Chapter 8

Conclusions

Context of the work and overview

In the short and medium term, parallel computers will be essential tools for computational fluid
dynamics and heat transfer. This is a challenging situation: On one hand, there is a huge computing
power available to scientists. But on the other hand, to exploit parallel computers is a difficult task.
The most efficient conventional algorithms are sequential and the affordable parallel computers
(clusters of PCs) tend to be loosely coupled systems, i.e., high computing power compared with its
network performance. The capability to use these new hardware tools to make substantial advances
in the numerical simulations depends on the reformulation of existent parallel algorithms and on
the design of totally new formulations to overcome the difficulties of the available hardware (e.g.,
high latency). The know-how acquired in this process would allow the adaptation of the algorithms
to future computer architectures.

As an example, for the case of parabolic flows, an efficient parallel solver for loosely coupled
systems has already been implemented (section 4.7). Next goal would be to obtain the same level
of efficiency for all the flow types.

For the case of incompressible flows, the solution of the pressure correction (or similar) equations
is the bottleneck of the algorithm (sections 1.2 and 2.7). The main goal of this work has been to
advance in the solution of this problem rather than to implement a complete parallel CEFD code. To
do so, multigrid algorithm has been chosen as it is one of the best options for sequential computers.
However, as discussed in section 5.1.1, it is difficult to implement on loosely coupled systems.

A review and implementation of different sequential multigrid algorithms (segregated and coupled
ACM, section 3) has been carried out. ACM has been used to solve the pressure correction equation
in a direct numerical simulation of a natural convection flow in a closed cavity (section 3.3.3). In
this context, it has been shown that it is a better option than a band LU solver.

Different alternatives for latency-tolerant parallel multigrid have been examined (section 5). The
analysis of the DDV cycle, proposed by Brandt and Diskin, revealed that the use of a direct solver
for the coarsest level and the overlapping areas are important aspects. The conclusion was not
so clear respect to the suppression of the pre-smoothing iterations. The cycle was extended to
two-dimensional domain decompositions.

The main ideas of the DDV algorithm have been extrapolated to the ACM context (section 7).
The main motivation to do so, in spite of the better performance of DDV and other classic MG
approaches, has been to provide an easy path for the parallelization of DPC for the case of non-
parabolic flows. The new algorithm developed has been called DDACM. From a numerical point of
view, it is similar to the existent sequential solver in DPC, so it is expected to behave well with the
existent applications.

The need to find a very efficient method to solve the coarsest level in DDACM led to the
development of a variant of Schur complement for small, constant matrices (section 6). The opposite
point, of view is also possible: DDACM could be considered as a way to extend the use of Schur
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complement to larger problems that otherwise would need a huge amount of RAM memory (or the
use of conventional approaches instead of the implementation proposed here).

Main contributions of the work

1. Development of a fast version of the Schur complement algorithm, adequate for loosely coupled
parallel computers. It has been designed for the cases where a relatively small and constant
pentadiagonal matrix is to be used to solve for a large number of right-hand-side vectors. After
a pre-processing stage, the algorithm can be used for the fast solution of linear equation sets.
Areas of application (considering the order of magnitude of the RAM memory of computers
currently available) can be the pressure correction equations of incompressible flows, solved
with relatively small meshes (i.e., ~ 10° control volumes), or the coarsest equation of a parallel
algebraic multigrid algorithm, such as DDACM.

2. Development of the Domain-Decomposed Additive Correction Multigrid (DDACM) algorithm,
an algebraic MG equivalent to the DDV. It can be considered as a combination of a parallel
ACM algorithm with BILU as smoother and the previously discussed Schur complement direct
solver. Another possible point of view could be to consider DDACM as a method to extend
the proposed version of the Schur complement algorithm (very efficient but limited by the
available RAM memory) to larger meshes. Its main features are:

e It can be used as a black-box linear solver (like for instance Krylov subspace algorithms),
allowing a clear separation of discretization and solution stages, important from the
software engineering point of view.

e It has a high numerical efficiency: the number of iterations does not increase significantly
with the number of processors.

e In the essential points, it is equivalent to ACM with an ILU smoother, so it is expected
to behave well with a variety of flow problems.

e It is tolerant to high latency networks as it does not rely on the iterative solution of
coarse levels with a low number of nodes and requires less halo update operations than
conventional multigrid algorithms. For the case of the largest problem considered (with
1.3 x 10% unknowns), DDACM provided a speedup of ~ 14 with 16 processors on the
JFF cluster of PCs with a conventional 100 Mbits/s network.

An important aspect of DDACM is that its essential idea, the combination of a fast direct
algorithm with a multilevel solver, can be implemented using other techniques, and not necessarily
BILU, Schur complement and ACM correction equations. Additionally, it can be tuned for different
parallel architectures. The implementation proposed in this work can be easily changed to suit
different parallel architectures. Compared with the JFF cluster used for the benchmarks:

e If network latency (respect to the floating point performance of each processor) decreases, the
number of levels can be increased and other cycles with better convergence ratio (that need
more halo updates) can be used.

e If RAM memory available increases, the number of levels can be decreased, using the direct
solver for larger meshes.



Appendix A

Lewis Fry Richardson

Probably, the first person who imagined the use of parallel computing for numerical solution of
partial differential equations was Lewis Fry Richardson. This was in 1922, before the first sequential
computers. In his pioneering work, “Weather Prediction by Numerical Process”, Richardson envi-
sioned 64.000 mathematicians working in a great hall to forecast the weather, using finite difference
approximations of the governing PDEs. Outside he also imagined playing fields, houses, mountains
and lakes, for Richardson belived that “those who compute the weather should breathe of it freely”.
He wrote:

“After so much hard reasoning, may one play with a fantasy? Imagine a large hall like
a theatre... The walls of this chamber are painted to form a map of the globe. The ceiling
represents the north polar regions, England in the gallery, the tropics in the upper circle,
Australia on the dress circle and the antartic in the pit. A myriad of computers are at work
upon the weather of the part of the map where each sits, but each computer attends only to
one equation or part of an equation...Numerous little “night signs” display the instantaneous
values so that neighbouring computers can read them. Each number is thus displayed in three
adjacent zones so as to maintain communication to the North and South on the map. From
the floor of the pit a tall pillar rises to half the height of the hall. It carries a large pulpit on
its top. In this sits the man in charge of the whole theatre...One of his duties is to maintain a
uniform speed of progress in all parts of the globe. In this respect he is like the conductor of
an orchestra in which the instruments are slide-rules and calculating machines. But instead of
waving a baton he turns a beam of rosy light upon those who are behindhand.”

Lewis Fry Richardson, 1922 (from [195])

The famous verses about turbulence pictured as a cascade of vortices are also from his 1922
publication:

Big whorls have little whorls

Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity

(in the molecular sense).

Remarkably, he also studied the problem of the length of a coast as a function of the side of the
polygonal line used to measure it, anticipating the concept of fractal dimension.
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Appendix B

JFF Cluster at CTTC

The Beowulf cluster at CTTC is called JFF, in memorial of Joan Francesc Fernandez, computer
science professor of the Universitat Politecnica de Catalunya. It is a 16 nodes cluster, to be soon
upgraded to 24 nodes, with two 100 Mbit/s networks. One of them, provided with a switch, is used
for MPI and the other, with a HUB, is to be used for NFS.

Specifications of the nodes

Main board ASUS K7M (AMD-751 chipset)
Processor AMD K7 (Athlon)
Cache Memory 128 kbytes L1 cache plus 512 kbytes

outside the processor
Maximum RAM mem- | 768 Mbytes

ory
Installed RAM Mem- | 15 “thin” nodes with 256 Mbytes; 1 “fat”
ory node with 768 Mbytes

Swap area 8 areas of 128 Mbytes per processor
Hard disk 8 Gbytes

Specifications of the network

Network boards Two 100 Mbits/s boards per node
(3COM Etherlink fast PCI cyclone)

Switch 24 ports 100 Mbits/s (3COM Super-
stack II switch 3300)

Hub 24 ports 100 Mbits/s (3COM Super-
stack IT Baseline Dual Speed hub)

Software
Operating System Linux
Distribution Debian 2.1
Kernel 2.2.13
MPI LAM
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Appendix C

Acronyms

ACM
AMG
BACM
BILU
CFD
CS
CGA
CTTC
CPU
DNS
DPC

DDV
DDACM
FAS
FCV
FMG
GS
ILU
JFF
LU
MG
MSIP
MPI
NFS
PCFD
PDE
RGBS
SAM
TDMA

Additive Correction Multigrid

Algebraic Multigrid

Blockwise Additive Correction Multigrid

Block Incomplete (approximate) Lower-Upper factorization
Computational Fluid Dynamics

Correction Scheme (MG equations)

Coarse grid Galerkin aproximation

Centre Tecnologic de Transferencia de calor

Central Processing Unit

Direct Numerical Simulation

biblioteca per al Desenvolupament de Programes aplicats a la resolucié
de problemes Combinats de transférencia de calor i massa
Domain-decomposed V cycle

Domain-decomposed ACM

Full Approximation Storage (MG algorithm)

Finite Control Volume (discretization method)

Full Multigrid

Gauss-Seidel

Incomplete (approximate) Lower-Upper factorization
Joan Francesc Fernandez cluster (Appendix B)
Lower-Upper factorization

multigrid

Modified Strongly Implicit

Message Passing Interface

Network File System

Parallel Computational Fluid Dynamics

Partial Derivative Equation

Red-Black Gauss-Seidel

Schwarz Alternating Method

Tri-Diagonal Matrix Algorithm
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Appendix D

Main publications done in the
context of this work

10.

. H.Schweiger, A.Oliva, M.Soria, SIMPATICA - an algorithm for the simulation of flatplate solar

collectors with a honeycomb-type cover, Proc. 7th Int. Meeting on Transparent Insulation
Technology pp 19-23, Delft, 1994.

M.Soria, R.Alba, A.Oliva, C.D.Pérez-Segarra, A general-purpose software to simulate natural
convection driven flows in saturated porous media. Application to buried electrical cables and
gas pipelines, Proc. Basel World CFD, Third World Conference in Applied Computational
Fluid Dynamics, pp 27.70-27.78, Freiburg, 1996.

H.Schweiger, M.Soria, A.Oliva, M.Costa, A software for the numerical simulation of glazed
facades with ventilation channels, Proc. Basel World CFD, Third World Conference in Applied
Computational Fluid Dynamics, pp 27.61-27.69, Freiburg, 1996.

H.Schweiger, M.Soria, A.Oliva, J.Cadafalch, The potential of transparent insulation in the
mediterranean climate, Proc. 8th Int. Meeting on Transparent Insulation Technology, Freiburg,
1996.

M.Costa, A.Oliva, M.Soria, Melting within a rectangular highly conductive container. A
numerical study, ed. by R.W.Lewis, Vol. X, pp 253-264, Swansea, 1997

M.Soria, A.Oliva, M.Costa, C.D.Pérez-Segarra, Effect of contaminant properties and temper-
ature gradients on the efficiency of transient gaseous contaminant removal from an enclosure:
a numerical study, International Journal of Heat and Mass Transfer, Vol. 41, pp 3589-3609,
1998

J.Cadafalch, C.D.Pérez-Segarra, M.Soria, A.Oliva, Fully conservative multiblock method for
the resolution of turbulent incompressible flows, Proc. of the Fourth European Computational
Fluid Dynamics Conference, Vol. 1, Part. 2, pp 1234-1239, Athens, 1998.

R.Consul, C.D.Pérez-Segarra, J.Cadafalch, M.Soria, A.Oliva, Numerical analyisis of laminar
flames using the domain decomposition method, Proc. of the Fourth European Computational
Fluid Dynamics Conference, Vol. I, Part. 2, pp 996-1001, Athens, 1998

M.Soria, M.Costa, A.Oliva, Design of multifunctional ventilated facades for mediterranean
climates using a specific numerical simulation code, Proc. Eurosun 98, Ljubljana, 1998

M.Soria, J.Cadafalch, R.Consul, A.Oliva, A Parallel Algorithm for the Detailed Numerical
Simulation of Reactive FLows, Parallel CFD 99, pp 389-396, 2000
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Main publications done in the context of this work

11.

12.

13.

14.

15.

T.Ojanen, I.Heimonen, C.Simonson, M.Costa, M.Soria, D.Faggembauu, PV-Panel siding for
renovation of walls - part I: Thermal performance and experiments in northern climate condi-
tions, Proc. Eurosun 2000, Copenhagen 2000

M.Soria, D.Faggembauu, M.Costa, T.Ojanen, I.Heimonen, C.Simonson, PV-Panel siding for
renovation of walls - part IT: numerical analysis, Proc. Eurosun 2000, Copenhagen 2000

M.Soria, J.Mora, A.Oliva, C.D.Pérez-Segarra, DDV multigrid algorithm as solver for implicit
CFD on parallel computers with high latency networks, Proc. of the Fifth European Compu-
tational Fluid Dynamics Conference, Barcelona 2000

J.Castro, L.Leal, M.Soria, A.Oliva, Calculation of enhanced water vapour absorption in falling
films of LiBr aqueous solutions using the domain decomposition method, Proc. of the Fifth
European Computational Fluid Dynamics Conference, Barcelona 2000

M.Quispe, J.Cadafalch, M.Costa, M.Soria, Comparative study of flow and heat transfer pe-
riodic boundary conditions, Proc. of the Fifth European Computational Fluid Dynamics
Conference, Barcelona 2000
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