
  
 

 
 
 
 

 
 

 
 
 

 
 

Exploring the regulation and function of TIGAR  
in cancer cells 

 
Helga Simon Molas 

 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial 4.0. Espanya de 
Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial 4.0.  España de 
Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial 4.0. 
Spain License.  
 



 

 

 

 



 

 

 



 

 

 

 

 

 
 

Faculty of Medicine and Health Sciences 

Department of Physiological Sciences 

 

 

Doctoral Programme in Biomedicine 

 
 

 

 

 

Exploring the regulation and function of 

TIGAR in cancer cells 
 

 

 

This Doctoral Thesis is presented by Helga Simon Molas 

to achieve the Doctoral Degree by the University of Barcelona. 

 
 

 

 

 

Author:      Directors: 

Helga Simon Molas     Dr. Ramon Bartrons Bach  

 

 

 

 Dr. Anna Manzano Cuesta 

 

 

 

 

 

L’Hospitalet de Llobregat, 2019 



 

 

  



 

 

 

 

 

 

 

 

 

 

 

Tu pots dir “la meva barca” 

però les veles sempre són del vent. 

ANTONINA CANYELLES 

  



 

 

  



 

 

 

 

AGRAÏMENTS 

Sabia que escriuria aquests agraïments en un balcó a plena llum del sol. No és casualitat, com tampoc 

ho és tancar aquesta etapa. Segurament, els materials i mètodes d’una tesi doctoral no són el que hi ha 

escrit al final d’aquest llibre, sinó el que escrivim aquí. Sense la calidesa de tantes portes i finestres 

obertes −o que s’han deixat obrir− aquest tesi no hauria estat així. 

Gràcies, primer de tot, al meu pare i a la meva mare per respondre als inacabables perquès d’una nena 

amb pèls de punxa, per plantar una caravana al mig del món i dir-nos ‘vinga, sortiu’ i per recolzar les 

decisions o qüestionar-les la mida justa per fer-nos dubtar i canviar sense haver-ho de reconèixer massa. 

I gràcies, Judit, per fer de germana gran quan cal, hi ha coses que les he après de veure’t triar a tu, i 

espero que segueixis sent la petita d’aquesta manera sempre. Visca el suc de tomàquet de Glasgow. 

I si aquests són els meus tres buffers 10X principals que portava preparats d’abans de l’etapa científica, 

ara venen els protocols indispensables. Gràcies, Ramon, per preguntar-me un dia de l’estiu del 2012 si 

preferia fer les pràctiques sobre el gen PFKFB3 (que es regulava per mil coses i tenia un paper clau en 

càncer) o sobre un gen nou, TIGAR, que més o menys se sabia què feia, però no estava clar del tot. El 

meu agraïment cap a tu es resumeix en una paraula: llibertat. Gràcies per tenir sempre la porta del 

despatx oberta, una resposta científica preparada i un argument humanístic per defensar-la. Anna, ho 

diem en broma però no podria ser més veritat: ets la meva mare científica i és molt difícil explicar per 

què. El més fàcil seria dir que de tu he après com funciona tot a Bellvitge i gairebé totes les tècniques 

d’aquesta tesi (no hauria aconseguit ni una sola lligació sense la teva ajuda), però seria massa simplista. 

Sense la vitalitat i bondat que irradies la meva idea de tesi no seria la mateixa, i no crec que tingui mai 

més cap directora ni director tan humà com tu. Gràcies una vegada més, i sé que no serà l’última. A tots 

dos, Ramon i Anna, us agraeixo moltíssim que féssiu fàcil compaginar la ciència i la poesia durant aquell 

any boig. La cita que encapçala aquesta tesi penja en un racó del lab, i tampoc és casualitat. 

Però no, aquesta tesi no s’ha fet només entre tres. Justo al entrar al lab, primerísima mesa com no podía 

ser de otra manera: Esther Adanero. Gracias, Esther, por hacer el trabajo más distendido y no enfadarte 

cuando sí, algo rompíamos... Y gracias (y por extensión también a Alfonso) por hacer más fácil esa 

mudanza que nos montamos en medio de unos meses de trabajo de locos. Seguim cap a dins del lab, i 

cap al sud del país. Ana, d’aquest estiu no passa que vinc a Tarragona. Ser companyes de lab va ser 

genial: ens vam ajudar en transfeccions, en relleus de Mojitada i també a suportar l’avorriment extrem 

en algunes xerrades del congrés de València. Gràcies per seguir preguntant com ens va, ets un exemple 

de ‘currante’ total. I, a l’altra banda de la paret, en companyia del LAS3000: l’Àurea! Sempre va bé que 

la part PFKFB3 de la família es miri la part TIGAR i ajudi a veure una mica de llum entremig dels núvols. 

Gràcies pel teu esperit engrescador (segur que en Pere Renom ho corrobora!), per animar-nos amb el 

projecte dels limfos, i per ajudar-me a formar part de la família SCB. Esther Castaño, baixar una planta i 

rebre ajuda en l’anàlisi de les PCR o de la citometria no podria ser més fàcil. Moltes gràcies per oferir-te 

sempre a donar un cop de mà i revisar les qüestions més tècniques dels treballs, has estat una part del 

grup molt important tot i no compartir parets. Ara els agraïments de grup internacionals. Cap a Mèxic: 

muchísimas gracias Miguel por hacer los primeros westerns y las primeras extracciones de RNA conmigo, 



 

 

sé que andabas liado esos meses así que te lo agradezco mucho. I cap a Londres: moltes gràcies, Laura, 

per ajudar-me al començament quan en Pere i jo érem els babies del lab, i per extensió també a l’Andy, 

pels vostres consells “que no s’assequi la membrana!”. Finalment, gràcies a tots els estudiants de 

batxillerat, grau i màster que heu format part del grup intermitentment, tant a aquells que heu participat 

directament en alguns dels experiments d’aquesta tesi, com als qui amb les vostres ganes d’aprendre 

ens feu sentir útils. He de mencionar especialment la Clàudia i la Irene, per la ‘currada’ que vau fer amb 

el projecte dels limfos i el promotor de TIGAR; la Paula, per les estones compartides; la Carla, per obrir 

els horitzons de TIGAR al cervell; i en Mikel, por dejar clarísimo que un médico y un promotor se pueden 

entender maravillosamente. 

I tornem als CCiT: moltíssimes gràcies, Bea i Benja, per resoldre dubtes tècnics que sovint us devien 

semblar dignes de nens de parvulari. Crec que sou les persones de Bellvitge que més cops deveu posar 

cara de pòquer davant les fatalitats dels nostres experiments. Gràcies, Benja, per meravellar-te amb mi 

del marcatge dels controls negatius i no dir-me que em limités al western. Sempre em quedarà el DAPI. 

A la resta de les Ciències Fisiològiques, els d’aquí i els qui esteu escampats pel món. Moltes gràcies Cris, 

sense els teus ChIPs encara dubtaria de si Nrf2 i TIGAR tenen alguna cosa a veure o no... I gràcies també 

Francesc per descobrir-me l’ECR Browser i pels teus consells de biologia molecular. Al 4175 he d’agrair 

un bon grapat d’anticossos, minuts de centrífuga, algun mil·lilitre de FBS inactivat i el rescat més barat 

de la història: em va costar només un paquet de Voll Damm, i ara ja ens en podem riure. Moltíssimes 

gràcies per això últim, Dani i Ismael. A la Sonia, perquè ets l’única persona que ha aconseguit fer-me 

entrar a una classe d’spinning (tot i que no la vaig acabar) i vam riure una bona estona, i per animar-me 

sempre amb els drames de la tesi. A la Petra, pels teus consells sobre diferents tècniques metabòliques 

(i ho dic en català), i també a en Jose Carlos per explicar-me com anava aquesta gran idea del 

GeoProfiles, gràcies. A tota la resta de companys de tupper, Carol, Jose, Ana Maria, Pau, Juan, Marc, 

Norma, Arturo, Chus, Joan i Leo, per fer l’estona de la saleta més entretinguda. Hem estat estrets, però 

ben avinguts! Gràcies també a aquells que porteu la paella pel mànec amb el tema de l’EPIF. A tothom 

amb qui he compartit Mojitadas, gràcies també perquè almenys trobem un dia a l’any per fer pinya 

(colada). Gracias, Edu, por tus consejos con las inmunos, nos acordamos de ti en cada puré. A l’equip 

Cervezas (habrá que retomar el schedule, no?) i molt especialment al Baile Bellvitge, amb la Natalia, la 

Betta i la Tai, perquè sempre tindreu una casa a Barcelona, i és bonic tenir cases (o sofàs, és igual!) arreu 

del món. I a la Cris Moncunill, per la oportunitat que em vas donar de començar a tastar el món de la 

comunicació científica, ara quan veig un pot de Dentican em fa il·lusió i tot! 

A aquelles persones que fan que la feina al lab sigui més fàcil i agradable, gràcies Josep Maria per 

gestionar les compres i tornar-nos religiosament fins l’últim cèntim de la llet en pols; gracias también, 

Montse, por tu implicación en el Departamento desde el primer día y por preguntarme siempre cómo 

lo llevaba desde la poyata de al lado; y muchas gracias Carmen por eso de ‘pisa, pisa aunque esté mojado 

que no quiero que te caigas’, sort en tenim de tu! 

Passadís enllà, agrair al laboratori de Nefrologia la seva col·laboració en aquesta tesi, molt especialment 

a la Núria, a en Pere i a l’Anna Vidal. Sense vosaltres el treball en limfos no hauria estat possible. Anna, 



 

 

 

 

ets una de les persones més implicades que conec. Gràcies per deixar-me compartir amb vosaltres l’ABP 

i per posar-m’ho sempre fàcil, va ser molt enriquidor. Parlant de docència, gràcies també a la Susana, 

t’hauré de deixar aquests agraïments a la bústia dos portals més enllà: gràcies per ser la meva primera 

mestra de pràctiques. 

A aquells amb qui hem col·laborat al llarg d’aquesta tesi, gràcies. Al laboratori d’en Joan Gil amb els 

MLPA, al de l’Oscar Yanes perquè la metabolòmica ha estat una contribució enorme, a l’Annie Rodolosse, 

a qui no conec personalment però em va demostrar que ciència és compartir el que sabem, al Santi per 

estar sempre disposat a parlar de capes d’electrons, i a en Biel, que tot i que no sé si és legal incloure un 

membre del tribunal als agraïments, t’agraeixo molt l’interès i l’ajuda per entendre què tenen a veure 

PGAM i TIGAR. 

També a aquells laboratoris que m’han acollit quan no funcionaven els nostres aparells... Als grups d’en 

Jose Luis Rosa, en Ricardo Pérez, en Joan Blasi i la Mireia Martín, gràcies per la vostra amabilitat. 

Per acabar el recorregut pel passadís, faré dues parades. Gràcies, Anna Plana, per compartir nervis i 

dubtes aquests últims mesos, ens en sortirem! I muchas gracias, Ana Méndez, por ser un ejemplo de 

rigor. En los ratos compartidos en vuestro despacho he visto que, aunque ser IP en Bellvitge pueda ser 

más difícil que en otras partes, la clave es no claudicar nunca. I l’última parada al departament veí: 

Fàrmaco! Gràcies, Víctor, per deixar clar que pel passadís de la 4a planta hi circulen persones, que fem 

ciència i altres coses. Gràcies també Marc pels viatges de Camins Infinits, qui ens ho anava a dir! 

Vull agrair també a la meva comissió de seguiment, Cristina Muñoz, Maria Soley i Pablo García-Roves, 

els vostres consells. M’ha servit molt el seguiment que heu fet i gràcies a vosaltres he pogut redirigir 

alguns dels experiments d’aquesta tesi i repensar coses. 

Creuant la Gran Via, no em volia oblidar d’en Joan i la Gemma de la Unitat de Comunicació Científica de 

l’IDIBELL. A tots dos, per donar-me l’oportunitat d’explicar la nostra feina a la societat amb aquest ‘De 

professió, científic’ i molt especialment a en Joan pel pont cap a l’SCB, l’Horiginal i Sitges. Gràcies. 

I ara ve el paràgraf dedicat als mesos d’abril a juliol del 2016, que tampoc podia deixar passar. Thank 

you, Karen Vousden, for opening the doors of your lab to me, working in the nest of TIGAR was 

wonderful. I would like to thank the whole lab, but especially Julianna, Fabio, Bob, Mylene, Eric, Flore and 

Andreas for your help with the protocols and for making the stay easy. Julianna, I still keep the paper 

tag that you gave me with a present for changing the media for you. I am so glad we met each other, 

Ana and I wait for you in Barcelona! Ana, thank you for becoming an enthusiast of Catalonia, I knew 

you’d like it! If the defense of this thesis is acceptable, I am sure our conversations will have a lot to do! 

And, finally, thank you Sam for making me part of your family. I know I have a room in Glasgow, and you 

know that Ivy has an auntie in Barcelona. 

M’agradaria deixar constància també d’aquells que heu fet possible que aquesta tesi hagi durat quatre 

anys, malgrat la beca era només de tres perquè no us puc estar més agraïda. Vull agrair molt sincerament 

a l’SCB la confiança que heu dipositat en mi. Vaig començar aquest camí de la comunicació científica 

una mica a ulls clucs, però m’heu fet sentir com a casa i m’heu permès veure que compaginar recerca i 



 

 

divulgació és de les coses més enriquidores que hi ha. Gràcies especialment a en Raül i la Marina, per 

dir que sí sabent que no havia fet mai un twit, i a tot el comitè directiu en general. Vull agrair també a la 

UCC+i de la UB que confiéssiu en mi durant aquell mes, va ser curt però va ser una gran oportunitat. 

I ara sí, enfilem la recta last but not least total. A totes les Cabres, no us anomeno una per una perquè la 

part científica de la tesi ha de començar en algun moment, però moltes gràcies per les tremperes, les 

rutes, les fotos per sempre amb cavalls de plàstic, la poesia, els sopars a Gràcia, ... Un lumi sempre serà 

un refugi. Per relació directa entre aquesta tesi i el vostre temps, gràcies especialment a la Jove, per ser-

hi durant tot el camí: al poblet, a Sants quan només teníem el temps just d’un birra, o el primer dia de 

sol post-dipòsit a Plaça Osca. I a la Clara i l’Alberich, gràcies per haver-me ajudat a fer créixer, encara 

amb el cap a les pipetes i arribant sempre tard, aquest A la vora tan nostre. 

A la Finca, perquè vaig venir a viure a Barcelona amb la teoria que tenint Sant Just tan a prop no faria 

amics a la ciutat, i m’heu tirat la teoria per terra. Visca les estones de desconnexió tan necessàries 

d’aquests últims anys. 

A l’Elena, l’Helena, l’Amèlia i l’Alexandra, perquè si vam sobreviure a tres canvis de nom de carrera, tot 

el que vingui després és pan comido. Aquí, a Madrid i a Berlín. Gràcies pels ànims que només els amics 

del mateix ram saben donar. 

I, sempre amb alegria (amb o sense drap a la mà), moltíssimes gràcies a l’Helena i la Roser perquè una 

vegada una casa ho va canviar tot. Sé que sempre tindrem una finestra turquesa des d’on mirar el concert 

de les estrelles, tranquil·lament. 

Al Jose, per dosificar-me el nerviosisme i per ser calma. Et queda un mes de lidiar amb aquesta 

endimoniada, però a Canet veurem sortir el sol. Fas la vida bonica. Bonica, i punt. Gràcies. 

Finalment, a la resta de tiets i tietes, cosins i cosines i a la meva àvia. Gràcies per les llargues sobretaules, 

per ser-hi sempre i per molts més ous de Pasqua i cavalcades o succedanis que ens agraden tant o més. 

Gràcies també per preguntar per la tesi i haver fet un esforç per entendre de què va això de la vida 

científica. I també dir, i no sé si agraïment és la paraula, que alguns dies d’aquesta tesi han estat un 

homenatge als qui han marxat, d’una manera o una altra. Gràcies també a la família d’en Jose, per cuidar-

nos i omplir-nos el rebost, que sempre fa la tesi més fàcil. I, finalment, vull reservar un espai concret a la 

Gisela, perquè sé que hi serem sempre; a la Nati, per saber escoltar i sempre tenir una paraula senzilla; 

a l’Adrià i l’Oriol, perquè vau ser la primera idea de doctor tangible que vaig tenir; i al meu avi, perquè 

per ell al balcó neixen flors a cada instant. 

 

 



This work was supported by Instituto de Salud Carlos III – FIS PI13/0096 and PI17/00412 and 

Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa. 

With the support of Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement 

de la Generalitat de Catalunya. 

 

   

 

 

 

 

 

 

 

 

 

  



 



 

 

I 

 

TABLE OF CONTENTS 

FIGURE AND TABLE LEGENDS .................................................................................................................. IV 

ABBREVIATIONS ........................................................................................................................................... 1 

INTRODUCTION ........................................................................................................................................................................... 5 

CANCER: ONE NAME, MULTIPLE FACTS ......................................................................................................................................................................... 7 

1. General considerations on cancer metabolism: catabolism for anabolism ..................................................................... 9 

2. Glycolytic metabolism................................................................................................................................................................................. 11 

2.1. Obtaining the carbons: the glycolytic phenotype ...................................................................................................................... 11 

2.2. Using the carbons: key glycolytic enzymes................................................................................................................................... 15 

2.2.1. Capturing glucose through phosphorylation by HK ........................................................................................................ 15 

2.2.2. PFK-1 and the Fru-6-P/Fru-1,6-P2 substrate cycle ............................................................................................................ 15 

2.2.3. PFK-2/FBPase-2: the importance of Fru-2,6-P2 .................................................................................................................. 17 

2.2.4. TIGAR .................................................................................................................................................................................................... 23 

2.2.5. From Fru-1,6-P2 to PEP: the forgotten enzymes ................................................................................................................ 30 

2.2.6. Pyruvate kinase: the last step of glycolysis .......................................................................................................................... 30 

3. Diversion of carbons: metabolic pathways branching from glycolysis ........................................................................... 31 

3.1. Hexosamine-phosphate pathway ..................................................................................................................................................... 31 

3.2. Pentose phosphate pathway ............................................................................................................................................................... 31 

3.3. Serine and glycine synthesis pathway and one-carbon metabolism ................................................................................. 32 

3.4. Lipid synthesis ........................................................................................................................................................................................... 33 

4. The fate of pyruvate carbons: lactate or acetyl-CoA? ............................................................................................................... 34 

5. Mitochondrial metabolism in brief: should we still call the TCA cycle a “cycle”? ..................................................... 35 

6. Oncogenic orchestrators of cancer cell metabolism: special attention to oxidative stress ................................. 38 

6.1. Pi3K/mTORC............................................................................................................................................................................................... 40 

6.2. HIF-1α ........................................................................................................................................................................................................... 41 

6.3. c-Myc ............................................................................................................................................................................................................ 41 

6.4. p53 ................................................................................................................................................................................................................. 42 

6.5. Oxidative stress and antioxidant defenses .................................................................................................................................... 44 

6.5.1. Reactive oxygen species ............................................................................................................................................................... 44 

6.5.2. A focus on Nrf2 ................................................................................................................................................................................ 44 

6.6. Tumour microenvironment .................................................................................................................................................................. 49 

HYPOTHESIS AND AIMS ........................................................................................................................................................ 51 

  



II 

 

RESULTS CHAPTER I 

TIGAR AND GLYCOLYSIS INHIBITION: IS THAT REDUNDANT? ......................................................................................................... 55 

CONTEXT ...................................................................................................................................................................................................................... 57 

1. Crosstalk between TIGAR and PFKFB3 .............................................................................................................................................. 59 

1.1. Characterization of TIGAR induction in response to PFKFB3 inhibition ........................................................................... 59 

1.2. Phenotypical consequences of inhibiting PFKFB3 and TIGAR .............................................................................................. 65 

2. TIGAR modulation in response to other glycolytic inhibitors .............................................................................................. 73 

2.1. Response to the PFK-2 inhibitor 3PO .............................................................................................................................................. 73 

2.2. Response to glucose deprivation ...................................................................................................................................................... 76 

3. TIGAR contribution to cell survival under metabolic stress .................................................................................................. 77 

4. Discussion .......................................................................................................................................................................................................... 85 

RESULTS CHAPTER II 

ROLE OF TIGAR IN THE METABOLISM OF CANCER CELLS: IS IT ALL ABOUT FRU-2,6-P2?.............................................................. 89 

CONTEXT ...................................................................................................................................................................................................................... 91 

1. In silico study of TIGAR protein sequence and structure ........................................................................................................ 92 

2. Metabolic determinations by spectrophotometry ...................................................................................................................... 97 

3. Metabolomic and fluxomic analyses by LC-MS/MS ................................................................................................................... 99 

3.1. Metabolomic abundance analyses ................................................................................................................................................ 100 

3.2. Fluxomic analyses ................................................................................................................................................................................. 104 

4. Determination of redox potential ..................................................................................................................................................... 108 

5. Analysis of genes involved in glucose metabolism ................................................................................................................. 109 

6. Study of key proteins involved in the metabolism of glucose and glutamine ........................................................ 111 

7. Discussion ....................................................................................................................................................................................................... 113 

RESULTS CHAPTER III 

CONTROL OF TIGAR EXPRESSION BY Nrf2 .................................................................................................................................... 117 

CONTEXT ................................................................................................................................................................................................................... 119 

1. In silico study of the human TIGAR promoter ........................................................................................................................... 120 

2. Regulation of TIGAR expression by Nrf2 chemical inducers in HeLa cells ................................................................. 124 

3. Regulation of TIGAR by NFE2L2 expression in HeLa cells ................................................................................................... 127 

4. TIGAR and Nrf2 in NSCLC ...................................................................................................................................................................... 129 

4.1. A model with pathological revelance: NSCLC........................................................................................................................... 129 

4.2. TIGAR regulation by Nrf2 in NSCLC .............................................................................................................................................. 133 

4.2.1. Characterisation of the A549, H460 and H1299 cell lines ........................................................................................... 133 

4.2.2. Effects of Nrf2 modulation on the expression of TIGAR in NSCLC cell lines ...................................................... 136 

5. Cloning and functional characterisation of the human TIGAR promoter ................................................................... 143 

5.1. Cloning of regulatory AREs located at TIGAR promoter ...................................................................................................... 143 

5.2. Functional assays of TIGAR promoter activation by Nrf2 .................................................................................................... 146 

  



 

 

III 

 

6. Nrf2 as a transcriptional regulator of mouse Tigar ................................................................................................................ 150 

6.1. Modulation of Tigar gene expression by Nrf2 in IDGs ......................................................................................................... 150 

6.2. In silico study of the promoter of mouse Tigar gene ............................................................................................................ 152 

6.3. Binding of Nrf2 to the promorer of mouse Tigar gene ........................................................................................................ 154 

7. Discussion ....................................................................................................................................................................................................... 156 

RESULTS CHAPTER IV 

LOOKING AT TIGAR IN RESPONSE TO OXIDATIVE STRESS: LOCATION ALSO MATTERS .............................................................. 159 

CONTEXT ................................................................................................................................................................................................................... 161 

1. Screening of primary antibodies for Tigar immunofluorescence in mouse cells ................................................... 162 

2. Subcellular localisation of TIGAR under oxidative stress ..................................................................................................... 163 

2.1. TIGAR location in unstressed conditions .................................................................................................................................... 163 

2.2. TIGAR location under oxidative stress ......................................................................................................................................... 166 

3. Contribution of TIGAR to cell survival in stress conditions ................................................................................................ 173 

4. Discussion ....................................................................................................................................................................................................... 174 

GENERAL DISCUSSION ........................................................................................................................................................ 177 

CONCLUSIONS ......................................................................................................................................................................... 187 

MATERIALS AND METHODS ............................................................................................................................................. 191 

REFERENCES .............................................................................................................................................................................. 237 

ANNEX. PUBLICATIONS .............................................................................................................................................................. 251 

 



IV 

 

FIGURE AND TABLE LEGENDS 

FIGURE LEGENDS 

INTRODUCTION 

Figure 1. The hallmarks of cancer ..................................................................................................................................................................... 8 

Figure 2. Main differences in the fuels and metabolic pathways used by quiescent and proliferative cells. ................... 9 

Figure 3. Oxidative metabolism in quiescent and proliferative cells ............................................................................................... 11 

Figure 4. Molecular basis of 18F-2-deoxy-glucose positron emission tomography (PET) ...................................................... 12 

Figure 5. Main metabolic pathways altered in cancer cells ................................................................................................................. 14 

Figure 6. Regulation of the Fru-6-P/Fru-1,6-P2 substrate cycle ......................................................................................................... 16 

Figure 7. PFK-2/FBPase-2 structure. .............................................................................................................................................................. 17 

Figure 8. Domain organization and phosphorylated residues of PFK-2/FBPase-2 isoenzymes. ......................................... 19 

Figure 9. Schematic representation of human TIGAR gene. ............................................................................................................... 23 

Figure 10. TP53 and TIGAR alterations and expression......................................................................................................................... 25 

Figure 11. Structure of human TIGAR. .......................................................................................................................................................... 26 

Figure 12: TIGAR mRNA and protein levels across tissues. ................................................................................................................. 27 

Figure 13: TIGAR mRNA and protein levels in several types of cancer .......................................................................................... 28 

Figure 14: Kaplan Meier curves of TIGAR expression in liver cancer. .............................................................................................. 29 

Figure 15. Electron transport chain and oxidative phosphorylation ................................................................................................ 37 

Figure 16. Oncogenic orchestrators of cancer metabolism................................................................................................................. 39 

Figure 17. p53 role as a pro-survival or an apoptosis enhancer gene ............................................................................................ 43 

Figure 18. Mechanisms of Nrf2 activation in quiescent and proliferative cells ........................................................................... 45 

Figure 19. The KEAP1/Nrf2 system ................................................................................................................................................................ 47 

Figure 20. Contribution of Nrf2 to cellular metabolism ........................................................................................................................ 48 

Figure 21. Metabolic coupling between cancer cells and cancer-associated fibroblasts ....................................................... 49 

RESULTS CHAPTER I 

Figure 22. TIGAR and PFKFB3 genetic alterations in human cancers .............................................................................................. 58 

Figure 23. Crosstalk between PFKFB3 and TIGAR. ................................................................................................................................... 60 

Figure 24. Analysis of the Akt signalling pathway after PFKFB3 and/or TIGAR inhibition...................................................... 61 

Figure 25. Analysis of p53 in response to PFKFB3 and TIGAR inhibition ....................................................................................... 63 

Figure 26. Analysis of Nrf2 in response to PFKFB3 inhibition. ........................................................................................................... 64 

Figure 27. Time course of reactive oxygen species in PFKFB3-inhibited cells ............................................................................. 65 

Figure 28. Reactive oxygen species analysis in PFKFB3 and TIGAR-inhibited cells ................................................................... 66 

Figure 29. Effect of PFKFB3 and TIGAR silencing on P-H2AX (S139) foci formation ................................................................ 67 

Figure 30. Effect of PFKFB3 and TIGAR silencing on autophagy ....................................................................................................... 68 

Figure 31. Effect of PFKFB3 and TIGAR silencing on mitochondrial reduction capacity ......................................................... 69 

Figure 32. Effect of PFKFB3 and TIGAR silencing on cellular viability ............................................................................................. 70 



 

 

V 

 

Figure 33. RT-MLPA analysis of apoptotic-related genes after PFKFB3 or TIGAR inhibition ................................................ 71 

Figure 34. Analysis of the effects of 3PO treatment at 24 h. .............................................................................................................. 73 

Figure 35. Analysis of the effects of 3PO and glucose deprivation treatments at 72 h. ......................................................... 75 

Figure 36. Bright field images of HeLa cells overexpressing TIGAR ................................................................................................. 77 

Figure 37. Bright field images of HeLa cells with inhibited TIGAR or PFKFB3 ............................................................................. 77 

Figure 38. Extracellular glucose and lactate analysis after TIGAR and PFKFB3 modulation .................................................. 79 

Figure 39. Bright field images of HeLa cells with TIGAR overexpression in the presence of stress stimuli .................... 80 

Figure 40. Bright field images of HeLa cells with TIGAR inhibition in the presence of stress stimuli ................................ 81 

Figure 41. Analysis of the effects of TIGAR modulation in the presence of stress stimuli ..................................................... 83 

Figure 42. Extracellular glucose and lactate analysis after TIGAR modulation in stress conditions. .................................. 84 

RESULTS CHAPTER II 

Figure 43. Multiple Sequence Alignment of TIGAR with other histidine phosphatases.......................................................... 95 

Figure 44. BLAST local alignments of TIGAR with PGAM B and FBPase-2 .................................................................................... 94 

Figure 45. EMBOSS Needle global alignments of TIGAR with PGAM B and FBPase-2 ............................................................ 95 

Figure 46. Pairwise structural alignment of TIGAR with PGAM B, FBPase-2 and PFKFB3 ....................................................... 96 

Figure 47. Confirmation of the modulation of TIGAR and PFKFB3 by western blot ................................................................. 97 

Figure 48. Fru-2,6-P2 concentration in TIGAR overexpressing and TIGAR or PFKFB3-inhibited cells ................................ 97 

Figure 49. 3-PG, 2-PG, PEP and Pyr concentration in TIGAR overexpressing and TIGAR-inhibited cells. ........................ 98 

Figure 50. Analysis of metabolites abundance in TIGAR overexpressing cells. ........................................................................ 101 

Figure 51. Analysis of metabolites abundance in TIGAR-inhibited cells. .................................................................................... 103 

Figure 52. Fluxomic analyses of cytosolic metabolites in TIGAR overexpressing and TIGAR-inhibited cells .............. 105 

Figure 53. Fluxomics analyses of mitochondrial metabolites in TIGAR-inhibited cells ......................................................... 107 

Figure 54. Analysis of NAD+/NADH and NADP+/NADPH ratios after TIGAR modulation. .................................................. 108 

Figure 55. RT-qPCR analysis of metabolic genes in TIGAR overexpressing cells .................................................................... 109 

Figure 56. RT-qPCR analysis of metabolic genes in TIGAR or PFKFB3-inhibited cells .......................................................... 110 

Figure 57. Western blot analysis of metabolic enzymes in TIGAR overexpressing cells ...................................................... 111 

Figure 58. Western blot analysis of metabolic enzymes in TIGAR or PFKFB3-inhibited cells ............................................ 112 

RESULTS CHAPTER III 

Figure 59. Study of human TIGAR promoter and first intron with ECR Browser ..................................................................... 122 

Figure 60. Regulation of Nrf2 and TIGAR by tBHQ .............................................................................................................................. 125 

Figure 61. Analysis of Sulforaphane and DMF effects on NFE2L2, NQO1 and TIGAR expression. .................................. 126 

Figure 62. TIGAR modulation by Nrf2 inhibition in HeLa cells ........................................................................................................ 127 

Figure 63. Effect of tBHQ in Nrf2-inhibited cells ................................................................................................................................... 128 

Figure 64. TIGAR modulation by Nrf2 overexpression in HeLa cells ............................................................................................ 128 

Figure 65. Frequency of genetic alterations in NFE2L2 and KEAP1 in human cancer ........................................................... 129 

Figure 66. Frequency of genetic alterations in the Nrf2 pathway, TIGAR, PIK3CA and TP53 in NSCLC ........................ 131 

Figure 67: Molecular mechanisms driving Nrf2 overactivation in ADC and SQCC. ................................................................ 132 

file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336176
file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336177
file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336180
file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336181
file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336182
file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336193


VI 

 

Figure 68: Basal protein levels in A549, H460 and H1299 cell lines .............................................................................................. 133 

Figure 69: Immunofluorescence analysis of Nrf2 basal levels in A549, H460 and H1299 cell lines. ............................... 134 

Figure 70: Immunofluorescence analysis of p53 basal levels in A549, H460 and H1299 cell lines ................................. 135 

Figure 71. Modulation of TIGAR mRNA levels by Nrf2 inhibition in A549 cells ....................................................................... 137 

Figure 72. Modulation of TIGAR protein levels by Nrf2 inhibition in A549 cells. .................................................................... 138 

Figure 73. TIGAR modulation by Nrf2 inhibition in H460 cells ....................................................................................................... 139 

Figure 74. TIGAR modulation by Nrf2 inhibition in H1299 cells ..................................................................................................... 139 

Figure 75: CDKN1A expression in A549, H460 and H1299 in response to Nrf2 inhibition ................................................. 140 

Figure 76: Immunofluorescence analysis of p53 in response to Nrf2 inhibition in A549 cells .......................................... 141 

Figure 77. TIGAR modulation by Nrf2 overexpression in ADC cells. ............................................................................................ 142 

Figure 78. Primers designed for the amplification of TIGAR promoter and first intron ....................................................... 144 

Figure 79. Cloning workflow for the obtention of TIGAR promoter constructs ...................................................................... 145 

Figure 80. TIGAR modulation by several transcription factors ........................................................................................................ 147 

Figure 81. Luciferase assays of AREs in TIGAR promoter .................................................................................................................. 149 

Figure 82. Analysis of Tigar expression under Nrf2 modulation in mouse IDGs. .................................................................... 151 

Figure 83. Study of mouse Tigar promoter and first intron with ECR Browser ........................................................................ 155 

Figure 84. Nrf2 binding to AREs in mouse Tigar. .................................................................................................................................. 154 

Figure 85. Specific binding of Nrf2 to ARE 1 in mouse Tigar promoter...................................................................................... 155 

RESULTS CHAPTER IV 

Figure 86. Evaluation of the specificity of antibodies for the detection of mouse Tigar ..................................................... 162 

Figure 87. Generation of PDAC cell lines stably expressing flagged-TIGAR-GFP (f-TIG-GFP) fused protein .............. 163 

Figure 88. TIGAR and Tom20 colocalisation in iCT cells .................................................................................................................... 164 

Figure 89. TIGAR and Tom20 colocalisation in iKO cells ................................................................................................................... 165 

Figure 90. Localisation of TIGAR under oxidative stress in iCT cells ............................................................................................. 167 

Figure 91. Localisation of TIGAR under oxidative stress in iKO cells. ........................................................................................... 168 

Figure 92. ϒ-tubulin distribution under oxidative stress .................................................................................................................... 169 

Figure 93. ROS-dependent effect of the phenotype induced by H2O2 in iCT cells ................................................................ 170 

Figure 94. ROS-dependent effect of the phenotype induced by H2O2 in iKO cells ............................................................... 171 

Figure 95. Tigar localisation under oxidative stress is PDAC cells. ................................................................................................ 172 

Figure 96. Evaluation of TIGAR contribution to the proliferation of PDAC cells ..................................................................... 173 

  

file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336217


 

 

VII 

 

MATERIALS AND METHODS 

Figure M-1. Western blot analysis of cellular extracts obtained with Subcellular Fractioning Buffers I and II. .......... 200 

Figure M-2. Schematic representation of a humid chamber for immunofluorescence ....................................................... 207 

Figure M-3. RT-qPCR with TaqMan Assays ............................................................................................................................................. 211 

Figure M-4. Annexin/PI staining to measure cell death ..................................................................................................................... 213 

Figure M-5. Reactions involved in the Fru-2,6-P2 assay..................................................................................................................... 216 

Figure M-6. Reactions involved in the assay for the determination of Pyr, PEP, 2PG and 3PG. ....................................... 220 

Figure M-7. Basis of the NAD(P)/NAD(P)H assays................................................................................................................................ 222 

Figure M-8. Location of BACs RP11-177D20 and RP11-74J21 in human chromosome 12 ................................................ 224 

Figure M-9. TOPO TA cloning system ....................................................................................................................................................... 225 

Figure M-10. Map of pCR-2.1-TOPO vector ........................................................................................................................................... 226 

Figure M-11. Map of pGL3 Basic ................................................................................................................................................................. 227 

Figure M-12. Map of pGL3 Promoter ........................................................................................................................................................ 227 

Figure M-13. Restriction enzyme strategies performed .................................................................................................................... 230 

Figure M-14. Basis of the T4 DNA ligase reaction. ............................................................................................................................... 229 

Figure M-15. Map of pBABE-puro vector................................................................................................................................................. 232 

Figure M-16. InFusion cloning. ..................................................................................................................................................................... 233 

Figure M-17. Processes involved in the transduction of eukaryotic cells ................................................................................... 234 

 

  

file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336241
file:///C:/Users/helga/OneDrive%20-%20Universitat%20de%20Barcelona/Tesi%20(des%20de%2003-2018)/Redacció/PhDThesis_HSM_lastversion.docx%23_Toc11336250


VIII 

 

TABLE LEGENDS 

INTRODUCTION 

Table I. Properties of the human PFK-2/FBPase-2 isoenzymes ......................................................................................................... 18 

RESULTS CHAPTER II 

Table II. Summary of the main metabolic alterations induced by TIGAR and PFKFB3 modulation ................................ 113 

RESULTS CHAPTER III 

Table III: Identification of Nrf2 targets by microarray analysis........................................................................................................ 136 

Table IV. Study of TP53 modulation in a microarray analysis of Nrf2-inhibited cells ........................................................... 140 

Table V. Experiments performed by Dr. Ventura’s Lab in IDGs in which Tigar expression has been analysed .......... 150 

RESULTS CHAPTER IV 

Table VI. Primary antibodies used for the detection of mouse Tigar ........................................................................................... 162 

MATERIALS AND METHODS 

Table M-I. Cell lines used in this thesis and origin ............................................................................................................................... 195 

Table M-II. Small interfering RNAs (siRNAs) used in this thesis ..................................................................................................... 198 

Table M-III. Overexpression plasmids used in this thesis .................................................................................................................. 198 

Table M-IV. Protease and phosphatase inhibitors used for RIPA buffer .................................................................................... 199 

Table M-V. Protease and phosphatase inhibitors used for subcellular fractioning ............................................................... 200 

Table M-VI. Compatibility between protein assays and lysis buffers ........................................................................................... 202 

Table M-VII. Recipe for two electrophoresis gels ................................................................................................................................. 203 

Table M-VIII. Primary antibodies used for western blot .................................................................................................................... 205 

Table M-IX. Secondary antibodies used for western blot ................................................................................................................. 205 

Table M-X. Primary antibodies used for immunofluorescence ....................................................................................................... 208 

Table M-XI. Secondary antibodies used for immunofluorescence ............................................................................................... 208 

Table M-XII. Nuclear markers used for immunofluorescence. ........................................................................................................ 208 

Table M-XIII. TaqMan Assays (Thermo Fisher Scientific) used in this thesis ............................................................................. 212 

Table M-XIV. Reactive species detected by DCFDA and CellROX Green. ................................................................................... 212 

Table M-XV. Preparation of a standard curve of Fru-2,6-P2 ............................................................................................................. 219 

Table M-XVI. Primers used for the obtention of fragments D, J, 8 and 15 ................................................................................ 225 

Table M-XVII. LB and LB-Agar recipes ....................................................................................................................................................... 231 

 



ABBREVIATIONS 

1 

 

ABBREVIATIONS 

2,3-BPG  2,3-bisphosphoglycerate  

2-PG   2-phosphoglycerate 

3-PG   3-phosphoglycerate 

3PHP   3-phosphohydroxypyruvate 

3PO 3-(3-pyridinyl)-1-(4-pyridinyl)-2 

propen-1-one  

3PS   3-phosphoserine 

6PGD  6-phosphogluconate dehydrogenase 

ACD  Adenocarcinoma 

Acetyl-CoA  Acetyl coenzyme A 

ACL  ATP citrate lyase 

Act-D   Actinomycin-D 

ALDO  Aldolase 

ALT1  Alanine transaminase 1 

AMPKα   AMP-activated protein kinase α 

ARE  Antioxidant response element 

ATF4  Activating transcription factor 4 

ATM   Ataxia telangiectasia-mutated 

BACs  Bacterial artificial chromosomes  

BHA  Butylated hydroxyanisole  

CAFs  Cancer-associated fibroblasts 

CAV1  Caveolin 1  

ChIP  Chromatin immunoprecipitation  

ConA  Concanavalin A  

COX   Cytochrome c oxidase  

CRE  cAMP Response Elements  

CREB1 cAMP Response Element-Binding 

Protein 1 

CS Citrate synthase (CS) 

DCFDA  Dichlorofluorescein diacetate  

DMF  Dimethyl fumarate  

DNP-MRSI Dynamic nuclear polarization-

enhanced magnetic resonance 

spectroscopic imaging 

ECR   Evolutionary Conserved Regions 

ENO  Enolase  

ER  Endoplasmic reticulum  

FACS   Fluorescence-activated cell sorter 

 

 

FAS  Fatty acid synthase  

FBPase1  Fructose 1,6-bisphosphatase  

FBS  Foetal bovine serum  

FDG-PET 18F-2-deoxy-D-glucose positron 

emission tomography 

Fru-1,6-P2 Fructose-1,6-bisphosphate  

Fru-2,6-P2 Fructose-2,6-bisphosphate  

Fru-6-P  Fructose-6-phosphate  

G3P   Glyceraldehyde-3-phosphate 

G6PD  Glucose-6-phosphate dehydrogenase 

GAPDH   Glyceraldehyde-P-dehydrogenase 

GFP   Green fluorescent protein 

GLS1/2  Glutaminase 1 and 2  

Glu  Glutamate 

Glu-6-P  Glucose-6-phosphate  

Glut1/3  Glucose transporter 1 and 3 

GPI   Glucose phosphate isomerase 

GPX  Glutathione peroxidase 

GR   Glutathione reductase 

GSSG   Oxidized glutathione 

GST   Glutathione S-transferases 

H2O2  Hydrogen peroxide  

HDM2 Ubiquitin ligase double minute 2 

homolog 

HIF-1α   Hypoxia inducible factor 1α 

HK-I/II  Hexokinase I and II 

IDG-SW3 Immortomouse/Dmp1-GFP-SW3 cells 

iPFK-2  Inducible PFK-2 

KEAP1 Kelch-like ECH-associated protein 1 

LC3 Microtubule-associated protein 1 light 

chain 3 

LC-MS/MS  Liquid chromatography with mass 

spectrometry 

LDHA/B   Lactate dehydrogenase A and B 

LKB1  Tumour suppressor liver kinase B1 

lPFK-2  Liver PFK-2 

LPS   Lipopolysaccharide 



ABBREVIATIONS 

 

2 

 

MCT4  Monocarboxylate transporter 4 

ME   Malic enzyme 

Methyl-THF  5,10-methylene-tetrahydrofolate 

MK2  MAPK-activated protein kinase 2 

MTHFD1/2 Methylene-tetrahydrofolate 

dehydrogenase 1 and 2 

mTORC1 Mechanistic target of rapamycin 

complex 1 

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide 

NAC   N-acetyl-cysteine 

NADH  Nicotinamide adenine dinucleotide   

NADPH  Nicotinamide adenine dinucleotide 

phosphate 

NFkB   Nuclear Factor kappa B 

Noco  Nocodazole 

Nrf2 Nuclear factor (erythroid-derived 2)-

like 2 

NSCLC   Non-small cell lung cancer 

OAA   Oxaloacetate 

OXPHOS   Oxidative phosphorylation 

PC   Pyruvate carboxylase 

PCR  Polymerase chain reaction 

PDAC   Pancreatic ductal adenocarcinoma 

PDH   Pyruvate dehydrogenase 

PDK1  Pyruvate dehydrogenase kinase 

PEP   Phosphoenolpyruvate 

PFA   Paraformaldehyde 

PFK-1  6-phosphofructo-1-kinase  

PFK-158 (E)-1-(4-Pyridinyl)-3-[7-

(trifluoromethyl)-2-quinolinyl]-2-

propen-1-one  

PFK-2/FBPase-2 6-phosphofructo-2-kinase/fructose-

2,6-bisphosphatase  

PFKFB1-4 6-Phosphofructo-2-Kinase/Fructose-

2,6-Biphosphatase 1-4  

PFK-L  Liver PFK-1 

PFK-M  Muscle PFK-1 

PFK-P  platelet PFK-1 

PGAM Phosphoglycerate mutase  

PGK   Phosphoglycerate kinase 

PGME Erythrocyte bisphosphoglycerate 

mutase  

PHA   Phytohemagglutinin 

PHGDH   Phosphoglycerate dehydrogenase 

Pi  Inorganic phosphate 

PI  Propidium Iodide 

PI3K   Phosphatidylinositol 3-kinase 

PK   Pyruvate Kinase 

PKA-C  Protein kinase A, B (Akt) and C 

PP-1  Protein phosphatase 1 

PP2A  Protein phosphatase 2A 

PPi-PFK   Pyrophosphate phosphofructokinase 

PPP   Pentose phosphate pathway 

PPARγ Peroxisome proliferator-activated 

receptor gamma 

Pyr Pyruvate 

Rb  Retinoblastoma protein 

R5P  Ribose-5-phosphate 

RSK  Ribosomal S6 kinase 

ROS  Reactive oxygen species 

RTK  Receptor tyrosine kinases 

RT-MLPA  Reverse transcriptase multiplex 

ligation-dependent probe 

amplification 

RT-qPCR  Real-time quantitative PCR 

SCO2  Synthesis of cytochrome c oxidase 2 

SDH   Succinate dehydrogenase 

SFN   Sulforaphane 

SHMT1/2  Hydroxyl methyltransferase 1 

siRNA  Small-interfering RNA 

SP1  Specificity Protein 1 

SQCC  Squamous cell carcinoma 

tBHP   Tert-butyl-hydroperoxide 

tBHQ   Tert-butyl-hydroquinone 

TCA   Tricarboxylic acid 

TCGA  The cancer genome atlas 

TGF-β1  Transforming growth factor beta 1 

THF  Tetrahydrofolate 

TIGAR TP53-induced glycolysis and apoptosis 

regulator 



ABBREVIATIONS 

3 

 

TME   Tumour microenvironment 

TOM20 Translocase of outer mitochondrial 

membrane 20 

TPI   Triose-phosphate isomerase 

TRX  Thioredoxin 

TSC2  Tuberous sclerosis 2 

TSS  Transcription start site 

uPFK-2  Ubiquitous PFK-2 

αKG  Alpha-ketoglutarate



 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

INTRODUCTION 

 

  



 

 

 

  



INTRODUCTION 

 

7 

 

CANCER: ONE NAME, MULTIPLE FACTS 

The study of a specific alteration in cancer cells usually arises from the finding that a particular molecule, 

being it a gene, a protein, a metabolite, a secondary messenger or any other player, is different in cancer 

patients compared to the healthy population. Far from the existence of a common signature of cancer 

alterations, the reality is that each patient’s tumour is characterized by hundreds of different molecular 

traits, which can contribute to the development of the tumour. Any of these traits can be at the basis for 

the initiation of a research project. Although this scenario of variability is from where our researches 

arise, still a general effort to find common signatures among tumours is made. Given the difficulty of 

studying the causes and consequences of the particular alterations found within each patient’s tumour, 

the most common strategy is to analyse genes or pathways that are altered in a group of patients. The 

classification of tumours into groups, which are referred to as tumour types or tumour subtypes -if a 

more precise classification is performed- is useful but, at the same time, we should always have in mind 

that these groups are somehow artefacts that clinicians and researchers have invented to make the study 

of millions of different ecosystems, which are the tumours, simpler. 

Some years ago, Hanahan and Weinberg summarized a total of six features, then modified to ten, that 

were constantly observed in tumours. This organizing principle for rationalizing the complexities of 

neoplastic disease contributed to define a common draw of what a tumour is but, more importantly, 

helped to better understand and integrate different approaches to address cancer treatment (1,2). 

Altered metabolism is a common feature in most tumours and, because of that, it is considered as one 

of the hallmarks of cancer. The other signatures shared by most tumours are sustained proliferative 

signalling, evasion of growth suppressors, resistance to cell death, capacity of replicative immortality, 

induction of angiogenesis, activation of invasion and metastasis, and evasion of the immune system. 

Besides, two enabling characteristics -as the authors named them- foster these hallmarks: genome 

instability, which creates the genetic diversity to allow these transformation events, and inflammation, 

which increases the effect of all these alterations by potentiating cell dysregulation (2). Moreover, these 

alterations are interconnected in a way that usually one contributes to another (Figure 1). 
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Figure 1. The hallmarks of cancer. The ten hallmarks described by Hanahan and Weinberg (1,2) are represented as key building 

blocks in the process of tumour development, which is represented as a stair. In this representation, related hallmarks are close to 

each other (e.g. sustained proliferative signalling triggers oncogenic metabolic pathways), and those alterations that are more 

important in the initiation of transformation are situated at the base. The beige building blocks represent specific alterations that 

are required in each cancer type and differentiate the oncogenic process in each patient. 

In the complex landscape of tumour metabolism, this thesis is mainly focused in the study of a particular 

gene, the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) (3). This gene, originally named 

as c12orf5, was discovered during a computer-based analysis of microarray data trying to find novel 

p53-regulated genes that are activated in response to ionizing radiation (4). TIGAR discovery occurred 

only nine years before the beginning of this thesis and the findings that are summarized in this work 

aim to enlarge the knowledge about this gene and the homonymous protein that it codifies, from the 

perspective of basic research. In this sense, we have not been focused on a single type of cancer, but 

different cell lines have been used in order to answer each question. The result of this are several pieces 

of information that have helped us to better understand the role of TIGAR in cancer cell metabolism. 

TIGAR was described as a fructose-2,6-bisphosphate (Fru-2,6-P2) phosphatase (3). The study of enzymes 

regulating Fru-2,6-P2 levels is important in the context of cancer research given that it is the main 

allosteric stimulator of 6-phosphofructo-1-kinase (PFK-1) and, thus, a key player in the metabolic 

transformation. To situate the scenario in which TIGAR acts, the main features of cancer cell metabolism 

are reviewed in this Introduction. 
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1. General considerations on cancer metabolism: catabolism for anabolism 

Metabolic transformation cannot be defined as a list of altered metabolic pathways. Indeed, it is the 

result of overtaken regulatory mechanisms and compensation events that take place in cancer cells that 

drive the reorganization of the whole tumour metabolism. Cancer cells, in the same way as other 

proliferating cells, have not only to meet various energetic requirements, but also to satisfy the anabolic 

demands of macromolecular biosynthesis: nucleotides, lipids and proteins for proliferation and growth. 

These processes are accurately regulated in normal proliferating cells, whereas they are aberrantly driven 

in cancer (5) (Figure 2). 

 

Figure 2. Main differences in the fuels and metabolic pathways used by quiescent and proliferative cells. Proliferative cells 

show increased uptake of all kinds of fuel, the most important of which are glucose (in orange) and glutamine (in green). The main 

source of ATP in these cells is glycolysis, whereas mitochondrial metabolism accomplishes this function in quiescent cells, with 

increased TCA cycle and OXPHOS. Enhanced glycolysis in proliferative cells increases lactate production (in blue), causing an 

acidification of extracellular media. Other pathways that are increased during proliferation are the pentose phosphate pathway 

(PPP), which generates nucleotides and NADPH, the serine and glycine synthesis pathway and other anabolic pathways for protein 

and lipid synthesis. In proliferative cells, pinocytosis and autophagy are sometimes deregulated to obtain additional nutrients. 

Image created with BioRender. 

 

In general, cancer cells take up all kinds of fuel present in the tumour microenvironment to fulfil their 

needs, being glucose, lactate, glutamine, acetate and phospholipids the most important molecules (6). 

The processes for introducing these molecules into the cell vary depending on the nature of each 

compound: sugars and amino acids need to be internalized through transporters, whereas lipids can 

diffuse through the membrane and big cargo such as proteins can be introduced by pinocytosis (7).  
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Once inside the cell, the main metabolic pathways through which these molecules are oxidized are 

glycolysis, the pentose phosphate pathway, glutaminolysis and the tricarboxylic acid (TCA) cycle (Figure 

2). It is important to note that amino acids, acetate and phospholipids are usually incorporated into 

anabolic pathways, instead of catabolic ones (6,8). In the case of amino acids, they are either used for 

protein synthesis or in the reactions that allow the conversion of one amino acid into another, catalysed 

by transaminases. Phospholipids and acetate, in their turn, are mainly used for the synthesis of fatty acids 

required for the generation of new cellular membranes. One example of the pro-tumoral benefits of 

increased fatty acid anabolism is prostate cancer, in which fatty acid synthase has been reported to 

exhibit copy-number gain (9). On the contrary, it is also true that some specific tumours also demonstrate 

dependency on fatty acids oxidation, as it is the case of a subtype of B cell lymphoma (10). 

Apart from these key metabolic pathways, several reactions of amino acid synthesis such as the serine 

and glycine synthesis pathway, the de novo synthesis of lipids, purines and pyrimidines, and the 

generation of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione are also essential 

processes in the complex metabolic network that arises from central carbon metabolism in cells. Finally, 

oxidative phosphorylation (OXPHOS) is crucial for the coupling of ATP generation to the high number 

of NADH and FADH2 molecules generated through oxidative pathways (Figure 2).  
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2. Glycolytic metabolism 

Considering that this thesis is focused on the study of TIGAR, an enzyme described to inhibit glycolysis, 

the main enzymes of this pathway will be further discussed, with special attention to those involved in 

the metabolism of Fru-2,6-P2. 

2.1. Obtaining the carbons: the glycolytic phenotype 

Glucose and glutamine are the most important fuels in cancer cells. Regarding the utilization of glucose, 

one of the most relevant features of cancer cells is the glycolytic phenotype, which consists in accelerated 

uptake and metabolization of glucose regardless of oxygen availability (Figure 3).  

 

Figure 3. Oxidative metabolism in quiescent and proliferative cells. The main metabolic pathways that quiescent and 

proliferative cells display in conditions of high oxygen (green O2 bar) or low oxygen (red O2 bar) are illustrated. The main fuels 

used by these cells in each of the conditions are also depicted. Quiescent cells shift mitochondrial metabolism towards anaerobic 

glycolysis at low oxygen conditions, whereas proliferative cells are mainly glycolytic regardless of oxygen levels, in what is called 

aerobic glycolysis. Image created with BioRender.  
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Most non-proliferating differentiated cells metabolize glucose to pyruvate (Pyr) through glycolysis, and 

then completely oxidize most of the Pyr to CO2 through the TCA cycle in the mitochondria (Figure 3). 

NADH and FADH2 generated in the TCA cycle are oxidized in the mitochondrial electron transport chain, 

generating an electrochemical gradient of protons that is coupled to the production of ATP. The final 

acceptor of the electrons in this chain is oxygen. As a result, non-proliferative cells rely on oxygen 

availability for ATP production to maintain their integrity. In low oxygen conditions, the electron 

transport chain is impaired, and cells shift their metabolism towards glycolysis in what is known as 

anaerobic glycolysis (Figure 3). In contrast, proliferative cells display high glycolytic rates even in the 

presence of adequate oxygen levels, a process called aerobic glycolysis (Figure 3). This phenomenon 

was firstly evidenced by Otto Warburg in 1927 and, for this reason, it is also termed “the Warburg effect” 

(11). In the clinics, this hallmark has been exploited in 18F-2-deoxy-D-glucose positron emission 

tomography (FDG-PET), an imaging technique that is based on the detection of the radioactivity emitted 

by this analogue of glucose that is absorbed by proliferative tissues and cannot be further metabolised 

beyond hexokinase (HK) and thus accumulates (Figure 4). 

 

Figure 4. Molecular basis of 18F-2-deoxy-glucose positron emission tomography (PET). (A) Schematic representation of the 

metabolization of 18F-2-deoxy-glucose compared to glucose. Both glucose and 18F-2-deoxy-glucose can be phosphorylated by 

HK, but only Glu-6-P can be further metabolized by GPI to Fru-6-P given that 18F-2-deoxy-glucose-6-P has 18F substituting the 

hydroxyl group at C2. (B) Initial staging of a woman with oesophageal squamous cell carcinoma of the middle third of the 

oesophagus. PET maximum intensity projection image (upper image) and sagittal fused positron emission tomography/computed 

tomography image (lower image) showing 18F-2-deoxy-glucose uptake in (a) the primary oesophageal tumour and (b) in a celiac 

lymph node. PET images from (12). Image created with BioRender. 
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PET represents a potent tool to detect precancerous and cancerous lesions and to track the evolution 

and response to oncological treatments. In the early 1990s, studies using FDG-PET showed that most 

tumours displayed increased glucose uptake in about an order of magnitude higher than that of normal 

tissue (13), which caused the resurgence of the study of bioenergetics in cancer. The increased glucose 

uptake largely depends on the rate of glucose phosphorylation by hexokinases and the upregulation of 

glucose transporters 1 and 3 (Glut1 and Glut3) (14). More than 90% of primary and metastatic tumours 

have high glucose uptake, which directly correlates with tumour aggressiveness (13,15). In the last years, 

a new technique based on the imaging of hyperpolarized 13C-labelled substrates, which also takes 

advantage of the Warburg effect displayed by tumours, has been developed. The technique is known as 

dynamic nuclear polarization-enhanced 13C magnetic resonance spectroscopic imaging (DNP-MRSI) and 

increases the sensitivity of magnetic resonance. Although PET is more sensitive, DNP-MRSI allows for 

the detection of 13C-glucose products separated from glucose and, thus, can detect tumours located in 

those organs in which glucose and 18F-2-deoxy-D-glucose accumulate, such as the bladder. Besides, 

imaging of injected 13C-pyruvate can reveal brain tumours which are also difficult to detect by PET (16). 

The laboratory of Dr. Kevin Brindle (Cambridge) has been working on this field for years and has started 

a clinical trial using the imaging of hyperpolarized 13C-pyruvate in patients receiving radiotherapy.  

Far from the view of glycolysis as a metabolic pathway focused only on the generation of ATP –

something that is true for the brain, red muscle, erythrocytes, sperm cells and renal medulla (17)– cancer 

cells take advantage of this pathway to increase the flux of glycolytic intermediates to key anabolic 

pathways. The diversion of glucose-6-phosphate (Glu-6-P) to oxidative pentose phosphate pathway 

(PPP), fructose-6-phosphate (Fru-6-P) to hexosamine-phosphate pathway and non-oxidative PPP, 

glyceraldehyde-3-phosphate (G3P) to non-oxidative PPP, 3-phosphoglycerate (3-PG) to de novo serine 

and glycine synthesis, and G3P to lipids synthesis are some examples of cataplerosis in glycolysis (Figure 

5). These and other metabolic crossroads are discussed in Section 3 of this Introduction. Figure 5 will 

be used throughout this Introduction to situate the different metabolic pathways commented. 
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Figure 5. Main metabolic pathways altered in cancer cells. The most important metabolic reactions involved in the oxidation 

of glucose and glutamine in cancer cells are depicted. A colour code is used to indicate each metabolic pathway. Connections 

between central carbon metabolism and biosynthetic pathways are indicated. 
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2.2. Using the carbons: key glycolytic enzymes 

Studies of glycolysis regulation in the 1960s, including thermodynamic assessments and measurements 

of intracellular metabolite concentrations, led to the identification of non-equilibrium reactions catalysed 

by HK, PFK-1, and pyruvate kinase (PK) (18). These reactions are the checkpoints for the control of 

glycolytic flux. HK and PFK-1 control the first steps of the pathway according to the availability of glucose 

and the energy state of the cell, and PK restricts the last step and, by doing do, is able to regulate the 

whole flux through the pathway. 

2.2.1. Capturing glucose through phosphorylation by HK 

HK catalyses the first reaction of glycolysis, converting glucose to the non-exportable Glu-6-P (Figures 

5, 6). Of the four known HK isoenzymes (I, II, III, and IV), the type II and to a lesser extent the type I 

isozymes are overexpressed in rapidly growing, highly glycolytic tumours. The gene encoding HK-II was 

firstly described to be amplified in hepatoma cells, showing that increased gene copy number is one of 

the mechanisms involved in the aberrant expression of metabolic genes in cancer cells (19). Interestingly, 

already in 1955, it was described that the expression of glucose-6-phosphatase, an enzyme that 

dephosphorylates glucose in the liver in order to complete the last step of gluconeogenesis and allow 

the secretion of glucose to the blood, decreased progressively during carcinogenesis and was almost 

absent in the hepatomas (20). These data shows the commitment of transformed cells to utilize all the 

glucose available regardless of their previous metabolic condition. 

2.2.2. PFK-1 and the Fru-6-P/Fru-1,6-P2 substrate cycle 

PFK-1 is a tetrameric protein, with three different genes encoding the muscle, liver and platelet (PFK-M, 

PFK-L and PFK-P, respectively) human isoenzymes. This enzyme catalyses the phosphorylation of Fru-6-

P to fructose-1,6-bisphosphate (Fru-1,6-P2) by ATP (Figures 5, 6). Tumours do not usually exhibit 

overexpression of PFK-1, although preference for the expression of the PFK-L isoenzyme has been 

observed in breast cancer (21). This first commitment step of Fru-6-P is highly regulated by the so-called 

Fru-6-P/Fru-1,6-P2 substrate cycle, which involves the activity of two other enzymes that are mainly 

regulated by the availability of their substrates and products: fructose 1,6-bisphosphatase (FBPase1) and 

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). FBPase1 catalyses the 

opposite reaction to PFK-1 and its loss is a common event in human cancers (22). Accordingly, FBPase1 

activity suppresses cancer cell growth (23). The other key player in this substrate cycle is the homodimeric 

bifunctional enzyme PFK-2/FBPase-2, responsible for the synthesis and degradation of Fru-2,6-P2 

(Figures 5, 6). 
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Figure 6. Regulation of the Fru-6-P/Fru-1,6-P2 substrate cycle. Fru-2,6-P2 is synthesized and degraded by PFK-2/FBPase-2, 

respectively. Increased levels of this metabolite allosterically activate PFK-1 and inhibit FBPase1, increasing the synthesis of Fru-

1,6-P2 and, thus, the glycolytic flux. Phosphorylation of PFKFB2 or PFKFB3 isoenzymes increases the kinase activity of the enzyme. 

The kinases and phosphatases responsible for this regulation vary according to the isoenzyme. PFKFB1 is not represented by this 

figure, as phosphorylation of this isoenzyme increases its bisphosphatase activity. Phosphorylation of PFKFB4 has not been 

described to date. Published in (24). 
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2.2.3. PFK-2/FBPase-2: the importance of Fru-2,6-P2 

Each of the monomers of PFK-2/FBPase-2 consists of two functional domains (25–27). The N-terminal 

domain is responsible for the kinase activity, which catalyses Fru-2,6-P2 synthesis using Fru-6-P and ATP 

as substrates; whereas the C-terminal domain contains the bisphosphatase activity (26–28) and is 

responsible for the hydrolytic degradation of Fru-2,6-P2 into Fru-6-P and inorganic phosphate (Pi) 

(Figure 7). 

 

Figure 7. PFK-2/FBPase-2 structure. The structure of PFKFB3 was downloaded from Protein Data Band (Reference Number: 

3QPU). (A) General view of the protein where the kinase and phosphatase domains have been coloured in blue and violet, 

respectively. PPi is represented in the ball-and-stick model. (B) Zoom into the kinase active site in which the residues important 

for Fru-6-P phosphorylation are represented in sticks coloured according to the type of amino acid (blue for asparagine, N; orange 

for threonine, T). The exact positions of the amino acids forming this active site have been obtained through a BLAST alignment 

of PFKFB3 with PFKFB1, in which N76, N97, N133, T132, T134 and T135 were described as key residues for the kinase activity (29). 

The residues shown in the image are the corresponding aligned residues in PFKFB3. PPi is represented in the ball-and-stick model. 

(C) Zoom into the phosphatase active site in which the residues important for Fru-2,6-P2 dephosphorylation are represented in 

sticks coloured according to the type of amino acid (grey for histidine, H; red for glutamic acid, E). PPi is represented in the ball-

and-stick model. Images were created with Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/. 

The balance between the kinase and the bisphosphatase activities of PFK-2/FBPase-2 ultimately 

determines the concentration of Fru-2,6-P2, which constitutes the most important mechanism for 

increased PFK-1 activity in tumours. Given that Fru-2,6-P2 does not take part as an intermediary in any 

metabolic interconversion, and it is highly liable in the acid extracts used to measure phosphorylated 

metabolites in tissues, it escaped from discovery until 1980, when its levels were found significantly 

increased in hepatocytes in the presence of glucose and disappeared upon incubation with glucagon, 

displaying an elegant switching mechanism between glycolysis and gluconeogenesis (27,30). With the 

same atomic composition as the product of PFK-1, Fru-1,6-P2, but different distribution of phosphates, 

http://www.jmol.org/
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it allosterically activates PFK-1 by increasing its affinity for Fru-6-P (17) and releases it from ATP-

mediated inhibition. Besides, Fru-2,6-P2 acts synergistically with AMP in activating PFK-1 and inhibiting 

FBPase1 (25,26,30). Therefore, the discovery of Fru-2,6-P2 constituted a landmark in the understanding 

of how liver carbohydrate metabolism is regulated. Nowadays, it is widely known that this metabolite 

plays a major role in controlling glycolysis in other tissues and in proliferating and transformed cells 

(24,25,27,31). Indeed, Fru-2,6-P2 concentration is significantly higher in tumour cells than in normal cells 

(32,33). 

PFK-2/FBPase-2 was firstly described in rats, where the liver and muscle isoenzymes were characterized 

(34). From then, other mammalian bifunctional isoenzymes have been identified, which are encoded by 

four genes (PFKFB1-4) (28) with different expression according to tissue and developmental stage (35) 

(Table I). 

Table I. Properties of the human PFK-2/FBPase-2 isoenzymes. Information regarding their gene name, chromosomal location, 

isoenzymes, enzymatic activity and regulation is shown. Positive and negative regulators are written in green and red, respectively.  

PFKFB1 is predominantly expressed in liver and muscle, and in some stages during foetal development, 

PFKFB2 codes for the heart isoenzyme, PFKFB3 was initially described in brain and now it is also known 

to be the main isoenzyme in placenta and proliferating cells and, finally, PFKFB4 is preferentially 

expressed in testis and some other proliferative tissues. Importantly, tissue- and cell-specific isoenzymes 

are not totally exclusive, and several cells express more than one type of isoenzyme (36). PFKFB2, PFKFB3 

and PFKFB4, but not PFKFB1, have been found expressed in several types of cancer, being PFKFB3 the 

most common isoenzyme found in these malignancies (36). As it can be appreciated in Table I, one gene 

can code for more than one isoform. However, PFKFB1-4 are usually used to refer to the most-abundant 

isoforms lPFK-2, hPFK-2, uPFK-2 and tPFK-2, respectively. These different isoenzymes share highly 

Gene Chromosomal 

location  

Kinase/phosphatase 

ratio 

Isoenzymes Regulation 

PFKFB1 Xp11.21 2.5 (rat liver) 

1.2 (bovine liver) 

0.4 (rat muscle) 

lPFK-2 (liver) 

mPFK-2 (muscle) 

fPFK-2 (foetal) 

PKA 

PP2A 

PFKFB2 

 

1q32.1 1.8 (bovine heart) hPFK-2 (heart) 

 

AMPK, PKA, PKB, PKC, RSK 

Glucocorticoids, androgens, RNA 

LINC00092 

PFKFB3 

 

10p15.1 710 (human placenta) 

3.1 (bovine brain) 

uPFK-2 (ubiquitous) 

iPFK-2 (inducible) 

AMPK, PKA, PKB, PKC, Smad, RSK, 

HIF-1α, p38-MK2   

Oestrogens, adenosine, LPS 

p53, S-glutathionylation, 

demethylation 

PFKFB4 

 

3p21.31 4.1 (rat testis) 

0.9 (human testis) 

tPFK-2 (testis) HIF-1α, P-PPARγ 
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conserved catalytic core domains (85%) but greatly differ in their kinetic properties and responses to 

regulatory signals and tissue distribution. The differences are mostly due to the highly divergent N- and 

C-terminal regulatory domains (Figure 8). However, some sequence differences in residues surrounding 

the active sites in the catalytic domains also contribute to the kinetic differences (37). 

 

Figure 8. Domain organization and phosphorylated residues of PFK-2/FBPase-2 isoenzymes. (A) The N-terminal and C-

terminal domains of PFK-2 are shown in yellow and purple, respectively. Regulatory regions with residues susceptible of 

phosphorylation by different protein kinases are shown in blue. The phosphorylated residues are highlighted in red boxes and the 

kinases described to phosphorylate each residue are indicated. (B) A common sequence for phosphorylation in serine residues is 

shared by PFKB2-4. Published in (24). 

One of the clearest examples of the involvement of terminal regions in the regulation of PFK-2 

isoenzymes is found in the proteins encoded by PFKFB1 gene. Unlike muscle and foetal transcripts, the 

liver transcript (lPFK-2) contains an extra exon encoding the N-terminal end which contains the S32 

residue, that can be phosphorylated by the cAMP-dependent protein kinase A (PKA) in response to 

glucagon and activates the bisphosphatase activity. The phosphorylation can be reversed by protein 

phosphatase 2A (PP2A), which increases the kinase activity of the liver isoenzyme. This regulation is 
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exclusive to the liver since it contributes to the switch from glycolysis to gluconeogenesis (25–27,30,38) 

upon glucagon signalling. On the contrary, phosphorylation events by different protein kinases are 

activating signals in isoenzymes PFKFB2 and PFKFB3 (Table I, Figure 8). 

An important part of this thesis is addressed to describe the relationship between PFK-2 and, more 

specifically, PFKFB3, and TIGAR. Because of that, the most important features of PFK-2 isoenzymes 

expressed by cancer cells are reviewed in the following paragraphs. 

PFKFB2 is expressed in cancer cells from different origins such as acute lymphoblastic leukemia, 

prostate, ovarian and gastric cancer, hepatocellular carcinoma, melanoma, osteosarcoma and glioma 

(28,39,40) and can undergo multisite phosphorylation, integrating signals from many pathways. Of 

special interest for this work is the finding that amino acids increase Fru-2,6-P2 synthesis in rat 

cardiomyocytes and in the cancer cell lines MCF7 and HeLa through protein kinase B (PKB/Akt)-mediated 

phosphorylation of PFKFB2 (41). 

The PFKFB3 gene was cloned from a cDNA library of foetal brain and has been found expressed in all 

the tissues in which it has been studied (42–46). The variable C-terminal domain can undergo alternative 

splicing to produce six different isoforms (47). The two main isoforms are generated by alternative 

splicing of exon 15 and differ in their C-terminal sequences, the 4.553 bp mRNA variant, initially named 

as ubiquitous PFK-2 (uPFK-2) (46), and the 4.226 bp mRNA inducible PFK-2 (iPFK-2) variant, which was 

described to be overexpressed in response to hypoxia or during the S or DNA synthesis phase of the cell 

cycle. All the experiments included in this thesis are based on uPFK, which is the most abundant variant. 

During years, research in Dr. Bartrons’ Lab has focused on the study of molecules able to regulate 

PFKFB3. It has been described that hypoxia (48–50), progestin (43,51), oestrogens (52) and stress stimuli 

(41) induce PFKFB3 through the interactions of hypoxia inducible factor 1α (HIF-1α), the progesterone 

receptor, the oestrogen receptor and the serum response factor, respectively, with the promoter of the 

gene. Besides, other stimuli have been described to activate PFKFB3, including insulin (33), pro-

inflammatory molecules such as interleukin-6 (53,54), lipopolysaccharide (LPS) and adenosine (55). In 

parallel to the development of this thesis, the group has described that the transforming growth factor 

beta 1 (TGF-β1) (56) and mitogenic lectins such as concanavalin A (ConA) and phytohemagglutinin (PHA) 

also increase PFKFB3 expression (57,58). The publication describing the effect of PHA on PFKFB3 

expression in human lymphocytes can be found in the Annex at the end of this thesis. 

The PFKFB3 gene expresses the PFK-2/FBPase-2 isoenzyme with the highest kinase/bisphosphatase ratio 

(K/B = 710), favouring the net synthesis of Fru-2,6-P2 and eliciting high concentrations of this metabolite 

in proliferating and tumour cells (59). Importantly, its kinase activity is even more exacerbated when the 

enzyme is phosphorylated. Different protein kinases can phosphorylate PFKFB3 by covalent modification 
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of its C-terminal domain and, among them, the phosphatidylinositol 3-kinase (PI3K)-Akt pathway is 

known to control PFKFB3 activity downstream of growth factors signalling (57,60,61). Moreover, 

overexpression of PFKFB3 in HEK293 cells potentiates insulin-dependent phosphorylation of Akt and Akt 

substrates, evidencing a positive regulation loop between Akt and PFKFB3 (62). This is an example of 

how the hallmarks of cancer, previously introduced, are interconnected. During this thesis, the 

dependency on Akt for PFKFB3 activation during lymphocytes activation has been described in a 

publication previously mentioned (58). 

PFKFB3 is constitutively overexpressed in different cancer cell lines and in several human leukemias and 

solid tumours including ovarian and thyroid carcinomas, colon adenocarcinoma, breast cancer, gastric 

and colon tumours, hepatocellular carcinoma, myeloproliferative neoplasms, glioblastoma and 

astrocytomas, and has been associated with lymph node metastasis and the TNM stage. PFKFB3 can also 

represent a biomarker and an anti-neoplastic target in gastric cancer. Besides, PFKFB3 is associated to 

lung fibrosis and the development of resistance to treatment in cases of chronic myeloid leukaemia and 

hepatocellular carcinoma. These studies have been reviewed by the group during the development of 

this thesis (36). A work from our group described for the first time the effects of PFKFB3 inhibition in 

HeLa cancer cells, showing that PFKFB3-targeting small-interfering RNA (siRNA) decreases glycolysis, 

induces cell-cycle delay and inhibits anchorage-independent growth (63). This work was determinant for 

the initiation of some of the experiments performed during this thesis. Nowadays, several 

pharmacological inhibitors of PFKFB3 have been developed, being 3-(3-pyridinyl)-1-(4-pyridinyl)-2-

propen-1-one (3PO) the first to be described (64). From 3PO, different synthetic derivatives have been 

generated and there is one third-generation molecule with potential clinical use on phase I clinical trial, 

(E)-1-(4-Pyridinyl)-3-[7-(trifluoromethyl)-2-quinolinyl]-2-propen-1-one (PFK-158), which exhibits 

increased potency and improved pharmacokinetic properties compared to previous PFKFB3 inhibitors 

(36,64,65). Recently, PFK158 has demonstrated to synergize with carboplatin to reduce the volume of 

highly metastatic paclitaxel-resistant mouse ovarian tumours (66). PFKFB3 is a clear example of how 

basic research is fundamental to the improvement of clinical therapies, as the gene was firstly described 

twenty years ago (43,44) and we currently have therapeutic molecules targeting it. At the same time, and 

beyond the potential clinical utility of these inhibitors, it is important to consider that these drugs 

constitute important tools in basic research. For example, our group has recently demonstrated that 

suppressing PFKFB3 activity with 3PO or siRNAs significantly eliminates the ability of T98G cells to form 

colonies, which is one of the hallmarks of transformation (56). Besides, 3PO has been used in several 

experiments presented in this thesis to study the relationship between PFKFB3 and TIGAR. 
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Although most of the evidences show that PFKFB3 silencing impairs the progression of cancer cells, it is 

known that reactive oxygen species (ROS) can induce a pro-survival response through S-

glutathionylation or methylation of the enzyme, which decreases its metabolic activity and redirects the 

glycolytic flux to the PPP. In this way, PFKFB3 inhibition increases NADPH and helps cancer cells to face 

ROS (67,68). Similarly, activation of p53 in response to cell damage inhibits PFKFB3 expression and 

increases the flux to the PPP in order to synthesize nucleotides out of ribose-5-phosphate (R5P) (69). 

These studies evidence that metabolic transformation in cancer not only pursues the obtaining of energy 

through glycolysis, but also the activation of several pathways branching from Glu-6-P that can 

contribute to cell survival. 

PFKFB4 gene encodes a PFK-2/FBPase-2 isoenzyme that is expressed in the testis under the regulation 

of testosterone (70). Moreover, it has been demonstrated that PFKFB4 mRNA and protein levels are 

regulated by hypoxia and glucose concentration in cancer cell lines from different organs such as the 

prostate, liver, colon, bladder, stomach, pancreas, lung and breast (24). One of the cancers in which 

PFKFB4 has been more studied is prostate cancer, where this gene is required to balance glycolytic 

activity and antioxidant capacity to maintain the redox balance. PFKFB4 mRNA expression is increased 

in metastatic prostate cancer cells compared to primary tumours, and its inhibition increases Fru-2,6-P2 

concentration. This indicates that PFKFB4 mainly functions as a fructose-2,6-bisphosphatase in these 

particular cells (71). Because of its capacity to increase the PPP and decrease ROS levels, PFKFB4 is 

considered a tumour promoter gene. However, its expression is compatible with high glycolytic flux, as 

it has been recently shown in mitogen-stimulated thymocytes, in which PFKFB3 and PFKFB4 expression 

are induced in parallel (57). 

Through overexpression of one or more of the PFKFB genes, cancer cells maintain high levels of Fru-2,6-

P2 and, consequently, high PFK-1 activity and flux through glycolysis, in parallel with overexpression of 

genes that promote the flux through pathways branching from glycolysis. 
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2.2.4. TIGAR 

As it has been previously stated, TIGAR was discovered during a computer-based analysis of microarray 

data trying to find novel p53-regulated genes in response to ionizing radiation (4).  

The human TIGAR gene is located at 12p13.32 and consists of six exons spanning a genomic region of 

about 39 Kb coding for a unique mRNA transcript variant of 8.2 Kb with an 813 bp coding sequence 

(Figure 9). 

 

Figure 9. Schematic representation of human TIGAR gene. The location of c12orf5 (TIGAR) in human chromosome 12 is 

indicated. The distribution of introns and exons of TIGAR gene is represented, as well as the resulting mRNA. The corresponding 

NCBI references for the genomic region (NC_0012.11) and mRNA (NM_020375.2) are indicated. Published in (72). 

The group of Dr. Karen Vousden described the main features of this p53-induced gene in a paper in Cell 

in 2006, in which the group of Dr. Ramon Bartrons participated characterising the metabolic activity of 

TIGAR protein and showing that TIGAR exerts bisphosphatase activity on Fru-2,6-P2, generating Fru-6-P 

(3). Given that Fru-2,6-P2 is the most potent allosteric activator of PFK-1, TIGAR was described as an 

enzyme that inhibits glycolysis and potentiates the PPP. In fact, the capacity of TIGAR to increase the 

ratio NADPH/NADP+ and protect from hydrogen peroxide (H2O2)-induced apoptosis was confirmed to 

be dependent on the activity of glucose-6-phosphate dehydrogenase (G6PD) (3). However, two of the 

main findings of this first publication have been proved to be more complex than what they seemed to 

be. 

In one hand, TIGAR phosphatase activity has been described to be not exclusive to Fru-2,6-P2 and, 

indeed, other glycolytic intermediaries such as 2,3-bisphosphoglycerate (2,3-BPG), 2-phosphoglycerate 

(2-PG) and phosphoenolpyruvate (PEP) can be dephosphorylated by TIGAR, at least in vitro (73). More 

than 170 studies have been published from 2006 adding pieces of information about this gene. The 

most important data that has inspired the design of some of the hypothesis and experiments of this 

thesis are summarised in the following paragraphs. 
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On the other hand, TIGAR has been found overexpressed in different cancer cells and tumours in which 

TP53 is either lost or mutated (24), evidencing the participation of other transcription factors in the 

control of TIGAR expression. As an example of this independency of TIGAR from TP53, the genetic 

alterations and expression of both genes have been analysed in glioma. Genetic data have been obtained 

from the TCGA-PanCancer whole genome analysis performed in this cancer type, which is available in 

the online platform cBioportal. TIGAR or TP53 alterations were detected in 8% and 51% of patients, 

respectively (Figure 10A). 

Interestingly, the most frequent alteration detected in TIGAR was amplification (represented in red), 

whereas TP53 was mainly mutated, with either missense or truncating mutations (in green or dark grey, 

respectively). TIGAR and amplification and TP53 mutation coexist within the same sample (Figure 10A). 

Regarding expression, no correlation was found between the mRNA levels of the two genes, evidencing 

that TIGAR can be overexpressed in tumours where TP53 is poorly expressed and the other way around 

(Figure 10B). TP53 mutations can have different phenotypical outcomes. As reviewed by Kastenhuber 

and Lowe (74), wild type p53 controls apoptosis, antioxidant mechanisms, the DNA damage response 

and cell cycle. In cancer, several mutations have been described, some of them resulting in complete 

loss-of-function or in activation of specific functions which contribute to tumour survival such as 

antioxidant mechanisms, as it could be the case if TIGAR. Besides, gain-of-function mutations have also 

been described in TP53, which selectively increase some functions of the wild-type and give rise to new 

roles (Figure 10C). Selection-of-function and gain-of-function mutations of TP53 can be pro-oncogenic 

and, in these cases, TIGAR and TP53 can be overexpressed at the same time, contributing to tumour 

development. 

Two p53 binding sites have been described in TIGAR gene, one upstream of the first exon, in TIGAR 

promoter, and the other one within the first intron. The intronic p53-binding site was described to be 

the functional one in human through chromatin immunoprecipitation (ChIP) experiments (3). Mouse 

Tigar is only weakly responsive to p53 and it contains also a promoter and an intronic p53 binding sites, 

being the promoter one the most effective. This suggests that the weaker p53 binding site in humans, 

which is the promoter one, is structurally and functionally conserved between mouse and human but 

the stronger intronic binding site in humans is not functional in the mouse (75). 

Apart from p53, the Specificity Protein 1 (SP1) and the cAMP Response Element-Binding Protein 1 

(CREB1) have more recently been described to transcriptionally regulate TIGAR (76,77).  
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Figure 10. TP53 and TIGAR alterations and expression. (A-B) Data were obtained from TCGA-PanCancer study of gliomas, 

available in cBioPortal (178,179). (A) Patients are represented individually in columns. Percentage of alterations in either TIGAR or 

TP53 is calculated for all samples, and the type of alteration is represented by different colours. (B) Expression of TIGAR (X axis) 

and TP53 (Y axis) in glioma samples. (C) Schematic representation of divergent phenotypes of p53 mutations: (a) wild-type, (b) 

loss or partial loss of function, (c) selection of function, or (d) gain-of-function. Adapted from (74). 

TIGAR can be induced by doxycycline (3), nutlin-3 (78), radiotherapy (4,79), hypoxia (80,81), extracellular 

glutamine, lactate (82), tumour necrosis factor α and radiotherapy mimetics (83). Moreover, during this 

thesis we have described that TIGAR is also induced by the Akt signalling pathway in response to the 

metabolic stress caused by PFKFB3 knockdown (84). These results are presented in Results Chapter I. 
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The human TIGAR protein is composed of 270 amino acids and has a molecular weight of 30 kDa. It 

contains a bisphosphatase active site in which two histidine residues, H11 and H198, and one glutamic 

acid, E89, are essential for its activity. This catalytic triad is characteristic of proteins of the histidine 

phosphatase superfamily (85). In TIGAR, H11 forms a transient phosphoenzyme during catalysis, H198 

stabilizes the transition state and E89 is a H+ acceptor and donor (Figure 11). The functionality of these 

residues was described in Danio rerio (86) and it is conserved in human. These three residues are identical 

between TIGAR, FBPase-2 (3), erythrocyte 2,3-bisphosphoglycerate mutase (PGME) and 

phosphoglycerate mutases 1 and 2 (PGAM B and PGAM M, respectively). During this thesis, these 

similarities have been explored through sequence and structural comparisons, which are reported in 

Results Chapter II. The mutation of either H11 or H198 in human TIGAR abolishes its phosphatase activity 

on Fru-2,6-P2. The mutation of an additional residue also conserved in histidine phosphatases, E102, 

together with H11 and H198 (known as triple mutant TIGAR) has similar consequences to the single 

mutation of H11 or H198 (3). 

 

Figure 11. Structure of human TIGAR. The structure of human TIGAR has been downloaded from PDB (Reference Number: 

3DCY) and is represented in yellow. The three residues of TIGAR active site plus an additional residue conserved in other histidine 

phosphatases are represented in sticks coloured according to the type of amino acid. H11 and H198 are coloured in purple and 

E89 and E102 are coloured in red. (A) Visualisation of TIGAR surface, where the access to the catalytic core is indicated by a black 

arrow and PPi can be appreciated inside. (B) Schematic representation of TIGAR with the most relevant residues coloured. (C) 

Zoom into the catalytic core. Images were created with Jmol: an open-source Java viewer for chemical structures in 3D. 

http://www.jmol.org/.  
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TIGAR is mainly localized in the cytoplasm, but it has been described to bind to HK-II in the outer 

mitochondrial membrane under hypoxic conditions (87) and the presence of TIGAR in the nucleus has 

been found to contribute to DNA damage repair (88). 

In terms of expression, TIGAR mRNA levels have been detected in all the tissues that have been analysed 

to date. The tissues with the highest TIGAR expression, both in terms of mRNA and protein levels, are 

the lung, liver, gastrointestinal tract, kidney, urinary bladder and male tissues (Figure 12). 

 

Figure 12: TIGAR mRNA and protein levels across tissues. Representation of TIGAR levels across the human body. Analysed 

tissues are divided into color-coded groups according to common functional features. Images of selected tissues at the right panel 

provide a visual summary of the protein expression profile. The grey human body highlights those tissues in which more expression 

has been detected, both in female and male. From the Human Protein Atlas (89) available from www.proteinatlas.org. 

Mouse Tigar knock-out is viable and, indeed, it does not show any deficiency for normal growth or 

development. However, this model revealed the importance of Tigar in intestinal regeneration. Tigar 

deficiency impairs intestinal regeneration, which can be rescued by ROS scavengers and nucleosides, 

highlighting the antioxidant role of Tigar in mouse colon (90). On the other hand, Tigar suppression 

reduced tumour growth and improved survival in a mouse intestinal adenoma model, while elevated 

Tigar expression supported cancer progression (90). Thus, balanced levels of this protein seem to be 
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required for the physiological homeostasis of tissues, but Tigar overexpression can contribute to 

oncogenic transformation in those cells exposed to high ROS levels. 

The types of human cancer with the highest expression of TIGAR, both in terms of mRNA and protein 

levels, are gliomas, head and neck tumours, stomach and colorectal cancer, testis cancer and melanoma 

(Figure 13).  

 

Figure 13: TIGAR mRNA and protein levels in several types of cancer. The graph shows RNA-seq data from The Cancer 

Genome Atlas (TCGA) expressed as fragments per kilobase million (FPKM). Analysed tissues are divided into color-coded groups 

according to common functional features. The evaluation of TIGAR protein levels with three different TIGAR-specific antibodies is 

represented by red, orange and green dots, according to high, medium or low TIGAR levels, respectively. The figure was adapted 

from the Human Protein Atlas (98) available from www.proteinatlas.org. 

Mostly, TIGAR contribution to cancer is linked to its effects on the PPP. TIGAR downregulation inhibits 

the growth of several cancer cell lines (24) and increases the susceptibility to radiotherapy in p53 wild-

type and mutated glioblastoma cell lines (79). In nasopharyngeal cancer, the potent anticancer treatment 

1-(3-C-ethynyl-beta-d-ribo-pentofuranosyl)cytosine decreases TIGAR levels and depletes NADPH, a 

phenotype that is rescued by TIGAR overexpression (91). Moreover, in multiple myeloma cells inhibition 

of the C-terminal subunit of mucin 1 oncoprotein increases ROS levels and downregulates TIGAR 

expression, resulting in decreased NADPH and glutathione levels and promoting ROS-mediated 

apoptosis/necrosis (92). Nevertheless, high TIGAR expression in certain cancers such as hepatocarcinoma 

is linked to reduced progression-free survival, highlighting the importance of this gene in tumour 

development (Figure 14). Based on these observations, some studies have proposed TIGAR as an 

antitumoral target in cancer. This is what illustrates the study by Canaparo, et al., in which a sonodynamic 

therapy tested in a neuroblastoma cell model decreased TIGAR expression and proliferation, possibly 

through increased ROS levels (93). Similarly, TIGAR abrogation increased radiation-induced cell death in 

glioblastoma-derived cell lines, in which the ataxia telangiectasia-mutated (ATM)-Nuclear Factor kappa 

B (NFkB)-TIGAR axis has been described to be involved in radio resistance (83).  
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Figure 14: Kaplan Meier curves of TIGAR expression in liver cancer. The graph indicates the survival probability of patients 

with hepatocarcinoma depending on TIGAR expression. Patients were classified in two groups according to the expression of 

TIGAR. The prognosis of each group of patients was examined by Kaplan-Meier survival estimators, and the survival outcomes of 

the two groups were compared by log-rank tests. A log rank P value less than 0.001 indicates a prognostic gene. 5-year survival 

in the group of patients with high TIGAR expression was 32%, whereas in the group with low TIGAR expression it was 57% (log 

rank P value was 0.00032), indicating that TIGAR is an unfavourable prognostic marker in liver cancer. Source: The Human Protein 

Atlas (89) available at www.proteinatlas.org. 

Besides its already mentioned role as an antioxidant, TIGAR has been described to inhibit autophagy (3). 

Moreover, some studies have related TIGAR with senescence, although the results in this field are 

controverted. Some experiments trying to analyse the contribution of TIGAR to senescence were 

performed during this thesis but have not been included given that no concluding results were obtained. 

Other roles for TIGAR in cancer have also been proposed, some of which involve the regulation of cell 

cycle. TIGAR was found to dephosphorylate the retinoblastoma protein (Rb) and stabilize the Rb-E2F1 

complex, thus delaying entry into the S phase (94,95). This opens the possibility of other substrates for 

TIGAR phosphatase activity beyond glycolytic intermediates. 

More specific information related to each of the features regarding TIGAR that have been addressed in 

this thesis (i.e. relationship with PFKFB3, enzymatic activity and transcriptional control) is provided at the 

beginning of each Results Chapter. 
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2.2.5. From Fru-1,6-P2 to PEP: the forgotten enzymes 

For years, the steps involved in the oxidation of Fru-1,6-P2 to PEP were not considered as potential cancer 

drivers. These steps include the reactions catalysed by aldolase (ALDO), glyceraldehyde-P-

dehydrogenase (GAPDH), triose-phosphate isomerase (TPI), phosphoglycerate kinase (PGK), 

phosphoglycerate mutase (PGAM) and enolase (ENO) (Figure 5). However, different studies from The 

Cancer Genome Atlas (TCGA) indicate that the genes encoding for these enzymes are as much altered 

as genes coding for known cancer drivers such as PFK-1 or PFK-2 in certain tumour subsets such as 

glioblastoma multiforme, suggesting that these genes could potentially be therapeutic targets in specific 

malignancies. Indeed, these enzymes are involved in the metabolism of 3PG, the first metabolite in the 

de novo serine and glycine synthesis pathway, which is increased in tumour cells as it will be further 

exposed in Section 3.3 of this Introduction. 

2.2.6. Pyruvate kinase: the last step of glycolysis 

To balance biosynthetic outputs of glycolysis with its role in providing pyruvate that supports TCA cycle 

activity, proliferating cells have evolved a novel mechanism to regulate the last step of glycolysis. This 

step is regulated by PK, an enzyme that converts PEP to the final product of glycolysis, pyruvate (Figure 

5). Four different isoenzymes encoded by two different genes have been identified. Except for the liver, 

kidney and red blood cells, which express tissue-specific PK isoforms PKL and PKR, respectively, most 

tissues express the muscular form of PK (PKM). While PKM1 is more efficient at producing Pyr, the 

majority of proliferating cells and essentially all cancer cells express the PKM2 variant, which has a lower 

affinity for PEP (96). The decrease in the activity of PK is one of the reasons for considering glycolysis as 

a source of molecules for biosynthesis rather than an ATP producing pathway. Unlike PKM1, the activity 

of PKM2 activity is highly regulated and, indeed, growth-factor-dependent signal transduction inhibits 

PKM2, leading to accumulation of glycolytic intermediates until the cell has fulfilled its growing needs 

and can completely oxidize glucose to obtain ATP. In glycolysis, the net energetic production is only 2 

ATP per molecule of glucose oxidized, something that looks ridiculous compared to the ATP yield of 

oxidative phosphorylation, which is 15 times higher (5). However, the fact that cancer cells produce low 

levels of ATP although maintaining a high glycolytic flux is what allows for the continuous operation of 

the pathway, given that ATP is an allosteric inhibitor of key enzymes such as PFK-1 and PK. Besides, ATP 

production through glycolysis is much faster than through oxidative phosphorylation (5). 
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3. Diversion of carbons: metabolic pathways branching from glycolysis 

Glycolytic intermediates are involved in diverse biosynthetic reactions. Accordingly, the rate-limiting 

enzymes of pathways branching from glycolysis are frequently upregulated in tumours. 

3.1. Hexosamine-phosphate pathway 

The hexosamine-phosphate pathway, in which Fru-6-P is the first substrate, is particularly important for 

the glycosylation of proteins that are secreted or placed on the surface of cells (Figure 5). However, in 

cancer cells most of the glucose is either redirected to the synthesis of amino acids and nucleotides or 

converted to pyruvate and lactate. In oncogenic Kras-driven pancreatic ductal adenocarcinoma (PDAC), 

an important fraction of glucose is diverted towards the hexosamine-phosphate and the pentose 

phosphate pathways (97). 

3.2. Pentose phosphate pathway 

The PPP branches from glycolysis at the first committed step of glucose metabolism and consumes Glu-

6-P as the primary substrate. The PPP is required for the synthesis of ribonucleotides and is a major 

source of NADPH. NADPH is essential for fatty acid synthesis and for the reduction of oxidized 

glutathione (GSSG) by glutathione reductase (GR), that splits GSSG into two molecules of GSH by the 

addition of two electrons and two protons obtained from NADPH. GSH is oxidized by ROS and for this 

reason a continuous supply of NADPH is required. Two phases or branches integrate the PPP: the 

oxidative branch and the non-oxidative branch. In the oxidative branch, NADPH is generated in the 

irreversible reactions catalysed by G6PD and 6-phosphogluconate dehydrogenase (6PGD). The final 

product of the oxidative branch is R5P, which serves as the primary substrate for purine and pyrimidine 

synthesis. The non-oxidative branch comprises a series of reversible reactions that recruit additional 

glycolytic intermediates, such as Fru-6-P and G3P and combine them with R5P, generating other 

phosphorylated metabolites that can be reintroduced into glycolysis (Figure 5) (98). Unlike canonical 

models, there is evidence that the synthesis of R5P is not restricted to the oxidative PPP. In Kras-driven 

PDAC, KrasG12D drives glycolytic intermediates into the non-oxidative PPP, thereby decoupling ribose 

biogenesis from NADP/NADPH-mediated redox control (97). 

Recently, several neoplastic lesions involving enzymes from both the oxidative and non-oxidative 

branches have been shown to facilitate the flux of glucose into the PPP. Indeed, dependency of B cell 

malignancies on the PPP has been described, as these transformed B cells rely on the activity of the 

serine-threonine-PP2A, which dephosphorylates PFKFB2 and redirects glucose flux to the PPP, 

conferring antioxidant protection. Importantly, TIGAR overexpression mimics the activity of PP2A, 

confirming an equivalent role for these two phosphatases in these tumours (99). 

Apart from the transcriptional upregulation of several enzymes of the PPP, an acute activation of the 

oxidative PPP has been described as a short-term response independent of transcription in skin cells 
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exposed to high levels of oxidative damage. In these cells, in which ROS-derived UV exposure result in 

DNA mutations that can eventually initiate a melanoma, oxidative stress triggers G6PD activity, 

increasing the pool of ribose-phosphates that return to glycolysis through the non-oxidative PPP and 

are redirected back to oxidative PPP due to ROS-mediated inhibition of GAPDH (100). This rerouting 

into the PPP maximizes NADPH production and is essential to prevent oxidative damage. 

3.3. Serine and glycine synthesis pathway and one-carbon metabolism 

Although the first clues about the overactivation of the de novo serine synthesis pathway in tumours 

date from 1980s (101), it became a forgotten field of study until very recently, when interest on the role 

of this pathway in tumorigenesis emerged again. Amplification of the gene encoding phosphoglycerate 

dehydrogenase (PHGDH) has been described in breast cancer (102) and melanoma (103). This enzyme 

is the responsible for the redirection of 3-PG from glycolysis to this anabolic pathway through an initial 

reaction in which 3-phosphohydroxypyruvate (3PHP) is formed at expenses of NAD+ reduction. Two 

irreversible reactions couple the transamination of 3-phosphohydroxypyruvate into 3-phosphoserine 

(3PS), with the conversion of Glu to α-ketoglutarate (αKG), catalysed by phosphoserine aminotransferase 

1 (PSAT1). Finally, 3PS is converted into serine (104) (Figure 5). As metabolic flux studies revealed, some 

cancer cells utilize 50% of glucose-derived carbons in serine biosynthesis (103). 

Serine is required for the synthesis of phospholipids (such as phosphatidylserine) and, more importantly, 

for the synthesis of other amino acids such as glycine and cysteine. One of the most important roles of 

serine is the transference of one-carbon units to the folate cycle, in the so-called one-carbon 

metabolism (Figure 5), which involves the synthesis of glycine. This reaction, catalysed by serine 

hydroxyl methyltransferase 1 (SHMT1) in the cytosol and SHMT2 in the mitochondria, transfers the 

carbon to a carrier molecule, tetrahydrofolate (THF), generating 5,10-methylene-THF (methyl-THF) and 

glycine. Then methyl-THF undergoes a series of oxidative-reductive transformations, creating a battery 

of one-carbon-THF species (105). Species derived from the THF cycle are utilized as substrates for the 

biosynthesis of purines, thymidine, and to produce S-adenosylmethionine in the methionine cycle, 

necessary for cellular methylation reactions including epigenetic regulation. One of the molecules in the 

methionine cycle is the precursor of cysteine, which together with glutamine and glycine is a key amino 

acid in the synthesis of glutathione. In addition, oxidation of one-carbon-THF by methylene-

tetrahydrofolate dehydrogenases 1 and 2 (MTHFD1/2) is an important source of NADPH (105,106) 

(Figure 5). 

Remarkably, dietary restriction of serine and glycine in genetically engineered mouse models of 

lymphoma and intestinal adenoma reduced tumour growth, an effect that was further improved by 

antagonizing the antioxidant response through TIGAR inhibition (107). The fact that tumours show 
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increased de novo serine and glycine synthesis pathway does not exclude their dependency on external 

supply of these amino acids. Because of that, most of culture media are supplemented with these and 

other amino acids. This dependency of cancer cell lines does not always reflect the reality of tumours, as 

some addictions are developed during cell culture. 

3.4. Lipid synthesis 

Cells require different types of lipids. In one hand, they need to synthesize phospholipids for cellular 

membranes, something that is required for cell division and, consequently, also for the progression of 

cancer. Besides, they also need to build triacylglycerides for energy storage in the body. Considering the 

composition of each of these two types of lipids, cells need acetyl-CoA for the synthesis of fatty acids 

that are the main components of the two types of lipids, and glycerol-3-P for the structure of 

triglycerides and to build the hydrophilic phosphate groups of phospholipids. Thus, the synthesis of 

lipids is linked to the diversion of G3P from glycolysis (Figure 5). Downstream of glycolysis, glucose-

derived pyruvate that enters the TCA cycle contributes to the production of mitochondrial citrate, which 

can be exported again to the cytosol, split into oxaloacetate (OAA) and acetyl-CoA by ATP citrate lyase 

(ACL) and feed de novo fatty acid synthesis (5). Fatty acid synthase (FAS) is responsible for the synthesis 

of fatty acids out of malonyl-CoA and acetyl-CoA and requires NADPH (Figure 5). Both TCA and FAS are 

induced in tumour cells and their activity is required for proliferation to build the membranes of new 

cells (108). Indeed, inhibition of FAS downregulates the expression of the oncogene p185HER2 in HER2 

overexpressing breast cancer cell lines and FAS inhibitors synergize with the humanized antibody 

directed against p185HER2 trastuzumab, increasing cell death in these cells (109). The increased synthesis 

of NADPH by the PPP-promoter activity of TIGAR that has been described in certain cells (3) might not 

only contribute to ROS detoxification, but also to increase FAS activity. 
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4. The fate of pyruvate carbons: lactate or acetyl-CoA? 

Pyruvate has two main fates: to be converted into lactate in the cytosol by lactate dehydrogenase (LDH) 

or to enter the mitochondria and generate acetyl coenzyme A (acetyl-CoA) by the action of pyruvate 

dehydrogenase (PDH) (Figure 5). The emerging evidence favours the hypothesis that glycolysis is 

utilized by proliferating cells as a versatile production line that generates metabolic intermediates for 

numerous biosynthetic processes. Any excessive glycolytic flux not utilized for biosynthesis is 

preferentially converted to lactate to help preserve a sufficient pool of NAD+ to sustain glycolysis and 

avoid flooding the mitochondria with a supply of NADH that would suppress the TCA cycle. Most 

tumours have aberrantly increased expression of LDHA, which codes for the LDH isoenzyme with the 

highest affinity for pyruvate, producing high levels of lactate (110). This, coupled with overexpression of 

the monocarboxylate transporter 4 (MCT4), which exports lactate to the extracellular media, results in 

the acidification of the tumour microenvironment (Figure 5). Although lactate excretion is not the only 

mechanism for the development of the acidic extracellular environment observed in solid tumours (111), 

it contributes to it and has been proposed as the reason and purpose of the Warburg effect. Lactate is 

involved in different hallmarks of carcinogenesis apart from metabolic reprogramming, including 

angiogenesis, immune escape, cell migration and metastasis (112). Remarkably, PKM2-expressing cells 

generate more glucose-derived lactate relative to cells expressing PKM1, regardless that PKM2 has less 

affinity for pyruvate as it has been mentioned before. An alternative glycolytic pathway has been 

proposed in rapidly proliferating cells in which the phosphate of PEP is transferred to the catalytic His11 

of human PGAM, producing pyruvate in the absence of PKM2 activity (113) (Figure 5). This might explain 

the high lactate production detected in many tumour cells in which PK activity is low. However, the 

enzyme responsible for this activity has not been identified yet, and indeed TIGAR has been proposed 

as a candidate to accomplish this function (73). 

Another question that is difficult to answer is why the rate of lactate production is so high when most of 

the pyruvate could be oxidized to enhance ATP production in the mitochondria. One explanation 

proposed is that cells need high-flux mechanisms to eliminate the high levels of pyruvate produced by 

the overactivation of glycolysis. Pyruvate oxidation in mitochondria requires import into this organelle 

followed by activity of highly-regulated enzymes such as PDH. Thus, overexpression of LDH solves the 

problem, as it rapidly converts pyruvate into lactate, that can be easily secreted (114). 

Finally, it should also be mentioned that pyruvate can be converted to alanine by alanine transaminase 

1 (ALT1) in the cytoplasm, coupling this reaction with the deamination of glutamate (Glu) to αKG, which 

is another example of anaplerotic reactions from glycolytic intermediates (Figure 5). 
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5. Mitochondrial metabolism in brief: should we still call the TCA cycle a “cycle”?  

Although it was originally proposed that tumours harboured mitochondrial alterations that forced cells 

to use glycolysis as the main source of energy (115,116), it is now known that mitochondrial respiration 

is functional in cancer cells and, indeed, it is the primary source of ATP in most tumours (5). However, 

glycolytic activity significantly affects the respiration capacity of tumour tissues being respiration and 

oxidative phosphorylation inhibited by glucose, a phenomenon that is known as the “Crabtree effect” in 

honour of who firstly described it (117).  

As exposed at the beginning of this Introduction, tumour cells need rapid supply of energy to face stress 

situations such as oxygen or nutrient withdrawal, but what is even more important for their progression 

is to have an available pool of biomolecules comprising lipids, hexosamine sugars, amino acids and 

nucleotides to allow proper cell proliferation and growth. In this sense, the role of the TCA cycle is crucial 

given that it is a hub for biosynthesis. TCA cycle integrates the entrance of the two most important fuels 

in cancer cells: glucose and glutamine. Glucose-derived pyruvate enters the mitochondria where it can 

be oxidized to acetyl-CoA by PDH (Figure 5). To produce citrate, citrate synthase requires an available 

pool of mitochondrial OAA and acetyl-CoA to continue the cycle. In a simplified picture of mitochondrial 

metabolism, carbons from OAA and acetyl-CoA are exchanged through a series of reactions that we 

group by the name of TCA cycle, generating NADH, FADH2 and CO2. However, evidence indicates that 

these reactions are not that much coupled, especially in proliferating cells. Instead, exchange of 

metabolites occurs between the mitochondria and the cytosol. The most important “truncation” of the 

cycle is the transference of citrate to the cytosol to generate acetyl-CoA and contribute to de novo lipid 

synthesis. Besides, other intermediaries such as OAA and αKG supply intracellular pools of non-essential 

amino acids. This efflux of metabolites is referred to as ‘cataplerosis’ (114) and it is essential in 

proliferating cells to sustain biosynthesis, and also contributes to the regeneration of NADPH through 

the reaction catalysed by malic enzyme (ME) (Figure 5). 

To meet the required levels of OAA for citrate synthase to work, cells must have an influx of intermediates 

to resupply the TCA cycle, which is called ‘anaplerosis’. There are two major sources of anaplerotic 

metabolites: pyruvate, which can be directly metabolized to OAA through pyruvate carboxylase (PCB), 

and amino acids, being glutamine (Gln) the most important. Gln is oxidized by glutaminases 1 and 2 

(GLS1, GLS2) and converted into glutamate, which is further metabolised to αKG and introduced into 

the TCA cycle (Figure 5). The amino group from Gln is transferred to α-keto acids to form non-essential 

amino acids. During anaplerosis, αKG is metabolized through the TCA cycle reactions and produces OAA. 

However, an alternative is that glutamine-derived αKG is converted to malate and then to pyruvate 

through mitochondrial or cytoplasmic ME, generating NADPH (Figure 5) (114,118). 
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The branching of the TCA cycle is usually a consequence of deregulated metabolic fluxes, which increase 

or decrease some metabolites and force reactions work in a specific direction, without involving genetic 

alterations in the TCA cycle coding genes. However, there are also examples in which TCA cycle enzymes 

function as tumour suppressors and, thus, loss-of-function mutations in their coding genes are 

associated with cancer formation, as it is the case for succinate dehydrogenase (SDH). SDH deficiency 

commits cells to consume extracellular pyruvate and increases the synthesis of aspartate from glycolysis-

derived carbons, through the intermediate formation of OAA by pyruvate carboxylase (119). 

Apart from the catabolic and anabolic functions of the TCA cycle, these reactions are of major importance 

to produce NADH and FADH2. These molecules, generated in the mitochondrial matrix, are oxidized to 

NAD+ and FAD by complexes I and II of the electron transport chain, respectively, located at the inner 

mitochondrial membrane. The tight relation between the TCA cycle and the electron transport chain is 

evident, given that complex II is indeed succinate dehydrogenase, an enzyme of the TCA cycle. The 

electrons of NADH and FADH2 are transferred through coenzyme Q and complex III to complex IV, where 

they are conducted to the matrix. The final acceptor of the electrons transferred is oxygen, in a reaction 

catalysed by complex IV that generates water (Figure 15). The energy from electrons allows for the 

pumping of protons from NADH and FADH2 to the intermembrane space, creating an electrochemical 

gradient between this compartment and the matrix. Protons, however, cannot diffuse through the 

membrane to compensate the gradient and are canalized through complex V (ATP synthase) to the 

mitochondrial matrix. ATP synthase couples the proton flux to the phosphorylation of ADP by Pi, 

producing ATP, in what is called OXPHOS. As it is exposed in Section 6.5 of this Introduction, when 

electron leakage occurs, oxygen radicals are generated. 
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Figure 15. Electron transport chain and oxidative phosphorylation. The electron transport chain is a series of electron 

transporters embedded in the inner mitochondrial membrane that shuttles electrons from NADH and FADH2 to molecular oxygen. 

In the process, protons are pumped from the mitochondrial matrix to the intermembrane space, and oxygen is reduced to form 

water. Proton electrochemical gradient is used to power the ATP synthase in what is called oxidative phosphorylation. The 

complexes involved are NADH-coenzyme Q oxidoreductase (complex I), succinate-dehydrogenase (complex II), electron transfer 

flavoprotein-Q oxidoreductase (Q), Q-cytochrome c oxidoreductase (complex III), cytochrome c oxidase (complex IV) and ATP 

synthase (complex V). 
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6. Oncogenic orchestrators of cancer cell metabolism: special attention to oxidative 

stress 

Mammalian cells are not autonomous for initiating the alterations required for the deregulation of 

metabolism and the initiation of tumour development. Instead, they rely upon overactivated signalling 

cascades, which are usually triggered by growth factors and other external stimuli. It was originally 

proposed that oncogenes were responsible for the aberrant expression of metabolic enzymes. However, 

it is clear now that intracellular and extracellular factors by themselves can directly regulate metabolic 

proteins at the transcriptional, translational and post-translational levels.  

The signalling pathways that modulate cellular metabolism under physiological conditions are highly 

conserved in tumour cells. However, one important difference between proliferating and non-

proliferating cells is that the first ones possess alterations in several metabolic drivers which confer them 

the ability to avoid checkpoints. In this manner, metabolic pathways are not under control but, instead, 

they are subjected to the requirements of tumour cells growth. This derangement of the control 

mechanisms can be caused by cell-autonomous genetic factors that increase the expression of 

oncogenes and inactivate tumour suppressor genes, but also by non-genetic factors determined by the 

tumour microenvironment (TME) as it is the gradient of oxygenation, pH and nutrient availability, as well 

as growth factors and signalling molecules secreted by different cells in the TME, which importantly 

affect cancer cells (5,120).  

In the following paragraphs the most important drivers involved in the regulation of PFKFB3 and TIGAR 

are commented (Figure 16).  
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Figure 16. Oncogenic orchestrators of cancer metabolism. Schematic representation of the molecular mechanisms contributing 

to the Warburg effect that are more important for the regulation of PFKFB3 and TIGAR. Hypoxia and proliferating signals such as 

the PI3K/Akt pathway stabilize HIF-1α, which transactivates most of the glycolytic genes, such as HK-II and PFKFBs and MCT lactate 

transporters. Excreted lactate, in turn, can modify the metabolism of other cells in the TME. On the contrary, the tumour suppressive 

role of p53 inhibits the glycolytic genes PFKFB3, PFKFB4, PGAM and the lactate transporter MCT1, and induces TIGAR, reducing 

the glycolytic flux and promoting the PPP. p53 stimulates respiration by inducing SCO2, a component of cytochrome c oxidase 

(COX) complex.  Nrf2 is induced by ROS or proliferative signalling and triggers the expression of genes related with the PPP, the 

serine and glycine synthesis pathway and glutamine catabolism. c-Myc can induce Nrf2 and also contributes to lipid synthesis. 

Published in (24).  
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6.1. Pi3K/mTORC 

Cells take up nutrients following the orders of ligand-initiated signal transduction and use them to 

maintain cell survival and growth. When cells receive a proliferating signal in a situation of low energy 

supply, the ATP levels required to activate the whole cellular machinery for proliferation are not sufficient 

and, in some cases, this leads to cell death. Considering this dependency on extracellular signals for cells 

to proliferate, something must be transgressed to initiate cellular transformation. Aberrant functioning 

of a signalling pathway which renders the cell autonomous for nutrient uptake is required for 

malignization. In the case of glucose uptake, overactivated receptor tyrosine kinases (RTK) initiate the 

overexpression of glucose transporters and their corresponding translocation to the cellular membrane 

(121). The insulin RTK can act through adaptor proteins to activate PI3K and produce 

phosphatidylinositol 3,4,5-triphosphate, which in turn brings to the membrane a serine threonine kinase, 

Akt, that activates the ability of cells to take up glucose. This is accomplished by enhancing the cellular 

ability to capture glucose through HK-dependent phosphorylation and by activating PFK-1 to commit 

the captured glucose to glycolysis (5). Akt-dependent activation of hexokinase, phosphofructokinase (5) 

and PFKFB3 (60,122) has been described (Figure 16). 

Akt-mediated phosphorylation of one of the inhibitors of the mechanistic target of rapamycin (mTORC), 

the tuberous sclerosis 2 (TSC2; part of the TSC1-TSC2 complex) or the proline-rich Akt substrate of 40 

kDa, activates mTOR. mTORC1 or mTORC2 complexes are formed depending on the proteins that bind 

to mTOR. mTORC1 is the better characterized and is modulated by different environmental cues, 

including growth factors (as transmitted via the PI3K/Akt pathway for example), energy status, amino 

acids, and oxygen levels (5). Although mTORC1 can regulate many cellular processes, it remains best 

known for elevating protein synthesis through direct phosphorylation of the translational regulators 4E-

binding protein 1 and S6 kinase 1 (5), and also for inhibiting autophagy. Downstream of mTORC1 are 

different transcription factors from which are important to highlight for this thesis HIF-1α and c-Myc, 

discussed further below (5) (Figure 16). 

Antagonizing PI3K/Akt, the AMP-activated protein kinase α (AMPKα) responds to increased AMP/ATP 

ratio to repress mTOR. mTORC1 activity can be suppressed through either AMPK-mediated 

phosphorylation of the TSC1/2 complex, or the inhibitory phosphorylation of the mTORC1 scaffold 

protein regulatory-associated protein of mTOR (RAPTOR) (123). 
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6.2. HIF-1α 

Activation of PI3K results in an excess of glucose uptake, which is stored by metabolic tissues. The liver 

stores it by making glycogen first and then fatty acids, the muscle by synthesizing glycogen, and fat cells 

in the form of glucose-derived fat. In the case of tumours, however, cells do not have storage capacity 

for the extra glucose that they are instructed to take up, so the glycolysis-derived pyruvate needs to be 

metabolized through oxidative metabolism, increasing mitochondrial ROS. Cells deal with oxidative 

stress using various cell-intrinsic defence systems, as it will be reviewed further on this section. An 

alternative to oxidative metabolism is activating the cellular ability to secrete excess glucose-derived 

carbon back into the extracellular space as lactate, a reprogramming event that is dependent on HIF-1α 

(121,124). Thus, the transcription factor HIF-1α is responsible for the shift from oxidative metabolism to 

glycolytic metabolism through the transactivation of most glycolytic genes such as HK-II, PFKFBs, 

ALDOA, PGK, PGAM, ENO, PKM2, LDHA, as well as pyruvate dehydrogenase kinase (PDK1), which in turn 

inhibits PDH. Moreover, HIF-1α activation increases the secretion of lactate through MCT4 and the 

vascularization of the tumour through upregulation of the vascular endothelial growth factor 

(27,48,121,124) (Figure 16). 

As mentioned before, PFKFB3 expression can be induced by HIF-1α (40,49,125) (Figure 16). On the 

contrary, TIGAR levels are not controlled by hypoxia (90). However, TIGAR binds to HK-II in the 

mitochondria under low-oxygen conditions, independently of its phosphatase activity (87). This suggests 

that TIGAR might have other roles beyond its activity on Fru-2,6-P2 during hypoxia. 

6.3. c-Myc 

The transcription factor c-Myc is a proto-oncogene activated by growth factors in non-proliferating cells. 

In tumour cells, it can be constitutively active due to gene amplification, single nucleotide 

polymorphisms, chromosomal translocation, or as a downstream effector of the mTORC1 pathway. c-

Myc induces the expression of several genes involved in glycolysis, lactate production, glutamine 

metabolism, and the serine and glycine and fatty acid synthesis pathways (5,114) (Figure 16). In a mouse 

model of colon cancer induced by the loss of adenomatous polyposis coli gene, increased Wnt/β-catenin 

signalling occurred in parallel to increased c-Myc and Tigar expression, and the deletion of c-Myc 

reduced Tigar mRNA, suggesting a link between these two genes. Tigar induction was not a direct 

response to Wnt/β-catenin activity but to the activation of c-Myc, although the direct transcriptional 

control of Tigar by c-Myc has not been proved (126). 
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6.4. p53 

The transcription factor p53, encoded by the TP53 gene, is the most studied tumour suppressor gene, 

comprising pro-survival actions and pro-apoptotic effects (127) (Figure 17). The fine mechanisms 

dictating the specific p53 response are not fully understood and, although many players have been 

described, it is widely accepted that p53 action mostly depends on the cellular and genetic context. 

In unstressed cells, p53 is rapidly degraded by the ubiquitin ligase double minute 2 homolog (HDM2), 

the homologous protein to the mouse Mdm2. In response to several kinds of stress, p53 is 

phosphorylated by several kinases, depending on the nature of the stress, and it is in these 

phosphorylated residues where the prolyl isomerase Pin1 binds, releasing p53 from HDM2 and 

stabilizing it (128). Currently, the mechanism underlying the preferential expression of p53 targets 

remains unknown. However, phosphorylation, acetylation or ubiquitination of specific residues of p53 

have been proposed to differentially regulate the expression of pro-survival and pro-apoptotic genes 

(129) (Figure 17). p53 inhibits the expression of several glucose transporters and that of PGAM, which is 

consistent with its tumour suppressor role, but at the same time there are p53-response elements in the 

promoters of hexokinase and the same PGAM, suggesting that at least to some extent, context- or 

tissue-dependent differences determine the metabolic function of p53. Moreover, p53 activation can 

also contribute to cancer development (130). One example of this is the p53-driven induction of TIGAR 

expression. TIGAR was described as a p53-response gene that was induced by low levels of stress (4) 

(Figures 16, 17). Its bisphosphatase activity on Fru-2,6-P2 attenuates glycolysis and increases NADPH 

levels, conferring resistance to ROS-induced apoptosis in a PPP-dependent manner (3). This helps cells 

to repair moderate levels of damage sustained under normal growth conditions or in response to mild 

stress. Regarding this, the capacity of p53 to modulate the PPP is not clear yet, as there are also evidences 

of p53 inhibition of G6PD (131).  

With all, one should not forget that the p53 antioxidant capacity can also contribute to transformation 

and, consequently, the role of TIGAR as a tumour suppressor gene might be argued and, indeed, TIGAR 

might be considered a tumour promoter gene depending on the cellular context. The same happens 

with other pro-survival p53-target genes such as p21 (CDKN1A), which by arresting the cell cycle can 

give transformed cells the chance to repair mutations and avoid cell death (127). 

Regarding the link between p53 and some key signalling routes, it is to consider that, although 

Akt/mTORC and p53 pathways antagonize to each other and AMPK and high AMP/ATP levels induce 

p53 activity, constitutive mTOR activation activates TP53 translation, which results in apoptosis, 

something that could explain the low malignancy of some TCS negative tumours (132). 

p53 has also an important role in OXPHOS, increasing the expression of the synthesis of cytochrome c 

oxidase 2 (SCO2) gene, which is required for the correct assembly of the COX complex in the 

mitochondrial electron transport chain, the major site of oxygen utilization in the eukaryotic cell. 
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Disruption of the SCO2 gene in human cancer cells with wild-type TP53 recapitulates the metabolic 

switch towards glycolysis that is exhibited by TP53-deficient cells (133). This link between p53 and 

mitochondrial metabolism provides a possible explanation for the Warburg effect occurring in cancer 

cells, most of which carry mutations in TP53. 

 

 

 

Figure 17. p53 role as a pro-survival or an apoptosis enhancer gene. Choice of response to p53 depends on many variables, 

including the extent of the stress. Low or repairable levels of stress or damage induce a pro-survival response of p53 involving 

control of glycolysis, cell cycle arrest and repair of genotoxic damage. More severe, irreparable or oncogenic stress leads to the 

activation of cell death or senescence. Examples of target genes that are transcriptionally activated by p53 in each context are 

provided. The preferential activation of target genes with different outcomes depends on post-translational modifications of p53 

including acetylation, ubiquitination and phosphorylation. 
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6.5. Oxidative stress and antioxidant defenses 

6.5.1. Reactive oxygen species 

Oxidative stress is a common feature in tumour microenvironment. The term ROS includes the 

superoxide (O2
−) and hydroxyl (HO-) free radicals as well as non-radical molecules such hydrogen 

peroxide (H2O2). These molecules are principally derived from the oxygen that is consumed in various 

metabolic reactions occurring mainly in mitochondria, peroxisomes and the endoplasmic reticulum (ER). 

In mitochondria, the formation of unstable species is required for the transference of electrons between 

complexes but can lead to the direct transfer of electrons to oxygen in what is called ‘electron leakage’, 

as it has been mentioned before (Figure 15). O2
− and H2O2 are formed when, instead of 4 e-, only one 

or two e- are transferred to O2, respectively. Mitochondria are considered the major source of ROS and 

several detoxifying enzymes are found in these organelles. Superoxide dismutase converts O2
− to H2O2, 

which in turn can be neutralized to water by catalase or converted into HO− through Fenton reactions. 

Peroxisomes are involved in both the scavenging and the production of ROS through catalase-mediated 

decomposition of H2O2 and β‑oxidation of long chain fatty acids and flavin oxidase activity, respectively. 

The ER constitutes an oxidizing environment that favours disulphide bond formation and protein folding 

and increases ROS levels through protein oxidation (134). 

6.5.2. A focus on Nrf2 

A crucial molecule involved in oxidative stress homeostasis is NADPH, which is the unique reducing 

agent that can be used by GR to regenerate GSH. Despite that NADH has a key role in the maintenance 

of the cellular redox balance required for the proper function of many reactions, it cannot substitute 

NADPH to regenerate GSH, as it was described many years ago (135). Thus, cells are extremely 

dependent on the reactions that produce NADPH. These reactions are catalysed by G6PD in the PPP, 

ME1 and ME2 located in the cytosolic and the mitochondrial compartment, respectively, and the folate 

cycle (Figure 5). GSH binds to oxidized molecules through glutathione S-transferase (GST), resulting in 

the reduction of the molecules. The neutralization of reactive oxygen and nitrogen species is particularly 

important given their genotoxic potential. In chronic inflammatory diseases such as rheumatoid arthritis 

and inflammatory bowel disease, these oxygen and nitrogen-derived species react to form peroxynitrite, 

a mutagenic agent. Hence, the accumulation of mutagenic agents that can interact with DNA, together 

with repeated tissue damage and regeneration of tissue, results in permanent genomic alterations such 

as point mutations, deletions, or rearrangements in proliferating cells (136). One of the most known 

mechanisms of ROS-induced DNA damage is the generation of nucleotide alterations as well as DNA 
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strand breaks. 8-hydroxylated guanine bases, for example, can pair with both adenine and cytosine bases 

and therefore can cause transversion mutations such as G:C to T:A. Interestingly, tumours under oxidative 

stress have been shown to exhibit up to 10-fold increase in 8-hydroxylated guanine levels compared to 

neighbouring normal cells (137). 

To prevent all these phenomena, normal cells need potent antioxidant mechanisms. However, when 

these mechanisms are tailored to tumour cells, these malignant cells acquire the potential to survive 

even in oxidative environments and, thus, antioxidant proteins considered tumour suppressor genes 

start acting as tumour promoters. 

The main inducible antioxidant programme within cells is regulated by Nuclear factor (erythroid-

derived 2)-like 2 (Nrf2) (138). This transcription factor is encoded by the homologous gene NFE2L2, 

which is frequently overexpressed in cancer (Figure 18) and it needs to be differentiated from Nuclear 

respiratory factor 2 (NRF2), which has not been studied in this thesis. 

 

 

Figure 18. Mechanisms of Nrf2 activation in quiescent and proliferative cells. In quiescent cells (in brown), Nrf2 is activated 

by electrophiles or oxidant molecules that trigger its separation from KEAP1, allowing its translocation to the nucleus. In 

proliferative cells (in green) the active PI3K-Akt pathway increases the nuclear accumulation of Nrf2 and enables Nrf2 to promote 

metabolic activities that support cell proliferation in addition to enhancing cytoprotection. The functional expansion of Nrf2 

reinforces the metabolic reprogramming triggered by proliferative signals. 
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Despite being essential for the maintenance of tissue integrity and preventing transformation, amplified 

Nrf2 activity contributes to tumour development by causing chemo- and radio-resistance, protecting 

from apoptosis, promoting invasiveness and angiogenesis and inhibiting senescence and autophagy 

(139). The pro-angiogenic role of Nrf2 is carried out through the transcriptional and post-transcriptional 

control of central regulators of endothelial activity, among which there is PFKFB3 (140). Under normal 

conditions, Nrf2 is subjected to a rapid turnover due to its binding to the ubiquitin ligase KEAP1, which 

triggers Nrf2 degradation through the proteasome (141). Upon exposure to electrophiles or ROS, the 

dissociation between the two proteins is induced and Nrf2 becomes active. In cancer cells, however, Nrf2 

can be constitutively activated independently of ROS levels through the PI3K-Akt signalling pathway 

(142), c-Myc and KRAS and BRAF oncogenes (143). 

The canonical pathway for Nrf2 activation is based on modifications in KEAP1 that trigger Nrf2 release. 

The “hinge and latch” model has been proposed to explain the binding between Nrf2 and KEAP1. Nrf2 

binds to KEAP1 through the EDGE and the DLG motifs (nomenclature according to amino acid 

composition). The affinity of the DLG motif for KEAP1 is weaker than that of the EDGE motif, allowing 

for two conformations. The closed conformation implies the binding of Nrf2 to a KEAP1 dimer through 

EDGE and DLG motifs, whereas the opened conformation occurs when the DLG motif separates from 

KEAP1 and Nrf2 is bound to a single KEAP1 molecule through the EDGE motif. For this reason, the DLG 

motif is considered a “latch”. KEAP1 is highly rich in cysteine residues, which can be oxidized following 

exposure to electrophiles or ROS. Modifications in the redox status of these cysteines alter the 

conformational structure of KEAP1, especially when they are in the open conformation, and favour the 

dissociation from Nrf2, which can then translocate to the nucleus (141,144). Besides, the dissociation of 

Nrf2 from KEAP1 can also be promoted by non-electrophilic Nrf2 inducers which compete for the 

binding to KEAP1 (Figure 19). 

On the other hand, post-translational modifications of Nrf2 can also induce its dissociation from KEAP1. 

The PI3K/Akt has also been shown to trigger Nrf2 activation, but the mechanisms involved remain still 

unknown (145). These KEAP1-independent pathways for Nrf2 activation are named as non-canonical 

pathways and are especially relevant in proliferating cells, in which Nrf2 can be constitutively activated 

independently of ROS levels (146). 

When Nrf2 is liberated from KEAP1, it translocates to the nucleus due to the nuclear localisation signal 

located at the Neh1 domain and binds to antioxidant response elements (AREs) in the protomer of 

several pro-survival genes. AREs are typically sequences of 5'-TGAC/GnnnGC-3' (147), where n is any 

nucleotide, that function as a cis-regulatory element or enhancer in the promoter region of numerous 

genes involved in detoxification and anti-oxidation, such as NAD(P)H Quinone Dehydrogenase 1 

(NQO1), GST, glutathione peroxidase (GPX), heme oxygenase 1 (HO-1) and thioredoxin 1 (Trx1) 

(141,142,144). 
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Figure 19. The KEAP1/Nrf2 system. In response to oxidative and electrophilic stresses, Nrf2 induces the expression of 

cytoprotective enzyme genes. Under unstressed conditions, Nrf2 is degraded in a KEAP1-dependent manner via the ubiquitin–

proteasome pathway. KEAP1 homodimer binds to single Nrf2 molecules through DLG and ETGE motifs. Both motifs individually 

bind to a pocket in the double glycine repeat and C-terminal (DC) domain of KEAP1.  Lysine (K) residues that reside between the 

two motifs are the targets of ubiquitination. Nrf2 inducers dissociate Nrf2 DLG motif from KEAP1 by modification of cysteine 

residues (Cys) of KEAP1 or by competing with Nrf2 to bind to KEAP1. Nrf2 is stabilized and de novo synthesized Nrf2 translocates 

into the nucleus, where it heterodimerizes with small Maf proteins (sMaf) and activates transcription through binding to antioxidant 

response elements (AREs) in the promoter of cytoprotective genes. Image from (144). 

 

Recently, key metabolic genes, including G6PD, PGD, TKT and PEPCK, have been described to be 

regulated by the ARE-Nrf2 system (142,148), broadening the scope of Nrf2 impact on cancer cell 

progression (Figure 20). Nrf2 role in the mitochondria is now being studied and some results point out 

that Nrf2 deficiency impairs the functioning of the electron transport chain and oxidative 

phosphorylation (149). Besides, activation of Nrf2 leads to enhanced consumption of glutamate for GSH 

synthesis, resulting in increased dependency of exogenous glutamine due to insufficient αKG to fulfil 

the TCA cycle (150) (Figure 20). 

Apart from promoting NADPH and nucleotides synthesis through the PPP, Nrf2 has also been described 

to activate ME-1 and MTHFD2 (Figure 20) (142,151). In conclusion, Nrf2 constitutes an orchestrator of 

many different reactions that contribute to the control of redox homeostasis and has been described as 

a master regulator of all hallmarks of cancer, either by directly or indirectly promoting or blocking them 

(152). 
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Figure 20. Contribution of Nrf2 to cellular metabolism. A schematic representation of glycolysis and pathways that use 

glycolytic intermediates to produce biomolecules is provided. The enzymes regulated through Nrf2 are indicated with double-

framed boxes. Image from (145). 

 

Finally, it is important to mention that crosstalk between Nrf2 and p53 has been described. p53-induced 

p21 can function to stabilize and enhance the activity of Nrf2, as an alternative mechanism of p53 to 

enhance the cellular antioxidant machinery (153,154). 
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6.6. Tumour microenvironment 

The Warburg effect only partially explains tumour metabolism. In fact, it is now known that heterogeneity 

exists within tumours and that only some cells show increased glycolytic rate, while others predominantly 

use OXPHOS taking advantage of the metabolites produced by others, such as glycolysis-derived 

carbons and glutamine (120). In fact, what PET technique allows to visualize is the tumour mass, 

something that for years was interpreted as the signal of the glucose captured by tumour cells. It is now 

known that PET signal can come from tumour cells or from other types of cells within the tumour, such 

as cancer-associated fibroblasts (CAFs). 

The “Reverse Warburg Effect” is the name of a novel theory of tumour metabolism based on a two-

compartment model in which stromal cells are induced by cancer cells to undergo aerobic glycolysis 

(the classical Warburg effect) and then transfer back the products of glycolysis to tumour cells for their 

utilization in OXPHOS (155) (Figure 21). 

 

Figure 21. Metabolic coupling between cancer cells and cancer-associated fibroblasts. Lactate transport is crucial in the 

crossed-regulation of metabolism between cancer-associated fibroblasts and cancer cells. In the fibroblasts close to carcinoma 

cells, ROS produced by cancer cells, HIF-1α, and NF-kB induce glycolysis, downregulating CAV1 and upregulating MCT4, which 

results in increased lactate secretion in CAFs. Conversely, TIGAR overexpression in carcinoma cells alters their metabolic state, 

increasing the pentose phosphate pathway (PPP). Lactate released from CAFs is taken by cancer cells via MCT1 and converted to 

pyruvate, which can enter the TCA cycle. These cancer cells show high mitochondrial OXPHOS and low glycolysis, which is 

associated with high proliferation and low apoptosis rates, resulting in increased tumour growth. 
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The first evidences that trafficking occurred between cancer cells and surrounding cells appeared in 

colorectal cancer (156). The group of Ubaldo E Martinez-Outschoorn (MD in Thomas Jefferson 

University) has studied the Reverse Warburg Effect in breast cancer and has identified several players in 

this phenomenon. According to their studies, ROS produced by cancer cells induce HIF-1α and NFkB-

mediated reprogramming in CAFs, increasing glycolytic flux and lactate secretion through MCT4. HIF-

1α activation in CAFs triggers autophagy, which results in degradation of caveolin 1 (CAV1), the main 

component of caveolae, generating more ROS. On the other hand, overexpression of the lactate 

importer MCT1 in cancer cells increases lactate-fuelled TCA cycle and OXPHOS in these cells (120,157) 

(Figure 21). Years before, inhibition of MCT1 in the SiHa human cervix squamous carcinoma cell line had 

already been shown to induce a shift from lactate-fuelled respiration to glycolysis, which rendered cells 

sensitive to glucose deprivation (158). Lactate, apart from participating in the crosstalk between cancer 

and CAFs, induces acidification of the extracellular media, which contributes both to tumour invasion 

and immune evasion (5,159). 

In breast carcinoma cells, TIGAR overexpression has been described to induce the lactate importers 

MCT1 and MCT2, LDHB and GLS1. LDHB has high affinity for lactate, preferentially converting it to 

pyruvate. Oxygen consumption and ATP production are enhanced in TIGAR overexpressing cells in the 

presence of glutamine and lactate. When these cells are co-cultured with fibroblasts, a glycolytic 

phenotype consisting in increased HIF-1α, PFKFB3 and LDHA is induced in the fibroblasts (Figure 21). 

Moreover, TIGAR overexpression in breast cancer cells favours tumour growth in vivo, as evidenced in 

three different xenograft models. Interestingly, the observation of increased expression of translocase 

of outer mitochondrial membrane 20 (TOM20) in TIGAR overexpressing carcinoma cells suggests other 

roles for this protein that might escape current knowledge (82). 

Apart from the relationship between tumour cells and CAFs, the contribution of other cell types within 

the TME is crucial. In this sense, it is to mention the supply of fatty acids to tumour cells from tumour-

associated adipocytes, as well as the involvement of endothelial cells in facilitating the exchange of all 

these metabolites and oxygen between cells (160). When vascularization is limited is when cellular 

vulnerabilities are evidenced, and cancer cells need to develop strategies for survival and growth that 

usually involve the exploitation of the metabolic activities of the surrounding cells.
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TIGAR was described in 2006 as a p53 target gene coding for a protein with bisphosphatase activity on 

Fru-2,6-P2. From then, several studies have confirmed that TIGAR is overexpressed in many tumour types, 

where it usually contributes to cell survival and to radio- and chemo-therapy resistance in some cases. 

However, p53 is mutated in more than 50% of human tumours, which makes it evident that other 

transcription factors are involved in the control of TIGAR expression. Nrf2 is the most important 

orchestrator of the antioxidant response in cancer cells and it has recently been described to control the 

expression of several metabolic genes involved in biosynthetic pathways, emerging as a good candidate 

for the p53-independent control of TIGAR. 

On the other hand, Fru-2,6-P2 is the most potent allosteric activator of PFK-1, a key enzyme for the 

maintenance of the glycolytic phenotype in tumour cells, which is one of the hallmarks of cancer. Thus, 

it looks difficult to understand how overexpression of TIGAR, the activity of which is meant to decrease 

Fru-2,6-P2, fits with its role as a tumour-promoting gene. Even if TIGAR activity results in increased flux 

through the PPP, as it has been proposed, a balance between this enzyme and the protein responsible 

for the synthesis of Fru-2,6-P2, PFK-2/FBPase-2, seems to be required to maintain high glycolytic flux. 
The hypothesis of this thesis is that TIGAR contribution to the progression of cancer cells is beyond its 

phosphatase activity on Fru-2,6-P2, and that the transcriptional control of TIGAR involves other factors 

rather than p53, one of which would be Nrf2. 

In order to confirm this hypothesis, specific objectives were defined: 

1. To determine the relationship between PFKFB3 and TIGAR and their contribution to tumour cell 

survival, making special attention to the role of TIGAR in situations of glycolytic impairment.  

2. To elucidate the most important metabolic alterations induced by TIGAR overexpression and 

inhibition in cancer cells, trying to define which is the most relevant substrate of this enzyme. 

3. To uncover whether the transcription factor Nrf2 is a modulator of TIGAR gene expression in 

cancer cells and determine the DNA response elements involved. 

4. To analyse the subcellular distribution of TIGAR in response to oxidative stress with the aim of 

uncovering new mechanisms that contribute to the antioxidant function of this gene. 
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TIGAR and glycolysis inhibition: is that redundant? 
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CONTEXT 

The effects of inhibiting PFKFB3 in HeLa cells were described by Dr. Bartrons’ Lab in 2009. It was 

determined that PFKFB3 inhibition decreased Fru-2,6-P2, lactate and ATP concentration in cells and 

increased the flux of substrates into mitochondria. High resolution respirometry showed that PFKFB3 

inhibition increased the uncoupled respiration and had no effects on maximal respiration. In terms of 

phenotypical consequences, it was proved that PFKFB3 inhibition compromised cell viability, anchorage-

dependent and independent cell growth, cell viability and cell cycle progression (63,161). 

Three years before, in collaboration with the group of Dr. Karen Vousden in The Beatson Institute for 

Cancer Research (Glasgow), our group showed that TIGAR inhibition by siRNA in U2OS cells increased 

Fru-2,6-P2 concentration, and the overexpression of the enzyme decreased the concentration of this 

metabolite in these cells (3). Accordingly, in U2OS, TIGAR overexpression reduced glycolytic rate, which 

was determined by measuring the conversion of 5-3H-glucose to 3H-H2O by enolase. Considering these 

findings and the similar results obtained overexpressing FBPase-2, TIGAR was described as a Fru-2,6-P2 

bisphosphatase and, consequently, as a glycolytic inhibitor (3). One of the main aims of this thesis was 

to determine whether the roles of PFKFB3 and TIGAR were somehow related, in terms of metabolic 

activity and contribution to cell survival. Moreover, we considered important to clarify whether TIGAR 

acted only as a glycolytic inhibitor or could carry out other functions. 

The analysis of all the studies available in cBioPortal revealed that PFKFB3 and TIGAR genes are altered 

in 1,7% and 1,8% of all cancer patients, showing co-occurrence (Figure 22). This means that, although 

modification in the coding sequence of these genes is not very frequent, when one of the genes is 

altered, it is likely to find the other altered too. The most frequent alteration found in both PFKFB3 and 

TIGAR is amplification, which shows that both genes contribute to cancer development (Figure 22). It is 

also important to note that many tumours display increased mRNA levels of these genes despite not 

carrying DNA alterations (24), something that needs to be considered to understand the importance of 

these genes in the control of cancer metabolism. mRNA expression was not reported in the analysis of 

cBioPortal data due to differences in the methodology for the determination of gene expression 

between studies. 

Considering the role of TIGAR as a glycolytic inhibitor (3), which would situate it as a tumour suppressor 

gene due to its capacity to block the Warburg effect, it looks reasonable to study other roles for TIGAR 

that can explain its pro-oncogenic effector. 
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A B Neither A not B B not A Both Log2 OR p-Value Tendency 

TIGAR PFKFB3 71501 878 949 67 2.523 <0.001 Co-occurrence 

 

Figure 22. TIGAR and PFKFB3 genetic alterations in human cancers. Data were obtained from cBioPortal (162,163) including 

all studies reported in the database, each of which has studied a specific type of cancer. (A) Patients are represented individually 

in columns. The overall percentage of alterations in either TIGAR or PFKFB3 is indicated, and the type of alteration is represented 

by different colours. A more general classification has been performed according to tumour origin in the upper panel of the figure. 

(B) Table reporting the raw data for the mutual exclusivity/co-occurrence analysis performed by cBioPortal. The portal computes 

a set of simple statistics to identify patterns of mutual exclusivity or co-occurrence. For each pair of query genes (A and B), 

cBioPortal calculates an odds ratio (OR) that indicates the likelihood that the events in the two genes are mutually exclusive or co-

occurrent across the selected cases: 

OR = (Nº cases both genes altered ∗ Nº cases neither genes altered)/(Nº cases A altered ∗ Nº cases B altered) 

It then assigns each pair of genes to one category indicative of a tendency toward mutual exclusivity, co-occurrence or no 

association. To determine whether the identified relationship is significant for each gene pair, a Fisher's exact test is performed. 

 

Previous experiments of the group had shown that the inhibition of PFKFB3 in HeLa cells resulted in the 

induction of TIGAR protein levels (161). This interesting observation, which was completely unexpected, 

was a promising contribution to the characterisation of TIGAR. The work reflected in this first part of the 

thesis is focused on the characterization of TIGAR upregulation in response to PFKFB3 suppression and 

other conditions that decrease glycolysis, and the phenotypical consequences of TIGAR induction and 

inhibition. The main aim of the results presented in this section was to elucidate the role of this gene in 

the survival of cancer cells, especially in scenarios of glycolytic blockage. 
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1. Crosstalk between TIGAR and PFKFB3 

1.1. Characterization of TIGAR induction in response to PFKFB3 inhibition 

PFKFB3-targeting siRNA was transfected into HeLa cells at 75 nM, and PFKFB3 and TIGAR were analysed 

by western blot at several time points, as shown in Figure 23A. PFKFB3 was significantly inhibited in a 

time-dependent manner from 24 to 72 h. TIGAR protein levels were increased in parallel with PFKFB3 

downregulation, confirming the results previously obtained by the group. The highest induction was 

observed at 72 h after PFKFB3-targeting siRNA transfection (Figure 23A,B). To stablish the contribution 

of PFKFB3 and TIGAR in the response of HeLa cells to several parameters, we performed combined 

inhibition of these proteins by using combinations of 37,5 nM scrambled, PFKFB3 or TIGAR-targeting 

siRNAs. Both proteins were significantly downregulated at 72 h when they were inhibited alone or in 

combination (Figure 23C,D). TIGAR was induced after 72 h of PFKFB3-targeting siRNA transfection by 

1,5-fold compared to TIGAR levels in the scrambled condition. The analysis of PFKFB3 and TIGAR 

expression by real-time quantitative polymerase chain reaction (RT-qPCR) at that time point revealed 

that TIGAR mRNA levels were significantly upregulated, while PFKFB3 expression was significantly 

inhibited (Figure 23E), which was consistent with the results obtained at the protein level and suggested 

a transcriptional upregulation of TIGAR. As previous publications from the group showed, PFKFB3 

inhibition decreases Fru-2,6-P2 concentration (63), something that has been also analysed and confirmed 

during this thesis. The metabolic effects of PFKFB3 and TIGAR are further explored in Results Chapter II. 

However, it is important to mention here that the main question that arose from the observation that 

TIGAR was upregulated after PFKFB3 inhibition was why cells responded to a blockage of glycolysis, such 

as PFKFB3 inhibition, by upregulating TIGAR, an enzyme that would inhibit glycolysis as well. As 

summarized in Figure 23F, the logic answer would be that TIGAR enhanced the flux through the PPP 

and contributed to cell survival by providing NADPH and R5P in a situation of metabolic stress. To 

evaluate the validity of this hypothesis, we assessed the contribution of TIGAR to the viability of PFKFB3-

inhibited cells. On the other hand, we aimed to describe the molecular mechanisms driving TIGAR 

induction in response to PFKFB3 inhibition. This was important given that very few strategies, apart from 

transfection-based techniques, had been effective to modulate TIGAR protein levels until that moment. 

Thus, the finding of TIGAR upregulation in response to PFKFB3 inhibition was relevant, and uncovering 

the pathways orchestrating it might help to describe new TIGAR modulators.  
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Figure 23. Crosstalk between PFKFB3 and TIGAR. HeLa cells were transfected with 75 nM PFKFB3 or TIGAR-targeting siRNAs 

and analysed at the indicated times. (A) Western blot analysis quantification of PFKFB3 (white bars) and TIGAR (black bars) at 72 

h post-siRNA transfection. (B) Western blot images of a representative experiment of the data reported in A. (C) Quantification of 

PFKFB3 (white bars) and TIGAR (black bars) after 24 to 72 h of siRNA transfection. (D) Western blot images of a representative 

experiment of the data reported in C. (E) RT-qPCR analysis of PFKFB3 (white bars) and TIGAR (black bars) after 72 h of siRNA 

transfection. (F) Schematic diagram of the metabolic consequences expected for PFKFB3 inhibition and the subsequent TIGAR 

upregulation. All data are presented as the mean fold change relative to the scrambled siRNA (Scr.) of the corresponding time ± 

SEM (A: n=3, C: n=5, E: n=7, *P < 0.05,**P < 0.01, ***P < 0.001). 
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As already discussed, it seemed unprovable that the upregulation of TIGAR after PFKFB3 inhibition was 

consequence of a direct metabolic adaptation of cells. Thus, we focused on the analysis of several 

signalling pathways to determine if any of them could be mediating the crosstalk between the two 

enzymes. Preliminary results from Dr. Nieves Calvo pointed out that the signalling through the 

PI3K/Akt/mTORC2 cascade was increased in PFKFB3-inhibited cells (161). These results were confirmed 

(Figure 24A,B) and we determined also that TIGAR inhibition did not trigger the same pathway, 

confirming that Akt phosphorylation was present in the conditions of single PFKFB3 inhibition and 

combined PFKFB3 and TIGAR inhibition (Figure 24C,D). 

 

Figure 24. Analysis of the Akt signalling pathway after PFKFB3 and/or TIGAR inhibition. HeLa cells were transfected with 75 

nM PFKFB3 or TIGAR-targeting siRNAs and protein was analysed by western blot at 72 h post-transfection. (A) Representative 

images of phosphorylated targets in the Akt signaling cascade. (B) Scheme of the Akt/mTORC signaling pathway. The proteins 

analysed by western blot are coloured in dark grey. (C) Western blot images showing Akt phosphorylation at S473 representative 

of the data reported in D. (D) Quantification of Akt phosphorylation, calculated as the ratio between phosphorylated Akt at S473 

and total amounts of Akt. Data are presented as the mean fold change relative to the scrambled siRNA (Scr.) ± SEM (D: n=4, **P 

< 0.01).  Continued on next page. 
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Treatment of cells with the Akt inhibitor Akti-1/2 during the whole time of siRNA transfection resulted 

in the prevention of TIGAR induction in response to PFKFB3 inhibition, showing that TIGAR increase is 

dependent on this signalling pathway (Figure 24E,F). 

 

Figure 24. Analysis of the Akt signalling pathway after PFKFB3 and/or TIGAR inhibition. Continued. (E) Western blot analysis 

of Akt phosphorylation at S473 and TIGAR after PFKFB3-targeting siRNA transfection, in the presence or absence of Akti-1/2, 

representative of three independent blots. (F) Quantification of Akti-1/2 effects in the mentioned proteins in three independent 

experiments. Data are presented as the mean fold change relative to scrambled siRNA (Scr.) ± SEM, and comparison between 

conditions is indicated by horizontal bars (F: n=3, *P < 0.05, **P < 0.01, ***P < 0.001). 

With the aim of clarifying if p53 was involved in the upregulation of TIGAR in response to PFKFB3 

inhibition, we analysed CDKN1A expression, the gene that codes for p21, by RT-qPCR. HeLa cells express 

wild type TP53, but it is considered inactive given that these cells have the genome of the Human 

Papilloma Virus inserted in their own genome and encode for the E6 oncoprotein, which triggers 

ubiquitin-dependent p53 proteolysis (164). However, p53 reactivation has been reported in these cells 

(165), which made us think that this transcription factor might be involved in TIGAR upregulation in 

response to PFKFB3 knockdown. Immunofluorescence detection of p53 revealed increased presence of 

this transcription factor in the nuclei of PFKFB3-inhibited cells and in cells where both PFKFB3 and TIGAR 

were suppressed (Figure 25A). The total fluorescence per cell was quantified with ImageJ and it was 

evidenced that mean p53 levels were highly increased in PFKFB3-inhibited cells and in PFKFB3 and 

TIGAR-inhibited cells (Figure 25B). p53 protein levels were also evaluated by western blot in PFKFB3-

inhibited cells, and the results suggested increased levels of this transcription factor (Figure 25C). 

Additionally, the expression of CDKN1A (p21), a known p53 target, was slightly increased in PFKFB3-

inhibited cells, although the difference was very small and not statistically significant (Figure 25D).  
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Figure 25. Analysis of p53 in response to PFKFB3 and TIGAR inhibition.  HeLa cells were transfected with 75 nM PFKFB3 or 

TIGAR-targeting siRNAs and analysed at 72 h post-siRNA transfection. (A) Cells were fixed and immunofluorescence was 

performed with a primary antibody against total p53 and a secondary antibody conjugated with an Alexa488 fluorochrome (shown 

in green). Nuclei were stained with DAPI and are shown in blue. Images were acquired with Carl Zeiss LSM880 confocal microscope 

(Carl Zeiss).  (B) Quantification of p53 fluorescence is expressed as mean fluorescence intensity per cell, calculated with FIJI (166) 

in at least 50 cells per condition. Comparisons were performed between each group and cells transfected with scrambled siRNA 

(*P < 0.05). (C) Western blot analysis of total p53 levels in PFKFB3-inhibited cells. Data are presented as the mean fold change in 

protein levels relative to scrambled siRNA (Scr.) ± SEM (D) RT-qPCR analysis of CDKN1A (p21) expression in PFKFB3-inhibited 

cells. Data are presented as the mean fold change in expression relative to scrambled siRNA (Scr.) ± SEM (B: n=3, C: n=2, D: n=4, 

*P < 0.05). 
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p53 was not the unique transcription factor enhanced by PFKFB3 inhibition. Preliminary experiments 

with the Nrf2 transcription factor also showed increased levels of this protein by immunofluorescence 

(Figure 26A). The specificity of the staining was assessed by using Nrf2-inhibited cells in parallel and 

the quantification of total Nrf2 levels per cell confirmed increased staining of Nrf2 in PFKFB3-inhibited 

cells compared to control cells (Figure 26B). Moreover, western blot analysis also showed increased 

Nrf2 levels accompanied with significantly enhanced levels of the Nrf2 target G6PD (Figure 26C,D). 

These findings motivated one of the most important hypotheses of this thesis, which is the Nrf2-

dependent modulation of TIGAR. Results Chapter III is fully dedicated to this topic. 

 

 

Figure 26. Analysis of Nrf2 in response to PFKFB3 inhibition.  HeLa cells were transfected with 75 nM PFKFB3-targeting siRNAs 

and analysed at 72 h post-siRNA transfection. (A) Cells were fixed and immunofluorescence was performed with a primary 

antibody against Nrf2 and a secondary antibody conjugated with an Alexa488 fluorochrome (shown in green). Nuclei were not 

properly stained in this immunofluorescence. Images were acquired with Carl Zeiss LSM880 confocal microscope (Carl Zeiss).  (B) 

Quantification of Nrf2 fluorescence is expressed as mean fluorescence intensity per cell, calculated with FIJI (166) in at least 50 

cells per condition.   (C) Western blot analysis of TIGAR, Nrf2, Nrf2-target G6PD and PFKFB3 in PFKFB3-inhibited cells. (D) RT-

qPCR analysis of TIGAR and the Nrf2 target gene G6PD in PFKFB3-inhibited cells. Data are presented as the mean fold change in 

expression relative to scrambled siRNA (Scr.) ± SEM (B: n=3, D: n=6). 
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1.2. Phenotypical consequences of inhibiting PFKFB3 and TIGAR 

Considering the stablished role of TIGAR as an enzyme contributing to oxidative stress detoxification in 

cells (79,167), we quantified ROS levels in HeLa cells after 72 h of PFKFB3 and TIGAR-targeting siRNAs 

transfection. We used two different ROS detection probes, CellROX Green and 2′,7′-dichlorofluorescein 

diacetate (DCFDA), the fluorescence of which was analysed by flow cytometry. The reactive species 

detected by each probe are detailed in the Materials and Methods Section. 

A modest increase in ROS levels was evidenced in PFKFB3-inhibited cells (dotted bars) from 24 h after 

transfection compared to control cells (white bars). Tert-butyl-hydroperoxide (tBHP), a potent oxidant, 

was used as positive control (Figure 27). 

 

Figure 27. Time course of reactive oxygen species in PFKFB3-inhibited cells. HeLa cells were transfected with PFKFB3-

targeting siRNA and ROS levels were determined with CellROX Green by flow cytometry after 72 h of transfection. ROS levels in 

untransfected cells (UT, blue bar) and tBHP-treated cells (orange bar) are reported. Mean fluorescence intensity in arbirary units 

(AU) is shown (n=4). 

The fluorescence emitted by CellROX Green was highly variable between experiments. With the aim of 

obtaining more robust results, we used a different probe, DCFDA. According to the results obtained with 

CellROX Green, DCFDA revealed increased oxidative stress after PFKFB3 inhibition at 72 h post siRNA 

transfection. Surprisingly, TIGAR depletion did not affect ROS levels, but the combined inhibition of both 

proteins led to significantly increased oxidative stress compared to the scrambled condition (Figure 

28A). This is illustrated by a shift in the fluorescence peak registered (Figure 28B). These results suggest 

that PFKFB3 inhibition generates metabolic stress and renders cells more susceptible to alterations in 

antioxidant mechanisms such as TIGAR, which can be dispensable in unstressed conditions. 

We performed several attempts to modulate ROS levels and study weather TIGAR induction in response 

to PFKFB3 inhibition was mediated by ROS. However, no conclusive results were obtained. For that, two 

antioxidants were used: 1 µM butylated hydroxyanisole (BHA) and 1,5 mM N-acetyl-cysteine (NAC). 
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As it can be observed in the ROS measurements with DCFDA, NAC was more potent at reducing the 

oxidative stress generated by PFKFB3 depletion than BHA (Figure 28C,D). However, none of these 

molecules completely prevented the increase in ROS levels caused by PFKFB3 suppression. Any of the 

molecules avoided the oxidative stress generated by the double inhibition of PFKFB3 and TIGAR either. 

Albeit, when data were analysed independently and not relative to each Scrambled condition, a descent 

in oxidative stress was evidenced in all cells treated with antioxidants, proving the efficacy of these 

molecules. However, at is has been mentioned before, neither NAC nor BHA were potent enough to 

prevent the stress caused by PFKFB3 and TIGAR-targeting siRNA transfections (Figure 28E). Accordingly, 

TIGAR induction was not prevented by the antioxidants (data not shown). 

 

Figure 28. Reactive oxygen species analysis in PFKFB3 and TIGAR-inhibited cells. HeLa cells were transfected with 75 nM 

PFKFB3 or TIGAR-targeting siRNAs and analysed at 72 h post-siRNA transfection. (A) Quantification of DCFDA fluorescence 

normalized to HeLa cells transfected with the Scrambled siRNA (Scr.). (B) Raw data of DCFDA fluorescence peaks of a 

representative experiment. (C and D) Quantification of ROS levels after co-treatment with the antioxidant molecules (C) BHA and 

(D) NAC. DCFDA fluorescence was normalized to the ROS levels detected in HeLa cells transfected with the Scrambled siRNA (Scr.). 

(E) Analysis of ROS levels in cells transfected with the Scrambled siRNA (Scr.) in the presence or absence of BHA and NAC. DCFDA 

fluorescence was normalized to the ROS levels detected in untransfected cells (UT, blue bar) to determine the effects of antioxidant 

molecules at basal condition, which cannot not be appreciated in A-C. All data are presented as the mean fold change ± SEM. 

Comparison between conditions is indicated by horizontal bars (n=3, *P < 0.05, **P < 0.01, ***P < 0.001). 
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ROS can modify DNA bases causing genome instability, which can give place to DNA double strand 

breaks (168). One of the first alterations is the phosphorylation of histone γ-H2AX at Ser 139, which we 

used to quantify DNA damage in HeLa cells after the inhibition of PFKFB3 and TIGAR. The results 

obtained showed that there were very few nuclei with P-γ-H2AX foci in the Scrambled condition, whereas 

the number of foci was significantly increased in single PFKFB3 and TIGAR-targeted cells (Figure 29). In 

the case of PFKFB3-inhibited cells, these results are consistent with increased ROS levels found in these 

cells, as it has been shown in Figures 27-28. However, in the case of TIGAR-inhibited cells, we observed 

increased DNA damage with no changes in ROS levels. This could be explained either by a lack of 

sensibility of the DCFDA assay, or by the fact that DNA damage in these cells is independent of ROS. 

 

 

Figure 29. Effect of PFKFB3 and TIGAR silencing on P-H2AX (S139) foci formation. HeLa cells were transfected with 75 nM 

PFKFB3 or TIGAR-targeting siRNAs. At 72 h cells were fixed and immunofluorescence was performed using a P-H2AX (S139) specific 

antibody and a Cy3-conjugated secondary antibody (shown in red). Nuclei were stained with TO-PRO-3 and are shown in blue. 

(A) Quantification of the average number of foci per cell determined with FIJI from at least 150 cells counted from five randomly 

chosen fields of view in each condition. Data are presented as mean ± SEM, and comparison between conditions is indicated by 

horizontal bars (***P < 0.001). (B) Images of a representative experiment with merged P-H2AX (S139) and nuclei channels. 
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Considering that several studies have related the expression of TIGAR and PFKFB3 to autophagy, we 

wondered whether this process was affected by the inhibition of these two proteins in HeLa cells. As 

autophagy indicators, we analysed the cleavage of microtubule-associated protein 1 light chain 3 (LC3) 

with the ratio of its lipidated form (LC3-II) versus the unlipidated form (LC3-I) (Figure 30A,C), and the 

total amounts of p62 (Figure 30B,C). To assess whether we were properly detecting changes in the 

autophagic flux, we treated cells with chloroquine and rapamycin. Chloroquine increases the pH of the 

autophagosome, avoiding its fusion with the lysosome, and thus LC3-II, p62 and the other proteins 

contained in the autophagosome accumulate. On the other hand, rapamycin increases autophagy and 

lipidation of LC3 by inhibiting mTORC1. Although our results did not show significant differences in the 

levels of LC3 or p62 after PFKFB3 or TIGAR inhibition, different distribution of LC3 forms was observed 

between PFKFB3- and TIGAR-silenced cells (Figure 30C), with the latter showing increased LC3-II, which 

could reflect increased autophagic flux, according to previous results (3,169,170). A growing amount of 

evidence in recent years argues for oxidative stress acting as the converging point of several stimuli 

triggering autophagy such as nutrient deprivation, viral infection or genotoxic stress (171). However, 

ROS levels were the same in TIGAR-silenced cells than in control cells in our experiments (Figure 28). 

Thus, either other mechanisms are involved in the modest increase in LC3 lipidation observed, or these 

changes in LC3 are not relevant and autophagy is not taking place in these cells. 

 

 

Figure 30. Effect of PFKFB3 and TIGAR silencing on autophagy. HeLa cells were transfected with 75 nM PFKFB3 or TIGAR-

targeting siRNAs and analysed by western blot at 72 h post-transfection. Chloroqine and rapamycin were used as positive controls 

of LC3 lipidation. (A) Quantification of LC3-II and LC3-I protein levels. Data are expressed as the mean ratio LC3-II:LC3-I relative 

to scrambled siRNA (Scr.) ± SEM (B) Quantification of mean p62 protein levels relative to Scr ± SEM. (C) Western blot images of 

a representative experiment are shown. Protein levels were compared to those found in Scr. (n=4, **P < 0.01, ***P < 0.001). 
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A crucial question when studying the effects of the combined inhibition of PFKFB3 and TIGAR was to 

determine if cell death was increased with this double-targeting approach. Based on the results of P-

H2AX immunofluorescence, it looked reasonable to think that the conditions at which there was more 

DNA damage, which were PFKFB3 silencing and the double inhibition, would show decreased cell 

viability. With this purpose, cell survival was assessed by two techniques: 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assay and AnnexinV/Propidium Iodide (AnnexinV/PI) staining. 

Results from the MTT assay must be considered a measure of mitochondrial capacity, as the assay is 

based on the enzymatic reaction catalysed by NAD(P)H-dependent oxidoreductases, the activity of 

which is increased by NADH, which is produced in TCA cycle. Thus, the purple colour of formazan, the 

reduced form of MTT, is directly proportional to mitochondrial functioning. However, the readout of this 

analysis can be at the same time informative and confusing if MTT results are interpreted as a measure 

of cell viability. In our experimental conditions, the inhibition of PFKFB3 did not affect MTT signal. 

However, TIGAR depletion significantly decreased MTT signal to 80%. Besides, the combined inhibition 

of PFKFB3 and TIGAR decreased MTT signal to 60% (Figure 31). 

 

 

Figure 31. Effect of PFKFB3 and TIGAR silencing on mitochondrial reduction capacity. MTT assay was performed 72 h after 

PFKFB3 and/or TIGAR-targeting siRNA transfection. (A) Data are presented as the mean fold change in growth rate relative to the 

scrambled siRNA (Scr.) ± SEM (n=3, *P < 0.05, **P < 0.01). (B) Raw data of a single experiment is shown (right panel). 
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The results from the MTT analysis must be interpreted in parallel with a measure of cell viability, as 

changes in cell number directly affect MTT signal. Flow cytometry analysis of cells stained with 

AnnexinV/PI after 72 h of siRNA transfection revealed that PFKFB3 inhibition triggers early and late 

apoptosis as well as necrosis in HeLa cells (Figure 32). On the contrary, TIGAR inhibition alone did not 

affect cell viability, consistently with the results obtained in terms of ROS and DNA damage. However, 

when TIGAR was inhibited at the same time as PFKFB3, the effects were exacerbated, causing 15% 

decreased cell viability compared to PFKF3-targeted cells, and leading to double number of apoptotic 

and necrotic cells (Figure 32). 

 

 

Figure 32. Effect of PFKFB3 and TIGAR silencing on cellular viability. Annexin V-FITC/PI staining was performed 72 h after 

siRNA transfection. Populations of viable cells (AnnexinV-/PI-), early apoptotic cells (AnnexinV+/PI-) and late apoptotic or necrotic 

cells (AnnexinV+/PI+ and AnnexinV-/PI+) are shown. Data are presented as % of cells in each population ± SEM and comparison 

between conditions is indicated by horizontal bars (n=6, *P < 0.05, **P < 0.01, ***P < 0.001). 

In collaboration with the group of Dr. Joan Gil (Departament de Ciències Fisiològiques, Universitat de 

Barcelona), a reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) was 

performed to determine the expression of several apoptotic-related genes. The pro-apoptotic genes 

NOXA, BIM and BID were found overexpressed in PFKFB3-inhibited cells, whereas BCL-2, a pro-survival 

gene, was found decreased. Surprisingly, the expression of the proapoptotic splice variant MCL1S was 

found decreased and the expression of the antiapoptotic BCLX was found increased in these conditions 

(Figure 33A). In TIGAR-inhibited cells, a modest upregulation of BIM, BOK and BCLW and a slight 

downregulation of MCL1L were observed, but in general the expression profile was similar to control 

cells (Figure 33B). These results are in accordance with the Annexin V/PI assay (Figure 32) and 

corroborate that apoptosis is induced in PFKFB3-inhibited cells but not in TIGAR-inhibited cells. 
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Figure 33. RT-MLPA analysis of apoptotic-related genes after PFKFB3 or TIGAR inhibition. HeLa were transfected with 

PFKFB3 or TIGAR-targeting siRNAs and analysed after 72 h of siRNA transfection. The expression levels of several genes of the 

BH3-only, BAX-like and Bcl families of proteins was measured in (A) PFKFB3 or (B) TIGAR -inhibited cells. Gene expression is 

represented relative to the scrambled condition (Scr.) ± SEM (n=2 with triplicates). Western blot analysis of NOXA and Bcl-2 protein 

levels after 72 h of PFKFB3-targeting siRNA transfection was performed to confirm the mRNA expression results (dotted boxes). 
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Considering that PFKFB3 has no effect in MTT signal but, instead, it decreases cell viability, it could be 

concluded that mitochondrial function is preserved in PFKFB3-inhibited cells although cell number is 

decreased. The explanation may be found in the analysis of the effects of TIGAR depletion. TIGAR 

inhibition decreases MTT signal but does not affect cell viability in HeLa cells, which indicates decreased 

mitochondrial activity, but it has no effect on cell viability. Thus, TIGAR induction in response to PFKFB3 

inhibition could be mediating an adaptive response from a glycolysis-focused metabolism towards a 

more oxidative phenotype, compensating the decrease in cell number with increased mitochondrial 

function. This is in accordance with previous data from the group showing that PFKFB3 inhibition 

increases the uncoupled respiration (161). 
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2. TIGAR modulation in response to other glycolytic inhibitors 

2.1. Response to the PFK-2 inhibitor 3PO 

We have shown in the previous section that TIGAR mRNA and protein levels were increased after 

inhibition of PFKFB3 expression. The next question was whether TIGAR induction was specific to the 

blockage of PFKFB3 or a common response to any kind of glycolytic blockage. With this purpose, we 

used a pharmacological inhibitor of PFKFB3, 3PO, which blocks the active site of PFK-2 (172). Based on 

previous publications using this inhibitor, we decided to treat HeLa cells with 10 µM 3PO for 24 h. 

Western blot analyses did not reveal any significant modulation of TIGAR or PFKFB3 protein levels, 

although a slight increase in TIGAR and a slight decrease in PFKFB3 could be observed (Figure 34A). 

The analysis of the expression of these genes after 3PO treatment did not show any important changes 

in their mRNA levels (Figure 34B). To prove the efficacy of the inhibitor, Fru-2,6-P2 concentration was 

measured and it was found decreased after 24 h of treatment (Figure 34C), in accordance with previous 

publications (64). When cells were observed at bright-field microscope, no apparent changes in cellular 

morphology or viability were detected after 3PO treatment (Figure 34D). 

 

Figure 34. Analysis of the effects of 3PO treatment at 24 h. HeLa cells were treated with 10 µM 3PO for 24 h and were 

subsequently analysed. (A) Western blot analysis quantification of PFKFB3 (white bars) and TIGAR (black bars). (B) RT-qPCR 

analysis of PFKFB3 (white bars) and TIGAR (black bars) expression. (C) Determination of Fru-2,6-P2 concentration. (D) Bright-field 

images of cells observed at 20X in a Leica microscope. Protein and mRNA data are represented as the mean fold change relative 

to the untreated cells (CT) whereas Fru-2,6-P2 concentration is represented in absolute values ± SEM (A: n=3, B: n=5, C: n=3). 
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Previous studies had shown that 3PO had a cytostatic effect in HeLa, reducing cellular viability to 75%, 

after 36 h of 10 µM 3PO treatment (64). Considering these data, and given that we had detected a slight 

increase in TIGAR protein levels in HeLa cells after 24 h of 3PO treatment (Figure 34), we reconsidered 

the experimental conditions and the period of exposure to 3PO was increased to 72 h. This was also the 

time at which PFKFB3-targeting siRNA had its maximum effect on TIGAR protein levels, as it has been 

presented in the previous section (Figure 23A). 

Western blot analysis of 3PO-treated cells for 72 h revealed significant induction of TIGAR and PFKFB3, 

according to the results published by(172). Interestingly, Akt and S6 phosphorylation levels were 

increased in parallel (Figure 35A). These results confirmed that TIGAR is induced in response to PFKFB3 

blockage, either through a pharmacological or a transcriptional approach. Although experiments 

combining 3PO with Akti-1/2 would be required to confirm the signalling pathway responsible for TIGAR 

upregulation, the observation that Akt and S6 are phosphorylated after 3PO treatment suggests that the 

mechanism might be the same as in PFKFB3-silenced cells. As a preliminary analysis to determine if the 

PPP was increased in parallel to TIGAR, we checked the levels of TKT by western blot, which were found 

unaltered by 3PO treatment (Figure 35A). 

RT-qPCR analysis of HeLa-treated cells revealed increased expression of TIGAR after 3PO treatment, with 

no modulation of PFKFB3 mRNA levels (Figure 35B). 

Fru-2,6-P2 concentration was found significantly decreased by 10 µM 3PO at 72 h (Figure 35C), 

confirming the efficacy of the inhibitor. However, the levels of extracellular lactate normalized to protein 

levels were not affected (Figure 35D), suggesting that the decrease in raw lactate concentration 

observed can be attributed to slightly increased cell death. 3PO-treated cells showed altered cellular 

shape, as it can be appreciated in the bright-field microscope images (Figure 35E). However, cellular 

viability measured by crystal violet assay was unaltered (Figure 35F), or at least we were not able to 

detect changes in viability with this method. In the first publication describing 3PO, viability was assessed 

by trypan blue assay (64), which is based on the capacity of live cells to exclude the dye through their 

intact cell membranes. It is possible that partially damaged cells, which would not be stained by trypan 

blue, are still attached to the plate and, thus, are stained with crystal violet, decreasing the sensitivity of 

the latter technique to detect cells prompted to death.  

The observation that upregulation of TIGAR occurred both in response to PFKFB3 inhibition by siRNA 

and by 3PO suggested that TIGAR induction was caused by impaired PFKFB3 activity, and not as 

consequence of decreased PFKFB3 protein levels. Thus, we wondered whether other glycolytic inhibitors 

would have similar effects on TIGAR expression. 
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Figure 35. Analysis of the effects of 3PO and glucose deprivation treatments at 72 h. HeLa cells were treated with 10 µM 

3PO or 5mM glucose DMEM (Glc-) for 72 h and were subsequently analysed. (A) Western blot analysis of TIGAR, PFKFB3, P-Akt 

and TKT. Images from a representative experiment are shown. (B) RT-qPCR analysis of PFKFB3 and TIGAR expression. (C) 

Determination of intracellular Fru-2,6-P2 concentration. (D) Determination of extracellular lactate concentration. (E) Bright-field 

images of cells observed at 20X in a Leica microscope. (F) Determination of cell number by crystal violet (CV) assay. Representative 

stained plates are shown. Viability was quantified as arbitrary units (AU) of CV absorbance. Protein, mRNA and lactate data are 

represented as the mean fold change relative to the untreated cells (CT) whereas Fru-2,6-P2 and crystal violet are represented in 

absolute values ± SEM (A: n=3, B: n=4, C: n=6, D: n=4, F: n=1 with independent triplicates, *P < 0.05,**P < 0.01, ***P < 0.001). 
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2.2. Response to glucose deprivation 

To fully answer the question of whether glycolytic blockage is the cause of TIGAR induction and not 

something exclusive to PFKFB3 inhibition, we exposed cells to low glucose conditions (5 mM instead of 

25 mM, which is the concentration used in complete media) for 72 h. In the western blot analysis, TIGAR, 

PFKFB3, P-Akt and P-S6 proteins, as well as the PPP enzyme TKT, were all found decreased, indicating 

that cells are not favouring growth or proliferation pathways and they are probably fated to death 

(Figure 35A). 

Surprisingly, mRNA analysis revealed important overexpression of TIGAR and PFKFB3 in cells maintained 

at low glucose conditions (Figure 35B). This might respond to a compensatory effect to increase the 

transcription of those genes that are being downregulated at the protein level, although we cannot 

dismiss the possibility that the low mRNA concentrations obtained from highly-damaged 5 mM glucose-

treated samples altered the RT-qPCR analysis. 

Fru-2,6-P2 was significantly reduced by glucose deprivation, being the effect of this treatment much 

more pronounced than 3PO, as it was expected (Figure 35C). Accordingly, lactate extracellular 

concentration was significantly decreased (Figure 35D). 

Glucose deprivation significantly compromised cell viability, as it is illustrated in the bright-field 

microscope images showing many dead cells floating in the media (Figure 35E). Staining in the crystal 

violet assay was significantly reduced to 30% compared to control cells (Figure 35F).  

In the light of all the results presented so far, we cannot conclude that any intervention decreasing 

glycolysis triggers TIGAR expression, at least not at the protein level. Indeed, it seems that the inhibition 

of glycolysis needs to be sufficiently tuned to increase the expression of TIGAR, as it is the case of PFKFB3 

inhibition by siRNA and 3PO. This might occur in a context of transient nutrient deprivation in tumours, 

a stress that would trigger a pro-survival response in cancer cells in which it would be beneficial to 

increase glycolysis -through PFKFB3 upregulation, for example- and anabolic pathways such as the PPP, 

in which TIGAR could have a role. However, when stress overcomes the capacity of cells to survive, 

processes focused on obtaining energy-producing molecules and ATP would be increased to avoid cell 

death and, if the stress was already too damaging, pro-apoptotic proteins might be activated to initiate 

programmed cell death. 
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3. TIGAR contribution to cell survival under metabolic stress  

We have previously demonstrated that TIGAR overexpression confers protection against cell death when 

PFKFB3 is inhibited. Besides, TIGAR inhibition has been proved to increase the sensitivity of cells treated 

with H2O2 (3) and radiotherapy (79). However, TIGAR expression is not required for cell survival in 

unstressed conditions, and it is dispensable for normal growth and development (90). In our hands, no 

changes in the morphology or growth have been observed in TIGAR overexpressing HeLa cells compared 

to cells with basal TIGAR levels (Figure 36). However, a few dead cells could be detected in some 

experiments after 72 h of TIGAR inhibition (Figure 37), despite overall viability was not increased as it 

has been shown before (Figure 32). On the other hand, we had detected increased apoptosis in PFKFB3-

inhibited cells (Figure 32), which was evident in subsequent experiments (Figure 37). 

 

Figure 36. Bright field images of HeLa cells overexpressing TIGAR. HeLa cells were transfected with a pcDNA3 vector encoding 

human TIGAR gene. An empty pcDNA3 vector was used as control. Images were acquired at 24 h post-transfection with a Leica 

bright field microscope at 20X. 

 

Figure 37. Bright field images of HeLa cells with inhibited TIGAR or PFKFB3. HeLa cells were transfected with TIGAR or 

PFKFB3-targeting siRNAs. Scrambled siRNA was used as control. Images were acquired at 72 h post-transfection with a Leica bright 

field microscope at 20X. Yellow arrows indicate apoptotic cells. 
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In the light of these results and considering that TIGAR was originally described as a Fru-2,6-P2 

phosphatase able to inhibit glycolysis and redirect the glucose flux towards the PPP, we aimed to 

determine the relationship between TIGAR effects on glycolysis. First, we determined glucose 

consumption in HeLa cells transfected with either a pcDNA3 vector expressing TIGAR or a TIGAR-

targeting siRNA. We used PFKFB3-targeting siRNA as a control of the experiment, given that PFKFB3 

inhibition has been shown to decrease glucose uptake (172). Overexpression of TIGAR and inhibition of 

both TIGAR and PFKFB3 were confirmed by western blot. The quantification of glucose in media was 

performed through an assay based on the reactions catalysed by glucose oxidase and peroxidase, which 

generate a brown product proportional to the amount of glucose oxidized. Glucose concentration was 

normalized to protein amount in each condition. Two types of analysis were performed, one with the 

media collected at the end of the experiment and a second analysis with cells incubated in fresh media 

for the last six hours. For this last experiment, media was removed at 24 h or 72 h after transfection, cells 

were washed twice with PBS and 1 mL of complete DMEM was added. The purpose of that was to 

investigate whether changes in TIGAR protein levels are sufficient to transform cells by altering their 

avidity for glucose. 

The analysis of glucose concentration in the extracellular media at the end of the experiment, normalized 

by the protein levels in each condition, revealed significantly decreased glucose consumption in TIGAR-

inhibited cells (3,71 ± 0,37 mM) and PFKFB3-inhibited cells (4,28 ± 0,23 mM) compared to cells 

transfected with the scrambled siRNA (2,69 ± 0,02 mM) (Figure 38A). However, TIGAR overexpression 

did not alter glucose uptake. 

On the other hand, the analysis of glucose concentration from HeLa cells incubated in fresh media for 

the last six hours of experiment revealed that only PFKFB3-inhibited cells displayed decreased glucose 

uptake (Figure 38B). Thus, it seems clear that transient inhibition of PFKFB3 is sufficient to alter the 

glycolytic metabolism of cells, which remain less efficient in capturing glucose than control cells in fresh 

media.  On the contrary, TIGAR-inhibited cells do not maintain decreased glucose uptake when they are 

exposed again to high glucose media. 

Extracellular lactate concentration was reduced in both TIGAR and PFKFB3-inhibited cells (Figure 38C), 

which is consistent with decreased glucose uptake in these conditions. 
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Figure 38. Extracellular glucose and lactate analysis after TIGAR and PFKFB3 modulation. HeLa cells were transfected with 

either a pcDNA3 vector encoding human TIGAR gene (and the corresponding pcDNA3 empty vector control), or with TIGAR or 

PFKFB3-targeting siRNAs (and the corresponding scrambled siRNA as control) for 24 or 72 h, respectively. (A-B) Glucose 

concentration in media was determined and normalized to protein levels (A) at the end of each corresponding experiment (24 h 

for overexpression, 72 h for inhibition) or (B) after 6 h incubation in fresh media. (C) Concentration of lactate in the extracellular 

media was measured at the end of each corresponding experiment. Data are presented as µmols/mg protein ± SEM (n=1 with 

independent triplicates, *P < 0.05,**P < 0.01, ***P < 0.001). 

 

 

After observing that TIGAR inhibition has direct consequences on glucose oxidation, we aimed to 

determine which kind of stress does TIGAR confer resistance to. For that, we overexpressed and silenced 

TIGAR in HeLa cells in co-treatment with 5 mM glucose, 10 µM 3PO and H2O2 0,5 mM. These stimuli 

were chosen due to their capacity to block glycolysis, resembling PFKFB3-targeting siRNA, and to 

increase ROS. The stimuli were present from 4 h after plasmid or siRNA transfection until the end of the 

experiment. 
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The observation of cells at the microscope evidenced that there were no differences in cell viability 

between TIGAR overexpressing cells and control cells exposed to the stress stimuli (Figure 39). This is 

consistent with results previously shown in this thesis in which 3PO did not affect cell survival of HeLa 

cells after 24 h of treatment (Figure 34D). 

 

Figure 39. Bright field images of HeLa cells with TIGAR overexpression in the presence of stress stimuli. HeLa cells were 

transfected with a pcDNA3 encoding for human TIGAR or the corresponding pcDNA3 empty vector as control and co-treated with 

5mM glucose DMEM (Glc-), 3PO or H2O2 (stress stimuli). Images were acquired at 27 h post-transfection with a Leica bright field 

microscope at 20X. 

 

Interestingly, decreased number of cells was observed after treatment with glucose 5mM or 3PO in 

TIGAR-inhibited HeLa cells compared to control cells (Figure 40). Taking into account that inhibition 

experiments were performed at 72 h, this suggested that TIGAR inhibition affected the capacity of cells 

to overcome the stress produced by these glycolytic inhibitors in a time-dependent manner. H2O2 

decreased the number of cells regardless of TIGAR levels (Figures 39, 40). 
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Figure 40. Bright field images of HeLa cells with TIGAR inhibition in the presence of stress stimuli. HeLa cells were 

transfected with a TIGAR-targeting siRNAs or the corresponding scrambled siRNA as control and co-treated with 5mM glucose 

DMEM (Glc-), 3PO or H2O2 (stress stimuli). Images were acquired at 72 h post-transfection with a Leica bright field microscope at 

20X. 
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The effects of stress stimuli in combination with TIGAR overexpression or inhibition were confirmed by 

crystal violet assay. This assay corroborated that TIGAR overexpression did not affected the capacity of 

cells to grow in low glucose conditions or in the presence of 3PO (Figure 41A). However, a significant 

drop in cell survival was evidenced in TIGAR-silenced cells after glucose deprivation treatment. The same 

occurred in 3PO-treated cells, although the difference between TIGAR-inhibited cells and control cells 

was not statistically significant (Figure 41B). H2O2 significantly decreased cellular viability regardless of 

TIGAR levels (Figure 41A,B). An explanation for that would be that 0,5 mM H2O2 increased ROS-

mediated cell death to such an extent that the potential antioxidant properties of TIGAR were overcame. 

The metabolic adaptations of HeLa cells to the combination of TIGAR modulation with stress stimuli 

were also analysed at the protein level. TIGAR overexpression was confirmed by normalizing TIGAR 

protein levels to α-tubulin (Figure 41C, lanes 6-9). As it was expected, neither of the stress stimuli 

modulated TIGAR protein levels at 24 h. No changes in PFKFB3 were observed in cells transfected with 

pcDNA3 or pcDNA3-TIGAR in combination with stress stimuli. Akt and S6 were found phosphorylated 

in all conditions except for H2O2-treated cells (Figure 41C). Regarding TIGAR inhibition, the effect of 

TIGAR-targeting siRNA was confirmed by normalizing TIGAR protein levels to α-tubulin (Figure 41D, 

lanes 6-9). PFKFB3 was not altered by TIGAR inhibition, but its levels were decreased by glucose 

deprivation in both Scr. and TIGAR-transfected cells (Figure 41D, lanes 3 and 7). Akt and S6 were only 

phosphorylated in control and 3PO-treated cells, but not in cells maintained at 5 mM glucose, and TIGAR 

induction was only observed after 72 h of 3PO treatment (Figure 41D), confirming the results shown in 

Figure 35. It is interesting to note that glucose deprivation, which decreased PFKFB3 to a level 

comparable to PFKFB3-targeting siRNA but did not maintain P-Akt and P-S6 levels, did not result in 

TIGAR induction. 
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Figure 41. Analysis of the effects of TIGAR modulation in the presence of stress stimuli. HeLa cells with either TIGAR 

overexpression or inhibition were treated with 5mM glucose DMEM (Glc-), 3PO or H2O2 (stress stimuli). Viability and western blot 

analyses were performed at the indicated times. (A and C) HeLa cells were transfected with either a pcDNA3 vector encoding 

human TIGAR gene or the corresponding pcDNA3 empty vector for 24 in co-treatment with stress stimuli and (A) crystal violet 

assay and (C) western blot analysis were performed. (B and D) HeLa cells were transfected with either a TIGAR-targeting siRNA 

or the corresponding scrambled siRNA for 72 in co-treatment with stress stimuli and (B) crystal violet assay and (D) western blot 

analysis were performed. The normalization of TIGAR and PFKFB3 protein levels with -tubulin is indicated below the western blot 

images. Data from crystal violet assays are presented as the mean absorbance in arbitrary units (AU) ± SEM (n=1 with independent 

triplicates, ***P < 0.001). 
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The contribution of TIGAR to cell survival in response to glucose deprivation and 3PO was confirmed. In 

parallel, we aimed to determine whether TIGAR inhibition in combination with stress stimuli affected the 

uptake of glucose and lactate production. Glucose concentration was analysed at the end of the 

experiments (24 h for TIGAR overexpression and 72 h for TIGAR inhibition). As expected, TIGAR 

overexpressing cells and control cells showed the same capacity to uptake glucose in front of 5 mM 

glucose, 3PO and H2O2 (Figure 42A). The media from cells exposed to glucose deprivation showed less 

glucose concentration, this finding being totally expected and not informative (Figure 42A). 3PO did 

not affect glucose uptake nor at 24 or at 72 h (Figure 42A,B) and, on the contrary, glucose uptake was 

dramatically decreased in H2O2-treated cells both at 24 and 72 h (Figure 42A,B). Accordingly, lactate 

production was decreased in 5 mM glucose and H2O2-treated cells, with no differences between TIGAR 

overexpressing cells and control cells (Figure 42C). Lactate measurements in the experiments performed 

at 72 h revealed that 3PO decreased lactate export in both Scr. and TIGAR siRNA-transfected cells (Figure 

42D), providing a potential explanation for the induction of TIGAR by 3PO at 72 h and not at 24 h post-

treatment. Similar to overexpression experiments, 5mM glucose and H2O2 decreased lactate production 

regardless of TIGAR levels (Figure 42D). 

 

Figure 42. Extracellular glucose and lactate analysis after TIGAR modulation in stress conditions. HeLa cells transfected with 

either TIGAR overexpression plasmid or TIGAR-targeting siRNA were treated with 5mM glucose DMEM (Glc-), 3PO or H2O2 for 24 

or 72 h, respectively. The concentration of (A, B) glucose and (C, D) lactate in the extracellular media were determined and 

normalized to protein levels. Data are presented as µmols/mg protein ± SEM (n=1 with independent triplicates, *P < 0.05,**P < 

0.01, ***P < 0.001). 
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4. Discussion 

The first results presented in this chapter showed that TIGAR is induced in response to the suppression 

of PFKFB3 gene expression in an Akt-dependent manner. This was the first time that TIGAR expression 

was linked to the Akt signalling pathway and, thus, it constituted a new piece of information on the 

molecular mechanisms that control this enzyme in cancer cells. The functional relevance of TIGAR 

induction after PFKFB3 inhibition was found to be related to the survival of cancer cells. We were able 

to show that TIGAR protects from ROS-induced DNA damage, apoptosis and necrosis given that the 

combination of PFKFB3 and TIGAR inhibition significantly exacerbated the damaging effects of PFKFB3 

depletion alone. However, it remains unknown whether this protection depends on TIGAR enzymatic 

activity on Fructose-2,6-P2, on other potential metabolic functions of this enzyme, or even on non-

enzymatic functions of the protein, as it has been described for other enzymes (173). Deeper 

investigation on the metabolic functions of TIGAR is presented in Results Chapter II. 

Further on this chapter, it has already been proved that 3PO, a pharmacological inhibitor of PFKFB3 

which in fact is capable of inhibiting the kinase activity of the other PFKFB isoenzymes (57), is also able 

to induce TIGAR protein levels after 72 h, but not at 24 h. 3PO does not affect glucose uptake but it 

decreases lactate production to a greater extent than PFKFB3-targeting siRNA. After 72 h of 3PO 

treatment, cell death was slightly increased. On the contrary, HeLa cells maintained at 5 mM glucose 

conditions showed highly increased cell death and TIGAR was not induced in these cells. Importantly, 

Akt and S6 proteins were found phosphorylated in cells treated with 3PO while these phosphorylations 

were lost in 5 mM glucose-treated cells, suggesting the implication of Akt in TIGAR induction also in 

response to PFKFB3 enzymatic blockage, similarly to what we had described for the inhibition of PFKFB3 

gene expression. These results might point out that TIGAR upregulation is a compensatory response to 

imbalanced crosstalk with PFKFB3, more than a general response to glycolysis inhibition.  

The finding that the Akt-mTORC1, a proliferative signalling pathway, was responsible for the link 

between PFKFB3 inhibition and TIGAR induction was initially surprising given that usually the AMPK-α 

pathway is the driver of the response to glycolytic impairment and decreased nutrient supply (174). 

Indeed, AMPK-α activation inhibits mTORC1, which is actually increased in PFKFB3-inhibited HeLa cells. 

The observation that only those conditions that increased P-Akt, i.e. PFKFB3 inhibition by siRNA and 

3PO, were able to increase TIGAR protein levels regardless of their effect on glucose and lactate levels, 

suggested that TIGAR modulation is probably determined by a threshold in the stress levels. Possibly, 

those stimuli decreasing glycolysis to such an extent that downregulates proliferation pathways and 

increases cell death, are too much harming and do not modulate TIGAR levels. According to that, other 

studies have shown differential modulation of TIGAR depending on the doses of the DNA damaging 

agents applied. TIGAR is activated by moderate stress and contribute to ROS detoxification and DNA 
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repair. Nevertheless, when cells are exposed to high levels of stress, apoptosis-related pathways are 

prioritized and TIGAR is not induced (3,79).  

A similar explanation could be applied to understand the low levels of TIGAR found in 0,5 mM H2O2-

treated cells at both at 24 h and 72 h and the lack of differences between TIGAR overexpressing and 

TIGAR-inhibited cells in co-treatment with H2O2. The damage caused by 0,5 mM H2O2 could exceed 

TIGAR induction and trigger cell death in HeLa cells. However, TIGAR overexpression has been shown to 

protect against even higher H2O2 doses (0,5 mM to 10 mM) in U2OS and H1299 cells treated for 10 and 

20 h, respectively (3). The differential response of HeLa cells U2OS or H1299 might be explained by either 

a more damaging effect due to increase time of exposure in HeLa, or to different tolerance of cell lines 

to ROS levels. 

An important thing to discuss is the fact that the protective effect of TIGAR in front of ROS has not been 

directly attributed to an increase in TIGAR mRNA or protein levels (3,167). One possibility is that the high 

levels of TIGAR present at basal conditions allow for its antioxidant function independently of the 

upregulation of its protein levels. In this scenario, neither transcription nor translation would be required 

to confer protection against ROS. Another possibility might be the involvement of post-translational 

regulation mechanisms or changes in the subcellular location of TIGAR in response to ROS, something 

that is explored in Results Chapter IV. 

The increased susceptibility to glycolytic impairment of TIGAR-inhibited cells contrasts with the mild 

effect of TIGAR inhibition in control cells. This is consistent with a recent study in which TIGAR 

knockdown has shown to enhance the ROS-mediated anticancer effect of the natural compound aescin, 

which is obtained from horse chestnut, by triggering apoptosis, although TIGAR inhibition alone did not 

impair cellular viability (175). Overall, it becomes clear that TIGAR carries on a tumour-promoter function 

in HeLa cells that becomes evident when cells are facing stress, but what is not that clear is whether this 

function can be attributed to the modulation of glycolysis. As it can be observed in our experiments, 

overexpression of TIGAR does not affect any of the parameters analysed, including glucose consumption, 

lactate production or viability, and TIGAR inhibition only slightly decreases lactate production and 

mitochondrial reduction capacity. PFKFB3 inhibition, however, decreases glucose consumption, lactate 

production and cell survival, according to previous publications of the group (176). Therefore, it becomes 

evident that PFKFB3 and TIGAR do not constitute opposed enzymatic entities in HeLa cells and indeed 

they seem to contribute to the growth of cancer cells by different mechanisms. PFKFB3 effect is clearly 

related to its pro-glycolytic function, whether the contribution of TIGAR is probably beyond the role as 

a glycolytic inhibitor that was attributed to this enzyme (3), at least in HeLa cells. In this chapter, two 

metabolic parameters have been analysed, which are glucose consumption and lactate production. 

TIGAR overexpression did not alter neither of the parameters and, as it has been already mentioned, 
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TIGAR inhibition slightly decreased glucose uptake and lactate production. This is contradictory with the 

first publication about TIGAR, which showed that overexpression of the enzyme decreased glycolytic flux 

in U2OS and FL5.12 cell lines, as measured by the production of 3H-H2O from 5-3H-glucose by enolase 

(3). After years of research about TIGAR from this and other groups, the modulation of glycolysis by this 

enzyme seems to be dependent on the cellular model. The study of the metabolic function of TIGAR 

that has been performed during this thesis is reported in Results Chapter II.



  

 

  



 

 

 

 

 

 

 

 

RESULTS CHAPTER II 

Role of TIGAR in the metabolism of cancer cells: 

is it all about Fru-2,6-P2? 
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CONTEXT 

Many studies have been performed describing the involvement of TIGAR in certain types of cancer. All 

these publications are based on the first discovery in 2006 of TIGAR as a fructose-2,6-bisphophatase 

enzyme, which decreases glycolytic rate by decreasing the positive allosteric activation that Fru-2,6-P2 

renders to PFK-1. This explanation, so far, seems to be contradictory with the fact that cancer cells have 

increased glycolytic rate. However, the contribution of TIGAR to the survival of cancer cells has been 

linked to its capacity to redirect glucose-6-phosphate to the PPP in a G6PD-dependent manner, at least 

in U2O2 (3). As it has been described in Results Chapter I of this thesis, TIGAR inhibition exacerbates the 

damaging effect of PFKFB3 blockage. Moreover, the capacity of TIGAR to increase the PPP is supported 

by the finding that TIGAR overexpression increases GSH/GSSG ratio, and TIGAR inhibition decreases this 

ratio (3). However, among the more than 170 publications that have studied TIGAR from different 

approaches and in different contexts, only nine, including (3), have directly evaluated the effects of TIGAR 

modulation on Fru-2,6-P2 levels (73,80,82,84,86,177,178). Interestingly, Li and Jogl provided kinetic data 

revealing that the catalytic efficiency of TIGAR as a F26BPase is several orders of magnitude lower than 

that of the bifunctional liver enzyme PFK2/F26BPase (86). This gave rise to the study by Gerin et al. who 

considered that F26BP might not be the physiological substrate of TIGAR and re-evaluated the 

biochemical activity of the enzyme. Their findings showed that the Km of TIGAR for Fru-2,6-P2 (1,25 mM) 

was higher than that for 2,3-BPG (0,142 mM), 2-PG (0,224 mM), 2-phosphoglycolate (0,79 mM) and PEP 

(0,90 mM) (73). In the same publication, TIGAR inhibition by shRNA efficiently increased 2,3BPG in all the 

human cell lines tested (HCT116, U2O2 and RKO) and TIGAR-KO mouse embryonic stem cells also 

showed significantly increased levels of 2,3BPG. However, Fru-2,6-P2 concentration was increased in 

TIGAR-KO mouse embryonic stem cells, but not in human in HCT11 or RKO cell lines transfected with 

the shRNA. Only one of the shRNAs used was able to increase Fru-2,6-P2 levels in the U2O2 cell line. 

Apart from this publication, no more contributions to elucidate the activity of TIGAR on other substrates 

have been made. 

During this thesis, we have been interested in determining if the activity of TIGAR on Fru-2,6-P2 is the 

most important role of this enzyme in all cancer cells, or if other roles of this enzyme should also be 

considered. The importance of this answer is not to determine the metabolite for which TIGAR has more 

avidity, but to clarify if it is correct to keep interpreting all the findings related to this enzyme with its 

capacity to modulate Fru-2,6-P2 levels. With that purpose, we have used the HeLa cell line to perform 

our metabolic determinations in several conditions of TIGAR modulation. 
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1. In silico study of TIGAR protein sequence and structure 

A multiple alignment using CLUSTALW was performed and the similarity between eight histidine 

phosphatases (TIGAR, PGME, PGAM B, PGAM M and PFKFB1-4) was analysed. Although it is widely 

assumed in the literature that TIGAR is similar to FBPase-2, we found that, indeed, it is at least equally 

similar to PGAM B than to FBPase-2. The findings leading to this conclusion are detailed below. 

The residue that forms the phosphoenzyme in TIGAR, H11 (Figure 43A, Zoom1), together with E89 

(Figure 43A, Zoom2), which acts as a H+ donor, are identical in the eight proteins. The residue E102 is 

identical in all of them except for PGME, where it is substituted for Q (Figure 43A, Zoom2). Regarding 

the third amino acid in the catalytic triad, H198, CLUSTALW did not show any H aligned in the other 

proteins. However, when shorter alignments were performed, specific H residues were completely 

aligned to H198 in all the other histidine phosphatases, according to (3). These residues are indicated in 

rectangles (Figure 43A, Zoom3). CLUSTALW generated a phylogenetic tree from the alignment which 

revealed that, indeed, TIGAR is closer to PGAMs than to PFKFBs (Figure 43B). This is consistent with the 

finding that 2,3-BPG, 2-PG and PEP are better substrates for TIGAR than Fru-2,6-P2 (73). 

 

 

 

 

 

 

 



 

 

  

Figure 43. Multiple Sequence Alignment of TIGAR with other histidine 

phosphatases. TIGAR protein sequence (UniProt Entry Q9NQ88) was compared 

with erythrocyte bisphosphoglycerate mutase (BPGM, UniProt Entry P07738), 

phosphoglycerate mutases 1 and 2 (PGAM B, UniProt Entry P18669 and PGAM M, 

UniProt Entry P15259, respectively) and the bisphosphatase domain of PFKFB1-3 

(P16118, O60825, Q16875, Q16877, respectively) through a multiple sequence 

alignment with Jalview (207) based on CLUSTALW (EMBL-EBI) (208). Multiple 

sequence alignments compare different sequences looking for conserved patterns 

that explain their functional relationship. (A) Alignment generated by Jalview with 

zoom to the most-relevant regions aligned. These regions contain the amino acids 

of TIGAR active site (H11, E89, E102 and H198). Amino acids are coloured according 

to their physicochemical properties according to Clustal colour scheme. 

(B) Phylogenetic tree generated by CLUSTALW alignment showing the evolution of 

the proteins compared according to their sequence similarities. 
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Furthermore, we checked the similarity between TIGAR and PGAM B, and TIGAR and the bisphosphatase 

domain of PFKFB3 by two different pairwise sequence alignment strategies: local alignment with BLAST, 

and global alignment with EMBOSS Needle. BLAST comparison, which analyses the similarity within 

blocks of aligned amino acids between two sequences, found three different blocks of aligned amino 

acids between PFKFB3 and TIGAR. In the case of PGAM, a long sequence of more than 100 amino acids 

together with a shorter sequence of less than ten amino acids were aligned (Figure 44A). The coverage 

of TIGAR sequence was slightly higher in the case of PGAM B, with more statistical power (see Query 

cover in Figure 44B), and the identity was slightly higher between TIGAR and the bisphosphatase 

domain of PFKFB3 (see Identity in Figure 44B). EMBOSS Needle global alignment, which analyses the 

similarity across the whole sequences, revealed an identity of 21,13% between TIGAR and PGAM B, and 

of 17,1% between TIGAR and the bisphosphatase domain of PFKFB3. Importantly, similarity was also 

higher between TIGAR and PGAM B (Figure 45). This supports the idea that, although there are more 

identical residues between TIGAR and the bisphosphatase domain of PFKFBs within aligned clusters, the 

general protein sequence of TIGAR is more similar to that of PGAM. In the light of the results obtained 

in silico, all the in vitro experiments involving TIGAR inhibition and overexpression performed during this 

thesis have considered potential parallel functions of TIGAR on other phosphorylated substrates rather 

than Fru-2,6-P2. 

 

Figure 44. BLAST local alignments of 

TIGAR with PGAM B and FBPase-2. 

Basic local alignment search tool (BLAST) 

(209) was performed to compare TIGAR 

sequence with that of PGAM B and the 

bisphosphatase domain of PFKFB3. The 

protein matrix used to perform the 

alignment was Blocks of Amino Acid 

Substitution Matrix 62 (Blosum62). 

(A) Schematic representation of both 

alignments displayed by BLAST. The 

aligned regions are highlighted by the 

bold line. The colour of the line indicates 

the score of the alignment. (B) Summary 

table of the alignment: ‘Query Cover’ 

indicates the % of amino acids aligned 

from the total amino acids compared, ‘E 

value’ reflects the probability of the 

alignment to be found by change and 

‘Identity’ indicates the % of amino acids 

identical between the two sequences out 

of the amino acids aligned. 
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Figure 45. EMBOSS Needle global alignments of TIGAR with PGAM B and FBPase-2. EMBOSS Needle global alignment (EMBL-

EBI) (179) was performed to compare TIGAR sequence with that of (A) PGAM B and (B) the bisphosphatase domain of PFKFB3. 

The protein matrix used to perform the alignment was Blosum62. (A, B) Overall alignment using consensus alignment symbols: '.' 

for any small positive score, ':' for similarity scores more than 1.0, and '|' for an identity where both sequences have the same 

residue regardless of its score. (C) Summary table of the alignment: ‘Identity’ indicates the % of amino acids that are identical 

between the two sequences put of the total amino acids, ‘Similarity’ reflects the % of amino that, despite not being identical, are 

similar along the sequence, and ‘Gaps’ indicate the % of amino acids that are not totally different between the two sequences. 
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TIGAR, PFKFB3 and PGAM were also compared at the structural level by the PDB online tool for pairwise 

structural alignments, applying the flexible jFATCAT method (180). This algorithm detects aligned 

fragment pairs, superpositions of two continuous fragments in the two proteins to be compared, and 

allows flexibility with twits connecting different fragments, increasing the sensibility to detect common 

structures between proteins. The most important parameters to be compared in a pairwise structural 

analysis with jFATCAT are the number of twists needed to connect similar regions, the number of 

equivalent positions (Opt-equ) and the overall Root Mean Square Deviation (Opt-RMSD), which 

measures the difference between the predicted structure of a protein identical to the query structure 

and the observed structure. jFATCAT displays a visualization of the two proteins superposed in which 

similar structures are coloured, whereas non-aligned regions are painted in grey. According to the 

analyses performed, TIGAR is very similar to both PGAM B and the bisphosphatase domain of PFK-2, 

with any twists in neither of the two structure superpositions. However, Opt-equ and Opt-RMSD were 

higher between TIGAR and PGAM B than between TIGAR and FBPase-2, with a lower p-value, indicating 

that the identity and similarity between TIGAR and PGAM B is more statistically significant. As expected, 

similarity was not statistically significant when TIGAR was compared to the whole PFKFB3 structure 

(Figure 46). 

 

Figure 46. Pairwise structural alignment of TIGAR with PGAM B, FBPase-2 and PFKFB3. The structures of TIGAR (PDB: 3DCY), 

PGAM B (PDB: 1YFK), the rat bisphosphatase domain of PFK-2 (PBD: 1FBT) and human PFKFB3 (PDB: 3QP1) were compared with 

PDB pairwise structural alignment tool with the flexible jFATCAT method (199). (A) TIGAR is coloured in orange. Aligned structures 

are shown in blue colours and non-aligned regions are in grey. (B) Summary of the main parameters of the jFATCAT analysis, 

including overall score, number of twists, number of equivalent positions (Opt-equ), overall Root Mean Square Deviation (Opt-

RMSD), p-value and percentages of identity and similarity. Images were created with Jmol: an open-source Java viewer for chemical 

structures in 3D. http://www.jmol.org/. 

http://www.jmol.org/
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2. Metabolic determinations by spectrophotometry 

For all the metabolic determinations included in this chapter, overexpression of TIGAR and inhibition of 

both TIGAR and PFKFB3 were previously confirmed by western blot (Figure 47). 

In order to clarify the functional relevance of TIGAR bisphosphatase activity, Fru-2,6-P2 concentration 

was determined in HeLa cells after TIGAR inhibition and overexpression (Figure 48). The levels of this 

metabolite were also assayed in PFKFB3-inhibited cells, in which we had previously observed reduced 

Fru-2,6-P2 concentration (63), as positive control samples in the assay. The quantification of Fru-2,6-P2 

is performed through the spectrophotometric analysis of NADH consumption in the latter of three 

reactions coupled to the phosphorylation of Fru-6-P to Fru-1,6-P2 by potato pyrophosphate 

phosphofructokinase (PPi-PFK), which is allosterically stimulated by Fru-2,6-P2. The experimental 

procedures for the purification of PPi-PFK from potato and Fru-2,6-P2 analysis are described in Materials 

and Methods section. 

 

TIGAR overexpression caused a statistically significant decrease in Fru-2,6-P2 concentration of 25% 

(Figure 48A). In TIGAR-inhibited cells, the concentration of this metabolite was slightly increased, 

despite the difference was not statistically significant (Figure 48B). These results support the idea that 

TIGAR exerts bisphosphatase activity on Fru-2,6-P2, as it was initially described (3). Inhibition of PFKFB3 

effectively decreased Fru-2,6-P2 concentration to 50 % (Figure 48B). 

 

Figure 47. Confirmation of the modulation of 

TIGAR and PFKFB3 by western blot. HeLa cells 

were transfected with either a pcDNA3 vector 

encoding human TIGAR gene (and the 

corresponding pcDNA3 empty vector control), 

or with TIGAR or PFKFB3-targeting siRNAs (and 

the corresponding scrambled siRNA) for 24 or  

72 h, respectively. PFKFB3 and TIGAR were 

analysed by western blot and α-tubulin was used 

as endogenous control. 

Figure 48. Fru-2,6-P2 concentration in TIGAR 

overexpressing and TIGAR or PFKFB3-inhibited cells.  

(A) HeLa cells were transfected with either a pcDNA3 

plasmid containing TIGAR human gene or the 

corresponding pcDNA3 empty vector and Fru-2,6-P2 was 

determined after 24 h. (B) HeLa cells were transfected with 

75 nM PFKFB3 or TIGAR-targeting siRNAs or the 

corresponding scrambled siRNA and Fru-2,6-P2 was 

determined after 72 h. Data are presented as pmols of   

Fru-2,6-P2/mg protein ± SEM (n=3 with independent 

triplicates, *P < 0.05, ***P < 0.001). 
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Considering the results obtained by Gerin, et al. (73), we determined the concentration of PEP, Pyr, 2-PG 

and 3-PG in HeLa cells after TIGAR overexpression and inhibition. TIGAR overexpression did not cause 

any significant change in the analysed metabolites (Figure 49A). On the other hand, TIGAR inhibition 

significantly increased pyruvate concentration (Figure 49B). These results did not seem to support the 

bisphosphatase of TIGAR on 2-PG or PEP proposed by Gerin, et al. (73) but suggested a role for TIGAR 

in the latter reactions of glycolysis, involving pyruvate. With the aim of widening the metabolic view of 

TIGAR effects further from the possibilities of spectrophotometer-based assays, we performed 

metabolomic and fluxomic studies the results of which can be found in the following pages. 

 

Figure 49. 3-PG, 2-PG, PEP and Pyr 

concentration in TIGAR overexpressing and 

TIGAR-inhibited cells. (A) HeLa cells were 

transfected with either a pcDNA3 plasmid 

containing TIGAR human gene or the 

corresponding pcDNA3 empty vector and the 

levels of the different metabolites were 

determined after 24 h. (B) HeLa cells were 

transfected with 75 nM PFKFB3 or TIGAR-

targeting siRNAs or the corresponding 

scrambled siRNA and the levels of the different 

metabolites were determined after 72 h. 

Data are presented as µmols of each 

metabolite/mg protein ± SEM (A: n=4, B: n=6 

with independent triplicates, *P < 0.05). 
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3. Metabolomic and fluxomic analyses by LC-MS/MS 

In collaboration with Dr. Yanes Lab (Universitat Rovira i Virgili, Reus), twenty different metabolites were 

analysed through targeted liquid chromatography (LC) with mass spectrometry (MS) (LC-MS/MS) in 

HeLa cells after TIGAR overexpression or siRNA-mediated inhibition of TIGAR or PFKFB3. These twenty 

metabolites comprised intermediates of glycolysis and the TCA cycle, as well as some important 

metabolites of the PPP. Two types of analysis were performed, the first one consisting in the 

measurement of the abundance of each metabolite within each sample, and the second one consisting 

in the tracing of glucose flux within cells. For the first approach, abundance is equivalent to the amount 

of C12 corresponding to a given metabolite within the sample. For the flux analysis, cells were cultured 

for 6 h in media in which glucose was replaced by fully labelled 13C-glucose at a concentration of 25 

mM. In the analysis, the percentage of the different isotopologues for each metabolite was calculated. 

The term isotopologue refers to a molecule with at least one atom with a different number of neutrons 

than the parent molecule. That is, in our case, a metabolite with at least one atom of 13C. Thus, 

isotopologues only differ in their isotopic composition and are metabolized through the same pathways. 

Isotopologues need to be differentiated from isotopomers, which have the same number of atoms of 

each isotope but in a different position. Isotopomers can be distinguished through nuclear magnetic 

resonance, which reports the information of the exact position of the isotope. However, LC-MS 

differentiates between isotopologues but not between the position of the isotopes. 

In our case, since we are using fully-labelled 13C-glucose, any metabolite generated from external 

glucose will be an isotopologue of the m+0 form of that metabolite, which does not contain any atom 

of 13C. For example, three isotopologues will be detected for pyruvate, apart from the m+0 form: m+3, 

which contains three atoms of 13C and corresponds to the pyruvate generated from the fully labelled 

13C-glucose through glycolysis, and m+1 and m+2, which correspond to the pyruvate that is not directly 

generated through glycolysis, but from the incorporation of a glycolytic intermediate into another 

pathway in which it is combined with a non-labelled molecule, as it might occur in the TCA cycle. Given 

that we are interested in understanding the effect of TIGAR in glycolytic metabolism, we will mainly focus 

on the analysis of abundance and the fluxes of isotopologues directly derived from glucose. However, 

all isotopologues were analysed for those metabolites involved in mitochondrial metabolism, given that 

glutamine is also an important source of carbons in cancer cells, which can be differentially used 

depending on the glycolytic capacity of cells.  
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3.1. Metabolomic abundance analyses 

The effects of TIGAR overexpression were analysed at 24 h post-transfection and the differences were 

calculated compared to control cells overexpressing an empty pcDNA3 vector. The abundance of each 

metabolite was calculated relative to the abundance of an internal standard, 13C3-glycerol, which is not 

present in the biological sample and is added during the analysis at equal quantities in each sample. 

We did not find any significant differences in the abundance of any of the twenty metabolites analysed 

in TIGAR overexpressing cells and control cells (Figure 50). However, there were some non-significant 

metabolic changes that might be interesting to confirm with more experiments. Intracellular glucose was 

modestly increased  (Figure 50), whereas intracellular glutamine was slightly decreased  (Figure 50). 

In the previous chapter, the analysis of extracellular glucose concentration did not reveal differences 

between TIGAR overexpressing cells and control cells (Figure 38).  Therefore, more experiments should 

be performed to determine if metabolomics can reveal increased glucose concentration in TIGAR 

overexpressing cells which might go unnoticed in the enzymatic assays performed to measure glucose 

consumption due to lack of sensitivity. 
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Figure 50. Analysis of metabolites abundance in TIGAR overexpressing cells. Schematic diagram of glycolysis, the first 

reactions of oxidative PPP and the TCA cycle showing metabolites abundance. HeLa cells were transfected with either a pcDNA3 

plasmid containing TIGAR human gene or the corresponding pcDNA3 empty vector and samples were collected after 24 h for 

metabolomic analyses. Metabolites abundance is expressed relative to the abundance of the internal standard (IS) 13C3-glycerol ± 

SD (n=2 with independent triplicates). Numbers in yellow refer to comments in the text. 
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TIGAR inhibition through siRNA did not render any statistically significant changes in the abundance of 

the studied metabolites either (Figure 51). However, some tendencies could be detected, which require 

more experiments to be confirmed. Oppositely to TIGAR overexpression, TIGAR-inhibited cells showed 

decreased intracellular glucose levels , which is consistent with the analysis of extracellular glucose 

concentration presented in the previous chapter, which revealed decreased glucose consumption in 

TIGAR-inhibited cells (Figure 38). However, glycolytic intermediates such as G3P, DHAP, 3PG and PEP 

were increased  (Figure 51) in parallel to increased pyruvate and lactate levels  (Figure 51). These 

results are in accordance with previous literature that situates TIGAR as a glycolytic inhibitor (3). 

Contrarily to what would be expected from this literature, however, the PPP intermediates 6-

phosphogluconate and ribose-5-P levels were raised in TIGAR-inhibited cells  (Figure 51). 

Some other non-significant changes could also be observed in those metabolites related to glutamine 

metabolism. Intracellular glutamine was found slightly increased in TIGAR-inhibited cells  (Figure 51), 

as well as several metabolites produced during glutamine oxidation such as glutamate and αKG  

(Figure 51). These results, despite not being statistically significant, might suggest an effect of TIGAR 

inhibition in the TCA fuelling. Additionally, the TCA intermediates succinate and fumarate were also 

found increased in these cells  (Figure 51). Although we have not performed an experiment with 

labelled glutamine and, thus, we cannot determine the fate of this amino acid within the cell, the results 

obtained suggest increased anaplerosis of glutamine in the TCA cycle in TIGAR-inhibited cells. 

PFKFB3 inhibition did not affect the abundance of any of the metabolites analysed, except for Fru-6-P, 

glucose-6-P and 6-P-gluconate, which were increased  (Figure 51). These results, although not being 

statistically significant, are in accordance with the fact that PFKFB3 is the PFK-2 coding gene with the 

highest kinase/bisphosphatase ratio (36). PFKFB3 inhibition decreases Fru-2,6-P2, as it has been 

previously shown before and during this thesis and, consequently, PFK-1 is reduced. According to that, 

glycolysis and, consequently, lactate levels were expected to decrease in PFKFB3-inhibited cells. In 

metabolomic analyses, lactate levels were only slightly decreased after PFKFB3 inhibition  (Figure 51). 

These results are complemented by other determinations at the end of this chapter. 
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Figure 51. Analysis of metabolites abundance in TIGAR-inhibited cells. Schematic diagram of glycolysis, the first reactions of 

oxidative PPP and the TCA cycle showing metabolites abundance. HeLa cells were transfected with 75 nM PFKFB3 or TIGAR-

targeting siRNAs or the corresponding scrambled siRNA and samples were collected after 72 h for metabolomic analyses. 

Metabolites abundance is expressed relative to the abundance of the internal standard (IS) 13C3-glycerol ± SD (n=2 with 

independent triplicates). Numbers in yellow refer to comments in the text. 
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3.2. Fluxomic analyses 

The analysis of metabolic fluxes complements the results obtained in terms of abundance and helps to 

understand whether the origin and fate of glycolytic metabolites is altered by TIGAR levels. For the 

analysis of flux through glycolysis, we focused on those isotopologues that reflect direct fluxes from 13C-

glucose. For this reason, the m+6 form is shown for six-carbon metabolic intermediates, whereas the 

m+3 form is shown for three-carbon intermediates. In the case of TCA cycle intermediates, all m+ forms 

are represented given that each of them reflects a different origin of the molecules and can inform about 

the contribution of glutamine and other substrates in mitochondrial anaplerosis (Figure 52). 

The analysis of the flux through glycolysis in TIGAR-overexpressing cells did not reveal any differences 

compared to control cells (Figure 52), evidencing that the contribution of glucose to the formation of 

the studied metabolites is equal in these cells. These results reinforce those found in terms of abundance. 

TIGAR overexpression did not affect the isotopologue distribution of any of the mitochondrial 

metabolites analysed either (data not shown). 

One of the most interesting metabolites to determine in the flux analysis were those related to the 

oxidative PPP. However, no changes were observed in glucose-6-phosphate, 6-phosphogluconate or 

ribose-5-phosphate in neither TIGAR overexpressing cells or TIGAR-inhibited cells  (Figure 52). These 

results do not support a strong effect of TIGAR on the redirection of glucose towards the PPP. However, 

it should be considered that our experiments were performed in the absence of damaging stimuli and, 

according to previous literature (79), the antioxidant function of TIGAR is especially relevant when cells 

are facing stress and might be irrelevant at basal conditions. 

The only isotopologue significantly altered in TIGAR-inhibited cells was m+3 3PG, which was found 

increased  (Figure 52). This is in accordance with the absorbance analysis. The fact that m+3 

isotopologue is increased means that 3PG is mainly produced from glucose. An alternative source of 

3PG might be TCA-derived PEP obtained through the reaction catalysed by PCK-2. 

PFKFB3 inhibition did not affect the isotopologue distribution of any of the cytosolic metabolites 

analysed (Figure 52). 
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Figure 52. Fluxomic analyses of cytosolic metabolites in TIGAR overexpressing and TIGAR-inhibited cells. Schematic 

diagram of glycolysis and the first reactions of oxidative PPP showing the distribution of isotopologues from fully labelled 13C-

glucose. HeLa cells transfected with either pcDNA-TIGAR or pcDNA3 vectors (in the case of overexpressing experiment), or 

TIGAR/PFKFB3/Scrambled siRNAs (in the case of silencing experiment) for 24 or 72 h, respectively. Cells were exposed to 25 mM 

fully labelled 13C-glucose in media containing 2 mM glutamine and 10% dialyzed FBS for 6 h and samples were collected for 

metabolomic analyses. Distribution of isotopologues for each metabolite is represented as m + x, where the m stands for natural 

mass of the metabolite and the x indicates the number of incorporated 13C carbons. Data are represented as the % of a given 

isotopologue (M+6 or M+3) among all isotopologues for a given metabolite ± SD (n=2 with independent triplicates, P < 0.05). 

Numbers in yellow refer to comments in the text. 
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Interestingly, TIGAR inhibition caused a shunt in the supply of carbons to the TCA cycle. 13C-glucose flux 

analysis evidenced increased m+2 citrate , which is the product of citrate synthase (Figure 53). This 

enzyme combines a molecule of acetyl-CoA (2 carbons) with a molecule of OAA (4 carbons) and 

generates citrate (6 carbons). Thus, m+2 citrate contains two carbons from glucose-derived acetyl-CoA, 

reflecting the activity of pyruvate dehydrogenase (PDH). Additionally, m+3 aspartate (equivalent to m+3 

OAA), m+3 malate and m+3 fumarate were found downregulated in TIGAR-inhibited cells , evidencing 

decreased activity of pyruvate carboxylase (PCB) (Figure 53). This enzyme combines a molecule of 

pyruvate (3 carbons) with HCO-
3 and generates OAA (4 carbons). Thus, m+3 isotopologues of TCA 

intermediates indicate the entrance of pyruvate to the TCA cycle through PCB. 

Finally, m+0 forms of aspartate, malate and fumarate were found increased in TIGAR-inhibited cells , 

indicating that other substrates apart from glucose are fuelling the TCA cycle in these cells (Figure 53). 

This is consistent with the data from the abundance analysis, which suggested increased glutamine 

incorporation in the TCA cycle in TIGAR-inhibited cells (Figure 51). 

PFKFB3 inhibition did not affect the isotopologue distribution of any of the mitochondrial metabolites 

analysed (data not shown). 
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Figure 53. Fluxomics analyses of mitochondrial metabolites in TIGAR-inhibited cells. Schematic diagram of the TCA cycle 

and the main reactions providing metabolites to the TCA showing the distribution of isotopologues from fully labelled 13C-glucose. 

This is an enlargement of the results presented in the previous figure. HeLa cells transfected with either pcDNA-TIGAR or pcDNA3 

vectors (in the case of overexpressing experiment), or TIGAR/PFKFB3/Scrambled siRNAs (in the case of silencing experiment) for 

24 or 72 h, respectively. Then, cells were exposed to 25 mM fully labelled 13C-glucose in a medium containing 2 mM glutamine 

and 10% dialyzed FBS for 6 h and samples were collected for metabolomic analyses. Distribution of isotopologues for each 

metabolite is represented as M+x, where M stands for natural mass of the metabolite and the x indicates the number of 13C 

carbons incorporated. Data are represented as the % of a given isotopologue among all isotopologues for a given metabolite ± 

SD (n=2 with independent triplicates, *P < 0.05, **P < 0.01, ***P < 0.001). Numbers in yellow refer to comments in the text. 
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4. Determination of redox potential 

 

Fluxomic analysis determined a preferential entrance of pyruvate to the TCA cycle through PDH rather 

than through PC in TIGAR-inhibited cells. This might be explained by increased NAD+ in these cells, 

which would trigger the activity of dehydrogenases, in this particular case PDH, the activity of which is 

coupled to the generation of NADH. To confirm this, we analysed NAD+, NADH, NADP+ and NADHP 

after 72 h of TIGAR-targeting siRNA transfection in HeLa cells. The ratio NAD+/NADH was significantly 

increased in TIGAR-inhibited cells (Figure 54A), confirming our hypothesis. However, the ratio 

NADP+/NADPH was not significantly altered, although it was found slightly decreased after TIGAR 

inhibition (Figure 54B). We also determined the two redox ratios in TIGAR overexpressing cells. 

According to previous results, increased TIGAR levels did not cause any change in neither the 

NAD+/NADH ratio (Figure 54C) or the NADP+/NADPH ratio (Figure 54D).  

 

 

Figure 54. Analysis of NAD+/NADH and NADP+/NADPH ratios after TIGAR modulation. HeLa cells transfected with either 

pcDNA-TIGAR or pcDNA3 vectors (in the case of overexpressing experiments), or TIGAR/PFKFB3/Scrambled siRNAs (in the case of 

silencing experiments) for 24 or 72 h, respectively. Determination of NAD+, NADH, NADP+ and NADPH was performed with 

NAD/NADH-Glo™ and NADP/NADPH-Glo™ Assays (Promega). Data are presented as the mean of the ratios from triplicate 

samples for each condition ± SEM. Student’s t-test was used to analyse differences between groups (n=1 with independent 

triplicates, *P < 0.05). 
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5. Analysis of genes involved in glucose metabolism 

In parallel to the metabolomic analyses, the expression of key genes involved in glucose metabolism 

and the pentose phosphate and serine synthesis pathways was determined by RT-qPCR in cells with 

increased (TIGAR overexpression) and decreased (siRNA-mediated inhibition) TIGAR protein levels. 

HeLa cells with TIGAR overexpression did not show significant changes in any of the genes analysed 

(Figure 55).  

 

Figure 55. RT-qPCR analysis of metabolic genes in TIGAR overexpressing cells. (A) HeLa cells were transfected with either a 

pcDNA3 plasmid containing TIGAR human gene or the corresponding pcDNA3 empty vector (control cells) and samples were 

collected after 24 h for RNA extraction and RT-qPCR analysis. The table indicates the mean expression ± SEM of each of the genes 

in TIGAR overexpressing cells relative to the expression in control cells. Expression in the control group was set to 1. The 

corresponding p-values are shown, and the statistically significant results are highlighted in bold (P < 0.05). Genes were analysed 

in four independent experiments except for TIGAR and TKT, which were analysed in three independent experiments. (B) Schematic 

diagram of glycolysis and the first reactions of oxidative PPP, the TCA cycle, serine and glycine synthesis pathway and glutamine 

catabolism. The genes analysed are written in bold capital letters.  
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TIGAR inhibition in HeLa cells significantly increased the expression of TKT, whereas the levels of the 

other genes analysed were not significantly affected. Interestingly, SLC2A1 (GLUT1) mRNA levels were 

slightly increased in TIGAR-inhibited cells (Figure 56A). 

Inhibition of PFKFB3 also affected the expression of some key metabolic genes, causing a significant 

increase in SLC1A2 (GLUT1), HK-II and LDHA expression (Figure 56B). 

 

Figure 56. RT-qPCR analysis of metabolic genes in TIGAR or PFKFB3-inhibited cells. HeLa cells were transfected with either 

TIGAR or PFKFB3-targeting siRNAs or the corresponding scrambled siRNA (Scr., control cells) and samples were collected after 72 

h for RNA extraction and RT-qPCR analysis. Each table indicates the mean expression ± SEM of each of the genes in (A) TIGAR or 

(B) PFKFB3-inhibited cells relative to the expression in control cells. Expression in the control group was set to 1. The corresponding 

p-values are shown, and the statistically significant results are highlighted in bold (P < 0.05). Four independent experiments were 

analysed. (C) Schematic diagram of glycolysis and the first reactions of oxidative PPP, the TCA cycle, serine and glycine synthesis 

pathway and glutamine catabolism. The genes analysed are written in bold capital letters. 
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6. Study of key proteins involved in the metabolism of glucose and glutamine 

To confirm the RT-qPCR results, we analysed the levels of several proteins involved in the metabolism 

of glucose and glutamine by western blot. The proteins analysed can be classified into three groups: 

proteins involved in glucose oxidation (HK-II, PFKFB3, TIGAR, TKT, PDH and PCB), lactate transporters 

(MCT1) and proteins linked to glutamine metabolism (GLS1). 

HeLa cells overexpressing TIGAR showed significantly increased levels of the lactate importer MCT1, 

while the other enzymes, despite being all upregulated, did not show statistically significant changes 

compared to control cells (Figure 57). The highest increase was observed in PCB, but this enzyme was 

only analysed in two independent experiments and therefore this result is preliminary. 

 

Figure 57. Western blot analysis of metabolic enzymes in TIGAR overexpressing cells. HeLa cells were transfected with either 

a pcDNA3 plasmid containing TIGAR human gene or the corresponding pcDNA3 empty vector (control cells) and samples were 

collected after 24 h for protein analysis. (A) Representative western blot images of each of the proteins analysed. (B) The table 

indicates the mean protein levels ± SEM of each of the proteins in TIGAR overexpressing cells relative to the levels detected in 

control cells. Protein levels in the control group were set to 1. The corresponding p-values are shown, and the statistically significant 

results are highlighted in bold (P < 0.05). Proteins were analysed in four independent experiments except for PDH and PCB, which 

could be analysed in only two independent experiments. (C) Schematic diagram of glycolysis and the first reactions of oxidative 

PPP, the TCA cycle, serine and glycine synthesis pathway and glutamine catabolism. The genes analysed are written in bold capital 

letters. 
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Appositely to TIGAR overexpression, TIGAR inhibition resulted in a highly statistically significant decrease 

of PCB (Figure 58A). The other proteins analysed remained unaltered (Figure 58A), suggesting that the 

increased expression of TKT (Figure 56A) was not translated to increased levels of this protein. On the 

other hand, PFKFB3-inhibited cells did not show significant modulation of any of the enzymes analysed 

(Figure 58B), suggesting again that the increased expression of HK-II (Figure 56B) was not translated 

in increased levels of the protein. 

 

Figure 58. Western blot analysis of metabolic enzymes in TIGAR or PFKFB3-inhibited cells. HeLa cells were transfected with 

either TIGAR or PFKFB3-targeting siRNA or the corresponding scrambled siRNA (Scr., control cells) and samples were collected 

after 72 h for protein analysis. (A) Representative western blot images of each of the proteins analysed. (B, C) Tables indicate the 

mean protein levels ± SEM of each of the proteins in (B) TIGAR or (C) PFKFB3-inhibited cells relative to the levels detected in 

control cells. Protein levels in the control group were set to 1. The corresponding p-values are shown, and the statistically significant 

results are highlighted in bold (P < 0.05). Proteins were analysed in four independent experiments except for PDH and PCB, which 

could be analysed in only two independent experiments. (D) Schematic diagram of glycolysis and the first reactions of oxidative 

PPP, the TCA cycle, serine and glycine synthesis pathway and glutamine catabolism. The genes analysed are written in bold capital 

letters.  
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7. Discussion 

The main findings of this chapter are summarised in Table II, in an attempt to clarify the most important 

metabolic changes observed after TIGAR modulation. For the elaboration of the table, some of the non-

statistically significant results that suggested important modulations of metabolites or genes have also 

been included. 

 

 Metabolites 

abundance 
Metabolic fluxes  Redox potential 

Gene 

expression 
Protein levels 

 

TIGAR 

↓ Fru-2,6-P2  

↑ Glucose (no sign.) 

↓ Gln (no sign.) 

No important 

modulations. 

No important 

modulations. 

No 

important 

modulations. 

↑ MCT1 

 

Partial glycolytic inhibition due to reduced Fru-2,6-P2 concentration. 

Low intracellular Gln: decreased uptake or increased glutaminolysis. 

Increased lactate import. 

 

TIGAR 

↑ Extracellular glucose 

↑ Extracellular lactate 

↑ Fru-2,6-P2 (no sign.) 

↓ Glucose (no sign.) 

↑ Pyr 

↑ Intracellular lactate 

(no sign.) 

↑ Gln & Gln-derived 

metabolites (no sign.) 

↑ 3PG 

↑ M+2 citrate 

↓ M+3 Aspartate, 

Malate, Fumarate  

↑ M+0 Aspartate, 

Malate, Fumarate 

↑ M+0 Gln 

↑ NAD+/NADH 

 

↑ TKT 

↓ G6PD 

 

 

↓ PCB 

 

Increased flux through glycolysis and glutaminolysis. 

Pyruvate enters the TCA cycle through PDH rather than through PCB. 

 

PFKFB3 

↓ Fru-2,6-P2 

↑ Fru-6-P, Glu-6-P, 

6PG (no sign.) 

↓ Intracellular lactate 

(no sign.) 

No important 

modulations. 

No important 

modulations. 

↑ SLC2A1, 

HK-II, LDHA 

 

No important 

modulations. 

Glycolytic inhibition due to decreased Fru-2,6-P2 concentration. 

Table II. Summary of the main metabolic alterations induced by TIGAR and PFKFB3 modulation. The most relevant findings 

reported in this chapter, including the results that indicate an important contribution of TIGAR or PFKFB3 to the analysed parameter 

despite not being statistically significant, are described. 

HeLa cells with high TIGAR levels showed significantly reduced Fru-2,6-P2 concentration. TIGAR 

inhibition, however, had only a modest effect on the levels of this metabolite, which was found slightly 

increased. These results, together with previous findings indicating that TIGAR inhibition in HeLa cells 

does not always increase Fru-2,6-P2 levels (84) show that, as well as the consequences of TIGAR 

upregulation can be interpreted due to its effect on Fru-2,6-P2 levels, other players should also be 

considered when analysing the effects of TIGAR inhibition. 

One of the most important observation in this chapter is that TIGAR overexpression in HeLa cells does 

not increase the abundance of PPP intermediates, as it was expected. However, M+6 isotopologues of 

these metabolites were found slightly increased in fluoxomic analyses, suggesting increased flux through 
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this pathway, which would be in accordance to what was originally described (3). However, 

NADP+/NADPH remained unaltered after TIGAR overexpression, questioning the role of TIGAR as a 

potent antioxidant enzyme in HeLa cells. Increased levels of MCT1 in TIGAR overexpressing cells, 

however, suggested alternative functions of TIGAR in the lower parts of glycolysis. Increased MCT1 

indicates increased lactate import, which could account for the maintained lactate and pyruvate levels 

despite decreased in Fru-2,6-P2. Previous publications have reported that oxidative cancer cells 

displaying TIGAR overexpression take advantage of cancer-associated fibroblasts, which mainly rely on 

glycolysis and produce lactate, by uptaking lactate from extracellular media and using it for TCA cycle 

anaplerosis (82). Our results are in accordance with these findings but, in this case, given that cells in our 

culture plates are all cancer cells, they might uptake lactate produced by themselves. Another possibility 

would be to consider the existence of different populations of HeLa cells within our plates, ones 

producing lactate and the others importing it. 

Regarding TIGAR inhibition effects, the most evident consequence was the shift in the way that pyruvate 

enters the TCA cycle. Metabolites abundance analyses revealed decreased M+3 isotopologues of 

aspartate, malate and fumarate, and increased M+2 citrate. This indicates that in TIGAR-inhibited cells, 

pyruvate is oxidized into acetyl-CoA through PDH rather than to OAA through PCB. Accordingly, PCB 

protein levels were found decreased in TIGAR-inhibited cells. Consequently, alternative anaplerotic 

pathways must be required to supply OAA in TIGAR-inhibited cells. One possibility would be that 

increased glutamine and glutamine-derived metabolites, together with increased M+0 isotopologues of 

aspartate, malate and fumarate, accounted for OAA supply in these cells. 

The fact that TIGAR-inhibited cells display more PDH than PCB activity is in accordance with the higher  

NAD+/NADH ratio registered in these cells compared to cells with basal TIGAR expression, and would 

be compatible with previous studies indicating that TIGAR overexpression increases mitochondrial 

metabolism, which generates NADH in the TCA cycle (82). These results are also supported by the finding 

that TIGAR-inhibited cells showed decreased MTT signal, an assay that is based on the activity of 

NAD(P)H-dependent cellular oxidoreductases, as it has been shown in Results Chapter I. 

In previous studies, TIGAR has been related to mitochondrial metabolism, with those cells overexpressing 

TIGAR being more oxidative than those with low TIGAR levels, which rely on glycolysis (82). In our 

experiments, the oxygen consumption has not been evaluated. However, increased NAD+/NADH ratio 

and decreased MTT signal are indicators of decreased functioning of the Krebs cycle, which would be in 

accordance with previously published results (82). However, the molecular orchestrator of this shift 

remains uncovered, and whether the effects of TIGAR on mitochondrial metabolism depend on its 

phosphatase function is something that needs to be determined. Our spectrophotometrical analyses 

indicated that TIGAR inhibition increases pyruvate concentration without altering the levels of PEP, 2PG 
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or 3PG, which does not support the proposed activity of TIGAR as a PEP phosphatase independent of 

ATP production (73). On the other hand, the direct phosphatase activity of TIGAR on 2,3-BPG has not 

been evaluated given that this metabolite is not a substrate, but an intermediate, of the reactions 

assayed, and it could not be detected in metabolomic analyses either. Thus, the hypothesis of TIGAR as 

the phosphoglycolate-independent 2,3-BPG phosphatase previously described in the skeletal muscle of 

pig, rat and chicken (73,181) could not be tested in our experiments. However, the in silico sequence 

and structural comparisons performed during this thesis and also by other groups (73,86) show more 

similarity of TIGAR with other histidine phosphatases than with FBPase-2, which helps to understand the 

few metabolic effects of TIGAR modulation that can be directly attributed to Fru-2,6-P2.



  

 

 

  



 

 

 

 

 

 

 

 

RESULTS CHAPTER III 

Control of TIGAR expression by Nrf2 

 

 

  



  

 

 

 

 



RESULTS CHAPTER III 

119 

 

CONTEXT 

Apart from p53 (3), two transcription factors have been described to bind to TIGAR promoter and 

modulate its expression, SP1 and CREB1 (77). Both studies were performed by the same group, who 

firstly described the induction of TIGAR promoter by SP1 (76) and then found a shorter construct which 

retained transcriptional activity despite lacking the SP1 binding site. This shorter construct was activated 

by the binding of CREB1 to CRE-binding (77). However, the physiological relevance of these findings still 

needs to be determined, especially considering that SP1 binds to the promoter of many different genes 

at basal conditions, and that no relationship has been established between cAMP, the main responsible 

for CREB activation, and TIGAR. Therefore, p53 is the unique transcription factor that has been described 

to link the already-known functions of TIGAR in cancer cell metabolism with its transcriptional control 

to date. More than 50% of tumours carry mutation in TP53, and indeed it is the gene most frequently 

altered in cancer (74). As it has been described in the Introduction section of this thesis, TP53 mutations 

can have multiple outcomes, some of which result in loss-of-function of this tumour suppressor gene. 

The independence of TIGAR expression from p53 levels in cancer cells has already been commented in 

the Introduction section. Previous studies of Dr. Ramon Bartrons’ Lab showed that TIGAR inhibition 

decreased cellular viability in the TP53-wild type and null T98G and U87 glioblastoma cell lines, 

respectively. These effects occurred in parallel with increased ROS-mediated DNA damage, which was 

prevented by the antioxidant molecule BHA, indicating that TIGAR plays a protector antioxidant role in 

glioblastoma regardless of the presence of p53 (79). Thus, the identification of physiologically-relevant 

transcription mechanisms that explained how and under which stimuli is TIGAR overexpressed in cancer 

cells independently of TP53 appeared as a crucial question to be addressed during this thesis. 

Nrf2 transcription factor, encoded by the NFE2L2 gene, is a master regulator of the antioxidant response 

in cells. It is activated by electrophiles and ROS, as well as by oncogenic proliferative pathways such as 

c-Myc and PI3K/Akt in cancer. After dissociation from KEAP1, Nrf2 translocates to the nucleus and binds 

to AREs in the promoter of target genes (144). Apart from detoxifying enzymes such as NQO1 or GST, 

which are classical Nrf2 targets, the PPP enzymes G6PD and TKT have recently been described as new 

metabolic targets of Nrf2 (142). Given the close relation between TIGAR and the PPP, we hypothesized 

that Nrf2 exerted transcriptional control on TIGAR gene. This hypothesis was also supported by the 

identification of several potential AREs in the promoter and first intron of TIGAR gene. The following 

pages summarize the main findings of this project. 
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1. In silico study of the human TIGAR promoter 

With the purpose of studying the presence of AREs in the regulatory regions of human TIGAR gene, we 

performed an in-silico analysis from 8000 bp prior to the translation start codon (+1, ATG) to + 2000 bp, 

including part of the sequence of the first intron of TIGAR. The sequence studied covered 10.000 bp 

between the positions 4.423.165 to 4.433.160 bp of human chromosome 12, according to numbering of 

the Evolutionary Conserved Regions (ECR) Browser (182), which is slightly different from the numbering 

in the NCBI. This web page allows to study the conserved sequences among the genome of several 

species and it was very useful to identify which AREs in the human TIGAR promoter had more potential 

to be functional sites for Nrf2 binding. 

Given that the automatic transcription factor prediction tools use different Nrf2 consensus binding 

motifs, the sequence corresponding to AREs, TGAC/GnnnGC (147), was manually tracked along the 

region of study. ECR Browser was used to determine the degree of conservation of the identified AREs 

across species. This tool provides a representation of the genomes in which horizontal red lines indicate 

the sequences that are conserved between the specie from which the input sequence is obtained, in this 

case humans, and the different species to which the sequence is compared, that are indicated in the 

right panel (Figure 59). 

The first regulatory element of interest in the studied sequence was the p53 binding site 1 (BS1), located 

at -6.702 bp from the translation start codon (ATG, +1) (3) (Figure 59). p53 binding sites correspond to 

the sequences RRRCWWGYYY, where R is a purine (A/G), W is A/T and Y is a pyrimidine (T/C), and two 

of them have been identified in the human and mouse TIGAR promoters with different functional 

relevance. However, they are not conserved between these two species. p53 BS1 is conserved in Pan 

troglodytes and Canis familiaris and its functional relevance remains unknown given that the direct 

binding of p53 to this sequence has not been described to date. In this thesis the nomenclature for p53 

binding sites has been maintained as in the publication where these regulatory elements were described, 

being p53 BS1 the furthest from the translation start codon (3). The AREs identified in this thesis have 

been named from the transcription start codon, being ARE 1 the closest to the coding sequence of 

TIGAR. 

Seven potential AREs were originally identified along the studied sequence. However, only five of them 

(four in the promoter, AREs 1-4, and one in the first intron, ARE i1) were considered as potential Nrf2 

binding sites according to their sequence and conservation. Two conditions were required for the 

inclusion of AREs in subsequent analyses: a) to be at least conserved in Pan troglodytes, the closest specie 

to humans, and b) to correspond to a TGAC/GnnnGC sequence, preferably to TGAC/GnnAGC, which has 

been reported as a common motif in the promoter of all Nrf2 target genes (183). TGACnnGC motifs are 
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represented by the big blue asterisks, whereas small asterisks indicate TGAGnnnGC motifs. Besides, the 

conservation is indicated by horizontal red bars on the top of the sequence that corresponds to each 

specie. 

ARE 4 is located at -6.103 bp and it is conserved in Pan troglodytes, whereas ARE 3 is located at -3.145 

bp and it is conserved in Rhesus macaque (Macaca mulatta) and Canis familiaris (Figure 59). AREs 1 and 

2 were identified at -1.500 and -1.107 bp, respectively, being ARE 2 conserved in Pan troglodytes and 

Rhesus macaque and ARE 1 only in Pan troglodytes (Figure 59, Box A). No AREs were detected close to 

the transcription start site (TSS), where the SP1 and CREB binding boxes are located (76,77): the SP1 

response element is just before the TSS (-177 bp) whereas the CREB binding sequence is just after it (-

130 bp). Both regulatory elements are conserved in Canis familiaris, Bos taurus, Rhesus macaque and 

Pan troglodytes (Figure 59, Box B), suggesting important roles for these transcription factors in the 

control of TIGAR expression. 

The functional p53 binding site 2 (BS2) (3), is located in the first intron, at +344, and it is conserved in 

Pan troglodytes and Rhesus macaque (Figure 59, Box B). ARE i1 is located at +1.673 bp in the first intron 

and it is conserved in Pan troglodytes and Rhesus macaque (Figure 59, Box C) like the p53 BS2.  
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Figure 59. Study of human TIGAR promoter and first intron with ECR Browser. ECR Browser (available at 

http://ecrbrowser.dcode.org) (182) was used to analyse the sequence from 4.423.165 to 4.433.160 bp of human chromosome 12. 

The sequence was compared to the genome of Pan troglodytes (panTro3), Rhesus macaque (rheMac2), Canis familiaris (canFam2), 

Bos taurus (bosTau6), Mus musculus (mm10) and Danio rerio (danRer7). The image provided by ECR Browser has been modified 

to indicate the important elements for the study of antioxidant response elements (AREs) within TIGAR promoter and first intron. 

A legend is provided with all the details. Three additional boxes are used to zoom in (A) a region of TIGAR promoter in which 

two conserved AREs are found, (B) the region containing the minimal promoter with SP1, CREB and p53 binding sites and (C) the 

intronic region containing a conserved ARE.  Figure continued on next page. 
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2. Regulation of TIGAR expression by Nrf2 chemical inducers in HeLa cells 

With the aim of inducing Nrf2 in HeLa cells, we reviewed the Nrf2 activators available and found that 

several compounds, most of them derived from natural products and used as additives in food, have the 

capacity to induce the dissociation of Nrf2 from KEAP1. These compounds are usually electrophiles which 

interact with the cysteine residues of KEAP1 and induce a change on its conformation (141). Another 

strategy that can be used to induce Nrf2 is the treatment with oxidant molecules. In the first experiments 

of this thesis, and also in previous thesis of the group (184), we tried to modulate TIGAR levels by treating 

cells with H2O2 and tBHP with no conclusive results due to high inter- and intra-experimental variability 

of these molecules. 

Tert-butyl-hydroquinone (tBHQ) is a specific Nrf2 inductor that interacts with KEAP1 cysteines, liberating 

Nrf2 and allowing its translocation to the nucleus (141,146). The treatment of HeLa cells with 50 µM 

tBHQ for 4 h resulted in increased translocation of Nrf2 to the nucleus (Figure 60A). Considering 

previous results which had reported the differential response of cancer cells to Nrf2 inducers depending 

on FBS concentration (185), HeLa cells were exposed to tBHQ at the conditions of 10% FBS (referred to 

as + FBS) and 0% FBS (referred to as - FBS). Immunofluorescence analysis revealed that Nrf2 translocated 

to the nucleus in response to tBHQ in a dose-dependent manner in the presence of FBS (Figure 60B, 

upper panel), whereas Nrf2 was exclusively cytoplasmatic in the absence of FBS, both in control and in 

tBHQ-treated cells (Figure 60B, lower panel). The western blot analysis of protein levels in tBHQ-treated 

cells showed that in complete medium tBHQ increased both TIGAR and G6PD protein levels, although 

TIGAR was only significantly increased by 50 µM tBHQ (Figure 60C,D). Nrf2 protein levels were not 

modified by tBHQ (Figure 60D). Interestingly, G6PD and TIGAR protein levels were equal in 50 µM tBHQ-

treated cells and in control cells in serum-free conditions (Figure 60D). Analysis of G6DP and TIGAR 

expression should be performed to determine whether the slight increases observed at the protein levels 

are consequence of increased transcription of the genes. In parallel to the protein analysis, the 

antioxidant potential of tBHQ was assessed by measuring ROS levels by flow cytometry with the CellROX 

Green probe and a significant decrease in ROS was detected in 50 µM tBHQ-treated cells (Figure 60E), 

thus confirming that the Nrf2-orchestrated transcriptional program effectively decreased oxidative 

stress.  
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Figure 60. Regulation of Nrf2 and TIGAR by tBHQ. HeLa cells were treated with tBHQ at the indicated doses for 4 h in the 

presence or absence of 10% FBS. (A) Western blot analysis of nuclear fractions of HeLa cells treated with 50 µM tBHQ in the 

presence of 10% FBS. (B) Immunofluorescence analysis of Nrf2 in by Alexa488-conjudated secondary antibodies. Nuclear staining 

could not be detected in this experiment. (C) Representative images of western blot analysis of Nrf2, G6PD and TIGAR. α-tubulin 

was used as endogenous control. (D) Quantification of western blot analyses of cells treated at the mentioned conditions. (E) ROS 

quantification by CellROX Green in tBHQ-treated cells. Raw data of fluorescence peaks from a representative experiment is shown. 

Data are expressed relative to untreated cells (CT) ± SEM (D: n=4 in +FBS and n=3 in -FBS, E: n=3 with duplicates, *P < 0.05,**P < 

0.01, ***P < 0.001). 
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To determine if the increase in TIGAR protein levels was exclusive to tBHQ or could be reproduced by 

other Nrf2 inducers, we treated HeLa cells with dimethyl fumarate (DMF) and sulforaphane (SFN), which 

are known to favour Nrf2 dissociation from KEAP1 (141,146). Cells were analysed at two different time 

points (4 and 24 h) by RT-qPCR and western blot. Western blot analysis of Nrf2 and TIGAR revealed 

significantly increased Nrf2 levels by 5 and 20 µM SFN with no modulation of TIGAR protein levels 

(Figure 61A). At 24 h, results showed a similar modulation of these proteins (Figure 61D). In the same 

western blot analysis, no modulation of either Nrf2 or TIGAR protein levels was observed in cells treated 

with DMF at any of the times analysed (Figure 61A,D). In the RT-qPCR analysis, SFN was observed to 

cause a slight increase in the expression of the three genes at 4h after treatment (Figure 61B), which 

was exacerbated at 24 h (Figure 61E). 20 µM DMF treatment increased the expression of Nrf2, NQO1 

and TIGAR both at 4h and 24 h (Figure 61C,F). Inhibition of transcription by Actinomycin-D (Act-D) 

prevented the induction of the three genes after DMF treatment (Figure 61C,F), confirming that the 

upregulation of TIGAR in response to the Nrf2 inducer DMF is transcription-dependent. 

 

Figure 61. Analysis of Sulforaphane and DMF effects on NFE2L2, NQO1 and TIGAR expression. HeLa cells were treated for 4 

h (A-C) or 24 h (D-F) with the indicated doses of Sulforaphane (SFN) or Dimethyl fumarate (DMF). (A, D) Western blot analysis of 

Nrf2 and TIGAR in SFN and DMF-treated cells for (A) 4 and (D) 24 h. (B, E) RT-qPCR analysis of NFE2L2 (Nrf2), NQO1 and TIGAR 

in SFN-treated cells for (B) 4 and (E) 24 h. (C, F) HeLa cells were pre-treated with Actinomycin-D (Act-D) for 4 h and subsequently 

treated with DMF for (C) 4 and (F) 24 h. The expression of NFE2L2 (Nrf2), NQO1 and TIGAR was analysed by RT-qPCR. Data are 

presented as the mean fold change relative to untreated cells (CT)  SEM (n=3, *P < 0.05). 

In summary, the results obtained with oxidant and antioxidant molecules pointed out a relation between 

Nrf2 and TIGAR, although several important questions remained unsolved. One of the most important 

issues was to determine if Nrf2 exerted a direct transcriptional control on TIGAR gene. Considering the 

presence of potential AREs in TIGAR promoter and the positive results obtained with DMF and SFN at 

the mRNA level, we proceeded to modulate Nrf2 through overexpression and siRNA experiments. 
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3. Regulation of TIGAR by NFE2L2 expression in HeLa cells 

The capacity of Nrf2 to control TIGAR mRNA levels was assessed by inhibition of the expression of the 

Nrf2 coding gene, NFE2L2, through siRNA as a first approach. Transfection of 100 nM NFE2L2-targeting 

siRNA on HeLa cells showed decreased expression of NFE2L2, G6PD, NQO1 and TIGAR (Figure 62A). 

Accordingly, the protein levels of Nrf2, G6PD and TIGAR were significantly decreased by Nrf2 siRNA at 

72 h post-transfection (Figure 62B,C). The gene in which the inhibition was more pronounced was 

NFE2L2, followed by the classical Nrf2 targets NQO1 and G6PD, and TIGAR, the latter showing 40% 

decreased expression levels compared to control cells. 

 

Figure 62. TIGAR modulation by Nrf2 inhibition in HeLa cells. HeLa cells were transfected with 100 nM NFE2L2-targeting siRNA 

and subsequently analysed after 72 h. (A) RT-qPCR analysis of NFE2L2 (Nrf2), G6PD, NQO1 and TIGAR. (B) Images representative 

of a western blot analysis of Nrf2, G6PD and TIGAR. (C) Quantification of independent western blot analyses. Data are presented 

as the mean fold change relative to the cells transfected with scrambled siRNA (Scr.)  SEM (A: each gene was analysed at least in 

4 independent experiments, B: n=7, ***P < 0.001). 

A single experiment with triplicates was performed by combining Nrf2 inhibition with tBHQ. Cells were 

transfected with NFE2L2-targeting siRNA and received a single dose of 50 µM tBHQ 20 h after 

transfection. The expression of NFE2L2, G6PD and TIGAR was analysed at 24, 48 and 72 h after 

transfection (Figure 63). NFE2L2-targeting siRNA effectively decreased the expression of NFE2L2, G6PD 

and TIGAR compared to the scrambled siRNA, as it is indicated by red arrows (Figure 63). Treatment of 

tBHQ (yellow columns) did not affect the mRNA levels of any of the genes at basal conditions, but it 

counteracted the inhibitory effect of NFE2L2-targeting siRNA, as it is indicated by grey arrows. This effect 

was partial in the cases of NFE2L2 and G6PD, as gene expression in transfected cells treated with tBHQ-

treated cells never reaches the expression levels in scrambled cells, but it was more pronounced in the 

case of TIGAR, in which treatment of tBHQ completely prevented the decrease in mRNA levels caused 

by NFE2L2-targeting siRNA (Figure 63). 
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Figure 63. Effect of tBHQ in Nrf2-inhibited cells. HeLa cells were transfected with 100 nM NFE2L2-targeting siRNA for 24, 48 

or 72 h and co-treated with tBHQ during the last 4 h. RT-qPCR analysis of NFE2L2, G6PD and TIGAR expression was performed. 

Data are expressed relative to Scrambled cells at 24 ± SD of triplicates from a single experiment. 

As a complementary strategy for the evaluation of the relation between Nrf2 and TIGAR in HeLa cells, 

the expression of NFE2L2 was increased by transfecting cells with a pcDNA3 plasmid containing the Nrf2 

coding sequence.  NFE2L2 overexpression significantly increased NFE2L2, G6PD, NQO1 and TIGAR 

mRNA levels (Figure 64A). Western blot analysis confirmed Nrf2 upregulation and the resulting 

increases in the levels of TIGAR and G6PD (Figure 64B,C). It is important to note that increased Nrf2 

protein levels were clearly evidenced in the western blot images (Figure 64B), whereas upregulation of 

G6PD and TIGAR were difficult to see in the blots and were not evidenced until quantification of western 

blot images was performed (Figure 64C). Overall, Nrf2 was proved to modulate the expression and 

protein levels of TIGAR in parallel with known Nrf2 targets such as G6PD and NQO1 in HeLa cells. These 

cells were used to characterise the direct binding of Nrf2 to TIGAR promoter, a set of in silico analyses 

and in vitro experiments that are deeeply commented at the end of this chapter. 

 
Figure 64. TIGAR modulation by Nrf2 overexpression in HeLa cells. HeLa cells were transfected with a pcDNA3 plasmid coding 

for NFE2L2 gene (Nrf2) and subsequently analysed after 24 h. (A) RT-qPCR analysis of NFE2L2, G6PD, NQO1 and TIGAR. (B) 

Representative western blot images of Nrf2, G6PD and TIGAR. (C) Quantification of independent western blot analyses. Data are 

presented as the mean fold change relative to scrambled (Scr.) siRNA-transfected cells  SEM (each gene was analysed at least in 

4 independent experiments, *P < 0.05,**P < 0.01, ***P < 0.001). 
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4. TIGAR and Nrf2 in NSCLC 

4.1. A model with pathological revelance: NSCLC 

Nrf2 activation is specially important in those tumors presenting a highly oxidative environment, which 

is the case of the lung. In these tissues, stress response pathways must be tightly controlled to allow 

cells to tolerate high levels of ROS. Several mechanisms have been described in tumor cells which allow 

them to adapt to the increased stress signals. According to the data available in cBioportal, non-small 

cell lung cancer (NSCLC) is the second type of cancer in which Nrf2 coding gene, NFE2L2, is more altered 

(10% of the patients suffering from this type of cancer), only preceded by esophageal squamous cell 

carcinoma (Figure 65A). Lung cancer is also the second type of cancer in which KEAP1 shows more 

alterations (15% of the patients), preceded by nerve sheath tumor (Figure 65B). The frequency of 

alterations in either NFE2L2 or KEAP1 in NSCLC patients is of 25%, which indicates that mutations in 

these genes are mutually exclusive (Figure 65C). In the light of these results, we decided to study TIGAR 

modulation by Nrf2 in lung cancer. 

 

Figure 65. Frequency of genetic alterations in NFE2L2 and KEAP1 in human cancer. Graphs corresponding to the ten types 

of cancer with more alterations in (A) NFE2L2 (Nrf2), (B) KEAP1 or (C) NFE2L2 and KEAP1. cBioPortal (162,163) was used to 

determine the frequency of genetic alterations detected in NFE2L2 (Nrf2) and KEAP1 in different human cancers. All Pan-

Cancer/The Cancer Genome Atlas (TCGA) studies were included in the analysis. For those cancer types in which a Pan-Cancer/TCGA 

study was not available, at least one study from another project was included. Graphs show the percentage of patients with 

alterations of a given gene in each type of cancer. 
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Alterations in the KEAP1/Nrf2 pathway have been described to contribute to the pathogenesis of NSCLC 

and are being explored as potential therapeutic targets (186). TCGA Research Network has made a great 

contribution to the understanding of the molecular alterations of tumors from different origins by 

genetically profiling them and determining genetic signatures associated to each malignancy. NSCLC is 

a heterogeneous group of diseases among which adenocarcinoma (ADC) is the most common, followed 

by lung squamous cell carcinoma (SQCC). The analysis of ADC and SQCC data available in TCGA through 

cBioportal revealed that alterations in the NFE2L2/KEAP1/CUL3 pathway were detected in 19,2% of ADC 

patients (Figure 66A) and 30% of SQCC patients (Figure 66B). Alterations in these genes showed mutual 

exclusivity (Figure 66A,B) given that alterations in more than one of these gens were rarely found in 

patients. These two types of cancer presented different distribution of alterations in the pathway, being 

KEAP1 the most altered in ADC (Figure 66A), whereas in SQCC the most altered gene was NFE2L2 

(Figure 66B). Besides, the status of PIK3CA and TP53, important drivers of NSCLC, was also analysed. 

Amplification of PIK3CA and mutations in TP53 were more frequent in SQCC than in ADC patients 

(Figures 8A,B). 

Important information can also be obtained from the analysis of the nature of alterations found in each 

gene. Missense mutations or deletions in KEAP1 were frequent in ADC (Figure 66A), whereas NFE2L2 

amplification was the most frequent alteration in SQCC (Figure 66B). Regarding TIGAR, it was found 

more altered in SQCC than in ADC, being amplification the most common event in the 4% of SQCC 

patients with alterations in this gene (Figure 66B). Overall, these data indicated that the Nrf2 sigalling 

pathway is increased in both NSCLC subtypes, but the mechanisms involved are different. A summary of 

the alterations that lead to Nrf2 constitutive activation in these tumours is provided in Figure 67. 

 



 

 

 

 

Figure 66. Frequency of genetic alterations in the Nrf2 pathway, TIGAR, PIK3CA and TP53 in NSCLC. cBioPortal (162,163) was used to determine the genetic alterations in (A) ADC and (B) SQCC 

each of these genes from all Pan-Cancer studies (TCGA). For those cancer types in which a Pan-Cancer study was not available, at least one study from another project was included. A legend is provided 

to identify each type of genetic alterations. This analysis does not include mRNA expression data. 
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Figure 67: Molecular mechanisms driving Nrf2 overactivation in ADC and SQCC. (A) General mechanism for Nrf2 degradation 

in normal cells: KEAP1 binding to Nrf2 allows the ubiquitination of Nrf2 by Cul3 ubiquitin ligase and subsequent degradation in 

the proteasome. (B) Representation of the disbalance between Nrf2 and KEAP1 in lung adenocarcinoma (ADC) and lung squamous 

cell carcinoma (SQCC). In ADC, loss of KEAP1 increases Nrf2 activity, whereas in SQCC increased Nrf2 activity is driven by NFE2L2 

overexpression. 
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4.2. TIGAR regulation by Nrf2 in NSCLC 

4.2.1. Characterisation of the A549, H460 and H1299 cell lines 

Three NSCLC cell lines with different genetic background were used for the experiments: A549, H460 

and H1299. A549 and H460 are both ADC cell lines, whereas H1299 is a SQCC cell line (Figure 68). Nrf2 

basal levels are higher in A549 than in H460, where they are almost undetectable by western blot. In the 

SQCC H1299 cell line, Nrf2 levels are similar to those in H460. Proteasomal inhibition by MG-132 

treatment resulted in the accumulation of Nrf2 protein in all of them (Figure 68A).  On the other hand, 

KEAP1 levels are undetectable in ADC cell lines, whereas this protein is present at basal conditions in 

H1299 (Figure 68A). Proteasomal inhibition results in increased KEAP1 levels in ADC cells, suggesting 

that in normal conditions this protein is rapidly degraded and cannot retain Nrf2 in the cytoplasm as it 

does in SQCC cells, in which MG132 does not affect KEAP1 levels. The differences in Nrf2 and KEAP1 

basal levels are in accordance with the analysis from TCGA studies (Figures 66,67). 

Regarding p53, western blot also confirmed the lack of TP53 expression in H1299 and revealed increased 

levels of this protein after proteasomal inhibition in ADC cell lines. It can be appreciated that high levels 

of TIGAR are present at basal levels in all cell lines regardless of p53 levels, with no alterations observed 

after treatment with MG132, suggesting that TIGAR is not degraded through the proteasome (Figure 

68). 

 

Figure 68: Basal protein levels in A549, H460 and H1299 cell lines. A549, H460 and H1299 cells were treated with the 

proteasome inhibitor MG-132 and analysed by western blot after 24 h. Western blot analysis of Nrf2, TIGAR, KEAP1 and p53 is 

shown. α-tubulin was used as endogenous control. 
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To determine the location of Nrf2 and p53 protein levels in these cells we performed 

immunofluorescence against these two proteins. Nrf2 was mainly localised in the nuclei of A549 cells 

and H460 cells, with a slight presence also in the cytoplasm of these cells. In H1299 cells, Nrf2 was 

uniformally distributed between nucleus and cytoplasm (Figure 69). It is relevant to note that, although 

Nrf2 protein levels were difficult to detect by western blot in H460 and H1299 cells, this protein was 

easily detected by immunofluorescence, confirming its presence in these cells and suggesting that 

different epitopes might be involved in the recognition of the protein by the polyclonal antibody used, 

which was the same in both techniques. 

p53 was detected in the nucleus of A549 and H460 cells with no presence in the cytoplasm, and it was 

not detected in H1299 cells (Figure 70), consistent with western blot results (Figure 68). 

 

 

Figure 69: Immunofluorescence analysis of Nrf2 basal levels in A549, H460 and H1299 cell lines. Control A549, H460 and 

H1299 cells were fixed and immunofluorescence was performed. Nuclei were stained with DAPI (shown in blue). Nrf2 was 

immunodetected with a specific primary antibody and an anti-rabbit Alexa488-conjugated secondary antibody (shown in green). 
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Figure 70: Immunofluorescence analysis of p53 basal levels in A549, H460 and H1299 cell lines. Control A549, H460 and 

H1299 cells were fixed and immunofluorescence was performed. Nuclei were stained with DAPI (shown in blue). p53 was 

immunodetected with a specific primary antibody and an anti-mouse Alexa488-conjugated secondary antibody (shown in 

magenta). 
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4.2.2. Effects of Nrf2 modulation on the expression of TIGAR in NSCLC cell lines 

The low KEAP1 expression in A549 and H460 cells makes them good models to study the effects of Nrf2 

inhibition (142,187). A previous study analysed the effect of NFE2L2 inhibition through three different 

siRNA in A549 cells with the aim of finding new Nrf2 target genes. The data from this study is available 

in Geoprofiles (accession number GSE28230) (142). In the publication in which this array was published, 

TIGAR was mentioned during the design of the study although there were any data informing about the 

effect of NFE2L2 siRNAs on the expression of this gene. With the help of Dr. Annie Rodolosse (Institute 

for Research in Biomedicine, Barcelona), we reanalysed the data from the array and found that TIGAR 

mRNA levels were inhibited by one of the NFE2L2-targeting siRNAs used in that work, more specifically 

by HSS107130 siRNA, after 24 h of transfection. However, the other two siRNAs used did not decrease 

TIGAR expression, and one of them, HSS107128, even slightly increased the expression of the gene 

(Table III). 

 

Gene HSS107128 HSS107129 HSS107130 

NFE2L2 (Nrf2) 18,75 25,69 15,86 

G6PD 25,11 28,78 29,12 

HO-1 18,74 18,17 16,07 

NQO1 7,48 18,56 9,92 

TIGAR 113,75 103,46 72,34 

 

Table III: Identification of Nrf2 targets by microarray analysis. Re-analysis of data from the Geoprofiles array GSE28230 

published by (142). A549 cells were transfected with three different NFE2L2-targeting siRNAs (HSS107128, HSS107129 and 

HSS107130) for 24 h and the expression of different genes was evaluated in a microarray. mRNA expression is presented as the 

percentage relative to cells transfected with scrambled siRNA. A reduction of at least 33% in the mRNA levels of a given gene in 

response to the three NFE2L2-targeting siRNAs was required for the gene to be considered an Nrf2 target. Genes meeting these 

conditions are shown in red. Grey colour indicates no modulation.  

 

Two transfection procedures were perfomed to determine if TIGAR was controlled by the Nrf2 

transcription factor: inhibition of NFE2L2 expression through siRNA and overexpression of the gene with 

a pcDNA3 plasmid containing the whole NFE2L2 coding sequence. Experiments were initiated with the 

A549 cell line to confirm the results obtained in the microarray analysis (Table III) and determine the 

effects of NFE2L2-targeting through siRNA on TIGAR protein levels. For all the experiments, the 

HSS107130 siRNA was used. More information regarding its target sequence can be found in Materials 

and Methods. 
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A time-course experiment with two siRNA concentrations was performed to analyse if NFE2L2 silencing 

had a progressive effect on the expression of NFE2L2 and Nrf2 target genes, and to determine an optimal 

end point for future experiments. Both 50 and 100 nM NFE2L2-targeting siRNA resulted in a significant 

decrease in NFE2L2 mRNA levels at 24 and 48 h, which was maintained at 72 h. Accordingly, the 

expression of G6PD and NQO1 were decreased by both doses of Nrf2 siRNA at all the times analysed. 

However, TIGAR mRNA levels were not decreased, and even a slight increase could be observed after 

NFE2L2 inhibition, which statistically significant at 48 h and was maintained at 72 h (Figure 71). This 

effect was in accordance with the results obtained in the analysis of the Geoprofiles array (Table III) and 

seemed to indicate that Nrf2 exerted different control of G6PD, NQO1 and TIGAR mRNA levels in A549 

cells. 

 

 

Figure 71. Modulation of TIGAR mRNA levels by Nrf2 inhibition in A549 cells. A549 cells were transfected with a NFE2L2-

targeting siRNA and subsequently analysed at the indicated times. (A) RT-qPCR analysis NFE2L2 (Nrf2), G6PD and TIGAR levels in 

A549 cells transfected with 50 and 100 nM NFE2L2-targeting siRNA for 24, 48 or 72 h. (B) RT-qPCR analysis NFE2L2 (Nrf2), G6PD, 

NQO1 and TIGAR in additional experiments performed at 72 h. Data are presented as the mean fold change relative to cells 

transfected with a scrambled siRNA (Scr.)  SEM (A: each gene was analysed at least in 3 independent experiments, B: each gene 

was analysed at least in 5 independent experiments, *P < 0.05,**P < 0.01, ***P < 0.001). 
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To better clarify the effect of Nrf2 inhibition on TIGAR we proceeded to analyse protein levels by western 

blot. Time-course analysis of protein levels revealed that Nrf2, HO-1 and TIGAR were significantly droped 

from 24 h post-transfection to 72 h, when the levels were reduced by 50% compared to control cells 

(Figure 72A-C). In an analysis at 72 h with more samples, the levels of other proteins apart from the 

ones already mentioned above were determined. Nrf2, TIGAR, HO-1, G6PD and PCK-2 were all 

significantly downregulated at 72 h (Figure 72D). 

 

 

Figure 72. Modulation of TIGAR protein levels by Nrf2 inhibition in A549 cells. A549 cells were transfected with a NFE2L2-

targeting siRNA and subsequently analysed at the indicated times. (A) Representative images of western blot analysis of Nrf2, 

G6PD and TIGAR after transfection with 50 or 100 nM NFE2L2-targeting siRNA at 24, 48 and 72 h. α-tubulin was used as 

endogenous control. (B) Representative images of western blot analysis of HO-1, PCK-2 and TIGAR. (C) Quantification of 

independent western blot analyses at the conditions mentioned in A and B. (D) Quantification of additional western blot analyses 

after 72 h of siRNA transfection. The levels of different proteins are shown. All data are presented as the mean fold change relative 

to cells transfected with scrambled siRNA (Scr.)  SEM (C: Nrf2 n=3, TIGAR n=5, HO-1 n=3, D: Nrf2 n=3, TIGAR n=7, HO-1 n=3, 

G6PD n=3, PCK-2 n=5, *P < 0.05, **P < 0.01, ***P < 0.001). 
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To determine the relevance of these findings, we performed the same experiments in another ADC cell 

line, H460. The inhibition of Nrf2 was proved by western blot (Figure 73A,B) but, surprisingly, neither 

G6PD nor TIGAR protein levels were found downregulated in the protein analysis (Figure 73A,B). The 

quantification of mRNA levels, however, revealed that the expression of G6PD, NQO1 and TIGAR, as well 

as NFE2L2 itself, was decreased by NFE2L2-targeting siRNA (Figure 73C), showing that Nrf2 suppression 

attenuated the expression of these genes whithout altering their protein levels. This response was just 

the opposite to what occurred in A549 cells. 

 

Figure 73. TIGAR modulation by Nrf2 inhibition in H460 cells. H460 cells were transfected with 100 nM NFE2L2-targeting 

siRNA and subsequently analysed after 72 h. (A) Western blot analysis of Nrf2, G6PD and TIGAR. (B) Quantification of independent 

western blot analyses. (C) RT-qPCR analysis of NFE2L2 (Nrf2), G6PD, NQO1 and TIGAR. Data are presented as the mean fold 

change relative to the cells transfected with scrambled siRNA (Scr.)  SEM (B: at least n=3, C: n=4, **P < 0.01). 

Given that Nrf2 and p53 have shown to affect the expression of each other in previous studies (188), we 

transfected the SQCC H1299 cell line, which lacks TP53, with the NFE2L2-targeting siRNA. The aim of 

this experiment was to avoid interference of p53 in the regulation of TIGAR mRNA and protein levels in 

those cells in which Nrf2 was being supressed. Western blot analyses of Nrf2-inhibited H1299 cellls 

showed significant downregulation of G6PD protein levels with no changes in TIGAR levels (Figure 

74A,B). On the other hand, RT-qPCR revealed decreased NFE2L2 and NQO1 expression, although G6PD 

mRNA levels were not modified and, surprisingly, TIGAR expression was significantly increased after Nrf2 

elimination (Figure 74C).  

 

Figure 74. TIGAR modulation by Nrf2 inhibition in H1299 cells. H1299 cells were transfected with 100 nM NFE2L2-targeting 

siRNA and subsequently analysed after 72 h. (A) Western blot analysis of Nrf2, G6PD and TIGAR. (B) Quantification of independent 

western blot analyses. (C) RT-qPCR analysis of NFE2L2 (Nrf2), G6PD, NQO1 and TIGAR. Data are presented as the mean fold change 

relative to the cells transfected with scrambled siRNA (Scr.)  SEM (B: at least n=3, C: n=4, *P < 0.05,**P < 0.01, ***P < 0.001). 
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These results demonstrated that Nrf2 target genes can be idependently regulated, as it is evidenced by 

the differential regulation of G6PD and NQO1. Furthermore, the increase in TIGAR mRNA levels H1299 

cells after Nrf2 supression questioned our hypothesis of a compensatory effect driven by p53 when Nrf2 

was eliminated. Thus, other mechanisms beyond Nrf2 and p53 must be controlling TIGAR expression in 

these cells. Nevertheless, the potential implication of p53 in the response of Nrf2-depleted A549 and 

H460 needed to be checked. One of the clues that led us to analyse p53 in our experiments was derived 

from the analysis of the Geoprofiles array GSE28230. Data indicated that the levels of CDKN1A (p21), a 

known p53 target gene, were found upregulated by the three NFE2L2-targeting siRNAs in A549 (Table 

IV), suggesting a potential role for p53 in the response to Nrf2 inhibition of these cells. 

GeneGene HSS107128 HSS107129 HSS107130 

TP53 88,16 113,84 41,12 

CDKN1A (p21) 208,74 168,53 143,66 

NOXA 129,08 92,90 87,52 

 

Table IV. Study of TP53 modulation in a microarray analysis of Nrf2-inhibited cells. Re-analysis of data from the Geoprofiles 

array GSE28230 published by (142). A549 cells were transfected with three different NFE2L2-targeting siRNAs (HSS107128, 

HSS107129 and HSS107130) for 24 h and the expression of different genes was evaluated in a microarray. mRNA expression is 

presented as the percentage relative to cells transfected with scrambled siRNA. A reduction of at least 33% in the mRNA levels of 

a given gene in response to the three NFE2L2-targeting siRNAs was required for the gene to be considered an Nrf2 target (shown 

in red). During the re-analysis of this array, we established a second cutoff: an increase of at least 50% in mRNA expression was 

required to consider a gene overexpressed (shown in blue). Grey indicates no modulation. 

We proceeded to analyse the expression of CDKN1A by RT-qPCR in our samples and found differences 

between cell lines. In A549, Nrf2 inhibition resulted in a slight increase in CDKN1A expression, whereas 

in H460 the mRNA levels of this gene were slightly decreased. Surprisingly, CKN1A expression was 

significantly upregulated in H1299 after Nrf2 inhibition (Figure 75). 

 

Figure 75: CDKN1A expression in A549, H460 and H1299 in response to Nrf2 inhibition. A549, H460 and H1299 cells were 

transfected with 100 nM NFE2L2-targeting siRNA and CDKN1A (p21) expression was determined by RT-qPCR after 72 h of siRNA 

transfection. Data are presented as the mean fold change relative to the cells transfected with scrambled siRNA (Scr.)  SEM (A549 

n=7, H460 n=4, H1299 n=5, **P < 0.01). 
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However, immunodetection of p53 in Nrf2-inhibited A549 cells suggested decreased presence of this 

transcription factor in the nucleus (Figure 76), which would not support a potential activation of p53-

dependent transcription of genes such as CDKN1A or TIGAR. 

 

 

Figure 76: Immunofluorescence analysis of p53 in response to Nrf2 inhibition in A549 cells. A549 cells were transfected with 

100 nM NFE2L2-targeting siRNA and after 72 h cells were fixed. p53 was detected with a specific primary antibody and an anti-

mouse Alexa488-conjugated secondary antibody (shown in magenta). Nuclei were stained with DAPI (shown in blue). 

 

 

In one hand, the fact that Nrf2 inhibition decreases TIGAR mRNA levels in H460 but not in A549 might 

be explained by a p53-driven compensatory effect in the latter cell line, which would be supported by 

increased CDKN1A expression. However, the finding that CDKN1A is upregulated in H1299 opens the 

possibility of the participation of other transcriptional regulators in the adaptation of ADC cells to Nrf2 

depletion. 
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Given the variety of results obtained with Nrf2 siRNA in ADC cell lines, we wondered whether these cell 

lines would respond similarly to increased NFE2L2 expression. Unfortunately, the levels of NQO1, G6PD 

and TIGAR were unaltered after NFE2L2 overexpression both in A549 and H460 cells (Figure 77). This 

lack of response might be explained by high Nrf2 activity at basal conditions in these cells. 

 

Figure 77. TIGAR modulation by Nrf2 overexpression in ADC cells. (A, B) A549 and (C, D) H460 cells were transfected with a 

pcDNA3 plasmid coding for NFE2L2 (Nrf2) gene and subsequently analysed after 24 h. (A, C) Representative images of western 

blot analysis of Nrf2, G6PD and TIGAR. (B, D) RT-qPCR analysis of NFE2L2 (Nrf2), G6PD, NQO1 and TIGAR. Data are presented as 

the mean fold change relative to the cells transfected with a scrambled siRNA (Scr.)  SEM (B: n=3, D: n=5, *P < 0.05, **P < 0.01). 

 

Despite the pathological interest of studying Nrf2 and TIGAR in NSCLC, the results with these cell lines 

were not concluding and we decided to continue the caracterization of the binding of Nrf2 to TIGAR 

promoter in the model where we had obtained positive results in terms of expression, HeLa cells. 

  



RESULTS CHAPTER III 

143 

 

5. Cloning and functional characterisation of the human TIGAR promoter 

5.1. Cloning of regulatory AREs located at TIGAR promoter 

In the light of the in-silico analysis of the human TIGAR promoter, we decided to clone the three AREs 

closer to TIGAR translation start site, which are ARE 1, ARE 2 and ARE 3, plus the intronic are ARE i1. 

Several primers for the amplification of specific fragments by PCR were designed, as shown in Figure 

78. PCR was performed from two bacterial artificial chromosomes (BACs) of human chromosome 12 

provided by the Children’s Hospital Oakland Research Institute (BAC numbers RP11-177D20 and RP11-

74J21). Several constructions were obtained by PCR and cloned into TOPO TA vector. This cloning 

procedure is based on the recombination of 3'-A overhangs from PCR products with the TOPO vector, 

which has T-overhangs bound to topoisomerase I. A schematic representation of how this system works 

is provided in the Materials and Methods section. TOPO TA vectors include several restriction enzyme 

sites in their multicloning site that facilitate the subcloning of PCR fragments into the vectors of interest, 

which in our case were pGL3 Basic and pGL3 Promoter luciferase reporter vectors. Figure 79 summarizes 

the cloning workflow performed for the obtention of the pGL3 constructs. Despite that several PCR 

fragments were obtained, only four constructs were finally cloned into luciferase reporter vectors due to 

difficulties in either the TOPO cloning of PCR constructs or the subsequent digestion and subcloning 

into pGL3 vectors. The four constructs obtained were named D, J, 8 and 15, according to the labelling of 

the bacterial colonies of origin (Figure 79). Constructs D and J contain ARE 1 and ARE 2 or only ARE 2, 

respectively, whereas constructs 15 and 8 contain ARE 1 and ARE 2 or only ARE 2, respectively, plus the 

TSS of TIGAR. The TSS comprises CREB1 and SP1 binding sites, which conform the minimal promoter of 

TIGAR. For this reason, constructs D and J were subcloned into pGL3 Promoter Vector, which has SV40 

promoter, whereas constructs 8 and 15 were subcloned into pGL3 Basic Vector, which does not contain 

a promoter and, thus, requires the activation of TIGAR promoter to be expressed. In order to avoid 

alterations in the reading frame of the luciferase gene, constructs D and J were obtained with primer 

Reverse 2 and include the TSS but not the translation start codon (Figures 78, 79). 

 

  



  

  

 

 

 

 

Figure 78. Primers designed for the amplification of TIGAR promoter and first intron. PCR were performed from two BACs of chromosome 12 using forward (FW) and reverse (RV) primers specific 

to the fragments of interest. The region of TIGAR promoter studied is shown in blue with AREs 1-3 and the transcription start site (TSS). The intronic region studied is shown in orange and contains ARE 

I1, p53 binding site 2 and the translation start codon, shown in brown. At the end of the process, several constructs had been cloned in TOPO vectors, whereas only four constructs (D, J, 15 and 8) were 

cloned in pGL3 vectors.  
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Figure 79. Cloning workflow for the obtention of TIGAR promoter constructs.  A summary of the main steps in the cloning process is provided, including images from agarose gels representative 

of each of the steps. All constructs were firstly cloned with the TOPO-TA system and then subcloned in pGL3 basic vectors. Constructs D and J, which lack the minimal promoter of TIGAR, were subcloned 

in pGL3 promoter vectors. Sequencing was performed to confirm the constructions.
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5.2. Functional assays of TIGAR promoter activation by Nrf2 

In Sections 2 and 3 of this chapter it has been shown that the Nrf2 activator DMF, as well as 

overexpression of NFE2L2, increase TIGAR mRNA levels (Figures 61, 64). To clarify whether Nrf2 binds 

to the ARE sites that were identified in TIGAR promoter, the analysis of which is detailed in Section 1 of 

this chapter, we performed luciferase assays with the pGL3 vectors obtained (Figures 78, 79). 

In order to have positive controls of induction of TIGAR transcription, the plasmids pcDNA3-flag p53, 

CMV-Sp1, pFETCH_CREB1 and pRK-ATF4 were acquired from Addgene in order to overexpress p53, Sp1, 

CREB1 and ATF4, respectively. HeLa cells were transfected with these plasmids in parallel to the 

transfection of pcDNA3-flag Nrf2 and cellular extracts were collected after 24 h for mRNA and protein 

analyses. All the plasmids effectively upregulated the levels of the corresponding proteins except for 

CREB1, the levels of which remained unaltered (Figure 80A). Interestingly, TIGAR protein levels were not 

modified by any of the overexpression plasmids. However, RT-qPCR analysis revealed upregulation of 

the mRNA levels of TIGAR by p53, SP1 and Nrf2 overexpressing plasmids (Figure 80B). As expected, 

CREB1 did not affect TIGAR expression (Figure 80B). p53 was the factor which yield the most potent 

induction of TIGAR expression, triplicating TIGAR mRNA levels, followed by Nrf2 and SP1, which almost 

doubled TIGAR mRNA levels. These results are in accordance with the publications that have shown 

direct binding of p53, SP1 and CREB1 to TIGAR promoter (3,76,77). The fact that TIGAR protein levels 

are not increased by neither SP1, p53 or Nrf2 is consistent with previous findings reported in this chapter, 

where NFE2L2 overexpression in HeLa induced an important increase in TIGAR mRNA levels but had 

only a slight effect on TIGAR protein (Figure 64). This suggests that, although several transcription 

factors are involved in the regulation of TIGAR expression, a robust regulation of TIGAR protein levels 

usually prevails over transcriptional control. 

During the in-silico analysis of TIGAR promoter we realized that the Activating transcription factor 4 

(ATF4) could also be involved in the regulation of TIGAR expression. ATF4, likewise CREB1, binds to cAMP 

Response Elements (CRE) and could therefore control TIGAR expression through the already-described 

CREB1 binding element. Even more interesting was the finding that ATF4 can bind to AREs and, indeed, 

it has been shown to interact with Nrf2 and control the expression of genes such as HO-1 (189). Thus, 

we incorporated ATF4 to our experiments. The results showed that ATF4 overexpression increased TIGAR 

expression to a similar extent to p53 (Figure 80B). Similar to the other transcription factors transfected, 

TIGAR protein levels were not affected by ATF4 overexpression (Figure 80A). 
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Figure 80. TIGAR modulation by several transcription factors. HeLa cells were transfected with Nrf2, SP1, CREB1, p53 or ATF4 

overexpressing plasmids and protein and mRNA were determined after 24 h. (A) Western blot analysis of Nrf2, SP1, CREB1, p53, 

ATF4 and TIGAR protein levels. (B) RT-qPCR analysis of TIGAR mRNA levels. The results from a single experiment are shown. 

Among the transcription factors that resulted in TIGAR mRNA upregulation, we decided to use SP1 to 

perform luciferase experiments. P53 was not suitable as a positive control given that the pGL3 constructs 

generated during this thesis do not include any of the p53 binding sites. 

Some of the experiments regarding the functional characterization of TIGAR promoter are still being 

carried out, and therefore the results presented in this last section are preliminary. To date, two different 

luciferase experiments have been performed, one with constructs 8 and 15, which include the TSS, and 

another experiment with construct D, which does not contain the TSS (Figure 81A). Unfortunately, we 

have not obtained construct J in pGL3 promoter vector yet. 
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Constructions 8 and 15 (ARE1+TSS and ARE1+ARE2+TSS, respectively) were transfected into HeLa cells 

together with a β-galactosidase expression plasmid for the normalization of the luciferase results and 

the corresponding transcription factor Nrf2, SP1 or an empty pcDNA3 vector. A single experiment with 

independent triplicates has been performed to date, in which we could not detect β-galactosidase 

activity, and thus luciferase activity could not be normalized. When luciferase raw data were analysed, 

we could appreciate that luciferase activity was increased by constructions 8 and 15. However, this 

activity was independent of Nrf2 activation (Figure 81B). The single transfection of constructions 8 and 

15 caused a high increase in the luciferase activity, suggesting that the presence of the sequences 

contained in these constructs strongly induces the expression of the pGL3 basic vector. Importantly, 

overexpression of SP1, which was carried out in parallel to Nrf2 experiments as a positive control, did 

not increase luciferase activity in any of the constructs either, suggesting an overall failure of the assay 

(Figure 81B). The high activity reported in empty pcDNA3-transfected cells could be explained by the 

presence of the TSS in both constructs, something that has been reported in other studies (76,77). 

However, an induction should be observed after overexpression of SP1, as others have shown (76). One 

explanation could be that luciferase activity is too high to appreciate any modulation by the SP1 or Nrf2. 

As an alternative approach, luciferase assays with construct D have been performed. HeLa cells were 

transfected with a different β-galactosidase vector and the corresponding pGL3 promoter vector with 

construct D or the empty pGL3 promoter vector, together with Nrf2 overexpression plasmid or the 

corresponding pcDNA3 vector. The results showed that NFE2L2 overexpression increased luciferase 

activity only in construct D, and not in the pGL3 empty vector, evidencing that either ARE1 and/or ARE2 

are responsible for the binding of Nrf2 to the promoter of TIGAR (Figure 81C). It is to mention that in 

this experiment, β-galactosidase activity was detected but it was found to be induced by Nrf2 

transfection and, thus, we could not normalize luciferase activity to these reads. Indeed, when the 

promoter of β-galactosidase expression plasmid was analysed, we found an ARE. As an alternative 

normalization system, we quantified protein levels in the lysates used for the determination of luciferase 

activity. 

In conclusion, we have been able to show that the AREs present in construct D are potentially the binding 

sites for Nrf2. However, we need to obtain constructs with only one of the AREs to determine which one 

is the main responsible for Nrf2 control of TIGAR promoter. We are currently working on enzymatic 

digestions of construct D to eliminate one of the AREs and then religate the vector to obtain again 

functional luciferase reporter constructs. 
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Figure 81. Luciferase assays of AREs in TIGAR promoter. HeLa cells were transfected with pGL3 luciferase reporter vectors 

containing constructs 8, 15 or D and luciferase activity was determined after the overexpression of Nrf2. (A) Schematic 

representation of the pGL3 constructs transfected: constructs 8 and 15 were cloned in pGL3 basic vectors and contain the TSS with 

the SP1 binding site, whereas construct D was cloned in pGL3 promoter vector and does not contain the TSS. (B) Luciferase activity 

from constructs 8, 15 and empty pGL3 basic vector in cells transfected with either Nrf2, SP1 or a pcDNA3 empty vector as control. 

Luciferase activity is reported as raw data from a single experiment with independent triplicates, mean  SD (***P < 0.001). (C) 

Luciferase activity from constructs D and empty pGL3 promoter vector in cells transfected with either Nrf2 or a pcDNA3 empty 

vector as control. Data are represented as the mean luciferase activity normalized to protein levels from one single experiment in 

each assay with independent triplicates  SD (*P < 0.05, **P < 0.01, ***P < 0.001). 
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6. Nrf2 as a transcriptional regulator of mouse Tigar 

6.1. Modulation of Tigar gene expression by Nrf2 in IDGs 

In collaboration with Cristina Sánchez and Dr. Francesc Ventura (Departament de Ciències Fisiològiques, 

Universitat de Barcelona) we have been able to evaluate the expression of Tigar in different models of 

bone differentiation in mice. The group leadered by Dr. Ventura has years of experience in the 

differentiation process of osteoblasts to osteocytes. At the time when the experiments presented in this 

thesis were performed, Dr. Ventura’s Lab was investigating whether Nrf2 could modulate the expression 

of genes involved in the differenciation of bone cells. For this, they were using Immortomouse/Dmp1-

GFP-SW3 cells (IDG-SW3, referred to as IDGs), which replicate the process of osteoblast to osteocyte 

transition, and we had access to samples from several experiments, which are summarized in Table V. 

Besides, we could also evaluate the expression of Tigar in primary mouse osteblasts. However, these 

results have not been included due to the lack of experiments in this model model. 

 

Cells Experiment 

IDGs Nrf2 overexpression with pMSCV-Nrf2-flag, cultured for 5 days. 

Control population: pMSCV-GFP-infected IDGs. 

Differentiated IDGs Treatment with 5 and 20 µM DMF for 48 h. 

Control population: untreated IDGs. 

Nrf2-CRISPR IDGs and the 

corresponding Nrf2+/+ control IDGs 

Treatment with 5 and 20 µM DMF for 48 h. 

Control population: untreated Nrf2+ IDGs. 

Nrf2-CRISPR IDGs and the 

corresponding Nrf2+/+ control IDGs 

Nrf2 overexpression with pMSCV-Nrf2-flag, cultured for 5 days. 

Control population: pMSCV-GFP-infected Nrf2+ IDGs. 

Table V. Experiments performed by Dr. Ventura’s Lab in IDGs in which Tigar expression has been analysed. 

 

IDGs were infected with a murine stem cells virus (pMSCV) vector expressing human Nrf2 or the 

corrresponding control vector expressing the green fluorescent protein (GFP). Nrf2 overexpression 

significantly induced the mRNA levels of Tigar in parallel to known Nrf2 target genes, such as Trx1 and 

Nqo1 (Figure 82A).  As a complementary approach, IDGs were treated with DMF. This molecule had 

been previously tested in HeLa, where we showed that it induced Nrf2 and Tigar expression, as previously 

reported in this chapter. 48 h treatment of IDGs with DMF significantly increased the expression of Tigar 

and that of the Nrf2 target genes Trx1, Nqo1 and G6pd (Figure 82B). 

In an attempt to confirm that the expression changes observed in Nrf2 target genes and Tigar relied on 

the activation of Nrf2, an Nrf2-CRISPRed IDG cell line was generated by Dr. Ventura’s group. These cells 

showed decreased levels of Nrf2, Nqo1, G6pd and Tigar at basal conditions (Figure 82C, white bars) 

compared to Nrf2+/+ IDG cells (Figure 82C, grey dotted line), which were set as control. The function of 

endogenous mouse Nrf2 was evaluated by treating Nrf2-CRISPRed IDGs with DMF. The Nrf2 inducer 

was not able to enhance the expression of neither Trx1, Nqo1, G6pd or Tigar in Nrf2-CRISPRed IDGs 
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(Figure 82C, yellow bars), evidencing that endogenous Nrf2 had been successfully eliminated by the 

CRISPR technology. The re-expression of heterologous human Nrf2 in Nrf2-CRISPRed IDGs resulted in 

increased expression of all Nrf2 target genes, including Tigar (Figure 82C, black bars). As expected, the 

combination of heterologous expression of human Nrf2 and DMF treatment (Figure 82C, stripped bars) 

increased the expression of Nrf2 target genes to the same extent that Nrf2 overexpression alone, 

confirming that the murine Nrf2 is not functional in these cells.  

 

 

Figure 82. Analysis of Tigar expression under Nrf2 modulation in mouse IDGs. (A) IDGs were infected with pMSCV-Nrf2-flag 

or pMSCV-GFP as control and gene expression was determined after 5 days of culture by RT-qPCR. (B) IDGs were treated with 

DMF at the indicated doses for 48 h and gene expression was determined after 5 days of culture by RT-qPCR. (C) Nrf2-CRISPERed 

IDGs were infected with pMSCV-Nrf2-flag or pMSCV-GFP as control and subsequently treated with DMF with 20 µM DMF for 48 

h. Gene expression was normalized to that of Gapdh and is expressed relative to untreated IDG cells with normal Nrf2 expression 

(Nrf2+/+). Mean expression ± SEM is represented (n=4, *P < 0.05, **P < 0.01, and ***P < 0.001). 
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6.2. In silico study of the promoter of mouse Tigar gene 

Considering that the expression of Tigar was significantly increased by Nrf2 overexpression and 

activation by DMF in mouse cells, we decided to analyse the binding of Nrf2 to Tigar promoter. For this, 

we performed an in silico study of 12 Kbp covering the promoter and first intron of mouse Tigar looking 

for sequences corresponding to the Nrf2 binding motif TGAC/GnnnGC (147). We identified five potential 

AREs, three of them in the promoter and the other two in the first intron of Tigar, close to the p53 

binding site 2 (BS2) (Figure 83). 

Eight different regions are conserved between mouse and human along the 12 Kbp of the mouse 

genome that were analysed, the majority of which are also conserved in Pan troglodytes (Figure 83). We 

only identified one potential ARE within the conserved regions between human and mouse, which was 

located at -5.762 bp from the translation start codon (ATG, +1) (Figure 83, Box A). AREs 2 and 3 were 

located in regions that were not conserved in neither Pan troglodytes, Bos taurus or Homo sapiens and, 

thus, were not further studied. ARE 4 is located between two of the fragments that are conserved in 

human, and thus it was not considered either. It is true that some regions that are not conserved between 

mouse and these species have shown to control mouse Tigar expression. This is the case of the p53 

binding site 1 (BS1) (75). In our analysis, we excluded the AREs that were not conserved at least in human 

to try to look for common regulatory mechanisms between these two species. 

Interestingly, the serach for intronic AREs revealed that ARE i1, which is located at +273 bp, is included 

in the p53 BS2, which is partially conserved between mouse and human (Figure 83, Box B). 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
Figure 83. Study of mouse Tigar promoter and first intron with ECR Browser. ECR Browser (available at http://ecrbrowser.dcode.org) (182) was used to analyse the sequence between 

127.104.600 to 127.116.500 of mouse chromosome 6. The sequence was compared with the genome of Pan troglodytes (panTro3), Homo sapiens (hg19) and Bos taurus (bosTau6). The image 

provided by ECR Browser has been modified to indicate the important elements for the study of antioxidant response elements (AREs) within Tigar promoter and first intron. A legend is provided 

with all the details. Two additional boxes are used to zoom in (A) a region of Tigar promoter containing a potential ARE and in (B) the region close to Tigar minimal promoter and first intron. 
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6.3. Binding of Nrf2 to the promorer of mouse Tigar gene 

To finally determine the direct binding of Nrf2 to the potential AREs described in Tigar gene, several 

ChIP experiments were performed in collaboration with Cristina Sánchez, from Dr. Ventura’s Lab. ARE 1 

and ARE i1 were interrogated. These AREs were chosen for functional characterization given that ARE1 

is conserved between human and mouse and ARE5 is within p53 BS2. 

Primary osteoblasts were treated with DMF at 5 µM for 24 h and, after performing the ChIP with a primary 

antibody specific to Nrf2, RT-qPCR was performed to determine the presence of the regions with the 

potential AREs in the immunoprecipitated DNA fractions bound to Nrf2. Specific primers for the 

amplification of the sequences surrounding each of these AREs were used and a schematic 

representation is provided in Figure 84. Results showed that the sequence corresponding to the ARE 1, 

located in Tigar promoter, was enriched in the fractions precipitated with the anti-Nrf2 antibody, 

confirming the binding of this transcription factor to Tigar promoter (Figure 84A). However, a non-

significant increase was observed for the sequence corresponding to intronic ARE i1 (Figure 84B). 

Neither of the increases observed for the AREs were observed in the immunoprecipitates obtained with 

an antibody against the IgGs, showing the specificity of Nrf2 for this ARE (Figure 84A,B). 

 

 

Figure 84. Nrf2 binding to AREs in mouse Tigar. Osteoblasts were treated with 5 µM DMF for 24 h and genomic DNA was 

obtained. Chromatin immunorepcipitation was performed using a specific Nrf2 antibody and IgGs were used as control. Two AREs 

were interrogated, (A) one located in Tigar promoter (ARE 1) and (B) one lacted in the first intron of Tigar (ARE i1). The primers 

used for the amplification of the sequences surrounding the AREs in the immunoprecipitated fractions are shown in the right panel 

of the figure, written in orange. The sequences corresponding to AREs are written in green. Results were normalized to input 

chromatin and plotted relative to the enrichment of the IgG fraction in untreated IDG cells. Data are presented as mean enrichment 

± SEM (n=3 with duplicates, *P < 0.05). 
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As a complementary approach, a ChIP experiment was performed in control and Nrf2-CRISPRed IDG 

cells to confirm the specificity of Nrf2 to bind to the ARE located in Tigar promoter. This sequence was 

enriched in the DNA immunoprecipitated with an anti-Nrf2 antibody when Nrf2 was overexpressed in 

Nrf2+/+ IDGs (Figure 85A), but not in the Nrf2 CRISPRed IDG2 (Figure 85B). Although more experiments 

should be performed to evaluate the statistical power of this observation, these results seeem to indicate 

that the binding of Nrf2 to ARE 1 in mouse Tigar promoter is specific. 

 

 

Figure 85. Specific binding of Nrf2 to ARE 1 in mouse Tigar promoter. Nrf2+/+ and Nrf2-CRISPRed IDGs were infected with 

pMSCV-Nrf2-flag or pMSCV-GFP as control and genonomic DNA was obtained after 5 days of culture. Chromatin 

immunorepcipitation was performed using a specific Nrf2 antibody and IgGs were used as control. The enrichment of the sequence 

corresponding to ARE 1 in the Nrf2 and IgGs-immunoprecipitated fractions was assessed by RT-qPCR with specific primers in (A) 

Nrf2+/+ and (B) Nrf2-CRISPRed IDGs. Results were normalized to input chromatin and plotted relative to the enrichment of the 

IgG fraction in each cell type. Data from a single experiment are presented. 
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7. Discussion 

In this chapter, we have analysed the contribution of Nrf2 in the transcriptional regulation of TIGAR. We 

have found that Nrf2 induction by DMF increases TIGAR mRNA levels in a transcription-dependent 

manner in HeLa, although this is not translated to an increase in TIGAR protein levels. When Nrf2 was 

overexpressed in these same cells, results were more reproducible and we could observe enhanced 

mRNA and protein levels of TIGAR. Acoordingly, the inhibition of Nrf2 through siRNA reduced TIGAR 

expression and protein levels in HeLa cells. The direct binding of Nrf2 to TIGAR promoter will be assayed 

in forthcoming experiments by luciferase assays and ChIP. However, it is important to consider that, 

beyond TIGAR transcriptional control, highly conserved mechanisms seem to control the levels of TIGAR 

similarly to what occurs for housekeeping genes. This would explain why the overexpression of SP1 and 

p53, transcription factors that are known to bind to TIGAR promoter and induce its expression, increased 

TIGAR mRNA but not protein levels in HeLa cells. In other studies, TIGAR protein levels have been found 

increased after p53 induction in a p53 doxycycline-inducible SAOS-2 cell line and also after doxycycline 

treatment of U2OS cells (3), suggesting that the control of TIGAR protein levels by p53 might be cell-

dependent. 

HeLa cells are a good model for the discovery of molecular mechanisms common in cancer. However, 

given the clinical importance of the Keap-Nrf2 axis in NSCLC, where it is one of the mechanisms driving 

therapy resistance (186), we aimed to determine a potential contribution of TIGAR in the malignant 

phenotype of these tumours. For that, we inhibited Nrf2 levels in two ADC cell lines, A549 and H460, 

and one SQCC cell line, H1299. The results generated a lot of controversy given that none of the cell 

lines responded in the same way to Nrf2 inhibition. In A549, Nrf2 supression reduced TIGAR protein 

levels but enhanced the expression of this gene. On the contrary, in H460 cells Nrf2 inhibition reduced 

TIGAR mRNA levels but did not affect its protein levels. Finally, Nrf2 inhibition in H1299 cells resulted in 

increased TIGAR expression with no changes at the protein level. Considering the cross-talk that has 

been described between Nrf2 and p53 (188), we evaluated TP53 induction in those cells that showed 

increased TIGAR mRNA levels after Nrf2 inhibition: A549 and H1299, which lack TP53. To our surprise, 

mRNA levels of CDKN1A (p21) were increased in both A549 and H1299, showing that p53-alternative 

mechanisms were active and could explain TIGAR induction. However, these mechanisms remain 

unknown. To try to overcome the compensatory events after Nrf2 inhibition, we overexpressed Nrf2 in 

ADC cell lines, which did not cause any changes in TIGAR mRNA or protein levels. 

The results obtained in NSCLC point out that there is a link between Nrf2 and TIGAR in these cancer cell 

types, although this connection is more clear in HeLa cells. In general, it seems that TIGAR protein levels 

are highly protected from variation by some unknown mechanism and that when they are decreased, as 

it is the case of A549, transcriptional mechanisms are induced to enhance TIGAR mRNA expression and 
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restore proteins levels. It is important to keep in mind, however, that metabolic events are carried out 

by enzymes and, thus, the most relevant changes are those at the protein level. Considering that, we 

should include TIGAR to the list of genes that need to be considered as Nrf2 targets, at least in ADC cells 

with high basal levels of Nrf2, as it is the case of A549. These cells have been previously used to describe 

novel Nrf2 target genes, such as G6PD, PGD, TKT and PEPCK, in a study in which TIGAR was evaluated 

only at the mRNA level and was not found significantly affected (142). Although the results of this thesis 

show that Nrf2 does not regulate TIGAR in all types of cells, TIGAR modulation should be considered 

when designing strategies of Nrf2 inhibition in ADC. TIGAR expression has been related to resistance to 

radiotherapy (79). Thus, if Nrf2 inhibition lead to decreased TIGAR levels in cancer-treated patients, that 

would draw an scenario of higher possibilities for therapy response. However, if the upregulation of 

TIGAR mRNA levels that we have observed in vitro after Nrf2 inhibition was reproduced in these tumours, 

the effects of therapies blocking Nrf2 for long periods should be evaluated to confirm that a refractory 

response based on increased TIGAR protein levels is not taking place. The findings reported in this thesis 

indicate that Nrf2 inhibition in certain kinds of tumours might be a double-edged sword depending on 

the alternative antioxidant mechanisms triggered by cells, one of which could be TIGAR. 

This chapter begun with the identification and analysis of conservation of AREs in TIGAR promoter. 

Among the several AREs identified, three of them were more likely to be functional response elements 

due to their degree of conservation between species and the proximity to TIGAR TSS, and thus were 

selected to be cloned. We have been able to clone two of these AREs, the ones located in TIGAR 

promoter, in pGL3 luciferase reporter vector, the functional study of which has indicated that Nrf2 can 

bind to either one of two of these AREs. This has been described by overexpressing Nrf2 in HeLa cells 

and measuring the luciferase activity of the construct named ‘D’, which includes both ARE 1 and ARE 2. 

The next experiments in this project will be addressed to the obtention of each of the AREs in a pGL3 

promoter vector for their independent functional characterisations. Once we confirm which ARE is 

responsible for Nrf2 binding to TIGAR promoter, we will perform chromatin immunoprecipitation assays 

in human cells to characterise the direct binding between Nrf2 and TIGAR, as we have performed in 

mouse cells thanks to the collaboration with the group of Dr. Francesc Ventura. 
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CONTEXT 

In the previous chapters of this thesis we have provided data to discuss the antioxidant function of 

TIGAR. In the first chapter, it has been shown that PFKFB3 inhibition induces TIGAR expression in parallel 

to increased ROS levels. In the second, spectrophotometric determinations and metabolomic analyses 

showed that, although TIGAR can dephosphorylate Fru-2,6-P2, this effect does not result in increased 

flux through the PPP, neither in increased NADPH production. However, in the third chapter we have 

described a close relationship between the PPP-promoter Nrf2 and TIGAR in HeLa cells, being Nrf2 

capable of inducing the activity of TIGAR promoter. All these results support the generalized idea of the 

involvement of TIGAR in the antioxidant response of cancer cells. Nevertheless, this relationship is not 

as simple as it is discussed in many publications. Indeed, one of the main questions is how TIGAR protects 

from ROS-induced cell death. As it has been previously commented along this thesis, the capacity of 

TIGAR to reduce apoptosis in response to H2O2 was proven in U2OS and H1299 cell lines (3). However, 

very few studies, performed in very specific models, have shown increased TIGAR protein levels after 

treatment with oxidant molecules (190). In fact, TIGAR levels are hardly altered in response to treatments 

and even the overexpression of transcription factors that increase TIGAR mRNA levels has failed to 

upregulate TIGAR protein, as it has been shown in the Results Chapter III. In this scenario, the 

involvement of transcriptional-independent mechanisms being responsible for the protective effects of 

TIGAR in front of ROS looks reasonable. 

Subcellular location can be as important as protein amount for those proteins with a specific function in 

a certain organelle or intracellular space. Different metabolic enzymes, including HK, PFKFB3, PGAM and 

others, have been found in the nucleus, some of them carrying out the same function as in the cytoplasm 

and some others with a different or even unknown role. The term ‘moonlighting proteins’ refers to 

proteins that perform multiple autonomous and often unrelated functions, increasing functional options 

for the cell without increasing the number of genes that need to be replicated and transcribed (173). 

The group of Dr. Karen Vousden showed that TIGAR colocalizes with HK-II in the outer mitochondrial 

membrane under hypoxic conditions, an interaction that is determinant for cells to overcome the lack 

of oxygen. Interestingly, the capacity of TIGAR to increase HK-II activity under hypoxia is independent 

of TIGAR bisphosphatase activity on Fru-2,6-P2 (87). Moreover, genotoxic drugs as well as hypoxia have 

been described to trigger TIGAR translocation to the nucleus, where it regulates the phosphorylation of 

ATM, a key protein in the DNA damage response (88). 

During the thesis I had the opportunity to join the lab of Dr. Karen Vousden at the Beatson Institute for 

Cancer Research (UK), where I studied the subcellular localisation of mouse Tigar in response to oxidative 

stress. The most important findings of this project are summarised in the following pages.  
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1. Screening of primary antibodies for Tigar immunofluorescence in mouse cells 

Considering that TIGAR localisation had been previously studied in human cells, the first thing to do was 

to determine if the same antibodies were suitable for immunofluorescence in mouse cells. With this 

purpose, several primary antibodies were tested in wild type Tigar (WT Tigar) and Tigar-/- (Tigar KO) 

mouse PDAC cells by immunofluorescence (Table VI). 

Catalogue number Species of origin Company 

sc-74577 Mouse monoclonal Santa Cruz Biotechnology 

sc-67273 Rabbit polyclonal Santa Cruz Biotechnology 

AB10545 Rabbit polyclonal Abcam 

Homemade Rabbit polyclonal Vousden’s Lab 

Table VI. Primary antibodies used for the detection of mouse Tigar. 

Rabbit polyclonal sc-67273 offered the highest signal-to-noise ratio, being hardly detected in Tigar KO 

cells, indicating its specificity. On the contrary, sc-74577 and the homemade rabbit polyclonal antibody 

had very low signal in WT Tigar cells, and AB10545 was highly unspecific. With the sc-67273 antibody, 

we determined that Tigar was uniformly distributed along the cytoplasm and the nucleus of PDAC cells 

at basal conditions (Figure 86). 

 

Figure 86. Evaluation of the specificity of antibodies for the detection of mouse Tigar. Immunofluorescence of Tigar was 

performed using three commercial antibodies (sc-74577, sc-67273 and AB10545) and one homemade antibody in WT Tigar (CT 

cells) and Tigar-/- (KO cells). Anti-mouse and anti-rabbit Alexa 594-conjugated secondary antibodies were used (red) and nuclei 

were stained with DAPI (blue). 

 

  NOTE! The possibility to work with Tigar KO cells was very useful to select the best antibody for the detection of mouse and 

human TIGAR, which share 73% identity. sc-67273 antibody was used in all the subsequent experiments performed during 

this thesis and the antibody that was being used in the lab (LifeSpan BioSciences), which had shown high unspecificity in 

immunofluorescence experiments of TIGAR-inhibited cells through siRNA, was restricted to western blot. 
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2. Subcellular localisation of TIGAR under oxidative stress 

2.1. TIGAR location in unstressed conditions 

In order to determine the localisation of human TIGAR under oxidative stress, we generated a viral vector 

for the stable expression of human TIGAR fused with flag tag and EGFP (f-TIG-GFP). WT Tigar and Tigar 

KO PDAC cell lines were infected with this vector. Compared to immunofluorescence of endogenous 

TIGAR, which indeed would detect the mouse protein, this system allowed for an easy way to visualize 

TIGAR by confocal microscopy, along with the capacity to rescue Tigar function in Tigar KO PDAC cells. 

This was of interest to study the contribution of this gene in the response of PDAC cells to oxidative 

stress. Details on the cloning procedure and the infection of both WT Tigar (iCT) and Tigar KO (iKO) 

PDAC cells with viral particles can be found in the Materials and Methods section. A summary of the 

workflow is provided in Figure 87A, and a schematic representation of the DNA sequence and protein 

structure of the f-TIG-GFP construct can be consulted in Figure 87B. The expression of recombinant f-

TIGAR-GFP by both cell types was confirmed by western blot, as shown in Figure 87C. 

 

Figure 87. Generation of PDAC cell lines stably expressing flagged-TIGAR-GFP (f-TIG-GFP) fused protein. WT Tigar (CT) and 

Tigar-/- (KO) PDAC cells were infected with a construct expressing f-TIG-GFP. (A) Workflow of the process: from cloning the DNA 

of interest to the infection of PDAC cells. (B) Schematic representation of the DNA sequence and protein structure of the f-TIG-

GFP construct: flag is highlighted in orange, TIGAR in blue and EGFP in green. (C) Western blot analysis of TIGAR and β-actin in 

the parental cells (first two lanes, WT and KO) and the infected cells (third and fourth columns, iWT and iKO). Immunofluorescent 

secondary antibodies were used. 
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Considering previous literature describing the presence of TIGAR in the mitochondria of human cells 

(87), we wanted to determine if it was located in these organelles at basal conditions in PDAC cells. 

Immunofluorescence against Tom20, a member of the translocase of the outer membrane of the 

mitochondria, was performed in iCT and iKO PDAC cells using an Alexa 594-conjugated secondary 

antibody. The results showed that there was a small percentage of TIGAR colocalizing with Tom20 in 

both cell lines (Figures 88, 89, yellowish areas), suggesting that TIGAR can be located at the outer 

mitochondrial membrane at basal conditions. This was more evident in iKO cells, possibly because the 

fluorescence of f-TIG-GFP was also higher in these cells (Figure 89). However, the main signal emitted 

by the f-TIG-GFP recombinant protein was cytoplasmatic, suggesting that the main function of TIGAR at 

basal conditions relies on its cytosolic location (Figures 88, 89). 

 

Figure 88. TIGAR and Tom20 colocalisation in iCT cells. Immunodetection of TIGAR and Tom20 was performed in WT Tigar 

PDAC cells infected with flag-TIGAR-GFP (f-TIG-GFP) using a Tom20 specific antibody and an Alexa 594-conjugated secondary 

antibody (shown in red). Nuclei were stained with DAPI (blue). Colocalisation between TIGAR and Tom20 can be observed in the 

Merge channel (yellowish areas).  
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Figure 89. TIGAR and Tom20 colocalisation in iKO cells. Immunodetection of TIGAR and Tom20 was performed in Tigar KO 

PDAC cells infected with flag-TIGAR-GFP (f-TIG-GFP) (iKO cells) using a Tom20 specific antibody and an Alexa 594-conjugated 

secondary antibody (shown in red). Nuclei were stained with DAPI (blue). Colocalisation between TIGAR and Tom20 can be 

observed in the Merge channel (yellowish areas). 
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2.2. TIGAR location under oxidative stress 

PDAC cells infected with f-TIG-GFP (iCT and iKO) were treated with 0,5 mM H2O2 for 24 h and 

subsequently analysed by immunofluorescence. The localisation of f-TIG-GFP was analysed in parallel to 

γ-tubulin, which was detected with an Alexa 594-conjugated secondary antibody. γ-tubulin is a key 

protein for the nucleation and anchoring of microtubules from the microtubule organizing centre, in 

animals called the centrosome, which is composed by two centrioles. Multiple components of the DNA 

damage response pathway are linked to the centrosome and genotoxic stress strongly affects its 

organization (191). Given that oxidative stress can induce DNA damage and TIGAR had been described 

to be involved in the DNA damage response (88), we found interesting to immunodetect γ-tubulin in 

our experiments. 

Untreated iCT and iKO cells showed diffuse signal of both f-TIGAR-GFP and γ-tubulin (Figures 90, 91), 

according to the fact that γ-tubulin is not only restricted to the centriole and indeed it is found in the 

cytoplasm of many cells (192). In iCT cells, treatment with H2O2 caused a dramatic enlargement of their 

surface and TIGAR showed a nuclear and perinuclear localisation under these conditions. Localisation of 

TIGAR was different between cells and experiments, but it was clear that those cells with higher surface 

showed highly increased levels of TIGAR in the nucleus (Figure 90). In other experiments, TIGAR was 

detected in both the cytoplasm and the nucleus of cells, as it will be shown in further figures. 

Interestingly, in the cells more enlarged, γ-tubulin formed a ring around the nuclei, its fluorescence 

overlapping to that of f-TIG-GFP (Figure 90). Centrosome disorganization was detected after treatment 

with H2O2, with many cells with separated centriole despite not showing signs of division (Figure 90, 

white arrows). The overall phenotype exhibited by H2O2-treated PDAC cells was consistent with a 

senescent phenotype. 
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Figure 90. Localisation of TIGAR under oxidative stress in iCT cells. WT Tigar PDAC cells were infected with flag-TIGAR-GFP 

(f-TIG-GFP) (iCT cells) and treated with 0,5 mM H2O2 for 24 h. The construct f-TIG-GFP is shown in green, γ-tubulin was detected 

with an Alexa 594-conjugated secondary antibody (red) and nuclei were stained with DAPI (blue). Colocalisation between TIGAR 

and γ-tubulin can be observed in the Merge channel as yellowish areas. White arrows indicate centrioles. 
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A similar response was observed in iKO cells treated with H2O2. Although in these cells the nuclear 

localisation of TIGAR and the γ-tubulin rings around the nuclei were less clear than in H2O2-treated iCT, 

enlarged shape and centrosome disorganization were also appreciated (Figure 91). 

 

Figure 91. Localisation of TIGAR under oxidative stress in iKO cells. Tigar KO PDAC cells were infected with flag-TIGAR-GFP 

(f-TIG-GFP) (iKO cells) and treated with 0,5 mM H2O2 for 24 h. The construct f-TIG-GFP is shown in green, γ-tubulin was detected 

with an Alexa 594-conjugated secondary antibody (red) and nuclei were stained with DAPI (blue). Colocalisation between TIGAR 

and γ-tubulin can be observed in the Merge channel as yellowish areas. White arrows indicate centrioles. 
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In order to determine the potential TIGAR contribution to the enlargement phenotype evidenced after 

H2O2 treatment, non-infected KO TIGAR cells were treated with at the same conditions and γ-tubulin 

immunofluorescence was performed. H2O2-treated Tigar KO cells also showed enlarged nucleus and 

cytoplasm, indicating that TIGAR is not essential for PDAC cells response to H2O2 (Figure 92). 

 

Figure 92. ϒ-tubulin distribution under oxidative stress. Tigar KO PDAC cells were treated with 0,5 mM H2O2 for 24 h and 

immunofluorescence against γ-tubulin was performed using an Alexa 594-conjugated secondary antibody (red). Nuclei were 

stained with DAPI (blue). 

 

The dependency of ROS to induce this phenotype of cytoplasmic and nuclear enlargement with 

centrosome disorganization was assessed by treating iCT and iKO PDAC cells with 0,5 mM H2O2 in 

combination with 1 mM NAC, which increases the synthesis of glutathione and, thus, reduces ROS levels. 

In Figure 93 an additional image of H2O2-treated iCT cells is shown, in which the cellular enlargement is 

not as dramatic as in Figure 90 and, moreover, TIGAR is localized both in the cytoplasm and the nucleus 

of cells, with increased signal in the nuclear and perinuclear area (Figure 93, second row). NAC 

treatment alone did not induce any detectable changes in cells (Figure 93, second row), but in 

combination with H2O2 it was able to prevent the phenotype induced by H2O2 in iCT (Figure 93, third 

row). However, H2O2 effects were only partially avoided by NAC in iKO cells, which showed decreased 

cellular size but still maintained centrosome disorganization (Figure 94).  
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Figure 93. ROS-dependent effect of the phenotype induced by H2O2 in iCT cells. WT Tigar PDAC cells were infected with flag-

TIGAR-GFP (f-TIG-GFP) (iCT cells) and treated with 0,5 mM H2O2 and/or 1 mM NAC for 24 h. The construct f-TIG-GFP is shown in 

green, γ-tubulin was detected with an Alexa 594-conjugated secondary antibody (shown in red) and nuclei were stained with DAPI 

(shown in blue). 
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Figure 94. ROS-dependent effect of the phenotype induced by H2O2 in iKO cells. Tigar KO PDAC cells were infected with flag-

TIGAR-GFP (f-TIG-GFP) (iKO cells) and treated with 0,5 mM H2O2 and/or 1 mM NAC for 24 h. The construct f-TIG-GFP is shown in 

green, γ-tubulin was detected with an Alexa 594-conjugated secondary antibody (shown in red) and nuclei were stained with DAPI 

(shown in blue). 
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Finally, we aimed to determine if the mobilization of TIGAR to the nucleus that we observed in several 

experiments with H2O2-treated PDAC cells through the fluorescence of the recombinant protein f-TIG-

GFP was also detected in endogenous Tigar. With this aim, we treated non-infected WT Tigar PDAC cells 

with 0,5 mM H2O2 for 24 h and performed immunofluorescence of Tigar with an Alexa 488-conjugated 

secondary antibody. Non-infected Tigar KO cells were used as negative control. The images evidenced 

the translocation of endogenous Tigar to the nucleus of H2O2-treated cells (Figure 95). These results 

were clearer than some of the experiments performed with the f-TIG-GFP-overexpressing cells given 

that basal Tigar levels were reduced and slight changes in the distribution could be detected.  

 

Figure 95. Tigar localisation under oxidative stress is PDAC cells. WT Tigar PDAC cells were treated with 0,5 mM H2O2 for 24 

h and immunofluorescence against Tigar was performed with sc-67273 primary antibody and an Alexa 488-conjugated secondary 

antibody (shown in green). Nuclei were stained with DAPI (shown in blue). Tigar KO PDAC cells were used as negative control. 
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3. Contribution of TIGAR to cell survival in stress conditions 

The potential of working with wild type Tigar and Tigar KO mouse cells was to determine the contribution 

of this enzyme to the survival of PDAC cells. We analysed that by exposing cells to oxidative stress and 

mitotic arrest, induced by H2O2 and nocodazole (Noco), respectively. Non-infected and infected Tigar 

KO PDAC cells were treated with 0,5mM H2O2 or 100 ng/mL Noco for 24 h. Cells were seeded at 0,5x105 

cells/mL and treatments were applied 10 h after the seeding. Cell number was determined at 10, 20 and 

34 h post-seeding, the latter time corresponding to 24 h post-treatment. Growth curves were calculated 

during the 24 h of treatment. Results indicated that cells in which Tigar expression had been rescued by 

infection with f-TIG-GFP showed significantly increased proliferation in untreated conditions (Figure 

96A). Importantly, Tigar KO cells showed decreased growth rates under H2O2 and nocodazole compared 

to PDAC cells with TIGAR overexpression (Figure 96B,C). Cells treated with H2O2 in combination with 

nocodazole showed similar growth rates regardless of TIGAR expression (Figure 96D).  

 

Figure 96. Evaluation of TIGAR contribution to the proliferation of PDAC cells. The capacity of TIGAR to affect the proliferation 

of PDAC cells was assessed at basal conditions and in response to stress stimuli. Parental and flag-TIGAR-GFP-infected Tigar KO 

cells (Tigar KO and f-TIGAR-GFP, respectively) were seeded at 0,5 x 105 cells/mL and cellular counting were performed at different 

time points. (A) Cell number was evaluated at 10, 20 and 34 h post-seeding in both cell lines (f-TIGAR-GFP in black, Tigar KO in 

grey) in untreated conditions. At 10 h post-seeding, cells were treated with (B) 0,5 mM H2O2, (C) 100 ng/mL nocodazole (Noco) 

or (D) the combination of 0,5 mM H2O2 and 100 ng/mL nocodazole (Noco) for 24 h. Mean cell number ± SD is represented (n=3, 

**P < 0.01, ***P < 0.001) and the equations corresponding to the linear growth curves during the 24 h of treatment are provided. 
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4. Discussion 

During the stay in the laboratory of Dr. Karen Vousden a very useful tool for the study of TIGAR 

localisation was generated, consisting in a viral vector expressing the human TIGAR protein fused with 

flag and EGFP (f-TIG-GFP). We generated PDAC cells stably expressing f-TIG-GFP in which we could 

determine that oxidative stress induced by H2O2 increased the presence of TIGAR in the perinuclear and 

nuclear areas. The analysis of TIGAR localisation was performed in parallel to the immunodetection of 

γ-tubulin, a protein involved in the nucleation and anchoring of microtubules to the centrosome, a 

structure that participates in the DNA damage response. PDAC cells responded to oxidative stress with 

an important enlargement of their cellular surface and showing signs of centrosome disorganization, as 

it was suggested by the detection of multiple centrioles and the separation of the two centrioles in cells 

that were not dividing. In those cells more enlarged, TIGAR was almost uniquely located in the 

perinuclear and nuclear areas and γ-tubulin formed a ring around the nucleus, indicating that these two 

proteins could colocalize under certain stress conditions. This phenotype has been demonstrated to be 

specific of the oxidative stress generated by H2O2 given that it was attenuated, and in some cases 

completely reverted, by NAC. Previous studies described that H2O2 can induce centrosome amplification 

and cellular senescence, characterized by enlarged cell shape (193), which is consistent with our results. 

The relevance of senescence in cancer is controverted, as it can function as a growth-arrest program 

and, therefore, have a tumour suppressor effect, or it can reflect a resting state of tumour development 

in which cancer cells can re-enter the cell cycle and keep multiplying. Besides, the secretory phenotype 

of senescent cells can cause both tumour-promoting and tumour-suppressing responses (194). A 

preliminary analysis of expression data available in Geoprofiles (accession number GSE11954) revealed 

increased expression of TIGAR in senescent activated hepatic stellate cells in response to etoposide, a 

DNA-damaging agent, which also supports our results (195). Additionally, a previous publication form 

Dr. Bartrons’ Lab suggested that TIGAR disbalance can trigger senescence, both when the levels of this 

protein are too high or too low in stressed cells (79). 

The functions attributed to cytoplasmic TIGAR seem to differ from those carried out in specific organelles 

such as mitochondria (87) and the nucleus (88). Nuclear localisation of proteins classically attributed to 

other cellular compartments has been described in response to H2O2, as it is the case of the hepatocyte 

growth factor receptor c-MET (196). This supports that moonlighting effects of proteins can be as 

determinant for the response to oxidative stress as their classically described functions. 

The interesting observation of potential colocalisation between TIGAR and γ-tubulin was in accordance 

with the finding that TIGAR participates in the DNA damage response induced by genotoxic drugs and 

hypoxia through its translocation to the nucleus (88). Besides, data obtained from a study that 

characterised the centrosome-cilium interface indicated that TIGAR interacts with Oral-Facial-Digital 
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Syndrome 1 protein, which is a centriolar satellite protein that at the same time interacts with γ-tubulin. 

This study used an in vivo proximity-dependent biotinylation approach with 58 known centrosome 

proteins fused with a biotin conjugating enzyme, which were used as baits. The proteins interacting with 

these baits, one of which was TIGAR, were biotinylated and could be detected (197). TIGAR was detected 

in the centrosomes, but not in cilia, and these results support the possibility of an interaction between 

TIGAR and γ-tubulin in response to oxidative stress. However, co-immunoprecipitation experiments 

should be performed to prove this hypothesis. 

Regarding the basal localisation of TIGAR, we have been able to show that it is globally distributed along 

the cell, with a higher presence in the cytoplasm in unstressed conditions. Interestingly, the f-TIG-GFP 

construct was found to colocalize with Tom20 in some areas, indicating that TIGAR can also be located 

in mitochondria. As it has been previously mentioned, Dr. Karen Vousden’s group described that TIGAR 

interaction with HK-II in the outer mitochondrial membrane is essential to activate HK-II in response to 

hypoxia and contributes to tumour cell survival in these conditions (167). Binding of HK-I and II to the 

outer mitochondrial membrane has been described to occur more frequently in transformed cells than 

in non-malignant cells, coupling ATP production to the phosphorylation of glucose and increasing 

glycolysis (198). Therefore, TIGAR binding to HK-II in the mitochondria would contribute to glycolysis, 

carrying out the opposite effect that has been attributed to cytoplasmatic TIGAR.  

Overall, the mobilisation of TIGAR to the nucleus in response to oxidative stress, as well as the changes 

in the localisation of this protein reported in response to different damaging stimuli, indicate that other 

regulatory mechanisms rather than transcriptional control are involved in the role of this enzyme in 

cancer cells. The results presented here can help to understand the generalised observation that TIGAR 

inhibition sensitizes cells to different kinds of stress, at the same time that TIGAR protein levels remain 

unaltered in stress conditions. 
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Cellular metabolism is not a static picture of the fuels and products that sustain cellular functioning. 

Instead, it can be depicted as a network of connections, some of which usually involve same players at 

same places, and some others changing so briefly that their detection is challenging even to the most 

advanced technologies. In this context, metabolic transformation emerges as a concept that is used to 

refer to the collection of metabolic alterations that cells accumulate to become tumorigenic. However, 

this list is not written anywhere, and each type of cancer displays deregulation of different metabolic 

pathways, not to mention the adaptations that cancer cells develop to adapt to the changing and 

challenging tumour microenvironment. 

TIGAR is only a piece in this unattainable network. This gene was described for the first time thirteen 

years ago as a p53 target induced by ionizing radiation (3) and, because it takes time to consolidate new 

knowledge, it is still considered a novel gene. Maybe this is the reason why, although TIGAR was 

described as a Fru-2,6-P2 phosphatase able to increase the flux through the PPP, its function and 

relevance in cancer development is still in discuss. This thesis has been focused on two main objectives, 

both of them addressed to the clarification of the role of TIGAR in cancer: to understand how TIGAR is 

induced in transformed cells, and to define the metabolic changes induced by TIGAR. Although a 

definitive answer to these questions is still far away, here we summarise the main findings of this thesis 

trying to give light to the understanding of how TIGAR contributes to the metabolic reprogramming of 

cancer cells. 

In the first chapter of this thesis, we have approached the relevance of TIGAR expression in conditions 

of glycolytic blockage. We have described that TIGAR is induced by PFKFB3 inhibition, both through 

siRNA or long-term exposure to 3PO. However, glucose deprivation, which causes a strong inhibition of 

glycolysis and subsequent cell death, does not induce TIGAR. PFKFB3 inhibition, both by siRNA and 3PO, 

decreases Fru-2,6-P2 levels and, thus, partially impairs glycolysis by inhibiting PFK-1. The impact of 

PFKFB3 inhibition on cell viability is exacerbated when TIGAR is inhibited at the same time, evidencing 

that both genes exert protective roles in cancer cells. Nevertheless, the fact that cells respond to 

decreased Fru-2,6-P2 by increasing TIGAR is the first evidence that this enzyme plays other roles beyond 

its phosphatase activity on Fru-2,6-P2. 

Inhibition of PFK-1 causes accumulation of Fru-6-P, which is converted to Glu-6-P through GPI, 

increasing the flux through the PPP (170). By the same rationale, suppression of PFKFB2 activity by PP2A 

confers proliferative advantage in B cell malignancies. PFKFB2 inhibition increases the flux through the 

PPP, which is determinant for the survival of these cells in conditions of high oxidative stress (99).  

According to that, metabolomic abundance analyses performed during this thesis suggested increased 

Fru-6-P, Glu-6-P and 6-P-gluconate in PFKFB3-inhibited HeLa cells. TIGAR, by catalysing the opposite 

reaction of PFK-2, has been proposed to be essential to accomplish the purpose of increasing the PPP 



GENERAL DISCUSSION 

180 

 

by inhibiting glycolysis, at least in some cellular types (3,170). However, why should TIGAR be increased 

in a situation in which the PPP is already enhanced by PFKFB3 inhibition? 

During this thesis, TIGAR overexpression has been proved to decrease Fru-2,6-P2 concentration, but the 

metabolomic abundance and fluoxomic analyses did not report changes in 6-phosphogluconate or 

ribose-5-P, metabolites of the PPP, after TIGAR overexpression or inhibition. These results, together with 

the unaltered ratio NADP+/NADPH measured in TIGAR-inhibited and TIGAR overexpressing cells, 

question the activity of TIGAR as an activator of the PPP, at least in HeLa cells. However, the capacity of 

TIGAR to increase NADPH has been proved in other cell lines (83,91–93), evidencing that TIGAR 

contribution to the PPP may vary depending on the cellular context. Nevertheless, complementary 

determinations such as quantification of GSH/GSSG ratio in our experimental conditions would be 

informative of changes in the antioxidant capacity of HeLa cells. In situations of high ROS levels, changes 

in NADPH might be masked by the rapid oxidation of this molecule to regenerate GSH. 

Another variable that needs to be considered when comparing the effects of TIGAR modulation between 

cells is the activity of PFKFBs. PFKFB1 has not been found expressed in cancer cells, but PFKFB2-4 are 

expressed across different cancer types, displaying specificities according to tissue origin (36). HeLa cells 

express the three PFKFB2-4 isoenzymes, but their contribution to cell survival is different depending on 

cellular conditions. For example, PFKFB2 is involved in the response to amino acid deprivation in this cell 

line (51) whereas PFKFB3 is important when cells are exposed to stress stimuli that trigger the p38/MK2 

such as NaCl, H2O2, UV radiation or anisomycin (41). In a previous thesis of the group, it was shown that 

PFKFB3 inhibition is not compensated by any other PFKFB isoenzyme in these cells (63), which explains 

the decreased Fru-2,6-P2 and lactate concentrations detected in our experiments. In terms of balancing 

Fru-2,6-P2 concentration, PFK-2 activity is much more potent than TIGAR bisphosphatase activity, 

providing an explanation for the mild effect of the single inhibition of TIGAR on the several parameters 

analysed, such as ROS or apoptosis. Interestingly, MTT signal was the only parameter significantly 

affected by TIGAR inhibition. The decreased MTT signal in TIGAR-inhibited cells reflects lower 

mitochondrial reduction capacity, which is in accordance with the findings by the group of Martínez-

Outschoorn (82). This group has shown that TIGAR overexpression increases oxygen consumption and 

ATP production, as well as some mitochondrial markers such as TOM20, when glutamine or lactate are 

supplied (82). 

TIGAR contribution to cell survival is evidenced when cells are facing some kind of stress. This has been 

analysed in several contexts along this thesis. One of the most studied scenarios has been the inhibition 

of glycolysis in HeLa cells. In our experiments, PFKFB3 blockage increased ROS levels, which we propose 

as the cause of increased DNA damage and cell death, according to previous publications (199,200).  
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When PFKFB3 and TIGAR were inhibited at the same time, the damaging effects were exacerbated. The 

same occurred when cells were treated with 3PO or glucose deprivation in combination to TIGAR 

inhibition. The other context in which TIGAR contribution to cell survival has been analysed is the 

response of mouse PDAC cells to H2O2 or nocodazole, which revealed that Tigar KO cells are more 

susceptible to damaging agents. Interestingly, the nuclear localisation of Tigar under oxidative stress 

detected in PDAC indicates that the protective action of this enzyme is also supported by mechanisms 

independent of the modulation of its protein levels. These results point out that both TIGAR and PFKFB3 

carry on pro-survival roles in cells and, thus, that TIGAR promotes, rather than inhibits, cancer 

development. Similar observations have been described in cancer cells in response to hypoxia, where 

TIGAR interaction with HK-II in the outer mitochondrial membrane limits cell death independently of its 

Fru-2,6-P2 bisphosphatase activity. These findings are in accordance with the evidence that TIGAR is 

overexpressed in many types of tumours in which PFKFB3 is also increased, as it has been exposed in 

the Introduction of this thesis. Therefore, the simplification of TIGAR as an enzyme opposed to PFKFB3 

needs to be replaced by the growing evidence that TIGAR activation can represent a metabolic 

advantage in cells when the glycolytic flux is compromised. 

One of the questions that arose during the characterisation of TIGAR induction by decreased glycolytic 

flux was the mechanism beyond this response. Western blot analyses from a previous thesis of the group 

revealed increased phosphorylation of several proteins of the PI3K/mTOR signalling pathway after 

PFKFB3 suppression (161). During the present thesis these results have been confirmed and the 

phosphorylation of Akt at S473 has been demonstrated to be crucial for TIGAR upregulation in response 

to PFKFB3 inhibition. In most cases of failing energy status, AMPKα is responsible for reorganizing the 

metabolic network to increase ATP production and decrease biosynthesis (174). However, the role of Akt 

under metabolic stress is in dispute because it is mainly considered a driver of energy production in 

conditions of nutrient abundance. Despite that, a growing number of studies are evidencing the 

contribution of Akt in the response to glycolytic inhibition, sometimes through a cross-talk with AMPKα 

(201). Short-term glucose deprivation has been described to induce AMPKα and Akt signalling and 

inhibit mTORC1, whereas prolonged culture in glucose-free media inhibits AMPKα, favouring 

mTORC1/Akt signalling (202). Akt phosphorylation has also been observed to initiate a pro-survival 

response in 2-DG-treated cells (203). Thus, our results support the role of Akt as a stress-response gene. 

Importantly, the Akt signalling pathway is known to activate Nrf2 in proliferating cells, oppositely to what 

occurs in quiescent cells, where Nrf2 is only activated by oxidants or electrophiles (142). The constitutive 

activation of Nrf2 in cancer cells confers chemo- and radio-resistance, especially to those drugs whose 

mechanism of action is based on ROS generation (139). We have shown that PFKFB3 inhibition increases 
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Nrf2 total protein amounts and triggers its translocation to the nucleus. However, the question of 

whether the Akt-Nrf2 axis is responsible for TIGAR induction after PFKFB3 inhibition remains open. 

During this thesis we have shown that Nrf2 activation controls TIGAR mRNA and protein levels in HeLa 

cells, both through the physiological induction of the transcription factor with DMF and through direct 

overexpression of the factor. Accordingly, inhibition of Nrf2 decreases TIGAR expression, evidencing a 

direct relationship between the transcription factor and TIGAR. Thus, Nrf2 emerges as a new 

transcriptional regulator of TIGAR, which might be of special relevance in conditions of oxidative or 

metabolic stress in cells lacking p53. HeLa cells are considered p53-inactive given that they express the 

E6 oncoprotein, which triggers ubiquitin-dependent proteolysis of p53 (164). However, reactivation of 

p53 has been described in HeLa (165) and, thus, the participation of this transcription factor in the 

modulation of TIGAR cannot be excluded in these cells. However, TIGAR basal expression does not seem 

to depend on neither p53 or Nrf2 in these cells. The SP1 transcription factor, common in the promoter 

of most eukaryotic genes, has been described to control TIGAR expression through direct interaction 

with a region located at -177 bp before the translation start codon, in what has been described as the 

minimal promoter of TIGAR (76). Given the close proximity of the SP1 binding site to the transcription 

start site of TIGAR, with only 43 bp in-between, and the ubiquitous expression of this transcription factor, 

SP1 seems to be a good candidate to maintain basal TIGAR levels. 

In a region upstream of TIGAR minimal promoter, we have identified two AREs. These AREs have been 

cloned in luciferase-reporter vectors, the activity of which is increased in cells overexpressing Nrf2 

compared to cells with basal levels of Nrf2. More experiments are being performed to identify which of 

the AREs is responsible for the binding of Nrf2 to TIGAR promoter. Moreover, ChIP experiments will be 

also carried out. What can be concluded so far is that TIGAR expression is controlled by this transcription 

factor, either directly or indirectly, in HeLa cells. Besides, the results obtained in mouse cells support this 

hypothesis. In collaboration with Dr. Ventura’s Lab, we have shown that the Nrf2 inducer DMF increases 

mouse Tigar expression, and so it does the overexpression of Nrf2. Moreover, we have proved that Nrf2 

binds to an ARE located at -5762 bp in Tigar promoter by ChIP assays. The involvement of Nrf2 in the 

regulation of Tigar expression in mouse is of importance given that previous publications claim that 

neither TP53 or TAp73 control the expression of Tigar in this specie (75). Tigar expression is clearly 

induced in the intestine of mice following DNA-damaging stress such as ionising radiation (75,90) and 

therefore alternative transcription factors must be involved in this regulation. Nrf2 emerges as a potential 

candidate to regulate mouse Tigar in response to damaging stimuli. In this regard, it is important to 

mention that c-Myc was found to control Tigar expression in a mouse model of colon cancer induced 

by the loss of adenomatous polyposis coli gene, independently of Wnt/β-catenin signalling (126). 

However, the direct transcriptional control of Tigar by c-Myc was not proved. Considering that Nrf2 can 
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be activated by c-Myc (143), it would be interesting to determine the potential role of Nrf2 as mediator 

of c-Myc-induced Tigar transcriptional regulation in this model. 

Regarding human TIGAR gene, the role of Nrf2 as a transcriptional regulator has also been evaluated in 

three different NSCLC cells, A549, H460 and H1299, with inconclusive results. The analysis of microarray 

data from a previous study reported that TIGAR mRNA levels were not decreased after Nrf2 inhibition 

in A549 cells (142). In our experiments, TIGAR expression was indeed slightly increased after Nrf2 

suppression in these cells. However, TIGAR protein levels were downregulated in this cell line at the same 

conditions, indicating a differential effect of Nrf2 suppression on TIGAR mRNA and protein. The results 

obtained with H460 cells suggested a link between Nrf2 and TIGAR given that Nrf2 inhibition 

downregulated TIGAR expression. p53-null H1299 cells, which are a clear example of the independent 

expression of TIGAR from p53, responded to Nrf2 inhibition by upregulating TIGAR expression without 

altering TIGAR protein levels. These results suggested an indirect effect of Nrf2 on TIGAR modulation in 

NSCLC which probably involves other transcriptional regulators. Importantly, the different results 

obtained in the three cell lines indicate that both mRNA and protein levels must be checked when 

analysing the consequences of the blockage of an important transcription factor, as it is Nrf2, and 

defining its potential target genes. Strategies based on the inhibition of Nrf2 or the activation of KEAP1 

have been proposed in NSCLC to fight chemo- and radio-resistance (186). Besides, stratification of 

patients with lung cancer according to mutations in KEAP1 and Nrf2 has been proposed as a clinical 

strategy to predict the response to drugs such as glutaminase inhibitors (160). However, the potential 

implications of the deregulation of Nrf2 targets in response to therapies based on Nrf2 inhibition should 

be evaluated in advance. Whether Nrf2 target genes will be downregulated when Nrf2 is inhibited or 

will be compensated by alternative mechanisms in cancer cells, as it occurs with TIGAR in NSCLC, is 

something that only further research will be able to answer. 

Linking the first and third chapters of this thesis, the question of what is TIGAR doing in cancer cells 

emerges. In one side, we have described that this gene is induced in response to decreased glycolytic 

flux and, on the other side, one of the most important antioxidant orchestrators in cells, Nrf2, controls 

TIGAR expression under certain conditions. Thus, it seems reasonable to think that the pro-survival role 

of TIGAR is attributed to its antioxidant potential. However, the results presented in the second chapter 

of this thesis question the role of TIGAR as a PPP enhancer. 

It has already been discussed that TIGAR overexpression clearly decreases Fru-2,6-P2 concentration 

without affecting the levels of PPP intermediates in HeLa cells. However, TIGAR inhibition only increases 

Fru-2,6-P2 concentration. Accordingly, metabolomic analyses suggested that TIGAR-inhibited cells have 

increased levels of glycolytic intermediates, which is consistent with the idea of TIGAR as a glycolytic 

inhibitor (3). However, the question is whether these changes can be attributed to Fru-2,6-P2. The answer 
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seems to be ‘no’, or at least ‘not only’, especially considering that TIGAR overexpression, which has a 

higher impact on Fru-2,6-P2 than TIGAR inhibition, does not affect the levels of any of the glycolytic 

intermediates analysed. 

What can be concluded from the metabolic studies performed is that TIGAR inhibition impacts cellular 

metabolism beyond its capacity to increase Fru-2,6-P2 concentration. Two important metabolic 

alterations have been detected after TIGAR suppression, both of them related to the last reactions in 

glycolysis and the entrance of pyruvate to the mitochondria. 

Both 3PG and pyruvate were found significantly increased in TIGAR-inhibited cells in metabolomic and 

spectrophotometric analyses, respectively. These results suggest a role for this enzyme in 

dephosphorylating 3PG, or even 2PG, which would be in accordance with the finding that the Km of 

TIGAR for 2,3-BPG, 2-PG and PEP is much lower than that for Fru-2,6-P2 (73). In this previous publication, 

TIGAR was proposed as the phosphoglycolate-independent 2,3-BPG phosphatase. However, we could 

not determine 2,3-BPG by our experimental approaches and, thus, we cannot confirm this finding in 

HeLa cells. What can be concluded from sequence and structural alignments is that TIGAR and PGAM 

are closer than TIGAR and FBPase-2, and thus the increased concentration of 3-PG found after TIGAR 

inhibition should be further explored. 

On the other hand, it does not seem plausible that TIGAR effect on pyruvate is based on its phosphatase 

activity given that it is not a phosphorylated metabolite. Thus, either TIGAR acts on a different 

metabolite, the increase of which is reflected by increased pyruvate, or TIGAR exerts bisphosphatase-

independent effects on pyruvate. Interestingly, TIGAR was proposed to catalyse the dephosphorylation 

of PEP into pyruvate uncoupled from ATP production, which would allow cells to maintain high glycolytic 

flux for biosynthesis (73). According to that, TIGAR inhibition would increase PEP concentration, which 

might be reflected in increased pyruvate concentration through PK activity. However, our results do not 

show significantly increased PEP, questioning this hypothesis. 

The most important metabolic change reported after TIGAR suppression involves mitochondrial 

metabolism. Increased m+2 citrate and decreased m+3 aspartate were found in TIGAR-inhibited cells, 

indicating increased flux through PDH and decreased oxidation of pyruvate through PCB. These results, 

together with the findings of increased NAD+/NADH ratio and decreased MTT signal in TIGAR-inhibited 

cells, reflect decreased functioning of the TCA cycle in these cells. Previous publications have reported 

that TIGAR overexpression increases lactate uptake and oxygen consumption, suggesting increased 

production of NADH and increased OXPHOS. These effects are observed when cells are cultured in 

glutamine and/or lactate-rich media and not when cells are cultured only with glucose, highlighting the 

contribution of extracellular lactate in TCA fuelling in TIGAR overexpressing cells (82). Accordingly, we 
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have shown that TIGAR overexpressing cells have higher levels of the lactate importer MCT1. These cells 

maintain high glycolytic flux, which is stimulated by PFK-2. In these conditions, OAA in the TCA cycle is 

regenerated by pyruvate through PCB and also by alternative substrates such as glutamine. Given that 

TIGAR overexpression could partially inhibit glycolysis in some cells, these cells have increased lactate 

uptake through MCT1, which represents an additional source of pyruvate to the TCA cycle, and show 

high oxygen consumption and ATP production, as it was reported by Ko, et al. (82).  

On the contrary, TIGAR-inhibited cells have lower levels of MCT1, increased PCB levels and decreased 

MTT mitochondrial reduction capacity. Thus, it could be interpreted that in a situation of decreased 

TIGAR levels, NADH production is reduced due to decreased mitochondrial metabolism, and restricted 

lactate import contributes to increase the NAD+/NADH ratio. Considering the activity of TIGAR on Fru-

2,6-P2, glycolysis might be slightly enhanced in TIGAR-inhibited cells, as evidenced by increased 

glycolytic intermediates in the metabolomic analyses. In these conditions, pyruvate enters the 

mitochondria through PDH, in a reaction that generates NADH. TIGAR-inhibited cells rely on glycolysis 

to generate pyruvate. Due to decreased PCB activity in these cells, OAA needs to be regenerated by 

anaplerotic substrates such as glutamine to maintain the TCA cycle. 

The contribution of glutamine to mitochondrial metabolism in TIGAR-inhibited and TIGAR 

overexpressing cells needs to be further analysed. We have observed decreased intracellular glutamine 

in TIGAR overexpressing cells, whereas the opposite occurs when TIGAR is inhibited. However, GLS1 is 

increased in TIGAR overexpressing cells and decreased in TIGAR-inhibited cells, suggesting that 

glutamine levels reflect the consumption of this metabolite. This means that glutamine anaplerosis is 

higher in TIGAR overexpressing cells, which is consistent to what Ko, et al. described (82). In TIGAR-

inhibited cells, thus, decreased glutamine anaplerosis might account for decreased mitochondrial 

metabolism. However, additional experiments should be performed to confirm these results in our 

model. 

In the light of the results discussed, TIGAR induction in response to PFKFB3 inhibition can be interpreted 

as a compensatory mechanism by which cells increase mitochondrial metabolism to compensate the 

decreased ATP production in glycolysis. This might explain why MTT signal is not decreased in PFKFB3-

inhibited cells despite these cells show decreased viability. As consequence of TIGAR induction, MCT1 

might be enhanced in PFKFB3-inhibited cells, providing lactate for the obtention of pyruvate and acetyl-

CoA to maintain mitochondrial activity. Suppression of TIGAR in PFKFB3-inhibited cells results in 

increased cell death, which might be attributed to decreased lactate import, which renders cells 

dependent on the pyruvate produced in glycolysis, a pathway that is inhibited by PFKFB3 siRNA. 
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Possibly, the diverse functions of TIGAR −as a classical PPP promoter, as an enzyme that can potentially 

link glycolytic and mitochondrial metabolism by conditioning lactate import, and also as a nuclear 

effector in conditions of oxidative stress− are not excluding and, indeed, coexist in cells. It is also possible 

that none of them is more important than the others, but each one prevails depending on the cellular 

circumstances. Although more data are required to define the consequences of TIGAR modulation by 

Nrf2 and the contribution of TIGAR to mitochondrial metabolism and nuclear functions, here we have 

described several mechanisms that can contribute to explain how TIGAR inhibition impairs tumour 

development. What is important from these studies, as well as from the studies by Cheung, et al. (87) 

and Ko, et al. (82), is that alternative explanations are provided to the role of TIGAR as a Fru-2,6-P2 

bisphosphatase.
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Chapter I. TIGAR and glycolysis inhibition: is that redundant? 

1. TIGAR expression and protein levels are induced after siRNA-mediated PFKFB3 inhibition and the 

phosphorylation of Akt at Ser473 is required for this modulation. 

2. Oxidative stress, DNA damage and apoptosis are enhanced in PFKFB3-inhibited cells, whereas the 

inhibition of TIGAR decreases the mitochondrial reduction capacity. These effects are exacerbated 

by the combined inhibition of PFKFB3 and TIGAR. 

3. The PFK-2 inhibitor 3PO increases the expression of TIGAR and the phosphorylation of Akt at Ser473 

without affecting cellular viability. A more severe blockage of glycolysis induced by glucose 

deprivation does not induce TIGAR. 

4. The avidity of cells for glucose and the production of lactate are decreased by the inhibition of 

either TIGAR or PFKFB3. 

 

Chapter II. Role of TIGAR in the metabolism of cancer cells: is it all about Fru-2,6-P2? 

5. TIGAR protein sequence and structure are closer to PGAM than to the bisphosphatase domain of 

PFKFBs, as revealed by in silico studies. 

6. TIGAR overexpression significantly decreases Fru-2,6-P2 concentration, whereas TIGAR inhibition 

increases the concentration of this metabolite and that of 3-PG and pyruvate. The modulation of 

TIGAR levels does not affect the abundance of intermediates of the pentose phosphate pathway 

in HeLa cells.  

7. Inhibition of TIGAR affects mitochondrial metabolism by enhancing PDH activity at the expense 

of PCB and increasing the anaplerosis of other fuels rather than glucose to the TCA cycle. 

8. The ratio NAD+/NADH is increased after TIGAR suppression and remains unaltered after TIGAR 

overexpression. The ratio NADP+/NADPH is not affected by TIGAR modulation in HeLa cells. 

9. The levels of the lactate importer MCT1 are increased in TIGAR overexpressing HeLa cells. 
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Chapter III. Control of TIGAR expression by Nrf2 

10. Nrf2 activation by either Nrf2 overexpression or treatment with the Nrf2 inducer DMF increases 

TIGAR expression in human and mouse cells. 

11. Inhibition of Nrf2 in HeLa cells decreases TIGAR expression. However, NSCLC cell lines showed 

heterogeneous responses to Nrf2 suppression, suggesting an indirect relationship between these 

two proteins in this subset of cancers. 

12. Two antioxidant response elements located in the promoter of human TIGAR gene show 

functional activity after the overexpression of Nrf2 in luciferase assays. The direct binding of Nrf2 

to an antioxidant response element in the promoter of mouse Tigar gene has been proved by 

ChIP assays.  

 

Chapter IV. Looking at TIGAR in response to oxidative stress: location also matters 

13. Hydrogen peroxide induces cellular enlargement and disorganization of centrioles in mouse 

pancreatic ductal adenocarcinoma cells. These effects are consistent with a senescent phenotype 

and are prevented by N-acetyl-cysteine. 

14. Tigar is mobilized to the nucleus of mouse pancreatic ductal adenocarcinoma cells in response to 

hydrogen peroxide, and the flag-TIGAR-GFP fusion protein colocalizes with γ-tubulin in the 

perinuclear area at these conditions. 

15. Overexpression of flag-TIGAR-GFP increases the proliferation of Tigar KO mouse pancreatic ductal 

adenocarcinoma cells treated with hydrogen peroxide and nocodazole. 
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1. Cell culture 

1.1. Cell lines 

The cell lines used for the experiments presented in this thesis are summarised in Table M-I. Additionally, 

human primary lymphocytes were used for the study presented in the Annex at the end of this thesis. 

Cell line Tumour origin Reference 

HeLa Cervix adenocarcinoma American Type Culture Collection 

A549 Lung adenocarcinoma These cells were kindly provided by the laboratory of Dr. 

Ricardo Enrique Pérez (Departament de Patologia i 

Terapèutica Experimental, Universitat de Barcelona) 
H460 Lung adenocarcinoma 

H1299 Lung squamous cell 

carcinoma 

These cells were kindly provided by the laboratory of Dr. Jose 

Luis Rosa (Departament de Ciències Fisiològiques, Universitat 

de Barcelona) 

PDAC Tigar+/+ Mouse pancreatic 

ductal adenocarcinoma 
These cells were kindly provided by the laboratory of Dr. 

Karen Vousden (The Beatson Institute for Cancer Research) PDAC Tigar-/- Mouse pancreatic 

ductal adenocarcinoma 

Table M-I. Cell lines used in this thesis and origin. 

1.2. Cell culture 

Cells were cultured in high glucose Dulbecco’s Modified Eagle’s Medium (DMEM; Biological Industries) 

supplemented with 10% Foetal Bovine Serum (FBS) (Biological Industries), 2 mM L-glutamine, 100U/mL 

penicillin and 100 ng/mL streptomycin (referred to as ‘Complete DMEM’, or ‘Complete medium’). The 

culture conditions were 37 °C, 5% CO2 and a relative humidity of 70–80%. 

All cell lines were re-seeded in new plates every two days at a confluence of 25%. After two months of 

maintenance, cells were replaced by a fresh vial to reduce the number of mutations accumulated due to 

high number of cellular divisions. 

1.3. Cell culture in low glucose conditions 

HeLa cells were washed twice with PBS and complete DMEM was replaced by glucose-free DMEM 

(Biological Industries) supplemented with 5 mM glucose previously filtered, 10% dialyzed FBS (Biological 

Industries), 2 mM L-glutamine, 100U/mL penicillin and 100 ng/mL streptomycin. These culture 

conditions are referred to as ‘Glucose deprivation’. 
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1.4. Thawing cells 

For cells highly resistant to dimethyl sulfoxide (DMSO), the whole content of the frozen vial can be 

thawed and poured into a 10 cm Ø culture plate with 10 mL of complete DMEM. To avoid toxicity, it is 

recommended to eliminate DMSO. For that, thaw the cryopreservation vial in a water bath at 37ºC and, 

just before it completely thaws, pour the whole content of the vial into a tube containing 10 mL of 

complete DMEM. Centrifuge at 1200 rpm for 5 min and discard the supernatant. Resuspend the cellular 

pellet in 10 mL complete DMEM and pour into a 10 cm Ø culture plate. 

1.5. Freezing cells 

Confluent plates are trypsinized and collected in 5 mL complete DMEM. Cells are centrifuged at 1200 

rpm, 5 min, and the cellular pellet is resuspended in 800 µL complete DMEM, 100 µL FBS and 100 µL 

DMSO on ice. The volume is introduced in a cryopreservation vial and immediately frozen. Percentage 

of FBS can be increased depending on the cell line. 

 It is important to immediately freeze cells at -80ºC after addition of DMSO given that it is toxic for 

living cells. 

1.6. Mycoplasma detection tests and treatment 

1.6.1. Immunofluorescence-based detection of mycoplasma 

Mycoplasma are a class of bacteria characterised by the absence of a cell wall, what makes them naturally 

resistant to many common antibiotics such as penicillin or other beta-lactam antibiotics that target the 

synthesis of the cell wall. Mycoplasma infect the cytoplasm of cells and can induce cellular changes. 

Detection can be performed by immunofluorescence or PCR. For immunofluorescence:  

 Discard media from cultured cells and wash twice with non-sterile PBS. This protocol is for 24-well 

plates, the volumes can be adjusted according to the size of the plate. 

 Fixation: add 300 µL PFA 4% (see Immunofluorescence section for the preparation) and leave the 

plate closed at room temperature for 20 minutes. 

 Incubate cells with DAPI (Thermo Fisher Scientific) at 1/5000 in PBS for 10 minutes. 

 Wash cells twice with PBS and directly observe in an inverted fluorescence microscope or mount 

coverslips over slips, as indicated in the Immunofluorescence protocol of this section. 
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1.6.2. PCR-based detection of mycoplasma 

Culture cells for 5-7 days in a 30 mm plate in antibiotic-free medium. Isolate mycoplasma DNA by 

following the protocol: 

 Take 1.5 mL of the medium and centrifuge at 4ºC, 300 x g, 10 min. 

 Transfer the supernatant to a new sterile tube and centrifuge at 4ºC, 13,000 x g, 10 min. 

 Remove the supernatant, resuspend the pellet with 50 μL of sterile water and heat at 95ºC for 10 min. 

Samples can be immediately used or frozen for later analysis. 

 Perform PCR with specific primers (Primer A: 5’-GGCGAATGGGTGAGTAACACG-3’, Primer B: 5’-

CGGATAACGCTTGCGACCTATG-3’) in a thermocycler at the following conditions: 

95ºC, 5 min. [94ºC, 1 min. 60ºC, 1 min. 72ºC, 1 min.] 30-35 cycles. 72ºC, 7 min. 4ºC, ∞. 

1.6.3. Mycoplasma elimination treatment 

Plasmocin Treatment (Invivogene) was used following manufacturer’s recommendations: 

 Remove medium from contaminated cells and wash twice with PBS. 

 Split an actively dividing culture of cells into medium containing 25 µg/mL Plasmocin. 

 Remove and replace with fresh Plasmocin-containing medium every 3-4 days for 2 weeks. 

 Confirm the elimination of mycoplasma by immunofluorescence/PCR. 

 It is recommended to keep a cell plate with Plasmocin and repeat the test after one additional week. 

2. Transfections 

Two types of transfections were performed during this thesis, according to the nature of the genetic 

material to be transfected. Small-interfering RNAs (siRNAs) were transfected using Oligofectamine 

(Invitrogen) whereas plasmids were transfected with Lipofectamine LTX (Invitrogen). All experiments 

were performed in 6-well plates. The transfection medium used was Opti-MEM, which lacks FBS and 

antibiotics to avoid interference with the transfection. 

2.1. siRNA transfection with Oligofectamine 

- Prepare siRNAs: for each transfection sample, dilute the adequate volume of 20 µM stock siRNA in 350 

µL Opti-MEM (Thermo Fisher Scientific) to the final siRNA concentration desired. Details of the siRNAs 

and concentrations used in this thesis are reported in Table M-II. 

- Prepare Oligofectamine: mix 350 µL Opti-MEM with the same volume of Oligofectamine than that of 

siRNA. Vortex. Incubate for 5 min at room temperature. 

- Prepare complexes: pour 350 µL of Oligofectamine mix inside the tube containing 350 µL of siRNA 

while slowly vortexing. Incubate the complexes for 20 min at room temperature. 
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- Wash cells twice with PBS and add the 700 µL of siRNA complexes to each well. 

- After 4h, add 1,3 mL of complete DMEM to each well. Alternatively, complete DMEM can be added the 

day after. The introduction of genetic material is accomplished within 4 h and complete medium is added 

to avoid cell dead due to FBS and Gln deprivation. 

 

Gene Sequence Company Concentration (nM) 

TIGAR T1 5’-GAAGUUAAACCAACGGUUCAGUGUA-3’ Stealth siRNA (Thermo Fisher Scientific) 75 

TIGAR T2 5’-CAGGAUCAUCUAAAUGGACUGACUG-3’ Stealth siRNA (Thermo Fisher Scientific) 75 

TIGAR T3 5’-CAAGCAGCAGCUGCUGGUAUAUUUC-3’ Stealth siRNA (Thermo Fisher Scientific) 75 

PFKFB3 5’-AGCUGCCUGGACAAAACAUG-3’ Thermo Fisher Scientific 75 

NFE2L2 5’-CCAACCAGUUGACAGUGAACUCAUU-3’ Thermo Fisher Scientific 100 

Scrambled 5’-UAAAUGUACUGCGCGUGGAGAGGAA-3’ Stealth siRNA (Thermo Fisher Scientific) 75/100 

Table M-II. Small interfering RNAs (siRNAs) used in this thesis. 

 

2.2. Plasmid transfection with Lipofectamine LTX 

- Prepare plasmids: for each transfection sample, dilute the adequate volume of plasmid in 150 µL Opti-

MEM (Thermo Fisher Scientific) for a total amount of plasmid of 1 µg. Add the same volume of Plus 

Reagent. The final volume in each well will be 300 µL. Vortex. The plasmids for gene overexpression used 

in this thesis are reported in Table M-III. 

- Prepare Lipofectamine: for each transfection sample, dilute 10 µL of Lipofectamine in 150 µL Opti-

MEM. Vortex. 

- Prepare complexes: pour 150 µL of Oligofectamine mix inside the tube containing 150 µL of plasmids. 

- Incubate the complexes for 20 min at room temperature. 

- Wash cells twice with PBS, put 400 µL of Opti-MEM and add the 300 µL of plasmid complexes to each 

well. 

- After 4h, add 1,3 mL of complete DMEM to each well. Alternatively, complete DMEM can be added the 

day after. The introduction of genetic material is accomplished within 4 h and complete medium is added 

to avoid cell dead. 

Gene Plasmid name Origin/Company 

TP53 pcDNA3-p53 Addgene 

SP1 CMV-SP1 Addgene 

ATF4 pRK-ATF4 Addgene 

CREB1 pFETCH_CREB1 Addgene 

NFE2L2 NC16 pCDNA3.1 Flag Nrf2 Addgene (kindly provided by Dr. Ventura’s Lab) 

TIGAR pcDNA3.1-Flag-tagged-TIGAR (3) (kindly provided by Dr. Vousden’s Lab) 

Negative control pcDNA3.1 Addgene 

Table M-III. Overexpression plasmids used in this thesis.
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3. Protein analysis by western blot 

3.1. Protein extraction 

Two approaches were performed to extract protein from cells, depending on whether we were interested 

in total amounts of protein or on the distribution of proteins within the different cellular organelles. 

3.1.1. Extraction of whole protein amounts 

 This protocol needs to be performed on ice if phosphorylated proteins are analysed. If we are not 

interested in phosphorylated proteins, the extraction can be performed at room temperature. 

- Analysis of non-phosphorylated proteins: 

Cells were washed twice in non-sterile PBS 1X and 70 µl of Whole cell lysis buffer* were added to each 

well of 6-well plates. The volume of lysis buffer needs to be adapted to the cellular confluence. 70-100 

µl are usually enough to lyse a confluent well of a 6-well plate of HeLa cells. Cells were scrapped and the 

lysates were transferred to eppendorf tubes for the quantification of protein concentration. Lysates can 

be frozen at -20ºC before quantification. 

- Analysis of phosphorylated proteins: 

The procedure was the same as described for non-phosphorylated proteins, but cold PBS 1X was used 

for washing cells and the extraction buffer used was RIPA. RIPA is a softer lysis buffer due to its lower 

percentage of SDS. Protease and phosphatase inhibitors need to be added to RIPA buffer immediately 

before the extraction (Table M-IV). 

Protease Inhibitor Solvent [Stock] [Use] Dilution 

Leupeptin Water 5 mg/ml 5 μg/ml 1:1000 

Benzamidine Water 10 mg/ml 100 μg/ml 1:100 

Pepstatin Acetic acid 10% 

Methanol 90% 

1 mg/ml 1 μg/ml 1:1000 

PMSF Isopropanol 100 mM 1 mM 1:100 

Phosphatase Inhibitor Solvent [Stock] [Use] Dilution 

NaF Water 1 M 1 mM 1:1000 

Sodium Orthovanadate  Water 0,2 M 0,2 mM 1:1000 

β-glycerophosphate Water 1 M 1 mM 1:100 

Table M-IV. Protease and phosphatase inhibitors used for RIPA buffer. 

Lysates were collected in eppendorf tubes and maintained on ice or frozen at -20ºC before protein 

quantification by BCA assay. 
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3.1.2. Subcellular fractioning 

This protocol can be used to analyse phosphorylated and non-phosphorylated proteins from different 

cellular compartments. It is recommended to use confluent 10 cm Ø plates to have good protein yield. 

Two different buffers are suitable for this protocol, one based on Tris-HCl and the other on HEPES 

(Subcellular Fractioning Buffer I and II, respectively). In the tune up of this technique, the two buffers 

showed similar efficiency (Figure M-1).  Buffer II was used for further experiments in this thesis. 

 

 

Figure M-1. Western blot analysis of cellular extracts obtained with Subcellular Fractioning Buffers I and II. α-tubulin, a 

cytoplasmatic marker, and Lamin A/C, a nuclear specific protein, were analysed in cytoplasmic and nuclear fractions. The 

cytoplasmic fractions obtained with both buffers did not contain nuclear proteins (absence of Lamin A/C). However, some 

cytoplasmatic proteins remained in the nuclear extracts. The efficiency of the separation varied between experiments. 

 

Prepare the Subcellular Fractioning buffer by adding the following protease and phosphatase inhibitors 

just before use (Table M-V).  

Protease Inhibitor Solvent [Stock] [Use] Dilution 

Leupeptin Water 5 mg/ml 10 μg/ml 1:500 

Benzamidine Water 10 mg/ml 100 μg/ml 1:100 

Pepstatin Acetic acid 10% 

Methanol 90% 

1 mg/ml 5 μg/ml 1:500 

PMSF Isopropanol 100 mM 0,5 mM 1:200 

Phosphatase Inhibitor Solvent [Stock] [Use] Dilution 

NaF Water 1 M 1 mM 1:1000 

Sodium Orthovanadate  Water 0,2 M 0,1 mM 1:2000 

Table M-V. Protease and phosphatase inhibitors used for subcellular fractioning. 
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Perform the protocol as follows: 

 Wash cells twice with 10 mL of cold PBS 1X 

 Add 1 ml of Subcellular Fractioning Buffer.  

 Scrap cells and transfer the lysate to a cold eppendorf tube. 

 Pas the whole volume through a 27G syringe 4 or 5 times. The rupture of the cellular membrane can 

be checked by trypan blue staining. It is recommendable to perform this staining the first time that 

the protocol is performed to adapt the number of times to pass the volume through the syringe to 

each cell type. The optimal is to break as much cells as possible without breaking the nuclei (cells 

with integral membrane are refringent and nuclei from broken cells are stained in blue). 

 Centrifuge at 4ºC, 1000 x g, 10 min. Collect the supernatant (membranes and cytoplasmic fraction) 

and transfer it to a new tube*1. Add 1 mL of buffer to the pellet (nuclear fraction) to wash it and 

centrifuge again at 4ºC, 1000 x g, 10 min. 

 Eliminate the supernatant and resuspend the pellet with 250 µl of buffer and store. 

 With the tube containing the cytoplasmic fraction*1, protocol can be stopped here or continue to 

separate the cytosol from membranes. To obtain the cytosolic fraction, centrifuge the cytoplasmic 

extract at 4ºC, 10000 x g, 1 h (alternatively, centrifuge at 4ºC, 13000, 30 min) and transfer the 

supernatant (cytosol) to a new tube and store. Add 1 mL of buffer to the pellet to wash it and 

centrifuge at 4ºC, 10000 x g, 10 min. Eliminate the supernatant and resuspend the pellet (membranes) 

with 250 µl of buffer and store. 

 At least two samples are obtained from each original protein extract: cytoplasmic and nuclear 

fractions (Figure M-1). Alternatively, three samples (cytosol, membranes and nuclei) are obtained. 

Proceed to the quantification of protein by BCA assay. 

  



MATERIALS AND METHODS 

202 

 

3.2. Protein quantification 

Two assays, BCA and Bradford, were used according to the lysis buffer in which the samples were 

extracted (Table M-VI).  BCA assay is compatible with all the protein lysis buffers used in this thesis 

except for the Fructose-2,6-P2 extraction buffer, for which the Bradford assay was performed. 

BCA-compatible lysis buffers Bradford-compatible lysis buffers 

Whole cell lysis buffer Fru-2,6-P2 extraction buffer 

RIPA NaOH 1M 

Subcellular fractioning buffer I 

Subcellular fractioning buffer II 

Luciferase assay lysis buffer 

Table M-VI. Compatibility between protein assays and lysis buffers 

Both assays are based on the generation of coloured products the intensity of which is proportional to 

protein concentration. Thus, a standard curve is needed. Samples to perform the standard curves were 

prepared by diluting bovine serum albumin (BSA) in the corresponding buffer in which cells were lysed 

at concentrations from 10 to 0 μg/μL. 

3.2.1. BCA assay 

The Pierce™ BCA Protein Assay Kit (Thermo Fischer) was used, which is based on the reduction of Cu2+ 

to Cu1+ by proteins in an alkaline medium (biuret reaction), coupled to the reaction of bicinchoninic acid 

(BCA) with Cu1+, which produces an intense purple product. An advantage of BCA compared to Bradford 

is that, although cysteine, tyrosine and tryptophan are the amino acids that more strongly reduce Cu2+, 

the peptide backbone also contributes to colour formation, helping to minimize variability caused by 

protein compositional differences. 2 µL triplicates of each sample or standard curve, were dispensed in 

96 well plates and 150 µL of the reaction mix was added to each well. The reaction mix was prepared by 

diluting 1 part of Reagent B in 50 parts of Reagent A. The plate was incubated at 37ºC for 30 min and 

absorbance was read at 540 nm in a SunriseTecan plate reader. The absorbance is proportional to protein 

concentration, which can be extrapolated from the standard curve. 

3.2.2. Bradford assay 

The Bio-Rad Protein Assay was used, which is based on the binding of basic and aromatic amino acids 

to the Coomassie reagent, causing a shift from the reddish/brown form of the dye (maximum 

absorbance at 465 nm) to the blue form of the dye (maximum absorbance at 610 nm). 2 µL triplicates of 

each sample or standard curve were dispensed in 96 well plates and 150 µL of the reaction mix was 

added to each well. The reaction mix was prepared by diluting the Bio-Rad Protein Assay reagent with 

water 1:5 and the absorbance at 595 nm was read in a SunriseTecan plate reader. The absorbance is 

proportional to protein concentration, which can be extrapolated from the standard curve.  
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3.3. Electrophoresis and western blot 

This technique is based on the separation of proteins by their molecular weight through electrophoresis 

in an acrylamide gel and the transference of proteins to a membrane where they can be detected by 

specific antibodies. For that, proteins need to be denatured to ensure that their migration through the 

gel will only be affected by their mass. 

3.3.1. Sample preparation 

After quantification, Sample Buffer 4X was added to protein extracts. This buffer contains SDS, which 

denatures and negatively charges proteins to be moved to the positive pole, dithiothreitol, which breaks 

disulphide bonds, and bromophenol blue, that allows to visualize samples during electrophoresis. 

Samples were heated for 10 min at 95ºC to completely denature proteins. 

Electrophoresis gels were prepared as indicated in Table M-VII: 

Stacking gel (upper) Separating gel (lower) 12,5%* 

Acrylamide 3,75 mL Acrylamide 0,6 mL 

Upper buffer 4,65 mL Upper buffer 2,00 mL 

Water 6,6 mL Water 5,40 mL 

APS 10% 75 µL APS 10% 40 µL 

TEMED 25 µL TEMED 10 µL 

  Table M-VII. Recipe for two electrophoresis gels. * Percentage of acrylamide can vary    

  according to the molecular weight of the proteins to be detected.  Acrylamide is toxic,   

  handle with gloves! 

All proteins analysed in this thesis were separated in 12,5% acrylamide gels except for the autophagic 

protein LC3, which was analysed in 17% acrylamide gels due to its low molecular weight. 

3.3.2. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Mini Protean II (Bio-Rad) was used to perform the SDS-PAGE. Samples were loaded in the gels and 

PageRuler™ Plus Prestained Protein Ladder (Thermo Fisher Scientific) was used as the protein marker. 

Buckets were filled with Electrophoresis Buffer and run for at least 1 h at 125 V until the bromophenol 

blue is at the lower part of the gel. 
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3.3.3. Transference to nitrocellulose membranes: 

After the electrophoresis, two types of transference can be performed. In both procedures nitrocellulose 

membrane needs to be activated. This is achieved by incubating the membrane in methanol for 1 minute 

and subsequently submerging it into water until it completely sinks. 

 In the Wet Mini Trans-Blot Transfer System (Bio-Rad), proteins are transferred from the gel to 

the nitrocellulose membrane due to the difference of potential created in a tank filled with 

Electrophoresis Buffer. The whole transference is completed after 90 min at 350 mA. 

 In the Trans-Blot Semi-Dry Transfer System (Bio-Rad) the transference of proteins from the gel 

to the nitrocellulose membrane occurs in a cassette in which only the Whatman filter papers are 

soaked in the corresponding anode (in the membrane side) and cathode (in the gel side) 

buffers. In this system, the transference is completed after 30 min at 25 V. 

After electrophoresis, it is recommended to wash the membrane in TBS-T 1X for 5 minutes, especially 

after the Semi-Dry system. 

3.3.4. Immunodetection of proteins with specific antibodies: 

The membrane is incubated with TBS-T 1X with 5% non-fat dry milk to avoid non-specific binding of the 

primary or secondary antibodies to the membrane, and subsequently incubated with the primary 

antibodies of interest at 4ºC overnight. Usually the membrane needs to be cut for the incubation with 

different primary antibodies. The antibodies used in this thesis were prepared with TBS-T with 5% BSA 

and are reported in Table M-VIII. 

The day after, the primary antibody is collected (it can be recycled) and membrane is rinsed in TBS-T 1X. 

Secondary antibody is prepared in TBS-T 1X with 5% non-fat dry milk and membranes are incubated 

within it for 1 h at room temperature. The secondary antibodies used in this thesis are reported in Table 

M-IX. After the incubation, the membrane needs to be washed twice in TBS-T for 5 minutes, plus an 

additional wash of 5 min in TBS prior to precede with the detection of the secondary antibody signal. 

The secondary antibodies used are conjugated with Horseradish Peroxidase, an enzyme that converts 

H2O2 to a luminescent product.  EZ-ECL Chemiluminescence detection kit (Biological Industries), which 

contains H2O2, was used and chemiluminescence was acquired with a Las-3000 detection system 

(Fujifilm). 

 If primary antibodies display high signal, incubation can be performed for 2 h at room temperature. 
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Protein targeted Dilution Species of origin Company Mw of the protein (kDa) 

P-Akt (S473) 1/1000 Rabbit Cell Signalling 60 

Akt 1/1000 Goat Cell Signalling 60 

ATF4 1/1000 Rabbit Cell Signalling 39 

CREB1 1/1000 Rabbit Cell Signalling 37 

G6PD 1/500 Rabbit Abcam 59 

GLS1 1/1000 Rabbit Cell Signalling 65 

HK-II 1/500 Mouse Santa Cruz Biotechnology 102 

HO-1 1/1000 Goat Abcam 28 

KEAP1 1/1000 Mouse Santa Cruz Biotechnology 62 

Lamin A/C 1/1000 Mouse Cell Signalling 74 (Lamin A), 63 (Lamin C) 

LC3-I/III 1/1000 Rabbit MBL 16 (LC3-I), 14 (LC3-II) 

MCT1 1/1000 Mouse Santa Cruz Biotechnology 42 

mTOR 1/1000 Mouse Cell Signalling 289 

P-mTOR (S2448) 1/1000 Rabbit Cell Signalling 289 

Nrf2 1/1000 Rabbit Santa Cruz Biotechnology 95-110 

P-p70S6K1 (T389) 1/1000 Rabbit Cell Signalling 70 

p53 1/1000 Mouse Santa Cruz Biotechnology 53 

p62 1/1000 Mouse Abnova 62 

PCB 1/1000 Mouse Santa Cruz Biotechnology 126 

PCK-2 1/1000 Rabbit Abcam 71 

PDH 1/1000 Rabbit Merck 43 

PFKFB3 1/1000 Rabbit Homemade (serum 94) (33) 59 

S6 1/1000 Mouse Cell Signalling 32 

P-S6 (S235/236) 1/1000 Rabbit Cell Signalling 32 

SP1 1/1000 Mouse Santa Cruz Biotechnology 90 

TIGAR 1/1000 Rabbit LifeSpan 30 

TIGAR 1/1000 Rabbit Santa Cruz Biotechnology 30 

TKT 1/1000 Mouse Santa Cruz Biotechnology 68 

TSC2 1/1000 Rabbit Cell Signalling 200 

α-tubulin 1/4000 Mouse Sigma-Aldrich 50 

Table M-VIII. Primary antibodies used for western blot. 

 

Secondary antibody Dilution Species of origin Company 

α-Mouse 1/20000 Donkey Amersham 

α-Rabbit 1/20000 Donkey Amersham 

α-Mouse 1/10000 Goat Advansta 

α-Rabbit 1/10000 Goat Advansta 

α-Goat 1/10000 Donkey Sigma-Aldrich 

Table M-IX. Secondary antibodies used for western blot. 
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3.3.5. Stripping 

The membrane can be reblotted several times with different primary antibodies. It is recommended to 

incubate first with the antibodies that emit less signal, such as those detecting phosphorylated proteins. 

If the antibody for the second incubation is specific for a protein with a molecular weight similar to that 

previously detected, stripping of the membrane is recommended. Stripping eliminates the first primary 

antibody and avoids steric impairment for the second primary antibody to bind. This protocol should be 

performed in a covered bucket to avoid the smell of the Stripping Solution: 

 Incubate the membrane in Stripping Solution at 54ºC in a water bath with agitation for 15-20 minutes. 

The time of incubation depends on the stripping astringency desired. 

 Wash twice in TBT-T 1X for 10 min in agitation. 

 Block again the membrane with TBS-T 1X with 5% non-fat dry milk and incubate with primary 

antibody. 

4. Immunofluorescence 

This technique is used to analyse protein localisation by confocal fluorescence microscopy, as well as to 

assess the presence of mycoplasma in the different cell lines cultured. Proceed as follows: 

 Discard media from cultured cells and wash twice with non-sterile PBS. This protocol is for 24-well 

plates, the volumes can be adjusted according to the size of the plate. 

 Fixation: add 300 µL PFA 4% (see preparation below) and leave the plate closed at room temperature 

for 20 minutes. Extended fixation time can damage cells. 

 PFA is toxic and needs to be handled with gloves and mask in a fume hood. 

 Discard PFA in the appropriate residue container and wash cells twice with PBS. The protocol can be 

stopped at this point and plates can be stored at 4ºC with 1 mL of PBS in each well. For extended 

storage, add sodium azide to a final concentration of 0,02% and seal the plate. 

 If cells have been stored at 4ºC, leave the plate at room temperature for 10-15 min before performing 

the immunofluorescence. 

 Permeabilization: wash twice with PBS/0,1% Triton-X100 for 5 minutes. 

 Blocking: add 10% horse serum (HS) diluted in 200-300 µL of PBS/0,1% Tween20 and incubate 2 h 

at room temperature. 

 Primary antibody incubation: prepare the antibodies with 1% HS PBS/0,1% Tween20 and either add 

them to the plate (150-200 µL verifying that the whole coverslip is covered) or prepare a humid 

chamber with a drop of 30 µL of primary antibody for each coverslip as it is detailed in Figure M-2. 

Store the 24-well plate sealed with parafilm/humid chamber at 4ºC overnight in a place protected 

from movement. The primary antibodies used in this thesis are reported in Table M-X. 
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 One coverslip for each cell type needs to be used as negative control: this coverslip will not be 

incubated with primary antibody and, thus, the fluorescence will reflect the inespecificities of secondary 

antibody. It can be stored in the original 24-well plate in PBS/0,1% Tween20 overnight. 

 

 

Figure M-2. Schematic representation of a humid chamber for immunofluorescence. 150 mm Ø plate with all sides covered 

with aluminium foil were used to create the humid chamber. Attach parafilm to the plate surface and dispense drops of 30 µL of 

each antibody on it. It is important to identify each antibody (A, B) and condition (control: CT, treated: T) on the parafilm. Take 

coverslips from the 24-well plate and place them above the antibody drops, with the cells facing down towards the antibody. The 

antibody spreads through the whole coverslip by capillarity. Dip Whatman filter papers on water and put them on two sides of the 

plate to maintain enough humidity inside to avoid coverslips to dry. 

 

Continue the protocol protecting the samples from light: 

 Secondary antibody incubation: the following day, transfer the coverslips into a new 24-well plate. 

Wash twice with PBS/0,1% Tween20 for 10 min and incubate with 150 µL of the secondary antibody 

prepared in 1% HS PBS/0,1% Tween20 for 1 hour at room temperature protected from light. The 

secondary antibodies used in this thesis are reported in Table M-XI.  

 Nuclear staining: wash four times with PBS for 5 min and incubate with 150 µL of the nuclear marker 

desired. In this thesis, TO-PRO-3 iodide and DAPI were used. The incubation conditions are reported 

in Table M-XII. 

 Mounting: wash three times in PBS and proceed to mount the coverslips on the slides. Put 5-10 µL 

of Fluoroshield mounting medium (Sigma-Aldrich) on the slide and cover it with a coverslip with cells 

facing down towards the slide. 

 Leave at room temperature protected from light for the Fluoroshield to harden. After that, store at 

4ºC until observed at the confocal microscope. 
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Protein targeted Dilution Species of origin Company 

Nrf2 1/300 Rabbit Santa Cruz Biotechnologies 

p53 1/200 Mouse Santa Cruz Biotechnologies 

P-γ-H2AX (S139) 1/250 Rabbit EMD Millipore 

TIGAR 1/300 Rabbit Santa Cruz Biotechnologies 

γ -tubulin 1/200 Mouse Abcam 

Table M-X. Primary antibodies used for immunofluorescence. 

 

Secondary antibody Dilution Species of origin Company 

Alexa488-conjugated α-Rabbit 1/400 Chicken Thermo Fisher Scientific 

Cy3-conjugated α-Mouse 1/400 Donkey Thermo Fisher Scientific 

Alexa594-conjugated α-Mouse 1/400 Donkey Thermo Fisher Scientific 

Table M-XI. Secondary antibodies used for immunofluorescence. 

 

Nuclear staining Dilution  Incubation time Company 

DAPI 1/5000  10 min Thermo Fisher Scientific 

TO-PRO-3 iodide 1/1000  2 h Thermo Fisher Scientific 

Table M-XII. Nuclear markers used for immunofluorescence. 

 

 

 

 

 

  

Preparation of 16% and 4% PFA 

• 16% PFA is prepared in a fume hood by adding 16 g PFA (weighted in the fume hood) to 75 mL of autoclaved 

Phosphate Buffer 0,4M in continuous stirring at 40ºC until it gets transparent (2-4 hours). Then, 25 mL 

Phosphate Buffer 0,4 M are added and the mix is left overnight with the fume hood closed. The day after, it 

is filtered with paper and aliquots are stored at -20ºC. 

• 4% PFA is prepared by diluting ¼ with water and can be stored at 4ºC. 
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5. Gene expression analysis by RT-qPCR 

5.1. mRNA extraction 

mRNA was extracted from cells cultured in 6-well plates (it is not recommended to use smaller plates to 

ensure a good mRNA yield) by TRIsure (Bioline) following manufacturer’s procedure with some 

modifications. Perform the protocol on ice and with sterile material. 

 

- - Lyse cells directly in the culture dish by adding 0,5 mL of TRIsure per well and ensure that the 

whole cell surface is covered. Scrap cells with a twisted 200 µL tip and collect the lysate, pass 

three times the volume through the well surface and put the lysate into eppendorf tubes. At this 

stage, samples can be stored at -80 °C.  

- - Phase separation: incubate samples for 5 min at room temperature. Add 100 µL of chloroform 

per 0,5 mL of TRIsure used. Cap tubes securely and shake vigorously by hand for 15 seconds. 

Incubate samples for 3 min at room temperature. Centrifuge samples at 12,000 x g for 15 min 

at 4 °C. The sample will separate into a pale green organic phase, an interphase, and a colourless 

upper aqueous phase. 

- - RNA precipitation I: transfer the aqueous phase carefully to a new tube previously set on ice. 

Add 500 µL of cold isopropanol and incubate samples for 10 min at room temperature without 

shaking. Store at -20 °C overnight to increase RNA yield.  

- - RNA precipitation II: thaw the tubes and centrifuge at 12,000 x g for 10 min at 4°C. 

- RNA wash: decant the supernatant and add 500 µL of cold 75% ethanol to wash the pellet. 

Vortex samples and centrifuge at 13000 x g for 5 min at 4 °C. Repeat this step for an additional 

wash. 

- - After the second wash, decant the supernatant and spin the eppendorf at 12000 x g. With a 20 

µL tip on the top of a 200 µL tip, aspirate the remaining ethanol from the eppendorf. Be careful 

not to touch the pellet and, if the pellet is not visible, do not take the remaining ethanol the 

eppendorf. 

- - Air-dry the pellet at 50ºC in a block heater and, once the remaining ethanol is evaporated, 

resuspend the pellet in 10 µL PCR water or DEPC-treated water by pipetting the solution up and 

down. Leave at 4ºC overnight for a complete resuspension. 

- - Incubate for 10 min at 65 °C and proceed to quantification. At this point samples can be stored 

at -80ºC. 
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5.2. RNA quantification 

RNA concentration was determined by measuring the absorbance at 260 nm with NanoDrop (Thermo 

Fischer Scientific) and usually it was between 200-1000 ng/µL. RNA purity is determined by these two 

ratios: 

• Absorbance 260 nm/Absorbance 280 nm ≥ 1,8 indicates absence of contamination by proteins. 

• Absorbance 260 nm/Absorbance 230 ≥ 2 indicates absence of contamination by phenolic 

reagents such as TRIsure. 

5.3. Retrotranscription 

mRNA needs to be converted to cDNA to perform RT-qPCR. For that, High Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher Scientific) was used. For each sample, 2 µg of mRNA are 

retrotranscribed. The volume required from each sample is calculated and DEPC water is added until a 

final volume of 10 µL. If the RNA concentration was lower than 200 ng/µL, the whole sample was 

retrotranscribed. 

 

Prepare reaction mix as follows and add 10 µL to each sample. 

Perform the PCR reaction at the following conditions: 

10 min 25ºC, 120 min 37ºC, 5 sec 85ºC, ∞ 4ºC. 

 

Store at -20ºC until RT-qPCR. 

  

DEPC H2O  4,2 µL 

10X Buffer  2 µL 

25X dNTPs mix  0,8 µL 

10 X Random Primers 2 µL 

Reverse Transcriptase 1 µL 

Final volume  10 µL 
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5.4. Real-time quantitative PCR (RT-qPCR) 

Quantification of gene expression by RT-qPCR is based on the fluorescence emitted by TaqMan Assays 

(Thermo Fisher Scientific), which is proportional to the number of cDNA copies of a given gene (Figure 

M-3). The reaction is performed in 388-well plates as follows: 

 Dilute the cDNA obtained by retrotranscription at 1/20 with DEPC water and pipette 5 µL triplicates 

to the 348-well plate. Add water in triplicates for each of the genes to be interrogated to perform the 

negative controls. 

 Prepare TaqMan Assays by mixing 0,5 µL of TaqMan Assay with 5,5 µL of SensiFAST and add 6 µL of 

the prepared TaqMan Assays to the corresponding wells. 

 Cover the plate with the film and run RT-qPCR in the ABI PRISM 7700 Sequence Detection System 

(Applied Biosystems). 

 

Figure M-3. RT-qPCR with TaqMan Assays. (A) RT-qPCR requires three components: a probe specific for the gene with a 5’ 

florescent reporter dye, a 3’ quencher of fluorescence and a minor groove binder (MGB), a pair of primers, one forward and one 

reverse, and the TaqPolymerase. Each TaqMan Assay (Thermo Fisher Scientific) contains one probe and a pair of primers specific 

to a given gene, and the TaqPolymerase is included in the Sensifast reagent (Bioline). Primers bind to the gene and when the 

polymerase reaches the TaqMan probe, its endogenous 5′ nuclease activity cleaves it, separating the dye from the quencher. In 

each PCR cycle, the fluorescence is increased proportionally to the cDNA copies. (B) The number of cycles at which the fluorescence 

specific for a given gene reaches the threshold and starts the exponential phase is called the cycle threshold, Ct. A lower Ct value 

indicates higher expression of that gene. Adapted from Thermo Fisher Scientific. 
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RT-qPCR data are acquired with the Sequence Detection Software (SDS version 3.0; Applied Biosystems) 

and analysed with Expression Suite Software (Applied Biosystems). The normalization procedure is 

commonly called the ΔΔCt-method and allows to compare the expression of a particular gene among 

different samples, relative to the Ct values of a housekeeping gene in that same sample. 

The TaqMan Assays used in this thesis are reported in Table M-XIII. 

 

Gene TaqMan Assay reference 

TIGAR Hs00608644_m1 

PFKFB3 Hs0019079_m1 

CDKN1A Hs00355782_m1 

G6PD Hs00166169_m1 

NQO1 Hs01045993-g1 

NFE2L2 Hs00975961_g1 

SLC2A1 Hs01374610_m1 

HK2 Hs00606086_m1 

TKT Hs01115545_m1 

LDHA Hs01378790_g1 

PHGDH Hs01106329_m1 

GAPDH Hs99999905_m1 

TBP Hs99999910_m1 

Table M-XIII. TaqMan Assays (Thermo Fisher Scientific) used in this thesis. 

6. RT-MLPA 

Reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) were performed by 

the group of Dr. Joan Gil (Departament de Ciències Fisiològiques, Universitat de Barcelona) using the 

SALSA MLPA KIT R011 (MRC-Holland) as described in (204). 

7. Flow cytometry analyses 

7.1. Oxidative stress measurements by flow cytometry 

Two probes were used to detect oxidative stress: CellROX Green (Life Technologies) and DCFDA (Sigma-

Aldrich). The oxygen and nitrogen radicals detected by each probe are summarised in Table M-XIV.  

Reactive specie DCFDA CellROX Green 

H2O2 ✓  

ROO- ✓  

HO- ✓ ✓ 

NOO- ✓  

O2
-  ✓ 

NO   

Table M-XIV. Reactive species detected by DCFDA and CellROX Green. 
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The protocol is similar for both probes and was adjusted to 12-well plates: 

 Wash the cells three times with PBS in sterility conditions and incubate with 10 µM DCFDA in Hank’s 

Balanced Salt Solution or 5 µM CellROX Green in complete DMEM for 30 min in a cell incubator at 

37 °C with 5% CO2. 

 Add 50 µL of trypsin, allow for trypsinization in the incubator and collect cells with 0,5 mL PBS 

supplemented with 10% of FBS. Protect from light. 

 Analyse by flow cytometry. In this thesis, FACSCanto flow cytometer (Becton Dickinson) equipped 

with a 488 nm laser and a 530/30 nm filter was used. A minimum of 10000 events were analysed per 

sample using the FACSDIVA Software (BD Biosciences). 

7.2. Analysis of cell death by flow cytometry 

The presence of apoptotic or necrotic cells was determined with the Annexin V-FITC Apoptosis Detection 

Kit (eBioscience Bender MedSystems). Cells were seeded into six-well plates and allowed to grow for 72 

h after siRNA transfection. Floating cells and attached cells freshly trypsinized were resuspended in PBS, 

washed twice in binding buffer and processed following manufacturer’s instructions. All measurements 

were made with a FACSCalibur flow cytometer (Becton Dickinson) equipped with an air-cooled argon 

ion laser emitting at 488 nm. The barrier filters were 530/30 nm for annexin-FITC, and 670/LP for 

propidium iodide (PI) fluorescence. A minimum of 10000 events per sample were analysed using the 

CELL QUEST PRO software (BD Biosciences). A schematic representation of how apoptotic cells are 

detected is provided in Figure M-4. 

 

Figure M-4. Annexin/PI staining to measure cell death. A well-established feature of apoptosis is the externalisation of the 

lipid phosphatidyl serine from the inner to the outer plasma membrane. Annexin-V is a protein that specifically binds phosphatidyl 

serine and fluorescent labelling of annexin-V enables its flow cytometric detection. As a cell dies, plasma membrane becomes 

permeable allowing fluorescent dyes present outside the cell such as propidium iodide to enter it and emit fluorescence. Adapted 

from University of Dundee. 
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8. Absorbance-based viability assessments 

Apart from the analysis of AnnexinV/PI by flow cytometry, viability can be assessed by more rudimentary 

methods that give an overall idea of cellular affectation. In this thesis, the crystal violet assay was used 

to determine the number of living cells after glycolysis inhibition. On the other hand, the MTT assay was 

used to determine the oxidative capacity of mitochondria, which is an indirect indicator of cellular 

wellness. The corresponding protocols are as follows: 

8.1. Crystal violet assay 

 Wash cells twice with PBS and stain with Crystal Violet solution for 30 min at 37ºC. Adjust the 

volume according to plate surface (150 µL is enough for 96-well plates). 

 After staining, remove the dye and recycle it.  The colour is very powerful and can stain any surface, 

so avoid direct contact with the dye. 

 Rinse the cells in water. If possible, dry the plates and perform the quantification the day after. 

 Dissolve the cell-attached dry with 1% SDS and read the absorbance by triplicates at 550. 

SunriseTecan plate reader was used. 

8.2. MTT assay 

The assay is based on the reduction of MTT by NAD(P)H-dependent cellular oxidoreductases, which 

convert the yellow tetrazolium MTT (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) to its 

reduced form, purple formazan. The activity of these enzymes is increased by the ratio 

NAD(P)H/NAD(P)+, which is higher in cells with a high mitochondrial metabolism, where most NADH is 

produced. Cells were seeded into 24-well plates and allowed to grow for 24, 48 or 72 h after siRNA 

transfection. After that, the subsequent protocol was performed: 

 Wash cells twice with PBS, add 0,5 mg/mL MTT in PBS and incubate for 2 h at 37 °C. 

 Carefully remove the MTT solution and dissolve the formazan crystals that have been formed in 200 

µL Isopropanol:HCl 40 mM per well. 

 Transfer 50 µL triplicates of each well to a 96-well plate and read the absorbance at 570 nm. 

SunriseTecan plate reader was used. 
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9. Metabolic assays 

9.1. Determination of glucose consumption 

Experiments were carried out in 6-well plates in triplicates and two approaches were performed. In a set 

of plates, medium was collected at the end of the experiment (24 h post-transfection for overexpressing 

experiments and 72 h post-transfection for siRNAs). In the other set of plates, cells were washed twice 

in PBS at the end of the experiment and medium was replaced by complete DMEM. After 6 hours of 

incubation, medium was collected. The concentration of glucose was determined using a method based 

on the coupling of glucose oxidase and peroxidase (PGO) activities (Sigma-Aldrich) according to 

manufacturer’s instructions: 

 Dilute medium samples 1/20 in distilled water. 

 Prepare a 96-well plate with 200 μL of the PGO Enzymes Reaction Solution and add 15μl of each 

sample per well. 

 Incubate at 37°C for 30 min and read the absorbance at 450 nm. SunriseTecan plate reader was used. 

9.2. Determination of extracellular lactate 

Lactate determination is based on the reaction catalysed by LDH, which converts lactate to pyruvate 

coupled with the reduction of NAD+ to NADH. In this thesis, lactate measurements were performed from 

extracellular media collected at the end of experiments. 

 Prepare the Lactate Assay Buffer to be used by adding NAD+ and EDTA to a final concentration of 

2,5 mM and 0,19 mM, respectively. 

 Prepare diluted LDH as follows: for each well, mix 2,5 µL LDH (Roche) with 17,5 µL of water and add 

20 µL of Lactate Assay Buffer. 

 Prepare a standard curve of lactate from 10 to 0 mM in water. 

 Pipette 10 µL of media samples or standard curve samples in duplicates in a black bottom 96 well 

plate. 

 Add 150 µL of Lactate Assay Buffer to each well and protect the plate from light. 

 Add 40 µL of diluted LDH to each well using a multichannel pipette to minimize time between 

samples and immediately read absorbance at 340 nm. FluoStar Optima plate reader was used. 

 Repeat the lecture after 20 minutes. Lactate concentration is proportional to the difference in 

absorbance between 0 and 20 minutes. The relation is determined by the standard curve. 

 Determine protein concentration of the cells from which media was collected and perform relative 

quantification of µmols of lactate per mg of protein. 
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9.3. Determination of intracellular Fru-2,6-P2 concentration 

The determination of Fru-2,6-P2 is based on the capacity of this metabolite to regulate PFK-1, being the 

most potent allosteric regulator of this enzyme. However, instead of using PFK-1, this assay is based on 

the stimulation of the potato PPi-PFK. PPi-PFK catalyses the phosphorylation of Fru-6-P to Fru-1,6-P2 

but, unlike animal PFK-1, it uses PPi as phosphoryl donor instead of ATP. 

The reactions of three enzymes, aldolase (ALDO), triose phosphate isomerase (TPI) and glycerol 

phosphate dehydrogenase (GPDH), are needed to couple Fru-2,6-P2 stimulation of PPi-PFK to NADH 

formation by GPDH (Figure M-5). 

 

Figure M-5. Reactions involved in the Fru-2,6-P2 assay. The capacity of Fru-2,6-P2 to allosterically activate PPi-PFK is indirectly 

measured by the consumption of NADH by GPDH. This assay requires the reactions catalysed by ALDO and TPI. Substrates and 

enzymes implicated in these reactions are depicted blue and green, respectively. 

9.3.1. Purification of PPi-PFK from potato tubers 

This protocol was described by Van Schaftingen, Lederer, Bartrons and Hers in 1982 (38). Bartrons’ Lab 

is one of the few laboratories that performs it due to the complexity to purify PPi-PFK. Utilisation of 

slightly germinated potatoes increases the purification yield. The protocol is as follows: 

 Prepare Hepes/CH3COOK/DTT buffer by adding 1M DTT to a final concentration of 2 mM just 

before use. 

 Weight 165 g of pealed potato. Adjust the subsequent volumes according to the weight. 

 Immediately after, grind the potato using a blender. Collect the liquid and pulp in a beaker on ice. 

Immediately add two volumes (330 mL) of Hepes/CH3COOK/DTT buffer in the breaker on ice.  

 Filter the mix through a funnel covered with gauzes into a graduated cylinder and stir with a spatula. 

Finally, make a sack with the gauzes and squeeze them inside the cylinder. Annotate the collected 

volume . 
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 Pour into a cold beaker and add PPi (solid) and 1M MgCl2 until a final concentration of 2 mM each. 

The weight of PPi and volume of 1M MgCl2 will depend on the collected volume. 

 Dissolve with the help of a magnetic agitator with the beaker on ice. Measure pH until it stabilizes. It 

takes about 10 min to get to ≈ 7,6. 

 Once stabilized, adjust the pH to 8,2 with 1M KOH. Annotate the volume of KOH added . 

 Put the beaker on a water bath at 70ºC and continuously stir until it gets to 59ºC. A thermometer 

inside the beaker is needed to properly control the temperature. Increased temperature could 

degrade PPi-PFK. Maintain at 59ºC for 5 min by taking the beaker in and out of the bath. Changes in 

temperature during these 5 min could also degrade PPi-PFK. 

 Quickly put on ice. 

 Adjust the pH to 7 by adding 1M HCl (or 5M HCl) with the beaker on ice. Annotate the volume of 

HCl added . At this point, an aliquot of 200 µL can be stored a -80ºC as a control of the first steps 

of the protocol. 

 Add 6 g/100 mL of solid polyethylene glycol-600 (PEG-600) according to the total volume (++). 

[PEG-600] = 6%. 

 Softly agitate for 15 min at 4ºC in a cold room with a magnetic agitator. 

 Leave 10 min without agitation at 4ºC. 

 Put into centrifuge tubes, equilibrate and centrifuge at 4ºC, 4000 x g, 10 min in a swinging-bucket 

rotor. Do not centrifuge at lower velocity, the PPi-PFK yield would be drastically reduced. The 

precipitate obtained has two colours: blank at the end of the tube and yellow above. 

 Collect the supernatant and the yellow precipitate with the help of a spatula or a spoon without 

taking the blank precipitate. Annotate the volume collected . 

 Add 10 g/100 mL of solid polyethylene glycol-600 (PEG-600) . [PEG-600]final = 16%. 

 Softly agitate for 15 min at 4ºC in a cold room with a magnetic agitator. 

 Leave 10 min without agitation at 4ºC. 

 Put again into centrifuge tubes, equilibrate and centrifuge at 4ºC, 4000 x g, 10 min in a swinging-

bucket rotor. Do not centrifuge at lower velocity, the PPi-PFK yield would be drastically reduced. 

Discard the supernatant (an aliquot of 200 µL can be collected as a control of these steps). 

 Collect the yellow precipitate with the help of a spatula or a spoon without touching the blank 

precipitate. 

 Add 20 mL of Tris/KCl/DTT buffer. 1M DTT needs to be added at the moment to a final 

concentration of 2 mM. Resuspend on ice.  

 Add 1 volume of glycerol 100% (≈ 20 mL) slowly and mix. Aliquot on 1 mL eppendorf tubes on ice 

and store at -80ºC until de Fru-2,6-P2 assay is performed. 
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9.3.2. Desalting auxiliary enzymes for Fru-2,6-P2 determination 

Commercial ALDO (10 mg/ mL, 9 U/mg) and TPI/GPDH (10 mg/mL, 4500 U/mg and 10 mg/mL, 1550 

U/mg, respectively) (Sigma-Aldrich) are (NH4)2SO4 solutions and desalting is required to avoid inhibition 

of PPi-PFK-2 activity. This protocol was described by (205). 

 Insert glass wool at the end of 1 mL syringes and place syringes inside 15 mL tubes. 

 Add 1 mL of Sephadex G-25 fine, previously swollen in Tris/Acetate buffer, to each syringe. 

 Centrifuge at 4ºC, 2500 rpm, 5 min in a swinging-bucket rotor. After centrifugation, glass wool should 

be compacted forming a column. Put the syringes on new 15 mL tubes. 

 Prepare an eppendorf tube with 217 µL Aldo and 200 µL TPI/PGDH. 

 Centrifuge the eppendorf tube at 4ºC, 1300 rpm, 5 min and discard the supernatant. 

 Resuspend the pellet in an equal volume of (417 µL) of Tris/Acetate buffer (this mix is referred to 

as the ‘Desalted auxiliary enzymes’). 

 Add 41,7 µL of auxiliary enzymes mix into each syringe and centrifuge at 4ºC, 2500 rpm, 5 minutes. 

Do not overload syringes to avoid column collapse. 

 Collect the eluted volumes and transfer them to a unique 15 mL tube. Add 273,5 µL of Tris/Acetate 

buffer per each of the eluates added. 

 Use fresh desalted auxiliary enzymes for the Fru-2-6-P2 assay. Alternatively, store at -20ºC. 

9.3.3. Preparation of substrates for Fru-2,6-P2 determination 

Prepare a 20X stock of Fru-6-P and Glu-6-P in relation 1:3,5 in water. For 10 mL, mix 0,304 g Fru-6-P (Na2 

salt) with 1,07 g Glu-6-P (Na2 salt) in water. Store at -20ºC until the Fru-2-6-P2 assay is performed. 

9.3.4. Sample preparation and determination of Fru-2,6-P2 

 Keep plates (usually 6-well plates) on ice, remove medium and wash twice with cold PBS. 

 Add 70 µL of Fru-2-6-P2 extraction buffer, scrap and transfer the lysates into eppendorf tubes. 

 Heat at 85ºC for 20 min and centrifuge at 4ºC, 1400 rpm, 15 minutes. 

 Transfer equal volumes of each supernatant to new tubes. Annotate the initial sample volume. 

Make sure that there are at least 10 µL of supernatant remaining in the original tube, which will be 

used for protein quantification. Store all tubes on ice before setting up the assay with a standard 

curve. 

 (Optional) Centrifuge the supernatant again at 4ºC, 1400 rpm, 2 min to clarify the sample. 

 Prepare the samples for the standard curve as described in Table M-XV. 
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Fru-2,6-P2 in the 

cuvette (pmols) 

Water 

(µL) 

Fru-2,6-P2 preparation from stock 

30 495 5 µL of stock solution (3,5 mM) 

8 982 18 µL of 30 pmol solution 

6 0 250 µL 8 pmol solution + 250 µL 4 pmol solution   

4 250 250 µL 8 pmol solution 

2 250 250 µL 4 pmol solution 

1 250 250 µL 2 pmol solution 

0 250 - 

Table M-XV. Preparation of a standard curve of Fru-2,6-P2. 

 Put 1 mL of Tris/Mg(CH₃COO)₂ Buffer to the spectrophotometer to set the Blank. 

 Prepare the Tris/Mg(CH₃COO)₂ Buffer + NADH buffer (Assay buffer) by adding NADH to 

Tris/Mg(CH₃COO)₂ until the absorbance in the spectrophotometer is close to 1,8-2. 

 Given the heterogeneous activity of PPi-PFK aliquots, do not neutralize the samples of interest until 

the assay is working with the standard curve. 

 Prepare the six spectrophotometer cuvettes for the standard curve. For each cuvette, add: 

  

* The volumes of PPi-PFK and sample can be adjusted according to the activity of the enzyme in   

  each aliquot and the cell confluence in the samples. Water is compensated accordingly. 

 

 Cup the cuvettes with parafilm and invert them. Immediately read in the spectrophotometer in the 

Programme: Fru-2,6-P2 (λ=340 nm), Mode: Kinetics. Annotate the Rate Values from 0 to 6 min and 

from 2 to 6 minutes. Perform a standard curve with these values. 

 If the standard curve has a R2 value between 0,8-1, proceed to assay the samples.  

 Neutralize the supernatant previously obtained from the samples of interest with Acetic/Acetate 

buffer to pH 7,0-7,5. Use pH strips to determine the pH. Annotate the volume added. 

 Prepare spectrophotometer cuvettes with the samples in series of six as previously described and 

perform the lecture and annotation of the Rate Values. 

 Perform Bradford Assay from non-neutralized samples to normalize Fru-2,6-P2 to protein levels. 

  

Tris/Acetate Buffer  730 µL 

Desalted Auxiliary enzymes       40 µL 

Glu-6-P+Fru-6-P 20X      40 µL 

H2O       85 µL* 

Sample/Standard       15 µL* 

PPi-PFK      40 µL* 

PPi (50 mM)     50 µL 

Final Volume               1000 µL 
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Absolute pmols of Fru-2-6-P2 in each sample are obtained by extrapolating the Rate values in the 

standard curve. Determine the concentration of Fru-2,6-P2 in the samples of interest as follows: 

pmols Fru-2,6-P2/µL sample = 
pmols Fru2,6P2 

Sample volume in the cuvette · 𝐃𝐢𝐥𝐮𝐭𝐢𝐨𝐧
 

     where Dilution =  
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐬𝐚𝐦𝐩𝐥𝐞 𝐯𝐨𝐥𝐮𝐦𝐞 + 𝐀𝐜𝐞𝐭𝐢𝐜/𝐀𝐜𝐞𝐭𝐚𝐭𝐞

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐬𝐚𝐦𝐩𝐥𝐞 𝐯𝐨𝐥𝐮𝐦𝐞
  

pmols Fru-2,6-P2/mg protein = 
𝐩𝐦𝐨𝐥𝐬 𝐅𝐫𝐮𝟐,𝟔𝐏𝟐/µ𝐋 𝐬𝐚𝐦𝐩𝐥𝐞

µg protein/µL sample
· 1000 

     where µg protein/µL sample is determined the Bradford Assay. 

 

9.4. Determination of intracellular Pyr, PEP, 2PG and 3PG 

This assay is based on the reaction catalysed by LDH, which converts Pyr to lactate in the presence of 

NADH, which is oxidized to NAD+, and the reactions catalysed by PK, ENO and PGAM (Figure M-6).  

 

Figure M-6. Reactions involved in the assay for the determination of Pyr, PEP, 2PG and 3PG. (A) NADH consumption is the 

readout of LDH activity. (B) To initiate the assay, the absorbance of the sample needs to be stable. LDH is added to the 

spectrophotometer cuvette and the decrease in NADH absorbance (E0-E1) is proportional to the concentration of pyruvate in the 

sample. When absorbance is again stable, PK is added to the sample and the decrease in NADH absorbance (E1-E2) is proportional 

to the concentration of PEP. After addition of ENO, the readout (E2-E3) corresponds to the 2PG and, finally, the last decrease of 

NADH absorbance (E3-E4) is observed after the addition of PGAM and correspond to 3PG. 
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9.4.1. Sample preparation 

 Keep plates (usually 6-well plates) on ice, remove medium and wash twice with cold PBS. 

 Add 70 µL of 1M HClO4, scrap and transfer the lysates into eppendorf tubes. 

 Centrifuge at 4ºC, 15000 x g, 5 minutes. 

 Transfer the supernatant to a new tube. A solid pellet will be formed at the bottom of the tube. Keep 

the pellets* for protein quantification. 

9.4.2. Determination of Pyr, PEP, 2PG and 3PG 

 Prepare LDH, PK and PGAM by diluting the solution stocks (Roche) at 1/20 in water. Weight the 

appropriate amount of ENO (Roche) to a final concentration of 100 U/mL. 

 Prepare 50 mM ADP in 50 mM MgCl2. 

 Add NADH to PEP assay buffer until the absorbance is close to 1,8-2. 

 Neutralize samples with 3M KHCO3 to pH 7,0-7,5. 

 Prepare series of six cuvettes as follows: 

  

 Add 20 µL of the enzymes and ADP-MgCl2 at the corresponding time according to Figure M-6. 

 Annotate the values (E0 to E4) at each step when absorbance is stabilized. 

 Dissolve the pellets* with 30 µL 1M NaOH, vortex, heat at 95ºC for 5 min for a complete dissolution 

and determine protein concentration by Bradford Assay. 

The concentration of Pyr, PEP, 2PG and 3PG are calculated considering that: 

E0-E1 → [Pyr], E1-E2  → [PEP], E2-E3  → [2PG] and E3-E4  → [3PG]. 

The Beer-Lambert Law relates the ΔAbs and the concentration of each metabolite as follows: 

ΔAbs = Ɛ · c · d 

where Ɛ is the extinction coefficient of NADH at 340 nm (6,22·103 cm-1 M-1), c is the concentration of 

the metabolite in the cuvette (M) and d is the length of the cuvette (1 cm). 

To compare between samples, concentration of metabolites is normalized to protein concentration. 

Assay buffer    125 µL 

H2O      305 µL* 

Sample         70 µL* 

Final Volume                  500 µL 
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10. NAD(P)+/NAD(P)H assay 

Determination of NAD+ and NADH, and NADP+ and NADPH were measured individually using de 

NAD/NADH-Glo and the NADP/NADPH-Glo Assays (Promega), respectively (Figure M-7). 

 

 

 

The day before the experiment, cells were plated at 20.000 cells/well in a 96-well plate in triplicates. An 

identical plate was prepared in parallel to perform crystal violet assay and normalize the results. 

The assay was performed following manufacturer’s indications. Luciferin reagent needs to be 

reconstituted and NAD(P)/NAD(P)H detection reagent is prepared as follows: 

   

 Process cells: remove culture media and add 50 µL of PBS to each well and lyse cells by adding 50 µL 

of 0,2M NaOH with 1% DTAB. Transfer 50 µL of the lysate to another well. 

• Detection of NAD(P)+ → Add 25 µL of 0,4 N HCl. Heat at 60ºC, 15 min. Incubate at room 

temperature for 10 min. Add 25 µL 0,5 M Tris Base. 

• Detection of NAD(P)H → Heat at 60ºC, 15 min. Incubate at room temperature for 10 min. Add 

50 µL 0,5 M Tris/HCl. 

 Transfer 50 µL of each lysate to a well of a 96-well white-walled plate. Add 50 µL of NAD(P)/NAD(P)H 

detection reagent. Shake the plate and incubate for 60 min at room temperature. Record 

luminescence in a luminometer. FluoStar Optima plate reader was used. 

 Perform crystal violet assay from the plate prepared the day before and normalize the concentration 

of NAD+, NADH, NADP+ and NADPH to cell number. This normalization is not required when 

calculation the ratio NAD+/NADH and NADP+/NADPH. 

Reconstituted Luciferin   1 mL 

Reductase    5 µL 

Reductase Substrate   5 µL 

NAD(P) Cycling Enzyme   5 µL 

NAD Cycling Substrate 25 µL 

or NADP cycling Substrate   5 µL  

 

Figure M-7. Basis of the NAD(P)/NAD(P)H 

assays. These assays are based on a 

reduction reaction catalysed by Reductase, 

which couples NAD(P)H oxidation with the 

reduction of a specific substrate that 

becomes luminescent, luciferin. NAD(P) cycle 

enzyme is responsible for the conversion of 

NAD(P)+ to NAD(P)H coupled with the 

oxidation of NAD(P)+ cycling substrate. 

From Promega. 
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11. Metabolomics and fluxomics 

11.1. Culture conditions 

For abundance analyses, cells were transfected with either a TIGAR-pcDNA3-expressing vector or PFKFB3 

or TIGAR-targeting siRNAs. Cellular extracts were collected 24 h and 72 h after transfection for the 

overexpression and siRNA experiments, respectively. For fluxomic analyses, cells were transfected as 

described before and, at 24 or 72 h after transfection, media was replaced by glucose-free DMEM 

supplemented with 25 mM fully labelled 13C-glucose (Cambridge Isotope Laboratories), 10% dialyzed 

FBS, 2 mM L-glutamine, 100U/mL penicillin and 100 ng/mL streptomycin. Cells were incubated at 37 °C 

and 5% CO2 in these conditions for 6 hours and extracts were obtained. 

11.2. Obtention of cellular extracts 

All experiments were performed in 6-well plates that reached 90% confluence at the end of the 

experiments. Media was removed and cells were washed once with cold PBS with the plates on ice. Cells 

were scrapped with 50 µL of DEPC water, transferred to cold eppendorf tubes and directly frozen in liquid 

nitrogen and stored at -80ºC. 

11.3. Sample processing and analysis 

The processing and analysis of the samples was performed by Dr. Yanes Lab (Universitat Rovira i Virgili, 

Reus). Metabolites were extracted by adding 300 μL of cold methanol/water (8:1, v:v). Samples were 

vortexed for 30 seconds and immersed in liquid N2 to disrupt cell membranes followed by 10 seconds 

of bath-sonication. These two steps were repeated 3 times. Cell lysates were incubated for 20 min on ice 

before centrifugation (4°C, 5000 g, 15 minutes). 10 μL of 13C3-glycerol (150 ppm) was added to the 

supernatant as internal standard. Next, 250 μL of each sample were dried under a stream of N2 gas. 

Lyophilized polar extracts were incubated with 50 μL methoxyamine in pyridine (40 μg/μL) for 45 min at 

60 °C. To increase volatility of the compounds, the samples were silylated using 25 μL N-methyl-N-

trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (Thermo Fisher Scientific) for 30 min at 60 

°C. A 7890 A GC system coupled to a 7000 QqQ mass spectrometer (Agilent Technologies) was used for 

isotopologue determination. Derivatized samples were injected (1 μL) in the gas chromatograph system 

with a split inlet equipped with a J&W Scientific DB5−MS+DG stationary phase column (30 mm × 0.25 

mm i.d., 0.1 μm film, Agilent Technologies). Helium was used as carrier gas at a flow rate of 1 mL/minute 

in constant flow mode. The injector split ratio was adjusted to 1:5 and oven temperature was 

programmed at 70 °C for 1 minute and increased at 10 °C/minute to 325 °C. The ionization performed 

was positive chemical ionization (CI) with isobutene as reagent gas. Mass spectral data on the 7000 QqQ 

were acquired in scan mode monitoring selected ion clusters of the different metabolites. 



MATERIALS AND METHODS 

224 

 

12. Molecular biology techniques 

12.1. DNA purification from bacterial stabs 

Two BACs from chromosome 12 were provided by the BACPAC Service of the Children’s Hospital 

Oakland Research Institute, RP11-177D20 and RP11-74J21, of 156,587 and 164,227 Kbp, respectively 

(Figure M-8). The BACs were supplied as bacterial stab cultures. Bacteria were cultured and DNA was 

purified. Given that each BAC’s DNA is more than 150 Kbp, MaxiPrep Kits were not suitable for the 

purification and phenol/chloroform DNA extraction protocol was performed. 

 

Figure M-8. Location of BACs RP11-177D20 and RP11-74J21 in human chromosome 12. The BACs used for the amplification 

of TIGAR promoter and the coding sequence of TIGAR gene are highlighted in squares. Adapted from UCSC Genome Browser. 

12.2. Obtention of DNA fragments by PCR 

In order to obtain the region of TIGAR promoter of interest, we performed PCR of the DNA purified from 

BACs using several primers specific to the fragments of interest. A schematic representation of the 

plasmids used is provided in Results Chapter III. MyFi™ DNA Polymerase (Bioline) was used according 

to manufacturer’s instructions: 

 

 

PCR conditions were adapted to each pair of primers: 

95ºC, 5 min. [95ºC, 15 sec. Tm, 30 sec. 72ºC, 1 min.] 30-35 cycles. 72ºC, 2 min. 4ºC, ∞. 

Melting temperature (Tm) depends on the composition of the primers. 

Elongation time depends on the size of the DNA product. 1 min/Kbp. 

5x MyFi Reaction Buffer (contains dNTPs)   5 μL 

Template        100 ng (x μL) 

Primers (20 μM)      1 μL 

MyFi DNA Polymerase      1 μL 

Water              up to 25 μL1 
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The sequences for the primers used for the generation of the constructs that were successfully cloned 

into pGL3 vectors (D, J, 8 and 15, see Results Chapter III for nomenclature) are reported in Table M-XVI. 

Primer name Sequence Tm (ºC) Construction 

FW 4.1 5’-GCGTCCTTACAGATCTAGCATGG-3’ 57,2 D, 15 

FW 4.2 5’-GTGAACCCGGGAGGCGGAG-3’ 63,3 J 

FW 4.3 5’-GATCACACCACTGCACTCCA-3’ 65,1 8 

RV 2 5’-GCAAGCTTCCCCACACCAC-3’ 59,4 8, 15 

RV 3 5’-GCCCCTTGATAGCTAGCAAAGTTC-3’ 57,9 J, D 

Table M-XVI. Primers used for the obtention of fragments D, J, 8 and 15 (see Results Chapter III). 

12.3. DNA electrophoresis in agarose gels and purification of bands 

1% agarose gels with ethidium bromide (EtBr) were prepared, and samples were loaded with 6X loading 

dye (Thermo Fisher Scientific) and run at 85 V for 30 min in TAE buffer. GeneRuler 100 bp Plus and 

GeneRuler Express (Thermo Fisher Scientific) DNA ladders were used. EtBr emits an orange light when 

excited by UV light and was used to visualize DNA bands in a UV transilluminator. 

 EtBr is a DNA intercalating agent with mutagenic potential. Always handle with double glove and 

discard all residues in the appropriate container. 

DNA bands were cut using a transilluminator with UV light and purified with QIAquick Gel Extraction Kit 

(Qiagen). 

12.4. TOPO TA cloning 

In order to clone the DNA fragments of interest into a plasmid for their amplification in bacterial cultures, 

the TOPO TA Cloning Kit (Thermo Fisher Scientific) was used (Figure M-9). 

Some thermostable polymerases have 3´ to 5´ exonuclease activity and eliminate 3´ A-overhangs from 

PCR products. MyFi™ DNA Polymerase (Bioline), which was used in our PCRs, preserves them. 

 

Figure M-9. TOPO TA cloning system. This cloning system is based on the recombination of 3’A-overhangs from PCR products 

with the TOPO vector, which has T-overhangs linked to Topoisomerase-I, which catalyses the reaction. From Thermo Fisher 

Scientific. 
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TOPO TA reactions were performed following manufacturer’s indications: 

 

Mix gently and incubate for 5 min at room temperature. Place the reaction on ice before transforming 

competent cells. 

12.5. Restriction enzyme digestion 

The digestion of DNA fragments was used to analyse the products of PCR and ligations, and to linearize 

vectors for subcloning. The incubation conditions were usually 5U enzyme/µg DNA in the appropriate 

buffer for 1 h at 37ºC. Recently, FastDigest Restriction Enzymes have emerged as an alternative to save 

time (restriction takes only 15 minutes) and perform double digestions in a universal buffer.  

The maps of the plasmids used in the cloning process can be checked in Figures M10-M12. 

 

 

Figure M-10. Map of pCR-2.1-TOPO vector (Thermo Fisher Scientific) 

PCR product   1 µL 

Salt solution  1 µL 

TOPO vector  1 µL 

Water     Up to 6 µL 
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Figure M-11. Map of pGL3 Basic vector (Promega) 

 

   

Figure M-12. Map of pGL3 Promoter vector (Promega) 

 

The cloning strategies performed for the subcloning of PCR fragments of interest from TOPO TA to 

pGL3 vectors is detailed in Figure M-13. 

 



 

 

 

 

Figure M-13. Restriction enzyme strategies performed. The four PCR fragments (D, J, 8 and 15) were firstly cloned into TOPO vectors and then subcloned with different restriction strategies. 

(A) Constructs D and J were firstly cloned in pGL3 Basic vectors using HindIII/XhoI double digestion but given that they lack the transcription start site of TIGAR, we had to subclone these fragments 

again into pGL3 Promoter vectors, using SacI/XhoI. (B) Constructs D and J were directly subcloned from TOPO to pGL3 basic vectors with SacI/XhoI double digestion.
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12.6. Dephosphorylation of vector 5’-P termini 

5’-phosphorylated termini of vector DNA need to be dephosphorylated after digestion before a ligation 

reaction is performed to prevent self-ligation. With that purpose, Phosphatase FastAP (Thermo Fisher 

Scientific) was used following manufacturer’s recommendations. 1 µL of FastAP is added to 20 µL 

digestion product and the mix is incubated for 10 min at 37ºC. Reaction is stopped by heating at 65ºC 

for 15 min. 

12.7. Ligation 

T4 DNA Ligase (Thermo Fisher Scientific) catalyses the formation of a phosphodiester bond between 

juxtaposed 5'-phosphate and 3'-hydroxyl termini in duplex DNA (Figure M-14). 

 

Figure M-14. Basis of the T4 DNA ligase reaction. T4 DNA ligase catalyses the recombination of two DNA strands that have 

been digested with the same restriction enzyme and, therefore, have sticky ends. In this example, DNA insert and backbone have 

been digested with EcoRI, which recognises the sequence GTTAAC. From Addgene.  

T4DNA ligase reaction was performed according to manufacturer’s recommendations: 

 

Incubate 10 min at 22ºC. It is recommended to allow the reaction to continue overnight in a water bath 

at 16ºC. 

  

Linear vector DNA  20-100 ng 

Insert DNA   3:1 molar ratio insert:vector 

10x T4 DNA Ligase buffer 2 μL 

T4 DNA Ligase   1 U 

Water   up to 20 μL 
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12.8. Transformation of Competent cells and selection of clones 

JM109 E. coli or DH5 competent cells (Promega) were used. DH5 competent cells have a 

transformation efficiency greater than 108cfu/μg and were used for subcloning. 

 Thaw frozen competent cells on ice and aliquot 50µl for each transformation. 

 Add 1–50ng of DNA (in this thesis, 6 µl of TOPO reaction or 10 µl of T4 DNA ligase were transformed) 

to each tube. Flick the tube several times. Perform a control of untransformed cells. 

 Immediately return the tubes to ice for 30 minutes. 

 Heat-shock the cells for 45 seconds in a water bath at 42°C (or 1 minute at 37ºC). 

 Immediately place the tubes on ice for 2 minutes. 

 Add 900µl of warmed LB or SOC medium to each transformation reaction. 

 Incubate for 45 min at 37°C with shaking. 

 Centrifuge 10 min at 4000 rpm at room temperature. Discard 800 µl of supernatant and use the 

remaining supernatant to softly resuspend the bacterial pellet.  

 Plate cells in agar plates with the antibiotic of interest (given that all the plasmids used in this thesis 

confer resistance to Ampicillin, this antibiotic was used in all transformations). 

12.9. Bacterial culture and plasmid purification 

Liquid bacterial cultures were maintained in agitation (220 rpm) in Luria Bertani (LB) medium at 37ºC 

overnight (14-16 h). Specific antibiotic (50 µg/mL Ampicillin) was added according to the plasmid 

resistance genes. Avoid closing the recipients tight to facilitate oxygen diffusion within them and allow 

bacterial growth. Two types of liquid cultures were performed: 

Minicultures: 5 mL LB culture from a bacterial colony as a first step for DNA amplification. 

The DNA from these cultures was isolated using GeneElute Plasmid Miniprep Kit (Sigma-

Aldrich), digested with restriction enzymes and confirmed by agarose electrophoresis. 

Maxicultures: 250 mL LB culture from a miniculture bacterial already confirmed to be the DNA 

of interest. The DNA from these cultures was isolated using GeneElute Plasmid Maxiprep Kit 

(Sigma-Aldrich) and used for subclonning or for the transfection of eukaryotic cells. 
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Solid bacterial cultures were performed in LB-Agar plates containing the antibiotic of interest (50 µg/mL 

Ampicillin) in an incubator at 37ºC. 

The following recipes were used to prepare LB and LB-Agar. 

Reagent LB LB-Agar 

Tryptone 10 g 10 g 

NaCl 5 g 5 g 

Yeast extract 5 g 5 g 

Bacto agar - 15 g 

Water Up to 1L Up to 1L 

Table M-XVII. LB and LB-Agar recipes. 

LB and LB-Agar need to be autoclaved before using. In the case of LB-Agar, antibiotic is added when the 

temperature is about 30ºC to avoid its degradation. 

12.10. Preparation of glycerol stocks 

Glycerol stocks are used to store bacterial cultures at -80ºC and are prepared as follows: 

 Transfer 810 µL of a mini/maxi bacterial culture grown at 37ºC overnight to a cryopreservation vial 

and add 190 µl of glycerol 80%. The final concentration of glycerol will be 15%. Gently mix, put on 

ice and immediately freeze at -80ºC. 

12.11. Preparation of samples for sequencing 

Premixed samples were prepared as follows and sequenced by Serveis Cientificotècnics (Universitat de 

Barcelona). 

 Mix 100 ng/Kb of DNA with 5 pmols of primer in a PCR tube. The primers used in this thesis were 

M13Forward and RVprimer3 for the sequencing of TOPO-TA and pGL3 vectors, respectively. Name 

samples in an easy way. 

 Heat samples with the cap open in a thermocycler at 80ºC for 15 minutes. Store at 4ºC or -20ºC until 

delivery. 

 Generate an order at the WebLIMS service choosing the ‘Premixed’ mode and deliver the tubes with 

the printed order to Serveis Cientificotècnics. 

 Sequences can be downloaded from WebLIMS within 5 days. Analysis was performed with ApE 

plasmid editor. 
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13. Generation of PDAC cells stably expressing flag-TIGAR-EGFP 

13.1. Primer design for the amplification of the cDNA of interest 

The cDNA of interest was flag-TIGAR-GFP (f-TIG-GFP). Specific PCR primers were designed to amplify 

this sequence from another plasmid with the Primer Design Tool from Clontech. This tool designs 

primers specific to the DNA insert with 5’ extensions of 15 bp complementary to the linearized vector of 

election with specific restriction sites. Our cloning strategy was based on the digestion of the retroviral 

vector pBABE-puro with BamHI and EcoRI (Figure M-15). The primers used where: 

• Forward: 5' GGC GCC GGC CGG ATC CAT GGA CTA CAA AGA CGA CG 

• Reverse: 5' CTG TGC TGG CGA ATT CTT ACT TGT ACA GCT CGT CCA TG 

 

 

Figure M-15. Map of pBABE-puro vector. The restriction sites used for the cloning of f-TIG-GFP are indicated by arrows.  

  



MATERIALS AND METHODS 

 

 

233 

 

13.2. PCR amplification 

PCR was performed using the KOD Hot Start Master Mix (Merck) as follows: 

 

The PCR conditions were: 

95ºC, 2 min. [95ºC, 20 sec. 66,7ºC, 10 sec. 70ºC, 32 sec] x 20 cycles. 70ºC, 2 min. 4ºC, ∞. 

PCR product was treated with DpnI to eliminate methylated DNA corresponding to the template 

bacterial plasmid and purified with NucleoSpin columns (Clontech). 

13.3. Plasmid digestion and purification 

1 μg of pBABE-puro was digested with BamHI and EcoRI with 1 μl of each restriction enzyme as 

previously described. The linearized plasmid was purified with NucleoSpin columns (Clontech). 

13.4. Cloning and bacterial transformation 

In Fusion HD-EcoDry System (Clontech) was used to perform the ligation (Figure M-16).  

 

Stellar competent cells were transformed with 1 μL of InFusion product and plated on agar plates with 

100 μg/mL Ampicillin. Colonies were selected and DNA purification was performed by the Molecular 

Technology and Reagent Services (Beatson Institute for Cancer Research). The primers used for 

sequencing were pBABE 5’ (5'-CTTTATCCAGCCCTCAC) and pBABE 3’ (5'- ACCCTAACTGACACACATTCC). 

  

KOD Master Mix     25 μL 

Template           10 ng (x μL) 

Primers (10 μM)    1,3 μL 

Water               up to 50 μL 

Figure M-16. InFusion 

cloning. The system is based 

on the recombination of the 

linearized vector and the 

insert. The insert has been 

previously generated by PCR 

with primers containing 15 bp 

overhangs complementary to 

the linearized vector. From 

Clontech. 

 



MATERIALS AND METHODS 

234 

 

13.5. Production of viral particles and transduction 

The pBABE construct containing f-TIG-GFP was transfected into packaging Phoenix Eco cells using 

Lipofectamine 2000 following the same protocol as described for Lipofectamine LTX. Phoenix Eco cells 

generated viral particle which were excreted to the extracellular media. The supernatant from Phoenix 

cells was harvested after 48 hours of culture, filtered through a 0,45 μm syringe and used for the 

transduction of PDAC cells in Polybrene-containing media (Figure M-17). After 2 days, cells were split 

in selection media containing 1 μg/ml puromycin. Transduction efficiency was assessed by fluorescence 

microscopy and after 5-day selection most cells displayed GFP fluorescence and were used to perform 

the experiments reported in Results Chapter IV. 

 

Figure M-17. Processes involved in the transduction of eukaryotic cells. Packaging cells, in this case Stellar Cells, were 

transfected with the retroviral vector pBABE-puro containing f-TIG-GFP coding sequence. Stellar cells produced replication 

incompetent viral particles, which were harvested from used for the transduction of PDAC cells. Adapted from Dharmacon. 

14. Luciferase assays 

Cells were transfected in 6-well plates with the luciferase reporter plasmid and a β-galactosidase plasmid 

to assess the efficiency of the transfection. In this thesis, RSV-β-galactosidase and SV40-β-galactosidase 

reporter vectors were assayed but only RSV-β-galactosidase was effectively expressed by HeLa cells. 

When the effect of a transcription factor on the luciferase activity was evaluated, transfection of the 

expression vector was performed together with luciferase and β-galactosidase reporter plasmids. 

The day before to the luciferase assay, cells were splitted into 12-well plates by dividing each well of a 

6-well plate into 3 wells of a 12-well plate. 

The following day, cells were washed twice in cold PBS and the protocols of Luciferase Assay System 

(Promega) and Luminescent β–galactosidase Detection Kit II (Clontech) were performed. 
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14.1. Luciferase Assay System 

 Maintain plates on ice and wash twice with PBS. Add 100 µL lysis buffer to each well and agitate for 

20 min at maximum potency on ice. 

 During agitation, prepare eppendorf tubes with 50 µL luciferin and switch on the luminometer. 

 Add 50 µL of cell lysate into the eppendorf tubes with luciferin and immediately read on a 

luminometer in an acquisition interval of 10 seconds. It is preferred to prepare and read sample by 

sample. 

14.2. Luminescent β–galactosidase Detection Kit II 

 Prepare eppendorf tubes with 100 µL β–galactosidase Reagent (98 µL Reaction Buffer + 2 µL β–

galactosidase) and add 30 µL of the cell lysate obtained at the first step of Luciferase Assay System 

protocol. 

 Incubate for 1 h protected from light without agitation. 

 Read on a luminometer in an acquisition interval of 10 seconds. 

15. Chromatin Immunoprecipitation assay 

ChIP assay was performed by Cristina Sánchez from Dr. Ventura’s Lab (Departament de Ciències 

Fisiològiques, Universitat de Barcelona) as previously described in (206). After treatments, cells were fixed 

in 1% formaldehyde for 10 minutes. ChIP was carried out using 1 μg of anti-Nrf2 (Santa Cruz 

Biotechnology) or anti-IgG (Upstate) and purified with 20 μL Magna ChIP Protein A+G Magnetic Beads 

(Merck). Purified DNA fragments were analysed by qPCR with SYBR Green. The primers used for the 

analysis Tigar gene promoter and first intron are detailed in Figure 84. 

16. Statistical analysis 

Data were analysed according to the comparisons performed. Student’s t-test was used to compare a 

single variable in two independent groups, and was the statistical test used in most of the analyses. Two-

way ANOVA with Tukey’s post-hoc test was used to analyse differences between more than two groups 

in which multiple parameters were analysed at the same time such as fluxomic analyses, and to analyse 

differences between two groups with two independent variables, such as the combinations of siRNA 

transfections with Akt inhibitors. 
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17. General Buffers 

Protein extraction and Western blot Protein extraction and Western blot Fru-2,6-P2 determination 

Whole cell lysis buffer 

50 mM Tris-HCl (pH 6,8) 

2% SDS  

10% Glycerol  

Semidry Transference Cathode 

Buffer 

40 mM 6-aminocaproic acid  

10% Metanol  

Tris/KCl/DTT Buffer 

20 mM Tris 

20 mM KCl 

2 mM DTT (added at the moment) 

pH 8,2 

RIPA 

25 mM Tris–Cl 

0,1% SDS 

1% NP-40 

1% Sodium deoxycholate 

pH 7,5 

Protease and phosphatase inhibitors 

Semidry Transference Anode Buffer 

0,3M Tris-base  

1,92 M Glycine  

pH 8,3 

Tris/Acetate Buffer 

50 mM Tris 

pH 7,8 (with acetic acid) 

Subcellular fractioning Buffer I 

10 mM Tris-HCl  

10 mM KCl  

10 mM MgCl2  

250 mM Sacarose 

pH 7,5 

Protease and phosphatase inhibitors 

Stripping Solution 

67,5 mM Tris-HCl 

pH 7,5 

2% SDS 

0,1 M β-mercaptoethanol 

Acetic/Acetate Buffer 

250 mM CH3COOH 

250 mM CH3COO-(Na+) 

pH 4,7 

Other metabolic determinations 

Subcellular fractioning Buffer II 

10 mM HEPES  

10 mM KCl  

1,5 mM MgCl2  

10% Glycerol 

0,34 M Sacarose 

pH 7,5 

Protease and phosphatase inhibitors 

 

TBS 20X 

200 mM Tris-HCl 

3M NaCl 

pH 7,5 

Lactate Assay Buffer 

0,3125 M Hydrazinium sulphate 

0,875 M Glycine 

pH 9 (with NaOH) 

TBS-Tween 

TBS 20X 

2% Tween-20 

PGO enzyme reaction solution 

1 PGO capsule 

100 mL Water 

1,6 mL o-Dianisidine solution  

 

Sample Buffer 4X 

200 mM Tris-HCl (pH 6,8) 

40% Glycerol 

8% SDS 

20% β-mercaptoethanol 

0,8% Bromophenol blue 

Immunofluorescence o-Dianisidine solution  

50 mg o-Dianisidine hydrochloride 

20 mL Water 
Phosphate Buffer 0,4 M (for PFA) 

0,32 M NaH2PO4·H2O 

0,08M K2HPO4 

pH 7,3-7,4 (with HCl) 

PEP assay buffer 

0,2 M GlyGly 

0,4 M KCl 

40 mM MgCl2 

pH 7,4 

Lower buffer 

1,5 M Tris-HCl (pH 8,8) 

0,4% SDS  

 

Immunofluorescence blocking 

solution 

PBS 1X 

0,1% Triton-X100 

Other general buffers 

Upper buffer 

0,5 M Tris-HCl (pH 6,8) 

0,4% SDS 

Immunofluorescence solution for 

antibodies preparation 

PBS 1X 

0,1% Tween-20 

TAE 50X 

40 mM Tris 

1 mM EDTA 

20 mM Acetic Acid 

Electrophoresis buffer 

250 mM Tris-HCl  

1,92 M Glycine  

pH 8,3 

10% SDS 

Fru-2,6-P2 determination Crystal Violet Solution 

0,5% Crystal violet 

20% Methanol 

 

Fructose-2,6-P2 extraction buffer 

0,1M NaOH  

0,1% Triton-X100   

Wet Transference Buffer 

250 mM Tris-HCl  

1,92 M Glycine  

pH 8,3 

10% Methanol 

Hepes/CH3COOK/DTT Buffer 

20 mM Hepes 

20 mM CH3COOK 

2 mM DTT (added at the moment) 

PBS 10X 

1,37 M NaCl 

27 mM KCl 

100 mM Na2HPO4 

18 mM KH2PO4 
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Neoplastic cells metabolize higher amounts of glucose relative to normal cells

in order to cover increased energetic and anabolic needs. Inhibition of the

glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3

(PFKFB3) diminishes cancer cell proliferation and tumour growth in animals.

In this work, we investigate the crosstalk between PFKFB3 and TIGAR

(TP53-Induced Glycolysis and Apoptosis Regulator), a protein known to pro-

tect cells from oxidative stress. Our results show consistent TIGAR induction

in HeLa cells in response to PFKFB3 knockdown. Upon PFKFB3 silencing,

cells undergo oxidative stress and trigger Akt phosphorylation. This leads to

induction of a TIGAR-mediated prosurvival pathway that reduces both

oxidative stress and cell death. As TIGAR is known to have a role in DNA

repair, it could serve as a potential target for the development of effective

antineoplastic therapies.

Keywords: glycolysis; PFKFB3; TIGAR; Akt; tumour cell metabolism

Glycolysis is the most ancient pathway involved in car-

bohydrate oxidation and its regulation is crucial for

cells to balance energy production and the synthesis of

biomolecules for their proliferation and growth. Phos-

phofructokinase-1 (PFK-1), which converts fructose 6-

phosphate into fructose 1,6-bisphosphate, is a key

player in this regulation. PFK-1 is activated by the

allosteric factor fructose 2,6-bisphosphate (Fru-2,6-P2),

a metabolite that can override the inhibitory effect of

ATP, synergistically with AMP [1,2]. Fru-2,6-P2 con-

centration has been found increased in proliferative

and transformed cells [3–6]. Synthesis and degradation

of Fru-2,6-P2 depend on the relative activities of 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase

(PFK-2/FBPase-2) isoenzymes, coded by four genes

(PFKFB1-4) [7], the expression of which is tissue and

developmental stage-dependent [2,8]. Importantly, tis-

sue-specific isoenzymes are not totally exclusive and

cells and tissues can express more than one to respond

to different physiological conditions or stimuli

[6,9]. The PFKFB3 isoenzyme has a high kinase/bis-

phosphatase activity ratio, which makes it a net pro-

ducer of Fru-2,6-P2, and it is overexpressed in

proliferative cells [10–12] and tumours [13–18].

Abbreviations

2,3-BPG, 2,3-bisphosphoglycerate; BHA, butylated hydroxyanisole; DCFDA, 20,70-dichlorofluorescein diacetate; DMEM, Dulbecco’s modified

eagle’s medium; FACS, fluorescence-activated cell sorting; Fru-2,6-P2, fructose 2,6-bisphosphate; HBSS, Hank’s balanced salt solution; PFK-

1, phosphofructokinase-1; PFK-2/FBPase-2, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase; PFKFB3, 6-phosphofructo-2-kinase/fruc-

tose-2,6-bisphosphatase 3; PI, propidium iodide; ROS, reactive oxygen species; siRNA, small interfering RNA; TIGAR, TP53-induced glycoly-

sis and apoptosis regulator; PPP, pentose phosphate pathway.
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PFKFB3 suppression decreases Fru-2,6-P2 and lactate

production, apoptosis, inhibition of anchorage-inde-

pendent colony formation [6] and impaired vessel

sprouting [19] and tumour growth [20,21].

TP53-Induced Glycolysis and Apoptosis Regulator

(TIGAR) was first cloned as a TP53 target gene whose

protein product has an active site similar to that of

fructose-2,6-bisphosphatase and phosphoglycerate

mutase, that reduces the concentration of Fru-2,6-P2

[22] and 2,3-bisphosphoglycerate (2,3-BPG) [23]. The

main function attributed to TIGAR is based on its

activity of inhibiting glycolysis and triggering glucose-

6-phosphate to the pentose phosphate pathway (PPP),

which increases the synthesis of ribose-5-phosphate

and NADPH and lowers intracellular reactive oxygen

species (ROS) levels. These functions of TIGAR corre-

late with an ability to protect cells from ROS-asso-

ciated apoptosis [22,24]. TIGAR overexpression has

been described in invasive breast cancer [25], glioblas-

toma [26] and colorectal cancer [27–29]. Overexpres-

sion of TIGAR reduces ROS production, inhibiting

apoptosis and promoting cell proliferation [24], and its

inhibition sensitizes cells to radiotherapy by increasing

ROS-mediated cell death [30]. Moreover, besides the

widely studied antioxidant function of TIGAR, its

recently described 2,3-BPG phosphatase activity could

be crucial in understanding the role of this enzyme in

cancer metabolism.

In this paper we aimed to investigate the crosstalk

between PFKFB3 and TIGAR, and how the inhibition

of these metabolically related enzymes impairs cancer

cells survival. The results presented show that PFKFB3

silencing induces an Akt-dependent increase in TIGAR

protein levels, which protects cells from DNA damage

and cell death. Inhibiting both PFKFB3 and TIGAR

genes increases oxidative stress and P-c-H2AX foci for-

mation, and causes more severe cell death.

Materials and methods

Cell culture

HeLa cells, obtained from the American Type Culture

Collection (Manassas, VA, USA), were cultured in high-

glucose Dulbecco’s Modified Eagle’s medium (DMEM;

Biological Industries, Kibbutz Beit-Haemek, Israel)

supplemented with 10% FBS ( Biological Industries) and

penicillin/streptomycin (100 U�mL�1 and 100 lg�mL�1; Bio-

logical Industries), at 37 °C, in a 5% CO2 atmosphere and

a relative humidity of 70–80%.

Reagents: Akt inhibitor VIII, Isozyme-Selective, Akti-1/2

(Cat#124018; Calbiochem, San Diego, CA, USA) was used at

10 lM to inhibit phosphorylation of Akt-1 and Akt-2 proteins.

siRNA transfection

Small interfering RNA (siRNA) targeting PFKFB3 were

designed and synthesized as described [6]. For TIGAR

silencing, three Stealth siRNA (Invitrogen) were used as

described [30]. A scrambled siRNA was used as negative

control and referred to as ‘Scr.’ (Invitrogen, Carlsbad, CA,

USA). Cells were seeded at 15% confluence in the corre-

sponding plates for each experiment and allowed to attach

overnight. Then, siRNA transfection was performed using

Oligofectamine (Invitrogen) in FBS and antibiotics-free

DMEM. The final siRNA concentration was 75 nM. After

4 h, complete media was added to each well.

Antioxidant treatment

Transfected cells were treated with 1.5 mM N-acetyl N-acetyl-

cystein (NAC) or 1 lM butylated hydroxyanisole (BHA) 4 h

after transfection and to the end of the experiments (72 h).

Protein extraction and western blot

Protein was extracted from cells using SDS buffer (50 mM

Tris–Cl, 1% SDS, 10% glycerol) and concentration was

determined by bicinchoninic acid protein assay (Thermo

Fisher Scientific, Waltham, MA, USA). Equal amounts of

total protein extracts were analysed in 12.5% (w/v) SDS/

PAGE. Western blot was performed using the following

antibodies: in-house rabbit polyclonal antibody against

PFKFB3 [5], TIGAR (LifeSpan), P-Akt (S473), Akt, P-S6

(S235/S236), S6, P-p70S6K1 (T389), P-mTOR (S2448),

mTOR and TSC2 (Cell Signaling Technology, Danvers,

MA, USA), LC3-I/III (MBL), Bcl-2 (Dako, Sant Just Des-

vern, Spain), NOXA (Abgent, San Diego, CA, USA), p62

(Abnova, Taipei City, Taiwan) and a-tubulin (Sigma

Aldrich, St. Louis, MO, USA). Peroxidase-conjugated sec-

ondary antibodies goat a-mouse and goat a-rabbit (Advan-

sta, Menlo Park, CA, USA) were used. Immunostaining

was carried out using the ECL technique (Bio-Rad). Den-

sitometric analysis was performed using MULTI-GAUGE v3.0

(FujiFilm Corporation, Tokyo, Japan) software. Protein

levels were normalized to a-tubulin in all experiments.

Fru-2,6-P2 determination

Fru-2,6-P2 was determined following the method described

by Van Schaftingen et al. [31]. Protein concentration was

determined by the Bradford-based Bio-Rad assay.

Total cellular ROS levels

Cells were seeded into 12-well plates and allowed to grow for

72 h after siRNA transfection. After three washes with PBS,

cells were loaded with the oxidative-sensitive dye 20,70-dichlor-
ofluorescein diacetate (DCFDA) at 10 lM in Hank’s Balanced
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Salt Solution (HBSS). After 30 min in a cell incubator at

37 °C with 5% CO2, cells were trypsinized, collected in 500 lL
of PBS containing 10% of FBS and immediately analysed. All

measurements were made with a FACSCanto flow cytometer

(Becton Dickinson, Mountain View, CA, USA) equipped with

a 488-nm laser. DCFDA fluorescence was collected by use of a

530/30-nm filter. A minimum of 10 000 events per sample was

analysed using the BD FACSDIVA software.

Immunofluorescent phospho-c-H2AX staining

Cells were seeded in coverslips inside 24-well plates and

allowed to grow for 72 h after siRNA transfection. Then,

cells were fixed with 4% paraformaldehyde and immunos-

tained with primary antibody against phospho-c-H2AX

(S139) (EMD Millipore, Darmstadt, Germany) and

secondary Cy3-conjugated anti-mouse IgG (Jackson

Immunoresearch, West Grove, PA, USA). Nuclei were

stained with TO-PRO-3 Iodide (1 : 1000; Invitrogen).

Images were acquired with a Spectral Confocal Microscope

(TCS-SL; Leica Microsystems, Wetzlar, Germany) using a

Plan-Apochromat 639/1.4 N.A. immersion oil objective

(Leica Microsystems). We used excitation He/Ne laser beams

(Lasos, Jena, Germany) at 633 nm for TO-PRO-3 and

456 nm for Cy3, and a pinhole of 115 lm. Images were cap-

tured using LEICA CONFOCAL Software (Leica Microsystems,

Wetzlar, Germany). Images of c-H2AX foci and nuclei were

exported separately as .tif files and processed using IMAGE J

software (NIH, Maryland, USA). Images shown were

obtained with the Merge Channels command. Total nuclei

number was determined by manual counting and c-H2AX

foci were counted with the Find Maxima command. At least

150 cells from five randomly chosen fields of view were

counted in each condition, and the average number of

P-c-H2AX foci per cell nucleus was calculated.

mRNA expression

RNA was analysed by reverse transcriptase multiplex liga-

tion-dependent probe amplification (RT-MLPA) using

SALSA MLPA KIT R011 Apoptosis mRNA from MRC-

Holland (Amsterdam, The Netherlands).

MTT assay

MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium

bromide) was used to determine cell viability. Cells were

seeded into 24-well plates and allowed to grow for 24, 48 or

72 h after siRNA transfection. MTT dissolved in PBS was

added to the cultures at a final concentration of

0.5 mg�mL�1. After incubation at 37 °C for 2 h, the medium

was carefully removed and formazan crystals were dissolved

in 200 lL Isopropanol:HCl 40 mM per well. Triplicates of

50 lL were transferred to a 96-well plate and the absorbance

was measured at 570 nm (SunriseTecan plaque reader).

Staining by Annexin V and propidium iodide

The appearance of apoptotic or necrotic cells was determined

with the Annexin V-FITC Apoptosis Detection Kit (eBio-

science Bender MedSystems, eBioscience (San Diego, CA,

USA). Cells were seeded into six-well plates and allowed to

grow for 72 h after siRNA transfection. Floating and freshly

trypsinized cells were pooled, washed twice in binding buffer

and processed following manufacturer’s instructions. All

measurements were made with a FACSCalibur flow cytome-

ter (Becton Dickinson) equipped with an air-cooled argon

ion laser emitting at 488 nm. The barrier filters were 530/

30 nm for annexin-FITC, and 670/LP for propidium iodide

(PI) fluorescence. A minimum of 10 000 events per sample

were analysed using the CELL QUEST PRO software (BD

Biosciences, San Jose, CA, USA).

Data analysis

Results are expressed as the mean � standard error of the

mean (SEM) of the values obtained from the indicated num-

ber of independent experiments. Differences between samples

were analysed with the Student’s t test. Significant differences

at P < 0.05, 0.01, and 0.001 between conditions are indicated

by ∗, ∗∗ and ∗∗∗ respectively. All calculations were per-

formed using the GRAPHPAD PRISM version 4.00 for Windows

(GraphPad Software, La Jolla, CA, USA).

Results

PFKFB3 inhibition enhances TIGAR protein

expression and decreases Fru-2,6-P2

We transfected HeLa cells with PFKFB3 and TIGAR-

targeted siRNA. siRNA concentration (75 nM) effec-

tively suppressed PFKFB3 and TIGAR protein levels

at 72 h after transfection. Interestingly, we observed a

significant upregulation of TIGAR protein amount in

response to PFKFB3 inhibition (Fig. 1A,B). To fur-

ther investigate this effect, we performed western blot

analysis of HeLa protein extracts from 24 to 72 h after

PFKFB3-targeted siRNA transfection. The results

obtained showed a significant decrease in PFKFB3

protein from 24 h after siRNA transfection, being

abrogated at 72 h. Oppositely, TIGAR protein levels

were significantly increased at 48 h after PFKFB3-tar-

geted siRNA transfection, being even higher at 72 h

post-transfection, showing a time-dependent induction

of TIGAR in response to PFKFB3 removal (Fig. 1C,

D). TIGAR silencing does not modify PFKFB3 pro-

tein levels (Fig. 1A–D). Fru-2,6-P2 levels were signifi-

cantly decreased with PFKFB3-targeted siRNA and

this effect was reverted by the inhibition of TIGAR

(Fig. 1E).
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TIGAR limits ROS production in PFKFB3-inhibited

cells

It has been described that glycolysis impairment raises

oxidative stress production [32,33]. In order to assess

if the same response occurred after PFKFB3 inhibi-

tion in our model, we transfected HeLa cells with

PFKFB3 and TIGAR-targeted siRNA and quantified

ROS levels with the fluorescent probe DCFDA by

Fluorescence-Activated Cell Sorting (FACS). The inhi-

bition of PFKFB3 alone significantly increased oxida-

tive stress, whereas cells lacking TIGAR did not show

any changes in ROS levels. However, TIGAR

silencing in cells lacking PFKFB3 caused a significant

increase in oxidative stress (Fig. 2A,B). The antioxi-

dants NAC and BHA significantly reduced basal ROS

levels, but the increase in ROS after PFKFB3 and

TIGAR inhibition was not prevented by any of them

(Fig. 2C,D).

Akt signalling pathway drives TIGAR induction in

response to PFKFB3 silencing

The results obtained described a crosstalk between

PFKFB3 and TIGAR (Fig. 1), and thus we wondered

which signalling pathway could be orchestrating it.

Fig. 1. Analysis of the effects of PFKFB3

and TIGAR inhibition on HeLa cells by

western blotting and Fru-2,6-P2

quantification. (A) Western blot analysis

quantification of PFKFB3 (white bars) and

TIGAR (black bars) after 72 h of siRNA

transfection from three independent

experiments. (B) Western blot images

representative of three independent blots

are shown. (C) Quantification of PFKFB3

(white bars) and TIGAR (black bars) after

24 to 72 h of siRNA transfection from five

independent experiments. (D) Western

blot images, representative of five

independent blots are shown. (E)

Quantification of Fru-2,6-P2 after 72 h of

siRNA transfection. All data are presented

as the mean fold change relative to the

scrambled siRNA (Scr.) of the

corresponding time � SEM (*P < 0.05,

**P < 0.01, ***P < 0.001).

2918 FEBS Letters 590 (2016) 2915–2926 ª 2016 Federation of European Biochemical Societies

Akt mediates TIGAR induction H. Simon-Molas et al.



The mTORC2-Akt-mTORC1 axis has been described

to control PFKFB3 levels [34,35] and, moreover, this

pathway has been found activated in cancer cells

under glucose deprivation conditions and oxidants

exposure [36,37]. As we have shown, TIGAR limits

ROS production after PFKFB3 inhibition (Fig. 2).

Thus, we decided to analyse the phosphorylation sta-

tus of several proteins of the Akt cascade after 72 h

of PFKFB3 silencing and found increased amounts of

P-Akt (S473), P-mTOR (S2448), P-p70 S6K1 (T389)

and P-S6 (S235/236) (Fig. 3A,B). We sought to deter-

mine if P-Akt was upstream of TIGAR induction. We

found increased phosphorylated Akt levels 72 h after

siRNA transfection in both single PFKFB3 and in

PFKFB3 and TIGAR-suppressed cells, with no modu-

lation of the total amounts of Akt in any of the

assayed conditions (Fig. 3C,D). Next, we treated cells

with the Akt inhibitor Akti-1/2, which targets all

forms of Akt, and we transfected these cells with

scrambled or PFKFB3-targeted siRNA. TIGAR

induction in response to PFKFB3 suppression was

abolished by this inhibitor, which indicates that Akt

Ser-473 phosphorylation is necessary for TIGAR mod-

ulation under these conditions (Fig. 3E,F). Akt

phosphorylation and TIGAR induction in response to

PFKFB3 inhibition were not prevented by NAC or

BHA (data not shown).

PFKFB3 inhibition does not affect autophagy in

HeLa cells

Overexpression of TIGAR has been related with the

inhibition of autophagy [24]. In contrast, PFKFB3

inhibition has been described to activate autophagy in

the HCT116 cell line [32]. In order to investigate

whether autophagy was triggered as a survival mecha-

nism in our model of PFKFB3 and TIGAR inhibition,

we analysed LC3 cleavage and p62 protein levels by

western blot after 72 h of siRNA transfection. No sig-

nificant changes were observed in the LC3-II/LC3-I

ratio nor in p62 total amounts in any of the analysed

conditions (Fig. 4).

TIGAR deficiency increases DNA damage and cell

death

We aimed to investigate the functional relevance of

TIGAR upregulation after PFKFB3 inhibition. First,

we analysed the effect of TIGAR deficiency on DNA

Fig. 2. Reactive oxygen species analysis

in HeLa cells 72 h after PFKFB3 and/or

TIGAR-targeted siRNA transfection. (A)

Quantification of DCFDA fluorescence. (B)

Raw data of DCFDA fluorescence peaks

of a representative experiment.

Quantification of ROS levels after

cotreatment with the antioxidant

molecules BHA (C) and NAC (D). Data are

presented as the mean fold change with

respect to scrambled siRNA (Scr.) � SEM

of three independent experiments with

duplicates, and comparison between

conditions is indicated by horizontal bars

(*P < 0.05, **P < 0.01, ***P < 0.001).
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damage. For this, we performed immunostaining of

phospho-c-H2AX (Ser 139) foci formation in PFKFB3

and TIGAR-silenced cells. Single inhibition of

PFKFB3 or TIGAR was sufficient to increase DNA

damage, but the phenotype was even more severe in

cells lacking both proteins, with the number of phos-

pho-c-H2AX foci being significantly higher compared

to each siRNA alone (Fig. 5).

Furthermore, we wanted to assess if the increased

DNA damage observed after TIGAR suppression

occurred in parallel with exacerbated cell death.

Firstly, we analysed the effects of PFKFB3 and

TIGAR simultaneous inhibition on cell proliferation

and viability through an MTT assay. Remarkably,

cells in which both PFKFB3 and TIGAR were

silenced had significant 40% decreased growth rate

compared to controls (Fig. 6A). However, we did not

see any significant reduction in MTT signal in cells

transfected with either single PFKFB3 or TIGAR-tar-

geted siRNA. To further assess if apoptosis and

Fig. 3. Western Blot analysis of Akt

signaling pathway in protein extracts of

HeLa cells obtained 72 h after PFKFB3

and/or TIGAR-targeted siRNA transfection.

(A) Representative images of

phoshorylated targets in the Akt signaling

cascade. (B) Scheme of the Akt/mTORC

signaling pathway. The proteins analysed

by western blot are coloured in dark grey.

(C) Western blot analysis of Akt

phosphorylation at S473 after PFKFB3 and

TIGAR-targeted siRNA transfection,

representative of four independent blots.

(D) Quantification of Akt phosphorylation,

calculated as the ratio between

phosphorylated Akt at S473 and total

amounts of Akt in four independent

experiments. Data are presented as the

mean fold change relative to the

scrambled siRNA (Scr.) � SEM

(**P < 0.01). (E) Western blot analysis of

Akt phosphorylation at S473 and TIGAR

after PFKFB3-targeted siRNA transfection,

in the presence or absence of Akti-1/2,

representative of three independent blots.

(F) Quantification of Akti-1/2 effects in the

mentioned proteins in three independent

experiments. Data are presented as the

mean fold change relative to scrambled

siRNA (Scr.) � SEM, and comparison

between conditions is indicated by

horizontal bars (*P < 0.05, **P < 0.01,

***P < 0.001).
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necrosis were triggered in the experimental conditions

analysed, an Annexin V/PI assay was performed,

showing increased early and late apoptotic and necro-

tic populations (Annexin V+/PI�, Annexin V+/PI+
and Annexin V�/PI+ cells respectively) after PFKFB3

silencing. TIGAR inhibition alone did not affect via-

bility. However, the combination of PFKFB3 and

TIGAR silencing exacerbated the effects of PFKFB3

inhibition alone, causing 15% decreased cell viability

compared to PFKFB3-inhibited cells, and leading to

double number of apoptotic and necrotic cells

(Fig. 6B).

To investigate the mechanism behind these results, the

expression of a panel of apoptosis-related genes was anal-

ysed by RT-MLPA confirming that apoptosis was

triggered after PFKFB3 inhibition: NOXA was overex-

pressed at 72 h after PFKFB3-targeted siRNA transfec-

tion, whereas Bcl-2 was significantly decreased at the

same time point. These results were confirmed at the pro-

tein level by western blot (Fig. 7A). On the other hand,

there were no significant changes in any of the analysed

apoptotic-related genes after TIGAR silencing (Fig. 7B).

Discussion

It was nearly a century ago when Warburg described

that cancer cells show characteristic metabolic alter-

ations which make them highly dependent on glycol-

ysis for survival and spreading [38]. PFKFB3 gene is

overexpressed in tumours and codes for the PFKFB3

Fig. 4. Western Blot analysis of LC3 cleavage (LC3-II) and p62 protein levels in HeLa cell extracts 72 h after PFKFB3 and TIGAR-targeted siRNA

transfection. Quantification of LC3-II:LC3-I ratio (A) and p62 (B) of four independent blots. Data are presented as the mean fold change relative

to scrambled siRNA (Scr.) � SEM (**P < 0.01, ***P < 0.001). (C) Western blot images of a representative experiment are shown.

Fig. 5. Effect of PFKFB3 and TIGAR silencing on P-H2AX S139 foci in HeLa cells after 72 h of PFKFB3 and/or TIGAR-targeted siRNA

transfection. (A) Quantification of the average number of foci/cell determined with IMAGEJ software from at least 150 cells counted from five

randomly chosen fields of view in each condition. Data are presented as mean � SEM, and comparison between conditions is indicated by

horizontal bars (***P < 0.001). (B) Images of a representative experiment showing merged channels of P-H2AX S139 (Cy3, in red) and

nuclei (TO-PRO-3, in blue).
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isoenzyme of PFK-2/FBPase-2, which has the highest

kinase/bisphosphatase ratio [10] and maintains a high

Fru-2,6-P2 concentration in tumour cells [14,17]. The

inhibition of PFKFB3 causes a glycolytic blockage

that results in impaired vessel sprouting [19], cell

cycle arrest and cell death, and reduction of ancho-

rage-independent growth of tumour cell colonies [6]

and animal tumour burden [20,21]. Since much of

the effects of glycolysis inhibition have been attribu-

ted to increased oxidative stress [32,33], the study of

proteins which contribute to the antioxidant potential

of cells under these conditions can elucidate prosur-

vival mechanisms triggered by cancer cells in

response to glycolysis inhibition.

TIGAR, which catalyses the opposite reaction of

PFKFB3, limits cellular oxidative stress. This gene is

also overexpressed in tumours [22,25–27,29], in which

it reduces ROS production, inhibits apoptosis and pro-

motes cell proliferation. Downregulation of the gene

decreases the ratio between reduced and oxidized glu-

tathione levels, which results in increased ROS and

apoptosis [24]. Moreover, the inhibition of this gene in

combination with radiotherapy has been shown to

improve the anticancer effect of this therapy [30].

Additionally, TIGAR has been identified as 2,3-

bisphosphoglycerate phosphatase and this recently

described activity points out that this enzyme can have

other key effects on cancer cells metabolism beyond

PPP enhancement [23].

In this study, we have focused on the potential value

of inhibiting both PFKFB3 and TIGAR in HeLa, a

cell line in which PFKFB3 inhibition alone has already

been shown to impair tumour growth by decreasing

Fru-2,6-P2 [6], as we have confirmed in our model. We

demonstrate here that TIGAR is upregulated after

PFKFB3 removal in a time-dependent manner, pro-

tecting cells from apoptosis and necrosis caused by

PFKFB3 inhibition (Fig. 8). Opposite to what was

Fig. 6. Effect of PFKFB3 and TIGAR

silencing on HeLa cells viability. (A) MTT

assay was performed 72 h after PFKFB3

and/or TIGAR-targeted siRNA transfection.

Data are presented as the mean fold

change in growth rate relative to the

scrambled siRNA (Scr.) � SEM (*P < 0.05)

(left panel). Raw data of a single

experiment is shown (right panel). (B)

Annexin V-FITC/PI staining was performed

72 h after siRNA transfection. Cells

AnnexinV-/PI- were considered as viable

cells, cells AnnexinV+/PI� were

considered as early apoptotic cells, cells

AnnexinV+/PI+ were considered as late

apoptotic or necrotic cells, and cells

AnnexinV�/PI+ were considered as

necrotic cells. AnnexinV+/PI+ and

AnnexinV�/PI+ populations are

represented in a single column. Data are

presented as % of cells in each

population � SEM of six independent

experiments, and comparison between

conditions is indicated by horizontal bars

(*P < 0.05, **P < 0.01, ***P < 0.001).
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shown in other cell lines, PFKFB3 inhibition in HeLa

does not trigger autophagy [32]. In fact, TIGAR over-

expression has been previously found to inhibit autop-

hagy, which is consistent with the results presented

here [39]. The removal of both PFKFB3 and TIGAR

increases ROS production and DNA damage mea-

sured by phospho-c-H2AX foci formation. Conse-

quently, it significantly impairs HeLa cancer cell

survival compared to PFKFB3 inhibition alone, as we

have proven both by MTT and Annexin V/PI assays.

TIGAR direct contribution to DNA repair mecha-

nisms has been described in other models [40].

According to previous publications describing that the

mTORC2-Akt-mTORC1 axis links glycolytic metabo-

lism to ROS homoeostasis [36,41], here we show that

levels of phosphorylated Akt, mTORC, p70S6K and S6

are increased after PFKFB3 silencing. Moreover, Akt

inhibition with Akti-1/2 prevents TIGAR induction in

Fig. 7. RT-MLPA analysis of apoptotic-

related genes in HeLa cells after 72 h of

siRNA transfection targeting PFKFB3 (A)

or TIGAR (B). Data are presented as the

expression of each gene relative to the

expression of that gene in the scrambled

condition (Scr.) � SEM. Western blot

analysis of NOXA and Bcl-2 protein levels

after 72 h of PFKFB3-targeted siRNA

transfection was performed to confirm the

mRNA expression results (dotted boxes).

2923FEBS Letters 590 (2016) 2915–2926 ª 2016 Federation of European Biochemical Societies

H. Simon-Molas et al. Akt mediates TIGAR induction



response to PFKFB3 suppression. Thus, we report that

Akt activation is necessary for TIGAR modulation in

the experimental conditions analysed. These results point

out that HeLa cells lacking PFKFB3 trigger the

mTORC2-Akt-mTORC1 prosurvival axis in an attempt

to rescue glycolysis, since Akt has been widely described

to activate GLUT1, Hexokinase, PFK-1 and PFKFB3

[34,35], and be essential for tumour growth [42]. On the

contrary, Akt inhibition has been proven to decrease

early metabolites in glycolysis and the pentose phos-

phate pathway [43], which is consistent with the inhibi-

tion of TIGAR that we have observed with Akti-1/2. It

seems reasonable to hypothesize that the increase in

ROS observed after PFKFB3 inhibition is responsible

for the induction of the pathway, as it has been

described in HeLa cells under glucose deprivation condi-

tions [37]. This is the first time to describe that Akt is

necessary for TIGAR modulation, and therefore here

we set the basis for considering this gene as part of the

Akt-driven prosurvival and growth response of cancer

cells, which has been widely described to be one of the

most important pathways for cancer development and

progression. It is not clear yet whether TIGAR effects

are mainly due to its bisphosphatase activity on Fru-2,6-

P2, as it has been reported in many other models [22],

or to its action on other metabolites such as 2,3-BPG

[23]. However, what is clear is that when a stressful

stimulus such as PFKFB3 inhibition threatens cells,

TIGAR is required to redirect glycolytic intermediates

to other pathways for the synthesis of biomolecules,

which maintain ROS homoeostasis and favour tumour

growth. On the other hand, when TIGAR is lacking,

both glycolysis and alternative metabolic pathways are

blocked, so cells fail to overpass the stress and undergo

necrosis. Therefore, strategies based on blocking both

PFKFB3 and TIGAR could be more effective in impair-

ing tumour growth than PFKFB3 inhibition alone.
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Abstract
Lymphocyte activation is associated with rapid increase of both the glycolytic activator fructose 2,6-bisphosphate (Fru-2,6-P2) 
and the enzyme responsible for its synthesis, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). 
PFKFB3 gene, which encodes for the most abundant PFK-2 isoenzyme in proliferating tissues, has been found overexpressed 
during cell activation in several models, including immune cells. However, there is limited knowledge on the pathways 
underlying PFKFB3 regulation in human T-lymphocytes, and the role of this gene in human immune response. The aim of 
this work is to elucidate the molecular mechanisms of PFKFB3 induction during human T-lymphocyte activation by mitotic 
agents. The results obtained showed PFKFB3 induction during human T-lymphocyte activation by mitogens such as phyto-
hemagglutinin (PHA). PFKFB3 increase occurred concomitantly with GLUT-1, HK-II, and PCNA upregulation, showing 
that mitotic agents induce a metabolic reprograming process that is required for T-cell proliferation. PI3K–Akt pathway 
inhibitors, Akti-1/2 and LY294002, reduced PFKFB3 gene induction by PHA, as well as Fru-2,6-P2 and lactate production. 
Moreover, both inhibitors blocked activation and proliferation in response to PHA, showing the importance of PI3K/Akt 
signaling pathway in the antigen response of T-lymphocytes. These results provide a link between metabolism and T-cell 
antigen receptor signaling in human lymphocyte biology that can help to better understand the importance of modulating 
both pathways to target complex diseases involving the activation of the immune system.

Keywords  PFKFB3 · PI3K–Akt · Mitogens · Lymphocytes · Glycolysis · Metabolism
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Introduction

An adequate immune system response relies on a rapid acti-
vation and proliferation of several tissues. Upon encoun-
tering pathogens, T-lymphocytes undergo massive clonal 
expansion and differentiation, which requires the coordina-
tion of cellular signaling cascades and metabolic enzymes 
to express and secrete inflammatory molecules. These 
processes are dependent on high amounts of energy [1]. 
Circulating naive T-lymphocytes are quiescent, have low 
metabolic demands, and use predominantly oxidative phos-
phorylation (OXPHOS) to generate ATP. After T-cell anti-
gen receptor (TCR)-mediated recognition of antigens and 
costimulatory signals, T-lymphocytes become activated and 
initiate a growth phase adopting anabolic metabolism. In 
this context, nutrients are not only exclusively used for sur-
vival and homeostasis but also for the generation of build-
ing blocks for clonal expansion and for effector functions, 
such as secretion of cytokines [2]. Activated T-lymphocytes 
show induced expression of glucose transporter 1 (GLUT-
1) [3] and several rate-limiting glycolytic enzymes such as 
hexokinase-II (HK-II) [1, 4, 5]. Moreover, most of the pyru-
vate synthesized in proliferating T-lymphocytes is converted 
to lactate instead of entering the tricarboxylic acid cycle, 
which means that ATP production in these cells is com-
pletely dependent on glycolysis [3].

Lymphocyte activation is associated with a rapid increase 
in intracellular fructose 2,6-bisphosphate (Fru-2,6-P2) [6–9], 
the most potent allosteric activator of phosphofructokinase-1 
(PFK-1) [10]. The steady-state concentration of Fru-2,6-P2 
in cells is dependent on the expression of 6-Phosphofructo-
2-Kinase/Fructose-2,6-Bisphosphatase (PFK-2/FBPase-2), 
the activity of which is increased by T-cell activators [7]. 
This enzyme is encoded by four different genes (PFKFB1-
4) that differ in their kinase/phosphatase activity ratio, their 
response to protein kinases, and their tissue expression pro-
files [11]. 6-Phosphofructo-2-Kinase/Fructose-2,6-Bispho-
sphatase 3 (PFKFB3) isoenzyme has the highest PFK-2/
FBPase-2 activity ratio, promoting net synthesis of Fru-
2,6-P2 [12–14]. It is ubiquitously expressed and it is present 
in proliferating tissues [14, 15], transformed cells [16–18], 
and in various solid tumors [19, 20]. PFKFB3 expression 

has been widely studied in cancer research, describing dif-
ferent stimuli that can modulate this gene including hypoxia 
[21], progestins [13, 22], growth factors (e.g., insulin [17] 
and TGF-β1 [23]), proinflammatory molecules (e.g., inter-
leukin-6 [24], lipopolysaccharide (LPS), and adenosine 
[25]), and stress stimuli [26]. Along with its role in cancer, 
PFKFB3 is becoming more relevant in the context of inflam-
matory responses. Its expression has been described in ath-
erosclerotic macrophages, in which Hypoxia-Inducible Fac-
tor (HIF) has a key role [27], rheumatoid arthritis [28], and 
during macrophages antiviral defence [29]. Recently, our 
group has collaborated to describe that mitogen stimulation 
of rat thymocytes with concanavalin A (ConA) increases 
Fru-2,6-P2 concentration and PFKFB3 expression in an Akt-
dependent manner [30].

However, despite the important role of this isoenzyme 
in the glycolytic control of proliferating cells, there is lim-
ited knowledge about PFKFB3 role during the physiological 
responses of human immune cells. Therefore, the aim of the 
present work is to elucidate the molecular mechanism under-
lying PFKFB3 control during primary human T-lymphocyte 
activation and proliferation induced by the mitotic agents 
phytohemagglutinin (PHA), ConA, and LPS.

Materials and methods

Lymphocyte purification and cell culture

Human peripheral blood mononuclear cells (PBMCs) were 
isolated from buffy coats from healthy volunteers by Ficoll 
density gradient (GE Healthcare, Uppsala, Sweden). Human 
cells were obtained from healthy volunteers in accordance 
with protocols approved by the Ethics Committee of the 
Bellvitge University Hospital (Barcelona, Spain) and in 
accordance with the principles of the 1964 Helsinki Decla-
ration and its later amendments or comparable ethical stand-
ards. Informed consent was obtained from all individual par-
ticipants included in the study.

PBMCs (10 × 106 cells/ml) were cultured in X-VIVO™ 
(Lonza, Basel, Switzerland) with 2% Human Serum (Sigma-
Aldrich, Madrid, Spain) for 2–3 h (37 °C, 5% CO2, 70–80% 
humidity) in 175 cm2 adherent flasks (Sarstedt, Nümbrecht, 
Germany). The purification efficiency of two different adhe-
sion protocols was compared, and the double-sided approach 
was chosen for further experiments. Technical procedures 
and purification results are detailed in Extended Methods. 
Non-adherent cells were re-suspended in complete RPMI 
with 10% heat-inactivated fetal bovine serum, 1% L-glu-
tamine, and 1% penicillin–streptomycin (Biological Indus-
tries, Israel). Lymphocytes were cultured at 2–2.3 × 106 
cells/ml (37 °C, 5% CO2, 70–80% humidity) for the indi-
cated times in non-adherent 75 cm2 flasks (Sarstedt).
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Lymphocyte activation

Doses of 1, 5, and 15 µg/ml of PHA (Sigma-Aldrich) were 
tested and 5 µg/ml was set as the optimal PHA concen-
tration. ConA from Canavalia ensiformis and LPS from 
Escherichia coli (Sigma-Aldrich) were used at 10 and 1 µg/
ml, respectively. A fraction of the isolated lymphocytes 
remained untreated for each donor sample (untreated cells, 
CT).

Inhibition of PI3K–Akt signaling pathway

LY294002 and Akti-1/2 (Catalog Numbers #440202 and 
#124018, respectively, Calbiochem, San Diego, CA, USA) 
were added to T-lymphocyte cultures 30 min before PHA 
treatment at doses of 20 and 10 µM, respectively.

Cell phenotype, activation, and viability analysis 
by flow cytometry

In order to characterize different subpopulations in PBMCs 
samples, cells (2 × 105) were stained with fluorochrome-
conjugated antibodies anti-CD3-APC, anti-CD20-PE, and 
anti-CD14-FITC (Becton Dickinson Pharmingen, San 
Diego, CA, USA) for the identification of T-lymphocytes, 
B-lymphocytes, and monocytes, respectively. Anti-CD25-
FITC (BD Biosciences, San Jose, CA) was used to assess 
T-cell activation at the indicated times. T-cell viability was 
assessed by the staining of 7-AAD (BD Biosciences) at 
120 h after treatment. A BD FACSCanto II Cytometer with 
FACSDIVA software (BD Biosciences) was used.

Cell proliferation assay by flow cytometry

PBMCs were labeled with CellTrace CFSE proliferation 
kit (Invitrogen, Molecular Probes, Madrid, Spain). CFSE-
labeled PBMCs (2 × 106) were cultured in 25 cm2 flasks. 
After 120 h of culture, 2 × 105 cells were labeled with anti-
CD3–APC (Becton Dickinson Pharmingen) as previously 
described [31] and BD FACSCanto II Cytometer with FAC-
SDIVA software (BD Biosciences) was used to analyze 
CD3+ cells proliferation.

Western blot analysis

Protein extraction and western blot were performed as pre-
viously described [32]. For the analysis of phosphorylated 
proteins, protein pellets were kept on ice and lysed with 
RIPA buffer (25 mM Tris–HCl pH 7, 5, 150 mM NaCl, 
1% Triton-X-100, 1% sodium deoxycholate, 0,1% SDS) 
containing protease and phosphatase inhibitors. The fol-
lowing primary antibodies were used: GLUT-1 (1:2000; 
Abcam, Cambridge, UK), HK-II and PCNA (1:500; Santa 

Cruz Biotechnology, Dallas, TX, USA), PFKFB3 (1:1000; 
[17]), P-Akt (S473) (1:500; Cell Signaling Technology, 
Danvers, MA, USA), and P-S6 (S235/S236) (1:1000; Cell 
Signaling Technology). All proteins were normalized to 
β-actin (1:4000; Abcam) and analyses were performed 
with Multi-Gauge v3.0 (FujiFilm Corporation, Tokyo, 
Japan).

Immunofluorescence

Lymphocytes were collected at different times after treat-
ment with PHA, re-suspended in PBS, and incubated at 
room temperature for 30–60 min over poly-L-lysine-coated 
coverslips (0.01% solution; Sigma-Aldrich). Then, cells 
were fixed with 4% paraformaldehyde and immunostained 
with primary antibodies against PCNA and PFKFB3 
(1:100, Santa Cruz Biotechnology). Secondary antibodies 
Cy3-conjugated donkey anti-mouse IgG antibody (1:500; 
Jackson Immunoresearch, West Grove, PA, USA) and 
Alexa-555-conjugated donkey anti-goat (1:400, Invitrogen) 
were used for the detection of PCNA and PFKFB3, respec-
tively. Nuclei were stained with TO-PRO-3 Iodide (1:1000; 
Invitrogen), when detecting PCNA and DRAQ5 (1:1000; 
BioStatus, Loughborough, UK), when detecting PFKFB3. 
Images were acquired with a Spectral Confocal Microscope 
(TCS-SL; Leica Microsystems), using a Plan-Apochromat 
63X/1.4 N.A. immersion oil objective (Leica Microsystems). 
Excitation He/Ne laser beams (Lasos, Jena, Germany) at 
543 nm for Cy3 and Alexa-555, and 633 nm for TO-PRO-3 
and DRAQ5, and a pinhole aperture of 1 AU were used. 
Images were captured using Leica confocal software (Leica 
Microsystems) and merged using ImageJ software (Wayne 
Rasband, National Institutes of Health, Bethesda, MD, 
USA).

RNA isolation and RT‑PCR analysis

Total RNA was extracted using TRIsure (Bioline, Eve-
leigh, Australia), according to the manufacturer’s protocol. 
RNA was reverse transcribed using High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, Foster City, 
CA, USA). PFKFB3 was specifically amplified using the 
probe and primer set for human PFKFB3 (Hs0019079_m1) 
(Applied Biosystems). TBP (housekeeping control gene, 
TATA-box binding protein) (Hs Hs99999910_m1) (Applied 
Biosystems) was used for normalization. PCR data were 
captured using an ABI PRISM 7700 Sequence Detection 
System (Applied Biosystems) with Sequence Detection 
Software (SDS version 3.0; Applied Biosystems). Data 
were analyzed with Expression Suite Software (version 1.1; 
Applied Biosystems).
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Metabolic determinations

Fru-2,6-P2 was determined as previously described [33]. 
Extracellular lactate was measured spectrophotometrically 
in 1 mL of supernatants from cultured cells under the cor-
responding treatments using standard enzymatic methods 
[34]. Fru-2,6-P2 and lactate measurements were normalized 
to protein concentration, determined by the Bradford assay 
(Bio-Rad, Hercules, CA, USA).

Data analysis

GraphPad for Windows (version 6.0; GraphPad Software, La 
Jolla, CA, USA) was used for analysis. Results are expressed 
as the mean ± Standard Error of the Mean (SEM) from at 
least three independent experiments. The statistical test 
used for each analysis is specified in each figure legend, 
according to the nature of the data, and the compared con-
ditions are indicated with a line above the columns. Differ-
ences were considered statistically significant at p values 
below 0.05 (*, #p < 0.05; **, ##p < 0.01; ***, ###p < 0.001; 
****p < 0.0001).

Results and discussion

Mitotic agents trigger activation and proliferation 
of human T‑lymphocytes

In order to set the experimental model to study metabolic 
changes occurring during T-lymphocyte antigen response, 
several markers of activation and proliferation were analyzed 
in the presence of mitogens.

PHA has been widely used as a T-lymphocyte activator 
[35]. However, high doses of this lectin lead to activation-
induced cell death (AICD) [36]. To avoid mortality, T-lym-
phocytes viability in response to several doses of PHA was 
analyzed with the 7-aminoactinomycin D (7-AAD) assay. 
Results showed an increase in 7-AAD fluorescence upon 
PHA concentration (Fig. 1a), describing a dose-depend-
ent effect of PHA on lymphocyte viability. Percentage of 
7-AAD-negative cells (viable cells) in the untreated condi-
tion was set as reference. Doses of 1 and 5 µg/ml did not 
significantly affect cell viability, whereas the dose of 15 µg/
ml decreased viability. Based on these results, the dose of 
5 µg/ml was used for further experiments.

To analyze the effects of mitotic agents on human T-lym-
phocytes, we assessed the presence of the early activation 
marker CD25 (interleukin-2 receptor alpha chain, IL2RA) 
in lymphocyte membranes by flow cytometry [37]. CD25 
mean fluorescence intensity (MFI) was found significantly 
increased in a time-dependent manner after 48 and 120 h of 
PHA treatment, compared to control lymphocytes (Fig. 1b). 

Considering that cell activation usually triggers cell pro-
liferation, a carboxyfluorescein succinimidyl ester (CFSE) 
staining assay was performed after 120 h of PHA treatment. 
According to CD25 results, untreated cells showed higher 
CFSE fluorescence compared to PHA-treated cells (Fig. 1c), 
which is consistent with increased number of cell divisions 
and consequent loss of CFSE staining in the membrane of 
PHA-stimulated cells. Similar results were obtained with 
other mitogenic stimuli such as ConA and LPS, which also 
increased CD25 expression and decreased CFSE fluores-
cence in human T-lymphocytes (Supplementary Figure S2A, 
B).

As an alternative measure of proliferation, total protein 
levels of proliferating cell nuclear antigen (PCNA) were 
analyzed by western blot. Results showed that PCNA was 
significantly induced in a time-dependent manner from 24 to 
120 h of PHA treatment (Fig. 1d), confirming that PHA trig-
gers proliferation in this model. Immunofluorescence analy-
sis of PCNA revealed increased localization of this protein, 
which is a processivity factor for DNA polymerase δ, in the 
nucleus over time (Fig. 1e). These results are in agreement 
with previous studies proving that PHA is sufficient to initi-
ate mitosis by itself [38]. ConA and LPS-triggered PCNA 
overexpression along time as well (Supplementary Figure 
S2C).

Mitogens increase glycolytic metabolism in human 
T‑lymphocytes

Western blot analyses of HK-II and GLUT-1 were used to 
determine the effect of PHA on human T-lymphocyte gly-
colysis. The levels of these proteins were increased from 
24 h after PHA treatment compared to untreated cells. 
In the case of HK-II, the maximum level of expression 
was reached at 120 h after treatment (Fig. 2a), whereas 
GLUT-1 maximum expression was at 48 h and it was 
maintained at 120 h (Fig. 2b). PHA effects on PFKFB3 
expression were analyzed both at the mRNA and protein 
level. PFKFB3 mRNA levels were significantly increased 
in PHA-treated lymphocytes from 24 to 120 h, being 
slightly lower at the latter time point (Fig. 3a). PFKFB3 
protein levels significantly increased from 24 to 48 h, 
when the maximum expression was reached (Fig. 3b), 
which is consistent with mRNA results. PFKFB3 pro-
tein returned to control levels at 120 h. The decreased 
PFKFB3 protein induction in response to PHA at 120 h 
suggests that PFKFB3 upregulation could be especially 
important in early T-cell activation, as it has been dem-
onstrated in other activation models [9]. Immunofluo-
rescence analysis of PFKFB3 confirmed the existence of 
high levels of this protein after 48 h of PHA treatment and 
revealed that it was exclusively located in the cytoplasm 
(Fig. 3c). The expression of other PFKFB isoenzymes 
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Fig. 1   PHA activates human 
T-lymphocytes and triggers 
their proliferation. a 7-AAD 
viability assay showing the 
dose-dependent response of 
T-lymphocytes treated with 
1–15 µg/ml PHA and stained 
120 h after treatment. b Time 
course of relative CD25 
mean fluorescence intensity 
(MFI) in 5 µg/ml PHA-treated 
T-lymphocytes. Data are pre-
sented as the mean fold change 
relative to untreated cells (CT) 
at 24 h ± SEM. c CFSE MFI 
on 5 µg/ml PHA-treated and 
untreated T-lymphocytes after 
120 h. d Western blot analysis 
of PCNA normalized to β-actin 
in 5 µg/ml PHA-treated and 
untreated T-lymphocytes at 
several times. Data are pre-
sented as the mean fold change 
relative to untreated cells at 
24 h ± SEM. Representative 
images are shown. Differences 
were calculated with two-tailed 
unpaired (a) or paired (b–d) 
Student’s t test with normal-
based 95% confidence interval 
(CI). Significant p values are 
indicated: *p ≤ 0.05; **p ≤ 0.01, 
***p < 0.001; ****p < 0.0001. 
e Images of a representative 
immunofluorescence analysis 
of PCNA in PHA-treated and 
untreated cells along time. 
Single PCNA detected with a 
Cy5-conjugated secondary anti-
body (shown in red) and nuclei 
stained with TO-PRO-3 (shown 
in blue) are displayed, together 
with the resulting merged chan-
nel image. (Color figure online)



192	 Molecular and Cellular Biochemistry (2018) 448:187–197

1 3

was not affected or could not be detected in this model 
(data not shown), which is consistent with previous stud-
ies showing that PFKFB3 is the isoenzyme preferentially 
expressed in proliferating cells [9, 14, 15, 39] and also in 
mitogen-stimulated thymocytes [30].

In order to study PFKFB3 activity, Fru-2,6-P2 concen-
tration was assessed. The results obtained showed a sig-
nificant raise of this metabolite at 24 and 48 h after PHA 
treatment (Fig. 3d). Fru-2,6-P2 concentration decreased at 
120 h, although it was maintained higher in PHA-treated 
cells compared to controls, which is consistent with 
PFKFB3 protein levels. These results were complemented 
with the measurement of the final product of glycolysis, 
lactate. Extracellular lactate quantification indicated that 
glycolysis was significantly increased after PHA treatment 
along time (Fig. 3e). Other mitotic agents, such as ConA 
and LPS, likewise increased PFKFB3 protein levels and 
Fru-2,6-P2 concentration along time (Supplementary Fig-
ure S2C-E).

These results confirm that mitotic agents drive lym-
phocytes to a glycolytic phenotype by increasing the 
expression of key enzymes such as HK-II, GLUT-1, 
and PFKFB3. Given the regulatory role of the PFKFB3 
product, Fru-2,6-P2, on PFK-1 activity, the induction of 
this gene plays a key role in the metabolic adaptation of 
T-lymphocytes and contributes to overcome the energetic 
and anabolic demands of the early activation response in 
front of an antigen.

These data are consistent with previous studies, showing 
glycolysis upregulation with increased GLUT-1 and HK-II 
levels in response to PHA [4, 40]. PFKFB3 overexpres-
sion has also been described in a model of T-cell activation 
with anti-CD3/anti-CD28-conjugated microbeads in which 
pharmacological inhibition of the enzyme attenuates T-lym-
phocyte activation in vitro and suppresses T-cell-dependent 
immunity in vivo [9].

PFKFB3 is regulated by the PI3K–Akt signaling 
pathway in activated T‑lymphocytes

An important regulator of T-cell biology is the mamma-
lian target of rapamycin (mTOR), which integrates immune 
and metabolic cues, such as antigens and nutrients. Under 
certain stimuli, TCR, CD28, and IL-2R signaling through 
the PI3K–Akt pathway can activate the mammalian target 
of rapamycin complex 1 (mTORC1), which positively reg-
ulates helper and effector T-lymphocytes [41]. The same 
PI3K–Akt–mTORC1 axis has been described to be involved 
in GLUT-1-mediated glucose transport in lymphocytes [3, 
42] and in HK-II expression [43]. Moreover, this axis has 
been previously described to regulate PFKFB3 in cancer 
cells and rat thymocytes [15, 30, 44]. With the aim of study-
ing whether PI3K–Akt–mTORC1 links PHA signaling to 
PFKFB3 induction in human lymphocytes, the phosphoryla-
tion levels of Akt and the target of mTORC1 pathway, S6 
ribosomal protein (P-S6), were analyzed after 48 h of PHA 
treatment, when PFKFB3 expression reached the highest 
levels, as it has been shown before (Fig. 3a, b). Significantly 
increased levels of P-Akt (S473) and P-S6 (S235/236) were 
detected in PHA-treated cells compared to untreated cells. 
Co-treatment of PHA with the Akt inhibitor Akti-1/2 sig-
nificantly reduced Akt and S6 phosphorylation. The same 
effect was observed when inhibiting the signaling cascade 
upstream Akt with the PI3K inhibitor LY294902. Both 
Akti-1/2 and LY294902 significantly impaired PFKFB3 
induction in response to PHA. Furthermore, PHA-induced 
PCNA overexpression was also prevented by both inhibitors 
(Fig. 4a, b).

In terms of lactate production, the combination of PHA 
with Akti-1/2 or LY294002 avoided the extracellular lac-
tate increase observed in T-lymphocytes treated with PHA 
alone (Fig. 4c). Moreover, cell activation and proliferation 
was also prevented by both inhibitors, as it was evidenced 

Fig. 2   PHA increases the 
expression of HK-II and GLUT-
1. Western blot analysis of 
HK-II (a) and GLUT-1 (b) at 
several time points after 5 µg/
ml PHA treatment. Quantifica-
tion of each protein level was 
normalized to β-actin levels. 
Data are presented as the mean 
fold change relative to untreated 
cells (CT) at 24 h ± SEM. Dif-
ferences were calculated with 
two-tailed paired Student’s t 
test with normal-based 95% CI. 
Significant p values are indi-
cated: *p ≤ 0.05. Representative 
western blot images are shown 
in the lower panel
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by significantly decreased CD25 expression in PHA-treated 
cells in combination with the inhibitors, compared to PHA 
treatment alone (Fig.  4d). Accordingly, PHA-induced 
decrease in CFSE fluorescence was significantly prevented 
by both inhibitors (Fig. 4e). This corroborates that PI3K and 
the glycolytic pathway are part of the activation and prolif-
eration processes in human T-lymphocytes.

These results demonstrate that PI3K–Akt signaling 
pathway activation is required for PFKFB3 upregulation in 
response to PHA in human lymphocytes. Moreover, the data 
presented here confirm that inhibiting the PI3K/Akt signal-
ing cascade impairs lymphocyte activation and proliferation, 
establishing a link between cellular signaling, metabolic 
reprogramming, and proliferation in human T-lymphocytes. 

This finding will contribute to broaden the network of met-
abolic effectors involved in mitogen-mediated lymphocyte 
activation and proliferation.

TCR signaling and metabolic reprograming are funda-
mental processes in T-lymphocyte biology. The inhibition of 
key players in these events can be used to target autoimmune 
diseases in which there is an overactivation of cellular sign-
aling. For example, co-administration of rapamycin or other 
mTOR inhibitors has been proposed as a therapy to improve 
T regulatory cells differentiation and promote transplant tol-
erance in organ rejects [41]. Moreover, glycolysis inhibi-
tion with either 2-deoxy-glucose [45] or pharmacological 
inhibition of PFKFB3 isoenzyme with 3-(3-pyridinyl)-1-
(4-pyridinyl)-2-propen-1-one) (3PO) [9] has recently been 

Fig. 3   PFKFB3 expression, 
Fru-2,6-P2 and lactate produc-
tion are increased by PHA. a 
RT-PCR analysis of PFKFB3 
expression in 5 µg/ml PHA-
treated and untreated T-lym-
phocytes (CT) at several times. 
b Western blot analysis of 
PFKFB3 normalized to β-actin 
in 5 µg/ml PHA-treated and 
untreated T-lymphocytes (CT) 
at several times. Representative 
western blot images are shown. 
c Images of a representative 
immunofluorescence analysis 
of PFKFB3 in PHA-treated 
and untreated cells at 48 h. 
Single PFKFB3 detected with 
an Alexa-555-conjugated 
secondary antibody (shown in 
green) and nuclei stained with 
DRAQ5 (shown in blue) are 
displayed together with the 
resulting merged channel image. 
d Fru-2,6-P2 concentration in 
T-lymphocytes at several times 
after 5 µg/ml PHA treatment. 
e Relative extracellular lactate 
production at several times after 
5 µg/ml PHA treatment. All 
data are presented as the mean 
fold change relative to untreated 
cells at 24 h ± SEM. Differences 
were calculated with two-tailed 
paired Student’s t test with nor-
mal-based 95% CI. Significant p 
values are indicated: *p ≤ 0.05; 
**p ≤ 0.01. (Color figure online)
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proposed as a possible strategy for autoimmune diseases 
such as graft versus host disease [46] or in inflammatory 
processes such as atherogenesis [27] and angiogenesis [47]. 
In contrast, strategies based on PFKFB3 overexpression 

have been proposed in rheumatoid arthritis, in which 
PFKFB3 deficiency is the cause of the energy-deprived and 
autophagy-deficient, apoptosis-sensitive T-lymphocytes that 
are characteristic of this autoimmune disease [28].

Fig. 4   PI3K and Akt inhibi-
tion prevents PHA-induced 
PFKFB3 and glycolysis induc-
tion, decreasing lymphocyte 
activation and proliferation. 
Analysis of the effects of 5 µg/
ml PHA treatment in combi-
nation with the Akt inhibitor 
(Akti-1/2) or the PI3K inhibitor 
(LY294002) for 48 h. a Rela-
tive quantification of western 
blot analysis of P-Akt (S473), 
P-S6 (S235/236), PFKFB3, and 
PCNA normalized to β-actin. 
b Western blot images from a 
representative experiment. c 
Relative extracellular lactate 
production by T-lymphocytes 
at the mentioned conditions. 
d Relative CD25 MFI in 
T-lymphocytes at the mentioned 
conditions. e Proliferation meas-
ured by CFSE staining in 5 µg/
ml PHA-treated or untreated 
T-lymphocytes after 120 h. Data 
in a, c, d, and e are repre-
sented as the mean fold change 
relative to the untreated vehicle 
condition ± SEM. Differences 
were calculated with two-way 
ANOVA and Tukey’s multiple 
comparisons test with normal-
based 95% CI. Significant p 
values are indicated: *p < 0.05; 
***p < 0.001; ****p < 0.0001 
and #p < 0.05; ##p < 0.01; 
###p < 0.001 when comparing to 
the untreated vehicle condi-
tion or the PHA-treated vehicle 
condition, respectively
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In conclusion (summarized in Fig. 5), this study dem-
onstrates a tight interconnection between PI3K signaling 
and induction of PFKFB3 and Fru-2,6-P2 synthesis during 
T-lymphocyte activation and proliferation. Results provide 
evidence for the role of PFKFB3 in T-lymphocyte early acti-
vation and show how metabolic adaptations that take place 
after exposure to a mitogen contribute to a time-dependent 
activation and proliferation process in these cells. These 
results provide a link between metabolism and mitogen-
activated TCR signaling in human lymphocyte biology that 
can help to better understand the importance of modulating 
both pathways to target complex diseases that affect immune 
system activation and proliferation.
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Supplementary Material 

Extended Methods – Lymphocyte purification 

Two lymphocyte purification protocols were compared. In the classical protocol - 

referred as one-sided adhesion protocol - 175 cm2 adherent flasks were kept in 

horizontal position for 2 hours and supernatant was collected. In the newly 

developed method - referred as double-sided adhesion protocol - flasks were 

inverted after 2 hours of incubation and kept in horizontal position for an 

additional hour to foster monocytes adhesion to the other side of the flask.  

To test the purification efficacy of each protocol, the percentages of CD3+, 

CD20+ and CD14+ cell populations were assessed by flow cytometry. The CD3+ 

T lymphocytes population was significantly increased with the double-sided 

adhesion protocol. CD14+ monocytes population was found significantly 

reduced in the new protocol compared to the original protocol. The population of 

CD20+ B lymphocytes was similar between the one-sided and two-sided 

adhesion protocols. Overall, the double-sided adhesion protocol resulted in 

better T lymphocyte purification and was used for further experiments 

(Supplementary Figure S1A, C). 

T lymphocytes remained the main population at the end of the experiment and 

their number significantly increased at 120 h in the PHA-treated condition 

compared to untreated cells (Supplementary Figure S1B, D). 

In LPS-mediated activation experiments, the experiment was performed in the 

presence of monocytes, given that these cells are required as antigen 

presenting cells to lymphocytes. In this case, PBMCs were cultured in 175 cm2 

adherent flasks in the presence or absence of LPS. At the time of sample 



2 
 

collection, supernatants containing lymphocytes were collected, leaving 

adhesion cells (monocytes, dendritic cells) attached to the flask. 

 

Supplementary figures’ legends 

Supplementary Figure S1. Characterization of cell populations. 

(A) Populations obtained with the one-sided and the double-sided adhesion 

protocols at the beginning of the experiment. Percentages of CD3+ (T 

lymphocytes), CD20+ (B lymphocytes) and CD14+ (monocytes) cells are 

represented. (B) FSC-SSC plots and each CD-SSC plot from a one-sided 

(upper panel) and a double-sided (lower panel) representative experiment are 

shown. (C) Characterization of cell populations obtained with the double-sided 

adhesion protocol after 120 h of culture. PHA-treated and untreated cells are 

represented. (D) FSC-SSC plots and each CD-SSC plot from untreated (upper 

panel) and PHA-treated cells (lower panel) from a representative experiment 

are shown. Data are presented as % of total cells analyzed. Differences were 

calculated with two-tailed unpaired (A) or paired (B) Student’s t test with normal-

based 95% CI and significant p values are indicated: **p ≤ 0.01; ****p ≤ 0.0001. 
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Supplementary Figure S2. ConA and LPS trigger lymphocyte activation 

and proliferation and increase PFKFB3 protein levels and Fru-2,6-P2 

synthesis. Analysis of the effects of 10 µg/ml ConA and 1µg/ml LPS in T 

lymphocytes. (A) Relative CD25 MFI in ConA or LPS-treated T lymphocytes at 

120 h. Data are presented as the mean fold change relative to untreated cells ± 

SEM. (B) CFSE MFI in ConA or LPS-treated T lymphocytes at 120 h. Data are 

presented as the mean fold change relative to untreated cells ± SEM. (C) 

Representative western blot images of PCNA and β-actin in ConA and LPS-

treated T lymphocytes at several times. (D) Western blot quantification of 

PFKFB3 normalized to β-actin in ConA or LPS-treated and untreated T 

lymphocytes (CT) at several times. Data are presented as the mean fold 

change relative to untreated cells at 24 h ± SEM. (E) Fru-2,6-P2 concentration 

in ConA and LPS-treated T lymphocytes at several times. Data are presented 

as the mean fold change relative to untreated cells at 24 h ± SEM. 

Differences were calculated with paired Student’s t test with normal-based 95% 

CI. Significant p values are indicated: *p ≤ 0.05; **p ≤ 0.01.  
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Supplementary Figure S1 
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Supplementary Figure S2 

 

 

 

 

 

 



TIGAR involvement in the activation of human T lymphocytes 

The study of TIGAR in human lymphocytes emerged as an interesting project after analysing the 

expression of this gene across tissues in the Genotype-Tissue Expression (GTEx) database. GTEx project 

aim is to build a comprehensive public resource to study tissue-specific gene expression and regulation. 

The analysis presented here was performed with the GTEx release V6p (2016), when 8555 samples from 

552 donors had been processed, analysing the expression of all human genes in 53 different tissues. 

TIGAR expression was found significantly increased in transformed lymphocytes and fibroblasts 

compared to the mean expression across tissues (Figure A1). 

 

 

Figure A1. GTEx analysis of TIGAR expression across 53 human tissues. EBV-transformed lymphocytes and fibroblasts are 

colored in purple and blue, respectively, and the mean expression across all tissues is indicated in the last box. 

Following the procedures described in (58), human T-lymphocytes were purified and treated with 10 

µg/mL ConA or 1 µg/mL LPS for 120 h. TIGAR protein levels were determined by western blot. Results 

showed significantly increased TIGAR protein levels in ConA-treated lymphocytes compared to 

untreated lymphocytes at 24 and 48 h (Figure A2). LPS enhanced TIGAR levels to a lesser extent than 

ConA at 24 h and did not modulate TIGAR at any other time point (Figure A2). These results indicate 

that TIGAR is increased in parallel to PFKFB3 in lymphocytes activated with ConA. Moreover, the 

upregulation of these two proteins occurs in parallel to increased Fru-2,6-P2 concentration and 

proliferation, as it was previously described (58). Activated lymphocytes induce metabolic 

reprogramming to accomplish the requirements of cell proliferation. In this context, it becomes clear 

that TIGAR is required for proliferation, resembling what occurs in tumour cells. The increase in Fru-2,6-

P2 in parallel to increased TIGAR protein levels supports the results presented in this thesis, which point 

out other pro-survival functions of TIGAR besides its role as a Fru-2,6-P2 phosphatase. 



 

Figure A2. Time-course analysis of TIGAR protein levels in lymphocytes treated with ConA and LPS. T-lymphocytes were 

treated with ConA or LPS for the times indicated and TIGAR protein levels were determined by western blot. Data are represented 

as the mean fold change compared to untreated cells ± SEM, n=3 (*p<0,05; ***p<0,001). 

In order to determine the contribution of the PI3K/Akt signalling pathway in the upregulation of TIGAR 

during lymphocytes activation, we analysed TIGAR protein levels in lymphocytes treated with ConA and 

LPS in combination with 20 µM LY294002 or 10 µM Akti-1/2, as previously described (58). The results 

obtained indicated that the inhibition of any of these two kinases prevented TIGAR induction in response 

to ConA and LPS. P-S6 was used as control of the signalling through the pathway (Figure A3). 

 

Figure A3. Western blot analysis of the involvement of the PI3K/Akt signaling pathway in the activation of T-lymphocytes. 

T-lymphocytes were pre-treated with the inhibitors LY294002 or Akti-1/2 and then treated with ConA or LPS for (A) 24 h and (B) 

48 h. Western blot analysis of TIGAR, P-S6 and PFKFB3 were determined by western blot. Β-actin was used as endogenous control. 

Data are represented as the mean fold change compared to untreated cells ± SEM, n=3 (*p<0,05; **p<0,01). 

A              B 

A                 B 



In conclusion, these results indicate that the same molecular mechanisms that we described to be 

involved in the activation of PFKFB3 during T-lymphocyte activation (58) are involved in the upregulation 

of TIGAR. PI3K and Akt are two kinases involved in signalling pathways that sustain proliferation and, 

thus, the inhibition of any of them results deregulation of metabolic transformation, which prevents 

adequate activation of lymphocytes. 

The experiments summarised in these pages were part of the Final Degree Projects of Claudia Arnedo 

and Irene Caldera, students in our lab. This project is being continued by other students who are 

contributing to the determination of the link between Nrf2 and TIGAR in lymphocytes. 
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For a long time, pioneers in the field of cancer cell metabolism, such as Otto

Warburg, have focused on the idea that tumor cells maintain high glycolytic rates

even with adequate oxygen supply, in what is known as aerobic glycolysis or the

Warburg effect. Recent studies have reported a more complex situation, where the

tumor ecosystem plays a more critical role in cancer progression. Cancer cells

display extraordinary plasticity in adapting to changes in their tumor microenvironment,

developing strategies to survive and proliferate. The proliferation of cancer cells needs a

high rate of energy and metabolic substrates for biosynthesis of biomolecules. These

requirements are met by the metabolic reprogramming of cancer cells and others

present in the tumor microenvironment, which is essential for tumor survival and

spread. Metabolic reprogramming involves a complex interplay between oncogenes,

tumor suppressors, growth factors and local factors in the tumor microenvironment.

These factors can induce overexpression and increased activity of glycolytic isoenzymes

and proteins in stromal and cancer cells which are different from those expressed in

normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by

6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes,

plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically

regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of

the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose

2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator

(TIGAR), which show increased expression in a significant number of tumor types. In

this review, the function of these isoenzymes in the regulation of metabolism, as well as

the regulatory factors modulating their expression and activity in the tumor ecosystem

are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating

factors, could be a promising approach for treating cancers.

Keywords: fructose 2,6-bisphosphate, cancer metabolism, glycolysis, PFKFB isoenzymes, TIGAR, tumor

microenvironment

INTRODUCTION

Otto Warburg, using the Warburg manometer to measure the oxygen consumption in cells,
demonstrated that tumor cells showed rapid and intense glycolysis, in which glucose was oxidized
into lactate, despite the presence of abundant oxygen (1). This “Warburg effect” is characteristic
of proliferating and transformed cells. Warburg postulated that cancer was a result of defects in
mitochondrial respiration, which forced the cell to adopt an anaerobic form of energy generation,
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Abstract 
Review on C12orf5, with data on DNA/RNA, on 
the protein encoded and where the gene is 
implicated. 

Identity 
Other names: FR2BP, TIGAR 

HGNC (Hugo): C12orf5 

Location: 12p13.32 

DNA/RNA 
Description 
The human TIGAR gene is composed of 6 exons 
spanning genomic region about 50,4 kb (GenBank  

NC_000012.11). The transcript mRNA is 8,2 kb 
(GenBank NM_020375.2) and it is composed by 
the exon regions 5827..5937, 15914..15951, 
21673..21794, 34453..34530, 35901..36011 and 
36894..44662. 

Transcription 
The human TIGAR coding sequence consists of 
813 bp from the start codon to the stop codon. 
There are no splicing variants reported. 

Pseudogene 
A pseudogene of the ribosomal protein S15 has 
been located in the region 8981..9473 by 
computational analysis using a gene prediction 
method, but there is not experimental data proving 
it. 

 

Figure 1. Schematic representation of TIGAR location in chromosome 12, gene structure and transcript mRNA. Different 
numbering has been used considering chromosomal, gene or mRNA sequence. 
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The potential utility of PFKFB3 as a therapeutic target
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ABSTRACT
Introduction: It has been known for over half a century that tumors exhibit an increased demand for
nutrients to fuel their rapid proliferation. Interest in targeting cancer metabolism to treat the disease has
been renewed in recent years with the discovery thatmany cancer-related pathways have a profound effect
on metabolism. Considering the recent increase in our understanding of cancer metabolism and the
enzymes and pathways involved, the question arises as to whether metabolism is cancer’s Achilles heel.
Areas covered: This review summarizes the role of 6-Phosphofructo-2-kinase/fructose-2,6-bisphospha-
tase 3 (PFKFB3) in glycolysis, cell proliferation, and tumor growth, discussing PFKFB3 gene and
isoenzyme regulation and the changes that occur in cancer and inflammatory diseases.
Pharmacological options currently available for selective PFKFB3 inhibition are also reviewed.
Expert opinion: PFKFB3 plays an important role in sustaining the development and progression of
cancer and might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials are
needed to follow up on the promising results from preclinical studies with PFKFB3 inhibitors.
Combination therapies with PFKFB3 inhibitors, chemotherapeutic drugs, or radiotherapy might improve
the efficacy of cancer treatments targeting PFKFB3.
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1. Introduction

Some of the earliest modern studies on cancer observed
abnormalities in tumor metabolism. In the pioneering studies
of the 1920s, Otto Warburg observed that cancers possessed a
remarkable ability to sustain high rates of anaerobic glycolysis
even in the presence of oxygen [1]. Anaerobic glycolysis uses
glucose to produce lactate, while aerobic glycolysis (respira-
tion) produces pyruvate for the tricarboxylic acid cycle and
generates energy via oxidative phosphorylation. An essential
thermodynamic trade-off exists between these two pathways
with respect to the rate (moles of adenosine triphosphate
(ATP) per unit of time) and yield (moles of ATP per mole of
substrate), with fermentation occurring approximately 100
times faster than respiration, although yielding roughly 18-
fold less ATP per mole of glucose. Population biology model-
ing has demonstrated how organisms use the intrinsic trade-
off between these two pathways to maximal effect. Cells with
a higher rate, but lower yield of ATP production, may gain a
selective advantage when competing for shared energy
resources [2].
There are numerous molecular modulators of glycolytic

flux, the most well-known of which was discovered in 1860
by Louis Pasteur [3]. Pasteur showed that oxygen inhibits
fermentation and that glucose consumption is inversely pro-
portional to oxygen availability (the Pasteur effect). It is now
clear that the allosteric properties of 6-Phosphofructo-1-
kinase (PFK-1) can account for most aspects of the Pasteur’s
effect [4]. Many tumors have high rates of glycolysis

regardless of oxygen availability (the Warburg effect). These
tumors depend largely on the glycolytic pathway for the
generation of ATP and biomolecules to meet most of their
energy demand. Warburg attributed this metabolic alteration
to mitochondrial ‘respiration injury’ and considered this the
most fundamental metabolic change in malignant transfor-
mation or ‘the origin of cancer cells’ [1]. However, this
hypothesis was neglected because some tumors do not
have defects in respiration; besides, respiration also exerts a
regulatory effect on glycolysis [5]. Although some cancer
cells do not show high glycolytic activity [6], the Warburg
effect has been consistently observed in a wide range of
human cancers and forms the physiological basis for the
use of positron emission tomography (PET) scans in clinical
oncology [7]. There are likely to be several biochemical and
molecular mechanisms underlying the Warburg effect,
including mitochondrial dysfunction [8,9], oncogenic altera-
tions, leading to increased glycolysis [10,11], as well as adap-
tive responses to the tumor microenvironment [12,13].

2. Fructose 2,6-bisphosphate: a regulator of the
glycolytic pathway

Studies on glycolysis regulation in the 1960s, involving thermo-
dynamic assessments and measurements of intracellular meta-
bolite concentrations, led to the identification of non-
equilibrium reactions catalyzed by Hexokinase, PFK-1, and
Pyruvate kinase [14]. In 1980, fructose-2,6-bisphosphate (Fru-
2,6-P2), a potent allosteric stimulator of PFK-1, was discovered

CONTACT Ramon Bartrons rbartrons@ub.edu Unitat de Bioquímica, Departament de Ciències Fisiològiques, Facultat de Medicina de la Universitat de
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In human cancers, transforming growth factor-b1 (TGF-b1) plays a dual role
by acting as both a tumor suppressor and a promoter of tumor metastasis.

Although TGF-b1 contributes to the metabolic reprogramming of cancer cells
and tumor-associated stromal cells, little is known of the molecular

mechanisms connecting this cytokine with enhanced glycolysis. PFKFB3 is a

homodymeric bifunctional enzyme, belonging to the family of 6-phospho-

fructo-2-kinase/fructose-2,6-bisphosphatases, that controls the conversion of

fructose-6-phosphate (Fru-6-P) to fructose-2,6-bisphosphate (Fru-2,6-P2). This

metabolite is important for the dynamic regulation of glycolytic flux by

allosterically activating phosphofructokinase-1, a rate-limiting enzyme in gly-

colysis. The PFKFB3 gene is involved in cell proliferation via its role in car-

bohydrate metabolism. Here, we studied the mechanisms connecting TGF-b1,
glucose metabolism, and PFKFB3 in glioblastoma cell lines. We demonstrate

that TGF-b1 upregulates PFKFB3 mRNA and protein expression resulting in
an increase in fructose 2,6-bisphosphate concentration, glucose uptake, gly-

colytic flux and lactate production. Moreover, these increases in PFKFB3

mRNA and protein expression and Fru-2,6-P2 concentration were reduced

when the Smad3, p38 mitogen-activated protein kinase (MAPK), and phos-

phoinositide 3-kinase (PI3K)/Akt signaling pathways were inhibited. We

demonstrate that inhibition of PFKFB3 activity with 3PO or siRNA-mediated

knockdown of PFKFB3 significantly eliminated the capacity of the T98G cells

to form colonies by TGF-b1, one of the hallmarks of transformation. Taken
together, these results show that TGF-b1 induces PFKFB3 expression through
activation of the p38 MAPK and PI3K/Akt signaling pathways that comple-

ment and converge with early activation of Smad signaling. This suggests that

PFKFB3 induction by TGF-b1 can be one of the main mechanisms mediating
the reprogramming of glioma cells.

Abbreviations

3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; Erk, extracellular signal-regulated kinase; Fru-2,6-P2, fructose 2,6-bisphosphate; GLUT1,

glucose transporter 1; HK-II, hexokinase-II; Hsp25, heat shock protein 25; JNK, c-Jun N-terminal kinase; LDH-A, lactate dehydrogenase-A;

MAPK, mitogen-activated protein kinase; PFK-1, phosphofructokinase-1; PFKFB1-4, phosphofructo-2-kinase/fructose-2,6-bisphosphatase 1-4;

PI3K, phosphoinositide 3-kinase; S6, S6 ribosomal protein; TGF-b1, transforming growth factor-b1; TbRII, TGF-b type II serine/threonine

kinase receptor; TbRI, TGF-b type I serine/threonine kinase receptor.
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Abstract 
Review on PFKFB2, with data on DNA/RNA, on 
the protein encoded and where the gene is 
implicated. 

Identity 
Other names: PFK-2/FBPase-2 

HGNC (Hugo): PFKFB2 

Location: 1q32.2 

Local order 
The human PFKFB2 gene is located on the 
chromosome 1 at position 1q31-q32.2 (GeneCards) 
(Fig. 1). 

DNA/RNA 
Description 
The human PFKFB2 is composed of 15 exons  

spanning 22617 bp (GenBank: AJ005577.1). This 
gene has 9 transcripts; two of them have been 
reported to codify a protein and three contain an 
open reading frame, but no protein has been 
identified. The transcripts are derived from different 
promoters and vary only in non-coding sequences 
at the 5' end. Therefore, the resulting proteins differ 
in their C-terminal amino acid sequence (Heine-
Suñer et al., 1998).  
The main products of the gene correspond to 
mRNAs of 7073 bp and 3529 bp for the variant 1 
(isoform a; NM_006212.2) and variant 2 (isoform 
b; NM_001018053.1), respectively (Fig. 2). The 
isoform b differs in the 3' UTR and the coding 
region compared to isoform a. The resulting 
isoform b is shorter and has a distinct C-terminus 
compared to isoform a. However, it is not known 
how these different 5' ends are related to the three 
mRNAs (H1, H2 and H4) that encode the isoform a 
or the H3 mRNA that encodes the isoform b. None 
of these mRNAs are strictly heart-specific. 

 

Figure 1. Localization of human PFKFB2 gene. 
 



 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

L’iniciat no és el que serà, però ha deixat d’ésser el que era anteriorment. 

JOAN FRIGOLÉ REIXACH 
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