.1 for the lowest values of (mv), while their associated eigenvalues are given
in Table D.1. The orthogonality for v # v is rather satisfactory, as illustrated in Table

m 0 1 2 3 4 5
v
1 | 0.0234 0.0720 0.0402 0.0283 0.0220 0.0181
2 | 0.0123 0.0165 0.0130 0.0109 0.0094 0.0083
3 | 00084 0.0101 0.0086 0.0076
4 0.0073

Table D.1: We list the values of —n,,, corresponding to the disk PWFs p,,, considered
in Fig. D.1 (see Egs. D.6).
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v 1 2 1 3 1 2
v
2 0.008 1 | 0.055 0.058 1
3 0.006 0.010 | 0.114 0.031 1 | 0.113 0.028
4 0.078 0.019 0.026
m=3 m=4 | m=5
v/
1 2 1 1
Vv
2 0061 1 | 0.063 | 0.064
3 0.114 0.026
4

Table D.2: Each entry in these tables is obtained by first numerically integrating the
left-hand side of Eq. D.7 and then take the absolute value. The values of m, v, and v/
cover the ranges considered in Fig. D.1 and Table D.1. All diagonal entries (v = v)
are 1 by construction. We only show v > v’ values because the results are invariant
under exchange of these two indices.

D.2, which shows the values obtained by numerically evaluating the left-hand side of
Eq.D.7.

Upon insertion of the disk PWFs in Eq. D.4, we find that v;; is diagonal by blocks
(two blocks per m, corresponding to the two different azimuthal symmetries of Egs.
D.6 and each of them contributing the same to the HTP). As y, ;; is diagonal, this
allows us to write P, as a sum over m’s, essentially reflecting the fact that only modes
of the same symmetry undergo mutual Coulomb interaction. The integrand of Eq.
1.61 then becomes an analytical function, except for the integral over radial wave
functions in v;;,. We finally write Eq. 4.1 for the HTB where the explicit dependence
of the involved matrices on m is indicated.

Only m = 1 PWFs exhibit nonzero dipole moments ¢, contributing to the polar-
izability a, in Eq. D.5. More precisely, we obtain Ci = 0.709, 0.023, 0.012, and
0.006 for v = 1 — 4, respectively, whose sum is only 5% below the exact full sum
for a disk, >, ¢% = /4% (this discrepancy can be attributed in part to the con-
tribution of ¥ > 4 modes, as well as numerical uncertainties in dealing with thin
disks). We use these coefficients and Eq. D.5 to obtain the absorption cross-section as
(4nw/c)im{a,}—(8mw*/3c*)|a,|?, where the second term (o< |a,|?) is negligible for
the small diameters of the disks under consideration (< light wavelength).
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Vic Vcr
/g

left central right
lead region lead

Figure E.1: Schematics of the graphene hexagon quantum dot (GHQD) junction,
consisting of a finite central region coupled to two semi-infinite leads via the potentials
Vic and Vg

Following the structure displayed in Fig. 5.1, it is natural to divide the system into
three parts as shown in Fig. E.1. We denote the Hamiltonian of the isolated central
region as H and the Hamiltonians of the left and right semi-infinite graphene sheets
(i.e., the leads) as H; and Hy, respectively. The couplings between the central region
and the leads are described by potentials V; . and Vg, respectively, as indicated in Fig.
E.1. With these definitions, the total Hamiltonian

I:\ISZI:\IC +I£IL+I£IR+‘7LC+VCR+VLE+V(?(R‘ (E.].)

permits us to write the Schrédinger equation in matrix form as[18% 186]

H, Vi 0 ) $1)
Vljc I:IC VACTR lpc) | =E| loc) |, (E.2)
0 Ve Hg |pr) |pr)

where |¢), |¢pc), and |¢g) are the single-particle wave functions associated with the
Hamiltonians of each of the three regions. Equation E.2 readily leads to

(EI—A,)1¢1) = Vicloc) (E.3)
VLTC|¢L>+I£IC|¢C>+‘7§R|¢R> =E|¢c), (E.4)
and
(EI—Hg) |pr) = Ve |w) (E.5)
We can recast Eq. E.3 into
lpr) = vaLc lpc) (E.6)
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where CA;Li = (E +ie _I:\IL)_I are the retarded (+) and advanced (—) Green functions
of the left lead, and € — 0% is a positive infinitesimal. Similarly, from Eq. E.5,

|pr) = G§VCR|¢C>- (E.7)

For simplicity, we assume the Green functions to be diagonal and given by GiR =—irni

times the density of states of the leads,!'”! given in Eq. 5.3. We now substitute Egs.
E.3 and E.7 into Eq. E.4 to obtain

A

[El —Ac— V.GV — Vi GiVer ] 1dc) = 0. (E.8)

5 = VG (E.9)
and '
2 = VG Ver, (E.10)

in terms of which the retarded (+) and advanced (—) Green functions of the cen-
tral region in the presence of the leads (i.e., the Green functions of Eq. E.8) reduce
to

G =(Ef —A.—$F—3)7". (E.11)
Finally, the transmission function (from left to right) can be formulated as! 8% 18]
T(E,V)=Tr([,G1}G7) (E.12)
With f‘L,R = i(i::R - i:ER)'

In order to calculate the transmission function, we write the GHQD Hamiltonian
as
HC = HTB + HHartree + Vbias: (E13)

where Hyy is the nearest-neighbors tight-binding Hamiltonian for graphene,[3%53]
Hyparree is the self-consistent Hartree interaction among conduction electrons (see
below), and the Vi, term represents the potential produced by the bias, which for
simplicity we assume to vary linearly across the gap separating the two gates.

Note that we project the operators using the carbon-site (discrete-space) representa-
tion. Specifically, we express the Hartree term as
A 2
Hyartree = zzvll’fTe(Ej) | ar . (E.14)
U
in terms of the one-electron wave function coefficients a;; in the carbon-site repre-
sentation[?>224] (see Section 1.3.1), the Coulomb interaction between carbon sites
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Vi, and the Fermi-Dirac distribution fr (E;) = {1 +exp [(EJ — ,u) [kg Te]}_l, which
gives the occupancy of each state j as a function of its energy E;. The leading factor
of 2 in Eq. E.14 stems from spin degeneracy. The Fermi-Dirac distribution depends
on the electron temperature T, in the GHQD, given in Eq. 5.1, and the T.-dependent
chemical potential u, which is determined from the condition that the total number
of electrons is conserved.
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