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Summary 

Species distribution models are increasingly used to guide biodiversity 
conservation actions. These models predict the probability of species 
occurrence in locations where the species presence is unknown based on the 
link between species presence and environmental conditions. Probability of 
species occurrence is often considered as indicator of habitat quality. Correctly 
interpreting the outcomes of this modelling technique is of paramount 
importance before using the models in conservation applications. The main 
objective of this thesis is to contribute to providing evidence of the usefulness 
and applicability of species distribution models for some conservation and 
management applications.  

Despite the growing research interest about species distribution models, many 
conservation practitioners remain sceptical about their usefulness in 
biodiversity conservation projects. We show that model outcomes are as able as 
local bird experts to identify unknown presence areas for a nearly threatened 
bird species. We also present an innovative analytical framework using data 
from breeding bird atlases to help in the initial design of monitoring projects. 
The data generated through this monitoring projects would be appropriate to 
produce accurate species distribution models and maps. We evaluated the 
reliability of species distribution models using measures of reproductive 
performance with data obtained from constant effort bird ringing sites. We 
showed that models may help to predict habitat quality but not for all species at 
any spatial scale. We also showed that the outcomes of species distribution 
models might provide misleading information to guide the spatial prioritization 
of management or conservation options when species switch or expand to a 
novel habitat. 

With our results, we encourage the use of species distribution models among 
practitioners as an accepted tool to support biodiversity conservation and 
management. However, caution is needed when interpreting model outcomes, 
especially in the areas where a species occupies several habitat types and when 
novel conditions are emerging as a result of human-induced rapid 
environmental changes. 
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Resum 

Els models de distribució d'espècies s'utilitzen cada vegada més per orientar les 
accions de conservació de la biodiversitat. Aquests models prediuen la 
probabilitat d'aparició d'espècies en llocs on la seva presència es desconeix i són 
funció del vincle conegut entre la presència de l’espècie i les condicions 
ambientals. La probabilitat d'aparició d'espècies sovint es considera com un 
indicador de la qualitat de l'hàbitat. La interpretació correcta dels resultats 
d'aquesta tècnica de modelatge és de primordial importància abans d'utilitzar 
els models en aplicacions de conservació. L'objectiu principal d'aquesta tesi és 
contribuir a evidenciar la utilitat i aplicabilitat dels models de distribució 
d'espècies en la  conservació i gestió de la biodiversitat. 

Malgrat l'interès creixent de la recerca sobre models de distribució d'espècies, 
molts professionals de la conservació segueixen sent escèptics sobre la seva 
utilitat en projectes de conservació de la biodiversitat. En aquesta tesi es 
demostra que els resultats dels models són igual de capaços que els ornitòlegs 
experts locals per identificar àrees potencials de presència per a una espècie 
d'ocell gairebé amenaçada. També es presenta un marc analític innovador que 
utilitza dades d'atles d’ocells per ajudar en el disseny inicial de projectes de 
monitoratge. Aquests projectes podrien generar dades apropiades per produir 
models i mapes de distribució d'espècies d’alta precisió. Per altre costat, s’ha 
avaluat la fiabilitat dels models de distribució d’espècies utilitzant mesures de 
rendiment reproductiu procedents de dades d’estacions d’anellament. S’ha 
demostrat que els models poden ajudar a predir la qualitat de l'hàbitat però no 
per a totes les espècies i depenent de l‘escala espacial. També s’ha demostrat 
que els resultats  obtinguts dels models de distribució d'espècies poden 
proporcionar informació espacial enganyosa a l’hora de prioritzar les opcions de 
gestió o conservació quan les espècies canvien o s'expandeixen a un hàbitat 
nou. 

Amb aquests resultats, es pretén fomentar l'ús de models de distribució 
d'espècies entre els professionals com a eina acceptada per donar suport a la 
conservació i gestió de la biodiversitat. Tanmateix, cal tenir precaució a l'hora 
d'interpretar els resultats dels models, especialment en aquelles zones on una 
espècie ocupa diversos tipus d'hàbitats i quan sorgeixen noves condicions com a 
conseqüència dels canvis ambientals ràpids induïts per l'humà. 
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Resumen 

Los modelos de distribución de especies se utilizan cada vez más para guiar las 
acciones de conservación de la biodiversidad. Estos modelos predicen la 
probabilidad de ocurrencia de especies en lugares donde se desconoce, 
basándose en la relación conocida entre la presencia de la especie y las 
condiciones ambientales. La probabilidad de ocurrencia de especies a menudo 
se considera como un indicador de la calidad del hábitat. Interpretar 
correctamente los resultados de esta técnica de modelización es de suma 
importancia antes de utilizar los modelos en aplicaciones de conservación. El 
objetivo principal de esta tesis es contribuir a proporcionar evidencia de la 
utilidad y aplicabilidad de los modelos de distribución de especies en la 
conservación y gestión de la biodiversidad. 

A pesar del creciente interés de la investigación sobre los modelos de 
distribución de especies, muchos profesionales de la conservación siguen siendo 
escépticos sobre su utilidad en proyectos de conservación de la biodiversidad. 
En la presente tesis se demuestra que los resultados de los modelos son tan 
capaces como los ornitólogos expertos de identificar áreas de presencia 
desconocidas para una especie de ave en declive. También presentamos un 
marco analítico innovador que utiliza datos de atlas de aves reproductoras para 
ayudar en el diseño inicial de proyectos de monitoreo, los cuales podrían 
generar datos apropiados para producir mapas y modelos de distribución de 
especies de alta precisión. Se ha evaluado la fiabilidad de los modelos de 
distribución de especies utilizando medidas de productividad reproductiva con 
datos obtenidos en estaciones de anillamiento de aves. A partir de estos datos 
se ha demostramos que los modelos pueden ayudar a predecir la calidad del 
hábitat, pero no para todas las especies ni a cualquier escala espacial. También 
demostramos que los resultados de los modelos de distribución de especies 
podrían proporcionar información engañosa en el momento de orientar la 
priorización de las opciones de gestión o conservación a nivel espacial cuando 
las especies cambian o se expanden a un hábitat nuevo. 

Estos resultados ayudan a fomentar el uso de modelos de distribución de 
especies entre los profesionales como una herramienta aceptada para apoyar la 
conservación y gestión de la biodiversidad. Sin embargo, se debe tener 
precaución al interpretar los resultados del modelo, especialmente en las áreas 
donde una especie ocupa varios tipos de hábitat y cuando surgen condiciones 
nuevas como resultado de cambios ambientales rápidos inducidos por el 
humano.
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The knowledge on where species occur in space, i.e. their geographical 

distribution, and the changes in these distribution over time, are prerequisite 

for the efficient conservation and management of a variety of taxa (e.g. Araújo 

& Williams 2000; Brotons, Herrando, & Pla 2007). Many biodiversity 

conservation decision-making projects, such as those related to reserve 

selection (e.g. Cabeza & Moilanen 2001), management of biological invasions 

(e.g. Gormley et al. 2011) or identification of key habitats for threatened species 

(e.g. Brotons, Mañosa, & Estrada 2004), require this type of information.  

Depending on the objective of the study and the resources available, different 

sampling designs and methods can be used to gain knowledge on the 

distribution of species. For instance, if a study focuses on a single species, a 

targeted sample design would be most appropriate (Anadón et al. 2007; 

Hollander et al. 2017). On the other hand, the objective many studies have is 

to track the distribution of many taxa (e.g. Kremen et al. 2008; Titeux, Moes, & 

Hoffmann 2009) or a variety of species within a taxon (e.g. Van der Wal et al. 

2015, Luoto et al. 2006, Titeux et al. 2009); in these cases a more general 

purpose sampling design would be more adequate.  

Collecting reliable and comprehensive information on the distribution of a 

species can be costly in terms of manpower and may necessitate a 

considerable amount of time. Very often, management decisions need, 

however, to be made within a relatively short period. An interesting alternative 

to obtain knowledge on the whereabouts of a species is to use models and 

predict its likely distribution based on existing and potentially incomplete 

information.  
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SPECIES DISTRIBUTION MODELS 

Species distribution models (SDMs) have become a very popular tool in 

ecological research to predict the probability or likelihood of occurrence of a 

species based on the statistical link between distribution data and variables 

describing the environmental conditions (e.g. climate, vegetation, land use; 

Guisan & Zimmermann 2000; Elith & Leathwick 2009; Franklin 2013). SDMs 

relate species occurrence records with environmental variables to estimate 

species response curves and predict the distribution of the species in areas 

where its occurrence in unknown (Fig.1). Most techniques analyse the 

environmental conditions that are used by the species relative to those that are 

either available to them or not used (Warton & Aarts 2013; Lele et al. 2013; 

Guillera-Arroita et al. 2015). The derived continuous distribution maps are tools 

increasingly used in many different aspects related to biodiversity conservation 

and management (Chefaoui, Hortal, & Lobo 2005; Schmolke et al. 2010; 

Barbosa, Real, & Vargas 2010; Guisan et al. 2013; Kearney & Porter 2014; 

Acevedo et al. 2014). For instance, SDMs are used to inform on potentially 

suitable habitats in areas where the species presence has not been sampled, 

which can be useful e.g. in conservation prioritization, planning and reserve 

design. SDMs are also frequently used as tools to project species distribution in 

other regions or in the future (Martin et al. 2013). Examples include 

environmental impact assessments, predicting the effects of global change on 

ecosystems (Ackerly 2003; Peterson et al. 2004), predicting the risk of 

pathogens and exotic species spread into new regions (Peterson & Vieglais 

2001), and ecological restoration and species reintroductions (Wright et al. 

2006; Franklin 2009). Despite the wide range of applications, some practitioners 

remain poorly inclined to rely on modelling outcomes for on-ground 
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interventions (Jeltsch et al. 2013) and a stronger linkage between modelling 

science and conservation practice has been advocated (Guisan et al. 2013). 

 

Figure 1. Simplified scheme of the main steps involved in predicting the potential 
distribution of a species using species distribution models (SDMs). 

 

Niche theory 

Ecological niche theory is essential to understand species distributions and is 

the basis to the development of species distribution models (Austin 2002; 

Guisan & Thuiller 2005; Araújo & Guisan 2006; Hirzel & Le Lay 2008; Peterson 

2011). The ecological niche is a central concept in ecology and even though it 

was first described in the mid-20th century, it keeps constantly modernising 

and driving debates in the scientific literature until today (Chase & Leibold 

2003; Soberón & Nakamura 2009). 



Introduction 

15 

 

Figure 2. Four bi-dimensional graphs representing the relation between niche and 
species distribution (from Pulliam 2000). 

 

Grinnell (1917) defined the species niche as the “environmental requirements 

of the species” (Fig. 2-A). A decade later, Elton (1927) defined niche as “the 

role of the species in the community”, integrating the interactions among 

species. These two definitions (geographical and functional) were merged by 

Hutchinson (1957), who described the species niche as “ the coordinates of the 

species with n-dimensional resources axes”. He made the distinction between 

the “fundamental niche” where “the conditions allow the species to exist 

indefinitely” and the “realized niche”, a subset of the fundamental niche that 

corresponds to “the conditions where the species can persist in interaction 

with other organisms”.  

One of the most important assumptions of SDMs, based on Hutchinson’s 

definition, is that a species is present wherever the local environmental 
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conditions are within the species demographic niche (i.e. wherever the 

population is at equilibrium) (Peterson 2011). However, these models 

frequently ignore possible deviations from this equilibrium, such as source-sink 

dynamics and dispersal limitation (Pulliam 2000) (Fig.2) or ecological traps 

(Robertson & Hutto 2006; Robertson et al. 2017), where individuals occur 

under certain environmental conditions beyond the boundaries of their 

demographic niche.  

This important assumption of species distribution modelling directly challenges 

the outcomes of these models and their usefulness for predicting habitat 

quality to support the persistence of the species. This issue has drawn our 

attention to the need for a better understanding of the link between model 

predictions and habitat quality.  

Types of data used in SDMs 

There are numerous methods that combine species occurrence data with 

environmental variables to estimate species distribution in space. The type and 

quality of the available data (e.g. sample size, sample bias, spatial resolution, 

geographical extent) and the ecological questions to be addressed are key 

aspects when selecting a modelling method (Segurado & Araújo 2004; Lobo, 

Jiménez-Valverde, & Real 2008; Elith & Leathwick 2009; Guillera-Arroita et al. 

2015).  

Species distribution data 

There are mainly two types of species distribution data (see Franklin 2009 for 

details): those that enclose only information on the presence of a species 

(presence-only data) and those that provide information on the presence and 

the absence of a species (presence-absence data). Many data collection 
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methods, especially those involving many species and large geographical 

extents, can only afford recording the species presence rather than 

distinguishing between presences and absences.  

Some of the modelling methods which use presence-only data are: BIOCLIM 

(Busby, Margules, & Austin 1991); HABITAT (Walker & Cocks 1991); DOMAIN 

(Carpenter, Gillison, & Winter 1993); ecological niche factor analysis (ENFA) 

(Hirzel et al. 2002); genetic algorithm for rule-set production (GARP) (Stockwell 

& Peters 1999); maximum entropy (MaxEnt) (Phillips, Dudík, & Schapire 2004) 

and Mahalanobis distance (Farber & Kadmon 2003). Examples of modelling 

methods that use presence and absence data include generalised linear 

models (GLM) (Guisan, Edwards, & Hastie 2002), generalised additive models 

(GAM) (Guisan, Edwards, & Hastie 2002; Elith et al. 2006), artificial neural 

network (ANN) (Pearson et al. 2002) and boosted regression trees (BRT). 

Many scientific studies are dedicated to the comparison between species 

distribution modelling methods and algorithms (Segurado & Araújo 2004; 

Tsoar et al. 2007; Jiménez-Valverde, Lobo, & Hortal 2008; Elith & Graham 

2009). Nowadays, platforms such as BIOMOD have been developed to make 

use of different modelling algorithms and predict the species distribution 

based on an ensemble of methods (Thuiller et al. 2009). We do not provide 

detailed information on mathematical algorithms and modelling 

methodologies, as this is not the scope of this introduction. 

Environmental variables 

The choice of environmental predictors has a large influence on SDM 

performance (Austin et al. 2006). The modeller needs to identify 

environmental information that represents resource gradients determining the 

species distribution and to select and assemble appropriate environmental 
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data to be used in the modelling. Conditioned to what is available in the study 

area, issues such as data quality, spatial resolution or variable selection are not 

trivial problems to solve (Franklin 2009).  

The typically used environmental variables can be grouped in different types: 

climate (e.g. temperature, precipitation), topography (e.g. elevation, 

orientation), substrate (e.g. soil types, geology), land cover and vegetation, 

remote sensing-based land surface characterisations (such as vegetation 

indexes) and measures of landscape pattern (Austin 2002; Synes & Osborne 

2011). 

What about the name? 

Ecological niche-models, habitat suitability models or species distribution 

models? Much literature is dedicated to explaining the differences among 

these terms and the appropriateness of using one or the other. This literature, 

albeit interesting, may lead to confusion (Austin 2007; Elith & Leathwick 2009; 

Peterson 2011; Peterson & Soberón 2012; Warren 2012; McInerny & Etienne 

2013; Lele et al. 2013). In this PhD-thesis, we mainly used the more general 

term “species distribution model” as we think that it is the term that best 

encloses all the other terms, but we take them all as synonyms.  

Interpretation: understanding modelling outcomes 

Currently, the more complex models are most frequently used, even though 

this implies the interpretation of complex outcomes (Elith, Kearney, & Phillips 

2010). The nature of the data and the model algorithm used, with the 

underlining assumptions, affects the interpretation of the resulting SDM and 

spatial prediction (Franklin 2009). 
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Most SDMs are built under the assumption that they directly inform on the 

quality of the habitats for the species. Generally, the model predictions 

correlate well with species abundance (Weber et al. 2016), but not much 

quantitative information is available regarding the link with population growth 

(Thuiller et al. 2014). Outcomes of these models are often – sometimes blindly 

– used as proxies for demographic parameters to differentiate between areas 

with high individual fitness (high survival of the individual and high offspring 

production) and areas that are not suitable for viable populations (Pulliam 

2000; Guisan & Thuiller 2005; VanDerWal et al. 2009; Pellissier et al. 2013). 

Mechanistic approaches that integrate demographic, physiological, 

evolutionary or behavioural processes into the modelling framework have 

been proposed as valuable alternatives or counterparts to SDMs (e.g. Kearney 

& Porter 2009; Buckley et al. 2010; Sánchez-Clavijo, Hearns, & Quintana-

Ascencio 2016). However, the development of models based on mechanisms 

remains strongly constrained by the availability of appropriate input data at 

relevant scales (Thuiller et al. 2013; Urban et al. 2016). For this reason, SDMs 

are expected to be often used for conservation and management applications 

in the future (Elith, Kearney, & Phillips 2010; Dormann et al. 2012; Morán-

Ordoñez, Briscoe, & Wintle 2016). Therefore, there is a strong need to better 

understand situations in which these statistical approaches produce useful 

outcomes for this purpose (Bean et al. 2014) 
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USING BIRDS AS MODEL ORGANISMS 

Birds are worldwide recognized as useful indicators of the state of the 

environment because they occupy a high trophic level and they occur in a wide 

range of habitats (Bibby 1999; BirdLife International 2004; Gregory & Strien 

2010). 

Birds are relatively easy to census as they are well known, easily recognisable 

and simpler to locate than other taxonomic groups (Bibby et al. 1992). 

Western Europe counts with a great number of amateur ornithologist and has 

a strong ornithological culture, which allows the implementation and 

accomplishment of many different bird survey projects. 

In this PhD-thesis we present 4 articles, dealing with bird distribution data and 

species distribution modelling. More details about the specific questions 

addressed are presented in the next chapter (Objectives). For articles 1 and 4, 

we worked with the same bird species, the Red-backed Shrike (Lanius collurio), 

a passerine bird included in the Annex 1 of the European “Birds Directive”. 

Articles 2 and 3 are dedicated to groups of bird species (20 and 19 species, 

respectively), which, in both cases, needed to fulfil some specific criteria 

necessary to answer the specific objectives of each article. 

Bird mapping projects 

Based on the collection of observations covering large areas (Fig.3), atlas 

projects require substantial effort and budget. For this reason, they are 

generally completed during considerable time periods (3-6 years) and repeated 

at long-time intervals (15 - 20 years), which prevent them from being suitable 

to detect changes in species distribution with an appropriate time scale for 

decision-making.  
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Figure 3. This figure, from the Methods chapter of the Atlas of Breeding Birds of 
Wallonia, represents the grid division of the region to be sampled, with the ecological 
regions of the study area in the background (figure from Jacob et al. 2010). 

 

In articles 2, 3 and 4 of this PhD-thesis, we used data collected for breeding 

bird atlas projects for calibrating the SDMs. For articles 2 and 4 we used the 

Atlas of Breeding Birds of Wallonia (Jacob et al. 2010) and for article 3 we used 

the Catalan Breeding Bird Atlas (Estrada et al. 2004) (Fig 4). 

  

Figure 4. Cover pages of the Atlas of Breeding Birds of Wallonia (Jacob et al. 2010) and 
the Catalan Breeding Bird Atlas (Estrada et al. 2004), major data sources of this PhD-
thesis. 
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Bird monitoring projects 

Long-term monitoring projects are increasingly conducted in several areas to 

track overall changes in species composition and/or abundance with a finer 

temporal resolution (intervals of ca. 1-5 years) than large-scale mapping 

projects. Sampling sites are normally scarcely distributed in space (Fig. 5). 

Monitoring projects are mostly dedicated to inform on temporal trends of 

abundance and occurrence of common and widespread species (Gregory et al. 

2005), with an emphasis on understanding the underlying causes of population 

changes in the countryside and on evaluating and improving the efficiency of 

management policies (Yoccoz, Nichols, & Boulinier 2001). The main aim of 

monitoring projects is to provide a scientific evaluation of the changes in the 

conservation status of species over time. The information gathered in a series 

of small and geographically scattered sampling locations is not readily usable 

to map the distribution of species in a continuous way across the region of 

interest, but it may provide us with a sufficient spatial data that could be used 

for mapping species distributions through modelling (Brotons, Herrando, & Pla 

2007; Honrado, Pereira, & Guisan 2016). 

Data collection 

Large-scale mapping and long-term monitoring projects usually need a large 

group of devoted volunteers and/or professionals who collect data in the field. 

The data collection itself can be done following different sampling procedures, 

such as point counts, transects or territory mapping (Fig.5). These procedures 

are chosen according to the specific objectives of the project, but also depend 

on the human and financial resources.  
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Figure 5. A transect serving as sampling unit for birds in the Global biodiversity long-

term monitoring project of Luxembourg. The background represents the ecological 

regions of Luxembourg (figure from Titeux, Moes, & Hoffmann 2009). 

 

This PhD-thesis focuses on the uses of SDMs for direct conservation issues: 1) 

identifying the most promising areas for the conservation of bird species 

(articles 1, 3 and 4) and 2) guiding the establishment of monitoring projects 

(article 2). With our results, we hope to encourage the use of models among 

sceptical practitioners involved in decision-making related to conservation and 

management issues (articles 1 and 2). We also focus on the ecological 

interpretation of SDM outcomes, analysing their link with the quality of habitat 

conditions for the reproduction of the species (articles 3 and 4). 
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As species distribution models (SDMs) are expected to be increasingly used to 

guide conservation decision-making (Guisan et al. 2013), there is a strong need 

to better understand situations in which these models can be confidently used 

as tools to support the different steps leading to the achievement of 

conservation goals. The overall objective of this PhD-thesis is to contribute to 

providing evidence of the usefulness and applicability of SDMs for some of these 

steps. 

Across the different chapters of the thesis, we will examine the usefulness of 

SDMs to improve our knowledge on the distributions of the species and on the 

spatial arrangement of their suitable habitats. To do so, the first half of the 

thesis (articles 1 and 2) will focus on the power of the SDMs to predict the 

distribution of the species and the second half (articles 3 and 4) will explicitly 

distinguish species distribution from reproductive performance that directly 

reflects habitat quality for the species. Identifying suitable habitats for the 

species across an area of interest is a crucial issue that can impact the spatial 

prioritization of management or conservation options. 

This general objective is further divided into four questions, which are 

addressed in separate articles, as described below (Fig.1). 

Question 1: Are SDMs as useful as experts to improve our knowledge on the 

distribution of a species of conservation concern? 

SDMs are an increasingly used technique for identifying suitable sites for the 

species, but in many cases conservation practitioners remain sceptical about 

their usefulness and mostly rely on expert knowledge when making decisions. 

Here, we explicitly compare both approaches to illustrate the potential of 

SDMs for maximizing the detection of new presence areas for a conservation-
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concern bird species (Red-backed shrike, Lanius collurio) at a national scale 

(Luxembourg).  

We designed three separate sampling strategies to identify new shrike records 

across the country: 1) a sampling strategy based on ornithological expert 

knowledge; 2) a sampling strategy based on the predictions of SDMs; and 3) a 

random sampling strategy. We conducted ground validation according to the 

three different strategies to evaluate and compare their effectiveness in 

detecting previously unknown presence areas for the shrikes.  

We believe that this first article may contribute to encouraging the use of SDMs 

among practitioners as an accepted tool to support biodiversity conservation 

and management. 

Question 2: How to optimise sampling design in long-term bird monitoring 

projects so that the data collected in the field could be used to map the 

distribution of the species?  

Long-term monitoring projects have as a prime objective to estimate temporal 

trends in population sizes. Nowadays, integrated with SDM techniques, 

monitoring schemes can also be used to obtain large-scale species distribution 

maps. These projects are often carried out in a network of sites where data is 

collected repeatedly over time according to established procedures. The 

sampling design often results from a trade-off between the number of 

sampling sites and the number of repeated surveys that can be conducted in 

these sites to track the abundance of the species with an acceptable level of 

precision. Mapping the distribution of the species is, therefore, seldom 

integrated when preparing the sampling design for monitoring projects. 
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We developed an analytical framework based on the data from a breeding bird 

atlas project in Wallonia (Belgium) to guide the establishment of a bird 

monitoring project that would have the potential to produce appropriate 

information to build useful SDMs and maps of species distribution. We 

manipulated breeding bird atlas data to imitate a broad gradient of possible 

numbers of sampling sites in a monitoring project. We built and estimated the 

precision of SDMs with this varying amount of sampling sites. 

We believe that this second article provides an interesting analytical framework 

to aid in the initial design of monitoring projects if their aim is to document the 

distribution of the species in addition to trends in population sizes. 

Question 3: Are SDMs reliable to inform on habitat quality for breeding birds 

at the regional scale? 

Predictions of SDMs are often used under the assumption that they directly 

inform on the quality of the habitats for the species. In other words, SDM 

outcomes are frequently used as proxies for demographic parameters to 

differentiate between areas of high importance for the persistence of the 

populations and areas that are not suitable for viable populations.  

We assessed how the predictions derived from SDMs are related to measures of 

reproductive performance obtained from data collected in Constant Effort Sites 

(CES) mist-netting stations in Catalonia (Spain). We used bird presence records 

collected in the frame of a breeding bird atlas project to build SDMs. The 

proportion of juveniles captured in each CES was used as a measure of 

reproductive performance for each bird species. We tested at multiple spatial 

scales if the geographical variations in reproductive performance as measured in 

the CES matched the variations in habitat quality as derived from the SDMs.  
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We believe that this third article may contribute to the understanding of the 

relationship between the predictions obtained from the SDMs and the 

production of juveniles in breeding areas.  

Question 4: Are SDMs reliable to inform on habitat quality for an ecologically 

trapped bird? 

Ecological traps result from behavioural maladaptation during habitat 

selection: they are poor-quality habitats that attract organisms more than 

higher-quality options available in the landscape. This may challenge the 

relevance of SDM outcomes if they are used to document habitat quality 

weigh the importance of different areas for the conservation of the species. In 

direct line with article 3, we examined the relevance of using SDM outcomes 

to reflect how habitat quality varies across the landscape for ecologically 

trapped organisms.  

Previous work conducted in Wallonia (Belgium) showed that Red-backed shrikes 

(Lanius collurio) are attracted to harvested areas in coniferous plantation forests 

more than to traditional farmland habitat, but their reproductive performance is 

markedly higher in farmland than in forest. Here, we built SDMs with shrike 

distribution data obtained from the breeding bird atlas of Wallonia and estimate 

how the SDM outcomes varied across the landscape. We compare the outcomes 

of the SDMs in farmland and forest habitats to parameters of reproductive 

performance that proximately inform on the quality of these two breeding 

habitats for shrikes.  

We believe that this fourth article provides a step further in the understanding 

of the relationship between the SDMs outcomes and the reproduction 

parameters, as this is done for an ecologically trapped bird, where the habitat 
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preference of the species is the habitat where its reproductive performance is 

lower. 

These four questions were addressed through specific studies developed as 

scientific articles following similar methodological approaches and using similar 

datasets (Fig. 2). This allowed us to explore the usefulness of SDMs for 

conservation practice and to better understand the ecological interpretation of 

SDM outcomes.  
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Figure 1. Graphic summary of each of the articles presented in this PhD-thesis. 
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Figure 2. Graphic summary of the common methods used in the articles presented in 

this PhD-thesis.
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ABSTRACT 

1. Up-to-date knowledge on species distribution is needed for efficient 

biodiversity conservation and management decision-making. Implementing 

efficient sampling strategies to identify previously unknown locations of 

species of conservation-concern is therefore a key challenge. Both 

structured expert judgement and habitat suitability models may help target 

sampling towards areas where chances to find the species are highest. 

However, practitioners often object to the use of models and believe they 

do not result in better decisions than the subjective opinion of experts, thus 

potentially constraining an optimal use of available methods and 

information. 

2. To illustrate the potential of habitat suitability models for guiding sampling 

strategies, we evaluated and compared the ability of experts and models to 

identify important areas for the conservation of a bird species (Lanius 

collurio) in Luxembourg. We conducted extensive fieldwork to find as many 

unknown bird territories as possible according to three independent 

sampling strategies: (i) a sampling strategy based on structured expert 

judgement, (ii) a sampling strategy based on the predictions of a habitat 

suitability model and (iii) a general-purpose stratified random sampling 

strategy used as a baseline reference. 

3. Both the expert-based and the model-based sampling strategies 

substantially outperformed the general-purpose sampling strategy in 

identifying new species records. In addition, the model-based sampling 

strategy performed significantly better than the expert-based sampling 

strategy. 

4. Synthesis and applications. This study explicitly shows that habitat suitability 

models can efficiently guide field data collection towards suitable areas for 

species of conservation-concern. Results may facilitate the involvement of 

practitioners in the development of habitat suitability models with the 

objective of maximizing the robustness of modelling applications in 

conservation practice and management decision-making. 
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INTRODUCTION 

Accurate knowledge on species occurrence is a prerequisite for appropriate 

biodiversity conservation decision-making, such as reserve selection (e.g. 

Cabeza & Moilanen 2001), management of biological invasions (e.g. Gormley et 

al. 2011) or identification of key habitats for threatened species (e.g. Brotons, 

Mañosa, & Estrada 2004). Such information often consists of opportunistically 

collected data available as museum records or from web-based biodiversity 

data-gathering portals (Sardà-Palomera et al. 2012). Field data are also 

increasingly collected during structured field sampling, such as biodiversity 

mapping (e.g. atlas projects) or monitoring programmes (e.g. Robertson, 

Cumming, & Erasmus 2010). For rare species or species of conservation-

concern, information is often lacking or incomplete; finding new presence areas 

is critical because increased knowledge on their distribution may provide key 

guidance on their conservation and management (Guisan et al. 2006). However, 

the collection of additional field data can be costly in terms of manpower, time 

and budget. It is therefore highly important to define the most efficient 

sampling strategies to minimize costs and maximize gains in knowledge 

(Aizpurua et al. 2015). The distribution of species of conservation-concern may 

be geographically limited due to their restricted habitat requirements or 

population sizes. Hence, identifying new presence areas for those species might 

be challenging and sometimes inefficient using general-purpose sampling 

designs (Le Lay et al. 2010). 

To find new presence areas for species of conservation-concern, information on 

their habitat requirements is needed (e.g. Anadón et al. 2009). One option to 

obtain such information is the application of methods that aim to elicit 

information from experts (Franklin 2009). Experts have achieved high 

knowledge on a particular topic through their life experience (Kuhnert, Martin, 
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& Griffiths 2010; Burgman et al. 2011) and are classically defined by their 

qualifications, track record and professional standing (Burgman et al. 2011). One 

advantage of expert elicitation is the possibility of obtaining high-quality and 

structured information on species distributions with a relatively low cost 

(Murray et al. 2009; Cerqueira et al. 2013). This may prove useful when 

available information on species distribution is insufficient to implement more 

quantitative methods (Doswald, Zimmermann, & Breitenmoser 2007; Cerqueira 

et al. 2013; Turvey et al. 2015). For instance, reliable information on local 

distribution and abundance of the spur-thighed tortoise Testudo graeca L. was 

easily obtained by interviewing local shepherds about the number of 

encounters with the species (Anadón et al. 2009). Eliciting expert information 

involves dealing with multiple expert judgements, with different sources of 

biases in the elicited information and with uncertainty around expert estimates 

(Martin et al. 2012; McBride et al. 2012). For example, expertise may be 

restricted to the region of interest of the experts (Murray et al. 2009). Hence, a 

careful pre-elicitation analysis of expert availability and the preparation of a 

structured elicitation design are needed to account for such potential biases and 

to obtain the highest quality of information (Martin et al. 2012; McBride et al. 

2012). Sampling design based on structured expert judgement may then prove 

to be cost-efficient for identifying important presence areas for the 

conservation of threatened species (Murray et al. 2009; Cerqueira et al. 2013). 

Habitat suitability modelling is a more recent tool that uses existing data and 

may assist in identifying sites where additional sampling is to be conducted. 

Here, a statistical link is established between the locations where the target 

species has been observed and a series of variables describing the 

environmental conditions in those sites (Guisan & Zimmermann 2000; Franklin 

2009; Elith et al. 2011). Such predictive models may be used to inform on 
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potentially suitable habitats in areas where the species presence is unknown, 

which may constitute an efficient data-driven approach to guide further 

sampling (Guisan et al. 2006; Crall et al. 2013). Models also suffer from 

important limitations including geographical biases, data availability and 

uncertainties in their predictions (Barry & Elith 2006). A variety of statistical 

methods exist to evaluate their ability to predict species distributions accurately 

(e.g. Vaughan & Ormerod 2005). 

Although predictive models have the potential to play a key role in supporting 

conservation and management decision-making, practitioners are often not 

easily inclined to rely on their outcomes for on-the-ground interventions (Jeltsch 

et al. 2013). Addison et al. (2013) provided evidence of common objections to 

the use of models in environmental decision-making and reported that 

practitioners often believe that models do not result in better decisions than 

those supported by the subjective opinion of experts. Alternatively, managers 

may object to the use of such approaches as they consider that models fail to 

capture the different factors influencing conservation and management options 

(Hajkowicz 2007), or provide outcomes that are uncertain and poorly 

communicated (Borowski & Hare 2007). An additional objection relates to the 

need for a considerable level of conceptual and technical expertise or to the 

amount of resources and time needed to implement such procedures and to 

obtain enough input data (Borowski & Hare 2007). 

A stronger linkage between modelling science and conservation practice has 

been recently advocated to help modellers improve the effectiveness, relevance 

and usefulness of their work in supporting conservation and management 

decision-making (Guisan et al. 2013). In the last few decades, effort has been 

invested on integrating structured expert judgement into modelling approaches 

to improve model predictions (Krueger et al. 2012). Such expert-informed 
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modelling can contribute to bridging the gap between modellers and 

practitioners. Structured expert judgement may be incorporated in predictive 

models at different stages of the modelling procedure (Pearce et al. 2001), e.g. 

for the preparation of input data, the selection of relevant variables or the 

refinement of model predictions. 

An alternative option to illustrate the potential of predictive models is to 

compare the ability of such quantitative approaches with that of an approach 

based on expert elicitation to guide on conservation decisions (Drolet et al. 

2015). Rather than integrating structured expert judgement into the modelling 

procedure, we compared the capability of models and experts to optimize the 

detection of previously unknown presence areas for a bird species of 

conservation-concern. First, we designed three separate sampling strategies: a 

sampling strategy based on structured expert judgement without the aid of 

modelling approaches; a sampling strategy based on the predictions of a habitat 

suitability model independent of expert judgement and a general-purpose 

strategy based on a stratified random sampling design. Second, we conducted 

ground validation according to the different sampling strategies to evaluate and 

compare their effectiveness to update our knowledge on the distribution of the 

target species (Williams et al. 2009; Rebelo & Jones 2010). We hypothesized 

that predictive models are useful to guide sampling if a model-based sampling 

strategy performs better than a general-purpose strategy (Le Lay et al. 2010) 

and as good as an expert-based sampling strategy (Drolet et al. 2015). To the 

best of our knowledge, using structured expert judgement to illustrate the 

effectiveness of habitat suitability models to achieve a management and 

conservation objective in an explicit and straightforward way, as we propose 

here, has not been reported to date. We believe this may contribute to 
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encouraging the use of models among practitioners as an accepted tool to 

support biodiversity conservation and management decision-making. 

METHODS 

Study area and species 

The study was conducted in Luxembourg (2586 km2, Fig.1a). Lanius collurio L., a 

passerine bird categorized as nearly threatened in this country (Lorgé & 

Melchior 2010), was chosen as a model species of conservation-concern. This 

bird breeds in semi-open areas under a management regime of extensive 

farming with scattered and thorny hedges and bushes for nesting (Titeux et al. 

2007). Individuals arrive to the breeding sites from late April to late May and the 

breeding period extends until late July. Their sit-and-wait hunting strategy and 

their territory-defence behaviour make L. collurio easily detectable (Titeux et al. 

2007). 

Sampling strategies 

A total of 737 known L. collurio territories recorded during the period 2000–

2009 were made available from the national data set managed by the bird 

conservation association in Luxembourg (BirdLife Luxembourg). These known 

territories were used as a common source of basic information to design the 

expert-based and model-based sampling strategies as described below (Fig.1b). 

Data included presence-only records with varying spatial precision, but only the 

records with a precision ranging from 10 m to 100 m were retained for 

subsequent analyses. 
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Figure 1. Overview of the different sampling strategies used to identify new territories 
of L. collurio in Luxembourg. (a) Luxembourg in north-west Europe. (b) Known L. collurio 
territories in Luxembourg (2000–2009). (c) Environmentally homogeneous strata in 
Luxembourg (Titeux et al. 2009). Sampling squares selected using (d) expert-based, (e) 
model-based and (f) stratified random sampling strategies. Location of the new L. 
collurio territories found according to (g) expert-based, (h) model-based and (i) stratified 
random sampling strategies. 
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Expert-based sampling strategy 

We interviewed nationally recognized bird experts who agreed to participate in 

this study. Judgement was elicited from seven experts to obtain a reliable 

selection of sampling sites and to decrease the possible geographical biases 

(McBride, Fidler, & Burgman 2012). These experts were considered to have the 

best knowledge on L. collurio in Luxembourg (see Appendix S1 in Supporting 

Information). Elicitation sessions were conducted individually and 

independently to enhance the diversity of knowledge elicited and to avoid 

experts being unduly influenced by group pressures (Martin et al. 2012). Experts 

were provided with the locations of the known L. collurio territories to produce 

their guidance on the sampling areas. Using the 1-km resolution grid system in 

Luxembourg, each expert was asked to select 30 squares with the potential to 

find as many new shrike territories as possible during ground validation. Experts 

were informed that a new territory would be considered as such during ground 

validation if previously known territories were absent within a 200-m distance. 

Once provided with such information, they were left to select 1-km resolution 

squares with or without previously known territories. Each expert was asked to 

allocate the 30 selected squares to three classes: 10 squares classified as high 

priority, 10 squares as medium priority and 10 squares as low priority for further 

sampling. In order to aggregate the elicited expert judgements, we used a 

simple mathematical equal-weighted opinion pooling (Martin et al. 2012) that 

did not involve any interaction among experts and where they were viewed as 

equivalent (Clemen & Winkler 1999). A simple spatial overlay rule in a GIS 

environment (e.g. Sugurmaran & Degroote 2010) allowed us to identify those 

squares selected by at least two experts. We considered them for sampling as 

they reflected among-expert agreement on potentially suitable squares. Then, 

we randomly sampled additional squares among the remaining ones classified 
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as high priority by the experts so as to obtain an expert-based set of 30 sampling 

squares for ground validation (Fig.1d). 

Model-based sampling strategy 

Habitat suitability models were developed using a Maximum Entropy procedure 

(Maxent) (Phillips, Anderson, & Schapire 2006). Maxent is a machine-learning 

and user-friendly technique based on the principle of maximum entropy that is 

recommended when using presence-only species data (Phillips, Anderson, & 

Schapire 2006; Franklin 2009; Elith et al. 2011). Maxent was used to build a 

habitat suitability map for L. collurio based on the link between the known 

territories of the species and the environmental conditions in those sites (Elith 

et al. 2011). Shrike records were allocated to 100-m resolution grid cells nested 

in the same 1-km resolution grid system as the one used during expert 

elicitation. We selected 10 environmental variables considered to characterize 

the most important habitat conditions for L. collurio (Titeux et al. 2007) (Table 

1). All environmental data, available at various resolutions, were resampled to 

correspond to the 100-m resolution grid with the species presence data and 

values were derived for each cell. The quadratic terms of the continuous 

environmental variables were included in addition to the linear functions. We 

used a five-fold cross-validation approach to define the training and test data 

sets to fit the models and to statistically evaluate their performance using the 

area under the receiver operating characteristics (ROC) curve (AUC). AUC values 

reflected the ability of the model to discriminate between shrike presence 

records and randomly selected grid cells (Phillips & Dudík 2008). 

The modelling outputs at 100-m resolution were aggregated at the scale of the 

1-km resolution squares, by adding up the habitat suitability values predicted in 

the 100-m grid cells enclosed within each square. Aggregated habitat suitability 
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values were then used to rank the squares in decreasing order of suitability for 

L. collurio across Luxembourg. Squares with five or more known shrike 

territories were eliminated as we considered that the chances of finding 

additional territories beyond a 200-m distance around the previously known 

ones were low. From the remaining squares, we selected the top-ranked, most 

suitable ones (Williams et al. 2009) to create the model-based set of 30 

sampling squares for ground validation (Fig.1e). 

Table 1. Environmental variables used in a habitat suitability model to identify suitable 
areas for the red-backed shrikes L. collurio in Luxembourg 

Variable Source Year Units 

Predominant soil type  Soil map    1970 – 

Mean percentage slope Digital elevation model 2001 % 

Topographic moisture index† Digital elevation model 2001 – 

Annual crops Land cover map    2007 m2 

Meadows and pastures Land cover map    2007 m2 

Urbanized areas Land cover map    2007 m2 

Distance to closest urbanized 
area 

Land cover map    2007 m 

Forests Land cover map    2007 m2 

Distance to closest forest  Land cover map    2007 m 

Hedges Topographic map    1998 m 

† Topographic moisture index was calculated following Beven & Kirkby (1979) 
Soil map   : adapted from ‘Carte pédologique du Luxembourg’ 
Digital elevation model: ‘Modèle numérique de terrain du Luxembourg’ 
Land cover map   : ‘Occupation biophysique du sol’ 
Topographic map   : ‘Base de données topo-cartographique du Luxembourg’ 

 

Stratified random sampling strategy 

We also selected a set of sampling squares according to a stratified random 

sampling strategy recently implemented in the common bird monitoring 

programme in Luxembourg (Titeux et al. 2009). Based on a series of 
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environmental variables known to influence biodiversity (see Table S1), the 

whole set of 1-km resolution squares in Luxembourg was divided into 10 

environmental strata (Fig.1c). In order to cover the main environmental 

conditions in the country, a stratified random sampling procedure was applied 

to select a number of squares within each stratum in proportion to their spatial 

extent. For the common bird monitoring programme, a set of 30 squares was 

randomly generated and is used for yearly sampling of breeding birds. This set 

was used here as a baseline reference to reflect a general-purpose sampling 

strategy (Fig.1f). 

Ground validation 

Fieldwork was conducted to detect and count L. collurio territories in the 1-km 

resolution squares selected according to each sampling strategy. In the squares 

selected based on the expert- and model-based sampling strategies, transects 

with a length of 2.5 km were delineated in potentially suitable open land for 

shrikes. For the squares selected according to the stratified random sampling 

strategy, 2.5-km long transects were randomly delineated across all habitat 

types in the squares, as they constituted the sampling units reflecting a general-

purpose sampling strategy. All transects were sampled on foot at a walking 

speed. Shrike territories were searched with the aid of binoculars and based on 

auditory cues and they were georeferenced with the highest possible spatial 

accuracy. 

To maximize the probability of finding shrike territories during the breeding 

season, the selected squares were surveyed once in June and once in July during 

two consecutive years (2010 and 2011). The squares were sampled by different 

observers (n=7) within the same dates and using the same field procedure. After 
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the two breeding seasons, field data were integrated with previously known 

territories to identify the new L. collurio territories found in each 1-km square. 

Data analysis 

The number of new territories found during ground validation was used as a 

measure of efficiency of the three sampling strategies. This measure was 

compared among sampling strategies to evaluate if the model-based sampling 

strategy performed better than by chance (stratified random sampling strategy) 

and if it was as useful as experts (expert-based sampling strategy). 

A likelihood ratio test (LRT) within a generalized linear modelling (GLM) 

framework with a Poisson distribution was used to compare the efficiency of the 

three sampling strategies. Year of sampling and observer identity were included 

as factors in the GLM to account for their effect on the response variable. 

Interaction terms were not considered, as there was no biologically relevant 

reason to do so. A post-hoc analysis with multiple comparisons and Bonferroni 

correction was used to compare the efficiency of the different sampling 

strategies with each other. 

We also tested whether the elicitation of structured expert judgement led to 

the identification of new L. collurio territories closer to the network of 

established protected areas than methods that explicitly ignored such features. 

The distance between each new territory and the closest protected area 

designated under the European Union Directive on the Conservation of Wild 

Birds (Directive 2009/147/EC) was calculated. Distances were square-root 

transformed and compared among sampling strategies within a linear modelling 

(LM) framework with a normal distribution. Year of sampling was included as a 

factor in the analysis. We also performed a post-hoc analysis to test if there 
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were differences in the mean distance to protected areas between each of the 

sampling strategies. 

RESULTS 

A total of 87 1-km resolution squares were sampled during ground validation to 

evaluate the efficiency of the different sampling strategies to identify new 

shrike territories. Among the squares selected by the experts, 27 squares were 

identified by at least two of them and three additional ones were randomly 

chosen among the rest of the squares classified as high priority by the experts. 

None of the squares selected based on the general-purpose stratified random 

sampling strategy were selected according to the expert- or model-based 

strategies. Only three squares overlapped between expert- and model-based 

sampling strategies, indicating a high level of discrepancy between the areas 

identified as with the highest probability of finding new L. collurio territories by 

the experts and the models. 

The average AUC value obtained from the five-fold cross-validation in the 

modelling procedure was 0.85 ± 0.021. This means that there is an 85% 

probability that a grid cell occupied by the shrike receives a habitat suitability 

value higher than that of a randomly selected grid cell. Based on this statistical 

evaluation, model outcomes can be considered as potentially useful (Phillips & 

Dudík 2008). 

A total of 95 new shrike territories were found during ground validation in 

2010–2011 when using habitat suitability models, while only 11 new territories 

were discovered in the squares selected based on the stratified random 

sampling strategy (Table 2). The average number of territories per km2 found 

according to the model-based strategy was 2.73 in 2010 and 2.66 in 2011 
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(range: 0–7), while 0.23 new territories per km2 were found in 2010 and 0.2 in 

2011 (range: 0–2) based on the stratified random sampling strategy (Figs 1 & 2). 

The species was not detected in only three squares selected based on the 

model-based sampling strategy (in both 2010 and 2011) and this was the case in 

24 (in 2010) and 25 (in 2011) squares selected with the stratified random 

sampling strategy. According to the expert-based sampling strategy, 72 new 

territories were found during ground validation in 2010–2011 (Table 2), with an 

average number of territories per km2 of 2.03 in 2010 and 1.73 in 2011 (range: 

0–8) (Figs 1 & 2). Lanius collurio was not detected in six (in 2010) and eight (in 

2011) squares selected according to the expert-based sampling strategy. 

Table 2. Total number of new L. collurio territories found during 2010 and 2011 
according to the expert-based, model-based and stratified random sampling strategies 

Sampling strategy 2010 2011 Total in 2010–2011† 

Expert-based  61 52 72 

Model-based  82 80 95 

Stratified random  7 6 11 

† Some shrike territories were observed during both years (2010 and 2011) 

 

The GLM analysis indicated that sampling strategy was the only significant (P < 

0.05) factor explaining the variation in the number of new L. collurio territories 

within the sampling squares (Table 3). The post-hoc multiple comparisons 

showed that a significantly higher number of new shrike territories were found 

when using the sampling strategies targeting on the shrike (Table 4): there was 

a 7.5-fold and a 5.3-fold increase in the number of new territories found per 

km2 when using the model-based and expert-based sampling strategies 

respectively, compared to the stratified random sampling strategy. The model-



Article 1 

56 

based sampling strategy performed also significantly better than the expert-

based sampling strategy in guiding sampling towards areas with a higher 

number of unknown territories (Table 4): there was a 1.4-fold increase in the 

number of new territories per km2 when using the model-based sampling 

strategy compared to the expert-based sampling strategy. 

 

Figure 2. Box-and-whisker plots (┴ and ┬: 5th and 95th percentiles, •: outlying values, x: 

mean value, −: median value) for the number of new L. collurio territories found per 

km2 during 2010 and 2011 according to the expert-based (dark grey), the model-based 

(light grey) and the stratified random (white) sampling strategies. 

 

New L. collurio territories found according to the expert-based sampling 

strategy were on average closer to protected areas for birds than those found 



Reconciling expert- and model-based approaches 

57 

using model-based or stratified random sampling strategies (F2,284 = 5.29, P = 

0.005). The post-hoc multiple comparisons showed that new territories found 

using the expert-based sampling strategy were significantly closer to protected 

areas than those found according to the model-based sampling strategy (t = -

2.96, P = 0.008). The results of the post-hoc comparisons with the stratified 

random sampling strategy are uncertain due to the low number of new 

territories found during ground validation when using this sampling strategy. 

Table 3. Results of the generalized linear model (GLM) and likelihood ratio tests (LRT) 
used to determine which factors explained the number of new L. collurio territories 
observed during ground validation. 

Factor dropped d.f. Deviance LRT P (>Chi) 

(full model) 
 

215 
  

Sampling strategy 2 241.33 26.337 1.91E-06 

Year 1 218.83 3.837 0.051 

Observer 6 225.83 10.834 0.093 

 

Table 4. Results of the post-hoc multiple pairwise comparisons with Bonferroni 
correction used to compare the efficiency of the different sampling strategies to find 
new L. collurio territories during ground validation 

Sampling strategy Estimate† SE z value P (>|z|) 

Model-based – Stratified random 2.022 0.516 3.921 <0.001 

Expert-based – Stratified random 1.666 0.524 3.177 0.003 

Model-based – Expert-based 0.356 0.124 2.861 0.009 

† Estimates are provided using a log scale and have to be inverse transformed using exp() to 
compare the relative efficiency of different sampling strategies on a linear scale 
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DISCUSSION 

Decision-making for biodiversity conservation and management often involves 

dealing with alternative options when ecological knowledge is incomplete and 

outcomes are uncertain (Regan et al. 2005). In day-to-day practice, practitioners 

work with short timelines and limited resources (Cook, Hockings, & Carter 

2010). Hence, they frequently use expert opinion to support conservation and 

management decision-making (Fazey et al. 2006; Addison et al. 2013). The 

subjective opinion of experts may induce opaque or ill-informed management 

decisions due to psychological and/or motivational biases (Burgman et al. 2011). 

It is expected that the use of quantitative data and scientific tools by managers 

and practitioners to support their decisions will improve the overall efficiency of 

conservation and management interventions (Sutherland et al. 2004; Drolet et 

al. 2015). 

Among other available scientific tools that use quantitative data, habitat 

suitability models have been proposed to play a key role in supporting 

conservation decision-making (e.g. Guisan & Thuiller 2005). With the limited 

funds available for biodiversity conservation and management, the 

implementation of predictive modelling approaches is often considered costly 

and resource intensive (e.g. hardware, technical requirements, need for in-

house expertise) in comparison with the experience and knowledge of 

practitioners (Borowski & Hare 2007). However, one of the main advantages of 

such approaches is that, once they are operational, they can be applied 

routinely to a large number of species and outcomes may be repeatedly 

updated in a cost-efficient way as new data are collected (Guisan et al. 2006). 

Yet, despite the demonstrated performance and benefits of predictive models, 

practitioners may remain sceptical about their usefulness and sometimes object 

to their use for conservation practice, as they often believe models do not 
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outperform expert opinion or consider models to be wrong, inaccurate or 

inappropriate (Jeltsch et al. 2013; Addison et al. 2013). As a consequence, 

model outcomes are rarely translated into actions and decisions that actually 

contribute to biodiversity conservation and management (Guisan et al. 2013). 

Among the few examples of the successful application of models in a 

management decision-making framework, Brotons, Mañosa, & Estrada (2004) 

used habitat suitability models to identify critical habitats for endangered bird 

species and this information was used in a legal decree to guide land-use 

decisions in a farmland area affected by a large-scale irrigation plan. 

As other authors have stressed, we also believe that there is a need for a 

stronger linkage between practitioners and modellers to improve the relevance 

of models as tools to support conservation and management decision-making. 

Involving experts in the modelling procedure might be one way to reinforce the 

link between the two communities. Such integration within an expert-informed 

modelling framework is expected to reduce the reluctance that some 

practitioners may show for model-based approaches and to increase their 

relevance and field of application (Krueger et al. 2012). Another way to 

contribute to convincing practitioners of the usefulness of habitat suitability 

models is by confronting the efficiency of such tools with that of structured 

expert judgement to guide conservation decision-making. McConnachie & 

Cowling (2013) even go a step ahead and examine the ability of practitioners to 

learn and update their beliefs after being provided with the outcomes from 

model-based approaches. 

Here, we used a structured ground validation procedure to evaluate and 

compare the ability of experts and models to achieve a clearly defined 

conservation objective, i.e. optimizing the detection of new presence areas and 

improving the current knowledge on the distribution of a bird species of 
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conservation-concern. A stratified random sampling strategy was first used as a 

baseline reference to evaluate the outcomes of the other sampling strategies 

targeting on the focal species. As expected, these sampling strategies 

performed much better than the stratified random sampling strategy. Guisan et 

al. (2006) and Le Lay et al. (2010) also showed that model-based sampling 

strategies considerably increase the discovery rates of new populations of rare 

plant species compared to random sampling designs. Stratified random 

sampling approaches are general-purpose designs classically implemented in 

biodiversity mapping or monitoring projects. However, they remain poorly 

suited to detect rare or threatened species, either because of the low 

probability of finding the species by chance across the study area or because the 

species may be restricted to particular habitat types that have been overlooked 

in the stratification approach (Le Lay et al. 2010). 

In contrast with most studies that assessed the efficiency of model-based 

sampling strategies by comparing it to the results obtained according to a 

random sampling procedure (Guisan et al. 2006; Le Lay et al. 2010), we also 

directly challenged the performance of a model-based sampling strategy with 

the outcomes of a structured expert-based approach using the same baseline 

presence data (Clevenger et al. 2002; Drolet et al. 2015). We implemented 

extensive fieldwork and we showed that the model-based sampling strategy 

significantly outperformed the expert-based strategy, increasing the number of 

new shrike territories found per km2 in Luxembourg by a factor 1.4. If we are to 

advocate on the usefulness of model-based approaches to address a 

management objective, providing such evidence that models may guide the 

prospective sampling of species of conservation-concern as good as, and even 

better than structured expert judgement, is really needed for two reasons. First, 

objection to the use of models often comes from the fact that decision-makers 
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consider that model outcomes do not result in better predictions than those 

provided by the subjective opinion of experts (Addison et al. 2013). Second, 

modelling outcomes alone might be insufficient for practitioners to change their 

beliefs (McConnachie & Cowling 2013). 

As we used a single-species approach due to the extensive fieldwork needed 

during ground validation (see also Guisan et al. 2006), we acknowledge the 

limitations associated with the overall conclusions that may be derived from this 

study. Structured expert judgment may prove to perform better than models in 

the case of rare or elusive species due to insufficient or low-quality data to build 

reliable models (Doswald, Zimmermann, & Breitenmoser 2007; Turvey et al. 

2015). Hence, it is now warranted to make such comparisons using a number of 

species across a range of scales because it is still open for discussion whether 

the observed pattern is actually representative of a larger sample of species, 

experts and regions. It would also be needed to examine alternative procedures 

to deal with the multiple judgements of several experts in the identification of 

the priority squares for further sampling as this might influence the 

performance of the expert-based sampling strategy. We regard the results of 

the present study as an incentive to test further the usefulness of habitat 

suitability models through a direct comparison with structured expert 

judgement. We anticipate that the outcomes of such an extensive comparison 

will help to reduce the scepticism and prejudice against information derived 

from modelling procedures and will contribute to convincing practitioners of the 

usefulness of such tools to improve on the management of species of 

conservation-concern. 

Interestingly, the new territories found according to the expert-based sampling 

strategy in our study were on average closer to protected areas designated for 

bird conservation than those found using the model-based sampling strategy. 
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These results indicate that eliciting expert judgement may guide sampling 

strategy towards protected but potentially less suitable areas for the target 

species, whereas models ignore information on protected areas and have the 

potential to identify unprotected but highly suitable areas. This probably reflects 

some geographical, psychological or motivational biases in expert judgement 

(Burgman et al. 2011). Although sophisticated elicitation procedures are 

available to mitigate such biases and could be further implemented in this 

context, they remain among the most important limitations of structured expert 

judgement. Cowling et al. (2003) also showed some differences between expert-

based and systematic approaches when identifying important conservation 

areas for biodiversity and highlighted the importance of considering these two 

approaches as complementary instead of mutually exclusive. Based on our 

results, we also suggest that expert-based methods may be best suited to guide 

possible extensions or enlargements of already existing protected areas, while 

predictive models may contribute to guiding the creation of additional 

protected areas when data, time and resources are available. Thus, even though 

the modelling process and expert judgement elicitation were carried out 

independently in our study for comparison purposes, our results suggest the 

importance of moving forward with integrated model- and expert-based 

approaches for conservation and management decision-making, rather than 

emphasizing the dichotomy between both (Guisan et al. 2013; Drolet et al. 

2015). More generally, we encourage managers and modellers to work hand in 

hand to help bridge the research–implementation gap between conservation 

science and real-world action (Knight et al. 2008; Sutherland & Freckleton 

2012). 



Reconciling expert- and model-based approaches 

63 

ACKNOWLEDGEMENTS 

We thank experts and fieldworkers for their participation in this study. BirdLife 

Luxembourg provided the data on bird distribution. Digital elevation model, 

land cover, topographic, soil and geological maps were provided by the 

Administration du cadastre et de la topographie, the Administration des services 

techniques de l'agriculture, the Ministère du développement durable et des 

infrastructures and the Ministère des Travaux Publics (Luxembourg). O.A. was 

funded by the National Research Fund, Luxembourg (AFR-PHD-08-63). N.T. and 

L.B. were funded through the EU BON project (contract no. 308454; FP7-ENV-

2012, European Commission). 

 



Article 1 

64 

REFERENCES 

Addison, P.F.E., Rumpff, L., Bau, S.S., Carey, J.M., Chee, Y.E., Jarrad, F.C., McBride, M.F. 
& Burgman, M.A. (2013) Practical solutions for making models indispensable in 
conservation decision-making. Diversity and Distributions, 19, 490–502. 

Aizpurua, O., Paquet, J.-Y., Brotons, L. & Titeux, N. (2015) Optimising long-term 
monitoring projects for species distribution modelling: how atlas data may help. 
Ecography, 38, 29–40. 

Anadón, J.D., Giménez, A., Ballestar, R. & Pérez, I. (2009) Evaluation of local ecological 
knowledge as a method for collecting extensive data on animal abundance. 
Conservation Biology, 23, 617–625. 

Barry, S. & Elith, J. (2006) Error and uncertainty in habitat models. Journal of Applied 
Ecology, 43, 413–423. 

Beven, K.J. & Kirkby, M.J. (1979) Physically based, variable contributing area model of 
basin hydrology. Hydrological Sciences Bulletin, 24, 43–69. 

Borowski, I. & Hare, M. (2007) Exploring the gap between water managers and 
researchers: Difficulties of model-based tools to support practical water 
management. Water Resources Management, 21, 1049–1074. 

Brotons, L., Mañosa, S. & Estrada, J. (2004) Modelling the effects of irrigation schemes 
on the distribution of steppe birds in Mediterranean farmland. Biodiversity and 
Conservation, 13, 1039–1058. 

Burgman, M.A., Carr, A., Godden, L., Gregory, R., McBride, M.F., Flander, L. & Maguire, 
L. (2011) Redefining expertise and improving ecological judgment. Conservation 
Letters, 4, 81–87. 

Cabeza, M. & Moilanen, A. (2001) Design of reserve networks and the persistence of 
biodiversity. Trends in Ecology & Evolution, 16, 242–248. 

Cerqueira, M.C., Cohn-Haft, M., Vargas, C.F., Nader, C.E., Andretti, C.B., Costa, T.V.V., 
Sberze, M., Hines, J.E. & Ferraz, G. (2013) Rare or elusive? A test of expert 
knowledge about rarity of Amazon forest birds. Diversity and Distributions, 19, 
710–721. 

Clevenger, A.P., Wierzchowski, J., Chruszcz, B. & Gunson, K. (2002) Identifying wildlife 
habitat linkages and planning mitigation passages. Conservation Biology, 16, 503–
514. 

Cook, C.N., Hockings, M. & Carter, R.W. (2010) Conservation in the dark? The 
information used to support management decisions. Frontiers in Ecology and the 
Environment, 8, 181–186. 

Cowling, R.M., Pressey, R.L., Sims-Castley, R., le Roux, A., Baard, E., Burgers, C.J. & 
Palmer, G. (2003) The expert or the algorithm? - comparison of priority 
conservation areas in the Cape Floristic Region identified by park managers and 
reserve selection software. Biological Conservation, 112, 147–167. 



Reconciling expert- and model-based approaches 

65 

Crall, A.W., Jarnevich, C.S., Panke, B., Young, N., Renz, M. & Morisette, J. (2013) Using 
habitat suitability models to target invasive plant species surveys. Ecological 
Applications, 23, 60–72. 

Doswald, N., Zimmermann, F. & Breitenmoser, U. (2007) Testing expert groups for a 
habitat suitability model for the lynx Lynx lynx in the Swiss Alps. Wildlife Biology, 
13, 430–446. 

Drolet, D., Locke, A., Lewis, M.A. & Davidson, J. (2015) Evidence-based tool surpasses 
expert opinion in predicting probability of eradication of aquatic nonindigenous 
species. Ecological Applications, 25, 441–450. 

Elith, J., Phillips, S.J.P., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A statistical 
explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57. 

Fazey, I., Fazey, J.A., Salisbury, J.G., Lindermayer, D.B. & Dovers, S. (2006) The nature 
and role of experiential knowledge for environmental conservation. 
Environmental Conservation, 33, 1–10. 

Franklin, J. (2009) Mapping Species Distributions. Cambridge University Press, 
Cambridge, UK. 

Gormley, A.M., Forsyth, D.M., Griffioen, P., Lindeman, M., Ramsey, D.S., Scroggie, M.P. 
& Woodford, L. (2011) Using presence-only and presence-absence data to 
estimate the current and potential distributions of established invasive species. 
Journal of Applied Ecology, 48, 25–34. 

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N.G., Lehmann, A. & 
Zimmermann, N.E. (2006) Using niche-based models to improve the sampling of 
rare species. Conservation Biology, 20, 501–511. 

Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than 
simple habitat models. Ecology Letters, 8, 993–1009. 

Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, 
A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, 
T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, 
B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P. & 
Buckley, Y.M. (2013) Predicting species distributions for conservation decisions. 
Ecology Letters, 16, 1424–1435. 

Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. 
Ecological Modelling, 135, 147–186. 

Hajkowicz, S. (2007) A comparison of multiple criteria analysis and unaided approaches 
to environmental decision making. Environmental Science & Policy, 10, 177–184. 

Jeltsch, F., Blaum, N., Brose, U., Chipperfield, J.D., Clough, Y., Farwig, N., Geissler, K., 
Graham, C.H., Grimm, V., Hickler, T., Huth, A., May, F., Meyer, K.M., Pagel, J., 
Reineking, B., Rillig, M.C., Shea, K., Schurr, F.M., Schröder, B., Tielbörger, K., Weiss, 
L., Wiegand, K., Wiegand, T., Wirth, C. & Zurell, D. (2013) How can we bring 
together empiricists and modellers in functional biodiversity research? Basic and 
Applied Ecology, 14, 93–101. 



Article 1 

66 

Knight, A.T., Cowling, R.M., Rouget, M., Balmford, A., Lombard, A.T. & Campbell, B.M. 
(2008) Knowing but not doing: selecting priority conservation areas and the 
research-implementation gap. Conservation biology, 22, 610–617. 

Krueger, T., Page, T., Hubacek, K., Smith, L. & Hiscock, K. (2012) The role of expert 
opinion in environmental modelling. Environmental Modelling & Software, 36, 4–
18. 

Kuhnert, P.M., Martin, T.G. & Griffiths, S.P. (2010) A guide to eliciting and using expert 
knowledge in Bayesian ecological models. Ecology Letters, 13, 900–914. 

Le Lay, G., Engler, R., Franc, E. & Guisan, A. (2010) Prospective sampling based on model 
ensembles improves the detection of rare species. Ecography, 33, 1015–1027. 

Lorgé, P. & Melchior, E. (2010) Neuntöter. Vögel Luxemburgs (ed L.N. Vulleschutzliga), p. 
152. Saint-Paul Publishing - Sacha Heck, Luxembourg. 

Martin, T.G., Burgman, M.A., Fidler, F., Kuhnert, P.M., Low-Choy, S., McBride, M.F. & 
Mengersen, K. (2012) Eliciting expert knowledge in conservation science. 
Conservation Biology, 26, 29–38. 

McBride, M.F., Garnett, S.T., Szabo, J.K., Burbidge, A.H., Butchart, S.H.M., Christidis, L., 
Dutson, G., Ford, H.A., Loyn, R.H., Watson, D.M. & Burgman, M.A. (2012) 
Structured elicitation of expert judgments for threatened species assessment: a 
case study on a continental scale using email. Methods in Ecology and Evolution, 3, 
906–920. 

McConnachie, M.M. & Cowling, R.M. (2013) On the accuracy of conservation managers’ 
beliefs and if they learn from evidence-based knowledge: a preliminary 
investigation. Journal of Environmental Management, 128, 7–14. 

Murray, J. V., Goldizen, A.W., O’Leary, R.A., Mcalpine, C.A., Possingham, H.P. & Choy, 
S.L. (2009) How useful is expert opinion for predicting the distribution of a species 
within and beyond the region of expertise? A case study using brush-tailed rock-
wallabies Petrogale penicillata. Journal of Applied Ecology, 46, 842–851. 

Pearce, J.L., Cherry, K., Drielsma, M., Ferrier, S. & Whish, G. (2001) Incorporating expert 
opinion and fine-scale vegetation mapping into statistical models of faunal 
distribution. Journal of Applied Ecology, 38, 412–424. 

Rebelo, H. & Jones, G. (2010) Ground validation of presence-only modelling with rare 
species: A case study on barbastelles Barbastella barbastellus (Chiroptera: 
Vespertilionidae). Journal of Applied Ecology, 47, 410–420. 

Regan, H.M., Ben-Haim, Y., Langford, B., Wilson, W.G., Lundberg, P., Andelman, S.J. & 
Burgman, M.A. (2005) Robust decision-making under severe uncertainty for 
conservation management. Ecological Apllications, 15, 1471–1477. 

Robertson, M.P., Cumming, G.S. & Erasmus, B.F.N. (2010) Getting the most out of atlas 
data. Diversity and Distributions, 16, 363–375. 

Sardà-Palomera, F., Brotons, L., Villero, D., Sierdsema, H., Newson, S.E. & Jiguet, F. 
(2012) Mapping from heterogeneous biodiversity monitoring data sources. 
Biodiversity and Conservation, 21, 2927–2948. 



Reconciling expert- and model-based approaches 

67 

Sutherland, W.J. & Freckleton, R.P. (2012) Making predictive ecology more relevant to 
policy makers and practitioners. Philosophical transactions of the Royal Society of 
London. Series B-Biological sciences, 367, 322–30. 

Sutherland, W.J., Pullin, A.S., Dolman, P.M. & Knight, T.M. (2004) The need for evidence-
based conservation. Trends in Ecology & Evolution, 19, 305–308. 

Titeux, N., Biver, G., Lorgé, P. & Hoffmann, L. (2009) Implementation of the Common 
Bird Monitoring scheme in Luxembourg. Bird Census News, 22, 42–50. 

Titeux, N., Dufrêne, M., Radoux, J., Hirzel, A.H. & Defourny, P. (2007) Fitness-related 
parameters improve presence-only distribution modelling for conservation 
practice: The case of the Red-backed shrike. Biological Conservation, 138, 207–
223. 

Turvey, S.T., Trung, C.T., Quyet, V.D., Nhu, H. Van, Thoai, D. Van, Tuan, V.C.A., Hoa, D.T., 
Kacha, K., Sysomphone, T., Wallate, S., Hai, C.T.T., Thanh, N. Van & Wilkinson, 
N.M. (2015) Interview-based sighting histories can inform regional conservation 
prioritization for highly threatened cryptic species. Journal of Applied Ecology, 52, 
422–433. 

Vaughan, I.P. & Ormerod, S.J. (2005) The continuing challenges of testing species 
distribution models. Journal of Applied Ecology, 42, 720–730. 

Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M. & Schwartz, M.W. 
(2009) Using species distribution models to predict new occurrences for rare 
plants. Diversity and Distributions, 15, 565–576. 



Article 1 

68 

SUPPORTING INFORMATION 

Appendix S1. Further explanation about expert selection and qualification 

The conventional approach to defining experts is by their qualifications, track 

record, professional standing, and experience. However, Burgman et al. 2011) 

emphasizes that such an approach may sometimes exclude people with useful 

knowledge and lead to biases of expert judgments linked to the social status of 

the selected experts. For that reason, we decided to identify experts based on 

the qualifications and experience allowing them to provide us with ‘contributory 

expertise’ (i.e. fully developed and internalized skills and knowledge, sensu 

Burgman et al. 2011) on bird ecology and conservation at the national scale. The 

small population of the country (Luxembourg: 543,000 inhabitants) made it 

possible to identify easily the people working in this field. They were identified 

and asked to participate in the study following a snowball sampling method 

(Ntshotsho et al. 2015; Turvey et al. 2015), where we directly asked them if they 

knew other people fitting in the study requirements. A total of 9 experts were 

identified and invited to participate in the study: 7 of them accepted the 

invitation and 2 of them declined it due to a lack of time. All of them were 

selected because of their ‘lay’ knowledge (Burgman et al. 2011), obtained with 

many years (around 15-20 years for each of them) of experience in the field. 

They have been collecting bird distribution data in the field across the whole 

country for many years on a volunteer (3 experts) or professional (4 experts) 

basis. Two of them are particularly known for their personal interest for shrikes. 

Due to the small size of the country, we assumed that the expertise selected for 

this study covered the whole distribution of the target species at the national 

level. 
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Table S1. Environmental variables calculated in the 1-km resolution squares and used 
to identify the environmental strata in Luxembourg 

Variable Source Year  Year Units 

Mean elevation Digital elevation 
model 

2001 m 

Mean orientation Digital elevation 
model 

2001 ° 

Mean percentage slope Digital elevation 
model 

2001 % 

Annual mean temperature WorldClim 2005 °C 

Temperature seasonality WorldClim 2005 °C 

Maximum temp. of warmest month WorldClim 2005 °C 

Minimum temp. of coldest month WorldClim 2005 °C 

Temperature annual range WorldClim 2005 °C 

Annual precipitation WorldClim 2005 mm 

Precipitation of wettest month WorldClim 2005 mm 

Precipitation of driest month WorldClim 2005 mm 

Precipitation seasonality WorldClim 2005 mm 

Urban areas Land cover map  2007 m2 

Annual crops Land cover map  2007 m2 

Vineyards Land cover map  2007 m2 

Meadows and pastures Land cover map  2007 m2 

Broad-leaved forests Land cover map  2007 m2 

Coniferous forests Land cover map  2007 m2 

Mixed forests Land cover map  2007 m2 

Dry grasslands Land cover map  2007 m2 

Heathlands Land cover map    2007 m2 

Shrub-covered areas Land cover map    2007 m2 

Rocky areas Land cover map    2007 m2 

Wetlands Land cover map    2007 m2 
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Standing water Land cover map    2007 m2 

Running water Land cover map    2007 m2 

Orchards Land cover map    2007 m2 

Alluvial substrate Geological map    1992 m2 

Calcareous substrate Geological map    1992 m2 

Sandstone substrate Geological map    1992 m2 

Silty substrate Geological map    1992 m2 

Impermeable marly substrate Geological map    1992 m2 

Semi-permeable marly substrate Geological map    1992 m2 

Schisteous substrate Geological map    1992 m2 

Loamy soils  Soil map     2007 m2 

Clayey-loamy stony (quartz pebble) soils  Soil map     2007 m2 

Clayey and stony (dolomite) soils  Soil map     2007 m2 

Clayey and stony (limestone) soils  Soil map     2007 m2 

Sandy-loamy soils  Soil map     2007 m2 

Sandy-loamy to loamy soils  Soil map     2007 m2 

Colluvial soils Soil map     2007 m2 

Seeping areas Soil map     2007 m2 

Soils modified by human activities Soil map     2007 m2 

Alluvial soils Soil map     2007 m2 

Digital elevation model: ‘Modèle numérique de terrain du Luxembourg’ (spatial 
resolution 5 m) 

Worldclim: WorldClim Global Climate Data (http://www.worldclim.org) 

Land cover map: ‘Occupation biophysique du so du Luxembourgl’ (scale 1:15,000) 

Geological map: adapted from ‘Carte géologique du Luxembourg’ (scale 1:100,000) 

Soil map: adapted from ‘Carte pédologique du Luxembourg’ (scale 1:100,000) 

http://www.worldclim.org/
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ABSTRACT 

Long-term biodiversity monitoring data are mainly used to estimate changes in 

species occupancy or abundance over time, but they may also be incorporated 

into predictive models to document species distributions in space. Although 

changes in occupancy or abundance may be estimated from a relatively limited 

number of sampling units, small sample size may lead to inaccurate spatial 

models and maps of predicted species distributions. We provide a 

methodological approach to estimate the minimum sample size needed in 

monitoring projects to produce accurate species distribution models and maps. 

The method assumes that monitoring data are not yet available when sampling 

strategies are to be designed and is based on external distribution data from 

atlas projects. Atlas data are typically collected in a large number of sampling 

units during a restricted timeframe and are often similar in nature to the 

information gathered from long-term monitoring projects. The large number of 

sampling units in atlas projects makes it possible to simulate a broad gradient of 

sample sizes in monitoring data and to examine how the number of sampling 

units influences the accuracy of the models. We apply the method to several 

bird species using data from a regional breeding bird atlas. We explore the 

effect of prevalence, range size and habitat specialization of the species on the 

sample size needed to generate accurate models. Model accuracy is sensitive to 

particularly small sample sizes and levels off beyond a sufficiently large number 

of sampling units that varies among species depending mainly on their 

prevalence. The integration of spatial modelling techniques into monitoring 

projects is a cost-effective approach as it offers the possibility to estimate the 

dynamics of species distributions in space and over time. We believe our 

innovative method will help in the sampling design of future monitoring projects 

aiming to achieve such integration. 
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INTRODUCTION 

Long-term wildlife monitoring is generally considered as an essential tool for 

biodiversity management and for research studies on biodiversity conservation 

(Gitzen et al. 2012). Monitoring projects primarily aim at delivering information 

on the changing status of key features of biodiversity (Lindenmayer et al. 2012). 

State variables are used to characterise the status of these features at different 

points in time with a view to assessing system state and inferring changes in 

state over time (Gitzen et al. 2012). State variables include, among others, 

species occupancy (MacKenzie et al. 2005; Kéry et al. 2009) or species 

abundance (Royle & Nichols 2003). In such projects, field data are often 

repeatedly collected over time in a network of sampling units according to 

standardised procedures (Gitzen et al. 2012). Previous studies have reported 

that monitoring projects have also the potential to provide an appropriate 

source of data to document the distribution of species in space (Brotons, 

Herrando, & Pla 2007; Braunisch & Suchant 2010; Rodhouse et al. 2012). 

Mapping species distributions in space and documenting how they change over 

time may provide key information to guide effective landscape and conservation 

planning. Dynamic species distribution mapping may, therefore, be considered 

as an essential component of a biodiversity monitoring project (Brotons, 

Herrando, & Pla 2007; Kéry, Guillera-Arroita, & Lahoz-Monfort 2013). In any 

monitoring project, sampling units are, however, sparsely distributed over the 

region of interest, which is inconvenient for a straightforward mapping of 

species distributions. 

Species distribution modelling is an increasingly used technique (Rodríguez et al. 

2007) that can produce distribution maps based on monitoring data (Brotons et 

al. 2006). With these models, environmental variables describing the habitat 



Article 2 

76 

conditions in the sampling units are related to records of species presence. 

These models are used to predict the species distribution beyond the sampling 

units in areas where species occurrence is unknown (Araújo & Guisan 2006; 

Elith, Kearney, & Phillips 2010). The use of models to predict species 

distributions is of key significance for biodiversity conservation (Guisan et al. 

2013). Among several applications, models may be used to identify the most 

important environmental conditions that influence species distributions or to 

guide the prioritization of management options amongst areas that vary in their 

suitability for the species (Titeux et al. 2007). Species distribution models are 

also often built to explore the impacts of environmental changes on future 

species distributions (Elith, Kearney, & Phillips 2010). Previous studies examined 

the use of monitoring data to generate species distribution models (Brotons et 

al. 2006; Brotons, Herrando, & Pla 2007; Braunisch & Suchant 2010) and 

showed that the integration of monitoring data into modelling approaches may 

contribute to understanding how species distributions change over time (De 

Cáceres & Brotons 2012; Rodhouse et al. 2012; Kéry, Guillera-Arroita, & Lahoz-

Monfort 2013). 

Sampling design in a monitoring project typically results from a balance 

between the number of sampling units and the number of repeated surveys in 

these units to document the state variables with an acceptable level of precision 

(MacKenzie et al. 2005). A limited number of sampling units and a sufficient 

number of repeated surveys may be suited, and in some cases recommended, 

to derive unbiased estimates of the state variables (MacKenzie & Royle 2005; 

Kéry et al. 2009; MacKenzie 2012). This appropriate sampling design for 

monitoring purposes may, however, fail to produce enough spatial data to build 

relevant species distribution models (Brotons, Herrando, & Pla 2007), because a 

small number of sampling units is known to induce inaccurate spatial models 
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(Hernandez et al. 2006; Wisz et al. 2008; Jiménez-Valverde, Lobo, & Hortal 2009; 

Bean, Stafford, & Brashares 2012). This drawback can be avoided if dynamic 

species distribution mapping is explicitly considered when setting the objectives 

of the monitoring project and when making decisions about sampling design. At 

this stage of a project, existing monitoring data in the region of interest are, 

however, not yet available and other sources of information based on upfront 

sampling efforts are needed to help putting the monitoring project into place 

(Hooten, Ross, & Wikle 2012). 

Atlas projects are an interesting source of spatial information that may assist in 

making such pilot analysis. Two-stage sampling design (Thompson 2012) is 

increasingly implemented in ‘last-generation’ atlases (Estrada et al. 2004; Jacob 

et al. 2010; Maes, Vanreusel, & Van Dyck 2013): species presence or abundance 

is recorded in 1) primary sampling units to provide a picture of the species 

distribution across the whole region of interest but at coarse spatial resolution 

and in 2) a set of secondary sampling units nested within the primary ones to 

explore species distribution at finer resolution. Last-generation atlases are 

generally completed over considerable time periods and repeated at long time 

intervals (Dunn & Weston 2008), which prevents them from being suited to 

detect changes in species distributions with time scales matching decision-

making needs. Interestingly, field sampling procedures for atlas data collection 

in secondary sampling units (e.g. bird or butterfly counts along transects) are 

often similar in nature to the procedures implemented in long-term monitoring 

projects (Vorísek et al. 2008; Van Swaay et al. 2008). Such kind of atlas data are 

generally collected only once during the atlas period, but in a large number of 

secondary sampling units to cover an important part of the region of interest at 

a fine spatial resolution (Carden et al. 2010; Maes, Vanreusel, & Van Dyck 2013). 

Hence, atlas data in secondary sampling units may be manipulated to imitate a 
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broad gradient of sample sizes in a monitoring project and to build species 

distribution models with varying numbers of sampling units. Such an approach 

may, in turn, contribute to identifying how large the number of sampling units 

should be at the start of a monitoring project if dynamic species distribution 

mapping is set as an objective. 

Here, we provide an innovative analytical framework using data from last-

generation atlases to aid in the initial design of monitoring projects able to 

generate appropriate data for the production of accurate species distribution 

models and maps. We draw attention to important issues that are to be 

addressed if we are to generate and update species distribution maps as a direct 

output of long-term monitoring projects. This study illustrates how datasets 

derived from last-generation atlas projects can contribute to the integration of 

spatial modelling techniques into long-term monitoring studies in order to cost-

efficiently estimate biodiversity dynamics in space and over time (Rodríguez et 

al. 2007). 

METHODS 

An increasing number of atlas projects with two-stage sampling designs become 

available for different taxa worldwide (Estrada et al. 2004; Carden et al. 2010; 

Maes, Vanreusel, & Van Dyck 2013) and may support the integration of spatial 

modelling techniques into monitoring studies. The following analytical 

framework is of general interest as it can be applied to any dataset derived from 

such last-generation atlas projects. In the present study, we apply this 

innovative method to the ‘Breeding Bird Atlas of Wallonia’ (BBAW) data (Jacob 

et al. 2010). 
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Study area 

Belgium is a heavily industrialized north-western European country with a high 

human population density. The southern part of Belgium (Wallonia, ca 16 850 

km2, Fig. 1a) is characterised by a strong gradient in landscape composition, 

from a densely populated and agriculture dominated landscape in the 

northwest to a hilly landscape with an important cover of forest and grassland 

in the southeast (Jacob et al. 2010). 

Atlas data 

During 2001-2007, 650 volunteer fieldworkers participated in the BBAW data 

collection. Data were collected across a range of spatial resolutions according to 

a two-stage sampling design and an additional territory-mapping procedure. 

Grid-based procedure: primary sampling units 

Based on regular field visits during day and night from February to August, 

fieldworkers were asked to report the presence, estimate the abundance and 

record the breeding evidence for all bird species in 40 km2 (5 x 8 km) primary 

sampling units (n=514, Fig. 1b). Fieldworkers paid particular attention to survey 

the different habitat types present in the primary sampling units. Abundance 

was estimated by fieldworkers in the form of 9 abundance classes derived from 

a geometric progression with a common ratio set to 2 (see details in Jacob et al. 

2010) and the central value of each class was used in subsequent analyses. The 

highest possible breeding evidence for each species was provided according to 

the EOAC classification, i.e. non-breeding, possible breeding, probable breeding 

and confirmed breeding (Timothy & Sharrock 1974). 
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Figure 1. (a) Location of Wallonia in NW Europe. (b) Main ecological regions in Wallonia 
and grid system of the Breeding Bird Atlas of Wallonia with the 40-km2 (5x8 km) primary 
sampling units. (c) Subset of the study area with the 1-km2 secondary sampling units 
(black squares show an example with red-backed shrike Lanius collurio presence records 
collected during the transect-based procedure). (d) Same subset of the study area as in 
(c) with L. collurio territories (black dots) mapped during the simplified territory-
mapping procedure. 

 

Transect-based procedure: secondary sampling units 

Secondary sampling units of 1-km2 squares were selected according to a regular 

and systematic sampling design (see details in Jacob et al. 2010) so that all 

primary sampling units were geographically covered in the same way by the 

secondary sampling units (Fig. 1c). Within these secondary sampling units, 

transects were delineated by volunteer fieldworker to cover the whole diversity 
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of habitats in the squares. Fieldworkers walked during 1 hour along these 

sampling routes in the first five hours after sunrise and twice a year during 

breeding season to record early and late breeders. Each breeding or non-

breeding bird (detected either by sight or by sound) was recorded individually. 

In each secondary sampling unit, the transect-based procedure was conducted 

in only one year during the timeframe of the BBAW project. The number of 

secondary sampling units surveyed during the BBAW project (n=2800) covered 

almost 17% of the study area. 

Territory-mapping procedure 

At the start of the BBAW project, bird species were classified in low-, moderate- 

and high-abundance species according to prior knowledge of their regional 

abundance. Based on territorial indications collected during the regular field 

visits conducted in the diversity of habitat types within the primary sampling 

units, fieldworkers were asked to map the locations of all detected territories or 

colonies of low- and moderate-abundance species. These locations were 

considered as the centres of the territories and were associated with an 

accuracy ranging from 100 to 500 meters as estimated by the fieldworkers (Fig. 

1d). This simplified territory-mapping procedure is a detailed and time-

consuming technique and is unachievable over large areas on a regular basis. 
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Figure 2. Overview of the modelling and analytical framework. Red-backed shrike Lanius 
collurio is used as an example. 

 

Overview of the modelling approach 

In our analytical framework (Fig. 2), we considered the data collected during the 

transect-based procedure in the secondary sampling units as equivalent to long-
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term monitoring data (Vorísek et al. 2008; Maes et al. 2012). We used these 

data as a basis to produce large-scale, fine-resolution species distribution 

models (hereafter ‘transect-based models’) and we manipulated the number of 

secondary sampling units in order to examine the effect of sample size on the 

performance of the models. The territory-mapping data covered the whole 

study area and provided the best available information on the distribution and 

habitat requirements of low- to moderate-abundance species. Therefore, we 

used territory-mapping data as a reference to evaluate the performance of the 

transect-based models. Then, we calculated the minimum sample size (i.e. 

minimum number of secondary sampling units) needed to reach an acceptable 

level of modelling performance based on three different evaluation measures. 

Finally, we evaluated for the whole set of species the effect of prevalence, range 

size and habitat specialization on the minimum sample size (redundancy 

analysis). 

Transect-based model training 

We randomly selected subsets of the available secondary sampling units to 

simulate a range of sample sizes in a long-term monitoring project (Jiménez-

Valverde, Lobo, & Hortal 2009) 2009): 0.5% of the study area (sample size: n=83 

secondary sampling units), 1% (n=166), 2% (n=332), 4% (n=664), 6% (n=996), 8% 

(n=1328) and 12 % (n=1992). In order for the subsets of secondary sampling 

units to be spread out over the whole environmental gradient in the study area, 

they were generated using a stratified random sampling procedure (Thompson 

2012) with the main ecological regions in Wallonia as environmental strata 

(Jacob et al. 2010, Fig. 1b). We iterated this stratified random sampling with ten 

bootstrap replicates for each sample size. 
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We used 23 environmental variables (Table 1) that characterize the most 

important habitat conditions for birds (e.g. elevation, climate, land cover and 

soil type) in southern Belgium (Jacob et al. 2010) as predictors in the models. 

These variables were sourced from available GIS data layers and sampled in the 

1-km2 squares that are completely within the boundaries of Wallonia (n=16 

600). We considered a secondary sampling unit as occupied by the species when 

at least one individual was recorded with breeding evidence during the transect-

based procedure. The species that were included in the modelling exercise 

(hereafter ‘focal species’, Table 2) fulfilled four criteria: 1) they were recorded as 

present in all randomly generated subsets of secondary sampling units for 

model training, 2) territory-mapping data for model evaluation were available, 

3) they are diurnal songbird species, and 4) their territory size or home range is 

on average lower than or close to the spatial resolution of the secondary 

sampling units. 

Reliable absence data were unavailable and this issue may produce inaccurate 

presence-absence models (Brotons et al. 2004; Lobo, Jiménez-Valverde, & 

Hortal 2010). Hence, we applied the presence-only maximum entropy 

framework Maxent 3.3.1 (Phillips, Anderson, & Schapire 2006). Maxent is only 

moderately sensitive to sample size and outperforms other methods when 

sample size is small (Hernandez et al. 2006; Wisz et al. 2008; Bean, Stafford, & 

Brashares 2012). 

For each focal species and sample size, model training was performed with the 

ten randomly generated subsets of secondary sampling units. The quadratic 

terms of the continuous environmental variables were included in addition to 

the linear functions. The continuous modelling outputs were converted into 

binary predictions by setting a threshold probability value above which the 

species was predicted as present. To set this value, we assumed that some 
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presence records were located in unsuitable areas (Hirzel & Le Lay 2008) and we 

defined a threshold such that an omission rate of 10% was specified in the 

subsets of secondary sampling units used for model training (Martin et al. 2013). 

This method allows fixing a threshold that is independent of the false positive 

fraction, which is suitable in the case of presence-only data (Pearson et al. 2007). 

Territory-based model training: reference distribution maps 

Using the same 1-km2 squares as for the environmental variables, we 

considered a square as occupied by a species when it enclosed the centre of at 

least one territory of the species recorded during the territory-mapping 

procedure. In order to avoid redundancy between the data used for model 

training and model evaluation (see below), we removed from the territory-

mapping data the 1-km2 squares that coincide with the set of secondary 

sampling units. The remaining territory-mapping data were used to build 

reference territory-based distribution models with the same environmental 

variables as for the transect-based models. Using a bootstrap approach, we 

fitted and averaged ten models for each focal species based on random 

selections of 70% of the territory-mapping data for model training. In order to 

create a reference distribution map for each focal species, the modelling 

outputs were converted into presence-absence predictions with the same 

threshold decision rule as for the transect-based models (10% of omission rate 

in the training data). 
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Table 1. Environmental variables calculated in the secondary sampling units and used in 
the modelling procedures 

Variable Source Year Units 

Average altitude DEM-SPW 
 

m 

Average orientation DEM-SPW 
 

° 

Average slope DEM-SPW 
 

% 

Topographical moisture index † DEM-SPW 
  

Average spring temperature †† Worldclim 2009 °C 

Average spring precipitation rate †† Worldclim 2009 mm 

Surface of urban area COSW 2008 ha 

Surface of spring cereal and corn cultures SIGEC 2006 ha 

Surface of winter cereal cultures SIGEC 2006 ha 

Surface of forage cultures SIGEC 2006 ha 

Surface of spring-summer hoed cultures SIGEC 2006 ha 

Surface of permanent grasslands COSW 2008 ha 

Surface of temporary grasslands COSW 2008 ha 

Surface of natural (dry) grasslands COSW 2008 ha 

Surface of broadleaved forest MRW 1993 ha 

Surface of coniferous forest MRW 1993 ha 

Surface of mixed forest MRW 1993 ha 

Surface of standing water COSW 2008 ha 

Surface of orchards COSW 2008 ha 

Surface of wetlands COSW 2008 ha 

Number of isolated trees and bushes IGN 2009 
 

Total length of tree lines and hedgerows IGN 2009 m 

Dominant soil type ††† CNSW 2007 
 

DEM-SPW: Digital Elevation Model of the ‘Service Public de Wallonie’. 
CNSW: ‘Cartographie Numérique des Sols de Wallonie’ – Soil map of Wallonia (scale: 
1:10000). 
COSW: ‘Cartographie de l’Occupation du Sol en Wallonie’ – Land use map of Wallonia 
(scale: 1:10000). 
IGN: ‘Institut Géographique National’ – Land use map of Belgium (scale: 1:10000). 
MRW: ‘Ministère de la Région Wallonne’ – Land cover map of Wallonia (pixel resolution: 
20 meters). 
SIGEC: ‘Système Intégré de Gestion et de Contrôle’ – Agricultural land management map 
of Wallonia (scale: 1:10000). 
Worldclim: Global climate data (http://www.worldclim.org/). 
† Topographical moisture index was calculated following Beven and Kirkby (1979). 

http://www.worldclim.org/
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†† Weather conditions in spring were calculated as three-month averages fitted to the 
breeding period of the species. 
††† Categorical variable 

 

Transect-based model evaluation 

To evaluate the performance of the transect-based models, we first calculated 

an omission rate to measure the percentage of presence records in the 

evaluation territory-mapping data that were mistakenly classified as absences. 

Second, the area under the curve (AUC) of a receiver operating characteristic 

(ROC) plot was used as a threshold-independent measure of modelling 

performance (Fielding & Bell 1997). ROC plots were computed using presence 

and background data in the evaluation dataset. AUC values reflected the ability 

of the transect-based models to discriminate between presence data and a 

randomly selected secondary sampling unit (see details in Phillips et al. 2006, 

Jiménez-Valverde 2012). Third, we computed misclassification matrices to 

calculate the agreement between the binary predictions of the transect-based 

and the territory-based models based on the Cohen’s kappa (Fielding & Bell 

1997). The kappa value documented the extent to which the output of the 

transect-based models converged on those of the territory-based reference 

models (Hernandez et al. 2006). 

Statistical analysis 

Before analysing the modelling performance, we evaluated the extent to which 

the different subsets of secondary sampling units captured the range of 

environmental conditions used by the species. To do this, the range of all 

continuous variables was first normalized between 0 and 1 using a linear scaling 

transformation. Second, we calculated for each focal species and in each 
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random subset of secondary sampling units, the difference between the 

maximum and the minimum values of the environmental variables associated 

with a presence record. Third, we calculated the arithmetic mean of these 

differences among all environmental variables to represent the width of the 

environmental range covered by the species in the random subsets of secondary 

sampling units. Fourth, we applied the same procedure for each focal species to 

the full set of evaluation territory-mapping data. Fifth, we computed the 

environmental range overlap for each focal species as the ratio between the 

environmental range covered by the species in the random subsets of secondary 

sampling units and in the territory-mapping data (Wisz et al. 2008; Feeley & 

Silman 2011). 

Modelling performance was expected to increase with sample size and to level 

off beyond a sufficient number of secondary sampling units (Hernandez et al. 

2006; Wisz et al. 2008). We plotted modelling performance measures against 

sample size and we fitted exponential functions to the data. 

An exponential rise to maximum function was used for the AUC and kappa 

values: 

y = a * (1 – e –bx)  (1) 

Where y is the modelling performance measure, x is the sample size, a is the 

maximum asymptote y value, and b is the rise constant. 

An exponential decay function was used for the omission rate: 

y = y0 + a * e –bx  (2) 

Where y is the modelling performance measure, x is the sample size, y0 is the 

minimum asymptote y value, y0 + a is the initial modelling performance measure 

when the sample size is equal to zero (forced to 1 in our case), and b is the 

decay constant. 
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For each modelling performance measure and each focal species separately, we 

calculated the minimum sample size (MSS, number of secondary sampling units) 

and coverage (MSC, percentage of the study area) required to achieve an 

acceptable level of modelling performance, defined as the lowest x value for 

which the mean predicted y value was within the 95% confidence limits around 

the asymptote value (Fig. 3). 

We calculated prevalence, range size and degree of habitat specialization for 

each focal species (Table 2) to evaluate how these features influence the MSS. 

The species prevalence was calculated from the whole set of secondary 

sampling units as the proportion of units in which the species was present. 

Species range size was calculated as the number of primary sampling units in 

which the species was recorded with probable or confirmed breeding evidence 

(McPherson, Jetz, & Rogers 2004). We used a k-means clustering analysis 

(Legendre & Legendre 2012) based on the continuous environmental variables 

(Table 1) to allocate the primary sampling units to different habitat classes 

(n=10 based on an analysis of the decrease in the total error sum of squares 

with increasing number of classes) and we used the species abundance data in 

the primary sampling units to calculate the degree of habitat specialization for 

each focal species as the coefficient of variation (= standard deviation / average) 

of the average species densities among the habitat classes (see details in Julliard 

et al. 2006). We used a redundancy analysis (RDA) to examine how much of the 

among-species variation in the MSS was explained by variation in prevalence, 

range size and habitat specialization (Legendre & Legendre 2012). In order to 

present the results in a simplified manner, the set of focal species was divided in 

equal-size categories according to prevalence (high- and low-prevalence 

species), range size (wide- and restricted-range species) and degree of habitat 

specialization (high- and low-specialization species). 
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Figure 3. Identification of 
the minimum sampling 
coverage required to 
achieve an acceptable 
level of modelling 
performance according to 
(a) omission rate, (b) AUC 
and (c) kappa value for 
Lanius collurio. Black dots 
represent the modelling 
performance measures for 
the transect-based models 
fitted with the different 
subsets of secondary 
sampling units. Continuous 
and dashed black lines are 
the predicted average ± 
95% confidence intervals 
after minimum square fit 
to the exponential 
function (Eq. 1 and 2). 
Grey areas represent the 
95% confidence interval 
around the estimated (a) 
minimum or (b, c) 
maximum asymptote 
value. The dotted vertical 
lines indicate the 
minimum sampling 
coverage above which the 
modelling performance is 
considered to become 
stable. 
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Table 2. Minimum sampling coverage (MSC: percentage of the study area) and sample 
size (MSS: number of secondary sampling units) needed to achieve an acceptable level 
of modelling performance according to omission rate, area under the curve of a ROC 
plot (AUC) and kappa value for each focal species (n=20) used in this study. The species 
are listed by decreasing order of prevalence in secondary sampling units. 

 

Species Code Prevalence Range size 

Picus viridis PICVIR 0.37 (high) 0.88 (wide) 

Anthus trivialis ANTTRI 0.30 (high) 0.71 (wide) 

Pyrrhula pyrrhula PYRPYR 0.26 (high) 0.78 (wide) 

Anthus pratensis ANTPRA 0.23 (high) 0.73 (wide) 

Sylvia curruca SYLCUR 0.22 (high) 0.85 (wide) 

Cuculus canorus CUCCAN 0.22 (high) 0.84 (wide) 

Motacilla flava MOTFLA 0.21 (high) 0.50 (restricted) 

Carduelis carduelis CARCAR 0.20 (high) 0.83 (wide) 

Turdus pilaris TURPIL 0.19 (high) 0.56 (restricted) 

Streptopelia turtur STRTUR 0.18 (high) 0.84 (wide) 

Acrocephalus palustris ACRPAL 0.17 (low) 0.85 (wide) 

Dryocopus martius DRYMAR 0.10 (low) 0.67 (restricted) 

Muscicapa striata MUSSTR 0.09 (low) 0.75 (wide) 

Saxicola torquatus SAXTOR 0.08 (low) 0.60 (restricted) 

Dendrocopos medius DENMED 0.08 (low) 0.62 (restricted) 

Lanius collurio LANCOL 0.07 (low) 0.52 (restricted) 

Hippolais polyglotta HIPPOL 0.06 (low) 0.53 (restricted) 

Miliaria calandra MILCAL 0.05 (low) 0.27 (restricted) 

Emberiza schoeniclus EMBSCH 0.04 (low) 0.47 (restricted) 

 

RESULTS 

Range size was positively correlated with prevalence (r=0.70, p=0.0006) and 

negatively with habitat specialization (r=-0.69, p=0.0007), but prevalence was 

not related to habitat specialization (r=-0.19, p=0.4131). The training sample 

prevalence in the random subsets of secondary sampling units was independent 
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of sample size (Fig. 4) and reflected the prevalence of the focal species in the 

whole set of sampling units (Table 2). In contrast, the proportion of the species 

environmental range represented in the subsets of secondary sampling units 

increased with sample size according to an exponential rise to maximum 

function (Fig. 5). This indicates that, even with the implementation of a 

stratified random sampling procedure, the complete range of conditions used 

by the species is only partly captured with very small sample sizes. 

 

 

Figure 4. Average training sample prevalence of the different species along the gradient 
of sampling coverage. Sample prevalence was calculated as the proportion of secondary 
sampling units with species presence records in each individual subset of the units used 
to fit the models. 
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Figure 5. Average (± 95% 
confidence intervals) 
proportion of the species 
environmental range 
covered by the subsets of 
secondary sampling units 
along the gradient of 
sampling coverage for (a) 
high- and low-prevalence 
species, (b) wide- and 
restricted-range species, and 
(c) low- and high-
specialization species. 
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Figures 3 and 6 show the modelling performance (omission rate, AUC and kappa 

value) obtained with a number of sampling units covering 0.5% to 12% of the 

study area. Table 2 summarizes the minimum sample size (MSS) and coverage 

(MSC) calculated for each focal species according to the different modelling 

performance measures. 

The constrained axes of the redundancy analysis (RDA, Fig. 7) explained 

together 57% of the total variance in the data (R2
adjusted=0.47). Only the first RDA 

axis was found to be statistically significant (permutation tests, p<0.001), 

accounting for more than 97% of the explained variance. The first RDA axis was 

for the most part related to the prevalence of the species (canonical coefficient 

2.39) and, to a much lower extent, to habitat specialization (0.12) and range size 

(0.04). Hence, the RDA results indicated that the prevalence of the focal species 

in the whole set of secondary sampling units had the most prominent influence 

on the MSS and that the effect of range size and habitat specialization can be 

considered negligible. 

On average, the omission rate was lower for high-prevalence species than for 

low-prevalence species over the entire gradient of sample size, but the 

difference was decreasingly pronounced with an increasing sample size (Fig. 6). 

The exponential functions were estimated to reach their minimal value with a 

smaller sample size (MSS=320 ± 29 S.E.) or sampling coverage (MSC=1.93% ± 

0.18%) in high-prevalence species than in low-prevalence species (MSS =809 ± 

106, MSC=4.87% ± 0.64%). The AUC was only weakly sensitive to sample size 

and levelled off at smaller sample size in high-prevalence species (MSS=115 ± 

14, MSC=0.69% ± 0.09%) than in low-prevalence species (MSS=183 ± 15, 

MSC=1.10% ± 0.09%). The kappa value increased consistently with sample size, 

thereby indicating that the predictions of the transect-based models gradually 

converged on those of the reference territory-based models. Kappa values were 
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particularly affected by small sample size in low-prevalence species: they 

levelled off at smaller sample size in high-prevalence species (MSS=369 ± 57, 

MSC=2.22% ± 0.35%) than in low-prevalence species (MSS=991 ± 111, 

MSC=5.97% ± 0.67%). 
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Figure 7. First two dimensions (RDA1 and RDA2) of the ordination space from the 
redundancy analysis (RDA, type-2 scaling). The explanatory variables (prevalence, range 
size and habitat specialization) are represented with arrows and the response variables 
(minimum sampling coverage according to omission rate, AUC and Kappa) are 
represented with bold black lines. Species are plotted using their code names (Table 2).
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DISCUSSION 

When designing a monitoring project to estimate biodiversity dynamics, a trade-

off is typically made between spatial and temporal replication in the data 

collection strategy to minimize uncertainties associated with the estimation of 

changes in state variables over time (Rhodes & Jonzén 2011; Guillera-Arroita & 

Lahoz-Monfort 2012). In line with previous studies(De Cáceres & Brotons 2012; 

Rodhouse et al. 2012; Kéry, Guillera-Arroita, & Lahoz-Monfort 2013), we argue 

that monitoring data may also be cost-effectively collected and used in species 

distribution models to document the spatial distribution of the species. 

Although the influence of sample size on the performance of species 

distribution models is reported in many studies (Wisz et al. 2008), only few have 

addressed this issue when models are built with data from monitoring projects 

(Brotons, Herrando, & Pla 2007). This is mostly due to the fact that dynamic 

distribution mapping is seldom explicitly addressed when setting the objectives 

of a project. If such an objective is integrated after the start of the project, the 

available data have been typically collected in a limited number of sampling 

units. This sampling design prevents from evaluating modelling performance 

over a broad gradient of sample sizes and from identifying how large the sample 

size should be to obtain an acceptable performance. On the other hand, 

monitoring data are unavailable when species distribution mapping is 

considered as an objective before the start of data collection. Other sources of 

information are therefore needed to help optimising the initial sampling design. 

Here, we provide an analytical framework that makes use of data from large-

scale last-generation atlases with two-stage sampling design to examine the 

influence of sample size on modelling performance and to identify how large 

the number of sampling units should be in a monitoring project to derive 
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accurate species distribution maps. The method does not rely on existing data 

from already running monitoring projects and, hence, it may be applied before 

the start of field data collection when decisions about sampling design are made. 

The innovative idea was to consider part of the data collected during last-

generation atlas projects as analogous to those derived from long-term 

monitoring projects (Vorísek et al. 2008; Van Swaay et al. 2008). In contrast with 

previous studies focusing on the link between monitoring projects and 

distribution modelling approaches (Brotons, Herrando, & Pla 2007), the 

manipulation of atlas data allowed us to simulate a broad gradient of sample 

size in order to identify an optimal number of sampling units to achieve an 

acceptable modelling performance. The analytical framework may be easily 

implemented wherever such atlas data are available and where the sampling 

strategies of monitoring projects need to be optimised to map species 

distributions. Although we used bird data to illustrate our method, it is 

important to note that it may also be applied to other species groups for which 

atlas data are collected, at least partly, in the same way as in a monitoring 

project, such as in butterflies (Maes, Vanreusel, & Van Dyck 2013) or bats 

(Carden et al. 2010). 

We showed that modelling performance was sensitive to particularly small 

sample sizes and reached an asymptote level beyond a sufficiently large number 

of sampling units. This result is especially interesting because it is generally 

assumed or reported that modelling performance increases with sample size 

(McPherson, Jetz, & Rogers 2004; Feeley & Silman 2011), without examining 

how large sample size should be to obtain sufficiently well-performing models. 

Wintle and Bardos (2006) and Jiménez-Valverde et al. (2009) have previously 

studied the influence of sample size on modelling performance and also showed 

that the effect of sample size becomes apparent only below a certain threshold, 
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but their studies were conducted with virtual species and may only partly reflect 

monitoring data. 

The prevalence of the species in the random subsets of secondary sampling 

units remained stable along the gradient of sample sizes and reflected the 

prevalence of the species in the whole set of sampling units. So, the link 

between modelling performance and sample size was independent of the 

proportion of sampling units with species presence records. Hence, we avoided 

the confusion between the effects of sample size and training sample 

prevalence (McPherson, Jetz, & Rogers 2004). In contrast, the extent to which 

the subsets of sampling units covered the range of environmental conditions 

used by the species was found to decrease with sample size and this contributes 

to explaining why the ability of the models to capture the environmental 

response of the species decreased markedly below a certain sample size. This 

issue underlines the importance of using a well-designed sampling procedure: 

the stratified random sampling that we implemented (see also Jiménez-

Valverde et al. 2009) maximizes the chances to sample species distribution 

along the whole environmental gradient of the study area even when sample 

size decreases (Hortal & Lobo 2005; Thompson 2012). Below a certain sample 

size, the number of species presence records is, however, insufficient to cover 

the full range of environmental conditions used by the species and the 

modelling performance becomes less stable and much lower (see also Wintle 

and Bardos 2006, Wisz et al. 2008). 

The minimum sample size required to ensure an acceptable level of modelling 

performance was strongly related to the prevalence of the species in the 

sampling units. On average, the minimum sample size was larger in low-

prevalence species than in high-prevalence species. In contrast, the decrease in 

modelling performance with increasingly smaller sample size was found to be 
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comparable in restricted- and wide-range species and in low- and high-

specialization species. A large part of the among-species variance in the 

minimum sample size remained, however, unexplained and may be related to 

additional methodological issues or ecological processes. As imperfect detection 

of the species may confound the link between species distribution and 

environmental conditions, it is for instance warranted to analyse how detection 

rates may influence modelling performance. Rota et al. (2011) showed that 

using occupancy models to account for imperfect detection may contribute to 

improving modelling performance and relevance, especially in situations where 

detection probability varies along with environmental conditions (see also Kéry 

et al. 2010). Such approaches are based on observation data collected during 

repeated surveys in the sampling units and are, therefore, only poorly suited to 

the context of the present study, as replicated observations are generally 

unavailable when setting the objectives of a monitoring project (but see Van 

Strien et al. 2013). Other ecological processes may have a direct or indirect 

influence on the minimum sample size. For instance, biotic interactions such as 

competition (with conspecific individuals or with other species) and predation 

may alter the location of the individuals in the landscape and shape the realized 

distribution of the species (Cadena, Loiselle, & Daniel Cadena 2007; Lima 2009). 

Although modelling tools become increasingly available to deal with this issue 

(Boulangeat, Gravel, & Thuiller 2012; Wisz et al. 2013), such factors are probably 

beyond the scope of the analyses that could be done with the available atlas 

data. 

We also have to stress the point that further work should include additional 

species because the set of species used in this study had to satisfy a number of 

criteria for the modelling exercise, which resulted in the use of a limited number 

of species that may only partly reflect the entire bird species assemblage. One 
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of the most restrictive criteria was the availability of a sufficient amount of 

territory-mapping data to evaluate modelling performance. Such information 

was collected only for low- to moderate-abundance species in the atlas project. 

In order to increase the number of species in the analysis, a promising approach 

would be to use the increasingly available information on species distribution 

derived from web-based encoding systems for casual observation data (Sullivan 

et al. 2009). 

When applying our innovative approach to the low- to moderate-abundance 

bird species in southern Belgium, a minimum sampling coverage of 4-5% 

(n=664-830) was found to be needed in order to achieve an acceptable level of 

modelling performance for the majority of the studied species. Interestingly, 

Hoeting et al. (2000) and Wintle and Bardos (2006) obtained similar results with 

their simulated data reflecting plant and mammal distributions. However, the 

estimated minimum sampling coverage should probably not be considered as a 

rule of thumb. First, our results revealed considerable among-species variation 

in this minimum sample size. Second, the heterogeneity of the study area and 

the variables that are used to quantify the environmental conditions 

undoubtedly influence the number of sampling units needed to capture the link 

between species distribution and environmental conditions. 

This application in southern Belgium illustrates that a substantial sampling 

coverage may be needed to derive accurate species distribution models from 

long-term monitoring data. A sampling coverage of 4-5% of the study area is 

actually much higher than the coverage implemented in most of existing 

monitoring programmes worldwide. It may then become logistically difficult to 

find a trade-off between the number of sampling units and the number of 

repeated surveys in order for the same monitoring project to integrate in its 

objectives both the estimation of changes in occupancy or abundance and the 
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mapping of species distribution. Interestingly, Hooten et al. (2009, 2012) used 

an optimal hybrid sampling design to combine different objectives in a single 

long-term monitoring project. In line with such an approach, a fixed subset of 

sampling units may be repeatedly surveyed within and between seasons (static 

design) to estimate species occupancy and detection probability, while a roving 

subset of sampling units may be surveyed less frequently over time (dynamic 

design) to increase spatial knowledge for distribution mapping. Both static and 

dynamic designs have advantages and disadvantages (MacKenzie & Royle 2005; 

Wikle & Royle 2005), but an appropriate allocation of sampling effort between 

fixed and roving units may contribute to combining several monitoring and 

mapping objectives (Hooten et al. 2009). In this context, our methodological 

approach constitutes a pilot analysis able to provide an initial estimate of the 

total number of sampling units needed when monitoring data are not yet 

available and to help putting the monitoring effort into place in order to reach 

one of the objectives. It is now important to consider additional optimisation 

criteria and to further integrate such approaches into a more general analytical 

framework to evaluate whether this initial sampling design will be suited to 

document species distribution dynamics and to estimate changes in the selected 

state variables or, alternatively, how the design has to be modified to better 

reach the multiple (and sometimes conflicting) objectives. In this respect, 

adaptive sampling design (Hooten, Ross, & Wikle 2012) may prove a useful 

approach as it focuses on adjusting the sampling strategy on a regular basis as 

new information is gained in order to improve the cost-efficiency of the 

monitoring project. 
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ABSTRACT 

Measures of fitness such as reproductive performance are considered reliable 

indicators of habitat quality for a species. Such measures are, however, only 

available in a restricted number of sites, which prevents them from being used 

to quantify habitat quality across landscapes or regions. Alternatively, species 

presence records can be used along with environmental variables to build 

models that predict the distribution of species across larger spatial extents. 

Model predictions are often used for management purposes as they are 

assumed to describe the quality of the habitats to support a species. Yet, given 

that species are often present both in optimal and suboptimal areas, the use of 

data collected during the breeding season to build these models may potentially 

result in misleading predictions of habitat quality for the reproduction of the 

species, with potentially significant conservation consequences. In this study, 

we analysed the relationship between fitness parameters informing on habitat 

quality for reproduction and predictions of species distribution models at 

multiple spatial scales using two independent sets of data. For 19 passerine bird 

species, we compared an indirect measure of reproductive performance (ratio 

of juveniles-to-adults) – obtained from Constant Effort Sites (CES) mist-netting 

data in Catalonia – with the predictions of models based on bird presence 

records collected during the Catalan Breeding Bird Atlas (CBBA). A positive 

relationship between the predictions derived from species distribution models 

and the reproductive performance of the species was found for half of the 

species at one or more spatial scales. This result suggests that species 

distribution models may help to predict habitat quality for some species over 

some extents. However, caution is needed as this is not consistent for all species 

at all scales. Further work based on species- and scale-specific approaches is 

now required to understand in which situations species distribution models 

provide predictions that are in line with reproductive performance. 
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INTRODUCTION  

The greatest threat to wild bird populations is the degradation and loss of 

habitat (Johnson 2007), i.e., “the resources and conditions present in an area 

that produce occupancy—including survival and reproduction—by a given 

organism” (Hall, Krausman, & Morrison 1997). To assess which habitats are 

more or less valuable for a particular species, especially for those of 

conservation concern, it is necessary to use robust measurements of habitat 

quality, that is, of “the ability of a given habitat to provide resources and 

conditions appropriate for the per capita contribution to population growth” 

(Johnson 2007). This implies that estimates of habitat quality require measures 

of demography. One of the most cited definitions of habitat quality is that of 

Van Horne (1983), who describes habitat quality in terms of fitness, as “the 

product of density, mean individual survival probability, and mean expectation 

of future offspring”. Gathering such demographic information to describe 

habitat quality can be costly and time consuming, and is usually needed over 

long periods, thus limiting its availability to a restricted number of sampling 

sites; therefore, the use of proxies to reflect how habitat quality varies across 

landscapes and regions is often necessary (Stephens et al. 2015). 

Species distribution models statistically link species presence records with 

known environmental conditions to predict the likelihood of a species to occur 

at any site in a given area (Araújo & Guisan 2006; Elith, Kearney, & Phillips 

2010). Model predictions are often based on species presence records available 

from atlas projects or museum inventories, and then used for management and 

conservation purposes (Brotons, Mañosa, & Estrada 2004; Guisan et al. 2013) 

under the assumption that they directly inform on the quality of the habitats for 

the species. Although the predictions of these models correlate well in general 
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with species abundance (Weber et al. 2016), not much quantitative information 

is available regarding the link with population growth. Yet, outcomes of these 

models are often used as proxies for demographic parameters to differentiate 

between areas with high individual fitness or positive population growth and 

areas that are not suitable for viable populations (Pulliam 2000; Guisan & 

Thuiller 2005; Franklin 2009; VanDerWal et al. 2009; Pellissier et al. 2013). One 

of the most important assumptions of these models is that the species is 

present wherever the local environmental conditions are within the species 

demographic niche (populations at equilibrium, Peterson et al. 2011). However, 

these models frequently ignore possible deviations from this equilibrium, such 

as source-sink dynamics (Pulliam 2000; Thuiller et al. 2014) or ecological traps 

(Robertson & Hutto 2006; Hollander et al. 2011), where individuals occur under 

certain environmental conditions beyond the boundaries of their demographic 

niche. Previous studies examined the link between the predictions of species 

distribution models and a variety of fitness parameters informing on habitat 

quality (Titeux et al. 2007; Stephens et al. 2015). Although they found a positive 

correlation between model predictions and abundance for an endangered 

rodent species, Bean et al. (2014) reported an absence of correlation with two 

fitness parameters (i.e. survival and body condition). In contrast, Brambilla and 

Ficetola (2012) showed that their species distribution models predicted 

accurately the number of fledglings in the red-backed shrike. Pellissier et al. 

(2013) found a significant relationship between model predictions and nest 

success but only for one of the three wader species they studied. The 

contrasting results from studies examining the link with fitness parameters call 

into question the use of model predictions as proxies for habitat quality. This 

draws attention to the need for a better understanding of the link between 

model predictions and habitat quality (Falcucci et al. 2009).  
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In addition, most species are influenced by ecological processes and interactions 

acting beyond the local scale, e.g. the habitat patch (Kareiva & Wennergren 

1995; Steffan-Dewenter et al. 2002). Hence, fitness parameters such as 

measures of reproductive performance collected in a specific site may not 

necessarily reflect only the habitat quality of this site, but may be also 

influenced by the quality of the neighbouring areas (Chalfoun & Martin 2007). 

For instance, the proportion of juveniles captured in a site may include those 

juveniles produced locally and also those produced in suitable nearby areas that 

had dispersed into the site (Greenwood & Harvey 1982). Hence, it is necessary 

to understand how the relationship between the predictions of the models 

based on presence records and the fitness parameters documenting habitat 

quality varies across multiple spatial scales. It is also worth testing this scale 

dependency using a sample of species, because factors such as juvenile 

dispersal are species-specific traits. 

In this study we assessed, for 19 passerine bird species in a Mediterranean 

region, how the predictions derived from species distribution models are 

related to measures of reproductive performance obtained from data collected 

in Constant Effort Sites (CES) mist-netting stations. We used the species 

presence records collected in the frame of a breeding bird atlas project and we 

built species distribution models using the same procedure as the one applied in 

this atlas. The predictions of these models have been extensively used to guide 

conservation and management strategies aiming to protect or preserve suitable 

habitats for birds (e.g. Brotons et al. 2004, Bosch et al. 2010, Herrando et al. 

2010, Sardà-Palomera et al. 2012). The proportion of juveniles captured in each 

CES across Catalonia was used as a measure of reproductive performance of the 

bird species. We tested at multiple spatial scales if the reproductive 
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performance measured in the CES matched the predictions derived from the 

species distribution models. 

METHODS 

Study area  

Catalonia is a 32,114 km2 region located in the north-east of the Iberian 

Peninsula. This region is mostly dominated by Mediterranean climate but has a 

large altitudinal range (from 0 to 3143 m.a.s.l), which creates a highly 

heterogeneous landscape (Fig.1). Catalonia has a long tradition in ornithology 

that has allowed the development of the Catalan Breeding (CBBA) and 

Wintering (CWBA) Bird Atlases and several long-term bird monitoring 

programmes (Estrada et al. 2004; Brotons, Herrando, & Pla 2007; Herrando et 

al. 2011). 

Presence records  

Bird presence records during the breeding period were sourced from the CBBA. 

Bird data collection is described in details in Estrada et al. (2004) and an English 

version of the methodology chapter can be freely downloaded from the website 

of the Catalan Ornithological Institute 

(http://www.ornitologia.org/ca/quefem/monitoratge/atles/atles_nidificants/atl

es_nidificants_metodologia.pdf). During 1999-2002, volunteers and 

professionals surveyed the 10-km resolution squares (N=385) according to a grid 

system covering the whole of Catalonia. They recorded the presence, the 

breeding evidence and estimated the abundance of each species. In addition, a 

sample of 5-10 1-km resolution squares was selected within each 10-km 
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resolution square, where observers recorded the presence of each species 

during two 1-hour timed surveys in early and late spring. These 1-km resolution 

squares were spatially distributed to cover the different habitat types following 

a stratified random sampling procedure. In our analyses, we only used 

information on bird presence from the 1-km resolution squares enclosed in 10-

km resolution squares where breeding evidence was reported. The number of 1-

km resolution squares with bird presence used to build the species distribution 

models for each species is reported in Table 1. 

Figure 1. (a) Location of Catalonia in Southern-
Europe. (b) Predictions of the species distribution 
model for Sylvia melanocephala (example 
species). (c) Subset of the study area with 
Constant Effort Sites (CES) marked with red dots 
and the buffers in black at 1, 2, 4, 8 and 16 km of 
distance around the CES.  
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Predictor variables 

We decided to follow the same methodology to build the species distribution 

models as the one implemented in CBBA and CWBA, because the maps 

produced by these models in these atlases are broadly used in Catalonia by the 

administrations in charge of biodiversity conservation or land use planning. In 

addition, they are assumed to directly inform on the quality of the breeding or 

wintering habitats for the bird species and used as such in many scientific 

studies (Brotons, Mañosa, & Estrada 2004; Bosch et al. 2010; Herrando et al. 

2010; Sardà-Palomera et al. 2012). 

We used the same set of environmental variables as the ones that were used to 

build the models in the CWBA. These variables (n=55) were selected to 

incorporate the factors known a priori to determine the current distribution of 

birds at different spatial scales (Vaughan & Ormerod 2003). Our objective was 

to reproduce the atlas modelling approach and to generate predictive models 

that represented the distribution of the species as accurately as possible. As we 

did not project the outcomes of such models to other areas or time periods, we 

considered that potential overfitting due to the high number of variables was 

not a too serious issue for our study aims. Environmental variables were 

calculated within each 1-km resolution square to reflect: 

1. Habitat and land-use: variables describing the different types of land use and 

land cover.  

2. Climate: variables describing temperature and precipitation regimes over the 

course of the year.  

3. Relief: variables describing altitude and slope.  
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4. Human influence: variables describing the potential impacts of human 

infrastructures (e.g. urban areas, roads). 

5. Others: variables used to account for spatial patterns not directly explained 

by other environmental variables (e.g. mean latitudinal and longitudinal 

coordinates for each square, mean distance to the sea). 

Detailed information about each predictor variable used in the CWBA, their 

sources and how they were generated can be found in Herrando et al. (2011). 

An English version of the methodology of the CWBA can be freely downloaded 

from the website of the Catalan Ornithological Institute 

(http://www.ornitologia.org/ca/quefem/monitoratge/atles/atles_hivern/atleshi

vern_metodologia.pdf). 

Species distribution modelling 

We applied the presence-only maximum entropy framework Maxent 3.3.1 

(Phillips, Anderson, & Schapire 2006) because it is moderately sensitive to 

sample size and outperforms other methods when sample size is small 

(Hernandez et al. 2006; Wisz et al. 2008; Bean, Stafford, & Brashares 2011). 

Models were computed at a spatial resolution of 1 km using the Maxent default 

parameters, but limiting the response to environmental variables to linear and 

quadratic functions. For each species, the set of 1-km resolution squares with 

presence records was randomly split into a calibration dataset (70% of the 

presence records) and an evaluation dataset (remaining 30% of the records). 

This procedure was repeated 10 times using a subsampling approach. The 

predictive performance of the models was evaluated using the evaluation 

datasets and the Area Under the Curve (AUC) of the Receiver Operating 

Characteristics (ROC) curve. As bird presence records were collected during the 
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breeding period, we used the average model outcomes across the 10 replicates 

to predict breeding habitat quality for each of the bird species in the 1-km 

resolution squares. The values of the model outcomes ranged from 0 to 1 and 

reflected an increasing habitat quality. 

Bird mist-netting and fitness parameter  

Bird mist-netting using a constant effort methodology and standard field 

procedures (Robinson, Julliard, & Saracco 2009) started in the early 1990s in 

Catalonia within the frame of the SYLVIA project and includes now over 60 

Constant Effort Sites (CES) (Grup Català d’Anellament 2002). These CES are 

distributed all across Catalonia and are often located within protected areas, 

but they represent the whole diversity of habitat types in the region. SYLVIA 

focuses on the study of demographic parameters through captures of birds 

carried out from May 1st to August 6th. This allows covering the whole breeding 

season for all bird species across the whole climatic gradient in Catalonia, 

including the breeding period of late migrants (e.g. Acrocephalus arundinaceus, 

Acrocephalus scirpaceus or Hippolais polyglotta) and the second or replacement 

clutch of resident species (e.g. Carduelis carduelis, Chloris chloris or Passer 

domesticus). To match the time frame of the CBBA data used to build the 

models, we used the demographic data collected in CES active between 1996 

and 2005. 

To reflect breeding habitat quality for each species around the CES, we 

calculated for each year separately the number of juveniles over the total 

number of individuals captured (probability of capturing juveniles) (Peach, 

Buckland, & Baillie 1996), which is frequently used as a relative measure of 

reproductive performance in birds (DeSante et al. 1995; Grup Català 

d’Anellament 2002). This parameter was calculated for those species most 
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commonly captured in the CES in Catalonia (N=19, Table 1) for which the 

amount of data was sufficiently large to allow a robust analysis, i.e. with over 

400 captures during the study period. The number of CES used in subsequent 

analyses varied among the different species (N=10-50) because they were not 

all captured in each CES. 

Habitat quality indices at multiple spatial scales 

Based on the predictions of the species distribution models, we estimated the 

habitat quality for the 19 bird species at multiple scales to inform on the quality 

of the neighbouring areas around each CES. To do so, we drew buffers around 

the CES using five different radii (1, 2, 4, 8 and 16 km) and we calculated the 

area-weighted mean habitat quality (AWM-HQ) predicted by the models within 

these buffers (Fig.1). We acknowledge that there is an overlap between the 

buffers of neighbouring CES for the largest spatial scales and that the data are 

not fully independent from each other. 

Statistical analyses 

For each species and at each spatial scale, we used generalised linear mixed 

models (GLMMs) to test for a relationship between the measures of 

reproductive performance (i.e. the probability of capturing juveniles) and the 

breeding habitat quality estimated from the models, using a binomial error 

distribution and a logit link function model to avoid overdispersion. CES 

identities were included as random effects in all models to control for between-

year variations of reproductive performance within the locations. As a high 

density of individuals may negatively affect reproductive performance through 

competition (Sardà-Palomera et al. 2011), we included the log-transformed total 

number of captured adults as a covariate. As some CES are close to each other 
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in some parts of Catalonia, we performed an analysis of spline correlograms of 

the model residuals using the ncf package in R, and we did not detect any spatial 

autocorrelation (Bjornstad 2016). 

RESULTS 

Four of the studied species (Acrocephalus scirpaceus, Chloris chloris, Sylvia 

melanocephala and Turdus merula) showed a significant positive relationship 

between the probability of capturing a juvenile and the habitat quality derived 

from the species distribution models across all spatial scales (Fig.2 and 

Supplementary material Appendix 1, Fig.A1). Carduelis carduelis was the single 

species with a significant positive relationship between the probability of 

capturing a juvenile and the habitat quality only at the smallest spatial scales. In 

contrast, for Erithacus rubecula, Parus major and Sylvia atricapilla, this 

relationship was significantly positive only at the larger spatial scales. Nine of 

the studied bird species (Aegithalos caudatus, Certhia brachydactyla, Cettia 

cetti, Cyanistes caeruleus, Hippolais polyglotta, Luscinia megarhynchos, Passer 

domesticus, Serinus serinus and Sylvia cantillans) showed no significant 

relationship between the probability of capturing a juvenile and the predictions 

of the models at any of the spatial scales. For only two species (Acrocephalus 

arundinaceus and Troglodytes troglodytes) we found a significantly negative 

relationship between the probability of capturing a juvenile and the habitat 

quality estimated from the models, but only at the largest spatial scale for the 

former species and at the smallest spatial scales for the latter. 
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Figure 2. Slope estimate (ß1) for the relationship between reproductive performance (i.e. 
probability of capturing a juvenile) and habitat quality estimated from the species 
distribution models around the Constant Effort Sites at multiple spatial scales: (a) 1 km, (b) 2 
km, (c) 4 km, (d) 8 km and (e) 16 km buffers. The different bird species are ordered in the 
same way in the different panels (see Table 1 for acronyms). Points indicate the slope 
estimate; bold line indicates the standard error and thinner line indicates the 95% confidence 
intervals. Asterisks indicate a significantly positive or negative relationship (P ≤ 0.05).  
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DISCUSSION  

We examined, for a sample of common passerine species over a large spatial 

extent, the relationship between the predictions obtained from species 

distribution models (which are typically considered as proxies for habitat 

quality) using atlas data and the production of juveniles estimated from mist-

netting CES. For 21% of the species, we found a positive relationship between 

the predictions of the models and the estimated reproductive performance 

across all spatial scales. For almost half of the species, we found a positive 

relationship at least at one of the different spatial scales. On the other hand, 

there was no significant relationship between the modelling outcomes and the 

reproductive performance for the other half of species. 

Our study was carried out at multiple spatial scales because the reproductive 

performance of a species at a site does not necessarily reflect only the local 

quality of the habitat, but also that of the neighbouring areas (Chalfoun & 

Martin 2007). Results showed that the relationship between the predictions of 

the models and the habitat quality estimated from the reproductive 

performance measure may considerably vary across spatial scales. Erithacus 

rubecula, Sylvia atricapilla and Parus major showed a significantly positive 

relationship only when the more distant areas around the mist-netting site were 

included in the analysis. The juveniles of these species most probably disperse 

more across the landscape than those of other species and their numbers may 

not necessarily reflect the quality of the local habitat conditions for breeding. It 

is known that passerine juveniles disperse from their natal home range after 

birth and that dispersal behaviour might vary across species depending on the 

landscape composition and the learning strategies (Skórka, Lenda, & Sutherland 

2016). A quantitative analysis of the link between this scale dependency 
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observed in our results and traits such as juvenile dispersal (DeSante et al. 1995) 

would provide insights into the mechanisms behind the observed pattern. 

However, such an analysis was beyond the scope of our study because those 

species-specific traits are very difficult to measure and depend on external 

factors such as weather conditions or geographic location. Thus, this level of 

detailed information is only available over small spatial extents and for a limited 

set of species that may not be representative of the bird species assemblages. 

As recently recommended by Pellissier et al. (2013), we opted for carrying out 

an analysis using as many species as possible over a large spatial extent to test 

the generality of the relationship between the predictions of species 

distribution models and fitness parameters informing on habitat quality. Our 

results suggest that species distribution models may help to predict habitat 

quality for some species over some extents, but also show that the generality of 

this relationship is not straightforward, as there is strong variability among 

species and across spatial scales. Further work is now warranted to further 

examine the link between species life histories and the ability of these models 

provide predictions that are in line with reproductive performance across 

varying spatial scales. Although we selected here the probability of capturing 

juveniles as a frequently used measure of reproductive performance (DeSante 

et al. 1995), it is also needed to test alternative measures to represent fitness 

more completely. It is worth mentioning that we also tested the relationship 

between the probability of capturing a female with brood patch and the habitat 

quality values obtained from the species distribution models (Appendix 2, 

Fig.A2). The results using this alternative reproductive performance measure 

showed a similar pattern to that obtained when using the probability of 

capturing juveniles. 
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In addition to the life history traits of the species, the relationship between the 

predictions of the models and habitat quality estimated from reproductive 

performance measures collected in the field may also be influenced by the 

modelling procedure itself. Even though the variables selected for the models 

were ecologically relevant predictors of bird distributions, they were not 

tailored to species-specific environmental requirements and were probably 

more relevant for some species than for others. The link between the observed 

distribution of the species and the quality of the habitat may also vary among 

species (Pulliam 2000). The predictions of the species distribution models such 

as those used in our study, however, inform on the potential of a species to be 

present in different locations from the statistical associations between the 

species presence records and the environmental conditions. Hence, these 

models might not necessarily capture information on the behavioural 

mechanisms that can lead animals to select poor or to avoid the most suitable 

habitats (Johnson 2007; Hollander et al. 2011; Robertson, Rehage, & Sih 2013) 

and the demographic consequences (e.g. reproduction performance) of such 

maladaptive selection (Kristan 2003; Lamb et al. 2016). Research efforts are 

underway to evaluate the extent to which these processes affect a large number 

of species (Hale & Swearer 2016; Robertson & Chalfoun 2016; Hollander et al. 

2017). 

In line with previous studies on this issue (Pellissier et al. 2013; Bean et al. 2014; 

Thuiller et al. 2014), we conclude that the predictions of species distribution 

models may prove useful but should be interpreted with extreme caution, 

especially when they are used to guide conservation or management actions 

that are expected to induce changes in habitat quality for the species. 

Depending on the type of data used to build the models and the link between 

the spatial distribution and the habitat requirements of the species (Pulliam 
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2000; Peterson et al. 2011), it might be risky to use the predictions of the 

models as direct proxies for habitat quality in the lack of careful species- and 

scale-specific assessments in the area of interest. 
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SUPPORTING INFORMATION  

Appendix 1 
In addition to Fig.2 in the main text, we present for each species separately 
across all spatial scales the relationship between the probability of capturing a 
juvenile and the habitat quality derived from the species distribution models 
(Fig.A1). 

 

Figure A1. Slope estimate (ß1) from the relationship between a reproductive performance 
parameter (the probability of capturing a juvenile) and the habitat quality estimated from 
the species distribution models around the Constant Effort Sites at multiple spatial scales (1, 
2, 4, 8, and 16 km buffers) for each of the studied species separately. Points indicate the 
slope estimate, bold line indicates the standard error and thiner line indicates the 95% 
confidence intervals. Asteriks indicate a significant relationship (P ≤ 0.05). 
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Figure A1 (continued). Slope estimate (ß1) from the relationship between a reproductive 
performance parameter (the probability of capturing a juvenile) and the habitat quality 
estimated from the species distribution models around the Constant Effort Sites at 
multiple spatial scales (1, 2, 4, 8, and 16 km buffers) for each of the studied species 
separately. Points indicate the slope estimate, bold line indicates the standard error and 
thiner line indicates the 95% confidence intervals. Asteriks indicate a significant 
relationship (P ≤ 0.05). 
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Appendix 2 
As mentioned in the main text, we also tested the relationship between the 
probability of capturing a female with brood patch in the CES and the habitat 
quality values obtained from the species distribution models. We assumed that 
a high proportion of females with brood patch indicates high breeding habitat 
quality for the species around the CES. We applied the same statistical analysis 
as for the probability of capturing juveniles and the results are presented in 
Fig.A2.  
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Figure A2. Slope estimate (ß1) for the relationship between reproductive performance 
(i.e. probability of capturing a female with brood patch) and habitat quality estimated 
from the species distribution models around the Constant Effort Sites at multiple spatial 
scales: (a) 1 km, (b) 2 km, (c) 4 km, (d) 8 km and (e) 16 km buffers. The different bird 
species are ordered in the same way in the different panels (see Table 1 in the main text 
for acronyms). Points indicate the slope estimate; bold line indicates the standard error 
and thinner line indicates the 95% confidence intervals. Asterisks indicate a significantly 
positive or negative relationship (P ≤ 0.05). 
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ABSTRACT 

Species distribution models establish a statistical link between distribution 

records and environmental variables to predict spatial variations in the 

probability of species occurrence. Model outcomes are often used to prioritize 

areas for species conservation or management. Yet, organisms may prefer using 

low-quality habitats created by novel human activities. This ‘ecological trap’ 

phenomenon may challenge the usefulness of model outcomes to weigh the 

conservation importance of different areas. Previous work in Southern Belgium 

showed that Red-backed shrikes (Lanius collurio) are more attracted to clear-cut 

areas in plantation forests than to the traditional farmland habitat where their 

reproductive performance is higher. We built species distribution models with 

distribution data from a breeding bird atlas project and estimated how the 

probability of shrike occurrence varies between farmland and clear-cut areas in 

forest. These probabilities were then compared to measures of reproductive 

performance that proximately informed on breeding habitat quality for shrikes. 

Models predicted the probability of shrike occurrence with good accuracy, a 

criterion frequently used to support the use of model outcomes for 

conservation or management applications. However, models also predicted 

higher probability of occurrence in the clear-cut areas that are of lower quality 

than farmland for the reproduction of shrikes. With human-induced rapid 

environmental changes, species of conservation concern may use novel, but 

low-quality, habitats at high densities. When species switch or expand to a novel 

habitat, fitness consequences should be evaluated before using model 

outcomes in standard conservation-planning tools for guiding the spatial 

prioritization of management or conservation options. 
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INTRODUCTION 

Species distribution models (SDMs) are widely used to predict the probability of 

species occurrence from the statistical relationship between distribution data 

and environmental variables (Elith and Leathwick, 2009; Franklin, 2013; Guisan 

and Zimmermann, 2000). Most techniques analyse the environmental 

conditions that are used by the species relative to those that are not used (or 

available) across the study area (Barbet-Massin et al., 2012; Elith et al., 2006). 

Probabilities of occurrence derived from SDMs are proposed to guide 

conservation practices such as weighing the importance of different areas for 

the management of threatened species (Guisan et al., 2013; Lavers et al., 2014; 

Pawar et al., 2007). Organisms may, however, settle in habitat types that are not 

necessarily the best options for their reproduction, survival and, therefore, 

persistence. This pattern may arise from a range of processes (Pulliam, 2000), 

such as the limited availability of optimal conditions (Braunisch et al., 2008; 

Titeux et al., 2007), source-sink dynamics (e.g. Pulliam & Danielson, 1991), 

dispersal limitations (e.g. Pinto and MacDougall, 2010), or behavioural 

maladaptation during habitat selection (Hale and Swearer, 2016; Robertson and 

Chalfoun, 2016; Robertson and Hutto, 2006). Probabilities of occurrence 

obtained from SDMs may then be of limited value to prioritize areas for the 

conservation of the species (Bean et al., 2014; Hirzel and Le Lay, 2008; Stephens 

et al., 2015). 

Mechanistic approaches that incorporate demographic, physiological, 

evolutionary or behavioural processes in the modelling framework have been 

proposed as valuable alternative to SDMs (Buckley et al., 2010; Kearney and 

Porter, 2009; Sánchez-Clavijo et al., 2016). The development of models 

integrating the underlying mechanisms remains, however, strongly constrained 
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by the availability of appropriate input data at relevant spatial scales (Thuiller et 

al., 2013; Urban et al., 2016). In addition, conservation practitioners are often 

not inclined to implement sophisticated approaches due to the need for a 

considerable level of conceptual and technical expertise that is not easily 

available to them (Addison et al., 2013). For these reasons, SDMs are expected 

to be further used for conservation and management applications (Dormann et 

al., 2012; Guisan et al., 2013). Therefore, there is a strong need to identify those 

situations under which SDMs are likely to produce outcomes that may not be 

useful for such practices (Bean et al., 2014; Stephens et al., 2015). One option to 

address this question is to interpret the probabilities of occurrence derived from 

SDMs relative to proxies of habitat quality that are relevant to the study species 

(Chalfoun and Martin, 2007; Johnson, 2007), i.e. derived from data on 

reproduction and survival (Jarnevich et al., 2015; Pellissier et al., 2013; Thuiller 

et al., 2014). Using these measurements to challenge the SDM outcomes may 

help evaluate whether probabilities of occurrence are useful to prioritize 

important areas for the conservation of the species. 

Human-induced rapid environmental changes may create novel conditions 

(Robertson et al., 2013) that are more attractive to the organisms than 

alternative options of higher quality (Hale and Swearer, 2016; Robertson and 

Hutto, 2006; Schlaepfer et al., 2002). These changes are sudden in evolutionary 

time and organisms may, therefore, get trapped in habitats of low quality due to 

their behavioural response during habitat selection (Robertson and Chalfoun, 

2016). Such ecological traps have the potential to lead to population decline and 

extinction (Kristan, 2003; Lamb et al., 2017) and represent an important 

conservation issue worldwide (Fletcher et al., 2012; Hale et al., 2015; Hale and 

Swearer, 2016; Rotem et al., 2013). Depending on the prevalence of low- and 

high-quality habitats across the landscape and on their relative attractiveness, 
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individuals may occupy low-quality habitats at higher densities than high-quality 

habitats (Delibes et al., 2001). Since most SDM techniques analyse the relative 

use of different types of habitats by the species, they are likely to identify the 

densely occupied but low-quality habitats as the most important conservation 

areas for the species. Density has long been shown to represent a potentially 

misleading conservation metric (Skagen and Yackel Adams, 2011; Van Horne, 

1983) and the importance of recognising ecological traps in conservation 

planning is a long-standing concern (Battin, 2004), but the relevance of using 

SDMs to identify suitable areas for the conservation of ecologically trapped 

organisms has yet received little attention (Sánchez-Clavijo et al., 2016; 

Sánchez-Mercado et al., 2014).  

Hollander et al. (2011) have previously shown the existence of an ecological trap 

in the Red-backed shrike (Lanius collurio), a territorial, insectivorous, migratory 

bird species. Shrikes have long been using meadows and pastures in farmland 

areas to breed, but forest management since the last few decades has created 

large clear-cut areas with regrown vegetation in spruce plantation forests that 

offer a novel habitat to the species. Dominant males arrive in the clear-cut areas 

earlier than in the farmland habitat (Hollander et al., 2011) where they also 

defend their territories less vigorously (Hollander et al., 2012). However, 

reproductive performance (i.e. nest success, brood size and brood quality) is 

markedly lower in clear-cut areas than in the traditional farmland habitat 

because of between-habitat differences in food availability (Hollander et al., 

2017, 2013) and nest predation (Hollander et al., 2015). 

In this study system, we examined the relevance of using the outcomes of SDMs 

built with shrike distribution records to weigh the importance of clear-cut and 

farmland areas for the conservation of this ecologically trapped species. We 

used an independent breeding bird atlas dataset in the same region as 
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Hollander et al. (2011) to develop the SDMs and to estimate the probability of 

species occurrence in the two breeding habitat types. We tested whether the 

between-habitat differences in these probabilities are in line with the 

differences in shrike reproductive performance. Our results provide insights into 

the relevance of using the probabilities of occurrence derived from SDMs to 

identify and prioritize conservation areas when species switch or expand to 

novel habitats as a result of maladaptive habitat selection. 

METHODS 

Study areas 

The study was conducted in the southeast of Belgium where agriculture and 

forestry created a mixed landscape of farmland and forest areas. We selected 

the same two study areas of 400 km2 each as in previous work on shrike habitat 

selection (Hollander et al., 2011) (Fig. 1). Farmland includes cultivated areas, 

meadows and pastures for livestock rearing, whereas forests are mostly 

composed of Norway spruce (Picea abies) plantations for timber production 

(Fig. 2). These forests are intensively managed through large-sized clear-cutting 

in even-aged plantations. 
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Figure 1. (a) Location of Belgium in NW Europe. (b) Location of the two study areas in SE 
Belgium. 

 

Study species 

The Red-backed shrike (L. collurio) is a passerine bird that has a wide breeding 

range across the Western Palearctic (Lefranc and Worfolk, 1997). When arriving 

from overwintering sites in southern Africa, shrikes establish breeding 

territories in open habitats. Meadows and pastures with scattered and thorny 

hedges and bushes are the traditionally used breeding habitat (Titeux et al., 

2007), but regrown vegetation in forest clear-cut patches is a novel habitat for 

the species (Hollander et al., 2011). 

During three consecutive years (2008-2010), we studied the reproductive 

performance of the Red-backed shrikes in 118 breeding sites in meadows and 

pastures (hereafter ‘farmland’: N=58) and in clear-cut patches (hereafter 

‘forest’: N=60) across the two study areas (see details in Hollander et al., 2011). 

We searched for nests on a daily basis from mid-May to late July and nests were 

revisited throughout the season to determine (1) nest success (i.e. production of 

at least one fledgling), (2) brood size (i.e. number of nestlings older than 12 
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days) and (3) brood quality (i.e. average nestling body conditions). We 

estimated brood quality from tarsus length, wing length (± 0.01 mm, digital 

callipers) and body mass (± 0.1 g, KERN laboratory balance) measured on 12-day 

old nestlings (range: 11-15 days). These three measures were combined into the 

first axis of a Principal Component Analysis (PC1: explained variance = 89%, 

eigenvalue = 2.60, loadings: tarsus length = 0.58, body mass = 0.58, wing length 

= 0.57), which we averaged per nest (Hollander et al., 2017). Hollander et al. 

(2011) provide evidence that these three measures of reproductive 

performance are lower in forest than in farmland (Fig. 3). 

Figure 2. Red-backed shrike 
distribution records (black 
dots) from the Breeding Bird 
Atlas of Wallonia (BBAW) in 
the northern (a) and southern 
(b) study areas with the main 
land cover types in the 
background: meadows and 
pastures (orange), mature 
plantation forest (green) and 
clear-cut patches (brown). 
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Species data 

We used Red-backed shrike distribution data collected during the Breeding Bird 

Atlas of Wallonia (BBAW) project (Jacob et al., 2010) to build the SDMs. For 

species such as the Red-backed shrike, atlas project fieldworkers surveyed 

potentially suitable habitats within 40 km2 sampling units to localize breeding 

individuals with as much exhaustiveness and spatial precision as possible. As 

fieldworkers were asked not to neglect any habitat type, we assumed that the 

sampling bias was negligible and that the atlas data reflected the relative use of 

different habitat types by the species. Only the presences with a spatial 

precision smaller than 100 meters were used in subsequent analyses because 

this species establishes breeding territories covering 1-3 ha (Titeux et al., 2007). 

Although atlas data were collected between 2001 and 2008, we only used the 

presences from the period 2004-2008 (Fig. 2) to ensure as much temporal 

match as possible with the data used to quantify reproductive performance. 

Environmental data 

We selected 15 environmental variables (Table 1) considered to characterize the 

most important conditions for the reproduction of the study species in the 

region (Aizpurua et al., 2015; Titeux et al., 2007). These variables were 

constructed using readily available GIS layers and aerial photographs. All 

environmental variables were calculated within 200-m resolution grid cells 

covering the two study areas in order to approximately match the mean size of 

the shrike breeding territories. These variables were intended to describe the 

main vegetation types and landscape features relevant for shrikes in farmland 

and forest. All selected variables were only weakly correlated with each other 

(Pearson correlation coefficients < 0.6). 
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Table 1. Environmental variables calculated within the 200-m resolution grid cells 
covering the two study areas and used in the modelling procedures. 

 

Variable Source Year Units 
 

Average orientation DEM  ° 
Average slope DEM  % 
Topographic moisture index † DEM   
Distance to closest urban area COSW 2008 m 
Surface of cultivated areas COSW 2008 ha 
Surface of meadows and pastures COSW 2008 ha 
Surface of semi-natural grasslands COSW 2008 ha 
Surface of broadleaved forest MRW 1993 ha 
Surface of coniferous forest MRW 1993 ha 
Surface of mixed forest MRW 1993 ha 
Surface of wetlands COSW 2008 ha 
Number of isolated trees and bushes IGN 2009  
Total length of tree lines and hedgerows IGN 2009 m 
Surface of spruce plantation clear-cuts Aerial pictures 2006-2010 ha 
Dominant soil type †† CNSW 2007  
 

DEM: Digital Elevation Model 
CNSW: ‘Cartographie Numérique des Sols de Wallonie’ – Soil map of Wallonia (scale: 
1:10000) 
COSW: ‘Cartographie de l’Occupation du Sol en Wallonie’ – Land use map of Wallonia 
(scale: 1:10000) 
IGN: ‘Institut Géographique National’ – Land use map of Belgium (scale: 1:10000) 
MRW: ‘Ministère de la Région Wallonne’ – Land cover map of Wallonia (pixel resolution: 
20 meters) 
Aerial pictures: ‘Service Public de Wallonie (http://geoportail.wallonie.be)’ – 
Orthophotos 2006-2007 (pixel resolution: 50 cm) and 2009-2010 (pixel resolution: 25 
cm) 
† Topographic moisture index was calculated following Beven and Kirkby (1979). 
†† Categorical variable 

 

Habitat use in farmland and forest 

To estimate how Red-backed shrikes use both types of habitats, we first 

calculated the area that is potentially available for them in farmland (i.e. surface 

of meadows and pastures) and in forest (i.e. surface of clear-cut patches) across 

http://geoportail.wallonie.be/
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the study areas (Fig. 2). Second, we estimated the extent to which these 

potentially suitable areas are actually occupied by the shrikes. To do so, we 

overlaid the shrike records from the atlas data with aerial photographs (see 

Table 1), we counted the number of records in farmland (meadows and 

pastures) and in forest (clear-cut patches), and we calculated for each habitat 

type separately the ratio between the number of records and the area 

potentially available for the shrikes. 

Species distribution models 

As atlas project fieldworkers covered the sampling units with as much 

exhaustiveness as possible, we built SDMs with presence-absence data and 

modelling algorithms using the BIOMOD2 package (Thuiller et al., 2016) 

implemented in R (R Core Team, 2015): artificial neural networks (ANN), flexible 

discriminant analysis (FDA), generalized boosting models (GBM), generalized 

linear models (GLM) and multivariate adaptive regression splines (MARS). Grid 

cells completely covered with mature forests or urban areas were excluded and 

SDMs were developed to document variation in the probability of shrike 

occurrence across the remaining areas where environmental conditions were 

not incompatible with the reproduction of the species (Titeux et al., 2007). We 

used the 200-m resolution grid cells where the species was recorded during the 

atlas fieldwork in 2004-2008 as presence data (n=184). We randomly selected 

grid cells where shrikes were not recorded during that period to cover 20% of 

the study area with absence data (n=2927) and we used equal weighting for 

presences and absences so that the whole set of presence data had the same 

weight as the set of absence data (Barbet-Massin et al., 2012). 

For each algorithm, the models were calibrated 100 times using a random 

sample of 80% of the presence and absence data (calibration data) and were 
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then evaluated against the remaining 20% of the data (evaluation data) using 

the area under the curve (AUC) of a receiver-operating characteristic (ROC) plot. 

The probabilities of occurrence from the different modelling algorithms were 

combined using the ensemble forecasting procedure implemented in the 

BIOMOD2 package using only individual models with AUC values above 0.6. This 

procedure resulted in an average probability of shrike occurrence in each grid 

cell that ranged between 0 and 1. 

We delineated 100-m radius circles around the 299 nest locations found during 

the period 2008-2010 in the 118 breeding sites where shrike reproductive 

performance was measured (Hollander et al., 2011). This radius was set to 

represent the geographical area covered by the territories of the breeding 

shrikes around their nests. Within each circle, we calculated the area-weighted 

mean probability of shrike occurrence derived from the SDMs using the fraction 

of the circle intersecting each grid cell as a weighting factor. We analysed the 

difference between farmland and forest in the area-weighted mean probability 

of shrike occurrence around the nest locations. 

RESULTS 

About 15% of the grid cells across the study areas were covered with mature 

forests or urban areas. As these cells were considered as incompatible with the 

reproduction of the shrikes, they were not used in the analyses. The remaining 

grid cells were at least partly covered with potentially suitable vegetation for 

shrikes in farmland (meadows and pastures: 25,128 ha) or in forest (clear-cut 

patches: 6,106 ha). From the atlas data used to build the models, 72 shrike 

records were located in meadows or pastures and 110 were located in forest 

clear-cut patches. Ten presences were not used in the calculations because their 
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allocation to one of the two habitat types with the aerial photographs was 

uncertain. On this basis, we estimated that shrikes occupied 0.3% of available 

areas in farmland and 2% in forest clear-cuts.  

Figure 3. Reproductive performance of Red-
backed shrikes in the farmland (pastures and 
meadows) and the forest (clear-cut areas) 
habitats (modified from Hollander et al. 
2011). (a) Proportion of breeding attempts 
associated with nest success (black) and 
failure (grey). (b-c) Box-and-whisker plots and 
quartile distribution (┴ and ┬: 5th and 95th 
percentiles, •: outlying values, ---: mean 
value, −: median value) for brood size (i.e. 
number of nestlings older than 12 days per 
nest) and brood quality (i.e. average nestling 
body conditions per nest). The number of 
nests (for nest success and brood size) or 
nestlings (for brood quality) is indicated in 
the panels.  
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The AUC value obtained from the ensemble forecasting procedure was 0.804. 

This indicates that there is an 80% chance that a grid cell with shrike presence in 

the atlas data receives a probability of shrike occurrence higher than that of a 

randomly selected grid cell with absence data. The area-weighted mean 

probability of shrike occurrence derived from SDMs within the 100-m radius 

circles around the nest locations was significantly lower in farmland (mean 

value: 0.487; standard deviation: 0.080) than in forest clear-cuts (mean value: 

0.537; standard deviation: 0.108) (Wilcoxon rank sum test, W=7746.5, P < 

0.0001, Fig. 4). 

 

Figure 4. Box-and-whisker plots and quartile distribution (┴ and ┬: 5th and 95th 
percentiles, •: outlying values, ---: mean value, −: median value) for the probabilities of 
occurrence derived from the species distribution models within the 100-meters distance 
around the Red-backed shrike nest sites in farmland (meadows and pastures: N=144) 
and in forest (clear-cut areas: N=155). 
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DISCUSSION 

We built SDMs with distribution data from a breeding bird atlas project to 

estimate how the probability of shrike occurrence varies across a landscape 

where the species occupies two different habitat types: i) meadows and 

pastures (farmland) and ii) clear-cut patches (forest). Although shrikes were 

known to prefer using the less suitable forest clear-cut habitat for breeding (e.g. 

Hollander et al. 2011), we intentionally ignored this behavioural maladaptation 

when building the SDMs with presence and absence data. If the outcomes of 

such SDMs were used to prioritize areas across the landscape for the 

conservation of the species (e.g. Lavers et al., 2014; Pawar et al., 2007), clear-

cut patches in forest would be identified as more important for shrikes than 

meadows and pastures in farmland. This finding would be opposite to the 

observed difference in shrike reproductive performance between farmland and 

forest clear-cut habitats (Hollander et al., 2011). 

Shrikes occupy clear-cut patches in plantation forests in many parts of their 

breeding range (e.g. Lefranc & Worfolk 1997; Karlsson 2004; Lislevand 2012). 

This novel ecosystem is also used by several other species worldwide, including 

other birds (Stjernman et al., 2013), butterflies (Viljur and Teder, 2016) and 

mammals (Bogdziewicz and Zwolak, 2014), amongst others. Although clear-cut 

patches in plantation forests potentially constitute real habitat opportunities for 

some species linked to early successional vegetation (Paz Acuña and Estades, 

2011; Swanson et al., 2011; Żmihorski et al., 2016), they may also act as an 

ecological trap for a number of other organisms (Hollander et al., 2017). Beyond 

this specific ecosystem, an increasing amount of studies have documented the 

existence of ecological traps in a variety of taxonomical groups (e.g., insects, 

amphibians, reptiles, birds, arthropods, mammals) and human-modified 
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environments such as cities, farmland, forest, or aquatic ecosystems (Hale et al., 

2015; Hale and Swearer, 2016; Robertson and Chalfoun, 2016; Rotem et al., 

2013). It has been recently suggested that traps may also arise as an unintended 

consequence of habitat restoration (Hale and Swearer, 2017) or invasive plant 

management (Carter et al., 2017). Hence, the issue we raise here and the 

recommendations we make below go largely beyond the specific case of shrikes 

in plantation forests. 

We showed that the individual-level difference in habitat preference between 

the two types of habitats (Hollander et al., 2012, 2011) results in a higher shrike 

density in the preferred forest clear-cut habitat. In contrast, available areas in 

meadows and pastures are less preferred and occupied at a lower density. As 

most SDM techniques – such as the ones we used here – discriminate between 

the environmental conditions that are used by the species and those that are 

not used (Barbet-Massin et al., 2012; Elith et al., 2006; Guisan and 

Zimmermann, 2000), the probabilities of shrike occurrence estimated by the 

models were higher around the nests located in forest clear-cut areas than 

around those established in farmland. Interestingly, AUC values in the same 

order of magnitude as the one we obtained here usually provide support for the 

use of SDM outcomes with some degree of reliability because these values are 

considered to reflect a good predictive accuracy of the models (Swets, 1988). 

With our case study on an ecologically trapped organism, we showed that, even 

when delivering accurate estimates of occurrence probabilities, SDMs might 

misdirect conservation strategies if their outcomes were used to weigh the 

importance of different areas for the reproduction of the species. Guillera-

Arroita et al. (2015) stressed the importance of using properly collected 

presence and absence data in SDMs to derive estimates of occurrence 

probabilities that suit certain types of management or conservation 
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applications. Our results show that even occurrence probabilities estimated 

from presence and absence data collected according to a well-designed 

sampling scheme are insufficient to serve this purpose when behavioural 

maladaptation during habitat selection modifies the link between habitat 

quality and habitat use. 

When a species is known to occupy novel conditions that have been emerging in 

the landscape as a result of human-induced rapid environmental changes 

(Robertson et al., 2013), we recommend to avoid relying blindly upon the 

outcomes of statistical SDM approaches except for documenting spatial 

variation in the probabilities of occurrence of the species. Before SDM outcomes 

could be used to guide the prioritization of management options amongst areas 

that apparently vary in their importance for the conservation of the species, 

there is a need to evaluate to which degree these newly occupied conditions 

contribute to population persistence relative to the traditionally used and still 

available habitat types. Fitness-related factors need to be estimated as to 

provide a proximate underpinning of the relative quality of the different habitat 

types occupied by the species (Chalfoun and Martin, 2007; Johnson, 2007; 

Pellissier et al., 2013; Thuiller et al., 2014). If this evaluation indicates that part 

of the population has been moving to a novel ecosystem where habitat quality 

is lower than in previously occupied sites, SDM outcomes should not be used to 

prioritize areas for conservation or management applications because the 

pattern of habitat use is not likely to reflect variation in habitat quality 

underlying reproduction or survival. Both theoretical and empirical studies have 

shown that the attractiveness of a trap habitat may induce source-sink dynamics 

with detrimental consequences for the populations (Kristan, 2003; Lamb et al., 

2017). 
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The severity of this conservation issue will mostly depend on i) the 

attractiveness of the novel ecosystem compared to the traditionally used 

habitat(s) and ii) the relative availability of the different habitat types across the 

landscape (Sánchez-Clavijo et al., 2016). Quantifying the attractiveness of 

different habitat types occupied by the species demands a great deal of field 

and experimental work (Hollander et al., 2012; Pärt et al., 2007; Robertson and 

Hutto, 2006), but this effort will be needed to cope with the potential mismatch 

between habitat attractiveness and habitat quality in the modelling process 

itself. A variety of methods have been proposed to assess the consequences of 

maladaptive habitat selection on population dynamics through a separate 

modelling of habitat attractiveness and habitat quality (Delibes et al., 2001; 

Donovan and Thompson III, 2001; Fletcher et al., 2012). However, most of the 

proposed approaches are theoretical models and are not spatially explicit 

(Sánchez-Clavijo et al., 2016), which limits their use to identify spatial priorities 

for management or other conservation actions. 

It is now warranted to evaluate whether mechanistic modelling approaches that 

explicitly relate spatial distribution data to demographic rates of the populations 

or individual behavioural traits (e.g. DeAngelis & Mooij 2005; Kearney & Porter 

2009; Schurr et al. 2012) offer promising alternatives to prioritize areas for the 

conservation of ecologically trapped organisms. Among the diversity of spatially 

explicit modelling techniques that integrate mechanisms, individual-based 

approaches simulate how population-level patterns emerge from the 

interactions between individuals and from the variations in individual actions 

and behaviour (DeAngelis and Mooij, 2005). These techniques have the 

potential to deal with the behavioural motivation of the individuals to select 

among several options varying in attractiveness. To our knowledge, individual-

based models have been used to evaluate the effect of maladaptive habitat 
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selection on the spatial distribution of virtual species in simulated landscapes 

(e.g. Sánchez-Clavijo, Hearns & Quintana-Ascencio 2016) but have never been 

applied to real-world data. 

In the last few decades, a number of species in the terrestrial, marine and 

freshwater realms have been shown to track changing climate conditions and 

shift their distribution along latitude, altitude and depth gradients (Scheffers et 

al., 2016). As organisms are moving towards more favourable climate 

conditions, these distributional changes are often assumed to reflect adaptive 

behavioural responses to a changing climate. However, the fitness 

consequences of such behavioural flexibility have received little attention and 

recent studies have suggested that individuals may encounter traps when 

moving and experiencing novel conditions (Hale et al., 2016). Range shifts are 

the results of moving individuals (i.e. the ‘disperser’ phenotypes, e.g. Debeffe et 

al. 2014) that may be more likely to face traps than other phenotypes. Hence, 

this process may affect or remove a biased sample of individuals and induce 

changes in the personality or phenotype structure of the populations, with 

potentially significant conservation consequences. Although SDMs are 

increasingly used to predict range shifts (e.g. Elith, Kearney & Phillips 2010) and 

to identify future spatial conservation priorities (e.g. Faleiro et al., 2013) under 

climate change, most modelling approaches and studies largely ignore potential 

maladaptive responses of the organisms when they track suitable climate 

conditions. Approaches are being developed to integrate ecological and 

evolutionary processes into the modelling framework so as to improve our 

ability to predict species range dynamics (Normand et al., 2014; Thuiller et al., 

2013; Urban et al., 2016). Yet, to the best of our knowledge, these tools have 

not explicitly considered the potential interaction between range shift and 

ecological traps under changing climate. We encourage novel research at the 
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crossroad between species distribution modelling, ecological traps, and 

environmental change impact assessment. 
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The overall objective of this PhD-thesis is to provide evidence of the usefulness 

and applicability of species distribution models (SDMs) in conservation projects, 

understanding in which situations these models can be confidently used as tools 

to support decision-making (Guisan et al. 2013). For this aim, we conducted two 

studies (articles 1 and 2) analysing the usefulness of species distribution models 

(SDMs) to predict the distribution of the species and two other studies (articles 

3 and 4) linking model outcomes with demographic parameters, specifically 

reproductive performance.  

Long-term monitoring projects aim to deliver information on the changing 

status of biodiversity, but they also provide an appropriate source of data to 

document the distribution of species in space through species distribution 

modelling. In article 2, we have provided an analytical framework to help in the 

initial design of monitoring projects able to generate appropriate data to 

produce accurate SDMs and maps. Our analytical framework using data from 

large-scale last-generation atlases examined the influence of sample size 

(number of monitoring plots sampled) on modelling performance, to identify 

how large the number of sampled plots should be in a monitoring project to 

derive accurate species distribution maps based on models. This approach may 

be applied before the start of field data collection when decisions about 

sampling design are made. Our result of most appropriate number of 

monitoring plots (4-5% of surface coverage) was nevertheless higher than the 

coverage implemented in most of existing monitoring programmes worldwide. 

We proposed a hybrid sampling design were a fixed subset of sampling plots 

may be repeatedly surveyed within and between years and a roving subset of 

sampling plots surveyed less frequently over time (Hooten et al. 2009; Hooten, 

Ross, & Wikle 2012). With this hybrid sampling design, different objectives are 

combined in a single long-term monitoring project: the estimation of species 
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occupancy and detection probability and/or the spatial knowledge for 

distribution mapping. It is also important to consider whether the initial 

sampling is suited to document species distribution dynamics and to estimate 

changes in abundance and occurrence of the species.  

An example of this hybrid sampling design has been implemented in 

Luxembourg for the common bird monitoring project (Titeux et al. 2009), 

consisting in a subset of fixed yearly sampled monitoring plots (representing 

1.2% of country’s surface coverage) and three subsets of roving monitoring 

plots (each representing 2.4% of the country’s surface coverage) which are 

sampled every three years. With this design, every three years 8.4% of the 

surface coverage of Luxembourg is monitored for common breeding birds, 

giving a great potential for species distribution modelling in order to guide 

appropriate conservation decision-making. In article 1 we included the yearly 

sampled, fixed subset of monitoring plots of this sampling design (which we 

referred to as “general-purpose stratified random sampling”) in our comparison 

of the performance of three sampling strategies to identify important areas for 

the Red-backed Shrike in Luxembourg. Of the three strategies used, species 

distribution modelling was the most efficient tool to guide field data collection. 

Being aware of the existence of some scepticism between the practitioners 

towards the use of species distribution modelling, we hope to facilitate the 

involvement of practitioners in the development of SDMs to maximize the 

robustness of modelling applications in conservation practice and management 

decision-making. We highlight the idea exposed by Guisan et al. (2013) of the 

need of individuals or institutions as “translators” between modellers and 

decision makers.  

The discussion regarding the ecological interpretation of modelling outcomes in 

terms of demographic parameters is the subject of many articles (Brambilla & 
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Ficetola 2012; Pellissier et al. 2013; Bean et al. 2014), and it is directly linked 

with the type of data used in building the model itself (species occurrence and 

environmental variables data) and the basic assumptions linked in the modelling 

process.  

In article 3, we have analysed the degree in which SDM outcomes can be used 

as appropriate predictors of habitat quality for the reproduction of bird species. 

Our results showed that SDMs may help to predict habitat quality for the 

reproduction of some species, although results were not consistent for all 

species at all scales. We highlighted that caution is needed when interpreting 

modelling outcomes, especially if they are used to guide nature conservation 

and management actions.  

Based on the findings of Hollander et al. (2011), who have shown the existence 

of an ecological trap in the Red-backed Shrike in southern Belgium, in article 4 

we developed further on the link among habitat use, habitat quality and 

reproduction performance. The results of our article show that, in this context, 

the models predicted a higher habitat quality for the shrikes in the trap habitat, 

where individuals had a reduced reproductive performance, highlighting a 

mismatch between modelling outcomes and shrike reproductive performance. 

Therefore, we emphasize again that caution is needed when interpreting SDMs 

outcomes to guide spatial prioritization of management or conservation. 

It is now warranted to evaluate if mechanistic modelling approaches that 

explicitly link spatial distribution data to demographic rates of the populations 

or behavioural traits of the individuals (e.g. DeAngelis & Mooij 2005; Kearney & 

Porter 2009; Schurr et al. 2012) offer a promising alternative to correlative 

modelling in order to prioritise areas across the landscape for the conservation 

of ecologically trapped organisms. Among the diversity of spatially explicit 
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modelling techniques based on mechanisms, individual-based approaches 

simulate how population-level patterns emerge from the interactions between 

individuals and from the variations in individual actions and behaviour 

(DeAngelis & Mooij 2005). These techniques have the potential to deal with the 

behavioural motivation of the individuals to select among several options 

varying in attractiveness of the different habitats. 

Regarding our general results, we want to emphasize the importance of the 

appropriate use of SDM outcomes. On one hand, in our study conducted in 

Luxembourg with the Red-backed Shrike (article 1), we have concluded that 

SDM outcomes were a useful tool to guide and identify areas harbouring the 

species, therefore appropriate for inferring about basic knowledge on species 

distribution. On the other hand, in the study conducted with the same species a 

few kilometres farther (article 4), we have concluded that SDM outcomes are 

not always appropriate to guide on conservation actions, specifically when the 

species is present in different habitat types. In Luxembourg, the species can 

mainly be found in meadows and pastures as there are no large spruce forest 

plantations and therefore there are no large clear-cut areas were the Red-

backed Shrike could breed. Our results highlight the relevance of studying each 

case in detail, clearly setting SDMs objectives and avoiding blind interpretation 

of SDM outcomes, for the most outstanding results and applications.  

SDMs have become a fundamental tool in Ecology and Biogeography and play a 

key role in supporting decision-making for the conservation biodiversity (Guisan 

& Thuiller 2005; Franklin 2013; Guisan et al. 2013). The increasing number of 

peer-review scientific papers in ISI Web of Science with keywords such as 

“species distribution model”, “habitat suitability model” and “ecological niche 

model” shows that the interest on the subject is still a major issue. However, 

Guillera-Arroita et al. (2015) published a review considering 100 journal articles 
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within the subject and concluded that matching SDM to the application needs is 

crucial to avoid inappropriate management decisions. In addition, the type of 

incoming species distribution and environmental data (now improving with 

remotely sensed data) and their quality fundamentally affect the modelling 

outcomes.  

The ensemble of articles presented in this thesis provide more evidence of 

species distribution modelling as useful tools related to bird conservation 

projects. We encourage local conservation-managers to take part in the 

modelling procedures and to modellers to consider in detail the importance of 

studying the species. We have shown the potential of SDMs for punctual 

detection of species and as tools to guide on the design of long-term monitoring 

projects but also the relevance of paying special attention to the interpretations 

of modelling outcomes. We believe that our results have opened new 

perspectives in the understanding of the uses of species distribution models. 
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In this section we answer the questions posed at the beginning of this 

dissertation and summarize the main conclusions (Fig.1): 

Question 1: Are SDMs as useful as experts to improve our knowledge on the 

distribution of a species of conservation concern? 

Yes. Our study explicitly shows that species distribution models can efficiently 

guide the collection of field data towards important areas for a bird species of 

conservation concern. Our results may facilitate the involvement of 

practitioners in the development of species distribution models with the 

objective of maximising the robustness of modelling applications in 

conservation practice and management decision-making. 

Question 2: How to optimise sampling design in long-term bird monitoring 

projects so that the data collected in the field could be used to map the 

distribution of the species? 

In article 2, we showed that modelling performance was sensitive to particularly 

small number of bird monitoring plots and the minimum number of plots 

required to ensure an acceptable level of modelling performance was strongly 

related to the prevalence of the species in the sampling plots. On average, the 

minimum bird monitoring plots was larger in low-prevalence species than in 

high-prevalence species. Although we argue that monitoring data may be cost-

effectively collected and used in species distribution models to document the 

spatial distribution of the species, the minimum sampling coverage obtained in 

our study in southern Belgium is higher than the coverage implemented in most 

of the existing monitoring programmes worldwide. Therefore, we propose a 

hybrid sampling design to combine objectives: a fixed subset of monitoring plots 

repeatedly surveyed within and between seasons to estimate species occupancy 
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and detection probability and a roving subset of monitoring plots surveyed less 

frequently over time to increase spatial knowledge for distribution mapping. 

Question 3: Are SDMs reliable to inform on habitat quality for breeding birds 

at the regional scale? 

Not always. In article 3, we have shown that for almost half of the studied bird 

species there was a positive relationship between predictions of the models and 

the estimated reproductive performance. Depending on the type of data used 

to build the models and the link between the spatial distribution and the habitat 

requirements of the species, it might be risky to use the predictions of the 

models as direct proxies for habitat quality in the lack of careful species- and 

scale-specific assessments in the area of interest. The predictions of species 

distribution models may prove useful but should be interpreted with extreme 

caution, especially when they are used to guide conservation or management 

actions that are expected to induce changes in the habitat quality for the 

species. 

Question 4: Are SDMs reliable to inform on habitat quality for an ecologically 

trapped bird? 

No. In our study on an ecologically trapped organism (Red-backed Shrike), we 

showed a mismatch between the outcomes of a species distribution model 

based on atlas distribution data, and the reproductive performance of the 

species. If the outcomes of such species distribution models were used to 

prioritize areas across the landscape for the conservation of the species, forest 

would be identified as more important for shrikes than meadows and pastures 

in farmland. This finding would be opposite to the observed difference in shrike 

reproductive performance between farmland and forest. Therefore, carefulness 

is needed before blindly applying species distribution models in an area where a 
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species occupies multiple habitat types and when novel conditions are emerging 

in the landscape.  
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Figure 1. Graphic summary of the main results and conclusions withdrawn from each of 

the articles presented in this thesis. 
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