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Abstract

The complex nature of multiphase flows, particularly in the presence of non-Newtonian

rheologies in the phases, limits the applicability of theoretical analysis of physical

equations as well as setting up laboratory experiments. As a result, Computational

Fluid Dynamics (CFD) techniques are essential tools to study these problems. In ad-

dition to the Newtonian multiphase flow problems, numerical simulation of complex

multiphase fluid flows, e.g. synthetic polymer products have been subjected to numer-

ous researches in the last few years, with applications in several industrial sections,

e.g. in colouring, food and health products, casting, coating, drug delivery systems,

etc. Despite the advances in numerical simulation techniques in this field in the past

decade, the applicability of these approaches are limited by challenges appearing in

specific applications, and particular consideration must be taken into account for each

of these problems. The present thesis aims at three-dimensional numerical solution of

Newtonian/non-Newtonian multiphase flow problems in the context of finite-volume

discretization approach with applications in different natural and industrial processes.

In the context of previous researches in Multiphase flows done in Heat and Mass

Transfer Technological Center (CTTC) research group, this thesis uses a conservative

level-set interface tracking approach to deal with the moving interface of two immisci-

ble fluids. The previous works on multiphase flow problems done at CTTC are mainly

regarding introducing robust solvers capable of high-performance computing to study

fundamental problems of bubbles, droplets. In this thesis, an attempt is made on using

these techniques in solving two common industrial applications of multiphase flows,

i.e. deformation of a droplet in shear and collision of droplets. The Navier-Stokes and

level-set equations are solved using a finite-volume method on collocated grids.

This thesis is organized in five chapters. The first chapter aims at providing an

introduction to the motivation behind this work. We also present some application of



the context of this thesis in industrial processes, followed by a small introductory on

the CTTC research group, objectives and the outline of the thesis. The core of this

thesis lays within chapters two, three and four.

In chapter 2, using a conservative level-set method, three-dimensional direct nu-

merical simulation of binary droplets collision is performed. A novel lamella stabi-

lization approach is introduced to numerically resolve the thin lamella film appeared

during a broad range of collision regimes. This approach demonstrates to be numeri-

cally efficient and accurate compared with experimental data, with a significant save-up

on computational costs in three-dimensional cases. The numerical tools introduced are

validated and verified against different experimental results for a wide range of colli-

sion regimes where very good agreement is seen. Besides, for all the cases studied in

this chapter, a detailed study of the energy budgets are provided.

In chapter 3, the physics of a single droplet subjected to shear flow is studied in

details, with a primary focus on the effect of viscosity on walls critical confinement ra-

tio. First, we highly validate the ability of the numerical tools on capturing the correct

physics of droplet deformation where the extracted results are compared with avail-

able experimental, analytical and numerical data from the literature. This chapter con-

tinues by three-dimensional DNS study of subcritical (steady-state) and supercritical

(breakup) deformations of the droplet for a wide range of walls confinement in differ-

ent viscosity ratios. The results indicate the existence of two steady-state regions in a

viscosity ratio-walls confinement ratio graph, which are separated by a breakup region.

Overall, these achievements indicate a promising potential of the current approach for

simulating droplet deformation and breakup, in applications of dispersion science and

mixing processes.

In chapter 4, with the help of experience gained in the previous chapters, a finite-

volume based conservative level-set method is used to numerically solve the non-

Newtonian multiphase flow problems. One set of governing equations is written for

the whole domain where different rheological properties may appear. Main challenging

areas of numerical simulation of multiphase non-Newtonian fluids, including tracking

of the interface, mass conservation of the phases, small timestep problems encoun-

tered by non-Newtonian fluids, numerical instabilities regarding the high Weissenberg
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Number Problem (HWNP), instabilities encouraged by low solvent to polymer vis-

cosity ratio in viscoelastic fluids and instabilities encountered by surface tensions are

discussed and proper numerical treatments are provided in the proposed method. The

numerical method is validated for different types of non-Newtonian fluids, e.g. shear-

thinning, shear-thickening and viscoelastic fluids using structured and unstructured

meshes, where the extracted results are compared against analytical, numerical and

experimental data available in the literature.
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Chapter 1

Introduction

1.1 Background and motivation

From fundamental physics, it is well known that the phase is defined as one of the

states of matter. Therefore, the phase can be solid, liquid, or gas. Thus, In the simplest

terms, multiphase flow is the simultaneous flow of more than one phase. however,

in the context of this thesis, the term multiphase will be used to refer to the flows

consisting of two immiscible Newtonian or non-Newtonian fluid phases separated by

a differentiated interface.

Multiphase flows encompass phenomena in a broad category of different applica-

tions, in varying scales in nature along with scientific and industrial utilisation. For

example, Droplets deformation and collision in a surrounding gas is of crucial im-

portance in different applications from mixing process to reactor design engineering,

microreactors, spray combustion (see figure 1.1), spray coating, drug delivery, etc [1–

3]. Or in another example, multiphase flows exhibits in emulsification process with

wast applications in food, chemical, and pharmaceutical industries. [4–6]. A signifi-

cant category of multiphase flows is related to complex rheologies, where one or more

phases exhibit non-Newtonian rheology. Interfacial complex fluid flows are of crucial

importance in different applications, e.g. petrochemical, biochemical, food, and phar-

maceuticals industries, to name just a few [7, 8]. The non-Newtonian rheology of one

or more phases in a multiphase system has concrete importance in its operation. For

instance, in multiphase reactors where many reactants may exhibit non-Newtonian be-

haviour, the exotic behaviours of non-Newtonian fluids like viscoelastic, offer a wider
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FIGURE 1.1: Application of the numerical solution of multiphase flows per-
formed in the present thesis [1] in simulation of two tetradecane droplets colli-

sion in air matrix with applications in spray combustion.
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1.2. Computational methods in numerical solution of multiphase flows

variety of control and functionality with substantial effect in the performance of the

system.

In general, there are three main approaches to study multiphase flow problems: (i)

experimental analysis, using precise laboratory equipment (ii) theoretical analysis of

the governing physical equations, and (iii) numerical solution using advanced com-

putational techniques. The complex nature of multiphase flows, particularly in the

presence of non-Newtonin rheologies in the phases, limits the applicability of theoret-

ical analysis of mathematical equations as well as setting up laboratory experiments.

On the other hand, the flexibility of numerical simulations on implementing different

initial conditions, boundary conditions and fluid properties, as well as their capabil-

ity to extract substantial information on the flow field, makes them extra appealing on

studying multiphase flow problems.

The present work aims to shed some light on the numerical approaches in the sim-

ulation of multiphase Newtonian and non-Newtonian fluids. By progressively intro-

ducing numerical improvements, the proposed numerical method will be optimized,

seeking to achieve robust numerical tool in solving multiphase flow problems with

complex rheologies.

1.2 Computational methods in numerical solution of multi-
phase flows

Most of the methods in the mainstream of computational fluid dynamics employ some

form of domain discretization. These methods aim to solve the underlying physical

nature of the problem by first dividing the flow domain into a number of finite and

non-overlapping sub-domains. Afterwards, it is required to convert the set of funda-

mental physical/mathematical equations into suitable algebraic forms. These equations

are subsequently solved to yield the corresponding discrete values of the flow-field

variables, including velocity, pressure, temperature and other transport variables of in-

terest. Finite-difference (FD), finite-element (FE) and finite-volume (FV) methods are

amongst the most main domain discretization approaches.

In the finite-difference method, the primary idea is in the utilization of Taylor se-

ries expansions at each point of the grid to form proper approximations of the partial
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derivatives of the governing equations [9]. In the finite-element method, simple piece-

wise polynomial functions are employed on local elements to represent the variations

of the unknown flow-field variables [10]. The finite-volume method, however, is one

of the most common forms of discretizations in the numerical solution of fluid flows

[11]. One of its most advantages is being consistent with the concept of the control

volume approach. Similar to the finite-element, the finite-volume method can handle

the arbitrary geometries with ease through the usage of structured, body-fitted and un-

structured meshes. In this thesis, the finite-volume method is used to discritize the

governing equations in the solution domain.

Regarding the numerical solution of multiphase flow problems, there are different

approaches to handle the phases, including the Eulerian-Lagrangian (EL), Eulerian-

Eulerian (EE), and Direct Numerical Simulation (DNS).

The EL approach is based on the effective coupling between a Eulerian field de-

scription for the solution of the continuous fluid phase and a Lagrangian scheme for

determining the trajectories of the dispersed phase, particles, or bubbles as they move

through the computational domain within this flow field [12, 13]. In the EE approach,

the algebraic equations can be solved based on the full or partial, simultaneous or

sequential, solution of the governing equations, where both phases are treated as in-

terpenetrating continuous media, occupying the same space with different velocities

and volume fractions for each phase [14, 15]. The DNS approach involves all fluid

motions that are contained in the flow to understand the physics of the problem and

its natural occurrence. In DNS, the equations are coupled with interface tracking (sur-

face methods) or interface capturing (volume methods) schemes, in the framework of

Lagrangian and Eulerian approaches, respectively [12, 13].

The main methods in the Lagrangian framework is front-tracking [16, 17] ap-

proach, where a stationary Eulerian grid is used for the fluid flow and the interface

is tracked explicitly using a separate Lagrangian grid. This method precisely describes

the multiphase flow, however, is complex to implement due to the need for re-meshing

of the Lagrangian grid at each iteration. The main methods in the Eulerian framework

could be categorized into three main types: (i) volume-of-fluid (VOF), (ii) level-set

(LS), and (iii) hybrid, e.g. the LS/VOF. In all of these methods, multiphase flow is
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solved using a single set of governing equations where the physical properties, for in-

stance, density and viscosity vary smoothly across the moving interface. The VOF

method conserves the mass of the phases properly, however, lacks the accuracy in cal-

culations of normal and curvature of geometric interface properties. The reader can

referred to [18] for a review on VOF method. On the other hand, level set approaches

benefit from simplicity in calculations of geometric properties but lack in precise mass

conservation [19]. The hybrid methods usually solve these problems; however, imply

an increase in computational cost.

Due to the important advances in numerical techniques and computer hardware in

the past decade, the field of DNS in solution of mutiphase fluid flows has experienced

significant advances [20]. With the help of high-performance computing, the flow dy-

namics of multiphase flows can now be solved in great details leading to unprecedented

insight.

In this thesis, an interface capturing Level-Set (LS) approach is used to perform

DNS on multiphase flow problems where phases can be either Newtonian or non-

Newtonian. This method is based on the tracking of a sharp interface which separates

the two different fluids. Different phases can be unambiguously named dispersed or

continuum, depending on the distribution of them.

1.3 CTTC research group

The Heat and Mass Transfer Technological Center (CTTC) of the Universitat Politéc-

nica de Catalunya-Barcelona Tech (UPC), is a research group dedicated to accurate

scientific analysis of engineering problems based on two main lines:

• Mathematical formulation, numerical resolution and experimental validation of

fluid dynamics and heat and mass transfer phenomena, including natural and

forced convection [21], turbulence modelling [22], combustion [23], multiphase

flows [1, 24–43], solid-liquid phase change, radiation [44], porous media, nu-

merical algorithms and solvers [45], high-performance computing [46], etc.

• The application of the acquired knowledge on thermal and fluid dynamic opti-

misation of thermal system and equipment.
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The researchers in CTTC have been contributing in development of a CFD software

platform called TermoFluids [47] that uses state-of-the-art numerical and physical

models to perform accurate scientific analysis of engineering problems with emphasis

on parallel computing and high efficiency in supercomputers.

Researchers at CTTC have access to a Beowulf cluster called Joan Francesc Fer-

nández (JFF) with a total number of 2304 CPUs. JFF is benefiting from two types of

cluster nodes:

• 128 cluster nodes where each of them has 2 AMD Opteron Quad Core proces-

sors with 8 Gigabytes of RAM memory, linked with an InfiniBand DDR 4X

network interconnection between nodes with latencies of 2.6 microseconds and

a 20Gbits/s bandwidth.

• 40 cluster nodes where each of them has 2 AMD Opteron with 16 Cores for

each CPU linked with 64 Gigabytes of RAM memory and an InfiniBand QDR

4X network interconnection between nodes with latencies of 1.07 microseconds

with a 40Gbits/s bandwidth.

Most of the parallel computations of the cases solved in this these are performed

using this cluster.

The numerical algorithms for DNS of gas-liquid multiphase flows implemented

in TermoFluids code have been introduced in Balcazar et al. [24] along with further

works of non-isothermal two-phase flows in Balcázar et al. [29], coupled volume of

fluid/level-set (VOF/LS) method in Balcázar et al. [25], multi-marker level-set method

in Balcázar et al. [27], Adaptive mesh refinement (AMR) algorithms in Antepara et al.

[32], single-phase free-surface flows in Schillaci et al. [36], and moving mesh tech-

niques in Gutiérrez et al. [28]. The Navier-Stokes equations, energy equation, and in-

terface capturing equations, are solved with a finite volume discretization of the physi-

cal domain on a collocated unstructured mesh. The current thesis is the first work in the

content of conservative level-set method that performs DNS of deformation of droplets

in shear flow and collision of droplets in substantial details, along with the extension

of abilities of this approach in solving multiphase flows with complex rheologies.
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1.4 Objective of the thesis

As discussed earlier, direct numerical simulation (DNS) of two-phase flows is a broad

topic, with applications in a wide variety of environmental, geophysical and engineer-

ing processes. Due to these critical applications, in addition to the expansion of the

computational power during the last decade, DNS of multiphase flows has drawn a lot

of attention from the research community. However, this field is still far from maturity

and sometimes unable to resolve many of its industrial applications, as there are many

numerical difficulties dependednt on specific applications. For instance, regarding two

main applications of DNS of multiphase flows considered in this thesis, deformation of

droplets in shear flow and collision of droplets, there are many numerical challenges,

e.g. small timesteps, sensitivity to numerical parameters, rupture of the entrapped gas

film, and rupture of the lamella film, just to name a few. These challenges are in

addition to the general difficulties in numerical simulation of multiphase flows, e.g.

challenges related to the tracking of interfaces, mass conservation of the droplets, in-

stabilities encountered by large density ratio and surface tensions. These problems are

escalated in DNS of multiphase flows when at least one of the phases represents non-

Newtonian behaviours. As a result, there is a severe need in a detailed understanding

of the multiphase flow problems related to the specific applications in Newtonian and

non-Newtonian fluids.

The main idea of this thesis is to provide a detailed study on the main challenges

of three-dimensional multiphase flow problems related to the applications of shear de-

formation of a droplet and collision of the droplets. We will also analyze the problems

when one of the phases represents non-Newtonian behaviour. In particular, we will

mainly focus on the conservative level set (CLS) interface tracking approach. This ap-

proach has shown to be of the most promising technique to simulate multiphase flows

among those tested at CTTC laboratory. Hence, we use this highly verified approach

as the starting point of this thesis. The reader can refer to [24] for details on the appli-

cability of this CLS approach.

Considering the actual state-of-the-art in multiphase flow modelling and numerical

simulation methods, the main objectives of this thesis are:
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• Investigate the main challenges in numerical simulation of multiphase flows ap-

pearing in the industrial applications with rheologies of Newtonian and non-

Newtonian fluids. The main emphasis will be on the deformation of a droplet in

shear flow and collision of the droplets.

• Develop a robust approach to solve non-Newtonian multiphase flow problems

with different rheologies of shear-thinning, shear-thickening and viscoelastic.

• Provide the proper answers to the afformationed challenges, test and verify them.

The new solver for non-Newtonian multiphase flows should be implemented in the

context of Termofluids code [47]. The resulting code must allow the high-performance

computing of two-phase Newtonian/non-Newtonian flow problems with moving inter-

face boundaries using millions of control volumes on parallel computers.

1.5 Thesis outline

As mentioned earlier, this thesis aims at analyzing two common industrial applications

of multiphase flow problems, i.e. deformation and breakup of a droplet in shear flow

and collision of the droplets. Besides a new approach based on the CLS method is

presented to solve the challenging non-Newtonian multiphase flow problems. As a

result, the next two chapters are allocated to the numerical simulation of collision of

the droplets and deformation of a droplet in shear flow, respectively, followed by a

chapter on details of the proposed approach for non-Newtonian multiphase flows.

In chapter 2, we use a set of state-of-the-art numerical tools, i.e. finite-volume

conservative level-set interface capturing method, lamella stabilization approach, etc.,

to elaborately study the main collision regimes and provide a solution for the main

challenges in this field. For instance calculation of gas film rupture time accurately

solves the problem of retarded coalescence collisions while conserving the mass of the

droplet, or introduced lamella stabilization approach eliminates the need of high-orders

of magnitude grid refinements in capturing a stable lamella film which results in a huge

reduction of computational cost while maintaining a good accuracy. Utmost efforts

have been devoted to the accuracy of the results. For this reason, we highly validated

and verified our numerical methods against experimental benchmarks available in the
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literature. Many challenging cases have been solved, in which due to the complexity

of some cases, this is the first time that their numerical solution is being presented.

Supplementary videos of all the collision cases are provided to support and enhance

the scientific content of this chapter and to further enrich the understanding of the

whole phenomena of the collision cases in all collision regimes. In addition to the

presented numerical tools, we provide energy analysis of the cases to offer a deeper

insight into the crucial aspects of droplets collision including dissipation of the energy,

kinetic energy recovery, etc.

In chapter 3 we perform numerical investigations on the physical nature of a droplet

in shear flow. Similar to chapter 2, we validate and verify our numerical method against

experimental data available in literature. Afterwards, we elaborately study the mutual

effect of viscosity ratio and confinement of the walls on droplet deformation and break-

up. Our results illustrate the existence of two steady-state regions separated by one

break-up region for droplet under different confinements and viscosity ratios.

In chapter 4 we introduce a novel numerical methodology to accurately solve the

interfacial flow problems where one or more phases represents non-Newtonian be-

haviour. We discuss the main challenges in this field in details and suggest the most

prominent solution for each of them. Similar to the previous chapters, we validate and

verify our numerical method against experimental, analytical and numerical data avail-

able in the literature. Our proposed approach has proven to be numerically stable for

solutions with high Weissenberg number, and low solvent to polymer viscosity ratio.

In the last chapter 5, conclusion remarks and future works are presented. A list

of publications resulting from this thesis and Supercomputing projects are provided in

appendix A.
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Chapter 2

Numerical study of binary droplets
collision in the main collision
regimes

Most of the contents of this chapter have been published as:

A. Amani, N. Balcázar, A. Naseri, A. Oliva. A Study on Binary Collision of GNF

Droplets Using a Conservative Level-Set Method. In proceeding of 7th European Con-

ference on Computational Fluid Dynamics (ECFD 7), June 2018, Glasgow.

A. Amani, N. Balcázar, E. Gutiérrez, A. Oliva. Numerical study of binary droplets col-

lision in the main collision regimes. Chemical Engineering Journal, 1385-8947, 2019,
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Chapter 2. Numerical study of binary droplets collision in the main collision regimes

Abstract. Direct numerical simulation of binary droplets collision in all collision

regimes is done using a conservative level-set method. The Navier-Stokes quations

and level-set equations are solved with a finite-volume method on a collocated grid.

A novel lamella stabilization approach is introduced to numerically resolve the thin

lamella film appeared during a broad range of collision regimes. This method proves

to be direction-independent, numerically efficient and accurate compared with exper-

imental data. When the droplets collide, the fluid between them is pushed outward,

leaving a thin gas layer bounded by the surface of the droplets. This layer progres-

sively gets thinner and depending on the collision regime, may rupture resulting in

coalescence of the droplets or may linger resulting in bouncing-off the droplets. Em-

bedded ghost-nodes layer makes it possible to mimic both bouncing and coalescence

phenomena of the droplets collision. The numerical tools introduced are validated

and verified against different experimental results for all the collision regimes. A very

good agreement is observed between the results of this chapter and experimental data

available in the literature. A detailed study of the energy budget for different shares

of kinetic and dissipation energies inside of the droplet and matrix, in addition to the

surface tension energy for studied cases, is provided. Supplementary quantitative val-

ues of viscous dissipation rate inside of the matrix and droplet, and also the radial

expansion of the droplet are presented as well.

2.1 Introduction

The dynamics of binary droplets collision is of huge importance in different fields, from

multiphase reactors [48], raindrop formation [49], ink-jet printing, spray combustion,

emulsion stability, turbine blade cooling, spray coating [50, 51], to drug delivery, e.g.

by encapsulating one liquid within another one used in the context of drugs in lungs

[52]. Due to the complexity of the nature of droplets collision, this topic is one of

the most challenging areas in the field of fluid dynamics. The outcome of the droplets

collision can profoundly affect the overall performance of many systems. For exam-

ple in fuel sprays near the injector in internal combustion engines or gelled hypergolic

propellants in rocket engines, the outcome of the collisions, the size distribution, dis-

sipated energy of the droplets and number of satellite droplets can affect the overall
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combustion efficiency. Binary droplets collision as two droplets collide each other

are the most common interaction in aerosol sprays where ternary and more complex

collisions are rare. Droplets collision has been the topic of numerous investigations,

including experimental, analytical and numerical studies.

Experimental research started with studying the interaction of falling water drops

[53]. Brenn and Frohn [54] investigated the collision and coalescence of droplets

of different liquids. Ashgriz and Poo [50] studied the binary collision of two water

droplets of equal and unequal sizes. They concluded that the collision dynamics could

be characterized based on the droplets size ratio, collision Weber number and the im-

pact parameter (I) where the Weber number presents the ratio between inertial forces

and surface tension and impact parameter characterizes the eccentricity of the droplets

in the collision direction. Qian and Law [51] presented a detailed description of colli-

sion dynamics based on a series of time-resolved images of the collisions for different

regimes of head-on and off-center. They provided a map based on Weber number and

Impact parameter separating collision regimes in a We-I nomograph. They concluded

the existence of five regimes as coalescence after minor deformation (I), bouncing (II),

coalescence after substantial deformation (III), coalescence followed by separation for

near head-on collision (IV), and coalescence followed by separation for off-center col-

lision (V). Jiang, Umemura, and Law [55] investigated the collisional dynamics of

equal-sized water and normal-alkane droplets. Willis and Orme [56] conducted ex-

perimental research on binary droplet collisions in a vacuum environment to study the

dynamics of the collision in the absence of aerodynamic effects. Pan, Law, and Zhou

[57] experimentally and numerically investigated the dynamics of head-on droplets

collision. Utilizing the empirically supplied information in the numerical simulations,

they further studied different parameters of the collision including gap gas width thick-

ness and flow properties around the interface. Tang, Zhang, and Law [58] studied col-

lision of unequal-sized droplets in different regimes. They provided a unified regime

diagram concerning bouncing, coalescence, and separation for hydrocarbon and water

droplets. On a more advanced work, Pan, Chou, and Tseng [59] used a technique de-

veloped for generating high-speed droplets to investigate binary droplets collision at

Weber numbers up to 5100. Planchette et al. [60] experimentally examined the onset

of fragmentation in head-on binary and ternary droplets collisions. With the help of
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extracted data, they provided a general model for predicting the velocity threshold of

fragmentation of collisions. Pan et al. [61] investigated the effect of surfactants on

controlling the droplets bouncing and coalescence. Estrade et al. [62] studied the bi-

nary droplet collision of ethanol droplets. They also proposed a theoretical model to

predict the droplet coalescence and bouncing outcome.

Analytical studies in this field are performed to a great extent to predict the out-

come of a particular type of collision. Reitz and D. [63] presented a simplified model

of a droplet-shattering collision. Gopinath [64] analyzed the head-on collision and sub-

sequent rebound of two droplets for small Weber numbers. Bach, Koch, and Gopinath

[65] presented a theory based on potential flow in the liquid, weak deformation of the

gas-liquid interfaces, and non-continuum viscous flow in the lubrication gas film for

minimal Weber numbers. Zhang and Law [66] suggested a unified theoretical descrip-

tion of head-on equal-sized droplets. They have made important advances in presenting

a general formulation for a wide range of Weber numbers. In a more recent research, Li

[67] predicted the coalescence-bouncing transition of head-on binary droplets collision

using a macroscopic model. He has modified the Navier-Stokes equations to account

for the inter-droplet gas film using the lubrication theory of Zhang and Law [66].

The flexibility of numerical simulations on implementing different initial condi-

tions, boundary conditions and fluid properties, as well as their capability to extract

substantial information on the flow field, makes them extra appealing on studying mul-

tiphase flow problems. Numerical simulations of droplets collision can provide sig-

nificant details on the nature of the collision, e.g. energy analysis of the droplets, air

gap thickness, velocity and vorticity fields which are difficult or impossible to capture

experimentally or analytically. As a result, significant attention was given to numerical

simulations of droplets collision.

The volume-of-fluid (VOF) method along with an adaptive mesh refinement method-

ology was employed by Nikolopoulos and Bergeles [68] to study the binary droplets

collision for cases with Weber numbers up to 61.4. Good agreement was achieved

between their simulations and the experimental results. In another work, Nikolopou-

los, Theodorakakos, and Bergeles [69] studied the off-center binary droplets collision

using an adaptive mesh refinement technique. However, a stable lamella film was not
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captured for high Weber numbers. Chen et al. [70] studied the droplets collision dy-

namic using an improved VOF technique, an adaptive mesh refinement algorithm and

mass transfer process. Although the VOF method conserves the mass property of the

droplets, it suffers the accuracy for calculation of normal and curvature of the inter-

faces.

In the category of the level-set method, Pan and Suga [71] used a level-set/finite-

volume method to simulate three-dimensional collisions for a wide range of Weber

numbers. Uniform mesh with small grid sizes was used in their work (D0/60-D0/80

with D0 as the initial diameter of the droplets). Good agreement was seen in their

results compared with experimental-snapshots. Tanguy and Berlemont [72] applied a

level-set/finite-difference approach on the collision of droplets for cases with Weber

numbers up to 83. A disadvantage of the level-set method is that the discrete solu-

tion of transport equations is inclined to numerical error which results in loss or gain

of mass in the droplets. Kwakkel, Breugem, and Boersma [73] developed a coupled

level-set/volume-of-fluid (CLSVOF) method for droplet-laden flows to accommodate

coalescence and breakup of the droplets. They have mentioned that the film drainage

time calculated by the model of Zhang and Law [66] is not sufficiently accurate to

capture the correct physics of the collision. Recently, Balcázar et al. [27] used a novel

multiple-marker approach for simulating the bouncing of the droplets, in the frame-

work of a conservative level-set method, which circumvents the mass conservation

issue.

In the category of the front-tracking method, Nobari, Jan, and Tryggvason [74]

conducted two-dimensional axisymmetric simulation of head-on collision process us-

ing a front-tracking/finite-difference method in low-density ratio flows. Later on, Pan,

Law, and Zhou [57] used the three-dimensional version of this method to simulate

cases with Weber numbers up to 13. Zhang and Zhanga [75] studied the kinetic en-

ergy recovery and the interface hysteresis of bouncing droplets. In the Front-tracking

method, a fixed Eulerian grid is used for the fluid flow, and a separate Lagrangian grid

is used to track the interface explicitly. Despite the accuracy of this method, it is com-

plicated to implement (due to dynamic re-meshing of the Lagrangian interface mesh),

and also difficulties arise when multiple interfaces interact with each other.

Moqaddam, Chikatamarla, and Karlin [76] used an entropic lattice Boltzmann
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method to simulate high Weber number collision cases with lamella films. Prem-

nath and Abraham [77] Used a multi-relaxation-time multiphase flow lattice Boltz-

mann model to solve head-on and off-center binary droplets collision. In another work

Dupuy et al. [78] simulated high-pressure binary droplets collision. Baroudi, Kawaji,

and Lee [79] examined the effect of initial conditions on the simulation of inertial coa-

lescence of two droplets. Sun, Jia, and Wang [80] numerically investigated the head-on

unequal-sized collision of droplets using a multiple-relaxation-time lattice Boltzmann

model. Mazloomi, Chikatamarla, and Karlin [81] presented a novel thermodynami-

cally consistent lattice Boltzmann model enable to control the dynamics at the liquid-

vapor interface.

Despite all the advances in the numerical simulation of droplets collision, this area

is still a challenging topic regarding the difficulties related to the tracking of interfaces,

mass conservation of the droplets, numerical disintegration of the lamella film, instabil-

ities encountered by large density ratio and surface tensions. In this chapter, we study

the binary head-on and off-center collision of equal-sized droplets for all the collision

regimes. We introduce a novel and computationally-efficient lamella stabilization ap-

proach to resolve the thin lamella film formed during a wide range of collision regimes.

We perform the energy analysis of all the cases studied, and provide qualitative graphs

to benchmark these cases for future validation purposes. Furthermore, to the best of

the authors’ knowledge, there are no previous studies of binary droplet collision us-

ing a conservative level-set (CLS) method. Therefore, as an additional novelty, this

research is performed in the framework of a CLS method introduced in Balcazar et

al. [24] for interface capturing on unstructured meshes. In the present CLS method,

interface normals are computed using a least-squares method on a wide and symmet-

ric nodes-stencil around the vertexes of the current cell. These normals are then used

for an accurate computation of surface tension, without additional reconstruction of

the distance function, as in geometrical volume-of-fluid/level-set methods [25] or fast-

marching methods. Moreover, most computational operations are local, indeed this

method has been efficiently implemented on parallel platforms [24, 30]. Furthermore,

unstructured flux-limiter schemes introduced in [24] are used to advect the CLS func-

tion and momentum, avoiding numerical oscillations at discontinuities, and minimizing

the numerical diffusion. Finally, the present finite-volume formulation is attractive due
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to its simplicity and the satisfaction of the integral forms of the conservation laws over

the entire domain.

The rest of the chapter is organized as follows: mathematical formulations are

presented in section 2.2, numerical discretization of governing equations are described

in section 2.3.1. Gas-film and lamella stabilization algorithms are explained in section

2.3.4 and 2.3.5, respectively. Results and discussions are reported in section 2.4 and at

the end, conclusion remarks are provided in section 2.7.

2.2 Mathematical formulation

Navier-Stokes equations are used to describe the conservation of mass and momen-

tum of two incompressible immiscible Newtonian fluids on a spacial domain Ω with

boundary ∂ Ω as following [24]:

∂

∂ t
(ρv)+∇ · (ρvv) = ∇ ·S+ρg+σκnδΓ in Ω (2.1)

S = −pI+ µ(∇v+(∇v)T ) (2.2)

∇ ·v = 0 in Ω (2.3)

where ρ and µ are density and dynamic viscosity of the fluids, v is the velocity field,

S is the stress tensor, p pressure field, g gravitational acceleration and δΓ is the Dirac

delta function concentrated at the interface (Γ). In this formulation, n is the normal unit

vector outward to interface, κ is the interface curvature, and σ is the interface tension

coefficient.

Taking into account that mass, density and viscosity are constant within each fluid,

they can be defined as scalar-fields inside the whole domain as follows:

ρ = ρ1H +ρ2(1−H) (2.4)

µ = µ1H + µ2(1−H) (2.5)

where H is the Heaviside step function taking the value one in dispersed phase and

zero elsewhere. In this research, conservative level-set (CLS) method as introduced by

Balcázar et al. [24] in the context of a finite-volume method and unstructured meshes
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is used. Instead of the signed distance function, d(x,t), used to represent the interface in

the classical level-set method, conservative LS method employs a regularized indicator

function φ as below:

φ (x, t) =
1
2

(
tanh

(
d(x, t)

2ε

)
+ 1
)

(2.6)

where ε is the parameter that sets the thickness of the interface. φ varies from 0 in one

fluid to 1 in other fluid. With this formulation, interface is defined by Γ = {x|φ (x, t) =

0.5}.
The level-set function is advected by velocity vector field, v, obtained from solu-

tion of Navier-Stokes equations. Taking into account the incompressibility constraint

(equation 2.3), the interface transport equation can be transformed to the conservative

form [24, 82] as:

∂φ

∂ t
+∇ ·φv = 0 (2.7)

Since sharp changes exist in level-set function at the interface, flux-limiter schemes are

required to discretise the convective term to minimise numerical diffusion and avoid

numerical instabilities at the interface. An additional re-initialization equation is used

to keep the profile and thickness of the interface constant:

∂φ

∂τ
+∇ ·φ (1−φ )nτ=0 = ∇ · ε∇φ (2.8)

This equation which is advanced in pseudo-time τ , consists of a compressive flux

(φ (1−φ )nτ=0) which keeps the level-set function compressed onto the interface along

the normal vector n, and a diffusion term (∇ · ε∇φ ) which keeps the profile in pre-

scribed characteristic thickness of ε . This parameter is defined based on the mesh

resolution as [24, 82]:

ε = Cεh1−α (2.9)

where h = (VolP)1/3 is the grid size, with Vol as the volume of the computational cell.

Generally, the value of α can vary between [0,0.1], to overcome the possible numerical
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instabilities, but in all of our simulations, α value was chosen equal to 0.0. The value

of Cε is equal to 0.5. Normal vector n and curvature κ of the interface, are obtained

using [24]:

n =
∇φ

||∇φ ||
(2.10)

κ(φ ) = −∇ ·n (2.11)

The continuous surface force model (CSF) [83] is used for surface tension compu-

tation which converts the term σκnδΓ in Eq. 2.1 to a volume force term of σκ(φ )∇φ .

Where ∇φ is computed using least-square method based on vertex node stencils [24].

By applying this approach, the explicit tracking of the interface is not necessary.

2.3 Numerical method

2.3.1 Discretization of governing equations

Finite-volume (FV) approach is used to discretise the Navier-Stokes and level-set equa-

tions on a collocated grid meaning all the computed variables are stored at centroids of

the cells [24]. A central difference (CD) scheme is used to discretise the compressive

term of re-initialization equation (2.8) and diffusive fluxes at the faces. A distance-

weighted linear interpolation is used to calculate the face values of physical properties

and interface normals. The gradients are computed at the cell centroids by a least-

squares method using a stencil that includes the cell-nodes around the vertexes of the

current cell [24].

As in this chapter, we are analysing the energy budget of the collisions, the choice

of flux-limiter in the discretization of convective terms of momentum and advection

equations must be accordingly, to obtain the highest accuracy in total energy conser-

vation of the system. Section 2.6 provides a detailed study on the effect of different

flux-limiters on total energy conservation of a two-phase system and the spatial con-

vergence rate of the chosen one. According to these results, unless otherwise is men-

tioned, a total-variation Diminishing (TVD) flux-limiter of Superbee is used in all the

simulations of this chapter.
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At discretized level, physical properties are regularized in the context of the CLS

method. Therefore a linear average is used for density as ρ = ρ1φ + ρ2(1− φ ), and

viscosity as µ = µ1φ + µ2(1−φ ).

A classical fractional step projection method as described by Chorin [84] is used

to solve the velocity-pressure coupling. The solution procedure is as follows:

1. Physical properties, interface geometric properties and velocity field are initial-

ized.

2. Maximum allowable time step is calculated using the CFL conditions on the con-

vective and diffusive terms of momentum equation and also by explicit treatment

of surface tension as used by Balcazar et al. [24]:

∆t ≡ α×min
(

h
‖VP‖

,
h2ρ(φP)

µ(φP)
,h3/2(

ρ1 +ρ2

4πσ
)1/2

)
(2.12)

where α is the CFL coefficient. In the simulations of this chapter, the value of α

is equal to 0.1.

3. The advection equation (2.7) is integrated in time with a 3-step third order accu-

rate TVD Runge-Kutta scheme [85].

4. The re-initialization equation (2.8) is integrated in pseudo time (τ) using a third

order accurate TVD Runge-Kutta scheme. The time τ is used to lead the so-

lution into a stationary state. Since an explicit scheme is used, the time step is

restricted by the viscous term of equation 2.8 as ∆τ = Cτmin
(
h2/εP

)
[24, 82].

One iteration is used to solve the discretized form of equation 2.8. The value of

Cτ serving as a CFL-like coefficient for this equation is equal to 0.05.

5. Physical properties in the domain (density and viscosity) and geometrical prop-

erties at the interface (curvature and interface normal) are updated from the level-

set field.

6. The velocity and pressure fields are calculated using a classical fractional-step

method first introduced by Chorin [84]. The first step is to calculate the predicted
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velocity v. A second-order Adam-Bashforth scheme is used on the temporal

discretization of convective, diffusive and surface tension terms.

ρv∗−ρnvn

∆t
=

3
2
(Rv

h)
n− 1

2
(Rv

h)
n−1 (2.13)

where Rv
h = −Ch(ρv) +Dh(v) + σκ∇h(φ ) with Ch(ρv) = ∇h · (ρvv) as the

convective operator, Dh(v) = ∇h ·
(
µ(∇hv+∇T

h v)
)

as the diffusive operator and

∇h as the gradient operator. In this equation, n represents the previous timestep

and equation is integrated in conservative form.

A correction to the predicted velocity applies as:

ρvn+1−ρv∗

∆t
= −∇hPn+1 (2.14)

By applying the incompressibility constraint (∇ ·v = 0), equation 2.14 changes

to a Poisson equation as follows:

∇h ·
(

1
ρ

∇h(Pn+1)

)
=

1
∆t

∇h · (v∗) (2.15)

The obtained linear system is solved using a preconditioned conjugated gradient

method. At the end, the velocity vn+1 is corrected using:

vn+1 = v∗− ∆t
ρ

∇h(Pn+1) (2.16)

7. To fulfill the incompressibility constraint (equation 2.3) and to avoid pressure-

velocity decoupling on collocated meshes [86], a cell-face velocity is used to

advect the momentum and CLS function, as introduced in [24, 87].

8. repeat steps 2 -7 to reach the desired time.

The reader is referred to [24, 87] for technical details on the finite-volume dis-

cretization of both the Navier-Stokes and conservative level-set equations on collocated
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FIGURE 2.1: We-I diagram for collision outcome regimes [51]

unstructured grids. The numerical methods are implemented in an in-house parallel

c++/MPI code called TermoFluids [47]. Validations and verifications of the numerical

methods in the context of Conservative level-set method used in this work have been

reported in [2, 24, 26, 28, 87–90].

2.3.2 Dimensionless collision parameters

Experimental studies are providing us with different correlations to understand the

droplets collision. The main parameters are the surface tension coefficient σ , droplet

viscosity µd , droplet density ρd , droplets relative velocity Urel , and the impact param-

eter I. The following non-dimensional parameters are thus defined by most researchers

to characterize the droplets collision:

We =
ρdUrel

2D0

σ
, Re =

ρdUrelD0

µd
, Oh =

µd√
ρdσD0

, I =
b

D0
(2.17)

where We is the Weber number presenting the ratio between inertial forces and

surface tension, Re is the Reynolds number representing the ratio of the inertial and

viscous forces, and Oh is the Ohnesorge number representing the ratio of viscous forces

and the combined effect of inertial forces and surface tension. In this formulation D0
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is the value of droplet initial diameter and subscript d is the abbreviation of the word

droplet. The impact parameter I characterizes the eccentricity of the collision with b

as the inter-center distance of the droplets in direction normal to the collision.

Collision regimes of two equally sized Newtonian droplets are usually categorized

in five main regimes as depicted in We-I diagram of figure 2.1:

1. SPC (soft permanent-coalescence): coalescence after minor deformation.

2. B: Bouncing of the droplets.

3. HPC (hard permanent-coalescence): Coalescence after substantial deformation,

sub-categorized into:

• Retarded permanent coalescence

• Immediate permanent coalescence

4. CFRS (coalescence followed by reflexive separation): Coalescence followed by

separation for near head-on collisions.

5. CFSS (coalescence followed by stretching separation): Coalescence followed by

separation for off-center collisions.

In this study, we provide information regarding collision outcome and the physics of

the phenomena in all these regimes.

2.3.3 Energy analysis of the system

For all the cases solved in this study, we have monitored the energy budget throughout

the collision process. From energy conservation, we expect that the total energy (TE)

of the system must be constant during the collision, and be equal to its initial value,

i.e. the summation of the initial Kinetic energy (KEinit) and the initial Surface tension

energy (STEinit). This value must be equal to the summation of kinetic, surface tension

and total dissipated energies (TDE) in each given time t.

TE = KEinit +STEinit = KE(t)+STE(t)+TDE(t) (2.18)
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Kinetic energy [J] at a give time is calculated by summation of spacial integration

of 1
2 ρV 2 over all the cells with V as the second norm of the velocity vector in the cell

P:

KE(t) = ∑
cells

(∫
p

1
2

ρV 2dvp

)
(2.19)

Surface tension energy [J] is calculated as σS(t) where S(t) is the surface area of the

interface. The value of S(t) is equal to:

S(t) = ∑
cells

(∫
p
||∇φ ||dvp

)
(2.20)

TDE(t) [J] is calculated by temporal integration of viscous dissipation rate (VDR(t))

from the beginning of the simulation until time t:

TDE(t) =
∫ t

0
VDR(t)dt (2.21)

VDR(t) [J/s] is obtained by summation of spatial integration of viscous dissipation

function (VDF(t)) over all the cells:

VDR(t) = ∑
cells

(∫
p

VDF(t)dvp

)
(2.22)

In this formulation, the value of VDF [J/(s.m3)] quantifies the local volumetric viscous

dissipation rate in each cell and is calculated by:

VDF = µ
(
∇V +∇V T ) ..∇V (2.23)

The share of KE and TDE budgets could be divided into two subdomains of droplet

and matrix using the introduced level-set function (φ ), e.g.:

KEdrop = KE×φ (2.24)

KEmatrix = KE× (1−φ ) (2.25)
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In order to investigate the accuracy of our results on calculations of energy budgets

of the simulations, verification on these formulations on a three-dimensional droplet

deformation test case are provided in section 2.5.

2.3.4 Gas-film stabilization approach

During the collision process, a thin gas film is formed between the droplets. The con-

sistency of this gas film results in bouncing and rupture of it results in coalescence

of the droplets. The thickness of this gas film is in the order of nanometers and

CFD simulation of it is almost impossible. Different approaches have been tried by

the researchers to tackle this problem. Mason, Stevens, and Harvie [91] presented a

subgrid-scale model to account for the gas film drainage due to the computational dif-

ficulty of capturing all length scales involved with a single discretized mesh. Jiang and

James [92] developed numerical models to incorporate the van-der-Waals forces in the

Navier-Stokes equations with the assumption that the interface slope is small. They

used two methods, one by introducing the van-der-Walls forces as a body force in the

momentum equation and other by employing the van-der-Waals forces in terms of a

disjoining pressure in the film depending on the film thickness. Li [67] employed a

macroscopic model for head-on binary droplets collision solving five orders of magni-

tude length scale range of the problem.

According to the experimental results and analysis of Qian and Law [51], before

coalescence, due to the existence of gas film between the droplets, the topology evolu-

tion of collision is similar to the bouncing of two droplets. The time when the thickness

of inter-droplets gas film reaches a minimum value is noted as the critical time in topol-

ogy evolution of the droplets collision. At this critical time, the droplets lack enough

kinetic energy to squeeze the gas film further. The future of the collision depends on

whether the gas film rupture will happen or not. Therefore, this critical time can also

be assigned as the gas film rupture time.

In this study we have used ghost-nodes method to control the gas film rupture

for cases of regimes SPC, B and retarded HPC . For these cases, instead of collision

of two droplets, the collision of a droplet with a symmetry wall with ghost-nodes is

studied. Figure 2.2 illustrates the concept of ghost-nodes layer in determining the
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FIGURE 2.2: (left) Illustration of the implemented ghost-nodes and symmetry
plane used to imitate the gas rupture persistence. (right) removal of ghost-nodes

layer for the times after gas film rupture.

droplets collision outcome. Implementing the Dirichlet boundary condition for level-

set function in these nodes imitates the persistence of gas film and thus bouncing of

droplets. In the previous works in literature, the researchers were using the Neumann

boundary condition in the ghost-nodes to imitate the rupture of the gas film, resulting

in coalescence of the droplets. We believe this injects mass into the system and is

not advised since it does not conserve the mass of the droplet. In this work, instead of

using Neumann boundary condition on ghost-nodes layer to imitate the gas rupture, we

merely remove the ghost-nodes layer, allowing the droplet to approach the wall with

symmetry boundary condition applied to it.

Removing the ghost-nodes layer in a prescribed time enables us to model the re-

tarded coalescence phenomena (SPC and retarded HPC regimes). Considering the

above explanations, to simulate the retarded coalescence cases, one needs the time for

rupture of the gas film. To do so, we first simulate a bouncing collision of a droplet

with the ghost-nodes layer and monitor the thickness of the gas film during the colli-

sion process. The time where the gas film reaches its minimum value will be counted as

the rupture time. We then restart the simulation and apply the calculated rupture time

as the time when we remove the ghost-nodes layer from the simulation, e.g. change

the collision regime from bouncing to coalescence. Thus, three steps are taken into

account to simulate a head-on retarded coalescence of colliding droplets:

• Applying ghost-nodes layer boundary condition in the collision direction to mon-

itor the thickness of the gas film during the collision process.
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FIGURE 2.3: Droplets collision outcome for two cases of binary head-on col-
lision with We=269 and Re=154. Stabilized lamella (first row) and standard
simulation (second row). Both simulations performed in a domain with a fine

grid size of h=D/50.

• Calculating the time related to minimum gas film thickness.

• Introducing this time as the time when the ghost-nodes layer is being removed

from the simulation. (e.g. switching from bouncing regime into coalescence

regime).

2.3.5 Lamella Stabilization Approach

In the collision of two droplets, there is a threshold of the governing parameters (Weber

number and impact parameter I), in which for collisions with higher Weber number and

smaller impact parameter, an extremely thin film called lamella is formed during the

collision process. As reported in experimental studies [50, 51, 93], the rupture of the

lamella film does not happen in droplets collision for Weber numbers as high as 2800

indicating that lamella rupture which happens in numerical simulations is a numerical

artifact and needs to be prevented in order to capture the correct physics of the collision.

The numerical rupture of lamella film results in deflection of the shape and physics of

the collision complex [69]. Figure 2.3 illustrates exemplarily the shape of the collision

outcome for two cases, one with lamella resolved and other with standard simulation.

The thickness of lamella film is of smallest scales of the simulations and numer-

ical resolution of it implies enormous extra computational cost through the usage of
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extremely fine meshes or adaptive-mesh-refinement (AMR) techniques. The thickness

of the lamella film decreases as the Weber number increases, and in case of extremely

high Weber numbers, e.g. in splashing collision of droplets, numerical resolution of

this film by decreasing the mesh size or AMR techniques is almost impossible.

According to [94, 95], the primary cause of numerical lamella rupture is due to

the interaction in the computation of surface tension forces of its both sides and also

incorrect surface reconstruction caused by artificial interface interaction. Focke and

Bothe [94] and Liu and Bothe [95] suggested that both of these problems could be

prevented by identifying the lamella film and afterwards treating the cells of the oppo-

site sides of the lamella as they called it fully wetted. They proceeded the solution by

injecting mass into the lamella layer to keep its thickness more than one grid cell. In

the algorithm of [94], it is necessary to calculate the angle between X direction and the

lamella, immediately before its rupture, and then restart the simulation with the rotated

domain so that lamella is perpendicular to the X direction. Proposed algorithm of [95]

however can be used only for the head-on collision of the droplets where the collision

solution could be replaced by the collision of one droplet with a ghost-nodes layer. In

this section, we introduce a novel approach towards the stabilization of the lamella film

which overcomes the aforementioned problems.

In the presented conservative level-set method, the interface profile is resolved in

a smooth transition of φ at the interface. The width of the transition region depends

on the diffusion coefficient ε defined in equation 2.9. Figure 2.4 presents the interface

of an arbitrary collision of droplets in the matrix fluid, resolved by structured square

grids along with the transition of the level-set function φ from 1 inside of the droplet to

0 in the matrix fluid for the direction n normal to the interface. Figure 2.5(a) presents

the interface of the same collision as figure 2.4, advanced in time where the lamella

film appears in the collision complex. Figure 2.5(b) illustrates the transition of the

level-set function (φ ) for the direction n normal to the interface from 0 in the matrix

fluid, to 1 inside of the droplet and again to 0 in the matrix fluid. In this figure, l2 is

the interface thickness in the lamella film and l1 is the length of the portion of lamella

which contains only pure droplet material.

We define the physical center of the lamella film in n direction as cell P which
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FIGURE 2.4: (a): Interface of an arbitrary collision of droplets in a matrix fluid
along with (b): transition of the level-set function φ from 1 inside of the droplet
to 0 in the matrix for the direction n normal to the interface.(∆cv is the grid size

of the cell cv)

FIGURE 2.5: (a): The interface of the same collision as figure 2.4, advanced in
time where the lamella film appears in the collision complex. (b): transition of
the level-set function (φ ) for the direction n normal to the lamella film from 0 in
the matrix fluid, to 1 inside of the droplet and again to 0 in the matrix fluid. (l2
is the interface thickness in the lamella film and l1 is the length of the portion

of lamella which contains only pure droplet material)
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exhibits a behavior like figure 2.5(b). In a simulation, there might be many cells sat-

isfying this condition. If l1 > ∆P (with ∆ as the characteristic length of the cell in n
direction), no special treatment of lamella is required. The numerical artifact of lamella

starts when the value of this parameter decreases to l1 ≤ ∆P. In the moment in which

l1 = ∆P, supposing the neighboring cells of P in direction normal to the interface are

F1 and F2, then the values of φF1 and φF2 will be smaller than φP = 1.0. Keeping in

mind the calculation of the ∇φ described in section 2.3.1, at this moment, the value of

(∇φ )P will decrease dramatically, resulting in decreasing the value of (σκ(φ )∇φ )P in

momentum equation. Decreasing the value of surface tension at this point will accel-

erate the decay of its level-set function value which leads to the rupture of the lamella

film. In order to prevent this, we propose to follow the lamella changes, considering

the moment of l1 = ∆P as a milestone (herein after refereed to as critical stage), when

the value of φP falls bellow 1.0, we add the value of ζ = (1.0−φP) to φP to keep its

value at the critical stage of φP = 1.0. The important question now is how to detect the

points like P as the centers of the lamella film in n direction. We believe that if P point

has the level-set characteristics as figure 2.5(b) in ~n direction, it will also has similar

behavior in at least one of the X, Y or Z directions. Thus, in order to simplify the solu-

tion procedure, we look for P points where they demonstrate the hunchback variation

of φ not in ~n direction but in at least one of the X, Y or Z directions, depending on

which direction ~n is more leaned towards. To do so, we propose the following steps

for every point in the interface, within the solution algorithm:

1. Determine the direction of the checking (X, Y or Z): it is possible to use the

value of~n vector at the cell location (~n = (nx,ny,nz)). The direction associated

with the maximum absolute value of the components of~n will be the checking

direction. E.g. if |nx|> |ny|> |nz|, the checking direction will be X.

2. Find the neighboring points of the cell of interest in the calculated checking

direction, (F1 and F2).

3. Check if the cell exhibits hunchback variation of φ at critical stage (e.g. if φP >

φF1 and φP > φF2). If so, add the value of ζ = (1.0−φP) to φP.

The proposed lamella stabilization method is explained in algorithm 1. With spe-

cial care, the whole solution procedure can be written without any if conditions, as
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FIGURE 2.6: Radial expansion of the head-on collision complex of two droplets
with We=269 and Re=154. Simulation results of standard CFD are compared
with an equivalent case with lamella stabilized, and experimental results of [93]

we did, to impose the minimum possible computational cost. The algorithm to check

and stabilize lamella can be started from the beginning of the simulations. Once the

number of modified P cells from a non-zero value returns to zero, it means the lamella

does not exist in the current state of the simulation anymore and the whole algorithm

1 could be stopped in order to save-up the computational cost.

Algorithm 1: The proposed general lamella stabilization algorithm

1 for all the interface cells do
2 P = current cell;

3 Checking direction = Corresponding direction of max(|nx|, |ny|, |nz|)P;

4 F1, F2 = neighbors of P in checking direction;

5 if (φp > φF1 and φp > φF2) then
6 ζ = (1.0−φP);

7 φ new
P = φP + ζ ;

8 end

9 end
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FIGURE 2.7: (a): Mesh configuration, structured cubic cells. (b): computa-
tional setup for the case that only collision of one-quarter of one droplet with
ghost-nodes layer is being solved (gray domain, O1, and black portion of the

droplet) and the case that collision of two droplets is being solved (O2).

This algorithm is an accurate, general-purpose, case-insensitive, and computation-

ally efficient solution to lamella stabilization problem. Figure 2.6 provides the quanti-

tative comparison of the droplet radial expansion for a head-on collision of two droplets

with We=269 and Re=154 (the same collision case illustrated in figure 2.3). The re-

sults of experimental data of Willis and Orme [93] are compared with the numerical

simulations done in this study, one with standard CFD simulation and other with pro-

posed lamella stabilization approach in a domain with a grid size of h=D/50. It is

plain to see that even for a fine grid size of h=D/50 used, the standard CFD simulation

fails in capturing the correct topology of the collision. Simulation with the proposed

lamella stabilization approach, however, yields in results with good agreement with

experimental data.

2.4 Results and Discussions

Two initially separated droplets in a lighter environment collide in a domain with length

L, width W and Height H in X, Y and Z directions, respectively. At the beginning of

the simulation, the surrounding matrix gas is static while a uniform velocity is being

imposed to the droplets giving them a relative velocity of Urel in opposite directions.

The characteristics of the simulations done in this study are presented in table 2.1. The
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density and viscosity ratios for all the simulations are ρd/ρm = 666 and µd/µm = 120,

respectively. In this notation, the subscript d stands for droplet and subscript m stands

for matrix. These values of density and viscosity ratios are related to Tetradecane as

droplet and Air as the matrix.

In this study, two different domains of O1 and O2 as presented in figure 2.7(b)

are used. In the domain O1, only one-eighth of the whole domain (O2) is being solved.

Instead of simulation of the collision of two droplets, the collision of one-fourth of only

one droplet with the ghost-nodes layer, as explained in section 2.3.4, is being solved.

Thus ghost-nodes layer boundary condition is applied on collision plane, symmetry

boundary condition on the bottom and side walls (z0 and y0), and Neumann boundary

condition on other walls. Simulations of cases SPC,B and HPC1, are carried out in

this domain. Using this domain saves-up in computational costs of the simulations but

could only be used for the head-on collision of equal sized droplets. In the domain

O2, the collision of two droplets is being solved. All the other cases are solved in this

domain with Neumann boundary condition applied on all of its walls. Computations

have been performed using a Cartesian mesh of cubic grids with the edge size of h.

This mesh was generated by a constant step extrusion of the two-dimensional y-z grid

along the x-axis with the step size of h. Unless otherwise is mentioned, a grid size

of h=D0/60 is being used to discretize the domain O1, and a grid size of h=D0/35 is

being used to discretize the domain O2.

Figure 2.7(a) illustrates the mesh configuration and computational setup. For all the

simulations of this study, time and lengths are non-dimensionalized using t∗= D0/Urel

and D0, respectively. In the next subsections, the results regarding the cases tabulated

in table 2.1 are presented and discussed in details. We select benchmark experimental

results of Qian and Law [51] and Pan, Law, and Zhou [57] to validate our numerical

results. These results have been used widely by the research community to validate

different numerical tools. For all the cases solved in this chapter the videos of the

collision process are provided in supplementary videos which could be found in [1]. In

these videos time is being non-dimensionalized using the same characteristic time of

t∗ = D0/Urel and the color contours represent the velocity magnitude on the droplets
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TABLE 2.1: Characteristics of the simulations

Case We Re I L/D0×H/D0×W /D0 trupture/t∗

SPC 2.3 46.83 0 2.5×1.5×1.5 0.7682
B 9.33 118.11 0 2.5×1.5×1.5 ∞

HPC1 13.63 143.6 0 2.5×1.5×1.5 0.8567
HPC2 70.8 327 0.25 5.0×2.8×2.8 0.0
HPC3 56.3 288.9 0.13 5.0×2.8×2.8 0.0
CFRS 61.4 296.5 0.06 5.0×2.8×2.8 0.0
CFSS1 64.9 312.8 0.7 6.8×2.8×2.8 0.0
CFSS2 48.1 270.1 0.39 5.0×2.8×2.8 0.0
CFSS3 60.1 302.8 0.55 5.0×2.8×2.8 0.0
HWC 357 178 0.0 5.0×3.5×3.5 0.0

surface1.

2.4.1 Retarded permanent coalescence

Cases SPC and HPC1 are fitting in this category where the droplets do not coales-

cence immediately after their initial contact. For these cases, the rupture time of the

gas film between the droplets plays a vital role in capturing the correct topological

changes of the collision complex. This rupture time is calculated using the method

explained in section 2.3.4. Figure 2.8 represents the non-dimensional inter-droplet

gas film thickness as a function of time for two bouncing cases (simulations done

with Dirichlet boundary condition for level-set function in the ghost-nodes layer) with

characteristics as cases SPC and HPC1. According to this figure, the bouncing sim-

ulations with characteristics of SPC and HPC1 reach the minimum gas thickness at

t/t∗ = 1.12 and 1.25, respectively while t/t∗ = 0 is the time when the inner-centre

distance of the droplet with the ghost-nodes layer is 0.7D0. These values correspond to

the trupture/t∗ = 0.7682 and 0.8567, respectively, while trupture/t∗ = 0 is the time when

the droplet reaches the ghost-nodes layer. With the calculated values of gas film rupture

time and the method explained in section 2.3.4, simulations of retarded coalescence of

cases SPC and HPC1 are performed. Figures 2.11 and 2.13 illustrate the topological

changes of the collision complex for these cases, extracted in the same time instances

1
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FIGURE 2.8: Non-dimensional inter-droplet gas thickness as a function of time
for two bouncing cases with characteristics of cases SPC and HPC1 of table 2.1

FIGURE 2.9: First norm of the error in calculation of energy budgets during the
solution process of the case SPC inside of the domains with grid sizes of h =
D0/25,D0/35,D0/45,D0/55 compared with the reference values of solution

in a domain with grid size of h = D0/65.
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as experimental results of [57]. For the sake of clarity, the results extracted from do-

main O1 are being reflected in X0, Y0 and Z0 axes to form a whole droplet. A very good

agreement is seen between the results of the current study, and the experimental results

provided.

Figures 2.12 and 2.14 provide quantitative information regarding (left:) different

normalized energy budgets including kinetic energy and total viscous dissipation en-

ergy inside of the droplet and matrix plus the droplet surface tension energy (hereinafter

being referred as energy budget graph), and (right:) the normalized viscous dissipation

rate of energy inside of the droplet and matrix (hereinafter being referred as VDR

graph) and the normalized radial expansion of the droplet, Vs. non-dimensional time,

for cases SPH and HPC1, respectively. For both cases, surface tension energy is hav-

ing a much higher share of the energy budget, than the kinetic energy of the droplet,

especially for case SPH where the initial kinetic energy is almost negligible compared

with the surface tension energy. For both cases, the surface tension energy increases as

the droplet undergoes topological changes, until trupture of the gas film, when a sudden

dip in the surface tension energy is being witnessed. This sudden decrease is due to the

elimination of the common surface between the droplets in the inter-droplet gas film.

Upon the coalescence of the droplets, there is a jump in the viscous dissipation

rate of the droplets and matrix. Since the total dissipation energy is a time-integral

of the viscous dissipation rate (see equation 2.21), this sudden increase in the viscous

dissipation rate leads to a slightly delayed ramped increase in the dissipated energy

for both cases. This increase compensates for the loss of surface tension energy, in

the total energy of the system. Kinetic energy in the matrix for both cases is almost

negligible.

A grid convergence analysis is provided on the energy budget calculations of the

case SPC. Five meshes with different grid sizes of h = D0/25,D0/35,D0/45,D0/55

and d/65 are used to solve this case. The results of the solution with the finest grid

(h = D0/65) are selected as the reference data and the results of other simulations are

compared with them. For each case, the errors related to the different energy bud-

gets of kinetic, surface tension and viscous dissipation at each timestep are calculated.

Accumulated value of these errors are calculated as the first norm of the error using

L1 = ∑i |ei|, where ei is the difference between energy budgets of the simulation and
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FIGURE 2.10: Topological changes of head-on binary droplets collision of case
SPH with pressure contours on the droplet surface. Simulations done in a do-

main with the grid size of left: h = D0/25, right: h = D0/65.

its corresponding value in reference simulation at i-th iteration. Figure 2.9 presents the

values of L1 as a function of the grid size. As can be seen, the solution process illus-

trates an order of convergence of 2.48 in space. The topological changes of collision

process of the solution in a domain with grid sizes of h = D0/25 and h = D0/65 are

provided in 2.10.

2.4.2 Bouncing

Bouncing of the collided droplets corresponds to the case B of table 2.1. In this regime,

the contact time is too short to allow full film drainage happens and as a result of the

gas-film persistence in the inter-droplet region, the collision ends-up in bouncing. The

droplet is initially placed at a distance of 0.7D0 with the ghost-nodes layer. The results

of the simulation are illustrated in figure 2.15 compared with experimental results of

[57] where good agreement is seen. For the sake of clarity, the results extracted from

domain O1 are being reflected in X0, Y0, and Z0 axes to form a whole droplet. Moreover,

in figure 2.16 (left), the energy budget graph, (right) the VDR and normalized radial

expansion of the droplet are presented. Viscous dissipation energy is almost linear

with time and is more prominent in droplet than in matrix. The kinetic energy of the

matrix is almost negligible compared to other budgets of energy. Maximum viscous

dissipation rate of the matrix happens around the contact time (t/t∗ ≈ 0.45) when the

surface tension energy starts to increase, and kinetic energy of the droplet starts to

decrease. The maximum surface tension energy, minimum kinetic energy and local
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FIGURE 2.11: Topological changes of head-on binary droplets collision of case
SPH in table 2.1. Right: experimental results of [57], Left: numerical simula-
tion of current study with pressure contours on the droplet surface. These figures
are extracted in the same time instances of experimental figures as t/t∗=[0.0,
0.34, 0.72, 1.08, 1.12, 1.16, 1.19, 1.27, 1.60, 1.92, 2.29, 2.82, 3.44, 3.88] with
t/t∗ = 0.0 as the time when the droplet distance to the ghost-nodes layer is
0.7D0. The video of the collision process of this case is provided in supple-
mentary material of [1], videos SPCa and SPCb for side and oblique views,

respectively.

FIGURE 2.12: Left: Energy budget graph, Right: VDR and Normalized radial
expansion of the droplet. All figure are related to case SPC of table 2.1 and

corresponding figure of 2.11.
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FIGURE 2.13: Topological changes of head-on binary droplet collision of case
HPC1 in table 2.1. Right: experimental results of [57], Left: numerical simula-
tion of current study with pressure contours on the droplet surface. These figures
are extracted in the same time instances of experimental figures as t/t∗=[0.17,
0.38, 0.62, 1.04, 1.27, 1.28, 1.39, 1.56, 1.74, 1.91, 2.01, 2.35, 2.68, 2.99, 3.13,
3.15, 3.63, 4.0] with t/t∗ = 0.0 as the time when the droplet distance to the
ghost-nodes layer is 0.7D0. The video of the collision process of this case is
provided in supplementary material of [1], videos HPC1a and HPC1b for side

and oblique views, respectively.

FIGURE 2.14: Left: Energy budget graph, Right: VDR and Normalized radial
expansion of the droplet. All figure are related to case HPC1 of table 2.1 and

corresponding figure of 2.13.

73



Chapter 2. Numerical study of binary droplets collision in the main collision regimes

FIGURE 2.15: Topological changes of head-on binary droplet collision of case
B in table 2.1. Right: experimental results of [57], Left: numerical simulation
of current study with pressure contours on the droplet surface. These figures
are extracted in the same time instances of experimental figures as t/t∗=[0.0,
0.5, 0.58, 0.88, 1.02, 1.17, 1.43, 1.61, 1.77, 1.90, 2.05, 2.20, 2.35, 2.64, 2.89,
3.22] with t/t=0.0 as the time when the droplet distance to the ghost-nodes
layer is 0.7D0 The video of the collision process of this case is provided in
supplementary material of [1], videos Ba and Bb for side and oblique views,

respectively.

minimum in viscous dissipation rate of the droplet, all happen in approximately the

same time as the maximum radial expansion of the droplet. The initial budget of the

kinetic energy of the droplet in bouncing regime (B), is higher than the SPH regime and

is lower than the HPC1 regime. However, the droplet kinetic energy recovery factor

(KE f inal/KE0) for this case (regime B) is much higher than two previously studied

cases (SPH and HPC1) where the final value of kinetic energy of the droplet was almost

zero. The total dissipated energy in this case is much lower than two previously studied

cases of SPH and HPC1.

2.4.3 Immediate permanent coalescence

Two off-center binary droplets collision cases of HPC2 and HPC3 of table 2.1 fit in the

category of immediate permanent coalescence. In this regime of collision, the rupture

of the gas film is very fast, resulting in immediate coalescence of the droplets. The

droplets after collision retreat, and end-up in permanent coalescence. For both cases

of HPC2 and HPC3, during the collision process, we witnessed the appearance of the

lamella film. The perseverance of this film was being resolved numerically using the

lamella stabilization algorithm described in section 2.3.5. The lamella film for cases
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FIGURE 2.16: Left: Energy budget graph, Right: VDR and Normalized ra-
dial expansion of the droplet. All figure are related to case B of table 2.1 and

corresponding figure of 2.15.

FIGURE 2.17: Topological changes of off-center binary droplets collision of
case HPC2 in table 2.1. Right: experimental results of [51], Left: numeri-
cal simulation of current study with pressure contours on the droplet surface.
These figures are extracted in the same time instances of experimental figures
as t/t∗=[0.0, 0.32, 1.81, 2.64, 3.44, 4.35, 5.08, 5.77, 7.0, 8.78, 10.12, 10.70,
11.79, 12.92, 16.91] with t/t∗ = 0.0 as the time when the droplets centerline
distance in collision direction is equal to D0. The video of the collision process
of this case is provided in supplementary material of [1], videos HPC2a and

HPC2b for side and oblique views, respectively..
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FIGURE 2.18: Left: Energy budget graph, Right: VDR and Normalized radial
expansion of the droplet. All of these figures are related to case HPC2 of table

2.1 and corresponding figure of 2.17.

FIGURE 2.19: 3D representation of topological changes in startup collision of
the case HPC2 of table 2.1 and corresponding figure of 2.17 at times t/t∗=[0.0,
0.32, 1.81, 2.64] for (a), (b), (c) and (d), respectively. The color contours on
the droplet surface represent the VDR and the surrounding vector illustrates the

velocity vectors with contours as their magnitude in the matrix.
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FIGURE 2.20: Topological changes of off-center binary droplet collision of case
HPC3 in table 2.1. Right: experimental results of [51], Left: numerical simula-
tion of current study with pressure contours on the droplet surface. These figures
are extracted in the same time instances of experimental figures as t/t∗=[0.0,
0.16, 0.46, 1.10, 1.70, 2.31, 2.77, 3.34, 4.31] with t/t∗ = 0.0 as the time when
the droplets centerline distance in collision direction is equal to D0. The video
of the collision process of this case is provided in supplementary material of [1],

videos HPC3a and HPC3b for side and oblique views, respectively.

HPC2 and HPC3 appears in time periods of t/t∗≈ [0.32 : 2.64] and t/t∗≈ [0.46 : 1.70],

respectively. Figures 2.17 and 2.20 represent the topological changes in the collision

process, compared with the experimental results of [51] for the same time instances

where a very good agreement is seen.

Figure 2.18 illustrates the energy budget graph, VDR graph and normalized ra-

dial expansion of the droplets, for case HPC2. These information for case HPC3 are

presented in figure 2.22.

For the case of HPC2 represented in figure 2.17, since the collision is off-center

with a relatively high Impact parameter of 0.25, after coalescence, the resultant droplet

has bulbous which stretch in the pre-coalescence moving direction of each droplet.

Their kinetic energy is not high enough to induce breakup of the droplet into daughter

(bulbous) droplets. The droplet continues on stretching until the kinetic energy reaches

a local minimum value at a time around t/t∗ = 2. At this time, the surface tension

of the resultant droplet reaches a local maximum which retreats the droplet, resulting

in pulling the bulbous back in reverse direction. Now the bulbous are moving in the

reverse direction of the collision until again the kinetic energy of the droplet reaches

a local minimum state and local maximum surface tension at this point retreats the
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FIGURE 2.21: 3D representation of topological changes in startup collision of
HPC3 of table 2.1 and corresponding figure of 2.20 at times t/t∗=[0.16, 0.46,
1.10, 2.31, 2.77, 4.31] for (a) to (f), respectively. The color contours on the
droplet surface represent the VDR and the surrounding vector illustrates the

velocity vectors with contours as their magnitude in the matrix.
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FIGURE 2.22: Left: Energy budget graph, Right: VDR and Normalized radial
expansion of the droplet. All these figures are related to the case HPC3 of table

2.1 and corresponding figure 2.20.

droplet. This process continues until viscosity dissipates the energy and the resultant

droplet attains a uniform spherical shape. This process induces oscillations in the de-

formation of the droplet and can be seen in the kinetic energy of the droplet, surface

tension energy, and radial expansion of the droplet. With the lower impact parameter

of the case HPC3 (I=0.13), we will not witness the moving of the bulbous at the tips

of the resultant droplet as we observed in case HPC2. The resultant droplet does not

stretch in the collision direction as much as case HPC2, and thus the oscillations in

the droplet’s kinetic energy, surface tension energy, viscous dissipation rates and ra-

dial expansion of the droplet are with more prominent frequency compared with case

HPC2.

Since the type of the coalescence in these cases is immediate, the surface that is

being diminished at the moment of the coalescence and as a result, the eliminated

surface tension energy (the dip in the STE graph) is lower compared with the retarded

coalescence cases. Around the time of the coalescence, however, there is a sudden

increase in the energy dissipated in the matrix, as can be seen in figure 2.18 and figure

2.22 for cases HPC2 and HPC3, respectively. We believe that part of this sudden

change is not physical and is a numerical artifact related to the high escape velocity

of the gas in this region. Around the time of the coalescence, the gas trapped between

the droplets needs to be evacuated in a short time, resulting in a very high velocity

of the gas in matrix fluid. Figures 2.19 and 2.21 illustrates the topological changes in
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startup collision of cases HPC2 and HPC3, respectively. According to figure 2.18, there

are two jumps in the viscous dissipation energy in the matrix, one for a time around

the coalescence and other for t/t∗ ≈ 3. In the figure 2.19, we can see that for the time

around coalescence (a and b), and also t/t∗ = 2.64 the escape velocity of the gas is

very high. For the case of HPC3, the jumps in viscous dissipation energy in the matrix

are in times around coalescence and t/t∗ ≈ 2.5. For this case by looking at the figure

2.21, we notice that the escape velocity of the gas film for times around coalescence (a

and b) and also t/t∗ = 2.31 (d) is much higher than the other times. This high sudden

escape velocity of the gas introduces a very high velocity gradient in the matrix which

escalates the value of the viscous dissipation energy in this zone. Accurate calculation

of the velocity gradient in the matrix in this region is crucial for correct calculations

of viscous dissipation energy. We believe the initial jump in the total energy of the

system in these figures, is due to this problem. As could be seen in figure 2.18 and

figure 2.22, there are sudden increases in the value of the viscous dissipation energy

of the droplet in the same time as the matrix (around the time of coalescence) but

comparably lower. We believe this jump is due to the mentioned high escape velocity

of the matrix, since high escape velocity of the gas in matrix increases the velocity of

nearby cells, including the droplet cells. This externally-imposed velocity gradient in

the droplet results in an increase in the dissipated energy in the droplet.

This jump could be seen in the VDR graph of these cases, around the coalescence

time as well. At the time of coalescence, the value of VDR for both cases in the

matrix is higher than the droplet. Keeping in mind the VDF in equation (eq. 2.23),

since the viscosity of the matrix is around 120 times lower than the droplet, this higher

energy dissipation rate in matrix compared to the droplet, denotes much higher velocity

gradients in the matrix, compared to the droplet. These values of VDR for both matrix

and droplet decrease approximately 1000 times as time passes. Another point worth

mentioning is that the local minimum of viscous dissipation rate happens at the time

of the local maximum of surface tension and local minimum of kinetic energies.

2.4.4 Coalescence followed by reflexive separation

With further increase in the Weber number, the system of droplets will experience an

immediate temporary coalescence followed by a reflexive separation, as case CFRS in
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FIGURE 2.23: Topological changes of off-center binary droplet collision of case
CFRS in table 2.1. Right: experimental results of [51], Left: numerical simula-
tion of current study with pressure contours on the droplet surface. These figures
are extracted in the same time instances of experimental figures as t/t∗=[-, 0.0,
0.29, 0.93, 1.16, 3.84, 4.54, 5.35, 7.16, 9.31, 10.47, 11.75, 12.22, 13.21, 15.95,
16.76] with t/t∗ = 0.0 as the initial contact time of the droplets. The video of
the collision process of this case is provided in supplementary material of [1],

video CFRS.

FIGURE 2.24: Left: Energy budget graph, Right: VDR and Normalized radial
expansion of the droplet. These figures are related to the case CFRS of table 2.1

and corresponding figure 2.23.
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FIGURE 2.25: 3D representation of topological changes in start-up collision
of case CFRS of table 2.1 and corresponding figure of 2.23 at times t/t∗=[0.0,
0.29, 3.84, 4.54, 5.35, 10.47] for (a) to (f), respectively. The color contours on
the droplet surface represents the VDR and the surrounding vector illustrates

the velocity vectors with contours as their magnitude in the matrix.
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table 2.1. The separation of the droplets might be accompanied with satellite and sub-

satellite droplets. Figure 2.23 depicts the collision outcome of the case CFRS solved in

this study compared with experimental results of [51] for the same time instances. The

droplets coalescence immediately after their initial contact. Thin lamella film forms

for time period of t/t∗ ≈ [1.16 : 4.54]. The formation and evolution of the neck in the

resultant droplet leads to the reflexive separation breakup in t/t∗ ≈ 11.75. Figure 2.24

represents the energy budget analysis along with the radial expansion of the collision

process. Similar to the analysis of the cases in section 2.4.3, around the time of the

coalescence, there is an immediate increase in VDR in matrix encountered by high

gas escape velocity, and as a result an increase in the viscous dissipation energy in

the matrix. The second jump in viscous dissipation rate in matrix happens at t/t∗ ≈
6 which is the time when the resultant droplet is being retreated, and consequently,

high gas escape velocity appears in areas close to the droplet tip. These jumps in the

viscous dissipation rate results in a slightly delayed jump in the dissipated energy in

the matrix (figure 2.24 left). The value of the viscous dissipation rate in the droplet

is almost negligible. These very high gas escape velocities in the matrix could be

seen qualitatively in figure 2.25, where (a) and (b) are related to the coalescence of

the droplets and (d) and (e) are related to retreatment of the resultant droplet. Upon

the higher dissipated energy in the matrix, there are jumps in the kinetic energy of the

matrix, one for the times around coalescence and other for the times around the retreat

of the resultant droplet (t/t∗ ≈ 6). The local extrema in radial expansion of the droplet

and surface tension energy happen at the same time.

2.4.5 Coalescence followed by stretching separation

Figures 2.26, 2.28 and 2.30 illustrates the collision process of binary off-center droplets

in coalescence followed by stretching separation regime for simulations done in this

chapter along with the corresponding experimental results of [51] for cases CFSS1,

CFSS2 and CFSS3 of table 2.1. The lamella film forms in the cases of CFSS2 and

CFSS3. According to our simulations, although in the case of CFSS3, the lamella

appears only for a short period during the collision process, its resolving is vital in cor-

rect capturing of the physics of the problem. High pressure in the neck right before the
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breakup and formation of daughter droplets are common in all the cases. Figures ex-

tracted in this section for topological changes of the collision process in all the regimes

are in good agreement with the experimental provided reference results.

According to the experimental analysis of [51], which is being abstracted in figure

2.1, the collisions in this regime have impact parameter (I) higher than a threshold, and

lower than a maximum value. Collisions with impact parameters (I) lower than this

threshold results in hard permanent coalescence or coalescence followed by reflexive

separation regimes, and I values higher than the maximum, results in passing-by of

the droplets with minor changes. E.g. the case CFSS2 with I=0.39, is close to the

regime hard permanent coalescence and our simulations with I value 10% smaller for

this case ended-up in permanent coalescence. For this case (CFSS2), the stretching of

the droplet in the collision direction before breakup is smaller than the other two cases

provided (CFSS1 and CFSS3), which is due to the smaller impact parameter of this

case compared with other two cases.

Energy budgets graph along with normalized VDR and also normalized radial ex-

pansion of the droplet for case CFSS1, CFSS2 and CFSS3 are presented in figures 2.27,

2.29 and 2.31, respectively. As discussed before, we observe a local maximum in the

VDR graphs, around the coalescence times, resulting in a slightly delayed increase in

dissipation energy in matrix and droplet around that time. For the case, CFSS1, the

kinetic energy of the droplet is not being drained totally, and it has a share of around

17% of the total energy at the end of the solution. For the case CFSS2, we witness

complementary oscillations in the energy budgets of surface tension energy and ki-

netic energy of the droplet similar to the case HPC2 (figure 2.18). These oscillations

happen due to the special collision characteristics. The kinetic energy stretches the

resultant droplet in collision direction; thus the surplus surface tension energy retreats

the resultant droplet and tries to contract it into a spherical and more stable shape which

prompts overshoot in the value of the kinetic energy of the droplet. This process con-

tinues until the viscosity dissipates energy out of the system. These oscillations could

be seen in the VDR of droplet and matrix as well as the radial expansion of the droplet.
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FIGURE 2.26: Topological changes of off-center binary droplets collision of
the case CFSS1 in table 2.1. Right: experimental results of [51], Left: numer-
ical simulation of current study with pressure contours on the droplet surface.
These figures are extracted in the same time instances of experimental figures as
t/t∗=[0.0, 1.05, 1.75, 2.80, 3.85, 5.25, 6.30, 7.0, 7.70, 8.75, 9.10, 9.46, 10.16,
10.86] with t/t∗ = 0.0 as the time when the droplets centerline distance in col-
lision direction is equal to D0. The video of the collision process of this case is
provided in supplementary material of [1], videos CFSS1a and CFSS1b for side

and oblique views, respectively.

FIGURE 2.27: Left: Energy budget graph, Right: VDR and Normalized radial
expansion of the droplet. These figures are related to the case CFSS1 of table

2.1 and corresponding figure 2.26.
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FIGURE 2.28: Topological changes of off-center binary droplet collision of
case CFSS2 in table 2.1. Right: experimental results of [51], Left: numeri-
cal simulation of current study with pressure contours on the droplet surface.
These figures are extracted in the same time instances of experimental figures
as t/t∗=[0.0, 0.23, 0.53, 1.73, 2.06, 2.60, 3.17, 4.21, 4.81, 6.61, 7.20, 7.95, 8.52,
8.91, 9.54] with t/t∗ = 0.0 as the time when the droplets centerline distance in
collision direction is equal to 1.32D0. The video of the collision process of this
case is provided in supplementary material of [1], videos CFSS2a and CFSS2b

for side and oblique views, respectively.

FIGURE 2.29: Left: Energy budget graph, Right: VDR and Normalized radial
expansion of the droplet. These figures are related to the case CFSS2 of table

2.1 and corresponding figure 2.28.
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FIGURE 2.30: Topological changes of off-center binary droplet collision of
case CFSS3 in table 2.1. Right: experimental results of [51], Left: numeri-
cal simulation of current study with pressure contours on the droplet surface.
These figures are extracted in the same time instances of experimental figures
as t/t∗=[0.0, 0.29, 0.43, 1.65, 2.05, 2.85, 3.21, 4.34, 4.77, 5.14, 5.63, 6.36,
8.12] with t/t∗ = 0.0 as the time when the droplets centerline distance in colli-
sion direction is equal to D0. The video of the collision process of this case is
provided in supplementary material of [1], videos CFSS3a and CFSS3b for side

and oblique views, respectively.

FIGURE 2.31: Left: Energy budget graph, Right: VDR and Normalized radial
expansion of the droplet. These figures are related to the case CFSS3 of table

2.1 and corresponding figure 2.30.
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2.4.6 High Weber number collision (HWC)

In this section, the results related to the solution of a head-on binary droplet collision

with a high Weber number of 357 are presented. Figure 2.32 illustrates the evolution of

the droplets collision. Starting from the very beginning of the collision, the lamella film

forms and lingers until times around t/t∗ ≈ 10. Figure 2.34 (right) represents the non-

dimensional radial expansion of the resultant droplet, compared with the experimental

data of [93]. Good agreement is seen between our results and the experimental data for

this critical case.

Figures 2.34 (left) and (right) illustrates the energy budgets and VDR graphs, re-

spectively. Contrary to the other cases presented so far, in this case, the initial share of

the kinetic energy of the droplets is much higher than the initial surface tension energy.

Shortly after the collision, the kinetic energy of the droplet starts to fade, and surface

tension energy grows. As have been seen in previous cases, the viscous dissipation

rate is maximum around the coalescence time. The jump in the viscous dissipation

energy in the matrix and droplet happens around the coalescence time as well. As it

was concluded earlier, this is due to the high escape gas velocity in the matrix around

the coalescence time. Figure 2.33 illustrates a three-dimensional representation of the

topological changes in startup behavior of the collision complex of this case with color

contours on the droplet surface as a representation of the VDR and the surrounding

vector as the velocity vectors in the matrix.

2.5 Validation of energy analysis formulations

An inviscid droplet is initially placed at the center of a cubic domain with the side

length of L = 2D0. The domain is filled with an inviscid matrix with a density ratio

of ρd/ρm = 100. Three sets of simulations are performed to gradually investigate the

accuracy of numerical formulations in capturing different terms of energy budgets. In

all the cases, the simulation runs until t/t∗ = 1.0 in a domain with the grid size of

h = L/100.

1. In the first step, the droplet and matrix are both static. Free-slip boundary con-

dition is applied on all the domain walls. In this case the total energy of the
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FIGURE 2.32: Snapshots of topological changes of numerical simulation of
current study with pressure contours on the droplet surface for head-on binary
droplet collision of case HWC in table 2.1. These figures are extracted in times
of t/t∗=[0.0, 2.83, 4.25, 6.02, 7.80, 8.85, 9.92, 10.63, 11.70, 12.62, 13.55,
16.52, 17.6, 18.53, 20.0] with t/t∗ = 0.0 as the time when the droplets initial
contact happens. The video of the collision process of this case is provided in
supplementary material of [1], videos HWCa and WHCb for side and oblique

views, respectively..

FIGURE 2.33: 3D representation of topological changes in start-up collision
of case HWC of table 2.1 and corresponding figure 2.32 at times t/t∗ =
[0.0,2.83,4.25] for figures from left to right, respectively. The color contours
on the droplets surface represents the VDR and the surrounding vector illus-

trates the velocity vectors with contours as their magnitude in the matrix.
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FIGURE 2.34: Left: Energy budget graph, Middle: VDR graph, Right: Normal-
ized radial expansion of the resultant droplet compared with the experimental
results of [93]. These figures are related to case HWC of table 2.1 and corre-

sponding figure 2.32.

system is only limited to the surface tension energy (STE). As mentioned in

the section 2.3.3, in the physical formulation, STE = σS. So any value calcu-

lated using the numerical formulation of equation 2.20 as σ ∑cells

(∫
p ||∇φ ||dvp

)
must be equal to this value. In each iteration, the value of STE calculated us-

ing numerical formulation is compared with the physical formula and the error

for that iteration is being calculated (ei). The total relative error is estimated as

ξ = ∑i |ei|/(σS0)× 100, The value of this error in the simulation of this step

was 0.02%, indicating good accuracy of numerical formulation of equation 2.20

in resolving the surface tension energy.

2. With the confidence on the accuracy of the calculation of surface tension energy,

in the second simulation the droplet is being moved with an initial velocity of

U corresponding to Weber number of 10 in X direction where periodic bound-

ary condition is applied. Free-slip boundary condition is applied in the other

directions. Initial energy of the system (E0) is limited to the kinetic energy

(KE = 1
2 mU2 where m is the mass of the droplet) and surface tension energy

(STE = σS). In the absence of viscous dissipation, this value must be constant

throughout the simulation. The error of numerical calculation of total energy

compared with the physical formulations in each iteration is calculated (ei). The

total relative error is estimated as ξ = ∑i |ei|/E0× 100. The value of this error

for this test case was 0.09%.

3. With the confidence on the accuracy of the calculation of surface tension and
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FIGURE 2.35: Normalized energy budget of STE, KE, and TDE for the last test
case performed in 2.5

.

kinetic energies, the same simulation as previous one is repeated but for viscous

droplet in a viscous matrix with droplet to matrix viscosity ratio of 100. This

test case includes all the physical terms of the energy budget, including kinetic,

surface tension, and viscous dissipation energies. The corresponding Reynolds

number of the problem is equal to 200. The summation of kinetic, surface ten-

sion and viscous dissipation energies in each iteration must be equal to the initial

energy of the system ( 1
2 mU2 +σS). In each iteration, the error in calculation of

total energy of the system compared with the initial energy is calculated (ei).

The total relative error is estimated as ξ = ∑i |ei|/E0× 100. The value of this

error at the end of the simulation was equal to 0.14% which verifies the accuracy

of the numerical formulation in calculation of viscous dissipation energy.

The three sets of simulation performed in this section confirms the accuracy of our

numerical implementation on energy analysis of the system. The evolution of different

energy budgets in the last solution is depicted in figure 2.35.
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2.6 Conservation of total energy and the role of flux-limiters

Finite volume flux-limiter schemes as introduced in Balcázar et al. [24, 29] are used

in discretization of convective terms of momentum and advection equations, in order

to avoid the spurious oscillations that would otherwise occur with high order spatial

discretization schemes due to discontinuities imposed by level-set function across the

interface. The formulations used in this research are the so-called Minmod, Sweby,

Smart, Superbee, and Van-Leer limiters [96, 97]. In this formulation, the value of

variable Ψ at the cell face (Ψ f ) is written as the sum of a diffusive first-order upwind

part and an anti-diffusive term as [24, 29]:

Ψ f = ΨC +
1
2

L(θ f ) (ΨD−ΨC) (2.26)

The anti-diffusive part is multiplied by the flux limiter L(θ f ) with θ f defined as the

upwind ratio of the consecutive gradients of Ψ.

L(θ ) =



max [0,min (1,θ )] , Minmod

max [0,min (βθ ,1) ,min (θ ,β )] , Sweby

max [0,min (2θ , (0.25+ 0.75θ ) ,4)] , Smart

max [0,min (2θ ,1) ,min (2,θ )] , Superbee

(θ + |θ |)/ (1+ |θ |) , Van−Leer

0.0, U pwind

(2.27)

In this study, we fixed the parameter β in Sweby flux-limiter to 1. In order to study

the effect of different flux-limiters on conservation of total energy in the system, and

choose the most consistent one, we perform numerical simulation of a droplet oscilla-

tion test case as initially solved by Mashayek and Ashgriz [98]. The test case includes

the damping oscillation of a droplet released from its static condition at third mode,

meaning the surface of the drop is initially perturbed from its spherical shape accord-

ing to following spherical harmonics in the (r-z) coordinate system as:

ht=0(θ ) = R3
(
1+ 0.25

(
5cos3

θ −3cosθ
))

(2.28)
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FIGURE 2.36: Schematic of the 2D droplet oscillation problem.

in this formulation, the amplitude of the initial perturbation is equal to 0.5, R3 is used to

maintain the volume of the droplet constant during the initial perturbation and is equal

to 0.966. Simulations are done in Reynolds number of 100, with Re =
√

σr0ρl/µl .

Figure 2.36 illustrates the coordinate system along with the initial shape of the per-

turbed droplet. Two-dimensional simulation domain has length and height of 6r0, with

r0 as the initial radius of the droplet. A density ratio and of ρd/ρm = 1000 and vis-

cosity ratio of µd/µm = 400 are applied. Time is being non-dimensionalized using

t∗ =
√

ρdr3
0/σ . Simulations are done until t/t∗ = 13.7 with a constant timestep of

dt/t∗ = 3.87× 10−4 for all the cases. A grid size of h = 2r0/35 is used for all the

cases unless otherwise is mentioned. Simulations are done with different flux-limiters.

For each case, the error in total energy conservation at the end of the simulation is cal-

culated as ∆E = |E f inal −Einit |/Einit where E f inal and Einit are final and initial values

of total energy of the system. Table 2.2 represent this criteria for different flux-limiters

tested in this section. According to this table, it is plain to see that the Superbee flux-

limiter has lower error in conservation of the energy of the system and thus is more

suitable in energy analysis study of this chapter. For the case where Upwind scheme is

being applied on convective terms in the whole domain, the value of ∆E is 0.17 which

is comparably higher than equivalent value of any other flux-limiter.

Figure 2.37 represents the results extracted in this study solved with Superbee flux
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TABLE 2.2: Total energy conservation error of the droplet oscillation case of
2.6 for solutions with different flux-limiters.

Flux-limiter Minmod Sweby Smart Superbee Van Leer
∆E 0.0612 0.0202 -0.0310 0.0153 0.0376

FIGURE 2.37: Time evolution of the oscillations in droplet deformation
for droplet with initial perturbation as described in 2.6. Left: result ex-
tracted in current study with Superbee flux limiter. Right: reference data
of [98]. The snapshots are extracted in the same time instant as t/t∗ =

[0.0,0.2,0.35,0.48,0.63,1.42,1.94,2.74,4.10,5.90,8.90,10.10].

limiter, compared with the reference data extracted in the same time instances. 2.38

illustrates the normalized energy budget of STE, KE, and TDE for droplet and matrix

for the solution with Superbee flux-limiter. In this figure, the oscillations in kinetic

energy of droplet, surface tension energy, and DE in matrix could be seen. Good

conservation of total energy of the system is seen in this figure as well.

In order to analyze the spacial accuracy convergence of the total energy conser-

vation, simulations of this case with Superbee flux-limiter with different grid sizes of

h = 2r0/25,2r0/35 and 2r0/45 are performed. A constant timestep is used for all

the simulations. In each case, the ∆E error as mentioned earlier is calculated. In the

imaginary perfect solution, the value of ∆E must be equal to zero. According to the

results extracted, for the performed droplet oscillation case of this section, the error in

total energy conservation of the system has a convergence rate of 1.74 in space.
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FIGURE 2.38: Normalized energy budget of STE, KE, and TDE for droplet and
matrix fluids.

2.7 Conclusions

Direct numerical simulation of head-on and off-center binary droplets collision in all

the regimes is performed using a conservative level-set method. The snapshots of evo-

lution of the collision process are extracted and compared with available experimental

data in the literature. Very good agreement is seen between the results of current study,

and available experimental data. A novel lamella stabilization approach has been in-

troduced which numerically resolves the lamella film, independent of its formation

direction. A new ghost-nodes layer approach is proposed to prevent adding mass into

the droplet. This ghost-nodes layer was used to extract the gas-film rupture time for

the cases of retarded coalescence. A very profound energy analysis is provided for

each case covering the main collision regimes which provides more insight into the

collision process. According to the extracted results, the time and number of peaks

and fluctuations of the surface tension energy are in qualitative agreement with the ra-

dial expansion of the droplets. The budget of matrix kinetic energy in all the cases is

very small compared to kinetic energy of droplet, surface tension energy and viscous

dissipation energy. The main gain in the kinetic energy of the matrix comes from the
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escape of the gas film in the matrix when the droplets approach each other around

the time of the coalescence and also when the resultant droplet expands after a major

retreatment. The share of viscous dissipation energy of the matrix in the cases of coa-

lescence followed by stretching separation is lower than the viscous dissipation energy

of the droplet. This norm is reverse for all the other cases. Retreat in the collision pro-

cess happens when the resultant droplet reaches the local minimum kinetic energy and

surface tension reaches a local maximum value. At this time, the surplus surface ten-

sion energy mobilizes the resultant droplet causing an increase in the kinetic energy.

Droplet kinetic energy recovery factor (KE f inal/KE0) is maximum for the bouncing

regime (B). The total dissipated energy in this case is also minimum among all other

regimes.
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Chapter 3. Numerical study of droplet deformation in shear flow using a conservative

level-set method

Abstract. This chapter is concerned with a numerical study on the behavior of a

single Newtonian droplet suspended in another Newtonian fluid, all subjected to a

simple shear flow. Conservative finite-volume approximation on a collocated three-

dimensional grid along with a conservative Level-set method are used to solve the

governing equations. Four parameters of capillary number (Ca), Viscosity ratio (λ ),

Reynolds number (Re) and walls confinement ratio are used to physically define the

problem. The main focus of the current study is to investigate the effect of viscos-

ity on critical walls confinment ratio. To do so, first, we validate the ability of pro-

posed method on capturing the physics of droplet deformation including: steady-state

subcritical deformation of non-confined droplet, breakup of supercritical conditioned

droplet, steady-state deformation of moderate confined droplet, subcritical oscillation

of highly-confined droplet, and the effect of viscosity ratio on deformation of the

droplet. The extracted results are compared with available experimental, analytical

and numerical data from the literature. Afterward, for a constant capillary number

of 0.3 and a low Reynolds number of 1.0, subcritical (steady-state) and supercritical

(breakup) deformations of the droplet for a wide range of walls confinement in differ-

ent viscosity ratios are studied. The results indicate the existence of two steady-state

regions in a viscosity ratio-walls confinement ratio graph which are separated by a

break-up region.

3.1 Introduction

Droplets of one liquid dispersed in an immiscible liquid start to deform when subjected

to shear flow. If the conditions are met, the droplet may even breakup into daughter

droplets. The study of a droplet in shear flow is important from the aspect of dispersion

science and mixing process. For example, it is possible to create a specific blend

morphology by shearing emulsions between two parallel plates with a small separation

[99] which has applications in Lab-on-a-Chip devices [100]. This area is not only

limited to laminar flows. According to Komrakova et al. [101], even though the flow

regime in stirred tank reactors is fully turbulent, the effect of the existing eddies on

droplets could be modeled by a laminar shear flow. Study of shear deformation of

droplets can provide crucial understanding in morphology development of the blends,
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FIGURE 3.1: Schematic presentation of a deformed droplet along with related
geometrical measurements in left: velocity-velocity gradient plane and right:

velocity-vorticity plane

immiscible fluid displacement in enhanced oil recovery, refinement of liquids, carbon-

dioxide sequestration, remediation of nonaqueous-phase liquids and emulsification.

Emulsification has wast applications in food, chemical, and pharmaceutical indus-

tries. Emulsification process takes place by applying shear stress against the surface

tension, to elongate and then rupture a larger droplet into smaller ones. Emulsions

can be made in many ways, however, shear mixing is one of the main methods. Thus

studies of shear deformation of droplets can be beneficial to better understand the prop-

erties of emulsions and to provides a deeper insight into the rheological properties of

the mixture. For instance, the critical conditions at which a droplet breaks-up is useful

to quantify emulsion stability [5, 6].

Another important application of deformation and breakup of confined sheared

droplets is on Droplet-based microfluidic technology which has recently been exploited

to perform microfluidic functions. Its applications range from fast analytical systems

and synthesis of advanced materials [102] to protein crystallization [103] and biologi-

cal assays for living cells [104–106] . Precise control of droplet volumes and reliable

manipulation of individual confined droplets have crucial effects on the performance

of these systems and are still a challenge [107]. Another important aspect of this

area of study is in reacting dispersions, where an understanding of the dynamics of the

droplet is needed in order to gain a better perception on the mechanisms of molecular

transport, rates of chemical reaction and polymerization of the dispersion [108].

Since the experimental researches of Taylor [109, 110], droplet deformation and

breakup in shear flow evoked great interests. More details on these studies could be

found in reviews done by Rallison [111], Stone [112], and Cristini and Renardy [113].

In the case where the droplet evolves to a steady shape, different parameters have
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been used by researchers to measure the deformation attained by the droplet. The first

one is the Taylor deformation parameter defined as D = (L−B)/(L+ B), where L

and B are length and breadth of the drop, as shown in figure 3.1. Another parameter

is the angle θ of orientation of the droplet with respect to the axis of shear strain. In

addition to these parameters, Lp and W, as projected length and width of the droplet

are used in literature and depicted in figure 3.1. In another experimental research,

Marks [114] studied a single droplet undergoing end pinching in a strong shear flow in

a process named "elongative end pinching". This process is in opposition to "retractive

end pinching" process studied by Bentley and Leal [115]. Vananroye, Van Puyvelde,

and Moldenaers [116] reported that confinement has a substantial effect on the critical

capillary number. More studies in highly confined systems were done by Sibillo et al.

[117], where they found oscillatory behavior in droplet deformation in high but sub-

critical capillary numbers. They also found complex breakup modes for supercritical

capillary numbers. In the context of this chapter, subcritical, refers to conditions where

the deformation of the droplet reaches steady-state without any breakup and supercrit-

ical refers to conditions where the deformation of the droplet leads to breakup.

Analytical studies in this field are limited. Shapira and Haber [118, 119] investi-

gated the effect of two parallel walls on the motion of a nearly spherical droplet and

the drag force acting on it. Roths et al. [120] reported that in two-dimensional cases

with small capillary numbers, Taylor deformation parameter is a linear function of

capillary number. Sman and Graaf [121] used a slope equal to f (λµ) = 1.4 for this

linear function where λµ is the viscosity ratio of droplet to matrix. In three-dimension

however, Stone [112] used f (λµ) = (16+ 19λµ /(16+ 16λµ)). Richardson [122] re-

ported a trigonometric function between deformation (D) and orientation (θ ) of the

droplet as D ∼ cos(2θ ). Toose, Geurts, and Kuerten [123] found out that time evo-

lution of droplet deformation in two-dimension elongational flow follows the Oldroyd

approximation and reported D=f(λµ )Ca exp(-γt/τ) where τ = Ca(1+ λµ), γ is the

rate of strain tensor and Ca as the capillary number is a measure of the ratio between

the viscous and interfacial tension stresses. In a more recent work, Minale [124] pre-

sented a phenomenological model for the effect of wall on deformation of an ellipsoidal

droplet.
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Besides the experimental and analytical studies, there are plenty of numerical re-

searches in this field using mainly three methods of boundary integral, lattice Boltz-

mann (LB) and volume-of-fluid (VOF). Kennedy, Pozrikidis, and Skalak [108] and

Kwak and Pozrikidis [125] and Janssen and Anderson [126] studied the droplet defor-

mations using boundary integral method. Since in simulations of merging and folding

interfaces in the boundary integral method, the interface point should be reconstructed,

significant logical programming techniques are required which increases the compu-

tational costs. The mathematical implication of this method is described in Pozrikidis

[127].

Using lattice Boltzmann model (LBM), Sman and Graaf [121] investigated the

numerical criteria for correct analysis of emulsions and used them to study the droplet

deformation and breakup in two-dimensional cases. Xi and Duncan [128] applied the

LBM in conjugation with the interface force model presented by Shan and Chen [129]

to simulate three-dimensional droplet deformation in simple shear flow. Komrakova

et al. [101] used free energy LBM to perform three-dimensional simulations of liquid

droplet deformation in simple shear flow for a wide range of flow conditions.

Volume-of-fluid (VOF) and coupled VOF/Level-set methods were used by many

researchers [25, 113, 130–133] to investigate the droplet deformation and breakup in

shear flow. Li, Renardy, and Renardy [130] presented results for different values of

capillary numbers and reported that for supercritical cases, by increasing the capillary

number, the number of daughter droplets increases. Renardy and Cristini [131] studied

the effect of inertia on droplet breakup. They reported that inertia rotates the droplet

toward the vertical direction, in a mechanism similar to aerodynamic lift, afterward the

droplet experiences higher shear, which pulls the droplet apart horizontally. Renardy,

Cristini, and Li [132] fixed the flow’s strength and focused on trends for the droplet

fragment distribution when the size of the droplet increases. Khismatullin, Renardy,

and Cristini [133] found that for viscosity ratios greater than the critical value, inertia

can be used as a mechanism of breakup. Cristini and Renardy [113] worked on the

effect of inertia and scaling fragments after droplet breaks.

The studies on shear deformation of the droplets is not limited to Newtonian flu-

ids. Verhulst et al. [134] studied the influence of matrix and droplet viscoelasticity
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on the steady-state shear deformation of a droplet. Mukherjee and Sarkar [135] nu-

merically investigated the effects of viscosity ratio on an Oldroyd-B droplet deforming

in a Newtonian fluid under steady shear. They reported that the viscoelastic normal

stresses reduce droplet deformation and increase critical capillary number. Hsu and

Leal [136] studied the steady and transient deformations of a purely elastic droplet in

a Newtonian fluid undergoing a planar extensional flow. They reported the absence

of overshoot of the droplet deformation upon startup, and a relative insensitivity to the

Deborah number. Ioannou et al. [137] investigated the droplet deformation and breakup

under simple shear flow when droplet and/or matrix represents non-Newtonian shear-

thinning or shear-thickening behaviors. They stated that the shear-thinning droplets

behave similarly to highly-viscous Newtonian droplets.

In this chapter, we focus on three-dimensional simulations of droplet deformation

and breakup in simple shear flow in the context of conservative level-set (CLS) method

[1, 24, 138] with a finite-volume approach.

The first objective is to study the accuracy of our results on capturing the droplet’s

deformation and breakup in shear flow. The effect of domain size, mesh size and

numerical parameters on the accuracy of the results are studied. Validation is done

by analyzing the effect of different parameters including walls confinement, capillary

number and viscosity ratio on the deformation and breakup of the droplet. The ex-

tracted results are compared with the available numerical, analytical and experimental

data.

In the next step, the effect of walls confinement ratio on critical viscosity ratio

for a constant capillary number of 0.3 and a low Reynolds number of 1.0 is studied.

According to Vananroye, Van Puyvelde, and Moldenaers [139], for viscosity ratios

smaller than 1, confinement suppresses breakup while for viscosity ratios bigger than

1, breakup is enhanced. Janssen et al. [140] further studied the deformation of a single

droplet as a function of viscosity ratio and confinement ratio both experimentally and

numerically using the boundary integral method. They discussed the critical capillary

number for a wide range of viscosity ratios in different confinements and suggested

that there is a generalized behavior on droplet breakup mechanism in confinement.

They presented a graph of five regions for the critical capillary number in different

confinements. Despite these studies, to the best of our knowledge, effect of viscosity
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ratio on walls critical confinement ratio is yet to be discovered. In the last section of

this chapter, we elaborately study this phenomenon for a given capillary number of

0.3 and a low Reynolds number of 1.0. Our results illustrate two steady-state and one

breakup regions for droplet under different confinements and viscosity ratios.

The outline of this chapter is as follow: Mathematical formulations are presented

in section 3.2. Employed numerical methods are explained in section 3.3. Section

3.6 involves the obtained results. Firstly we verify the accuracy of the method against

different numerical, analytical and experimental data. In section 3.6.5, we study the

effect of viscosity ratio on walls critical confinement ratio. Finally, concluding remarks

are presented in section 3.7.

3.2 Mathematical formulation

Navier-Stokes equations are used to describe the conservation of mass and momen-

tum of two incompressible immiscible newtonian fluids on a spacial domain Ω with

boundary ∂ Ω as following [1, 24]:

∂

∂ t
(ρv)+∇.(ρvv) = −∇p+∇.µ

(
∇v+(∇v)T )+ρg+σκnδΓ in Ω (3.1)

∇.v = 0 in Ω (3.2)

where ρ and µ are density and dynamic viscosity of the fluids, v is the velocity field,

p pressure field, g gravitational acceleration and δΓ is the Dirac delta function concen-

trated at the interface (Γ). In this formulation, n is the unit normal vector outward to

interface, κ is the interface curvature and σ is the interface tension coefficient.

Since the mass, density, and viscosity are constant within each fluid, they can be

defined as scalar-fields inside the whole domain as follows:

ρ = ρ1H +ρ2(1−H) (3.3)

µ = µ1H + µ2(1−H) (3.4)

where H is the Heaviside step function which takes the value one in dispersed phase

and zero elsewhere.
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In this research, conservative level-set (CLS) method [82], as introduced by Bal-

cazar et al. [24] in the context of a finite-volume method for unstructured grid is used.

Instead of the signed distance function, d(x,t), used to represent the interface in the

classical level-set method, conservative LS method employs a regularized indicator

function φ as below:

φ (x, t) =
1
2

(
tanh

(
d(x, t)

2ε

)
+ 1
)

(3.5)

where ε is the parameter that sets the thickness of the interface. φ varies from 0 in one

fluid to 1 in other fluid. With this formulation, interface is defined by Γ = {x|φ (x, t) =

0.5}.
The level-set function is advected by velocity vector field, v, provided from solu-

tion of Navier-Stokes equations. Since the velocity field is solenoidal (∇.v = 0), the

interface transport equation can be written in conservative form [24, 82]:

∂φ

∂ t
+∇.φv = 0 (3.6)

Since sharp changes exist in level set function at the interface, Superbee flux limiter

scheme is used in discretization of the convective term in order to minimize numerical

diffusion and to avoid numerical instabilities at the interface. To keep the profile and

thickness of the interface constant, an additional re-initialization equation [27] is used:

∂φ

∂τ
+∇.φ (1−φ )nτ=0 = ∇.ε∇φ (3.7)

which is advanced in pseudo-time τ . This equation consists of a compressive flux:

φ (1−φ )nτ=0 and a diffusion term: ∇.ε∇φ . The first one keeps the level-set function

compressed onto the interface along the normal vector n, and the second one keeps the

profile in prescribed characteristic thickness of ε . This parameter is defined based on

the mesh resolution as [24]:

εp =Cεh1−α (3.8)

where h = (VP)1/3 is the grid size based on volume VP of cell P. In all the simulations
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of this chapter, Cε is constant and equal to 0.5. Parameter α , however, varies in order to

change the thickness of the interface and can take values between [0,0.1], to overcome

the possible numerical instabilities. Normal vector n on the interface and curvature κ

of the interface, are obtained using [24]:

n =
∇φ

||∇φ ||
(3.9)

κ(φ ) = −∇.n (3.10)

The continuous surface force model (CSF) [83] is used for surface tension com-

putation which converts the term σκnδΓ in Eq. 3.1 to a volume force term as follows

[24]:

σκnδΓ = σκ(φ )∇φ (3.11)

where ∇φ is computed using least-square method based on vertex node stencils [24].

By applying this approach, the explicit tracking of the interface is not necessary.

3.3 Numerical method

Finite-volume (FV) approach is used to discretize the Navier-Stokes and level-set equa-

tions on a collocated grid, so all the computed variables are stored at centroids of the

cells [24]. A central difference (CD) scheme is used to discretize the compressive term

of re-initialization equation (3.7) and diffusive fluxes at the faces. A distance-weighted

linear interpolation is used to calculate the face values of physical properties and inter-

face normals. The gradients are computed at the cell centroids using the least-squares

method. For creeping flow regime, a central difference scheme and for non-creeping

flow regimes a total-variation Diminishing (TVD) SUPERBEE flux limiter is used to

discretize the convective term as implemented in Balcazar et al. [24], in order to im-

prove the numerical stability of the solver. At discretized level, physical properties

are regularized in the context of the CLS method. Therefore a linear average is used

for density as ρ = ρ1φ + ρ2(1− φ ), and a harmonic average is used for viscosity as

µ =
(

φ

µ1
+ 1−φ

µ2

)−1
[141–143]. Harmonic average of viscosity improves the accuracy
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convergence of the results, compared with the linear average. As a comparison, veloc-

ity profile of a two-dimensional two-phase oscillating droplet is presented in section

3.4 where results of harmonic averages of viscosity are compared with results of linear

average of viscosity for this problem.

A classical fractional step projection method as described by Chorin [84] is used

to solve the velocity-pressure coupling. The solution procedure is as follows:

1. Physical properties, interface geometric properties and velocity field are initial-

ized.

2. Allowable time step is calculated. The value of ∆t is limited by CFL conditions

on convective term and also by explicit treatment of surface tension as used by

[1, 24]:

∆tconv ≡ α×min(
h
‖VP‖

) (3.12)

∆tcap ≡ α×min(h3/2(
ρ1 +ρ2

4πσ
)1/2) (3.13)

where α is CFL coefficient. The final global value of time step is the minimum

of ∆tconv and ∆tcap. To decrease the computational costs, the maximum value

of α which leads to a stable simulation is used. Unless otherwise mentions, this

value is 0.1.

3. The advection equation (3.6) is integrated in time with a 3-step third order accu-

rate TVD Runge-Kutta scheme [85].

4. The re-initialization equation (3.7) is integrated in pseudo time (τ) using a third

order accurate TVD Runge-Kutta scheme. The time τ is used to lead the solution

into a stationary state. Since an explicit scheme is used, the time step is restricted

by the viscous term of equation 3.7 as follows [24, 82]:

∆τ =Cτmin
(

h2

εP

)
(3.14)
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One iteration is used to solve the discretized form of equation 3.7. The value of

Cτ in this formula serving as a CFL-like coefficient for this equation, can take

values between [0.01,0.05].

5. Physical properties in the domain (density and viscosity) and geometrical prop-

erties at the interface (curvature and interface normal) are updated from the level

set field.

6. The velocity and pressure fields are calculated using a fractional-step method.

The first step is to calculate the predicted velocity v. In the creeping flow regime,

where the Reynolds number of the flow is close to zero, the diffusion term in

momentum equation tends to control and decreases the time step. This implies a

huge computational cost on simulations. To avoid this issue, diffusion term could

be treated implicitly. So a second-order implicit Crank-Nicolson scheme is used

to discretize the diffusion term of equation 3.1 while a second-order Adams-

Bashforth scheme is used on convective, gravity and surface tension terms.

ρv∗−ρnvn

∆t
=

3
2
(Rv

h)
n− 1

2
(Rv

h)
n−1 +

1
2
(Dh(v∗)+Dh(vn))−∇h pn (3.15)

where Rv
h = −Ch(ρv) + ρg+σκ∇h(φ ) with Ch(ρv) = ∇h.(ρvv) as the con-

vective operator. In this equation, Dh(v) = ∇h.µ(∇hv+∇T
h v) as the diffusion

operator where ∇h represent the gradient operator.

A term of pressure gradient of previous time step is added to the discretized form

of equation 3.1. According to Armfield and Street [144], this will increase the

accuracy of the momentum equation to a second order in time, and combined

with proper boundary condition of Kim and Moin [145] even to a third order in

time. In our case, the momentum equation has a second-order accuracy in time.

In section 3.5, the convergence of implemented method for the accuracy of mo-

mentum equation in time is analyzed.

Next, a correction to the predicted velocity applies as:

ρvn+1−ρv∗

∆t
= −∇hπ

n+1 (3.16)
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where π is the pressure correction term. By applying the incompressibility con-

straint (∇.v = 0), equation 3.16 changes to a Poisson equation as follows:

∇h.
(

1
ρ

∇h(π
n+1)

)
=

1
∆t

∇h.(v∗) (3.17)

The obtained linear system is solved using a preconditioned conjugated gradient

method. At the end, the velocity vn+1 is corrected using:

vn+1 = v∗− ∆t
ρ

∇h(π
n+1) (3.18)

and the pressure is updated using:

pn+1 = pn +π
n+1 (3.19)

7. In order to fulfill the incompressible constraint, Eq. 3.2, and to avoid pressure-

velocity decoupling on collocated meshes [86, 146], a cell-face velocity is used

to advect the momentum and CLS function, as introduced in [24].

8. repeat steps 2 -7 to reach the desired time.

The reader is referred to [24, 29] for technical details on the finite-volume dis-

cretization of both the Navier-Stokes and conservative level-set equations on collocated

unstructured grids. The numerical methods are implemented in an in-house parallel

c++/MPI code called TermoFluids [47]. Validations and verifications of the numerical

methods in the context of Conservative level-set method used in this work have been

reported in [1, 2, 24, 25, 27–29, 138].

3.4 Harmonic Vs. Linear Average of Viscosity

In order to compare the accuracy of harmonic versus linear average of viscosity, a two-

dimensional test case of oscillation of a droplet in an adjacent matrix is studied. The

domain is a square with the side length of 8r where r is the radius of the droplet. The
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TABLE 3.1: Flow parameters of the 2D droplet oscillation test case

ρd/ρm µd/µm We Re
666.08 119.08 5.0 6.25

TABLE 3.2: First-norm of the error in radial expansion of the 2D droplet oscil-
lation test case

h L1,Harmonic L1,Linear

2r/30 0.244 0.285
2r/25 0.45 0.48
2r/20 0.85 0.75

droplet is placed at the center of the domain, (x0,y0). At time t=0, an initial velocity

as following is applied to the droplet, causing an oscillation in its deformation:

U = u0
x− x0

2r
(3.20)

V = −u0
y− y0

2r
(3.21)

where U and V are velocities in x and y directions, respectively. Four different grid

sizes used to solve this problem are h=r/10, 2r/25, r/15 and r/20, where the results of

the finest grid are used as the reference to extract the order of accuracy convergence

in space. Two different interpolation methods of linear and harmonic are applied in

calculations of viscosity. Time is non-dimensionalized with t∗ = r/u0. A constant

non-dimensional time-step of dt ′ = dt/t∗ = 7× 10−4 is used in all the simulations.

The physical properties of the droplet and matrix are presented in table 3.1 where

Weber and Reynolds numbers are defined as follows:

We =
ρdu2

0r
σ

(3.22)

Re =
ρdu0r

µD
(3.23)

Simulations are performed until t*=10. The radial expansion of the droplet in y-

direction as a function of time for these cases are presented in figure 3.2.

The U component of velocity in the centerline x-direction at t ′ = 10 is extracted

as comparison criteria. The results of cases with h=r/20 for linear and harmonic cases
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FIGURE 3.2: Time variation of non-dimensionalized radial expansion of the
droplet in y-direction for cases with linear and harmonic interpolation of the

viscosity in domain with different grid sizes.

are used as the reference of linear and harmonic cases, respectively. The first-norm of

error for each case is extracted and used to calculate the convergence of the solution as

L1 = ∑i |ei|, where ei is the point-wise error of each cell compared with its reference.

These values are presented in table 3.2. According to the extracted results, the linear

interpolation of viscosity has the convergence rate of 2.03 in space, while the same

value for results of harmonic interpolation is 2.61.

3.5 Momentum Convergence Analysis

In order to evaluate the accuracy convergence of momentum equation in time, a 2D

channel flow problem with the length of Sx and height of Sy = H in x and y directions,

is solved. The initial configuration of the domain is illustrated in figure 3.3. A peri-

odic boundary condition is applied in X direction and no-slip boundary condition in Y.

Numerical parameters to fully define this problem are presented in table 3.3. For this

problem, analytical exact solution would be as follows:

Vx(y) =
∂P
∂x

h2

2µi

[ 2µi

µ1 + µ2
+

µ1−µ2

µ1 + µ2
(

y
h
)− (

y
h
)2
]

(3.24)
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TABLE 3.3: Flow parameters of the 2D channel test case

ρ1/ρ2 µ1/µ2 σ ∂P/∂x
1.0 10 20 0.2

FIGURE 3.3: Schematic of the 2D channel flow problem.

where i ∈ {I, II} determines the region of the fluid. Numerical simulations are done

for enough long time to reach steady-state (t=30.0 s). Three different time steps of

dt = 2×10−5,4×10−5 and 8×10−5 for solutions in a domain with grid size of h=H/40

are used. Figure 3.4 represent the variation of x-direction velocity profile in y direction

(Vx(y)) for cases with different time steps, along with the analytical exact solution.

In each case, x-direction velocity profile at t=30.0 is extracted to compare the re-

sults. The Analytical solution is used as the reference. The infinity-norm of error

for each case is extracted and used to calculate the convergence of the solution as

L∞ = max(|ei|) , where ei is the point-wise error of each cell compared with its refer-

ence. Figure 3.5 illustrates the L∞ of the error for different time steps. As can be seen,

the convergence of error for this test case is almost 2.

3.6 Numerical experiments and discussion

A circular droplet with radius r is placed at the center of a domain with span Sx, Sy and

Sz in x,y and z directions, respectively. Figure 3.6 illustrates the initial computational

setup. The opposite x-direction velocities of +U and −U are imposed at the top and

bottom walls inducing a shear rate of γ̇ = 2U/Sz in the domain. A periodic boundary

condition is applied in the flow direction (x) and Neumann boundary condition in y

direction. Computations have been performed using a Cartesian mesh of cubic grids
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FIGURE 3.4: Variation of Vx velocity profile in y direction for cases with differ-
ent time steps, along with the exact solution.

FIGURE 3.5: L∞ of the error in VX (y) compared with the analytical solution,
Vs. time step of the simulations.

112



3.6. Numerical experiments and discussion

FIGURE 3.6: Computational setup in the cubic structured mesh

with the edge size of h. This mesh was generated by a constant step extrusion of the

two-dimensional y-z grid along the x-axis with the step size of h. At the beginning of

the simulation, a linear velocity field is applied inside of the domain varying from −U

at the bottom wall to +U at the top wall. Simulations with different mesh resolutions

are done to study the effect of the computational grid size.

The system can be physically defined by four parameters of Reynolds number (Re),

capillary number (Ca), viscosity ratio (λ = µd/µc) and walls confinement ratio (2r/Sz)

while c stands for continuum and d stands for droplet. For an arbitrary value of shear

rate (γ̇), the velocity at the top and bottom walls are calculated as U = γ̇Sz/2. Then

viscosity is calculated using the Reynolds number as below:

Re =
ρcγ̇r2

µc
(3.25)
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FIGURE 3.7: Left: Taylor deformation parameter (D), right: Lp/2r and W /2r
parameters vs. tγ̇ for subcritical cases with Re=0.1, Ca=0.3 and λ=1 all in a
domain with (Sx,Sy,Sz) = (8r,4r,8r) and grid size of h = 2r/25. All the cases

have Cτ = 0.025. Three different values of α = 0.0, 0.05 and 0.10 are tested.

FIGURE 3.8: Left: Taylor deformation parameter (D), right: Lp/2r and W/2r
parameters vs. tγ̇ for subcritical cases with Re=0.1, Ca=0.3 and λ=1 all in a
domain with (Sx,Sy,Sz) = (8r,4r,8r) and grid size of h = 2r/25. All the cases
have α = 0.0. Three different values of Cτ = 0.01, 0.025 and 0.050 are tested.

The capillary number is a dimensionless parameter defining the relative effect of the

shear stress versus surface tension across the interface, given by:

Ca =
γ̇µcr

σ
(3.26)

For a given value of Ca and Re numbers, and the calculated value of µc, the related

value of σ is determined.
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FIGURE 3.9: The evolution in the mass conservation error of the droplet for
cases all with Re=0.1 and λ=1 in a domain with the grid size of h = 2r/25.
The results of the simulation with four different capillary numbers of 0.1, 0.2,
0.3 and 0.4 are presented. ∆M for the droplet is (Mt −M0)/M0, where M0 is

droplet’s initial mass and Mt is the mass at time t.

3.6.1 The effect of numerical parameters

The effect of variable CLS parameters of Cτ and α on final results is studied through

a set of numerical simulations. These two parameters are introduced in equations 3.14

and 3.8, respectively. The results including time varying D, Lp/2r and W /2r parame-

ters and steady-state shape of the droplet are presented in figures 3.7 and 3.8, for cases

with Re=0.1, Ca=0.3, λ=1 in a domain with (Sx,Sy,Sz) = (8r,4r,8r) with the grid

size of h = 2r/25. In the cases of figure 3.7, for a constant value of Cτ=0.025, three

different values of α=0.0, 0.05 and 0.10 are tested. In the cases of figure 3.8, for a

constant value of α=0.0, three different values of Cτ=0.01, 0.025 and 0.050 are tested.

The selected values include the boundaries of the proposed range for these parameters.

According to these results, the variation of Cτ and α , has negligible influence on de-

formation of the droplet. For the rest of the simulations in this chapter, values of Cτ

and α are 0.015 and 0.0, respectively.

In each iteration, droplet’s mass conservation error is calculated using ∆M = (Mt−
M0)/M0, where M0 is droplet’s initial mass and Mt is droplet’s mass at time t. In all

the simulations of this research, droplet’s mass conservation error is in the order of

115



Chapter 3. Numerical study of droplet deformation in shear flow using a conservative

level-set method

FIGURE 3.10: Taylor deformation parameter (D) and inclination of the droplet
(45-θ ) at steady-states for different capillary numbers, in Stokes flow conditions
(Re=0.0625) with λ = 1. Dash line represents the asymptotic results by Cox

[147] for small deformation.
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TABLE 3.4: The effect of domain’s length (Sx) on steady-state values of
Taylor deformation parameter (D) and orientation angle (θ ) for cases with
Re = 0.1,Ca = 0.3 and λ = 1. The Sz and Sy of the domains are 8r and 4r,

respectively.

Sx 6r 8r 10r
D 0.3823 0.3985 0.4039
θ 25.15 24.50 24.34

O(10−12). Figure 3.9 presents the time variation of mass conservation error of the

droplet for cases with Re=0.1 and λ=1, and four capillary numbers of 0.1, 0.2, 0.3 and

0.4, all in a domain with the grid size of h = 2r/25. Evidently, the mass conservation

error of droplet in all the cases has converged to the order of O(10−12).

In order to study the effect of domain’s length on the results, simulations with

(Re,Ca,λ ) = (0.1,0.3,1) in three domains with (Sx,Sy,Sz) = (6r,4r,8r), (8r,4r,8r)

and (10r,4r,8r) with grid size of h = 2r/25 are performed. The value of D and θ

parameters for these cases are tabulated in table 3.4. It is plain to see that domains with

lower lengths encounter with a lower value of D and higher inclination angle. Since

periodic boundary condition is applied in the flow direction, it is important to make

sure that the fluctuations in the velocity profile downwind of the domain will dissipate

before passing through the periodic boundary and re-entering the domain. The ideal

velocity profile at this location should linearly vary from -U at the bottom wall to +U at

the top wall. According to measurements and extracted profiles, domain with Sx = 6r

has nonuniform velocity profile at the location of the periodic boundary. This issue

affects the deformation of the droplet, while domain with Sx = 10r has a much more

uniform velocity distribution at this location. The standard deviation of D for cases

with Sx = 6r and Sx = 8r is 1.1% while this value for cases with Sx = 8r and Sx = 10r

is 0.3%. In order to reduce the computational cost, unless otherwise is mentioned,

the length of the domains of simulations is Sx = 8r. According to our studies and

Komrakova et al. [101], Sy = 4r is wide enough to minimize the effect of the side

walls on simulations and save-up in computational costs. Hence, unless otherwise is

mentioned, domains with Sy = 4r are used in the simulations.

Concerning with the effect of grid size on results, simulations with Re=0.1, λ=1

and two different capillary numbers of 0.1 and 0.4, as the boundaries of the subcritical
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TABLE 3.5: The effect of grid size on Taylor deformation parameter (D) at
steady-state for cases with Re=0.1, λ = 1 and two different capillary numbers

of 0.1, 0.4.

mesh h Ca=0.1 Ca=0.4

D εD D εD

M1 2r/25 0.1139 1.24% 0.6313 4.7%
M2 2r/30 0.1135 0.8% 0.6144 1.9%
M3 2r/35 0.1125 - 0.6030 -

regime of creeping flow, are done. Table 3.5 summarizes the Taylor deformation pa-

rameter for these cases solved in three different meshes of M1, M2, and M3. The mesh

M3 (as it is formed with the finest grid) is used as the reference case, and the relative

error of cases with meshes M1 and M2 with regards to the case with this mesh are

calculated. According to these data, the error in Taylor deformation parameter of mesh

M2 in the worse case is less than 2%. In favor of computational cost, unless otherwise

is specified, simulations are done in domains with grid size of mesh M2.

3.6.2 The effect of capillary number

In order to study the accuracy of our results on capturing the effect of capillary number

on deformation of the droplet in creeping flow condition, simulations with different

capillary numbers of 0.05, 0.1, 0.2, 0.3 and 0.4 in flow with Re=0.0625 and λ = 1

are done. For the case with Ca=0.4, a domain length of Sx = 12r is used to ensure

acceptable uniform velocity profile at the location of the periodic boundary. Taylor

deformation parameter (D) and inclination of the droplet (45-θ ) are extracted and pre-

sented in figure 3.10. These data are compared with results available in the literature,

done by different methods i.e. numerical methods including Lattice Boltzmann, VOF

and boundary integral in addition to experimental and analytical methods. According

to these results, by increasing the capillary number, both Taylor deformation parame-

ter (D) and inclination of the droplet (45-θ ) increases, meaning the droplet elongates

more in the flow direction. For small values of capillary number, the results agree well

with the theoretical studies of Cox [147]. However, by increasing the capillary number,

asymptotic results of Cox [147] under-predicts the deformation parameters compared
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FIGURE 3.11: Top: droplet shape along with vorticity contours (ey.∇×v) in x-z
plane at y = Sz/2. bottom: cross section of droplet shape along with stream-
lines in the same plane. All the images are in steady-state of the solution with
Re=0.0625, λ=1 and h=2r/25, for different capillary numbers of 0.2, 0.3 and

0.4.

with experimental and numerical data. This difference expands as capillary number

increases. It is clear to see that the results extracted in this study agree well with the

reference data.

For aforementioned cases, with capillary numbers of 0.2, 0.3 and 0.4, the steady-

state droplet shape along with velocity streamlines and vorticity contours in x-z plane

at y = Sy/2 (ey.∇× v) are illustrated in figure 3.11. This figure also verifies that by

increasing the capillary number, the droplet elongates more towards the flow direction.

In the case of Ca=0.4, the tips of the droplet tilt towards the walls. This causes droplet

not to be elliptical anymore and start to get a dumbbell shape. Figure 3.12 represents

the evolution of droplet deformation of the mentioned cases with Ca=0.1, 0.2, 0.3 and

0.4. It is noticeable that by increasing the capillary number, the time required to reach

the steady-state of the solution escalates. We believe the reason is due to lower surface

tension for higher capillary numbers and hence, lower resistance of the droplet towards

topological changes. This lower resistance leads to major changes in the deformation

of the droplet, before reaching steady-state which requires more time. In this figure,
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FIGURE 3.12: Startup variation of top: D and bottom: Lp/2r and W /2r pa-
rameters Vs. tγ̇/(2Ca) for subcritical cases with Re=0.0625 and λ=1. Cases

with four different capillary numbers of 0.1, 0.2, 0.3 and 0.4 are tested.
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FIGURE 3.13: Evolution of droplet shape at Re=0.1, Ca=0.42 and λ=1, along
with the pressure contours on the droplet surface, (t∗ = t γ̇)
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FIGURE 3.14: Evolution of the droplet shape and the flow pattern inside of the
droplet, along with the vorticity magnitude contours all at y = Sy/2, for the case
with Re=0.1, Ca=0.42 and λ=1. Snapshots are taken in times t γ̇ = 25.20,32.04

and 35.76 (from top to bottom).

our simulation for Ca=0.4 has reached the steady-state after t γ̇=20, but in order to avoid

having a skewed graph, only the startup results until time t γ̇=5 are shown.

According to the previous experimental, numerical and theoretical studies, in creep-

ing flow conditions, when λ < 4, there is a critical capillary number (Cac) above which

the droplet won’t reach steady-state and continues to deform until breaks-up. The value

of Cac is lowest for λ values roughly around 0.6 [148]. According to Rallison [111],

this value is slightly less than Cac for λ = 1 which is around 0.41. As reported by Li,

Renardy, and Renardy [130], in case of Ca=0.42, the droplet breaks into two daughter

droplets, one satellite, and two sub-satellite droplets. In order to study the ability of

the method on capturing the break-up, simulation with Ca=0.42, Re=0.1 and λ = 1

in a domain with (Sx,Sy,Sz) = (12r,4r,8r) is carried out. This case is simulated long

enough until the breakup of the droplet arose. The variation of droplet’s shape in time

is presented in figure 3.13. As expected, the droplet breaks-up into two daughters,

one satellite in the middle and two sub-satellite droplets. The deformation starts by

stretching of the droplet in flow direction forced by viscous shear stress of the flow.

In this state, the droplet holds its elliptical shape (t*=0,2.14 and 6.88). Continuing on

being imposed to the shear flow, the droplet then loses its elliptical shape, tips are tilted

towards the walls and a waist starts to form in its center. The droplet stretches more
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and gets longer in the flow direction while forming necks around its two tips. The

stretching process continues until the waist gets thinner and necks cause an end pinch-

ing breakup into two daughter and one satellite droplets. Eventually, two sub-satellites

depart from the satellite droplet. In this figure, the color contours imply the pressure

on the surface of the droplet. In order to gain a better understanding of the breakup

process, the final stages of the breakup of this case are illustrated in figure 3.14. This

figure presents the cross-sectional profile of the surface of the droplet (φ = 0.5) at three

different times of t γ̇=25.20, 32.04 and 35.76 along with the velocity streamlines and

vorticity magnitude contours. According to this figure, at time t γ̇=25.20, there are two

visible vortices inside of the droplet elongated in the flow direction, each in one of

the bulbous. As time passes to t γ̇=32.04 and droplet evolves, a third vortex is formed

inside of the waist of the droplet which is separated from the other two vortices by the

necks. Towards the end, where the waist breaks into a satellite and two sub-satellite

droplets, the vortex inside of it also divides into three vortices, one inside of each piece.

The final shape at time t γ̇=35.76 shows the existence of these five vortices inside of the

daughter, satellite, and sub-satellite droplets.

3.6.3 The effect of Walls Confinement

In favor of studying the ability of the proposed method on capturing the effect of walls

confinement on droplet deformation in subcritical regions, simulations with (Re, Ca,

λ )=(0.1,0.3,1) and (0.1,0.1,1) are done in domains with different confinement ratios

(2r/Sz). As reported by Renardy and Cristini [131], for the given Reynolds number

of 0.1 and λ value of 1, capillary numbers of 0.1 and 0.3 are below the critical value

(Cacr) which means the droplet must reach to a steady-state. Shapira and Haber [119]

extracted the analytical expressions based on Lorentz’s reflection method for droplet

deformation in confined shear flow in small to moderate deformation regimes. They

presented a first-order correction for the wall effect and claimed that the droplet shape

was not altered compared to the unbounded shear flow but only the magnitude of de-

formation was increased.

The results of simulations of current study compared with the experimental data of

Sibillo et al. [117] and analytical studies of Shapira and Haber [119] are presented in
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FIGURE 3.15: Taylor deformation parameter (D) for cases with Ca=0.1 and 0.3
with λ = 1 in different walls confinement ratios. Experimental data of Sibillo
et al. [117] (◦) and analytical data of Shapira and Haber [119] (dash dot
lines) for Stokes flow regime, in comparison with results of current study

for Re=0.1 (M)

figure 3.15. As can be seen in this figure, for both capillary numbers, Taylor deforma-

tion parameter (D) increases with increasing the walls confinement ratio (2r/Sz). In

smaller capillary number (Ca=0.1) there is good agreement between analytical predic-

tions of Shapira and Haber [119] and both experimental data of Sibillo et al. [117] and

the results of current study. For cases with Ca=0.3, however, analytical predictions of

Shapira and Haber [119] fails to predict the Taylor deformation parameter compared

with experimental data of Sibillo et al. [117] and results of the present study. For all

the cases, by decreasing the walls confinement ratio, the value of Taylor deformation

parameter converges to a constant value.

In the next step, we study the startup behavior of a highly confined droplet with

2r/Sz = 0.83, Ca=0.6, λ=0.32 and Re=0.0625 in a domain with Sx = 16r. As stated

in Vananroye, Van Puyvelde, and Moldenaers [139], the critical capillary number for a

case with λ=0.32, 2r/Sz=0.83 and creeping flow condition is approximately equal to

(Cacr = 0.7). Thus for our intended case, we do not expect the breakup of the droplet.
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FIGURE 3.16: Time evolution of a highly confined droplet in creeping flow con-
dition with 2r/Sz = 0.83, λ = 0.32, and Ca=0.6, along with the pressure con-
tours on the droplet’s surface (right column) compared with experimental results
of Vananroye et al. [149] (left column). (a): images taken in velocity-vorticity

plane, (b): images taken in velocity-velocity gradient plane at t γ̇/Ca=88.25
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FIGURE 3.17: Top: Streamline contours inside of the droplet in x-z plane at
y = Sy/2, Bottom: droplet shape along with the walls and vorticity contours
(ey.∇×v) in x-z plane at y = Sy/2. Both shapes illustrates a droplet in creeping
flow conditions, with capillary number of 0.6, λ = 0.32, Reynolds number of

0.0625 and walls confinement ratio of 2r/Sz = 0.83 at t γ̇/Ca=88.25

FIGURE 3.18: Startup behavior of a highly confined droplet with Re=0.0625,
2r/Sz = 0.83, λ = 0.32, and Ca=0.6. compared with experimental results of
Vananroye et al. [149] for creeping flow condition and confined MM model of

Minale [124] for Ca=0.5, 0.6
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Figure 3.16 illustrates the time evolution of the droplet in comparison with the same

time instants of the experimental work of Vananroye et al. [149].

According to the figure 3.16(a), shortly after starting the simulation, the droplet

starts to stretch in the flow direction. The stretching continues until the droplet reaches

its maximum elongation at some time around t γ̇/Ca=44, but instead of breaking up,

the droplet retracts. According to figure 3.16(b), the central part of the droplet takes

a cylindrical shape, oriented in the flow direction and the tips are tilted towards the

walls giving the droplet a sigmoid shape. Figure 3.17 provides information about the

streamline contours inside of the droplet and vorticity contours in y = Sy/2 plane.

According to this figure, two vortices exist inside of the droplet which are stretched

from the center of the droplet toward the tips.

Time variation of W /2r and Lp/2r parameters, along with experimental data of

Vananroye et al. [149] and analytical predictions of MM model Minale [124] are pre-

sented in figure 3.18. According to this figure, for the time around t γ̇/Ca ≈44, the

value of Lp/2r is maximum which is in agreement with information provided in figure

3.18. Also for the time around t γ̇/Ca ≈95, the droplet starts to expand after reach-

ing a local minimum length. It seems that these oscillations in the deformation of the

droplet will last for a long time and reaching steady-state will take time much longer

than the scale studied in this chapter (t γ̇/Ca =140). It is worth mentioning that in this

case a good agreement is seen between the experimental data and the results of current

study. MM model of Minale [124] however fails to provide accurate information. In

this model for Ca=0.6, the droplet continuously deforms until it breaks-up. For smaller

capillary of 0.5, this model predicts a steady-state after t γ̇/Ca≈80 and does not predict

any oscillations in the droplet deformation.

3.6.4 The effect of viscosity ratio

In order to study the accuracy of the method on a wider range of viscosity ratios, three

simulations with viscosity ratios of λ=0.28, 1.2 and 1.9 all with Ca=0.2 and Re=0.1 are

performed. The selected domain has walls confinement ratio of 2r/Sz = 0.73. Figure

3.19 presents the startup transition of non-dimensionalized L and B parameters along

with the experimental results of Vananroye et al. [149] and predictions of confined

MM model of Minale [124]. It is clear to see that the startup transition of the droplets
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FIGURE 3.19: Effect of viscosity ratio on transition of droplet deformation
for Ca=0.2 in a domain with confinement ratio of 2r/Sz = 0.73. Compari-
son between extracted data from experimental results of Vananroye et al. [149]
(symbols) and prediction of confined MM model of Minale [124] (dash lines)
for creeping flow condition, along with the extracted results of current study
(bold lines) for Re=0.1. Information in color red stand for λ = 0.28, color
blue for λ = 1.2 and color green for λ = 1.9. The absolute time (t) is non-

dimensionalized with characteristic emulsion time (τ).

FIGURE 3.20: Cross sectional steady-state scheme of droplet in y= Sy/2, along
with stream lines of the flow in different viscosity ratios of 0.28 (a), 1.2 (b) and
1.9 (c), for flow with Re=0.1 and Ca=0.2. All the simulations are done in a
domain with 2r/Sz = 0.73. The color contours presents the vorticity magnitude

in aforementioned plane.
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FIGURE 3.21: Left: Effect of viscosity ratio on droplet breakup in simple shear
flow. Experimental data are extracted from Gace [148], Right: Schematic rep-
resentation of the effect of walls confinment ratio on critical capillary number

as presented in Janssen et al. [140]

in all three cases are similar, although approximately after t γ̇/Ca ≈3 the differences

start. Good agreement is seen between experimental data and results extracted in this

study. The MM model results also match the startup transition process predicted by

experimental and numerical results. However, it over-predicts the deformation of the

droplet for the rest of the simulations.

Figure 3.20 illustrates the cross-section of the droplet shape in x-z at y = Sy/2

plane at time t γ̇/Ca =20, along with the velocity streamlines and vorticity magnitude

contours. According to this figure, for the case of λ = 0.28, there are two vortices

inside of the droplet, but by increasing the viscosity ratio to 1.2 and 1.9, it decreases to

one vortex. Also, the vorticity magnitude decreases by increasing the viscosity ratio.

Since λ = µd/µc, smaller viscosity ratio means for a constant matrix viscosity, the

droplet has lower viscosity, and hence lower resistance towards the gradual deforma-

tion. That justifies the bigger deformation in the flow pattern, two vortices and higher

vorticity magnitude inside of the droplet with λ = 0.28.

3.6.5 The effect of viscosity ratio on walls critical confinement ratio

In previous sections, we validated the ability of our method on capturing the physics of

problems with different walls confinements (section 3.6.3) and viscosity ratios (section

129



Chapter 3. Numerical study of droplet deformation in shear flow using a conservative

level-set method

FIGURE 3.22: The effect of viscosity ratio on walls critical confinement ratio in
steady-state deformation and breakup of the droplet, for given values of Ca=0.3

and Re=1.0 (The trend lines are added for the sake of clarity).
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FIGURE 3.23: The steady-state droplet shape along with the streamlines of the
flow inside of the droplet in y = Sy/2, for subcritical cases in higher steady-state
region (left column), and subcritical cases in lower steady-state region (right
column) in different confinement ratios. The color contours present the vorticity

magnitude in the aforementioned plane.
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FIGURE 3.24: D (solid lines), Lp/2r (dash lines) and W /2r (dash dot lines)
parameters Vs. tγ̇ for subcritical cases of table 3.6. Black color lines are related
to the results of λh and green color lines are related to the results of λl . 2r/Sz=

(a): 0.25, (b): 0.38, (c): 0.50, (d): 0.71 and (e): 0.83.
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FIGURE 3.25: breakup of the droplet into daughter, satellite, and sub-satellite
droplets for supercritical cases of table 3.6. The color contours are pressure on
the droplet surface. The left column is related to droplet breakups of supercrit-
ical cases of the higher steady-state region. Right column is related to droplet

breakups of supercritical cases of lower steady-state region.
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TABLE 3.6: subcritical (sub) and supercritical (super) values of viscosity ratios
for different walls confinement ratios along with the final values of D, θ , Lp/2r
and W /2r for subcritical cases. l and h in λ stand for low and high as in each

confinement ratio there are two values of λcr, one smaller than the other.

2r/Sz λsub λsuper D θ Lp/2r W /2r

0.25
λl 0.2 0.3 0.48 25.32 1.70 0.75
λh 2.55 2.5 0.49 17.25 1.70 0.76

0.38
λl 0.35 0.4 0.53 21.64 1.82 0.74
λh 2.2 2.0 0.49 17.52 1.79 0.75

0.50
λl 0.65 0.7 0.6 16.67 2.1 0.715
λh 2.0 1.95 0.56 14.45 2.02 0.72

0.71
λl 1.4 1.5 0.7 11.16 2.47 0.6
λh 5 4.5 0.56 11.03 2.0 0.69

0.83
λl 1.75 2.0 0.76 8.52 2.84 0.54
λh 14 13 0.54 8.28 1.95 0.67

3.6.4). We realized that increasing the confinement ratio for subcritical cases increases

the droplet deformation parameter (fig. 3.15) and for highly confined cases, induces

retractions and expansions in the droplet which causes fluctuations in the deformation

(fig. 3.18). We also noticed that by varying the viscosity ratio, the flow pattern inside

of the droplet changes, as increasing the viscosity ratio from 0.28 to 1.2 decreased

the number of internal vortices of the droplet from two to one, and also decreased the

vorticity magnitude (fig. 3.20).

Gace [148] systematically studied the droplet breakup in simple shear flow as a

function of viscosity ratio. These data are now known as Grace curve which is pre-

sented in figure 3.21 (left). In this figure, the values of λ s which are above the fitted

line prompt the breakup, while values of λ under it results in steady-state deformation

of the droplet without breakup. According to this figure, for a constant capillary num-

ber bigger than the critical value, there are two critical viscosity ratios, one smaller

than the other. For smaller critical viscosity ratio, increasing the λ will lead to breakup

while for bigger critical viscosity ratios, decreasing the λ will lead to breakup. Sim-

ulations without the presence of confinement effect of walls, performed so far in this

chapter, are in agreement with Grace curve. Our simulations in creeping flow condition

presented in figure 3.10 (λ = 1, Ca=0.05, 0.1, 0.2, 0.3 and 0.4) as well as simulations
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presented in figure 3.19 (Ca=0.2 and λ=0.28, 1.2 and 1.9), which all ended in steady-

state deformation of the droplet, are in lower part of Grace curve (steady-state region)

and simulation of figure 3.13 (λ = 1 and Ca=0.42), ended in breakup of the droplet,

locates in the upper part of Grace curve (breakup region).

Despite the important information provided in this graph, the walls confinement

effect is not taken into account. Figure 3.21 (right) illustrates the findings of Janssen et

al. [140] on the effect of walls confinement ratio on critical capillary number. Despite

the important information provided in this graph, the effect of different viscosity ratios

is not taken into account. Although combined with the Grace curve, these two graphs

provide essential information regarding the critical capillary number in different vis-

cosity and walls confinement ratios; there is a need to specify the effect of viscosity

ratio on the critical walls confinement ratio.

In this section, we study the effect of viscosity ratio on walls critical confinement

ratio in droplet deformation and breakup for a constant capillary number of 0.3 and

Reynolds number of 1.0. We perform a batch of simulations, where the walls confine-

ment ratio and viscosity ratio of the droplet to the matrix are changed systematically.

For each confinement ratio, we look for two values of critical viscosity ratios, one

smaller than the other. Considering the conclusion of the Grace curve, for the lower

critical viscosity ratio (λ l
cr), decreasing the λ value will lead to steady-state deforma-

tion, and increasing the λ value will lead to the breakup of the droplet. Although

for the higher critical viscosity ratio (λ h
cr), we expect opposite behavior, as ascending

from λ value is supposed to lead to steady-state deformation and descending from it is

supposed to lead to breakup of the droplet.

In order to find the λ l
cr and λ h

cr as a function of 2r/Sz, for each chosen value of

walls confinement ratio, we were starting the simulation with arbitrary λ s, searching

for values where result in breakup of the droplet. We then gradually descend (ascent)

from this value until simulation winds up in steady-state, with no breakup, to find λ l
cr

(λ h
cr). This process was done for walls confinement ratios of 2r/Sz=0.25, 0.38, 0.5,

0.71 and 0.83. A domain length of Sx = 16r is used to guarantee that the droplet is not

going to collide with its own image through periodic boundaries, and also to ensure

an acceptable uniform velocity profile at the location of periodic boundaries. For each

critical viscosity ratio found, there is one subcritical λ (λsub, leading to steady-state
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deformation) and one supercritical λ (λsuper, leading to breakup). For the simulations

performed, these values are extracted and presented in table 3.6 as well as steady-state

values of D, θ , Lp/2r and W /2r for subcritical cases.

Figure 3.22 illustrates the data provided in table 3.6. In this figure, it is noticeable

that two steady-state regions exist, one corresponding to λ values smaller than λ l
cr

(hereinafter refereed to as lower steady-state region) and another corresponding to λ

values bigger than λ h
cr (hereinafter refereed to as higher steady-state region). All the

simulations in these two areas resulted in steady-state deformation of the droplet. In

the area between these two regions, there is a breakup zone in which simulations in

this area, resulted in the breakup of the droplet.

As mentioned before and as can be seen in the Grace curve (fig. 3.21), in creeping

flow conditions without the effect of walls confinement, for λ values higher than 4,

simulation always results in steady-state deformation. Although in our study, simula-

tions with λ values as high as λ=13 ended-up in breakup. We believe this is associated

with effect of walls confinement, even though slightly higher Reynolds number in our

cases is affecting as well.

According to figure 3.22, in the lower steady-state region, by increasing the con-

finement ratio, the critical viscosity ratio monotonically increases. However, for the

higher steady-state region, starting from 2r/Sz=0.25, increasing the confinement ra-

tio up to 2r/Sz ≈ 0.45, decreases the λ h
cr, and after that, rapidly increases the λ h

cr.

The results of figure 3.22 combined with the Grace curve and the findings of Janssen

et al. [140] provides important information on the role of viscosity ratio vs. critical

walls confinement ratio, critical capillary number vs. viscosity ratio and critical cap-

illary number vs. confinement ratio, respectively. These information are interesting

and could be used to gain an understanding of the critical Grace number in different

confinement ratios.

In order to gain a better understanding of the introduced graph, the steady-state

shape of the droplet, streamlines of the flow inside of the droplet and the color con-

tour of the vorticity magnitude all in x-z at y = Sy/2 plane for subcritical cases in

different confinement ratios are presented in figure 3.23. In this figure, the left column

corresponds to the subcritical cases of the higher steady-state region and right column

corresponds to subcritical cases of the lower steady-state region. It is plain to see that
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by increasing the confinement ratio, the droplet leans more towards the flow direction.

This can be seen quantitatively in the data provided in table 3.6 in which for example in

cases with 2r/Sz=0.25, the value of inclination angle for subcritical cases in lower and

higher steady-state regions are 25.32◦and 17.25◦, respectively. These values are big-

ger than the equivalent values in confinement ratio of 2r/Sz=0.71 which are 11.16◦and

11.03◦. In all the cases in both lower and higher steady-state regions, by increasing the

confinement ratio, the droplet stretches more in the flow direction and as a result, the

width of the droplet decreases (see for example parameters Lp/2r and W /2r presented

in table 3.6).

According to figure 3.23, and also information provided in table 3.6, in each con-

finement ratio, the value of inclination angle for subcritical cases in lower steady-state

region is higher than the same parameter in higher steady-state region. In another

word, in each confinement ratio, in subcritical cases, for viscosity ratios in the lower

steady-state region, the droplet leans more towards the flow direction compared with

the viscosity ratios in the higher steady-state region. Also in each confinement ratio,

the Lp/2r parameter which describes how much the droplet is stretched in the flow di-

rection, for subcritical cases in the lower steady-state region is higher than subcritical

cases in the higher steady-state region.

According to figure 3.23, for five cases, there are two vortices inside of the droplet,

and for the rest, there are only one. The cases with two vortices inside of the droplet

are (2r/Sz,λ )=(0.25, 0.2) and all the cases with 2r/Sz=0.71 and 0.83. We suppose

that for the case of (2r/Sz,λ )=(0.25, 0.2), this ratio (λ ) is small enough to allow the

existence of two vortices inside of the drop. For cases with 2r/Sz=0.71 and 0.83, the

existence of two vortices inside of the droplet could be linked to the effect of higher

confinement ratios and the suppressing effect of the walls. In this figure, for cases

in the lower steady-state region (right column of images), the vorticity magnitude is

higher compared to the relative case in the higher steady-state region (left column

of images). This could be associated with lower viscosity ratio of the cases of right

column compared with the relative cases in the left column.

For cases introduced in figure 3.23, time-dependent changes of Lp/2r, W /2r and

D parameters are presented in figure 3.24. It is clear to see that simulations in these

cases have reached steady-state over time. In this figure, for each confinement ratio, the
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results of simulations with two viscosities of λl and λh are similar to each other, except

for cases (d) and (e). In the case (d), the Lp/2r parameter of the droplet in subcritical

case of the lower steady-state region is approximately 23% more than its equivalent

case in subcritical case of the higher steady-state region. In case (e) this difference in

the Lp/2r parameter between lower and higher steady-state regions increases to 45%.

This difference which can be seen in figure 3.23 as well, could be associated with the

bigger difference in λ values in subcritical cases compared with the other cases. For

example, for subcritical cases in the domain with 2r/Sz=0.71, the difference between

λ l
sub and λ h

sub is 3.6, while this value for cases in domain with 2r/Sz=0.50 is only 1.35.

Figure 3.25 illustrates the droplet breakup outcomes for supercritical cases men-

tioned in table 3.6 for different confinement ratios. According to this figure, figure 3.23

and information provided in table 3.6, eventhough for subcritical cases, by increasing

the confinement ratio, droplet stretches more towards the flow direction, for the relative

supercritical cases, by increasing the confinement ratio, the droplet stretches less be-

fore breaking-up. In another word, for smaller confinement ratios (2r/Sz=0.25, 0.38)

the breakup mechanism is elongative end-pinching while increasing the confinement

ratio changes this mechanism to mid-point-pinching.

3.7 Conclusions

A finite-volume conservative level-set based method was utilized to numerically sim-

ulate three-dimensional droplet deformation and breakup subjected to shear flow. A

semi-implicit discretization approach was applied on momentum equation, enabling us

to employ larger time-steps in low Reynolds number simulations. The results of Taylor

deformation parameter and the inclination angle of the droplet for subcritical cases of

creeping flow regime were extracted and compared with available experimental, nu-

merical and analytical data. The ability of the method on capturing the breakup of

the droplet was examined by simulating the supercritical case of creeping flow regime.

The effect of walls confinement on droplet deformation in subcritical and near-critical

regions was extracted and compared with available experimental and analytical data.

The observed fluctuations in deformation of the droplet for the near-critical highly con-

fined case were in agreement with the experimental data. The effect of viscosity ratio
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on droplet deformation in subcritical cases was studied and the results were compared

with available experimental and analytical data. In all the cases, a very good agreement

was seen between the results extracted in the current study and the data available on

literature. To further study the deformation and breakup of the droplet in shear flow,

the effect of viscosity ratio on walls critical confinement ratio was studied. We found

out that for each confinement ratio, there are two critical viscosity ratios. These two

viscosity ratios create two steady-state regions and one breakup region between them.

We further analyzed these regions by studying the droplet deformation and breakup

parameters in these zones.

The insights gained from the research in this chapter on the effect of viscosity

ratio on walls critical confinement ratio provide a clear roadmap to steady-state and

breakup regions of droplets in shear. This information is valuable in more effective de-

sign of future droplet-based microfluidic devices, reactive dispersions, emulsification

process, morphology development of blends and Lab-on-a-Chip systems for individual

purposes with methods discussed in this chapter, namely, by adjusting the viscosity or

confinement ratios of the existing shear flow to the appropriate values to control the

droplet volume. For example, the provided information on the existence and relation

of two steady-state and one breakup regions can be used to quantify emulsions stability

by analyzing the droplet size spectrum in the emulsion.
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conservative level-set method

Abstract. A finite-volume based conservative level-set method is presented to nu-

merically solve the non-Newtonian multiphase flow problems. One set of governing

equations is written for the whole domain, and different phases are treated with variable

material and rheological properties. Main challenging areas of numerical simulation

of multiphase non-Newtonian fluids, including tracking of the interface, mass conser-

vation of the phases, small timestep problems encountered by non-Newtonian fluids,

numerical instabilities regarding the high Weissenberg Number Problem (HWNP), in-

stabilities encouraged by low solvent to polymer viscosity ratio in viscoelastic fluids

and instabilities encountered by surface tensions are addressed and proper numerical

treatments are provided in the proposed method. The numerical method is validated

for different types of non-Newtonian fluids, e.g. shear-thinning, shear-thickening and

viscoelastic fluids using structured and unstructured meshes. The proposed numerical

solver is capable of readily adopting different constitutive models for viscoelastic fluids

to different stabilization approaches. The constitutive equation is solved fully coupled

with the flow equations. The method is validated for non-Newtonian single-phase flows

against the analytical solution of start-up Poiseuille flow and the numerical solutions of

well-known lid-driven Cavity problem. For multiphase flows, impact of a viscoelastic

droplet problem, non-Newtonian droplet passing through a contraction-expansion, and

Newtonian/non-Newtonian drop deformation suspended in Newtonian/non-Newtonian

matrix imposed to shear flow are solved, and the results are compared with the related

analytical, numerical and experimental data.

4.1 Introduction

A Newtonian fluid is a fluid in which the viscous stresses emerging from its flow, are

linearly proportional to the local rate of change of its deformation over time. Non-

Newtonian fluid, on the other hand, does not obey this rule, and in most of the cases,

its viscosity is dependent on shear-rate itself or its history. Most of the fluids found in

either nature or industry are non-Newtonian, e.g. blood, proteins, slurries, polymers,

suspensions, emulsions, chemical reactants etc. [7]. These types of fluids usually

show many exceptional characteristics, for example, shear-thinning, shear-thickening,
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viscoelasticity, etc. Non-Newtonian fluids have extensive applications in a variety of

fields, e.g. biochemical, food, pharmaceuticals and petrochemical industries [150].

The most common type of time-independent non-Newtonian fluids are shear-thinning

(or pseudoplastic), in which their apparent viscosity decreases with increasing shear

rate. The shear-thickening fluids, on the other hand, are known as fluids in which

their apparent viscosity increases with the shear-rate. Because of the specific charac-

teristics, of shear-thinning and shear-thickening fluids (STF), they are used widely in

different engineering applications, e.g. energy absorbers, vibration controllers, safety

protectors, pharmaceutical and food industries [151–153]

Viscoelastic fluids, however, exhibit both viscous and elastic characteristics under

typical flow conditions, as encountered for instance in polymer and food processing

industries. While viscous liquids strain uniformly when a stress is applied, elastic

solids strain instantaneously. Consequently, viscoelastic fluids exhibit time-dependent

strain, i.e. when a stress is applied, their strain approaches its equilibrium value on a

time-scale which is a characteristic of the fluid [150, 154].

In many of the mentioned applications, there exists a moving interface, separat-

ing two immiscible non-Newtonian fluids. For instance, the bubble behaviour in non-

Newtonian fluids has vast number of applications in diverse fields, e.g., decompression

sickness, volcanic eruption, glass manufacture, metallurgy, wastewater treatment, han-

dling and processing of fermentation broths, polymer devolatilization, bubble columns,

mechanical stirrers with multiphase flows, composites processing, plastic foam pro-

cessing, multiphase reactors, etc. For example in different multiphase reactors of gas-

liquid, fluidized bed, trickle bed, and slurry reactors used in many biochemical appli-

cations, fluids may exhibit non-Newtonian behavior [8]. A direct consequence of this

behaviour is a significant change in the characteristics of the process [150, 155]. Thus,

the development of accurate numerical tools for the simulation of non-Newtonian mul-

tiphase flows is vital from both fundamental and practical points of view. Different

approaches are used in literature in order to develop numerical tools to solve non-

Newtonian multiphase flow problems.

In the context of Marker-And-Cell (MAC) method, Tomé et al. [156] used a MAC-

finite difference (FD) approach, employing a projection method to study the non-

Newtonian droplet impact problem. Oishi et al. [157] used this method to study the
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jet-buckling problem of viscoelastic fluids. Tome and McKee [158] proved the ability

of their updated MAC method on capturing physical instabilities regarding the buck-

ling of planar jets.

In the context of front-tracking interface capturing method, Mukherjee and Sarkar

[135] used this method to study the deformation of a viscoelastic droplet in a New-

tonian matrix under shear flow. Ferreira and Trierweiler [159] used this method to

solve the motion of deformable bubbles in non-Newtonian fluids. They have used var-

ious Generalized Newtonian Fluid (GNF), and viscoelastic models to study the rule

of matrix rheology on droplet rising problem. Aggarwal and Sarkar [160] used this

approach to study the deformation of a Newtonian/viscoelastic droplet suspended in

a viscoelastic matrix applied to shear flow. They elaborately studied the elastic and

viscous stresses at the interface, polymer orientation, and the elastic and viscous forces

in the solution domain to investigate their effect on droplet deformation.

In the context of Smoothed Particle Hydrodynamics (SPH) method, Fang et al.

[161] and Jiang et al. [162] and Rafiee, Manzari, and Hosseini [163] used this technique

to study the impacting problem of a viscoelastic droplet on a surface and also the

buckling problem of a viscoelastic jet. Zainali et al. [164] presented an incompressible

SPH method with an improved interface treatment procedure enabling them to model

multiphase flow problems with the density and viscosity ratios up to 1000 and 100

respectively.

In the context of lattice Boltzmann method (LBM), Wagner, Giraud, and Scott

[165] developed a new LBM to solve two-phase flow of viscoelastic liquid mixtures.

They used this new approach to simulate a bubble rising in a viscoelastic fluid and were

able to reproduce the experimentally observed cusp shape at the trailing end of the bub-

ble. Frank et al. [166] presented a multiscale approach to describe the dynamics of a

chain of bubbles rising in non-Newtonian fluids using the particle image velocimetry

(PIV) and the LBM simulations. Wang, Liu, and Zhang [167] presented a multiple-

relaxation-time colour-gradient lattice Boltzmann model and used it to solve the de-

formation and breakup of a confined droplet in shear flow with power-law rheology. It

was demonstrated that their model could accurately solve power-law fluids with a broad

range of indices. Gupta and Sbragaglia [168] used a numerical approach based on a

combination of LBM and FD schemes to study the break-up of Newtonian/viscoelastic
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droplets in a viscoelastic/Newtonian matrix imposed to confined shear flow. Sun et

al. [169] used a LBM to study the non-Newtonian flow effects on the internal mixing

subsequent to coalescence of initially stationary droplets.

In the context of volume of fluid (VOF) method, Lunkad, Buwa, and Nigam [170]

used this approach to study the viscoelastic droplet impact problem over horizontal

and inclined surfaces. Favero et al. [171] used this method embedded in OpenFoam

package to study internal viscoelastic multiphase flow problems. Bonito, Picasso, and

Laso [172] used a projection method to study the die-swell problem. Sun et al. [173]

used this method to study the minimum in-line coalescence height of bubbles generated

from a submerged nozzle in Carboxymethyl cellulose sodium (CMC) non-Newtonian

aqueous solution. Torkkeli [174] used this approach to solve the dynamics of multiple

horizontal bubbles rising from different orifice arrangements in a shear-thinning matrix

employing a power-law GNF model. Moraga et al. [175] investigated the dam break

problems of non-Newtonian fluids with applications in the sudden collapse of mine

tailings, snow avalanches, debris and lava flows, and casting solidification by adopting

a Carreau-Yasuda model [176]. Premlata et al. [177] used this model to study the

dynamics of an air bubble rising in a non-Newtonian shear-thinning/shear-thickening

matrix. Focke and Bothe [94] adopted an extended VOF method to investigate the

binary droplet collisions at high Weber numbers. Abishek, King, and Narayanaswamy

[178] used the VOF method imbedded in OpenFOAM package to study the dynamics

of a Taylor bubble in the steady and pulsatile co-current flow of Newtonian and shear-

thinning liquids in a vertical tube. Araújo, Miranda, and Campos [179] employed

this method to investigate the Taylor bubbles rising through flowing non-Newtonian

inelastic fluids.

In the context of Level-set method (LSM), Yu, Sakai, and Sethian [180] used a

LSM based finite difference algorithm to solve viscoelastic ink ejection problem cou-

pled with an equivalent circuit model to calculate the inflow pressure. Tezduyar et al.

[181] used a Convected LSM to study the viscoelastic fluid buckling problem. Pri-

eto [182] presented a particle LSM implemented using the Finite Element Method

(FEM) and semi-Lagrangian schemes to perform stochastic, micro-macro simulations

of droplets rising in non-Newtonian fluids. Pillapakkam et al. [183] used a finite-

element solver based on the LSM to perform direct numerical simulations (DNS) of
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the transient and steady-state motion of bubbles rising in a viscoelastic matrix. Their

report depicted a more clear image on volume jump discontinuity phenomena in vis-

coelastic matrices.

Despite all the advances in the numerical simulation of non-Newtonian multiphase

flows, this area is still a challenging topic regarding the difficulties related to the track-

ing of the interfaces, mass conservation of the phases, numerical instabilities regard-

ing the high Weissenberg number problem (HWNP), instabilities encouraged by low

solvent to polymer viscosity ratio in viscoelastic fluids and instabilities encountered

by surface tensions. Therefore, the development of numerical methods capable of

dealing with the aforementioned challenges in numerical simulations of multiphase

non-Newtonian fluids is very demanding. Although previous efforts have been per-

formed in the framework of front tracking, SPH, LBM, VOF, and standard LS meth-

ods, there are no previous works using the conservative level-set method [24, 184].

Therefore, objectives of this work are twofold: first to introduce a novel methodology

to accurately solve multiphase flow problems in which the droplet and/or matrix repre-

sent non-Newtonian behaviour using the CLS method, integrated with numerical tools

tackling aforementioned challenges, and second to use the implemented framework to

study the influence of non-Newtonian rheology in droplet deformation. The present ap-

proach is numerically stable for High Weissenberg numbers and low solvent to polymer

viscosity ratios. In the present CLS method, interface normals are computed using a

least-squares method on a wide and symmetric nodes-stencil around the vertexes of the

current cell [24]. These normals are then used for an accurate computation of surface

tension, without additional reconstruction of the distance function, as in geometrical

volume-of-fluid/level-set methods [25] or fast-marching methods. Moreover, most of

the computational operations are local, which permit an efficient implementation on

parallel platforms [30]. The CLS method has been designed for general unstructured

meshes [24]. Indeed, the grid can be adapted to any domain, enabling for an efficient

mesh distribution in regions where interface resolution has to be maximized, which is

difficult by using structured grids. Furthermore, TVD flux-limiter schemes [24] are

used to discretize convective terms, avoiding numerical oscillations around discontinu-

ities, whereas the numerical diffusion is minimized. Finally, the present finite-volume

formulation is attractive due to the satisfaction of the integral forms of the conservation
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laws over the entire domain.

The rest of the chapter is organized as follows: mathematical formulations are pre-

sented in section 4.2, numerical discretization of governing equations are described in

section 4.3. Special considered treatments for the main challenges of small time-step of

the simulation encountered by non-Newtonian fluids, high Weissenberg number prob-

lem (HWNP), singularities of non-viscoelastic regions and low viscosity ratio problem

(LVRP) are provided in sections 4.3.1, 4.3.2, 4.4.1 and 4.4.2, respectively. Numeri-

cal experiments and discussion are reported in section 4.7 and at the end, conclusion

remarks are discussed in section 4.8.

4.2 Mathematical formulation

Navier-Stokes equations are used to describe the conservation of mass and momentum

of two incompressible immiscible fluids on a spacial domain Ω with boundary ∂ Ω as

following [1, 24]:

∂

∂ t
(ρv)+∇ · (ρvv) = −∇p+∇ · τ +ρg+σκnδΓ in Ω (4.1)

∇ ·v = 0 in Ω (4.2)

where ρ is density of the fluid, v is the velocity field, p is the pressure field, g is

the gravitational acceleration, τ is the stress response to the deformation of the fluid,

δΓ is the Dirac delta function concentrated at the interface (Γ), n is the unit normal

vector outward to interface, κ is the interface curvature and σ is the interface tension

coefficient. In this formulation, the stress response τ is decomposed with the solvent-

polymer stress splitting technique into a purely viscous term of τs corresponding to the

instantaneous response of the solvent, and τp corresponding to the polymeric contribu-

tion of stress response:

τ = τs + τp (4.3)

where the solvent part, τs, is defined as below:

τs = µs(γ̇)
(
∇v+(∇v)T ) (4.4)
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In this formulation, µs(γ̇) is the apparent viscosity of the fluids described in the context

of generalized Newtonian fluid (GNF) models, with γ̇ as shear-rate tensor of the fluid

defined as:

γ̇ = ∇v+(∇v)T (4.5)

In this chapter, power-law GNF model is used to describe the relation of apparent

viscosity of µs with shear-rate tensor of γ̇ as below:

µs(γ̇) = K|γ̇|m−1 (4.6)

where |γ̇| is magnitude of the shear-rate tensor outlined as |γ̇| =
√
(γ̇ .. γ̇)/2, K is the

consistency constant and m is the power-law index. The power-law GNF model is

able to describe shear-thinning (pseudo-plastic) behaviour for m < 1, shear-thickening

(Dilatant) behaviour for m > 1 and Newtonian behaviour for m = 1.

The polymeric stress tensor of equation 4.3 is written as:

τp =
µp

λ1
fs(c) (4.7)

where λ1 is the relaxation time of the viscoelastic fluid, µp is the polymeric viscosity,

fs(c) is a strain function depending on the constitutive model and expressed in terms

of the conformation tensor, c. This tensor is an internal tensorial variable representing

the macromolecular configuration of the polymeric chains. Independent of the kinetic

theory, conformation tensor by definition is symmetric positive definite and is equal to

the identity matrix I when the polymer chain is at the equilibrium. The basic mech-

anism for stress build-up and relaxation is governed by a differential equation of the

conformation tensor and a relaxation function of fr(c) that depends on the constitutive

model as follows:

Dc
Dt

= ∇vT · c+ c ·∇v− 1
λ1

fr(c) (4.8)
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Constitutive model fs(c) = fr(c)
Oldroyd-B c− I
FENE-P L2−3

L2−tr(c)c− I
FENE-CR c−I

1−tr(c)/L2

TABLE 4.1: Strain and relaxation functions of three widely used viscoelastic
constitutive models.

where Dc/Dt is the material derivative defined as:

Dc
Dt

=
∂c
∂ t

+ v ·∇c (4.9)

The implementation of any constitutive equations is straight forward. The fs(c)

and fr(c) functions of three widely used constitutive equations are defined in table

4.1. In this table, L is the ratio of the length of a fully extended polymer dumbbell

to its equilibrium length, and tr(c) is the first invarient of the conformation tensor c.

The summation of µs and µp of the fluid is defined as total viscosity and denoted as

µ0 = µs + µp. The ratio of µs to µ0 is defined as viscosity ratio of viscoelastic fluid

also known as retardation ratio and denoted as, β = µs/µ0 ≤ 1.

The density, solvent and polymeric viscosities (µs and µp), and relaxation time are

defined as scalar-fields inside the whole domain as follows:

ζ = ζ1H + ζ2(1−H) (4.10)

where ζ ∈ {ρ , µs, µp,λ1} and H is the Heaviside step function which takes the value

one in dispersed phase and zero elsewhere.

In this research, conservative level-set (CLS) method [82], as introduced by Bal-

cazar et al. [24] in the context of Newtonian fluids is used to track the interface. Instead

of the signed distance function, d(x,t), used to represent the interface in the classical LS

method, conservative LS method employs a regularized indicator function φ as below:

φ (x, t) =
1
2

(
tanh

(
d(x, t)

2ε

)
+ 1
)

(4.11)

where ε is the parameter that sets the thickness of the interface. φ varies from 0 in one
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fluid to 1 in other fluid. With this formulation, interface is defined by Γ = {x|φ (x, t) =

0.5}.
The level-set function is advected by velocity vector field, v, provided from solu-

tion of Navier-Stokes equations. Since the velocity field is solenoidal (∇ · v = 0), the

interface transport equation can be written in conservative form [24, 82]:

∂φ

∂ t
+∇ ·φv = 0 (4.12)

Since sharp changes exist in level set function at the interface, Superbee flux limiter

scheme is used in discretization of the convective term in order to minimize numerical

diffusion and to avoid numerical instabilities at the interface. To keep the profile and

thickness of the interface constant, an additional re-initialization equation [1, 88] is

used:

∂φ

∂τ
+∇ ·φ (1−φ )nτ=0 = ∇ · ε∇φ (4.13)

which is advanced in pseudo-time τ . This equation consists of a compressive flux:

φ (1−φ )nτ=0 and a diffusion term: ∇.ε∇φ . The first one keeps the level-set function

compressed onto the interface along the normal vector n, and the second one keeps the

profile in prescribed characteristic thickness of ε . This parameter is defined based on

the mesh resolution as [24]:

εp =Cεh1−α (4.14)

where h = (VP)1/3 is the grid’s characteristic length with VP as the cell’s volume.

In all the simulations of this chapter, Cε is constant and equal to 0.5. parameter α ,

however, varies in order to change the thickness of the interface and can take values

between [0,0.1], to overcome the possible numerical instabilities. Normal vector n on

the interface and curvature κ of the interface, are obtained using [24]:

n =
∇φ

||∇φ ||
(4.15)

κ(φ ) = −∇ ·n (4.16)
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The continuous surface force model (CSF) [83] is used for surface tension com-

putation which converts the term σκnδΓ in Eq. 4.1 to a volume force term as follows

[24]:

σκnδΓ = σκ(φ )∇φ (4.17)

where ∇φ is computed using least-square method based on vertex node stencils. By

applying this approach, the explicit tracking of the interface is not necessary.

4.3 Numerical method

Finite-volume (FV) approach is used for the spatial discretization of transport equa-

tions on a collocated grid [24], so all the computed variables are stored at centroids of

the cells, including viscoelastic constitutive equations introduced in this work. A cen-

tral difference (CD) scheme is used to discretize the compressive term of re-initialization

equation (4.13) and diffusive fluxes at the faces. A distance-weighted linear interpo-

lation is used to calculate the face values of physical properties and interface normals.

The gradients are computed at the cell centroids using the least-squares method. A

total-variation Diminishing (TVD) Superbee flux limiter is used to discretize the con-

vective term as implemented in [24], in order to improve the numerical stability of the

solver [1]. At discretized level, physical properties are regularized in the context of the

CLS method. Therefore a linear average is used for density, viscosities (µs and µp) and

relaxation time as ζ = ζ1φ + ζ2(1− φ ), where ζ ∈ {ρ , µs, µp,λ1}. A classical frac-

tional step projection method as described by [84] is used to solve the velocity-pressure

coupling. In the rest of this section, the main challenges and difficulties of numerical

simulations of non-Newtonian multiphase flow problems are addressed and the most

prominent solution for each problem is being suggested and implemented into the so-

lution procedure. Although none of these approaches completely solves the problem,

they push the stability limits of numerical simulations of non-Newtonian flows to a

higher limit.
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4.3.1 Small time-step of the simulation

The allowable time step of the simulation is calculated by taking into account the CFL

conditions on convective and diffusive terms and also by explicit treatment of surface

tension. For this reason, in each cell the values of allowable times step are calculated

as:

∆tconv ≡ α×
(

h
‖VP‖

)
(4.18)

∆tvisc ≡ α×min
(

h2ρ(φ )

µp(φ )
,

h2ρ(φ )

µs(φ , γ̇)

)
(4.19)

∆tcap ≡ α×
(

h3/2(
ρ1 +ρ2

4πσ
)1/2

)
(4.20)

where α is CFL coefficient. The final global value of time step is the minimum

of ∆tconv, ∆tvisc and ∆tcap in the whole domain. The difficulty of the small time-

step problem arises specially in the solution of non-Newtonian shear-thinning/shear-

thickening fluids, where the varying value of viscosity can increase dramatically, lead-

ing to a very small timestep resulting in huge computational costs. To circumvent this

issue, diffusion term could be treated implicitly. So we suggest a second-order im-

plicit Crank-Nicolson scheme to be used to discretize the solvent part, τs of the stress

term τ of equation 4.1 where the µs(γ̇) can take unexpectedly high values. A second-

order Adams–Bashforth scheme is used on convective, gravity, surface tension and the

polymeric part, τp, of the stress term τ as below:

ρv∗−ρnvn

∆t
=

3
2
(Rv

h)
n− 1

2
(Rv

h)
n−1 +

1
2
(Dhs(v∗)+Dhs(vn))−∇h pn (4.21)

where Rv
h =−Ch(ρv)+ρg+σκ∇h(φ )+Dh p(v), Dh p(v) =∇h ·τp and Dhs(v) =

∇h · τs with Ch(ρv) = ∇h · (ρvv) as the convective operator. In this equation, ∇h rep-

resent the gradient operator.

A term of pressure gradient of previous time step is added to the discretized form of

equation 4.1. Pressure-velocity coupling is solved by using a fractional-step projection

method [84, 185], as follows:
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• A correction to the predicted velocity applies as:

ρvn+1−ρv∗

∆t
= −∇hπ

n+1 (4.22)

• Poisson equation reads as follows and is solved using a preconditioned conju-

gated gradient method.:

∇h ·
(

1
ρ

∇h(π
n+1)

)
=

1
∆t

∇h · (v∗) (4.23)

• The velocity vn+1 is corrected and pressure is update as:

vn+1 = v∗− ∆t
ρ

∇h(π
n+1) (4.24)

pn+1 = pn +π
n+1 (4.25)

4.3.2 High Weissenberg Number Problem (HWNP)

Stiff hyperbolic nature of the constitutive equations make them prone to the numerical

instabilities in numerical solution process which can lead to a blowup of the numerical

values. It arises when the Weissenberg number (or equivalently the Deborah number)

of the problem reaches a critical value. Weissenberg number is defined as the ratio of

elastic forces to the viscous forces of the problem. It can be variously defined, but it is

usually given by the relation of the value of λ1 of the fluid and a specific characteris-

tic time of the problem. HWNP is being linked to loss of positive definiteness of the

conformation tensor [186]. This critical value varies in different problems and depends

on the nature of the flow, spacial discretization and numerical algorithm. According to

Fattal and Kupferman [187] and Hulsen, Heel, and Brule [188] and Lee et al. [189], the

loss of positive-definiteness of the conformation tensor is the trigger to HWNP. More-

over, according to Renardy [190], solution of viscoelastic fluids tend to have stress

boundary layers with large variation in stress gradients and exponential stress profiles

near geometrical singularities. According to Fattal and Kupferman [191] and Hulsen,

Fattal, and Kupferman [192], under resolution of these spatial stress profiles can cause

numerical instabilities as well.
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Therefore, several stabilization techniques have been developed to ensure the positive-

definiteness of the conformation tensor. The most prominent stabilization approaches

used in the context of finite-volume method are the positive definiteness preserving

scheme (PDPS) of Stewart et al. [193] the square-root conformation representation

(SRCR) of Balci et al. [194] and the log-conformation tensor representation (LCR)

of Fattal and Kupferman [187, 191]. Chen et al. [186] Provided a detailed analysis

on comparison of these approaches for finite-volume simulation of viscoelastic single-

phase flows regarding their implementation complexity, stability, accuracy, efficiency

and applicability to complex problems.

The log-conformation representation method of Fattal and Kupferman [187, 191]

is among the most robust stabilization approaches for this problem. This method uses

a matrix-logarithm change of variable of conformation tensor. In addition to positive-

definiteness preserving characteristic of this method, since it linearizes the exponential

stress profiles, it improves the resolution of large stress gradients. In this study we use

this method to deal with the HWNP. Since we believe that literature lacks a compre-

hensive description of derivation of this method for the constitutive model of form of

equation 4.8, we represent a detailed description of its derivation in section 4.4. Using

this method, and considering the conformation tensor equation with the form of equa-

tion 4.8, implementing the log-conformation representation formulation for different

viscoelastic constitutive equations is straight-forward. It is merely required to specify

the strain and relaxation functions of the considered constitutive equation, the rest of

the solution procedure will be identical.

For regular problems with Weissenberg numbers smaller than the critical values, in

order to save-up on computational costs, the standard formulation (SF) of equation 4.8

with a first order backward Euler discretization approach could be used as below:

cn = cn−1 +∆t
[
−v ·∇c+∇vT · c+ c ·∇v− 1

λ1
fr(c)

]n−1

(4.26)

In this case, the eigendecomposition of the conformation tensor c will not be required

and hence computational costs will be decreased while maintaining the numerical sta-

bility of the simulations.
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4.4 Derivation of formulation of Log-conformation represen-
tation method

We can consider the formulation for the eigendecomposition of the positive-definite

tensor of c in three-dimensional space as c = RΛRT with R as the orthogonal matrix

containing the eigenvectors of c and Λ as a diagonal matrix containing the correspond-

ing eigenvalues. By substituting the c = RΛRT in equation 4.8 and defining L := ∇v,

we will have:

DR
Dt

ΛRT +R
DΛ

Dt
RT +RΛ

DRT

Dt
= RΛRT L+LT RΛRT − 1

λ1
fr(RΛRT ) (4.27)

Multiplying RT and R into this equation from left and right, respectively, will result in:

RT
[

DR
Dt

ΛRT +R
DΛ

Dt
RT +RΛ

DRT

Dt

]
R =

RT
[

RΛRT L+LT RΛRT − 1
λ1

fr(RΛRT )

]
R (4.28)

Defining the skew-symmetric matrix of Ω̃ := RT DR
Dt and matrix of L̃ := RT LR and

substituting them in 4.28, will result in:

Ω̃Λ+ΛΩ̃
T
+

DΛ

Dt
= ΛL̃+ L̃T

Λ− 1
λ1

RT fr(RΛRT )R (4.29)

In this equation, the first two terms in the left hand side (Ω̃Λ+ΛΩ̃
T

) are skew-

symmetric and while DΛ
Dt is a diagonal matrix. As a result, the off-diagonal elements

of the resultant matrix of right hand side of equation 4.29 will be equal to Ω̃Λ+ΛΩ̃
T

and diagonal elements of it will be equal to DΛ
Dt . From this notion, the values of Ω̃ and

DΛ
Dt will be obtained as:

(
DΛ

Dt

)
ii
= 2ΛiiL̃ii−

1
λ1

(
RT fr(RΛRT )R

)
ii , for i ∈ {1,2,3} (4.30)

Ω̃i j =
ΛiiL̃i j + L̃ jiΛ j j− 1

λ1

(
RT fr(RΛRT )R

)
i j

Λ j j−Λii
, for i 6= j (4.31)
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As mentioned before, the log-conformation representation method uses a change of

variable in the constitutive model in term of the matrix-logarithm of the conformation

tensor as below:

Ψ = Ln c = RLnΛRT (4.32)

Keeping in mind the definition of Ω̃ := RT DR
Dt , and applying the material derivative

operator to left and right hand sides of above equation, we will have:

DΨ

Dt
= R

[(
Ω̃LnΛ+LnΛ Ω̃

T
)
+

DΛ

Dt
Λ−1

]
RT (4.33)

Since DΛ
Dt Λ−1 is a diagonal matrix, and (Ω̃LnΛ+LnΛ Ω̃

T ) is a skew-symmetric

matrix, with the help of equations 4.30 and 4.31, their values could be extracted as:

(
DΛ

Dt
Λ−1

)
ii
= 2L̃ii−

1
λ1Λii

(
RT fr(RΛRT )R

)
ii , for i ∈ {1,2,3} (4.34)

(
Ω̃LnΛ+LnΛ Ω̃

T
)

i j
=

Ω̃i j (LnΛ j j−LnΛii) =[
ΛiiL̃i j + L̃ jiΛ j j− 1

λ1

(
RT fr(RΛRT )R

)
i j

Λ j j−Λii

]
(LnΛ j j−LnΛii) ,for i 6= j (4.35)

For the sake of clarity, we define some extra variables as below:

G̃ = RT fr(RΛRT )R G = RG̃RT

L̃ = RT LR L = ∇v

B̃ = Diagonal matrix of(L̃) B = RB̃RT

Using these variables, and definitions of equations 4.34 and 4.34, and taking into ac-

count that Λ−1 = RT e−Ψ R, the equation 4.33 could be written as:
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DΨ

Dt
= ΩΨ−ΨΩ+ 2B− 1

λ1
Ge−Ψ (4.36)

This tensorial equation is discretized in time using a first order Euler scheme as:

Ψn = Ψn−1 +∆t
[
−v ·∇Ψ+ΩΨ−ΨΩ+ 2B− 1

λ1
Ge−Ψ

]n−1

(4.37)

By having the new values of Ψ, the new value of conformation tensor c can be

recovered by matrix-exponential operator of Ψ as:

c = eΨ (4.38)

It is important to note that matrix-logarithm and matrix-exponential operators used in

this section are tensor operators where the logarithm and the exponents are applied to

the eigenvalues of the tensor.

4.4.1 Singularities of non-Viscoelastic regions

In the problems with viscoelastic/Newtonian interface, one-field formulation repre-

sented in section 4.2 leads to singularities where the value of relaxation time λ1 is

equal to zero in the Newtonian fluid causing numerical solution process to diverge.

One solution to this problem would be to use the semi-analytical method (SAM) pro-

posed by Sarkar and Schowalter [195]. Unlike the LCR approach, this method does

not require any eigendecomposition and as a result imposes lower computation cost,

however it does not circumvent the HWNP. In this method, the constitutive equation

4.8 is re-written as:

λ1
∂c
Dt

+ c = Ξ(t) (4.39)

where Ξ is:

Ξ = c− fr(c)−λ1
(
v ·∇c−∇vT · c− c ·∇v

)
(4.40)
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Assuming a constant Ξ during the timestep of ∆t, equation 4.39 could be integrated in

time from t = n−1 till t = n, resulting in:

cn = cn−1e−∆t/λ1 +Ξn−1
(

1− e−∆t/λ1
)

(4.41)

This formulation is consistent everywhere, including non-viscoelastic fluid regions

with zero relaxation time (λ1 = 0). The disadvantage of non-circumventing the HWNP

prevents this method to be used thoroughly.

Another solution for this problem would be to utilize a cut-off value in the solution

process. In this method, in each iteration, cells with λ1 > ε are being identified, and

being updated to a list. The constitutive equation 4.8, independent of the formulation

(Standard formulation or LCR ) is being solved only in cells of this list.

Since SAM method does not circumvent the HWNP, and since the cut-off approach

can be integrated with LCR formulation, in this study we use the cut-off approach in

order to deal with the singularities of non-viscoelastic regions in one-field formulation

of governing equations. To make sure of the accuracy of the results of this method,

we perform two-dimensional simulations of deformation of a droplet in a simple-shear

flow with both SAM and cut-off approaches. The results are extracted and compared

with reference data of Chinyoka et al. [196] for different combinations of viscoelas-

tic/Newtonian droplet in a viscoelastic/Newtonian matrix. These results along with

the simulation details are presented in 4.5. According to these data, the results of cut-

off approach is in complete agreement with the results of SAM and reference data of

Chinyoka et al. [196]. Hence, in this study, the proposed cut-off approach with the

value of ε = 0.005 is being used. The results have shown to be independent of the

value of ε , as long as ε ≤ 0.005.

4.4.2 Low viscosity ratio problem (LVRP)

A stability problem occurs when viscosity ratio β is relatively small. According to

Amoreira and Oliveira [197], this problem causes the instabilities in numerical itera-

tive methods to occur at lower Weissenberg numbers and impose an unbearable small

timestep to the simulation. Comparing different formulations of viscoelastic fluids,

Amoreira and Oliveira [197] proposed an approach named Explicit diffusion (EDIF),
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lately known as both-sides diffusion (BSD) approach. Chen et al. [186] mentioned that

for single-phase lid-driven cavity test case, for a small viscosity ratio of β = 0.0014,

the HWNP occurs at a small Weissenberg number of 0.1, and even with different sta-

bilization approaches of PDPS, LCR and SRCR, this problem lingers. However, Chen

et al. [186] mentioned that BSD approach can lift the HWNP to almost the same criti-

cal Weissenberg numbers as possible for large viscosity ratios. As a result they believe

this method (BSD) can be used along with other stabilization approaches to cope with

Low viscosity ratio instability problem. In this approach the constitutive equation is

not reformulated, but additional diffusion term is added and subtracted from momen-

tum equation, one treated implicitly and the other evaluated explicitly. The implicitly

treated additional diffusive term contributes to the ellipticity of the problem and im-

proves the stability of the solution in cases of LVRP.

In order to analyze this problem, and since it originates in the momentum equa-

tion and not the constitutive model, we have studied the performance of different dis-

cretizations of momentum equation on providing a stable solution in the context of

fractional-step projection method for a LVRP of a two-dimensional lid-driven cavity

test case. Five different discretizations of Forward Euler (FE), Backward Euler (BE),

2nd order Adams-Bashforth (AB), both side diffusion (BSD), and Semi-Implicit form

as eq. 4.21 for predictor step of momentum equation are tested. The details of this

study are provided in 4.6. According to this test, the Semi-Implicit discretization of

predictor step of momentum equation with the form of eq. 4.21 outperforms other

methods, including BSD, and is the only method capable of solving a challenging test

case of flow inside of a lid-driven cavity with viscosity ratio as low as β = 0.0014

and Weissenberg number equal to 0.75. As a result, we propose the Semi-Implicit dis-

cretization of predictor step of momentum equation with the form of eq. 4.21 in order

to overcome the difficulties arising by low viscosity ratios (LVRP).

4.4.3 Spatial discretization of constitutive equation

The spatial discretization of the constitutive equation in an arbitrary cell P as shown in

figure 4.1, in the case of either Log-conformation representation (LCR), semi-analytical

method (SAM) or standard formulation (SF) of constitutive equation could be written

using the integral form of transport equation taking into account the incompressibility
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FIGURE 4.1: Control volume used to discretize equation 4.42.

Formulation Υ S(Υ)
SF & SAM ci j ∂kvick j + cik∂kv j− 1

λ1
fr(ci j)

LCR Ψi j ΩikΨk j−ΨikΩk j + 2Bi j− 1
λ1

Gik(e−Ψ)k j

TABLE 4.2: Summary of the terms used in equation 4.42. In Carte-
sian tensor notation i, j ∈ {x,y,z}, k is dummy index ∈ {x,y,z} and ∂k ∈
{∂ /∂x,∂ /∂y,∂ /∂ z}. Tensors Ψ, Ω, B, and G are defined in section 4.4.

constraint of equation 4.2 as below:

∫
Vp

∂ Υ

∂ t
dV =

∮
Ap

(−Υv) ·dA+
∫

Vp

S(Υ)dV (4.42)

where Vp is the volume of cell P and Ap is the relevant surface which separates two

adjacent cells of P and F (Fi ∈ {F1,F2, ...,Fn} are neighbour cells of cell P). Ap has

the local area vector of dA. Terms of Υ and S(Υ) related to LCR, SAM and SF are

presented in table 4.2 . In this formulation, value of Υ at the cell (face) is assumed to

be constant with the value localized at the cell (face) centroids with approximation of

ΥP = 1
Vp

∫
Vp

ΥdV ( Υ f =
1

Ap

∫
Ap

ΥdA ).

4.4.4 Solution process

The solution procedure of the proposed method would be as follows. Firstly the phys-

ical properties, interface geometric properties and velocity field are initialized. Then,
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for the time t = n+ 1, the following steps are done consecutively.

1. Allowable time step is calculated using the equations 4.18 and 4.20. To decrease

the computational costs, the maximum value of α which leads to a stable simu-

lation is used. Unless otherwise mentions, this value is 0.1.

2. The advection equation (4.12) is integrated in time with a 3-step third order

accurate TVD Runge-Kutta scheme [85].

3. The re-initialization equation (4.13) is integrated in pseudo time (τ) using a third

order accurate TVD Runge-Kutta scheme. The time τ is used to lead the solution

into a stationary state. Since an explicit scheme is used, the time step is restricted

by the viscous term of equation 4.13 as follows [82, 198]:

∆τ =Cτmin
(

h2

εP

)
(4.43)

One iteration is used to solve the discretized form of equation 4.13. The value

of Cτ in this formula serving as a CFL-like coefficient for this equation, can take

values between [0.01,0.05].

4. Physical properties in the domain (density, viscosites and relaxation time) and

geometrical properties at the interface (curvature and interface normal) are up-

dated from the level-set field.

5. If applied, the list of viscoelastic regions is being updated, based on the cut-off

approach described in section 4.4.1 .

6. The constitutive equation is integrated in time as described in equation 4.37 for

log-conformation representation approach or equation 4.26 for standard formu-

lation approach, and the value of polymeric stress tensor at time t = n are calcu-

lated.

7. The velocity and pressure fields are calculated using a fractional-step method

described in section 4.3.1 and equations 4.21 through 4.25.
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8. In order to fulfill the incompressible constraint, Eq. 4.2, and to avoid pressure-

velocity decoupling on collocated meshes [86, 146], a cell-face velocity is used

to advect the momentum and CLS function, as introduced in [29, 198].

The steps 1 to 8 are repeated to reach the desired time.

The reader is referred to [24] for further technical details on the CLS method on

collocated unstructured grids. The numerical methods are implemented in an in-house

parallel c++/MPI code called TermoFluids [47]. Validations and verification of the

numerical methods in the context of Conservative level-set method used in this work

have been reported in [1, 2, 24, 26, 28, 88, 89].

4.5 Singularities of non-Viscoelastic regions: A droplet in
shear test case

A two-dimensional test case of a viscoelastic/Newtonian droplet suspended in a New-

tonian/viscoelastic matrix, all imposed to a simple shear flow is being solved using

two different approaches of SAM and cut-off as described in section 4.4.1. This test

case is being solved to make sure of the accuracy of applying a cut-off parameter to

the relaxation time at the interface of viscoelastic/Newtonian interfaces for dealing

with singularities of constitutive equation in Newtonian regions. The simulations of

this section are similar to the cases of section 4.7.5. The results extracted with both

SAM and cut-off approaches are compared with the benchmark results of Chinyoka et

al. [196]. Computations have been performed using both structured and unstructured

meshes with the edge size of h. All the simulations details are the same as described in

section 4.7.5, except that here a 2D domain is used in discretization. In all these sim-

ulations the value of β is equal to 0.5 meaning equal shares of polymeric and solvent

parts in viscoelastic fluid.

We perform four cases of dNmN, dVmN, dNmV, dVmV, in which d and m stand

for droplet and matrix, and N and V stand for Newtonian and Viscoelastic, respectively.

With this explanation, for example the phrase dVmN stands for a viscoelastic droplet

suspended in Newtonian matrix.
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TABLE 4.3: Taylor deformation parameter (D) and inclination angle of the
droplet (θ ) for cases with different rheological properties solved with two ap-
proaches of (a) SAM and (b) cut-off, compared with the reference (ref) results

of Chinyoka et al. [196].

Case Da θa Db θb Dre f θre f

dNmN 0.76 14.1 0.76 14.0 0.77 14.8
dVmN 0.71 15.2 0.71 15.3 0.72 15.7
dNmV 0.60 13.5 0.60 13.6 0.60 14.7
dVmV 0.55 14.4 0.55 14.5 0.55 15.8

FIGURE 4.2: Taylor deformation parameter (D) vs. time for cases with different
rheologies properties all with Capillary number of 0.6, Reynolds number of 0.3,
Deborah number of 0.4 and retardation ratio of 0.5. The colors black, blue,
green, and red present the results for cases of dNmN, dVmN, dVmV and dNmV,
respectively. The line results are related to the solution of the problem with cut-
off approach, the square symbols are related to the solution of the problem with
the SAM approach, and the circle symbols are related to the reference results of
Chinyoka et al. [196]. The droplet shapes at steady-state are provided as well.
In theses figures bold lines are reference figures of Chinyoka et al. [196] and

points are results extracted in current study solved using cut-off approach.
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TABLE 4.4: Different discretizations of predictor step of momentum equation
used to study the LVRP.

method discretization
Forward Euler ρv∗−ρnvn

∆t = Ch(ρvn)+Dhs(vn)+Dh
n
p(vn−1)

Backward Euler ρv∗−ρnvn

∆t = Ch(ρv∗)+Dhs(v∗)+Dh
∗
p(vn)

2nd order Adams-Bashforth ρv∗−ρnvn

∆t = 3
2

(
Ch(ρvn)+Dhs(vn)+Dh

n
p(vn−1)

)
-

1
2

(
Ch(ρvn−1)+Dhs(vn−1)+Dh

n−1
p (vn−2)

)
BSD ρv∗−ρnvn

∆t = Ch(ρv∗)+Dhs(v∗)+Dh p(vn)+Dhk(v∗)−Dhk(vn)

Semi-Implicit form as eq. 4.21 ρv∗−ρnvn

∆t = 3
2 (R

v
h)

n− 1
2 (R

v
h)

n−1 + 1
2 (Dhs(v∗)+Dhs(vn))−∇h pn

In all of these cases, Capillary number of 0.6, Reynolds number of 0.3 and Deb-

orah number of 0.4 are used. The simulations were run until t=10γ̇ . Figure 4.2

presents the time variation of Taylor deformation parameter for solutions done in the

current study using different approaches of SAM and cut-off, compared with the finite-

difference/volume-of-fluid results of [196]. The steady-state droplet shape for the case

solved in the current study using cut-off approach compared with the reference shapes

of [196] are provided in this figure as well. The quantitative values of these cases are

provided in table 4.3. According to these data, the cut-off approach provides results

almost identical to the SAM approach. Both approaches are having good agreement

with the reference data of [196].

4.6 The ability of different approaches in solving LVRP

The selected test case is a two-dimensional lid-driven cavity problem, with geometrical

characteristics and boundary conditions identical to the viscoelastic test case solved in

section 4.7.1. The Reynolds number is equal to 100, the value of viscosity ratio is

β = 0.0014 and Weissenberg number is equal to 0.75.

Different discretizations of predictor step of momentum equation in the context of

fractional-step projection method are being tested which are presented in table 4.4. In

this table, in the BSD discretization method, the term Dhk(v) is equal to ∇h.(µk/µsτs)

with µk recommended to be equal to µp.

The mentioned test case of two-dimensional lid-driven cavity with the predictor

step of momentum equation being discretized according to the methods of table 4.4
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FIGURE 4.3: U(Y) graph in the vertical centerlines of lid-driven cavity test
case, with Re=100, for a viscoelastic fluid with viscosity ratio of β = 0.0014
and Weissenberg number equal to 0.75. For this test case, the predictor step of

momentum equation is discretized using the Semi-Implicit form as eq. 4.21
.
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was solved for a long enough time of t ′ = 10 with t ′ = t(U/D). A uniform structured

square mesh with the edge size of h = L/100 was used in all the cases. Among all

these methods tested, only the last method (Semi-Implicit form as eq. 4.21) was able

to provide a stable solution for the aforementioned problem. The solution of meth-

ods of Forward Euler and 2nd order Adams-Bashforth had an unbearably small

timestep (around 5 orders of magnitude smaller than the other methods). With this

small timestep, the solution process took a very long time to advance, however, for

both of these methods the solution diverged for t ′ ≈ 1.2. Backward Euler method

didn’t suffer from the significantly small timesteps as the two previous methods, how-

ever it failed to provide a solution and diverged at t ′ ≈ 3. BSD method could benefit

from timesteps as big as dt ′ = 10−3. However this method also ended-up in diverging

the solution process at t ′ ≈ 4.2. Semi-Implicit form as eq. 4.21 was able to provide

a stable solution using a constant timestep of dt ′ = 10−3. The solution was success-

fully finished by the time t ′ = 10. Figure 4.3 illustrates the U(Y ) graph in the vertical

centerlines of the geometry at time t ′ = 10 for this solution.

4.7 Numerical experiments and discussion

4.7.1 Lid-Driven Cavity

In this section, the results regarding the flow in classical two-dimensional lid-driven

cavity test case will be presented. The lid-driven cavity problem has long been used

as a validation case for new codes or new solution methods. This problem is of par-

ticular interest for testing for several reasons. There are many data available extracted

from different experimental studies and numerical methods. The laminar solution of

the flow is steady. Also, the geometry of problem is simple and two-dimensional,

boundary conditions are simple and easy to implement. Numerical tests of this section

are carried out on a benchmark problem studied in Carmona et al. [199], for GNFs

and two different benchmark results of Chen et al. [186] and Yapici, Karasozen, and

Uludag [200] for viscoelastic fluids. The test case is a 2-D lid-driven cavity with as-

pect ratio of 1, characteristic length of L and characteristic velocity of U = 1. The

top boundary of the cavity is moving with a velocity of u(x,t) while no-slip boundary
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FIGURE 4.4: Structured and Unstructured mesh configurations used in simula-
tion of lid-driven cavity test case.

condition is applied on other walls. Two different mesh types of structured and un-

structured with a grid size of h = L/100 are used to discretize the solution domain

as illustrated in figure 4.4. The simulations are done long enough to make sure that

convergence to the steady-state has been reached. Three different sets of simulations

are done for rheologies of viscoelastic, shear-thinning and shear-thickening fluids:

• For the case with viscoelastic fluid, Oldroyd-B constitutive equation is used.

Three different formulations of Standard formulation, Log-Conformation Rep-

resentation and semi analytical approaches of constitutive equation are used to

verify the accuracy of the solver for this problem. Non-dimensional parameters

of Reynolds number and Weissenberg number are defined as Re = ρUL/µ0 and

Wi = λ1U/L, respectively. In order to eliminate the singularities at the corners,

the top wall moves with the space and time-dependent velocity profile as below:

u(x, t) = 8[1+ tanh(8t−4)]x2(1− x2) (4.44)

The lid velocity gradually increases until it reaches its maximum magnitude at

the center of the lid. In order to gain more confidence on the accuracy of the

viscoelastic solver, two cases are selected and solved with different parameters

of Re, Wi, and β in both structured and unstructured domains as:
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FIGURE 4.5: Top: U(Y) and V(X) graphs in the vertical and horizontal cen-
terlines, respectively, for the lid-driven cavity problem, Case A compared with

results of Yapici, Karasozen, and Uludag [200].
Bottom: U(Y) graph in the vertical centerline of the lid-driven cavity problem,

Case B compared with the results of Chen et al. [186].
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FIGURE 4.6: U(Y) and V(X) graphs in the vertical and horizontal centerlines,
respectively, for the lid-driven cavity problem with shear-thinning and shear-
thickening fluids. First row corresponds to Case C (n=0.25) and second row
corresponds to Case D (n=1.75). These graphs are compared with the results of

Carmona et al. [199]
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Case A: Re=100, Wi=0.7 and β=0.3

Case B: Re=0.10, Wi=0.5 and β=0.5

The results are obtained for these cases in domains with structured and unstruc-

tured grids and are compared with two different benchmarks of Chen et al. [186]

and Yapici, Karasozen, and Uludag [200], for cases A and B, respectively. Fig-

ure 4.5 top, represents the U(Y) and V(X) graphs in the vertical and horizontal

centerlines of the domain, respectively. Figure 4.5 bottom, however, represents

U(Y) graph in the vertical centerline of the domain. The results of this figure cor-

respond to the solution of viscoelastic fluid employing the Standard Formulation

approach. The results of solution of these cases using LCR and SAM approaches

are identical to the presented results. Hence, in order to avoid redundancy, these

results are not added.

• In order to validate the ability of solver in capturing the physics of shear-thinning

and shear-thickening fluids, simulations of generalized newtonian fluid repre-

sented with power-law model with two indices of n=0.25 (as shear-thinning

fluid) and n=1.75 (as shear-thickening fluid) are performed:

Case C: Re=100, n=0.25

Case D: Re=100, n=1.75

Top wall is moving with a constant velocity of u(x,t)=1. Reynolds number is

defined as Re = ρUL/K Figure 4.6 represents the U(Y) and V(X) graphs in

the vertical and horizontal centerlines of the domain extracted from solution in

structured and unstructured grids, compared with results of Carmona et al. [199].

In all the cases presented in this section, a very good agreement is seen between

the results extracted in this study, and the extracted data from literature.

4.7.2 Two-dimensional Poiseuille flow

In two dimensional Poiseuille flow test case, the flow between two infinite plates is

driven by an external pressure gradient (S = dP/dx). Periodic boundary condition is

applied in the flow direction (x), and no-slip boundary condition on the walls. This
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FIGURE 4.7: The schematic plot of the 2D domain of Poiseuille flow test
case. Left: single-phase viscoelastic fluid problem, right: two-phase shear-

thinning/shear-thickening fluids problem.

problem is solved for different rheologies of viscoelastic, shear-thinning and shear-

thickening fluids and the results are compared with the exact solution extracted from

analytical approaches.

• For viscoelastic fluid test case, the exact solution of the transient velocity and

viscoelastic stress for Oldroyd-B constitutive model exist and are presented in

[201]. The geometry of the channel is presented in figure 4.7 left. Lengths are

non-dimensionalized using the domain’s height (y∗ = y/H), velocity using char-

acteristic velocity of u0 =
−SH2

8ν0
(u∗ = u/u0) in which ν0 is the total kinematic

viscosity, time using t0 = H2/ν0 (t∗ = t/t0) and stress tensor using τ0 = ηu0/H

(τ∗ = τ/τ0). In which variables denoted with * are dimensionless. The exact

solution of the flow for this case would be as:

u∗(t∗,y∗) = 4y∗(1− y∗)−32
∞

∑
n=1

sin(Ny∗)
N3 GN(El, t∗) (4.45)

where

GN(El, t∗) =


0.5(aNexp(PNt∗)+ bNexp(QNt)), β

2
N ≥ 0

exp(−α
∗
Nt∗)(cos(β ∗Nt∗)+

SN

βN
sin(β ∗Nt∗)), β

2
N < 0

(4.46)

In this formulation, the parameters are presented in table 4.5.

171



Chapter 4. A numerical approach for non-Newtonian two-phase flows using a

conservative level-set method

TABLE 4.5: Related parameters of equation 4.46

Symbol Equation

N (2n−1)π

SN 1−17N2El/9

αN 1+N2El/9

β 2
N α2

N−4N2El

α∗N αN/(2El)

β ∗N βN/(2El)

αN 1+ SN/βN

bN 1−SN/βN

PN −α∗N +β ∗N

QN −α∗N−β ∗N

Using the given velocity profile, the viscoelastic stress tensor could be solved as:

τxx = 2Wi(1−β )(
∂u∗

∂y∗
)2

τxy = (1−β )(
∂u∗

∂y∗
)

τyy = 0

The initial condition is zero velocity and stress tensor in the whole domain. The

numerical simulation is done in a domain with both structured and unstructured

grid with the mesh size of h=H/100 until t∗ = 10. The results showed to be

independent of the grid type, and were identical for structured and unstructured

grids. Dimensionless numbers of Reynolds number and Weissenberg number

are defined as Re = ρu0H/ν0 and Wi = λ1u0/H, respectively. The steady-

state results of cross section velocity ux(y), along with the transient velocity at

centerline and transient normal viscoelastic stress on fixed wall for a case with

β = 0.1, Re=1 and Wi=1 are presented in figure 4.8. These results are compared

with the results of exact solution where perfect agreement is seen.

• For shear-thinning, and shear-thickening rheologies, power-law GNF model is
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FIGURE 4.8: Numerical simulation of two-dimensional Poiseuille Oldroyd-B
viscoelastic fluid flow compared with the analytical solution.

173



Chapter 4. A numerical approach for non-Newtonian two-phase flows using a

conservative level-set method

used to simulate the two-phase flow problem inside of a channel with aforemen-

tioned properties. Figure 4.8 right illustrates the schematic plot of the domain

used for this problem with two phases called D and M. Extraction of analytical

solution of this problem for power-law fluid is straight forward. The X-direction

velocity profile (U) as a function of Y could be written as below:

U(Y ) =


A(D)

(
h

1+nD
nD −|y|

1+nD
nD

)
+A(M)

(
H

1+nM
nM −h

1+nM
nM

)
, |y| ≤ h.

A(M)

(
H

1+nM
nM −|y|

1+nM
nM

)
, Elsewhere

(4.47)

where A(i) is defined as:

A(i) =
ni

1+ ni

(
−∂P

∂x
.

1
Ki

)(1/ni)

(4.48)

In our simulations, the domain has a length of L=5H, and h=H/2 while a mesh

with grid size of H/80 is used to discretize the domain. A constant pressure

gradient of ∂P
∂x = 0.075 and a surface tension coefficient of 24.5 is being applied

in all the cases. Simulations with different rheological properties have been

performed for a long enough time. The details of rheological properties of these

cases are tabulated in table 4.6. For each case, the first norm of error of numerical

simulation is calculates using: L1 = ∑i |ei|, where ei is the point-wise error of

each cell compared with its analytical solution. The value of L1 for all of these

cases are presented in table 4.6. As can be seen in this table, the value of the

L1 for all the cases is in the order of ≈ O(10−3), which is considered as good

agreement.

4.7.3 Impacting droplet problem

In this section, using the numerical method proposed, the falling of a two-dimensional

viscoelastic droplet under gravitational force with the acceleration of g is being solved.

The droplet with an initial diameter of d0 is placed at the height of H = 2d0 above

a stationary plate. The computational domain has a length of 5.6d0 and a height of
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Case nD nM KD/KM L1

1 1 1 1 8.23 ×10−4

2 0.5 1 1 9.72×10−4

3 0.5 1 0.5 3.25×10−3

4 0.5 1 2 1.89×10−2

5 1.5 1 1 9.25×10−4

6 1.5 1 0.5 2.64×10−3

7 1.5 1 2 4.27×10−3

8 1 0.5 1 2.91×10−3

9 1 0.5 0.5 4.26×10−3

10 1 0.5 2 1.68×10−2

11 1 1.5 1 2.49×10−3

12 1 1.5 0.5 1.37×10−2

13 1 1.5 2 1.84×10−2

TABLE 4.6: Characteristics of cases solved for shear-thinning/shear-thickening
rheological properties, along with the relative error of the numerical results,

compared with analytical solution.

FIGURE 4.9: Initial computational setup of the impacting droplet problem.
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FIGURE 4.10: Time evolution of non-dimensional width of an Oldroyd-B
droplet impacting on a surface for simulations with two different grid types
of structured (Str) and unstructured (Unstr). The results of current study are
compared with the (SPH) results of Fang et al. [161] and Jiang et al. [162] and

MAC results of Tomé et al. [156] and Oishi et al. [157]

2.6d0. Two different grid types of structured and unstructured are used to discretize

the solution domain. Figure 4.9 illustrates the initial setup of the problem. At time

t/t∗ = 0.0, the droplet falls towards the wall with an initial velocity of V0 (with t∗ =

d0/V0). Oldroyd-B constitutive equation is used to model the viscoelastic behaviour

of the droplet with a retardation ratio of β = 0.1, while the effect of surface tension is

neglected. Three sets of non-dimensional parameters of Reynolds (Re), Deborah (De)

and Froude (Fr) numbers are used as below:

Re =
ρdd0V0

µ0d
= 5 De =

λ1V0

d0
= 1 Fr =

V0√
gd0

= 2.26 (4.49)

No-slip boundary condition is applied on the bottom wall while the free-slip bound-

ary condition is applied on all the other walls. In order to minimize the effect of the

matrix gas, a density and viscosity ratio of ρd/ρm = µ0d/µm = 1000 is used. Figure

4.10 shows the time evolution of the non-dimensional width of the droplet (W /d0)
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FIGURE 4.11: First norm of the error in calculation of width of the droplet
(W) during the solution process of the impacting droplet problem inside of the
domains with structured grids with sizes of h = d0/30,d0/40 and d0/50 com-
pared with the reference values of solution in a domain with the grid size of

h = d/60.

for the solution done in this study in domains with structured and unstructured grids

in comparison with results of different approaches available in literature, e.g. (SPH)

method of Fang et al. [161] and Jiang et al. [162] and MAC method of Tomé et al.

[156] and Oishi et al. [157]. Good agreement is seen for simulations both in struc-

tured and unstructured grids in comparison to the aforementioned results available in

the literature.

A grid convergence study is performed for this case. Simulations of the reported

case in a domain with structured grids with four different grid sizes of h = d0/30,

d0/40, d0/50 and h = d0/60 are done. For each case, the numerical simulation is

performed until t/t∗ = 3.5. The variation of the width of the droplet (W) for the

solution with the finest grid (h = d0/60) is selected as the reference, where the results

of other simulations are compared with it, to calculate the error associated to the droplet

width (W) at each timestep. The accumulated value of these errors are measured as the

first norm of the error using L1 = ∑i |ei|, where ei is the difference between droplet

width (W) of the simulation and its corresponding value in reference solution at i-th

iteration. Figure 4.11 presents the values of L1 as a function of the grid size. As can be
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FIGURE 4.12: Snapshots of the impact of a viscoelastic droplet over a surface.
The color contours present the elongation of the polymer chains (EPC) in the

droplet.

seen, the solution process illustrates an order of convergence of 2.04 in space.

Trace of the conformation tensor indicates the elongation of the polymer chains

(EPC). Figure 4.12 illustrates the snapshots of the droplet evolution, with the contours

of elongation of the polymer chains. As can be seen, upon the impact of the droplet,

the length of the polymeric chains increases in the triple points of the contact and

spreads in spatial areas around this region. As the droplet evolves toward equilibrium,

the length of the polymeric chains expands in the droplet core.

4.7.4 Sudden contraction/expansion

In this section, numerical simulation of a viscoelastic droplet suspended in Newto-

nian matrix, passing through a contraction/expansion geometry is done and the re-

sults are compared against available experimental images. Figure 4.13 illustrates the

schematic representation of the domain’s dimensions and mesh configuration. All the

lengths are non-dimensionalized by the inlet’s half width, Hin. Two types of meshes

of structured cubic cells and unstructured triangular-prism cells with the edge size of

h = Hin/36 are used to discretize the domain. To approximate the experimental dimen-

sions, the contraction and expansion edges are bevelled with a side length of 0.1Hin.
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TABLE 4.7: Non-dimensional parameters defining the sudden contrac-
tion/expansion test case

Re We De ρd/ρm µ0d/µ0m β

0.825 6.22×10−2 0.598 1.17 31 0.586

The width of the domain in Z direction is W = 0.33Hin. A flow with uniform velocity

of (U,V,W)=(U ,0,0) enters the domain through the inlet and exits the domain through

the outlet boundary conditions. Non-wetting boundary condition for level-set function,

no-slip boundary condition for velocity components and Neumann boundary condition

for pressure and extra-stress tensor are applied on the walls. A droplet with initial di-

ameter of d0 = 0.864Hin is places in a quiescent Newtonian matrix. The Oldroyd-B

constitutive equation is used to model the viscoelastic behavior of the droplet. Non-

dimensional group of variables as below are used in addition to density ratio (ρd/ρm),

total viscosity ratio (µ0d/µ0m) and retardation ratio (β ) to physically define the prob-

lem:

Re =
ρmUHin

µm
We =

ρmU2Hin

σ
De =

λ1U
Hin

(4.50)

Time is non-dimensionalized as t/t∗ with t∗ = (Hin/U). Table 4.7, presents the se-

lected characteristics of the problem based on the introduced non-dimensional group

of variables. The droplet is being imposed to a geometrical contraction, is forced to

change its shape in order to pass through the narrow channel, and retrieves its more

stable spherical shape after passing through the expansion. The simulation continues

until t/t∗ = 2.14. Figure 4.14 presents the results of the numerical simulation of the

current study in structured grid compared with the experimental results of [202] for the

same time instances. Please note, since the results obtained by structured grid were

identical to the results of unstructured grid, in order to avoid redundancy, only the re-

sults obtained with one of them is being shown. In this figure, non-dimensional times

of the simulations are provided at the bottom of the image. Note that the reference

time of t/t∗ = 0.0 is when the leading tip of the droplet enters the contraction zone.

According to this figure, very good agreement is seen between the results of current

study, and experimental results of Harvie, Cooper-White, and Davidson [202], which
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FIGURE 4.13: schematic representation of domain’s dimensions and mesh con-
figuration of sudden contraction/expansion test case with two different mesh

types of structured and unstructured grids.
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FIGURE 4.14: Sudden contraction/expansion of a viscoelastic droplet in a New-
tonian matrix. Top: experiment results of [202], Bottom: results of current

study, extracted at the same time instances of experimental images.
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FIGURE 4.15: Left: Mesh configuration, structured cubic cells. Middle:
computational setup, Right: Schematic presentation of a deformed droplet
along with related geometrical measurements in velocity-velocity gradient, and

velocity-vorticity planes.

validates the ability of the proposed method on capturing the physics of this problem.

4.7.5 Simple Shear flow

A circular Newtonian droplet with diameter d is suspended in a viscoelastic matrix in a

domain with span Sx = 5d, Sy = 5d and Sz = 2.5d in x,y and z directions, respectively.

Figure 4.15 illustrates the mesh configuration and computational setup. The opposite x-

direction velocities of +U and−U are imposed at the top and bottom walls inducing a

shear rate of γ̇ = 2U/Sz in the domain. A periodic boundary condition is applied in the

flow direction (x) and Neumann boundary condition in y direction. Computations have

been performed using a Cartesian mesh of cubic cells with the edge size of h=d/30.

This mesh was generated by a constant step extrusion of the two-dimensional y-z grid

along the x-axis with the step size of h. A grid convergence analysis is provided at the

end of this section for the most challenging cases. At the beginning of the simulation,

a linear velocity field is applied inside of the domain varying from −U at the bottom

wall to +U at the top wall.

For Newtonian droplet and matrix, the system can be physically defined by four

parameters of Reynolds number (Re), Capillary number (Ca), total viscosity ratio

(µ0d/µ0m) and walls confinement ratio (2r/Sz). For an arbitrary value of shear rate
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FIGURE 4.16: Taylor deformation parameter (D) vs. time (t ′ = t γ̇) for a New-
tonian droplet suspended in viscoelastic matrix imposed to a shear with Re=0.1,
Ca=0.2 and De=1.5 compared with results of Aggarwal and Sarkar [160]. Sub-
figures of (a), (b) and (c) present the droplet shape at t ′ = 10 in (X-Y), (X-Z)

and (Y-X) planes, respectively.

(γ̇), the velocity at the top and bottom walls are calculated as U = γ̇Sz/2. Then viscos-

ity is calculated using the Reynolds number as below:

Re =
ρmγ̇r2

µ0m
(4.51)

where r is the droplet’s radius. The Capillary number is a dimensionless parameter

defining the relative effect of the shear stress versus surface tension across the interface,

given by:

Ca =
γ̇µ0mr

σ
(4.52)

For a given value of Ca and Re numbers, and the calculated value of µ0m, the related

value of σ is determined.

In the case where the droplet evolves to a steady shape, different parameters have

been used to measure the deformation attained by the droplet. The first one is the

Taylor deformation parameter defined as D = (L−B)/(L+ B), where L and B are
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FIGURE 4.17: Steady-state Taylor deformation parameter (D) for simulations
of a Newtonian droplet in viscoelastic matrix with different values of Capillary
numbers, all with elasticity parameter of p=De/Ca=0.6. Results of current study
are compared with the results of three different approaches, experimental data
of Guido, Simeone, and Greco [203], analytical predictions of Maffettone and

Greco [204] and numerical results of Aggarwal and Sarkar [160].

length and breadth of the drop, as shown in figure 4.15. Another parameter is the angle

θ of orientation of the droplet with respect to the axis of shear strain. In addition to

these parameters, Lp and W , as projected length and width of the droplet are used in

literature and depicted in figure 4.15.

For viscoelastic rheological characteristics of the matrix, Oldroyd-B constitutive

equation is solved. The initial condition of conformation tensor is Identity tensor in

the whole domain leading to zero stress initial condition. Non-dimensional parameter

of Deborah number (De = λ1γ̇) and retardation ratio are used in addition to the four

previously defined parameters of Re, Ca, total viscosity ratio and walls confinement

ratio to fully define the system. In all the simulations, a low Reynolds number of 0.1,

retardation ratio of β = 0.5, and droplet to matrix total viscosity ratio of 1 is being
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FIGURE 4.18: Droplet inclination angle (θ ) parameter for simulations of a
Newtonian droplet in viscoelastic matrix with different values of Capillary num-
bers, all with elasticity parameter of p=De/Ca=0.6. Results of current study
are compared with the results of three different approaches, experimental data
of Guido, Simeone, and Greco [203], analytical predictions of Maffettone and

Greco [204] and numerical results of Aggarwal and Sarkar [160].

185



Chapter 4. A numerical approach for non-Newtonian two-phase flows using a

conservative level-set method

FIGURE 4.19: The evolution in the mass conservation error of the droplet for
cases of Newtonian droplet suspended in viscoelastic matrix imposed to shear
with four different Capillary numbers of 0.08, 0.11, 0.16 and 0.22, and Deborah
numbers of De = 0.6×Ca. The value of ∆M for the droplet is (Mt −M0)/M0,

where M0 is droplet’s initial mass and Mt is the mass at time t.

applied.

The accuracy of the proposed method on capturing the transient solution of this

problem is studied by performing a simulation with Capillary number of 0.2 and Deb-

orah number of 1.5. Figure 4.16 shows the time variation of Taylor deformation pa-

rameter (D) for this case compared with the results of finite-difference/front-tracking

method of Aggarwal and Sarkar [160]. Good agreement is seen between these results.

In order to study the accuracy of the method on solving this problem for a wider

range of Deborah numbers, simulations with different Capillary numbers but all with a

constant elasticity parameter of P=De/Ca=0.6 are done for a long enough time to reach

steady-state. For each case, Taylor deformation parameter (D), and droplet inclina-

tion angle of θ are extracted. Figures 4.17 and 4.18 illustrates these results compared

with results of different methods, i.e. experimental data of Guido, Simeone, and Greco

[203], analytical predictions of Maffettone and Greco [204] and numerical results of

Aggarwal and Sarkar [160]. Good agreement is seen between the results of current

study, and the results of numerical study of Aggarwal and Sarkar [160] in all the cases.
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There is also a good agreement between the results of current study, and the exper-

imental data of Guido, Simeone, and Greco [203] and also analytical predictions of

Maffettone and Greco [204] for smaller Capillary numbers. For higher Capillary num-

bers in these two figures, however, the disparity of the numerical results compared with

experimental data and analytical predictions grows. This disparity could be associated

to the inability of the Oldroyd-B constitutive equation used in this study to correctly

represents the experimental fluid used by Guido, Simeone, and Greco [203]. Figure

4.19 represents the evolution of mass conservation error of the droplet for different

cases solved in this section. It could be seen that for all these cases, the mass con-

servation error of the droplet, ∆M, (calculated as ∆M = (Mt −M0)/M0, with M0 as

droplet’s initial mass and Mt as the mass at time t) has converged to a very small value

in the order of O(10−11).

In order to study the ability of the method in solving more challenging cases, the

LCR method, integrated with cut-off approach is used to solve three high Deborah

number shear deformation problems of:

(a) Newtonian droplet suspended in viscoelastic matrix with Deborah number of 5.0.

(b) Viscoelastic droplet with Deborah number of 7.5 suspended in a Newtonian matrix.

(c) Viscoelastic droplet with Deborah number of 7.5 suspended in a viscoelastic ma-

trix with Deborah number of 5.0.

In all these cases, the Re= 1.0, Ca= 2.0, β = 0.5 and µd0/µm0 = 1.0 are applied. Sim-

ulation of case (b) was converged to steady-state within the limit of t/t∗ = 10. Cases

(a) and (c), however, required more time to reach steady-state. Figure 4.20 presents the

Taylor deformation (D), LP and W parameters as introduced in figure 4.15, as a func-

tion of time. There is an overshoot in the value of Taylor deformation parameter of

case (b).The overshoots in sub-critical deformation of Newtonian droplets suspended

in Newtonian matrix happens only in highly confined domains. Thus the overshoot

in the value of D witnessed in figure 4.20, corresponds to the non-Newtonian highly

viscoelastic nature of the droplet.

Case (a) on the other hand, exhibits a more uniform deformation, carried on with a

retraction in deformation of the droplet at times around t/t∗ = 14. Similar to case (b),
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FIGURE 4.20: Startup variation of Top: Taylor Deformation Parameter (D)
and Bottom: Lp/2r and W/2r parameters Vs. t/t∗ for cases (a), (b) and (c) of

droplet deformation in shear flow.
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in case (c), at times around t/t∗ = 1 there is an overshoot in deformation of the droplet.

By observing the existence of overshoot in deformation of the droplets, in cases (b) and

(c) and its absence in case (a), one can conclude that the highly viscoelastic nature of

the droplet can cause the droplet to retract after an initially larger deformation, and

undertake overshoots in its deformation. On the other hand, by observing a more

uniform deformation of the droplet in cases (a) and (c), one can conclude that the

viscoelastic nature of the matrix results in a more smooth deformation of the droplet

over time.

Figure 4.21 illustrates the droplets shape along with the flow streamlines with vor-

ticity magnitude and pressure contours for the cases (a), (b) and (c) at the end of the

solution process. According to this figure, The viscoelastic matrix causes that the

Newtonian droplet to loose its elliptical shape. Droplet inclination angle of case (b)

is notably higher than the other two cases, which is in agreement with its lower Tay-

lor deformation parameter. In the solution process of all of these cases, no numerical

difficulties were witnessed.

A grid convergence analysis is performed for the case (c), viscoelastic droplet with

Deborah number of 7.5 suspended in a viscoelastic matrix with Deborah number of

5.0. Four different grid sizes of h=d/25, d/30, d/35 and d/40 are selected to discretize

the aforementioned domain. For each case, the numerical simulation was done until

t/t∗ = 20. The variation of Taylor deformation parameter (D) of the solution with the

finest grid (h=d/40) is selected as the reference data and the results of other simula-

tions are compared with it. For each case, the error related to the Taylor deformation

parameter (D) at each timestep is calculated. Accumulated value of these errors are

calculated as the first norm of the error using L1 = ∑i |ei|, where ei is the difference

between Taylor deformation parameter of the simulation and its corresponding value in

reference solution at i-th iteration. Figure 4.22 presents the values of L1 as a function

of the grid size. As can be seen, the solution process illustrates an order of convergence

of 1.88 in space.
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FIGURE 4.21: Left: droplets shape along with the flow streamlines with vor-
ticity magnitude contours, Right: droplets shape along with pressure contours.
Images correspond to the cases, Top: case (a) extracted at t/t∗=20, Middle:

case (b) extracted at t/t∗=10, and Bottom: case (c) extracted at t/t∗=20.
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FIGURE 4.22: First norm of the error in calculation of Taylor deformation pa-
rameter (D) during the solution process of the case (c) inside of the domains
with grid sizes of h = d/25,d/30 and d/35 compared with the reference val-

ues of solution in a domain with grid size of h = d/40.

4.8 Conclusions

A finite-volume conservative level-set based method was introduced in order to solve

non-Newtonian multiphase flow problems. The main challenges in this area includ-

ing tracking of interfaces, mass conservation of the phases, small timestep problems

encountered by non-Newtonian fluids, numerical instabilities regarding the high Weis-

senberg number problem (HWNP), instabilities encouraged by low solvent to polymer

viscosity ratio in viscoelastic fluids (LVRP) and instabilities encountered by surface

tensions were addressed and proper numerical treatments were provided in the pro-

posed method. For small timestep problem, specially in shear-thinning and shear-

thickening fluids where the unexpected increase in kinematic viscosity can dramat-

ically decrease the timestep of the simulation, our proposed discretization method

successfully eliminated the timestep restrictions encountered by viscosity. The pro-

posed cut-off approach was investigated for different viscoelastic combinations of

droplet/matrix. Using this approach enables us to substitute the SAM method with

LCR formulation, resulting in elimination of HWNP for multiphase fluids. The pro-

posed discretization of predictor step of momentum equation eliminated the LVRP for
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a challenging case with β = 0.0014. The conservative formulation of the level-set

function preserves the mass of the droplet during the whole simulation.

Different test cases with different rheological properties were solved in order to

validate the accuracy of the method. The fluid of a Poiseuille flow was solved for

rheologies of shear-thinning, shear-thickening and viscoelastic fluids and the results

were compared with analytical exact solutions. For viscoelastic droplet, a test case of

impacting droplet problem was selected and the results were compared with the avail-

able data in literature. A three-dimensional sudden contraction/expansion test case was

solved and the results were compared with the experimental figures. For viscoelastic

matrix, a three-dimensional shear deformation problem was solved for a wide range of

Deborah parameters. The extracted results were compared with analytical, experimen-

tal and numerical predictions. In all these cases, good agreement was seen between the

results extracted in the current study, and the benchmark data available in the literature.

In addition to validation cases, three challenging high Weissenberg number test cases

were solved and the results were discussed.
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5.1 Concluding remarks

In this thesis, two multiphase problems which are being frequently encountered in

industrial applications were studied, i.e. deformation and breakup of a droplet in shear

flow and collision of the droplets. The main challenges in each of these problems were

discussed in details, while the proper numerical solutions for these challenges were

proposed. Besides, a set of numerical tools were developed to solve non-Newtonian

multiphase flow problems for fluids with rheologies of shear-thinning, shear-thickening

and viscoelastic. The focus of this work has been on the simulation of interfacial flows,

where a distinguishable interface exists between the phases. The numerical methods

have been implemented in an in-house C++ code called TermoFluids [47].

In chapter 2, a conservative level-set method was used to perform DNS of head-on,

and off-center binary droplets collision in the main collision regimes. A novel lamella

stabilization approach was introduced to numerically resolves the lamella film, inde-

pendent of its formation direction. The use of this approach results in a considerable

reduction of computational cost while maintaining a good accuracy. Also, a new gas-

film stabilization approach was proposed to prevent adding mass into the droplet which

was used to extract the gas-film rupture time in collisions with retarded coalescence.

For all the simulations of this chapter, the snapshots of the evolution of the collision

process were compared with available experimental data where good agreement was

seen. Very comprehensive energy analysis was done to provide more insight into the

collision process.

In chapter 3, a finite-volume conservative level-set based method was utilized to

numerically simulate three-dimensional droplet deformation and breakup subjected to

shear flow. A semi-implicit discretization approach was applied to the momentum

equation, enabling us to employ larger time-steps in low Reynolds number simula-

tions. Similar to the previous chapter, utmost efforts were devoted to the accuracy of

the results. Thus we highly validated and verified our numerical method against ex-

perimental data available in the literature. We have selected validation test cases that

concern the physical behaviours appearing in deformation and breakup of the droplet,

including break-up of the droplet into satellite and sub-satellite droplets, deformation

of the droplet under walls confinement effect, deformation of the droplet in different
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viscosity ratios, etc. Afterwards, we elaborately studied the mutual effect of viscosity

ratio and confinement of the walls on droplet deformation and breakup. Our results

illustrate the existence of two steady-state regions separated by one breakup region for

droplet under different confinements and viscosity ratios. This information is valuable

in more effective design of future droplet-based microfluidic devices, reactive disper-

sions, emulsification process, morphology development of blends and Lab-on-a-Chip

systems for individual purposes with methods discussed in this paper, namely, by ad-

justing the viscosity or confinement ratios of the existing shear flow to the appropriate

values to control the droplet volume.

In chapter 4, we introduced a novel numerical methodology to accurately solve

the interfacial flow problems where one or more phases represents non-Newtonian be-

haviour. We discussed the challenges in this field that are added to the previous chal-

lenges in numerical simulation of multiphase flows. Complexity in numerical simula-

tion of non-Newtonian multiphase flows does not arise only from the interface tracking

of different fluids or the mass conservation of the phases but also from the physics that

governs the system, e.g. instabilities caused by relaxation characteristics of viscoelas-

tic fluids, the high Weissenberg number problem (HWNP), instabilities encouraged by

the low solvent to polymer viscosity ratio in viscoelastic fluids and instabilities encoun-

tered by surface tensions. We suggested the most prominent solution for each of these

challenges and highly validated and verified our numerical method against experimen-

tal, analytical and numerical data available in the literature. Our proposed approach

has proven to be numerically stable for solutions with high Weissenberg number, and

low solvent to polymer viscosity ratio.

5.2 Further work

Regarding the droplets collision study presented in chapter 2, one may notice that in

a wide range of applications of this field, the droplets may illustrate non-Newtonian

behaviour. E.g. gelled hypergolic propellants (GHP), which are promising fuels for

next-generation missile and rocket engines are known to have non-Newtonian rheolo-

gies, which are much less understood compared with collision roadmap of Newtonian

fluids. In this regard, a detailed study on the collision outcome of non-Newtonian
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droplets with different rheologies of shear-thinning, shear-thickening and viscoelastic

would be of high interest.

Regarding the droplet deformation and breakup in shear flow presented in chap-

ter 3, we have illustrated the existence of two steady-state regions separated by one

breakup region for droplet under different confinements and viscosity ratios, all for a

constant capillary number of 0.3. However, it will be of high interest to investigate the

effect of different capillary numbers on the steady-state and breakup regions illustrated

in this chapter. Besides, the effect of shear flow on the coalescence of adjacent droplets

is not fully understood.

A large number of complex engineering applications and physical phenomena re-

quire the analysis of the free surface flows, e.g. in casting, coating, motion and breakup

of waves, as well as their interaction with solid boundaries, etc. In many of these free-

surface applications, the fluids exhibit non-Newtonian rheologies. Thus, it will be of

high interest to study the applicability of the proposed numerical approach for the so-

lution of non-Newtonian multiphase flows in chapter 4 on free surface problems.

Slug flow is a frequently found multiphase flow pattern when a system of a gas bub-

ble suspended in a matrix fluid concurrently flow in a pipe. For example in side-stream

(airlift) membrane bioreactors (MBR), the vertical tubular membranes are located out-

side of the bioreactor, the sludge is pumped from the bioreactor to the membrane mod-

ules, and the air is added at the base of the membranes to gain a two-phase slug flow

of appropriate regime. Taylor bubbles are the primary units of this pattern. Taylor

bubbles are characterised by their width which almost fills the cross-section of the tube

and by their length which is usually above 2 or 3 tube diameters long. They are sepa-

rated from the tube wall by a thin matrix film which expands when it reaches the rear

end of the bubble. This expansion leads to the formation of a wake. Compared to the

related topic in Newtonian fluids, state of the art about the characteristics of Taylor

bubbles rising in non-Newtonian matrices is still in an early stage. Although this two-

phase flow pattern is frequently found in different practical applications, i.e. oil and

gas transportation in wells, processing of polymers, wastewater treatment, geothermal

applications, polymer devolatilisation, air-lift reactors, phase-change cooling systems,

emboli in bloodstreams, reverse osmosis systems, etc. Therefore, there is a need for

extending the slug flow research towards non-Newtonian liquids.

196



Appendix A

List of publications

International Journals

A. Amani, N. Balcázar, E. Gutiérrez, A. Oliva. Numerical study of binary

droplets collision in the main collision regimes. Chemical Engineering Jour-

nal, 1385-8947, 2019, https://doi.org/10.1016/j.cej.2019.03.188

A. Amani, N. Balcázar, J. Castro, A. Oliva. Numerical study of droplet de-

formation in a shear flow using a conservative level-set method. Chemical

Engineering Science, 207 (2019), 153-171, https://doi.org/10.1016/j.

ces.2019.06.014

Papers in Preparation

A. Amani, N. Balcázar, A. Naseri, A. Oliva. A numerical approach for non-

Newtonian two-phase flows using a conservative level-set method. Under re-

view for publication in Chemical Engineering Journal.

Conference Proceedings

A. Amani, N. Balcázar, A. Naseri, A. Oliva. A Study on Binary Collision of

https://doi.org/10.1016/j.cej.2019.03.188
https://doi.org/10.1016/j.ces.2019.06.014
https://doi.org/10.1016/j.ces.2019.06.014


Appendix A. List of publications

GNF Droplets Using a Conservative Level-Set Method. In proceeding of 7th

European Conference on Computational Fluid Dynamics (ECFD 7), June 2018,

Glasgow.

A. Amani, N. Balcázar, E. Gutiérrez, A. Oliva. DNS of un-equal size droplets

collision using a moving-mesh/level-set method. ERCOFTAC WORKSHOP

DIRECT AND LARGE EDDY SIMULATION 12 (DLES 12), June 2019,

Madrid.

Supercomputing projects

RES-FI-2018-3-0045: DNS of binary droplet collision in Newtonian and non-

Newtonian fluids. 750kh at Altamira, from 2018-11-01 to 2019-03-01

198



Bibliography

[1] Ahmad Amani et al. “Numerical study of binary droplets collision in the main

collision regimes”. In: Chemical Engineering Journal (2019). DOI: https:

//doi.org/10.1016/j.cej.2019.03.188.

[2] Ahmad Amani et al. “A Study on Binary Collision of GNF Droplets Using

a Conservative Level-Set Method”. In: 6th European Conference on Compu-

tational Mechanics (ECCM 6)- 7th European Conference on Computational

Fluid Dynamics (ECFD 7). Glasgow, UK, 2018.

[3] Ahmad Amani et al. “DNS of un-equal size droplets collision using a moving-

mesh/level-set method”. In: ERCOFTAC workshop direct and large eddy sim-

ulation 12 (DLES 12). Madrid, Spain, 2019.

[4] Ahmad Amani et al. “Numerical study of droplet deformation in shear flow us-

ing a conservative level-set method”. In: Chemical Engineering Science (2019).

DOI: https://doi.org/10.1016/j.ces.2019.06.014.

[5] † T. G. Mason* and and J. Bibette‡. “Shear Rupturing of Droplets in Com-

plex Fluids”. In: Langmuir 13.17 (1997), pp. 4600–4613. DOI: 10 . 1021 /

la9700580.

[6] J Gounley et al. “Influence of surface viscosity on droplets in shear flow”. In:

J. Fluid Mech 791 (2016), pp. 464–494. DOI: 10.1017/jfm.2016.39.

[7] R P Chhabra and J F Richardson. “Non-Newtonian flow in the process indus-

tries : fundamentals and engineering applications”. In: (1999), pp. xiii, 436.

[8] Lorenzo Tassi. “Chapter 5 - Kinematic viscosity and viscous flow in binary

mixtures containing ethane-1,2-diol”. In: Advances in Engineering Fluid Me-

chanics: Multiphase Reactor and Polymerization System Hydrodynamics. Ed.

by Nicholas P Cheremisinoff. Burlington: Gulf Professional Publishing, 1996,

https://doi.org/https://doi.org/10.1016/j.cej.2019.03.188
https://doi.org/https://doi.org/10.1016/j.cej.2019.03.188
https://doi.org/https://doi.org/10.1016/j.ces.2019.06.014
https://doi.org/10.1021/la9700580
https://doi.org/10.1021/la9700580
https://doi.org/10.1017/jfm.2016.39


BIBLIOGRAPHY

pp. 79–104. DOI: https://doi.org/10.1016/B978- 088415497- 6/

50007-3.

[9] Andrey Itkin. “Basics of the Finite Difference Method”. In: Pricing Deriva-

tives Under Lévy Models : Modern Finite-Difference and Pseudo-Differential

Operators Approach. New York, NY: Springer New York, 2017, pp. 3–19. DOI:

10.1007/978-1-4939-6792-6{\_}1.

[10] “Fundamentals of Finite Element Method”. In: Meshless Methods in Solid Me-

chanics. New York, NY: Springer New York, 2006, pp. 31–54. DOI: 10.1007/

0-387-33368-1{\_}3.

[11] Bastian E Rapp. “Chapter 31 - Finite Volume Method”. In: Microfluidics: Mod-

elling, Mechanics and Mathematics. Ed. by Bastian E Rapp. Micro and Nano

Technologies. Oxford: Elsevier, 2017, pp. 633–654. DOI: https://doi.org/

10.1016/B978-1-4557-3141-1.50031-9.

[12] N G Deen, M Sint Annaland van, and J A M Kuipers. “Multi-scale modeling of

dispersed gas-liquid two-phase flow”. In: Chemical Engineering Science 59.8-

9 (2004), pp. 1853–1861. DOI: 10.1016/j.ces.2004.01.038.

[13] Yang Ge and Liang-Shih Fan. “3-D Direct Numerical Simulation of Gas–Liquid

and Gas–Liquid–Solid Flow Systems Using the Level-Set and Immersed-Boundary

Methods”. In: Computational Fluid Dynamics. Ed. by Guy B Marin. Vol. 31.

Advances in Chemical Engineering. Academic Press, 2006, pp. 1–63. DOI:

https://doi.org/10.1016/S0065-2377(06)31001-0.

[14] S Morales-Ruiz et al. “Numerical resolution of the liquid–vapour two-phase

flow by means of the two-fluid model and a pressure based method”. In: In-

ternational Journal of Multiphase Flow 43 (2012), pp. 118–130. DOI: https:

//doi.org/10.1016/j.ijmultiphaseflow.2012.03.004.

[15] B G M van Wachem and A E Almstedt. “Methods for multiphase computa-

tional fluid dynamics”. In: Chemical Engineering Journal 96.1 (2003), pp. 81–

98. DOI: https://doi.org/10.1016/j.cej.2003.08.025.

200

https://doi.org/https://doi.org/10.1016/B978-088415497-6/50007-3
https://doi.org/https://doi.org/10.1016/B978-088415497-6/50007-3
https://doi.org/10.1007/978-1-4939-6792-6{\_}1
https://doi.org/10.1007/0-387-33368-1{\_}3
https://doi.org/10.1007/0-387-33368-1{\_}3
https://doi.org/https://doi.org/10.1016/B978-1-4557-3141-1.50031-9
https://doi.org/https://doi.org/10.1016/B978-1-4557-3141-1.50031-9
https://doi.org/10.1016/j.ces.2004.01.038
https://doi.org/https://doi.org/10.1016/S0065-2377(06)31001-0
https://doi.org/https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.004
https://doi.org/https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.004
https://doi.org/https://doi.org/10.1016/j.cej.2003.08.025


BIBLIOGRAPHY

[16] Salih Ozen Unverdi and Grétar Tryggvason. “A front-tracking method for vis-

cous, incompressible, multi-fluid flows”. In: Journal of Computational Physics

100.1 (1992), pp. 25–37. DOI: https://doi.org/10.1016/0021-9991(92)

90307-K.

[17] G. Tryggvason et al. “A Front-Tracking Method for the Computations of Mul-

tiphase Flow”. In: Journal of Computational Physics 169.2 (2001), pp. 708–

759. DOI: 10.1006/jcph.2001.6726.

[18] Ruben Scardovelli and Stéphane Zaleski. “Direct numerical simulation of free-

surface and interfacial flow”. In: Annual Review of Fluid Mechanics 31.1 (1999),

pp. 567–603. DOI: 10.1146/annurev.fluid.31.1.567.

[19] M Sussman and E Fatemi. “An Efficient, Interface-Preserving Level Set Re-

distancing Algorithm and Its Application to Interfacial Incompressible Fluid

Flow”. In: SIAM Journal on Scientific Computing 20.4 (1999), pp. 1165–1191.

DOI: 10.1137/S1064827596298245.

[20] N G Deen, M van Sint Annaland, and J A M Kuipers. “Direct numerical

simulation of complex multi-fluid flows using a combined front tracking and

immersed boundary method”. In: Chemical engineering science 64.9 (2009),

pp. 2186–2201. DOI: 10.1016/j.ces.2009.01.029.

[21] F Dabbagh et al. “On the evolution of flow topology in turbulent Rayleigh-

Bénard convection”. In: Physics of Fluids 28.11 (2016), p. 115105. DOI: 10.

1063/1.4967495.

[22] F X TRIAS et al. “Direct numerical simulations of two- and three-dimensional

turbulent natural convection flows in a differentially heated cavity of aspect

ratio 4”. In: Journal of Fluid Mechanics 586 (2007), 259–293. DOI: 10.1017/

S0022112007006908.

[23] J Ventosa-Molina et al. “Large Eddy Simulation of aTurbulent Diffusion Flame:

Some Aspects of Subgrid Modelling Consistency”. In: Flow, Turbulence and

Combustion 99.1 (July 2017), pp. 209–238. DOI: 10.1007/s10494- 017-

9813-2.

201

https://doi.org/https://doi.org/10.1016/0021-9991(92)90307-K
https://doi.org/https://doi.org/10.1016/0021-9991(92)90307-K
https://doi.org/10.1006/jcph.2001.6726
https://doi.org/10.1146/annurev.fluid.31.1.567
https://doi.org/10.1137/S1064827596298245
https://doi.org/10.1016/j.ces.2009.01.029
https://doi.org/10.1063/1.4967495
https://doi.org/10.1063/1.4967495
https://doi.org/10.1017/S0022112007006908
https://doi.org/10.1017/S0022112007006908
https://doi.org/10.1007/s10494-017-9813-2
https://doi.org/10.1007/s10494-017-9813-2


BIBLIOGRAPHY

[24] Nestor Balcazar et al. “A finite-volume/level-set method for simulating two-

phase flows on unstructured grids”. In: International Journal of Multiphase

Flow 64 (2014), pp. 55–72. DOI: 10.1016/j.ijmultiphaseflow.2014.04.

008.

[25] Néstor Balcázar et al. “A coupled volume-of-fluid/level-set method for simula-

tion of two-phase flows on unstructured meshes”. In: Computers & Fluids 124

(2016), pp. 12–29. DOI: 10.1016/j.compfluid.2015.10.005.

[26] Néstor Balcázar et al. “Level-set simulations of buoyancy-driven motion of sin-

gle and multiple bubbles”. In: International Journal of Heat and Fluid Flow 56

(2015), pp. 91–107. DOI: http://dx.doi.org/10.1016/j.ijheatfluidflow.

2015.07.004.

[27] Néstor Balcázar et al. “A multiple marker level-set method for simulation of

deformable fluid particles”. In: International Journal of Multiphase Flow 74

(2015), pp. 125–142. DOI: 10.1016/j.ijmultiphaseflow.2015.04.009.

[28] E Gutiérrez et al. “Numerical approach to study bubbles and drops evolving

through complex geometries by using a level set – Moving mesh – Immersed

boundary method”. In: Chemical Engineering Journal 349.February (2018),

pp. 662–682. DOI: 10.1016/j.cej.2018.05.110.

[29] Néstor Balcázar et al. “A level-set model for thermocapillary motion of de-

formable fluid particles”. In: International Journal of Heat and Fluid Flow 0

(2016), pp. 1–20. DOI: 10.1016/j.ijheatfluidflow.2016.09.015.

[30] Néstor Balcázar et al. “DNS of the wall effect on the motion of bubble swarms”.

In: Procedia Computer Science. Vol. 108. 2017, pp. 2008–2017. DOI: 10 .

1016/j.procs.2017.05.076.

[31] Néstor Balcázar-Arciniega et al. “A level-set model for mass transfer in bub-

bly flows”. In: International Journal of Heat and Mass Transfer 138 (2019),

pp. 335–356. DOI: 10.1016/j.ijheatmasstransfer.2019.04.008.

[32] Oscar Antepara et al. “Numerical study of rising bubbles with path instability

using conservative level-set and adaptive mesh refinement”. In: Computers and

Fluids (2019). DOI: 10.1016/j.compfluid.2019.04.013.

202

https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.008
https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.008
https://doi.org/10.1016/j.compfluid.2015.10.005
https://doi.org/http://dx.doi.org/10.1016/j.ijheatfluidflow.2015.07.004
https://doi.org/http://dx.doi.org/10.1016/j.ijheatfluidflow.2015.07.004
https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.009
https://doi.org/10.1016/j.cej.2018.05.110
https://doi.org/10.1016/j.ijheatfluidflow.2016.09.015
https://doi.org/10.1016/j.procs.2017.05.076
https://doi.org/10.1016/j.procs.2017.05.076
https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.008
https://doi.org/10.1016/j.compfluid.2019.04.013


BIBLIOGRAPHY

[33] Eugenio Schillaci et al. “A numerical study of liquid atomization regimes by

means of conservative level-set simulations”. In: Computers and Fluids (2019).

DOI: 10.1016/j.compfluid.2018.10.017.

[34] E Gutiérrez et al. “Numerical study of Taylor bubbles rising in a stagnant liq-

uid using a level-set/moving-mesh method”. In: Chemical Engineering Science

164.Supplement C (2017), pp. 158–177. DOI: https://doi.org/10.1016/

j.ces.2017.02.018.

[35] Eugenio Schillaci et al. “A low-dissipation convection scheme for the stable

discretization of turbulent interfacial flow”. In: Computers and Fluids (2017).

DOI: 10.1016/j.compfluid.2017.05.009.

[36] Eugenio Schillaci et al. “A level-set aided single-phase model for the numerical

simulation of free-surface flow on unstructured meshes”. In: Computers and

Fluids 140 (2016), pp. 1339–1351. DOI: 10.1016/j.compfluid.2016.09.

014.

[37] N. Balcázar et al. “DNS of thermocapillary migration of deformable droplets

In: Salvetti M., Armenio V., Fröhlich J., Geurts B., Kuerten H. (eds)”. In: Di-

rect and Large-Eddy Simulation XI. ERCOFTAC Series. 25th ed. Springer,

2019. DOI: 10.1007/978-3-030-04915-7{\_}28.

[38] O.; Castro J.; Oliva A. Balcázar N.; Lehmkuhl. “DNS of the rising motion of a

swarm of bubbles in a confined vertical channel”. In: ERCOFTAC Symposium

on Direct and Large-Eddy Simulations, DLES10. Limassol, Cyprus.

[39] Néstor Balcázar et al. “DNS of falling droplets in a vertical channel”. In: Inter-

national Journal of Computational Methods and Experimental Measurements

(2018). DOI: 10.2495/CMEM-V6-N2-398-410.

[40] Eugenio Schillaci et al. “Numerical study of an impulse wave generated by a

sliding mass”. In: International Journal of Computational Methods and Exper-

imental Measurements (2018). DOI: 10.2495/CMEM-V6-N1-98-109.

[41] Enrique Gutiérrez et al. “On the solution of the problem of a drop falling

against a plane by using a level set – Moving mesh – Immersed boundary

203

https://doi.org/10.1016/j.compfluid.2018.10.017
https://doi.org/https://doi.org/10.1016/j.ces.2017.02.018
https://doi.org/https://doi.org/10.1016/j.ces.2017.02.018
https://doi.org/10.1016/j.compfluid.2017.05.009
https://doi.org/10.1016/j.compfluid.2016.09.014
https://doi.org/10.1016/j.compfluid.2016.09.014
https://doi.org/10.1007/978-3-030-04915-7{\_}28
https://doi.org/10.2495/CMEM-V6-N2-398-410
https://doi.org/10.2495/CMEM-V6-N1-98-109


BIBLIOGRAPHY

method”. In: International Journal of Computational Methods and Experimen-

tal Measurements (2018). DOI: 10.2495/CMEM-V6-N1-208-219.

[42] A.; Rigola J. Balcázar N.; Oliva. “A level-set method for thermal motion of

bubbles and droplets.” In: 7th European Thermal-Sciences Conference (Eu-

rotherm2016). Journal of Physics: Conference Series 745. 2016. DOI: 10 .

1088/1742-6596/745/3/032113.

[43] Nestor Balcazar. “Numerical simulation of Multiphase Flows: Level-Set Tech-

niques”. PhD thesis. Universitat Politecnica de Catalunya – BarcelonaTech

(UPC), 2014, p. 218.

[44] F Favre et al. “Numerical simulations of conjugate convection combined with

surface thermal radiation using an Immersed-Boundary Method”. In: Journal

of Physics: Conference Series 745 (Sept. 2016), p. 32017. DOI: 10.1088/

1742-6596/745/3/032017.

[45] F X Trias, A Gorobets, and A Oliva. “A simple approach to discretize the

viscous term with spatially varying (eddy-)viscosity”. In: Journal of Computa-

tional Physics 253 (2013), pp. 405–417. DOI: https://doi.org/10.1016/

j.jcp.2013.07.021.

[46] R Borrell et al. “Optimising the Termofluids CFD code for petascale sim-

ulations”. In: International Journal of Computational Fluid Dynamics 30.6

(2016), pp. 425–430. DOI: 10.1080/10618562.2016.1221503.

[47] Termo Fluids S.L. \url{http://www.termofluids.com/}.

[48] Milorad P. Dudukovic, Faical Larachi, and Patrick L. Mills. “Multiphase reac-

tors - revisited”. In: Chemical Engineering Science 54.13-14 (1999), pp. 1975–

1995. DOI: 10.1016/S0009-2509(98)00367-4.

[49] Zaillang Hu and R C Srivastava. “Evolution of Raindrop Size Distribution by

Coalescence, Breakup, and Evaporation: Theory and Observations”. In: Jour-

nal of the Atmospheric Sciences 52.10 (1995), pp. 1761–1783. DOI: 10.1175/

1520-0469(1995)052<1761:EORSDB>2.0.CO;2.

204

https://doi.org/10.2495/CMEM-V6-N1-208-219
https://doi.org/10.1088/1742-6596/745/3/032113
https://doi.org/10.1088/1742-6596/745/3/032113
https://doi.org/10.1088/1742-6596/745/3/032017
https://doi.org/10.1088/1742-6596/745/3/032017
https://doi.org/https://doi.org/10.1016/j.jcp.2013.07.021
https://doi.org/https://doi.org/10.1016/j.jcp.2013.07.021
https://doi.org/10.1080/10618562.2016.1221503
https://doi.org/10.1016/S0009-2509(98)00367-4
https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2


BIBLIOGRAPHY

[50] N. Ashgriz and J. Y. Poo. “Coalescence and separation in binary collisions of

liquid drops”. In: Journal of Fluid Mechanics 221 (1990), pp. 183–204. DOI:

10.1017/S0022112090003536.

[51] J. Qian and C. K. Law. “Regimes of coalescence and separation in droplet

collision”. In: Journal of Fluid Mechanics 331 (1997), pp. 59–80. DOI: 10.

1017/S0022112096003722.

[52] Carole Planchette, Elise Lorenceau, and Günter Brenn. “Binary collisions of

immiscible liquid drops for liquid encapsulation”. In: Fluid Dynamics and Ma-

terials Processing 7.3 (2011), pp. 279–302. DOI: 10.3970/fdmp.2011.007.

279.

[53] P. R. Brazier-Smith, S. G. Jennings, and J. Latham. “The Interaction of Falling

Water Drops: Coalescence”. In: Proceedings of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences 326.1566 (1972), pp. 393–408.

DOI: 10.1098/rspa.1972.0016.

[54] G Brenn and A Frohn. “Collision and coalescence of droplets of various liq-

uids”. In: Journal of Aerosol Science 20.8 (1989), pp. 1027–1030. DOI: https:

//doi.org/10.1016/0021-8502(89)90753-2.

[55] Y. J. Jiang, A. Umemura, and C. K. Law. “An experimental investigation on the

collision behaviour of hydrocarbon droplets”. In: Journal of Fluid Mechanics

234 (1992), pp. 171–190. DOI: 10.1017/S0022112092000740.

[56] K D Willis and M E Orme. “Experiments on the dynamics of droplet collisions

in a vacuum”. In: Experiments in Fluids 29.4 (Oct. 2000), pp. 347–358. DOI:

10.1007/s003489900092.

[57] Kuo Long Pan, Chung K. Law, and Biao Zhou. “Experimental and mechanistic

description of merging and bouncing in head-on binary droplet collision”. In:

Journal of Applied Physics 103.6 (2008). DOI: 10.1063/1.2841055.

[58] Chenglong Tang, Peng Zhang, and Chung K. Law. “Bouncing, coalescence,

and separation in head-on collision of unequal-size droplets”. In: Physics of

Fluids 24.2 (2012). DOI: 10.1063/1.3679165.

205

https://doi.org/10.1017/S0022112090003536
https://doi.org/10.1017/S0022112096003722
https://doi.org/10.1017/S0022112096003722
https://doi.org/10.3970/fdmp.2011.007.279
https://doi.org/10.3970/fdmp.2011.007.279
https://doi.org/10.1098/rspa.1972.0016
https://doi.org/https://doi.org/10.1016/0021-8502(89)90753-2
https://doi.org/https://doi.org/10.1016/0021-8502(89)90753-2
https://doi.org/10.1017/S0022112092000740
https://doi.org/10.1007/s003489900092
https://doi.org/10.1063/1.2841055
https://doi.org/10.1063/1.3679165


BIBLIOGRAPHY

[59] Kuo Long Pan, Ping Chung Chou, and Yu Jen Tseng. “Binary droplet collision

at high Weber number”. In: Physical Review E - Statistical, Nonlinear, and Soft

Matter Physics 80.3 (2009), pp. 1–8. DOI: 10.1103/PhysRevE.80.036301.

[60] C. Planchette et al. “Colliding drops as coalescing and fragmenting liquid

springs”. In: Journal of Fluid Mechanics 814 (2017), pp. 277–300. DOI: 10.

1017/jfm.2016.852.

[61] K. L. Pan et al. “Controlling droplet bouncing and coalescence with surfac-

tant”. In: Journal of Fluid Mechanics 799 (2016), pp. 603–636. DOI: 10.1017/

jfm.2016.381.

[62] J. P. Estrade et al. “Experimental investigation of dynamic binary collision

of ethanol droplets - a model for droplet coalescence and bouncing”. In: In-

ternational Journal of Heat and Fluid Flow 20.5 (1999), pp. 486–491. DOI:

10.1016/S0142-727X(99)00036-3.

[63] Thierry L. Georjon Reitz and Rolf D. “A drop-shattering collision model for

multidimensional spray computations”. In: Atomization and Sprays 9.1044-

5110 (1999), pp. 231–254.

[64] Donald L Gopinath Arvind Koch. “Collision and rebound of small droplets in

an incompressible continuum gas”. In: Journal of Fluid Mechanics 454 (2002),

145–201. DOI: 10.1017/S0022112001006966.

[65] Gloria A Bach, Donald L Koch, and Arvind Gopinath. “Coalescence and bounc-

ing of small aerosol droplets”. In: Journal of Fluid Mechanics 518 (2004),

157–185. DOI: 10.1017/S0022112004000928.

[66] Peng Zhang and Chung K. Law. “An analysis of head-on droplet collision with

large deformation in gaseous medium”. In: Physics of Fluids 23.4 (2011). DOI:

10.1063/1.3580754.

[67] Jie Li. “Macroscopic model for head-on binary droplet collisions in a gaseous

medium”. In: Physical Review Letters 117.21 (2016), pp. 1–5. DOI: 10.1103/

PhysRevLett.117.214502.

206

https://doi.org/10.1103/PhysRevE.80.036301
https://doi.org/10.1017/jfm.2016.852
https://doi.org/10.1017/jfm.2016.852
https://doi.org/10.1017/jfm.2016.381
https://doi.org/10.1017/jfm.2016.381
https://doi.org/10.1016/S0142-727X(99)00036-3
https://doi.org/10.1017/S0022112001006966
https://doi.org/10.1017/S0022112004000928
https://doi.org/10.1063/1.3580754
https://doi.org/10.1103/PhysRevLett.117.214502
https://doi.org/10.1103/PhysRevLett.117.214502


BIBLIOGRAPHY

[68] N. Nikolopoulos and G. Bergeles. “The effect of gas and liquid properties and

droplet size ratio on the central collision between two unequal-size droplets

in the reflexive regime”. In: International Journal of Heat and Mass Transfer

54.1-3 (2011), pp. 678–691. DOI: 10.1016/j.ijheatmasstransfer.2010.

09.002.

[69] N. Nikolopoulos, A. Theodorakakos, and G. Bergeles. “Off-centre binary col-

lision of droplets: A numerical investigation”. In: International Journal of

Heat and Mass Transfer 52.19-20 (2009), pp. 4160–4174. DOI: 10.1016/

j.ijheatmasstransfer.2009.04.011.

[70] Xiaodong Chen et al. “Energy and Mass Transfer during Binary Droplet Colli-

sion”. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons

Forum and Aerospace Exposition. Aerospace Sciences Meetings. American In-

stitute of Aeronautics and Astronautics, Jan. 2011. DOI: doi:10.2514/6.

2011-771.

[71] Yu Pan and Kazuhiko Suga. “Numerical simulation of binary liquid droplet

collision”. In: Physics of Fluids 17.8 (2005), pp. 1–14. DOI: 10.1063/1.

2009527.

[72] Sébastien Tanguy and Alain Berlemont. “Application of a level set method for

simulation of droplet collisions”. In: International Journal of Multiphase Flow

31 (2005), pp. 1015–1035. DOI: 10.1016/j.ijmultiphaseflow.2005.05.

010.

[73] Marcel Kwakkel, Wim Paul Breugem, and Bendiks Jan Boersma. “Extension

of a CLSVOF method for droplet-laden flows with a coalescence/breakup model”.

In: Journal of Computational Physics 253 (2013), pp. 166–188. DOI: 10 .

1016/j.jcp.2013.07.005.

[74] M R Nobari, Y.-J Jan, and G Tryggvason. “Head-on Collisions of Drops - A

Numerical Investigation”. In: Physics of Fluids 8.1 (1996), pp. 29–42.

[75] Zhenyu Zhang and Peng Zhanga. “Kinetic energy recovery and interface hys-

teresis of bouncing droplets after inelastic head-on collision”. In: Physics of

Fluids 29.10 (2017). DOI: 10.1063/1.5000547.

207

https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.002
https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.002
https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.011
https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.011
https://doi.org/doi:10.2514/6.2011-771
https://doi.org/doi:10.2514/6.2011-771
https://doi.org/10.1063/1.2009527
https://doi.org/10.1063/1.2009527
https://doi.org/10.1016/j.ijmultiphaseflow.2005.05.010
https://doi.org/10.1016/j.ijmultiphaseflow.2005.05.010
https://doi.org/10.1016/j.jcp.2013.07.005
https://doi.org/10.1016/j.jcp.2013.07.005
https://doi.org/10.1063/1.5000547


BIBLIOGRAPHY

[76] Ali Mazloomi Moqaddam, Shyam S. Chikatamarla, and Ilya V. Karlin. “Simu-

lation of binary droplet collisions with the entropic lattice Boltzmann method”.

In: Physics of Fluids 28.2 (2016). DOI: 10.1063/1.4942017.

[77] Kannan N. Premnath and John Abraham. “Simulations of binary drop colli-

sions with a multiple-relaxation-time lattice-Boltzmann model”. In: Physics of

Fluids 17.12 (2005), pp. 1–21. DOI: 10.1063/1.2148987.

[78] Pablo M. Dupuy et al. “Modelling of high pressure binary droplet collisions”.

In: Computers and Mathematics with Applications 61.12 (2011), pp. 3564–

3576. DOI: 10.1016/j.camwa.2010.05.044.

[79] Lina Baroudi, Masahiro Kawaji, and Taehun Lee. “Effects of initial conditions

on the simulation of inertial coalescence of two drops”. In: Computers and

Mathematics with Applications 67.2 (2014), pp. 282–289. DOI: 10.1016/j.

camwa.2013.05.002.

[80] Kai Sun, Ming Jia, and Tianyou Wang. “Numerical investigation on the head-

on collision between unequal-sized droplets with multiple-relaxation-time lat-

tice Boltzmann model”. In: International Journal of Heat and Mass Transfer

70 (2014), pp. 629–640. DOI: 10.1016/j.ijheatmasstransfer.2013.11.

055.

[81] A M Mazloomi, S S Chikatamarla, and I V Karlin. “Entropic Lattice Boltz-

mann Method for Multiphase Flows”. In: Physical Review Letters 114.17 (2015),

p. 174502. DOI: 10.1103/PhysRevLett.114.174502.

[82] Elin Olsson and Gunilla Kreiss. “A conservative level set method for two phase

flow”. In: Journal of Computational Physics 210.1 (2005), pp. 225–246. DOI:

http://dx.doi.org/10.1016/j.jcp.2005.04.007.

[83] J U Brackbill, D B Kothe, and C Zemach. “A continuum method for modeling

surface tension”. In: Journal of Computational Physics 100.2 (1992), pp. 335–

354. DOI: http://dx.doi.org/10.1016/0021-9991(92)90240-Y.

[84] Alexandre Joel Chorin. “Numerical solution of the Navier-Stokes equations”.

In: Mathematics of Computation 22.104 (1968), pp. 745–745. DOI: 10.1090/

S0025-5718-1968-0242392-2.

208

https://doi.org/10.1063/1.4942017
https://doi.org/10.1063/1.2148987
https://doi.org/10.1016/j.camwa.2010.05.044
https://doi.org/10.1016/j.camwa.2013.05.002
https://doi.org/10.1016/j.camwa.2013.05.002
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.055
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.055
https://doi.org/10.1103/PhysRevLett.114.174502
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2005.04.007
https://doi.org/http://dx.doi.org/10.1016/0021-9991(92)90240-Y
https://doi.org/10.1090/S0025-5718-1968-0242392-2
https://doi.org/10.1090/S0025-5718-1968-0242392-2


BIBLIOGRAPHY

[85] Sigal Gottlieb and Chi-Wang Shu. “Total variation diminishing Runge-Kutta

schemes”. In: Mathematics of computation of the American Mathematical So-

ciety 67.221 (1998), pp. 73–85.

[86] C M Rhie and W L Chow. “Numerical study of the turbulent flow past an airfoil

with trailing edge separation”. In: AIAA journal 21.11 (1983), pp. 1525–1532.

[87] Néstor Balcázar et al. “A level-set model for thermocapillary motion of de-

formable fluid particles”. In: International Journal of Heat and Fluid Flow

62.Part B (2016), pp. 324–343. DOI: https : / / doi . org / 10 . 1016 / j .

ijheatfluidflow.2016.09.015.

[88] Néstor Balcázar et al. “A multiple marker level-set method for simulation of

deformable fluid particles”. In: International Journal of Multiphase Flow 74

(2015), pp. 125–142. DOI: http://dx.doi.org/10.1016/j.ijmultiphaseflow.

2015.04.009.

[89] Néstor Balcázar et al. “A coupled volume-of-fluid/level-set method for simu-

lation of two-phase flows on unstructured meshes”. In: Computers and Fluids

124 (2016), pp. 12–29.

[90] Néstor Balcázar et al. “DNS of the wall effect on the motion of bubble swarms”.

In: Procedia Computer Science 108.Supplement C (2017), pp. 2008–2017.

DOI: https://doi.org/10.1016/j.procs.2017.05.076.

[91] Lachlan R Mason, Geoffrey W Stevens, and Dalton J E Harvie. “Multi-scale

volume of fluid modelling of droplet coalescence”. In: The 9th International

Conference on CFD in the Minerals and Process Industries December (2012),

pp. 1–6.

[92] X. Jiang and A. J. James. “Numerical simulation of the head-on collision of

two equal-sized drops with van der Waals forces”. In: Journal of Engineering

Mathematics 59.1 (2007), pp. 99–121. DOI: 10.1007/s10665-006-9091-9.

[93] K Willis and M Orme. “Binary droplet collisions in a vacuum environment: an

experimental investigation of the role of viscosity”. In: Experiments in Fluids

34.1 (Jan. 2003), pp. 28–41. DOI: 10.1007/s00348-002-0526-4.

209

https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2016.09.015
https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2016.09.015
https://doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.04.009
https://doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.04.009
https://doi.org/https://doi.org/10.1016/j.procs.2017.05.076
https://doi.org/10.1007/s10665-006-9091-9
https://doi.org/10.1007/s00348-002-0526-4


BIBLIOGRAPHY

[94] C Focke and D Bothe. “Direct numerical simulation of binary off-center colli-

sions of shear thinning droplets at high Weber numbers”. In: Physics of Fluids

24.7 (2012). DOI: 10.1063/1.4737582.

[95] M. Liu and D. Bothe. “Numerical study of head-on droplet collisions at high

Weber numbers”. In: Journal of Fluid Mechanics 789 (2016), pp. 785–805.

DOI: 10.1017/jfm.2015.725.

[96] P. H. Gaskell and A. K C Lau. “Curvature-compensated convective transport:

SMART, A new boundedness preserving transport algorithm”. In: Interna-

tional Journal for Numerical Methods in Fluids 8.6 (1988), pp. 617–641. DOI:

10.1002/fld.1650080602.

[97] P. K. Sweby. “High Resolution Schemes Using Flux Limiters for Hyperbolic

Conservation Laws”. In: SIAM Journal on Numerical Analysis 21.5 (1984),

pp. 995–1011. DOI: 10.1137/0721062.

[98] F. Mashayek and N. Ashgriz. “Nonlinear oscillations of drops with internal

circulation”. In: Physics of Fluids 10.5 (1998), pp. 1071–1082. DOI: 10.1063/

1.869632.

[99] C. Tufano, G. W M Peters, and H. E H Meijer. “Confined flow of polymer

blends”. In: Langmuir (2008). DOI: 10.1021/la7036636.

[100] H A Stone, A D Stroock, and A Ajdari. “Engineering flows in small devices:

Microfluidics toward a lab-on-a-chip”. In: Annual Review of Fluid Mechanics

(2004).

[101] A E Komrakova et al. “Lattice Boltzmann simulations of drop deformation

and breakup in shear flow”. In: International Journal of Multiphase Flow 59

(2014), pp. 24–43. DOI: http://dx.doi.org/10.1016/j.ijmultiphaseflow.

2013.10.009.

[102] Ali Abou-Hassan, Olivier Sandre, and Valérie Cabuil. Microfluidics in inor-

ganic chemistry. 2010. DOI: 10.1002/anie.200904285.

210

https://doi.org/10.1063/1.4737582
https://doi.org/10.1017/jfm.2015.725
https://doi.org/10.1002/fld.1650080602
https://doi.org/10.1137/0721062
https://doi.org/10.1063/1.869632
https://doi.org/10.1063/1.869632
https://doi.org/10.1021/la7036636
https://doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.10.009
https://doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.10.009
https://doi.org/10.1002/anie.200904285


BIBLIOGRAPHY

[103] Liang Li et al. “A plug-based microfluidic system for dispensing lipidic cu-

bic phase (LCP) material validated by crystallizing membrane proteins in li-

pidic mesophases”. In: Microfluidics and Nanofluidics (2010). DOI: 10.1007/

s10404-009-0512-8.

[104] A. C. Rowat et al. “Tracking lineages of single cells in lines using a microflu-

idic device”. In: Proceedings of the National Academy of Sciences (2009). DOI:

10.1073/pnas.0903163106.

[105] Ashleigh B. Theberge et al. Microdroplets in microfluidics: An evolving plat-

form for discoveries in chemistry and biology. 2010. DOI: 10.1002/anie.

200906653.

[106] Saurabh Vyawahare, Andrew D. Griffiths, and Christoph A. Merten. Miniatur-

ization and parallelization of biological and chemical assays in microfluidic

devices. 2010. DOI: 10.1016/j.chembiol.2010.09.007.

[107] Ralf Seemann et al. “Droplet based microfluidics”. In: Reports on Progress in

Physics 75.1 (2012). DOI: 10.1088/0034-4885/75/1/016601.

[108] M R Kennedy, C Pozrikidis, and R Skalak. “Motion and deformation of liquid

drops, and the rheology of dilute emulsions in simple shear flow”. In: Comput-

ers and Fluids 23.2 (1994), pp. 251–278. DOI: http://dx.doi.org/10.

1016/0045-7930(94)90040-X.

[109] G I Taylor. “The Viscosity of a Fluid Containing Small Drops of Another

Fluid”. In: Proceedings of the Royal Society of London A: Mathematical, Phys-

ical and Engineering Sciences 138.834 (1932), pp. 41–48. DOI: 10.1098/

rspa.1932.0169.

[110] G I Taylor. “The Formation of Emulsions in Definable Fields of Flow”. In:

Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences 146.858 (1934), pp. 501–523. DOI: 10.1098/rspa.

1934.0169.

[111] J M Rallison. “The Deformation of Small Viscous Drops and Bubbles in Shear

Flows”. In: Annual Review of Fluid Mechanics 16.1 (1984), pp. 45–66. DOI:

10.1146/annurev.fl.16.010184.000401.

211

https://doi.org/10.1007/s10404-009-0512-8
https://doi.org/10.1007/s10404-009-0512-8
https://doi.org/10.1073/pnas.0903163106
https://doi.org/10.1002/anie.200906653
https://doi.org/10.1002/anie.200906653
https://doi.org/10.1016/j.chembiol.2010.09.007
https://doi.org/10.1088/0034-4885/75/1/016601
https://doi.org/http://dx.doi.org/10.1016/0045-7930(94)90040-X
https://doi.org/http://dx.doi.org/10.1016/0045-7930(94)90040-X
https://doi.org/10.1098/rspa.1932.0169
https://doi.org/10.1098/rspa.1932.0169
https://doi.org/10.1098/rspa.1934.0169
https://doi.org/10.1098/rspa.1934.0169
https://doi.org/10.1146/annurev.fl.16.010184.000401


BIBLIOGRAPHY

[112] H A Stone. “Dynamics of Drop Deformation and Breakup in Viscous Flu-

ids”. In: Annual Review of Fluid Mechanics 26.1 (1994), pp. 65–102. DOI:

10.1146/annurev.fl.26.010194.000433.

[113] V Cristini and Y Renardy. “Scalings for droplet sizes in shear-driven breakup:

non-microfluidic ways to monodisperse emulsions”. In: Fluid Dyn. Mater. Pro-

cess 2.2 (2006), pp. 77–94.

[114] Charles Raphael Marks. “Drop breakup and deformation in sudden onset strong

flows”. In: (1998).

[115] B J Bentley and L G Leal. “An experimental investigation of drop deforma-

tion and breakup in steady, two-dimensional linear flows”. In: Journal of Fluid

Mechanics 167 (1986), pp. 241–283. DOI: 10.1017/S0022112086002811.

[116] Anja Vananroye, Peter Van Puyvelde, and Paula Moldenaers. “Structure devel-

opment in confined polymer blends: steady-state shear flow and relaxation”.

In: Langmuir 22.5 (2006), pp. 2273–2280.

[117] Vincenzo Sibillo et al. “Drop deformation in microconfined shear flow”. In:

Physical Review Letters 97.5 (2006). DOI: 10 . 1103 / PhysRevLett . 97 .

054502.

[118] M Shapira and S Haber. “Low reynolds number motion of a droplet between

two parallel plates”. In: International Journal of Multiphase Flow 14.4 (1988),

pp. 483–506. DOI: http://dx.doi.org/10.1016/0301-9322(88)90024-

9.

[119] M Shapira and S Haber. “Low Reynolds number motion of a droplet in shear

flow including wall effects”. In: International Journal of Multiphase Flow 16.2

(1990), pp. 305–321. DOI: http://dx.doi.org/10.1016/0301-9322(90)

90061-M.

[120] Tobias Roths et al. “Dynamics and rheology of the morphology of immiscible

polymer blends – on modeling and simulation”. In: Rheologica Acta 41.3 (),

pp. 211–222.

212

https://doi.org/10.1146/annurev.fl.26.010194.000433
https://doi.org/10.1017/S0022112086002811
https://doi.org/10.1103/PhysRevLett.97.054502
https://doi.org/10.1103/PhysRevLett.97.054502
https://doi.org/http://dx.doi.org/10.1016/0301-9322(88)90024-9
https://doi.org/http://dx.doi.org/10.1016/0301-9322(88)90024-9
https://doi.org/http://dx.doi.org/10.1016/0301-9322(90)90061-M
https://doi.org/http://dx.doi.org/10.1016/0301-9322(90)90061-M


BIBLIOGRAPHY

[121] R G M van der Sman and S van der Graaf. “Emulsion droplet deformation and

breakup with Lattice Boltzmann model”. In: Computer Physics Communica-

tions 178.7 (2008), pp. 492–504. DOI: http://dx.doi.org/10.1016/j.

cpc.2007.11.009.

[122] S Richardson. “Two-dimensional bubbles in slow viscous flows”. In: Journal of

Fluid Mechanics 33.03 (1968), pp. 475–493. DOI: 10.1017/S0022112068001461.

[123] E M Toose, B J Geurts, and J G M Kuerten. “A boundary integral method

for two-dimensional (non)-Newtonian drops in slow viscous flow”. In: Journal

of Non-Newtonian Fluid Mechanics 60.2–3 (1995), pp. 129–154. DOI: http:

//dx.doi.org/10.1016/0377-0257(95)01386-3.

[124] Mario Minale. “A phenomenological model for wall effects on the deformation

of an ellipsoidal drop in viscous flow”. In: Rheologica Acta. Vol. 47. 5-6. 2008,

pp. 667–675. DOI: 10.1007/s00397-007-0237-0.

[125] S Kwak and C Pozrikidis. “Adaptive Triangulation of Evolving, Closed, or

Open Surfaces by the Advancing-Front Method”. In: Journal of Computational

Physics 145.1 (1998), pp. 61–88. DOI: http://dx.doi.org/10.1006/jcph.

1998.6030.

[126] P J A Janssen and P D Anderson. “Boundary-integral method for drop defor-

mation between parallel plates”. In: Physics of Fluids 19.4 (2007). DOI: http:

//dx.doi.org/10.1063/1.2715621.

[127] C Pozrikidis. Boundary Integral and Singularity Methods for Linearized Vis-

cous Flow (Cambridge Texts in Applied Mathematics). Cambridge University

Press, Feb. 1992.

[128] Haowen Xi and Comer Duncan. “Lattice Boltzmann simulations of three di-

mensional single droplet deformation and breakup under simple shear flow”.

In: Phys. Rev. E 59.3 (Mar. 1999), pp. 3022–3026. DOI: 10.1103/PhysRevE.

59.3022.

[129] Xiaowen Shan and Hudong Chen. “Lattice Boltzmann model for simulating

flows with multiple phases and components”. In: Phys. Rev. E 47.3 (Mar.

1993), pp. 1815–1819. DOI: 10.1103/PhysRevE.47.1815.

213

https://doi.org/http://dx.doi.org/10.1016/j.cpc.2007.11.009
https://doi.org/http://dx.doi.org/10.1016/j.cpc.2007.11.009
https://doi.org/10.1017/S0022112068001461
https://doi.org/http://dx.doi.org/10.1016/0377-0257(95)01386-3
https://doi.org/http://dx.doi.org/10.1016/0377-0257(95)01386-3
https://doi.org/10.1007/s00397-007-0237-0
https://doi.org/http://dx.doi.org/10.1006/jcph.1998.6030
https://doi.org/http://dx.doi.org/10.1006/jcph.1998.6030
https://doi.org/http://dx.doi.org/10.1063/1.2715621
https://doi.org/http://dx.doi.org/10.1063/1.2715621
https://doi.org/10.1103/PhysRevE.59.3022
https://doi.org/10.1103/PhysRevE.59.3022
https://doi.org/10.1103/PhysRevE.47.1815


BIBLIOGRAPHY

[130] Jie Li, Yuriko Y Renardy, and Michael Renardy. “Numerical simulation of

breakup of a viscous drop in simple shear flow through a volume-of-fluid

method”. In: Physics of Fluids 12.2 (2000).

[131] Yuriko Y Renardy and Vittorio Cristini. “Effect of inertia on drop breakup

under shear”. In: Physics of Fluids 13.1 (2001).

[132] Y Renardy, V Cristini, and J Li. “Drop fragment distributions under shear with

inertia”. In: International Journal of Multiphase Flow 28.7 (2002), pp. 1125–

1147. DOI: http://dx.doi.org/10.1016/S0301-9322(02)00022-8.

[133] Damir B Khismatullin, Yuriko Renardy, and Vittorio Cristini. “Inertia-induced

breakup of highly viscous drops subjected to simple shear”. In: Physics of Flu-

ids 15.5 (2003).

[134] Kristof Verhulst et al. “Influence of viscoelasticity on drop deformation and

orientation in shear flow Part 1. Stationary states”. In: J. Non-Newtonian Fluid

Mech 156 (2009), pp. 29–43. DOI: 10.1016/j.jnnfm.2008.06.007.

[135] Swarnajay Mukherjee and Kausik Sarkar. “Effects of viscoelasticity on the

retraction of a sheared drop”. In: Journal of Non-Newtonian Fluid Mechanics

165.7-8 (2010), pp. 340–349. DOI: 10.1016/j.jnnfm.2010.01.008.

[136] Adam S. Hsu and L. Gary Leal. “Deformation of a viscoelastic drop in planar

extensional flows of a Newtonian fluid”. In: Journal of Non-Newtonian Fluid

Mechanics 160.2-3 (Aug. 2009), pp. 176–180. DOI: 10 . 1016 / j . jnnfm .

2009.03.004.

[137] Nikolaos Ioannou et al. “Droplet Dynamics of Newtonian and Inelastic Non-

Newtonian Fluids in Connement”. In: Micromachines 8.2 (2017), p. 57. DOI:

10.3390/mi8020057.

[138] Néstor Balcázar et al. “Level-set simulations of buoyancy-driven motion of

single and multiple bubbles”. In: International Journal of Heat and Fluid Flow

56 (2015), pp. 91–107. DOI: 10.1016/j.ijheatfluidflow.2015.07.004.

[139] Anja Vananroye, Peter Van Puyvelde, and Paula Moldenaers. “Effect of con-

finement on droplet breakup in sheared emulsions”. In: Langmuir 22.9 (2006),

pp. 3972–3974. DOI: 10.1021/la060442+.

214

https://doi.org/http://dx.doi.org/10.1016/S0301-9322(02)00022-8
https://doi.org/10.1016/j.jnnfm.2008.06.007
https://doi.org/10.1016/j.jnnfm.2010.01.008
https://doi.org/10.1016/j.jnnfm.2009.03.004
https://doi.org/10.1016/j.jnnfm.2009.03.004
https://doi.org/10.3390/mi8020057
https://doi.org/10.1016/j.ijheatfluidflow.2015.07.004
https://doi.org/10.1021/la060442+


BIBLIOGRAPHY

[140] P. J. a. Janssen et al. “Generalized behavior of the breakup of viscous drops in

confinements”. In: Journal of Rheology 54.5 (2010), p. 1047. DOI: 10.1122/

1.3473924.

[141] Niels G. Deen and J. A.M. Kuipers. “Direct numerical simulation of wall-to

liquid heat transfer in dispersed gas-liquid two-phase flow using a volume of

fluid approach”. In: Chemical Engineering Science (2013). DOI: 10.1016/j.

ces.2013.08.025.

[142] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. 1980.

[143] Andrea Prosperetti. “Navier-Stokes Numerical Algorithms for Free-Surface

Flow Computations: An Overview”. In: Drop-Surface Interactions. Ed. by Mar-

tin Rein. Vienna: Springer Vienna, 2002, pp. 237–257.

[144] S. Armfield and R. Street. “An analysis and comparison of the time accuracy

of fractional-step methods for the Navier-Stokes equations on staggered grids”.

In: International Journal for Numerical Methods in Fluids 38.3 (Jan. 2002),

pp. 255–282. DOI: 10.1002/fld.217.

[145] J. Kim and P. Moin. “Application of a fractional-step method to incompressible

Navier-Stokes equations”. In: Journal of Computational Physics 59.2 (1985),

pp. 308–323. DOI: 10.1016/0021-9991(85)90148-2.

[146] Frédéric N Felten and Thomas S Lund. “Kinetic energy conservation issues as-

sociated with the collocated mesh scheme for incompressible flow”. In: Journal

of Computational Physics 215.2 (2006), pp. 465–484. DOI: http://dx.doi.

org/10.1016/j.jcp.2005.11.009.

[147] R. G. Cox. “The deformation of a drop in a general time-dependent fluid flow”.

In: Journal of Fluid Mechanics (1969). DOI: 10.1017/S0022112069000759.

[148] Gace. “Dispersion phenomena in high viscosity immiscible fluid systems and

application of static mixers as dispersion devices in such systems”. In: Chemi-

cal Engineering Communications (1982), pp. 37–41. DOI: 10.1080/00986449408936233.

[149] Anja Vananroye et al. “Effect of confinement and viscosity ratio on the dynam-

ics of single droplets during transient shear flow”. In: Journal of Rheology 52.6

(2008), pp. 1459–1475. DOI: 10.1122/1.2978956.

215

https://doi.org/10.1122/1.3473924
https://doi.org/10.1122/1.3473924
https://doi.org/10.1016/j.ces.2013.08.025
https://doi.org/10.1016/j.ces.2013.08.025
https://doi.org/10.1002/fld.217
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2005.11.009
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2005.11.009
https://doi.org/10.1017/S0022112069000759
https://doi.org/10.1080/00986449408936233
https://doi.org/10.1122/1.2978956


BIBLIOGRAPHY

[150] R Byron Bird et al. Dynamics of Polymeric Liquids, Kinetic Theory (Dynamics

of Polymer Liquids Vol. 2) (Volume 2). Volume 2. Wiley-Interscience, June

1987.

[151] P N B Reis et al. “Impact response of Kevlar composites with filled epoxy

matrix”. In: Composite Structures 94.12 (2012), pp. 3520–3528. DOI: https:

//doi.org/10.1016/j.compstruct.2012.05.025.

[152] Abhijit Majumdar, Bhupendra Singh Butola, and Ankita Srivastava. “Develop-

ment of soft composite materials with improved impact resistance using Kevlar

fabric and nano-silica based shear thickening fluid”. In: Materials & Design

(1980-2015) 54 (2014), pp. 295–300. DOI: https://doi.org/10.1016/j.

matdes.2013.07.086.

[153] Oren E Petel et al. “A comparison of the ballistic performance of shear thick-

ening fluids based on particle strength and volume fraction”. In: International

Journal of Impact Engineering 85 (2015), pp. 83–96. DOI: https://doi.

org/10.1016/j.ijimpeng.2015.06.004.

[154] Fridtjov Irgens. Rheology and non-newtonian fluids. Vol. 9783319010. 2013,

pp. 1–190. DOI: 10.1007/978-3-319-01053-3.

[155] Ajay Bansal, R. K. Wanchoo, and S. K. Sharma. “Two-phase pressure drop

in a trickle bed reactor involving newtonian/ non-newtonian liquid phase”. In:

Chemical Engineering Communications 195.9 (2008), pp. 1085–1106. DOI:

10.1080/00986440801907268.

[156] M. F. Tomé et al. “A finite difference technique for simulating unsteady vis-

coelastic free surface flows”. In: Journal of Non-Newtonian Fluid Mechanics

106.2-3 (2002), pp. 61–106. DOI: 10.1016/S0377-0257(02)00064-2.

[157] C M Oishi et al. “Numerical simulation of drop impact and jet buckling prob-

lems using the eXtended Pom-Pom model”. In: Journal of Non-Newtonian

Fluid Mechanics 169-170.1 (2012), pp. 91–103. DOI: 10.1016/j.jnnfm.

2011.12.001.

216

https://doi.org/https://doi.org/10.1016/j.compstruct.2012.05.025
https://doi.org/https://doi.org/10.1016/j.compstruct.2012.05.025
https://doi.org/https://doi.org/10.1016/j.matdes.2013.07.086
https://doi.org/https://doi.org/10.1016/j.matdes.2013.07.086
https://doi.org/https://doi.org/10.1016/j.ijimpeng.2015.06.004
https://doi.org/https://doi.org/10.1016/j.ijimpeng.2015.06.004
https://doi.org/10.1007/978-3-319-01053-3
https://doi.org/10.1080/00986440801907268
https://doi.org/10.1016/S0377-0257(02)00064-2
https://doi.org/10.1016/j.jnnfm.2011.12.001
https://doi.org/10.1016/j.jnnfm.2011.12.001


BIBLIOGRAPHY

[158] Murilo F. Tome and Sean McKee. “Numerical simulation of viscous flow:

Buckling of planar jets”. In: International Journal for Numerical Methods in

Fluids 29.6 (1999), pp. 705–718. DOI: 10.1002/(SICI)1097-0363(19990330)

29:6<705::AID-FLD809>3.0.CO;2-C.

[159] Luciane S. Ferreira and Jorge O. Trierweiler. “Modeling and simulation of

the polymeric nanocapsule formation process”. In: IFAC Proceedings Volumes

(IFAC-PapersOnline) 7.PART 1 (2009), pp. 405–410. DOI: 10.1002/aic.

[160] Nishith Aggarwal and Kausik Sarkar. “Effects of matrix viscoelasticity on vis-

cous and viscoelastic drop deformation in a shear flow”. In: Journal of Fluid

Mechanics 601 (2008), pp. 63–84. DOI: 10.1017/S0022112008000451.

[161] Jiannong Fang et al. “A numerical study of the SPH method for simulating

transient viscoelastic free surface flows”. In: Journal of Non-Newtonian Fluid

Mechanics 139.1-2 (2006), pp. 68–84. DOI: 10.1016/j.jnnfm.2006.07.

004.

[162] Tao Jiang et al. “The SPH method for simulating a viscoelastic drop impact

and spreading on an inclined plate”. In: Computational Mechanics 45.6 (2010),

pp. 573–583. DOI: 10.1007/s00466-010-0471-7.

[163] A Rafiee, M T Manzari, and M Hosseini. “An incompressible SPH method for

simulation of unsteady viscoelastic free-surface flows”. In: International Jour-

nal of Non-Linear Mechanics 42.10 (2007), pp. 1210–1223. DOI: 10.1016/j.

ijnonlinmec.2007.09.006.

[164] A. Zainali et al. “Numerical investigation of Newtonian and non-Newtonian

multiphase flows using ISPH method”. In: Computer Methods in Applied Me-

chanics and Engineering 254 (2013), pp. 99–113. DOI: 10.1016/j.cma.

2012.10.005.

[165] A J Wagner, L Giraud, and C E Scott. “Simulation of a cusped bubble rising in a

viscoelastic fluid with a new numerical method”. In: Computer Physics Com-

munications 129.1 (2000), pp. 227–232. DOI: 10.1016/S0010- 4655(00)

00109-0.

217

https://doi.org/10.1002/(SICI)1097-0363(19990330)29:6<705::AID-FLD809>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-0363(19990330)29:6<705::AID-FLD809>3.0.CO;2-C
https://doi.org/10.1002/aic
https://doi.org/10.1017/S0022112008000451
https://doi.org/10.1016/j.jnnfm.2006.07.004
https://doi.org/10.1016/j.jnnfm.2006.07.004
https://doi.org/10.1007/s00466-010-0471-7
https://doi.org/10.1016/j.ijnonlinmec.2007.09.006
https://doi.org/10.1016/j.ijnonlinmec.2007.09.006
https://doi.org/10.1016/j.cma.2012.10.005
https://doi.org/10.1016/j.cma.2012.10.005
https://doi.org/10.1016/S0010-4655(00)00109-0
https://doi.org/10.1016/S0010-4655(00)00109-0


BIBLIOGRAPHY

[166] Xavier Frank et al. “A Multiscale Approach for Modeling Bubbles Rising in

Non-Newtonian Fluids”. In: Ind. Eng. Chem. Res 51 (2012), pp. 2084–2093.

DOI: 10.1021/ie2006577.

[167] Ningning Wang, Haihu Liu, and Chuhua Zhang. “Deformation and breakup

of a confined droplet in shear flows with power-law rheology”. In: Journal of

Rheology 61.4 (2017), pp. 741–758. DOI: 10.1122/1.4984757.

[168] Anupam Gupta and Mauro Sbragaglia. “Deformation and break-up of Vis-

coelastic Droplets Using Lattice Boltzmann Models”. In: Procedia IUTAM.

Vol. 15. 15. 2015, pp. 215–227. DOI: 10.1016/j.piutam.2015.04.030.

[169] Kai Sun et al. “Non-Newtonian flow effects on the coalescence and mixing

of initially stationary droplets of shear-thinning fluids”. In: Physical Review E

- Statistical, Nonlinear, and Soft Matter Physics 91.2 (2015), pp. 1–10. DOI:

10.1103/PhysRevE.91.023009.

[170] Siddhartha F. Lunkad, Vivek V. Buwa, and K. D.P. Nigam. “Numerical simu-

lations of drop impact and spreading on horizontal and inclined surfaces”. In:

Chemical Engineering Science 62.24 (2007), pp. 7214–7224. DOI: 10.1016/

j.ces.2007.07.036.

[171] J L Favero et al. “Viscoelastic fluid analysis in internal and in free surface flows

using the software OpenFOAM”. In: Computers and Chemical Engineering 34

(2010), pp. 1984–1993. DOI: 10.1016/j.compchemeng.2010.07.010.

[172] Andrea Bonito, Marco Picasso, and Manuel Laso. “Numerical simulation of

3D viscoelastic flows with free surfaces POOPING”. In: Journal of Computa-

tional Physics 215.2 (2006), pp. 691–716. DOI: 10.1016/j.jcp.2005.11.

013.

[173] Wanpeng Sun et al. “The minimum in-line coalescence height of bubbles in

non-Newtonian fluid”. In: International Journal of Multiphase Flow 92 (2017),

pp. 161–170. DOI: 10.1016/j.ijmultiphaseflow.2017.03.011.

[174] Altti Torkkeli. “Droplet microfluidics on a planar surface”. In: VTT Publi-

cations 61.504 (2003), pp. 3–194. DOI: 10 .1002 /aic. arXiv: 0201037v1

[physics].

218

https://doi.org/10.1021/ie2006577
https://doi.org/10.1122/1.4984757
https://doi.org/10.1016/j.piutam.2015.04.030
https://doi.org/10.1103/PhysRevE.91.023009
https://doi.org/10.1016/j.ces.2007.07.036
https://doi.org/10.1016/j.ces.2007.07.036
https://doi.org/10.1016/j.compchemeng.2010.07.010
https://doi.org/10.1016/j.jcp.2005.11.013
https://doi.org/10.1016/j.jcp.2005.11.013
https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.011
https://doi.org/10.1002/aic
http://arxiv.org/abs/0201037v1
http://arxiv.org/abs/0201037v1


BIBLIOGRAPHY

[175] Nelson O Moraga et al. “VOF/FVM prediction and experimental validation for

shear-thinning fluid column collapse”. In: Computers and Mathematics with

Applications 69 (2015), pp. 89–100. DOI: 10.1016/j.camwa.2014.11.018.

[176] B P Leonard. “The ULTIMATE conservative difference scheme applied to

unsteady one-dimensional advection”. In: Computer Methods in Applied Me-

chanics and Engineering 88.1 (1991), pp. 17–74. DOI: https://doi.org/

10.1016/0045-7825(91)90232-U.

[177] A R Premlata et al. “Dynamics of an air bubble rising in a non-Newtonian

liquid in the axisymmetric regime”. In: Journal of Non-Newtonian Fluid Me-

chanics 239 (2017), pp. 53–61. DOI: 10.1016/j.jnnfm.2016.12.003.

[178] S. Abishek, A. J.C. King, and R. Narayanaswamy. “Dynamics of a Taylor bub-

ble in steady and pulsatile co-current flow of Newtonian and shear-thinning

liquids in a vertical tube”. In: International Journal of Multiphase Flow 74

(2015), pp. 148–164. DOI: 10.1016/j.ijmultiphaseflow.2015.04.014.

[179] J. D.P. Araújo, J. M. Miranda, and J. B.L.M. Campos. “Taylor bubbles rising

through flowing non-Newtonian inelastic fluids”. In: Journal of Non-Newtonian

Fluid Mechanics 245 (2017), pp. 49–66. DOI: 10.1016/j.jnnfm.2017.04.

009.

[180] Jiun Der Yu, Shinri Sakai, and J A Sethian. “Two-phase viscoelastic jetting”.

In: Journal of Computational Physics 220.2 (2007), pp. 568–585. DOI: 10.

1016/j.jcp.2006.05.020.

[181] Tayfun E Tezduyar et al. “Convected level set method for the numerical sim-

ulation of fluid buckling”. In: International Journal for Numerical Methods in

Fluids October 2007 (2008), pp. 601–629. DOI: 10.1002/fld.

[182] J L Prieto. “Stochastic particle level set simulations of buoyancy-driven droplets

in non-Newtonian fluids”. In: Journal of Non-Newtonian Fluid Mechanics 226

(2015), pp. 16–31. DOI: 10.1016/j.jnnfm.2015.10.002.

[183] Shriram B. Pillapakkam et al. “Transient and steady state of a rising bubble in

a viscoelastic fluid”. In: Journal of Fluid Mechanics 589 (2007), pp. 215–252.

DOI: 10.1017/S0022112007007628.

219

https://doi.org/10.1016/j.camwa.2014.11.018
https://doi.org/https://doi.org/10.1016/0045-7825(91)90232-U
https://doi.org/https://doi.org/10.1016/0045-7825(91)90232-U
https://doi.org/10.1016/j.jnnfm.2016.12.003
https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.014
https://doi.org/10.1016/j.jnnfm.2017.04.009
https://doi.org/10.1016/j.jnnfm.2017.04.009
https://doi.org/10.1016/j.jcp.2006.05.020
https://doi.org/10.1016/j.jcp.2006.05.020
https://doi.org/10.1002/fld
https://doi.org/10.1016/j.jnnfm.2015.10.002
https://doi.org/10.1017/S0022112007007628


BIBLIOGRAPHY

[184] Elin Olsson and Gunilla Kreiss. “A conservative level set method for two phase

flow”. In: Journal of Computational Physics 210.1 (2005), pp. 225–246. DOI:

10.1016/j.jcp.2005.04.007.

[185] Ann S. Almgren et al. “A Conservative Adaptive Projection Method for the

Variable Density Incompressible Navier-Stokes Equations”. In: Journal of Com-

putational Physics 142.1 (1998), pp. 1–46. DOI: 10.1006/jcph.1998.5890.

[186] X. Chen et al. “A comparison of stabilisation approaches for finite-volume sim-

ulation of viscoelastic fluid flow”. In: International Journal of Computational

Fluid Dynamics 27.6-7 (2013), pp. 229–250. DOI: 10.1080/10618562.2013.

829916.

[187] Raanan Fattal and Raz Kupferman. “Constitutive laws for the matrix-logarithm

of the conformation tensor”. In: Journal of Non-Newtonian Fluid Mechanics

123.2-3 (2004), pp. 281–285. DOI: 10.1016/j.jnnfm.2004.08.008.

[188] M A Hulsen, A P G van Heel, and B.H.A.A van den Brule. “Simulation of

viscoelastic flows using Brownian configuration fields”. In: Journal of Non-

Newtonian Fluid Mechanics 70.1 (1997), pp. 79–101. DOI: https://doi.

org/10.1016/S0377-0257(96)01503-0.

[189] Jaewook Lee et al. “Practical comparison of differential viscoelastic constitu-

tive equations in finite element analysis of planar 4:1 contraction flow”. In:

Rheologica Acta 44.2 (Dec. 2004), pp. 188–197. DOI: 10.1007/s00397-

004-0399-y.

[190] Michael Renardy. “Current issues in non-Newtonian flows: A mathematical

perspective”. In: Journal of Non-Newtonian Fluid Mechanics 90.2-3 (2000),

pp. 243–259. DOI: 10.1016/S0377-0257(99)00081-6.

[191] Raanan Fattal and Raz Kupferman. “Time-dependent simulation of viscoelastic

flows at high Weissenberg number using the log-conformation representation”.

In: Journal of Non-Newtonian Fluid Mechanics 126.1 (2005), pp. 23–37. DOI:

https://doi.org/10.1016/j.jnnfm.2004.12.003.

220

https://doi.org/10.1016/j.jcp.2005.04.007
https://doi.org/10.1006/jcph.1998.5890
https://doi.org/10.1080/10618562.2013.829916
https://doi.org/10.1080/10618562.2013.829916
https://doi.org/10.1016/j.jnnfm.2004.08.008
https://doi.org/https://doi.org/10.1016/S0377-0257(96)01503-0
https://doi.org/https://doi.org/10.1016/S0377-0257(96)01503-0
https://doi.org/10.1007/s00397-004-0399-y
https://doi.org/10.1007/s00397-004-0399-y
https://doi.org/10.1016/S0377-0257(99)00081-6
https://doi.org/https://doi.org/10.1016/j.jnnfm.2004.12.003


BIBLIOGRAPHY

[192] Martien A Hulsen, Raanan Fattal, and Raz Kupferman. “Flow of viscoelastic

fluids past a cylinder at high Weissenberg number: Stabilized simulations us-

ing matrix logarithms”. In: Journal of Non-Newtonian Fluid Mechanics 127.1

(2005), pp. 27–39. DOI: https://doi.org/10.1016/j.jnnfm.2005.01.

002.

[193] P. A. Stewart et al. “An improved sharp interface method for viscoelastic and

viscous two-phase flows”. In: Journal of Scientific Computing 35.1 (2008),

pp. 43–61. DOI: 10.1007/s10915-007-9173-5.

[194] Nusret Balci et al. “Symmetric factorization of the conformation tensor in vis-

coelastic fluid models”. In: Journal of Non-Newtonian Fluid Mechanics 166.11

(2011), pp. 546–553. DOI: 10.1016/j.jnnfm.2011.02.008.

[195] Kausik Sarkar and William R. Schowalter. “Deformation of a two-dimensional

viscoelastic drop at non-zero Reynolds number in time-periodic extensional

flows”. In: Journal of Non-Newtonian Fluid Mechanics 95.2-3 (2000), pp. 315–

342. DOI: 10.1016/S0377-0257(00)00156-7.

[196] T. Chinyoka et al. “Two-dimensional study of drop deformation under simple

shear for Oldroyd-B liquids”. In: Journal of Non-Newtonian Fluid Mechanics

130.1 (2005), pp. 45–56. DOI: 10.1016/j.jnnfm.2005.07.005.

[197] L. J. Amoreira and P. J. Oliveira. “Comparison of different formulations for

the numerical calculation of unsteady incompressible viscoelastic fluid flow”.

In: Advances in Applied Mathematics and Mechanics 2.4 (2010), pp. 483–502.

DOI: 10.4208/aamm.10-m1010.

[198] Néstor Balcázar et al. “A finite-volume/level-set method for simulating two-

phase flows on unstructured grids”. In: International Journal of Multiphase

Flow 64 (2014), pp. 55–72. DOI: http : / / dx . doi . org / 10 . 1016 / j .

ijmultiphaseflow.2014.04.008.

[199] A. Carmona et al. “Numerical analysis of the transpose diffusive term for

viscoplastic-type non-newtonian fluid flows using a collocated variable arrange-

ment”. In: Numerical Heat Transfer, Part B: Fundamentals 67.5 (2015), pp. 410–

436. DOI: 10.1080/10407790.2014.964575.

221

https://doi.org/https://doi.org/10.1016/j.jnnfm.2005.01.002
https://doi.org/https://doi.org/10.1016/j.jnnfm.2005.01.002
https://doi.org/10.1007/s10915-007-9173-5
https://doi.org/10.1016/j.jnnfm.2011.02.008
https://doi.org/10.1016/S0377-0257(00)00156-7
https://doi.org/10.1016/j.jnnfm.2005.07.005
https://doi.org/10.4208/aamm.10-m1010
https://doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.04.008
https://doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.04.008
https://doi.org/10.1080/10407790.2014.964575


BIBLIOGRAPHY

[200] Kerim Yapici, Bulent Karasozen, and Yusuf Uludag. “Journal of Non-Newtonian

Fluid Mechanics Finite volume simulation of viscoelastic laminar flow in a lid-

driven cavity”. In: 164 (2009), pp. 51–65. DOI: 10.1016/j.jnnfm.2009.08.

004.

[201] E. O. Carew, P. Townsend, and M. F. Webster. “Taylor-Galerkin algorithms for

viscoelastic flow: Application to a model problem”. In: Numerical Methods for

Partial Differential Equations 10.2 (Mar. 1994), pp. 171–190. DOI: 10.1002/

num.1690100204.

[202] D. J E Harvie, J. J. Cooper-White, and M. R. Davidson. “Deformation of a

viscoelastic droplet passing through a microfluidic contraction”. In: Journal of

Non-Newtonian Fluid Mechanics 155.1-2 (2008), pp. 67–79. DOI: 10.1016/

j.jnnfm.2008.05.002.

[203] S. Guido, M. Simeone, and F. Greco. “Deformation of a Newtonian drop in

a viscoelastic matrix under steady shear flow Experimental validation of slow

flow theory”. In: Journal of Non-Newtonian Fluid Mechanics 114.1 (2003),

pp. 65–82. DOI: 10.1016/S0377-0257(03)00118-6.

[204] Pier Luca Maffettone and Francesco Greco. “Ellipsoidal drop model for sin-

gle drop dynamics with non-Newtonian fluids”. In: Journal of Rheology 48.1

(2004), pp. 83–100. DOI: 10.1122/1.1626675.

222

https://doi.org/10.1016/j.jnnfm.2009.08.004
https://doi.org/10.1016/j.jnnfm.2009.08.004
https://doi.org/10.1002/num.1690100204
https://doi.org/10.1002/num.1690100204
https://doi.org/10.1016/j.jnnfm.2008.05.002
https://doi.org/10.1016/j.jnnfm.2008.05.002
https://doi.org/10.1016/S0377-0257(03)00118-6
https://doi.org/10.1122/1.1626675

	Abstract
	Introduction
	Background and motivation
	Computational methods in numerical solution of multiphase flows
	CTTC research group
	Objective of the thesis
	Thesis outline

	Numerical study of binary droplets collision in the main collision regimes
	Introduction
	Mathematical formulation
	Numerical method
	Discretization of governing equations
	Dimensionless collision parameters
	Energy analysis of the system
	Gas-film stabilization approach
	Lamella Stabilization Approach

	Results and Discussions
	Retarded permanent coalescence
	Bouncing
	Immediate permanent coalescence
	Coalescence followed by reflexive separation
	Coalescence followed by stretching separation
	High Weber number collision (HWC)

	Validation of energy analysis formulations
	Conservation of total energy and the role of flux-limiters
	Conclusions

	Numerical study of droplet deformation in shear flow using a conservative level-set method
	Introduction
	Mathematical formulation
	Numerical method
	Harmonic Vs. Linear Average of Viscosity
	Momentum Convergence Analysis
	Numerical experiments and discussion
	The effect of numerical parameters
	The effect of capillary number
	The effect of Walls Confinement
	The effect of viscosity ratio
	The effect of viscosity ratio on walls critical confinement ratio

	Conclusions

	A numerical approach for non-Newtonian two-phase flows using a conservative level-set method
	Introduction
	Mathematical formulation
	Numerical method
	Small time-step of the simulation
	High Weissenberg Number Problem (HWNP)

	Derivation of formulation of Log-conformation representation method
	Singularities of non-Viscoelastic regions
	Low viscosity ratio problem (LVRP) 
	Spatial discretization of constitutive equation
	Solution process

	Singularities of non-Viscoelastic regions: A droplet in shear test case
	The ability of different approaches in solving LVRP
	Numerical experiments and discussion
	Lid-Driven Cavity
	Two-dimensional Poiseuille flow
	Impacting droplet problem
	Sudden contraction/expansion
	Simple Shear flow

	Conclusions

	Conclusions and further work
	Concluding remarks
	Further work

	List of publications
	Bibliography

