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Abstract

The main purpose of the dissertation is to contribute to the development of numerical techniques for compu-
tational heat transfer and fluid flow, suitable for low cost (loosely coupled) parallel computers. It is focused
on implicit integration schemes, using finite control volumes with multigrid (MG) algorithms.

Natural convection in closed cavities is used as a problem model to introduce different aspects related
with the integration of the incompressible Navier-Stokes equations, such as the solution of the pressure
correction (or similar) equations that is the bottleneck of the algorithms for parallel computers. The main
goal of the dissertation has been to develop new algorithms to advance in the solution of this problem rather
than to implement a complete parallel Computational Fluid Dynamics (CFD) code.

An overview of different sequential multigrid algorithms is presented, pointing out the difference between
geometric and algebraic multigrid. A detailed description of segregated Additive Correction Multigrid
(ACM) is given. The direct simulation of a turbulent natural convection flow is presented as an application
example. A short description of the coupled ACM variant is presented.

Background information of parallel computing technology is provided and the the key aspects for its
efficient use in CFD are discussed. The limitations of low cost, loosely coupled cost parallel computers (high
latency and low bandwidth) are introduced. An overview of different control-volume based parallel CFD
algorithms and linear equation solvers is done. As an example, a code to solve reactive flows using Schwartz
Alternating Method that runs efficiently on Beowulf clusters is given.

Different alternatives for latency-tolerant parallel multigrid are examined, mainly the Domain Decom-
posed V cycle (DDV) proposed by Brandt and Diskin in a theoretical paper. One of its main features is
that, supressing pre-smoothing, it allows to reduce the each-to-neighbours communications to one per MG
iteration. In the dissertation, the cycle is extended to two-dimensional domain decompositions. The effect
of each of its features is separately analysed, concluding that the use of a direct solver for the coarsest level
and the overlapping areas are important aspects. The conclusion is not so clear respect to the suppression
of the pre-smoothing iterations.

A very efficient direct method to solve the coarsest MG level is needed for parallel MG. In this work,
a variant of the Schur complement algorithm, specific for relatively small, constant matrices has been
developed. It is based on the implicit solution of the interfaces of the processors subdomains. In the
implementation proposed in this work, a parallel evaluation and storage of the inverse of the interface matrix
is used. The inner nodes of each domain are also solved with a direct algorithm. The resulting algorithm,
after a pre-processing stage, allows a fast solution of pressure correction equations of incompressible flows
in loosely coupled parallel computers.

Finally, all the elements presented in the work are combined in the Domain Decomposed ACM (DDACM)
algorithm, an algebraic MG equivalent to the DDV cycle, that is as a combination of a parallel ACM algo-
rithm with Block Incomplete Lower-Upper (BILU) smoothing and a specific version of the Schur complement
direct solver. It can be treated as a black-box linear solver and tailored to different parallel architectures.

The parallel algorithms analysed (different variants of V cycle and DDV) and developed in the work (a
specific version of the Schur complement algorithm and the DDACM multigrid algorithm) are benchmarked
using a cluster of 16 PCs with a switched 100 Mbits/s network.

The general conclusion is that the algorithms developed are suitable options to solve the pressure correc-
tion equation, that is the main bottleneck for the solution of incompressible flows on loosely coupled parallel
computers.
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