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ABSTRACT 

Hydropower plays a very important role in the world electricity generation nowadays. 

Hydropower is one type of renewable energy and is the only renewable energy source that can 

provide a wide range of power regulation with fast response, which is very important for the 

electricity grid stability. Hydraulic turbines are the key equipment of hydropower plants. The power 

concentration in hydraulic turbines is increasing very fast in the past years. As a consequence, heads 

and fluid velocities are higher, and the hydraulic excitation forces on the turbine runner increase. 

On the other hand, to improve the efficiency of hydraulic turbines, the thickness and weight of the 

runner have been decreased as much as possible, which also increases the stresses in the runner. 

Furthermore, the operation range of hydraulic turbines is widened in order to satisfy the end-users’ 

demand of larger regulation capacity. This operation at extreme off-design conditions leads to even 

larger forces. 

 

Due to these reasons, many fatigue failure cases have been reported in the literature. Some 

fatigue failure cases showed very large cracks, which also indicates the challenge of crack 

monitoring during operations. To monitor the cracks in hydraulic turbines, it is imperative to study 

the effect of a crack on the dynamic behavior of hydraulic turbines. The dynamic behavior of 

hydraulic turbines has been studied extensively during the past decade. However, most of these 

studies were focused on Francis turbines and pump turbines, and the dynamic behavior of other 

types of hydraulic turbines, e.g., Kaplan turbines, have still been studied limitedly. Moreover, all of 

these studies were conducted on runners without cracks, and the effect of a crack on the dynamic 

behavior of hydraulic turbines has still not been studied before.  

 

In the present thesis, the effect of a crack on the dynamic behavior of Kaplan turbines and 

Francis turbines has been studied in detail. The research emphasis is laid on Kaplan turbines. This 

is divided into two steps. First, the dynamic behavior of an intact Kaplan turbine runner is studied. 

Then, based on the dynamic behavior of intact turbine runners, the effect of a crack on one blade is 

investigated. A systematic approach has been used for study. The research start from numerical 

models, and then, the numerical results are validated by experiments. The studies on the numerical 

models are conducted step by step from simplified blade models to single blade models and 

continuously to whole turbine models. The knowledge obtained on Kaplan turbines is also applied 

to a Francis turbine runner, whose dynamic behavior was previously studied 
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RESUMEN 

La energía hidroeléctrica juega un papel muy importante en la generación de electricidad hoy 

en día. La energía hidroeléctrica es la única fuente de energía renovable que puede proporcionar 

gran regulacion de potencia con una respuesta rápida, que es precisamente lo que demanda la red 

eléctrica. El elemento más importante en plantas hidroeléctricas es la turbina hidráulica. La 

concentración de potencia en turbinas hidráulicas está aumentando muy rápido hoy en día. Como 

consecuencia, las presiones y velocidades son mayores, y por lo tanto las fuerzas de excitación 

aumentan. Por otro lado, para mejorar la eficiencia de las turbinas hidráulicas, así como para lograr 

mayores aceleraciones durante las variaciones de carga, el grosor / peso del rodete se disminuye 

tanto como es posible, lo que también aumenta es estrés que recibe el rodete. Además, el rango de 

operación de las turbinas hidráulicas se está viendo ampliado para satisfacer la demanda de los 

usuarios proporcionando una mayor capacidad de regulación. La operación de las turbinas en 

condiciones fuera de diseño conlleva todavía a mayores fuerzas y esfuerzos en el rodete. 

 

Debido a estas razones, han habido muchos fallos por fatiga de componentes de turbinas 

hidráulicas en los últimos años. En algunos casos se encontraron grandes fisuras en la estructura, lo 

que indica que son difíciles de detectar con los actuales sistema de monitoreo de estas máquinas. 

Para controlar la aparición de fisuras en turbinas hidráulicas, es imprescindible estudiar el efecto de 

estas fisuras en el comportamiento dinámico de turbinas hidráulicas. El comportamiento dinámico 

de turbinas hidráulicas se ha estudiado en detenimiento durante la última década.. Sin embargo, la 

mayoría de estos estudios se centraron en turbinas Francis y bomba turbinas, mientras que el 

comportamiento dinámico de otros tipos de turbinas hidráulicas, como por ejemplo, las turbinas 

Kaplan, no ha sido estudiado todavía con detalle. Además, todos estos estudios se realizaron en 

rodetes sin fisuras, con lo que el efecto de una fisura en el comportamiento dinámico de turbinas 

hidraulicas todavía no se conoce. 

 

En esta tesis se ha estudiado el efecto de una fisura en el comportamiento dinámico de turbinas 

Kaplan y Francis. El énfasis de la investigación está puesto sobre todo en turbinas Kaplan. Primero 

se ha estudiado el comportamiento dinámico de un rodete de turbina Kaplan intacto. Luego, 

basándose en el comportamiento dinámico de los rodetes intactos, se ha investigado el efecto de una 

fisura en una pala. Para realizar la investigación se ha realizado un estudio sistemático: las 

investigaciones parten de modelos numéricos, y luego los resultados se han validado con 

experimentos. Los estudios con los modelos numéricos se han llevado a cabo paso a paso, desde 

modelos de álabes simplificados hasta un modelo de un álabe de turbina Kaplan o del rodete entero. 

El conocimiento obtenido en las turbinas Kaplan también se ha aplicado a un rodete de turbina 

Francis, cuyo comportamiento dinámico se había estudiado previamente. 
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CHAPTER 1. INTRODUCTION 

The main purpose of this chapter is to explain the background and motivation of the topic of 

this thesis. First is shown why the topic of the thesis is important to be studied. Then, the state of 

the art in the effect of damage on the dynamic behavior of hydraulic turbines, the effect of damage 

in other types of turbines with similar geometries and the failure mechanism in Kaplan turbines and 

Francis turbines. The objectives and methodology are also introduced. Finally, the main 

characteristics of the turbines under analysis are introduced in this chapter. 
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1.1. Background and interest of the topic 

Hydropower plays a very important role in electricity generation in the world now. In 2016, 

approximately 16.65% of the electricity was generated by hydro resources (Figure 1-1). 

Hydropower is one type of renewable energy (hydro, solar, wind, geothermal, tide, etc.). During the 

past decade, the renewable resources used for electricity production have increased drastically 

(Figure 1-2(a)), especially the wind and solar power (Figure1-2(b)), while hydropower electricity 

generation has remained almost constant during this period (Figure 1-2(a)). In contrast, fossil fuels 

and nuclear generating sources are less used every year due to their environmental impact (Figure 

1-2(a)). 

 

 

Figure 1-1. World electricity generation mix in 2016 [1]. 

 

However, some of these renewable energy sources are quite dependent on the weather 

conditions, especially the wind and solar power, which makes their generation capacities difficult 

to be stable. This fact leads to the requirements of more regulation, flexibility and fast response of 

other electricity generating sources in order to stabilize the power grid. Hydropower is the only 

energy source that can provide a wide range of power regulation (from 20 to 100% the maximum 

generating power) with fast response (startup and stop and load changes in less than one minute). 

Furthermore, it can store large amounts of energy by using Reversible Pump-Turbine when there is 

a surplus of electricity in the grid. 

 

Hydraulic turbines are the key equipment of hydraulic power plants. According to the way of 

the energy conversion, the hydraulic machinery can be classified into two types: impulse turbine, 

e.g., Pelton turbines, and reaction turbine, e.g., Francis turbines and Kaplan turbines [2]. The 
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classification of hydraulic turbines will be introduced more detailly in Section 1.2. Under the 

abovementioned circumstances, hydraulic turbines are therefore increasingly working in off-design 

conditions, and they are subjected to transient events( start-stop, load variations and load rejections) 

much more times in one day than before [3, 4]. These transient events can induce high unsteady 

pressure pulsation to the runner, which can cause severer wear to the runner and greatly reduces its 

lifetime. Figure 1-3(a) shows an example of the dynamic stresses of a Francis turbine for different 

operating conditions. It is shown that for this machine, in the startup, low load and high load stages, 

the dynamic stresses are much higher than those at full power. This behavior is confirmed by 

analyzing the damage that the runner suffers at every operating condition in comparison with a 

startup (see Figure 1-3(b)). 

 

 

Figure 1-2. (a) World electricity production by source, 1990-2016. Data from International Energy 

Agency (IEA) [1]. (b) World wind and solar power generation trend from 1990 to 2016. Sources 

from International Energy Agency(IEA) statistics [1]. 
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Figure 1-3. (a) Stress in a runner blade of a Francis turbine for different operating conditions. (b) 

Relative damage of a start-up and different operating conditions of Francis runners. SNL: speed-

no-load. Source [5]. 

 

In addition, there is a constant trend to increase the power concentration in hydraulic turbines 

either for new power plants or during the upgrading of existing ones. As a consequence, heads and 

fluid velocities are higher, and the hydraulic excitation forces on the turbine runners increase. On 

the other hand, to improve the efficiencies of hydraulic turbines and to reduce the manufacture cost, 

the thickness and weight of the runner have been decreased as much as possible, which also 

increases the stresses in the runner [3].  

 

Due to all these reasons, several fatigue failures of different types of turbines have been 

reported in the literature [4, 6-13]. Cracking is the most common type of fatigue problem. D 

Frunzăverde, et al., reported a severe Francis turbine failure case, in which a large crack originated 

from the welt joint between one blade and the crown, and made the whole blade fractured (Figure 

1-4(a)) [13]. Egusquiza, et al. [10], reported a failure case in a pump-turbine, in which a part of the 

crown broke down due to the crack development under high hydraulic forces (Figure 1-4(b)). 

 

 

Figure 1-4. (a) Broken Francis runner [13]. (b) Broken Pump-Turbine runner [10]. 
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These severe failure cases also indicate the challenges of crack monitoring during operations. 

Egusquiza, et al. [14], have shown that the damage in Figure 1-3(b) is difficult to induce high 

vibrations to reach the vibration alarm of the monitoring system. To better monitor the crack failures, 

it is imperative to study the effect of a crack on the dynamic behavior of hydraulic turbines. 

Meanwhile, except for the above-mentioned common damage reasons, for each specific type of 

hydraulic turbines, there may be some special reasons for damage appearances.  

 

In the present thesis, the effect of a crack on the dynamic behavior of Kaplan turbines and 

Francis turbines has been studied in detail. The research emphasis is laid on Kaplan turbines. This 

is divided into two steps. First, the dynamic behavior of an intact Kaplan turbine runner is studied. 

Then, based on the dynamic behavior of intact turbine runners, the effect of a crack on one blade is 

investigated. A systematic approach has been used for study. The researches start from numerical 

models, and then, the numerical results are validated by experiments. The studies on the numerical 

models are conducted step by step from simplified blade models to single blade models and 

continuously to whole turbine models. The knowledge obtained on Kaplan turbines is also applied 

to a Francis turbine runner, whose dynamic behavior was previously studied. 

1.2. State of the art 

The state of the art related to the topic of this study has been divided into three different sections. 

The first one is the state of the art of Kaplan turbines, the second in Francis turbines, and the last 

one is the effect of a crack on the dynamic behavior of other similar types of turbines, e.g., gas 

turbines and aero-engine turbines, to provide some useful references for hydraulic turbines.  

 

1.2.1 Research on Kaplan turbines 

1.2.1.1 Fundamental knowledge about hydraulic turbines 

Hydraulic turbines may be classified in different ways. The most common classification is 

according to the energy conversion. According to the theory of hydromechanics, the mechanical 

energy of flowing fluid contains three components, which are the potential energy (z), the pressure 

energy (𝑝 𝜌⁄ ) and the kinetic energy (𝑉2 2𝑔⁄ ). If the mechanical energy of the unit weight of fluid 

is defined as E, then [15]: 

E = z +
𝑝

𝜌
+

𝑉2

2𝑔
(1 − 1) 

 

Different type of hydraulic turbine runner can convert different components of fluid 

mechanical energy. By this way, the hydraulic machinery can be classified into two types: impulse 

turbine and reaction turbine [2]. Impulse turbines only convert the fluid kinetic energy and they are 

operated in open air. Common impulse turbines are Pelton turbines and cross-flow (Banki) turbines. 

For reaction turbines, the fluid pressure energy and kinetic energy are converted within the turbine 

runner. Due to the characteristics of energy conversion, the reaction turbine must be fully submerged 

in water, which makes the working condition more complicated than impulse turbines. According 

to the way of geometrical features, reaction turbines can be classified into Francis turbines, Kaplan 

turbines and diagonal flow turbines. 

 

The performance of hydraulic machinery largely depends on the design of turbine runner. 
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During the turbine selection and design, a parameter called specific speed is generally used as the 

main criteria. This parameter summarizes the three physical parameters of a hydraulic turbine: head, 

flow rate and rotating speed, as expressed by Equation (1-2) [16]. 

 

𝑁𝑠 =
Ω𝑄1 2⁄

(𝑔𝐻)3 4⁄
(1 − 2) 

 

where 𝑁𝑠 is the specific speed, Ω is the rotating speed in radians per second, Q is the flow rate 

in cubic meters per second, H is the net head in meters, and g is the gravity acceleration. 

Consequently, with the given head and flow rate for a specific power plant, and the rotating speed 

required by the generator, the specific speed can be calculated and used as the starting point for the 

analytical design of the turbine. Figure 1-5 shows different turbine shapes selected according to 

different specific speed. 

 

 

Figure 1-5. Comparison of turbine shape vs. specific speed [11]. 

 

1.2.1.2. Description of Kaplan turbines 

The structure of a Kaplan turbine runner and the connected components is shown in Figure 1-

6. A Kaplan runner is usually composed by a hub and some blades with the rods connected to the 

hub. Inside the hub, there is a control system that can adjust the angle of the blades through the 
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rotation of the rods. The water flows axially through the runner, and for this reason, the Kaplan 

turbine is also referred to as axial-flow turbine. The advantage of Kaplan turbine over radial-flow 

turbines is that it can adjust the angle of the blades when the water flow condition changes, which 

improves the efficiency of power production and keeps the turbine always under on-cam conditions. 

The flow rate of the water through the turbine can be controlled by varying the angle of the guide 

vanes; the pitch of the runner blades must then also be appropriately adjusted. Each setting of the 

guide vanes corresponds to one particular setting of the runner blades in order to obtain the highest 

efficiency.  

 

 

Figure 1-6. Structure of a Kaplan turbine [17]. 

 

The heads of Kaplan turbines are usually low, which may cover a range from 1 m to about 30 

m. Under such conditions, a relatively larger flow rate compared with high head turbines is required 

for a given output. Therefore, Kaplan turbines are comparatively larger. Moreover, as having 

adjustable runner blades controlled by the control system, which is installed inside the runner hub, 

the construction of the Kaplan turbine becomes naturally more complicated. 

 

1.2.1.3. Main types of damage in Kaplan turbines 

Fatigue damage is one of the most common types of damage in Kaplan turbines. There are 

different stages of fatigue damage where defects may nucleate in an initially undamaged section and 

propagate stably until a catastrophic fracture [4]. Beach marks can usually be identified in the crack 

faces, which is an important sign of fatigue problems [9, 10]. Other types of damage in Kaplan 

turbines can be cavitation damage and silt erosion , etc.[18-20]. 

 

1.2.1.4. Research state of Kaplan turbines 

Until now, the dynamic behavior of Kaplan turbine runners has been studied very limitedly. 

Although many research conclusions on Francis turbines or pump turbines can be applied to Kaplan 

turbines, its structural characteristics determine that there are many differences of its dynamic 

behavior from that of Francis turbines or pump turbines. The runner of a Kaplan turbine is an 
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assembly of blades, hub and control system, and the blades of Kaplan turbines are not firmly 

constrained like those of Francis turbines or pump turbines. Moreover, the blades of the runner are 

far away from the head cover and the only nearby surface is the chamber wall due to the narrow 

clearance in the tip of the blades. The effect of the surrounding water and boundary conditions are 

different from that of Francis turbines or pump turbines. Danilo, et al. [21], studied the modal 

behavior of an axial flow turbine numerically and experimentally, and the results showed that the 

blades’ mode-shapes are not affected between each other due to the too rigid hub. Therefore, the 

modal behavior of the whole runner can be represented by the modal behavior of a single blade. 

However, for Kaplan turbines, the hub may be not as rigid as that of axial flow turbines, and the 

blades can probably affect each other’s vibration. All these things are worth a comprehensive study 

and are still not available in the literature. The effect of a crack on its dynamic behavior has also not 

been studied before. 

 

Kaplan turbines are subjected to both static and dynamic pressure loads. The static pressure 

load is proportional to the flow rate passing through the runner and the dynamic pressure load is 

commonly caused by the Rotor-Stator Interaction (RSI) [22], although it relatively small compared 

with the static pressure value due to the large distance between the guide vanes and blades in Kaplan 

turbines[23, 24]. Other dynamic phenomena such as vortex rope, tip vortex and Von Karman 

vortices [4, 24-26] can also cause dynamic pressure loads, but their appearances are less usual. Some 

studies [11, 23] have shown that the water pressure load can induce high-stress concentrations at the 

root area of the blade. Moreover, if the material has defects in this zone, the fatigue process can be 

greatly accelerated. Frunzaverde et al [11] reported a case where a large crack appeared at the 

leading-edge side root hole of the turbine blade due to high-stress concentrations. Because the 

runner is not a rigid body, the high hydraulic forces can be passed to the control system, and 

sometimes can break some other parts of the turbine. Yongyao et al [8] studied a case where the 

piston rod of the control system was broken also due to high hydraulic loads in the blade. 

 

 Some of these studies presented also cases of resonance, where the natural frequencies of the 

runner coincided with the dynamic pressure excitation frequencies, increasing drastically the blade 

vibration, and therefore causing severe damage on the blade. Transient events will often lead to high 

amplitude pressure fluctuations on different parts of the turbine including the rotating parts, which 

also affect severely the turbine residual-life. General transient events in hydro turbines can be load 

variation, no-load condition, startup and shutdown, load rejection, etc. [3]. 

 

Another case of fatigue damage in Kaplan turbines, but less common, is rubbing. Due to the 

small tip clearance (generally of about 0.05% the runner diameter), the blade tip may contact the 

stationary wall due to high radial forces, generally caused by the unbalances or fluid instabilities 

[27]. Rubbing in rotating machines is known to produce high impact forces and can lead to 

catastrophic failures in the worst-case scenario [28]. F. Thiery et al. [27] performed some theoretical 

analysis of blade tip-wall contacts. They introduced some parameters to study the problem, like the 

contact stiffness or damping. Results showed that, under rotation, if the contact frequency is near a 

natural frequency of the rotor, the vibration of the shaft could be amplified drastically, also 

increasing the strength of the contact. However, this study is only theoretical, and there are no failure 

cases of prototype Kaplan turbines due to rubbing available in the literature. 
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1.2.2. Research on Francis turbines 

1.2.2.1. Description of Francis turbines 

 

Figure 1-7. Structure of a Francis turbine [29]. 

 

Francis turbines are the most widely used type of hydraulic turbines due to their good 

performance in high and low water flow rates and heads as well as their low cost. The main structure 

of a Francis turbine runner and the connected components is shown in Figure 1-7. The runner 

consists of three parts: crown, band and blades. The blades are non-adjustable and firmly constrained 

by the crown and band. The flowing water first enters the spiral casing, which is an annular channel 

surrounding the runner, and then flows between the stay vanes, which give the water the optimum 

flow direction. Then, the water enters into the runner and produces the rotation in the runner. Water 

enters the runner radially and leaves axially. The guide vanes are adjustable, which on the one hand, 

can control the flow rate and load of the runner, and on the other hand, can ensure most energy of 

the water to be transferred to the runner without being consumed by the eddies and other undesirable 

flow phenomena. 

 

In design and manufacture, Francis turbines are much more complex than Pelton turbines, 

requiring a specific design for each head/flow condition to obtain optimum efficiency. With large 

flexibility of designs in consideration of various parameters, a large head ranges from about 30 m 

up to 700 m can be covered. The most powerful Francis turbines, which are installed in the Three 

Gorges powerplant of China, have an output of up to 800 MW. 

 

1.2.2.2. Main types of damage in Francis turbines 

The main types of damage in Francis turbines are approximately the same with those of Kaplan 

turbines introduced in Chapter 1.2.1.3. The rotor stator interaction (RSI) is much stronger in Francis 

turbines than that in Kaplan turbines due to the closer distances between the guide vanes and blades. 

Because the blades are nonadjustable, the leading-edge cavitation and vortex rope is more likely to 

appear in Francis turbines [30]. Vortex rope will result in so called draft tube surge which propagates 
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into whole hydraulic system eventually leading to fatigue cracks of the blades or power swing 

phenomena of the electrical generator [4, 31]. 

 

1.2.2.3. Research state of Francis turbines 

The dynamic behavior of intact Francis turbines has been extensively studied since the new 

century. These studies were conducted step by step and tried to understand the dynamic behavior of 

the real runners and the influence of all factors. Some of the investigations were conducted on pump-

turbines, but many conclusions are general for Francis turbines. The investigations are based on 

reduced scale runners or prototype runners. A real Francis turbine runner is connected to the shaft 

at the crown top face, and the shaft is connected to the generator as well as supported by the bearings 

and thrust rings. The runner is surrounded by flowing water with close distances to the covers and 

case walls. All these factors may affect the dynamic behavior of the runner.  

 

The first step is to research the dynamic behavior of the runner in air without any support. Most 

of them are based on reduced scale runner models [16, 32-34]. They discuss how the modal shapes 

of a Francis turbine runner or pump turbine runner are. The main modal shapes of this kind of 

structures are formed by the different number of nodal diameters. For Francis turbine runners, the 

maximum deformation is usually located in the band or the blades depending on the modal shapes 

and 𝑁𝑠 of the runners. 

 

Then, these reduced scale models were submerged into an infinite water domain [16, 32-34]. 

When a structure is submerged in water, its vibration is affected by the added mass, added damping 

and added stiffness effect. The added stiffness can nearly be neglected for hydraulic turbine runners. 

The added mass and added damping effect can be much more significant. The natural frequencies 

are mainly affected by the added mass effect, which may decrease the natural frequencies 20-40% 

compared with those in air depending on the modal shapes. The modal shapes with a higher number 

of nodal diameters have more affectation in the natural frequency value. Due to the added mass 

effect, the modal shapes in water can be slightly different from those in air. 

 

The influence of the support of a prototype Pump turbine runner has been investigated 

thoroughly in [35] experimentally and numerically. In that research, the supports varied from 

without any support to fixed support at the crown face and continues to connect with the shaft and 

generator constrained by the bearings and thrust rings. Results showed that the natural frequencies 

of some modes, particular the first mode, can vary a lot depending on the supports. 

 

The next is the influence of the boundary conditions of the water domain. In the beginning, the 

nearby surfaces were all treated as rigid walls. Tanaka [36] was one of the first authors who 

investigated this topic in pump turbines. He concluded that confining the runner with nearby rigid 

surfaces decreases the natural frequencies by about 50% of the natural frequency in air, which was 

more significant than in infinite water. These conclusions were also reached by Liang in its doctoral 

thesis for Francis turbine and pump turbine prototypes [37]. Mao and wang [38] also studied the 

influence of the clearances on the natural frequencies of a high-head Francis turbine, observing in 

this case, a reduction of 30-40% in the natural frequency compared with those in air depending on 

the modal shape. Valentín, et al. [39], investigated the effect of boundary conditions of a large 
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Francis turbine. They demonstrated that the radial gap has a big influence in the runner natural 

frequencies (about 40-50% of reduction against the natural frequency in air depending on the mode-

shape) and lower in the shaft and generator natural frequencies. 

 

In all of these works, the boundaries were always thought to be completely rigid. However, 

this is not always true for the real prototype runner. Head and lower covers that confine the runner 

are not completely rigid and have their own dynamic behavior, which may affect the dynamic 

behavior of the runner. Presas, et al. [40], observed in their investigation with a reduced scale pump 

turbine model that the nearby boundaries may not behave as completely rigid, which may affect the 

dynamic behavior of the runner. However, this phenomenon could not be investigated in detail. 

Petter, et al.[41], studied the housing effect on the modal behavior of a low specific speed Francis 

runner through installing the runner in air, in water and in the turbine house. They also found that 

some modes with high modal displacements on the disc became difficult to be distinguished 

probably due to the high damping. Valentín, et al. [42], experimentally studied the dynamic behavior 

of a vibrating disk submerged in a fluid-filled tank and confined with a nonrigid cover, and they 

found that when the natural frequencies of casing and disk are in the same frequency range, the 

dynamic behavior of the disk was affected especially when the distance between disk and cover was 

small. Huang, et al. [35], investigated numerically and experimentally the natural frequencies and 

modal shapes of the head cover of a pump turbine prototype, confirming that its dynamic behavior 

is complex and has to be considered when studying natural frequencies of prototype runners. 

 

Other factors that may affect the dynamic behavior of the runner can be the surrounding water 

conditions. For real prototype runners, the surrounding water is flowing and sometimes cavitation 

may occur, which have been shown to be able to affect the dynamic behavior of submerged 

hydrofoils [43, 44]. Therefore, the best way to research the dynamic behavior of runners is to 

measure the dynamic behavior of runners in operation directly. Valentín, et al. [45], have 

demonstrated the feasibility of detecting natural frequencies of hydraulic turbines while in operation 

using strain gauges and several natural frequencies have been determined accurately in their 

experiment. However, all the studies above were conducted on intact runners and the effect of a 

crack on the dynamic behavior of runners has also not been studied before. 

 

The fatigue failure mechanism in Francis turbines is approximately the same as that of Kaplan 

turbines. Most cracking failures in Francis turbines occurred at the zone of blade trailing edge near 

the crown [7, 13, 46, 47]. This is because, on the one hand, this zone is easy to have the highest 

stress concentration under the water pressure load, which has been demonstrated by many 

researchers[7, 13, 46-49], and on the other hand, this zone is the welding joint zone of the crown 

and blades, which makes it easy to have material defects and high residual stress [4, 13]. D 

Frunzăverde, et al. [13], showed that the large crack in that zone occurred due to both the high stress 

and material defects. Saeed, et al. [47], showed in their failure analysis that the cracks in that zone 

were due to the combination of the residual stresses, static stresses, and dynamic stresses.  

 

1.2.3. Research on other types of turbines      

Because there are not many studies on the effect of a crack on the dynamic behavior of 

hydraulic turbines, similar research on other types of turbines, e.g., aero-engine turbines and gas 
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turbines, may provide some useful references. 

 

The effect of a crack on the dynamic behavior of aero-engine turbines or gas turbines has been 

studied extensively in the past. These turbines can be seen as bladed-disk structures or one-

dimensionally periodic systems, which means they can be seen as assemblies with identical 

substructures in a one-dimensionally cyclic way. For bladed-disk structures with substructure 

mistuning, the well-known vibration localization will occur [51-57]. For a strongly localized mode, 

the frequency quickly deviates from the original tuned frequency, and the deformation localizes to 

the damaged substructure. The mistuning of substructures can be introduced by manufacturing 

tolerances or long-time wears. Cracking on the blades is also one type of mistuning and the vibration 

localization induced by it has been widely studied recently [58, 59].  

 

According to the models used for the study, these researches usually can be divided into two 

categories. One is on simplified models, like the lumped parameter models[58, 60]. For each 

substructure of one bladed-disk structure, the disk part and the blade can be simplified into lumped 

masses (or beams) separately or into one lumped mass together, and then massless springs are used 

to consider the coupling effects between different substructures. Using lumped parameter models, 

it is easy to do theoretical analysis to get some general conclusions on one type of bladed-disk 

structures, but the accuracy with real turbines is usually poor. Another one is on high fidelity models 

and the non-linear effect caused by the crack faces in contact [61, 62]. Using high fidelity models 

is computational time consuming, but good accuracies with real turbines can be obtained. 

 

Hydraulic turbines can also be seen as blade-disk structures or one-dimensionally cyclic 

systems. Therefore, a crack on the blade of one hydraulic turbine runner may induce vibration 

localization to it. However, each type of hydraulic turbines has its own structural characteristics. 

Therefore, crack induced vibration localizations in different types of hydraulic turbines ought to 

show different properties. Moreover, hydraulic turbine runners are surrounded by water and it may 

have large influences on the vibration localizations. Until now, there are still no studies on the 

vibration localization in submerged bladed-disk structures to the author’s knowledge. 

 

1.3 Research line 

The main research line of the Fluid Mechanics Department and the Center for Industrial 

Diagnostics and Fluid Dynamic (CDIF) is based on the dynamic behavior of hydraulic turbines. 

Since 2005, several theses presented were related to the topic of the dynamic behavior of model or 

prototype turbines runners [35, 37, 63]. Most of them are focused on Francis turbines or pump 

turbines. However, there are still some types of turbine runners, e.g., Kaplan turbines, whose 

dynamic behavior has not been studied before. Moreover, the effect of the runner damage has not 

been investigated as well. Some uncommon damage cases in some specific types of hydraulic 

turbines have been seen during those research years. Therefore, it was decided to perform an 

investigation on the dynamic behavior of a Kaplan turbine runner firstly. Then, based on the 

dynamic behavior of intact runners, e.g., Francis runners and Kaplan runners, the effects of a crack 

on the runners is investigated.  
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1.4. Objectives 

The main objective of this doctoral thesis is to evaluate the influence of a crack damage on the 

dynamic behavior of hydraulic turbines. To do so, two types of model or prototype hydraulic 

turbines, Francis turbine and Kaplan turbine, have been chosen for study. The objectives can be 

separated into two parts, the ones of Kaplan turbines and the ones of Francis turbines. 

 

-Objectives of the research on Kaplan turbines: 

• To study the dynamic behavior, i.e. natural frequencies and mode-shapes, of a prototype 

Kaplan turbine step by step from a plate to single blade and continuously to the whole runner. 

• To study the changes on the modal behavior of a prototype Kaplan turbine due to a crack on 

one blade. 

• To perform a failure investigation of the crack damage on a prototype Kaplan turbine blade 

to reveal the reason of the damage. 

 

-Objectives of the research on Francis turbines: 

• To numerically study the effect of a crack on the dynamic behavior of a Francis turbine 

runner model, applying the knowledge acquired with Kaplan turbines.  

1.5. Methodology 

The methodology of this thesis can be seen in Figure 1-8. The research topic can be divided 

into Kaplan turbines and Francis turbines. However, the research emphasis is laid on Kaplan 

turbines. This is divided into two steps. First, the dynamic behavior of an intact Kaplan turbine 

runner is studied. Then, based on the dynamic behavior of intact turbine runners, the effect of a 

crack on one blade is investigated. A systematic approach has been used for study. The researches 

start from numerical models, and then, the numerical results are validated by experiments. The 

studies on the numerical models are conducted step by step from simplified blade models to single 

blade models and continuously to whole turbine models. Then, the knowledge obtained on Kaplan 

turbines is applied to a Francis turbine runner, whose dynamic behavior was previously studied 
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Figure 1-8. The methodology of this thesis. 

 

1.6. Main characteristics of the turbines under analysis  

1.6.1. Prototype Kaplan turbine 

The Kaplan turbine under analysis has a head of 34 m and a maximum power of 73 MW. It is 

a vertical machine supported by a thrust bearing in the lower side of the generator, and two radial 
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bearings, one in the turbine side and another in the generator side. The structure of the turbine is 

shown in Figure 1-9. The runner has 6 blades rotating at 125 rpm, and the distributor has 24 guide 

vanes. The tip clearance is of 0.09% the outlet diameter of the runner (𝐷𝑜𝑢𝑡). Inside the hub, there 

is a control system to adjust the angle of the blades.  

 

 

Figure 1-9. Structure of the prototype Kaplan turbine. 

 

 

Figure 1-10. Main dimensions of the prototype Kaplan turbine. 

 

The main dimensions of the turbine are shown in Figure 1-10. The relationship between the 
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inlet diameter (𝐷𝑖𝑛) and the outer diameter (𝐷𝑜𝑢𝑡) is about 𝐷𝑖𝑛 𝐷𝑜𝑢𝑡 = 0.51⁄ . The total length of the 

shaft L is about 1.68 times of the runner outer diameter 𝐷𝑜𝑢𝑡. It is a one-piece hollow structure 

with a central hole. The outside diameter of the shaft 𝐷𝑠−𝑜𝑢𝑡  is about 0.16 times 𝐷𝑜𝑢𝑡 , and the 

diameter of the central hole 𝐷𝑠−𝑖𝑛 is 0.05 times 𝐷𝑜𝑢𝑡. The diameter of the generator 𝐷𝑔 is about 

1.4 times 𝐷𝑜𝑢𝑡, and it is formed by 48 poles that are supported by a spider type structure. Except 

for the generator, the other parts of the turbine are all made of stainless steel. However, the generator 

is formed by the poles and the spider structure, which are made from different types of materials 

and the total weight of the generator is 20300 Kg. The property of stainless steel is shown in Table 

1-1. The material properties of the generator are all the same with those of the stainless steel apart 

from a modified density to make its total weight to be 20300 Kg. 

 

Table 1-1. Properties of the Kaplan turbine material. 

Properties Young’s modulus Density Poisson’s ratio 

Value 193 GPa 7750 kg/m3 0.31 

 

One inspection of the runner showed a large crack starting from the leading-edge side root hole 

of one of the blades (Figure 1-11). The total length of the crack is about 600mm long. The machine 

was then investigated to reveal the cause of this large crack. 

 

 

Figure 1-11. View of the blade with crack. (a) Pressure side. (b) Suction side. 

 

1.7.2. Francis turbine runner model 

The intact Francis runner model used in this thesis is a replica at a reduced scale of 1:10 of a 

Francis turbine runner with a dimensionless specific speed of 0.56. This model is the same as that 

used in [16, 32]. The model runner has 17 blades and a diameter of 409 mm. The shape of the runner 

with the main dimensions is shown in Figure 1-12. The material used is a bronze alloy whose 

properties are given by Table 1-2. 

 

Table 1-2. Properties of the Francis runner model material. 

Properties Young’s modulus Density Poisson’s ratio 

Value 110 GPa 8300 kg/m3 0.34 

(a) (b)
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Figure 1-12. Francis runner model and its main dimensions in mm [16]. 
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CHAPTER 2. Study on Numerical Models 

 

The main purpose of this chapter is to numerically study the effect of a crack on the dynamic 

behavior of Kaplan turbines and Francis turbines. This chapter consists of three parts. The first part 

is a brief introduction to the theoretical knowledge that is possible to be used for analysis. The 

second part is a systematic study on the dynamic behavior of Kaplan turbines with and without a 

crack from simplified blade models to the whole runner. The third part is the effect of a crack on the 

dynamic behavior of a Francis runner model. The content of the third part has been published in the 

paper” Zhang M, Valentin D, Valero C, et al. Numerical study on the dynamic behavior of a Francis 

turbine runner model with a crack[J]. Energies, 2018, 11(7): 1630”. 
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2.1. Theoretical background  

2.1.1. System parameter determination 

For a single degree-of-freedom (SDOF) system, the governing equation of the structural 

motion can be described by Eq. (2-1), and the solution of it can be expressed as in Equation (2-2). 

 

𝑀𝑠�̈� + 𝐶𝑠�̇� + 𝐾𝑠𝑥 = 𝐹𝑠(𝑡) (2 − 1) 

 

x = X sin(𝜔𝑡 + 𝜑) (2 − 2) 

 

where 𝑀𝑠, 𝐶𝑠, 𝐾𝑠 are the mass, damping and stiffness of the structure, x is the displacement 

at any given instant time, t, X is the maximum displacement, circular frequency ω =  2 ∙ π ∙ f, f is 

frequency (Hz) and φ , the phase shift. The damping ratio ξ , the natural frequency 𝜔𝑛 , and the 

damped natural frequency 𝜔𝑑 are as following:  

 

ξ =
𝐶𝑠

2√𝐾𝑠𝑀𝑠

(2 − 3) 

 

𝜔𝑛 = √
𝐾𝑠

𝑀𝑠

(2 − 4) 

 

𝜔𝑑 = 𝜔𝑛√1 − 𝜉2 (2 − 5) 

 

The frequency response function (FRF) of single dof system can be calculated as the 

relationship of the displacement and the applied force: 

 

𝑋

𝐹
=

1 𝐾𝑠⁄

√[1 − (
𝜔

𝜔𝑛
)

2
]

2

− [2𝜉 (
𝜔

𝜔𝑛
)]

2

(2 − 6)
 

 

The damped natural frequency 𝜔𝑑 is found at maximum FRF amplitude and for low damping 

ratio it can be assumed that the maximum amplitude is reached when ω = 𝜔𝑛 = 𝜔𝑑. Under this 

assumption, the damping ratio can be obtained from the FRF using the half-band method [64]: 

 

ξ =
𝜔𝐵 − 𝜔𝐴

2𝜔𝑑

(2 − 7) 

 

𝜔𝐴 and 𝜔𝐵 are the frequencies whose amplitudes correspond to the half power of FRF that 

equals (2𝜉𝐾)−1. Then, the stiffness K, mass M and damping C of the system can be calculated as: 

 

𝐾𝑠 =
1

2𝜉 (
𝑋
𝐹)

𝜔=𝜔𝑑

(2 − 8)
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𝑀𝑠 =
1 − 𝜉2

2𝜔𝑑
2𝜉 (

𝑋
𝐹)

𝜔=𝜔𝑑

(2 − 9)
 

 

𝐶𝑠 =
√1 − 𝜉2

𝜔𝑑 (
𝑋
𝐹)

𝜔=𝜔𝑑

(2 − 10) 

 

Now, let us consider a multiple dof system. The FRF at any point p due to a force at point q for 

an N dof system can be written as follows: 

 

𝑋𝑝

𝐹𝑞
= ∑ (

𝑋𝑝

𝐹𝑞
)

𝑖

sin(𝜔𝑡 − 𝜙𝑝𝑞,𝑖)

𝑁

𝑖=1

(2 − 11) 

where, 

(
𝑋𝑝

𝐹𝑞
)

𝑖

=
𝛼𝑝𝑞,𝑖

1
𝐾𝑠,𝑖

√[1 − (
𝜔

𝜔𝑛,𝑖
)

2

]

2

− [2𝜉𝑖 (
𝜔

𝜔𝑛,𝑖
)]

2

(2 − 12)
 

 

In Equations (2-11) and (2-12), the subscript i indicates the corresponding value at the ith 

natural frequency. It can be observed that the main difference with the response in a single dof 

system is the weighting value 𝛼𝑝𝑞,𝑖. This value corresponds to the normalized modal shape of the 

corresponding on, i. Then, the value of 𝛼𝑝𝑞,𝑖 goes from -1 to 1 and depends on the positions of p 

and q. If 𝛼𝑝𝑞,𝑖 is zero, the point p and/or q is a node of the mode-shape. This method is the so-called 

mode superposition method, which means the response of a structure at any frequency can be 

approximately expressed as a linear combination of the modal shapes of some nearby modes. 

 

For the low-density frequency spectrum of FRF, where the frequencies are separated from each 

other, the MDOF system can be simplified as several SDOF systems to extract the modal parameters 

with the assumption that the response of the system near resonance is dominated by the mode at 

resonance [65]. Then, the system parameters for each mode can be determined using the method in 

single dof system: 

 

𝐾𝑠,𝑖 =
𝛼𝑝𝑞,𝑖

2𝜉𝑖 (
𝑋𝑝

𝐹𝑞
)

𝜔=𝜔𝑑,𝑖

(2 − 13)
 

 

𝑀𝑠,𝑖 =
𝛼𝑝𝑞,𝑖(1 − 𝜉𝑖

2)

2𝜔𝑑
2𝜉 (

𝑋𝑝

𝐹𝑞
)

𝜔=𝜔𝑑,𝑖

(2 − 14)
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𝐶𝑠,𝑖 =
𝛼𝑝𝑞,𝑖√1 − 𝜉𝑖

2

𝜔𝑑,𝑖 (
𝑋𝑝

𝐹𝑞
)

𝜔=𝜔𝑑,𝑖

(2 − 15) 

 

2.1.2. Fluid-structure interaction (FSI) 

When a quiescent fluid is considered around the body, a fluid force (𝐹𝑓 ) appears over the 

surface of the body, modifying the general motion Equation (2-1) as: 

 

𝑀𝑠�̈� + 𝐶𝑠�̇� + 𝐾𝑠𝑥 = 𝐹𝑠 + 𝐹𝑓 (2 − 16) 

 

𝐹𝑓 = −𝑀𝑎�̈� − 𝐶𝑎�̇� − 𝐾𝑎𝑥 (2 − 17) 

 

𝑀𝑎 ,  𝐶𝑎 ,  𝐾𝑎  are the added mass, added damping and added stiffness due to fluid force, 

respectively. The added mass can be interpreted as the mass of fluid accelerated due to the motion 

of the structure. The added stiffness describes the change in the flow-induced restoring force with 

the deflection of the structure. The added damping represents the energy extracted from the structure 

because of the work done by the fluid flow. For a rigid structure and when the fluid flow is not that 

too high, the added stiffness usually can be neglected. The added mass and added damping can be 

more significant, but the natural frequencies are mainly affected by the added mass. By neglecting 

the added stiffness and assuming the structure a free vibration (𝐹𝑠 = 0) , Equation (2-16) and 

Equation (2-17) change to: 

 

(𝑀𝑠 + 𝑀𝑎)�̈� + (𝐶𝑠 + 𝐶𝑎)�̇� + 𝐾𝑠𝑥 = 0 (2 − 18) 

 

The value of natural frequencies and damping ratio of the system for each corresponding mode-

shape can be calculated as: 

 

𝑓𝑓 =
1

2𝜋
√

𝐾𝑠

𝑀𝑠 + 𝑀𝑎

(2 − 19) 

 

𝜉𝑓 =
𝐶𝑠 + 𝐶𝑎

√𝐾𝑠(𝑀𝑠 + 𝑀𝑎)
(2 − 20) 

 

Comparing Equation (2-4) and Equation (2-19), the natural frequency value a body submerged 

in a fluid is lower than in the vacuum due to the added mass (𝑀𝑎). However, in the case of the 

damping ratio (Eqs. (2-3) and (2-20)), when the body is submerged in a fluid, the damping ratio not 

only depends on the added damping (𝐶𝑎), but also the added mass (𝑀𝑎). Assuming that the natural 

frequencies in the vacuum are practically the same as in the air (𝑓𝑣 = 𝑓𝑎), a dimensionless added 

mass factor (λ) can be introduced [16]. This factor is defined as the added mass (𝑀𝑎) over the modal 

mass (𝑀𝑠). 
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λ =
𝑀𝑎

𝑀𝑠
= (

𝑓𝑎

𝑓𝑓
)

2

− 1 (2 − 21) 

 

2.1.3. Numerical Modeling 

According to the dynamic theory of MDOF system and finite element method, the dynamic 

equilibrium equation of a structure can also be expressed as following (neglecting damping): 

[𝑀𝑠]{�̈�} + [𝐾𝑠]{𝑥} = {0} (2 − 22) 

 

The [𝑀] and [𝐾] are the mass matrix and stiffness matrix, respectively. The {𝑥} is the nodal 

displacement vector. Because low damping ratios have little effect on the natural frequencies and 

modal shapes, it is usually neglected in the numerical modal analysis. The structure is thought to 

have constant stiffness and mass effects. There are no time varying forces, displacements, pressures, 

or temperatures applied to the structure, therefore it is a free vibration. 

 

For a linear system, free vibrations will be harmonic of the form: 

 

{𝑥} = {𝜙𝑖} cos 𝜔𝑖𝑡 (2 − 23) 

 

where the {𝜙𝑖} is the eigenvector representing the modal shape of ith natural frequency and 

𝜔𝑖 is the natural frequency of ith mode. Thus, Equation (2-22) becomes  

 

(−𝜔𝑖
2[𝑀𝑠] + [𝐾𝑠]){𝜙𝑖} = {0} (2 − 24) 

 

This equation is satisfied either if {𝜙𝑖} = {0} or if the characteristic matrix of −𝜔𝑖
2[𝑀] + [𝐾] 

is zero. The first option is the trivial one and, therefore, is not of interest. Thus, the second one gives 

the solution: 

 

|−𝜔𝑖
2[𝑀𝑠] + [𝐾𝑠]| = 0 (2 − 25) 

 

This eigenvalue problem can be solved for up to n values of 𝜔𝑖 and n eigenvectors {𝜙𝑖} which 

satisfy Equation (2-24), where n is the number of DOFs. Rather than outputting the natural circular 

frequencies 𝜔𝑖, the natural frequencies are derived as: 

 

𝑓𝑖 =
𝜔𝑖

2𝜋
(2 − 26) 

 

𝑓𝑖 is the ith natural frequency in Hz. 

 

For the numerical simulation of the fluid-structure interaction of a structure submerged in still 

water based on the finite element method (FEM), an acoustic FSI technology is widely used [32, 66, 

67]. In the case of water-structure coupling, the behavior of the water pressure can be described with 

the acoustic wave equation, known as Helmholtz’s equation, which is derived from the Navier–

Stokes equation of motion and the continuity equation by considering the following assumptions 

[68]: 
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• The fluid is slightly compressible (density changes due to pressure variations). 

• The flow is irrotational. 

• There is no mean flow of the fluid. 

• Changes of mean density and pressure in different areas of the fluid domain remain small. 

 

By considering the fluid pressure acting at the interface, the discretized equation for structural 

dynamics can be written as follows: 

 

[𝑀𝑠]{�̈�} + [𝐶𝑠]{�̇�} + [𝐾𝑠]{𝑥} = {𝐹𝑠} + {𝐹𝑓𝑠} (2 − 27) 

 

where {𝐹𝑓𝑠} is the fluid pressure load vector at the fluid-structure interfaces. There is: 

 

{𝐹𝑓𝑠} = −[𝑀𝑓𝑠]{�̈�} = −[𝐾𝑓𝑠]{𝑝} = [𝑀𝑓]{�̈�} + [𝐶𝑓]{�̇�} + [𝐾𝑓]{𝑝} (2 − 28) 

 

where [𝑀𝑓]  is the fluid equivalent “mass’’ matrix, [𝐶𝑓]  is the fluid equivalent ‘‘damping’’ 

matrix, [𝐾𝑓]  is the fluid equivalent stiffness matrix, [𝑀𝑓𝑠]  is the equivalent coupling ‘‘mass’’ 

matrix, and [𝐾𝑓𝑠]  is the equivalent coupling ‘‘stiffness’’ matrix. The complete finite element 

discretized equations for the fluid structure interaction problem are written in assembled form as: 

 

[
[𝑀𝑠] [0]

[𝑀𝑓𝑠] [𝑀𝑓]
] {

{�̈�}
{�̈�}

} + [
[𝐶𝑠] [0]

[0] [𝐶𝑓]
] {

{�̇�}
{�̇�}

} + [
[𝐾𝑠] [𝐾𝑓𝑠]

[0] [𝐾𝑓]
] {

{𝑥}
{𝑝}

} = {
{𝐹𝑠}

{0}
} (2 − 29) 

 

In the modal analysis, the damping effect usually is not considered, and the structure vibrates 

freely. In this way, the fluid structure coupled equation can be simplified as follows: 

 

[
[𝑀𝑠] [0]

[𝑀𝑓𝑠] [𝑀𝑓]
] {

{�̈�}
{�̈�}

} + [
[𝐾𝑠] [𝐾𝑓𝑠]

[0] [𝐾𝑓]
] {

{𝑥}
{𝑝}

} = 0 (2 − 30) 

 

Therefore, for a problem involving fluid structure interaction the fluid element generates all 

the matrices with subscript f in addition to the coupling matrices [𝑀𝑓𝑠] and [𝐾𝑓𝑠]. The matrices 

with subscript s are generated by the compatible structural element used in the model. 

 

2.2. Systematic approach for Kaplan turbines  

The dynamic behavior of Kaplan turbines with and without a crack is studied systematically 

from simplified blade models to the whole runner in this section. Ansys Workbench 16.2 is used to 

handle all the simulations. 

 

2.2.1. Systematic approach for Kaplan turbines without crack 

2.2.1.1. Dynamic behavior of simplified blade models 

The investigation on simplified blade models can help us to understand the dynamic behavior 

of the single blade as well as the whole runner. The simplified blade model geometry is shown in 

Figure 2-1. It is a rectangular plate with a dimension 750mm×500mm×25mm. The front face of the 
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model was divided into many grids so as to easily change the fixed support position. The first six 

modes of these three models are shown in Table 2-1. 

 

 For a rectangular plate, the mode shapes can usually be classified into bending (B), torsion 

(T) and in-plane (IP) modes [67]. The torsion modes can further be classified according to the 

number of its horizontal nodal lines (𝑚𝐻) and vertical nodal lines (𝑛𝑉). A nodal line is a line which 

remains at rest while the other parts of the structure are in a state of vibration. These lines separate 

regions where (at a given moment) the structure is moving in positive and negative directions. 

Therefore, the mode with 𝑚𝐻 horizontal nodal line (NL) and 𝑛𝑉 vertical NL can be written as 

mode ( 𝑚𝐻 , 𝑛𝑉 ). However, due to the fixed support of investigated models, the nodal lines 

sometimes become complicated, and they are needed to be distinguished very carefully. 

 

 

Figure 2-1. Rectangular plate model. 

 

For the rectangular plate with symmetric fixed support (a), all the modal shapes are symmetric 

with the middle axis line. However, for the rectangular plate with an unsymmetric fixed support (b) 

and (c), all the modal shapes deflect to the side opposite to the fixed support position deviation. The 

larger is the deviation, the larger the mode shapes deflections are. 

 

The support position may not only affect the modal shapes but also the natural frequencies and 

maximum stresses under resonance conditions. To demonstrate this, the influences of support 

position on the dynamic stresses under the resonance conditions of different modes are investigated 

through harmonic response analysis. A dynamic force with an amplitude 100 N was implemented 

to the left-side edge of each model. The damping ratio was set to be 0.01, and the support position 

moved from the symmetrical position to the right side with a step of 20 mm (the total support length 

kept to be 170mm). The normalized natural frequency and maximum stress changes with the support 

position deviation for different modes which have been shown in Figure 2-2. 
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Table 2-1. Modal shapes of the first six modes for different models. 

 (a) Symmetric support 
(b) Support deviated 40 

mm 

(c) Support deviated 80 

mm 

B 

   

T (0, 1) 

   

T (0, 2) 

   

T (1, 1) 

   

IP 

   

T (1, 2) 

   

 

 

Figure 2-2. Normalized natural frequency and maximum stress changes with the support position 

deviation for different modes (a) natural frequencies (b) maximum stresses. 

 

The influences of the support position on the natural frequencies and maximum stresses depend 
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on the modes. Generally, the natural frequencies are not very sensitive to the support position change. 

However, the maximum stresses of some modes can be very sensitive to the support position. For 

some particular modes concerned, the support position can probably be optimized in the real design 

progress of a real turbine blade, e.g., the Kaplan turbine blade, to minimize the stress level. 

 

2.2.1.2. Dynamic behavior of single blade 

This section is focused on the dynamic behavior of a single blade model. The blade model 

consists of the blade and the rod parts. The blade model is supported at the position where the blade 

connects the control system as shown in Figure 2-3. 

 

 

Figure 2-3. Single blade model with a fixed support. 

 

The first six modes of this model are shown in Table 2-2. These modes are similar to those of 

the rectangular plate model shown in Section 2.1.1.1. 

 

Table 2-2. Modal shapes of single blade model. 

B T (0, 1) IP 

   

T (0, 2) T (1, 1) T (1, 2) 
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For real Kaplan turbines, blades are assembled together by the connections with the hub and 

control system at the rod part. The connection stiffness may also affect the dynamic behavior of the 

blade. To investigate the influence of support stiffness, a model with a single blade and a layer at 

the rod part was used, as shown in Figure 2-4. The layer is cut from the hub with a thickness of 

1mm, and its Young’s modulus can vary to investigate the influence of the support stiffness. Fixed 

supports were given to the end face of the rod and the circumferential surfaces of the layer. The 

results are shown in Table 2-3. For the Bending mode and Torsion (0, 1) mode, the higher support 

stiffness makes the modal shapes deflect to the leading-edge side. While for rest modes, the modal 

shapes deflect to the trailing-edge side. The support stiffness can obviously change the balance of 

the blade, thus the modal shapes of different modes. But for different modes, the changes can be 

different. 

 

 

Figure 2-4. Single blade model with a stiffness variable layer support. 

 

Table 2-3. Modal shape changes with the variation of layer stiffness ratios. 

 Layer stiffness 1.0 Layer stiffness 0.01 Layer stiffness 0.0001 

B 

   

T (0, 1) 

   

IP 

   

Fixed Support
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T (0, 2) 

   

T (1, 1) 

   

T (1, 2) 

   

 

The support stiffness may also have large effects on the natural frequencies. The natural 

frequency changes for different modes with the layer stiffness ratio (K) change are shown in Figure 

2-5. With the reduction of layer stiffness, the natural frequencies of all modes decrease, particular 

for the layer stiffness ratio area between 0.01 to 0.0001, which means that the natural frequencies 

are sensitive to the support stiffness in this area.  

 

 

Figure 2-5. Natural frequency changes with the variation of layer stiffness. 

 

2.2.1.3. Dynamic behavior from single blade to the whole runner 

This section presents the effects of considering the hub of the runner, the shaft, the control 

system and the generator of a Kaplan turbine on the modal behavior of the turbine blade. The steps 

followed include: single blade (B), single blade + hub + shaft (BHS), single blade + hub + control 

system + shaft (BHCS) and single blade + hub + control system + shaft + generator (BHCSG). The 
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models for each step are shown in Figure 2-6. The shaft of the BHS and BHCS models only contains 

the part below the thrust bearing and all boundary conditions are the same as those of BHCSG 

except a fixed support at the top of the thrust bearing. The natural frequencies and natural frequency 

bands of different modes for different models are shown in Table 2-4. 

 

All the parts of different models are merged as a whole body. The effect of turbine bearing and 

generator bearing is simulated as elastic supports with a foundation stiffness 6.524 N/mm3, which 

is equivalent to a spring stiffness 1010𝑁/𝑚 around bearings ( this spring stiffness has been used in 

some other similar researches [39] ). When the machine is stopped, the rotor system is laid on the 

support structure of the thrust bearing. Therefore, the effect of the thrust bearing is simulated as 

zero-displacement support in the shaft axial direction. The mesh detail of the BHCSG model is 

shown in Section 2.2.1.4. When all the six blades are simulated, the modes of the blades form 

different mode families with 6 modes in each family, thus a natural frequency band is presented for 

each family. 

 

 

Figure 2-6. Different models investigated for each step from single blade to the whole runner (a) B 

(b) BHS (c) BHCS (d) BHCSG. 

 

Table 2-4. Natural frequencies of different modes for different models (Hz). 

 B BHS BHCS BHCSG 

Bending 57.094 51.38-59.56 49.97-60.749 51.37-60.74 

T (0, 1) 64.683 71.38-75.57 72.14-76.32 71.31-76.21 

IP 76.229 83.679-93.81 86.49-97.35 87.46-97.31 

T (0, 2) 112.79 110.25-123.11 110.89-120.02 110.93-119.97 

T (1, 1) 138 144.69-150.72 144.96-150.61 144.94-150.61 

T (1, 2) 183.64 194.34-197.7 190.03-196.74 189.97-196.72 

 

Through the comparison between the results of BHCS and BHCSG, it is easy to find that the 

generator nearly has no influence on the natural frequency bands of blade modes. This is because 

the generator nearly does not take part in the vibration cycle in Table 2-5. Therefore, the generator 

can be neglected in the simulation if only blade-dominated modes are concerned. The influence of 

the control system is a little more significant because the control system can take part in the vibration 

(a) (b) (c) (d)



CHAPTER 2. Study on Numerical Models 

 

30 

 

for some mode families, but its influence on the natural frequency bands is still less than 3%.  

 

The natural frequencies obtained through single blade are close to the corresponding natural 

frequency bands of the whole runner. These natural frequencies are usually located at the 

downstream or lower part of the corresponding natural frequency bands. Therefore, the single blade 

simulation can probably be used to estimate the natural frequency bands.  

 

2.2.1.4. Dynamic behavior of the whole runner 

When the runner is submerged in water, the acoustic fluid-structure interaction technology has 

been used to simulated the added mass effect from the water. The asymmetric solver with fluid-

structure couple algorithm has been used. The density of the acoustic body is 1000 𝑘𝑔 𝑚3⁄  and the 

sound speed is 1483 𝑚 𝑠⁄ . The water domain includes the part from the guide vanes to 125 mm 

downwards the hub. To simplify, all the boundaries of the water domain were set to be rigid walls. 

The common nodes technology has been used at the fluid-structure interfaces. The mesh sensitivity 

was strictly checked. When the runner is submerged in water, about 1.4•105 tetrahedral elements 

were used, as shown in Figure 2-7. In the modal analysis, the structural damping and the dynamic 

viscosity of the water have been neglected.  

 

 

Figure 2-7. View of the mesh when the runner is submerged in water. 

 

2.2.1.3.1. Structure in air 

According to the maximum displacement position, the modes of the machine can usually be 
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divided into generator dominated (GD), shaft dominated (SD), hub dominated (HD), control system 

dominated (CSD) and blades dominated (BD). Some of them are listed in Table 2-5. 

 

Table 2-5. Numerical modes of the whole turbine. 

Generator 

dominated 

modes (GD) 

    

Shaft 

dominated 

modes (SD) 

   

 

Control system 

dominated 

modes (CSD) 

  

  

Hub dominated 

modes (HD) 

   

 

Blade 1ND 0ND 2ND 3ND 
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dominated 

(BD)  

Mode family  

Bending (B) 

51.4-60.7Hz 

    

Blade 

dominated 

(BD) 

 Mode family  

Torsion (0, 1) 

72.1-73.7Hz 

2ND 3ND 1ND 0ND 

    

Other blades 

dominated 

mode families 

(BD) 

Blade dominated 

Mode family 

In Plane 

87.5-97.3Hz 

Blade dominated 

Mode family 

Torsion (0, 2) 

110.9-119.9Hz 

Blade dominated 

Mode family 

Torsion (1, 1) 

144.9-150.6Hz 

Blade dominated 

Mode family 

Torsion (1, 2) 

189.9-196.7Hz 

    

 

The blades dominated modes can be divided into different mode families according to the mode 

shape of the blades, and each mode family has 6 modes, which form mode shapes with different 

nodal diameters (ND) (singlet 0ND, doublet 1ND, doublet 2ND and singlet 3ND). The modal shapes 

of the doublet modes of the same ND have a 90° phase shift between each other. The appearance 

sequences of different ND modes in different mode families can be different, which is mainly 

determined by the interaction intensity between the blades and hub/control system. Bending and In-

Plane mode families usually have stronger interaction intensities than other mode families. The 

stronger interactions make the natural frequency bands of the corresponding mode families wider. 

 

2.2.1.3.2. The effect of the surrounding water 

The modal shapes of bending and Torsion (1, 2) mode families of the whole runner in air and 

in water are shown in Table 2-6. 
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Table 2-6. Modal shapes of the whole runner in air and in water. 

Blade dominated 

(BD) 

 Mode family 

Bending 

In Air 

1ND 0ND 2ND 3ND 

    

Blade dominated 

(BD) 

 Mode family 

Bending 

In Water 

1ND 0ND 2ND 3ND 

    

Blade dominated 

(BD) 

 Mode family 

Torsion (0, 1) 

In Air 

2ND 3ND 1ND 3ND 

    

Blade dominated 

(BD) 

 Mode family 

Torsion (0, 1) 

In Water 

0ND 2ND 1ND 3ND 

    

 

Generally, for blade dominated modes, the mode shape changes from air to water are not 

significant. However, the appearance sequence of different ND modes in each mode family can be 

different in air and in water. 

 

Some mode-shapes present higher reduction in frequency than others due to the added mass 

effect. The frequency reduction ratios of each ND mode in the Bending mode family and the Torsion 
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(0, 1) mode family are shown in Table 2-7 and Table 2-8, respectively. 

 

Table 2-7. Frequency reduction ratios of each ND in the Bending mode family. 

Mode 
Natural Frequency (Hz) 

FRR (%) 
In Air In Water 

0ND 54.8 28.86 47.3 

1ND 51.38 32.58 36.6 

2ND 58.3 33.39 42.7 

3ND 60.74 33.81 44.3 

 

Table 2-8. Frequency reduction ratios of each ND in the Torsion (0, 1) mode family. 

Mode 
Natural Frequency (Hz) 

FRR (%) 
In Air In Water 

0ND 76.21 52.25 31.4 

1ND 73.64 47.19 35.9 

2ND 72.12 49.4 31.5 

3ND 72.22 48.68 32.6 

 

The FRR differences among different ND modes of the Bending mode family can be larger 

than 10%, while the differences of different ND modes of the Torsion (0, 1) mode family are less 

than 5%.  

 

2.2.1.3.3. The effect of tip-clearance 

Unlike Francis turbine or pump-turbine, the runner of the Kaplan turbine runner is far away 

from the head cover, and the only nearby surface is the chamber wall with a narrow tip clearance 

between them. To prevent from the tip vortex cavitation, the tip-clearance is usually designed to its 

technical minimum. During the optimization progress of the tip-clearance, the effect of its size on 

the dynamic behavior of the runner should also be known. The natural frequency change ratios of 

different ND modes for the Bending mode family and T (0, 1) mode family with the tip-clearance 

size (t) change from 2.5mm to 10mm (0.000439D to 0.00175D) are shown in Figure 2-8. 

 

 

Figure 2-8. Natural frequency change ratios of different ND modes for (a) Bending mode family 

and (b) Torsion (0, 1) mode family with the tip-clearance size (t) change. 
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With the reduction of the tip-clearance size, the natural frequencies of all modes are reduced 

almost linearly due to the increasing added mass. The reduction can vary to some extent according 

to the ND and mode family. Overall, the frequency changes with the tip-clearance for all the modes 

are not very high. There are mainly two reasons to account for this, on the one hand, the blade is 

very thin, and the area of the tip face is small, on the other hand, the displacements for all the modes 

mainly vibrate in the axial direction and very little in the radial direction. 

 

2.2.2. Systematic approach for Kaplan turbines with a crack 

To study the influence of a crack on the dynamic behavior of a Kaplan turbine, a systematic 

approach has been also followed: first, the crack is modeled in a rectangular plate, and then in a 

single blade, as well as in the whole runner. The cracks are simulated as a narrow gap. This is a 

linear method to represent the crack without considering the nonlinear effect caused by the contact 

of crack surfaces [61]. 

 

2.2.2.1. Dynamic behavior of simplified blade models 

For the simplified blade mode shown in Figure 2-1, the influence of a crack on its dynamic 

behavior is investigated here. The tested model with a crack is shown in Figure 2-9, where (a) shows 

three different crack positions (0mm, 40 mm and 80mm from the support position, respectively) and 

(b) shows five crack angles from 45°  to 135° . The modal shapes of the model with a crack at 

different positions and different angles are shown in Table 2-9 and Table 2-10, respectively. 

 

Figure 2-9. Simplified blade model with a crack. (a) different crack positions (b) different crack 

angles. 

 

Table 2-9. Modal shapes of simplified model with a crack at different positions 

 Crack-1 100 mm Crack-1 200 mm Crack-2 200 mm Crack-3 200 mm 

B 

    

T (0, 1) 

    

1 23 1
4

5

6

7Fixed Support

(a) (b)
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T (0, 2) 

    

T (1, 1) 

    

IP 

    

T (1, 2) 

    

 

Table 2-10. Modal shapes of simplified model with a crack at different angles (200 mm long). 

 Crack-1 Crack-4 Crack-5 Crack-6 Crack-7 

B 

     

T (0, 1) 

     

T (0, 2) 

     

T (1, 1) 

     

IP 

     

T (1, 2) 

     

 

With a crack, the mode shapes of all modes deflect to the crack sided because a crack lowers 

the stiffness of its side. Comparing the mode shapes of all modes under a Crack-1 with a 100 mm 

and 200 mm the length in Table 2-9, the mode shape deflections increase with the crack length 

increase. From Crack-2 to Crack-1 and continuously to Crack-3, the mode shape deflections 

decrease, which means the deflections decrease with the crack position. From Crack-1 to Crack-6 

and continuously to Crack-7, the mode shape deflections decrease, which is similar to the crack 
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position deviation. From Crack-1 to Crack-4 and continuously to Crack-5, the deflection changes 

are very complicated. The deflections of some modes increase (Bending and Torsion (0, 1)), while 

the deflections of some modes are very close or even decrease (T (0, 2), T (1, 1) and T (1, 2)).  

 

Because the crack position affects the mode shape deflections, it ought to also affect the 

frequency reduction ratios (FRR)of different modes with the crack length increase. The FDR is 

defined by Equation 2-31. The frequency reduction ratios of different modes under a crack at 

different positions and different angles are shown in Figure 2-10 and 2-11, respectively. 

 

FDR =
𝑓𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 𝑓𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝑓𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑
× 100% (2 − 31) 

 

 

Figure 2-10 Natural frequency changes of different modes under different crack positions with the 

crack length increase (a) Bending (b) T (0, 1) (c) IP (d) T (0, 2) (e) T (1, 1) (f) T (1, 2). 
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With the crack length increase, the natural frequencies of all modes decrease. The crack 

positions and angles can have large influence on the frequency reduction ratios (FRR) of some 

modes. The FRRs change at the same time with the mode shape deflections, which means that a 

higher FRR represents a higher mode shape deflection. 

 

 

Figure 2-11.FRR changes of different modes under different crack angles with the crack length 

increase (a) Bending (b) T (0, 1) (c) IP (d) T (0, 2) (e) T (1, 1) (f) T (1, 2). 

 

To better compare the mode-shapes for the different configurations, 71 monitoring points were 

set on the periphery of the plate, as shown in Figure 2-12. Then, the modal displacements of the 
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different configurations have been plotted for the 71 monitoring points. In Figure 2-13, the mode 

shape deflections due to crack length and crack position changes are clearly shown. 

 

 

Figure 2-12. Monitoring points on the rectangular plate model. 

 

 

Figure 2-13. Mode shapes of T (0, 2) under different crack lengths and positions (a) different 

lengths (b) different positions. 

 

2.2.2.2. Dynamic behavior of a single blade with a crack 

 

 

Figure 2-14. Single blade model with a crack of different paths. 
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This section is focused on the dynamic behavior of a single blade with a crack. Three crack 

paths (Crack-1, Crack-2 and Crack-3) are investigated as shown in Figure 2-14. The path of Crack-

2 deviates more from the rod axis than that of Crack-1. The path of the Crack-3 is in the opposite 

angle than the Crack-1. The modal shapes of different modes with the different crack paths are 

shown in Table 2-11. As in the case of the rectangular plate, the crack makes all the modal shapes 

deflect to its side. These deflections increase with the crack length and decrease with the deviation 

of the crack path from the rod axis. These conclusions are in accordance with those obtained on 

simplified blade models with a crack. The FRR changes of different modes under different crack 

paths with the increase of crack length are shown in Figure 2-15. The same as the rectangular blade 

models, the FRRs of some modes (Figure 2-15) are sensitive to the crack path and length. 

 

 

Figure 2-15. FRR changes of different modes under different crack angles with the crack length 

increase (a) Bending (b) T (0, 1) (c) IP (d) T (0, 2) (e) T (1, 1) (f) T (1, 2). 
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Table 2-11. Modal shapes of single blade model with a crack. 

 No Crack 
Crack-1 

200mm 

Crack-1 

400mm 

Crack-2 

400mm 

Crack-3 

400mm 

B 

     

T (0, 1) 

     

IP 

     

T (1, 1) 

     

T (0, 2) 

     

T (1, 2) 

     

 

Overall, many conclusions on rectangular plates are general for Kaplan turbine blades. For this 

type of structures, the frequency reduction ratio of one mode due to a crack is nearly equivalent to 

the mode shape deflection caused by it. For real Kaplan blades, cracks usually appear at the root 

area [11, 69], therefore the crack position usually does not change, and only the crack angle can 

change. Because the FRRs or mode shape deflections may be sensitive to the crack paths (positions 

or angles), it is difficult to determine the crack path or length accurately through the FRR or mode 

shape deflection of only one mode. However, if the FRRs and mode shape deflections of more than 

one mode are known, the crack path and length are possible to be determined together. These 

conclusions are probably useful for the crack diagnostic of Kaplan turbine blades. 
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2.2.2.3. Dynamic behavior of the whole runner with a crack  

The effect of a crack on the dynamic behavior of the whole runner is investigated in the 

following Sections. The crack path is the same as Crack-1 shown in Figure 2-14. 

2.2.2.3.1. Structure in air 

Table 2-12. Modal shapes of the whole runner with a crack. 

The front blade is the damaged blade. 

Generator 

dominated modes 

(GD) 

    

Shaft dominated 

modes (SD) 

   

 

Control system 

dominated modes 

(CSD) 

  

  

Hub dominated 

modes (HD) 

   

 

Bending 1ND 0ND 2ND 3ND 
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mode family (BD) 

51.4-60.7Hz 

 

 

 

 

 

 

T (0, 1) 

mode family (BD) 

72.1-73.7Hz 

2ND 3ND 1ND 0ND 

 

 

 

 

 

 

The modal shapes of the whole runner with a 300mm crack are shown in Table 2-12. For the 

generator, shaft, control system and hub dominated modes, the influence of the crack is small. For 

blade-dominated mode families, the influence of the crack is much more significant. For each mode 

family, there is one localized mode, which means that the maximum amplitude is concentrated on 

the cracked blade. The localization always occurs at the mode with the lowest frequency for each 

mode family. The displacement concentration of the Bending localized mode is lower than that of 

the T (0, 1) localized mode. 
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Figure 2-16. Frequency reduction ratios of different ND modes for the first and second mode 

families. (a) Bending mode family (b)T (0, 1) mode family. 

 

The frequency reduction ratios of different ND modes of the Bending and T (0, 1) mode 

families are shown in Figure 2-16. The localized modes have the highest frequency reduction ratios 

for each mode family. Apart from the localized mode, the frequency reduction ratios of all other 

modes are small, even when the crack length is very high.  

 

2.2.2.3.2. The effect of the surrounding water 

In air, the 1ND mode of Bending mode family has the lowest frequency, while in water, the 

lowest frequency appears at 0ND. The modal shapes of the Bending mode family under a 500 mm 

crack in water are shown in Figure 2-17. 

 

 

Figure 2-17. Modal shapes of the Bending mode family under a 500 mm crack in water from 

lower frequency (left) to higher frequency (right). 

 

The frequency reduction ratios of the localized Bending and T (0, 1) modes both in air and in 

water are shown in Figure 2-18. When the crack length is very high, the frequency reduction rations 

of the localized Bending mode in air and in water can be quite different (Figure 2-18 (a)). This is 

due to the blades/hub interaction intensity differences in air and in water, which make the coupling 

stiffness in air and in water different. However, for the localized T (0, 1) mode, the frequency 

reduction ratios are very close in air and in water as shown in Figure 2-18 (b). 
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Figure 2-18. FRR of the localized mode in air and in water for the Bending mode family (a) and T 

(0, 1) mode family. 

 

2.2.2.3.3. The effect of tip-clearance 

The effect of tip-clearance size on the frequency reduction ratios (FRR) of localized Bending 

and T (0, 1) under a 300mm crack has been shown in Figure 2-19. 

 

 

Figure 2-19. FRR changes of the localized modes with the variation of tip-clearance size. 

 

The tip-clearance size can have some influence on the FRR, however, the influences for all 

mode families are less than 1%, and therefore can nearly be neglected. 
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monitoring points (A at the turbine bearing and B at the thrust bearing Figure 2-20) due to a crack 

has been investigated. The forced response (velocity) changes of the two points both in radial and 

axial directions below 200 Hz have is shown in Figure 2-21, Figure 2-23 and Figure 2-24, 

respectively. Some vibration peaks have been marked as ①  to ⑦  in Figure 2-22, and the 

corresponding modes of these peaks have been shown in Figure 2-22. 

 

Figure 2-20. Positions of monitoring points. 

 

The vibration peaks marked in Figure 2-21 appear in all the monitoring points and in both 

radial and axial directions. The vibration peaks ① to ⑦ correspond to a hub dominated mode, a 

shaft dominated mode, the localized Bending mode, a control system dominated mode, the localized 

IP mode, the localized T (0, 2) mode and a hub dominated mode, respectively (see Figure 2-22). For 

the peaks corresponding to hub, shaft and control system dominated modes, the high vibration 

amplitudes are obviously due to the high modal displacements at the monitoring points, and with 

the increase of crack length, the vibration amplitudes can increase or decrease significantly. The 

vibrations of some localized blade dominated modes are much higher than those of the mode without 

crack. The vibration amplitude changes of the monitoring point B are less significant than those of 

A, which is probably because B is closer to the runner. 

 

However, all these results consider that the runner is a rigid body, with the blades assembled 

together, in the real case the blades may have different stiffness support due to the control system 

and this assumption may not be completely right. This will be discussed in the experimental study 

presented in Chapter 3. 

AB
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Figure 2-21. Forced response of monitoring Point-A in radial direction. 

 

 

Figure 2-22. Modes corresponding to the vibration peaks shown in Figure 2-24. 
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Figure 2-23. Forced response of monitoring Point-A in axial direction. 

 

Figure 2-24. Forced response of monitoring Point-B in radial direction. 

 

2.3. Crack modelling of a Francis runner model 

The investigation presented in this section have been published in the paper “Zhang M, 

Valentin D, Valero C, et al. Numerical study on the dynamic behavior of a Francis turbine runner 

model with a crack[J]. Energies, 2018, 11(7): 1630”. It is based on studying the changes due to a 

crack in a Francis runner using as a reference the investigation done in the Kaplan turbine. Only the 
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most relevant results are included in this section, the rest of the information can be found in the 

aforementioned paper. 

 

2.3.1. Simulation setup  

 

 
Figure 2-25. Schematic of the test rig with the runner in air (left) and submerged inside water 

(right), all the dimensions in mm [16]. 

 

First, the intact runner model will be validated by comparing its modal analysis results in air 

and water with the experimental results in [16]. The test rig in [16] in air and in water is shown in 

Figure 2-25. The acoustic FSI technology is used to simulate the added mass effect from surrounding 

still water [32, 68]. The material property of the acoustic body can be seen in Table 2-13. When the 

runner is submerged in water, common nodes technology is used at all the FSI interfaces, and the 

Asymmetric solver is used in the simulation.  

 

In the experiment done in [16], the runner was hung by a low natural frequency rope, which 

means the runner can be seen as without support. When submerged in water, the distances A and B 

shown in Figure 2-25 are 100mm and 45mm, respectively. At this distance, the added mass effect is 

not affected by the distance changes to the surfaces of the water domain [16]. The upper surface of 

the water domain was set as zero-pressure surface (referring to the atmospheric pressure), and all 

other outside boundaries of water domain were set as rigid walls. The mesh sensitivity is strictly 

checked, and when the runner is submerged in water, 192,391 tetrahedral elements are used. The 

comparison between the numerical and experimental results in [16] can be seen in Table 2-14,and a 

good agreement has been obtained. 

 

Based on the validation of the intact runner model, a crack is created at the intersection line 

between one blade and the crown from inside to outside, a location that has been shown to be prone 

to the appearance of cracks in Francis turbines [13]. The crack is represented as a narrow gap, and 

this is a linear method that has been used in the literature before [58, 60]. The total length of the 

intersection line is approximately 120 mm, and the crack length will vary from 0 mm to 100 mm. 

The mesh density at the crack tip has been especially increased as shown in Figure 2-26. When 

submerged in water, the water at the crack clearance is neglected. The effects of the crack on the 

dynamic behavior of the runner will be investigated.  
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Figure 2-26. View of the mesh when the Francis runner is submerged in water. 

 

Table 2-13. Properties of the acoustic body. 

Properties Sonic speed Density 

Value 1483 m/s 1000 kg/m3 

 

Table 2-14. Results of the experimental and numerical modal analysis. 

SIM-AIR: Simulation in air (unit: Hz). EXP-AIR: Experiment in air. SIM-RATIO: SIM-

WATER/SIM-AIR. 

 

In Air In Water Ratio 

SIM-AIR EXP-AIR 
SIM-

WATER 
EXP-WATER 

SIM-

RATIO 

EXP-

RATIO 

2ND 357.00 373.51 275.89 279.50 0.773 0.748 

0ND 408.38 417.50 374.73 370.50 0.907 0.887 

3ND 475.98 487.53 338.26 331.25 0.711 0.679 

4ND 563.50 573.75 369.36 359.00 0.656 0.626 

1ND 606.20 616.75 489.62 481.50 0.808 0.781 

5ND 634.85 649.75 391.65 400.00 0.617 0.616 

 

2.3.2. Results and discussion 

2.3.2.1. Natural frequencies and modal shapes 

The modal shapes without a crack, with a 60 mm crack and with a 100 mm crack in the air and 

water can be seen in Table 2-15 and Table 2-16, respectively. For each simulation case, the modal 

displacement is divided into nine levels from high to low so that they can be compared together. 

The changes in both the natural frequencies and the frequency-reduction ratios with the crack length 

in air and water can be seen in Figure 2-27 and Figure 2-28, respectively. 

 

The modal shapes are a little bit different in air and in water for the same ND modes with the 

same crack length, which has also been shown in [32]. This may be mainly because the blades and 
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the band suffer from different added mass factors [16] in water. Due to the modal shape changes 

from air to water, the frequency changes with the crack length in air and water increase will also be 

very different, as shown in Figure 2-27 and Figure 2-28. Therefore, the Francis turbine in water can 

be seen as a new bladed-disk structure with the band, crown and blades having different densities.  

 

From the modal shapes and natural frequencies, one of the doublet modes of each ND will 

change more than the other one. Generally, for actual turbines, there are no substructures that are 

without any deformations. Therefore, there are no modes that are completely unaffected by the crack. 

In the following parts, the modes changing relatively more are referred to as changed modes(C-

Mode), and modes changing relatively less are referred to as unchanged modes (UC-Mode). 

 

 

Figure 2-27. Natural frequency changes and change ratios in air (a) Natural frequencies (b) 

Frequency change ratios. 

 

Table 2-15. Modal shape changes in air. 

 No Crack Crack 60mm Crack 100mm 

 C-Mode UC- Mode C-Mode UC-Mode C-Mode UC-Mode 

0 

ND 

     

 

1 

ND 
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ND 
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ND 
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4 

ND 

      

 

 

Figure 2-28. Natural frequency changes and change ratios in water (a) Natural frequencies (b) 

Frequency change ratios. 

 

Table 2-16. Modal shape changes in water. 

 No Crack Crack 60mm Crack 100mm 

 C-Mode UC-Mode C-Mode UC-Mode C-Mode UC-Mode 

0 

ND 

     

 

1 

ND 

      

2 

ND 

      

3 

ND 

      

4 

ND 

      

 

For most ND modes, the changed mode usually originates from the one with low deformation 

on the damaged blade, and the damaged blade is close to the zero-displacement node. In contrast, 
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for the 1ND and 8ND modes, which have nearly zero deformation blades, the changed mode usually 

originates from the one with high deformation on the damaged blade, and the damaged blade is far 

from the zero-displacement node. 

 

The modal shape changes with the increase in crack length are not that regular. For all the 

unchanged modes, the modal shapes may also become distorted to some extent with the increase in 

crack length. Apart from the unchanged 1ND, which has low deformation at the damaged blade, the 

damaged blade is prone to have a large deformation close to the beginning part of the crack.  

 

For the changed modes, the modal shape changes are even more irregular than those of the 

unchanged modes. Sometimes, under certain crack lengths, the highest deformation may appear at 

blades near the damaged blade, but when the crack length is very large, it will finally transmit to the 

damaged blade, like the changed 2ND and 3ND mode in air. 

 

For the unchanged modes, the frequency reduction ratios are usually lower than 5% when the 

crack length is 100 mm. For some modes, such as the unchanged 1ND, the frequency reduction ratio 

can be as low as 0.1%. For the changed modes, the localized mode usually has a relatively high-

frequency reduction ratio. When the crack length is 100 mm, the frequency reduction ratios of the 

localized 2ND can be as high as 16% in air and 26.5% in water. Though the changed 3ND mode in 

air has a high deformation concentration on the damaged blade when the crack length is 100 mm, 

its frequency reduction ratio is much lower than the localized 2ND. However, when in water with a 

crack length of 60 mm, the frequency reduction ratio of the 3ND mode is higher than that of the 

localized 2ND mode.  

 

As mentioned earlier, when the changed modes are close to other modes with the reduction of 

frequencies, the modal shapes will become similar to those modes. This phenomenon may have 

large effects on the frequency reduction ratios of the changed modes. In water, this phenomenon can 

be more significant than in air because the frequencies of different modes are closer. For the changed 

3ND, 4ND and 5ND modes in water, as well as the changed 5ND mode in air, when this 

phenomenon occurs with an increase in crack length, the frequency reduction rate is greatly 

decreased.  

 

Overall, the natural frequency changes for all ND modes are small when the crack is not long 

enough. This is due to two main reasons. On the one hand, though the band is like a thin ring, the 

couplings between neighboring sectors are still very high. On the other hand, the blades are firmly 

constrained by the band and the crown, which may reduce the stiffness reduction ratio. For different 

modes, the frequency reduction ratios can vary significantly.  

 

2.3.2.2. Quantitative description of modal shape changes 

The modal shape change due to a crack can also be described using a Fast Fourier Transform 

(FFT) of the modal shape. The first step of this procedure is to choose the sample point to represent 

the modal shape change. First, the sample point is chosen as the intersection point of the trailing 

edge and the band for each blade. Therefore, 17 sample points were obtained, and the modal 

displacement variation of these 17 points for each mode was used for FFT. The FFT results of the 
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changed 2ND, unchanged 2ND, unchanged 3ND and changed 3ND in air for crack lengths of 0 mm, 

60 mm and 100 mm are shown in Figure 2-29(a), (b), (c) and (d), respectively. Each modal shape 

can be seen to be synthesized by different ND harmonic waveforms with different magnitudes. For 

each ND, its value was plotted by the percentage of its magnitude to the sum of the magnitudes of 

all ND waveforms. 

 

 

Figure 2-29. FFT results of different modal shapes (a) Unchanged 2ND (b) Changed 2ND (c) 

Unchanged 3ND (d) Changed 3ND. 

 

Without a crack, each modal shape clearly contains only one waveform. With the increase in 

crack length, the percentage value of this original waveform decrease, and other ND waveforms 

appear with increasing percentage values. For the unchanged modes, the decrease in the original 

ND waveform and the increase other ND waveforms are insignificant, while for the changed modes, 

they are much more significant, particularly for the localized mode and the mode with a strong 

deformation concentration on the damaged blade (like the changed 3ND in Figure 2-29(d)). The 

values of the new appearing ND waveforms usually decrease with their separation from the original 

ND waveform. 

 

For a Francis turbine, the excitation from the hydraulic force is due to the rotor-stator 

interaction and the excitation is order-excitation [22]. To make the runner resonant, both the 

frequency and the ND of the excitation should be in accordance with the runner mode. When a crack 

is present, other ND waveforms start to appear. This means that the mode now can not only be 

(a) (b)

(c) (d)
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excited by the original ND excitation but also be excited by other ND excitations. However, the FFT 

value change may depend on the sample points positions because with the crack, the deformations 

on the blades, particular the damaged blade, become very uninform. With other groups of sample 

points, the FFT results may vary a lot and become not that regular. Using those sample points may 

be not appropriate because of the unregular deformation change on the damaged blade, and it may 

be better to use the sample points on the band. 

 

 

Figure 2-30. LF value changes with the crack length. 

 

The maximum response under order excitation not only depends on the FFT value change but 

also depends on the Localization Factor(LF) [71] change. The LF is defined as: 

 

𝐿𝐹 =
𝑈1 𝑚𝑎𝑥 − 𝑈0 𝑚𝑎𝑥

𝑈0 𝑚𝑎𝑥
× 100% (2 − 32) 

 

Where 𝑈0 𝑚𝑎𝑥 is the maximum dimensionless modal displacement of one mode without crack 

calculated by dividing the maximum modal displacement of all the blades with the sum of maximum 

modal displacement on each blade. 𝑈1 𝑚𝑎𝑥 is the maximum dimensionless modal displacement of 

the mode with a crack. The LF is an estimation of the energy percentage change of the blade with 

maximum deformation compared with the energy of the whole structure for one mode due to the 

crack, and it is also an estimation of the maximum frequency response function (FRF) [65] change 

for one mode under unit energy excitation. With damage, the deformation will have concentrations 

to some blades, which will induce the increase of the LF value. From Figure 2-30, for most of the 

modes, the LF will increase with the crack length increase. The increases for changed modes are 

much more significant than the unchanged modes due to higher deformation concentrations. The 

localized mode and modes with high deformation concentrations on the damaged blade are prone 

to have high LF value increases.  
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2.3.2.4. Crack monitoring challenges 

For the researched Francis turbine mode, when the crack length is high, the frequency reduction 

ratios can be as high as 20% (mainly referring to the localized mode or the modes with strong 

deformation concentrations on the damaged blade). However, when the crack is not that large, the 

natural frequency reduction ratios are usually less than 10%. Another very important thing is that 

the current monitoring system is usually at the bearing of the turbine. The vibration of the runner 

must be transmitted to the bearing through the shaft, and the vibrations are also easily confused with 

the bearing effect. The response used in this paper is the maximum response of the runner, which is 

also used in many other papers [59, 72, 73]. However, due to the vibration transmitting to the 

monitoring system, the equivalence between the maximum local response increase due to a crack 

and the vibration increase captured by the monitoring system is still doubtful. 

 

For the Francis turbine shown in Figure 1-4(a), its modal behavior is still not that clear, and the 

crown may have a high deformation. The higher deformation at the crown will greatly increase the 

coupling stiffness, which will cause the natural frequency reduction ratios and the response changes 

to be much lower [58]. This will greatly increase the monitoring difficulty and may be the reason 

why a so large crack is sometimes not detected by the monitoring system.  

 

2.4. Summaries 

2.4.1. On the dynamic behavior of a prototype Kaplan turbine without damage 

The dynamic behavior of a prototype Kaplan turbine runner without damage has been 

researched numerically, and the results have been summarized as follows: 

 

The research on simplified blade models shows that the modal shapes are mainly determined 

by the support position and stiffness. The support position of the blade can be optimized to reduce 

the dynamic stress of the blade. For the single blade model, the support stiffness can have some 

influences on the modal shapes. The natural frequencies of the single blade become very sensitive 

to the support stiffness when it is lower than some value. For the real Kaplan turbine, the blades are 

assembled together with non-firm connections, which means the connection stiffness of different 

blades can be different.  

 

The modes of the prototype turbine can be generator, shaft, hub, control system or blade 

dominated. Each blade dominated mode family has six modes (the same with the number of blades). 

The mode families are just the modes obtained on the single blade model. The generator has little 

influences on blade dominated modes, and a single blade model can probably be used to predict the 

natural frequency band of each mode family. However, these conclusions are only valid when the 

runner is considered as a rigid body. 

 

The surrounding water has small influence on the modal shapes of blade dominated modes. 

The natural frequencies decrease in the case of the water with a different reduction ratio depending 

on the mode-shapes. In addition, with the decrease of the tip-clearance size, the natural frequencies 

of all the modes decrease slightly. 

 



CHAPTER 2. Study on Numerical Models 

 

57 

 

2.4.2. On the dynamic behavior of a prototype Kaplan turbine with damage 

The dynamic behavior of a prototype Kaplan turbine runner with damage has been investigated 

numerically. The main conclusions are the following: 

 

The research on simplified blade models shows that a crack makes the modal shapes deflect to 

its side because it lowers the stiffness. This deflection increases with the crack length increase. The 

crack path can affect the frequency reduction ratios significantly. These conclusions are also 

validated on the single blade model. 

 

When considering the runner as a rigid body with the blades assembled together, the crack 

causes one mode to localize for each blade dominated mode family. This means that the maximum 

amplitude is concentrated in the damaged blade. The localization usually occurs at the mode with 

the lowest natural frequency within the mode family. The tip-clearance size nearly has no influences 

on the frequency reduction ratios of the localized modes. 

 

Forced response analysis has been done by applying a force on the damaged blade, and the 

responses of two points in the turbine bearing and in the thrust bearing have been monitored. When 

a crack occurs, the differences in amplitude due to the crack are detected from the bearings, 

especially in the axial direction. This information may be useful for crack monitoring under working 

conditions. 

 

2.4.3. On the effect of a crack on the dynamic behavior of a Francis runner model 

The modal behavior and forced responses of a Francis runner model with a crack have been 

studied numerically. Similar methodology than for the Kaplan turbine have been used. For the 

studied Francis runner model, there is usually only one localized mode, and when the crack length 

is high, strong localization can occur. The localized mode or the modes with strong deformation 

concentrations on the damaged blade usually have the highest natural frequency reduction ratios. 

The modal shapes and frequency reduction ratios in water are different from those in the air. 

 

To analyze the changes in the mode-shapes due to the crack, a FFT analysis of the band 

deformation have been performed. Different components appear in the FFT when the crack is 

present, which means that the mode-shape changes considerably. In addition, a localization factor 

has been also calculated, revealing which mode-shapes are more affected by the crack. 

 

However, the natural frequency reduction ratios are not so high when the crack is not large 

enough. These are the reasons why the crack is difficult to be monitored in this type of runner. This 

research can provide some useful results to take into account in order to try to perform crack 

monitoring during operation. 
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CHAPTER 3. Experimental Study  

 

In this chapter, the dynamic behavior of the prototype Kaplan turbine runner has been studied 

experimentally to validate the numerical analysis presented in Chapter 2. Experimental modal 

analysis has been done on the damaged blade and on the undamaged blade. The instrumentation, 

signal processing and test procedures are introduced first. Then, the frequency response functions 

and coherence are checked. At last, the experimental results about the natural frequencies, mode 

shapes and damping ratios of the damaged and undamaged blades are presented. 
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3.1. Instrumentation 

Experimental Modal Analysis (EMA) was done on the Kaplan turbine with one damaged blade 

as shown in Figure 1-9 to Figure 1-11. The most popular method for experimental modal analysis 

is the hammering method. This method can also be divided into the rolling hammer method and the 

rolling accelerometer method [74]. The rolling accelerometer method was used in this experiment. 

The blade was impacted using an instrumented hammer (Dytran 5802A, 220 μV/N) and the response 

was measured using some accelerometers (Kistler 8752A, 100 mV/g) located on the blades and 

turbine bearing. Both accelerometer and hammer were connected to a Bruel & Kjaer (LAN XI Type 

3053) acquisition system which recorded the signals in the time domain.  

 

 

Figure 3-1. Experimental Modal Analysis. 

 

3.2. Signal Analysis 

To analyze every point, a frequency response function (FRF) between the accelerometers and 

the hammer was computed. The Frequency response Function (FRF) can be calculated by 

transforming Equation (2-1) in the frequency domain (jω) by means of the Fourier Transform: 

 

{𝑋(𝑗𝜔)} = [𝐻(𝑗𝜔)]{𝐹(𝑗𝜔)} 

 

{𝑋(𝑗𝜔)}, {𝐹(𝑗𝜔)} are the corresponding x(𝑡) and F(𝑡) in frequency domain. Thus, the FRF, 

or relationship between {𝑋(𝑗𝜔)}  and {𝐹(𝑗𝜔)} ,is the matrix [𝐻(𝑗𝜔)] . The impact and 

measurement were repeated for each measurement position. Both the impact and measurement 
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signals will be transformed in the frequency domain by means of the Fast Fourier Transform (FFT) 

and the FRF H1 calculated averaging according to the standard method: 

 

[𝐻(𝑗𝜔)]1 =
∑ {𝑋(𝑗𝜔)} ∙ {𝐹(𝑗𝜔)}∗𝑁𝑎

1

∑ {𝐹(𝑗𝜔)} ∙ {𝐹(𝑗𝜔)}∗𝑁𝑎
1

(1) 

 

The average in a frequency domain of three impacts was used taking 8 s of time signal and a 

frequency resolution of 0.125 Hz (400 Hz maximum frequency analyzed). The coherence function, 

which is usually used to estimate the influence of the noise and nonlinear effect during the EMA, 

was also computed between the accelerometer and the hammer in order to ensure the accuracy of 

the experimental testing. When the noise and nonlinear effect are low, the coherence function is 

close to 1. In that way, one FRF was obtained for every point where the accelerometer was located. 

Using all the FRFs of different measurement points, an operational deflection shape (ODS) [75] of 

the runner can be obtained in order to obtain the mode-shapes of the structure. 

 

3.3. Test procedure 

 
Figure 3-2. Accelerometer distributions and positions 

 

Eight accelerometers were used in the EMA. Each blade had one, and the other two were 

located on the turbine bearing in the radial direction and axial direction, respectively. Apart from 

the impacted blade, the positions of accelerometers on other blades and turbine bearings kept fixed 

with the same positions on each blade. For the impacted blade, the impact position was always 

impacted in the same point, and the accelerometer was moved to different positions (21 for the 

undamaged blade and 27 for the damaged blade) in order to represent the mode-shape of the blade 

for every natural frequency. This method is called roving accelerometer. Three impacts were done 
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in every position of the accelerometer in order to compute the average of them. The positions where 

the accelerometer was placed are shown in Figure 3-2. The impact position on the undamaged blade 

is close to the trailing edge, and that on the damaged blade is close to the leading edge. 

 

3.4 Experimental results  

3.4.1. Frequency response function and coherence of the blade measurement points 

3.4.1.1. Impact on the undamaged blade 

 

Figure 3-3. Frequency response function of the blade measurement points (impact on the 

undamaged blade). (a) overlaid FRF of all the measurement points on the blades (b) the point on 

the impact blade with the same position with the points on non-impact blade (c) one point on a 

non-impact blade. 

 

The FRFs of the measurement points on the blades when the impact was on the undamaged 

blade are shown in Figure 3-3. (a) is the overlaid FRFs of all the measurement points on the blades, 

(b) is the FRF of the point on the impact blade with the same position as the accelerometers on other 

blades and (c) is the FRF of one measurement point on one non-impacted blades. There are five 

modes detected below 200 Hz, and these five modes can also be clearly detected by the measurement 
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(b)

(c)

Bending
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points on other blades. The response amplitudes of all the modes of the measurement points on the 

non-impacted blades are much lower than those of the measurement point with the same position 

on the impact blade. 

 

The coherences of the leading-edge tip point and the point with the same position with the 

points on other blades, as well as a point on other blades are shown in Figure 3-4. All the coherences 

of the measurement points on the blades are close to 1 at resonant frequencies, even those from the 

points on non-impact blades, which ensures the accuracy of the FRFs. 

 

 

Figure 3-4. Coherences of different measured points (impact on the undamaged blade). (a) 

leading-edge tip point on the impact blade (b) the point on the impact blade with the same position 

with the points on non-impact blade (c) one point on a non-impact blade. 

 

3.4.1.2. Impact on the damaged blade 

The FRFs of the measurement points on the blades when the impact was on the damaged blade 

are shown in Figure 3-5. There are four modes detected below 200 Hz, and these modes can also be 

detected by the measurement points on the non-impacted blades. 

(a)

(b)

(c)
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Figure 3-5. Frequency response function of the blade measurement points (impact on the damaged 

blade). (a) overlaid FRF of all the measurement points on the blades (b) the point on the impact 

blade with the same position with the points on non-impact blade (c) one point on a non-impact 

blade. 

 

The coherences of the leading-edge tip point and the point with the same position with the points 

on other blades, as well as a point on other blades are shown in Figure 3-5. The coherences of all 

the points are close to 1 at resonant frequencies. 

 

3.4.2. Natural frequencies and mode shapes  

An ODS model was built in Bruel & Kjaer Reflex software to represented the Kaplan turbine. 

This model consists of six blades and part of the turbine bearing. A single blade model was built 

specially to analyze the response of the impacted blades. The frequencies and mode shapes 

(including the bearing points) detected by impacting the undamaged blade and the damaged blade 

are shown in Table 3-1. These modes have been matched to the numerical modes obtained on single 

blade in Section 2.2.1.2.   

 

Damaged T(0, 1)

Damaged T(0, 2)
Damaged T(1, 1)

Damaged T(1, 2)

(a)

(b)

(c)
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Figure 3-5. Coherences of different measured points on the blade (impact on the undamaged 

blade). (a) leading-edge tip point on the impact blade (b) the point on the impact blade with the 

same position with the points on non-impact blade (c) one point on a non-impact blade. 

 

Table 3-1. Experimental frequencies and mode shapes for the undamaged and damage blades. 

 Undamaged Blade Damaged Blade 

FRR 
Mode 

Freq 

[Hz] 
Modal Shape 

Freq 

[Hz] 
Modal Shape 

B 55.47  

 

 Not Detected N/A 

(a)

(b)

(d)
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T (0, 1) 77.44  

 

56.7  

 

0.267 

T (0, 2) 126.39  

 

105.3  

 

0.167 

T (1, 1) 141.26  

 

133.6  

 

0.054 

T (1, 2) 195.46  

 

176.55 
 

 

0.097 

 

The responses of the measurement points on the non-impacted blades and bearing are very low, 

which have also been shown in the FRFs in Figure 3-2 and Figure 3-4. The response amplitudes of 

different modes of the measurement points on non-impacted blades normalized to the response 

amplitude of the point on the impact blade with the same position are shown in Figure 3-6, in which 

the blades are marked by numbers in the anti-clockwise. The undamaged blade is B5, and the 
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damaged blade is B6. For all the modes, the responses on the impact blade are much higher than in 

the other blades, particular when the impact was on the damaged blade. The reason of this can be 

the loose connections between the blades and hub/control system. Therefore, mode-shapes families 

that were found in the numerical simulation are actually not appearing. This means that the runner 

cannot be considered as a rigid body and that every blade vibrates independently. 

 

The frequency reduction ratios (FRR) of each mode are also shown in Table 3-1. Under a so large 

crack, the FRRs of some modes seem to be abnormally low with the lowest 0.054 for the T (1, 1) 

mode. The possible reason of this can be the nonlinear effect due to the contact of crack surfaces, 

which can provide some stiffness. However, it is better to validate this through the comparisons with 

numerical results, which are shown in Chapter 4. Due to the crack, the mode shapes of all the modes 

deflect to the crack side, and their detailed comparisons with numerical results are also shown in 

Chapter 4. 

 

Figure 3-6. Normalized blade displacement of different modes. (a) impact on the undamaged blade 

(b) impact on the damaged blade. 
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3.4.3. Transmission to the bearings.  

 

 

Figure 3-7. FRFs and Coherences of the measurement points on the turbine bearing (impact on the 

undamaged blade). (a) FRF in axial direction (b) FRF in radial direction (c) coherence in axial 

direction (d) coherence in radial direction. 

 

The monitoring systems of hydraulic turbines usually measure vibration at the turbine bearings. 

Therefore, to study the response transmission from the runner to the bearing is very important for 

the crack monitoring. The FRFs and coherences of the measurement points on the bearing when the 

impact was on the undamaged blade are shown in Figure 3-7. Those ones when the impact was on 

T(0, 1)
T(0, 2)

T(1, 2)

(a)

(b)

(c)

(d)



CHAPTER 3. Experimental Study 

 

68 

 

the damaged blade are shown in Figure 3-8.  

 

When the impact is on the undamaged blade, only three blade dominated modes below 200 Hz 

can be detected by the point in axial direction, and two in radial direction. The detected modes in 

axial and radial directions are the same. The amplitudes of some detected modes in axial direction 

are higher than those in radial direction. The coherences of these two points are much worse than 

those on the blades, but they still approach to 1 at the detected resonant frequencies.  

 

 

Figure 3-8. FRFs and Coherences of the measurement points on the turbine bearing (impact on the 

damaged blade). (a) FRF in axial direction (b) FRF in radial direction (c) coherence in axial 

direction (d) coherence in radial direction. 
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Damaged 
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When the impact is on the damaged blade, there are only three blade dominated modes below 

200 Hz that can be detected by the point in axial direction and two in radial direction. The coherences 

approach to 1 at the detected resonant frequencies. Overall, the response transmission to the bearing 

in axial direction is better than that in radial, and this is probably because the blade dominated modes 

mainly vibrate in axial direction. This conclusion has also been reached with the numerical model 

in section 2.2.2.3.4.  

Even it seems that some modes can be detected from the bearings, the amplitudes of the FRFs 

are not so high which will make difficult to detect them under working conditions. In addition, the 

reduction of frequencies due to the crack are not so high (less than 26%), which will also make 

difficult to detect the crack in its first stage of developing. 

 

3.5. Summaries 

In this chapter, the dynamic behavior of the Kaplan turbine runner with and without damage 

has been studied experimentally. The experimental modal analysis has been done through the roving 

accelerometer method. The damaged blade and one undamaged blade have been analyzed. 

Accelerometers have been located on every blade, as well as on the turbine bearings and thrust 

bearings. Using all the FRFs of the different measurement points, the operational deflection shape 

(ODS) of both the damaged and undamaged blades have been obtained. Coherences between the 

measurement points and hammer have been checked to ensure the accuracy of the experiment. The 

natural frequencies and mode shapes of the modes below 200 Hz detected by impacting the damaged 

blade and by impacting the undamaged blade have been presented.  

 

The frequency reduction ratios of some modes can be abnormally low under a so large crack, 

which is possible due to the nonlinear effect caused by the contact of crack surfaces. The crack 

makes all the mode shapes deflect to the crack side. 

 

All the modes detected show that the response concentrate on the impact blade, which indicate 

that each blade behave independently. The responses of the runner can be transmitted to the turbine 

bearing, and some modes of the runner can be detected by accelerometers in the bearing in the axial 

and radial directions. The responses in the thrust bearing in axial direction are higher than those in 

the radial direction, and more modes are detected, which may indicate that measuring the bearing 

response in axial direction is better than in radial direction for the crack monitoring. 
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CHAPTER 4. Comparison between the experimental 

and numerical results 

 

In this chapter, the experimental and numerical results on the Kaplan turbines are compared. 

The differences between the experimental and numerical results are also analyzed. Based on the 

validation of the numerical models, failure analysis on the damaged blade is also done, and an 

uncommon failure reason in Kaplan turbines due to the rubbing between the blades and chamber 

wall is revealed. The content of the failure analysis part has been published in in the paper” Zhang 

M, Valentín D, Valero C, et al. Failure investigation of a Kaplan turbine blade[J]. Engineering 

Failure Analysis, 2019”. 
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4.1. Comparison between numerical and experimental results 

4.1.1. Natural frequencies and mode shapes without crack 

Table 4-1 Experimental and numerical modes of the undamaged blade. 

 Experimental Results Numerical Results Freq 

Error 

[%] 
Mode 

Freq 

[Hz] 
Modal Shape 

Freq 

[Hz] 
Modal Shape 

B 55.47 

 

57.09  2.93 

 
 

T (0, 1) 77.44 

 

64.68  -16.4 

 
 

T (0, 2) 126.39 

 

112.79  -10.7 

  

T (1, 1) 141.26 

 

138  -2.31 

  

T (1, 2) 195.46 

 

183.64  -6.05 

  

 

Because the experimental results show that each blade of the turbine runner behaves intendedly, 



CHAPTER 4. Comparison between the experimental and numerical results 

 

72 

 

the experimental results on the impact blades are directly compared with the numerical results on 

the single blade in Section 2.2.1.2 and 2.2.2.2. 

 

The experimental natural frequencies and modal shapes of the undamaged blade have been 

shown in Table 4-1. Apart from T (0, 1) mode with a frequency error 16%, the errors of all other 

modes are less than 11%. The frequency errors can be caused by geometry errors or boundary 

condition errors. The experimental and numerical mode shapes of all the modes are very similar. It 

is hard to compare the experiment and the simulation mode-shapes just with the picture of the 

deformation, hence the points that are measured in the experiment are directly compared with the 

same points in numerical simulation. Only points in the periphery of the blade are considered since 

the maximum deformation is located in this zone. Figure 4-1(a) show the points selected to compare 

the mode-shapes. Results obtained are plotted from Figure 4-1(b) to Figure 4-1(f). The displacement 

has been normalized with the point with maximum displacement in both experimental and numerical 

cases. A good correlation is found between the experiment and the numerical model for the mode-

shapes. 

 

4.1.2. Natural frequencies and mode shapes with a crack 

Table 4-2. Experimental and numerical modes of the damaged blade. 

 Experimental Results Numerical Results Freq 

Error 

[%] 
Mode 

Freq 

[Hz] 
Modal Shape 

Freq 

[Hz] 
Modal Shape 

B  Not Detected 37.14  N/A 

  

T (0, 1) 56.7 

 

46.42  -18.1 

  

T (0, 2) 105.3 

 

69.35  -34.1 
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T (1, 1) 133.64 

 

104.2  -22.1 

  

T (1, 2) 176.55 

 

148.05  -16.1 

  

 

The experimental modal shapes and frequencies, as well as the numerical modal shapes and 

frequencies of the damaged blade with a 600mm crack, are shown in Table 4-2. The Bending mode 

is not detected by the experiment probably due to its low response. The largest frequency error goes 

to as high as 34.1%. The detailed mode shape comparisons are shown in Figure 4-2, where the larger 

discrepancies are clearer. The experimental and numerical frequency reduction ratios are shown in 

Table 4-3. All the experimental FRRs are much lower than numerical ones, with the lowest FRR 

0.054 under a so large crack. The reason of this ought to be the nonlinear effect due to the crack 

surfaces contact, which provides some stiffness and lowers all the FRRs. Through Figure 4-1 and 

Figure 4-2, the mode shape deflections due to the crack are clear both for the experimental and 

numerical results. 

 

Table 4-3. Frequency reduction ratios of different modes due to the crack. 

 Bending T (0, 1) T (0, 2) T (1, 1) T (1, 2) 

FRR.EXP N/A 0.267 0.167 0.054 0.097 

FRR.SIM 0.349 0.282 0.385 0.245 0.194 

 

In order to improve the numerical results, the non-linear effect of the crack should be 

considered. One option to take into account this effect is to consider the crack as a material with 

lower stiffness than the blade material. This will be done as a future step in the investigation. 
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Figure 4-1. Comparison between experimental and numerical displacements along the outside 

edges of the undamaged blade. (a) Points number. (b) Bending. (c) T (0, 1). (d) T (0, 2). (e) T (1, 

1). (f) T (1, 2). 
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Figure 4-2. Comparison between experimental and numerical displacements along the outside 

edges of the damaged blade. (a) T (0, 1). (b) T (0, 2). (c) T (1, 1). (d) T (1, 2). 

 

 

4.2. Failure analysis of the damaged blade 

The content of this section has been published in the paper” Zhang M, Valentín D, Valero C, et 

al. Failure investigation of a Kaplan turbine blade[J]. Engineering Failure Analysis, 2019”. 

Therefore, only a summary of this investigation is included here. 

 

Periodically, vibration monitoring is carried out to supervise the condition of the turbine. This 

procedure consists of measuring the vibration on some accessible points of the machine allowing 

the detection of abnormal vibrational behavior and, in some cases, incipient damage. For this case, 

data was measured in the bearings in axial and radial directions. In one of the measurements, the 

vibration monitoring system detected an increase in the overall vibration levels, as well as a clear 

change in the spectra. Therefore, the machine was stopped and inspected.  

 

The inspection of the runner showed a large crack starting from the leading-edge side root hole 

of one of the blades (Figure 1-11). A detail of the crack is seen in Figure 4-3, where the beach marks 

can be also discerned. The beach marks show that the damage was caused by a fatigue problem. 
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Figure 4-3. Detail of the crack. (a) From the pressure side. (b) From the suction side. 

 

 

Figure 4-4. View of the runner from below. Non-damaged blade (left) and damaged blade (right). 

 

Moreover, some scratches were found on the whole perimeter of the stationary wall and the 

tip-lip of the damaged blade was also found broken (see Figure 4-4 and Figure 4-5). This fact leads 

one to think that contact between the tip-lip of the blade and the wall occurred. To better understand 

how the blade was broken, a further investigation using a numerical blade model is carried out in 

the following sections. 

 

(a) (b)
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Figure 4-5. Detail of the broken tip-lip and scratches in the stationary wall. (a) Detail of the 

broken tip-lip. (b) Detail of the scratches in the wall. 

 

4.2.1 Analysis of the machine vibration 

As mentioned above, the machine was monitored periodically by analyzing vibration in the 

bearings. Analyzing the vibration overall levels as well as the spectra of every measured point, the 

status of the machine can be evaluated. However, first, it is essential to understand the origin of the 

vibration in the turbine. 

 

Vibrations generated by Kaplan turbines can be of mechanical origin or of hydraulic origin. 

Mechanical origin forces are mainly the centrifugal forces, which depend on the distribution of the 

rotating mass and on the rotational speed. The hydraulic forces can be divided into two types: the 

static loads and the hydrodynamic loads. The static load is caused by the mass-flow passing through 

the runner and therefore they are higher for higher generating powers [23]. The hydrodynamic loads 

are mainly due to the rotor-stator interaction (RSI), although they can also provide from other 

hydraulic phenomena such as vortex rope, tip vortex or Vortex-shedding [25, 26, 76-78]. 

 

The RSI arises from the interference between the rotating blades of the runner and the 

stationary guide vanes [22]. In Kaplan turbines, RSI is not as important as in Francis turbines or 

Pump-turbines, but it still exists. Viewed from the stationary frame, the RSI frequency depends on 

the rotating speed of the runner (𝑓𝑟), the number of rotating blades (𝑍𝑏) and the order of harmonics 

(n): 

 

𝑓𝑏,𝑛 = 𝑛 ∙ 𝑍𝑏 ∙ 𝑓𝑟 (4 − 1) 

 

The excitation shape corresponding every 𝑓𝑏,𝑛 is the superposition of several excitation modes 

(k) that can be calculated with the following expression: 

 

k = 𝑚 ∙ 𝑍𝑣 − 𝑛 ∙ 𝑍𝑏 (4 − 2) 

 

where 𝑍𝑣 is the number of guide vanes and m the order of harmonics from the rotating view. 

Higher amplitudes are expected for lower |k|. Therefore, for a Kaplan turbine, the highest amplitude 

is obtained normally for m = 1 and n = 2 to 4. The sign of k indicates the rotation of the pressure 

(a) (b)



CHAPTER 4. Comparison between the experimental and numerical results 

 

78 

 

pulsation. If it is positive the pressure pulsation rotates in the same direction than the runner and if 

it is negative, it rotates in the opposite direction. 

 

 

Figure 4-6. Comparison between the spectra before damage and with damage. Turbine bearing. a) 

Without damage b) With damage. 

 

 

Figure 4-7. Comparison between the spectra before damage and with damage. Generator bearing. 

a) Without damage b) With damage. 

 

Figure 4-6(a) shows a typical vibration signature of a Kaplan turbine in a turbine bearing 

without any damage. The vibration signature for the generator bearing without any damage is seen 

in Figure 4-7(a). Three peaks can be clearly identified: ff, fb,2 and fb,4. However, a sudden increase 

in the harmonics related to the ff was found when the blade was broken (see Figure 4-6(b) and Figure 

4-7(b)). The unbalance, related to the ff increased considerably in comparison with the one with the 

machine in good condition (Figure 4-6(a) and Figure 4-7(a)). These symptoms coincide with a 

severe unbalanced rotating machine and with a blade contacting in the stationary wall during 

operation. 
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The overall vibration levels of all the measured points also increased considerably. Figure 4-8 

shows these levels for the turbine bearing and the generator bearing. After the reparation of the blade, 

the symptoms observed with the broken blade disappeared. 

 

 
Figure 4-8. Overall vibration levels along the time. a) Turbine bearing. b) Generator bearing. 

 

4.2.2 Numerical Simulation 

A numerical model of a single blade has been built up in order to simulate the stress distribution 

in the blade. This numerical model considers the rod, the blade and the tip-lip (see Figure 4-9). 

Compared with the blade model in Figure 2-4, the tip-lip and two root holes were added to the 

current model to calculate the local stress in those areas better. The material used in the simulation 

is still stainless steel (density of 7750 𝑘𝑔 𝑚3⁄ , Young’s Modulus of 193GPa and Poisson’s ratio of 

0.31). The blade is fixed at the rod using a totally fixed support. The mesh sensitivity was strictly 

checked and the mesh density at the root holes, which are the typical stress concentrator points, was 

especially increased. Finally, about 1.4 × 105 tetrahedral elements were used, as shown in Figure 

4-9. 

 

First, a numerical modal analysis was performed, and the results were compared with 

experimental values (see Table 4-1) to validate the numerical model. Though the tip-lip and two 

root holes were newly introduced, they do not change the natural frequencies and modal shapes too 

much compared with those of the blade model in Figure 2-4. Therefore, a good agreement between 

the numerical results and experimental results can be expected and is not listed here anymore. Once 

the numerical model was validated, the typical pressure distribution over the blade was applied in 

the model. This pressure distribution was applied according to values reference [25] (see Figure 4-

10(a)). Moreover, the rotating speed was introduced to the blade to consider the inertia effects. The 

stress distribution was obtained for this pressure distribution, which corresponds to normal operation 

of the machine. After that, one tangential force and one radial force were applied in the blade tip, 

just where it was found broken in the prototype (see Figure 4-10(b)). These forces model the 

behavior of contact with the stationary wall. As the value of these forces was not known, different 

values were tested to see the influence of those forces on the stress distribution over the blade. 
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Figure 4-9. View of the mesh. 

 

 

Figure 4-10. (a) Pressure pattern (unit: Pa). (b) Contact forces. 

 

4.2.3 Dynamic response of the blade 

To determine the effect of rubbing on the stress distribution of the blade and its relationship 

with the crack appearance, a static structural analysis of the blade was performed. To do so, first, a 

typical pressure distribution in Kaplan turbines is applied to the structure and then, a contact force 

was applied in the tip of the blade, as explained in Section 4.2.2. 

 

4.2.3.1. Stress distribution under normal operating conditions 

Once the pressure pattern over the blade is applied, the stress distribution due to this pressure 

is obtained. Therefore, this displacement corresponds to the normal operating conditions of the 

machine and it is shown in Figure 4-11(a). The stress distribution of the blade is also shown in 

Figure 4-11(b). It is observed that the maximum stress in the blade is located in the zone where the 

crack started in the machine. The stress distribution matches with other previous results obtained in 

other Kaplan turbine prototypes [23]. 
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4.2.3.2. Stress distribution under rubbing 

To model the rubbing, a radial force and a tangential force were applied to the blade (see Figure 

4-10(b)). The value of these forces is not known, hence different values were tested in the simulation. 

Figure 4-12 shows how the value of these forces affect the maximum stress value located in the root 

of the blade, where the crack started. The stress in the figure is normalized against the value found 

without any rubbing (Figure 4-11(b)). It is seen that for the contact forces from 106N to 107N, the 

stress value increases drastically. From the case of the scratched wall and broken tip-lip, the contact 

force in this researched case ought to be very high. Therefore, with the appearance of these 

tangential and radial forces the stress in the root increases and it demonstrates the appearance of the 

crack in the blade. 

 

However, not only the stress in this point increases but also the stress distribution changes due 

to the appearance of a tangential and radial force in the blade tip. Figure 4-13 shows the 

displacement and stress distribution due to the different values of tangential and radial forces. It can 

be observed that the stress is also higher in the zone of the tip-lip, just where it was also found 

broken. This fact demonstrates why this part was also found broken in the machine inspection. 

 

(a)  

 

(b) 

 

Figure 4-11. (a) Displacement under normal operating conditions. (b) Stress distribution of the 

blade under normal operating conditions. 

 

 

Figure 4-12. Normalized maximum stress changes with contact force. 
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 (a) (b) 

Displacement 

  

Stress Distribution 

  

Stress in the tip-

lip zone 

  

Figure 4-13. Displacement and stress distribution (a) Tangential force value of 106N. (b) Radial 

force value of 107N. 

 

4.3. Summaries 

In this chapter, the experimental and numerical results on the Kaplan turbine have been 

compared together to validated the numerical results. The experimental natural frequencies and 

mode shapes on the undamaged blade are close to the numerical results. The experimental mode 

shapes on the damaged blade are similar to the numerical mode shapes on the damaged blade. 

However, when using a narrow gap to simulate the real crack, the numerical frequency reduction 

ratios due to the crack can be much higher than experimental ones, which is probably due to the 

nonlinear effect induced by the crack surfaces contact. The nonlinear effect can make the frequency 

reduction ratios of some modes abnormally low even when the crack is very large.  

 

Failure analysis on the large crack shown in Figure 1-11 has been done to find out the causes 
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that provoked it. The large crack generated an increase in the vibrations of the machine that was 

detected by the monitoring system. After the inspection, beach marks were found on the crack 

surfaces, which indicated that the crack was caused by fatigue. At the same time, some scratches 

were found on the chamber wall and the tip-lip near the leading-edge was broken. The vibration 

spectra showed that the vibration amplitude at the rotor rotation frequency increased drastically. All 

these symptoms showed that there had been a contact between the damaged blade and the wall. To 

study the effect of a contact force at the blade tip on the maximum stress, a more specific blade 

model with two root holes and the tip lip was created and used for static structural analysis. The 

newly built model has been validated by comparing its natural frequencies and mode shapes with 

the experimental results. The hydraulic pressure at a normal operation point and centrifugal force 

due to the rotation have also been considered in the stress analysis. Results showed that with the 

increase of the contact force, the stress at the leading-edge root hole increases drastically. A high-

stress area also appeared at the tip-lip zone. Therefore, it ought to be the high contact force that 

caused the crack and broken tip-lip to occur. 
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CHAPTER 5. Conclusions and Future Perspectives 

 

This chapter presents the major conclusions and contributions of this thesis work. The 

applications of the results are explored, and some future work is proposed. 
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5.1 Contributions and Conclusions 

Summing up all the investigations carried out in this thesis and the obtained results, several 

contributions and conclusions can be achieved, as described in following paragraphs. 

 

5.1.1. On the dynamic behavior of a prototype Kaplan turbine without damage 

The modes of prototype turbines can be generator, shaft, hub, control system or blade 

dominated. The generator has little influences on blade dominated modes, and a single blade model 

can probably be used to predict the natural frequencies of the Kaplan runner. 

 

The balance of the blade can be changed by the support position, which can be optimized to 

reduce the dynamic stress of the blade. The support stiffness can have some influences on the modal 

shapes because it can change the balance of the blade. The natural frequencies of the single blade 

become very sensitive to the support stiffness when it is lower than some value.  

 

The surrounding water can change appearance sequences of each mode. With the decrease of 

the tip-clearance size, the natural frequencies of all the modes will decrease slightly. 

 

5.1.2. On the dynamic behavior of a prototype Kaplan turbine with damage 

A crack lowers the stiffness of the blade and therefore its natural frequencies. The mode-shapes 

are also affected by the crack. For some modes, the frequency reduction ratios can be very low even 

if the crack length is very large, which is probably due to the nonlinear effect induced by the crack 

surfaces contact. A crack will make the mode shapes deflect to its side. The crack path and length 

can have influence on mode shape and frequency. The value of the natural frequency can decrease 

up to 25% for some cases changes due to a crack. 

 

The frequency reduction ratios of the localized modes in water can be different from those in 

air depending on the mode-shape. The tip-clearance size nearly has no important influences on the 

frequency reduction ratios. 

 

Forced response analysis has been performed to investigate the response changes due to a crack 

on the blade. Due to the more significant vibration amplitude and frequency changes of the localized 

blade dominated modes, they are most useful for crack monitoring. The vibration amplitude change 

trends are common for all the monitoring points on the shaft in both radial and axial directions, but 

they are more significant for lower position monitoring points in axial direction. Some modes can 

be clearly detected from the shaft when the crack on the blade is large. 

 

5.1.3. On the effect of a crack on the dynamic behavior of a Francis turbine runner model 

For the studied Francis runner model, there is usually only one localized mode, and when the 

crack length is high, strong localization can occur. The localized mode or the modes with strong 

deformation concentrations on the damaged blade usually have the highest natural frequency 

reduction ratios. The modal shapes and frequency reduction ratios in water are different from those 

in the air. The modal shape of a changed mode may become similar to another mode when their 

frequencies are close. The forced response and natural frequency changes are usually small when 
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the crack is not large enough, which is the reasons why the crack is difficult to be monitored in this 

type of runner. 

 

5.1.4. Failure analysis of the damaged Kaplan turbine blade 

The large crack on the turbine blade researched in this thesis generated an increase in the 

vibrations of the machine that was detected by the monitoring system. After the inspection, beach 

marks were found on the crack surfaces, which indicated that the crack was caused by fatigue. At 

the same time, some scratches were found on the chamber wall and the tip-lip near the leading-edge 

was broken. The vibration spectra showed that the vibration amplitude at the rotor rotation 

frequency increased drastically. All these symptoms showed that there had been a contact between 

the damaged blade and the wall. To study the effect of a contact force at the blade tip on the 

maximum stress, a more specific blade model with two root holes and the tip lip was created and 

used for static structural analysis. The newly built model has been validated by comparing its natural 

frequencies and mode shapes with the experimental results. The hydraulic pressure at a normal 

operation point and centrifugal force due to the rotation have also been considered in the stress 

analysis. Results showed that with the increase of the contact force, the stress at the leading-edge 

root hole increases drastically. A high-stress area also appeared at the tip-lip zone. Therefore, it 

ought to be the high contact force that caused the crack and broken tip-lip to occur. 

5.2. Future Perspectives 

According to the work presented in this thesis, some improvement and extension can be 

prospected in the following directions: 

 

5.2.1. On the crack monitoring 

Though the forced responses on different runner models with and without a crack have been 

done in this thesis, and the changes of either the maximum response on the runner or the response 

amplitude of the monitoring points on the shaft have been obtained, crack monitoring technologies 

based on the real vibration measurement still need to be developed to better monitor the crack 

appearances. The changes on the modal behavior are not substantial to be detected by the current 

monitoring systems, therefore this point still has to be improved. 

 

5.2.2. On the damping ratio changes due to a crack 

The experiment on the Kaplan turbine showed that a large crack has a potential to reduce the 

damping ratios of some modes and increase it for other modes. Considering the complexity of the 

damping mechanism, the damping ratio changes with the crack length increase in Kaplan turbines, 

as well as other types of hydraulic turbines, still need more experimental researches. Moreover, the 

added damping ratio changes due to a crack are also of interest. 
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