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A mi familia





(Para leer en forma interrogativa)

Has visto,

verdaderamente has visto

la nieve, los astros, los pasos afelpados de la brisa...

Has tocado,

de verdad has tocado

el plato, el pan, la cara de esa mujer que tanto amás...

Has vivido

como un golpe en la frente,

el instante, el jadeo, la cáıda, la fuga...

Has sabido

con cada poro de la piel, sabido

que tus ojos, tus manos, tu sexo, tu blando corazón,

hab́ıa que tirarlos

hab́ıa que llorarlos

hab́ıa que inventarlos otra vez.

- Julio Cortázar
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Gustavo, Doña Tere, Sergio Rodŕıguez. En este sentido gracias a mi hermano Ismael y a su

mamá.
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Abstract

This research is motivated by the benefits that knowledge regarding early development in

infants may provide to different fields of science. In particular, early sensorimotor exploration

behaviors are studied in the framework of developmental robotics. The main objective is

about understanding the role of motor constraint awareness and imitative behaviors during

sensorimotor exploration. Particular emphasis is placed on prelinguistic vocal development

because during this stage infants start to master the motor systems that will later allow them

to pronounce their first words.

Previous works have demonstrated that goal-directed intrinsically motivated sensorimotor

exploration is an essential element for sensorimotor control learning. Moreover, evidence

coming from biological sciences strongly suggests that knowledge acquisition is shaped by

the environment in which an agent is embedded and the embodiment of the agent itself,

including developmental processes that shape what can be learned and when.

In this dissertation, we firstly provide a collection of theoretical evidence that supports the

relevance of our study. Starting from concepts of cognitive and developmental sciences, we

arrived at the conclusion that spoken language, i.e., early vocal development, must be studied

as an embodied and situated phenomena. Considering a synthetic approach allow us to use

robots and realistic simulators as artifacts to study natural cognitive phenomena. In this

work, we adopt a toy example to test our cognitive architectures and a speech synthesizer

that mimics the mechanisms by which humans produce speech.

Next, we introduce a mechanism to endow embodied agents with motor constraint awareness.

Intrinsic motivation has been studied as an important element to explain the emergence of

structured developmental stages during early vocal development. However, previous studies

failed to acknowledge the constraints imposed by the embodiment and situatedness, at sen-

sory, motor, cognitive and social levels. We assume that during the onset of sensorimotor

exploratory behaviors, motor constraints are unknown to the developmental agent. Thus,

the agent must discover and learn during exploration what those motor constraints are. The

agent is endowed with a somesthetic system based on tactile information. This system gener-

ates a sensor signal indicating if a motor configuration was reached or not. This information

is later used to create a somesthetic model to predict constraint violations.
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Finally, we propose to include social reinforcement during exploration. Some works studying

early vocal development have shown that environmental speech shapes the sensory space

explored during babbling. More generally, imitative behaviors have been demonstrated to

be crucial for early development in children as they constraint the search space during sen-

sorimotor exploration. Therefore, based on early interactions of infants and caregivers we

proposed an imitative mechanism to reinforce intrinsically motivated sensorimotor explo-

ration with relevant sensory units. Thus, we modified the constraints aware sensorimotor

exploration architecture to include a social instructor, expert in sensor units relevant to

communication, which interacts with the developmental agent. Interaction occurs when the

learner production is ‘enough’ similar to one relevant to communication. In that case, the

instructor perceives this similitude and reformulates with the relevant sensor unit. When the

learner perceives an utterance by the instructor, it attempts to imitate it.

In general, our results suggest that somesthetic senses and social reinforcement contribute to

achieving better results during intrinsically motivated exploration. Achieving less redundant

exploration, decreasing exploration and evaluation errors, as well as showing a clearer picture

of developmental transitions.

Keywords:

Developmental Robotics, Artificial Vocal Development, Sensorimotor Exploration, Constraint

Awareness, Social Reinforcement, Incremental Learning, Gaussian Mixture Models, Speech

Technologies, Language, Sensorimotor Contingencies



Resumen

La motivación principal de este trabajo es la magnitud que las contribuciones al conocimiento

en relación al desarrollo infantil pueden aportar a diferentes campos de la ciencia. Partic-

ularmente, este trabajo se enfoca en el estudio de los comportamientos de autoexploración

sensorimotora en un marco robótico e inspirado en el campo de la psicoloǵıa del desarrollo.

Nuestro objetivo principal es entender el papel que juegan las restricciones motoras y los

reflejos imitativos durante la exploración espontánea observada en infantes. Aśı mismo, este

trabajo hace especial énfasis en el desarrollo vocal-auditivo en infantes, que les provee con

las herramientas que les permitirán producir sus primeras palabras.

Trabajos anteriores han demostrado que los comportamientos de autoexploración sensorimo-

tora en niños, la cual ocurre en gran medida por motivaciones intŕınsecas, es un elemento

importante para aprender a controlar su cuerpo con tal de alcanzar estados sensoriales es-

pećıficos. Además, evidencia obtenida de estudios biológicos sugiere tajantemente que la

adquisición de conocimiento es regulada por el ambiente en el cual un agente cognitivo se

desenvuelve y por el cuerpo del agente per se. Incluso, los procesos de desarrollo que ocurren

a nivel f́ısico, cognitivo y social también regulan que es aprendido y cuando esto es aprendido.

La primera parte de este trabajo provee al lector con la evidencia teórica y práctica que

demuestran la relevancia de esta investigación. Recorriendo conceptos que van desde las

ciencias cognitivas y del desarrollo, llegamos a la conclusión de que el lenguaje, y por tanto

el habla, deben ser estudiados como fenómenos cognitivos que requieren un cuerpo f́ısico y

además un ambiente propicio para su existencia. En la actualidad los sistemas robóticos,

reales y simulados, pueden ser considerados como elementos para el estudio de los fenómenos

cognitivos naturales. En este trabajo consideramos un ejemplo simple para probar las arqui-

tecturas cognitivas que proponemos, y posteriormente utilizamos dichas arquitecturas con

un sintetizador de voz similar al mecanismo humano de producción del habla.

Como primera contribución de este trabajo proponemos introducir un mecanismo para con-

struir robots capaces de considerar sus propias restricciones motoras durante la etapa de

autoexploración sensorimotora. Ciertos mecanismos de motivación intŕınseca para explo-

ración sensorimotora han sido estudiados como posibles conductores de las trayectorias de

desarrollo observadas durante el desarrollo temprano del habla. Sin embargo, en previos
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estudios no se consideró que este desarrollo está delimitado por restricciones debido al am-

biente, al cuerpo f́ısico, y a las capacidades sensoriales, motoras y cognitivas. En nuestra

arquitectura, asumimos que un agente artificial no cuenta con conocimiento de sus limitantes

motoras, y por tanto debe descubrirlas durante la etapa de autoexploración. Para tal efecto,

el agente es provéıdo de un sistema somatosensorial que le indica cuando una configuración

motora viola las restricciones impuestas por el propio cuerpo.

Finalmente, como segunda parte de nuestra contribución proponemos incluir un mecanismo

para reforzar el aprendizaje durante la autoexploración. Estudios anteriores demostraron

que el ambiente lingǘıstico en que se desarrolla un infante, o un agente artificial, condi-

ciona sus producciones vocales durante la autoexploración o balbuceo. En este trabajo nos

enfocamos en el estudio de episodios de imitación que ocurren durante el desarrollo tem-

prano de un agente. Basados en estudios sobre la interacción entre madres e hijos durante

la etapa prelingǘıstica, proponemos un mecanismo para reforzar el aprendizaje durante la

autoexploración con unidades sensoriales relevantes. Entonces, a partir de la arquitectura

con autoconocimiento de restricciones motores, construimos una arquitectura que incluye un

instructor experto en control sensorimotor. Las interacciones entre el aprendiz y el experto

ocurren cuando el aprendiz produce una unidad sensorial relevante para la comunicación

durante la autoexploración. En este caso, el experto percibe esta similitud y responde refor-

mulando la producción del aprendiz como la unidad relevante. Cuando el aprendiz percibe

una acción del experto, inmediatamente intenta imitarlo.

Los resultados presentados en este trabajo sugieren que los sistemas somatosensoriales y el

reforzamiento social contribuyen a lograr mejores resultados durante la etapa de autoexplo-

ración sensorimotora motivada intŕınsicamente. En este sentido, se logra una exploración

menos redundante, los errores de exploración y evaluación disminuyen, y por último se ob-

tiene una imagen más ńıtida de las transiciones entre etapas del desarrollo.



Resum

La motivació principal d’aquest treball és la magnitud que les contribucions al coneixement en

relació al desenvolupament infantil poden aportar a diferents camps de la ciència. Particular-

ment, aquest treball s’enfoca en l’estudi dels comportaments d’autoexploració sensorimotora

en un marc robòtic i inspirat en el camp de la psicologia del desenvolupament. El nostre

objectiu principal és entendre el paper que juguen les restriccions motores i els reflexos im-

itatius durant l’exploració espontània observada en infants. Aix́ı mateix, aquest treball fa

especial èmfasi en el desenvolupament vocal-auditiu en infants, que els proveeix amb les eines

que els permetran produir les seves primeres paraules.

Treballs anteriors han demostrat que els comportaments d’autoexploració sensorimotora en

nens, la qual ocorre en gran mesura per motivacions intŕınseques, és un element important per

aprendre a controlar el seu cos per tal d’assolir estats sensorials espećıfics. A més, evidències

obtingudes d’estudis biològics suggereixen que l’adquisició de coneixement és regulada per

l’ambient en el qual un agent cognitiu es desenvolupa i pel cos de l’agent per se. Fins i tot,

els processos de desenvolupament que ocorren a nivell f́ısic, cognitiu i social també regulen

què és après i quan això és après.

La primera part d’aquest treball proveeix el lector amb les evidències teòrica i pràctica que

demostren la rellevància d’aquesta investigació. Recorrent conceptes que van des de les

ciències cognitives i del desenvolupament, vam arribar a la conclusió que el llenguatge, i per

tant la parla, han de ser estudiats com a fenòmens cognitius que requereixen un cos f́ısic i a

més un ambient propici per a la seva existència. En l’actualitat els sistemes robòtics, reals i

simulats, poden ser considerats com a elements per a l’estudi dels fenòmens cognitius natu-

rals. En aquest treball considerem un exemple simple per provar les arquitectures cognitives

que proposem, i posteriorment utilitzem aquestes arquitectures amb un sintetitzador de veu

similar al mecanisme humà de producció de la parla.

Com a primera contribució d’aquest treball proposem introduir un mecanisme per con-

struir robots capaços de considerar les seves pròpies restriccions motores durant l’etapa

d’autoexploració sensorimotora. Certs mecanismes de motivació intŕınseca per exploració

sensorimotora han estat estudiats com a possibles conductors de les trajectòries de desen-

volupament observades durant el desenvolupament primerenc de la parla. No obstant això,
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en previs estudis no es va considerar que aquest desenvolupament és delimitat per restric-

cions a causa de l’ambient, el cos f́ısic, i les capacitats sensorials, motores i cognitives. A la

nostra arquitectura, assumim que un agent artificial no compta amb coneixement dels seus

limitants motors, i per tant ha de descobrir-los durant l’etapa d’autoexploració. Per a tal

efecte, l’agent és provëıt d’un sistema somatosensorial que li indica quan una configuració

motora viola les restriccions imposades pel propi cos.

Finalment, com a segona part de la nostra contribució proposem incloure un mecanisme

per reforçar l’aprenentatge durant l’autoexploració. Estudis anteriors han demostrat que

l’ambient lingǘıstic en què es desenvolupa un infant, o un agent artificial, condiciona les seves

produccions vocals durant l’autoexploració o balboteig. En aquest treball ens enfoquem en

l’estudi d’episodis d’imitació que ocorren durant el desenvolupament primerenc d’un agent.

Basats en estudis sobre la interacció entre mares i fills durant l’etapa prelingǘıstica, proposem

un mecanisme per reforçar l’aprenentatge durant l’autoexploració amb unitats sensorials

rellevants. Aleshores, a partir de l’arquitectura amb autoconeixement de restriccions motors,

vam construir una arquitectura que inclou un instructor expert en control sensorimotor. Les

interaccions entre l’aprenent i l’expert, ocorren quan una producció sensorial de l’aprenent

durant l’autoexploració és similar a una unitat sensorial rellevant per a la comunicació. En

aquest cas, l’expert percep aquesta similitud i respon reformulant la producció de l’aprenent

com la unitat rellevant. Quan l’aprenent percep una acció de l’expert, immediatament intenta

imitar-lo.

Els resultats presentats en aquest treball suggereixen que els sistemes somatosensorials i el re-

forçament social contribueixen a aconseguir millors resultats durant l’etapa d’autoexploració

sensorimotora motivada intŕınsecament. En aquest sentit, s’aconsegueix una exploració

menys redundant, els errors d’exploració i avaluació disminueixen, i finalment s’obté una

imatge més ńıtida de les transicions entre etapes del desenvolupament
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Chapter 1

Introduction

“People are mistaken when they think that

technology just automatically improves. It does not

automatically improve. It only improves if a lot of

people work very hard to make it better, and

actually it will, I think, by itself degrade, actually.”

— Elon Musk

Despite an optimistic view about the future of robotics, robots have still not pervaded our

daily life. A number of scientific issues are yet to be solved for robots to be able to efficiently

behave in open and uncertain environments. Modern technological approaches have aimed

at solving some of the critical issues to develop more complex robotic systems through un-

derstanding and modeling key cognitive processes in humans. Among the most challenging

fields associated with robotics, one could find computer vision, navigation, motion control,

and human-robot interaction.

During the last years, the robotic industry has rapidly grown. This growth hasbeen restricted

to services (e.g., surgical robots), exploration and surveillance (e.g., autonomous submarines

and drones), military and manufacturing. In fact, robotic systems have become a strategic

element for those industries. Even though robots have been endowed with some autonomy

to make decisions, those decisions are restricted to structured environments where sources

of uncertainty are scarce, and humans are generally not physically involved in the task at

hand.

1
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More recently, there has been an increasing interest in using robots for domestic, rescuing

tasks, more complex medical procedures, among other applications. In the years to come,

robots are going to be necessary to solve important problems in our societies. Just consider

the example of elderly people in Japan, by 2035 a third of the country’s population will be

65 or older. Thus, the robotic industry has started to develop the technologies to fulfill the

healthcare and nursing requirements that this situation will generate, opening also a door

to a big business considering that other countries will face similar problems (Forster, 2018).

Such applications require a robot to perform daily life human-like activities. Some robots

have been developed for those areas, but they are neither effective nor efficient performing

in unstructured environments and interacting with humans. We consider these handicaps

as the main reason to prevent robots from “overrun” our homes, workplaces, streets, leisure

spaces, among other places. From our perspective, if robots are intended to work side-by-side

with humans, they require at least to satisfy three general aspects. First, they must operate

safely for humans and themselves. Second, robots must efficiently perform the work they

have been created to fulfill. Third, they must be able to efficiently interact (regarding the

task they are designed for) with other agents (humans, animals, and other robots) becoming

social artifacts.

Researchers are aware that, in the most complex scenarios of interaction, robots should

be endowed with human-like communication mechanisms. Consequently, artificial speech

and natural language technologies have been widely investigated. Recently Google Duplex

was presented (Hyken, 2018), a human-like talking computer able to make calls to arrange a

haircut appointment or book a table at a restaurant without the interlocutors suspecting that

they are talking to a computer. Many questions may arise from Google later developments,

technical, ethical and even philosophical. The important technical question at hand is What

would be the result of a call if the topic of conversation drifts apart from the original purpose

of the call? In general, what we observe in the release of Google Duplex is that the purposes of

the calls are structured. Thus, the possibilities are constrained to a certain degree, therefore

facilitating the development of a system performing well. To answer more questions about

this new system we will have to wait until the app or technical reports will be granted access.

In spite on any criticism, Google results are impressive, but much of this advance in human-

like conversational machines must be acknowledged to all the scientific community that has

been working broadly on Speech to Text Conversion (STP) technologies, Natural Language
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Processing (NLP) technologies and Text to Speech Synthesizing (TSS) technologies during

decades. Advanced Automatic Speech Recognition (ASR) systems have emerged as a popular

solution to solve the challenge of providing artificial agents with orders through spoken

commands. The body of work on NLP and TSS also includes a broad collection of solutions.

ASR, NLP and TSS systems with different capabilities have been successfully implemented

in robots, computers, smartphones and other devices. However, they lack many relevant

features of human language which make them only available for structured interactions.

On the other hand, besides satisfying a broad range of needs in the industry, advances in

artificial intelligence and robotics, computers and robots have become essential tools used as

means for studying the human mind. Machine learning techniques, fast robot-prototyping,

and complex simulators have fostered the appeal of artificial agents for studying the mecha-

nisms of cognitive development. In this sense, robots are built at least because of two different

reasons: as useful artifacts or as scientific tools as discussed later in this work (Mirolli and

Parisi, 2011).

In this work, we use the advances in machine learning, artificial bioinspired agents, and

developmental psychology studies to investigate observed phenomena during the early de-

velopment of infants. During this investigation, we use artificial developmental agents. In

general, our study contributes to constructing an approach in which a robot can learn the

relation between its motor actions and sensory consequences efficiently. Moreover, we em-

phasize the study of the emergence of developmental stages during early vocal development.

This work is a journey through the study of intrinsically motivated learning algorithms

inspired by the developmental processes observed in infants. Nowadays, these algorithms

are broadly used to learn sensorimotor coordination skills. The journey starts with the

studies in Moulin-Frier et al. (2013), where intrinsically motivated sensorimotor learning was

used to study the emergence of developmental stages in the course of prelinguistic vocal

development. Inspired by Moulin-Frier et al. (2013), we extended the study of prelinguistic

vocal development to understand the role of somesthetic senses in early development.

Following biological evidence, in Acevedo-Valle et al. (2015, 2018) we argued that somesthetic

senses are an important element that should be considered during sensorimotor exploration

as they are a good candidate to deal with motor constraints. Motor constraints, and con-

straints in general, are an important element that shapes the development of cognitive skills
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as discussed later in this work. Finally, in Acevedo-Valle et al. (2017a, 2018), we argued

that using a simple imitation scenario to reinforce sensorimotor exploration using intrinsic

motivations and somesthesis improves the exploration performance. Social reinforcement is

a crucial source of opportunities for early sensorimotor development, especially during early

vocal development as discussed extensively later. It is hard to think of an infant learning

to pronounce a word or even a simple language directed syllable without the guidance of an

adult.

This introductory chapter establishes the area of robotics where the contribution of this

work lies. In the following, the chapter is divided into six sections. First, in Section 1.1 we

establish a general link between cognitive and developmental sciences with robotics. Next,

Section 1.2 remarks the relevance of studying speech and language development, not with

the aim of manufacturing more complex interaction artifacts, but also as a mean to con-

tribute to the study of the human mind. Sections 1.3-1.5 clarifies the motivations, objectives

and contributions of this work. Finally, Section 1.7 describes the structure of this thesis

dissertation.

1.1 From Cognitive Sciences to Developmental Robotics

As defined in the dictionary, cognition is the mental action or process of acquiring knowledge

and understanding through thought, experience, and the senses (Oxford Dictionaries, 2018).

In this section, we study, how sciences study cognition have contributed to building adaptive

intelligent robots. In Figure 1.1, we describe the concepts that link cognitive science and

developmental science with different approaches to Robotics. In recent years, the idea of em-

bodied cognition has become popular among sciences that, from different perspectives, study

cognition (Wilson and Golonka, 2013). As defended in Galantucci et al. (2006), cognition,

like all the products of evolution, cannot be understood in isolation. Instead, understanding

cognition requires comprehending that it is embedded in a meaningful ecological context and

embodied systems (Liberman and Mattingly, 1985).

As a cognitive system, the human mind could be studied as a dynamical system. The state

of this complex system is determined by the interaction between several building blocks, i.e.,

memory, attention, motor control, perception, emotions, among other. Regarding embodi-

ment and cognitive system’s situatedness, at least motor control and perception might be
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considered as systems that together build up our mechanisms to experience the environment.

As mentioned in Pfeifer et al. (2007), autonomous robot design could notably benefit from

the available knowledge of biological science and self-organization theories. As indicated in

Figure 1.1, one of the most relevant sciences to be considered are cognition and developmen-

tal psychology. The existing knowledge about human cognition, and natural cognition in

general, has been a constant inspiration for the development of intelligent machines, leading

to the concept of cognitive robotics.

Different definitions could be found for cognitive robotics. In Mirolli and Parisi (2011) it is

simply defined as the study of cognitive phenomena by their modeling in robotic systems. In

this case, cognitive robots are considered as scientific tools, which is observed in Figure 1.1

as a feedback loop from robotics’ approaches to cognitive sciences. On the other hand,

cognitive robotics can be seen as an approach to achieve robots with the key characteristic of

adaptive anticipatory interaction (IEEE RAS, 2017). In IEEE RAS (2017) cognitive robotics

is defined as a science combining research coming from adaptive robotics, cognitive science

and artificial intelligence, and often exploits models based on biological cognition. It is also

emphasized that, as a form of embodied cognition, cognitive robotics exploits the robot’s

physical morphology, kinematics, and dynamics, as well as the environment in which it is

operating. The definition in IEEE RAS (2017) is consistent with the direct trajectory shown

in Figure 1.1.

Figure 1.1: From cognitive sciences to developmental robotics.
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So far, in the sense of studying cognition, for example using evolutionary approaches (Ferrell

and Kemp, 1996), the scalability of the approaches aimed at generating agents with complex

cognitive skills built over simpler cognitive skills is null. Until a few years ago, roboticist

had predominately addressed basic cognitive phenomena, like sensory-motor coordination,

perception, and navigation, but none of those provide clues regarding how to scale the system

to high complex cognitive systems as humans (Mirolli and Parisi, 2011).

Indicated in Figure 1.1, as a part of a new trend to use a synthetic approach to study cognition

as an embodied phenomena, the use of robots as scientific tools has also spread in recent

years (Asada et al., 2001, 2009, Mirolli and Parisi, 2011, Pfeifer and Scheier, 1999). Robots

can be used as tools to understand reality analytically. The synthetic approach consists of

building systems that reproduce observed phenomena and obtain candidates to explain that

phenomenon (Mirolli and Parisi, 2011). A critical question that robots may help to answer

is How natural cognition scales from basic cognitive skills, to complex cognitive skills? In

the field of developmental psychology, Piaget’s provided evidence to show that a mature

adult’s cognitive skills are the result of evolving physical and mental skills that build during

infancy, usually occurring in a clear sequence of defined stages (Ferrell and Kemp, 1996).

This developmental process is not random; the existence of structured developmental stages

suggests that development is the result of physical changes and a constant interaction with

the environment.

Developmental psychology is a pillar of a relatively new approach in robotics: developmental

robotics. The other pillar of this approach is cognitive robotics and its strong linkage with

embodied cognition. As indicated in Figure 1.1, developmental psychology and cognitive

robotics are merged to take advantage of the embodied nature of development to exploit em-

bodied cognitive robotics. Thus, allowing to integrate interesting concepts into the robotics

framework and enriching the synthetic approach. Developmental robotics aims at under-

standing and modeling the role of developmental processes in the emergence of complex

behaviors, including social ones (Asada et al., 2009, Cangelosi et al., 2010). Developmen-

tal robotics has emerged as an interesting solution to achieve the scalability of intelligent

artificial systems. The developmental approach has been shown to be suitable to scale ba-

sic cognitive phenomena to emulate the complex cognitive processes occurring for example

within the human mind (Ferrell and Kemp, 1996).
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One of the advantages for researchers working on developmental robotics is the plenty of

available psychological studies, which provides an important amount of cues for the improve-

ment of intelligent artificial agents. The growth of developmental robotics would not be

possible if the developmental psychologists would not have been studying human infants for

more than a century (Demiris and Meltzoff, 2008). Moreover, the improvement of exper-

imental techniques in psychological studies has been a door of opportunities to determine

what capabilities infants are born with and how these capabilities develop over time and with

experience (Demiris and Meltzoff, 2008, Gopnik et al., 2001).

Studies about the human mind are the best examples for developmental robotics, but it

is important to acknowledge that humans develop in an autonomous open-ended manner

through lifelong learning (Oudeyer et al., 2007). Despite some advances, no robot has the

capacity of developing in an autonomous open-ended manner. Hence, if a roboticist wants

to build a robot that emulates at least some human capabilities, developmental robotics has

a niche of action where the aim is to build robots with the capacity of developing in an au-

tonomous open-ended manner to achieve characteristic of adaptive anticipatory interaction.

The contributions of this work lay on the niche defined by the concept of developmental

robotics.

Looking at developmental robotics as a branch forked from cognitive robotics. It is aimed at

generating complex social robots with human-like cognitive and physical skills imitating the

natural developmental mechanisms produced by evolution (Asada et al., 2009). Moreover,

it also has the objective of understanding how human beings develop from harmless infants

to functional adults capable of solving complex cognitive tasks. Developmental roboticists

attempt to achieve these objectives building intelligent artificial agents endowed with physical

and cognitive mechanisms.

Developmental roboticists should acknowledge that developmental psychology theories are

based on the hypothesis that adult-level skills and competencies are not innate, but they

emerge through life (Ferrell and Kemp, 1996). Thus, these roboticists must consider that

not all the skills and competencies of a robot must be innate, but at least some of them

emerge from the cumulative learning and interaction with its environment. However, in a

developmental approach, as mentioned in Lungarella et al. (2003), an autonomous robot

should be endowed with an initial set of values and drives to build complex cognitive skills

on, i.e., motivations or needs to act and interact with the environment in order to achieve
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an adaptive behavior. Just as an infant, a robot must build its complex cognitive skills

inventing, discovering, and constructing its cognitive structures during its early develop-

ment through cognitive and developmental evolution intertwined with a constant evolution

of mental structures and physical competencies (Ferrell and Kemp, 1996).

Just as developmental psychologists (Gopnik et al., 2001) do, roboticist working using the

developmental approach face an important question, an open debate in natural sciences that

confronts two important concepts: nature and nurture. In the analysis of any developing

system, the initial conditions play a crucial role. In the case of infants, nature is defined

by the investigation of the behaviors and predefined developmental trajectories that infants

are capable of displaying after birth, which is not an easy task. In the case of robots, this

task is easier, as it is reduced to describe the algorithms and initial knowledge that are

preprogrammed into the robot before the experiments begin (Demiris and Meltzoff, 2008).

Later, the problem of nurture in robotics could be solved through imitation mechanisms for

example. Imitation, which is seen as a major avenue of learning in infants (and humans in

general), has been proposed as a promising method for a compromise between nature and

nurture (Demiris and Meltzoff, 2008, Gopnik et al., 2001).

Regarding the compromise between nature and nurture, Lungarella et al. (2003) formulates

two important questions that should be answered before attempting to emulate cognitive

phenomena using the developmental approach: How much has to be predefined? and How

much should be acquired?. In general, when reproducing given phenomena, these questions

may have a broad range of answers but on the manner in which we approach those questions

will have an impact on the complexity of the solution to be implemented and on the scalability

of the resultant cognitive system.

The Piaget view has been a cornerstone of the research dealing with theories of infants’

development. However, there is another perspective that has played an important role in

developmental theories: the Vygotskian view. From this view, language is not only a commu-

nication system, but it is also a cognitive tool. As mentioned in Lungarella et al. (2003) and

Mirolli and Parisi (2011), Vygotskian’s theories on psychology may be a promising approach

to include in robotics to achieve important progress to scale up cognitive systems. Later

discussed in this work, if language comes to the scenario of relevant elements to achieve the

emulation of complex cognitive development, then social interaction and the acquisition of

language become a key element for developmental studies. If language is necessary for the
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emergence of complex cognitive behaviors, then Should the robots of the future be born to

talk?.

1.2 Should the Robots of the Future be Born to Talk?

If we start asking the question Should a robot communicate with other agents? then the

answer would be: not necessarily. There are plenty of tasks where a robot does not need to

communicate with other agents, mainly in the industry, where the environment is structured,

and the task for each robot can be accurately defined. Even in some tasks where other agents

are present, communication may not be crucial. A good example would be the iRobot’s

Roomba robot: even though it may interact with other agents, in the sense that it modifies

its behavior if one stands in its way, it does not necessarily need any communication. For

this kind of robots, it is enough to acquire the right information from the environment and

react accordingly.

Despite not being a mandatory requirement, complex communication skills will be required

for robots in certain scenarios. As the tasks which robots are designed to become more

complex, robot-robot or human-robot interaction will emerge as part of the tasks and com-

munication will become necessary for interactions and collaborations to be successful. The

communication between robots could be reduced to a structured and simplified system, where

a group of robots is designed to be part of that communication system.

When interactions or collaborations of a robot occurs with a human, then the problem

becomes considerably more complicated. As social machines, robots should be built to

interact efficiently with humans; one could propose a basic communication system between

robots and humans. In that case, the problem would be reduced to the right education of the

human-user. However, if robots are genuinely intended to become complex social machines

that could interact with humans in any scenario, even with humans without any preliminary

instruction, then they should be endowed with human-like interaction mechanisms. In this

sense, the complexity of the task has placed human-like communication systems as a relevant

topic of research for roboticists.

How to deal with the Human-Robot Interaction (HRI) has been widely studied. A survey

presenting the history and main advances of HRI was presented in Goodrich and Schultz
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(2007). Therein, the authors emphasized that different levels of socialization are required

across different tasks. In general, the interaction mechanisms will be defined according to

the degree of autonomy, information sharing, and evaluation required by the task at hand.

In general, one also has to distinguish two different branches of interactions: the interactions

with a computer which is somewhat hard to define as embodied and interactions with a

robot, which represents an embodied interaction.

With the emergence of embodiment as a cornerstone of cognitive robotics, and as the in-

teraction between embodied agents represents a social cognitive phenomenon, HRI has been

studied as an embodied phenomena. For instance, Mutlu et al. (2016) provides some insights

on the relevance of embodiment to HRI. Therein, dialog-based interactions are constantly

analyzed alongside other communication modalities, e.g., gaze and pointing. For example.

dialogue-based could be used for supervisory control through interactions to solve tasks such

as navigation, collaborative exploration, and multi-robot teleoperation. Dialog could be the

channel to share information and control at critical points in the collaborative task. Regard-

ing dialog-based interactions, it is constantly assumed that robots are endowed with speech

synthesizing and recognition capabilities.

Mutlu et al. (2016) acknowledges the fact that dialogue-based interaction mechanisms have

the drawback of being rule-based systems. Those mechanisms have difficulty managing

the many uncertainties that stem from noisy speech recognition or linguistic ambiguities.

Those errors could be compensated by educating the user on how to speak correctly to the

system. However, an ideal social robot must be able to infer user intentions and orders under

uncertainty robustly.

Finally, Mutlu et al. (2016) emphasized three objects of research that will contribute to

improving the performance of robots in HRI tasks. The first object is to build a better

understanding of human cognition in HRI. The second one is to build models for simulating

human cognition in robots. The last one is to build models that support human-robot

joint activity, including dialog-based and other models that enable robots to reason about

the physical and cognitive properties of the environment and the actions of their human

counterparts. Furthermore, robots must integrate this knowledge to plan actions toward

achieving communicative or collaborative goals.
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An example to understand the failure of humans to endow machines with human-like lan-

guage are chatbots. They use text or a synthesized voice. Chatbots are virtual agents usually

endowed with some artificial intelligence that can conduct real-wise conversations (Hill et al.,

2015). Despite the significant quantity of information and examples of real human conversa-

tions available to them, they usually fail and lack of shared-intentionality (Thompson et al.,

2013). However, Google Duplex may be a good example that this failure and this lack of

shared-intentionality are coming to an end. We leave that discussion out of the scope of this

work as the information on this new technology is somewhat scarce.

In general, speech is one of the most studied communication systems because it allows human-

spoken language. However, as mentioned in Kuhl (2004), the idea that speech is a deeply

encrypted ‘code’ prevails among the speech specialists, and cracking this code is still an

unsolved problem. Some of the mysteries surrounding speech might be solved if we could

understand all the mechanisms underlying early speech acquisition in children. In fact, the

weaknesses of current speech synthesis and speech recognition systems may be attributed to

the fact that these systems are not designed acknowledging the human embodied and neural

processes of speech production and perception (Kröger et al., 2009). These processes may

also include the developmental process in which speech and language are acquired.

Cognitive roboticists and artificial intelligence scientist have addressed the study of speech

recurrently. However, the lack of an accurate understanding of the mechanisms used by

infants to learn the speech ‘code’, from babbling at 6 months of age to full sentences by the

age of 3 years, may be one of the most critical obstacle to prevent the achievement of an

advanced artificial equivalent to natural language based on speech, as mentioned in Kuhl

(2004). Fundamental to the explanation of how humans communicate is an understanding

of the mental processes that support language comprehension and production (Tooley and

Bock, 2014), abilities that may be developed during early infancy (Kuhl, 2004).

Building realistic speech-based communication systems requires an accurate understanding

of the mechanisms used by infants to learn the speech ‘code’ (Kuhl, 2004). Infants show

preparedness to master speech and acquire language: from the onset of canonical babbling

at 6 months of age, infants achieve to produce full sentences by the age of 3 years. Lack

of knowledge underlying this developmental process has been a principal obstacle to achieve

advanced artificial equivalents to natural language (Kuhl, 2004).
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As defended in Iverson (2010), the embodiment paradigm can be extended to language

acquisition. In other words, early-vocal development as a prerequisite for spoken language can

be studied as a result of embodiment, self-organization and emergence mechanisms produced

by human evolution. The findings can be later used to endow robots with similar mechanisms

to improve their communication skills, and therefore its capabilities to perform in social and

collaborative tasks.

In general, many studies have demonstrated that infants show preparedness to acquire natural

language. Motor, perceptual, social, and learning ability constraints, and their maturation

during infant development play a key role in the emergence of language (Kuhl, 2004). If one

of the aims of roboticists is to build robots endowed with human-like speech and language

capabilities, then we ask the question Should the robots of the future be born to talk? Some

of them should probably be.

1.3 Motivation

In the previous sections, we have briefly discussed that studies in developmental sciences have

strongly suggested that infants are born to talk. In the next chapters, we talk in more detail

about the scientific results from biological sciences. Infants are born to talk in the sense

of having the necessary simple cognitive skills to build more complex cognitive mechanisms

required for language. We also elaborate on the idea that robots may take advantage of the

findings in developmental sciences to become human-like machines. The road to achieving

this may be hard, and the progress could be even slower, but the failures in achieving high

performance in dialogue-based communication between artificial agents and humans are an

indicator that the effort is worth.

During the scientific quest of building a robot that learns a language as an infant does, there

is also a contribution to understanding the human mind and the cognitive development

of infants. In this sense, artificial intelligence technologies and robotics have acquired a

significant relevance in the study of the human mind. The emergence of advanced machine

learning techniques, fast robot-prototyping, and complex simulators has fueled the appeal

of artificial agents for studying the mechanisms of cognitive development with the parallel

interest on building more intelligent robots and artificial systems. When developing complex

robots, some of them will need to communicate with humans: robots helping in rehabilitation,
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health care of the elderly, rescue missions, collaborative tasks in the industry, social robots

for touristic assistance, a digital entity that schedules a medical appointment for us, and so

forth.

How could robots communicate with humans? Communication can be carried through mes-

sages encoded verbally and non-verbally (Wagner et al., 2014). However, for developmental

robotics, at this point, it is of particular interest to study the verbal channel: the one based

on speech. There are two main reasons for this interest according to Wagner et al. (2014).

First, the availability of research on human communication that has been mainly focused on

speech. Secondly, the fact that the emergence of perception and motor speech skills in infants

have been suggested to be a product of a developmental process. It is during early infancy

that humans become aware of the communication value of speech. In this sense, within the

studies of language emergence and its links to cognitive development, early works as Liber-

man and Mattingly (1985) have established perception-motor links according to evidence in

the neurophysiological and behavioral levels. The perceptuo-motor link during development

is of particular interest for this thesis.

The advantages of building a robot that could learn a language as a human does in order to

later communicate with users are one important motivation for this thesis. That robot will

be the perfect candidate to satisfy human needs, present and future, in different areas: med-

ical surgery, nursery, rehabilitation, pets, tourism, manufacturing, unfortunately military,

among others. Moreover, in building that robot from a developmental perspective, we are

going to gain a deeper understanding of language emergence, including all the developmental

subprocesses involved within the infants’ embodiment in order to pronounce their first word.

This thesis focuses on that specific subprocess of early language development: early vocal

development in prelinguistic infants. We argue that in studying this developmental process,

we are going to obtain relevant cues about all the phylogenetic and ontogenetic mechanisms

that cooperate to transform a newborn human into an adult capable of communicating and

solve complex cognitive tasks.

Developmental psychologists have found much evidence regarding infants and early language

emergence. When infants are born, they have the necessary skills to learn any language.

However, during the infants’ early development their speech perception systems are special-

ized to their native language. This ‘perception closure’ decreases drastically infants’ capacity

to learn other languages. In studying early-vocal development, we expect to contribute in
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the quest to find mechanisms to avoid the perception closure that impede us to perceive all

the nuances of any foreign human language (Kuhl, 2004).

Moreover, the investigation of motor and perceptual theories on language that using a devel-

opmental perspective combined with a synthetic approach using intelligent artificial systems

can be later extended to a broader range of natural and artificial cognitive systems. On the

reverse way, studies of natural and artificial cognitive systems may also contribute with new

insights about early vocal development, as the proposed extension of intrinsic motivated sen-

sorimotor exploration architectures to study the emergence of language stages in Moulin-Frier

et al. (2013). In general, it is of our interest to contribute to the investigation of developmen-

tal phenomena using artificial agents. In the long term, this investigation would contribute

to the generalized tasks emphasized by Mutlu et al. (2016): build a better understanding of

human cognition; build models for simulating human cognition in robots, gaining cognitive

capabilities through imitation and interaction with the physical environment, hopefully in

an open-ended manner as mentioned by Oudeyer et al. (2007).

Most of the works aimed at studying artificial speech-based communication systems are in-

stead focused on the natural language understanding problem. The lack of focus on early

vocal development and, in general, on prelinguistic communication is not surprising. As men-

tioned in Gros-Louis et al. (2006), just a couple of decades ago it was still assumed that vocal

development was the result of maturational programs, which were independent of environ-

mental influence. Therefore, as developmental psychologists were not primarily interested in

vocal development during the prelinguistic stage until recent years, developmental roboticists

did not have sufficient evidence to implement into artificial systems. As a consequence, works

on these aspects are sparse. Despite the difficulties, the scientific literature has been enriched

by a series of studies using artificial early vocal development as a mechanism to understand

language emergence from an embodied developmental perspective, for example Forestier and

Oudeyer (2017), Howard and Messum (2011), Moulin-Frier and Oudeyer (2013b) and Najnin

and Banerjee (2017). This thesis aims to enrich the evidence found in those studies.

Embodiment has been argued as one of the central concepts to be considered through this

work; embodiment imposes constraints at different levels. Motor, perceptual, social, and

learning ability constraints, and their maturation during infant development play a key role

in the emergence of intelligent behaviors, including spoken communication (Kuhl, 2004). In

this sense, the study of the role of those constraints is of particular interest for this work,
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and thus it is enlisted in the motivations of this thesis. The role of motor constraints during

early vocal development is especially considered and in general their role during perceptuo-

motor (sensorimotor) learning. In general, it is of our interest to study somesthetic senses,

as tactile perception, proprioception, and nociception (perception of pain). Other authors

have also urge further study of these perceptual modalities that may foster the emergence of

intelligence behaviors in living beings during development (Navarro-Guerrero et al., 2017b).

About studying infants’ early-language development and their openness to learn, Patricia

Kuhl (2010) said in a conference:

“Just as the poets and writers described, we’re going to be able to see, I think,

that wondrous openness, utter and complete openness, of the mind of a child. In

investigating the child’s brain, we’re going to uncover deep truths about what it

means to be human, and in the process, we may be able to help keep our own

minds open to learning for our entire lives.”

This quote is the perfect synthesis of one of the most important motivations for this work.

In general, it represents a good reason for computer scientist and roboticist to continue

the expansion of an artificial cognition branch that allows a substantial contribution to the

study of human development aimed at unveiling the deepest secrets of infant’s brain and

development. As a roboticist, we are necessary because theories have almost no impact

if they cannot be adequately tested. In this sense, integrated implementations of speech

processing in robots, and artificial agents in general, provide valuable environments for the

formal and empirical evaluation of cognitive models and theories (Wagner et al., 2014).

Finally, from Hall, Hulit et al. (2011) and Gopnik et al. (2001) there are important conclusions

of the relevance and motivations to study the mind of children and the early development of

language. These resources offer the picture of language in early stages as a seed, if a child

is the pot were that seed grows, interaction must be the water through speech or signs, and

other affective interactions. Hall says:

“Like a growing plant, language can develop into a twig or a tree, depending upon

the nourishment it receives.”

Regular developing infants cannot decide whether or not acquire speech and language. Asking

the questions mentioned by Hall is mandatory:
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• What language does for the child and us?

• How does language affect our lives when we have it?

• How does it affect our lives when we do not have it?

• How it does or doesn’t develop in the child?

• What we can and should do about its development in any case?

As evidence regarding the nature of the phenomena occurring during early human develop-

ment, articles as The Economist (2018) will continue emerging placing important questions

and answer in the hands of people and their governments. Does growing up poor harm brain

development? This article argues that growing up in a low-income family does affect child

development, or at least does not foster strong language and memory skills. More affluent

children usually perform better in school and are less likely to end up in jail.

Language allows time travel, mental time travel (Hulit et al., 2011). Language allows us to

connect with our past, our present, and our future as individuals, but also as a civilization.

It allows us to imagine what others might be thinking, and hopefully, it allows to connect

with ourselves.

As Hall, we would like to contribute to work in the scientific and technological basements

that will allow us one day “to get for each child a bridge as broad as the Brooklyn Bridge,

or better yet, the Golden Gate”. A bridge that will allow them time travel, a connection

with themselves and with others, it will, at last, contribute positively to the quality of

human societies. To build that bridge, we must recognize the processes through language

development, the time windows and the things to do to foster the success of each process.

Finally, summarizing the motivations to develop the project contained in this thesis, we want

to contribute to the study of processes occurring during the early development of children.

We look especially at the processes involving early vocal development, as it represents a

sensorimotor learning process, we adopt as a general object of study sensorimotor exploration

observed in many behaviors during infancy. Once we have established the embodied nature

of sensorimotor learning, given the relevance of constraints to understand implications of

embodiment, we believe that it is essential to study how available studies on artificial early

vocal development might be affected by the active consideration of motor constraints. Finally,
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if interactions are necessary for the acquisition of language and speech, studying feasible

mechanisms of interaction during prelinguistic artificial vocal development is also of particular

interest for this thesis.

1.4 Objectives

We have established the objects of research that will be carried through this work, and also

the reasons we have to argue the relevance of those investigations. This research is a study

of the role of constraints and social interaction during exploratory sensorimotor behaviors,

especially those related to prelinguistic vocal development.

Our general objective is to contribute to answering some of the paradigms regarding early

prelinguistic development. We argue that, to some extent, it would contribute to answering

some parts of prelinguistic developmental processes required for the emergence of spoken lan-

guage in children. Our objective is to use available methodologies in developmental robotics

and coherent with developmental psychology studies to understand the developmental pro-

gression which allows the emergence of complex behaviors in developmental living beings

and machines. In this sense, this work is aimed mainly to study the motor and perceptual

systems involved in speech production and perception.

When we find a gap in the available methodology, then we must provide or at least contribute

to the generation of a clear methodology. Following a clear methodology will make our

results easily reproducible by interested researchers in order to foster new contributions and

cooperation. Clear methodologies also foster the debate and discussions that are required

for a branch of science to grow. Thompson et al. (2013) mentioned some critical facts that

we will consider when evaluating our contributions to the early vocal development from the

psychological point of view. They recommend to make as few assumptions as possible, as

it guarantees a degree of generality and leaves more details to science instead of philosophy,

in current stage of developmental robotics it is hard to make few assumptions, but as an

objective we attempt to justify and clarify the implications of assumption made through the

experiments within this work.

In general, to be consistent with previous sections, our objective is to study speech emer-

gence according to behavioral and physiological evidence using a developmental approach.



18 Chapter 1 Introduction

Roboticists using the developmental approach to investigate the early vocal emergence and

vocal development should focus on the role of embodiment and social interactions in the

course of development must also be investigated Asada (2016). In this sense, the general ob-

jective of this work is to contribute to developing the basement of a discipline that will allow

building complex social robots. Those robots, through interactions with their environments,

must incrementally build new and more powerful mental and behavioral structures through

developmental processes. So far we have argued that the success on the quest of building a

complex social robot with human-like cognitive skills should be approached in an interdisci-

plinary way, but it is more important to find a principle shared by different disciplines and

its contribution to the gaining of new insights.

The specific objectives, approached through experimentation along this work, are enlisted

below.

• Our first objective is to collect and understand the series of studies that led to the

findings in Moulin-Frier et al. (2013). Therein, early vocal development was studied as

a result of exploration behaviors, in which an agent endowed with an artificial ear-vocal

tract can generate a map from articulatory gestures to auditory outcomes. Exploration

is not just random, but the agent attempts to reach auditory states that maximize the

learning progress, based on intrinsic motivations inspired by behaviors observed in

children.

• The second objective is to reproduce the experiments performed in Moulin-Frier et al.

(2013).

• Based on the general objectives and the work by Kuhl (2004), we propose our third

objective. It is to study the role that constraints imposed by embodiment may have

if the information provided by those constraints is actively included in the mental

processing path. We especially propose to study the role of motor constraints as, based

on biological evidence, we argue in the coming chapters that motor constraints are

something children learn during early development.

• Language nor speech are elements that could be learned in isolation as remarked in

previous sections. It is necessary to contemplate social mechanisms when they are

studied. Imitation has been mentioned as one important mechanism for children and
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robots to incrementally acquire knowledge from other humans or robots. Inspired by

works similar to Howard and Messum (2011), our fourth objective is to study, based on

biological evidence, how to integrate imitation mechanisms to sensorimotor exploration

applied to the vocal development and study what the role of imitation scenarios is

through the course of artificial development.

We also have the next minor objectives enlisted below.

• An important objective is that sensorimotor exploration algorithms developed through

this work must be presented in such a way they can easily be applied to any sensori-

motor system, not only to vocal development experiments.

• Finally, as we believe that science should be openly available to enrich scientific re-

sults and collaboration, the codes developed through this work must be open to any

interested researcher willing to work in similar applications.

1.5 Contributions

Based on the objectives introduced in the previous section, this work provides new results

to contribute to the study of early speech development using machines. Among the most

important concepts to consider when applying the developmental approach, this work empha-

sizes the embodiment paradigm and sensorimotor exploratory behaviors. The contribution

of this work is extending the study of early prelinguistic vocal development using intrinsi-

cally motivated exploration algorithms. Herein, we provide new simulation results showing

the suitability of these algorithms in the self-exploration of sensorimotor vocal spaces. The

theoretical basis of the probabilistic models used to represent knowledge is also provided.

Furthermore, we propose an architecture that could be used to study the role of constraints

and imitation episodes during sensorimotor exploration for any sensorimotor system sub-

jected to constraints.

We divide our scientific contribution into three main parts mentioned in the following. Along

with our scientific contributions, we mention scientific publications that were accepted in

peer-reviewed conferences and journals. The first part of our scientific contribution is related
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to the first, second and third listed objectives. Our work on these objectives is contained in

the following publications:

• J.M. Acevedo-Valle, C. Angulo and C. Moulin-Frier (2017) Autonomous Discovery of

Motor Constraints in an Intrinsically-Motivated Vocal Learner. IEEE Transactions on

Cognitive and Developmental Systems. 2017. DOI 10.1109/TCDS.2017.2699578.

• J.M. Acevedo-Valle, C. Angulo, K. Trejo and C. Moulin-Frier (2016) The Role of So-

matosensory Models in Vocal Autonomous Exploration. Innovation Match MX 2015-

2016, Guadalajara, Mexico. Revista Internacional de Investigación e Innovación Tec-

nológica. ISSN: 2007-9753. [riiit.com.mx/apps/site/files/art. 4 immx v1.pdf]

• J.M. Acevedo-Valle, C. Angulo, N. Agell and C. Moulin-Frier (2015) Proprioceptive

Feedback and Intrinsic Motivations in Early-Vocal Development. 18th International

Conference of the Catalan Association of Artificial Intelligence (CCIA 2015), pp. 9-18,

Valencia, Spain. IOS Press. [DOI 10.3233/978-1-61499-578-4-9]

In these publications we provide an extension of the studies in Moulin-Frier et al. (2013).

Inspired on somesthetic senses, these new studies provide an architecture in which constraint

awareness can be successfully integrated into intrinsically motivated sensorimotor exploration

architectures. Taking into account constraints during learning of sensorimotor regularities

is suggested to be major contribution to the performance of those exploration architectures

according to the results provided in this thesis.

The second part of our scientific work is related to the fourth objective mentioned in the

previous section. This part of our work was a partial collaboration with the Adaptive System

Group of the Humboldt-University of Berlin. The contribution made through our work in

this part of the objectives is contained in the following publications:

• J.M. Acevedo-Valle, V. V. Hafner and C. Angulo (2018) Social reinforcement in ar-

tificial prelinguistic development: A study using intrinsically motivated exploration

architectures [Submitted].

• J.M. Acevedo-Valle, C. Angulo and Verena V. Hafner (2017). Social Reinforcement

in Intrinsically Motivated Sensorimotor Exploration for Embodied Agents with Con-

straints Awareness. 2017: ICDL-EpiRob, Lisbon, Portugal.
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• (Poster) J.M. Acevedo-Valle, c. Ruiz-Camps, Verena V. Hafner and C. Angulo (2017).

Deep Neural Networks in Social Reinforced Sensorimotor Exploration. 2nd Workshop

on Language Learning. 2017: ICDL-EpiRob, Lisbon, Portugal.

In these publications, we provide an extension of the work developed during the first part of

this thesis. Therein, we provided a feasible architecture to integrate, apart from constraints,

social interactions as a part of early sensorimotor exploration. It is not the first time social

interactions are considered as an element for artificial mental development. However, we

argue that it is the first time that a sensorimotor exploration architecture, especially one

aimed at study vocal development, considers that three critical elements occur in parallel

through the course of early development: intrinsically motivated exploration, constraint

awareness, and social reinforcement. In this sense, we do not assume that each of the different

modalities develops one after the other, but we consider that they evolve in parallel. One

modality reaching a milestone might produce abrupt developmental changes in the others as

discussed later. Hence, we argue that observed development stages might also be the product

of those abrupt changes.

Finally, the third contribution of this work is the product of a need that emerged during

the development of this work. In order to learn sensorimotor maps during sensorimotor

exploration, we found relevant to rethink algorithms for incremental learning of Gaussian

Mixture Models (GMM). This part of our contribution was published in:

• J.M. Acevedo-Valle, K. Trejo and C. Angulo (2017). Multivariate Regression with In-

cremental Learning of Gaussian Mixture Models. 2017: 20th International Conference

of the Catalan Association of Artificial Intelligence (CCIA 2017). Terres de l’Ebre,

Spain.

• (Abstract) J.M. Acevedo-Valle, C. Angulo and K. Trejo (2017) Incremental Learning of

Gaussian Mixture Models for Multivariate Systems. Innovation Match MX 2016-2017,

México, Mexico.

In these works and for the first time, we combined an incremental learning approach for GMM

based on the geometry properties of Gaussian with Gaussian Mixture Regression (GMR) to

solve the inference and prediction problem of static input-output maps. Apart from being
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necessary for our sensorimotor exploration approach, we argue that this contribution could

be useful for a broader range of applications.

Our final contribution is a couple of open source Python packages. First, a simulated vocal

tract that facilitates the study of early vocal development using Python libraries, where many

tools for developmental robotics and machine learning are available. Secondly, a library with

our proposed implementation for the incremental learning of GMMs and GMR.

1.6 Short Academical Stays Abroad

I made two international academical stays during the doctoral studies; they are briefly de-

scribed below.

Eidgenössische Technische Hochschule Zürich (ETHZ) It took place from November

the 1st, 2015 until January the 31st, 2016. I visited the Autonomous and Dexterous

Robotics Laboratory and worked under the supervision of Prof. Dr. Jonas Buchli and

Dr. Diego Pardo. The stay was co-sponsored by the National Centre of Competence

in Research Robotics of Switzerland. As this stage was done during the consolidation

period of my doctoral research, the work was not included in this thesis. However, it is

important to mention that the project had as objective to design robust rime variant

controllers for the stabilization of optimal trajectories in underactuated systems.

Humboldt-Universität zu Berlin (HU Berlin) It took place from the 1st/March/2017

the 30th/June/2017. I visited the Adaptive Systems Lab of the Informatics Institute

under the supervision of Prof. Dr. Verena Hafner. This stay was of crucial relevance for

the elaboration of this thesis. The main objectives of this stay were studying the role of

social reinforcement, somatosensory and proprioceptive systems during the emergence

of sensorimotor explorations behaviors.

From this collaboration, as we mentioned beforehand, two papers were written. One

paper was presented in the ICDL/EpiRob Conference (Acevedo-Valle et al., 2017a),

and the other has been submitted to the IEEE Transactions on Cognitive and Devel-

opmental Systems (Acevedo-Valle et al., 2018).
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Apart from the two written papers, an important step in the implementation of neces-

sary software for the experimentation within this thesis was completed, especially that

related to the implementation of the divapy package, explained in Appendix A.

Following the main objectives of the stay, I was exploring new techniques based on

deep learning to implement proprioceptive and somatosensory systems into our vocal

tract. The basic idea was to use autoencoders to have a simple representation of touch

information. Finally, so far our speech perception system only considers the trajectory

of formant frequencies, which are a good account for vowel description, but not good

for consonant perception. In order to make a more powerful architecture, we started

exploring new speech features that allow us to perceive consonants. As we are studying

the emergence of speech, it is important to have a speech perception system similar to

that of the humans.

1.7 Thesis structure

Besides this introductory chapter, this thesis is structured into five more chapters. A brief

description of each of the remaining chapters is provided below.

Chapter 2. State of the art. This chapter is aimed at fulfilling the first objective of this

work. The reader will be introduced through a journey of two branches of knowledge

converging to the results in Moulin-Frier et al. (2013), where our contributions start.

On the one hand, we study the different steps from the artificial intelligence perspective

and robotics in order to generate the proper architectures that later were applied to the

study of vocal and language development using machines. On the other hand, we visit

different theories an experimental results regarding speech production and perception,

and the developmental processes that may be involved during the period in which a

child learns to perceive and produce speech. Literature regarding motor constraints,

somesthesis, and the role of imitation episodes will be considered in Chapters 4-5.

Chapter 3. Incremental Learning and the Regression Problem with Gaussian

Mixture Models. This chapter is aimed at introducing our approach to the incre-

mental learning of GMM and GMR. We also present samples examples that illustrate

how our approach works. A simple sensorimotor system which includes constraints
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is proposed in this chapter. The learning and regression mechanisms, along with the

simple sensorimotor system example, are later used to test the cognitive architectures

for sensorimotor exploration presented in Chapters 4-5.

Chapter 4. Motor Constraint Awareness in Sensorimotor Exploration. One of the

two main contributions of this work, even though it is based on Acevedo-Valle et al.

(2015, 2018), it provides further references regarding the role of somesthetic senses

and constraint awareness during early sensorimotor development. It also presents new

results, obtained with the most recent version of the software developed during this

project.

Chapter 5. The Role of Imitation Episodes in Intrinsically Motivated Sensori-

motor Exploration. This is the second main contribution of this work, it is based on

Acevedo-Valle et al. (2017a) and on the submitted work Acevedo-Valle et al. (2018), it

provides further references regarding the role of imitation episodes observed between

mothers and children to early vocal development and sensorimotor development. It also

makes a brief review of the relevance that imitation mechanisms may have to create

more complex robots. It also presents the most recent results of this work, and therein

the reader will find the best picture of early vocal development that we achieved to

obtain in a simple vocalization scenario.

Chapter 6. Conclusions and Future Work. It is the final chapter of this thesis. Therein

we summarize the discussion carried through the thesis regarding the obtained results.

We also assess the results and findings with respect the objectives of the thesis. Fi-

nally, we provide further lines of research to continue with the study of early vocal

development considering this work and similar works that have been carried in parallel

by other research centers.
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State of the Art

“Seek it with your hands, don’t think about it, feel

it. Your hands are wiser than your head’s ever

gonna be.”

— Steven Pressfield, The Legend of Bagger Vance

In the previous chapter, the reader was introduced to the basic ideas, objectives, and motiva-

tions of this research. Therein, sensorimotor exploration and prelinguistic vocal development

were emphasized as central issues within the framework of developmental robotics. In this

chapter, we discuss a series of relevant studies for the development of this project. These

studies cover a broad range of topics, from cognitive and developmental robotics passing

by embodiment, intrinsic motivations, and sensorimotor exploration. Moreover, researchers

related to speech and spoken language are covered to a considerable extent as well, including

psychological literature about vocal development, speech emergence, speech perception and

production, and language.

As emphasized in the introductory chapter, when performing in unstructured situations,

robots should be robust, flexible, social, as well as adapt to their environment’s changes,

just as the living beings do. Learning, locomotion, navigation, orientation, manipulation,

imitation, and cooperation were emphasized as critical challenges to achieve complex robots.

Moreover, it was mentioned that biological sciences might provide relevant knowledge to face

those challenges (Pfeifer et al., 2007).

25
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In the perspective of embodied cognition, agent’s behavior is not only the result of a system

control structure. The behavior of agents is affected by their ecological niche, morphology and

material properties (Pfeifer and Scheier, 1999, Pfeifer et al., 2007). In the case of an infant,

embodiment plays a crucial role in the bootstrapping of mental competence empowerment

(Ferrell and Kemp, 1996).

The research works and developments mentioned through this chapter provide important

clues on embodied cognition. Those clues should be considered in any attempt to build

an artificial agent endowed with the mechanisms that allow language emergence in infants.

Therefore, those studies are relevant to build artificial agents that attempt to mimic prelin-

guistic vocal development. In this dissertation, we stand with the perspective of Iverson

(2010), about emphasizing that language should be viewed in the context of the body in

which the developing language system is embedded. Therefore, language is considered an

embodied mechanism of communication.

This chapter is organized as follows. First, in Section 2.1 the concept of embodiment is

discussed from biological and artificial perspectives. Secondly, in Section 2.2 the concept and

mechanisms for sensorimotor exploration from a developmental perspective are introduced.

Section 2.3 is aimed at briefly introducing artificial architectures that have been proposed to

mimic sensorimotor learning in infants. We focus on architectures that are related to those

that will be introduced in the following chapters. Section 2.4 presents the sensorimotor

exploration architecture from Moulin-Frier and Oudeyer (2013b).

The second part of this chapter focuses on speech and language. First, we briefly discuss

speech from a biological perspective in Section 2.5. Next, Section 2.6 focuses on the relation

of speech and development. Then, we briefly discuss artificial mechanisms for speech per-

ception and production in Section 2.7. Finally, in Sections 2.8-2.9, we follow the evolution

of prelinguistic vocal development studies with artificial agents until the studies performed

in Moulin-Frier et al. (2013), which are the starting point of this thesis.

2.1 From Embodiment to Rhythmic Behaviors

As mentioned in the Introduction, Liberman and Mattingly (1985) established that given the

evolutionary origin of cognition, it needed to be understood as embedded in a meaningful
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ecological context and embodied in living perceiving-acting systems. The behavior of those

perceiving-acting systems is the result of its environmental complexity, and the interactions,

mainly through goal-oriented actions, with their ecological niche (situatedness), their mor-

phology and material properties (embodiment), and other individuals (Pfeifer and Scheier,

1999, Pfeifer et al., 2007). It is emphasized in Ferrell and Kemp (1996) that embodiment is an

interesting candidate to understand how the body, the environment, and the mind interact

to drive development and simplify learning through constraints and biases. On the one hand,

a well-defined set of constraints will assist learning by reducing the space of possibilities in

both, inputs and outputs. On the other hand, an input bias will produce a particular input

easier or more likely to be executed. The embodiment paradigm changed the way in which

cognition is understood.

In recent years embodied cognitive science is returning to focus on agent-environment in-

teraction and embodied sensorimotor mechanisms. Machine learning fits perfectly in the

paradigm of embodiment, approaches including artificial neural networks, behavioral-based

systems, artificial life and evolutionary computing being commonly used in the literature

(Angulo et al., 2009). It is showed in Angulo et al. (2009) how perception can be used as

a relevant feature for action planning, therein an architecture that provides an autonomous

agent with an ‘inner world’ based on internal simulations of perception rather than an explicit

representational model was proposed with positive results.

So far, robots have been mostly designed for particular tasks. Therefore, they are built

to meet the needs to perform within particular environments to achieve specific behaviors.

Roboticists have frequently appealed to biological systems as inspiration to build robots that

achieve their goal (Ferrell and Kemp, 1996). Despite this appealing to biological inspiration,

roboticists failed to reproduce or mimic even simple behaviors of living beings. However,

seminal works by Pfeifer and Scheier (1999), Pfeifer et al. (2007) and Ferrell and Kemp

(1996) helped to spread the concept of embodiment among roboticists, which changed in

many ways the way in which intelligence is understood.

Embodiment plays an essential role in constructing a cognitive foundation. As the interface

with the world, embodiment allows to compose and administer relevant queries of the envi-

ronment efficiently. In living beings, our bodies are demonstrated to be optimized to build

low-level knowledge through body-oriented activity (Ferrell and Kemp, 1996). Conceived

as an embodied phenomena, embodiment inspired by Pfeifer and Scheier (1999) helps to
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argue that findings obtained from the fields of biology and self-organization may strongly

benefit the construction of robots. If robots, as embodied agents, are described as dynamical

systems, then it is possible to extend the concepts of self-organization and emergence to

them. Those concepts are applied at the induction of sensory stimulation level, movement

generation level, exploitation of morphological and material properties level, and finally at

the interaction between individual modules (Pfeifer et al., 2007).

Pfeifer et al. (2007) argued that despite the interesting implications of the idea, embodiment

had not been sufficiently explored at that time. Consequently, robots were –and they are still–

energetically inefficient and lack adaptability when confronted with unexpected situations.

However, a change in the perspective in which robots are built has fostered the emergence of

more intelligent robots. As an example of the significance acquired by embodied cognition,

searching ‘embodied cognition’ in GoogleScholar1 and filtering the results from 1980 to 2007,

the number of results is about 20K; repeating the search for ‘embodied cognition robotics’

for the same period the results are almost 18K. On the other hand, searching for the period

2008-2018, for ‘embodied cognition’ the number of results is about 28K and for ‘embodied

cognition robotics’ is about 17K. If we use these figures as an approximated indicator to

the relevance that embodiment has gained in the study of cognition and robotics, then we

observe that the quantity of works produced in the last 10 years is approximately the same

to the quantity produced during the 27 years before.

From a developmental perspective, let us think about humans. Body development acts as

a regulator of information complexity that can be acquired by an infant. Thus, affordable

knowledge is considerably limited in early age. However, as the body changes along devel-

opment, then the available information increases in complexity and the infant can deal with

more complex knowledge. For that, the infant relays on the accumulated knowledge and

skills acquired along the whole developmental process (Ferrell and Kemp, 1996). From the

developmental perspective, to guarantee incremental acquisition of abilities on previous com-

petencies, it is important to consider how the system’s goals, morphology, environment, and

cognitive abilities grow in complexity (Ferrell and Kemp, 1996). As mentioned by Lungarella

et al. (2003), adaptivity of developing agents comes from their morphological plasticity, i.e.,

changes over time of sensory resolution, motor accuracy, the mass of muscles and limbs, and

so on. Despite being restricted in many ways, infants are tailored to the idiosyncrasies of

1https://scholar.google.com/

https://scholar.google.com/
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their ecological niche, even to the point of displaying a rich set of adaptive biases toward

social interaction.

How the embodiment paradigm can be applied in the design of robots is straightforward and

well represented by the quote “understanding by building” from Pfeifer and Scheier (1999).

According to Pfeifer et al. (2007), bio-inspired robotics should work out embodied principles

of biological systems and transfer them to robot design. The most explicit example in this

sense is bionics, which seeks to design technology by mimicking the salient features of bio-

logical structures. Providing some experiments, Pfeifer et al. (2007) showed that physical

constraints shape the dynamics of the interaction of the embodied system with its environ-

ment. Embodiment is a central player in the emergence of information regularities, coupled

sensorimotor activity and body morphology. Embodiment induces statistical regularities in

sensory inputs and within the control architecture and therefore fosters internal information

processing. In the studies of language emergence in infants, Kuhl (2004) showed that infants

use statistical an probabilistic information to learn their native languages.

Gottlieb et al. (2013) defended that despite the constant exploitation of biological mecha-

nisms in robotics, there is a poor understanding of how intelligent animals explore and obtain

information. As mentioned by Pfeifer et al. (2007), the mechanisms for perception are poorly

understood. In the field of language emergence in infants, Kuhl (2004) emphasized that the

perceptual changes that occur in infants from their birth to their first year of life are essen-

tial for language acquisition, however, to a large extent, the mechanisms that produce those

changes are still a mystery.

As mentioned by Iverson (2010) and Ejiri (1998), a beautiful picture of embodiment signifi-

cance is when infants engage in rhythmic behaviors, e.g., body rocking, head banging, head

rolling, hand banging (Sallustro and Atwell, 1978). When hand banging emerges, infants

feel themselves moving, they see the movement of their arms, and they hear the resultant

sound, all occurring in synchrony. A large number of studies suggests that infants are highly

sensitive to this type of synchrony and that the presence of such redundant cues facilitates

recognition of contingencies. For speech emergence in infants, this sensitiveness to synchrony

indicates that when infants begin to babble, they are prepared to recognize the contingent

auditory feedback from their sound productions. This feedback allows them to monitor and

adjust the state of the vocal tract as their sound production varies (Iverson, 2010).
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In conclusion, rhythmic behaviors are necessary to infants in order to create sensorimotor

maps. They allow infants to learn the regularities between motor actions and perceptual

states. Then, infants may be interested in those perceptuo-motor regularities and, somehow,

they feel motivated to gain more knowledge on those regularities, and in fact more control

over them. The latter description is a picture of sensorimotor exploration and intrinsic

motivations, which are studied in the next section.

2.2 Sensorimotor Exploration and Intrinsic Motivations

Rhythmic behaviors are mechanisms for sensorimotor exploration. Thus, they are required

by infants in order to create internal body representations and maintain them through life.

However, rhythmic behaviors are not the only mechanism used during sensorimotor explo-

ration. In the literature can be identified at least two other ones: goal-oriented exploration

and imitative behaviors (Demiris and Meltzoff, 2008, Gopnik et al., 2001, Oudeyer et al.,

2007). Through this chapter, we are mainly focused on reviewing rhythmic behaviors and

goal-oriented exploration, whereas imitative behaviors are discussed in Chapter 5.

There exist different sensorimotor relations that an infant acquires during early develop-

ment, e.g., saccading, gaze fixation, joint attention, hand-eye coordination, visually-guided

reaching, and vocalization-auditory consequences. As indicated by Lungarella et al. (2003),

during self-exploration and self-learning, spontaneous movement activity play an important

role even though the activity lacks of a functional goal, but gives infants the possibility of

learning to sense and predict the consequences of their own actions through self-exploration.

In general, it is observed that the self-experience of perceptuo-motor regularities to gain

sensorimotor control knowledge is a fundamental building block for different developmental

pathways. In other words, as established by Schillaci et al. (2016), sensorimotor control

and learning are fundamental prerequisites for cognitive development in humans. In infants,

it is not very clear how all the mechanisms for sensorimotor control learning work. On

the one hand, infants borrow some goals from observing others (imitative behaviors). On

the other hand, evidence strongly suggests that infants are able to generate random acts

(e.g., rhythmic behaviors) and then want to refine those acts by themselves in goal-oriented

exploration (Demiris and Meltzoff, 2008, Gopnik et al., 2001, Oudeyer et al., 2007).
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Similar examples are presented in Demiris and Meltzoff (2008) and Lungarella et al. (2003)

to describe the engagement of an infant with sensorimotor exploration. Citing to Demiris

and Meltzoff (2008): imagine an infant watching its hand floating across its visual field after

performing a random motor act, then imagine that the infant wants to gain control of this

scene. This desire causes her to repeat it again and again until the infant has mastered it.

Lungarella et al. (2003) differentiates between two different sources of sensory information,

one originated from outside the body (called exteroception, e.g., vision, audition or touch),

and the second coming from inside the body (e.g., proprioception). In Chapter 4, the latter

modality is studied with more detail.

Infants seem to be born with this innate willingness to master perceptual consequences

through sensorimotor experiments (Demiris and Meltzoff, 2008, Gopnik et al., 2001). This

willingness, according to Oudeyer et al. (2007), suggests the likely existence of a kind of intrin-

sic motivation system which provides internal rewards during these play experiences. Ferrell

and Kemp (1996) remarked that a system engaged in sensorimotor exploration should build

input-output representations which later may be used to avoid overwhelming and confus-

ing detail (redundancy) or bored by unchallenging simplicity (motivation for the unknown).

In this sense, developmental studies suggest that infants have an innate tendency to au-

tonomously generate goals that foster development. In fact, unreachable, unreasonable and

overly simplistic goals are rejected by infants through boredom and frustration. Ferrell and

Kemp (1996) also explained that failures to execute successfully a task motivates infants

to spend more time and cognitive resources trying to achieve that goal, that modifies their

models of reality and improves their skills in order to master the task. This effort fosters

the emergence of new tools and resources that later may be used to compose more complex

behaviors.

From Demiris and Meltzoff (2008) and Baranes and Oudeyer (2013), it is observed that in

the case of robots, forward models and inverse models to master sensorimotor knowledge can

be acquired through exploration processes inspired in those observed in infants. In executing

a series of arbitrary motor commands, or goal-oriented experiments a robot can associate its

motor commands with its sensory consequences, e.g., visual, proprioceptive, touch, auditory,

and so forth. There are some important problems of a robotic system learning to coordinate

the amount of sensorimotor regularities as a child does. These problems are associated to the

many degrees of freedom of a potentially redundant non-linear physical system (Lungarella
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et al., 2003). However, the imitation mechanisms and self-exploration of the sensorimotor as

described above may be the elements needed to achieve such a robotic system.

From a developmental embodied perspective, acquiring complex motor skills may benefit from

the introduction of initial sensor, motor and neural constraints, which over time are gradually

released. Intrinsic motivations, interaction with the environment and social interactions may

play a role regulating sensorimotor learning as well (Lungarella et al., 2003).

In order to develop in an open-ended manner, robots should certainly be equipped with

capacities for autonomous and active development, and in particular with intrinsic motivation

systems (Oudeyer et al., 2007). Regarding the trade-off between nature and nurture, from

Oudeyer et al. (2007) and Meltzoff et al. (2013) one can borrow some conclusions. It is

important to distinguish three mechanisms in which infants acquire sensorimotor knowledge

during early development as mentioned at the beginning of this section: motor babbling,

goal-directed babbling and imitation learning. Therefore, the success of the approach to be

presented in this work will depend on our capacity to integrate those learning capabilities

in an artificial developmental agent. First, we will consider motor babbling as an element

to initialize internal models of the agents. Next, we will consider goal-babbling as a way to

enrich and refine sensorimotor control knowledge. Finally, imitation learning is hypothesized

to be responsible of refining sensorimotor knowledge and provide opportunities to obtain new

knowledge.

Among the vast number of active learning architectures, this work considers the explo-

ration architectures proposed in Baranes and Oudeyer (2013) and Moulin-Frier and Oudeyer

(2013b). This architecture reproduces the formalism of intrinsic motivation inspired by psy-

chological literature as proposed previously in Oudeyer et al. (2007) and also in Gottlieb

et al. (2013). From the concepts and implications of sensorimotor exploration requirements,

an intrinsic motivation system must mediate learning, promote parameter exploration, drive

action selection and regulate social interactions (Lungarella et al., 2003).

2.3 Sensorimotor Exploration Architectures

As depicted in the previous section, there are a series of exploratory behaviors that emerge

during infancy that work as processes to learn sensorimotor regularities. Evidence suggests
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that the mind and brain development are strongly intertwined with these sensorimotor ex-

ploratory behaviors, where internal body representations are formed and maintained. Those

representations are used to master sensorimotor control, which is considered by develop-

mental psychologists as a fundamental prerequisite to more complex cognitive and social

capabilities (Schillaci et al., 2016).

A complete compilation of different relevant approaches is provided in Schillaci et al. (2016)

to implement sensorimotor exploration architectures for robots, along with their equivalent in

natural sciences. In general terms, from what Schillaci et al. (2016) compiled and the works

we have reviewed through this thesis, that random exploration along with the selection

of predefined actions (e.g., predefined motion primitives) is a common approach selected

by roboticists. However, it is possible to observe that intrinsically motivated architectures

are becoming more popular when addressing the sensorimotor exploration problem, some

examples are Baranes and Oudeyer (2013), Moulin-Frier and Oudeyer (2013b), Oudeyer

et al. (2007), Pape et al. (2012), Ribes et al. (2016), Saegusa et al. (2009), Shaw et al. (2015)

and Schmerling et al. (2015). Another important element, mentioned before, is the natural

relevance of goal-directed exploration observed in infants. As mentioned in Schillaci et al.

(2016), the introduction of the goal-directed nature of exploration changed the way in which

the problem of learning sensorimotor maps was addressed. This change in the paradigm of

artificial sensorimotor exploration was promoted by Rolf et al. (2010).

In Rolf et al. (2010), an approach for inverse kinematics learning in redundant systems

without prior or expert-knowledge was presented. Inspired by the fact that infants likely

babble goals instead of motor commands, the authors demonstrated that goal babbling could

be advantageous in learning in the early stages of development, as observed in developmental

theories. From Rolf (2013), we emphasize the key idea of learning by doing ; thus goal babbling

can enhance learning control. For instance, robots could learn to reach by trying to reach as

infants do.

In Oudeyer et al. (2007), an experiment was conducted with a robot endowed with curiosity-

driven learning mechanisms. It was capable of self-organizing its own learning experiences

into a sequence of behavioral and cognitive stages. Through these stages, it spontaneously

acquired a number of affordances and skills of increasing complexity. As mentioned in many

psychological works (Ejiri, 1998, Kuhl, 2004, Oller and Eilers, 1988), strong regularities are

observed in the structure of the vocal development process independently of inter-individual
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differences. In Oudeyer et al. (2007) active learning architectures based on intrinsic moti-

vations were proposed as mechanisms that mimic the exploration behaviors observed during

sensorimotor exploration in biological agents. Among the vast number of active learning ar-

chitectures, this work considers the exploration architectures studied in Baranes and Oudeyer

(2013) and Moulin-Frier and Oudeyer (2013b). These architectures reproduce the formalism

of intrinsic motivations combined with goal babbling inspired by psychological literature as

described in Oudeyer et al. (2007) and Gottlieb et al. (2013).

Using the goal babbling proposed by Rolf (2013), it is presented in Baranes and Oudeyer

(2013) a self-adaptive goal generation architecture, or intrinsically motivated exploration

mechanism, to actively learn sensorimotor maps of inverse models in high-dimensional re-

dundant robots. In this architecture, based on a measure of competence progress, the robot

actively samples novel parameterized tasks in the task space. The results using a robotic arm,

a quadruped robot, and another example suggested that exploration in the task space can

be much faster than exploration in the motor space for learning inverse models in redundant

robots. Developmental trajectories are generated driving the robot to progressively focus on

tasks of increasing complexity selecting goals maximizing competence progress according to

a model of interest.

Similar architectures than those from Baranes and Oudeyer (2013) are used in Moulin-Frier

and Oudeyer (2013b) and Moulin-Frier and Oudeyer (2014), but offering a detailed compari-

son between different exploration schemes. Moulin-Frier and Oudeyer (2013b) included some

experiments with a simulated vocal-tract, attempting to learn the articulatory configurations-

auditory outputs relation of the system which is of deep interest for this work. Moulin-Frier

and colleagues compared four schemes of explorations: first, they consider random explo-

ration over the motor space and the sensor space, next, they consider intrinsically motivated

learning over both spaces as well. From the results in Baranes and Oudeyer (2013) and

Moulin-Frier and Oudeyer (2013b, 2014), it is notorious that the architectures considering

intrinsically motivated learning over the goal space (goal babbling) perform better in senso-

rimotor exploratory tasks when considering high-dimensional non-linear redundant systems.

In the next section, we explain this sensorimotor exploration architecture with more detail.

Another interesting contribution regarding the active learning architectures to learn sensori-

motor regularities is presented in Ribes et al. (2016). Therein, the authors considered time
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constraints and proposed a music performance imitation scenario and implemented a learn-

ing architecture able to learn a musical instrument model and a body capabilities model;

the architecture is also able to imitate a sequence of sound, while simultaneously kinematic

errors, due to the control architecture, are corrected. Similar to Moulin-Frier and Oudeyer

(2013b), models employed in Ribes et al. (2016) were developed on the basis of Gaussian

Mixture Models (GMM).

In Tenenbaum et al. (2011) an analysis of the importance of the Bayesian approach to the

understanding of how human minds work and develop is presented. It is defended that

it provides tools for unifying mathematical language for framing cognition as the solution

to inductive problems. Powerful abstractions can be learned surprisingly quick using the

Bayesian approach. Moreover, Tenenbaum et al. (2011) argued that structured symbolic

representations should not be rigid, static, hard-wired, or brittle. Within a probabilistic

knowledge, they can grow dynamically and robustly in response to the uncertainty in the

data collected from pure-perception and perceptuo-action. In language, these ideas fit with

the claims of Kuhl (2004), who suggests that infants use probabilistic and statistical learning

mechanisms.

As mentioned by Sandini et al. (1997), to design an artificial agent from using the develop-

mental approach, the first practical problem is to define the subset of sensor and motor skills.

A critical issue is the implementation of a complete system and the definition of constraints

and abilities at the system ‘birth’. The second problem is the definition of a computational

framework for sensorimotor coordination compatible with emergence, self-organization, and

adaptability.

2.4 Intrinsically Motivated Sensorimotor Exploration

As concluded in the previous section, some of the most prominent architectures for sen-

sorimotor exploration are based on goal-directed motor babbling, where sensory goals are

actively chosen according to a model of interest. This model represents how well the agent is

performing in reaching self-generated goals through time. Thus, the agent can choose goals

that are likely to improve its sensorimotor control skills according to a competence function

(Baranes and Oudeyer, 2013, Moulin-Frier and Oudeyer, 2013b). In other words, exploration
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occurs over regions in which agents perceive they are becoming more competent to reach self-

generated goals. Thus, allowing them to efficiently and actively explore and generate maps

from motor capacities to perceived results in interesting sensory space regions. The intrinsi-

cally motivated sensorimotor exploration architecture for embodied artificial agents is shown

in Figure 2.1. This architecture is considered as the base for the contributions of this work.

To build the sensorimotor exploration architecture, the following elements are required:

• Physical Embodiment consists of a sensorimotor system.

• Sensorimotor Model is an internal representation that maps motor commands to

sensor results. It must be capable of inferring motor commands from provided sensory

goals.

• Interest Model is the core of the intrinsic motivation mechanism. It allows an ac-

tive selection of sensory goals according to the evolution of competence measurement

through the exploration in order to maximize learning progress.

In Figure 2.1, the learner starts with no knowledge about any of the two models. First, the

models are initialized in a first stage. Once they are initialized, the intrinsically motivated

exploration begins. The interest model proposes a sensory goal which is then passed to the

sensorimotor model. The sensorimotor model computes the motor command that, according

to the current knowledge, would produce that sensory goal. Then, the learner executes

the selected motor command with its motor system and produces salient signals that are

perceived as the sensory outcome. Afterward, the sensory outcome is compared to the sensory

goal to generate the competence value, c of the experiment as an index of performance. The

signals generated, described by blue arrows in the diagram, are then used to train the models.

After training the models, the exploration starts again choosing a new sensory goal.

Sensorimotor 

Model

Interest Model

m

Learner

s
g s

Figure 2.1: Intrinsically motivated sensorimotor exploration architecture. Black lines
represent the flow of data during each action execution. Blue lines represent signals used to

update the models.
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2.4.1 The Competence Function

One important concept in intrinsically motivated exploration is how to measure the compe-

tence of an agent to produce self-generated sensory goals. Moulin-Frier and Oudeyer (2013b)

adopted the competence function:

c1 = e−|sg−s| (2.1)

where sg is the sensory goal and s is the actual production of the agent. This function in

general assigns higher competence to those experiments that produce lower errors. Along

this work we consider Eq. (2.1). In general, we observed that Eq. (2.1) minimizes the error to

produce intended sensory goals. However, there are alternatives based on other concepts, for

instance in Acevedo-Valle et al. (2017a) we studied the competence function from Baraglia

et al. (2015), which can be used as modulator of exploration. The function is written as:

c2 = αe
−(|sg−s|−µe)2

2σ̇2 (2.2)

where α is a scaling parameter, µe is the mean value of |sg − s| and σ its variance. The

relevant feature of this competence function is that it fosters exploration in those regions

where the error to reach self-generated goals is moderate. In other words, regions where

sensory goals are not too easy to be reached by the agent but are not too hard to reach

either. However, we did not observe relevant changes in the results, that is the reason we

decided to keep Eq. (2.1). It is important to clarify that in Acevedo-Valle et al. (2017a),

the three parameters of Eq. (2.2) were considered constants. Thus, studies with a better

implementation of this competence function would be of interest.

2.4.2 Algorithmic Architecture

A feasible algorithmic implementation of the architecture in Figure 2.1 is shown in Algo-

rithm 1. As shown in the algorithm, the learner starts without any experience producing

intended goals. In line 1, the sensorimotor model MSM is initialized using random motor

experiments comparable with spontaneous random acts or rhythmic behaviors in children.

The interest model MIM is initialized in line 2 using the sensory outcomes of the agent in

line 1 as initial goals. Next, in line 4 of Algorithm 1, the learner selects a goal sg for the

next experiment according to MIM . Then the motor command mi trying to produce sg
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is computed using the sensorimotor model MSM in line 5. Next, the motor command is

executed with the embodied sensorimotor system and the learner observes s in line 6. In line

7, the learner evaluates the competence value c. Then a function governing the training of

models is called, and the exploration continues back in line 4.

Algorithm 1 Intrinsically motivated sensorimotor exploration with goal babbling.

Set {ne, randomseed}
1: Initialize MSM
2: Initialize MIM and i← 1
3: while i ≤ ne do
4: sg,i ← sample (MIM )
5: mi ←MSM (sg,i)
6: si ← f (mi) + σ
7: ci ← e−|sg,i−si|

8: i← i+ 1
9: train models()

2.5 Speech: Perception and Production

As mentioned in the introductory chapter, our main interest is to study the emergence

of speech in infants. Understanding all the mechanisms underlying speech emergence in

infants would be an important contribution to many areas of robotics and natural sciences.

Thus, in the coming sections, we provide a review of a few studies that we consider relevant

to roboticists working on artificial vocal development, emergence of language in machines,

speech perception and production, and so on.

Recent studies highlight the possibility that language evolved to meet the needs of young

man beings. Meeting their perceptual, computational, social and neural abilities, produced

a specific communication system that can be acquired by all typically developing humans:

speech (Kuhl, 2004). The knowledge about human speech processing is still insufficient.

Moore (1994) presented twenty themes considered to be important to achieve a greater

understanding of the nature of speech mechanisms and speech pattern processing. Regarding

those twenty themes, Anusuya and Katti (2009) argued that the answers to those questions

were still not clear a few of years ago, and to our knowledge, the majority of those question

is still unanswered. Some of the most interesting question regarding the nature of speech

asked by Moore (1994) are:

• How important is the communicative nature of speech?
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• Speech technology or speech science?

• How much effort does speech need?

• What is a good architecture for speech processing?

• How important are physiological mechanisms?

• What are the mechanisms for learning?

• What is speech good for?

• How good is speech?

Speech is produced when the vocal fold vibration by the lung air flow provides a source signal

of fundamental frequency F0. The vocal tract acts as a resonator, and according to its shape

the harmonics of the fundamental frequency are amplified or faded. The local maxima of

the resulting spectrum are the formants frequencies, ordered from the lower to the higher

frequencies (Moulin-Frier et al., 2013). They are the most frequent speech feature mentioned

in the literature, mainly when describing vowels.

One of the central questions regarding speech is whether the systems for production and

comprehension are essentially the same or not. As mentioned in Tooley and Bock (2014), a

debate has been created using empirical evidence supporting both ideas. On the one hand,

supporters defending that production and comprehension are carried by two separable pro-

cessing systems, take some arguments as the emergence of comprehension before production

in early development. On the other hand, supporters of a non-separable processing system

argue that the shift of emergence between production and comprehension is due to the com-

plexity of fine motor control acquisition. Under that condition, evidence is more consistent

with substantial similarity across production and comprehension. Thus, evidence supports

the idea that there exists a linkage between the systems underlying the production of sounds

and the ones underlying their perception. There is available evidence of these linkages be-

tween perception and the motor system for monkeys and humans (Galantucci et al., 2006).

Tooley and Bock (2014) hypothesized that the major sources of difference between com-

prehension an production might be extrinsic to dedicated mechanisms of production and

perception of speech. For instance, encoding complex ideas in a speech signal may require a

different depth of mental processing, which the perceiver rarely needs. In conclusion, spoken

language production and comprehension operate in similar ways and on similar principles. In
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this sense, Liberman and Mattingly (1985) established that the skills to coarticulate speech

and to perceive coarticulated speech evolved together given that neither skill would be useful

without the other.

As a product of evolution, language through speech is an “optimal” or at least “optimized”

communication system based on perceptually-shaped articulatory gestures (Galantucci et al.,

2006). Spoken language requires parity, which refers to the fact that speakers and listeners

can access similar information about words and their combination to express an idea. Any

theory of speech must explain how the parity requirement is met (Galantucci et al., 2006,

Liberman and Whalen, 2000, Tooley and Bock, 2014). In Liberman and Whalen (2000), the

notion of parity was interpreted in three ways. The first is that listeners and talkers must

converge on what counts as a linguistic action. The second is that phonetic messages sent and

received must be the same. The third one is that production and perception specializations

for speech must have co-evolved. In fact, parity is intended to be an abstract constraint on

the symmetric co-evolution of the machinery for producing and perceiving speech.

A large body of scientific results supports the existence of neural linkages between the percep-

tual and motor systems and the involvement of motor competence in perception (Galantucci

et al., 2006, Liberman and Whalen, 2000, Schwartz et al., 2012, Tooley and Bock, 2014). For

communication purposes, this hypothesis implies that the system that produces a signal of

communicative value is connected to the system that perceives the signal. These linkages

have been found in perception and the motor system of monkeys and humans. An interesting

implication, also related with embodiment, is that knowledge of anatomical constraints af-

fects what people perceive (Galantucci et al., 2006). If perception implies motor competence

exploitation, then knowing that a visual pattern can only correspond to a specific human mo-

tor action then this information is likely determinant to perceive the action results. One can

speculate that specialized motor competence is called upon in the perception of the pattern.

Another observation supporting the relevance of embodiment is that perceptual performance

may be enhanced in the case of movements produced by the same individual who perceives

them because the maximal amount of motor competence is available to support perception.

According to the evidence collected in Schwartz et al. (2012), some principles affect the

organization of vowels systems and supports the optimized nature of speech. First, the

Dispersion-Focalization Theory of vowel systems (Schwartz et al., 1997) establishes that

vowel systems, as auditory-optimized structures obeying perceptual dispersion principles for
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maximizing their efficacy of communication. Focal vowels correspond to more stable audi-

tory patterns, which seem to drive both infant and adult perception and infant production.

Secondly, the principle of Maximal Use of Available Features says that systems would com-

bine features orderly. In the case of vowel systems, height features would be combined with

tongue/lip configuration features to provide balanced systems. Finally, the Maximal Use of

Available Controls (MUAC) suggests that in the course of speech development, the young

speaker would achieve a sufficient control within a given series, and then transfer the adequate

control to another tongue/lip configuration.

Based on observations made in a considerable number of experiments, the most adopted

theories of speech affirm that speech perception is organized, at least partially, in terms of

motor control signals and their associated vocal tract configurations. In the following, two

theories discussed in Galantucci et al. (2006) and Schwartz et al. (2012), respectively, are

studied in order to provide some insights on the mechanism underlying speech perception,

they also provide some information regarding speech production.

2.5.1 The Motor Theory of Speech Perception

The Motor Theory of Speech Perception (MTSP) was proposed by Liberman et al. (1967)

and revised in Liberman and Mattingly (1985). Besides the impact that MTSP had on the

study of speech, it also gained a positive reception outside its field, mostly within the research

and theorizing in the broad context of cognitive science (Galantucci et al., 2006). The theory

proposes that phonetic coarticulated gestures are motor objects of speech perception. Thus,

intended gestures instead of actual vocal tract actions were established as the fundamental

objects of speech perception (Liberman and Mattingly, 1985). In Galantucci et al. (2006),

based on new scientific evidence coming after the publication of the MTSP, some important

conclusions regarding the claims of Liberman and Mattingly (1985) are provided.

Liberman et al. (1967) claimed that during the process of speech, perception articulation

and sound wave go through separate ways. Furthermore, they claimed that perception goes

with articulation instead of sound. However, according to Galantucci et al. (2006), this

is not accurate. For instance, this is not true when different second formant transitions

can signal the same phoneme or identical stop bursts can signal different phonemes before

different vowels. How distinctiveness and similarity are encoded? Galantucci et al. (2006)
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hypothesized that they are encoded by means of acquired similarity, whereby associating

different acoustic signals for the syllables to the same response makes the syllable-initial

consonants alike. On the other hand, acquired distinctiveness may explain how similar

acoustic signals with different underlying articulations come to sound distinct (Galantucci

et al., 2006).

In general, for skilled perceivers, the consequence of the memory representation established

by the mimicry is that articulatory movements and their sensory effects mediate between

the acoustic stimulus and the event we call perception (Galantucci et al., 2006, Liberman

and Mattingly, 1985). In fact, Schwartz et al. (2012) argued that a listener, who knows

something about speech production, exploit this knowledge to disentangle the complexity of

the acoustic input and access the functional unit more directly related with motor commands.

In this sense, the same reasoning is proposed for multimodal perception, e.g., audiovisual

interactions in speech perception, which are claimed to be related to the knowledge of the

listener about the multimodal coherence of a speech gesture. In this context, it is said that

perception involves a procedural knowledge of action.

There is considerable evidence that listeners situate the acoustic signal in a space that cap-

tures its gestural causes. Furthermore, the hypothesis that gestures are the objects of speech

perception provides a unified account of all of the findings: perceiving speech is perceiving

phonetic gestures (Galantucci et al., 2006).

Some speech gestures may be specified by information other than air pressure waves, e.g.,

labial gestures. When it does, a natural question is whether speech perception is respon-

sive to these additional sources of information. For example, listeners perceive speech in

noise presence more accurately when they can see the speaker than when they cannot. For

instance, speech imitation responses, which require gesture computation, are faster than

non-imitative responses. Thus speech perception must include the gestures that allow the

imitation. However, if listeners do perceive gestures, the model matching syllable may have

served as a stimulus for an imitative response (Galantucci et al., 2006).

After the discovery of the mirror neuron system in monkeys (Rizzolatti and Craighero, 2004),

similar systems were found in humans for finger, hand, and arm movements. This discovery

suggested that in primates there is a fundamental mechanism for action recognition. The
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mechanism consists in that individuals recognize actions made by others because the neu-

ral pattern elucidated in their premotor areas during action observation is similar to that

internally generated to produce the action (Galantucci et al., 2006).

The human mirror-neuron system has been proposed to play a fundamental role in speech

processing by providing a neurophysiological mechanism that creates parity between the

speaker and the listener. In this context, evidence suggests that perception would be medi-

ated by “motor ideas” represented in the brain by sensorimotor neurons enabling to access

these “ideas” both, through acting and through observing or hearing somebody else acting

(Schwartz et al., 2012). There is evidence that perceiving speech involves neural activity

of the motor system. Moreover, studies have demonstrated the activation of speech-related

muscles during the perception of speech. Some authors proposed that when simultaneous

activation of the perceptual and motor codes occurs, both codes may interact (Galantucci

et al., 2006, Schwartz et al., 2012).

2.5.2 The Perception-for-Action-Control Theory

Schwartz et al. (2012) introduced one of the most recent views concerning the relation of

speech production and perception. A common debate is to determine whether speech percep-

tion involves auditory or multisensory representations and processing, independently on any

procedural knowledge about the production of speech units or the contrary if it is based on

a recording of the sensory input in terms of articulatory gestures (Liberman and Mattingly,

1985, Schwartz et al., 2012). The proposed Perception-for-Action-Control Theory (PACT)

aims at defining a theoretical framework connecting in a principled way, based on behavioral

and neurophysiological data, perceptual shaping and motor procedural knowledge in speech

multisensory processing in the human brain.

As claimed by the motor theory of speech perception (MTSP), the coarticulation-driven

composition of articulatory commands during speech production is non-linearly transformed

into a complex composition of acoustic features, so that the acoustic properties of speech

sounds are not invariant but context dependant (Schwartz et al., 2012). Given that MTSP

does not fix with all the evidence, Schwartz et al. (2012) tried to answer what happens when

the relationship between gestures and sounds is many-to-one, and hence the gesture cannot

be, in theory, recovered from the sound without additional pieces of information. Evidence
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suggests that a gesture is characterized by its functional value, likely evaluated in auditory

terms. One possibility is to acknowledge that gestures are not pure motor units, but rather

perceptuo-motor units, gestures being shaped by perception. Gestures are not only shaped

by perception but also selected in relationship whit their perceptual (acoustic-auditory) value

(Schwartz et al., 2012).

PACT considers that speech perception is the set of mechanisms that enable not only to

understand, but also to control speech, considered as a communicative process. Thus, first,

perception and action are co-structured in the course of speech development, which involves

producing and perceiving speech items. Secondly, perception provides action with at least

auditory templates, which contributes to defining gestures, providing them objectives, orga-

nization schemes, and functional value. In PACT, the communication unit, through which

parity may be achieved, is neither a sound, nor a gesture, but a perceptually-shaped gesture,

that is a perceptuo-motor unit. It is characterized by both, its articulatory coherence and

its perceptual value (Schwartz et al., 2012).

In speech scene analysis, auditory, phonetic and lexical mechanisms are involved. Articula-

tory coherence is relevant. The fact that articulatory constraints may act on the emergence

and stabilization of verbal transitions strongly suggests that they partly rely on motor neural

processing. Evidence demonstrates that articulatory based representation plays a crucial role

in the endogenously driven emergence and stabilization of auditory speech percepts during

a verbal transformation task. The listener combines general auditory scene analysis mech-

anisms with articulatory principles grouping the acoustical and visual pieces of information

coherently and relying on visible labial onsets (Schwartz et al., 2012).

The co-structuring component suggests the possibility to connect perceptual and motor rep-

resentations for speech communication in a principled way. The sensorimotor maps appear to

be dynamic and provide a way by which changes in production can result in changes in percep-

tion (as reported for example in Ito et al. (2009)), relating articulatory changes to perceptual

changes (Schwartz et al., 2012). Two functions could be associated with perceptuo-motor

connection. First, sensorimotor maps that are constructed during the infants’ development

and later on, all along life, through dynamic adaptations under diverse learning conditions.

Secondly, the motor system could be involved in speech perception, perhaps more in ad-

verse conditions, in order to provide a better specification of possible auditory and visual

trajectories and enhance speech scene analysis (Schwartz et al., 2012).
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Finally, MUAC suggests that a young speaker can transfer adequate control from previous

knowledge to another tongue/lip configuration. As a consequence, the developmental ar-

ticulatory pathway is supposed to be crucial in the achieved shape of vowel system for a

given speaker. Thus, vowels are vocalic gestures organized developmentally and shaped by

their acoustic/auditory properties. The next section introduces some works regarding the

developmental trajectory of speech acquisition.

2.6 Speech and Development

Research on prelinguistic infants demonstrated that they were able to detect most phonetic

contrasts at birth (Galantucci et al., 2006, Kuhl, 2004). Moreover, learning to control spoken

language has been demonstrated to be constrained at perceptual, computational, social and

neural levels determining what (and when) can be learned (Kuhl, 2004). As remarked in

Perkell et al. (2001), it is clear that human speech production is one of the most complex

motor acts performed by any living being. Producing a linguistic message that can be

understood by another human requires exact and rapid coordinated movements of many

degrees of freedom in the respiratory, laryngeal and supraglottal articulatory systems. How

infants acquire the sophisticated ability to control speech production, which is practically

fully developed at the age of 3 years old, and in general how they learn language remains a

matter of research (Kuhl, 2004, Lenneberg et al., 1967).

During infancy, significant changes occur in the ways by which human body moves within its

environment and the manners an infant interacts with that environment. Although sensori-

motor behaviors, as mentioned in Section 2.1, are undoubtedly indices of underlying cognitive

change, they also represent advances in the action capabilities of an infant. These changes

may impact the development of skills and experiences that play a role in the emergence of

communication and language (Iverson, 2010).

In the investigation of the learning process for spoken language, it is essential to define what is

innate knowledge and skills, and which knowledge and skills are learned through development.

As Kuhl (2004) mentioned, the rules by which infants perceive information, the ways in which

they learn words, the social contexts in which language is communicated and the need to

remember the learned entities for a long time probably influenced the evolution of language.
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In general, it is important to identify constraints on infant learning, from all sources, and

determine whether those constraints reflect innate knowledge that is specific to language.

One of the most important events in infants’ vocal development for spoken language is the

onset of a particular rhythmic behavior: Canonical Babbling (CB). Unlike the sounds that

infants vocalize before this stage, such as crying, cooing, and screaming, CB is characterized

by the production of well-formed syllables that have adult-like spectral temporal properties.

The onset period of CB is stable across infants (7-8 months of age), regardless of their

language environments. CB also emerges, with some differences, in infants with hearing loss.

During this period, the sounds most favored by infants are also produced most accurately

and occur with higher frequency in the languages of the world (Ejiri, 1998).

Based on the facts that rhythmic structure is not unique to vocal behavior and that the ap-

pearance of rhythmic vocalizations is developmentally linked to the more general appearance

of rhythmically organized motor behaviors, Kent et al. (1991) suggested that the rhythms

of vocalizations probably should be considered in terms of a larger picture of developmental

rhythms. Early vocalizations produced by the infants regardless of their audibility, may be

caused by infants’ natural tendency to move their body parts rhythmically, early vocaliza-

tions are at first motivated largely by infants’ sensorimotor feedback (Ejiri, 1998).

Early babbling, as claimed by Ejiri (1998) may be a direct result of rhythmic mandibular os-

cillations. However, evidence suggests that, around the onset of CB, infants learn to vocalize

based on auditory feedback (Ejiri, 1998, Kuhl, 2004, Perkell et al., 2001). As an exploratory

sensorimotor behavior, CB is a milestone in early language development. Through sensory-

guided motor experiments, it helps to form and maintain internal body representations for

the production of speech. Those representations are considered a fundamental prerequisite

to more complex capabilities (Schillaci et al., 2016).

Evidence suggests that different from some motor skills that are determined by maturation,

several aspects of early language development are not only determined by general maturation

(Iverson, 2010). Based on evidence of developmental studies, Iverson (2010) argued that the

acquisition of motor skills provide infants with an opportunity to practice skills relevant to

language acquisition before they are used for that purpose. Moreover, the authors showed

that emergence of new motor skills changes infants’ experience with objects and people in

ways that are relevant for both general communicative development and the acquisition of
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language. During the first eighteen months of life, infants acquire and refine a whole set of

new motor skills that, as mentioned before, significantly change how the body moves in and

interacts with the environment.

Practicing sensorimotor skills related to language in the context of a precise action provides

infants with immediate and salient visual, auditory and kinesthetic feedback. This feedback

is an opportunity to observe perceptuo-motor links and means to begin noticing and attend to

the relationship between their motor actions and consequences. When infants subsequently

begin to babble, they may very well be better prepared to recognize the contingent auditory

feedback from their sound production, feedback that allows them to monitor and adjust the

state of the vocal tract as they vary their sound production (Ejiri, 1998, Iverson, 2010).

Developmental progression in action on objects and achievements in early language are closely

associated. A complementary perspective is that physical action on objects sets context for

attributing meaning to those objects via action. As infants refine their actions, they can

attribute increasingly specific meanings to objects interacting with them. They contribute,

directly or indirectly, to the development of communication and language, even before in-

fants use those skills for that purpose, for example, the recognitory gesture. This skill is of

particular relevance for learning words. Thus, the infants’ first words are tightly bounded to

action and infants are highly likely to name objects as they act on them (Iverson, 2010).

Infants learn rapidly from exposure to language in ways that are unique to humans, com-

bining pattern detection and computational abilities. Following the same path regardless of

culture, infants learn their mother tongue rapidly and effortlessly, by the age of 3 years they

can produce full sentences. The idea that speech is a deeply encrypted code is widely ac-

cepted. The absence of early exposure to the patterns that are inherent in natural language

produces life-long changes in the ability to learn a language. Language acquisition requires

the commitment of the brain to patterns that reflect natural language input (Kuhl, 2004).

Some experimental results suggest that social interaction assists language in complex set-

tings. In fact, social deprivation has a severe negative impact on language development, to

the extent that standard language skills are never acquired. Speech sounds are strongly pre-

ferred in typically developing infants. Social influence is crucial, if simple auditory exposure

to language prompts learning, the presence of a live human being would not be essential.
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However, according to evidence, infants are apparently not computational automatons, but

they might need a social tutor when learning natural language (Kuhl, 2004).

For infants, early social awareness is a predictor of later language skills. Social interaction

can be conceived as a regulator of computational learning and thereby protects infants from

meaningless calculations. The need for social interaction would ensure that learning focuses

on speech that derives from humans in the infants’ environment, rather than on signals from

other sources (Kuhl, 2004).

Constraints are evident when infants hear or see non-human actions: infants imitate vocal-

ization rather than sine waves analogs to speech and infer and reproduce intended actions

displayed by humans but not by machines. These observations imply that social factors may

affect language acquisition because language evolved to address a need for social commu-

nication. However, the mechanism that controls the interface between language and social

cognition remains a mystery (Kuhl, 2004).

2.7 Developmental Robotics and Speech

Automatic Speech Recognition (ASR) is the process of converting a speech signal to a se-

quence of words using a computational algorithm. It makes possible for a machine to follow

human voice commands and ‘understand’ human languages. ASR systems are widely used

for human-machine interfaces, for example, call processing in telephone networks, speech

transcription, voice dictation, robotics, and so forth (Anusuya and Katti, 2009).

The progress in ASR systems has been notable with the advances in Deep Neural Networks,

consider Google Duplex (Hyken, 2018). ASR systems work well for a particular task if suf-

ficient data is provided for the target domain. However, when ASR systems are migrated

from laboratory demonstrations to actual applications, they encounter some serious difficul-

ties (Jiang, 2005). Current speech recognition systems are easily outperformed in the case of

non-restricted vocabulary, if the speaker is not well-known by the system and if noise reduces

the speech signal quality (Kröger et al., 2009). There are technological barriers to flexible

solutions of ASR, the main drawbacks are related to the sensitivity to the environment,

the weak representation of grammatical and semantic knowledge and the variation naturally
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present in speech. Inter-individual elements burdening the ASR are differences in accent,

speaking style, speaker psychology, age, emotions, among others (Benzeghiba et al., 2007).

According to its capabilities, speech recognition can be classified into four different types:

isolated words, connected words, continuous speech and spontaneous speech. On the other

hand, according to the algorithmic approach, there are three approaches to speech recogni-

tion: Acoustic Phonetic Approach, Pattern Recognition Approach, and Artificial Intelligence

Approach, the latter could be considered a hybrid of the two earlier (Anusuya and Katti,

2009, Benzeghiba et al., 2007).

The two prevalent techniques for ASR are Hidden Markov Models (HMM) of speech signals

and decoding techniques for very-large-scale networks (Benzeghiba et al., 2007, Jiang, 2005).

In most ASR systems, a signal is modeled through HMMs, at a first stage ASR front-

end analyze short signal frames on which stationarity is assumed. As found by Liberman

and Mattingly (1985), speech gestures are coarticulated. The effects of coarticulation have

motivated studies on segment based, articulatory, context-dependent modeling techniques

(Benzeghiba et al., 2007).

Acoustic modeling for ASR uses very little of the available knowledge about the speech

production system. Thus, speech is only modeled as a surface phenomenon, omitting sources

of information that may considerably improve available technologies. Articulatory features

may be used for language modeling. There are some speech production approaches to ASR

based on statistical models. The models are used in a consistent probabilistic framework,

where evidence from the acoustic language, the lexicon, and the language model are combined

to reach a final decision (King et al., 2007), which is more similar to the principles considered

in the PACT theory previously introduced (Schwartz et al., 2012).

Summarizing, human subjects produce one to two orders of magnitude fewer errors than

machines in most of the speech recognition tasks. One of the drawbacks to reduce this

gap is the limited knowledge about human speech processing. However, as mentioned in

previous sections, the theories of human speech perception have evolved rapidly in the last

twenty years based on different psychological studies and neurophysiological evidence. Thus,

one of the challenges for creating machines with human language capabilities is to integrate

this knowledge into intelligent machines. ASR technology has achieved significant results

to pupulate the academical and industrial areas. However, significant advances may instead



50 Chapter 2 State of the Art

come from studies in acoustic-phonetics, speech perception, linguistics, and psychoacoustics

(Anusuya and Katti, 2009).

We require to endow ASR systems with an efficient way of representing, storing, and re-

trieving knowledge required for natural conversation. To achieve this system, we could take

advantage of the available studies in infants, to create a system that can efficiently acquire

the ability to produce and perceive speech. Thus, we would open the door to more realistic

human-machine interactions through spoken language in unstructured environments.

2.8 Prelinguistic Vocal Development in Machines

As explained in the previous section, evidence available in psychological and neurophysiologi-

cal studies can help us to build machines endowed with spoken dialogue-based communication

systems. Theories of human speech perception and production have evolved rapidly in re-

cent years. Thus, roboticists can take advantage of this knowledge to build talkative robots.

Especially, we argue that a successful way to construct such a robotic system would be to

get inspiration from the developmental trajectory observed in infants. Building a robot that

would be able to acquire speech in the same way as an infant would be beneficial for build-

ing technological solutions and the understanding of the human mind. Thus, it also could

contribute to solving problems occurring during human development.

Regarding language and phonological meaning, phonological representation of a target lan-

guage is not present at birth, but it emerges during speech acquisition (Kröger and Cao,

2015). Thus, the process of speech perception and production acquisition and their stages

must be important. Different stages can be observed through the acquisition of speech pro-

duction and perception by an infant, and also through their communicative value (Kuhl,

2004). Regularities can be observed in the structure of the vocal development process in-

dependently of inter-individual differences (Kuhl, 2004, Oller and Eilers, 1988). Evidence

suggests that during Canonical Babbling (CB), infants learn to control their ear-vocal tract

system based on auditory feedback. In general, infants firstly discover how to control phona-

tion, then focus on vocal variations of unarticulated sounds and finally, in an apparent

automatic manner, discovers and focuses on babbling with articulated proto-syllables. Our

experiments consider the period around the CB. In this prelinguistic stage, production of
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speech utterances may not be associated yet to linguistic meaning, but certainly strong

cognitive architectures are build to foster linguistic value emergence.

Important issues to be addressed in early vocal development studies are summarized from

Asada (2016) and Mutlu et al. (2016):

• Integration of neuroscientific approaches focusing on neural mechanism inside the learner

and interactive ones focusing on social learning issues.

• The relationships between multimodal sensations, not only auditory but also vision

and touch should be analyzed.

• Realistic interactions and more experiments with humans.

In infants with regular development, there exists an ordered number of typical stages emerg-

ing along the progress from newborns to fully functioning adults (Morse and Cangelosi, 2017).

Some works are attempted to explain the emergence of developmental stages during vocal

development using artificial intelligence techniques. However, those works do not provide

any explanation for the onset of developmental stages. Recently, a model of language devel-

opment stages from the embodied perspective was introduced in Morse and Cangelosi (2017).

However, their efforts are rather directed toward language level development, leaving early

vocal development as an open issue. In the following, we describe a series of work that has

attempted to study prelinguistic vocal development using different perspectives and focused

on specific features of this developmental stage.

From the perspective of developmental robotics applied to prelinguistic vocal development,

one of the earliest works is Yoshikawa et al. (2003). Therein, the authors built a robotic

human vocal tract and attempted to mimic the way in which humans acquire phonemes

through random motor babbling and considering interactions with a caregiver. In general,

Yoshikawa et al. (2003) focused on learning model of vowel acquisition despite the different

embodiment between a robot and a human.

In Guenther (2006), Guenther et al. (2006), the DIVA model is introduced as a tool to study

the neurophysiological mechanisms for speech acquisition and production. Studies focused on

prelinguistic and early linguistic language-specific training, especially on the neural pathways

for acquiring speech units and considered a simulated vocal tract as the physical embodiment.
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In a first stage, the synaptic projections are tuned during a babbling phase in which quasi-

random articulatory movements are used to produce auditory and somatosensory feedback.

In a second stage, the acquired knowledge is used to build speech sounds. The neural network

takes as input a speech sound string and generates as output a time sequence of articulator

positions to command the movements of the simulated vocal tract. After babbling, the model

can quickly learn to produce new sounds from audio samples provided to it.

Inspired by Guenther (2006), Guenther et al. (2006), a new neurocomputational production-

perception model was introduced in Kröger et al. (2009). Similarly to the inspirational

works, the new approach comprised self-organizing networks for processing neural states

and comprise neural maps for storing phonemic, motor, and sensory states representing

speech items. Three main differences with respect to the results from the original works

can be highlighted. First, the separation between motor planning and motor execution.

Secondly, the new model includes a phonetic map reflecting the self-organization of speech

items between sensory, motor, and phonemic representation. Thus, bidirectional mappings

are achieved between phonemic, sensory, and motor representations essential in a production-

perception model. Thirdly, different to Guenther and colleagues, Kröger and colleagues aimed

at modeling both speech production and speech perception.

In Kröger et al. (2009), there is a first stage of random babbling after which the neurocom-

putational model is capable of reproducing the motor plan state of some prelinguistic speech

item from their acoustic state patterns. Hence, the neurocomputational model can perform

a language-specific imitation training with training sets comprising language-specific speech

items. In Kröger and Cao (2015) vocalic and syllabic speech items are considered for training.

Based on a biologically inspired model of speech processing and using interconnected grow-

ing self-organizing maps, the phonetic-phonological interface is described here as a numerical

computer-implemented model.

A speech acquisition model called Elija was developed in Howard and Messum (2011) and

extended in Howard and Messum (2014). It can go from babbling to naming objects using

infant-like utterances, but the onset of each stage is done by hand. In Howard and Messum

(2011), motor patterns are learned by optimizing a reward function instead of combining

simpler patterns. In Elija, there is a first stage of self-exploration as in the DIVA model.

Then a stage of imitation is triggered, in which speech signals are obtained from a caregiver.
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Finally, the acquired speech units are used to name objects through audio-visual acquired

regularities during the imitation scenario.

In Warlaumont et al. (2013b), a neural network model is introduced to study the role of

reinforcement during vocal learning using a vocal tract simulator. Random babbling occurs

spontaneously, and if a vocalization meets specific acoustic criteria, it is reinforced, making

similar muscle activation increasingly likely to recur. In the results, when reinforcement was

contingent on both phonation and proximity to English vowels as opposed to Korean vowels,

the model’s post-learning productions were more likely to resemble the English vowels and

vice versa. In Warlaumont (2013), the authors focused on a spiking neural network model

that controls the lip and jaw muscles of a vocal tract simulator and learns to produce canonical

babbling. The model was adapted to receive reinforcement when it produced a sound with

high auditory salience. Salience reinforced versions of the model increased their rates of

canonical babbling over the course of learning more than their yoked controls.

In the line of the research in this dissertation, it is possible to identify three similar works. As

mentioned before, we started our experiments based on the results from Moulin-Frier et al.

(2013). On the other hand, works following a similar line of research have been recently

published (Forestier and Oudeyer, 2017, Najnin and Banerjee, 2017). In Moulin-Frier et al.

(2013), intrinsically-motivated learning was used to study the emergence of developmental

stages during the first year of an infant life using a computational model. In Forestier and

Oudeyer (2017), the authors argued that most of the previous works have the disadvantage of

considering agents that are not situated in a physical environment where vocalizations may

have a meaning related to objects. We consider that this is true, it may be arguable in the

case of Howard and Messum (2011), where objects are considered but not any physical inter-

action with them. Forestier and Oudeyer (2017) proposed to study intrinsically-motivated

sensorimotor exploration applied to language emergence in a scenario of reaching objects,

where objects could be reached with a robotic arm, with a tool or asking a caregiver for help.

Even though vocal learning was somehow more restricted compared to the original proposal

in Moulin-Frier et al. (2013), the results and the experimental setup are impressive.
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2.9 The Role of Intrinsic Motivation in Vocal Development

As established in previous sections, infants firstly discover how to control phonation, next

they focus on vocal variations of unarticulated sounds and finally, apparently automatically,

they discover and focus on babbling with articulated proto-syllables. To achieve this goal,

they must learn redundant non-linear high-dimensional mappings of the ear-vocal tract sys-

tem. Previous works attempted to explain the emergence of developmental stages during

vocal development assuming the existence of those stages and hard-coding the onset of each

of them during experimentation (Guenther et al., 2006, Howard and Messum, 2011, Kröger

et al., 2009, Warlaumont et al., 2013a).

Moulin-Frier et al. (2013) was a first attempt to understand other mechanisms that may

explain the structured onset of developmental stages. The authors used an intrinsically

motivated exploration architecture to study the onset of those stages. It was argued that

intrinsic motivation might play an essential part in the self-organization developmental stages.

The Maeda’s vocal tract implemented by Guenther Lab was used in Moulin-Frier et al. (2013)

as a sensorimotor model along with the intrinsically motivated sensorimotor exploration

explained in Section 2.4. The dynamics of the 10 articulators and the 3 voicing parameters

of the Maeda’s vocal tract were modeled as overdamped second order systems. Whereas,

for the auditory output the two first formant also provided by the Maeda’s synthesizer were

considered with an extra signal that indicates if speech is produced or not was also considered

to build the sensory space.

The embodied architecture depicted previously in Figure 2.1 was built with the following

elements:

Physical Embodiment Maeda’s vocal tract implemented by Guenther Lab.

Sensorimotor Model Gaussian Mixture Model (GMM) wit incremental learning based on

Calinon (2009).

Interest Model GMM built in order to keep track of the progress of the competence (see

Eq.(2.1)) with respect to the time for different self-proposed goals.
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The results provided in Moulin-Frier et al. (2013) opened a door of a new approach in vocal

development to be investigated. A feasible explanation to the trajectory of vocalizations com-

plexity during early babbling was stated, where first an infant produces ‘silent’ vocalizations,

then unarticulated vocalizations and finally more complex coarticulated vocalizations in an

ordered transition between stages. The results also indicated that intrinsically motivated

learning algorithms can successfully learn sensorimotor coordination skills in vocal spaces.

They allow an artificial agent to learn to control its vocal tract progressively. However, more

than being a concluding paper, the ideas presented opened a door of a new approach for

early-vocal development to be explored.

This thesis expands the results observed in Moulin-Frier et al. (2013). First, in Chapter 4

we include constraint awareness into the architecture. Then, in Chapter 5 we study the

role of imitative behaviors during sensorimotor learning in parallel to intrinsically motivated

exploration.

Finally, another interesting work to be considered is Najnin and Banerjee (2017). Therein,

the author also extended, but in a different direction than ours, the results in Moulin-Frier

et al. (2013). In this case, a predictive coding framework was proposed for a developmental

agent with perceptuo-motor and learning capabilities. As in the original work, the agent

is solely driven by sensory prediction error. A similar developmental transition is observed,

which was partially improved by the modifications in the perception systems, given that they

considered the Mel-Frequency Cepstral Coefficients instead of the formant frequencies. They

also showed that agents learn to vocalize differently in different environments.





Chapter 3

Incremental Learning and the

Regression Problem with Gaussian

Mixture Models

“I have had my results for a long time: but I do not

yet know how I am to arrive at them.”

— Karl Friedrich Gauss

In the last part of the previous chapter, recent works aimed at studying speech development

from the perspective of artificial intelligence were introduced. The work by Moulin-Frier

and colleagues (Moulin-Frier and Oudeyer, 2013b, Moulin-Frier et al., 2013) was remarked

as a relevant referent to recent studies in the area (Acevedo-Valle et al., 2017a, Acevedo-

Valle et al., 2018, Forestier and Oudeyer, 2017, Najnin and Banerjee, 2017). Moulin-Frier

and colleagues also contributed with the toolbox explauto for Python, which is aimed at

facilitating the implementation of sensorimotor exploration systems (Moulin-Frier et al.,

2014). As the developments in this dissertation were, at the start, partially inspired by

the results in Moulin-Frier et al. (2013), by default similar approaches were reproduced in

our designed systems to replicate the results presented therein. Thus, herein we adopted

Gaussian Mixture Models (GMMs) as a modeling approach for sensorimotor systems. Later,

through this project, we have developed a learning framework to learn incrementally and

solve the prediction and inference problems. As the main advantage, the introduced learning

57
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framework allows learning from data batches without the need of keeping them in memory

afterward.

This chapter is aimed at presenting an approach to achieve the solution of the regression

problem for multivariate systems. It uses an efficient incremental learning algorithm which

is compared to the state-of-the-art approach. Within the machine learning framework, incre-

mental learning of multivariate spaces is of particular interest for online applications, as it

is the case for the sensorimotor exploration problem that will be extensively studying in the

next chapters. The algorithms introduced in this chapter allows learning high-dimensional

redundant non-linear static maps from non-persistent on-line data of input-output systems.

Studying the implementation of alternatives to GMMs using incremental learning to solve

the regression problem is currently out of the scope of this work, so it is left as a research

line for the near future.

Summarizing, inspired by the results in Moulin-Frier and Oudeyer (2013b), Moulin-Frier et al.

(2013), a learning architecture is built using Incremental Gaussian Mixture Models in order to

solve the regression problem. Hence, two interesting mechanisms are combined: incremental

learning of GMMs and Gaussian Mixture Regression (GMR) to solve the inference and

prediction problems. Two approaches for the incremental learning of GMMs are considered

in order to compare our approach with state-of-the-art ones. On the one hand, an approach

based on the codes provided alongside Calinon (2009) and used to obtain the results reported

in Acevedo-Valle et al. (2015, 2018). On the other hand, an approach that was implemented

during the development of this project and published in Acevedo-Valle et al. (2017b), which

was used to obtain the results published in Acevedo-Valle et al. (2017a) and the results showed

in Chapters 4-5. Python’s source codes for the latter approach are available online for those

researchers who are interested in testing this learning mechanism in their work1. Through

this chapter, simple examples are used to facilitate the comprehension of the approach. In

the following chapters, it will be shown that the approach also applies to systems as complex

as a vocal tract simulator.

This chapter is organized as follows. Section 3.1 provides a brief introduction to the relevance

of Gaussian Mixture Models in the machine learning domain. Section 3.2 defines the learn-

ing problem considered in this chapter. Later, Sections 3.3-3.4 introduce the two considered

incremental learning algorithms for GMMs. Section 3.5 explains the mechanism to solve

1https://github.com/yumilceh/igmm

https://github.com/yumilceh/igmm
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the regression problem for multivariate systems using GMMs. Section 3.6 presents a simple

example that shows how the incremental learning approaches work. Section 3.7 introduces a

simple non-linear redundant input-output system used to illustrate how the regression mech-

anism works to solve the inference problem, considering both learning approaches. Finally,

a brief discussion is presented in Section 3.8.

3.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are linear combinations of multivariate Gaussian distri-

butions that represent clusters of data. They are frequently appealed in machine learning

applications and related areas for problems that require the clustering of data. In such a

context, they are commonly employed in tasks where it is necessary to model complex and

nonlinear parameters (Bouchachia and Vanaret, 2011). However, recently they have been

actively applied to solve the regression problem, and they have also been used to model high

dimensional, non-linear redundant maps (Acevedo-Valle et al., 2015, Acevedo-Valle et al.,

2017b, Acevedo-Valle et al., 2018, Moulin-Frier et al., 2013, Oudeyer et al., 2007, Ribes

et al., 2016).

On the other hand, incremental learning algorithms may play a critical role in many applica-

tions. Those algorithms consider the learning scenario for streaming data arriving over time

and have been widely applied in machine learning, pattern recognition, data mining, and

fuzzy logic (Bouchachia and Vanaret, 2011, Chen et al., 2012, Gepperth and Hammer, 2016).

In Gepperth and Hammer (2016), a summary of the challenges for incremental learning is

presented. Furthermore, some of the main techniques that have been applied to solve the

problem are described. In general, most of the machine learning techniques have been ex-

tended to cover the incremental learning paradigm opening the door to new applications, e.g.,

Support Vector Machines, Decision Trees, Genetic Algorithms, Gaussian Mixture Models,

among others.

Incremental learning using GMMs has been previously studied with more emphasis on

its applications as a semi-supervised classifier method and density distribution estimator

(Bouchachia and Vanaret, 2011, Chen et al., 2012, Engel and Heinen, 2010). However, in

this chapter, we focus on its suitability to solve the regression problem using the approach
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implemented in Acevedo-Valle et al. (2017b). Moreover, the results are compared with results

using the generative approach implemented in Calinon (2009) and Calinon et al. (2007).

Both approaches are suitable, but not limited, to solve the problem of modeling input-

output multivariate systems. The learning system must collect data incrementally as it is

not available in advance in order to generate a model, so data is collected in batches of

input-output data points. Therefore, the model is trained each time a new data batch is

available and afterward that data batch is discarded.

3.2 Learning Problem Definition

In this section, the learning problem to be solved is defined according to the requirements

of the intrinsically motivated sensorimotor exploration architecture from Moulin-Frier et al.

(2013), later extended in our works Acevedo-Valle et al. (2015), Acevedo-Valle et al. (2017a),

Acevedo-Valle et al. (2018).

First of all, a GMM is defined by the set of parameters {πk, µk,Σk}Kk=1, where πj , µk and Σk

are respectively the prior probability, the distribution mean, and the covariance matrix of the

k-th Gaussian, for k = 1, 2, ...,K, being K the number of Gaussian distribution components.

A Gaussian distribution is defined as N (µ,Σ), whereas the probability of a data point z to

belong to that Gaussian distribution is defined as N (z;µ,Σ). The probability of z belonging

to the mixture is defined as

P (z) =

K∑
k=1

πjN (z;µk,Σk), (3.1)

with

N (z;µk,Σk) =
1√

(2π)K |Σk|
exp−

1
2((z−µk)TΣ−1

k (z−µk)) . (3.2)

Furthermore, we assume a multivariate input-output static system defined as y = f(x) + ε.

The vector y is assumed to belong to an m-dimensional output space Y ⊂ Rm, which is

mapped by the inverse transformation f−1(·) to an n-dimensional input space X ⊂ Rn as

the output vector y, and ε is random noise.

Experiments are run with the system to generate data batches with kstep samples of the

extended vector z = [x,y]T , thus z ∈ X × Y. Then, a GMM M0 is computed to represent

the distribution of the initial data batch Z0 = {z0, z1, z2, . . . zN} over the extended space
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Z = X × Y, with Z ∈ Rm+n . Once the mixture is estimated, the data batch Z0 becomes

unavailable. When a new data batch Z1 is available, M0 must be retrained. The learn-

ing mechanism must be able to update the starting GMM M0 to represent the distribution

that would be described by Z0 and Z1 together, generating a new mixture M1 and mak-

ing Z1 unavailable. Finally, this learning process must be repeated each time a new data

batch Zi becomes available to generate a mixture that models the distribution represent-

ing {Z0,Z1,Z2,Z3 . . .}. In the following sections, two different approaches to performing

incremental learning of GMM are introduced.

3.3 Generative Method for Gaussian Mixture Models

In Calinon (2009), two different approaches for incremental learning of GMMs were in-

troduced, both of them use an online variant of the Expectation-Maximization algorithm

(EM-algorithm). Both implementations of the algorithms are open source2.

The first approach is defined as direct method. This method was discarded as an option for

this work because, as mentioned in Calinon and Billard (2007), the method relies on the

assumption that new data to be integrated into the model is close to the model. Due to our

hypothesis that sensorimotor systems are redundant high-dimensional non-linear maps, we

cannot make this assumption regarding new data.

On the other hand, the second approach, defined as generative method, uses a stochastic

approach to update the models. This is the one considered in this chapter. Starting with

an initial mixture model Mi, given a new data batch Zi+1, the model is updated to become

Mi+1. To train the model, first a set of random data points Z′i+1 are generated using the

data distribution represented by Mi. The number of generated points is

kgen =

⌈
(1− α) kstep

α

⌉
,

where α ∈ [0, 1] is the forgetting rate, kstep is the number of samples in Zi+1, and d·e indicates

the nearest larger integer function.

2http://www.calinon.ch/sourcecodes.php

http://www.calinon.ch/sourcecodes.php
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The model parameters {πk, µk,Σk}Kk=1 are updated using the data batch Z = {Zi+1,Z
′
i+1}

according to the Expectation-Maximization algorithm. It uses as initial parameters those

from Mi. Then the parameters are updated following the following steps:

E-step:

puk,j =
πukN (zj ;µ

u
k ,Σ

u
k)∑K

i=1 π
u
i N(zj ;µui ,Σ

u
i )
,

Euk =
K∑
j=1

puk,j .

M-step:

πu+1
k =

Euk
N
,

µu+1
k =

∑N
j=1 p

u
k,jzj

Euk
,

Σu+1
k =

∑N
j=1 p

u
k,j

(
zj − µu+1

k

) (
zj − µu+1

k

)T
Euk

.

Iterations using the E-step and the M-step are repeated until reaching a stop criteria defined

as Lu+1
Lu < Tol. Where Tol represents a tolerance, and L∗ is the log-likelihood of the data

batch Z for the given model, defined as:

L(Z) =

N∑
j=1

log (P (zj)) (3.3)

where P is defined by Eqs. (3.1)-(3.2).

The incremental learning process using the generative method proposed by Calinon (2009)

is summarized in Algorithm 2. In line 1, the three parameters of the model are chosen. In

line 2, the initial model is computed iterating the EM-steps described above until reaching

the given tolerance. From line 3, the model is trained every time a new data batch Zi is

available. Then, in line 4, the number of samples to be generated with the previous model

Mi−1 is computed according to the forgetting factor α and the number of samples in the
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data batch Zi. In line 5, a set of kgen points is obtained sampling the distribution described

by Mi−1, the new data batch is concatenated with Zi in line 6, and finally, Mi−1 is updated

to Mi iterating the EM-steps until reaching the given tolerance.

Algorithm 2 Generative Method to Train Gaussian Mixture Models

1: Set parameters: K, α, Tol.
2: M0 ← EM-steps(Z0)
3: for Zi with i in i = {1, 2, 3, 4 . . .} do

4: kgen = d (1−α)size(Zi)
α e

5: Z′i = sample(Mi−1, kgen)
6: Z = {Zi, Z′i}
7: Mi ← EM-steps(Z)

3.4 Incremental Gaussian Mixture Models

The learning procedure of the new approach considered for incremental learning of GMMs

consists of two main steps: a first step using the Expectation-Maximization algorithm (EM-

algorithm) to train GMMs and a second step, in which a growing mechanism allows to

include new knowledge in previously trained GMMs based on general geometric properties

of Gaussian distributions.

In Algorithm 3, the incremental learning algorithm used to train a GMM using data batches

is summarized. Algorithm 3 is fed with the following parameters: the minimum and max-

imum number of Gaussian components in the model, Kmin and Kmax, respectively, the

maximum number of Gaussian components that can be added to the model at each training

step, ∆Kmax, and the forgetting rate, α. In line 2, the GMM is initialized using the first

batch of data Z0, the getBestGMM function computes a GMM for each value of K within the

allowed interval [Kmin,∆Kmax]. From those models, the one that best fits the data batch

according to the Bayes Information Criterion (BIC), which is based on the maximum likeli-

hood function, is selected. We will call the selected model, M0. In getBestGMM, the GMMs

are obtained using the EM-algorithm implemented in the open-source library scikit-learn3,

but also available in other open source tools (i.e. TensorFlow, Open-CV, and others).

From line 3, the model is trained every time a new data batch Zi is available. In line 4,

a new GMM, Mnew, is computed feeding the getBestGMM function with Zi. In lines 5 and

3http://scikit-learn.org/stable/
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Algorithm 3 Growing Gaussian Mixture Model Process

1: Set parameters: Kmin, Kmax, ∆Kmax, α.
2: M0 ← getBestGMM(Z0, Kmin, ∆Kmax)
3: for Zl with l in l = {1, 2, 3, 4 . . .} do
4: Mnew ← getBestGMM(Zl, 1, ∆Kmax)
5: Mnew.gauss[:].π ← α ∗Mnew.gauss[:].π
6: Ml−1.gauss[:].π ← (1− α) ∗Ml−1.gauss[:].π
7: SKLD ← getKLDiveregence(Ml−1, Mnew)
8: while Ml−1.k +Mnew.k > Kmax do
9: i, j = argmin(SKLD)

10: Ml−1.gauss[i] = merge(Ml−1.gauss[i],Mnew.gauss[j])
11: delete(Mnew.gauss[j]), SKLD[i, j] =∞
12: Ml ← join(Ml−1,Mnew)

6, the prior of each Gaussian component in Ml−1 and Mnew is updated, respectively. The

prior’s update is done according to the forgetting rate, α.

The most important step for the incremental learning mechanism is the merging of Gaussian

components. Choosing which components of Mnew will be merged to which components of

Ml−1 is the most challenging task of our approach. Therefore, before any components could

be merged, a divergence matrix is obtained to evaluate the similarity between Gaussian

components in Mnew and Ml−1. Equally to Bouchachia and Vanaret (2011), we consider the

Kullback-Leibler divergence (KLD) for two Gaussian distributions defined as

DKL(g1, g2) = log

(
|Σ2|
|Σ1|

)
+ tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
1 (µ2 − µ1)−D, (3.4)

where g1 = N (µ1,Σ1) and g2 = N (µ2,Σ2). As the KLD is not symmetric, we use a sym-

metrized version defined as

DKLs(g1, g2) =
1

2
(DKL(g1, g2) +DKL(g2, g1)) . (3.5)

Finally, lines 8-11 of Algorithm 3 represent the merging process. Therein, the most similar

Gaussian components in Mnew are merged to their most similar counterpart in Ml−1 and

dropped. This process is repeated until the sum of components between both models is not

greater than the maximum number of components Kmax. Based on the geometric properties

of Gaussian functions, the merge operation is summarized in Algorithm 4 from Bouchachia

and Vanaret (2011). Finally, after the merging process, the remaining components in Mnew

are joint with Ml−1 to become Ml in line 12.
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Regarding Algorithm 4, it represents the steps needed to merge two Gaussian distributions,

g1 = N (µ1,Σ1) and g2 = N (µ2,Σ2). These Gaussian distributions are assumed to be part

of a GMM with priors π1 and π2, respectively.

Algorithm 4 Merge Gaussian Distributions

merge(g1, g2)

1: f1 = π1

π1+π2
, π2 = π2

π1+π2

2: πnew = f1 + f2

3: µnew = f1µ1 + f2µ2, Σnew = f1Σ2 + f2Σ2 + f1f2(µ1 − µ2)(µ1 − µ2)T

4: gnew ← πnew, µnew,Σnew
5: return gnew

3.5 Solution to the Regression Problem with GMR

Once we have introduced two different mechanisms to incrementally train GMMs, in this

section we present the mechanism to solve the regression problem using the computed GMMs.

The regression mechanism follows our previous works in Acevedo-Valle et al. (2015, 2018) and

it is based on Gaussian Mixture Regression (GMR) from Calinon (2009). It is summarized

in Algorithm 5. As defined in Section 3.2, an n-dimensional input space X ⊂ Rn is mapped

onto an m-dimensional output space Y ⊂ Rm. Thus, the function y = f(x) + ε is assumed,

where y ∈ Y, x ∈ X and ε is random noise.

Herein, we solve the regression problem as an inference problem in order to determine the

input x that maximizes the probability to produce the output y. Considering the partitioned

vector z ∈ Z with Z = X × Y

z =

x

y

 , (3.6)

once a GMM has been computed to model the distribution of a collection of data Z ∈ Z, for

each j-th Gaussian in that GMM the partitions

µj =

µxj
µyj

 and Σj =

Σx
j Σxy

j

Σyx Σy
j

 (3.7)

are considered to compute the conditional probability distribution Pj(X | y) ∼ Nj(µ̂j , Σ̂j)

over the input space X given a desired output y, where

µ̂j = µxj + Σxy
j (Σy

j )
−1(y − µyj ) , Σ̂j = Σx

j + Σxy
j (Σy

j )
−1Σyx

j . (3.8)
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Considering that P (X | y) is at its maximum when x = x̂j = µ̂j , then a natural selection

for x in order to produce y is x̂j . However, K candidates exist for x, hence it is necessary to

compute the probability of the vector ẑj = [x̂j , y]T belonging to its generator Gaussian as

P (ẑj) = πj
1√

(2π)K |Σj |
exp−

1
2((ẑj−µj)TΣ−1

j (ẑj−µj)), (3.9)

and finally the point z∗ = ẑj that maximizes P (ẑj) is selected as the point that better fits

the model. In other words, according to our prior knowledge of f(x), z∗ ∈ f(x), we infer

that the output y is generated by x̂j .

Algorithm 5 Infrence Problem Solution with GMR

infer(y, M = {πk, µk,Σk}Kk=1, nn)

1: d← zeros(K, 1) % distances
2: for i in range(K) do
3: d[i]← |µyi − y|
4: idx← argsort(d) % ascending order
5: X = zeros(n, nn), P = zeros(nn, 1) % Recall that x ∈ Rn
6: for i in range(nn) do
7: µi ← µidx[i], Σi ← Σidx[i] πi ← πidx[i]

8: X[:, i] = µx + Σxy(Σy)−1(y − µy)
9: ẑi = [X[:, i],y]T

10: P[i] = πi
1√

(2π)K |Σi|
e−

1
2 ((ẑi−µi)

T Σ−1
i (ẑi−µi))

11: return X[:, argmin(P)]

It is worth mentioning that, in order to minimize computation time to obtain only x, the

regression can be restricted to the k-nearest Gaussian components to y according to their

mean µyj . As observed in Algorithm 5, the regression mechanism considers nn nearest neigh-

bors. Finally, depending on how the partitions are defined in Eqs. (3.6)-(3.7) the mechanism

can be used either, for inferring x from y or for predicting y from x.

3.6 Incremental Learning Example

In this section, we present a simple example to illustrate the growth of a GMM using our

proposed incremental learning algorithm. We consider data batches randomly generated from

2-dimensional Gaussian distributions. Those data batches arrive at three different times and

are summarized in Table 3.1. Figures 3.1-3.2 show the training steps using the generative

method to train GMM, and Figures 3.3-3.4 show the results using our incremental method

of training based on growing GMM.
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Table 3.1: Training data for incremental learning. The number of samples considered per
Gaussian distribution is 100.

Training Step Mean Covariances

t− 2
µ1 = [0, 0]T Σ1 = [[0,−0.1]; [1.7, 0.4]]
µ2 = [−6, 3]T Σ2 = 0.7 ∗ Σ1

t− 1

µ3 = [−5, 4]T Σ3 = 0.5 ∗ Σ1

µ4 = [1, 1]T Σ4 = [[0.8, 0.2]; [0.1,−0.2]]
µ5 = [4, 4]T Σ5 = [[0.05,−0.05]; [0.5, 0.4]]
µ6 = [−1, 1]T Σ6 = [[−0.4, 0.5]; [−0.05,−0.05]]

t

µ7 = [0, 0]T Σ7 = 0.5 ∗ Σ1

µ8 = [−5, 4]T Σ8 = 0.1 ∗ [[1, 0]; [0, 1]]
µ9 = [−2, 1]T Σ9 = 0.1 ∗ [[1, 0]; [0, 1]]
µ10 = [−6, 0]T Σ10 = 0.4 ∗ [[1, 0]; [0, 1]]
µ11 = [4, 5]T Σ11 = 0.4 ∗ [[1, 0]; [0, 1]]

3.6.1 Generative Method for Gaussian Mixure Models

Figure 3.1 shows the training steps t − 2 and t − 1, whereas Figure 3.2 shows training step

at t. The model parameters considered in the scenario running Algorithm 2 are K = 5,

α = 0.05, and Tol = 0.001. In Figure 3.1 (left), it is observed that at time t − 2, the 5

components of the model Mt−2 are fitted to the data batch Zt−2. Then, at time t− 1 a new

data batch Zt−1 is available as showed in Figure 3.1 (center). At this point, as indicated in

line 5 of Algorithm 2, model Mt−2 is sampled to generate a data batch Z′t−1 that represents

the previous knowledge embedded into the model. With the concatenated data Z′t−1,Zt−1

the parameters are updated to become the new model Mt−1, shown in Figure 3.1 (right).
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Figure 3.1: Incremental learning of a GMM using the generative method. (Left) At t− 2
EM-algorithm is used to initialize the model. (Center) A data batch generated with the
model obtained at t − 2 is concatenated to new a new incoming data batch. (Right) The

model parameters are updated using the EM-algorithm.



68 Chapter 3 Incremental Learning and Regression with GMMs

A second step of incremental learning is observed in Figure 3.2 after a new data batch Zt

arrives. First, model Mt−1 is sampled to generate a data batch Z′t, the generated data is

concatenated with the new incoming data Z′t,Zt, the concatenated data is used to update

the parameters of the model to define the new model Mt, shown in Figure 3.2 (right).
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Figure 3.2: Incremental learning of a GMM using the generative method. (Left) Initial
model. (Center) A data batch generated with the model obtained at t − 1 is concatenated

to new data batch. (Right) The model parameters are updated using the EM-algorithm.

3.6.2 Incremental Gaussian Mixture Models

Figure 3.3 shows training steps at t− 2 and t− 1, whereas Figure 3.4 shows training step at

t. The parameters considered to obtain that figure are Kmin = 2, Kmax = 5, ∆Kmax = 5

and α = 0.05.

In Figure 3.3 (Left), it is observed that at time t−2, the model Mt−2 obtained with the data

batch Zt−2 is a mixture with two components. As it is the first step, the model is the result

of the pure EM-algorithm choosing the number of components which maximizes the BIC as

indicated in line 2 of Algorithm 3. Then, at time t − 1 a new data batch Zt−1 is available

as showed in Figure 3.3 (center). A GMM Mnew, is trained and selected according to line

4 of Algorithm 3. The next step is to merge the Gaussian components of Mt−2 and Mnew

into Mt−1, in this process the total number of components should be kept lower or equal to

Kmax. For instance, in the figure, the only components which are merged are those colored

in red.
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Figure 3.3: Incremental learning of a growing GMM. (Left) The EM-algorithm with the
BIC criteria to obtain Mt−2. (Center) A new data batch arrives and a model Mnew is fitted
to the new data using the EM-algorithm and the BIC criteria. (Right) Mt−2 and Mnew are

merge to obtain a new model Mt1

A second step of incremental learning is observed in Figure 3.4. After a new data batch Zt

arrives, a GMM Mnew is fitted to the new data using the EM-algorithm and the BIC criteria.

In this case as the number of components of the model has already reached its maximum

(Kmax = 5), all the components in Mnew are merged to the components in Mt−1. Figure 3.4

indicates with distinctive colors which components in Mnew and Mt−1 are merged to obtain

the new Mt.

Figure 3.4: Incremental learning of a growing GMM. (Left) Initial model Mt−1. (Center)
A new data batch arrives and a model Mnew is fitted to the new data using the EM-algorithm

and the BIC criteria. (Right) Mt−1 and Mnew are merge to obtain a new model Mt.

Figure 3.4 contains relevant information to understand what happens at the incremental

learning level mechanism. Consider for instance the green components, the mechanism
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chooses to mix these two components based on the KLDs measure. However, the result

in Mt is very similar to the component in Mt−1. This result relates to the prior weight πi of

each Gaussian; the prior weights in Mnew are scaled by the forgetting factor. Thus, when f1

and f2 are computed in line 1 of Algorithm 4, the component that is already in the model

is considered more relevant, and it is slightly modified by the new data. It means that it is

imperative to choose a good value for the forgetting factor α which not necessarily must be

constant. An adequate value for α will depend on the system to be modeled, the size of the

incoming data batches and the mechanisms used to draw those data batches. For example,

in former works (Acevedo-Valle et al., 2015, 2018) we adopted an active learning architecture

inspired in Gottlieb et al. (2013) and Moulin-Frier et al. (2013) to draw data batches in order

to maximize a measure of learning rate. In general, choosing Kmin, Kmax and ∆Kmax will

depend on the complexity of the system to be modeled.

3.7 Regression Problem Example

In the previous section, we have observed the mechanisms in which the studied learning

approaches work. From Figure 3.2 and Figure 3.4, it is observed that the same sequence of

data produced different models. It is not the objective of this work to evaluate which of the

final models is better regarding the final configuration of the model but to determine which

modeling approach is better suitable to solve the regression problem.

The aim of this section is to asses the performance of the learning mechanisms presented in

this chapter to solve the regression problem. We proposed to solve the problem of finding

the inverse model x = f−1(yg) for a simple toy example y = f(x). Here, yg represents the

desired output of the system, which is represented as

x =

x1

x2

 , y =

y1

y2

 = f(x) =

 x1

(x2 − 3)2

 and c =

 1 if y ∈ constraints

0 elsewhere
(3.10)

where yi are the components of the output space, xi the components of the input space and

c is a signal indicating whether constraints are violated. As it is observed in Figure 3.5,

the output-space projection is a parabolic shaped region where the red regions represent

constraints (in the Figure 3.5, yi = si).
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Figure 3.5: Constrained Parabolic Shaped Region System.

When constraints are violated, variable y takes the closest value (y1, y2)T on the valid region.

Both input components are constrained to the interval [0, 6], whilst output dimensions are

constrained to the white region and its blue borders in Figure 3.5. Thus, given the definition

of the system, it is non-linear, constrained, and redundant. Therefore, the system becomes

interesting to study in a simple-fashion manner the validity of our approach before applying

it to more complex sensorimotor systems which are also constrained, with more dimensions,

and more abrupt nonlinearities.

Three GMMs for each incremental learning mechanism are obtained in order to show some

examples with the regression mechanism for the parabolically shaped region system. Each

model is trained using one of three different datasets Z obtained randomly using different

random seeds. Each dataset contains 600 samples of couples (x,y), which were generated

using 600 random inputs x from the allowed input space of the toy example and obtaining

its corresponding output y. In the following, we present the results for each of the learning

approaches.

3.7.1 Generative Method for Gaussian Mixture Models

First of all, the set of parameters chosen to generate the models are K = 20, Tol = 0.001 and

α starting with a value of 0.2 and evolving logarithmically down to 0.01 along each of the

considered scenarios. The models are trained with mini-batches Zi of data with 20 couples

(x,y), as it is the minimum required to train a GMM with 20 components. Thus, each model
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Figure 3.6: Inference problem results using the generative method to train GMMs in-
crementally. The columns correspond to experiments using different random seeds. The
samples in the first row are the training samples used during all the training steps. The
second row corresponds to the mean evaluation error norm at each training step. The third

row corresponds to the evaluation results after the last training step.

is trained with 30 data batches. After each training step, the models are evaluated against

a dataset of N = 441 samples uniformly distributed over the whole allowed output space Y

of the toy example.
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In Figure 3.6, the results of the simulations to learn the parabolically shaped system are

shown. Each column corresponds to a simulation with each of the three different random

datasets. Whereas the first row corresponds to the accumulated random data points used

to train the models, the second row corresponds to the mean evaluation error norm emean

against the evaluation dataset after each training step. Measure emean is defined as

emean =
1

N

N∑
i=1

|yg,i − yi| (3.11)

where yg,i are the goals in the evaluation dataset and yi are the outcomes when attempting

to reach those goals inferring the input xi with the available GMM. Finally, the third row

corresponds to the output projection of the system after a final evaluation. The blue points

represent each of the output goals in the evaluation dataset. The small red crosses are actual

reached output configurations.

3.7.2 Incremental Gaussian Mixture Models

The set of parameters chosen to generate the models are Kmin = 3, Kmax = 20, and

∆Kmax = 7. The starting value for α is 0.2 and evolves logarithmically down to 0.01 along

each of the considered scenarios. Unlike the results with the generative method, here models

are trained with data mini-batches Zi with 15 couples (x,y), as we do not have restrictions

in the minimum of data points as in the generative method case. Thus, each model is trained

with 40 data batches. After each training step, the models are evaluated against the same

dataset of N = 441 samples as in the previous case.

In Figure 3.7, the results of the simulations to learn the parabolically shaped system with

our approach are shown. As in Figure 3.6, each column corresponds to a simulation with

each of the three different random seeds. The first row corresponds to the accumulated

random data points used to train the models, which are the same as in Figure 3.6 in order to

keep the results comparable between both approaches. The second row corresponds to the

mean evaluation error norm emean, defined in Eq. (3.11), obtained by evaluating the model

after each training step. Finally, the third row corresponds to the output projection of the

system after the final evaluation. The blue points represent each of the output goals in the

evaluation dataset. The small red crosses are the reached output configurations.
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Figure 3.7: Inference problem results using the growing GMM approach. The columns
correspond to experiments using different random seeds. The first row contains the training
samples used during all the training steps. The second row corresponds to the mean evalu-
ation error norm at each training step. The third row corresponds to the evaluation results

after the last training step.

3.7.3 A Final Comparison

In the third row of Figures 3.6-3.7, and despite the small number of training samples consid-

ered (600 samples), we observe a good performance solving the regression problem with both
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modeling approaches. Moreover, the training samples are not uniformly distributed along

the output space due to their random source. From the last row, it is also obvious that the

learning system struggles to fit the model to the system around the constrained circle. We

refer this observation to the presence of many constraints in the neighborhood as well as the

non-linear nature of the system. As it is hard to draw any conclusion from Figure 3.6-3.7

leading to claim that one of the learning approaches is better, in this section we propose

another test.

To achieve an informed comparison between learning approaches, we ran a final experiment

considering a larger number of simulations per each learning scenario. Following the same

structure of experiments in Sections 3.7.1-3.7.2, fifty GMM for each incremental learning

mechanism are obtained with fifty different randomly generated datasets Z, each dataset

contains 600 samples of couples (x,y). Datasets are generated using 600 random inputs

x from the allowed input space of the toy example and obtaining its corresponding out-

put y. The same parameters for the models and data batches’ size than experiments in

Sections 3.7.1-3.7.2 are kept.

In order to compare the results, the obtained evaluations after each training step are averaged

for each for the learning approaches in order to obtain an average mean evaluation error vector

eav for each approach. We define eav as

eav(k) =
1

nsim

nsim∑
i=0

[emean,k,i] , (3.12)

where nsim is the number of simulations ran per each learning approach, k is the current

evaluation step, and emean,k,i is the mean evaluation error for the k-th evaluation step when

simulating with the i-th random seed.

As it is observed in Figure 3.8, the growing Gaussian approach overperforms the generative

method through the whole training steps. It is only at the beginning when the generative

method is trained with 20 samples, and the growing Gaussian method is trained with 15

samples that the latter method overperforms our approach. However, the difference in per-

formance is not significant. The best performance of each method is that shown in Figure 3.8.

The difference considering those results is around 10%. Finally, it is also notorious that the

convergence to the minimum achieved seems slightly smoother for our approach compared

to the generative method.
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Figure 3.8: Comparison between learning approaches for GMMs.

3.8 Discussion

We have introduced a novel approach (igmm) to solve the regression problem for multivariate

input-output systems using Gaussian Mixture Models (GMMs). Moreover, we compared

the proposed approach with the generative method from Calinon (2009). The illustrative

examples show the suitability of both approaches to efficiently learn a probabilistic model

of the system and update the model with new incoming data batches without the need of

keeping in memory already learned data. On the other hand, we introduced a simple example

to demonstrate with good results the applicability of the approaches to solving the inference

of input commands from desired output goals. The learning approaches are suitable to

solve the prediction problem, that is they can be used to predict output results from input

commands.

When learning approaches are compared, we emphasize that it cannot be argued that any

of them is the best. Choosing between each of them will depend on the learning problem

at hand. Through the development of our works (Acevedo-Valle et al., 2015, Acevedo-Valle

et al., 2017a,b, Acevedo-Valle et al., 2018), we have observed that for the case of more

complicated systems, with higher dimensionality, as the vocal tract studied in the following

chapters, the approach igmm overperforms the results obtained with the generative approach.



Chapter 4

Motor Constraint Awareness in

Sensorimotor Exploration

“Touch is not optional for human

development.. . . From consumer choice to sexual

intercourse, from tool use to chronic pain to the

process of healing, the genes, cells, and neural

circuits involved in the sense of touch have been

crucial to creating our unique human experience.”

— David J. Linden, Touch

In Chapter 2, the role of intrinsic motivations during sensorimotor exploratory behaviors

was widely discussed. To this day, there is a large number of works aimed at studying

sensorimotor exploration. It is not the same case regarding works studying how motor

and perceptual limitations affect cognitive development during sensorimotor learning using

artificial agents, for which the number of studies is somewhat limited. However, in recent

years, the number of published works including mechanisms to deal with motor information

and constraints has increased.

On the other hand, Chapter 2 provided a discussion on the elements that foster prelinguistic

development toward speech emergence. If works studying the role of constraints during early

development using artificial agents is sparse, the available literature regarding the role of

constraints in artificial vocal development is rather nonexistent.

77
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In this chapter, one of the main contributions of this dissertation is presented. This contribu-

tion is aimed at studying the integration of constraint awareness into intrinsically motivated

sensorimotor exploration, especially applied to vocal development. The advances presented

in this chapter resulted in two publications, Acevedo-Valle et al. (2015, 2018).

This chapter is organized as follows. Section 4.1 is devoted to providing biological per-

spectives on somesthetic senses, especially haptic perception and nociception. This section

also presents studies on how somesthetic senses influences vocal development. Section 4.2

introduces some works that have borrowed somesthetic mechanisms to integrate them into

autonomous systems design. Therein, works related to artificial language development and

artificial speech mechanisms are emphasized.

Afterwards, next sections are devoted to present the development and results of the proposed

approach. Hence, Section 4.3 explains the artificial cognitive architecture that actively takes

into account motor constraints during sensorimotor exploration. Section 4.4 provides an

experimental setup aimed at testing the proposed cognitive architecture. Finally, Section 4.5

and Section 4.6 present the experimental results and a final discussion, respectively.

4.1 The Role of Somesthetic Modalities in Sensorimotor De-

velopment

The sense of touch is often used and interpreted as a unique sensor modality. However, in fact

it consists of a broader range of perceptual modalities. These perceptual modalities may be

defined as somesthetic senses, including touch, thermoception, nociception, and other bodily

sensibilities (Hollins, 2010). In general, this family of perceptual modalities responds to

mechanical, thermal and chemical energy enabling perception of vibration, texture, location

and movement, temperature and pain. For the purposes of this work, haptic modalities

(touch and proprioception) and nociception are of special interest. In the following, the

modalities of interest are defined:

Touch relies on different kinds of low-threshold mechanoreceptors. Their location and den-

sity vary with respect to the skin tissue where they are located. For example, the

density of receptors in the fingerprints is higher than most of the other parts of the
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integument (Beckstead, 1996). Touch provides information on light contacts, slip, tex-

ture, flutter, vibration, pressure, stimulus shape and stretch (Prescott and Ratté, 2017).

It is one of the richest sources of information from the environment that humans, and

animals in general, possess.

Proprioception is sometimes defined as a specialized variation of touch. It relies on re-

ceptors located in muscles, tendons, and joints. It provides conscious or unconscious

awareness of joint position (Norris, 2011). Besides joint position, proprioception is

sometimes used to refer to the sense of joint motion, which is also known as kinesthesia

(Prescott and Ratté, 2017). Proprioception is crucial for balance and motor control as

it endows agents with a sense of their movements. Moreover, it provides body-centered

cues that generate a spatial reference additional to that provided by vision (Millar,

2005).

Nociception depends on nociceptors (from Latin word noci=“hurt”), which are nerve cell

endings responsible for producing signals that travel to the brain in the presence of

chemical levels, temperature or mechanical factors that might be harmful to the body.

In the brain, those signals are perceived as pain, which is a psychological experience.

The receptive fields in the brain for pain are large, presumably because the detection

of pain is more important than its precise localization (Purves et al., 2001). Pain is

such a salient modality that even captures attention. When attention is captured,

pain awareness appropriates processing resources that would otherwise contribute to

performance on other competing tasks (Hollins, 2010).

Besides the relevance of intrinsic motivations to sensorimotor exploration, Acevedo-Valle

et al. (2015, 2018) discussed the relevance that touch, proprioception, and nociception have

during early development. Those works emphasized the relevance that somesthetic senses

have during the emergence and progress of rhythmic behaviors necessary to foster sensorimo-

tor control learning. Experimental evidence suggests that somesthetic information is relevant

for development in different ways. For example, as a perceptual mechanism to explore the

world, during early development (from 5 months of age) infants interact mostly with objects

through mouthing (Klatzky et al., 2005). Mouthing is defined in Fagan and Iverson (2007)

as contact of an object with the mouth, lips, or tongue. Another example of somesthetic

relevance is provided by Lewis et al. (2008, chapter 22), therein the effects that tactual in-

formation has to infant’s responsiveness is stressed. For instance, when touch is provided
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infants increase smiling, vocalizing, and gazing. In general, touch can be used by caregivers

as a mechanism to present affective information in order to modify infant’s behavior.

Somesthetic modalities, as mentioned in Corbetta et al. (2014), are essential for an agent

to learn how to drive its movements to reach intended body states. The evidence found by

Corbetta et al. (2014) states that during the emergence of reaching, as a product of a deeply

embodied process, infants first learn how to direct their movements in space using propri-

oceptive and haptic feedback. During sensorimotor learning of proprioception, nociception,

and tactile modalities, agents must first discover their motor limitations.

Recent works regarding somesthesis, have been addressed to discover new principles of these

modalities. However, other studies have been focused on the cognitive level and emphasized

similarities and interactions across modalities (Hollins, 2010). This idea makes sense due

to the structure of neural pathways, as somesthetic data of many submodalities goes along

parallel central pathways. Later, that information is used for a variety of tasks with different

complexity and computational purposes, e.g., identification of objects by feel (Beckstead,

1996).

Millar (2005) introduced a roadmap of the interaction between somesthetic modalities with

vision during early development and its neural implications. She emphasized the relevance

of an intertwined network of haptic models. Furthermore, she provided a study about mech-

anisms and implications of collaboration between a somesthetic network with visual infor-

mation through the course of development. In another work (Klatzky et al., 2005), it was

observed that visual and haptic information is used by preverbal infants to decide if an object

can be reached or grasped, and also to decide whether a surface will support locomotion or

not.

Somesthetic Modalities in Prelingusitic Vocal Development

Some insights regarding the relevance of somesthetic modalities have been presented in this

chapter. Hereafter, the reader is introduced into some works that provide discussions and

strong evidence on the relevance of somesthetic senses to vocal development and language

emergence.
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During early vocal development, when infants are engaged with rhythmic behaviors, it is not

adventurous to say that somesthetic modalities must play a key role according to evidence. It

is enough thinking about somesthetic senses as perceptual modalities that are a rich source of

information available to infants, even long before they can control phonation. For example,

think about mouthing behaviors mentioned beforehand.

In general, experimental results suggest that somesthetic inputs related to movement play

an important role in speech maintenance (Galantucci et al., 2006, Nasir and Ostry, 2008,

Tremblay et al., 2003). Furthermore, the fact that canonical babbling emerges, with some

variations, in deaf infants suggests that somesthetic feedback plays a relevant role during

prelinguistic vocal development. For deaf infants, tactile and proprioceptive information

help to find regularities between motor actions and sensory results (Iyer and Oller, 2008).

In a different experiment, Ito et al. (2009) used a robotic device able to generate patterns

of facial skin deformation related to specific speech productions. Results showed that when

the facial skin is stretched whilst subjects are listening to words, the sounds they hear are

altered. Therefore, experimental evidence strongly suggests a linkage between somesthetic

information and speech perception, at least as a mechanism to reinforce auditory speech

perception.

Another interesting argument, perceiving speech is perceiving gestures, comes from Chapter 2,

where we introduced the Motor Theory of Speech Perception and the Perception for Action

Control Theory. As mentioned by Schwartz et al. (2012), and supported by ideas from

Galantucci et al. (2006), the listener who has some motor competence, knowing something

about speech production, exploits this knowledge to decipher the acoustic input and access

the functional unit more directly related with motor commands. Moreover, audiovisual and

audio-haptic interactions in speech perception are claimed to be related to the knowledge

of the listener on multisensory coherence of a speech gesture. In this context, a hypothesis

suggests that perception involves a procedural knowledge of action (Schwartz et al., 2012),

and proprioceptive knowledge is an interesting candidate to enclose action information.

On the one hand, Galantucci et al. (2006) reports results suggesting that knowledge of

anatomical constraints affects what people perceive. On the other hand, there is the claim

that motor competence is exploited during perception mentioned beforehand. Merging both

hypotheses, if the perceiver knows that a visual pattern can only correspond to a specific
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motor behavior, and if humans are genetically equipped to produce that behavior, one can

speculate that specialized motor competence is called upon in the perception of the pattern.

Finally, we remark that evidence also suggests that perceptual performance is enhanced if

the perceiver produces the same movements which are being perceived, probably because the

maximal amount of motor competence is available to support perception.

Assembling the series of ideas mentioned above, there is a reason to believe that percep-

tion is particularly attuned to the general anatomical and dynamical constraints on natural

movements, as well as to the specific subtleties of individual movements (Galantucci et al.,

2006, Liberman and Whalen, 2000).

From the evidence provided in Schwartz et al. (2012), it is clear that auditory, phonetic and

lexical mechanisms are involved in speech scene analysis. It is important also the role of

articulatory coherence. The fact that articulatory constraints may act on the emergence and

stabilization of verbal transitions strongly suggests that they partly rely on motor informa-

tion. Evidence demonstrates that articulatory based representation play a crucial part in the

endogenously driven emergence and stabilization of auditory speech percepts during a verbal

transformation task. In general, experiments show that speech scene and analysis process

appears to be driven by both perceptual and motor coherence.

There is evidence that perceiving speech involves neural activity of the motor system. Studies

demonstrated the activation of speech-related muscles during the perception of speech. For

instance, Liberman and Mattingly (1985) proposed that infants mimic the speech they hear

and that leads to associations between articulation and its sensory consequences. Perhaps

through acquired similarity, whereby associating different acoustic signals for the syllables to

the same response makes the syllable-initial consonants alike. Another process, of acquired

articulatory distinctiveness, may explain how similar acoustic signals with different underly-

ing articulations come to sound distinct (Galantucci et al., 2006). For individuals perceiving

a speech signal, who are capable of producing a similar signal, the consequence of the mem-

ory representation established by the mimicry principle is that articulatory movements and

their sensory effects mediate between the acoustic stimulus and the event we call perception

(Galantucci et al., 2006, Liberman and Mattingly, 1985).
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4.2 Somesthetic Modalities in Artificial Cognition

From the artificial cognition perspective, arguments regarding the relevance of somesthetic

senses and multimodal perception to development can be traced to relatively old works. For

example, Sandini et al. (1997) already mentioned the relevance of considering the simulta-

neous exploitation of vision, touch and motor schemes in order to solve complex tasks, e.g.,

grasping in early developmental stages.

In the literature, there are a few works that use somesthetic systems in the design of robots

or other artificial agents. However, roboticist agree upon the interest on proprioception,

nociception and touch modalities as tools to endow artificial agents with new bioinspired

mechanisms that foster learning and developmental performance, and in consequence the

emergence of intelligent behaviors (Luo et al., 2016, Navarro-Guerrero et al., 2017b, Schillaci

et al., 2016).

Schillaci et al. (2016) mentioned proprioception as an important modality to learn motor

constraints based on the evidence provided by Corbetta et al. (2014). In another example,

and without mentioning any somesthetic modality explicitly, Rayyes et al. (2017) proposed

a scheme to learn inverse static mappings for gravitational compensation forces in robotic

arms. Based on the argument that exploratory noise could lead to inadmissible motor con-

figurations, Rayyes and colleagues propose to learn or estimate admissible motor actions.

Thus, in order to avoid reaching invalid configurations, they propose to avoid any limit vi-

olations during bootstrapping and then to learn the embodiment’s constraints. To learn

those constraints, they use a directed sampled architecture employing a modified goal bab-

bling scheme, similar to that proposed in Rolf (2013). Within the framework of somesthetic

modalities, what Rayyes and colleagues do is similar to the mechanisms that infants use for

motor learning using proprioception as mentioned by Corbetta et al. (2014).

Luo et al. (2016) also borrowed ideas from Corbetta et al. (2014), in this case, the authors

proposed a system that endows a robot with the tools to develop its reaching ability based

on infant’s development. They divide the developmental processes into five prespecified

stages. Sequentially in those stages the robot learns: (1) sense of joint position, (2) sense of

arm position and orientation, (3) learn forward and inverse motor models, (4) in this step

the models from (1), (2) and (3) are integrated to model proprioception, and (5) learn the

mapping of the sight of an object onto the embodied sense of space to determine grasping
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commands. The results show that the robot was capable of developing its reaching ability

following a similar path to that described by Corbetta et al. (2014).

Navarro-Guerrero et al. (2017a,b) found that nociceptive mechanisms produce a boost in

performance for some tasks, e.g., inverse kinematic learning. Navarro and colleagues also

provide an interesting discussion regarding the role that nociception and punishment sig-

nals have played in robotics. In Navarro-Guerrero et al. (2017b), nociception is used as an

additional state, whereas punishment is used as a negative reinforcement signal. Their ex-

periments showed that nociception improved the results achieved when using TD-learning

algorithms. In their discussion, the authors argued that the main reason for the improvement

may be the fact that the extended state also expanded the differences between input vec-

tors. Despite just being optimized for position error, this architecture improved the results

regarding positioning error, the potential for damage, and positioning speed.

Somasthetic Modalities in Artificial Speech Studies

Summarizing the ideas discussed so far, we conclude that it is not trivial to argue that any

attempt to study early vocal development using artificial agents requires, at least at some

point, to consider that somesthetic senses may play a crucial role through the developmental

trajectory of speech during infancy.

Among the efforts to mimic the acquisition of speech as it occurs in infants, one interesting

project is the Diva model developed by Guenther and colleagues (Guenther, 2006, Guen-

ther et al., 2006). The model, which is inspired by neurophysiological evidence, includes the

premotor, motor, auditory and somatosensory cortical areas in the cognition level, and a

simulated ear-vocal tract system as the embodiment of the agent. Guenther and colleagues

integrated the somatosensory modality effectively, based on proprioception and tactual infor-

mation, into the processes for acquisition and production of speech. However, the somesthetic

modalities were not used as an element to integrate motor constraint awareness. Instead,

they were used as a part of the central sensorimotor system (extended sensory state) to

produce learned speech gestures regardless of perceptuo-motor coherence. The mechanism

is comparable to the that from Navarro-Guerrero et al. (2017b), at least in the sense that

somesthetic information is used to extend the perceptual state vector.
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A somesthetic modality based on haptic information, defined as the somatosensory system, is

taken into account in Howard and Messum (2011). There, the authors use tactile information

in their architecture for speech acquisition. The integration of the somesthetic modality is

done similarly to Guenther (2006), under the assumption that from a motor control perspec-

tive an infant learns to correlate certain activation of the muscle related to the vocal tract

and the breathing apparatus to somatosensory and auditory sensory consequences.

How somesthetic information affects artificial ear-vocal tract exploration is an open question

that was not studied by Moulin-Frier and colleagues (Moulin-Frier and Oudeyer, 2013b,

Moulin-Frier et al., 2013). Therefore, we proposed some modifications to the architecture

and experiments proposed in Moulin-Frier et al. (2013) to include somesthetic information.

This information would endow artificial vocal learners with the awareness of its physical

constraints. Hence, agents would avoid executing vocalizations that could lead to undesired

vocal tract configurations.

In the following an architecture proposed in our works Acevedo-Valle et al. (2015, 2018) is

presented, and results using such an architecture are discussed. The proposed architecture

accounts for embodied systems with motor constraints. The embodied agents must be en-

dowed with a system that generates a nociceptive signal indicating if a motor configuration

was reached.

4.3 Sensorimotor Exploration with Constraint Awareness

So far, through this chapter, we have reviewed studies regarding the relevance of somesthetic

senses to development during infancy. Particular emphasis has been put on the role that

these modalities have during prelinguistic vocal development. In this section, a cognitive

architecture, which was first introduced in Acevedo-Valle et al. (2015, 2018) is described. The

architecture integrates a simple mechanism to endow intrinsically motivated sensorimotor

exploration architectures (Baranes and Oudeyer, 2013, Moulin-Frier and Oudeyer, 2013b,

Oudeyer et al., 2007) with motor constraint awareness.

The first step toward fulfilling the objectives of this work was to reproduce the architecture

presented in (Moulin-Frier and Oudeyer, 2013b). As mentioned beforehand, Moulin-Frier and

colleagues provided an architecture based on infant development to reproduce sensorimotor
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exploratory behaviors using machines to learn inverse models. Moreover, they wanted to show

that this kind of architectures may explain the progress through structured developmental

stages during early vocal development (Moulin-Frier et al., 2013). Despite their promising

results, their work did not consider any somesthetic modality nor made any reference to the

relevance those modalities may have to the emergence of stages through development. In

consequence, there was an open question regarding the impact that somesthetic modalities

may have over the learning performance of inverse models.

Once the architecture from Moulin-Frier and Oudeyer (2013b) was reproduced, we started

building up our architecture over it. Summarizing, we included a new element, a mechanism

to deal with constraints. In general, there were two main reasons to include motor awareness

in the architecture shown in Figure 2.1. On the one hand, there is a need for including

multimodal perception, especially somesthetic senses, in any system that attempts to mimic

early human development as discussed previously. On the other hand, it is important to

notice that, for the specific application to early vocal development, the vocal tract used in

Moulin-Frier and Oudeyer (2013b) does not consider physical constraints. Thus when an

articulatory trajectory is executed, the result may lack physical sense. As this work uses

the same synthesizer, considering our implementation described in the Appendix A, it is

important to consider the lack of motor constraints in this synthesizer. This concept might

be extended to other embodied cognition applications, but the nuances of those applications

may change the interpretation of this argument.

The Maeda-based synthesizer implementation by Guenther Lab, used widely in the litera-

ture to study speech (e.g., Acevedo-Valle et al. (2015, 2018), Forestier and Oudeyer (2017),

Guenther (2006), Guenther et al. (2006), Moulin-Frier and Oudeyer (2013b)), allows exe-

cuting motor commands that lead to collisions or articulatory superpositions. Those cir-

cumstances produce non-phonatory articulatory gestures as a result of blocking the air flow.

Furthermore, superpositions between articulators lack physical sense (see Figure 4.1).

Figure 4.1: Examples of articulatory configurations producing collisions or superpositions
in the Maeda’s synthesizer (from Acevedo-Valle et al. (2015)).
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In order to endow artificial agents with motor constraint awareness, Acevedo-Valle et al.

(2015) established the foundations of a simplified architecture inspired by somesthetic senses

to deal with physical constraints, under some assumptions regarding somesthesis. Later,

in Acevedo-Valle et al. (2018) the architecture and its implementation was revisited, and

initial results were extended. Finally, in Acevedo-Valle et al. (2017a), a more in-depth re-

view and extension of the architecture was made. Therein, a new consensus of nomenclature

was adopted based on the series of developmental psychology studies mentioned through

this work. However, to avoid any confusion with specific somesthetic modalities, herein, the

proposed system will be referred as to somesthetic system; alongside to its description, paral-

lelism with individual somesthetic modalities, i.e., haptic and nociceptive, will be discussed.

In Acevedo-Valle et al. (2015), Acevedo-Valle et al. (2017a), Acevedo-Valle et al. (2018), we

have argued and provided results that support the relevance of somesthetic mechanism for

early development. In the following, we detail the mechanisms we have proposed to deal

with motor constraints during sensorimotor exploration and how they achieve a reasonable

degree of consistency with evidence from developmental psychology and neurophysiology.

The mechanism was inspired mainly by the concepts of nociception, pain, and reflective

behaviors.

In general, the architecture considers a nociceptive signal, when the signal is triggered means

that a motor configuration might be ‘harmful’ or physically unreachable. This signal activates

a pain-like mechanism that, as in humans and other living beings, attracts attention (Hollins,

2010), the agent is aware that something is wrong, so a cognitive structure is called to keep

track of the motor command that caused that unpleasant configuration. Such a structure is a

self-generated map of ‘harmful’ motor configurations and, later, it is used to avoid execution

of unpleasant motor commands as it happens in humans. When a human feels pain then,

usually, avoid to repeat the task that generated that pain.

Summarizing, we integrate a somesthetic system to the intrinsic motivations mechanism

depicted in Figure 2.1. The somesthetic part consists of two main elements. First, there is

a nociceptive signal indicating motor incoherence, harmful configurations, or configurations

lacking physical sense. This signal is interpreted by the agent as ‘pain’, even though no

information is provided regarding the ‘pain’ source, which is partially consistent with the

description by Hollins (2010), who indicates that detecting pain as quickly as possible is

more important than knowing exactly where it was generated. Secondly, there is a cognitive



88 Chapter 4 Motor Constraint Awareness

Sensorimotor Model

Interest Model

Somesthetic Model

p

m

Learner

s
g

s

p
tmp

Figure 4.2: Exploration architecture considering constraint awareness. Black lines rep-
resent the flow of data during each action execution. Blue lines represent signals used to
update the models. The simple switch indicates that the prediction made by the somesthetic

model is used to accept or reject a proposed interesting goal sg.

structure that generates a map of motor commands respect to the somesthetic signal that

indicates the existence of undesired motor configurations. The generated map, known as the

somesthetic model, can be used later by the agent to predict whether motor commands will

lead to undesired motor configurations or not. Therefore, those predictions are considered

to decide if a motor command is going to be executed or not.

In the case of the vocal tract, the architecture considers an emulated nociceptive signal.

This signal is obtained from tactile information: when tactile information is incoherent, the

emulated nociceptive signal is triggered. The implemented tactile system collects information

from the vocal tract shape about undesired contacts and collisions inside the vocal tract,

information more similar to the proprioceptive modality. Afterward, the information is

encoded to a single nociceptive signal, when the signal is active, then it is interpreted as pain

by the agent, emulating the role of nociceptors and pain center.

Finally, the proposed architecture is represented by the diagram shown in Figure 4.2. Differ-

ent from the elements in Figure 2.1, we add a somesthetic model that maps motor commands

to internal signals triggered or not by an action of the agent, e.g., a nociceptive signal in the

case of the vocal tract indicating undesired articulatory configurations as the ones shown in

Figure 4.1. The learner starts with no knowledge about any of the three models. First, the

models are initialized in a first stage, either randomly or using any other criteria. Once they

are initialized, the intrinsically motivated exploration begins. The interest model proposes

a sensory goal, that goal is then passed to the sensorimotor model, the sensorimotor model

then computes the motor command that, according to the current knowledge, would produce
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that sensory goal. Then, the motor command goes to the somesthetic model, which deter-

mines if the motor command may produce ‘pain’ according to the current knowledge. If the

motor command is not likely to trigger the nociceptive signal, it is accepted. Otherwise, the

motor command is rejected and the interest model is forced to choose a new sensory goal

that is subjected to the same information trajectory, and the processes must be repeated

until a goal is accepted. Once a sensory goal is accepted, so is the motor command obtained

to produce that goal, and the command is executed by the agent (indicated as the learner in

the diagram). When the agent executes the motor command, the salient signals are observed

obtaining a sensory outcome. Afterward, the sensory outcome is compared to the sensory

goal to generate the competence c value of the experiment as an index of performance. The

signals generated, described by blue arrows in the diagram, are then used to train the models.

After training models, the process of choosing a new sensory goal starts again.

In the next section, we present the proposed approach to deal with constraints during in-

trinsically motivated sensorimotor exploration as an algorithmic architecture. The details to

implement such an architecture will also be introduced.

4.4 Architecture Implementation

The cognitive architecture described in the previous section, shown in Figure 4.2, is rewritten

as an algorithm in this section. Furthermore, the elements necessary to build the experimen-

tal setup used to implement the generated algorithm are described in detail. In general, the

proposed implementation is valid to study any sensorimotor exploration scenario. Therefore,

it is presented in such a way the reader with some experience in programming could apply

the architecture to any system. Later, we describe the specific implementations to solve the

sensorimotor exploration problem for the simple parabolic system presented in Chapter 3.

Finally, the implementation details about applying the architecture to study early vocal

development in machines are presented.

As shown in Figure 4.2, four elements are interacting inside the architecture. These elements,

together, integrate the artificial agent and are described below.

Embodiment. In Chapter 2, we have widely discussed the concept of embodiment. In the

case of this work, we consider an embodiment that consists of three elements. First,
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a motor system that allows the agent to modify its environment. The environment is

affected in such a way there is a salient signal observable by any other agent endowed

with the adequate sensory system, including the agent itself. Thus, the second element

is a set of physical elements that allows the agent to sense the salient consequences of

its motor actions. Finally, the embodiment has a second sensory system that allows

sensing, partially or completely, its physical state. When a ‘harmful’ state is sensed,

then a nociceptive signal is triggered and perceived by the agent as ‘pain’.

Sensorimotor Model: Mapping salient signals to motor actions. Through this work

we consider Gaussian Mixture Models (GMMs) to model sensorimotor systems. As

mentioned in Chapter 3, we adopted GMMs as a modelling approach based on the re-

sults obtained in Moulin-Frier and Oudeyer (2013a,b), Moulin-Frier et al. (2013). We

do not argue that GMMs are the best option to get the most accurate models, but we

do argue that they are a fast method to do experiments in order to make proofs of con-

cept keeping a good accuracy and achieving an actual incremental learning approach.

In Chapter 3, it was also indicated that two incremental training approaches for GMMs

were implemented. On the one hand, one was based on the tools provided along with

Calinon (2009). On the other hand, the second approach was presented in Acevedo-

Valle et al. (2017b). It is important to mention that different from Acevedo-Valle et al.

(2015, 2018), which considered the approach based on Calinon’s work was used, in this

work the presented results were obtained using the tools provided by Acevedo-Valle

et al. (2017b).

Using the definitions from Section 3.5, we have an approach that solves the inference

problem for incomplete data of the extended space Z = X × Y, where X is the input

space and Y is the output space. For the sensorimotor model mapping the space of

salient signals to the motor space, an m-dimensional motor command space X =M is

considered, with m ∈ M. On the other hand, a s-dimensional sensor space Y = S of

perceived salient signals, with s ∈ S is defined.

A map f is assumed to exist such that s = f(m). The agent can observe s + σs

for any executed action m. Thus, it is possible to find a GMM, MSM, representing

the extended space SM = S ×M. This model allows us to compute the probability

distribution P (m|s) applying Gaussian Mixture Regression (GMR), and later it is
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possible to determine which motor command m is the most likely command to produce

a desired sensory goal sg, thus solving the inverse regression problem m = f−1(sg).

Somesthetic Model For the somesthetic model, we consider the same m-dimensional mo-

tor command spaceM, with m ∈M, and a new binary ‘pain’ output space P = {0, 1},

with p ∈ P. If the somesthetic system detects that a harmful body configuration has

been reached, then a nociceptive signal is triggered and perceived by the agent as pain,

then p = 1, otherwise p = 0. A map g is assumed to exist such that p = g(m) and

the agent can observe p for each vocal experiment. Thus, it is possible to find a GMM

MSS , with X =M and Y = P, that allows computation of the probability distribution

P (p|m) applying GMR, and determine when a motor command m is likely to lead to

a ‘painful’ configuration, thus solving the prediction problem for g. Strictly speaking,

considering what was mentioned in Acevedo-Valle et al. (2018), the somesthetic model

is also a kind of sensorimotor model. However, it will be named along this work just

as the somesthetic model to keep a simple nomenclature.

Interest Model for Auditory Goals The interest model for auditory goals is an element

that endows the learner with the ability to select goals that maximize the expected

competence progress in order to improve the quality of its sensorimotor model, resulting

in a better control over it. Through this work we use the competence measure used

in Moulin-Frier et al. (2013), an later adopted in Acevedo-Valle et al. (2015, 2018),

written as

c = e−|sg−s|, (4.1)

where sg is the auditory goal and s is the actual auditory production after executing a

motor command m ∼ P (m|sg).

In Acevedo-Valle et al. (2015), Acevedo-Valle et al. (2017b), we followed the description

of the interest model proposed in Moulin-Frier et al. (2013). Hence, to construct the

interest model, the auditory goal space was augmented with two extra dimensions: the

competence c ∈ C and time tag t ∈ T . The number of vocalizations NIM considered

to build the interest model was fixed. Then, a GMM, MIM with KIM components

was computed from the (s + 2)-dimensional dataset considering the last NIM sensory

results of the agent’s life.
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Those Gaussian components in MIM that, according to the covariance matrices Σj ,

contain goals that will likely increase the competence progressively are considered to

build a probabilistic distribution P (S) over the auditory space. To build P (S), the

components in MIM are weighted according to their time-competence covariance mag-

nitudes. Thus, P (S) will prioritize goals in regions where competence is expected to

increase. Finally, a sample sg is drawn from P (S) for the next vocalization experiment.

However, in this work, we introduce new results using the state-of-the-art interest

models provided in the explauto toolbox, which in recent works have demonstrated

to produce better results (Acevedo-Valle et al., 2017a).

4.4.1 Algorithm for Sensorimotor Exploration with Constraint Awareness

Algorithm 6 corresponds to the cognitive architecture in Figure 4.2. The algorithm for self-

exploration with goal babbling and motor constraint awareness starts with the learner having

no sensorimotor control experience.

Algorithm 6 Sensorimotor exploration with goal babbling and motor constraint awareness.

Set {ne, randomseed}
1: Initialize MSM and MSS
2: Initialize MIM and i← 1
3: while i ≤ ne do
4: ptmp ← 1
5: while ptmp do
6: sg,i ← sample (MIM )
7: mi ←MSM (sg,i)
8: ptmp ←MSS (mi)

9: si ← f (mi) + σ and pi ← g (mi)
10: ci ← (1− pi ∗ γ)e−|sg,i−si|

11: i← i+ 1
12: train models()

First, models MSM and MSS are initialized in line 1 using arbitrary motor commands with

small values around the neutral motor system position. In line 2, model MIM is initialized

using the sensory results obtained in the first line as sensory goals.

Then, in line 6 of Algorithm 6 the agent selects a sensory goal sg,i for the next sensorimotor

experiment according to the interest model MIM . With sg,i, in line 7, the sensorimotor

model is used to obtain the motor command mi that according to the current knowledge of

the agent would produce si = sg,i.
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Unlike similar architectures, in this algorithmMSS provides a nociceptive or ‘pain’ prediction

ptmp for g(mi) in line 8. That prediction indicates if the selected motor command is likely

to trigger the nociceptive signal, thus causing the agent a ‘painful’ experience. If the pain

prediction indicates that the signal p will be triggered when executing mi, then the agent

rejects the goal, the simple switch in Figure 2.1 is open, and the motor command is not

executed. Afterward, the interest model proposes a new goal and the prediction process is

repeated until a ‘safe’ goal is obtained. On the other hand, if the ‘pain’ prediction suggests

that there is no risk when executing the motor action mi, then the simple switch in Figure 2.1

is closed, and the agent accepts and executes mi.

Next, the motor command mi is executed by the motor system. Afterward, the agent

observes si and pi in line 9. In line 10, the learner evaluates the competence value ci, which

receives a penalization according to the parameter γ if the agent perceives ‘pain’ (pi = 1).

Finally, in line 12, the training function for models is called, and each model (MSM, MSS

and MIM ) is updated according to its parameters that will be explained in the next section.

4.4.2 Parabolic Shaped Region System Embodiment

The parabolic shaped region system was introduced in Section 3.7, the only element that is

added to this system is the mechanism to produce the nociceptive signal, which consists in

making the pain signal p = 1 if the constrained region of the system is reached and p = 0,

otherwise. If after executing a motor action the sensory result lies in the constrained region,

then it is relocated to the closest point in the allowed region. An obvious consequence of

relocation is the increment of sensorimotor redundancy.

4.4.3 Ear and Vocal Tract Embodiment

In this work, we use the Maeda’s synthesizer as a vocal tract (motor) system. The implemen-

tation, as mentioned in Chapter 2, is based on the implementation made for the DIVA model

in Guenther et al. (2006). The proposed vocalization architecture is shown in Figure 4.3.

It is similar to that in Acevedo-Valle et al. (2017b), Acevedo-Valle et al. (2018). However,

there were some modifications in the dynamical parameters of the motor system and the size

of the perception windows.
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Figure 4.3: Ear-vocal tract embodiment. Vocalization experiment example. The upper
plot shows the articulatory trajectories. From 0 to 400 ms, the commands m1, m2 and m3

are set, respectively, to 1, 3 and 1, whereas the glottal pressure (m12) and voicing (m13)
are set to 0.5 and 0.7, respectively. From 400 to 800 ms, the commands m1, m2 and m3

are set, respectively, to −3, 0 and 2, whereas m12 and m13 keep their value. The remaining
motor commands are set to zero. The middle plot represents the speech sound wave signal.
The bottom plot shows the auditory trajectories. There are two perception time windows,
one from 0 to 400 ms and the second from 400 to 800 ms. The auditory output s are
determined from the average of each trajectories along each one of the perception windows.
Auditory output, includes the two first formant frequencies, F1 and F2, and an intonation
parameter I. Finally, the nociceptive feedback p is determined from the average value of the

somatosensory signal min(af ).

In the Maeda’s synthesizer, the shape of the vocal tract is determined by the position of

ten articulators, whereas three phonation parameters control voicing. The articulators and

voicing parameters are modeled as dynamical systems. The dynamic behaviors of the artic-

ulators and voicing parameters are considered to follow overdamped second order systems’

behaviors defined as

ẍ+ 2ζω0ẋ+ ω2
0 (x−m) = 0, (4.2)

with ζ = 1.01 and ω0 = 2π
0.01 representing the damping factor and the natural frequency,

respectively. The duration of each vocal experiment is 800 ms, whereas m and x represent

the motor command for the articulator and the current articulator position, respectively.

The structure of a vocalization experiment is shown in Figure 4.3. As two motor commands
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are executed sequentially during 400 ms for each of the thirteen articulators, the result is a

motor command vector of 26 dimensions.

For the ear (sensory) system, three auditory channels are observed along a couple of time

windows: the first two formant frequencies F1 and F2, the intonation signal I indicating

whether there is sound (I = 1) or not (I = 0). In fact, the auditory result of the vocalization

is computed as a 6-dimensional sensory outcome vector composed by the average of each of

the three signals along each of the two perception windows following the execution of the

coarticulated motor commands, composed of two articulations of 400 ms each.

Finally, the somesthetic system consists of a signal min (af ) which is the minimum of the

cross-section area of the vocal tract (shown in Figure 4.4). The minimal value of the area

function min (af ) is zero when the vocal tract is closed at any point and negative when

tissues are overlapping, which lacks physical sense. Thus, when the average of min (af ) is

negative during either one of the two auditory perception windows, then a nociceptive signal

is triggered, causing the agent to perceive pain. This signal is used to build the somesthetic

model mapping motor commands m to pain perception p. Later, the model can be used to

predict if a motor action might trigger the nociceptive signal before it is executed.

The minimal value of the area function min (af ) would be zero when the vocal tract is closed

at any point, and negative values mean that some tissues are overlapped, which does not

have physical meaning. However, in some cases, it might be interpreted as the tongue being

bitten. In other cases, it might represent high pressure between the tongue and the palate,

which might be interesting to the learner in a realistic scenario where motor constraints are

not violated. In general, we made a strong assumption that any motor constraint violation

over a threshold is uncomfortable or painful. Hence, the average value of min (af ) in each

perception time window is used to generate a proprioceptive feedback signal p: if the average

of min (af ) is lower than a threshold for any perception window, then the configuration is

evaluated as an undesired collision with p = 1, and p = 0 otherwise.

Through this dissertation, somesthetic information extraction is based on the contact that

exists in different sections of an artificial vocal tract surface. It is used to predict violations of

motor constraints. When a violation is expected, then the motor command is not executed,

and the searching area is moved.
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Figure 4.4: The area function af describes the cross-section of the vocal tract.

The neutral position of the pressure and voicing parameters are set to −0.25 to produce no

phonation, whereas for the articulators it is considered 0, i.e., the rest position. Finally, to

be consistent with the coarticulated nature of speech, only two perception windows are used

Kuhl (2004).

4.5 Sensorimotor Exploration Results

As mentioned in previous chapters, the first step in this work was to reproduce the archi-

tecture proposed in Moulin-Frier et al. (2013). Making the assumption that in line 4 of

Algorithm 6 ptmp ← 0, then the algorithm becomes the one that corresponds to the sim-

ple intrinsically motivated sensorimotor exploration represented in Figure 2.1 and used in

Moulin-Frier et al. (2013). In the following, we present different experimental results con-

sidering the simple and the constraints aware architectures for sensorimotor exploration.

The architectures are applied to both, the simple parabolic shaped region system and the

ear-vocal tract system.

In this section, simulation results are shown to assess the performance of the constraints aware

exploration architecture presented in this chapter with respect to the simple intrinsically

motivated exploration architecture. First, the architectures are applied to the toy example,

a constrained parabolic shaped region, described in Section 3.7. Secondly, the architecture

is applied to the ear-vocal tract system described in Section 4.4.3.
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Table 4.1: Parameters for Algorithm 6. Parabolic Shaped Region (PSR). Ear-Vocal tract
(E-VT).

Parameter Name PSR E-VT

ne number of experiments 10K 100K

randomseed random seed

MSM sensorimotor model iGMM iGMM

Kmin minimum number of Gaussian components 3 3

∆Kmax maximum increment of Gaussian components 5 10

Kmax maximum number of Gassian components 20 30

αSM forgetting rate 0.2 to 0.05 0.2

trainSM training step 100 400

MSS somesthetic model wNN (k = 3) wNN (k = 3)

MIM interest model discretized progress tree

4.5.1 Simulation Parameters

To determine the value for all the parameters that are involved in the architecture, the

previous results from Acevedo-Valle et al. (2015), Acevedo-Valle et al. (2017a), Acevedo-

Valle et al. (2018) are considered. Table 4.1 summarizes all the parameters that must be

defined in order to run Algorithm 6.

Parabolic Shaped Region System

Regarding the parameters chosen for the simulation in the case of the parabolically shaped

region system, they are chosen based on Acevedo-Valle et al. (2017a), where we first intro-

duced this toy example. The minimum and the maximum number of Gaussian components

in the sensorimotor model MSM, which is an Incremental Gaussian Mixture Model (iGMM)

introduced in the previous chapter and first introduced to the architecture in Acevedo-Valle

et al. (2017a), are Kmin = 3 and Kmax = 20, respectively. The model is trained every 100

experiments. The maximum number of Gaussian components that can be added to the model

at each training step is ∆Kmax = 5. The forgetting rate αSM for the sensorimotor model is

set to 0.2 at the beginning but decreases logarithmically up to 0.05 after 10K experiments.

The somesthetic model MSS is a weighted k-Nearest Neighbor (wNN) model, with k = 3.

Finally, the interest model MIM is the discretized progress model from the explauto library.
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Ear-Vocal Tract System

Regarding the criteria to choose the simulation parameters in the case of the ear-vocal tract

system, the selection was based on the results of Moulin-Frier et al. (2013) and Acevedo-Valle

et al. (2017a,b), Acevedo-Valle et al. (2018), the sensorimotor model being an iGMM. Using

as a reference Kmax = 28, which was used as a fixed number of components in Moulin-Frier

et al. (2013) and Acevedo-Valle et al. (2017b), Acevedo-Valle et al. (2018), when the value of

Kmax is increased then the inference error decreases slightly but the computation time grows

considerably, hence a good trade-off was found at K = 30. On the other hand, if Kmax is

chosen smaller than 28, then the inference error increases considerably without a significant

positive impact on the computational time.

Moreover, if the training step trainSM = 400 (from Moulin-Frier et al. (2013) and Acevedo-

Valle et al. (2017b), Acevedo-Valle et al. (2018)) is increased, then the training computational

time is reduced, but the inference error does not increase considerably. On the other hand, if

trainSM is decreased the computational time increases as the training function for iGMMs

is called more times without reducing the inference error.

Finally, the remaining parameters for the sensorimotor model were handcrafted to get the

best average results. Their impact on the computational time is not considerable. The

forgetting rate for the sensorimotor model is set to 0.2. The somesthetic model MSS is a

weighted k-Nearest Neighbor model, with k = 3. Finally, the interest model MIM is the tree

model from the explauto library.

4.5.2 Parabolic Shaped Region System

In order to minimize randomness in the results, a large number of simulations were run

considering 50 random seeds. Moreover, two scenarios of interest were considered, the first

scenario corresponds to the intrinsically motivated sensorimotor exploration from Moulin-

Frier et al. (2013), whereas the second corresponds to the constraints aware intrinsically

motivated sensorimotor exploration from Acevedo-Valle et al. (2015, 2018). Therefore, fifty

exploration simulations were run per scenario using the selected random seeds. Each simu-

lation consists of 100 experiments to initialize MSM and MSS . The sensory results obtained

from the first step are then used as sensory goals to initialize MIM and 16K exploratory
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experiments. For each simulation, several evaluation steps are performed, first after line 1

in Algorithm 6, second after line 2 in Algorithm 6. Thereafter evaluation is performed every

500 samples during exploration, and finally, at the end of the simulation. A set of 441 points

described in Figure 3.7 in Chapter 3 is considered to perform the evaluation, the set is evenly

distributed along the unconstrained sub-region of the parabolically shaped region.

Figure 4.5 shows the average results during the exploration of the two groups of simulations

that were run. The plots were obtained using the average of the 50 simulations considered

for each group of simulations. Figure 4.5 (upper) shows the average absolute error |sg − s|

during exploration considering a moving average window of 100 samples, defined as:

ma|sg−s|)(k) =

 1

nrs

nrs∑
i=0

 1

ws

k+ws−1∑
j=k

|sg,i,j − si,j |

 , (4.3)

where k stands for the k-th experiment during exploration, nrs is the number of random

seeds considered, ws is the window size to compute the moving average, and |sg,i,j − si,j | is

the sensory error of the j-th experiment when simulating with the i-th random seed.

Figure 4.5 (lower) shows the average undesired motor configuration ratio along the explo-

ration ucrav,expl defined as:

ucrav,expl(k) =
1

nrs

nrs∑
i=0

1

k

k∑
j=0

pi,j

 , (4.4)

where pi,j is the nociceptive signal value of the j-th experiment when simulating with the

i-th random seed.

Regarding the evaluation performed over the sensorimotor model every 500 sample, Figure 4.6

was obtained using the averaged results of the 50 simulations for each group. First, Figure 4.6

(upper) shows the average mean evaluation error eav defined as:

eav =
1

nrs

nrs∑
i=0

 1

nes

nes∑
j=0

|sg,i,j − si,j |

 , (4.5)

where nes is the number of evaluation samples in the dataset and |sg,i,j−si,j | is the evaluation

error for the j-th evaluation sample when simulating with the i-th random seed.
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Figure 4.5: Results along the exploration running Algorithm 6 using the parabolic shaped
region system.

Secondly, Figure 4.6 (lower) shows the average ratio of undesired motor configurations for

the evaluation dataset ucrav, which is defined as:

ucrav =
1

nrs

nrs∑
i=0

 1

nes

nes∑
j=0

pi,j

 , (4.6)

where pi,j is the nociceptive signal value for the j-th evaluation sample when simulating with

the i-th random seed.

In Figure 4.6, the size of the round markers in the plot is proportional to the standard

deviation between simulations. Finally, Table 4.2 shows some values of interest for further

analysis. It displays the values for the undesired motor configuration ratio, the minimum

average mean evaluation error achieved per each group of simulations for the evaluation

dataset min eav, and the average ratio of undesired motor configurations when achieving

min eav. It also displays the standard deviation for those averages.

In Figures 4.5-4.6 and Table 4.2, it is observed that the best results are obtained when the

somesthetic mechanism is considered. In general terms, the ratio of undesired motor con-

figurations during exploration and evaluation are lower, and the exploratory and evaluation

errors are also noticeably smaller.
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Figure 4.6: Evaluation evolution against the dataset evenly distributed along the reachable
space of the parabolic shaped region system, running Algorithm 6

Table 4.2: Exploration results for the parabolic shaped region system using Algorithm 6.

Simple group Somesthetic group
value std value std

ucrav,expl 0.4589 – 0.0792 –

min eav 0.1560 0.1530 0.0713 0.0321

ucrav for min eav 0.2688 0.0297 0.1684 0.0289

NOTE: The table shows, in order of appearance, the average ratio of undesired motor con-
figurations, the minimum average mean evaluation error, and the average ratio of undesired
motor configurations during evaluation for min eav

During exploration, looking at Figure 4.5, it is observed that in general both groups of sim-

ulations, simple and somesthetic, achieve a significant decrement of ‘painful’ configurations.

However, the rate of decrement is considerably larger for the group endowed with the somes-

thetic mechanism. Regarding the behavior of the exploratory error, it is observed that at

some point for both cases it starts to increase; for the group without somesthesis, after the

sample 2K, and for the group with somesthesis between the samples 4K and 6K. For the latter

case, the exploratory error increases until it stays rather steady around a certain value. From

the intrinsically motivated learning perspective, we argue that this increment is because the

agents have already explored the regions that achieve a high rate of progress in competence

values. Thus, they start to exploit regions where the progress is hard, and it might be hard

due to their closeness to constrained regions. This idea is backed by the slight increase of
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undesired configurations in the simple agents, which indicates that by the time the agent is

exploring regions that are leading to some ‘painful’ configurations. On the other hand, the

agents endowed with the somesthetic mechanisms which already possess knowledge about

constrained regions, also are going to explore regions that are harder to reach; however, they

continue decreasing the rate of ‘painful’ configurations but at a considerably smaller rate.

Regarding the evolution of the average mean evaluation error eav along the exploration, in

Figure 4.6, it is observed that at the beginning (after the initialization step) the evaluation

errors and standard deviations (according to the size of the markers) are significant. As

the agents explore their sensorimotor system, the evaluation error, and standard deviation

decrease notoriously for the agents endowed with the somesthetic mechanism. However, for

the agents not endowed with this mechanism, the error decrease slightly, then it keeps slowly

changing, until reaching a minimum at around the evaluation step 15. Finally the evaluation

error and its standard deviation increase considerably. In general, when the somesthetic

mechanism is considered, it is observed a steady and fast improvement. The difference in

the behavior between both groups could be directly attributed to the evolution of the ratio

of undesired motor configurations during exploration, as indicated in Figure 4.5. As the

agents without somesthesis explore constrained regions, the redundancy of the sensorimotor

knowledge increases, making harder for the sensorimotor model to represent that knowledge

and retrieve accurate motor command inference.

Furthermore, looking at Figure 4.6, standard deviation markers indicate that those agents

endowed with the somesthetic mechanism achieved more robust results than the others. Fi-

nally, in the case of the agents without somesthesis, it is observed that the ratio of undesired

configurations along the exploration for the evaluation dataset does not increase as the error

does when the agent explores conflicting regions, How is this result compatible with the be-

haviour of the exploratory error and undesired motor configuration ratio during exploration?

If the agents focus more during exploration on regions close to constraints, then the senso-

rimotor knowledge they have on the permitted region degrades as they start to forget given

the learning rate αSM. Hence, an overall increase of the error is provoked when evaluating

against a data set evenly distributed along the permitted region. However, as the agents

continue exploring close to the constraints, the knowledge they have in those regions is good

enough, and they do not produce more collisions. On the other hand, in the case of agents

endowed with somesthesis, after reaching the best evaluation results they show both, slight
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transient behaviors in the evaluation error and the ratio of ‘painful’ configurations during

evaluation. This behavior might be due to the fact that, as these agents explore more uni-

formly the sensorimotor regions, if they focus for some intervals in exploring regions far from

constraints, then the knowledge they have close to constraints degrades. Later, when they

focus exploration on these conflicting regions, they produce more undesired motor configu-

rations, and the error also increases.

4.5.3 Ear-Vocal Tract System

Experimentation for the ear-vocal tract system is divided into two groups subdivided into two

subgroups each. For one subgroup the proposed somesthetic mechanism is not considered,

whereas for the other group the mechanism is considered. The difference between the two

simulations in each subgroup lies in the initialization criteria for MIM . On the one hand, for

one simulation all sensory results obtained when initializing MSM are considered as sensory

goals when initializing MIM . On the other hand, for the other simulation, only the goals

that did not trigger the nociceptive signal p during the initialization of MSM are considered

to initialize the interest model. Even though in more recent works (Acevedo-Valle et al.,

2017a), we found that it is better concerning competence performance to initialize MIM

with all the initial sensory results, we also claim that it is important to show the impact that

initialization might have on developmental approaches. In Acevedo-Valle et al. (2015, 2018),

it was considered a similar criterion to the one that does not include ‘painful’ configurations.

Whereas, Rayyes et al. (2017) proposes an initialization without ‘painful’ configurations.

Thus, simulations in this section may also help to conclude if any criterion is beneficial in

some way.

Six different random seeds were considered to generate random initialization sets of motor

commands from uniform distributions. In total, twenty-four independent simulations were

run using Algorithm 6, six per each of the four groups described above. All simulations con-

sisted of 100K vocalizing experiments plus a number of initialization vocalizing experiments

varying from 1K to 2K. The limits for initializing motor commands related to the vocal tract

articulators were [−1, 1], whereas for motor commands related to the phonation parameters

were [0, 0.7].
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Figure 4.7: Fixed vocalizations obtained with divapy. Single auditory results for vocal-
izations with no ‘painful’ configurations used to generate 323 co-articulated gestures.

Summarizing, MSM and MSS are initialized together as indicated in line 1 of Algorithm 6

with the different initial motor command sets. Later, using the auditory results of the first

stage with the criteria for each simulation subgroup described above, the interest model MIM

is initialized as indicated in line 2 of Algorithm 6. During the initialization of MIM , MSM

is used to infer the motor actions that will likely produce the initial auditory goals. These

commands are executed without considering the nociceptive prediction ptmp. Afterward, the

intrinsically motivated sensorimotor exploration is run for 100K experiments.

Finally, to evaluate the exploration respect to some fixed points in the sensory space S, 17

single vocalizations that do not produce undesired motor configurations are chosen using

divapy shown in Figure 4.7. Next, these vocalizations are recombined to generate coartic-

ulated gestures that are in the format of the embodiment described in Figure 4.3 resulting

in 323 samples. This set of samples will be called evaluation dataset Seval in the following.

Evaluation on Seval is performed every 2.5K samples during each simulation.

In Figure 4.8 (upper), it is shown the average mean evaluation error eav, defined in Eq. (4.5),

for each one of the four groups of simulations. As in the case of the toy example results, the

markers size is proportional to the standard deviation between the simulations. In Figure 4.8

(center), it is shown the moving average of the mean error through simulations defined in
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Figure 4.8: Results for simulation with the ear-vocal tract system using Algorithm 6.
(Upper) Average mean evaluation error performed every 2.5K samples during exploration
against Seval. (Center) Average sensory error during exploration using a moving average
window of 1000 samples. (Lower) Average undesired motor configuration ratio evolution

along the exploration.

Eq. (4.3) considering a window size ws of 1000 samples. Finally, in Figure 4.8 (lower), it

is shown the undesired motor configuration ratio (a.k.a ‘painful’ configurations) defined in

Eq. (4.4).

On Competence and ‘Painful’ Configurations

Results suggest that those agents that are endowed with the somesthetic mechanism perform

better than those which are not endowed with it. From Figure 4.8 (upper), it is observed

that the simulation groups can be characterized by the fact of using or not ‘painful’ con-

figurations during the initialization of the interest model MIM . Those simulations that did

not consider ‘painful’ configurations produce higher average mean evaluation error eav at the

beginning of the exploration. However, regarding progress on the ability of the agents to
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reproduce the evaluation dataset Seval, it is observed that those agents endowed with the

somesthetic mechanism improve along the exploration, whereas the agents without somes-

thetic mechanism do not improve, at least not clearly. In the case of the somesthetic group

with full initialization, it is observed that the average mean evaluation error increases at the

end of the simulation. However, as the agents are exploring, and they are unaware of those

sensory units, it is normal that if the agents start to explore goals that are farther from

Seval, then its skills to produce those goals will shrink. In general terms, the best behavior

is observed with the somesthetic group, even though the somesthetic group that did not

consider ‘painful’ configurations during initialization of MIM shows a tendency to improve

its performance, it barely achieves a similar performance to that of the simple group that

considered all the initial configurations during initialization. We argued that these results

are because agents that considered ‘painful’ configurations during initialization, retain more

knowledge regarding sensorimotor regularities, and later they might refine this knowledge

guided by the intrinsic motivations and shaped by the somesthetic mechanisms if present.

In Figure 4.8 (center), it is observed that there are other interesting differences between the

simulation groups. In general, we obtained similar results to that from Acevedo-Valle et al.

(2018) after initialization1. Therein, the criteria to initialize the interest model was similar

to the one that does not include the ‘painful’ vocalizations2. So looking at those agents in

Figure 4.8 (center), it is observed that the somesthetic group starts reducing its exploratory

error after initialization, whereas in average the simple group has a trend toward higher error

after initialization. Thinking about the competence, defined as c = e−|sg−s|, this means that

for the simple group the competence decreases after initialization. On the other hand, for

the somesthetic group the competence increases after initialization, corroborating what was

observed in Acevedo-Valle et al. (2018). These error tendencies coincide with a significant

decrement of the ‘painful’ configuration ratio in Figure 4.8 (lower). This fact again suggests

that the somesthetic mechanisms are relevant to improve the progress in achieving better

competence performance.

Regarding the behavior of the subgroup that considers all the initial vocalizations to initialize

1The values of the error during initialization are small, that is the reason that the lines at the beginning
come from below of the plot. That part of the lines is left out of the plot in order to obtain a better perspective
of the exploration stage.

2In the case of the ear-vocal tract motor configurations, and sensorimotor experiments are also referred
as to vocalizations.
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MIM , it is observed a similar behavior to that of the simple groups without ‘painful’ initial-

ization, but in general, they show lower errors than the other subgroup. They show a slight

tendency of the error to grow after initialization, however as the exploration progresses, at

least in the case of the somesthetic group, the error tendency is to decrease.

In Figure 4.8 (lower), it is observed that in general the ‘painful’ vocalization ratio stays high

along the exploration. This observation is related to the lower values of competence dur-

ing the exploration (higher errors) compared to the somesthetic groups. In the case of the

somesthetic groups of simulations, it is observed that the one that does not consider ‘painful’

vocalizations during initialization of MIM , shows a more abrupt reduction of this family of

vocalization after the autonomous exploration begins. It is due to the fact that the interest

model is generating goals similar to that of initialization. On the other hand, the group of

simulations considering all the initial experiments to initialize MIM shows a slower decrease

of undesired vocalizations. Despite the rate of decrement of this configurations by the experi-

ment 60K, the group reaches the performance in this respect of its initialization counterpart.

Therefore, regarding undesired configurations, regardless of the initialization criteria, the

somesthetic mechanisms is capable of reaching a minimum of undesired configuration ratio

in both cases. Further analysis is performed below.

Some observers might ask the reason of low error values (high competence) at the beginning

of the simulations. We argue that it is an expected result as the error computation begins

when MIM is initialized with sensory goals drawn from the initial productions of the agents.

In other words, MSM and MSS models are initialized around a set of initial vocalizations.

The initial auditory productions are then selected as sensory goals considering two different

criteria. Afterward, motor commands are computed with a sensorimotor model that repre-

sents very well those initialization samples. Later, as the agent explores the auditory space

and it moves toward farther regions from those of initialization, the error values increase.

Afterward, as the intrinsically motivated exploration evolves, there is a general tendency

of the evaluation and exploratory errors to decrease. However, it is more notorious in the

somesthetic groups. In general, running different experiments through the development in

this work, we observed that the initial increment in the exploratory error after initialization

and its tendency to decrease through the exploration depends strongly on the parameters

used for the sensorimotor model MSM. If the forgetting rate of the sensorimotor model αSM

is close to zero, then the agent is less prone to update its knowledge when new data are far
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from the current knowledge. On the other hand, if the forgetting rate is high, then the agent

will adapt its model to the new data very fast, but it will forget faster its previous knowledge

since it is not reinforced.

Figure 4.9 was obtained using the average results obtained for each type of vocalizations’

proportions classified into three types: (a) Silent, if no phonation occurs in any of the two

perception windows; (b) Unarticulated, if phonation occurs in one of the perception windows;

and (c) Coarticulated, if phonation occurs in both perception windows. Plots in Figure 4.9

show the evolution of the proportional contribution of each vocalization type to the total

of vocalizations through the exploration for each simulation group. It could be considered

that all the silent vocalizations are a waste of energy during the exploration. Knowing

which regions of the motor space are leading to ‘painful’ configurations might be a relevant

knowledge for the agent to avoid this kind of silent vocalizations. Whereas the agents which

are not endowed with the somesthetic mechanism keep exploring conflicting regions, the

agents belonging to the somesthetic groups avoid exploitation of those regions due to their

ability to predict nociceptive results from a given motor command.

Therefore, we argue that one of the reasons why somesthetic groups achieve better perfor-

mance compared to their simple counterpart is the proportion of silent vocalizations. In a

significant proportion, those vocalizations are produced by ‘painful’ configurations for which

the vocal tract is blocked and, in consequence, no sound is produced. The agents in the

simple groups produce much more undesired ‘painful’ configurations as observed in Fig-

ure 4.8 (lower) and, therefore, produces more non-phonatory vocalizations as corroborated

in Figure 4.9. Reversely, ‘painful’ configuration may also occur frequently in unarticulated

vocalization, in which the airflow is blocked in one of the perception windows, or the phona-

tion motor parameters are not positive. Thus, in Figure 4.9 it is possible to observe that

an agent without somesthetic mechanism achieve a certain command of unarticulated vocal-

izations, even though silent vocalizations prevail. A last point to comment on Figure 4.9 is

the fact that in proportions, the group that best performs is the somesthetic group without

‘painful’ initialization, as corroborated with the final ratios shown in Table 4.3. This result

agrees with the fact that this group of agents achieved a faster decrease of undesired con-

figurations that are more likely to lead to silent vocalizations as already commented when

Figure 4.8 was analyzed.
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Figure 4.9: Proportions of vocalization classes. (a) Simple group. (b) Somesthetic group.
(c) Simple group (No pain during initialization). (d) Somesthetic group (No pain during

initialization).

On Explored Regions

Results presented in Table 4.3 allow to check numerically what was commented previously

regarding Figures 4.8-4.9. Different numerical descriptors were obtained for each of the

four groups of simulations. First, it is shown the minimum value achieved for the average

mean evaluation error eav, also shown in Figure 4.8 (upper). Then, the average exploratory

error during exploration for all the simulations for each group. The table also shows the

average ‘painful’ vocalization ratio produced during exploration for each group of simulations.

Afterward, it is shown the average proportion of unarticulated and coarticulated vocalizations

computed for each group of simulations. In general, the numerical descriptors corroborate

that better results are obtained for those groups of agents endowed with the nociceptive

mechanism. On the one hand, the somesthetic group with full initialization achieved better

performance, but on the other hand, the somesthetic group without ‘painful’ initialization
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Table 4.3: Exploration results for the era-vocal tract system using Algorithm 6.

Group simple somesthetic simple (NP) somesthetic (NP)

min (eav) 1.6684 1.3965 1.8442 1.6334

Average |sg − s| exploration 2.0450 1.8159 2.0908 1.8548

ucrav,expl 0.9176 0.2960 0.9108 0.3057

Unart. vocalization ratio 0.2892 0.4493 0.2582 0.4810

Coart. vocalazation ratio 0.0474 0.2040 0.0346 0.2138

Convex hull volume 0.9597 1.0709 0.9517 1.0030

Note: Experiments with different vocalization initial sets for simple and somesthetic agents.
The minimum value obtained for the average mean evaluation error, the average ‘painful’
articulation ratio during the exploration, the average ratio of unarticulated and coarticulated
vocalizations along the simulations are shown and finally, the volume of the convex-hull
encapsulating the frequency component of the explored auditory data. (NP) Indicates that
those groups are the ones initialized without ‘painful’ configuration.

for MIM achieved better results regarding the proportions of unarticulated and coarticulated

vocalizations.

Furthermore, Table 4.3 also contains the volume of the convex hulls described by the explored

data for each simulation group. The sensory data obtained during each simulation and related

to the formant frequencies are considered (F11, F21, F12, and F22) to obtain such a volume.

That is, the intonation dimensions for both perception windows (I1 and I2) are dropped.

Then, the Python’s scipy3 library is used to compute the convex hull that encapsulates the

data for each simulation. The volume of the convex hull for the simulations of each group is

then averaged, and it is the descriptor shown in the table.

Regarding the trade-off between exploration and exploitation, in this section, we obtained a

slightly different result to that from Acevedo-Valle et al. (2018). We attribute the difference

in the results to the improvements that were made to the modeling approaches and the

better tuning of the simulation parameters. Acevedo-Valle et al. (2018), based on larger

volumes of the convex hulls for the agents without the somesthetic mechanism, argued that

these agents show better performance compared to agents endowed with the somesthetic

mechanism. On the other hand, the somesthetic groups showed better performance with

respect to exploitation, as agents avoid exploring uninteresting regions with a high number of

‘painful’ configurations. However, experimentation in this dissertation shows that agents with

somesthetic mechanism achieved better performance in terms of the volume of the explored

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
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Figure 4.10: Data density distributions computed using Gaussian KDE for all the data
obtained during simulations and considering the first two PCA components.

region, and in general agents explored larger region than in Acevedo-Valle et al. (2018).

Regarding these results, it is essential to remark that in Acevedo-Valle et al. (2018), the

limits for initializing motor commands related to the vocal tract articulators were [−0.1, 0.1].

Thus, the sensorimotor knowledge acquired by the agents during the initialization stages may

also have shaped their capability to explore and discover new regions later during intrinsically

motivated exploration.

Looking at the convex hull volumes shown in Table 4.3, first we look at the ratio between

the simulations within each subgroup of simulations. For both cases, the subgroup with full

initialization (1.0709/0.9597) and the group in which MIM is initialized without ‘painful’

vocalizations (1.0030/0.9517), convex hull volumes ratios show that agents endowed with the

somesthetic mechanism perform better than their counterpart without the mechanism as they

achieve a larger explored region. On the other hand, if we compare both initialization criteria,

it is observed that in both cases, the simple group (0.9597/0.9517) and the somesthetic group

(1.0709/1.0030), those agents that considered the whole initial set of vocalizations to initialize

MIM performed better in terms of exploration as they explore larger areas.

In general, as in Acevedo-Valle et al. (2018), we observe that the agents endowed with the

somesthetic mechanism performed better than those that are not. However, looking at the
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somesthetic groups, which are the most interesting for us at this point? The somesthetic

group initialized with all the initial productions explores a 6.77% wider region than those with

‘unpainful’ initialization forMIM , their performance is 2.14% regarding the exploratory error,

14.5% for the best mean evaluation error achieved against Seval, and their ratio of undesired

configurations produced during exploration was 3% lower. The only feature in which the

somesthetic group initialized without ‘painful’ configurations is better with respect to the

other group is in the proportion of unarticulated (6.6% more) and coarticulated vocalizations

(4.6% more).

Finally, as in Acevedo-Valle et al. (2018), to analyze the vocalization distributions obtained

using the different exploration algorithms and initialization criteria, it is performed a sample

density analysis over the formant frequency dimensions (F1,1, F2,1, F1,2, and F2,2). First

of all, in order to make the results easier to visualize we perform a Principal Component

Analysis (PCA) procedure. To do this, first we concatenate all the data obtained from all

the simulations, in this way the results are comparable. Once the PCA was performed over

the whole data, it was observed that the data can be represented with high confidence with

the two first principal components which keep a total of 98.07% (56.36% + 41.71%) of the

original information. The two principal components kept are:

~pca1 =
[
0.5125 0.6111 0.3975 0.4538

]
,

~pca2 =
[
−0.3752 −0.4725 0.5174 0.6069

]
, and

µ =
[
0.3302 0.4004 0.3085 0.3572

]
,

where µ is the estimated mean for all the sensory data used to perform the PCA procedure.

Once PCA was performed, the sensory data for each group was transformed from 4-D data

into 2-D data, thence Kernel-Distribution Estimation (KDE) was performed using Gaussian-

Kernels according to Scott (2015).

In Figure 4.10, it is observed the density distributions obtained for each of the four groups

considered for simulations. In general, the results in the figure show that the agents explored

similar regions, but with different intensity. The two high peaks correspond to the region

where the silent vocalizations are located. As one can check, the transformation under the

principal components for the null phonatory results is

s[0, 1, 2, 4] = [0, 0, 0, 0]
PCA transform−−−−−−−−−→ [−0.699, −0.063],
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Figure 4.11: Data density distributions computed using Gaussian KDE for all the data
obtained during simulations and considering the first two PCA components [zoomed].

thus, as expected, the agents in the simple group explored more intensively in the silent region

as corroborated by Figure 4.9. On the other hand, agents endowed with the somesthetic

mechanism explored more uniformly along the sensory space. The original figure was zoomed

to obtain Figure 4.11 to have a better perspective. In the latter figure, looking especially

to the somesthetic groups, it is observed that initialization had an impact on the intensity

in which the agents lean to explore with different intensity on different regions, showing

dominance in different peaks of the exploration.

In Figure 4.12, data distributions along the principal components are shown only considering

the ‘unpainful’ vocalizations along the explorations. As each group of simulations produced

a different number of ‘unpainful’ vocalizations, the results are scaled to the number of ‘un-

painful’ vocalization per group divided by the number of ‘unpainful’ vocalizations for the

group that produced the most vocalizations of that kind. With the scaling rule, data distri-

butions for that simulation without somesthetic mechanisms are diminished because results

showed beforehand to show that they produce mostly ‘painful vocalizations’. Moreover, again

somesthetic agents for both initialization criteria show similar results regarding the explored

regions but, again, leaning dominance in different data density peaks.

In Figure 4.13, data distributions along the principal components are shown only consider-

ing the phonatory vocalizations along the explorations. The criterion to scale the estimated
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Figure 4.12: Data density distributions computed using Gaussian KDE for the ‘unpainful’
data obtained during simulations and considering the first two PCA components.
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Figure 4.13: Density distribution computed using Gaussian KDE for the phonatory data
obtained during simulations and considering the first two PCA components.

densities was the same to scale the distributions in Figure 4.12 in order to make the results

comparable. In this case, the scaling factor did not diminish data distributions for those
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simulations without somesthetic mechanisms as even when they produce mainly ‘painful’ vo-

calizations, those vocalizations may still being unarticulated phonatory vocalizations. Fur-

thermore, the behavior of data distributions in somesthetic agents for both initialization

criteria show similar results regarding the explored regions but with different data density

peaks. However, here it emerges an important difference when we compare Figure 4.13 with

Figure 4.12: as for Figure 4.13 the silent peaks of the simulation diminished, it is possible

to observe that the exploration over regions of the space described by the phonatory vocal-

izations discovered under the PCA transformation is similar for both somesthetic groups.

However, in fact, the exploration in these regions that produce sounds is more intense for

those agents that their interest model was initialized without ‘painful’ vocalizations. This

latter result is consistent with the difference in the proportion of the different types of vo-

calizations shown in Figure 4.9.

There is one important question left: if the agents without ‘painful’ initialization explored

more intensively the phonatory regions, “why do the agents that considered all initial vocal-

izations to initialize the interest model perform better with respect to the evaluation data

set Seval?” As an attempt to answer this question, it was generated Figure 4.14, therein

the Gaussian-KDE for Seval is shown. Next, we use the distributions in Figure 4.14 to

filter the distributions in Figure 4.13. After filtering these distributions, Figure 4.15 was

obtained, and the integral of the filtered distributions was computed. Neglecting the integra-

tion for the agents without somesthesis, for the agent with full initialization it was obtained

PCA1 = 0.3230 and PCA2 = 0.3535, whereas for the agent without ‘painful’ initialization

it was obtained PCA1 = 0.3221 and PCA2 = 0.3714. Recalling that the first principal

direction contributes with the 56.3% and the second with 41.71%, then the difference of

performance against Seval may be the slight difference between the integral under the distri-

bution curve of each simulation group, using different initialization criteria, along the regions

described by the evaluation dataset.

4.6 Discussion

In this chapter, an application of active learning techniques applied to the study of senso-

rimotor behaviors in embodied agents considering motor constraints has been introduced.

The architecture, based on the literature review from previous chapters, has been presented
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Figure 4.15: Density distribution computed using Gaussian KDE for the phonatory data
obtained during simulations and considering the first two PCA components and filtered using

the Gaussian-KGE for the evaluation data set Seval.

as an intrinsically motivated sensorimotor exploration architecture with motor constraint

awareness. Constraint awareness is achieved by providing a somesthetic mechanism which

endows an artificial agent with the capacity to autonomously generate a somesthetic model.

This model is later used to predict the somesthetic consequences of motor actions and to
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avoid their execution if they are expected to generate motor configurations that may lead to

the perception of ‘pain’.

There has been particular interest in the ear-vocal tract exploration problem. In general,

consistent with the results in Acevedo-Valle et al. (2015, 2018), it was observed that the

somesthetic mechanism improved the quality of learning according to the sensory explo-

ration error. However, unlike Acevedo-Valle et al. (2018), we did not observe a trade-off

between exploration and exploitation in the sensory space when the somesthetic mechanism

is considered. We argue that discrepancy with previous results is due to the improvements

that were performed through the evolution of this project to the modeling methods as well

as a better tuning of the simulation parameters.

First, for a simple toy example it was shown that, in all the considered dimensions, agents

endowed with the somesthetic mechanism performed better. Secondly, regarding the ear-

vocal tract system, the discussion is wider as the results show many important facts. As

mentioned beforehand, vocal-auditory spaces are high dimensional redundant spaces; thus

an auditory output may be produced by different articulatory motor configurations, mainly

non-phonatory vocalizations. A large proportion of these articulatory configurations may

lead to undesired motor configurations, especially those producing silent and unarticulated

vocalizations. Hence, we argue that sensorimotor redundancy is reduced when a somes-

thetic mechanism, based on ideas of proprioception, nociception, and pain, is included in the

system allowing artificial agents to spend more energy exploring and exploiting ‘unpainful’

phonatory vocalizing regions. In consequence, the sensorimotor model generated through

the exploration does not include conflicting regions where constraint violations are likely to

happen. For that reason, sensorimotor models achieve better fitting to the regions of interest

where motor constraints are met, and phonation occurs. In this sense, we showed how sen-

sorimotor exploration, and in general sensorimotor knowledge, can be shaped by constraints

and therefore by constraint awareness.

Regarding the emergence of vocal developmental stages, as the experiment was initially pro-

posed in Moulin-Frier et al. (2013) to illustrate how intrinsically motivated exploration may

explain the sequence of vocal developmental stages, we observed a clear developmental tra-

jectory in the somesthetic groups as shown by Figure 4.9. Agents start producing mostly

silent vocalizations, then they start increasing their articulated vocalizations production,

and at a slower rate, they also increase the proportion of coarticulated vocal gestures. The
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main difference is that whereas agents endowed with the somesthetic mechanisms achieve a

dominant proportion of unarticulated gestures and a significant proportion of coarticulated

gestures, those agents without somesthetic mechanisms predominantly produce silent vocal-

izations, a significant proportion of unarticulated gestures and a rather small proportion of

coarticulated gestures. Again, regarding the developmental trajectory, agents endowed with

somesthesis perform better.

Regarding the initialization criteria, we considered two options, either to initialize the inter-

est model with ‘painful’ configurations or without. The improvements to the architecture

and other differences in the initialization criteria, allow us to corroborate what was argued

in Acevedo-Valle et al. (2018), therein it is that initializing models in the no phonation re-

gion of the auditory space, as is the case of infants, would lead to a better picture of the

developmental stages for the first year of infants life. Our initialization for MSM and MSS

includes a high rate of non-phonatory vocalizations, even though through the agents’ life the

stages where unarticulated and coarticulated vocalizations emerge are visible. When MIM

is initialized without ‘painful’ experiments, the development was observed to occur faster,

with the trade-off of a slightly lower performance regarding exploration error. However, the

later agents showed a better performance against a social data set, that is going to be seen

in the next chapter correspond to vowel units similar to the German vowels, which gives an

important advantage to the ‘painful’ initialization of the interest models.

On the advance toward vocal exploration, we have shown the suitability of the presented

architecture to learn vocal spaces in interesting and less redundant regions as children might

do. However, in order to continue the study to understand the processes that occur in prelin-

guistic children during early vocal development, we should consider studying in greater depth

the first period of vocalization development. In this sense, it is important to notice that vocal

development in infants with regular development occurs in a socially guided environment as

mention in many works, e.g., Kuhl (2004). In social learning, exploration is not just driven

by the progress in competence and discovery of constraints, but also by the relevance of

auditory goals for socialization purposes.

It is essential to include the social factor in the developmental learning of an artificial agent

to understand better the role of somesthetic mechanisms in the presence of other mecha-

nisms that may shape development as social interaction. In the next chapter, the role of

social interaction in prelinguistic vocal development in children is discussed. Moreover, an
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architecture aimed at studying social impact in constraints aware intrinsically motivated

sensorimotor exploration is presented.





Chapter 5

The Role of Imitation Episodes in

Intrinsically Motivated

Sensorimotor Exploration

“In rising children, we need to continuously keep in

mind how we can best create the most favorable

environment for their imitative behavior.

Everything done in the past regarding imitation

must become more and more conscious and more

and more consciously connected with the future.”

— Rudolf Steiner,

Chapter 4 introduced a cognitive architecture combining ideas from prelinguistic develop-

ment, embodiment, and somesthetic senses. That architecture is aimed at studying early

sensorimotor development taking into account motor constraints, which are implicit to any

embodied agent. Simulation results demonstrated that, in terms of developmental learn-

ing, the ability of an agent to acquire a simple somesthetic sensorimotor model, based on

a nociceptive signal, enhances the developmental performance regarding explored volume,

evaluation error and ratio of undesired motor configurations.

At the end of Chapter 4, it was also mentioned that intrinsic motivation mechanisms and

somesthetic senses are not the only elements shaping sensorimotor development, but social

121
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interaction may also play a key role during the emergence of complex sensorimotor behaviors.

Therefore, in this chapter, we introduce the second major contribution of this dissertation,

aimed at extending the study of early development using constraints aware intrinsically

motivated exploration algorithms. Herein, a social reinforced sensorimotor exploration ar-

chitecture is presented to study how imitation behaviors shape sensorimotor development.

Similarly to Chapter 4, particular interest is directed toward studying how social reinforce-

ment fosters the emergence of complex vocal behaviors.

Compared to Chapter 4, the cognitive architecture in this chapter includes social elements

that provide means to evaluate the behavior of the exploration architecture in the presence

of social reinforcement through imitation episodes. Hence, the new architecture considers

a social instructor which reinforces learning along the intrinsically motivated exploration.

Reinforcement is made using socially relevant sensor units, e.g., sensor units for speech

stand for speech utterances. The proposed architecture is built according to developmental

studies on prelinguistic social development, in particular, the influence of imitation/expansion

maternal responsiveness described in Gros-Louis et al. (2014).

The methodology to assess the potential of the proposed architecture is similar to that in

Chapter 4. Firstly, we test it executing simulations with the parabolically shaped region

system, the toy example presented in Section 4.4.2, that allows a simple evaluation of the

proposed architecture. Next, we run simulations using our ear-vocal tract simulator. To

provide a more realistic scenario when experimenting with the ear-vocal tract system, the

speech utterances considered for the instructor are German vowel-like coarticulated speech

gestures. The work presented in this chapter was partially published in Acevedo-Valle et al.

(2017a) and the most recent results have been submitted to a peer-reviewed journal and are

currently under the first round of revisions (Acevedo-Valle et al., 2018).

Besides studying the role of motor constraints, preliminary results are provided in Acevedo-

Valle et al. (2017a) pointing to some evidence that social feedback mechanisms, even con-

sidering a simple imitation scenario, drives development more efficiently during intrinsically

motivated explorations. Furthermore, it was corroborated that constraint awareness and

social reinforcement benefit the efficacy of intrinsically motivated exploration architectures,

improving both, the prediction of action consequences and the volume of the explored sen-

sorimotor regions.
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This chapter is organized as follows. Section 5.1 is aimed at introducing the relevance of social

interaction for sensorimotor control development, specially prelinguistic vocal development,

in embodied agents from the perspective of human development. Then, Section 5.2 discusses

former results regarding the role of social mechanisms in studies of sensorimotor development

and prelinguistic vocal development using artificial agents. Section 5.3 explains how the social

reinforcement mechanism is integrated to the intrinsically motivated sensorimotor exploration

with constraint awareness. The experimental setup and results are presented in Section 5.4

and Section 5.5, respectively. Finally, the discussion is completed in Section 5.6.

5.1 Social Reinforcement in Sensorimotor Development

Since humans are genuinely social beings, autonomous sensorimotor exploration is just one

aspect of developmental learning. Predominately, skills acquired by exploration are reinforced

and extended by social mechanisms, e.g., learning by demonstration or imitation learning.

In this section, we firstly introduce relevant studies from developmental sciences that show

the impact that social reinforcement has on early sensorimotor behaviors. Then, we focus

on studies that have established how social interactions, and more important, how imitation

may shape early vocal development in prelinguistic infants.

In general, infants exhibit an explicit specialization toward human interaction. They prefer to

smell humans, to observe human faces, and to hear human speech. On the other hand, they

also display a great talent to imitate facial and manual gestures (Lungarella et al., 2003).

Therefore, at early age infants are capable of two different types of imitation. Initially,

imitation scenarios are those in which the goal and the current state can be represented in

the same modality, such as vocal imitation. Later, the more complex scenario of imitating

opaque acts can be considered, in which the agent can neither see nor hear itself performing

the imitation, such as facial imitation (Demiris and Meltzoff, 2008).

Infants gradually improve their abilities before reaching a stage where, more than imitating

actions, they also imitate underlying intentions and goals of demonstrators (Demiris and

Meltzoff, 2008). As mentioned in Tomasello and Carpenter (2007), different from other

species, at a very early age human infants are motivated merely to share interest and attention

with others. At around nine months of age, infants already engage in joint attentional

behaviors by directing others’ attention toward objects of interest. By this age, infants know
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what others see, and they also start attempting to share attention with others to achieve

joint attention, which is not only two agents experiencing the same thing but, simultaneously,

knowing they are doing this. Therefore, joint attention is a crucial element in the social

development of humans. As also stated in Tomasello and Carpenter (2007), infants are

concerned with sharing psychological states with other peers, forming shared intentions and

attention with them, and learning from demonstrations produced for their benefit.

As emphasized in some works, e.g., Breazeal and Scassellati (2002) and Lungarella et al.

(2003), interaction with adults and peers is a cornerstone for cognitive development in in-

fants. Forms of social support, mimicry, and imitation may play not only a crucial role in

the development of early social cognition but, in a broader sense, in the whole cognitive de-

velopment. As mentioned in Lungarella et al. (2003), evidence points out that, during early

developmental stages, adults provide support to help infants bootstrap cognitive, social and

motor skills. This support gradually decreases as infants become more confident in their abil-

ities, this mechanism is usually known as scaffolding. This mechanism reduces distractions

and bias exploratory behaviors toward relevant sensorimotor behaviors. In this sense, the

caregiver is also responsible for increasing or decreasing the complexity of tasks to guarantee

that the infant learns the most during the sensitive periods in which is more responsive to

the caregiver’s input. However, as highlighted in Oudeyer et al. (2007), scaffolding is just a

help, but at the end of the day, infants decide by themselves what they do, what they are

interested in, and what their learning situations are.

The perspective of Vygotsky is an important element to understand the relevance of social

interactions. Vygotsky argued that linguistically-mediated social interactions cause a rad-

ical transformation of elementary cognitive abilities into high-level psychological functions

(Mirolli and Parisi, 2011). If the Vygotskian perspective is correct, then what makes human

cognition different is not individual brainpower per se, but it is rather the ability of humans

to learn through other persons and their artifacts, as well as to collaborate with others in

collective activities (Tomasello and Carpenter, 2007).

In general, adults tend to teach infants by demonstrating what they should do, and then

infants respond to imitating and internalizing what is learned (Tomasello and Carpenter,

2007). Imitation invokes and coordinates the perceptual, representational, memory, and

motor neural systems of the infant (Demiris and Meltzoff, 2008). An interesting example

discussed in the field of developmental robotics is the onset of pointing behavior (Hafner and
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Schillaci, 2011, Kaplan and Hafner, 2006). One hypothesis suggests that pointing behavior

in young infants initially emerges from the attempt of grasping an object that is out of reach.

When the caregiver hands over the requested object to the infant, the pointing gesture is

rewarded through social reinforcement (Ramenzoni and Liszkowski, 2016). The pointing

behavior plays a relevant role in shared intentionality, as at twelve months of age, infants

point for others simply to share interest and attention with them or to point unknown objects

to inform others they do not know the objects, even when there is not a benefit for themselves

(Tomasello and Carpenter, 2007).

Social Reinforement in Prelinguistic Vocal Development

So far, we have observed that social interactions, especially imitation behaviors, play a key

role through the course of early development. In the following, we focus on the study of the

relevance of social interactions in prelinguistic vocal development, especially the imitation

scenarios observed during this developmental stage.

Many studies have been recently completed by developmental psychologists aimed at un-

derstanding the effects of social interaction over early vocal development, especially during

prelinguistic interactions. Furthermore, evidence suggests that interactive relationships could

be developed on a prelinguistic vocalization framework (Franklin et al., 2014). For instance,

it was found in Franklin et al. (2014) that at six months of age, infants are aware of their vo-

calizations’ social value affecting parental engagement. Thus, according to available evidence,

in this work, we assume that prelinguistic vocalizations are salient signals to parents, who

immediately respond. Moreover, recent studies also suggest that those parental responses

may play an important role in vocal development and language acquisition (Goldstein et al.,

2009). For instance, the often invoked analogy between human speech and songbirds devel-

opment was studied in Goldstein et al. (2003). In songbird, imitation is usually considered

the mechanism for vocal development, as social contingency provides them opportunities for

vocal learning. In this sense, vocal development is socially shaped.

Testing the ability of infants to use social feedback to facilitate developmental transitions,

Goldstein et al. (2003) also observed that contingent interactions foster changes in vocal be-

havior. Their major conclusion is that, simultaneously, babbling regulates and is regulated

by social interaction. They also found that different social contingencies may foster changes
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in babbling due to social reinforcement as touching (as mentioned in the previous chapter),

smiling, and shaking. Later, the results obtained in Goldstein et al. (2003) were extended in

Gros-Louis et al. (2006). During naturally occurring interactions, it was found that mothers’

vocalizations provide better predictions for infant’s vocal utterances compared to other social

modalities. In general, adults are sensitive to differences in prelinguistic vocalizations, re-

sponding differently to distinctive sounds (e.g., track cries, quasi-voiced vocalizations, voiced

‘syllabic’, and ‘vocalic’). Adults can classify vocalizations of infants in the range between 7

and 11 months of age, even of unfamiliar infants. Adults see infants as ‘real talking’ when

they produce prelinguistic syllabic sounds and respond to this kind of vocalizations with

higher frequency. The fact that adults perceive different infant vocal types suggests that

maternal responsiveness plays a role in vocal development.

Evidence suggesting that pre-speech vocalizations have a range of pragmatic functions were

provided in Oller et al. (2013). However, pragmatic functions were not related by any means

to vocalization development. Later, based on experimental results, it was suggested in Gros-

Louis et al. (2014) that maternal responses to infants’ directed vocalizations contribute to

the emergence of vocal usage and the shaping of vocal development. In general, evidence

has shown that mothers respond differently according to infants’ vocalization directionality

(mother-directed, object-directed, and undirected) and acoustic characteristics. Mother’s

sensitive responding to mother-directed vocalizations was correlated with the increase in

developmentally advanced consonant-vowel vocalizations and other language measures (Gros-

Louis et al., 2014).

Regarding maternal responsiveness, seven categories of maternal verbal response are distin-

guished in Gros-Louis et al. (2014): acknowledgments, attributions, directives, naming, play

vocalizations, questions and imitation/expansions. During the imitation scenario mothers

model the word that the sound produced by the infant approximated and expand on it.

It was found that imitation in early months of life is a good predictor for an increment

in infant mother-directed vocalizations in future months. Infants who received proportion-

ally more responses to their mother-directed vocalizations showed a significant increase in

developmentally advanced vocalizations.

Apart from its association with more syllabic vocalizations, the early mother-infant mu-

tual coordinated engagement was also evidenced in Hsu and Fogel (2001). Experiments in
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Gros-Louis et al. (2014) provided substantial support to conclude that maternal response con-

tributes to achieving phonologically advanced consonant-vowel sounds and mother-directed

vocalizations. It can also be pointed out that prelinguistic communicative behaviors influence

caregivers at the moment and over time, showing that the behaviors of infants and caregivers

are deeply intertwined.

5.2 Social Reinforcement in Artificial Sensorimotor Develop-

ment

As in the case of humans, where social development is deeply intertwined with cognitive

development, there is a consensus that algorithms for robot learning that build models only

with predefined supplied data are unlikely to be successful, at least in unstructured tasks. In

general, it has been observed that unguided learning without any support has difficulty for

overcoming the complexity involved even in simple tasks (Demiris and Meltzoff, 2008). In this

section, we develop on some works aimed at studying how to include social mechanisms within

the learning framework in developmental robotics, emphasizing the early vocal development

scenario.

First of all, it is important to mention that the architecture presented in this chapter should

not be confused with the reinforcement learning approach, as defined in Sutton and Barto

(1998). Therein, reinforcement learning is defined as a learning process in which an artificial

agent learns to map actions to effects as to maximize a numerical reward function (Sutton

and Barto, 1998). In the following sections, it will be seen that our approach is socially

reinforced in the sense that an external observer rewards specific behaviors in a learner

performing an intrinsically motivated exploration. However, the learner is not attempting

in any sense to maximize this reward signal nor has an explicit goal, which is an important

feature of reinforcement learning.

It has been pointed since many years ago that social interaction is a powerful tool that roboti-

cist may use for transferring important skills, tasks, and information to robots (Breazeal and

Scassellati, 2002, Lungarella et al., 2003). As defended in Breazeal and Scassellati (2002),

if robots are endowed with social mechanisms, first, it would be easier for humans to trans-

fer knowledge to them, and thus interact with them, helping to achieve one of the primary
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objectives of robotics: robots that may be fully integrated into daily life human activities.

Secondly, social interactions, in imitation scenarios, provide an interesting mechanism to bias

explorations in such a way that search spaces for learning are constrained, which has a direct

impact on the central interest of this work: sensorimotor exploration.

From the perspective of social learning applied to artificial agents or robots, one may for-

mulate the question: Which approaches might be considered as social ones for learning?

Through this work, learning approaches are considered as social approaches if there is at

least two embodied agents interacting. Furthermore, the behavior of at least one of the

agents must affect the learning trajectory of the other. In this sense, the most common

approach for social robot learning in recent years has been the well-known programming by

demonstration or learning by imitation (Calinon, 2009).

Finally, Lungarella et al. (2003) summarizes other important results that show the impact

caused by imitative learning. For instance, imitation of the movements of a robotic arm by

a human teacher could naturally lead to eye-arm coordination as well as to adequate control

of the arm. Nowadays, we know that a human can teach a robot to perform certain types

of movements by simply performing them in front of the robot reducing the amount of trial-

and-error made by the robot. In other words, for embodied systems to behave and interact in

unstructured environments, appropriate coordination of perception and action is necessary.

Roboticists, especially those working with a developmental approach, have accepted that

action and perception are tightly intertwined. Moreover, the hypothesis that regularities

between action and perception can be found and learned as part of a gradual developmental

process has also spread.

One of the most interesting approaches for programming robots by demonstration is explained

in Calinon et al. (2007) and Calinon (2009). In Calinon et al. (2007), the authors presented an

approach that generically solves the problems of extracting relevant features for a given task,

evaluating how the task should be reproduced, and, finally, finding the optimal controller to

generalize the acquired knowledge to several contexts. Calinon and Billard (2007) presented

an approach to teach human gestures, specifically gestures with the upper limbs and head, to

a robot. The robot incrementally learns those gestures interacting with the human. Therein,

two modalities of interaction were considered, on the one hand, the instructor was endowed

with a set of motion sensors that recorded its movements. On the other hand, the instructor

could also perform movement corrections directly on the robot embodiment, i.e., kinesthetic
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teaching. As mentioned in Chapter 3, the incremental learning approach used in Calinon

and Billard (2007) and Calinon et al. (2007) was based on incremental learning of Gaussian

Mixture Models (GMMs) and the regression problem was solved with Gaussian Mixture

Regression (GMR).

From all the social modalities in which infants acquire knowledge from caregivers, devel-

opmental psychologists, and therefore roboticist working on developmental robotics, have

focused their attention toward the imitation mechanism (Breazeal and Scassellati, 2002). In

Demiris and Meltzoff (2008), an exciting study was provided, therein the authors compared

available developmental robotic approaches to imitation mechanisms against developmental

psychology theories. In Lungarella et al. (2003), the authors examine studies about social

interaction and acquisition of social behaviors in robotic systems for a wide range of learning

situations and techniques. Interesting areas of research regarding embodied social human-

robot interaction, in which the developmental approach may contribute, includes shared and

joint attention, low-level imitation, language development, and social regulation (Lungarella

et al., 2003).

Social Reinforcement in Artificial Vocal Development

From the developmental robotics perspective, as mentioned in Asada (2016), the develop-

mental process of early vocal sensorimotor learning is assumed to be deeply intertwined with

caregiver’s feedback. Considering constructivist approaches1 to emulate early vocal develop-

ment, there are two distinct ways to assemble self learning and social learning. On the one

hand, some approaches consider both learning steps as separated processes. On the other

hand, some approaches mix both learning formats from the beginning or do not consider self-

learning, but primitives are given beforehand. For instance, some of the most cited works

in the field, e.g., Howard and Messum (2011) and Kröger et al. (2009), emphasize that it

is somewhat likely that self-learning and social learning occur in parallel, even though in

practice they considered that both stages occur in series.

In general, Asada (2016) discussed approaches to whole dynamics of the interaction between

an infant and a caregiver. He identified a series of factors that must be considered when

1A constructivist model of knowledge attempts to answer the primary question of epistemology, ”How
do we come to know what we know?” This constructivist model can be summarized in a single statement:
Knowledge is constructed in the mind of the learner (Bodner, 1986).
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studying interactions through the course of vocal development using developmental robots.

Despite the difficulties from a neuroscientific perspective to explicitly handling the role of

interactions in development, the essential issue for cognitive developmental robotics is to

find a fundamental principle that can be shared by natural and artificial systems. Such a

principle should contribute to the acquisition of new insights into early vocal development

to reveal how infants learn to vocalize their caregiver’s native language, and more generally

to understand human cognitive development.

In the following, we visit a series of works that have led the research on the role of social

interactions during early artificial vocal development to its current state of the art. Despite

a few works within the developmental robotics area that approached the relevance of social

mechanisms in early development (Lungarella et al., 2003), Yoshikawa et al. (2003) is one of

the earliest works that boosted the integration of cognitive and developmental robotics with

infant developmental theories in order to study the role of social interactions during early

vocal development.

Yoshikawa et al. (2003) built a real robot aimed at reproducing the human vocal tract and

the process in which humans acquire phonemes based on psychological evidence of maternal

imitation. As we studied in the previous section, maternal imitation is assumed to rein-

force infant vocalizations. For vowel acquisition, the authors considered interactions with

a caregiver (human) that repeats the robot’s vocalizations. They assumed that the learner

does not have any built-in knowledge about the relations between phonemes and its sensori-

motor system. Thus, the learner must obtain information through the interactions with its

caregiver. In an interaction episode, the caregiver repeats the learner’s vocalization using

its mature phonemes, thus facilitating the acquisition of vowels by the learner despite its

immaturity. Given the different body structures, the learner needs to abstract the observed

behavior to some extent since it cannot duplicate it as it is. Yoshikawa et al. (2003) adopted

a mechanism for producing random articulations, and the caregiver always utters the vowel

that matches the vocalization of the robot if the vocalization can be regarded as a vowel.

The proposed learning mechanism extracts clusters considering the statistical consistency in

the data and only works if the caregiver tends to be engaged in the repetitive utterances.

The DIVA model, introduced in Guenther (2006), Guenther et al. (2006), is a model that

emulates the way in which infants acquire new words using imitation mechanisms consistent

with the neurophysiological evidence. After an early babbling stage, when a new speech
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sound is presented to the model, it uses its sensory error map and motor cortex’s model to

generate a time sequence of articulator positions for the Maeda’s simulated vocal tract to

produce the given speech signal. The DIVA model uses self-organizing networks for processing

neural states and build neural maps in order to store phonemic, motor, and sensory states

representing speech items. Each time a new acoustic sample of speech is presented to the

model, a new cell is recruited into the speech sound map to represent that speech item. Even

though the model is inspired by the mechanism by which infants acquire new speech units

during imitation, it does not study the environment or context in which those imitations

occur. Inspired by Guenther (2006), Guenther et al. (2006), it is presented in Kröger et al.

(2009) a neurocomputational production-perception model using a similar architecture. For

the imitation part, Kröger et al. (2009) considers imitation training sets and presents them

to the model in a similar way as the DIVA model does. Kröger et al. (2009) acknowledged

that their approach is only partially consistent as babbling and imitation training items are

applied in parallel during the imitation training stage after a short babbling training stage.

Another outstanding series of works that model vocal development considering the social

influence of an external caregiver was developed through Howard and Messum (2007, 2011,

2014). In these works, the authors introduced the Elija model as mentioned in Chapter 2.

Regarding social mechanisms, Elija considers an imitation mechanism through the course

of vocal learning, based on the mother-child interactions observed in developmental studies.

In Howard and Messum (2014), the authors consider the study of an autonomous motor

control learning stage (babbling) and later a social learning stage, where Elija makes usage

of caregivers responses. The experiment included real humans speaking different languages

that acted as caregivers of the computational model. The social mechanism of Elija considers

that infants sound attracts caregivers attention. At this point, both parts are assumed to

be aware that the caregiver must regard infant’s utterances are equivalent in some way

(shared intentionality). The mechanism allows Elija to map its motor patterns to caregiver’s

responses, and the learned speech utterances are used to acquire the name of some objects

during a simple interaction scenario (Howard and Messum, 2011).

As in Yoshikawa et al. (2003), in Miura et al. (2012) is studied the vowel acquisition problem

when considering imitation between dissimilar embodiments (correspondence problem), as

the real scenario between infants and adults. The proposed artificial learner is endowed with

the primitives to produce a series of vowels with different levels of clarity for the caregiver’s
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perception and with a mechanism to learn a set of classifiers of different heard sounds. Each

of the classifiers should learn the position and accuracy of a vowel given the caregiver’s

articulation region. Using an auto-mirroring bias approach the artificial agent learns that

the caregiver’s response corresponds to one of its own vocalized vowels. In the scenario

considered, the learner selects speech utterances according to its expectation to be imitated

by the caregiver. The experimental results showed that when a learner is endowed with

these mechanisms, it is capable of selecting utterances that resembled clearer vowels which

are easier for the caregiver to imitate.

Warlaumont et al. (2013b) presented a model that consists of a bioinspired layer of neurons

that controls a speech synthesizer via neuromotor connections. The authors consider the

case when neuromotor connections, trained as self-organizing maps, are updated only when

reinforcement occurs as a dependence of learning on reinforcement is consistent with neuro-

physiological works. In general, studies suggest that learning in motor cortex is modulated by

a neurotransmitter strongly associated with social reinforcement. Thus, the primary function

of reinforcement is to gate the learning of neuromotor connections. This model was agnostic

regarding the source of reinforcement but proposes a series of ideas where some auditory

features could be integrated as intrinsic reinforcement. Trying to study social reinforcement

as a learning modulator using auditory salience as a source of reinforcement, Warlaumont

(2013) focuses on a spiking neural network adapted to receive reinforcement when it pro-

duced a sound with high auditory salience. Thus, reinforcement was given if the estimated

auditory salience of the learner’s vocalization was above a threshold. The results indicate

that salience based reinforcement can be a high-quality source of feedback in the emergence

of canonical babbling. The considered threshold was fixed to be a constant. In contrast to

the fixed-threshold salience-reinforced simulations, the authors acknowledge that a human

listener is presumably adaptive to the model’s performance over time when deciding whether

to provide reinforcement or not. Another important idea present in this work, consistent

with the works mentioned along this chapter, is that adaptive learner goals and adaptive

reinforcement are likely the norm in human infancy and will typically lead to better perfor-

mance by developmental robots and computational models. For example, human mothers’

responses to infant behaviors do appear to change depending on infant vocal repertoire size.

Moulin-Frier et al. (2013) also regarded the role of the social environment as important. In

fact, the authors considered a simple scenario to extend intrinsically motivated autonomous
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sensorimotor exploration, combining it with emulation behaviors. They considered an em-

ulation scenario where the learner observes the caregiver’ outcomes and later employs its

sensorimotor knowledge to reproduce those outcomes. In the case of interactions during

early vocal development, the learner cannot observe the vocal tract of the caregiver; thus

it tries to reproduce the auditory outcome observed by using its means. Moulin-Frier and

Oudeyer (2013b) considered a simplified scenario where the caregiver has a finite set of au-

ditory outcomes, and every time the learner chooses to learn by social guidance, it chooses

an auditory outcome randomly among the caregiver’s repertory. The intrinsic motivation

system is used to select when to use the emulation mechanism, as the learner monitors the

progress resulting from using the autonomous strategy and the emulation strategy. Then,

the learner is capable of choosing the emulation mechanisms if it is more likely to generate

learning progress.

Kröger and Cao (2015) presented a deeper analysis of the information generated during

learner–caregiver communication and the interaction of both agents with the environment,

for example, the pointing gesture. In this architecture, the auditory productions of a caregiver

are used to stimulate motor plans considering the knowledge acquired during babbling by the

learner. Moreover, during imitation learning and especially with respect to learner-caregiver

interaction, strong associations are built upon the one hand for a sensorimotor realization of

a syllable, represented by a model neuron as in the DIVA model and Kröger et al. (2009),

babbled or imitated by the child and on the other hand for the potential meaning of that

syllable. Imitation starts with word productions of the caregiver and leads to a reproduction

of this word by the learner. In the case of a reproduction of the word with sufficient quality,

the caretaker gives positive feedback. Thus, the model only uses those auditory stimuli

accepted by the caregiver for imitation learning. The temporal overlap of babbling and

imitation can also be called “guided babbling”. Here, babbling patterns become strongly

related to the auditory input of the learner and thus babbling is biased here by the target

language.

In Forestier and Oudeyer (2017), it is argued that former works using intrinsically motivated

sensorimotor exploration, as Moulin-Frier et al. (2013) and Acevedo-Valle et al. (2018), have

the disadvantage of not being situated into a physical environment where vocalizations have

a meaning related to objects. Thus, Forestier and Oudeyer (2017) studied a scenario where

an agent can use dynamical motor primitives to control a simulated robot motor arm and
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generate articulatory speech gestures with the Maeda’s synthesizer. This work assumes the

existence of a caregiver capable of producing speech gestures concatenating three vowels from

a social set which contains a total of five vowels. The scenario of interaction considered the

existence of three movable objects and a tool that could be handled by the robot arm to

move the objects. Therefore there are three mechanisms that the learner can use to move the

objects: using the robotic arm directly, handling the tool with the motor arm and moving

the objects with it (increasing the reachable space), or asking the caregiver to move the

objects (increasing more the reachable space). At the beginning of the simulations, each

object is named with a speech gesture by the caregiver. The leaner uses model babbling,

as it has to explore two sensorimotor systems. If the agent touches with the arm or the

tool one of the objects, the caregiver produces its name, and the word becomes part of a

learner’s set of imitation gestures. When the learner is babbling with its vocal tract, half of

the experiments it makes use sensory goals from the units in the set of imitation gestures.

Whether a learner’s vocalization is close enough to one of the names of the objects, then the

caregiver handle the object to the learner. In general, Forestier and Oudeyer (2017) found

a developmental approach that may stand for the linkage between early development of tool

use and speech. For the learner in his architecture having the caregiver handling objects

through vocalizations is not an explicit goal, but the social interaction emerges from the

same drive to refine sensorimotor models. Therefore, the episodes in which the caregiver can

understand a learner’s production as toy names and make it react and help can be interpreted

as an emergent form of social tool use.

In the same line of Moulin-Frier et al. (2013) and Acevedo-Valle et al. (2017a), Acevedo-

Valle et al. (2018) and Forestier and Oudeyer (2017), in Najnin and Banerjee (2017) social

interaction within intrinsically motivated sensorimotor exploration is included to study early

vocal development. Adult vocalizations are provided to the learner, considering two adults,

a male, and a female. The authors consider an experiment per adult, allowing the agent

to produce 10K imitating vocalizations. Contrary to Moulin-Frier et al. (2013), switching

between self-exploration phase and imitation phase in Najnin and Banerjee (2017) is manual.

After learning through self-exploration, the agent tries to imitate the speech sound using the

learned model. As a consequence, the learner does not exhibit the property of self-organized

transition from autonomous learning to socially guided learning as observed in Moulin-Frier

et al. (2013).
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5.3 Sensorimotor Exploration with reformulation/imitation

Episodes

So far, through this chapter we have shown that social feedback is an important opportu-

nity for developmental change, producing a two-directed shaping behavior effect, in both the

learner and the instructor. Especially, it has been highlighted the fact that social feedback

to infant’s vocalizations is an underlying mechanism for developmental change. Therefore,

to achieve a complete picture of early sensorimotor control learning and exploration, it is im-

portant to identify the potential that social interactions of a learner with a skilled instructor

under different social circumstances may produce to the progressive emergence of complex

behaviors in the learner. In the following, the extension proposed in Acevedo-Valle et al.

(2017a) to the architecture presented in Chapter 4 is presented.

The presented architecture is inspired by the social episodes observed between infants and

their mothers as reported in Gros-Louis et al. (2014). Specifically, we focused on the study

of imitation/expansions maternal response as social mechanism shaping sensorimotor explo-

ration. To perform such studies in artificial agents, an instructor – an expert in sensorimotor

control (e.g., vocalizing in the case of speech)– is considered. Every time a learner produces

a sensory unit similar to a sensory unit relevant to development according to the instructor,

then the latter reformulates and produces that sensory unit, so that immediately the learner

attempts to imitate the instructor’s utterance closing an episode of reformulation/imitation.

Starting with the architecture introduced in Chapter 4 for motor constraints aware intrinsi-

cally motivated sensorimotor exploration, in this section, we describe an extension initially

presented in Acevedo-Valle et al. (2017a) that considers social reinforcement. The goal is to

observe the effect that reformulation/imitation may produce on the course of developmen-

tal learning using artificial developmental agents. We argue that such kind of studies allow

roboticists and developmental psychologists to analyze social interactions as elements regu-

lating, i.e., shaping, early sensorimotor exploration. A social instructor was included in the

exploration architecture represented in Figure 5.1 to achieve that goal. Such an instructor

was assumed to be skilled in sensorimotor control relevant to communication and able to

communicate with a learner engaged in sensorimotor exploration. The exploration architec-

ture presented in this chapter, as an extension of the one presented in Chapter 4, is an active

learning architecture that mimics the exploration behaviors observed during sensorimotor
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Figure 5.1: Diagram of the socially reinforced sensorimotor exploration architecture. Black
lines represent the flow of data during each vocalization. Blue lines represent signals used
to update the models. Notice that the selector switch indicates that sg could be generated
either directly from the social reinforcement (prioritized) or from the intrinsic motivations
mechanism. The simple switch indicates that the somesthetic model might accept or reject

a proposed interesting goal.

exploration in biological agents. The architecture is based on goal-directed motor babbling

(Rolf et al., 2010). Thus, sensory goals are actively chosen according to either, a model of

interest during exploration, or according to the instructor responsiveness through the course

of autonomous exploration.

The extended version of the architecture represented in Figure 4.2 to include the reformula-

tion/imitation mechanism is shown in Figure 5.1. The notorious difference is the insertion of

a social instructor and the relation of the productions of this instructor with the mechanism

to choose sensory goals. Interaction occurs when the learner production is ‘enough’ similar

to one relevant to communication. In that case, the instructor perceives this similitude and

reformulates with the relevant sensory unit. When the learner perceives an utterance by the

instructor, immediately it attempts to imitate that utterance. This reformulation mecha-

nism is similar to the one used in the Elija model (Howard and Messum, 2011), which was

motivated by the episodes of vocal imitation observed in mother-child interaction.

In the architecture shown in Figure 5.1, the learner starts without any experience producing

intended goals nor own constraints knowledge. First, the models are initialized in a first

stage, either randomly or using any other criteria. Once they are initialized, the intrinsically

motivated exploration begins. Then, looking at Figure 5.1, the interest model in the diagram
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can propose new goals that are likely to foster the progress of the competence function, which

measures the ability of the agent to reach sensory goals.

Let us suppose that the interest model proposes a goal and the instructor is not currently

interacting with the learner. In this case, the selector switches to the signal provided by

the interest model. Then, the proposed goal is received by the sensorimotor model; it infers

which is the motor action that would produce the self-proposed sensory goal according to the

current agent’s knowledge. Finally, the motor action is received by the somesthetic model

which predicts the nociceptive outcome of executing the proposed motor action according to

the current knowledge of the agent.

If the nociceptive prediction indicates that the nociceptive signal will be triggered when

executing the proposed motor action, in other words, if the learner suspects that executing

the motor action could produce a ‘painful’ experience, then the simple switch is open, and

the learner does not execute the motor command. Thence, the interest model proposes a new

goal and the prediction process is repeated. On the other hand, if the nociceptive prediction

suggests that there is not a risk when executing the motor action, then the simple switch is

closed, and the learner executes the motor action.

When the motor action is executed, sensory outcomes are produced. The salient sensory

outcomes are observed by the instructor and the learner itself, whereas the nociceptive out-

come is an internal sense of the learner. At this point, the generated data is used to train

the models.

Simultaneously, the instructor perceives the salient sensory production of the learner and

compares it to the set of sensory units relevant to communication. The instructor selects

the more similar unit and, if the Euclidean distance between the sensory production of the

learner and the sensory unit relevant to communication is lower than a predefined threshold,

then the instructor produces the relevant unit as a reformulation of the learner’s original

production. At that point, the double switch selects as a sensory goal the signal perceived

by the learner from the instructor’s production. The nociceptive prediction mechanism is

then activated as explained before. If the somesthetic model determines that it is possible

to imitate the instructor reformulation without risk of reaching an undesired motor configu-

ration, then the imitation action is executed, finishing the imitation episode. Otherwise, if

a ‘painful’ configuration may occur when imitating the instructor’s production according to
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the nociceptive prediction, then the interest model starts proposing intrinsically motivated

goals again to continue with the exploration. It is important to notice that every time the

instructor produces a reformulation, it decreases the social threshold for that sensory unit.

In this way, the reformulation/imitation episodes will occur if the agent is showing progress

toward mastering relevant social units. At this point, the generated data is used to train the

models, and the intrinsically motivated exploration process starts again.

In the next section, we introduce the proposed approach to deal with constraints during

intrinsically motivated and socially reinforced sensorimotor exploration as an algorithmic

architecture. The new details to implement such an architecture, and the main differences

with respect the architecture studied in Chapter 4, will also be introduced.

5.4 Architecture Implementation

The cognitive architecture described in the previous section, shown in Figure 5.1, is algorith-

mically formulated in this section. In the previous chapter, the elements needed to build the

experimental setup were explained in detail. In this section, a quick review of the already

introduced elements is performed. The new element, the instructor, which depends on the

embodied system that is being studied, is described in detail first for the parabolically shaped

region, and later for the ear-vocal track system, The explanation would allow any interested

reader to reproduce the experiments.

In the following, the elements shown in Figure 5.1 are enlisted and briefly described as they

are detailed in Section 4.4.

Embodiment. It represents the physical link between the learner and its inner and outer

environment. Three elements are necessary to build an embodiment in the architecture

considered. First, a motor system that allows the learner to modify its environment.

Secondly, a sensory system that allows the learner to perceive the effects of its action

over the outer environment. Finally, a sensory system that allows the learner to perceive

‘pain’ through a nociceptive signal.

Sensorimotor Model. It is a an Incremental Gaussian Mixture Model (iGMM) as intro-

duced in Chapter 3. For this model, a map f is assumed to exist such that s = f(m).
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The agent can observe s + σs for any executed action m. Thus, it is possible to find

a GMM, MSM, representing the extended space SM = S ×M. This model allows

us to compute the probability distribution P (m|s) applying Gaussian Mixture Regres-

sion (GMR), and later it is possible to determine which motor command m is the most

likely command to produce a desired sensory goal sg, thus solving the inverse regression

problem m = f−1(sg).

Somesthetic Model For the somesthetic model, we consider the same m-dimensional mo-

tor command spaceM, with m ∈M, and a new binary ‘pain’ output space P = {0, 1},

with p ∈ P. If the somesthetic system detects that a harmful body configuration has

been reached, then a nociceptive signal is triggered and perceived by the agent as pain,

then p = 1, otherwise p = 0. A map g is assumed to exist such that p = g(m) and

the agent can observe p for each vocal experiment. Thus, it is possible to find a model

MSS , with X = M and Y = P, that allows the prediction p = g−1(m) to determine

when a motor command m is likely to lead to a ‘painful’ configuration.

Interest Model for Auditory Goals The interest model for sensory goals is an element

that endows the learner with the ability to select goals that maximize the expected

competence progress in order to improve the quality of its sensorimotor model, resulting

in a better control over it. Through this work we use the competence measure used

in Moulin-Frier et al. (2013), an later adopted in Acevedo-Valle et al. (2015, 2018),

written as

c = e−|sg−s|, (5.1)

where sg is the sensory goal and s is the actual auditory production after executing a

motor command m ∼ f−1(sg). In this work, we consider the interest models provided

in the explauto toolbox.

Instructor The instructor and the learner are endowed with the same embodiment; thus in

this work, we do not consider the correspondence problem. A similar embodiment guar-

antees that the learner can reproduce any production that is made by the instructor.

In consequence, the instructor has a sensory system capable of perceiving the effects of

the learner’s actions. The instructor is assumed to be an expert in producing sensory

units relevant to communication purposes that are grouped into the set of sensory units

S.
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Algorithm 7 Sensorimotor exploration with goal babbling, motor constraint awareness and
social reinforcement.
Set {ne, randomseed}

1: Initialize MSM and MSS
2: Initialize MIM and i← 1
3: while i ≤ ne do
4: ptmp ← 1
5: while ptmp do
6: sg,i ← sample (MIM )
7: mi ←MSM (sg,i)
8: ptmp ←MSS (mi)

9: si ← f (mi) + σ and pi ← g (mi)
10: ci ← (1− pi ∗ γ)e−|sg,i−si|

11: i← i+ 1
12: train models()
13: sg,i ← interaction(si)
14: if sg 6= null then
15: mi ←MSM (sg,i)
16: ptmp ←MSS (mi)
17: if !ptmp then
18: si ← f (mi) + σ and pi ← g (mi)
19: ci ← (1− pi ∗ γ)e−|sg,i−si|

20: i← i+ 1
21: train models()

function interaction(s)

Define S, thS, αth

1: dist = |s− ss| for ss ∈ S
2: if min(dist) < thS[argmin(dist)] then
3: thS[argmin(dist)]∗ = αth
4: return S[argmin(dist)]|
5: else return null

5.4.1 Algorithm for Socially Reinforced Sensorimotor Exploration

Algorithm 7 corresponds to the cognitive architecture in Figure 5.1. The first part of the

pseudo-code corresponds to the learner. Besides, the interaction function represents the

behavior of the instructor, which can produce sensory units from a set of sensory units S

relevant to communication purposes. The algorithm for socially reinforced exploration with

goal babbling and motor constraint awareness starts with the learner having no sensorimotor

control experience.

First, models MSM and MSS are initialized in line 1 using arbitrary motor commands with

small values around the neutral motor system position. In line 2, model MIM is initialized

using the sensory results obtained in the first line as a sensory goal.
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Then, in line 6 of Algorithm 7 the agent selects a sensory goal sg,i for the next sensorimotor

experiment according to the interest model MIM . With sg,i, in line 7, the sensorimotor

model is used to obtain the motor command mi that according to the current knowledge of

the agent would produce si = sg,i.

Given the motor command mi, MSS predicts the nociceptive or ‘pain’ prediction ptmp for

g(mi) in line 8. That prediction indicates if the selected motor command is likely to trigger

the nociceptive signal, thus causing the agent a ‘painful’ experience. If the pain prediction

indicates that the signal p will be triggered when executing mi, then the agent rejects the

goal, the simple switch in Figure 5.1 is open; therefore the motor command is not executed.

Afterward, the interest model proposes a new goal and the prediction process is repeated

until a ‘safe’ goal is obtained. On the other hand, if the ‘pain’ prediction suggests that there

is no risk when executing the motor action mi, then the simple switch in Figure 5.1 is closed,

and the agent accepts and executes mi.

Next, the motor command mi is executed by the motor system. Afterwards, the agent

observes si and pi in line 9. In line 10, the learner evaluates the competence value ci, which

receives a penalization according to the parameter γ = 0.7 if the agent perceives ‘pain’

(pi = 1). Finally, in line 12, the training function for models is called, and each model

(MSM, MSS and MIM ) is updated.

Different from Algorithm 6, in Algorithm 7, the instructor also observes the salient outcomes

si produced by the learner, as indicated in line 13. As the instructor perceives si, the function

interaction is called. In function interaction, thS is a vector representing the social threshold

for each of the sensory units in S, whereas αth ∈ [0, 1] is a scaling factor that multiplies the

corresponding social threshold of a unit when it is selected within an interaction episode.

Within the interaction function, first si is compared to the set of sensory units relevant to

communication S in line 1. Then, the instructor selects S[argmin(dist)] ∈ S, the more similar

sensory unit. If the Euclidean distance between S[argmin(dist)] and s is lower than the corre-

sponding threshold thS[argmin(dist)], then the instructor produces sIM = S[argmin(dist)]

as a reformulation of si toward the learner, otherwise the interaction function returns a null

answer.

If the interaction function returns a null value, then the learner continues the autonomous

sensorimotor exploration in line 4. Else, interaction returns a sensory goal, the learner
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Figure 5.2: Parabolic shaped constrained region including sensory units relevant to com-
munication.

perceives sIM and chooses this sensory value as its next sensory goal sg,i as indicated in line

13 of the general algorithm. Then, the sensorimotor modelMSM receives the sensory goal and

predicts the motor command mi that likely will produce the desired sensory output. Once

the mi is computed, the somesthetic model predicts if the execution of this motor command

is likely to produce an undesired motor configuration. If the nociceptive prediction ptmp from

line 16 is close to 1, then the agent does not attempt to imitate the reformulation produced

by the instructor. However, if ptmp suggests that there is not a risk in executing mi, then the

learner executes the motor command attempting to imitate the instructor reformulation in

line 18, at this point the learner perceives si and pi, the competence is computed in line 19,

finishing the reformulation/imitation episode. Finally, in line 21, the training function for

models is called again, and the learner continues the autonomous sensorimotor exploration

in line 4.

In the following, specific details of each embodiment considered for experimentation, espe-

cially those related with the instructor, are detailed.

5.4.2 Parabolic Shaped Region System Embodiment

The parabolic shaped region system, shown in Figure 5.2, was introduced in Section 3.7

and endowed with a nociceptive mechanism in Section 4.4.2. Regarding the blue marks in

Figure 5.2, they represent sensory units laying intentionally close to the system constraints.
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Table 5.1:
Sensory units relevant to communication in S for the parabolic shaped region system.

m1 m2 s1 s2

1 1.9 4.1180 1.9 1.25
2 4.15 4.4142 4.15 2.
3 2.3 4.8439 2.3 3.4
4 5.27 5.4960 5.27 6.23
5 0.15 5.9496 0.15 8.7
6 2.36 5.7313 2.36 7.46
7 5.2 5.9783 5.2 8.87
8 3.0 3.7071 3.0 0.50

Table 5.2: Formant frequencies of German vowels (Hz).

F1 F2 F1 F2

/a:/ 716 1184 /a/ 694 1294
/e:/ 346 2222 /E:/ 526 1918
/i:/ 265 2179 /y:/ 274 1704
/o:/ 337 605 /O/ 534 929
/u:/ 288 628 /U/ 405 951
/2:/ 316 1311 /@/ 435 1614
/I/ 406 1854 /E/ 532 1859
/Y/ 396 1302 /9/ 501 1334
/6/ 639 1388

An instructor able to produce those sensory units is assumed and units are assumed to be

relevant to communication. The numerical values for those constraints are shown in Table 5.1.

5.4.3 Ear and Vocal Tract Embodiment

The ear-vocal tract system was introduced in Section 4.4.3. For the social interaction mech-

anism, in the case of prelinguistic development, this work considers an instructor with and

identical embodiment as the explained in Section 4.4.3. The instructor is capable of produc-

ing coarticulated vocalizations concatenating vowels similar to German vowels. The German

vowels used as a reference were taken from Birkholz (2013) and are shown in Table 5.2.

In order to synthesize these vowels with the Maedas’ synthesizer, a constrained non-linear

optimization problem was formulated for each one of them and solved using the fmincon

function available in Matlab R©. The optimization problem was solved using the static vocal

tract diva synth from Guenther Lab. Thus, the optimization problem for each vowel can
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be written as

minimize
m

es(m) = |s− sv|

subject to s = vts(m)

− 3 ≤ mi ≤ 3, i = 1, . . . , 10,

mi = 1, i = 11, 12, 13,

min af > 0.01.

(5.2)

In the optimization problem represented in Eq.(5.2), vts(m) represents the first two formant

frequencies produced by the Maedas’ synthesizer when executing motor command m, vector

sv is composed of the two formant frequencies of the vowel that is being synthesized, mi is

the i-th element of the motor command vector m, and finally min(af ) is the minimum values

of the cross section of the area function of the vocal tract, it is chosen a minimum value to

this minimum, because it was observed that when min(af ) ∼ 0+, even when the formant

frequencies are consistent, the synthesized speech signal is not congruent. At the same time,

to guarantee phonation, the motor commands related to phonation m11,12,13 are set to 1.

As the optimization problem includes many local minima, it was run several times using

different initial seeds for each vowel, and the best solution was taken. In Table 5.3, the final

results regarding formant frequencies are shown. Figure 5.3 shows graphically the synthesized

vowels. As it can be corroborated, these sensory units are the same units considered for

evaluation in the previous chapter (see Figure 4.7).

Once the motor commands are obtained through the optimization process, the seventeen

vowels are recombined to generate coarticulated movements using the embodiment explained

in Section 4.4.3 and showed in Figure 4.3. Considering the case of unarticulated gestures,

when the motor action of one of the time windows indicated in Figure 4.3 is set to zero, the

number of sensory units relevant to communication is 323.

5.5 Sensorimotor Exploration Results

In the previous chapter, results showed the advantages of considering constraints when us-

ing intrinsically motivated sensorimotor exploration architectures. The architecture from
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Table 5.3: Formant frequencies of German vowels. F1 scaled to 500 Hz. F2 scaled to
1500 Hz.

F1 F2 F̃1 F̃2 F1 F2 F̃1 F̃2

/a:/ 1.432 0.7893 1.3215 0.7958 /a/ 1.388 0.8627 1.2910 0.862
/e:/ 0.692 1.4813 0.5674 1.4658 /E:/ 1.052 1.2787 1.0520 1.2787
/i:/ 0.53 1.4527 0.5300 1.4527 /y:/ 0.548 1.136 0.6206 1.0972
/o:/ 0.674 0.403 0.4968 0.4701 /O/ 1.068 0.6193 1.1117 0.6238
/u:/ 0.576 0.4187 0.6820 0.4493 /U/ 0.81 0.634 0.8100 0.6340
/2:/ 0.632 0.874 0.6691 0.8740 /@/ 0.87 1.076 0.8700 1.076
/I/ 0.812 1.236 0.812 1.2427 /E/ 1.064 1.2393 1.0640 1.2393
/Y/ 0.792 0.868 0.792 0.8680 /9/ 1.002 0.8893 1.002 0.8893
/6/ 1.278 0.9253 1.2316 0.9175
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Figure 5.3: Fixed vocalizations obtained with divapy. Single auditory results for vocal-
izations with no ‘painful’ configurations used to generate 323 co-articulated gestures.

Moulin-Frier et al. (2013) was modified and served to test the hypothesis that using somes-

thesis to acquire motor constraint awareness would foster sensorimotor control development.

In this chapter, we compare Algorithm 6 against the new proposed Algorithm 7 in order

to study the advantages reported in Acevedo-Valle et al. (2017a) about including a simple

reformulation/imitation social mechanism into a constraints aware sensorimotor exploration

architecture. In the following, first, we present experimental results obtained when applying

the exploration architectures to our toy example, the constrained parabolic shaped region,

described in Section 4.4.2. Later, we present the experimental results obtained with the

exploration architectures for the ear-vocal tract system described in Section 4.4.3.



146 Chapter 5 Imitation Episodes in Sensorimotor Exploration

Table 5.4: Simulation parameters for Algorithm 7. Parabolic Shaped Region (PSR).
Ear-Vocal tract (E-VT).

Parameter Name PSR E-VT

ne number of experiments 10K 100K

randomseed random seed

MSM sensorimotor model iGMM iGMM

Kmin minimum number of Gaussian components 3 3

∆Kmax maximum increment of Gaussian components 5 10

Kmax maximum number of Gaussian components 20 30

αSM forgetting rate 0.2 to 0.05 0.2

trainSM training step 100 400

MSS somesthetic model wNN (k = 3) wNN (k = 3)

MIM interest model discretized progress tree

thS Similarity threshold for each sensory unit all 0.3 all 0.5

αth Threshold scaling factor after social episode 1, 0.99 1, 0.96

5.5.1 Simulation Parameters

In general, the simulation parameters used for the experiments in this section are the same

ones that were employed in the previous chapter. The parameter values are the result of

the tuning process made through Acevedo-Valle et al. (2015), Acevedo-Valle et al. (2017a),

Acevedo-Valle et al. (2018). Table 5.4 summarizes all the parameters that must be defined

in order to run Algorithm 7, different from the parameters in Table 4.1. This time some

parameters should be defined for the instructor agent.

Parabolic Shaped Region System

Regarding the chosen parameters for simulations with the parabolically shaped region system,

they were chosen according to the discussion in Section 4.5.1. Handcrafting mechanisms were

used in order to choose the sensory unit threshold thS and the scaling factor αth that will

scale the sensory unit threshold for a unit after this unit is used in a reformulation/imitation

episode. Several simulations were run using different values for these parameters as reported

in Acevedo-Valle et al. (2017a). In the case of thS, it was observed that large values caused

an important increment on the ratio of social experiments against intrinsically motivated

experiments. When thS was chosen to be small, the ratio of imitation episodes decreased

considerably, and the behavior of the developmental trajectory was somewhat similar to the

non-socially reinforced (autonomous) architecture.
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Regarding αth, its value was also chosen after running several simulations, differently from

thS, we could not find a direct relationship between the developmental trajectory and αth.

Ear-Vocal Tract System

Similar to the chosen simulation parameters for the parabolically shaped region system, a

description of the parameters chosen for the simulations with the ear-vocal tract system can

be found in Section 4.5.1. To tune the parameters for the instructor, in this problem a

similar procedure to the toy example was performed. Different values for thS and αth were

tested. Several simulations showed that a good value for the thresholds in thS was 0.5, in

order to achieve a good trade-off between the ratio of interactions and an improvement in

the evaluation error against the dataset containing the sensory units relevant to communica-

tion. Regarding αth, similar to the case of the toy example, we could not establish a direct

relationship between the exploration performance and αth. However, after running some

preliminary tests, 0.96 was chosen as value to observe the behavior of the exploration when

this parameter is varied.

5.5.2 Parabolic Shaped Region System

The procedure to minimize randomness in order to obtain significant results is the same as in

the previous chapter. A large number of simulations were run considering fifty random seeds.

Thus, for each set of chosen parameters, fifty explorations changing the random seed were

run. Five scenarios are considered to experiment. First, the constraints aware architecture

without social mechanism corresponding to the results in the previous chapter to use it as

a baseline because its performance was the best in Chapter 4. Later, we consider the social

mechanism in four different scenarios: on the one hand, when somesthesis is considered for

αth = 1 and αth = 0.99, and on the other hand when somesthesis is not considered for

αth = 1 and αth = 0.99. Each simulation consists of 100 experiments to initialize MSM and

MSS , 100 experiments to initialize MIM and 10K exploratory experiments, including both

the intrinsically motivated experiments and the social experiments that may emerge during

the exploration. The sensorimotor model in each simulation is evaluated against two data

sets during the exploration. First, after the initialization of the models, then after every 500

samples during exploration, and finally, at the end of each simulation. The first dataset is
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Figure 5.4: Results along the exploration running Algorithm 7 using the parabolic shaped
region system. If not indicated αth = 0.99, and (auto) indicates that it was an autonomous

exploration with Algorithm 6.

composed of 441 points evenly distributed along the allowed region of the parabolic shaped

region which is shown in Figure 3.7. The second dataset contains the socially relevant sensory

units shown in Figure 5.2 and Table 5.1.

Figure 5.4 shows the average results during the exploration for the five groups of simulations

that were run. The plots were obtained using the average of the 50 simulations considered

for each group of simulations. On the one hand, Figure 5.4 (upper) shows the average norm

of the error |sg− s| during exploration considering a moving average window of 100 samples,

defined in Eq. (4.3). On the other hand, Figure 5.4 (lower) shows the average undesired

motor configuration ratio along the exploration ucrav,expl defined in Eq. 4.4.

Figure 5.5 shows the average ratio of reformulation/imitation episodes along the exploration

eriav defined as:

eriav(k) =
1

nrs

nrs∑
i=0

1

k

k∑
j=0

[interaction(si,j) 6= null]

 , (5.3)

for the k-th experiment, where nrs is the number of random seeds and interaction(si,j) is

the reinforcement provided by the instructor in the j-th experiment when simulating with
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the i-th random seed.
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Figure 5.5: Interactions along the exploration running Algorithm 7 using the parabolic
shaped region system. If not indicated αth = 0.99.

Results in Figures 5.4-5.5 suggest that the best performance is obtained when the somesthetic

mechanism and the imitation mechanisms are considered together. In general terms, the

ratio of undesired motor configurations during exploration and evaluation are lower, and the

exploratory and evaluation errors, for both evaluation datasets, are noticeably smaller.

During exploration, looking at Figure 5.4, results obtained in Chapter 4 are corroborated.

In all the considered simulation scenarios, it is observed a significant decrement of ‘painful’

configurations when somesthesis is considered. The rate of decrement is considerably larger

for the group endowed with the somesthetic mechanism, regardless of whether they were

endowed with the social mechanisms or not. Regarding the behavior of the exploratory

error, as observed in Chapter 4, somewhere between the samples 4K and 6K, it tends to

increase until reaching a sort of steady value. However, for the agents without somesthesis,

it continues to increase and also coincides with a slight increment of the ratio of undesired

contacts. We argue that after the learners take advantage of regions where learning may

be easy, they are pushed to explore regions where the error increases to keep the progress

in competence. As it is observed in Figure 5.4, for learners endowed simultaneously with

the social and somesthetic modalities, the values of the exploratory error are predominately

smaller than for the autonomous learners.

In Chapter 4, we argued that the error increased because the agents have already explored the

regions that permit a high rate of progress in competence values and start to exploit regions

where the progress is harder due to their closeness to constrained regions. Thus, there is a

slight increase of undesired configurations in the simple agents, whereas the agents endowed
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with the somesthetic mechanism continue decreasing the rate of ‘painful’ configurations but

at a considerably smaller rate. On the other hand, the groups of agents endowed with the

social mechanism showed better performance regarding the evolution error when the error

starts increasing. The improvement in performance may be attributed to the location of the

sensory units relevant to communication. Those units are close to constrained regions; thus

the interaction with the instructor encourages the agent to explore hard regions of the sensory

space earlier in its life achieving a more ordered incremental learning. To the observer, it

might appear that all the agents, depending if they were endowed with the somesthetic

mechanism or not, threw the same results regarding the evolution of the ratio of undesired

motor configurations, however numerically there is a slight difference reported in Table 5.5.

Regarding the ratio of reformulation/imitation episodes, in Figure 5.5, we observe that agents

endowed with somesthesis, in general, interact less with the instructor than the agents with-

out somesthesis. A smaller number of interactions is due to the fact that those agents without

the nociceptive feedback attempt to imitate any production produced by the instructor, re-

gardless whether the imitation act could produce a ‘painful’ outcome. On the other hand,

agents endowed with somesthesis recall information from the sensorimotor and somesthetic

models. Thus, before imitating the instructor’s production, the learner predicts if the imi-

tation act is likely to produce a ‘painful’ situation, and if that is the case, then the learner

prefers not to imitate the reformulation provided by the instructor. On the other hand, in-

structors considering a scaling factor for the social threshold αth < 1 produced significantly

smaller ratios of social episodes compared to those instructors with αth = 1. However, the

decrease of interactions did not considerably affect the evolution of the exploratory error nor

the ratio of undesired motor configurations.

As socially relevant units are close to constraints, increments in imitations strengthen our

hypothesis that the agent is exploring close to constrained regions as shown in Figure 5.5, at

least in the case for αth = 1. However, it is also important to observe that when αth = 0.99,

as the ratio of interactions decreases, then the expected results for the current experimental

setup is that learners interacting with instructors considering αth = 0.99 will have a similar

behavior to the autonomous agents in the long term as observed in Figure 5.4. In that figure,

it is observed how, after 10K experiments, the exploratory error |sg − s| for the autonomous

simulations and the simulations with αth = 0.99 keeps higher than for the simulations with

αth = 1 when comparing social groups.
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In the following, we study the results considering the evaluations against the two considered

evaluation datasets. Figure 5.6 was obtained from the data generated during the evaluations

performed over the sensorimotor model through the simulations using the dataset contain-

ing data distributed along the whole reachable space of the shaped parabolic region (Whole

dataset). The figure was obtained averaging the results of the 50 simulations run for each

group. First, Figure 5.6 (upper) shows the average mean evaluation error eav defined in

Eq. 3.12. Secondly, Figure 5.6 (lower) shows the average ratio of undesired motor configu-

rations ucrav defined in Eq. 4.6. In Figures 5.6-Figures 5.7, the size of the round markers in

the plot is proportional to the standard deviation between simulations.
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Figure 5.6: Evaluation evolution against the dataset evenly distributed along the reachable
space of the parabolic shaped region system, running Algorithm 7. If not indicated αth =

0.99, and (auto) indicates that it was an autonomous exploration with Algorithm 6.

Similarly to Figure 5.6, Figure 5.7 was obtained from the evaluations performed over the

sensorimotor model through the simulations using the data set containing sensory units

relevant for socialization purposes (Social dataset). First, Figure 5.7 (upper) shows the

average mean evaluation error eav. Secondly, Figure 5.7 (lower) shows the average ratio of

undesired motor configurations for the evaluation dataset ucrav.

Finally, Table 5.5 shows some values of interest to analyze the results. The first row displays

the values for the undesired motor configuration ratio through the simulation. Afterward,

relevant values for the evaluation against the Whole and the Social datasets are shown: the
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Figure 5.7: Evaluation evolution against the sensory units relevant for socialization
pusposes of the parabolic shaped region system, running Algorithm 7. If not indicated
αth = 0.99, and (auto) indicates that it was an autonomous exploration with Algorithm 6.

minimum average mean evaluation error achieved per each group of simulations min eav, the

average ratio of undesired motor configurations when achieving min eav, and the evaluation

step in which min eav was achieved.

Table 5.5:
Simulation results for the constrained parabolic shaped region system using Algorithm 7.

Algorithm 6 αth = 1 αth = 0.99
Somesthetic group Simple group Somesthetic group Simple group Somesthetic group
value std value std value std value std value std

ucrav,expl 0.0792 – 0.4629 – 0.0766 – 0.4553 – 0.0796 –

Whole evaluation dataset

min eav 0.0713 0.0321 0.1304 0.0566 0.0710 0.0317 0.1334 0.0953 0.0708 0.0274

ucrav for min eav 0.1684 0.0289 0.2708 0.0276 0.1668 0.0274 0.2497 0.0293 0.1690 0.0245

Evaluation Step 12 10 13 24 16

Social evaluation dataset

min eav 0.1088 0.0677 0.1728 0.1236 0.0966 0.0437 0.1618 0.1109 0.0941 0.0523

ucrav for min eav 0.11 0.0776 0.2275 0.0990 0.125 0.0661 0.2475 0.0810 0.125 0.075

Evaluation Step 21 25 24 24 16

NOTE: The table shows, in order of appearance, the average of undesired motor configu-
ration ratio during the exploration, and considering both evaluation datasets, the minimum
value of the average mean evaluation error min eav, the average ratio of undesired motor
configurations obtained for min eav, and finally, the evaluation step in which this minimum
was achieved.

Figures 5.6-5.7 and Table 5.5 corroborates what Figures 5.4-5.5 suggested. The best results
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are obtained when the somesthetic mechanism is used together with the reformulation/imi-

tation mechanism. Regarding the evolution of the average mean evaluation error eav along

the exploration against both datasets, in Figures 5.6-5.7, we observe that both evaluations

evolve similarly, and they are similar to the one observed in Chapter 4, at the beginning the

evaluation errors are large for all the scenarios. However, the standard deviation of the learn-

ers interacting with instructors and endowed with somesthesis are smaller than the others.

As the agent explores its sensorimotor system, the evaluation error and standard deviation

decrease with different rates for all the scenarios. When the somesthetic mechanism is con-

sidered, we observe that the improvement is steadier and faster than without the mechanism.

For the toy example, results suggest that the capacity of the learners to acquire knowledge

along all the regions of the reachable space depends more on the somesthetic mechanism

than on the social reinforcement mechanism.

There is an important emerging question: What happens during the evaluations after the

performance reaches a minimum (considering the evaluation error)? We observe that the

evaluation errors tend to increase after a minimum is reached. This increment of the error is

more notorious in agents without somesthesis, and less notorious for the socially reinforced

agents with αth = 1. As it was mentioned before, it was expected to observe similar behaviors

in the long term for simulations with αth < 1 and simulations without the social mechanism,

as we observe in the evaluation behaviors again. The increment observed in the error is

attributed to the ratio of undesired motor configurations during exploration indicated in

Figure 5.4 which causes the overall knowledge that the learner has of its sensorimotor system

to degrade. As the agent explores constrained regions, the redundancy of the sensorimotor

knowledge increases, which makes it more difficult for the sensorimotor model to represent all

the knowledge and retrieve accurate motor command inference over the whole sensorimotor

space.

It should be determined whether the scaling factor αt was relevant for the final results or

not. Even though the results for all the scenarios were very similar, the large number of

run simulations guarantees a certain degree of conservativeness. In fact, at this point is

not easy to provide an absolute conclusion regarding αt. First, looking at Figure 5.4 does

not give any clear clue. In Figure 5.5, it is observed that the instructor must work less to

achieve similar results through the development of the agent. However, considering that

the autonomous learner also achieves a similar result without social feedback, this is not an
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argument sufficiently strong to make a conclusion. Besides, looking at Table 5.5, it is observed

that in the evaluation scenario with the Whole dataset, the minimum error is achieved by the

agents with αth = 1 only after 13 evaluation steps (6K), whereas for the evaluation against

the socially relevant units, the minimum is reached in 16 evaluations steps (7.5K samples) by

the learners interacting with instructors considering αth = 0.99. Thus, these learners achieve

to master the socially relevant units considerably earlier than the other groups of agents.

Looking at Figure 5.7, it is observed that for the agents with αth = 0.99, the evaluation

error and its standard deviation are decreasing until they reach their best behaviour after 16

evaluation steps, from that point the group of agents starts a sort of transient behavior that

degrades their performance, as all the groups of agent do after hitting their best behavior.

The relevant conclusion at this point is that αth = 0.99 allowed faster and better performance

for a social development scenario with the toy example.

5.5.3 Ear-Vocal Tract System

In this chapter, experimentation for the ear-vocal tract system is divided into three groups.

First, agents endowed with the somesthetic mechanism proposed in the previous chapter

and simulated according to Algorithm 6, as their advantage over the agents without this

mechanism was established. The second and third groups correspond to agents endowed

with the social mechanism for imitation. They are simulated according to Algorithm 7,

one group considers αth = 1 and the other αth = 0.96. On the other hand, different from

the previous chapter, the initialization criteria for the interest model MIM considers all the

sensory results obtained when initializing the somesthetic model MSS and the sensorimotor

model MSM as sensory goals. Based on the results obtained in the previous chapter, we

concluded that initializing MIM only with goals that did not trigger the nociceptive signal p

during the initialization of MSM performed worse when evaluating against Seval.

For each scenario of simulation, eighteen different random seeds were considered to generate

random initialization sets of motor commands from uniform distributions. In total, fifty-four

independent simulations were run, thirty-six using Algorithm 7 and eighteen for the group

of simulations with Algorithm 6. All simulations consisted of 100K vocalizing experiments

plus 2K initialization vocalizing experiments. The limits for the values of initializing motor

commands related to the vocal tract articulators were [−1, 1], whereas for motor commands

related to the phonation parameters were [0, 0.7].
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Figure 5.8: Results for simulation with the ear-vocal tract system using Algorithm 7.
(Upper) Average sensory error during exploration using a moving average window of 1000
samples. (Lower) Average undesired motor configuration ratio evolution along the explo-

ration.

Summarizing, for each simulation MSM and MSS are initialized together as indicated in line

1 of Algorithm 7 with the different initial motor command sets. Later, using the auditory

results of the first stage, the interest model MIM is initialized as indicated in line 2 of

Algorithm 7. During the initialization of MIM , MSM is used to infer the motor actions

that will likely produce the initial auditory goals. These commands are executed without

considering the nociceptive prediction ptmp. Afterward, the socially reinforced intrinsically

motivated sensorimotor exploration is run for 100K experiments.

Finally, the sensorimotor model generated during the exploration is evaluated with respect to

the 323 coarticulated gestures, which were generated from the recombination of the German

vowels dataset described in Figure 5.3 and Table 5.3. This set of samples will be called

evaluation dataset Seval in the following. Evaluation against Seval is performed every 2.5K
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samples during each simulation.
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Figure 5.9: Results for simulation with the ear-vocal tract system using Algorithm 6.
(Upper) Average mean evaluation error performed every 2.5K samples during exploration
against Seval. (Center) Average sensory error during exploration using a moving average
window of 1000 samples. (Lower) Average undesired motor configuration ratio evolution

along the exploration.
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Figure 5.10: Results for simulation with the ear-vocal tract system using Algorithm 6.
(Upper) Average mean evaluation error performed every 2.5K samples during exploration
against Seval. (Center) Average sensory error during exploration using a moving average
window of 1000 samples. (Lower) Average undesired motor configuration ratio evolution

along the exploration.

In Figure 5.8 (upper), it is shown the moving average of the mean exploratory error along the

different groups of simulations considering a window size ws of 1000 samples and defined in
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Eq. (4.3). In Figure 5.8 (lower), it is shown the undesired motor configuration ratio, defined

in Eq. (4.4), for each group of simulations along the exploration. Finally, Figure 5.9 shows

the average ratio of reformulation/imitation episodes defined in Eq. (5.3).

On Competence and Social Reinforcement Impact

Results suggest that those agents that are endowed with the social mechanism perform

better than the autonomous agents. From Figure 5.8 (upper), it is observed that social

reinforcement produces significant differences between simulation groups regarding sensory

error during explorations. In general, the results are consistent with Acevedo-Valle et al.

(2017a) regarding the advantages of social reinforcement. Moreover, it is observed that the

social group with αth = 1 starts reducing its exploratory error considerably faster than the

autonomous group and the other social group. The tendencies regarding the average ratio of

undesired configurations are similar in all the considered cases, but the social groups achieve

lower amounts of undesired configurations, being αth = 1 the best scenario. The differences

between simulation groups may be attributed to the results presented in Figure 5.9. Therein,

as expected, it is observed that the agents with αth = 1 produced more reformulation/im-

itation episodes than the other agents. In fact, the group of social agents with αth = 0.96

shows the same tendency as the other social group at the beginning of the simulation, but as

long as the value of αth causes the social thresholds in the vector thS to decrease every time

an interaction occurs (indicated in line 3 of function interaction in Algorithm 7). Then, the

interactions between instructor and learner occur with less frequency, causing the exploration

to be more similar to the exploration made by autonomous learners.

In Acevedo-Valle et al. (2017a), we argued that the changes in the tendency of interac-

tions from the perspective of the instructor could be an indicator of developmental changes.

Therein, regarding the ratio of interactions, it was observed that at the beginning of the sim-

ulations without considering the somesthetic modality, learners start to imitate any feedback

received from the instructors regardless of the possibility to reach undesired motor configura-

tions. On the other hand, at the beginning learners endowed with the somesthetic mechanism

does not imitate with the same frequency. The unwillingness to imitate is attributed to the

somesthetic mechanism. If the nociceptive prediction in line 17 of Algorithm 7 indicates that

an undesired configuration is likely to occur, then imitation does not occur. However, as

learners continue exploring and discover regions where attempting imitation is not likely to
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produce undesired motor configurations, then the amount of interactions increases dramat-

ically. For instructors, who are unaware of learners’ internal cognitive processes, the rise of

the number of interactions might be seen just as a spontaneous ‘desire’ of learners for social

interaction, in other words, instructors may interpret this change as the onset of a socially

guided developmental stage.

Regarding the evaluation against the coarticulated gestures in Seval, Figure 5.10 shows the

average mean evaluation error eev evolution for each simulation group. It is important to

remember that the size of the markers in the plot is proportional to the standard devia-

tion between simulations in the same group normalized according to the maximum standard

deviation obtained for all the groups. In terms of progress on the ability of the agents to

reproduce the evaluation dataset Seval, it is observed that tutored learners achieve better

results, even though the evaluation does not display a smooth evolution. Looking at Fig-

ure 5.10, except during some periods, the autonomous agents are an upper bound and the

social group with αth = 1 are the lower bound of the average mean error. The minimum

value for eev is achieved by the social group with αth = 1 as reported also in Table 5.6.

Similar to Figure 4.9, Figure 5.11 was obtained using the average proportion of each type

of vocalizations for each simulation group. Vocalizations are classified in three types: (a)

Silent, if no phonation occurs in any of the two perception windows; (b) Unarticulated, if

phonation occurs in one of the perception windows; and (c) Coarticulated, if phonation occurs

in both perception windows. Plots in Figure 5.11 show the evolution of the proportional

contribution of each vocalization type to the total of vocalizations through the exploration

for each simulation group. The improvement in the number of phonatory vocalizations and

especially the amount of coarticulated gestures is notorious when the social contingency is

considered. In the last chapter, we mentioned that agents belonging to the somesthetic group

avoid exploitation of silent regions. Many of these regions are likely produced by undesired

motor configurations, which are avoided due to the ability to predict the nociceptive result

of a given motor command. In this chapter, we have observed that the social mechanism

has a dominant influence when it comes to the production of more complex vocalizations. In

general, we have obtained a more clear picture of the developmental transition from silent

vocalizations to unarticulated and later to coarticulated gestures.

We emphasize that unaware of the learners’ internal cognitive processes, changes in the learn-

ers’ behavior regarding the rate of change for the different vocalization type proportions may
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be interpreted by the instructors as developmental milestones. If we observe the simulation

group with αth = 0.96 in Figure 5.11, it is observed that the rate of change in the pro-

portions is related to the ratio of interactions showed in Figure 5.9, when a socially guided

developmental stage vanishes and the agent starts an autonomous exploration, then the rate

of change of vocalization type proportion decreases. On the other hand, when considering

the social group with αth = 1, as the social guidance does not vanish, thence the ratio of

interactions keeps growing, first with a significant rate which later decreases, therefore it is

expected that the proportion of unarticulated and coarticulated vocalizations remains grow-

ing as corroborated in Figure 5.11. Furthermore, the rate of growth of those vocalization

types seems to be related to the rate of growth of the reformulation/imitation episodes ratio.
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Figure 5.11: Proportions of vocalization classes. (a) Social group (αth = 0.96). (b) Social
group (αth = 1). (c) Autonomous group.

Finally, we argue that social groups, especially that with αth = 1, achieve better performance

regarding the exploratory error with respect to the autonomous group due to a significant

shrank of silent and unarticulated vocalizations that lead to higher errors as discussed in

Chapter 4.

On Explored Regions

Table 5.6 reinforces the arguments provided based on Figures 5.8-5.11 regarding the perfor-

mance of the exploration. A series of numerical descriptors are displayed for each simulation

group to draw more conclusions from the experimental results. First, the minimum value

achieved for the average mean evaluation error eav is displayed, visible as well in Figure 5.10.

Then, the average mean exploratory error for each group of simulations is also provided.
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Table 5.6: Exploration results for the era-vocal tract system using Algorithm 7.

Group autonomous αth = 0.96 αth = 1

min (eav) 1.4885 1.4648 1.4398

Average |sg − s| exploration 1.8741 1.7578 1.2949

ucrav,expl 0.3139 0.3359 0.2554

Unart. vocalization ratio 0.5305 0.4549 0.4249

Coart. vocalization ratio 0.1359 0.2256 0.3847

Convex hull volume 1.0430 1.0074 0.9992

Note: The table shows, in order of appearance, the minimum average mean evaluation
error, the average mean exploratory error, the average ‘painful’ articulation ratio during
the exploration, the average ratio of unarticulated and coarticulated vocalizations along the
simulations, and the volume of the convex-hull encapsulating the frequency components of
the explored auditory data.

Moreover, it is also shown in Table 5.6 the average ‘painful’ vocalization ratio produced dur-

ing exploration for each group of simulations. Afterward, it is shown the average proportion

of unarticulated and coarticulated vocalizations achieved by each group of simulations. In

general, supporting the conclusions borrowed from the previous figures, the numerical de-

scriptors also suggest that the results obtained with the learners endowed with the social

modality perform better than the agents endowed only with the somesthetic modality.

Finally, Table 5.6 contains the volume of the convex hulls described by the explored data for

each simulation group. As in Chapter 4, those volumes are obtained using the sensory data

generated during each simulation and considering only the formant frequencies (F11, F21,

F12, and F22) of the auditory result. Python’s scipy library is used to compute the convex

hull that encapsulates the data for each simulation. Then, the volume of the convex hull for

the simulations within each simulation group is averaged to obtain the descriptor displayed

in the table.

Regarding the trade-off between exploration and exploitation, experiments in this chapter

show that learners without social reinforcement perform slightly better than the agents with

the social mechanism regarding the size of the convex hull described by the explored sensory

data. This result might be attributed directly to the fact that the imitation episodes attract

the exploration to certain regions of the sensory space, whereas the autonomous learners

remain free to spend more experiments in different regions of the sensory space. If imitation

episodes lead to more exploitation experiments, then it is not surprising that the group

of simulations with αth = 1 is the one producing the smallest convex hull, as it is the
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one producing more imitation episodes. Even though there is a shrinkage of the convex

hull volumes, the ratio of (1.0074/1.0430) for the group of simulations with αth = 0.96

with respect to the autonomous group represents a shrinkage of 3.4%, whereas the ratio

for the group with αth = 1 is (0.9992/1.043) representing a shrinkage of 4.2%. Therefore,

the shrinkage of explored regions over the sensory space is not significant compared to the

improvement observed in the performance to produce sensory goals and to the increment of

more complex phonatory productions.

Similar to the analysis provided in Chapter 4, Principal Component Analysis (PCA) is

performed to analyze the results obtained running Algorithm 7 with the ear-vocal tract

system. The PCA is performed over the formant frequencies dimensions of the sensory space

(F1,1, F2,1, F1,2, and F2,2). As in the previous chapter, first, we concatenate all the data

obtained with the three groups of simulations to guarantee that the results are comparable.

Then, PCA is performed over the concatenated data. Looking at the PCA results, it is

observed that the data can be represented keeping the two first principal components, those

components keep a total of 97.27% (50.36% + 46.91%) of the data variance with respect to

the original data. The first and second principal components are:

~pca1 =
[
0.4196 0.4844 0.4890 0.5917

]
,

~pca2 =
[
0.4936 0.5878 −0.3991 −0.5015

]
, and

µ =
[
0.4619 0.5420 0.5251 0.6461

]
,

where µ is the estimated mean for all the sensory data used to perform the PCA procedure.

Once PCA was performed, the sensory data for each group was transformed from 4-D data

into 2-D data, thence Kernel-Distribution Estimation (KDE) was performed using Gaussian-

Kernels in order to compare the explored regions obtained for each simulation group, and

Figure 5.12 was obtained from this KDE.

In general, the results in Figure 5.12 indicate that the agents explored similar regions, but

with different intensity. In both principal components, there are three main zones of explo-

ration and the distribution of the data seems to be kind of uniform between the regions. As

in the previous chapter, two high peaks appear in the regions where the silent vocalizations

are located. Considering the PCA obtained in this chapter, for a null phonatory input the
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Figure 5.12: Estimated data density distributions using Gaussian kernels for all the data
obtained for each group of simulations considering two PCA components.

PCA transformation produces

s[0, 1, 2, 4] = [0, 0, 0, 0]
PCA transform−−−−−−−−−→ [−1.0955, −0.0130].

As expected, due to the proportion of each type of vocalizations for each group (see Fig-

ure 5.11), the autonomous learners and the social learners with αth = 0.96 explored more

intensively around the silent regions. On the other hand, the exploration performed by the

social learners with αth = 1 look very balanced along the three regions where, in general,

exploration occurs. The achieved uniformity by this social group is a good explanation to

the significant increment of coarticulated vocalizations.

In Figure 5.13, data distributions along the principal components are estimated only con-

sidering the ‘unpainful’ vocalizations along the explorations for each simulation group. To

make the results comparable, as in Chapter 2, data distributions are scaled proportionally

to the number of ‘unpainful’ vocalization per group divided by the number of ‘unpainful’

vocalizations for the group that produced the most vocalizations of that kind (social group

with αth = 1 as observed in Table 5.6). In Figure 5.8, it is also observed that the final

ratio of undesired motor configurations is similar for the three groups of simulations. Thus,
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Figure 5.13: Estimated data density distributions using Gaussian kernels for the ‘un-
painful’ data obtained for each group of simulations considering two PCA components.

it is obvious that even though the distributions of ‘unpainful’ vocalization are not equally

distributed along the principal component projections for all the simulation groups, at least

they should have similar volumes, which is corroborated in Figure 5.13. The differences in

the shape of the distributions are still around the silent regions of both principal compo-

nents, where the autonomous learners and the social group with αth = 0.96 explore with

more intensity, whereas the social group with αth = 1 explores with more intensity around

PCA1 = 1.2 and PCA2 = 0.2. This result might be related to high ratio of interactions

produced by this group during the sensorimotor exploration, to corroborate this hypothesis

Figures 5.14-5.16 were generated.

In Figure 5.14, data distributions along the principal components are shown only consid-

ering the phonatory vocalizations along the explorations for each simulation group. The

estimated distributions are scaled proportionally to the simulation group that produced the

most phonatory results (social group with αth = 1 as observed in Table 5.6). Given the

proportions obtained for each vocalization type with each group of simulations according to

Figure 5.11 and Table 5.6, it is not surprising to observe what the results for the distribution

of phonatory exploration data indicate. In general, the social group with αth = 1 explored

more intensively the phonatory regions, followed by the other social group. There is a slight
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Figure 5.14: Estimated data density distributions using Gaussian kernels for the phonatory
data obtained for each group of simulations considering two PCA components.

difference in the proportion of unarticulated gestures. As observed in Table 5.6, the social

group with αth = 0.96 obtains the highest proportion of this vocalization type, 45.49% over

the 42.49% obtained by the social group with αth = 1. In Figure 5.14, this difference is

attributed to small sections of the principal component projections where the line describing

the distribution of the explored data distribution for the social group with αth = 0.96 is

higher than the other social group. For example, in the case of PCA1 around 0 and 1.5, and

for PCA2 around −0.7 and 1.5.

Similar to Figure 4.14, Figure 5.15 was generated performing Gaussian-KDE to the dataset

Seval containing coarticulated gestures considering German vowels represented in Table 5.3.

Once the distributions in Figure 5.15 were estimated, they were used to filter the distribu-

tions in Figure 5.14 in order to obtain Figure 5.16. The latter figure establishes a relation

between the explored phonatory regions over the sensory space with the regions relevant for

socialization. After filtering the estimated distributions, it is observed that the social groups

of simulations have a clear dominance over the autonomous agents when it comes to explored

regions relevant to social purposes. Which is not surprising due to the social reinforcement;

logically, the group of simulations with αth = 1 explored with more intensity these relevant

regions as it produces considerably more reformulation/imitation episodes.
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Figure 5.15: Estimated data density distributions using Gaussian kernels for the German
vowels dataset considering two PCA components.
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Figure 5.16: Estimated data density distributions using Gaussian kernels for the phonatory
data obtained for each group of simulations considering two PCA components and filtered

with the evaluation dataset’s distribution.

5.6 Discussion

In this chapter, we have extended the results obtained with the architecture presented in

Chapter 4. That architecture is an intrinsically motivated exploration architecture used
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to imitate the sensorimotor exploratory behaviors in humans considering motor constraints.

The novelty in this chapter is related to the integration of the concept of social reinforcement

into the architecture. This reinforcement is observed naturally occurring in interactions

between infants and caregivers and has an important impact on early social prelinguistic

development according to developmental psychology studies mentioned as well. In general,

we propose the use of reformulation/imitation episodes based on evidences provided in Gros-

Louis et al. (2016) about mothers responding as if children were approximating a word may

support language development (imitation/expansion responses).

Most of the conclusions obtained in the previous chapter and Acevedo-Valle et al. (2017a)

were corroborated. From the experimental results, it is concluded that the socially reinforced

architecture has evident advantages over autonomous architecture when looking at the evo-

lution of exploratory and evaluation errors. When using the architecture with the ear-vocal

tract system considering an instructor expert on German vowels, experimental results sug-

gest that social reinforcement is crucial to the emergence of more complex vocalizations

(coarticulated gestures) as emphasized in Gros-Louis et al. (2014). The novel architecture is

compared with the best results obtained in Chapter 4, where somesthetic senses and intrinsic

motivation roles were studied.

As mentioned in Calinon et al. (2007), in social artificial learning approaches, a set of generic

questions have been formulated. For instance, a social learning approach faces these ques-

tions: What to imitate?, How to imitate?, When to imitate, and Whom to imitate?. Demiris

and Meltzoff (2008), indirectly, formulates the same questions when analyzing the differ-

ent approaches in developmental robotics studies of imitation mechanisms. In this work,

we established that imitation occurs in a bidirectional manner, from the perspective of the

instructor, it imitates any utterance by the learner that is similar to a socially relevant utter-

ance, reformulating the original learner’s utterance as that relevant utterance. On the other

hand, from the perspective of the learner, it will establish as a sensory goal any feedback

received from the instructor. However, imitation will occur only under the condition that

the learner has some knowledge on how to imitate without the risk of reaching a ‘painful’

motor state. The question Whom to imitate? is not considered in this work.

As in Chapter 4, in the case of the simple toy example it was corroborated that for all

the considered dimensions of evaluation, agents endowed with the somesthetic mechanism

perform better. However, the comparison between the autonomous somesthetic groups and
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the two somesthetic groups considering the social mechanism is not straightforward as they

do not produce radical differences in their behavior. However, looking at the nuances of the

results, it is possible to observe that the social groups of simulations perform slightly better

as suggested by the minimum achieve evaluation errors reported in Table 5.5. Moreover,

if the best performance regarding the social evaluation is achieved sooner when αth < 1 it

may be interpreted as an opportunity for development. If the instructor detects that the

agent has successfully developed in producing those sensory units, then it may be the door

to attempt more complex interactions.

Regarding the ear-vocal tract system, comparing with the results in Chapter 4, it was ob-

served that six simulations per scenario were not enough to establish reliable differences

between simulation scenarios. Therefore, for each of the considered scenarios, we ran eigh-

teen simulations. Through this work, it has been insisted about the high dimensionality and

redundancy of vocal spaces, and the fact that many vocalizations lead to non-phonatory vo-

calizations, especially considering our divapy implementation of an ear-vocal tract system.

With the modifications to the intrinsically motivated sensorimotor architecture proposed

in Chapter 4, where motor constraint awareness is integrated using a somesthetic sense, a

large amount of exploitation over regions of vocalizations producing ‘silent’ sensory results

was avoided. Thus, the learners can spend more energy exploring in regions were complex

vocalizations can be learned; thus increasing the proportion of unarticulated and coarticu-

lated gestures compared to autonomous agents. In this chapter, through the introduction

of a social modality working through reformulaton/imitation episodes, it is achieved a rad-

ical improvement regarding the proportion of complex vocalizations produced. In fact, the

group of simulations considering αth = 1 achieved 20.67% more phonatory vocalizations,

and 180% more coarticulated vocalizations considering absolute numbers. In other words,

for each coarticulated vocalization produced by the autonomous learners, the social learners

with αth = 1 produced almost three coarticulated vocalizations, which is a big improvement.

Therefore, the social contingency enables artificial agents to spend more energy exploring and

exploiting complex phonatory regions. In this sense, apart from being shaped by constraint

awareness, we showed how sensorimotor exploration could be driven to sensory regions that

generate more complex behaviors by interactions with an expert instructor, where imitation

interactions occur when an instructor reformulates learner’s spontaneous sensory experiments

similar to sensory units relevant to communication.
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Regarding the emergence of vocal developmental stages, in Chapter 4 we observed a clear

developmental trajectory in the somesthetic groups as shown by Figure 4.9. The results

considering the somesthetic modality were considerably better than agents under the archi-

tecture from Moulin-Frier et al. (2013). In this chapter, Figure 5.11 shows a beautiful picture

of developmental transition with a significant improvement compared to the autonomous ar-

chitectures. It is observed how the social modality is crucial for the onset of stages with

complex vocalizations. Improvement is notorious even though we consider a simple imita-

tion scenario, where the instructor has a rather simple behavior compared to the complex

interactions that are observed between caregivers and infants as described in Gros-Louis et al.

(2014).

We consider that an important fact to be remarked is that, besides exploring regions relevant

to socialization, the social learners do not show any relevant handicap when compared with

the autonomous agents, just a small shrinkage in the size of the convex hull described by

the explored regions over the sensory space. On the advance toward the study of vocal

development using artificial agents, apart from the contribution of the somesthetic mechanism

to learn vocal spaces in interesting and less redundant regions, we also show the effects

that social interactions have over the uniformity of explored sensory regions. In this sense,

exploration focuses on the exploitation of relevant regions to communication as infants do

from the onset of Canonical Babbling as indicated by Kuhl (2004).

As hypothesized at the end of the Chapter 4, in sensorimotor learning, exploration is not

just driven by the progress in competence and discovery of constraints, but also by the

relevance of auditory goals for socialization purposes. In this chapter, experimental results

have established the importance of studying mechanisms of social development in parallel to

vocal development and other sensorimotor developmental processes. We conclude that the

study of artificial vocal development should evolve in two directions, a more realistic speech

architecture, and more complex social scenarios. Our experimental setup is coherent with

respect to evidence suggesting that newborns can imitate static gestures, in fact, infants

seem to be able to identify the means of achieving the end-state when they see the end-state

(Demiris and Meltzoff, 2008). The experimental results have demonstrated some advantages

of our architecture over similar ones; however, there is still a prioritized requirement to

consider unstructured vocalizations and more complex social scenarios attempting to cover
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other categories of maternal response and infants’ vocalization directionality as defined in

Gros-Louis et al. (2014).





Chapter 6

Conclusions and Future Work

“Poole and Bowman could talk to Hal as if he were

a human being and he would reply in the perfect

idiomatic English he had learned during the fleeting

weeks of his electronic childhood.”

— Arthur C. Clarke, 2001. A Space Odyssey.

This research has presented a study with experimental results of the role of constraints and

social interaction during exploratory sensorimotor behaviors; special emphasis was placed on

prelinguistic vocal development. Based on available methodologies of developmental robotics,

especially those of Moulin-Frier and Oudeyer (2013b), Oudeyer et al. (2007) and Howard and

Messum (2007), and in coherence with a large body of developmental psychology studies,

we have provided a study to understand possible mechanisms underlying developmental

progression. We have shown that intrinsically motivated sensorimotor exploration can be

enriched with more perceptual modalities, as somesthesis and social imitation mechanisms,

to obtain a picture of developmental change that allows the emergence of complex behaviors.

In the case of vocal prelinguistic development, we observed a nice picture of vocal gestures

complexity evolution, which is necessary for the emergence of spoken language in children.

6.1 General Conclusions

The first objective of this work was to collect and understand the series of studies that

led to the findings in Moulin-Frier et al. (2013), which was performed in Chapter 2. We
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went through a series of studies regarding embodiment, intrinsic motivations, sensorimo-

tor exploration, but also studies dealing with sensorimotor behaviors and development of

the speech production and perception systems in children. Furthermore, we briefly studied

some theories that attempt to formalize the perceptuo-motor link in speech. Regarding the

perceptuo-motor link, we argue that one of the contributions of this work, and those in early

vocal development studies, is the fact that if we can have models that are candidates to repre-

sent the perceptuo-motor human speech system, they can be used to improve dialogue-based

human-machine interaction systems.

Our second and third objectives were to reproduce and expand the results from Moulin-Frier

et al. (2013). This part of the work can be divided into different stages. In a first stage we

used the experimental setup information available in Moulin-Frier and Oudeyer (2013b) and

Moulin-Frier et al. (2013) to code an implementation in MatlabR© of the architecture where

the sensorimotor models were Gaussian Mixture Models (GMMs) trained with the generative

method from Calinon and Billard (2007), as explained in Chapter 3. The result was a working

intrinsically motivated sensorimotor exploration architecture. On the generated implemen-

tation we integrated our first contribution. Based on studies from developmental psychology

and neurophysiology, we hypothesized that constraints could play an important role in the

course of sensorimotor control learning. Consistent with the embodiment paradigm, we gen-

erated active learning mechanisms to endow artificial agents with constraint awareness along

the motor inference processing path. Two articles were published with the results obtained

at this stage of the project; these are Acevedo-Valle et al. (2015, 2018).

In the second part of our research, pursuing our second and third objectives, we migrated

our experimental platform to Python. During this stage, we developed a new incremental

learning platform for GMMs and Gaussian Mixture Regression (GMR) based on geometric

properties of Gaussian distributions. We presented our approach for GMMs in Chapter 3. We

showed there are some cases in which the generative method from Calinon and Billard (2007)

works better and others where our growing GMMs method works better, that depends on the

learning application. In this stage we also implemented a version in Python of the Maeda’s

synthesizer (divapy), a vocal-tract initially implemented in MatlabR© by the Guenther Lab

and widely used in the literature as a simulator of the ear-vocal tract system. After migrating

to Python, we also were able to take some advantages of the explauto library, which is
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a specialized tool for autonomous sensorimotor exploration problems (Moulin-Frier et al.,

2014).

The last part of our research pursuing our second and third objectives is contained in Chap-

ter 4. Therein, we obtained results using the current version of the proposed architecture.

Regarding constraint awareness, our results strongly suggested that they should be taken

into account during sensorimotor learning as suggested by Corbetta et al. (2014). Motor

constraint awareness improves performance in both respects, the size of the explored sensory

regions and the performance to reach self-generated goals. Considering constraints also pro-

duced better results when evaluating against some selected datasets. Constraint awareness

was achieved by providing a somesthetic mechanism. Artificial agents were endowed with the

capacity to generate a somesthetic model and use it to predict the somesthetic consequences

of motor actions. If an agent knew that an action execution could likely lead to an undesired

state and produce the perception of ‘pain’, then it could avoid the execution of such action.

From the new results introduced in Chapter 4 and those from Acevedo-Valle et al. (2015,

2018), several improvements to the state of the art studies can be pointed out. First, for the

simple sensorimotor system introduced in Chapter 3, we observed that endowing agents with

motor constraints improved the results in all the considered dimensions to evaluate perfor-

mance. Secondly, for the ear-vocal tract system, we argued that sensorimotor redundancy

was reduced when somesthesis was included. Thus, the number of exploratory experiments

decreased, and the number of exploitation experiments increased over ‘unpainful’ phona-

tory vocalization regions. In consequence, sensorimotor models achieved better fitting to the

regions of interest where motor constraints are met, and phonation occurs.

Our fourth and last specific objective was to study the role of social interactions in early vocal

development and integrate a social modality to our sensorimotor exploration architecture.

As in the case of language, speech cannot be learned in isolation. We hypothesized that

social mechanisms of interaction such as imitation are essential for infants, and also should

be for robots, during the period when they engage in sensorimotor exploratory behaviors. We

assumed that instructors, experts in sensorimotor behaviors that are relevant to socialization,

could interact with developmental agents to help them in the task of mastering socially

relevant gestures. We focus on the imitation mechanism through reformulation/imitation

episodes arguing that they allow infants and robots to acquire knowledge from other humans
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or robots incrementally. The first stage of this part of the project was published in Acevedo-

Valle et al. (2017a) and the second stage is contained in Chapter 5 and our submitted work

Acevedo-Valle et al. (2018). Therein, we first introduced a socially reinforced intrinsically

motivated exploration architecture with constraint awareness, where learners use an imitation

mechanism as human and birds do during early development to foster development.

We integrate the social modality into our architecture based mainly on the results by Gros-

Louis et al. (2016), where the authors remarked the relevance of imitation/expansion episodes

between children and mothers as one of the most important social interactions shaping de-

velopment. We also got inspiration from Howard and Messum (2011), Miura et al. (2012)

and other works where the social modality is considered to study vocal development. How-

ever, we considered that learners start developing the social interactions can occur since the

beginning of the life agent if the conditions required for the interaction occurs, which means

that the somesthetic and sensorimotor models will be shaped by the social modality. In other

words, we did not consider hard coding to trigger cognitive, motor, perceptual, nor social

capabilities, neither the onset of developmental stages by hard coding. In contrast, we con-

sidered that the cognitive capabilities of the artificial agent develop in parallel and it is the

deeply intertwined developmental process which produces notorious developmental changes.

In fact, our results suggest that it may be the reaching of a developmental milestone in one

modality that produces abrupt developmental changes in the other. For instance, there are

some regions of the sensory space that are not explored by a learner, until its somesthetic

model indicates that the motor regions that are likely to be related to that sensory regions

are not likely to produce undesired ‘painful’ states.

In this work, we considered that imitation occurs in a bidirectional manner: from the per-

spective of the instructor, it imitates any utterance by the learner that is similar to a socially

relevant utterance, reformulating the original learner’s utterance as that relevant one. On

the other hand, from the perspective of the learner, it will establish as a sensory goal any

feedback received from the instructor. However, imitation will occur only under the condition

that the learner has some knowledge on how to imitate without the risk of reaching a ‘painful’

motor state. From the results in Acevedo-Valle et al. (2017a, 2018) and Chapter 5, it can

be concluded that considering reformulation/imitation episodes, the social reinforcement has

an important role in the course of intrinsically motivated learning.
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Considering socially reinforced explorations in the case of the simple toy example, the com-

parison against the autonomous exploration was not straightforward as the performance did

not drastically change as it did just by considering the somesthetic mechanism. However,

the nuances of the results, plus the number of simulations executed to obtain representative

results, suggested that the social groups of simulations perform slightly better. Regarding

the ear-vocal tract system considering an instructor expert on German vowels, experimen-

tal results suggested that social reinforcement is crucial to the emergence of coarticulated

gestures as emphasized in Gros-Louis et al. (2014). First, the motor constraint awareness

explained in Chapter 4 had already reduced the amount of exploitation over regions of vo-

calizations producing ‘silent’ sensory results. However, through the introduction of the re-

formulaton/imitation episodes, it was achieved a significant increment of the ‘phonatory’

vocalization proportion. Besides exploring regions relevant to socialization, and produce

significantly more ‘phonatory’ vocalizations, the social learners did not show any relevant

handicap when compared with the autonomous agents, just a small shrinkage in the size of

the explored regions over the sensory space.

There were two more objectives for this thesis. First, it was to generate sensorimotor ex-

ploration algorithms in such a way they could be easily applied to any sensorimotor system

and not only to the ear-vocal tract system. We did so, and moreover, we presented a simple

toy example to illustrate interested researchers about the kind of problems in which our ar-

chitectures can be used. Regarding the last objective, it was to generate open source codes

that can be used by any interested researcher willing to work in similar applications. As a

part of this project we presented the work Acevedo-Valle et al. (2017b) and generated two

open source Python tools1,2.

6.2 Final Conclusion

On the advance toward the study of vocal development using artificial agents, we have

contributed investigating the role of somesthetic and social mechanisms during intrinsically

motivated sensorimotor exploration. Motor constraint awareness, integrated through somes-

thesis, assists artificial learners to explore vocal spaces in interesting and less redundant

1https://github.com/yumilceh/igmm
2https://github.com/yumilceh/divapy

https://github.com/yumilceh/igmm
https://github.com/yumilceh/divapy
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regions. Moreover, we have also shown the effects that social interactions have over the uni-

formity of explored sensory regions; thus exploration focuses on the exploitation of relevant

regions to communication as infants do from the onset of canonical babbling as indicated by

Kuhl (2004).

The positive impact of motor constraint awareness on the considered problem is undeniable.

The impact caused by the social evaluation is open to more interpretations. In this sense, we

argued that one will choose an architecture and parameter values according to the problem at

hand. We consider a scenario where a social similarity threshold is considered to trigger the

reformulaton/imitation episodes. That threshold is scaled by a factor lower than one every

time an imitation episode occurs. This mechanism is similar to the ‘scaffolding’ process

observed in caregivers/children interactions, where the support provided by the caregiver to

the child is gradually reduced as the child makes progress towards succeeding in the task

being learned.

To the values considered for the scaling factors, we found that, especially in the toy example,

considering a right value could foster the progress to master the socially relevant sensory

units. In other words, one could achieve faster progress toward lower errors which may be

interpreted as an opportunity for development. If the instructor detects that the agent has

successfully learned to produce those sensory units, then it may be the door to attempt

more complex interactions. However, regarding the overall performance, when the scaling

factor was not considered (or was equal to one), we obtained the best results regarding vocal

developmental stage transitions.

Developmental stage transitions were the main object of study in Moulin-Frier et al. (2013).

Therein, the authors found that intrinsic motivations could be a good candidate to explain

the developmental transitions observed in infants’ vocalizations: in a first stage, ‘silent’

vocalizations are dominant, then gradually unarticulated and coarticulated vocalizations

emerge, at the beginning being the earlier kind of phonatory vocalizations dominant, but

gradually this dominance is taken by coarticulated gestures, as observed in infants (Kuhl,

2004). In Chapter 4, comparing agents simulated with the architecture from Moulin-Frier

and Oudeyer (2013b), we observed a more evident developmental transition when somesthesis

is considered. In Chapter 5, we obtain a final picture of developmental stage transitions

of this work. Therein we showed a picture of developmental transition with a significant

improvement compared to the autonomous architectures considered in this work. In that
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chapter, it is observed that the social modality is a crucial issue for the onset of stages

with complex vocalizations. The amount of coarticulated vocalizations produced by socially

reinforced learners is considerably higher than in other cases. This result was partially

attributed to the number of interactions generated, especially when the scaling factor was not

considered. Improvement is notorious even though we consider a simple imitation scenario,

where the instructor has a rather simple behavior compared to the complex interactions that

are observed between caregivers and infants, as described in Gros-Louis et al. (2014).

Summarizing, somesthetic and social contingencies enable artificial agents to spend more

energy exploring and exploiting complex phonatory regions during sensorimotor exploration.

In this sense, we showed how sensorimotor exploration, thus sensorimotor knowledge, is

shaped by constraint awareness. Moreover, exploration is also driven by interactions with

expert instructors toward sensory regions that generate more complex behaviors that later

are used for complex communication. In general, we have observed that besides intrinsic

motivations, it is important to emphasize the relevance of other mechanisms, somesthetic

perception and social episodes among them. As the literature coming from neuroscience and

developmental psychology suggests, developmental robotics studies should aim at a holistic

approach where we study mind and body together; thus we also deal with perceptual and

motor capabilities together. We argue that the success of building a robot that develops as a

human does and to borrow insights regarding the developmental process in infants will rely

upon the capacity of roboticists to generate systems in which different perception, motor,

cognitive and social contingencies develop together.

We argue that one of our more important contributions, compared to other similar archi-

tectures, is that we did not prespecify the onset of different developmental stages or socially

guided stages. Instead, we build a system in which all the modalities develop together.

This requirement is emphasized by works like Howard and Messum (2011) and Kröger et al.

(2009), where it is mentioned that likely self-learning and social learning occur in parallel,

even though in practice those works considered that both stages occur in series. Moreover,

we proposed a possible interconnection that may exist between somesthetic, auditory, and

intrinsic motivations that may explain different processes occurring within an infant’s mind

during a simplified scenario similar to Canonical Babbling.

In building artificial developmental systems, as we have done through this work, many ques-

tions arise regarding nature and nurture. Demiris and Meltzoff (2008) asked Where do we
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start? What bootstrapping mechanisms should we strive to implement in robotic systems and

how flexible are such systems as a result? In general, we have studied speech emergence in a

simplified scenario according to behavioral and physiological evidence using a developmental

approach. As suggested by Asada (2016), we focused on the role of embodiment and social

interactions in the course of development, where elementary cognitive skills are built. Our

scenario considers an agent that through interactions with other peer and subjected to an

imitative reflex incrementally build models motivated by an intrinsic drive to improve per-

formance, allowing to empower its mental and behavioral structure. However, the agent is

endowed with the capacity of choosing when to imitate according to its current sensorimotor

knowledge, as mentioned by Oudeyer et al. (2007).

6.3 Future Work

Developmental robotics is a relatively young field of research, and the way to go in order

to achieve its main goal is still long. We are at the beginning of a quest aimed at building

robots with the capacity of developing in an autonomous open-ended manner as humans do.

Through this work, we have contributed with a small piece of a puzzle that must be contex-

tualized to the current state of the art in the quest of combining natural cognitive studies,

especially those related to ontogenetic and epigenetics, with artificial cognition technologies.

The ways in which this research may continue are diverse and discussed below.

We conclude that the study of artificial vocal development should evolve in two directions,

a more realistic speech architecture, and more complex social scenarios. Our experimen-

tal setup is coherent with respect to evidence suggesting that newborns can imitate static

gestures. In fact, infants seem to be able to identify the means of achieving the end-state

when they see the end-state (Demiris and Meltzoff, 2008). The experimental results have

demonstrated some advantages of our architecture over similar ones. However, there is still

a prioritized requirement to consider unstructured vocalizations and more complex social

scenarios attempting to cover other categories of maternal response and infants’ vocalization

directionality as defined in Gros-Louis et al. (2014). In the following, we discuss a series of

elements that we consider of interest for further studies.

First of all, we would like to mention two interesting projects that took as a starting point

the results in Moulin-Frier et al. (2013) and were carried on in parallel to our project, those
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works are Forestier and Oudeyer (2017) and Najnin and Banerjee (2017). In Forestier and

Oudeyer (2017), the authors focused on the role that situated vocal development may have

in the emergence of vocal gestures to label objects which were part of an interaction scenario

where the caregiver was considered with a similar embodiment to that of the learner. The

learner could interact with objects in three different manners, reaching the object with its

arm, or use its arm to reach a tool an use it to reach a farther object or ask the caregiver to

hand over the object. The labeling learning mechanism could be considered similar to the

one of Howard and Messum (2011), but it is implemented similarly to Moulin-Frier et al.

(2013) and up to a certain point to our approach. The main difference with respect to our

work is that Forestier and Oudeyer (2017) considers that the learner also chooses over which

sensorimotor model explore during intrinsically motivated learning.

In the sense of exploring over different sensorimotor models, we defend that it is one im-

provement we could do to our architecture but with other purposes. Taking advantage of the

complete somesthetic information we can borrow from the vocal tract (tactile and proprio-

ceptive) we could build two extra sensorimotor models and then use ideas like those from

Forestier and Oudeyer (2017) and Navarro-Guerrero et al. (2017b) to refine sensorimotor

knowledge to achieve better performance when reaching sensory goals.

Najnin and Banerjee (2017) emphasized the study of developmental transitions between types

of vocalizations as Moulin-Frier et al. (2013). The authors also made a contribution that

should be explored in the course of our experiment as discussed in our works Acevedo-Valle

et al. (2017a), Acevedo-Valle et al. (2018), which is a more realistic modeling framework for

vocalizations and speech. In the case of Najnin and Banerjee (2017), they proposed two

interesting elements. First, the use of Mel-Frequency Cepstral Coefficients that are widely

used along the scientific literature and practical applications as descriptors for speech signals.

Second, Najnin and Banerjee (2017) proposed that the agent learns the timing of commands

execution. We defend that further studies must consider a more realistic speech modeling

in which we can introduce the concept of consonants in a more realistic way than the one

assumed by Moulin-Frier et al. (2013) and Najnin and Banerjee (2017). Moreover, we claim

that motor timing must be taken into account in further studies as it is something children

must also learn during early development. Learning motor timing could be constrained by

fatigue, breathing, and cognitive processes.
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Another critical element that further studies in early vocal development must take into

account is to advance toward achieving more realistic scenarios as observed in humans in-

teractions, in which adults talk to infants with adult language, that is, words or sentences

(Yoshikawa et al., 2003), a line of research that has been already partially explored by Howard

and Messum (2014), Kröger and Cao (2015). In achieving more complex interactions and

more complex knowledge, we should advance toward understanding how the information

captured in the sensorimotor models through this work may affect perception. If the learned

structures become more advanced than the current ones, then roboticists might build models

that could contribute to answering how the motor system may be recruited for perceiving

speech as hypothesized by Galantucci et al. (2006) and Schwartz et al. (2012). In finding

suitable candidates for this recruiting process we could contribute to the improvement of

Automatic Speech Recognition systems, Natural Language Processing systems, and Speech

Synthesizers.

Through our investigation, we have also identified other topics that are of interest in the

quest of studying prelinguistic vocal development. For example, a deeper analysis of the

learning processes underlying the non-auditory development related to mastication, degluti-

tion and crying from the cognitive and developmental perspectives should be completed. This

knowledge could contribute to generating more complex somesthetic architectures. Regard-

ing maternal responsiveness, seven categories of maternal verbal response are distinguished

in Gros-Louis et al. (2014): acknowledgments, attributions, directives, naming, play vocal-

izations, questions and imitation/expansions. Integrating different works, e.g., as this work

with Forestier and Oudeyer (2017), we could achieve a platform in which all the kind of

responses and its role in early sensorimotor exploration can be studied.

We have argued that the success on the quest of building a complex social robot with human-

like cognitive skills should be approached in an interdisciplinary way. However, as we consider

that it would not be enough, then we also encourage roboticists to work on the integration of

motor, perceptual, cognitive and social systems in a developing agent where all the systems

develop in a parallel as they do in our children.
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A Maeda’s Vocal Tract Pythonic

implementation: divapy

Guenther Lab provided an implementation of the Maeda’s synthesizer (Maeda, 1982, 1989) in

Matlab R©. The experiments in Acevedo-Valle et al. (2015, 2018) considered that implementa-

tion for experimentation purposes. On the other hand, Moulin-Frier et al. (2014) bridged the

implementation in Matlab R© to Python by means of the library pymatlab1 with the disadvan-

tage of being slow as the synthesizer was running on a parallel session in Matlab R©. As a part

of the project, our objective was to use and generate open-source software tools; moreover,

tools like explauto are only available in Python. Therefore, we migrated our implementation

from Matlab R© to Python. In order to solve this bottleneck due to the execution of the

synthesizer in Matlab R©, we translated the code provided by Guenther Lab into a functional

Python package called divapy2. The key to achieving a fast implementation in Python was to

consider the library numpy-groupies3, which is “a library of optimized tools for doing things

that can roughly be considered ‘group-indexing operations’”.

The vocal tract consists of ten articulators and three phonation parameters. The Python

package divapy can provide different outputs once a sequence of articulatory positions and

phonation values is established:

• Outline of the face and vocal tract.

1https://pypi.org/project/pymatlab/
2https://github.com/yumilceh/divapy
3https://github.com/ml31415/numpy-groupies
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• Area function describing the shape of the vocal tract.

• Sequence of somatosensory signals based on tactile and proprioceptive information.

• Sequence of formant frequencies.

• Speech sound signal.

The on-line repository contains examples regarding the usage of the most important functions

of the class Diva contained in the package. Once an object of the class has been created the

methods defined for that object are described below4.

get audsom Returns the sequence of formant frequencies, somatosensory signals, outlines,

and area function of a given sequences of articulatory positions and phonation values.

Input:

art ([ndarray] n samples x 13) Sequence of articulatory positions and phona-

tion values.

scale (optional) (bool) Indicates if the auditory output is scaled to the values

proposed by Guenther Lab.

Output:

aud ([ndarray] n samples x 4) Sequence of formant frequencies (F0, F1, F2,

and F3).

som ([ndarray] n samples x 8) Sequence of somatosensory signals.

outline ([ndarray] n samples x max outline shape dim) Sequence of the vocal-

tract’s outline.

af ([ndarray] n samples x max af shape dim)] Sequence of the vocal-tract’s

shape descriptor (area function).

get sound Returns the sound wave produced by a given sequence of formant frequencies.

Input:

art ([ndarray] n samples x 13) Sequence of articulatory positions and phona-

tion values.

4array and ndarray are defined within the numpy package: http://www.numpy.org/

http://www.numpy.org/
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Output:

s ([array]) Sound signal.

get sample Given an articulatory configuration and phonation values, this function returns

the formant frequencies, somatosensory signals, outlines, and area function.

Input:

art ([array] 1 x 13) Articulatory positions and phonation values.

Output:

aud ([ndarray] 1 x 4) Formant frequencies (F0, F1, F2, and F3).

som ([ndarray] 1 x 8) Somatosensory signals.

outline ([ndarray] 1 x outline shape dim) Vocal-tract’s outline.

af ([ndarray] 1 x af shape dim)] Vocal-tract’s shape descriptor (area func-

tion).

d Value used internally by the class.

plot outline Given an articulatory configuration and phonation values, this function plots

the outline of the vocal tract.

Input:

art ([array] 1 x 13) Articulatory positions and phonation values.

axes Axes in which the outline should be plotted.

Output:

axes Updated axes.

play sound Plays the soundwave obtained with get sound if any speakers are available.

Input:

s ([array]) Sound signal.

Note: art[:10] are the articulatory positions and art[10:] are the phonation values.

Finally, to assess the improvement of performance in comparison with the original imple-

mentation with pymatlab some tests were run. In the first test, we ran 1000 experiments
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similar to the ones during the sensorimotor exploration simulations, described in Figure 4.3.

The execution time for 1000 experiments with divapy was 64.34 seconds, whereas with py-

matlab was 345.59 seconds. Finally, we obtained the sound waves for 1000 vocalizations, the

execution time with divapy was 266.05 seconds, whereas with pymatlab was 242.66 seconds.

For the first run-time experiment, which is the one required for the experimentation in this

thesis, we run the function get audsom, and we made some efforts to optimize it, that

is the reason we achieve an impressive improvement. On the other hand, for the function

get sound we did not make any effort to optimize the function as for now we only use

the auditory output. However, if we want to work with the raw speech signal, it would be

necessary to invest some time to improve the implementation of this function and obtain

better performance.
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