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A mi familia






(Para leer en forma interrogativa)
Has wvisto,
verdaderamente has visto
la nieve, los astros, los pasos afelpados de la brisa...
Has tocado,
de verdad has tocado
el plato, el pan, la cara de esa mujer que tanto amds...
Has vivido
como un golpe en la frente,
el instante, el jadeo, la caida, la fuga...
Has sabido
con cada poro de la piel, sabido
que tus ojos, tus manos, tu sexo, tu blando corazon,
habia que tirarlos
habia que llorarlos

habia que inventarlos otra vez.

- Julio Cortazar






Acknowledgement

First of all, I am grateful to my advisor, Prof. Dr. Cecilio Angulo, for believing in this
project and supporting it from the beginning till the end of the journey. I am also thankful
to Prof. Dr. Verena Hafner and the members of her team for the knowledge they shared with
me during my stage at the Humboldt University of Berlin. I am also grateful to Dr. Diego
Pardo and Prof. Dr. Jonas Buchli for inviting me to collaborate with them at the ADLR-lab
at ETHZ. An special mention and acknowledgement to the international reviewers of this
thesis Prof. Dr. Bruno Lara and Dr. Guido Schillaci. T am also thankful to Dr. Clément
Moulin-Frier for sharing with me his expertise in the field of developmental robotics at the

beginning of this project.

I am thankful to the GREC research group’s members for all the discussions during our
seminars and meetings, specially Karla and Jenn. I express my gratitude to many friends,
cousins, and colleagues that at different moments collaborated with knowledge, emotional
support, and fun. I will be always in debt with Karla and Victor, when I was homeless after
my stages abroad they opened the doors of their homes to me, they helped me in so many
ways. Together with Julio and Noe you filled these years with laughter, encouragement and
inspiration, during the last six years, thank you guys. I am also grateful to my Mexican
crew. [ am also grateful to Claudi, his friendship through these years has encouraged me in

so many ways and enriched my knowledge.

To Anna, Daria, Hubert and Marcin (my wonderful polish crew) for being always there,
for being family, for all the Christmas, Easters, New years’s eves, and summers we spent
together, from pseudo-snowboarding in the Polish mountains, till sailing the Adriatic sea

and, literally, almost dying in the pursuing of happiness and adventures.

Finally, I express my gratitude to Mexico and CONACyT for providing the resources to reach
this milestone in my professional life. My gratitude is also for the Swiss National Centre of
Competence and Research and Fundacié “la Caixa” for funding my stages in Zurich and

Berlin, respectively.

El estado actual de mi vida, un estado mas bien observable, no podria explicarse sin el amor
y apoyo recibidos a lo largo de estos anos de parte de mi familia, a ellos les dedico cada uno

de los esfuerzo hechos para concluir este proyecto, y les agradezco muchas cosas mas. A mi

i



i

papé, Lorenzin, que me dejoé tantas ensefianzas y regalos, y a veces en suenos no deja de
aconsejarme. A mi mamad, Chalo, que con sus oraciones y su hambre infinita de sacar a sus
hijos adelante ha sido la principal benefactora de todos estos afios. A mis hermanos, Elena y
Herminio, a quienes admiro por sus éxitos profesionales y su calidad humana. No perdieron
cualquier oportunidad de acompanarme con visitas cortas, o estancias largas a lo largo de
estos anos. Gracias por los viajes, por el apoyo, y por mantenerme cerca de casa a pesar de

la distancia.

Adtn con todas las experiencias y conocimientos cosechados, de la felicidad inegable, los anos
fuera de casa sin duda representan un costo muy alto, por lo que cada minuto lejos ha tenido
que valerlo. Sin duda agradezco a grandes amigos que se han mantenido cercanos a la familia
v nos han apoyado en momentos llenos de alegrias y sobre todo en momentos dificiles: Don
Gustavo, Dona Tere, Sergio Rodriguez. En este sentido gracias a mi hermano Ismael y a su

mama.

Agradezo a Alejandra, por haberme acompanado y dado tanta fuerza a lo largo de la iltima
etapa de este proyecto. Por embarcarse conmigo en una de las aventuras mas grandes y
hermosa de nuestras vidas. Por sostenerme en mis tambaleos y por llenar mi vida de alegria,

redefiniendo tantas palabras y lugares.

Juan Manuel Acevedo Valle

Barcelona, September 2018



Abstract

This research is motivated by the benefits that knowledge regarding early development in
infants may provide to different fields of science. In particular, early sensorimotor exploration
behaviors are studied in the framework of developmental robotics. The main objective is
about understanding the role of motor constraint awareness and imitative behaviors during
sensorimotor exploration. Particular emphasis is placed on prelinguistic vocal development
because during this stage infants start to master the motor systems that will later allow them

to pronounce their first words.

Previous works have demonstrated that goal-directed intrinsically motivated sensorimotor
exploration is an essential element for sensorimotor control learning. Moreover, evidence
coming from biological sciences strongly suggests that knowledge acquisition is shaped by
the environment in which an agent is embedded and the embodiment of the agent itself,

including developmental processes that shape what can be learned and when.

In this dissertation, we firstly provide a collection of theoretical evidence that supports the
relevance of our study. Starting from concepts of cognitive and developmental sciences, we
arrived at the conclusion that spoken language, i.e., early vocal development, must be studied
as an embodied and situated phenomena. Considering a synthetic approach allow us to use
robots and realistic simulators as artifacts to study natural cognitive phenomena. In this
work, we adopt a toy example to test our cognitive architectures and a speech synthesizer

that mimics the mechanisms by which humans produce speech.

Next, we introduce a mechanism to endow embodied agents with motor constraint awareness.
Intrinsic motivation has been studied as an important element to explain the emergence of
structured developmental stages during early vocal development. However, previous studies
failed to acknowledge the constraints imposed by the embodiment and situatedness, at sen-
sory, motor, cognitive and social levels. We assume that during the onset of sensorimotor
exploratory behaviors, motor constraints are unknown to the developmental agent. Thus,
the agent must discover and learn during exploration what those motor constraints are. The
agent is endowed with a somesthetic system based on tactile information. This system gener-
ates a sensor signal indicating if a motor configuration was reached or not. This information

is later used to create a somesthetic model to predict constraint violations.
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Finally, we propose to include social reinforcement during exploration. Some works studying
early vocal development have shown that environmental speech shapes the sensory space
explored during babbling. More generally, imitative behaviors have been demonstrated to
be crucial for early development in children as they constraint the search space during sen-
sorimotor exploration. Therefore, based on early interactions of infants and caregivers we
proposed an imitative mechanism to reinforce intrinsically motivated sensorimotor explo-
ration with relevant sensory units. Thus, we modified the constraints aware sensorimotor
exploration architecture to include a social instructor, expert in sensor units relevant to
communication, which interacts with the developmental agent. Interaction occurs when the
learner production is ‘enough’ similar to one relevant to communication. In that case, the
instructor perceives this similitude and reformulates with the relevant sensor unit. When the

learner perceives an utterance by the instructor, it attempts to imitate it.

In general, our results suggest that somesthetic senses and social reinforcement contribute to
achieving better results during intrinsically motivated exploration. Achieving less redundant
exploration, decreasing exploration and evaluation errors, as well as showing a clearer picture

of developmental transitions.

Keywords:

Developmental Robotics, Artificial Vocal Development, Sensorimotor Exploration, Constraint
Awareness, Social Reinforcement, Incremental Learning, Gaussian Mixture Models, Speech

Technologies, Language, Sensorimotor Contingencies



Resumen

La motivacién principal de este trabajo es la magnitud que las contribuciones al conocimiento
en relacién al desarrollo infantil pueden aportar a diferentes campos de la ciencia. Partic-
ularmente, este trabajo se enfoca en el estudio de los comportamientos de autoexploracion
sensorimotora en un marco robético e inspirado en el campo de la psicologia del desarrollo.
Nuestro objetivo principal es entender el papel que juegan las restricciones motoras y los
reflejos imitativos durante la exploracion espontdnea observada en infantes. Asi mismo, este
trabajo hace especial énfasis en el desarrollo vocal-auditivo en infantes, que les provee con

las herramientas que les permitiran producir sus primeras palabras.

Trabajos anteriores han demostrado que los comportamientos de autoexploracion sensorimo-
tora en ninos, la cual ocurre en gran medida por motivaciones intrinsecas, es un elemento
importante para aprender a controlar su cuerpo con tal de alcanzar estados sensoriales es-
pecificos. Ademads, evidencia obtenida de estudios bioldgicos sugiere tajantemente que la
adquisicién de conocimiento es regulada por el ambiente en el cual un agente cognitivo se
desenvuelve y por el cuerpo del agente per se. Incluso, los procesos de desarrollo que ocurren

a nivel fisico, cognitivo y social también regulan que es aprendido y cuando esto es aprendido.

La primera parte de este trabajo provee al lector con la evidencia tedrica y practica que
demuestran la relevancia de esta investigacién. Recorriendo conceptos que van desde las
ciencias cognitivas y del desarrollo, llegamos a la conclusiéon de que el lenguaje, y por tanto
el habla, deben ser estudiados como fendmenos cognitivos que requieren un cuerpo fisico y
ademas un ambiente propicio para su existencia. En la actualidad los sistemas robdticos,
reales y simulados, pueden ser considerados como elementos para el estudio de los fenémenos
cognitivos naturales. En este trabajo consideramos un ejemplo simple para probar las arqui-
tecturas cognitivas que proponemos, y posteriormente utilizamos dichas arquitecturas con

un sintetizador de voz similar al mecanismo humano de produccién del habla.

Como primera contribucién de este trabajo proponemos introducir un mecanismo para con-
struir robots capaces de considerar sus propias restricciones motoras durante la etapa de
autoexploracion sensorimotora. Ciertos mecanismos de motivacion intrinseca para explo-
racion sensorimotora han sido estudiados como posibles conductores de las trayectorias de

desarrollo observadas durante el desarrollo temprano del habla. Sin embargo, en previos
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estudios no se considerd que este desarrollo estd delimitado por restricciones debido al am-
biente, al cuerpo fisico, y a las capacidades sensoriales, motoras y cognitivas. En nuestra
arquitectura, asumimos que un agente artificial no cuenta con conocimiento de sus limitantes
motoras, y por tanto debe descubrirlas durante la etapa de autoexploracion. Para tal efecto,
el agente es proveido de un sistema somatosensorial que le indica cuando una configuracién

motora viola las restricciones impuestas por el propio cuerpo.

Finalmente, como segunda parte de nuestra contribuciéon proponemos incluir un mecanismo
para reforzar el aprendizaje durante la autoexploracién. Estudios anteriores demostraron
que el ambiente lingiifstico en que se desarrolla un infante, o un agente artificial, condi-
ciona sus producciones vocales durante la autoexploracion o balbuceo. En este trabajo nos
enfocamos en el estudio de episodios de imitacién que ocurren durante el desarrollo tem-
prano de un agente. Basados en estudios sobre la interaccién entre madres e hijos durante
la etapa prelingiiistica, proponemos un mecanismo para reforzar el aprendizaje durante la
autoexploracion con unidades sensoriales relevantes. Entonces, a partir de la arquitectura
con autoconocimiento de restricciones motores, construimos una arquitectura que incluye un
instructor experto en control sensorimotor. Las interacciones entre el aprendiz y el experto
ocurren cuando el aprendiz produce una unidad sensorial relevante para la comunicacion
durante la autoexploracién. En este caso, el experto percibe esta similitud y responde refor-
mulando la produccién del aprendiz como la unidad relevante. Cuando el aprendiz percibe

una accion del experto, inmediatamente intenta imitarlo.

Los resultados presentados en este trabajo sugieren que los sistemas somatosensoriales y el
reforzamiento social contribuyen a lograr mejores resultados durante la etapa de autoexplo-
racion sensorimotora motivada intrinsicamente. En este sentido, se logra una exploracién
menos redundante, los errores de exploracién y evaluacién disminuyen, y por tltimo se ob-

tiene una imagen mas nitida de las transiciones entre etapas del desarrollo.



Resum

La motivacio principal d’aquest treball és la magnitud que les contribucions al coneixement en
relacié al desenvolupament infantil poden aportar a diferents camps de la ciéncia. Particular-
ment, aquest treball s’enfoca en I’estudi dels comportaments d’autoexploracio sensorimotora
en un marc robotic i inspirat en el camp de la psicologia del desenvolupament. El nostre
objectiu principal és entendre el paper que juguen les restriccions motores i els reflexos im-
itatius durant ’exploracié espontania observada en infants. Aixi mateix, aquest treball fa
especial emfasi en el desenvolupament vocal-auditiu en infants, que els proveeix amb les eines

que els permetran produir les seves primeres paraules.

Treballs anteriors han demostrat que els comportaments d’autoexploracié sensorimotora en
nens, la qual ocorre en gran mesura per motivacions intrinseques, és un element important per
aprendre a controlar el seu cos per tal d’assolir estats sensorials especifics. A més, evidencies
obtingudes d’estudis biologics suggereixen que l’adquisicié de coneixement és regulada per
I’ambient en el qual un agent cognitiu es desenvolupa i pel cos de I’agent per se. Fins i tot,
els processos de desenvolupament que ocorren a nivell fisic, cognitiu i social també regulen

que és apres i quan aixo és apres.

La primera part d’aquest treball proveeix el lector amb les evidéncies teorica i practica que
demostren la rellevancia d’aquesta investigacié. Recorrent conceptes que van des de les
ciencies cognitives i del desenvolupament, vam arribar a la conclusié que el llenguatge, i per
tant la parla, han de ser estudiats com a fenomens cognitius que requereixen un cos fisic i a
més un ambient propici per a la seva existeéncia. En 'actualitat els sistemes robotics, reals i
simulats, poden ser considerats com a elements per a I’estudi dels fenomens cognitius natu-
rals. En aquest treball considerem un exemple simple per provar les arquitectures cognitives
que proposem, i posteriorment utilitzem aquestes arquitectures amb un sintetitzador de veu

similar al mecanisme huma de produccié de la parla.

Com a primera contribucié d’aquest treball proposem introduir un mecanisme per con-
struir robots capagos de considerar les seves propies restriccions motores durant ’etapa
d’autoexploracié sensorimotora. Certs mecanismes de motivacié intrinseca per exploracié
sensorimotora han estat estudiats com a possibles conductors de les trajectories de desen-

volupament observades durant el desenvolupament primerenc de la parla. No obstant aixo,

vii
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en previs estudis no es va considerar que aquest desenvolupament és delimitat per restric-
cions a causa de I'ambient, el cos fisic, i les capacitats sensorials, motores i cognitives. A la
nostra arquitectura, assumim que un agent artificial no compta amb coneixement dels seus
limitants motors, i per tant ha de descobrir-los durant I’etapa d’autoexploracié. Per a tal
efecte, 'agent és proveit d’'un sistema somatosensorial que li indica quan una configuracio

motora viola les restriccions imposades pel propi cos.

Finalment, com a segona part de la nostra contribucié proposem incloure un mecanisme
per reforcar I'aprenentatge durant l'autoexploracié. Estudis anteriors han demostrat que
I’ambient lingiiistic en que es desenvolupa un infant, o un agent artificial, condiciona les seves
produccions vocals durant 'autoexploracié o balboteig. En aquest treball ens enfoquem en
I’estudi d’episodis d’imitacié que ocorren durant el desenvolupament primerenc d’un agent.
Basats en estudis sobre la interaccid entre mares i fills durant I’etapa prelingliistica, proposem
un mecanisme per reforcar 'aprenentatge durant l'autoexploracié amb unitats sensorials
rellevants. Aleshores, a partir de arquitectura amb autoconeixement de restriccions motors,
vam construir una arquitectura que inclou un instructor expert en control sensorimotor. Les
interaccions entre I'aprenent i 'expert, ocorren quan una produccio sensorial de ’aprenent
durant I'autoexploracié és similar a una unitat sensorial rellevant per a la comunicacié. En
aquest cas, I'expert percep aquesta similitud i respon reformulant la produccié de ’aprenent
com la unitat rellevant. Quan I'aprenent percep una accio de I’expert, immediatament intenta

imitar-lo.

Els resultats presentats en aquest treball suggereixen que els sistemes somatosensorials i el re-
forcament social contribueixen a aconseguir millors resultats durant I’etapa d’autoexploracio
sensorimotora motivada intrinsecament. En aquest sentit, s’aconsegueix una exploracio
menys redundant, els errors d’exploracié i avaluacié disminueixen, i finalment s’obté una

imatge més nitida de les transicions entre etapes del desenvolupament
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Chapter 1

Introduction

“People are mistaken when they think that
technology just automatically improves. It does not
automatically improve. It only improves if a lot of
people work very hard to make it better, and

actually it will, I think, by itself degrade, actually.”
— Elon Musk

Despite an optimistic view about the future of robotics, robots have still not pervaded our
daily life. A number of scientific issues are yet to be solved for robots to be able to efficiently
behave in open and uncertain environments. Modern technological approaches have aimed
at solving some of the critical issues to develop more complex robotic systems through un-
derstanding and modeling key cognitive processes in humans. Among the most challenging
fields associated with robotics, one could find computer vision, navigation, motion control,

and human-robot interaction.

During the last years, the robotic industry has rapidly grown. This growth hasbeen restricted
to services (e.g., surgical robots), exploration and surveillance (e.g., autonomous submarines
and drones), military and manufacturing. In fact, robotic systems have become a strategic
element for those industries. Even though robots have been endowed with some autonomy
to make decisions, those decisions are restricted to structured environments where sources
of uncertainty are scarce, and humans are generally not physically involved in the task at

hand.
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More recently, there has been an increasing interest in using robots for domestic, rescuing
tasks, more complex medical procedures, among other applications. In the years to come,
robots are going to be necessary to solve important problems in our societies. Just consider
the example of elderly people in Japan, by 2035 a third of the country’s population will be
65 or older. Thus, the robotic industry has started to develop the technologies to fulfill the
healthcare and nursing requirements that this situation will generate, opening also a door
to a big business considering that other countries will face similar problems (Forster, 2018).
Such applications require a robot to perform daily life human-like activities. Some robots
have been developed for those areas, but they are neither effective nor efficient performing
in unstructured environments and interacting with humans. We consider these handicaps
as the main reason to prevent robots from “overrun” our homes, workplaces, streets, leisure
spaces, among other places. From our perspective, if robots are intended to work side-by-side
with humans, they require at least to satisfy three general aspects. First, they must operate
safely for humans and themselves. Second, robots must efficiently perform the work they
have been created to fulfill. Third, they must be able to efficiently interact (regarding the
task they are designed for) with other agents (humans, animals, and other robots) becoming

social artifacts.

Researchers are aware that, in the most complex scenarios of interaction, robots should
be endowed with human-like communication mechanisms. Consequently, artificial speech
and natural language technologies have been widely investigated. Recently Google Duplex
was presented (Hyken, 2018), a human-like talking computer able to make calls to arrange a
haircut appointment or book a table at a restaurant without the interlocutors suspecting that
they are talking to a computer. Many questions may arise from Google later developments,
technical, ethical and even philosophical. The important technical question at hand is What
would be the result of a call if the topic of conversation drifts apart from the original purpose
of the call? In general, what we observe in the release of Google Duplex is that the purposes of
the calls are structured. Thus, the possibilities are constrained to a certain degree, therefore
facilitating the development of a system performing well. To answer more questions about

this new system we will have to wait until the app or technical reports will be granted access.

In spite on any criticism, Google results are impressive, but much of this advance in human-
like conversational machines must be acknowledged to all the scientific community that has

been working broadly on Speech to Text Conversion (STP) technologies, Natural Language
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Processing (NLP) technologies and Text to Speech Synthesizing (T'SS) technologies during
decades. Advanced Automatic Speech Recognition (ASR) systems have emerged as a popular
solution to solve the challenge of providing artificial agents with orders through spoken
commands. The body of work on NLP and TSS also includes a broad collection of solutions.
ASR, NLP and TSS systems with different capabilities have been successfully implemented
in robots, computers, smartphones and other devices. However, they lack many relevant

features of human language which make them only available for structured interactions.

On the other hand, besides satisfying a broad range of needs in the industry, advances in
artificial intelligence and robotics, computers and robots have become essential tools used as
means for studying the human mind. Machine learning techniques, fast robot-prototyping,
and complex simulators have fostered the appeal of artificial agents for studying the mecha-
nisms of cognitive development. In this sense, robots are built at least because of two different
reasons: as useful artifacts or as scientific tools as discussed later in this work (Mirolli and

Parisi, 2011).

In this work, we use the advances in machine learning, artificial bioinspired agents, and
developmental psychology studies to investigate observed phenomena during the early de-
velopment of infants. During this investigation, we use artificial developmental agents. In
general, our study contributes to constructing an approach in which a robot can learn the
relation between its motor actions and sensory consequences efficiently. Moreover, we em-

phasize the study of the emergence of developmental stages during early vocal development.

This work is a journey through the study of intrinsically motivated learning algorithms
inspired by the developmental processes observed in infants. Nowadays, these algorithms
are broadly used to learn sensorimotor coordination skills. The journey starts with the
studies in Moulin-Frier et al. (2013), where intrinsically motivated sensorimotor learning was
used to study the emergence of developmental stages in the course of prelinguistic vocal
development. Inspired by Moulin-Frier et al. (2013), we extended the study of prelinguistic

vocal development to understand the role of somesthetic senses in early development.

Following biological evidence, in Acevedo-Valle et al. (2015, 2018) we argued that somesthetic
senses are an important element that should be considered during sensorimotor exploration
as they are a good candidate to deal with motor constraints. Motor constraints, and con-

straints in general, are an important element that shapes the development of cognitive skills
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as discussed later in this work. Finally, in Acevedo-Valle et al. (2017a, 2018), we argued
that using a simple imitation scenario to reinforce sensorimotor exploration using intrinsic
motivations and somesthesis improves the exploration performance. Social reinforcement is
a crucial source of opportunities for early sensorimotor development, especially during early
vocal development as discussed extensively later. It is hard to think of an infant learning
to pronounce a word or even a simple language directed syllable without the guidance of an

adult.

This introductory chapter establishes the area of robotics where the contribution of this
work lies. In the following, the chapter is divided into six sections. First, in Section 1.1 we
establish a general link between cognitive and developmental sciences with robotics. Next,
Section 1.2 remarks the relevance of studying speech and language development, not with
the aim of manufacturing more complex interaction artifacts, but also as a mean to con-
tribute to the study of the human mind. Sections 1.3-1.5 clarifies the motivations, objectives
and contributions of this work. Finally, Section 1.7 describes the structure of this thesis

dissertation.

1.1 From Cognitive Sciences to Developmental Robotics

As defined in the dictionary, cognition is the mental action or process of acquiring knowledge
and understanding through thought, experience, and the senses (Oxford Dictionaries, 2018).
In this section, we study, how sciences study cognition have contributed to building adaptive
intelligent robots. In Figure 1.1, we describe the concepts that link cognitive science and
developmental science with different approaches to Robotics. In recent years, the idea of em-
bodied cognition has become popular among sciences that, from different perspectives, study
cognition (Wilson and Golonka, 2013). As defended in Galantucci et al. (2006), cognition,
like all the products of evolution, cannot be understood in isolation. Instead, understanding
cognition requires comprehending that it is embedded in a meaningful ecological context and

embodied systems (Liberman and Mattingly, 1985).

As a cognitive system, the human mind could be studied as a dynamical system. The state
of this complex system is determined by the interaction between several building blocks, i.e.,
memory, attention, motor control, perception, emotions, among other. Regarding embodi-

ment and cognitive system’s situatedness, at least motor control and perception might be
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considered as systems that together build up our mechanisms to experience the environment.
As mentioned in Pfeifer et al. (2007), autonomous robot design could notably benefit from
the available knowledge of biological science and self-organization theories. As indicated in
Figure 1.1, one of the most relevant sciences to be considered are cognition and developmen-
tal psychology. The existing knowledge about human cognition, and natural cognition in
general, has been a constant inspiration for the development of intelligent machines, leading

to the concept of cognitive robotics.

Different definitions could be found for cognitive robotics. In Mirolli and Parisi (2011) it is
simply defined as the study of cognitive phenomena by their modeling in robotic systems. In
this case, cognitive robots are considered as scientific tools, which is observed in Figure 1.1
as a feedback loop from robotics’ approaches to cognitive sciences. On the other hand,
cognitive robotics can be seen as an approach to achieve robots with the key characteristic of
adaptive anticipatory interaction (IEEE RAS, 2017). In IEEE RAS (2017) cognitive robotics
is defined as a science combining research coming from adaptive robotics, cognitive science
and artificial intelligence, and often exploits models based on biological cognition. It is also
emphasized that, as a form of embodied cognition, cognitive robotics exploits the robot’s
physical morphology, kinematics, and dynamics, as well as the environment in which it is
operating. The definition in IEEE RAS (2017) is consistent with the direct trajectory shown

in Figure 1.1.

Y y

Developmental Psychology
Open-ended development

Cognitive Science

Study acquisition and
processing of knowledge.

Embodied Cognition

Synthetic Approach

Robotics, Artific

Intelligence and Machine
Learning

Provide artifacts able to sense
and act on the world. Storage
information of those
interactions. Generate models
of the world.

Cognitive Skills Scaling
Nature vs Nurture

Self-Organization
Constrained Learning

Embodied Cognitive Robotics

Cognitive Robotics
Create robots with
adaptive anticipatory
interaction.

Developmental Robotics
Build a robot that
develops in an
autonomous open-ended
manner.

Which abilities to
build-in?

Which abilities should be
acquired?

FIGURE 1.1: From cognitive sciences to developmental robotics.
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So far, in the sense of studying cognition, for example using evolutionary approaches (Ferrell
and Kemp, 1996), the scalability of the approaches aimed at generating agents with complex
cognitive skills built over simpler cognitive skills is null. Until a few years ago, roboticist
had predominately addressed basic cognitive phenomena, like sensory-motor coordination,
perception, and navigation, but none of those provide clues regarding how to scale the system

to high complex cognitive systems as humans (Mirolli and Parisi, 2011).

Indicated in Figure 1.1, as a part of a new trend to use a synthetic approach to study cognition
as an embodied phenomena, the use of robots as scientific tools has also spread in recent
years (Asada et al., 2001, 2009, Mirolli and Parisi, 2011, Pfeifer and Scheier, 1999). Robots
can be used as tools to understand reality analytically. The synthetic approach consists of
building systems that reproduce observed phenomena and obtain candidates to explain that
phenomenon (Mirolli and Parisi, 2011). A critical question that robots may help to answer
is How natural cognition scales from basic cognitive skills, to complex cognitive skills? In
the field of developmental psychology, Piaget’s provided evidence to show that a mature
adult’s cognitive skills are the result of evolving physical and mental skills that build during
infancy, usually occurring in a clear sequence of defined stages (Ferrell and Kemp, 1996).
This developmental process is not random; the existence of structured developmental stages
suggests that development is the result of physical changes and a constant interaction with

the environment.

Developmental psychology is a pillar of a relatively new approach in robotics: developmental
robotics. The other pillar of this approach is cognitive robotics and its strong linkage with
embodied cognition. As indicated in Figure 1.1, developmental psychology and cognitive
robotics are merged to take advantage of the embodied nature of development to exploit em-
bodied cognitive robotics. Thus, allowing to integrate interesting concepts into the robotics
framework and enriching the synthetic approach. Developmental robotics aims at under-
standing and modeling the role of developmental processes in the emergence of complex
behaviors, including social ones (Asada et al., 2009, Cangelosi et al., 2010). Developmen-
tal robotics has emerged as an interesting solution to achieve the scalability of intelligent
artificial systems. The developmental approach has been shown to be suitable to scale ba-
sic cognitive phenomena to emulate the complex cognitive processes occurring for example

within the human mind (Ferrell and Kemp, 1996).
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One of the advantages for researchers working on developmental robotics is the plenty of
available psychological studies, which provides an important amount of cues for the improve-
ment of intelligent artificial agents. The growth of developmental robotics would not be
possible if the developmental psychologists would not have been studying human infants for
more than a century (Demiris and Meltzoff, 2008). Moreover, the improvement of exper-
imental techniques in psychological studies has been a door of opportunities to determine
what capabilities infants are born with and how these capabilities develop over time and with

experience (Demiris and Meltzoff, 2008, Gopnik et al., 2001).

Studies about the human mind are the best examples for developmental robotics, but it
is important to acknowledge that humans develop in an autonomous open-ended manner
through lifelong learning (Oudeyer et al., 2007). Despite some advances, no robot has the
capacity of developing in an autonomous open-ended manner. Hence, if a roboticist wants
to build a robot that emulates at least some human capabilities, developmental robotics has
a niche of action where the aim is to build robots with the capacity of developing in an au-
tonomous open-ended manner to achieve characteristic of adaptive anticipatory interaction.
The contributions of this work lay on the niche defined by the concept of developmental

robotics.

Looking at developmental robotics as a branch forked from cognitive robotics. It is aimed at
generating complex social robots with human-like cognitive and physical skills imitating the
natural developmental mechanisms produced by evolution (Asada et al., 2009). Moreover,
it also has the objective of understanding how human beings develop from harmless infants
to functional adults capable of solving complex cognitive tasks. Developmental roboticists
attempt to achieve these objectives building intelligent artificial agents endowed with physical

and cognitive mechanisms.

Developmental roboticists should acknowledge that developmental psychology theories are
based on the hypothesis that adult-level skills and competencies are not innate, but they
emerge through life (Ferrell and Kemp, 1996). Thus, these roboticists must consider that
not all the skills and competencies of a robot must be innate, but at least some of them
emerge from the cumulative learning and interaction with its environment. However, in a
developmental approach, as mentioned in Lungarella et al. (2003), an autonomous robot
should be endowed with an initial set of values and drives to build complex cognitive skills

on, i.e., motivations or needs to act and interact with the environment in order to achieve
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an adaptive behavior. Just as an infant, a robot must build its complex cognitive skills
inventing, discovering, and constructing its cognitive structures during its early develop-
ment through cognitive and developmental evolution intertwined with a constant evolution

of mental structures and physical competencies (Ferrell and Kemp, 1996).

Just as developmental psychologists (Gopnik et al., 2001) do, roboticist working using the
developmental approach face an important question, an open debate in natural sciences that
confronts two important concepts: nature and nurture. In the analysis of any developing
system, the initial conditions play a crucial role. In the case of infants, nature is defined
by the investigation of the behaviors and predefined developmental trajectories that infants
are capable of displaying after birth, which is not an easy task. In the case of robots, this
task is easier, as it is reduced to describe the algorithms and initial knowledge that are
preprogrammed into the robot before the experiments begin (Demiris and Meltzoff, 2008).
Later, the problem of nurture in robotics could be solved through imitation mechanisms for
example. Imitation, which is seen as a major avenue of learning in infants (and humans in
general), has been proposed as a promising method for a compromise between nature and

nurture (Demiris and Meltzoff, 2008, Gopnik et al., 2001).

Regarding the compromise between nature and nurture, Lungarella et al. (2003) formulates
two important questions that should be answered before attempting to emulate cognitive
phenomena using the developmental approach: How much has to be predefined? and How
much should be acquired?. In general, when reproducing given phenomena, these questions
may have a broad range of answers but on the manner in which we approach those questions
will have an impact on the complexity of the solution to be implemented and on the scalability

of the resultant cognitive system.

The Piaget view has been a cornerstone of the research dealing with theories of infants’
development. However, there is another perspective that has played an important role in
developmental theories: the Vygotskian view. From this view, language is not only a commu-
nication system, but it is also a cognitive tool. As mentioned in Lungarella et al. (2003) and
Mirolli and Parisi (2011), Vygotskian’s theories on psychology may be a promising approach
to include in robotics to achieve important progress to scale up cognitive systems. Later
discussed in this work, if language comes to the scenario of relevant elements to achieve the
emulation of complex cognitive development, then social interaction and the acquisition of

language become a key element for developmental studies. If language is necessary for the



Chapter 1 Introduction 9

emergence of complex cognitive behaviors, then Should the robots of the future be born to

talk?.

1.2 Should the Robots of the Future be Born to Talk?

If we start asking the question Should a robot communicate with other agents? then the
answer would be: not necessarily. There are plenty of tasks where a robot does not need to
communicate with other agents, mainly in the industry, where the environment is structured,
and the task for each robot can be accurately defined. Even in some tasks where other agents
are present, communication may not be crucial. A good example would be the iRobot’s
Roomba robot: even though it may interact with other agents, in the sense that it modifies
its behavior if one stands in its way, it does not necessarily need any communication. For
this kind of robots, it is enough to acquire the right information from the environment and

react accordingly.

Despite not being a mandatory requirement, complex communication skills will be required
for robots in certain scenarios. As the tasks which robots are designed to become more
complex, robot-robot or human-robot interaction will emerge as part of the tasks and com-
munication will become necessary for interactions and collaborations to be successful. The
communication between robots could be reduced to a structured and simplified system, where

a group of robots is designed to be part of that communication system.

When interactions or collaborations of a robot occurs with a human, then the problem
becomes considerably more complicated. As social machines, robots should be built to
interact efficiently with humans; one could propose a basic communication system between
robots and humans. In that case, the problem would be reduced to the right education of the
human-user. However, if robots are genuinely intended to become complex social machines
that could interact with humans in any scenario, even with humans without any preliminary
instruction, then they should be endowed with human-like interaction mechanisms. In this
sense, the complexity of the task has placed human-like communication systems as a relevant

topic of research for roboticists.

How to deal with the Human-Robot Interaction (HRI) has been widely studied. A survey

presenting the history and main advances of HRI was presented in Goodrich and Schultz
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(2007). Therein, the authors emphasized that different levels of socialization are required
across different tasks. In general, the interaction mechanisms will be defined according to
the degree of autonomy, information sharing, and evaluation required by the task at hand.
In general, one also has to distinguish two different branches of interactions: the interactions
with a computer which is somewhat hard to define as embodied and interactions with a

robot, which represents an embodied interaction.

With the emergence of embodiment as a cornerstone of cognitive robotics, and as the in-
teraction between embodied agents represents a social cognitive phenomenon, HRI has been
studied as an embodied phenomena. For instance, Mutlu et al. (2016) provides some insights
on the relevance of embodiment to HRI. Therein, dialog-based interactions are constantly
analyzed alongside other communication modalities, e.g., gaze and pointing. For example.
dialogue-based could be used for supervisory control through interactions to solve tasks such
as navigation, collaborative exploration, and multi-robot teleoperation. Dialog could be the
channel to share information and control at critical points in the collaborative task. Regard-
ing dialog-based interactions, it is constantly assumed that robots are endowed with speech

synthesizing and recognition capabilities.

Mutlu et al. (2016) acknowledges the fact that dialogue-based interaction mechanisms have
the drawback of being rule-based systems. Those mechanisms have difficulty managing
the many uncertainties that stem from noisy speech recognition or linguistic ambiguities.
Those errors could be compensated by educating the user on how to speak correctly to the
system. However, an ideal social robot must be able to infer user intentions and orders under

uncertainty robustly.

Finally, Mutlu et al. (2016) emphasized three objects of research that will contribute to
improving the performance of robots in HRI tasks. The first object is to build a better
understanding of human cognition in HRI. The second one is to build models for simulating
human cognition in robots. The last one is to build models that support human-robot
joint activity, including dialog-based and other models that enable robots to reason about
the physical and cognitive properties of the environment and the actions of their human
counterparts. Furthermore, robots must integrate this knowledge to plan actions toward

achieving communicative or collaborative goals.
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An example to understand the failure of humans to endow machines with human-like lan-
guage are chatbots. They use text or a synthesized voice. Chatbots are virtual agents usually
endowed with some artificial intelligence that can conduct real-wise conversations (Hill et al.,
2015). Despite the significant quantity of information and examples of real human conversa-
tions available to them, they usually fail and lack of shared-intentionality (Thompson et al.,
2013). However, Google Duplex may be a good example that this failure and this lack of
shared-intentionality are coming to an end. We leave that discussion out of the scope of this

work as the information on this new technology is somewhat scarce.

In general, speech is one of the most studied communication systems because it allows human-
spoken language. However, as mentioned in Kuhl (2004), the idea that speech is a deeply
encrypted ‘code’ prevails among the speech specialists, and cracking this code is still an
unsolved problem. Some of the mysteries surrounding speech might be solved if we could
understand all the mechanisms underlying early speech acquisition in children. In fact, the
weaknesses of current speech synthesis and speech recognition systems may be attributed to
the fact that these systems are not designed acknowledging the human embodied and neural
processes of speech production and perception (Kroger et al., 2009). These processes may

also include the developmental process in which speech and language are acquired.

Cognitive roboticists and artificial intelligence scientist have addressed the study of speech
recurrently. However, the lack of an accurate understanding of the mechanisms used by
infants to learn the speech ‘code’, from babbling at 6 months of age to full sentences by the
age of 3 years, may be one of the most critical obstacle to prevent the achievement of an
advanced artificial equivalent to natural language based on speech, as mentioned in Kuhl
(2004). Fundamental to the explanation of how humans communicate is an understanding
of the mental processes that support language comprehension and production (Tooley and

Bock, 2014), abilities that may be developed during early infancy (Kuhl, 2004).

Building realistic speech-based communication systems requires an accurate understanding
of the mechanisms used by infants to learn the speech ‘code’ (Kuhl, 2004). Infants show
preparedness to master speech and acquire language: from the onset of canonical babbling
at 6 months of age, infants achieve to produce full sentences by the age of 3 years. Lack
of knowledge underlying this developmental process has been a principal obstacle to achieve

advanced artificial equivalents to natural language (Kuhl, 2004).
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As defended in Iverson (2010), the embodiment paradigm can be extended to language
acquisition. In other words, early-vocal development as a prerequisite for spoken language can
be studied as a result of embodiment, self-organization and emergence mechanisms produced
by human evolution. The findings can be later used to endow robots with similar mechanisms
to improve their communication skills, and therefore its capabilities to perform in social and

collaborative tasks.

In general, many studies have demonstrated that infants show preparedness to acquire natural
language. Motor, perceptual, social, and learning ability constraints, and their maturation
during infant development play a key role in the emergence of language (Kuhl, 2004). If one
of the aims of roboticists is to build robots endowed with human-like speech and language
capabilities, then we ask the question Should the robots of the future be born to talk? Some

of them should probably be.

1.3 Motivation

In the previous sections, we have briefly discussed that studies in developmental sciences have
strongly suggested that infants are born to talk. In the next chapters, we talk in more detail
about the scientific results from biological sciences. Infants are born to talk in the sense
of having the necessary simple cognitive skills to build more complex cognitive mechanisms
required for language. We also elaborate on the idea that robots may take advantage of the
findings in developmental sciences to become human-like machines. The road to achieving
this may be hard, and the progress could be even slower, but the failures in achieving high
performance in dialogue-based communication between artificial agents and humans are an

indicator that the effort is worth.

During the scientific quest of building a robot that learns a language as an infant does, there
is also a contribution to understanding the human mind and the cognitive development
of infants. In this sense, artificial intelligence technologies and robotics have acquired a
significant relevance in the study of the human mind. The emergence of advanced machine
learning techniques, fast robot-prototyping, and complex simulators has fueled the appeal
of artificial agents for studying the mechanisms of cognitive development with the parallel
interest on building more intelligent robots and artificial systems. When developing complex

robots, some of them will need to communicate with humans: robots helping in rehabilitation,
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health care of the elderly, rescue missions, collaborative tasks in the industry, social robots
for touristic assistance, a digital entity that schedules a medical appointment for us, and so

forth.

How could robots communicate with humans? Communication can be carried through mes-
sages encoded verbally and non-verbally (Wagner et al., 2014). However, for developmental
robotics, at this point, it is of particular interest to study the verbal channel: the one based
on speech. There are two main reasons for this interest according to Wagner et al. (2014).
First, the availability of research on human communication that has been mainly focused on
speech. Secondly, the fact that the emergence of perception and motor speech skills in infants
have been suggested to be a product of a developmental process. It is during early infancy
that humans become aware of the communication value of speech. In this sense, within the
studies of language emergence and its links to cognitive development, early works as Liber-
man and Mattingly (1985) have established perception-motor links according to evidence in
the neurophysiological and behavioral levels. The perceptuo-motor link during development

is of particular interest for this thesis.

The advantages of building a robot that could learn a language as a human does in order to
later communicate with users are one important motivation for this thesis. That robot will
be the perfect candidate to satisfy human needs, present and future, in different areas: med-
ical surgery, nursery, rehabilitation, pets, tourism, manufacturing, unfortunately military,
among others. Moreover, in building that robot from a developmental perspective, we are
going to gain a deeper understanding of language emergence, including all the developmental
subprocesses involved within the infants’ embodiment in order to pronounce their first word.
This thesis focuses on that specific subprocess of early language development: early vocal
development in prelinguistic infants. We argue that in studying this developmental process,
we are going to obtain relevant cues about all the phylogenetic and ontogenetic mechanisms
that cooperate to transform a newborn human into an adult capable of communicating and

solve complex cognitive tasks.

Developmental psychologists have found much evidence regarding infants and early language
emergence. When infants are born, they have the necessary skills to learn any language.
However, during the infants’ early development their speech perception systems are special-
ized to their native language. This ‘perception closure’ decreases drastically infants’ capacity

to learn other languages. In studying early-vocal development, we expect to contribute in
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the quest to find mechanisms to avoid the perception closure that impede us to perceive all

the nuances of any foreign human language (Kuhl, 2004).

Moreover, the investigation of motor and perceptual theories on language that using a devel-
opmental perspective combined with a synthetic approach using intelligent artificial systems
can be later extended to a broader range of natural and artificial cognitive systems. On the
reverse way, studies of natural and artificial cognitive systems may also contribute with new
insights about early vocal development, as the proposed extension of intrinsic motivated sen-
sorimotor exploration architectures to study the emergence of language stages in Moulin-Frier
et al. (2013). In general, it is of our interest to contribute to the investigation of developmen-
tal phenomena using artificial agents. In the long term, this investigation would contribute
to the generalized tasks emphasized by Mutlu et al. (2016): build a better understanding of
human cognition; build models for simulating human cognition in robots, gaining cognitive
capabilities through imitation and interaction with the physical environment, hopefully in

an open-ended manner as mentioned by Oudeyer et al. (2007).

Most of the works aimed at studying artificial speech-based communication systems are in-
stead focused on the natural language understanding problem. The lack of focus on early
vocal development and, in general, on prelinguistic communication is not surprising. As men-
tioned in Gros-Louis et al. (2006), just a couple of decades ago it was still assumed that vocal
development was the result of maturational programs, which were independent of environ-
mental influence. Therefore, as developmental psychologists were not primarily interested in
vocal development during the prelinguistic stage until recent years, developmental roboticists
did not have sufficient evidence to implement into artificial systems. As a consequence, works
on these aspects are sparse. Despite the difficulties, the scientific literature has been enriched
by a series of studies using artificial early vocal development as a mechanism to understand
language emergence from an embodied developmental perspective, for example Forestier and
Oudeyer (2017), Howard and Messum (2011), Moulin-Frier and Oudeyer (2013b) and Najnin

and Banerjee (2017). This thesis aims to enrich the evidence found in those studies.

Embodiment has been argued as one of the central concepts to be considered through this
work; embodiment imposes constraints at different levels. Motor, perceptual, social, and
learning ability constraints, and their maturation during infant development play a key role
in the emergence of intelligent behaviors, including spoken communication (Kuhl, 2004). In

this sense, the study of the role of those constraints is of particular interest for this work,
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and thus it is enlisted in the motivations of this thesis. The role of motor constraints during
early vocal development is especially considered and in general their role during perceptuo-
motor (sensorimotor) learning. In general, it is of our interest to study somesthetic senses,
as tactile perception, proprioception, and nociception (perception of pain). Other authors
have also urge further study of these perceptual modalities that may foster the emergence of

intelligence behaviors in living beings during development (Navarro-Guerrero et al., 2017b).

About studying infants’ early-language development and their openness to learn, Patricia

Kuhl (2010) said in a conference:

“Just as the poets and writers described, we’re going to be able to see, I think,
that wondrous openness, utter and complete openness, of the mind of a child. In
investigating the child’s brain, we’re going to uncover deep truths about what it
means to be human, and in the process, we may be able to help keep our own

minds open to learning for our entire lives.”

This quote is the perfect synthesis of one of the most important motivations for this work.
In general, it represents a good reason for computer scientist and roboticist to continue
the expansion of an artificial cognition branch that allows a substantial contribution to the
study of human development aimed at unveiling the deepest secrets of infant’s brain and
development. As a roboticist, we are necessary because theories have almost no impact
if they cannot be adequately tested. In this sense, integrated implementations of speech
processing in robots, and artificial agents in general, provide valuable environments for the

formal and empirical evaluation of cognitive models and theories (Wagner et al., 2014).

Finally, from Hall, Hulit et al. (2011) and Gopnik et al. (2001) there are important conclusions
of the relevance and motivations to study the mind of children and the early development of
language. These resources offer the picture of language in early stages as a seed, if a child
is the pot were that seed grows, interaction must be the water through speech or signs, and

other affective interactions. Hall says:

“Like a growing plant, language can develop into a twig or a tree, depending upon

the nourishment it receives.”

Regular developing infants cannot decide whether or not acquire speech and language. Asking

the questions mentioned by Hall is mandatory:
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What language does for the child and us?

How does language affect our lives when we have it?

e How does it affect our lives when we do not have it?

How it does or doesn’t develop in the child?

What we can and should do about its development in any case?

As evidence regarding the nature of the phenomena occurring during early human develop-
ment, articles as The Economist (2018) will continue emerging placing important questions
and answer in the hands of people and their governments. Does growing up poor harm brain
development? This article argues that growing up in a low-income family does affect child
development, or at least does not foster strong language and memory skills. More affluent

children usually perform better in school and are less likely to end up in jail.

Language allows time travel, mental time travel (Hulit et al., 2011). Language allows us to
connect with our past, our present, and our future as individuals, but also as a civilization.
It allows us to imagine what others might be thinking, and hopefully, it allows to connect

with ourselves.

As Hall, we would like to contribute to work in the scientific and technological basements
that will allow us one day “to get for each child a bridge as broad as the Brooklyn Bridge,
or better yet, the Golden Gate”. A bridge that will allow them time travel, a connection
with themselves and with others, it will, at last, contribute positively to the quality of
human societies. To build that bridge, we must recognize the processes through language

development, the time windows and the things to do to foster the success of each process.

Finally, summarizing the motivations to develop the project contained in this thesis, we want
to contribute to the study of processes occurring during the early development of children.
We look especially at the processes involving early vocal development, as it represents a
sensorimotor learning process, we adopt as a general object of study sensorimotor exploration
observed in many behaviors during infancy. Once we have established the embodied nature
of sensorimotor learning, given the relevance of constraints to understand implications of
embodiment, we believe that it is essential to study how available studies on artificial early

vocal development might be affected by the active consideration of motor constraints. Finally,
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if interactions are necessary for the acquisition of language and speech, studying feasible
mechanisms of interaction during prelinguistic artificial vocal development is also of particular

interest for this thesis.

1.4 Objectives

We have established the objects of research that will be carried through this work, and also
the reasons we have to argue the relevance of those investigations. This research is a study
of the role of constraints and social interaction during exploratory sensorimotor behaviors,

especially those related to prelinguistic vocal development.

Our general objective is to contribute to answering some of the paradigms regarding early
prelinguistic development. We argue that, to some extent, it would contribute to answering
some parts of prelinguistic developmental processes required for the emergence of spoken lan-
guage in children. Our objective is to use available methodologies in developmental robotics
and coherent with developmental psychology studies to understand the developmental pro-
gression which allows the emergence of complex behaviors in developmental living beings
and machines. In this sense, this work is aimed mainly to study the motor and perceptual

systems involved in speech production and perception.

When we find a gap in the available methodology, then we must provide or at least contribute
to the generation of a clear methodology. Following a clear methodology will make our
results easily reproducible by interested researchers in order to foster new contributions and
cooperation. Clear methodologies also foster the debate and discussions that are required
for a branch of science to grow. Thompson et al. (2013) mentioned some critical facts that
we will consider when evaluating our contributions to the early vocal development from the
psychological point of view. They recommend to make as few assumptions as possible, as
it guarantees a degree of generality and leaves more details to science instead of philosophy,
in current stage of developmental robotics it is hard to make few assumptions, but as an
objective we attempt to justify and clarify the implications of assumption made through the

experiments within this work.

In general, to be consistent with previous sections, our objective is to study speech emer-

gence according to behavioral and physiological evidence using a developmental approach.
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Roboticists using the developmental approach to investigate the early vocal emergence and
vocal development should focus on the role of embodiment and social interactions in the
course of development must also be investigated Asada (2016). In this sense, the general ob-
jective of this work is to contribute to developing the basement of a discipline that will allow
building complex social robots. Those robots, through interactions with their environments,
must incrementally build new and more powerful mental and behavioral structures through
developmental processes. So far we have argued that the success on the quest of building a
complex social robot with human-like cognitive skills should be approached in an interdisci-
plinary way, but it is more important to find a principle shared by different disciplines and

its contribution to the gaining of new insights.

The specific objectives, approached through experimentation along this work, are enlisted

below.

e Our first objective is to collect and understand the series of studies that led to the
findings in Moulin-Frier et al. (2013). Therein, early vocal development was studied as
a result of exploration behaviors, in which an agent endowed with an artificial ear-vocal
tract can generate a map from articulatory gestures to auditory outcomes. Exploration
is not just random, but the agent attempts to reach auditory states that maximize the
learning progress, based on intrinsic motivations inspired by behaviors observed in

children.

e The second objective is to reproduce the experiments performed in Moulin-Frier et al.

(2013).

e Based on the general objectives and the work by Kuhl (2004), we propose our third
objective. It is to study the role that constraints imposed by embodiment may have
if the information provided by those constraints is actively included in the mental
processing path. We especially propose to study the role of motor constraints as, based
on biological evidence, we argue in the coming chapters that motor constraints are

something children learn during early development.

e Language nor speech are elements that could be learned in isolation as remarked in
previous sections. It is necessary to contemplate social mechanisms when they are

studied. Imitation has been mentioned as one important mechanism for children and
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robots to incrementally acquire knowledge from other humans or robots. Inspired by
works similar to Howard and Messum (2011), our fourth objective is to study, based on
biological evidence, how to integrate imitation mechanisms to sensorimotor exploration
applied to the vocal development and study what the role of imitation scenarios is

through the course of artificial development.

We also have the next minor objectives enlisted below.

e An important objective is that sensorimotor exploration algorithms developed through
this work must be presented in such a way they can easily be applied to any sensori-

motor system, not only to vocal development experiments.

e Finally, as we believe that science should be openly available to enrich scientific re-
sults and collaboration, the codes developed through this work must be open to any

interested researcher willing to work in similar applications.

1.5 Contributions

Based on the objectives introduced in the previous section, this work provides new results
to contribute to the study of early speech development using machines. Among the most
important concepts to consider when applying the developmental approach, this work empha-
sizes the embodiment paradigm and sensorimotor exploratory behaviors. The contribution
of this work is extending the study of early prelinguistic vocal development using intrinsi-
cally motivated exploration algorithms. Herein, we provide new simulation results showing
the suitability of these algorithms in the self-exploration of sensorimotor vocal spaces. The
theoretical basis of the probabilistic models used to represent knowledge is also provided.
Furthermore, we propose an architecture that could be used to study the role of constraints
and imitation episodes during sensorimotor exploration for any sensorimotor system sub-

jected to constraints.

We divide our scientific contribution into three main parts mentioned in the following. Along
with our scientific contributions, we mention scientific publications that were accepted in

peer-reviewed conferences and journals. The first part of our scientific contribution is related
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to the first, second and third listed objectives. Our work on these objectives is contained in

the following publications:

e J.M. Acevedo-Valle, C. Angulo and C. Moulin-Frier (2017) Autonomous Discovery of
Motor Constraints in an Intrinsically-Motivated Vocal Learner. IEEE Transactions on

Cognitive and Developmental Systems. 2017. DOI 10.1109/TCDS.2017.2699578.

e J.M. Acevedo-Valle, C. Angulo, K. Trejo and C. Moulin-Frier (2016) The Role of So-
matosensory Models in Vocal Autonomous Exploration. Innovation Match MX 2015-
2016, Guadalajara, Mexico. Revista Internacional de Investigacion e Innovaciéon Tec-

noldgica. ISSN: 2007-9753. [riiit.com.mx/apps/site/files/art._4_immx_v1.pdf]

e J.M. Acevedo-Valle, C. Angulo, N. Agell and C. Moulin-Frier (2015) Proprioceptive
Feedback and Intrinsic Motivations in Early-Vocal Development. 18th International
Conference of the Catalan Association of Artificial Intelligence (CCIA 2015), pp. 9-18,
Valencia, Spain. I0S Press. [DOI 10.3233/978-1-61499-578-4-9]

In these publications we provide an extension of the studies in Moulin-Frier et al. (2013).
Inspired on somesthetic senses, these new studies provide an architecture in which constraint
awareness can be successfully integrated into intrinsically motivated sensorimotor exploration
architectures. Taking into account constraints during learning of sensorimotor regularities
is suggested to be major contribution to the performance of those exploration architectures

according to the results provided in this thesis.

The second part of our scientific work is related to the fourth objective mentioned in the
previous section. This part of our work was a partial collaboration with the Adaptive System
Group of the Humboldt-University of Berlin. The contribution made through our work in

this part of the objectives is contained in the following publications:

e J.M. Acevedo-Valle, V. V. Hafner and C. Angulo (2018) Social reinforcement in ar-
tificial prelinguistic development: A study using intrinsically motivated exploration

architectures [Submitted].

e J.M. Acevedo-Valle, C. Angulo and Verena V. Hafner (2017). Social Reinforcement
in Intrinsically Motivated Sensorimotor Exploration for Embodied Agents with Con-

straints Awareness. 2017: ICDL-EpiRob, Lisbon, Portugal.
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o (Poster) J.M. Acevedo-Valle, c. Ruiz-Camps, Verena V. Hafner and C. Angulo (2017).
Deep Neural Networks in Social Reinforced Sensorimotor Exploration. 2nd Workshop

on Language Learning. 2017: ICDL-EpiRob, Lisbon, Portugal.

In these publications, we provide an extension of the work developed during the first part of
this thesis. Therein, we provided a feasible architecture to integrate, apart from constraints,
social interactions as a part of early sensorimotor exploration. It is not the first time social
interactions are considered as an element for artificial mental development. However, we
argue that it is the first time that a sensorimotor exploration architecture, especially one
aimed at study vocal development, considers that three critical elements occur in parallel
through the course of early development: intrinsically motivated exploration, constraint
awareness, and social reinforcement. In this sense, we do not assume that each of the different
modalities develops one after the other, but we consider that they evolve in parallel. One
modality reaching a milestone might produce abrupt developmental changes in the others as
discussed later. Hence, we argue that observed development stages might also be the product

of those abrupt changes.

Finally, the third contribution of this work is the product of a need that emerged during
the development of this work. In order to learn sensorimotor maps during sensorimotor
exploration, we found relevant to rethink algorithms for incremental learning of Gaussian

Mixture Models (GMM). This part of our contribution was published in:

e J.M. Acevedo-Valle, K. Trejo and C. Angulo (2017). Multivariate Regression with In-
cremental Learning of Gaussian Mixture Models. 2017: 20th International Conference
of the Catalan Association of Artificial Intelligence (CCIA 2017). Terres de I’Ebre,

Spain.

e (Abstract) J.M. Acevedo-Valle, C. Angulo and K. Trejo (2017) Incremental Learning of
Gaussian Mixture Models for Multivariate Systems. Innovation Match MX 2016-2017,

México, Mexico.

In these works and for the first time, we combined an incremental learning approach for GMM
based on the geometry properties of Gaussian with Gaussian Mixture Regression (GMR) to

solve the inference and prediction problem of static input-output maps. Apart from being
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necessary for our sensorimotor exploration approach, we argue that this contribution could

be useful for a broader range of applications.

Our final contribution is a couple of open source Python packages. First, a simulated vocal
tract that facilitates the study of early vocal development using Python libraries, where many
tools for developmental robotics and machine learning are available. Secondly, a library with

our proposed implementation for the incremental learning of GMMs and GMR.

1.6 Short Academical Stays Abroad

I made two international academical stays during the doctoral studies; they are briefly de-

scribed below.

Eidgendssische Technische Hochschule Ziirich (ETHZ) It took place from November
the 1st, 2015 until January the 31st, 2016. I visited the Autonomous and Dexterous
Robotics Laboratory and worked under the supervision of Prof. Dr. Jonas Buchli and
Dr. Diego Pardo. The stay was co-sponsored by the National Centre of Competence
in Research Robotics of Switzerland. As this stage was done during the consolidation
period of my doctoral research, the work was not included in this thesis. However, it is
important to mention that the project had as objective to design robust rime variant

controllers for the stabilization of optimal trajectories in underactuated systems.

Humboldt-Universitidt zu Berlin (HU Berlin) It took place from the 1st/March/2017
the 30th/June/2017. I visited the Adaptive Systems Lab of the Informatics Institute
under the supervision of Prof. Dr. Verena Hafner. This stay was of crucial relevance for
the elaboration of this thesis. The main objectives of this stay were studying the role of
social reinforcement, somatosensory and proprioceptive systems during the emergence

of sensorimotor explorations behaviors.

From this collaboration, as we mentioned beforehand, two papers were written. One
paper was presented in the ICDL/EpiRob Conference (Acevedo-Valle et al., 2017a),
and the other has been submitted to the IEEE Transactions on Cognitive and Devel-

opmental Systems (Acevedo-Valle et al., 2018).
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Apart from the two written papers, an important step in the implementation of neces-
sary software for the experimentation within this thesis was completed, especially that

related to the implementation of the divapy package, explained in Appendix A.

Following the main objectives of the stay, I was exploring new techniques based on
deep learning to implement proprioceptive and somatosensory systems into our vocal
tract. The basic idea was to use autoencoders to have a simple representation of touch
information. Finally, so far our speech perception system only considers the trajectory
of formant frequencies, which are a good account for vowel description, but not good
for consonant perception. In order to make a more powerful architecture, we started
exploring new speech features that allow us to perceive consonants. As we are studying
the emergence of speech, it is important to have a speech perception system similar to

that of the humans.

1.7 Thesis structure

Besides this introductory chapter, this thesis is structured into five more chapters. A brief

description of each of the remaining chapters is provided below.

Chapter 2. State of the art. This chapter is aimed at fulfilling the first objective of this
work. The reader will be introduced through a journey of two branches of knowledge
converging to the results in Moulin-Frier et al. (2013), where our contributions start.
On the one hand, we study the different steps from the artificial intelligence perspective
and robotics in order to generate the proper architectures that later were applied to the
study of vocal and language development using machines. On the other hand, we visit
different theories an experimental results regarding speech production and perception,
and the developmental processes that may be involved during the period in which a
child learns to perceive and produce speech. Literature regarding motor constraints,

somesthesis, and the role of imitation episodes will be considered in Chapters 4-5.

Chapter 3. Incremental Learning and the Regression Problem with Gaussian
Mixture Models. This chapter is aimed at introducing our approach to the incre-
mental learning of GMM and GMR. We also present samples examples that illustrate

how our approach works. A simple sensorimotor system which includes constraints
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is proposed in this chapter. The learning and regression mechanisms, along with the
simple sensorimotor system example, are later used to test the cognitive architectures

for sensorimotor exploration presented in Chapters 4-5.

Chapter 4. Motor Constraint Awareness in Sensorimotor Exploration. One of the
two main contributions of this work, even though it is based on Acevedo-Valle et al.
(2015, 2018), it provides further references regarding the role of somesthetic senses
and constraint awareness during early sensorimotor development. It also presents new
results, obtained with the most recent version of the software developed during this

project.

Chapter 5. The Role of Imitation Episodes in Intrinsically Motivated Sensori-
motor Exploration. This is the second main contribution of this work, it is based on
Acevedo-Valle et al. (2017a) and on the submitted work Acevedo-Valle et al. (2018), it
provides further references regarding the role of imitation episodes observed between
mothers and children to early vocal development and sensorimotor development. It also
makes a brief review of the relevance that imitation mechanisms may have to create
more complex robots. It also presents the most recent results of this work, and therein
the reader will find the best picture of early vocal development that we achieved to

obtain in a simple vocalization scenario.

Chapter 6. Conclusions and Future Work. It is the final chapter of this thesis. Therein
we summarize the discussion carried through the thesis regarding the obtained results.
We also assess the results and findings with respect the objectives of the thesis. Fi-
nally, we provide further lines of research to continue with the study of early vocal
development considering this work and similar works that have been carried in parallel

by other research centers.
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State of the Art

“Seek it with your hands, don’t think about it, feel
it. Your hands are wiser than your head’s ever

gonna be.”
— Steven Pressfield, The Legend of Bagger Vance

In the previous chapter, the reader was introduced to the basic ideas, objectives, and motiva-
tions of this research. Therein, sensorimotor exploration and prelinguistic vocal development
were emphasized as central issues within the framework of developmental robotics. In this
chapter, we discuss a series of relevant studies for the development of this project. These
studies cover a broad range of topics, from cognitive and developmental robotics passing
by embodiment, intrinsic motivations, and sensorimotor exploration. Moreover, researchers
related to speech and spoken language are covered to a considerable extent as well, including
psychological literature about vocal development, speech emergence, speech perception and

production, and language.

As emphasized in the introductory chapter, when performing in unstructured situations,
robots should be robust, flexible, social, as well as adapt to their environment’s changes,
just as the living beings do. Learning, locomotion, navigation, orientation, manipulation,
imitation, and cooperation were emphasized as critical challenges to achieve complex robots.
Moreover, it was mentioned that biological sciences might provide relevant knowledge to face

those challenges (Pfeifer et al., 2007).

25
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In the perspective of embodied cognition, agent’s behavior is not only the result of a system
control structure. The behavior of agents is affected by their ecological niche, morphology and
material properties (Pfeifer and Scheier, 1999, Pfeifer et al., 2007). In the case of an infant,
embodiment plays a crucial role in the bootstrapping of mental competence empowerment

(Ferrell and Kemp, 1996).

The research works and developments mentioned through this chapter provide important
clues on embodied cognition. Those clues should be considered in any attempt to build
an artificial agent endowed with the mechanisms that allow language emergence in infants.
Therefore, those studies are relevant to build artificial agents that attempt to mimic prelin-
guistic vocal development. In this dissertation, we stand with the perspective of Iverson
(2010), about emphasizing that language should be viewed in the context of the body in
which the developing language system is embedded. Therefore, language is considered an

embodied mechanism of communication.

This chapter is organized as follows. First, in Section 2.1 the concept of embodiment is
discussed from biological and artificial perspectives. Secondly, in Section 2.2 the concept and
mechanisms for sensorimotor exploration from a developmental perspective are introduced.
Section 2.3 is aimed at briefly introducing artificial architectures that have been proposed to
mimic sensorimotor learning in infants. We focus on architectures that are related to those
that will be introduced in the following chapters. Section 2.4 presents the sensorimotor

exploration architecture from Moulin-Frier and Oudeyer (2013b).

The second part of this chapter focuses on speech and language. First, we briefly discuss
speech from a biological perspective in Section 2.5. Next, Section 2.6 focuses on the relation
of speech and development. Then, we briefly discuss artificial mechanisms for speech per-
ception and production in Section 2.7. Finally, in Sections 2.8-2.9, we follow the evolution
of prelinguistic vocal development studies with artificial agents until the studies performed

in Moulin-Frier et al. (2013), which are the starting point of this thesis.

2.1 From Embodiment to Rhythmic Behaviors

As mentioned in the Introduction, Liberman and Mattingly (1985) established that given the

evolutionary origin of cognition, it needed to be understood as embedded in a meaningful



Chapter 2 State of the Art 27

ecological context and embodied in living perceiving-acting systems. The behavior of those
perceiving-acting systems is the result of its environmental complexity, and the interactions,
mainly through goal-oriented actions, with their ecological niche (situatedness), their mor-
phology and material properties (embodiment), and other individuals (Pfeifer and Scheier,
1999, Pfeifer et al., 2007). It is emphasized in Ferrell and Kemp (1996) that embodiment is an
interesting candidate to understand how the body, the environment, and the mind interact
to drive development and simplify learning through constraints and biases. On the one hand,
a well-defined set of constraints will assist learning by reducing the space of possibilities in
both, inputs and outputs. On the other hand, an input bias will produce a particular input
easier or more likely to be executed. The embodiment paradigm changed the way in which

cognition is understood.

In recent years embodied cognitive science is returning to focus on agent-environment in-
teraction and embodied sensorimotor mechanisms. Machine learning fits perfectly in the
paradigm of embodiment, approaches including artificial neural networks, behavioral-based
systems, artificial life and evolutionary computing being commonly used in the literature
(Angulo et al., 2009). It is showed in Angulo et al. (2009) how perception can be used as
a relevant feature for action planning, therein an architecture that provides an autonomous
agent with an ‘inner world’ based on internal simulations of perception rather than an explicit

representational model was proposed with positive results.

So far, robots have been mostly designed for particular tasks. Therefore, they are built
to meet the needs to perform within particular environments to achieve specific behaviors.
Roboticists have frequently appealed to biological systems as inspiration to build robots that
achieve their goal (Ferrell and Kemp, 1996). Despite this appealing to biological inspiration,
roboticists failed to reproduce or mimic even simple behaviors of living beings. However,
seminal works by Pfeifer and Scheier (1999), Pfeifer et al. (2007) and Ferrell and Kemp
(1996) helped to spread the concept of embodiment among roboticists, which changed in

many ways the way in which intelligence is understood.

Embodiment plays an essential role in constructing a cognitive foundation. As the interface
with the world, embodiment allows to compose and administer relevant queries of the envi-
ronment efficiently. In living beings, our bodies are demonstrated to be optimized to build
low-level knowledge through body-oriented activity (Ferrell and Kemp, 1996). Conceived

as an embodied phenomena, embodiment inspired by Pfeifer and Scheier (1999) helps to



28 Chapter 2 State of the Art

argue that findings obtained from the fields of biology and self-organization may strongly
benefit the construction of robots. If robots, as embodied agents, are described as dynamical
systems, then it is possible to extend the concepts of self-organization and emergence to
them. Those concepts are applied at the induction of sensory stimulation level, movement
generation level, exploitation of morphological and material properties level, and finally at

the interaction between individual modules (Pfeifer et al., 2007).

Pfeifer et al. (2007) argued that despite the interesting implications of the idea, embodiment
had not been sufficiently explored at that time. Consequently, robots were —and they are still-
energetically inefficient and lack adaptability when confronted with unexpected situations.
However, a change in the perspective in which robots are built has fostered the emergence of
more intelligent robots. As an example of the significance acquired by embodied cognition,
searching ‘embodied cognition’ in GoogleScholar! and filtering the results from 1980 to 2007,
the number of results is about 20K; repeating the search for ‘embodied cognition robotics’
for the same period the results are almost 18K. On the other hand, searching for the period
2008-2018, for ‘embodied cognition’ the number of results is about 28K and for ‘embodied
cognition robotics’ is about 17K. If we use these figures as an approximated indicator to
the relevance that embodiment has gained in the study of cognition and robotics, then we

observe that the quantity of works produced in the last 10 years is approximately the same

to the quantity produced during the 27 years before.

From a developmental perspective, let us think about humans. Body development acts as
a regulator of information complexity that can be acquired by an infant. Thus, affordable
knowledge is considerably limited in early age. However, as the body changes along devel-
opment, then the available information increases in complexity and the infant can deal with
more complex knowledge. For that, the infant relays on the accumulated knowledge and
skills acquired along the whole developmental process (Ferrell and Kemp, 1996). From the
developmental perspective, to guarantee incremental acquisition of abilities on previous com-
petencies, it is important to consider how the system’s goals, morphology, environment, and
cognitive abilities grow in complexity (Ferrell and Kemp, 1996). As mentioned by Lungarella
et al. (2003), adaptivity of developing agents comes from their morphological plasticity, i.e.,
changes over time of sensory resolution, motor accuracy, the mass of muscles and limbs, and

so on. Despite being restricted in many ways, infants are tailored to the idiosyncrasies of

"https://scholar.google.com/
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their ecological niche, even to the point of displaying a rich set of adaptive biases toward

social interaction.

How the embodiment paradigm can be applied in the design of robots is straightforward and
well represented by the quote “understanding by building” from Pfeifer and Scheier (1999).
According to Pfeifer et al. (2007), bio-inspired robotics should work out embodied principles
of biological systems and transfer them to robot design. The most explicit example in this
sense is bionics, which seeks to design technology by mimicking the salient features of bio-
logical structures. Providing some experiments, Pfeifer et al. (2007) showed that physical
constraints shape the dynamics of the interaction of the embodied system with its environ-
ment. Embodiment is a central player in the emergence of information regularities, coupled
sensorimotor activity and body morphology. Embodiment induces statistical regularities in
sensory inputs and within the control architecture and therefore fosters internal information
processing. In the studies of language emergence in infants, Kuhl (2004) showed that infants

use statistical an probabilistic information to learn their native languages.

Gottlieb et al. (2013) defended that despite the constant exploitation of biological mecha-
nisms in robotics, there is a poor understanding of how intelligent animals explore and obtain
information. As mentioned by Pfeifer et al. (2007), the mechanisms for perception are poorly
understood. In the field of language emergence in infants, Kuhl (2004) emphasized that the
perceptual changes that occur in infants from their birth to their first year of life are essen-
tial for language acquisition, however, to a large extent, the mechanisms that produce those

changes are still a mystery.

As mentioned by Iverson (2010) and Ejiri (1998), a beautiful picture of embodiment signifi-
cance is when infants engage in rhythmic behaviors, e.g., body rocking, head banging, head
rolling, hand banging (Sallustro and Atwell, 1978). When hand banging emerges, infants
feel themselves moving, they see the movement of their arms, and they hear the resultant
sound, all occurring in synchrony. A large number of studies suggests that infants are highly
sensitive to this type of synchrony and that the presence of such redundant cues facilitates
recognition of contingencies. For speech emergence in infants, this sensitiveness to synchrony
indicates that when infants begin to babble, they are prepared to recognize the contingent
auditory feedback from their sound productions. This feedback allows them to monitor and

adjust the state of the vocal tract as their sound production varies (Iverson, 2010).
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In conclusion, rhythmic behaviors are necessary to infants in order to create sensorimotor
maps. They allow infants to learn the regularities between motor actions and perceptual
states. Then, infants may be interested in those perceptuo-motor regularities and, somehow,
they feel motivated to gain more knowledge on those regularities, and in fact more control
over them. The latter description is a picture of sensorimotor exploration and intrinsic

motivations, which are studied in the next section.

2.2 Sensorimotor Exploration and Intrinsic Motivations

Rhythmic behaviors are mechanisms for sensorimotor exploration. Thus, they are required
by infants in order to create internal body representations and maintain them through life.
However, rhythmic behaviors are not the only mechanism used during sensorimotor explo-
ration. In the literature can be identified at least two other ones: goal-oriented exploration
and imitative behaviors (Demiris and Meltzoff, 2008, Gopnik et al., 2001, Oudeyer et al.,
2007). Through this chapter, we are mainly focused on reviewing rhythmic behaviors and

goal-oriented exploration, whereas imitative behaviors are discussed in Chapter 5.

There exist different sensorimotor relations that an infant acquires during early develop-
ment, e.g., saccading, gaze fixation, joint attention, hand-eye coordination, visually-guided
reaching, and vocalization-auditory consequences. As indicated by Lungarella et al. (2003),
during self-exploration and self-learning, spontaneous movement activity play an important
role even though the activity lacks of a functional goal, but gives infants the possibility of

learning to sense and predict the consequences of their own actions through self-exploration.

In general, it is observed that the self-experience of perceptuo-motor regularities to gain
sensorimotor control knowledge is a fundamental building block for different developmental
pathways. In other words, as established by Schillaci et al. (2016), sensorimotor control
and learning are fundamental prerequisites for cognitive development in humans. In infants,
it is not very clear how all the mechanisms for sensorimotor control learning work. On
the one hand, infants borrow some goals from observing others (imitative behaviors). On
the other hand, evidence strongly suggests that infants are able to generate random acts
(e.g., rhythmic behaviors) and then want to refine those acts by themselves in goal-oriented

exploration (Demiris and Meltzoff, 2008, Gopnik et al., 2001, Oudeyer et al., 2007).
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Similar examples are presented in Demiris and Meltzoff (2008) and Lungarella et al. (2003)
to describe the engagement of an infant with sensorimotor exploration. Citing to Demiris
and Meltzoff (2008): imagine an infant watching its hand floating across its visual field after
performing a random motor act, then imagine that the infant wants to gain control of this
scene. This desire causes her to repeat it again and again until the infant has mastered it.
Lungarella et al. (2003) differentiates between two different sources of sensory information,
one originated from outside the body (called exteroception, e.g., vision, audition or touch),
and the second coming from inside the body (e.g., proprioception). In Chapter 4, the latter

modality is studied with more detail.

Infants seem to be born with this innate willingness to master perceptual consequences
through sensorimotor experiments (Demiris and Meltzoff, 2008, Gopnik et al., 2001). This
willingness, according to Oudeyer et al. (2007), suggests the likely existence of a kind of intrin-
sic motivation system which provides internal rewards during these play experiences. Ferrell
and Kemp (1996) remarked that a system engaged in sensorimotor exploration should build
input-output representations which later may be used to avoid overwhelming and confus-
ing detail (redundancy) or bored by unchallenging simplicity (motivation for the unknown).
In this sense, developmental studies suggest that infants have an innate tendency to au-
tonomously generate goals that foster development. In fact, unreachable, unreasonable and
overly simplistic goals are rejected by infants through boredom and frustration. Ferrell and
Kemp (1996) also explained that failures to execute successfully a task motivates infants
to spend more time and cognitive resources trying to achieve that goal, that modifies their
models of reality and improves their skills in order to master the task. This effort fosters
the emergence of new tools and resources that later may be used to compose more complex

behaviors.

From Demiris and Meltzoff (2008) and Baranes and Oudeyer (2013), it is observed that in
the case of robots, forward models and inverse models to master sensorimotor knowledge can
be acquired through exploration processes inspired in those observed in infants. In executing
a series of arbitrary motor commands, or goal-oriented experiments a robot can associate its
motor commands with its sensory consequences, e.g., visual, proprioceptive, touch, auditory,
and so forth. There are some important problems of a robotic system learning to coordinate
the amount of sensorimotor regularities as a child does. These problems are associated to the

many degrees of freedom of a potentially redundant non-linear physical system (Lungarella
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et al., 2003). However, the imitation mechanisms and self-exploration of the sensorimotor as

described above may be the elements needed to achieve such a robotic system.

From a developmental embodied perspective, acquiring complex motor skills may benefit from
the introduction of initial sensor, motor and neural constraints, which over time are gradually
released. Intrinsic motivations, interaction with the environment and social interactions may

play a role regulating sensorimotor learning as well (Lungarella et al., 2003).

In order to develop in an open-ended manner, robots should certainly be equipped with
capacities for autonomous and active development, and in particular with intrinsic motivation
systems (Oudeyer et al., 2007). Regarding the trade-off between nature and nurture, from
Oudeyer et al. (2007) and Meltzoff et al. (2013) one can borrow some conclusions. It is
important to distinguish three mechanisms in which infants acquire sensorimotor knowledge
during early development as mentioned at the beginning of this section: motor babbling,
goal-directed babbling and imitation learning. Therefore, the success of the approach to be
presented in this work will depend on our capacity to integrate those learning capabilities
in an artificial developmental agent. First, we will consider motor babbling as an element
to initialize internal models of the agents. Next, we will consider goal-babbling as a way to
enrich and refine sensorimotor control knowledge. Finally, imitation learning is hypothesized
to be responsible of refining sensorimotor knowledge and provide opportunities to obtain new

knowledge.

Among the vast number of active learning architectures, this work considers the explo-
ration architectures proposed in Baranes and Oudeyer (2013) and Moulin-Frier and Oudeyer
(2013b). This architecture reproduces the formalism of intrinsic motivation inspired by psy-
chological literature as proposed previously in Oudeyer et al. (2007) and also in Gottlieb
et al. (2013). From the concepts and implications of sensorimotor exploration requirements,
an intrinsic motivation system must mediate learning, promote parameter exploration, drive

action selection and regulate social interactions (Lungarella et al., 2003).

2.3 Sensorimotor Exploration Architectures

As depicted in the previous section, there are a series of exploratory behaviors that emerge

during infancy that work as processes to learn sensorimotor regularities. Evidence suggests
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that the mind and brain development are strongly intertwined with these sensorimotor ex-
ploratory behaviors, where internal body representations are formed and maintained. Those
representations are used to master sensorimotor control, which is considered by develop-
mental psychologists as a fundamental prerequisite to more complex cognitive and social

capabilities (Schillaci et al., 2016).

A complete compilation of different relevant approaches is provided in Schillaci et al. (2016)
to implement sensorimotor exploration architectures for robots, along with their equivalent in
natural sciences. In general terms, from what Schillaci et al. (2016) compiled and the works
we have reviewed through this thesis, that random exploration along with the selection
of predefined actions (e.g., predefined motion primitives) is a common approach selected
by roboticists. However, it is possible to observe that intrinsically motivated architectures
are becoming more popular when addressing the sensorimotor exploration problem, some
examples are Baranes and Oudeyer (2013), Moulin-Frier and Oudeyer (2013b), Oudeyer
et al. (2007), Pape et al. (2012), Ribes et al. (2016), Saegusa et al. (2009), Shaw et al. (2015)
and Schmerling et al. (2015). Another important element, mentioned before, is the natural
relevance of goal-directed exploration observed in infants. As mentioned in Schillaci et al.
(2016), the introduction of the goal-directed nature of exploration changed the way in which
the problem of learning sensorimotor maps was addressed. This change in the paradigm of

artificial sensorimotor exploration was promoted by Rolf et al. (2010).

In Rolf et al. (2010), an approach for inverse kinematics learning in redundant systems
without prior or expert-knowledge was presented. Inspired by the fact that infants likely
babble goals instead of motor commands, the authors demonstrated that goal babbling could
be advantageous in learning in the early stages of development, as observed in developmental
theories. From Rolf (2013), we emphasize the key idea of learning by doing; thus goal babbling
can enhance learning control. For instance, robots could learn to reach by trying to reach as

infants do.

In Oudeyer et al. (2007), an experiment was conducted with a robot endowed with curiosity-
driven learning mechanisms. It was capable of self-organizing its own learning experiences
into a sequence of behavioral and cognitive stages. Through these stages, it spontaneously
acquired a number of affordances and skills of increasing complexity. As mentioned in many
psychological works (Ejiri, 1998, Kuhl, 2004, Oller and Eilers, 1988), strong regularities are

observed in the structure of the vocal development process independently of inter-individual
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differences. In Oudeyer et al. (2007) active learning architectures based on intrinsic moti-
vations were proposed as mechanisms that mimic the exploration behaviors observed during
sensorimotor exploration in biological agents. Among the vast number of active learning ar-
chitectures, this work considers the exploration architectures studied in Baranes and Oudeyer
(2013) and Moulin-Frier and Oudeyer (2013b). These architectures reproduce the formalism
of intrinsic motivations combined with goal babbling inspired by psychological literature as

described in Oudeyer et al. (2007) and Gottlieb et al. (2013).

Using the goal babbling proposed by Rolf (2013), it is presented in Baranes and Oudeyer
(2013) a self-adaptive goal generation architecture, or intrinsically motivated exploration
mechanism, to actively learn sensorimotor maps of inverse models in high-dimensional re-
dundant robots. In this architecture, based on a measure of competence progress, the robot
actively samples novel parameterized tasks in the task space. The results using a robotic arm,
a quadruped robot, and another example suggested that exploration in the task space can
be much faster than exploration in the motor space for learning inverse models in redundant
robots. Developmental trajectories are generated driving the robot to progressively focus on
tasks of increasing complexity selecting goals maximizing competence progress according to

a model of interest.

Similar architectures than those from Baranes and Oudeyer (2013) are used in Moulin-Frier
and Oudeyer (2013b) and Moulin-Frier and Oudeyer (2014), but offering a detailed compari-
son between different exploration schemes. Moulin-Frier and Oudeyer (2013b) included some
experiments with a simulated vocal-tract, attempting to learn the articulatory configurations-
auditory outputs relation of the system which is of deep interest for this work. Moulin-Frier
and colleagues compared four schemes of explorations: first, they consider random explo-
ration over the motor space and the sensor space, next, they consider intrinsically motivated
learning over both spaces as well. From the results in Baranes and Oudeyer (2013) and
Moulin-Frier and Oudeyer (2013b, 2014), it is notorious that the architectures considering
intrinsically motivated learning over the goal space (goal babbling) perform better in senso-
rimotor exploratory tasks when considering high-dimensional non-linear redundant systems.

In the next section, we explain this sensorimotor exploration architecture with more detail.

Another interesting contribution regarding the active learning architectures to learn sensori-

motor regularities is presented in Ribes et al. (2016). Therein, the authors considered time
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constraints and proposed a music performance imitation scenario and implemented a learn-
ing architecture able to learn a musical instrument model and a body capabilities model;
the architecture is also able to imitate a sequence of sound, while simultaneously kinematic
errors, due to the control architecture, are corrected. Similar to Moulin-Frier and Oudeyer
(2013b), models employed in Ribes et al. (2016) were developed on the basis of Gaussian
Mixture Models (GMM).

In Tenenbaum et al. (2011) an analysis of the importance of the Bayesian approach to the
understanding of how human minds work and develop is presented. It is defended that
it provides tools for unifying mathematical language for framing cognition as the solution
to inductive problems. Powerful abstractions can be learned surprisingly quick using the
Bayesian approach. Moreover, Tenenbaum et al. (2011) argued that structured symbolic
representations should not be rigid, static, hard-wired, or brittle. Within a probabilistic
knowledge, they can grow dynamically and robustly in response to the uncertainty in the
data collected from pure-perception and perceptuo-action. In language, these ideas fit with
the claims of Kuhl (2004), who suggests that infants use probabilistic and statistical learning

mechanisms.

As mentioned by Sandini et al. (1997), to design an artificial agent from using the develop-
mental approach, the first practical problem is to define the subset of sensor and motor skills.
A critical issue is the implementation of a complete system and the definition of constraints
and abilities at the system ‘birth’. The second problem is the definition of a computational
framework for sensorimotor coordination compatible with emergence, self-organization, and

adaptability.

2.4 Intrinsically Motivated Sensorimotor Exploration

As concluded in the previous section, some of the most prominent architectures for sen-
sorimotor exploration are based on goal-directed motor babbling, where sensory goals are
actively chosen according to a model of interest. This model represents how well the agent is
performing in reaching self-generated goals through time. Thus, the agent can choose goals
that are likely to improve its sensorimotor control skills according to a competence function

(Baranes and Oudeyer, 2013, Moulin-Frier and Oudeyer, 2013b). In other words, exploration
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occurs over regions in which agents perceive they are becoming more competent to reach self-
generated goals. Thus, allowing them to efficiently and actively explore and generate maps
from motor capacities to perceived results in interesting sensory space regions. The intrinsi-
cally motivated sensorimotor exploration architecture for embodied artificial agents is shown

in Figure 2.1. This architecture is considered as the base for the contributions of this work.

To build the sensorimotor exploration architecture, the following elements are required:

e Physical Embodiment consists of a sensorimotor system.

e Sensorimotor Model is an internal representation that maps motor commands to
sensor results. It must be capable of inferring motor commands from provided sensory

goals.

e Interest Model is the core of the intrinsic motivation mechanism. It allows an ac-
tive selection of sensory goals according to the evolution of competence measurement

through the exploration in order to maximize learning progress.

In Figure 2.1, the learner starts with no knowledge about any of the two models. First, the
models are initialized in a first stage. Once they are initialized, the intrinsically motivated
exploration begins. The interest model proposes a sensory goal which is then passed to the
sensorimotor model. The sensorimotor model computes the motor command that, according
to the current knowledge, would produce that sensory goal. Then, the learner executes
the selected motor command with its motor system and produces salient signals that are
perceived as the sensory outcome. Afterward, the sensory outcome is compared to the sensory
goal to generate the competence value, ¢ of the experiment as an index of performance. The
signals generated, described by blue arrows in the diagram, are then used to train the models.

After training the models, the exploration starts again choosing a new sensory goal.

Interest Model +
S
g Sensorimotor m - S

Model

Learner

FIGURE 2.1: Intrinsically motivated sensorimotor exploration architecture. Black lines
represent the flow of data during each action execution. Blue lines represent signals used to
update the models.
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2.4.1 The Competence Function

One important concept in intrinsically motivated exploration is how to measure the compe-
tence of an agent to produce self-generated sensory goals. Moulin-Frier and Oudeyer (2013b)
adopted the competence function:

¢ = e 1897l (2.1)

where s, is the sensory goal and s is the actual production of the agent. This function in
general assigns higher competence to those experiments that produce lower errors. Along
this work we consider Eq. (2.1). In general, we observed that Eq. (2.1) minimizes the error to
produce intended sensory goals. However, there are alternatives based on other concepts, for
instance in Acevedo-Valle et al. (2017a) we studied the competence function from Baraglia

et al. (2015), which can be used as modulator of exploration. The function is written as:

~(Isg—sl—pe)®
cy = ae 252 (2.2)

where « is a scaling parameter, p. is the mean value of |s; — s| and o its variance. The
relevant feature of this competence function is that it fosters exploration in those regions
where the error to reach self-generated goals is moderate. In other words, regions where
sensory goals are not too easy to be reached by the agent but are not too hard to reach
either. However, we did not observe relevant changes in the results, that is the reason we
decided to keep Eq. (2.1). It is important to clarify that in Acevedo-Valle et al. (2017a),
the three parameters of Eq. (2.2) were considered constants. Thus, studies with a better

implementation of this competence function would be of interest.

2.4.2 Algorithmic Architecture

A feasible algorithmic implementation of the architecture in Figure 2.1 is shown in Algo-
rithm 1. As shown in the algorithm, the learner starts without any experience producing
intended goals. In line 1, the sensorimotor model Mgy is initialized using random motor
experiments comparable with spontaneous random acts or rhythmic behaviors in children.
The interest model My is initialized in line 2 using the sensory outcomes of the agent in
line 1 as initial goals. Next, in line 4 of Algorithm 1, the learner selects a goal s, for the

next experiment according to Mjys. Then the motor command m; trying to produce s,
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is computed using the sensorimotor model Mgsa4 in line 5. Next, the motor command is
executed with the embodied sensorimotor system and the learner observes s in line 6. In line
7, the learner evaluates the competence value ¢. Then a function governing the training of

models is called, and the exploration continues back in line 4.

Algorithm 1 Intrinsically motivated sensorimotor exploration with goal babbling.
Set {n., randomseed}

1: Initialize Mgaq

2: Initialize My and i+ 1
3: while i < n, do

Sg,i < sample (M)
m; < Mspm (Sg,i)

S; < f (mz) + o

c; 4+ e Isgamsil
t+1+1
train_models()

2.5 Speech: Perception and Production

As mentioned in the introductory chapter, our main interest is to study the emergence
of speech in infants. Understanding all the mechanisms underlying speech emergence in
infants would be an important contribution to many areas of robotics and natural sciences.
Thus, in the coming sections, we provide a review of a few studies that we consider relevant
to roboticists working on artificial vocal development, emergence of language in machines,

speech perception and production, and so on.

Recent studies highlight the possibility that language evolved to meet the needs of young
man beings. Meeting their perceptual, computational, social and neural abilities, produced
a specific communication system that can be acquired by all typically developing humans:
speech (Kuhl, 2004). The knowledge about human speech processing is still insufficient.
Moore (1994) presented twenty themes considered to be important to achieve a greater
understanding of the nature of speech mechanisms and speech pattern processing. Regarding
those twenty themes, Anusuya and Katti (2009) argued that the answers to those questions
were still not clear a few of years ago, and to our knowledge, the majority of those question
is still unanswered. Some of the most interesting question regarding the nature of speech

asked by Moore (1994) are:

e How important is the communicative nature of speech?
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e Speech technology or speech science?

How much effort does speech need?
e What is a good architecture for speech processing?
e How important are physiological mechanisms?

e What are the mechanisms for learning?

What is speech good for?

How good is speech?

Speech is produced when the vocal fold vibration by the lung air flow provides a source signal
of fundamental frequency Fj. The vocal tract acts as a resonator, and according to its shape
the harmonics of the fundamental frequency are amplified or faded. The local maxima of
the resulting spectrum are the formants frequencies, ordered from the lower to the higher
frequencies (Moulin-Frier et al., 2013). They are the most frequent speech feature mentioned

in the literature, mainly when describing vowels.

One of the central questions regarding speech is whether the systems for production and
comprehension are essentially the same or not. As mentioned in Tooley and Bock (2014), a
debate has been created using empirical evidence supporting both ideas. On the one hand,
supporters defending that production and comprehension are carried by two separable pro-
cessing systems, take some arguments as the emergence of comprehension before production
in early development. On the other hand, supporters of a non-separable processing system
argue that the shift of emergence between production and comprehension is due to the com-
plexity of fine motor control acquisition. Under that condition, evidence is more consistent
with substantial similarity across production and comprehension. Thus, evidence supports
the idea that there exists a linkage between the systems underlying the production of sounds
and the ones underlying their perception. There is available evidence of these linkages be-

tween perception and the motor system for monkeys and humans (Galantucci et al., 2006).

Tooley and Bock (2014) hypothesized that the major sources of difference between com-
prehension an production might be extrinsic to dedicated mechanisms of production and
perception of speech. For instance, encoding complex ideas in a speech signal may require a
different depth of mental processing, which the perceiver rarely needs. In conclusion, spoken

language production and comprehension operate in similar ways and on similar principles. In
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this sense, Liberman and Mattingly (1985) established that the skills to coarticulate speech
and to perceive coarticulated speech evolved together given that neither skill would be useful

without the other.

As a product of evolution, language through speech is an “optimal” or at least “optimized”
communication system based on perceptually-shaped articulatory gestures (Galantucci et al.,
2006). Spoken language requires parity, which refers to the fact that speakers and listeners
can access similar information about words and their combination to express an idea. Any
theory of speech must explain how the parity requirement is met (Galantucci et al., 2006,
Liberman and Whalen, 2000, Tooley and Bock, 2014). In Liberman and Whalen (2000), the
notion of parity was interpreted in three ways. The first is that listeners and talkers must
converge on what counts as a linguistic action. The second is that phonetic messages sent and
received must be the same. The third one is that production and perception specializations
for speech must have co-evolved. In fact, parity is intended to be an abstract constraint on

the symmetric co-evolution of the machinery for producing and perceiving speech.

A large body of scientific results supports the existence of neural linkages between the percep-
tual and motor systems and the involvement of motor competence in perception (Galantucci
et al., 2006, Liberman and Whalen, 2000, Schwartz et al., 2012, Tooley and Bock, 2014). For
communication purposes, this hypothesis implies that the system that produces a signal of
communicative value is connected to the system that perceives the signal. These linkages
have been found in perception and the motor system of monkeys and humans. An interesting
implication, also related with embodiment, is that knowledge of anatomical constraints af-
fects what people perceive (Galantucci et al., 2006). If perception implies motor competence
exploitation, then knowing that a visual pattern can only correspond to a specific human mo-
tor action then this information is likely determinant to perceive the action results. One can
speculate that specialized motor competence is called upon in the perception of the pattern.
Another observation supporting the relevance of embodiment is that perceptual performance
may be enhanced in the case of movements produced by the same individual who perceives

them because the maximal amount of motor competence is available to support perception.

According to the evidence collected in Schwartz et al. (2012), some principles affect the
organization of vowels systems and supports the optimized nature of speech. First, the
Dispersion-Focalization Theory of vowel systems (Schwartz et al., 1997) establishes that

vowel systems, as auditory-optimized structures obeying perceptual dispersion principles for
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maximizing their efficacy of communication. Focal vowels correspond to more stable audi-
tory patterns, which seem to drive both infant and adult perception and infant production.
Secondly, the principle of Maximal Use of Available Features says that systems would com-
bine features orderly. In the case of vowel systems, height features would be combined with
tongue/lip configuration features to provide balanced systems. Finally, the Mazimal Use of
Awailable Controls (MUAC) suggests that in the course of speech development, the young
speaker would achieve a sufficient control within a given series, and then transfer the adequate

control to another tongue/lip configuration.

Based on observations made in a considerable number of experiments, the most adopted
theories of speech affirm that speech perception is organized, at least partially, in terms of
motor control signals and their associated vocal tract configurations. In the following, two
theories discussed in Galantucci et al. (2006) and Schwartz et al. (2012), respectively, are
studied in order to provide some insights on the mechanism underlying speech perception,

they also provide some information regarding speech production.

2.5.1 The Motor Theory of Speech Perception

The Motor Theory of Speech Perception (MTSP) was proposed by Liberman et al. (1967)
and revised in Liberman and Mattingly (1985). Besides the impact that MTSP had on the
study of speech, it also gained a positive reception outside its field, mostly within the research
and theorizing in the broad context of cognitive science (Galantucci et al., 2006). The theory
proposes that phonetic coarticulated gestures are motor objects of speech perception. Thus,
intended gestures instead of actual vocal tract actions were established as the fundamental
objects of speech perception (Liberman and Mattingly, 1985). In Galantucci et al. (2006),
based on new scientific evidence coming after the publication of the MTSP, some important

conclusions regarding the claims of Liberman and Mattingly (1985) are provided.

Liberman et al. (1967) claimed that during the process of speech, perception articulation
and sound wave go through separate ways. Furthermore, they claimed that perception goes
with articulation instead of sound. However, according to Galantucci et al. (2006), this
is not accurate. For instance, this is not true when different second formant transitions
can signal the same phoneme or identical stop bursts can signal different phonemes before

different vowels. How distinctiveness and similarity are encoded? Galantucci et al. (2006)
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hypothesized that they are encoded by means of acquired similarity, whereby associating
different acoustic signals for the syllables to the same response makes the syllable-initial
consonants alike. On the other hand, acquired distinctiveness may explain how similar
acoustic signals with different underlying articulations come to sound distinct (Galantucci

et al., 2006).

In general, for skilled perceivers, the consequence of the memory representation established
by the mimicry is that articulatory movements and their sensory effects mediate between
the acoustic stimulus and the event we call perception (Galantucci et al., 2006, Liberman
and Mattingly, 1985). In fact, Schwartz et al. (2012) argued that a listener, who knows
something about speech production, exploit this knowledge to disentangle the complexity of
the acoustic input and access the functional unit more directly related with motor commands.
In this sense, the same reasoning is proposed for multimodal perception, e.g., audiovisual
interactions in speech perception, which are claimed to be related to the knowledge of the
listener about the multimodal coherence of a speech gesture. In this context, it is said that

perception involves a procedural knowledge of action.

There is considerable evidence that listeners situate the acoustic signal in a space that cap-
tures its gestural causes. Furthermore, the hypothesis that gestures are the objects of speech
perception provides a unified account of all of the findings: perceiving speech is perceiving

phonetic gestures (Galantucci et al., 2006).

Some speech gestures may be specified by information other than air pressure waves, e.g.,
labial gestures. When it does, a natural question is whether speech perception is respon-
sive to these additional sources of information. For example, listeners perceive speech in
noise presence more accurately when they can see the speaker than when they cannot. For
instance, speech imitation responses, which require gesture computation, are faster than
non-imitative responses. Thus speech perception must include the gestures that allow the
imitation. However, if listeners do perceive gestures, the model matching syllable may have

served as a stimulus for an imitative response (Galantucci et al., 2006).

After the discovery of the mirror neuron system in monkeys (Rizzolatti and Craighero, 2004),
similar systems were found in humans for finger, hand, and arm movements. This discovery

suggested that in primates there is a fundamental mechanism for action recognition. The
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mechanism consists in that individuals recognize actions made by others because the neu-
ral pattern elucidated in their premotor areas during action observation is similar to that

internally generated to produce the action (Galantucci et al., 2006).

The human mirror-neuron system has been proposed to play a fundamental role in speech
processing by providing a neurophysiological mechanism that creates parity between the
speaker and the listener. In this context, evidence suggests that perception would be medi-
ated by “motor ideas” represented in the brain by sensorimotor neurons enabling to access
these “ideas” both, through acting and through observing or hearing somebody else acting
(Schwartz et al., 2012). There is evidence that perceiving speech involves neural activity
of the motor system. Moreover, studies have demonstrated the activation of speech-related
muscles during the perception of speech. Some authors proposed that when simultaneous
activation of the perceptual and motor codes occurs, both codes may interact (Galantucci

et al., 2006, Schwartz et al., 2012).

2.5.2 The Perception-for-Action-Control Theory

Schwartz et al. (2012) introduced one of the most recent views concerning the relation of
speech production and perception. A common debate is to determine whether speech percep-
tion involves auditory or multisensory representations and processing, independently on any
procedural knowledge about the production of speech units or the contrary if it is based on
a recording of the sensory input in terms of articulatory gestures (Liberman and Mattingly,
1985, Schwartz et al., 2012). The proposed Perception-for-Action-Control Theory (PACT)
aims at defining a theoretical framework connecting in a principled way, based on behavioral
and neurophysiological data, perceptual shaping and motor procedural knowledge in speech

multisensory processing in the human brain.

As claimed by the motor theory of speech perception (MTSP), the coarticulation-driven
composition of articulatory commands during speech production is non-linearly transformed
into a complex composition of acoustic features, so that the acoustic properties of speech
sounds are not invariant but context dependant (Schwartz et al., 2012). Given that MTSP
does not fix with all the evidence, Schwartz et al. (2012) tried to answer what happens when
the relationship between gestures and sounds is many-to-one, and hence the gesture cannot

be, in theory, recovered from the sound without additional pieces of information. Evidence
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suggests that a gesture is characterized by its functional value, likely evaluated in auditory
terms. One possibility is to acknowledge that gestures are not pure motor units, but rather
perceptuo-motor units, gestures being shaped by perception. Gestures are not only shaped
by perception but also selected in relationship whit their perceptual (acoustic-auditory) value

(Schwartz et al., 2012).

PACT considers that speech perception is the set of mechanisms that enable not only to
understand, but also to control speech, considered as a communicative process. Thus, first,
perception and action are co-structured in the course of speech development, which involves
producing and perceiving speech items. Secondly, perception provides action with at least
auditory templates, which contributes to defining gestures, providing them objectives, orga-
nization schemes, and functional value. In PACT, the communication unit, through which
parity may be achieved, is neither a sound, nor a gesture, but a perceptually-shaped gesture,
that is a perceptuo-motor unit. It is characterized by both, its articulatory coherence and

its perceptual value (Schwartz et al., 2012).

In speech scene analysis, auditory, phonetic and lexical mechanisms are involved. Articula-
tory coherence is relevant. The fact that articulatory constraints may act on the emergence
and stabilization of verbal transitions strongly suggests that they partly rely on motor neural
processing. Evidence demonstrates that articulatory based representation plays a crucial role
in the endogenously driven emergence and stabilization of auditory speech percepts during
a verbal transformation task. The listener combines general auditory scene analysis mech-
anisms with articulatory principles grouping the acoustical and visual pieces of information

coherently and relying on visible labial onsets (Schwartz et al., 2012).

The co-structuring component suggests the possibility to connect perceptual and motor rep-
resentations for speech communication in a principled way. The sensorimotor maps appear to
be dynamic and provide a way by which changes in production can result in changes in percep-
tion (as reported for example in Ito et al. (2009)), relating articulatory changes to perceptual
changes (Schwartz et al., 2012). Two functions could be associated with perceptuo-motor
connection. First, sensorimotor maps that are constructed during the infants’ development
and later on, all along life, through dynamic adaptations under diverse learning conditions.
Secondly, the motor system could be involved in speech perception, perhaps more in ad-
verse conditions, in order to provide a better specification of possible auditory and visual

trajectories and enhance speech scene analysis (Schwartz et al., 2012).
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Finally, MUAC suggests that a young speaker can transfer adequate control from previous
knowledge to another tongue/lip configuration. As a consequence, the developmental ar-
ticulatory pathway is supposed to be crucial in the achieved shape of vowel system for a
given speaker. Thus, vowels are vocalic gestures organized developmentally and shaped by
their acoustic/auditory properties. The next section introduces some works regarding the

developmental trajectory of speech acquisition.

2.6 Speech and Development

Research on prelinguistic infants demonstrated that they were able to detect most phonetic
contrasts at birth (Galantucci et al., 2006, Kuhl, 2004). Moreover, learning to control spoken
language has been demonstrated to be constrained at perceptual, computational, social and
neural levels determining what (and when) can be learned (Kuhl, 2004). As remarked in
Perkell et al. (2001), it is clear that human speech production is one of the most complex
motor acts performed by any living being. Producing a linguistic message that can be
understood by another human requires exact and rapid coordinated movements of many
degrees of freedom in the respiratory, laryngeal and supraglottal articulatory systems. How
infants acquire the sophisticated ability to control speech production, which is practically
fully developed at the age of 3 years old, and in general how they learn language remains a

matter of research (Kuhl, 2004, Lenneberg et al., 1967).

During infancy, significant changes occur in the ways by which human body moves within its
environment and the manners an infant interacts with that environment. Although sensori-
motor behaviors, as mentioned in Section 2.1, are undoubtedly indices of underlying cognitive
change, they also represent advances in the action capabilities of an infant. These changes
may impact the development of skills and experiences that play a role in the emergence of

communication and language (Iverson, 2010).

In the investigation of the learning process for spoken language, it is essential to define what is
innate knowledge and skills, and which knowledge and skills are learned through development.
As Kuhl (2004) mentioned, the rules by which infants perceive information, the ways in which
they learn words, the social contexts in which language is communicated and the need to

remember the learned entities for a long time probably influenced the evolution of language.
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In general, it is important to identify constraints on infant learning, from all sources, and

determine whether those constraints reflect innate knowledge that is specific to language.

One of the most important events in infants’ vocal development for spoken language is the
onset of a particular rhythmic behavior: Canonical Babbling (CB). Unlike the sounds that
infants vocalize before this stage, such as crying, cooing, and screaming, CB is characterized
by the production of well-formed syllables that have adult-like spectral temporal properties.
The onset period of CB is stable across infants (7-8 months of age), regardless of their
language environments. CB also emerges, with some differences, in infants with hearing loss.
During this period, the sounds most favored by infants are also produced most accurately

and occur with higher frequency in the languages of the world (Ejiri, 1998).

Based on the facts that rhythmic structure is not unique to vocal behavior and that the ap-
pearance of rhythmic vocalizations is developmentally linked to the more general appearance
of rhythmically organized motor behaviors, Kent et al. (1991) suggested that the rhythms
of vocalizations probably should be considered in terms of a larger picture of developmental
rhythms. Early vocalizations produced by the infants regardless of their audibility, may be
caused by infants’ natural tendency to move their body parts rhythmically, early vocaliza-

tions are at first motivated largely by infants’ sensorimotor feedback (Ejiri, 1998).

Early babbling, as claimed by Ejiri (1998) may be a direct result of rhythmic mandibular os-
cillations. However, evidence suggests that, around the onset of CB, infants learn to vocalize
based on auditory feedback (Ejiri, 1998, Kuhl, 2004, Perkell et al., 2001). As an exploratory
sensorimotor behavior, CB is a milestone in early language development. Through sensory-
guided motor experiments, it helps to form and maintain internal body representations for
the production of speech. Those representations are considered a fundamental prerequisite

to more complex capabilities (Schillaci et al., 2016).

Evidence suggests that different from some motor skills that are determined by maturation,
several aspects of early language development are not only determined by general maturation
(Iverson, 2010). Based on evidence of developmental studies, Iverson (2010) argued that the
acquisition of motor skills provide infants with an opportunity to practice skills relevant to
language acquisition before they are used for that purpose. Moreover, the authors showed
that emergence of new motor skills changes infants’ experience with objects and people in

ways that are relevant for both general communicative development and the acquisition of
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language. During the first eighteen months of life, infants acquire and refine a whole set of
new motor skills that, as mentioned before, significantly change how the body moves in and

interacts with the environment.

Practicing sensorimotor skills related to language in the context of a precise action provides
infants with immediate and salient visual, auditory and kinesthetic feedback. This feedback
is an opportunity to observe perceptuo-motor links and means to begin noticing and attend to
the relationship between their motor actions and consequences. When infants subsequently
begin to babble, they may very well be better prepared to recognize the contingent auditory
feedback from their sound production, feedback that allows them to monitor and adjust the

state of the vocal tract as they vary their sound production (Ejiri, 1998, Iverson, 2010).

Developmental progression in action on objects and achievements in early language are closely
associated. A complementary perspective is that physical action on objects sets context for
attributing meaning to those objects via action. As infants refine their actions, they can
attribute increasingly specific meanings to objects interacting with them. They contribute,
directly or indirectly, to the development of communication and language, even before in-
fants use those skills for that purpose, for example, the recognitory gesture. This skill is of
particular relevance for learning words. Thus, the infants’ first words are tightly bounded to

action and infants are highly likely to name objects as they act on them (Iverson, 2010).

Infants learn rapidly from exposure to language in ways that are unique to humans, com-
bining pattern detection and computational abilities. Following the same path regardless of
culture, infants learn their mother tongue rapidly and effortlessly, by the age of 3 years they
can produce full sentences. The idea that speech is a deeply encrypted code is widely ac-
cepted. The absence of early exposure to the patterns that are inherent in natural language
produces life-long changes in the ability to learn a language. Language acquisition requires

the commitment of the brain to patterns that reflect natural language input (Kuhl, 2004).

Some experimental results suggest that social interaction assists language in complex set-
tings. In fact, social deprivation has a severe negative impact on language development, to
the extent that standard language skills are never acquired. Speech sounds are strongly pre-
ferred in typically developing infants. Social influence is crucial, if simple auditory exposure

to language prompts learning, the presence of a live human being would not be essential.
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However, according to evidence, infants are apparently not computational automatons, but

they might need a social tutor when learning natural language (Kuhl, 2004).

For infants, early social awareness is a predictor of later language skills. Social interaction
can be conceived as a regulator of computational learning and thereby protects infants from
meaningless calculations. The need for social interaction would ensure that learning focuses
on speech that derives from humans in the infants’ environment, rather than on signals from

other sources (Kuhl, 2004).

Constraints are evident when infants hear or see non-human actions: infants imitate vocal-
ization rather than sine waves analogs to speech and infer and reproduce intended actions
displayed by humans but not by machines. These observations imply that social factors may
affect language acquisition because language evolved to address a need for social commu-
nication. However, the mechanism that controls the interface between language and social

cognition remains a mystery (Kuhl, 2004).

2.7 Developmental Robotics and Speech

Automatic Speech Recognition (ASR) is the process of converting a speech signal to a se-
quence of words using a computational algorithm. It makes possible for a machine to follow
human voice commands and ‘understand’ human languages. ASR systems are widely used
for human-machine interfaces, for example, call processing in telephone networks, speech

transcription, voice dictation, robotics, and so forth (Anusuya and Katti, 2009).

The progress in ASR systems has been notable with the advances in Deep Neural Networks,
consider Google Duplex (Hyken, 2018). ASR systems work well for a particular task if suf-
ficient data is provided for the target domain. However, when ASR systems are migrated
from laboratory demonstrations to actual applications, they encounter some serious difficul-
ties (Jiang, 2005). Current speech recognition systems are easily outperformed in the case of
non-restricted vocabulary, if the speaker is not well-known by the system and if noise reduces
the speech signal quality (Kroger et al., 2009). There are technological barriers to flexible
solutions of ASR, the main drawbacks are related to the sensitivity to the environment,

the weak representation of grammatical and semantic knowledge and the variation naturally
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present in speech. Inter-individual elements burdening the ASR are differences in accent,

speaking style, speaker psychology, age, emotions, among others (Benzeghiba et al., 2007).

According to its capabilities, speech recognition can be classified into four different types:
isolated words, connected words, continuous speech and spontaneous speech. On the other
hand, according to the algorithmic approach, there are three approaches to speech recogni-
tion: Acoustic Phonetic Approach, Pattern Recognition Approach, and Artificial Intelligence
Approach, the latter could be considered a hybrid of the two earlier (Anusuya and Katti,
2009, Benzeghiba et al., 2007).

The two prevalent techniques for ASR are Hidden Markov Models (HMM) of speech signals
and decoding techniques for very-large-scale networks (Benzeghiba et al., 2007, Jiang, 2005).
In most ASR systems, a signal is modeled through HMMs, at a first stage ASR front-
end analyze short signal frames on which stationarity is assumed. As found by Liberman
and Mattingly (1985), speech gestures are coarticulated. The effects of coarticulation have
motivated studies on segment based, articulatory, context-dependent modeling techniques

(Benzeghiba et al., 2007).

Acoustic modeling for ASR uses very little of the available knowledge about the speech
production system. Thus, speech is only modeled as a surface phenomenon, omitting sources
of information that may considerably improve available technologies. Articulatory features
may be used for language modeling. There are some speech production approaches to ASR
based on statistical models. The models are used in a consistent probabilistic framework,
where evidence from the acoustic language, the lexicon, and the language model are combined
to reach a final decision (King et al., 2007), which is more similar to the principles considered

in the PACT theory previously introduced (Schwartz et al., 2012).

Summarizing, human subjects produce one to two orders of magnitude fewer errors than
machines in most of the speech recognition tasks. One of the drawbacks to reduce this
gap is the limited knowledge about human speech processing. However, as mentioned in
previous sections, the theories of human speech perception have evolved rapidly in the last
twenty years based on different psychological studies and neurophysiological evidence. Thus,
one of the challenges for creating machines with human language capabilities is to integrate
this knowledge into intelligent machines. ASR technology has achieved significant results

to pupulate the academical and industrial areas. However, significant advances may instead
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come from studies in acoustic-phonetics, speech perception, linguistics, and psychoacoustics

(Anusuya and Katti, 2009).

We require to endow ASR systems with an efficient way of representing, storing, and re-
trieving knowledge required for natural conversation. To achieve this system, we could take
advantage of the available studies in infants, to create a system that can efficiently acquire
the ability to produce and perceive speech. Thus, we would open the door to more realistic

human-machine interactions through spoken language in unstructured environments.

2.8 Prelinguistic Vocal Development in Machines

As explained in the previous section, evidence available in psychological and neurophysiologi-
cal studies can help us to build machines endowed with spoken dialogue-based communication
systems. Theories of human speech perception and production have evolved rapidly in re-
cent years. Thus, roboticists can take advantage of this knowledge to build talkative robots.
Especially, we argue that a successful way to construct such a robotic system would be to
get inspiration from the developmental trajectory observed in infants. Building a robot that
would be able to acquire speech in the same way as an infant would be beneficial for build-
ing technological solutions and the understanding of the human mind. Thus, it also could

contribute to solving problems occurring during human development.

Regarding language and phonological meaning, phonological representation of a target lan-
guage is not present at birth, but it emerges during speech acquisition (Kroger and Cao,
2015). Thus, the process of speech perception and production acquisition and their stages
must be important. Different stages can be observed through the acquisition of speech pro-
duction and perception by an infant, and also through their communicative value (Kuhl,
2004). Regularities can be observed in the structure of the vocal development process in-
dependently of inter-individual differences (Kuhl, 2004, Oller and Eilers, 1988). Evidence
suggests that during Canonical Babbling (CB), infants learn to control their ear-vocal tract
system based on auditory feedback. In general, infants firstly discover how to control phona-
tion, then focus on vocal variations of unarticulated sounds and finally, in an apparent
automatic manner, discovers and focuses on babbling with articulated proto-syllables. Our

experiments consider the period around the CB. In this prelinguistic stage, production of



Chapter 2 State of the Art 51

speech utterances may not be associated yet to linguistic meaning, but certainly strong

cognitive architectures are build to foster linguistic value emergence.

Important issues to be addressed in early vocal development studies are summarized from

Asada (2016) and Mutlu et al. (2016):

e Integration of neuroscientific approaches focusing on neural mechanism inside the learner

and interactive ones focusing on social learning issues.

e The relationships between multimodal sensations, not only auditory but also vision

and touch should be analyzed.

e Realistic interactions and more experiments with humans.

In infants with regular development, there exists an ordered number of typical stages emerg-
ing along the progress from newborns to fully functioning adults (Morse and Cangelosi, 2017).
Some works are attempted to explain the emergence of developmental stages during vocal
development using artificial intelligence techniques. However, those works do not provide
any explanation for the onset of developmental stages. Recently, a model of language devel-
opment stages from the embodied perspective was introduced in Morse and Cangelosi (2017).
However, their efforts are rather directed toward language level development, leaving early
vocal development as an open issue. In the following, we describe a series of work that has
attempted to study prelinguistic vocal development using different perspectives and focused

on specific features of this developmental stage.

From the perspective of developmental robotics applied to prelinguistic vocal development,
one of the earliest works is Yoshikawa et al. (2003). Therein, the authors built a robotic
human vocal tract and attempted to mimic the way in which humans acquire phonemes
through random motor babbling and considering interactions with a caregiver. In general,
Yoshikawa et al. (2003) focused on learning model of vowel acquisition despite the different

embodiment between a robot and a human.

In Guenther (2006), Guenther et al. (2006), the DIVA model is introduced as a tool to study
the neurophysiological mechanisms for speech acquisition and production. Studies focused on
prelinguistic and early linguistic language-specific training, especially on the neural pathways

for acquiring speech units and considered a simulated vocal tract as the physical embodiment.
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In a first stage, the synaptic projections are tuned during a babbling phase in which quasi-
random articulatory movements are used to produce auditory and somatosensory feedback.
In a second stage, the acquired knowledge is used to build speech sounds. The neural network
takes as input a speech sound string and generates as output a time sequence of articulator
positions to command the movements of the simulated vocal tract. After babbling, the model

can quickly learn to produce new sounds from audio samples provided to it.

Inspired by Guenther (2006), Guenther et al. (2006), a new neurocomputational production-
perception model was introduced in Kroger et al. (2009). Similarly to the inspirational
works, the new approach comprised self-organizing networks for processing neural states
and comprise neural maps for storing phonemic, motor, and sensory states representing
speech items. Three main differences with respect to the results from the original works
can be highlighted. First, the separation between motor planning and motor execution.
Secondly, the new model includes a phonetic map reflecting the self-organization of speech
items between sensory, motor, and phonemic representation. Thus, bidirectional mappings
are achieved between phonemic, sensory, and motor representations essential in a production-
perception model. Thirdly, different to Guenther and colleagues, Kroger and colleagues aimed

at modeling both speech production and speech perception.

In Kroger et al. (2009), there is a first stage of random babbling after which the neurocom-
putational model is capable of reproducing the motor plan state of some prelinguistic speech
item from their acoustic state patterns. Hence, the neurocomputational model can perform
a language-specific imitation training with training sets comprising language-specific speech
items. In Kroger and Cao (2015) vocalic and syllabic speech items are considered for training.
Based on a biologically inspired model of speech processing and using interconnected grow-
ing self-organizing maps, the phonetic-phonological interface is described here as a numerical

computer-implemented model.

A speech acquisition model called Elija was developed in Howard and Messum (2011) and
extended in Howard and Messum (2014). It can go from babbling to naming objects using
infant-like utterances, but the onset of each stage is done by hand. In Howard and Messum
(2011), motor patterns are learned by optimizing a reward function instead of combining
simpler patterns. In Flija, there is a first stage of self-exploration as in the DIVA model.

Then a stage of imitation is triggered, in which speech signals are obtained from a caregiver.
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Finally, the acquired speech units are used to name objects through audio-visual acquired

regularities during the imitation scenario.

In Warlaumont et al. (2013b), a neural network model is introduced to study the role of
reinforcement during vocal learning using a vocal tract simulator. Random babbling occurs
spontaneously, and if a vocalization meets specific acoustic criteria, it is reinforced, making
similar muscle activation increasingly likely to recur. In the results, when reinforcement was
contingent on both phonation and proximity to English vowels as opposed to Korean vowels,
the model’s post-learning productions were more likely to resemble the English vowels and
vice versa. In Warlaumont (2013), the authors focused on a spiking neural network model
that controls the lip and jaw muscles of a vocal tract simulator and learns to produce canonical
babbling. The model was adapted to receive reinforcement when it produced a sound with
high auditory salience. Salience reinforced versions of the model increased their rates of

canonical babbling over the course of learning more than their yoked controls.

In the line of the research in this dissertation, it is possible to identify three similar works. As
mentioned before, we started our experiments based on the results from Moulin-Frier et al.
(2013). On the other hand, works following a similar line of research have been recently
published (Forestier and Oudeyer, 2017, Najnin and Banerjee, 2017). In Moulin-Frier et al.
(2013), intrinsically-motivated learning was used to study the emergence of developmental
stages during the first year of an infant life using a computational model. In Forestier and
Oudeyer (2017), the authors argued that most of the previous works have the disadvantage of
considering agents that are not situated in a physical environment where vocalizations may
have a meaning related to objects. We consider that this is true, it may be arguable in the
case of Howard and Messum (2011), where objects are considered but not any physical inter-
action with them. Forestier and Oudeyer (2017) proposed to study intrinsically-motivated
sensorimotor exploration applied to language emergence in a scenario of reaching objects,
where objects could be reached with a robotic arm, with a tool or asking a caregiver for help.
Even though vocal learning was somehow more restricted compared to the original proposal

in Moulin-Frier et al. (2013), the results and the experimental setup are impressive.
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2.9 The Role of Intrinsic Motivation in Vocal Development

As established in previous sections, infants firstly discover how to control phonation, next
they focus on vocal variations of unarticulated sounds and finally, apparently automatically,
they discover and focus on babbling with articulated proto-syllables. To achieve this goal,
they must learn redundant non-linear high-dimensional mappings of the ear-vocal tract sys-
tem. Previous works attempted to explain the emergence of developmental stages during
vocal development assuming the existence of those stages and hard-coding the onset of each
of them during experimentation (Guenther et al., 2006, Howard and Messum, 2011, Kroger
et al., 2009, Warlaumont et al., 2013a).

Moulin-Frier et al. (2013) was a first attempt to understand other mechanisms that may
explain the structured onset of developmental stages. The authors used an intrinsically
motivated exploration architecture to study the onset of those stages. It was argued that

intrinsic motivation might play an essential part in the self-organization developmental stages.

The Maeda’s vocal tract implemented by Guenther Lab was used in Moulin-Frier et al. (2013)
as a sensorimotor model along with the intrinsically motivated sensorimotor exploration
explained in Section 2.4. The dynamics of the 10 articulators and the 3 voicing parameters
of the Maeda’s vocal tract were modeled as overdamped second order systems. Whereas,
for the auditory output the two first formant also provided by the Maeda’s synthesizer were
considered with an extra signal that indicates if speech is produced or not was also considered

to build the sensory space.

The embodied architecture depicted previously in Figure 2.1 was built with the following
elements:

Physical Embodiment Maeda’s vocal tract implemented by Guenther Lab.

Sensorimotor Model Gaussian Mixture Model (GMM) wit incremental learning based on

Calinon (2009).

Interest Model GMM built in order to keep track of the progress of the competence (see

Eq.(2.1)) with respect to the time for different self-proposed goals.
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The results provided in Moulin-Frier et al. (2013) opened a door of a new approach in vocal
development to be investigated. A feasible explanation to the trajectory of vocalizations com-
plexity during early babbling was stated, where first an infant produces ‘silent’ vocalizations,
then unarticulated vocalizations and finally more complex coarticulated vocalizations in an
ordered transition between stages. The results also indicated that intrinsically motivated
learning algorithms can successfully learn sensorimotor coordination skills in vocal spaces.
They allow an artificial agent to learn to control its vocal tract progressively. However, more
than being a concluding paper, the ideas presented opened a door of a new approach for

early-vocal development to be explored.

This thesis expands the results observed in Moulin-Frier et al. (2013). First, in Chapter 4
we include constraint awareness into the architecture. Then, in Chapter 5 we study the
role of imitative behaviors during sensorimotor learning in parallel to intrinsically motivated

exploration.

Finally, another interesting work to be considered is Najnin and Banerjee (2017). Therein,
the author also extended, but in a different direction than ours, the results in Moulin-Frier
et al. (2013). In this case, a predictive coding framework was proposed for a developmental
agent with perceptuo-motor and learning capabilities. As in the original work, the agent
is solely driven by sensory prediction error. A similar developmental transition is observed,
which was partially improved by the modifications in the perception systems, given that they
considered the Mel-Frequency Cepstral Coefficients instead of the formant frequencies. They

also showed that agents learn to vocalize differently in different environments.






Chapter 3

Incremental Learning and the

Regression Problem with Gaussian

Mixture Models

“I have had my results for a long time: but I do not

yet know how I am to arrive at them.”
— Karl Friedrich Gauss

In the last part of the previous chapter, recent works aimed at studying speech development
from the perspective of artificial intelligence were introduced. The work by Moulin-Frier
and colleagues (Moulin-Frier and Oudeyer, 2013b, Moulin-Frier et al., 2013) was remarked
as a relevant referent to recent studies in the area (Acevedo-Valle et al., 2017a, Acevedo-
Valle et al., 2018, Forestier and Oudeyer, 2017, Najnin and Banerjee, 2017). Moulin-Frier
and colleagues also contributed with the toolbox explauto for Python, which is aimed at
facilitating the implementation of sensorimotor exploration systems (Moulin-Frier et al.,
2014). As the developments in this dissertation were, at the start, partially inspired by
the results in Moulin-Frier et al. (2013), by default similar approaches were reproduced in
our designed systems to replicate the results presented therein. Thus, herein we adopted
Gaussian Mixture Models (GMMs) as a modeling approach for sensorimotor systems. Later,
through this project, we have developed a learning framework to learn incrementally and

solve the prediction and inference problems. As the main advantage, the introduced learning

57



58 Chapter 3 Incremental Learning and Regression with GMMs

framework allows learning from data batches without the need of keeping them in memory

afterward.

This chapter is aimed at presenting an approach to achieve the solution of the regression
problem for multivariate systems. It uses an efficient incremental learning algorithm which
is compared to the state-of-the-art approach. Within the machine learning framework, incre-
mental learning of multivariate spaces is of particular interest for online applications, as it
is the case for the sensorimotor exploration problem that will be extensively studying in the
next chapters. The algorithms introduced in this chapter allows learning high-dimensional
redundant non-linear static maps from non-persistent on-line data of input-output systems.
Studying the implementation of alternatives to GMMs using incremental learning to solve
the regression problem is currently out of the scope of this work, so it is left as a research

line for the near future.

Summarizing, inspired by the results in Moulin-Frier and Oudeyer (2013b), Moulin-Frier et al.
(2013), a learning architecture is built using Incremental Gaussian Mixture Models in order to
solve the regression problem. Hence, two interesting mechanisms are combined: incremental
learning of GMMs and Gaussian Mixture Regression (GMR) to solve the inference and
prediction problems. Two approaches for the incremental learning of GMMs are considered
in order to compare our approach with state-of-the-art ones. On the one hand, an approach
based on the codes provided alongside Calinon (2009) and used to obtain the results reported
in Acevedo-Valle et al. (2015, 2018). On the other hand, an approach that was implemented
during the development of this project and published in Acevedo-Valle et al. (2017b), which
was used to obtain the results published in Acevedo-Valle et al. (2017a) and the results showed
in Chapters 4-5. Python’s source codes for the latter approach are available online for those
researchers who are interested in testing this learning mechanism in their work!. Through
this chapter, simple examples are used to facilitate the comprehension of the approach. In
the following chapters, it will be shown that the approach also applies to systems as complex

as a vocal tract simulator.

This chapter is organized as follows. Section 3.1 provides a brief introduction to the relevance
of Gaussian Mixture Models in the machine learning domain. Section 3.2 defines the learn-
ing problem considered in this chapter. Later, Sections 3.3-3.4 introduce the two considered

incremental learning algorithms for GMMSs. Section 3.5 explains the mechanism to solve

'https://github.com/yumilceh/igmm
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the regression problem for multivariate systems using GMMs. Section 3.6 presents a simple
example that shows how the incremental learning approaches work. Section 3.7 introduces a
simple non-linear redundant input-output system used to illustrate how the regression mech-
anism works to solve the inference problem, considering both learning approaches. Finally,

a brief discussion is presented in Section 3.8.

3.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMSs) are linear combinations of multivariate Gaussian distri-
butions that represent clusters of data. They are frequently appealed in machine learning
applications and related areas for problems that require the clustering of data. In such a
context, they are commonly employed in tasks where it is necessary to model complex and
nonlinear parameters (Bouchachia and Vanaret, 2011). However, recently they have been
actively applied to solve the regression problem, and they have also been used to model high
dimensional, non-linear redundant maps (Acevedo-Valle et al., 2015, Acevedo-Valle et al.,
2017b, Acevedo-Valle et al., 2018, Moulin-Frier et al., 2013, Oudeyer et al., 2007, Ribes
et al., 2016).

On the other hand, incremental learning algorithms may play a critical role in many applica-
tions. Those algorithms consider the learning scenario for streaming data arriving over time
and have been widely applied in machine learning, pattern recognition, data mining, and
fuzzy logic (Bouchachia and Vanaret, 2011, Chen et al., 2012, Gepperth and Hammer, 2016).
In Gepperth and Hammer (2016), a summary of the challenges for incremental learning is
presented. Furthermore, some of the main techniques that have been applied to solve the
problem are described. In general, most of the machine learning techniques have been ex-
tended to cover the incremental learning paradigm opening the door to new applications, e.g.,
Support Vector Machines, Decision Trees, Genetic Algorithms, Gaussian Mixture Models,

among others.

Incremental learning using GMMs has been previously studied with more emphasis on
its applications as a semi-supervised classifier method and density distribution estimator
(Bouchachia and Vanaret, 2011, Chen et al., 2012, Engel and Heinen, 2010). However, in

this chapter, we focus on its suitability to solve the regression problem using the approach
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implemented in Acevedo-Valle et al. (2017b). Moreover, the results are compared with results

using the generative approach implemented in Calinon (2009) and Calinon et al. (2007).

Both approaches are suitable, but not limited, to solve the problem of modeling input-
output multivariate systems. The learning system must collect data incrementally as it is
not available in advance in order to generate a model, so data is collected in batches of
input-output data points. Therefore, the model is trained each time a new data batch is

available and afterward that data batch is discarded.

3.2 Learning Problem Definition

In this section, the learning problem to be solved is defined according to the requirements
of the intrinsically motivated sensorimotor exploration architecture from Moulin-Frier et al.
(2013), later extended in our works Acevedo-Valle et al. (2015), Acevedo-Valle et al. (2017a),
Acevedo-Valle et al. (2018).

First of all, a GMM is defined by the set of parameters {7, i, Zk}szl, where 7;, p, and Xy,
are respectively the prior probability, the distribution mean, and the covariance matrix of the
k-th Gaussian, for k = 1,2, ..., K, being K the number of Gaussian distribution components.
A Gaussian distribution is defined as N'(u, Y), whereas the probability of a data point z to
belong to that Gaussian distribution is defined as N (z; i, X). The probability of z belonging

to the mixture is defined as

K
P(z) = Zﬂj./\/'(z; P k) (3.1)
k=1
with
1 1 Ts—1
Ty pep————— (TR A D 3.2
it ) = e 2

Furthermore, we assume a multivariate input-output static system defined as y = f(x) + «.
The vector y is assumed to belong to an m-dimensional output space ) C R™, which is
mapped by the inverse transformation f~!(-) to an n-dimensional input space X C R” as

the output vector y, and ¢ is random noise.

Experiments are run with the system to generate data batches with kg, samples of the
extended vector z = [x,y]T, thus z € X x ). Then, a GMM M is computed to represent

the distribution of the initial data batch Zo = {z0,21,22,...2zn} over the extended space
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Z =X xY, with Z € R™™ . Once the mixture is estimated, the data batch Zg becomes
unavailable. 'When a new data batch Z; is available, My must be retrained. The learn-
ing mechanism must be able to update the starting GMM Mj to represent the distribution
that would be described by Zy and Z; together, generating a new mixture M; and mak-
ing Z; unavailable. Finally, this learning process must be repeated each time a new data
batch Z; becomes available to generate a mixture that models the distribution represent-
ing {Zo,Z1,Z3,Z5...}. In the following sections, two different approaches to performing

incremental learning of GMM are introduced.

3.3 Generative Method for Gaussian Mixture Models

In Calinon (2009), two different approaches for incremental learning of GMMs were in-
troduced, both of them use an online variant of the Ezpectation-Mazximization algorithm

(EM-algorithm). Both implementations of the algorithms are open source?.

The first approach is defined as direct method. This method was discarded as an option for
this work because, as mentioned in Calinon and Billard (2007), the method relies on the
assumption that new data to be integrated into the model is close to the model. Due to our
hypothesis that sensorimotor systems are redundant high-dimensional non-linear maps, we

cannot make this assumption regarding new data.

On the other hand, the second approach, defined as generative method, uses a stochastic
approach to update the models. This is the one considered in this chapter. Starting with
an initial mixture model M;, given a new data batch Z; 1, the model is updated to become
M;y1. To train the model, first a set of random data points Z; , are generated using the
data distribution represented by M;. The number of generated points is

kgen = ’7(1 - a) kstep—‘ ’

«

where a € [0, 1] is the forgetting rate, ksp is the number of samples in Z; 1, and [-] indicates

the nearest larger integer function.

2http://www.calinon.ch/sourcecodes.php
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The model parameters {mg, fi, Zk}i{zl are updated using the data batch Z = {Z;y1,7Z] ,}
according to the Fxpectation-Maximization algorithm. It uses as initial parameters those

from M;. Then the parameters are updated following the following steps:

FE-step:
TN )
kj = K ’
2 i=1 T N (255 i, X)
K
Ep = i
j=1
M-step:

N U .
P 2_j=1 Pk %
k - u )
Ek’

Zj‘vzl p}i,j (Zj - NZH) (ZJ - '“ZH)T

12

ut+l
Y=

Iterations using the E-step and the M-step are repeated until reaching a stop criteria defined
as % < Tol. Where Tol represents a tolerance, and L, is the log-likelihood of the data

batch Z for the given model, defined as:

N
L(Z) = log(P(z))) (3.3)
j=1

where P is defined by Egs. (3.1)-(3.2).

The incremental learning process using the generative method proposed by Calinon (2009)
is summarized in Algorithm 2. In line 1, the three parameters of the model are chosen. In
line 2, the initial model is computed iterating the EM-steps described above until reaching
the given tolerance. From line 3, the model is trained every time a new data batch Z; is
available. Then, in line 4, the number of samples to be generated with the previous model

M;_ is computed according to the forgetting factor a and the number of samples in the
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data batch Z;. In line 5, a set of kg, points is obtained sampling the distribution described
by M;_1, the new data batch is concatenated with Z; in line 6, and finally, M;_; is updated

to M; iterating the EM-steps until reaching the given tolerance.

Algorithm 2 Generative Method to Train Gaussian Mixture Models
1: Set parameters: K, o, Tol.
2: My + EM-steps(Zy)
3: for Z; with i ini=1{1,2,3,4...} do

4 kqen _ I—(l—oz)size(Zi)]

5: Zg = sample(M;_1, kgen)
6: Z={Z, 7}

7 M; + EM-steps(Z)

3.4 Incremental Gaussian Mixture Models

The learning procedure of the new approach considered for incremental learning of GMMs
consists of two main steps: a first step using the Expectation-Maximization algorithm (EM-
algorithm) to train GMMs and a second step, in which a growing mechanism allows to
include new knowledge in previously trained GMMs based on general geometric properties

of Gaussian distributions.

In Algorithm 3, the incremental learning algorithm used to train a GMM using data batches
is summarized. Algorithm 3 is fed with the following parameters: the minimum and max-
imum number of Gaussian components in the model, K,,;, and K., respectively, the
maximum number of Gaussian components that can be added to the model at each training
step, AK a2, and the forgetting rate, o. In line 2, the GMM is initialized using the first
batch of data Zg, the getBestGMM function computes a GMM for each value of K within the
allowed interval [Kpin, AKpqez]. From those models, the one that best fits the data batch
according to the Bayes Information Criterion (BIC), which is based on the maximum likeli-
hood function, is selected. We will call the selected model, My. In getBestGMM, the GMMs

3

are obtained using the EM-algorithm implemented in the open-source library scikit-learn®,

but also available in other open source tools (i.e. TensorFlow, Open-CV, and others).

From line 3, the model is trained every time a new data batch Z; is available. In line 4,

a new GMM, M, is computed feeding the getBestGMM function with Z;. In lines 5 and

3http://scikit-learn.org/stable/
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Algorithm 3 Growing Gaussian Mixture Model Process

1: Set parameters: Knin, Kmaz, AKmaz, @

2: My < getBestGMM(Zo, Kpmin, AKmax)

3: for Z; with 1 in 1 ={1,2,3,4...} do

4: Mo < getBestGMM(Z;, 1, AK naz)

5 Mypew-gauss[:].m + a Mnew gauss[:].m

6: M;_;.gauss[:].m < (1 — ) x M;_;.gauss[:].w
7 SkLD ¢« getKLDiveregence(M;_1, M)
8: while M;_1.k + M,c,.k > K, pyor dO

9: i,j = argmin(SkLp)

10: M;_1.gauss[i| = merge(M;_1.gauss[i], Mpew.gauss[j])
11: delete(Mew-gausslj]), Skwipli,j] = o0
12: M; + jOin(Ml_l,Mnew)

6, the prior of each Gaussian component in M;_ | and M., is updated, respectively. The

prior’s update is done according to the forgetting rate, a.

The most important step for the incremental learning mechanism is the merging of Gaussian
components. Choosing which components of My, will be merged to which components of
M;_1 is the most challenging task of our approach. Therefore, before any components could
be merged, a divergence matrix is obtained to evaluate the similarity between Gaussian
components in My, and M;_;. Equally to Bouchachia and Vanaret (2011), we consider the

Kullback-Leibler divergence (KLD) for two Gaussian distributions defined as

‘21’) + (S5 81) + (2 — ) TS (w2 — ) — D, (3.4)

DK L(gy,g2) = log <

where g1 = N(u1,%1) and g = N (uz2,Y2). As the KLD is not symmetric, we use a sym-

metrized version defined as

1
DKLg(g1,92) = 3 (DK L(g1,92) + DK L(g2,91)) - (3.5)

Finally, lines 8-11 of Algorithm 3 represent the merging process. Therein, the most similar
Gaussian components in M., are merged to their most similar counterpart in M;_; and
dropped. This process is repeated until the sum of components between both models is not
greater than the maximum number of components K,,,,. Based on the geometric properties
of Gaussian functions, the merge operation is summarized in Algorithm 4 from Bouchachia
and Vanaret (2011). Finally, after the merging process, the remaining components in My,

are joint with M;_; to become M in line 12.
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Regarding Algorithm 4, it represents the steps needed to merge two Gaussian distributions,
g1 = N(u1,%1) and go = N (u2,2). These Gaussian distributions are assumed to be part

of a GMM with priors w1 and ma, respectively.

Algorithm 4 Merge Gaussian Distributions
merge(gi, g2)

fl:ﬂd:lﬂ'z’ WQ:%

Tnew = fl + f2

Unew = fipn + fopta,  Bnew = fi2e + foXo + fifa(pr — p2) (1 — ,UQ)T
gnew % 7rTLEU)7/'Ln€’LU7E’ﬂ€’LU

TetUTN Gpew

3.5 Solution to the Regression Problem with GMR

Once we have introduced two different mechanisms to incrementally train GMMs, in this
section we present the mechanism to solve the regression problem using the computed GMMs.
The regression mechanism follows our previous works in Acevedo-Valle et al. (2015, 2018) and
it is based on Gaussian Mixture Regression (GMR) from Calinon (2009). It is summarized
in Algorithm 5. As defined in Section 3.2, an n-dimensional input space X C R" is mapped
onto an m-dimensional output space Y C R™. Thus, the function y = f(x) + ¢ is assumed,

where y € Y, x € X and ¢ is random noise.

Herein, we solve the regression problem as an inference problem in order to determine the
input x that maximizes the probability to produce the output y. Considering the partitioned
vector z € Z with Z =X x Y

). (3.6)

once a GMM has been computed to model the distribution of a collection of data Z € Z, for
each j-th Gaussian in that GMM the partitions

z A Yt
Wi = H and X, = ! I (3.7)
uz e

A~

are considered to compute the conditional probability distribution Pj(X |y) ~ N;(fj,%;)

over the input space X given a desired output y, where

=1+ SEN T - i), S =S4 TS T (38)
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Considering that P(X | y) is at its maximum when x = X; = f[i;, then a natural selection
for x in order to produce y is x;. However, K candidates exist for x, hence it is necessary to

compute the probability of the vector z; = [%;, y]” belonging to its generator Gaussian as

1
P(ﬁj)zﬂamexp 3 (@5 —m) 257 35 =), (3.9)

and finally the point z* = z; that maximizes P(2;) is selected as the point that better fits
the model. In other words, according to our prior knowledge of f(x), z* € f(x), we infer

that the output y is generated by Xx;.

Algorithm 5 Infrence Problem Solution with GMR

mfer(y, M = {ﬂkauka Ek}k 1 nn)
1: d < zeros(K,1) % distances

2: for i in range(K) do
3 d[i] « |uf —yl
4: idx « argsort(d) % ascending order
5: X = zeros(n,nn), P = zeros(nn,1) % Recall that x € R™
6: for i in range(nn) do
T: Hi < /Mdr[z] i szz[i T < Tidz[i]
S X[i] =it Sy - )
9: z; = [X[;,i),y]*
; 1 —L((Ei—p) T B
10: Pl = i 5((@i—p) T8 (2 p))

11: return X[, argmin(P)]

It is worth mentioning that, in order to minimize computation time to obtain only x, the
regression can be restricted to the k-nearest Gaussian components to y according to their
mean ,u‘qj.. As observed in Algorithm 5, the regression mechanism considers nn nearest neigh-
bors. Finally, depending on how the partitions are defined in Egs. (3.6)-(3.7) the mechanism

can be used either, for inferring x from y or for predicting y from x.

3.6 Incremental Learning Example

In this section, we present a simple example to illustrate the growth of a GMM using our
proposed incremental learning algorithm. We consider data batches randomly generated from
2-dimensional Gaussian distributions. Those data batches arrive at three different times and
are summarized in Table 3.1. Figures 3.1-3.2 show the training steps using the generative
method to train GMM, and Figures 3.3-3.4 show the results using our incremental method

of training based on growing GMM.
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TABLE 3.1: Training data for incremental learning. The number of samples considered per
Gaussian distribution is 100.

Training Step Mean Covariances
i o p = [0,0]7 ¥ = [[0, —0.1]; [1.7,0.4]]
po = [—6,3]7 Yo =0.7% %
us = [-5,4]T Y3 =052
py = [1, 17 ¥4 = [[0.8,0.2];[0.1,—-0.2]]
t—1 .
ps = [4,4] Y5 = [[0.05, —0.05]; [0.5, 0.4]]
pe = [—1,1]T g = [[-0.4,0.5];[-0.05, —0.05]]
pr = [0,0]7 Y7 =0.5%
ps = [—5,4]7 g = 0.1 [[1,0];]0,1]]
t po = [-2,1]7 Mg = 0.1 [[1,0]; [0, 1]]
H1o = [_670]T Y10 =0.4x H 70]7 [ ) H
p = [4, 5]T Y11 = 0.4 % [[1,0]; [0, 1]]
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