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Abstract

The work presented in this Thesis is a set of developments focused on the Particle
Finite Element Method (PFEM) and its applicability in several �elds in Civil
Engineering. The PFEM had already been proven to be a powerful tool for
the free surface �ows with large deformation and domain separation, but the
application to actual engineering problems requires many more advances. The
interaction between the �uid and many solids contacting with each other, the
erosion of soils and the transport of small particles are some of these advances,
which are main topics addressed in this document. Apart from them, other
developments related with the �uid solution are included, which are intended
to get deeper than ever before in the practical use of PFEM.
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1 Introduction

The present document and all the work conducing to it is a consequence of a
real necessity. Around 2004, �uid dynamics simulations needed extra devel-
opment in order to face free surface problems with highly unsteady �ows and
�uid-structure interaction. At that time, the state of the art of Computational
Fluid Dynamics (CFD), mostly used in the form of Eulerian methods, showed
some inconveniences when tracking free surface and when interacting with struc-
tures, namely dissipative tracking of the free surface or strong need of mapping
methods between the �uid and the structure. The popularity of the so-called
meshless methods [14] was growing up due to a good performance in these areas
and the Particle Finite Element Method (PFEM) [17] appeared as a hybrid be-
tween particles methods (Lagrangian approach) and the Finite Element Method
(FEM). A team of researchers, including Professors Sergio Idelsohn and Euge-
nio Oñate, has been developing the PFEM since then, having reached a level
of applicability and validation that proves the reliability and versatility of this
method [80]. The present work collects the part of this team development that
was carried out by the author at CIMNE (Centre Internacional de Mètodes
Numèrics a l'Enginyeria or International Center for Numerical Methods in En-
gineering) since 2004, most of which was used in competitive research projects,
published in several papers and used as a basis for the work of other PFEM
researchers.

1.1 Motivation and general research objectives

The motivation of the work included in the present thesis was to develop a nu-
merical method based on PFEM, which will be hereafter called PFlow, capable
of solving some speci�c computational challenges involving �uids, structures and
soils. The compendium of the numerical developments in this Thesis, PFlow,
should be understood as a set of formulations, algorithms and numerical tech-
niques useful for solving those challenges, which are listed in the following lines:

• Accurate tracking of free surface �ows

• E�cient way to deal with drastic changes of the domain shape (for highly
non-steady problems)

• Natural approach to face complex Fluid Structure Interaction (FSI) prob-
lems with contact

• Modeling the erosion of solids under the action of �uids
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• Particles transport in �uids

These aspects of the computational CFD are brie�y analyzed below, where the
importance of using PFEM instead of standard Eulerian CFD is emphasized.

Free surface tracking

It is well known that standard Eulerian CFD codes tend to smooth any corner
present in any shape of an interface that is advected over the �xed mesh [28]. A
Lagrangian method is a possible solution to this problem, since no projection,
intersection or mapping must be made. The nodes forming the free surface
are advected with their own velocity and any sharp vertex of the geometry is
maintained, no matter the amount of displacement or the mesh size. The mesh
size still de�nes the minimum size that can be represented, like in Eulerian
CFD. However, while in Eulerian approaches the �uid is lost below the mesh
size, in PFEM is either represented by isolated nodes (that can recover mass
afterwards) or by too big elements (as sliding nodes on walls, see Section 2.4.2).
This feature can be advantageous in many situations.

This Thesis describes the work carried out by the author in the direction of
maximizing these advantages (Section 2.4).

Drastic domain changes

A good feature of Lagrangian methods is that no initial mesh is required, so
for large displacements of the nodes the mesh follows the shape of the domain
naturally. Eulerian methods require an initial estimation of what parts of the
space `could eventually be �lled' by the �uid. This advantage of Lagrangian
methods is also good for any phenomenon that does not include deformation
but does include large displacements, like a falling drop of water, in which case
only the drop must be discretized.

Some of the developments included in Section 2.4 improved the PFEM in
this direction.

Fluid Structure Interaction with contact

Structures have been traditionally calculated with a Lagrangian approach. Us-
ing the same approach for the �uid makes the FSI coupling easier in terms of
geometry. If the �uid mesh and the solid mesh share nodes at the interface, the
projection of variables between them is trivial, and the equations can be solved
either monolithically or by a staggered scheme. In the latter case the boundary
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conditions that each part represents on the other are communicated through
the shared nodes.

Erosion of solids

The erosion of solids is a complex phenomenon which depends on very local
e�ects of the �uid dynamics. It is a problem which engineers have usually faced
and tackled by means of global parameters. The details given by the CFD
methods can bring in the necessary locality to assess the erosion at a given
point. The present Thesis is an opportunity to evaluate the capabilities of the
PFEM in this �eld.

Particles transport

Particles are often found suspended in �uids, either coming from erosion or from
other sources. The transport of particles with the PFEM is also studied in the
present Thesis.

All these aspects of the �uid dynamics are considered crucial for many engi-
neering problems. The new PFEM approach was meant to open new possibilities
of calculation, very useful for some research �elds, like the Coastal Engineering,
Industrial Processes, River Dynamics, Dams design, particulate �ows, etc.

Despite the initial motivation focused on the �rst three items, the practical
use of PFlow broadened the work to some other developments like modeling of
soil erosion and modeling particulate �ows, which deserve full Sections of this
document as well.

The developments of PFlow soon happened to be a promising tool for solving
engineering problems in the �eld of civil and environmental engineering. With
these challenges in mind the work of this Thesis was focused in the objectives
described in Section 1.2.

1.2 Computational challenges addressed

In order to be a numerical tool for practical use in engineering, it has to be
user-friendly enough to be used by inexperienced engineers, it has to be robust,
it has to be versatile and applicable to many di�erent �elds, it has to yield all
the necessary results an engineer needs, and these results have to be accurate
enough for a research stage. In this Section, the main research works carried
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out in order to address the computational challenges presented are listed, with
brief descriptions.

Multi-physics capabilities

The PFlow developments address the typical problems found in the civil engi-
neering world. Typically, �uids interacting with solids, solids being eroded by
the action of the �uid and contact between solids. These are common �elds of
study in harbor engineering, river dynamics, safety assessment in roads, seaside
or rivers.

Versatility

Commercial codes must be speci�c and as simple as possible. A research code
like PFlow must be versatile in terms of calculation options, accuracy, velocity
and geometry of the case. It must not be limited to waves problems or inlet
problems, but it must let the user access every feature available in the code, no
matter what the speci�c problem is.

Robustness

The developments in PFlow must be robust. This means that the code must
not be problem dependent but general enough to solve families of problems,
regardless of the number of dimensions (2D/3D), the number of solids involved,
the density or viscosity of the �uid, etc...

Apart from the conceptual robustness, the actual code used for testing PFlow
must not crash when unexpected situations happen during the numerical tests
but send a message to the user informing about the situation. The very common
user mistakes must be avoided by warning messages or avoiding the mistake from
the user interface (not letting choose some options that lead to error). Most of
the codes for research under development lack robustness. Having many users
accelerates this process.

Accuracy

A validation of the code implemented is mandatory to prove that the results
are useful for the engineer. PFlow was tested in a number of situations, several
of them published in [8, 9]. In some applications of PFlow, accuracy has proven
to be against saving computational time due to the need of small time steps in
some cases.
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User-friendliness

Both the pre-processing and post-processing stages can take a lot of time from
the user if they are not clear enough. GiD was chosen to be the framework to
interact with the code running PFlow. The objective from the beginning was
to maintain an interface easy to use, letting the user choose just the minimum
number of options. Thus, after drawing the geometry, the user has just to
choose what material (solid, �uid) the entities belong to, not requiring extra
boundary conditions from the user. As a tool under development, PFlow is
changing constantly. However, both the pre-process and the post-process must
be developed accordingly. This means that for every feature added to PFlow, the
option must added to the code interface immediately. The post-process is also
an important aspect, since having the correct information and well organized
makes life easier for the user. PFlow results must be visualized with a post-
processor based on multiple layers that can be switched o�, or whose color can
be changed.

Results completeness

The results written when running PFlow must be useful for the developer or
an engineer, separately. The developer must be able to activate lots of hidden
variables for the engineer. The engineer must have access to all those results typ-
ically useful. Free surface sensors, internal pressure sensors, integral of pressure
around a body or drag forces are typically demanded results by the engineer.

1.3 Summary of research and technical developments in
the thesis

The main research topics developed in this thesis are summarized below and
explained thoroughly in the following chapters:

• Lagrangian �uid solver

• Fluid-multibody interaction

• Erosion of solids

• Particles transport

• Fluid-solid-soil interaction
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2 Developing the PFEM

This Section describes the PFEM, including the base theory and all the devel-
opments carried out during the work for the present thesis, until the creation of
PFlow as a useful tool for solving engineering problems.

2.1 Background

The basis of the Computational Fluid Dynamics are the Navier-Stokes equa-
tions. Literature about the �rst attempts to solve them can be found since
the late 1950's [31], but the �rst appearance of a paper treating the tracking
of an interface is from the early 1980's [32]. It took more than twenty years
to start computing the evolution of a free surface or an interface between two
di�erent �uids. However, at that time all methods were computed on a �xed
mesh by means of an Eulerian formulation of the Navier-Stokes equations, and
this introduced an arti�cial distortion on the tracked interface in the form of
di�usion. These problems are explained in detail in [28]. Probably the need of a
Lagrangian description for the interface triggered the development of alternative
methods based on fully Lagrangian approaches. The meshless methods (SPH
and others, [29]) and other hybrid approaches like the Material Point Method
(MPM, with a �xed mesh with moving particles, [30]) or the Meshless Finite
Element Method [16] appeared for similar reasons.

The movement of solids in �uids is usually analyzed with the �nite element
method (FEM) [24] using the so called arbitrary Lagrangian-Eulerian (ALE)
formulation [12]. In the ALE approach the movement of the �uid particles is
decoupled from that of the mesh nodes. Hence the relative velocity between
mesh nodes and particles is used as the convective velocity in the momentum
equations. The ALE formulation has been used in conjunction with stabi-
lized �nite element method to derive a number of numerical procedures for
�uid-structure interaction (FSI) analysis. For instance, the deforming-spatial-
domain/stabilized space time (DSD/SST) [21, 22] formulation has been used
for computation of �uid-structure interaction and free-surface �ow problems.
The Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) [23]
was proposed for computation of problems that involve both �uid-structure in-
teractions and free surfaces. The MITICT can in general be used for classes of
problems that involve both interfaces that can be tracked with a moving-mesh
method and interfaces that are too complex or unsteady to be tracked and there-
fore require an interface-capturing technique. Typical di�culties of FSI analysis
using the FEM with both the Eulerian and ALE formulation include the treat-
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ment of the convective terms and the incompressibility constraint in the �uid
equations, the modeling and tracking of the free surface in the �uid, the transfer
of information between the �uid and solid domains via the contact interfaces,
the modeling of wave splashing, the possibility to deal with large rigid body mo-
tions of the structure within the �uid domain, the e�cient updating of the �nite
element meshes for both the structure and the �uid, etc. Most of these prob-
lems disappear if a Lagrangian description is used to formulate the governing
equations of both the solid and the �uid domain. In the Lagrangian formulation
the motion of the individual particles are followed and, consequently, nodes in
a �nite element mesh can be viewed as moving 'particles'. Hence, the motion of
the mesh discretizing the total domain (including both the �uid and solid parts)
is followed during the transient solution.

2.2 PFEM concepts

Let us consider a continuum domain containing both �uid and solid subdo-
mains. The �uid particles interact with the solid boundaries thereby inducing
the motion of the solid which in turn a�ects the �ow motion and, therefore, the
problem is two-way coupled. The solid particles always have a velocity which is
imposed externally or is a consequence of the motion of the solid.

In the PFEM approach, both the �uid and the solid domains are modeled
using an updated Lagrangian formulation. That is, all variables in the �uid and
solid domains are assumed to be known in the current con�guration at time t.
The new set of variables in both domains are sought for in the next or updated
con�guration at time t+4t. The �nite element method (FEM) is used to solve
the continuum equations in the �uid domain. Hence a mesh discretizing this
domain is generated in order to solve the governing equations in the standard
FEM fashion. The nodes discretizing the �uid and solid domains are viewed as
material particles whose motion is tracked during the transient solution. This is
useful to model the separation of �uid particles from the main �uid domain, and
to follow their subsequent motion as individual particles with a known density,
an initial acceleration and velocity and subject to gravity forces.

It is important to recall that each �uid particle is treated as a material point
characterized by the density of the �uid domain to which it belongs. The mass
of a given domain is obtained by integrating the density over the volume of the
domain.

The quality of the numerical solution depends on the discretization chosen
as in the standard FEM. Adaptive mesh re�nement techniques can be used to
improve the solution in zones where large gradients of the �uid or the structure
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variables occur.

Basic steps of the PFEM

For clarity purposes I will de�ne the collection or cloud of nodes (C) as the set
of all nodes, pertaining to either the �uid and the solid subdomains, the volume
(V) de�ning the analysis domain for the �uid and the solid, and the mesh (M)
discretizing both domains.

A typical solution with the PFEM involves the following steps (see Fig.1 for
clari�cation).

1. The starting point at each time step is the cloud of points in the �uid
and solid subdomains. For instance nC denotes the cloud at time t = tn
(up-left drawing of Fig.1).

2. Discretize the �uid and solid subdomains with a �nite element mesh nM .
In this work a mesh generation scheme based on the Delaunay tesselation
[16] is used.

3. Identify the boundaries for both the �uid and solid domains de�ning the
analysis domain nV in the �uid and the solid. This is an essential step
as some boundaries, such as the free surface in �uids or the bed surface,
may be severely distorted during the solution process including separation
and re-entering of nodes. The Alpha Shape method [15] is used for the
boundary de�nition. Central drawing of Fig.1 represents the mesh after
Steps 2 and 3.

4. Solve the coupled Lagrangian equations of motion for the �uid and the
solid domains. Compute the relevant state variables in both domains at
the next (updated) con�guration for t+∆t: velocities, pressure and viscous
stresses in the �uid and displacements. Note that the boundary conditions
can be applied to the boundaries identi�ed in Step 3. Bottom-left arrows
of Fig.1 represent this step.

5. Move the mesh nodes to a new position n+1C where n + 1 denotes the
time tn + ∆t, in terms of the time increment size. This step is typically a
consequence of the solution process of step 4. Recall that a node identi�es
a material point in either the �uid or solid subdomains.

6. Go back to step 1 and repeat the solution process for the next time step.
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Figure 1: Steps of the PFEM in a time increment

After Step 2, the resulting mesh is a convex hull, with all the elements
generated by the Delaunay tesselation (see Fig. 2). This mesh includes big
elements and some of them with high aspect ratio, this means that some nodes
are connected with elements even if they are very distant from each other. Step
3 removes all the elements that introduce these connections and after applying
the Alpha-shape method the mesh can contain isolated nodes, holed domains
and separated parts.

2.3 Previously existing tools

The code inherited by the author in CIMNE in 2004 was roughly a �uid solver
with a minimal user interface. This Section describes the approach followed by
that code, which was the base of all the developments made until getting the
PFlow package. Many corrections and new lines were added to that code in
order to reach the marked objectives (Section 1.2).

The following lines provide details about each of the features of the preex-
isting code in 2004:
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Figure 2: From left to right: steps 1, 2 and 3 (�gures obtained from [26])

Fluid solver kernel

The Fluid Dynamics module already coded was a Fractional Step scheme, with
a switch to choose between a �rst order Fractional Step or a second order Frac-
tional Step with a Predictor Multi-Corrector algorithm. The code, written by
Facundo Del Pin, was described in detail in [17]. It was intended to work both
in 2D and 3D, however, the 2D version was much more robust.

Solid motion

The Solid Solver module was in charge of computing of the motion of a solid.
It was a very simple one, only valid for 2D. It included a Newmark integration
scheme.

Fluid Structure Interaction

The Fluid Structure Interaction module was capable of solving the interaction
between several 2D solids and a �uid. It used an iterative scheme for the coupling
with the �uid based on previously published works [18].

Contact

No contact was designed or coded for the interaction between solids.

User interface

The pre-process user interface was quite basic, but very intuitive. It was a
problemtype for GiD ([25], www.gidhome.com) based on layers. That means,
the geometry had to be prepared in layers, and every layer was an object with
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di�erent conditions. Every object was considered as a di�erent entity in the
calculation module and they could be either solids, �uids or �uid inlets.

2.4 Research developments carried out in the thesis

Many new features were required in order to achieve the objectives stated in Sec-
tion 1.2. The main changes in the �uid solver were done to achieve the needed
robustness or to improve the trajectories integration functions, so the work fo-
cused primarily in repairing the mesh after obtaining the Delaunay Tesselation,
sending working elements to the assembler, and modifying the integration of
the trajectories of the nodes, which usually presented problems of penetration
in walls. Many other changes related to solid motion, solid-solid contact, user
interface, free surface and pressure sensors, general bug �xing, robustness and
post process were done. In this Section, many features added to PFlow by the
author are described. Some of them will be explained with a short description
in this very Section, while the most complex ones are explained in detail in the
following chapters. The level of detail and implementation hints exposed in this
thesis should be enough for any researcher to implement the same features, in
case they develop their own PFEM code.

2.4.1 Main research developments

The main research developments are those which can not be summarized in
short Subsections because they require a deeper explanation. Therefore, full
chapters have been dedicated to them. They are nevertheless summarized here.

Fluid Multi-body interaction The multiple bodies that can be �oating,
sinking, or generally speaking interacting with the �uid, with each other or
with the �xed walls, must be subject to a contact algorithm that prevents any
penetration. In the PFEM, the detection of the contact was found to be very
cheap (minor extra cost from a computational cost view) thanks to the existence
of the re-meshing step. All those elements whose connectivity include nodes
from di�erent solids are considered `contact elements', having a linear repulsion
law and a drag that simulates the contact. As stated previously, the goal of the
algorithm is to prevent penetration. An error of the element size is assumed in
exchange for an instantaneous detection. The multi-body contact is explained
in detail in Chapter 3.
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Erosion An erosion module was added to the Solid Solver module of the
PFlow-Code (the software used, see Section 2.5). This module calculates the
drag produced by a �uid on a solid surface and is able to detach particles of the
solid. This module also includes a stability assessment function that detaches
any part of the solid which is not stable in terms of internal friction angle. This
procedure is explained in detail in Chapter 4.

Particles transport in �uids An algorithm for tracking the particles motion
in a �uid was developed, using empirical formulae for drag valid for Newtonian
and non-Newtonian �uids and for spherical and non-spherical particles. This
feature of PFlow is explained in detail in Chapter 5.

2.4.2 Other research developments

Many other developments were necessary in order to run practical engineering
problems. In this Section some of them are explained brie�y.

Euler equations for body motion The rotation of a body in 3D requires
solving the Euler equations, expressed in local axes attached to the solid as

Iiω̇i + (Ik − Ij)ωjωk = Mi (1)

where sub indices i,j and k represent the cyclic permutations of the principal
directions of the Inertia tensor, Ii are the principal moments of inertia of the
rigid body, Mi are the values of the external torques in the same directions and
ω is the angular velocity.

PFlow solves these equations using the following Newmark scheme:

ωn+1
i,predicted = δt(1− γ)ω̇ni (2)

ω̇n+1
i =

1

Ii
(Mn+1

i − (Ik − Ij)ωn+1
j,predictedω

n+1
k,predicted) (3)

ωn+1
i = δtγω̇n+1

i (4)

Where δt is the time step, the super indices indicate the step, the sub index
predicted stands for a temporary estimation of the value and γ can have values
between 0 and 1. It is usually taken as 0.5.

As the Inertia tensor is used in its diagonal form, these equations must be
solved in local, principal axes. This limitation requires to express the external

21



torques and the angular velocities in local coordinates, and rotate the �nal value
of the angular velocities to global coordinates for plotting.

From this angular velocity, the rotation (θ) of the solid can obtained with a
simple Crank-Nicholson scheme as

θn+1
i = δt(1− γ)ωni + δtγωn+1

i (5)

A similar process can be followed in order to solve the translational motion
of the rigid body.

Note: In the �rst implementations of this feature, the trajectory of all the
nodes of the solid was integrated. The di�erential cumulative errors over the
nodes generated unwanted distortion of the solids for high angular velocities
and long computations. A better approach was developed later on, based on
translating and rotating the local axes of the solid and reposition the nodes
using relative coordinates to these axes.

Fluid boundary conditions In the �rst version of the code, before any
changes made by the author, the boundary conditions for the �uid were:

• Dirichlet condition for all the components of the velocity at the boundaries
de�ned by solids, both moving or �xed solids

• Dirichlet condition for the pressure at the free surface, with a null value

Later on, some other conditions had to be added, in order to achieve better
results in terms of accuracy and robustness. They are described brie�y in this
Section.

Pressure at the free surface
For very viscous �uids, prescribing a zero value of pressure at the free surface

is inaccurate. If we take into account that the null normal stress condition at
the free surface is the one written in equation 6:

σ·n·n = t·n = tn = 0 (6)

and the expression of the stress tensor as (Eq. 7):

σ = 2µ∇sv + pI (7)

Considering that ∇sv ' ∇v under certain conditions (if the viscosity is
constant and has a low value, as studied in [57]), we �nally obtain that the
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actual value of the pressure to be imposed at the free surface of viscous �uids
is (Eq. 8):

p = 2µ
∂vn
∂n

(8)

where σ is the stress tensor, v is the �uid velocity, p is the �uid pressure, n
is the unit vector normal to the free surface (outwards), vn is the projection of
the velocity vector into n, t is the vector of tractions at the free surface and µ
is the dynamic viscosity of the �uid.

Nodes approaching walls
In terms of robustness, an extra condition had to be added to the �uid

nodes approaching a wall. There is no condition in the equations that prevents
the �uid nodes to have a certain velocity towards the wall. It is actually very
common that they have some component of the velocity perpendicular to the
walls, while the parallel component is still a lot larger. For this reason, it occurs
sometimes that a �uid node approaches progressively a wall, until it crosses
it. This happens because the Alpha-shape method detects this node as a free
surface node (Fig. 3), and it has therefore a very low pressure compared to its
neighbours. Then, this node is pushed trough the walls and a constant leakage
starts at that location.

Figure 3: Fluid node (in blue) approaching a wall (red nodes) and starting
leakage

The solution adopted to avoid this serious problem was to detect the �uid
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nodes that are candidates to be problematic and relocate them to a position far
from the wall, interpolating the �uid and the pressure at the new position using
the last known information of the mesh (see Fig. 4).

Figure 4: Position of �uid node (in blue) is corrected to avoid leakage through
wall (red nodes)

This correction of the position of these problematic nodes is mandatory for
any PFEM code, in the opinion of the author.

Mesh quality control With the standard formulation described in Section
2.2, the nodes move according with the velocity of the �uid. This means that,
even if the initial mesh has very good shaped elements, on one hand, some
groups of nodes get really close, generating very distorted elements with short
and long edges, while on the other hand some nodes get very far from each
other, generating big elements that can be removed by the Alpha-Shape method.
Thus, it is necessary to work on the distorted meshes in order to recover the
quality of the mesh. The implemented operations were of two types: node
deletions and node insertions. These operations are described below, however,
it is important to clarify that they respect the following 'symmetry criterion': the
mesh operations related to the Alpha-shape method should be done in such a way
that, reversing the velocity �eld (or going backwards in time), the same elements
should be recovered. See Fig. 5 for clari�cation. This 'symmetry criterion' is a
necessary condition for the conservation of volume across time steps, without
which the creation of new elements could be larger than the deletion, or the
other way around.
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Figure 5: Expanding mass of water (left) vs. contracting mass of water (right).
The same element is deleted (left) or created (right)

Node deletion
The distance between a certain node and all their neighbours is checked. If

at least one of the distances is less than a certain portion of h (εh) the node
is marked to be removed, unless the small distance is measured against a node
which is already marked to be removed. h is the desired size of element around
that node and ε is a value between 0 and 1, calibrated by the experienced user.
If two nodes are too close, but only one of them belongs to the free surface, the
other node is marked to be removed to avoid spurious changes in the shape of
the free surface.

The nodes marked to be removed will not be added to the mesh during the
next re-meshing step.

Node insertion
When an element gets big, that is, the sphere passing through all its nodes

has a radius bigger than a certain threshold (βh), it might approach the range
where Alpha-Shape can remove the element itself. Unless it is an element close
to the free surface, it must be understood as a mesh distortion and should be
�xed by adding nodes, which the Delaunay Tesselation will later use to generate
a better quality mesh. The simplest and most e�ective way to achieve such
increase of the resolution is to insert a node in the baricenter of the element. If
the element is close to the free surface, having at least one face with all its nodes
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marked as free surface, it should not be enriched with a new node, or the mesh
would gain volume. Note that this is consistent with the 'symmetry criterion'
for Alpha-Shape: an element is formed when nodes on the free surface get close,
so this element must be deleted when the nodes separate, not enriched with new
nodes ( Fig. 5).

Many combinations of ε and β can ensure the conservation of volume in
terms of re-meshing operations (solver losses must be considered as a di�erent
source), if ε is set bigger many nodes are deleted, so β must be chosen smaller to
create many of them as well. However, the conservation of the number of nodes
does not ensure the conservation of volume, as the density of nodes is always
something relative to the imposed size h. For example, an initial mesh with
a separation between nodes of h/2 will soon trigger many deletions of nodes,
which is something expected due to a too dense distribution, but this does not
mean that volume is lost.

Mesh size control Once the mesh quality control is added to a PFEM code,
it is possible to control the mesh size in any part of the domain. The mesh size
control is done by setting new values of h in the nodes. This simple procedure
triggers automatically the necessary deletion or creation of nodes as described
in Section 2.4.2. Thus, one can re�ne the domain progressively by decreasing
the value of h in all nodes. If needed, the user can establish zones in space with
di�erent prescribed values of h, in such a way that when a node enters those
zones its value of h is overwritten to the prescribed values. These zones can be
prescribed in the form of analytic functions or as a function of the distance to
an object, for example. Care must be taken with discontinuous jumps of h: if
the values at both sides of the jump di�er by more than a factor of 2 times,
voids might be created on the border during the computation.

In Fig. 6 a �oating caisson can be seen. Note that two di�erent levels were
used to increase the accuracy next to the caisson. The zones were de�ned by user
mathematical functions based on spatial coordinates. The rigid walls containing
the �uid were re�ned with the same sizes during the pre-process stage.

Fluid inlets A �uid inlet was coded in such a way that successive layers
of nodes are inserted in a previously set surface (in 3D) or line (in 2D). Fig.
7 depicts a scheme of the process in 2D. Every new layer of nodes must be
considered exactly in the same way as a solid wall, with a Dirichlet velocity
condition (step 2). For several time steps (step 3) the boundary condition is
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Figure 6: 2D scheme of the �uid inlet process

maintained until a certain distance from the inlet is reached and a new layer
of nodes is inserted (step 4). This distance must be similar to the size of the
elements. The old nodes are freed and the new ones are �xed to the same
velocity as before. At this stage, both layers get connected by elements that
are created automatically by the re-meshing process. After this, the newest
nodes move with the imposed velocity (step 5) until they are replaced by a new
layer of nodes in the same way it was done before (step 6). Parabolic laws and
logarithmic laws can also be imposed at the inlet.

Surface tension For cases at small scales, or for �uids di�erent from water,
sometimes the surface tension can be necessary. This feature was added to
PFlow (in 2D only) as an extra pressure imposed on the free surface. Following
expression 9:

pfluid = pout + σfs

(
1

R1
+

1

R2

)
(9)

the nodes at the free surface should have a pressure pfluid(enforced) which is
equal to the external pressure pout (often zero) plus a term that depends on the
material surface tension σfs and the curvatures of the free surface, de�ned by
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Figure 7: 2D scheme of the �uid inlet process

two radii, R1 and R2. In 2D one of the radii is in�nite, so the Eq. 9 is simpli�ed
to

pfluid = pout + σfs
2

R
(10)

The value of σfs for the water is 0.0728 N/m. The value of pfluid is computed
considering the shape of the free surface at the previous time step, so this method
can be considered explicit.

A simple experiment was carried out to test the implementation of this
approach: a random shaped mass of water with no gravity was calculated to see
its evolution with time. Initial and �nal shapes are depicted in Fig.8

For the typical problems in civil engineering, this term can be considered
negligible. However, for small scale problems, this term is very important. In
these cases, the explicit approach can limit the time step considerably, and it is
published in the literature [63] that an implicit approach is worth in terms of
time consumption.

Non-Newtonian rheology A Bingham Plastic model was added to the Fluid
Solver module of the code using PFlow. The technology used had been published
beforehand [10] and consists on using an apparent viscosity which is updated
according to the local, current value of the strain rate. A user de�ned smoothing
of the rheogram is applied in the zone close to the origin to avoid discontinuities.
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Figure 8: Initial shape (left) and �nal shape (right) of a mass of water

User interface The pre-process Graphical User Interface (GUI) was coded
with all the features that were necessary by the author and members of the
research team. Also third party users, not developers, that were using the
PFlow-Code (Section 2.5) asked for extra features that were coded and inte-
grated in the GUI along the years. The aspect of some dialog menus of the GUI
is depicted in Figures 9, 10 and 11 and all the support for graphics is brought
in by GiD [25].

Figure 9: Screenshot of the GUI. Setting the properties of a solid.
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Figure 10: Screenshot of the GUI. Setting the properties of a �uid inlet.

Figure 11: Screenshot of the GUI. Setting general options

Free surface sensors and pressure sensors This option is essential for
engineers that use the PFlow-Code (Section 2.5). The user can activate the
output of as many sensors as wanted and a �le is written than can be easily
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plotted. An example can be seen in Fig. 13. The graph represents the water
level at a position marked with a line in the 2D geometry of the �ume of Fig.
12

Figure 12: 2D and 3D geometry of a computed �ume, originally an experimental
facility
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Figure 13: Water level graph for a single wave

Code performance monitoring A function was included to print the mem-
ory consumption, number of nodes and elements, time elapsed from the begin-
ning of the calculation and time consumed by every stage of each time step
(meshing, assembling, solving and other operations). Thanks to this feature,
graphs of CPU consumption like the one in Fig. 14 were possible, where every
point is a time step of a computation with an increasing number of nodes. It
can be observed that the cost of re-meshing the domain at every time step is
around 16% for around 800,000 nodes, and the tendency is to decrease even
more for larger meshes.
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Figure 14: CPU consumption (%) of the main functions

Calculation resumption With this function, a backup of all the data is
stored in the hard disk periodically, so the calculation can be resumed from and
advanced point on. This feature demonstrated to be essential when code was
used for research projects or in calculations subject to tight deadlines.

2.5 The translation of PFlow developments into software

The PFlow is the compilation of all the research work described in Sections 2.3
and 2.4. Part of this work was published in journal papers ([1, 2, 3, 4, 5, 6, 7]).
However, the most tangible proof of the advances done in the �eld is the PFlow-
Code, the software programmed by the author during the evolution of this thesis.

The PFlow-Code consists on two di�erent components:

• The computing kernel: containing all the techniques and methods ex-
plained in this Section

• The Graphical User Interface: a customization of GiD [25] which allows
the user to create and run examples
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A few snapshots of the results, which are included in the referenced publications,
are included in this Section. In Fig. 15 a breakwater is under the e�ect of big
waves. All the blocks can move freely, they can be pulled away by the waves,
and the sea water penetrates in the voids between the blocks.

     

Figure 15: Waves against breakwater, extracted from [6]

In Fig. 16 a structure made of a soft material is eroded by the action of
incoming waves. The object on the erodible structure falls down when the base
where it stands is pulled away by the water.

Figure 16: Waves erode soft material and object on top falls down , extracted
from [7]

Many other application examples have been run by the author and his col-
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laborators using the PFlow-Code, either for the publications cited above or the
solution of numerous research projects (see Section 6).

All the post-processing work was carried out using GiD [25].
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3 Fluid Multi-body Interaction

In a general problem, multiple bodies can be interacting with the �uid, with each
other and with the �xed walls. For this reason, a �uid-structure-interaction
(FSI) algorithm and a contact algorithm must be used in the computations.
Even when the focus is just on the �uid or the FSI, the computations usually
require the contact between solids to be computed, at least to avoid obvious
non-physical behavior of the solids, which might not a�ect the �uid results in
the region of interest, but would be hard to explain.

The Fluid-Multi-body Interaction problem must be solved in two separate
ways: on one hand the single body FSI, on the other hand the contact between
bodies. The Fluid-Structure Interaction with a single rigid body was already
coded before the work of the author, as stated in Section 2.3 and followed the
algorithm proposed in [18], so it will not be detailed here. The contact between
rigid bodies has been developed and coded from scratch by the author, and some
details were published in [4]. The ideas of the implementation are summarized
in this Section.

3.1 Developments

3.1.1 Contact between solids

The contact between two rigid bodies is simply treated by introducing a layer
of contact elements between the two interacting solid interfaces. This layer
is automatically created during the mesh generation step by detecting which
element is formed by solid nodes that belong to di�erent solids (Fig. 17).

A reference distance hc must be prescribed between the two solid boundaries.
This distance can be a fraction of the size of the element. If the distance between
the solids is bigger than hc, the generated elements are treated as non-active
contact elements, otherwise a frictional contact law is activated. This frictional
contact includes a normal elastic force, a normal damping force and a tangential
Coulomb frictional force de�ned as

Fni = K1(hc − h)−K2VniSign(Vni) (11)

Fti = −βK1(hc − h)Sign(Vti) (12)

Where K1 is an elastic constant that can be calculated as a function of
the mass of the solids and their relative approaching velocity, K2 is a damping

36



Figure 17: Contact of a moving solid with a �xed wall (extracted from [4])

coe�cient that can be calculated as a function of the mass of the solids and
K1, Vni is the relative normal velocity between the two solids at that contact
element, Vti is the relative tangential velocity between the two solids at that
contact element and β is the standard Coulomb friction coe�cient. h is the
current distance between a node which belongs to a solid and the face which
belongs to the other solid. Note that this h is not the same h used in Chapter 2,
but the same notation has been used to preserve the compatibility with Fig. 17
extracted from reference [4]. Part of this implementation was reported in this
publication. See Annex 9.4.

This algorithm has proven to be very e�ective and it allows to identifying
and modeling complex frictional contact conditions between two or more in-
teracting bodies moving in water in an extremely simple manner. Of course
the accuracy of this contact model depends on the critical distance above men-
tioned. Therefore, �ner meshes imply thinner contact layers, which are more
accurate but more demanding in terms of time step size (thinner contact layer
require higher values of K1 for sti�er behavior, so smaller time steps) .

This contact algorithm can also be used e�ectively to model frictional con-
tact conditions between rigid or elastic solids in standard structural mechanics
applications. Figures 18, 19 and 20 show examples of application of the contact
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Figure 18: Bumping of a ball within a container. The layer of contact elements
is shown at each contact instant

algorithm to the bumping of a ball falling in a container, the failure of an arch
formed by a collection of stone blocks under a seismic loading and the motion
of �ve tetrapods as they fall and slip over an inclined plane, respectively. The
images in Figures 18, 19and 21 show explicitly the layer of contact elements
which are in charge of preventing the penetration.

3.1.2 The contact force computation in the FSI-Multibody Contact
scheme

The contact forces are computed according to the displacement of the solids,
however, an iterative scheme was developed in PFlow in order to achieve a
better accuracy. Several levels of nested loops are necessary for solving the
couplings. The pseudocode in Algorithm 1 describes all the loops necessary for
the three-way coupling.

This algorithm was the only one used for solving all the problems in Sections
3, 5, 5.3 and 6. The proven robustness, regardless of the number of solids or
contacts between them, makes PFlow a powerful tool to solve a wide range of
problems in the �eld of Civil Engineering and many others. Some drawbacks
appear as well, which are listed in Section 9.2.
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Figure 19: Failure of an arch formed by a collection of stone blocks under a
seismic loading

3.1.3 Correction of the contact force

The Newmark algorithm presented in equations 13 and 14 is used to solve the
translation of solids:

v = v0 + dt[(1− γ)a0 + γa] (13)

x = x0 + dt[(1− θ)v0 + θv] (14)

Where v0 and v are the velocities of the particle at the beginning and at the
end of the time step, respectively, x0 and x are the positions, and a0 and a are
the accelerations of the particle due to external forces, including the gravity (if
considered) and the contact forces with the wall (spring). The values of γ and
θ control how explicit or implicit the method is.

In order to solve equations 13 and 14, knowing the value of a is enough.
However, a depends on the contact forces, which are a function of the unknown
value of x. This means that equations 13 and 14 are implicit equations. As
stated in Section 3.1.1, the contact forces are solved iteratively for solids, and
the same approach is used here for a single particle. γ = θ = 0.5 are the values
which yield better energy conservation properties.

The beginning and the end of a contact between two solids is a typical
source of energy gain. The fact that the solids start or end the contact in
the middle of a time step introduces an error when using the values of the
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Figure 20: Motion of �ve tetrapods on an inclined plane
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Figure 21: Detail of �ve tetrapods on an inclined plane. The layer of elements
modeling the frictional contact conditions is shown

external forces (therefore accelerations), because they evolve actually far from
linearly and present a slope discontinuity at the moment of starting or �nishing
a contact (see Figures 22 and 23 for clari�cation). These slope discontinuities
were addressed by Mohammadi in [43].

Figure 22: Contact initiation in the middle of a time step
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Algorithm 1 General algorithm for the FSI with multibody contact
1: while Fluid time is not ended do
2: while convergence in Fluid velocities and pressures is not achieved do
3: Solve Fluid equations
4: for all solids do
5: Integrate pressure on the skin of the Solid
6: end for
7: for all substeps of Solids in a Fluid time step do
8: while convergence in contact forces is not achieved do
9: for all solids do
10: while convergence in forces is not achieve do
11: Apply Solid displacement
12: Compute contact forces
13: end while
14: end for
15: end while
16: end for
17: end while
18: end while

Figure 23: Contact ending in the middle of a time step

A numerical model for the motion of a particle has been studied in one
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dimension, considering the gravity and an elastic contact with a horizontal rigid
wall. The collision with the wall is computed like a spring exerting a force
against the particle when it approaches the wall. Fig. 24 shows how the energy
increases drastically at some speci�c moments. The input parameters for the
computation were:

• Particle mass: 1 kg

• Drop height: 5 m

• Length of relaxed spring: 0.1 m

• Elastic constant for the spring: 6000 N/m

• Time step: 0.02 s

Figure 24: Energy plots for a single particle bouncing on a horizontal wall (single
spring)

One way to eliminate this source of energy gain for a single particle is to
split the time step dt in two parts: αdt (from the beginning of the time step
until the discontinuity in forces) and (1−α)dt (the rest of the time step). Then
the Newmark equation for the velocity (Eq. 13) can be re-written as

v = v0 + αdt[(1− γ)a0 + γã] + (1− α)dt[(1− γ)ã + γa] (15)
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which consists on a splitting of the time step in two parts and ã is the
acceleration of the particle at the moment when the contact force appears or
disappears, called 'intermediate acceleration'.

Note that a0, ã and a contain the contribution of both gravity forces and
contact forces, so they can be split as follows (equations 16 to 18):

a0 = a0,gravity + a0,contact =
F 0,gravity + F 0,contact

m
(16)

ã = ãgravity + ãcontact =
F̃ gravity + F̃ contact

m
(17)

a = agravity + acontact =
F gravity + F contact

m
(18)

Where the sub-index gravity means refers to gravity and the sub-index
contact refers to contact forces. m is the mass of the particle and letter F
is reserved for forces. Note that very often F 0,gravity = F̃ gravity = F gravity and
that F̃ contact is null in those time steps where a contact is starting or ending.

With this correction the energy gain is reduced to unnoticeable values, as
shown in Fig. 25.

Figure 25: Energy plots for a single particle bouncing on a horizontal wall (single
spring) with correction of the contact forces
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This method can be extended to cases where more than one contact force is
applied to the particle in the form of several springs, with di�erent sti�ness and
lengths. This is exactly the case in PFlow, where a single solid object can have
many forces coming from di�erent contact elements, or even from other solid
objects. Equation 15 can be re-written again as

vvv = vvv0 + dt

[
(1− γ)aaa0,gravity + γaaagravity+

+ (1− γ)

[∑

i

αiaaa0,contact,i +
∑

i

(1− αi)ã̃ãacontact,i
]

+

+ γ

[∑

i

αiã̃ãacontact,i +
∑

i

(1− αi)aaacontact,i
]]

(19)

Where the sub-index i refers to the ith contact force. Equation 19 is clearer
when written in the form of forces instead of accelerations (Eq. 20 ):

vvv = vvv0 + dt/m

[
(1− γ)FFF 0,gravity + γFFF gravity+

+ (1− γ)

[∑

i

αiFFF 0,contact,i +
∑

i

(1− αi)F̃̃F̃F contact,i
]

+

+ γ

[∑

i

αiF̃̃F̃F contact,i +
∑

i

(1− αi)FFF contact,i
]]

(20)

Again a numerical model for the motion of a particle has been studied in
one dimension, considering the gravity and an elastic contact with a horizontal
rigid wall. In this case, the collision with the wall is computed by means of two
di�erent springs exerting forces against the particle when it approaches the wall.
Fig. 26 shows how the energy increases drastically at some speci�c moments
when the corrections are not used (Eq. 13). The input parameters for the
computation were:

• Particle mass: 1 kg

• Drop height: 5 m

• Length of relaxed spring 1: 0.2 m
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• Elastic constant for the spring 1: 2000 N/m

• Length of relaxed spring 2: 0.4 m

• Elastic constant for the spring 2: 1000 N/m

• Time step: 0.03 s

Figure 26: Energy plots for a single particle bouncing on a horizontal wall (single
spring)

With the corrections introduced in Eq. 20 the energy gain is reduced to
unnoticeable values again, as shown in Fig. 27.
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Figure 27: Energy plots for a single particle bouncing on a horizontal wall (single
spring) with correction of the contact forces

3.2 Examples

Figures 28-30 in the next Subsections are snapshots of computations involving
solids, �uid and contact between solids.

3.2.1 Example 1. Dragged box (2D)

Fig. 28 depicts a 2D square object dragged by a collapsed water column that
creates a stream. The mesh used was certainly coarse, which allows us to see
the layer of contact elements.
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Figure 28: Square object dragged by a water stream (coarse mesh)

Fig. 29 shows a close detail of a computation similar to the previous one,
in which a much �ner mesh was used. The layer of contact elements is much
thinner now an di�cult to distinguish.
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Figure 29: Detail of square object dragged by a water stream (�ne mesh)

3.2.2 Example 2. Tetrapods falling into water (3D)

Fig. 30 consists of four snapshots of two tetrapods falling into a container full
of water in 3D. Note that the tetrapods are half submerged during most of the
simulation, and how the PFEM treats this situation in a very natural way.

Figure 30: Two tetrapods falling into a container full of water
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3.3 Conclusions

The particle �nite element method (PFEM) is ideal to treat problems involving
�uids with free surfaces and submerged or �oating structures and bodies within
a uni�ed Lagrangian �nite element framework. Problems such as �uid-structure
interaction, large motion of �uid or solid particles, surface waves, water splash-
ing, separation of water drops, frictional contact situations between �uid-solid
and solid-solid interfaces, etc. can be solved with the PFEM in a very natu-
ral way. The success of the method lies in the accurate and e�cient solution
of the equations of an incompressible �uid and of solid dynamics using an up-
dated Lagrangian formulation. Essential solution ingredients are the e�cient
regeneration of the �nite element mesh using an extended Delaunay tesselation,
the identi�cation of the boundary nodes using an Alpha-Shape type technique
and the simple algorithm to treat frictional contact conditions at �uid-solid and
solid-solid interfaces via mesh generation. In this Thesis I have contributed to
advance in several of these topics as described in the previous pages. The exam-
ples presented have shown the great potential of the PFEM for solving a wide
class of practical FSI problems in engineering.

3.4 Published research

Part of the development explained in this Section and the examples were pub-
lished in [4]. All the necessary coding for the innovative �uid-multibody features
were coded following the PFlow design by the author of this Thesis.
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4 Erosion

The study of the erosion process of soils and rocks under water forces has usually
been developed by engineers from a global point of view, understanding `global'
as the whole section of a river, the surroundings of a bridge pile or the surf
zone for a segment of beach. However, the PFEM brings a full 3D solution for
the �uid velocities, which brings in a lot more information that can be used.
In particular, the local vortices next to the bottom (river bed, sea bottom) can
develop much lower or higher velocities than the `average' values usually used in
engineering. The Lagrangian and node-based approach of the PFEM facilitates
the task of detaching nodes from the solid domain (Fig. 31).

Figure 31: Detachment of a solid node due to erosion

In order to simulate the erosion processes with PFlow, some nodes of the
solid domain, tagged as solid nodes, are converted into particles than can move
within the �uid simply by changing the tag and updating the information on
the node. This methodology is implemented by imposing certain criteria or
conditions that must be ful�lled (Section 4.1.1). Eventually, some particles that
were eroded can deposit. If they touch the bed and remain still or with very low
velocities, they can be still treated as moving particles or they can be �xed to
the solid bed and rejoin a the solid domain. In the �rst case, the �uid domain
does not change, while in the second, the �uid domain is reduced because some
part of it becomes solid (those elements connecting the transformed node to the
rest of the solid domain become solid elements).
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This Section presents the advances made by the author in the modeling of
erosion processes under water forces and its consequences with respect to solids
and �uids.

4.1 Developments

The PFEM can be implemented in such a way that the only di�erence between
a solid node and a �uid node is the activation or deactivation of a couple of �ags.
In PFlow, it is extremely simple to transform one type of node into another.
After the transformation, the cloud of nodes is re-meshed and the matrices to
be solved are rebuilt from scratch, so the mathematical formulation for the �uid
does not represent any limitation for following this procedure. Once the node
type is transformed, the �uid node can be treated as a traveler particle, which
means that it has special properties that identify it as a 'particle that was eroded
from a solid'.

The general concepts about how to 'mark' nodes are simple, but subtle
details on their behavior can be more complex. Most of the e�orts to model the
erosion process were dedicated to predict the following situations:

• the moment in time when a solid node must be transformed into a �uid
node (traveler particle)

• the motion of the �uid node once it is lifted from the erodible bed

• the moment in time when a �uid node settles and must be transformed
back into a solid node

These three situations are explained with more detail in the following Sections
(4.1.1, 4.1.2 and 4.1.3).

4.1.1 Conditions for node detaching

The PFEM is considered a hybrid between a particles method and a continuum
method, because all the information is stored in the nodes, but still the nodes
form elements and the resulting mesh is actually a discretization of the contin-
uum. Therefore, a solid node which is in contact with the �uid represents a
part of the surrounding volume around the node. When it is transformed into a
traveler node, the surrounding volume is transformed as well (see Fig. 31). The
detached node actually represents the set of particles that would occupy the
a�ected volume of solid. Considering this, the �ow over the solid node under
study must be capable of dragging at least one particle, but before detaching
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the node it should have spent enough energy to drag the representative volume
of solid associated to that node. These are the reasons why the following three
Conditions were chosen to trigger the detachment of a solid node:

• Detaching Condition 1: Activity threshold. The �uid �ow over the solid
node must be strong enough to do some e�ect on the solid. That means
that for some slow �ows the solid remains unaltered. This Condition agrees
with Shields' work [36] widely spread in the engineering world. Below the
Activity threshold, the �ow would never be able to erode a solid.

• Detaching Condition 2: Accumulated wear. While Condition 1 is ful�lled,
the node will be detached if the �ow acts on the solid node for long enough,
taking into account that the solid node represents a certain solid volume
(not just a grain), that stronger currents drag more material than the
weaker ones and that a �ow descending a slope can drag more than the
same �ow climbing the same slope.

• Detaching Condition 3: Slope stability. Independently from Conditions 1
and 2, any solid node that is not supported by a volume of solid which is
stable enough will be detached. Slopes steeper than the angle of repose
will not be stable.

Note that all three Conditions have a physical meaning. However, Conditions 2
and 3 also depend on the mesh size and shape, respectively.

Conditions 1 and 2 must be ful�lled simultaneously to detach a solid node
and convert it into a traveler particle.

If Condition 3 alone is ful�lled, the node is also detached. More details about
the implementation of these Conditions are provided in Section 4.1.4.

4.1.2 Motion of particles

The motion of a node representing a traveler particle follows the principles of
the DEM [37] interacting with a �uid [1]. Newton's Second Law is applied to
the particle, which is subject to external forces coming from the gravity and the
interaction with the �uid. This is explained with more detail in Section 5.

4.1.3 Conditions for node re-attaching

Once a traveler particle has been moving in the �uid for some time, it might
approach a solid bed. In this case, the particle might have to be settled on that
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solid in order to form a new solid element. For re-attaching a node to a solid
bed, the following three Conditions are proposed:

• Re-attaching Condition 1: Low kinetic energy. The moving particle must
have a velocity relative to the bed lower than a certain threshold.

• Re-attaching Condition 2: Mesh quality. The elements connecting the
node to the bed must be of a size similar to that of the solid domain.
If those elements are considerably smaller or bigger than the mesh, the
volume of solid detached by the erosion might be very di�erent from the
volume of solid recovered when re-attaching particles.

• Re-attaching Condition 3: Minimum travel time. The detached particle
must have some time to accelerate before Re-attaching Conditions 1 and
2 are evaluated. Otherwise, they always stick the node to the solid bed
immediately after detaching because the particle is moving very slowly
and it is in a very good location to be re-attached.

Note that Condition 1 has physical meaning, while Conditions 2 and 3 are
numerical procedures that are necessary to obtain conservative and realistic
results, respectively.

All three Conditions must be ful�lled simultaneously to re-attach the traveler
node.

4.1.4 Implementation

In PFlow, the nodes representing a solid must be aware that they belong to an
erodible solid. If so, they must contain information about several parameters
provided by the user, such as:

• granulometry, represented as a mean diameter or by means of a probability
distribution

• density, that of a particle (not the bulk density)

• sphericity, represents how spherical are the particles forming the erodible
solid

• amount of work per unit volume needed to pull a portion of solid

• minimum travel time for a traveler node (a purely numerical parameter)

• internal friction angle
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With these parameters, the implementation of the Conditions presented in Sec-
tions 4.1.1 and 4.1.3 is described in the following lines.

Detaching Condition 1 In PFlow, the Activity threshold is set as a minimum
parallel velocity to the erodible bed. The �uid neighbours of the candidate solid
node have di�erent velocities. The average is taken and the resultant vector
is projected to a plane parallel to the solid bed (vparallel). The Condition is
ful�lled if the modulus of this vector is higher than a given value (vthreshold,
provided by the user).

‖vparallel‖ ≥ vthreshold (21)

Detaching Condition 2 If the previous Condition is ful�lled (Detaching
Condition 1 ), then Condition 2 is assessed, by means of the following steps.

1. Compute at every point of the bed surface the resultant tangential stress τ
induced by the �uid motion. In 3D problems τ = (τ2

sn + τtn)2 where s and
t are the tangential stresses in the plane de�ned by the normal direction
n at the bed node. The value of τ for 2D problems can be estimated as

τt = µγt (22)

with

γt =
1

2

∂vt
∂n

=
vkt

2hk
(23)

where vkt is the modulus of the tangential velocity at the node k point (i.e.
vkt = (v2

sn + v2
tn)1/2) and hk is a prescribed distance along the normal of

the bed node k. Typically hk is of the order of magnitude of the smallest
�uid element adjacent to node k (Fig. 31).

2. Compute the frictional work originated by the tangential stresses at the
bed surface as

Wf =

∫ t

o

τtγtdt =

∫ t

o

µ

4

(
vkt
hk

)2

dt (24)

Eq.24 is integrated in time using a simple scheme as

nWf = n−1Wf + τγt∆t (25)
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3. The onset of erosion at a bed point occurs when nWf exceeds a critical
threshold valueWc de�ned empirically according to the speci�c properties
of the bed material.

4. If nWf > Wc at a bed node, then Condition 2 is ful�lled and the node
is detached from the bed region and it is allowed to move with the �uid
�ow, i.e. it becomes a traveler node.

Detaching Condition 3 The following steps de�ne the procedure to assess
the slope stability :

1. Nodes located on the skin of the solid, either in contact with the �uid or
not, are identi�ed.

2. For each of the identi�ed nodes a virtual cone is created, with its vertex on
this kth node and the base above the node (height is chosen as a multiple
of hk, see Fig. 32 for schematic explanation). The slope of the cone is
exactly the stable slope, given by the user in the form of 'internal friction
angle'.

3. If any node of the solid falls inside the volume of the cone, the Condition
is ful�lled and the node is detached.

Figure 32: Evaluation of detachment Condition 3 with a 'virtual cone': a stable
solid bed (left) and an unstable one (right)
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Re-attaching Condition 1 The traveling node must have a low velocity.
The projection of its velocity to a plane parallel to the bed, vparallel must be
smaller than a certain, small value, vre−attach (Eq. 26):

‖vparallel‖ ≤ vre−attach (26)

Re-attaching Condition 2 The traveler nodes that approach a solid and
have ful�lled Condition 1 are candidates to be re-attached to the solid. Their
perpendicular distance to the solid is measured, d, and compared to admissible
maximum and minimum (Eq. 33):

dmin ≤ d ≤ dmax (27)

Where dmin and dmaxare parameters hard-coded in PFlow, but depend on
the element size, h, at the solid nodes.

Figure 33: Scheme of 4 traveler nodes candidates to rejoin the solid, but only
two ful�ll the re-attaching Condition 2

Re-attaching Condition 3 As soon as a node is detached from the solid
domain, an internal time counter is initiated. At each time step, the counter is
updated, increasing the counter by the size of a time step.

Condition 3 is ful�lled if the time counter, tcounter is bigger than the 'mini-
mum travel time' provided by the user, tminimum (Eq. 28):

tcounter ≥ tminimum (28)
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4.2 Examples

Next, a collection of simple, schematic, but very illustrative 2D and 3D exam-
ples showing the potential of the PFEM formulation are presented. They are
meant to demonstrate the capabilities of the PFlow tool to model bed erosion
in complex free surface �ows.

4.2.1 Example 1. 2D hill erosion

Fig. 34 shows the progressive erosion of a compacted sand domain under the
action of an impacting water stream originated by a water jet. The situation is
typical in sand shapes built by children in the beach and subsequently destroyed
by dropping water on them. The frames in Fig. 34 show the progressive erosion
of the surface of the sand domain. A kind of hydraulic jump is generated by
the water jet and the sand obstacle as clearly seen in the �gures. The erosion
process continues until the sand domain is fully dragged by the �uid �ow.

Figure 34: Erosion of a sand hill due to a water stream

4.2.2 Example 2. 3D hill erosion

The second example illustrates the erosion of an earth dam under a water stream
running over the dam top. An schematic geometry of the dam has been chosen
to simplify the computations. The images of Fig. 35 show the progressive
erosion of the dam surface until the whole dam is wiped out by the �uid �ow.
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Figure 35: Erosion of a 3D earth dam due to an overspill streams

4.2.3 Example 3. Erosion around bridge pile

The next example models the progressive erosion of a river bed domain in the
vicinity of a bridge pile under a water stream. Fig. 36 shows a view of the eroded
bed surface at di�erent times, until the footing can be seen. The �owing water
particles are not shown in the pictures, for clarity. The erosion process continues
until the bridge pile foundation is unveiled by the erosion of the adjacent bed
particles. Note that the deposition of the eroded particles was not modeled in
this case.
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Figure 36: Evolution of the erosion of the soil in the vicinity of a bridge pile.
Water particles are not shown

4.2.4 Example 4. Erosion destabilizes object

This example was chosen so as to demonstrate the e�ectiveness of the PFEM
algorithm to combine the erosion process with the dragging of solid objects.

The pictures in Fig. 37 represent schematically a temple on the top of a
mountain. The mountain is progressively eroded by a strong water stream until
the temple is dragged by the �uid.
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Figure 37: Erosion of a sand hill with an object on the top

4.2.5 Example 5. Erosion, transport and deposition.

This example is the only one in Section 4 in which the deposition of eroded
material is modeled. The Detaching and Re-attaching Conditions (Sections
4.1.1 and 4.1.3) were active in this computation. It can be seen that the �ow
is capable of pulling particles from the bed, transporting them to another place
where they settle down, and the solid slope collapses occasionally when it is too
steep (Fig. 38). Eventually, the scouring process leads to a steady shape of the
bed where the erosion rate is equivalent to the deposition rate.
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Figure 38: Erosion of a sand hill with an object on the top

4.3 Conclusions

The particle �nite element method (PFEM) is a powerful technique to model bed
erosion problems involving �uids with free surfaces and submerged or �oating
structures. Problems such as surface erosion, sediment transport and deposi-
tion, �uid-structure interaction, large motion of �uid or solid particles, surface
waves, water splashing, separation of water drops, etc. can be solved with the
PFEM. Essential solution ingredients are the fast regeneration of the �nite ele-
ment mesh using an extended Delaunay tesselation, the meshless �nite element
interpolation (MFEM), the identi�cation of the boundary nodes using an Alpha
Shape type technique and the simple algorithms to model onset of erosion, sedi-
ment transport and material deposition and contact conditions at the �uid-solid
and solid-solid interfaces via mesh generation. In this Thesis I have contributed
with new ideas and developments in these �elds, as explained in the previous
pages. The examples presented have shown the great potential of the PFEM
for modeling bed erosion in complex free surface �ows accounting for the drag-
ging of solid objects. Applications of the sediment transport and the material
deposition algorithm sketched in this Section will be expanded in Section 5.3.

4.4 Published research

The ideas about how to calculate the erosion in PFlow were published in one of
the papers co-written by the author in [2] (see Annex: papers co-written by the
author). Other developments that were published later on in [34, 35] focused on
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improving the Detaching conditions and the Re-attaching conditions explained
in Section 4.1. They were written under the supervision of the author of this
thesis, but their content is not addressed in the present document.
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5 Particles transport in �uids

The transport of particles in a �uid is a common problem of interest in engi-
neering. Eroded parts of a solid or any other object dragged by the �uid can
in�uence notably in the behavior of the �uid or in the force exerted by the
mixture on structures. Any computation that uses the technology developed
in Section 4 that includes detaching and re-attaching of nodes will also require
the transport of the detached node or particle. Particles can be distinguished
in two types according to their relative size to the �uid mesh:

• Big particles. The size of the particle is bigger than the size of a �nite
element. They can be discretized and the interaction with the �uid is
modeled through a FSI strategy. This was already mentioned in Section
3.

• Small particles. The size of the particle is smaller than the size of a �nite
element. In terms of interaction with the �uid, the particle is represented
as a point. Despite that the particle has a mass, volume and even shape,
it is represented by a single point that holds all the information about
it. This is the type of particles that are dealt with in this Section. This
approach to the treatment of particles is also known as Discrete Element
Method [37].

As a particular note, CIMNE was involved in 2012 in a research project funded
by the oil drilling company 'Weatherford' about the computation of cuttings
transport along a drilled well bore using PFlow (Section 6). In these compu-
tations, as the drill bit advances during the drilling process, the cuttings must
be removed from the well bore bottom and this is done by injecting mud from
inside the drilling string that exits through the drill bit nozzles and moves up-
wards between the drill string and the well bore walls. An intense analysis of the
speci�c literature was done, as well as an implementation of the best methods
found. The most important advances developed by the author in this �eld were
published in a paper included in the compilation of this PhD Thesis ([1]). After
the project, PFlow featured a new tool for particles transport using the DEM.

5.1 Developments

On one hand, the transport of disperse spherical particles in Newtonian �uids is
considered as a solved problem ([38]) independently from the Reynolds number
or the properties of the particle and the �uid. The usual approach is to consider
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the particle as a point embedded in the �uid, where the coupling between the
two phases is done through the transfer of forces. The commonly used forces
are the buoyancy and the drag. Other forces that are less often considered are
the Sa�man lift, the Magnus lift, the virtual mass, the Basset force and the
hydrodynamic torque. The PFlow code includes the buoyancy and the drag
forces.

On the other hand, the transport of non-spherical particles in non-Newtonian
�uids is a non-�nished research. Actually, it is almost impossible to �nd drag
laws for particles in non-Newtonian �uids, and when found, the literature is
very speci�c to a type of rheology (i.e. Bingham Plastic). The de�nition of the
Reynolds number for non-Newtonian �uids is not even unique, and it changes
notably according to di�erent authors ([48, 56]). The adaptation of some of
the drag laws to a speci�c case of application usually leads to big errors in
the estimations of the drag force and, therefore, in the terminal velocity of the
particle. The errors in the results can be over two orders of magnitude. The
inclusion of the non-sphericity of the particles in such approaches brings even
more uncertainty to the problem.

5.1.1 Modeling of the particles

Fig. 39 shows a �uid domain containing particles of small and moderate sizes
relative to the representative volume for a node. Particles are assumed to have a
spherical shape in two and three-dimensions (2D/3D) and are modeled as rigid
objects that undergo interaction forces due to the physical contact between a
particle and its neighbors, as in the standard DEM ([37]).

Fluid-to-particle forces are transferred to the particles via appropriate drag
and buoyancy functions. Particle-to-�uid forces have equal magnitude and op-
posite direction as the �uid-to-particle ones and are transferred to the �uid
points as an additional body force vector in the momentum equations (Fig. 40).
These forces, as well as the mass balance equations account for the percentage
of particles in the �uid, similarly as it is done in immersed approaches for par-
ticulate �ows ([45, 38]). The rest of the interaction forces between �uid and
particles are neglected (lift forces, virtual mass forces, drag torque, etc.) [61].

The following Sections describe the governing equations for a particulate
�uid and the computation of the forces on the particles.
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Figure 39: (a) Particles of di�erent sizes surrounding the nodes in a FEM mesh.
(b) Representative volume for a node (in shadowed darker colour)

5.1.2 Basic governing equations for a particulate �uid

Conservation of linear momentum The equation for linear momentum
conservation can be expressed as

rmi
= 0 (29)

with

rmi
:= ρf

Dvi
Dt
− ∂σij
∂xj

−
(
bi −

1

nf
fpfi

)
, i, j = 1, · · · , ns in V (30)

Summation of terms with repeated indices is assumed in Eqs.29 and 30 and
in the following, unless otherwise speci�ed.

In Eq. 30 V is the analysis domain, ns is the number of space dimensions
(ns = 3 for 3D problems), ρf is the density of the �uid, vi and bi are the velocity
and body force components along the ith Cartesian axis, respectively, σij are
the �uid Cauchy stresses, fpfi are averaged particle-to-�uid interaction forces
for which closure relations must be provided and nf is the �uid volume fraction
at a point de�ned for each node j as

nfj = 1− 1

Vj

nj∑

i=1

V ij (31)
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Figure 40: Immersed approach for treating the motion of physical particles in
a �uid

where Vj is the volume of the representative domain associated to a �uid node
j, V ij is the volume of the ith particle belonging to Vj and nj is the number of
particles contained in Vj . Note that nfj = 1 for a representative �uid domain
containing no particles (Fig. 39).

The �uid volume fraction nf in Eq.30 is a continuous function that is inter-
polated from the nodal values in the �nite element fashion.

Remark 1. The time derivative Dvi
Dt in Eq. 30 is computed in the Eulerian

and Lagrangian frameworks as

Eulerian :
Dvi
Dt

=
∂vi
∂t

+ vj
∂vi
∂xj

(32)

Lagrangian :
Dvi
Dt

=
∂vi
∂t

=
n+1vi − nvi

∆t
(33)

with
n+1vi := vi(

n+1x, n+1t) , nvi := vi(
nx, nt) (34)

In Eq. 34, nvi(nx, nt) is the velocity of the material point that has the position
nx at time t =n t, where x = [x1, x2, x3]T is the coordinates vector of a point in
a �xed Cartesian system. Note that the convective term, typical of the Eulerian
formulation, does not appear in the de�nition of the material derivative in Eq.
33 ([12]).

Constitutive equations The Cauchy stresses in the �uid, σij , are split into
the deviatoric (sij) and pressure (p) components as

σij = sij + pδij (35)
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where δij is the Kronecker delta. In this work the pressure is assumed to be
positive for a tension state.

The relationship between the deviatoric stresses and the strain rates has the
standard form for a Newtonian �uid ([12]),

sij = 2µε′ij with ε′ij = εij −
1

3
εvδij and εv = εii (36)

In Eq. 36, µ is the viscosity and ε′ij and εv are the deviatoric and volumetric
strain rates, respectively. The strain rates, εij , are related to the velocities by

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(37)

For the non-Newtonian �uids considered in this work the viscosity depen-
dence with the strain rate is de�ned as

µ(γ) =
τ(γ)

γ
(38)

where the expression of the shear stress, τ(γ), is obtained experimentally from a
viscometer test. For multidimensional �ows, γ is de�ned as the second invariant
of the symmetric gradient of the velocity �eld, i.e.

(∇sv)ij :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(39)

γ =

√
1

2
εijεij (40)

Mass conservation equation The mass conservation equation for a partic-
ulate �ow is written as

rv = 0 (41)

with

rv :=
D(nfρf )

Dt
+ nfρfεv (42)

Expanding the term and dividing Eq. 41 by nfρf , the expression of rv can
be rede�ned as

rv := − 1

κ

Dp

Dt
+

1

nf

Dnf
Dt

+ εv (43)
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where κ (κ = ρfc
2) is the bulk compressibility parameter, c being the speed of

sound and c2 = −∂p∂ρ .
Remark 2. For nf = 1, no particles are contained in the �uid. Consequently,

fρfi = 0 and the standard momentum and mass conservation equations for a
viscous �uid are recovered ([12]).

Remark 3. Similarly as in Eqs. 32 and 33 the time derivative term in Eqs.
42 and 43 has di�erent forms in Eulerian and Lagrangian frameworks, i.e.

Eulerian :
D(·)
Dt

=
∂(·)
∂t

+ vj
∂(·)
∂xj

(44)

Lagrangian :
D(·)
Dt

=
∂(·)
∂t

=
n+1(·)− n(·)

∆t
(45)

with n(·) having the same meaning as in Eq. 33.

Boundary conditions The boundary conditions at the Dirichlet (Γv) and
Neumann (Γt) boundaries with the �uid boundary Γ = Γv ∪ Γt are

vi − vpi = 0 on Γv (46)

σijnj − tpi = 0 on Γt i, j = 1, · · · , n (47)

where vpi and t
p
i are the prescribed velocities and prescribed tractions at the Γv

and Γt boundaries, respectively and nj are the components of the unit normal
vector to the boundary ([12]).

At a free surface the Neumann boundary conditions (Eq. 47) apply. These
conditions are enforced at every time step.

5.1.3 Motion of particles

The motion of particles follows the standard law for Lagrangian particles. For
the ith particle

miu̇i = Fi , Jiẇi = Ti (48)

where ui and wi are the velocity and the rotation vector of the center of gravity
of the particle, mi and Ji are the mass and rotational inertia of the particle,
respectively and Fi and Ti are the vectors containing the forces and torques
acting at the gravity center of the particle.

Eqs. 48 are integrated in time in order to compute the motion of the par-
ticles. An explicit Forward Euler scheme has been used with substeppping.
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Substepping is necessary to avoid instabilities in the DEM solution since the
�uid time steps are usually too large for the DEM solver. The information of
the �uid which is projected to the particles is interpolated linearly between two
steps of the �uid solution to the substep of the DEM solution.

The forces Fi acting on the ith particle are computed as

Fi = Fwi + Fci + Ffpi (49)

Fwi , F
c
i and Ffpi are the forces on the particle due to self-weight, contact in-

teractions between particles and �uid e�ects. These forces are computed as
follows.

Self-weight forces The self-weight force acting on a particle can be written
as

Fwi = −ρiΩig (50)

where ρi and Ωi are the density and the volume of the ith particle, respectively
and g is the gravity acceleration vector.

Contact forces The contact forces acting on a particle emanating from other
particles and walls are added up as follows:

Fci =

ni∑

j=1

Fcij (51)

where ni is the number of contact interfaces for the ith particle.

Fcij = Fijn + Fijs = F ijn ni + Fijs (52)

where Fijn and Fijs are the normal and tangential forces acting at the ith interface
connecting particles i and j (Fig. 41) or particle i with a wall. These forces
are computed in terms of the relative motion of the interacting particles as
in the standard DEM ([37]). Fig. 41 summarizes some aspects of the DEM.
Fig. 41a depicts the particle i with 8 neighbor particles (j, k, l,m, n, p, q and
r). Fig. 41b shows details of the contact between particles i and j: dij is the
distance between centers, rijc is the vector from the center of the particle i to
the contact point between i and j, F ij is the force exerted by particle j on
particle i at the contact point. Fig. 41c shows the scheme of the kinematics of
the contact. Both particles have a velocity (u̇i, u̇j) and an angular velocity (wi,
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wj). The relative displacement of the particles at the contact point is penalized
with elastic constants to avoid interpenetration between particles. Fig. 41d
shows the decomposition of the relative displacement and the contact force in
the normal and tangential directions at the contact point. Fig. 41e shows the
linear elastic dashpot system used for modeling the mechanical behaviour at a
contact point. The elastic penalty constants are Kn (normal direction) and Ks

(tangential direction); Cn is a viscous parameter that provides damping to the
contact; µ is the Coulomb's friction parameter. It a�ects the limit at which
sliding between particles occurs, which follows the expression Fijs ≤ µFijn .

Figure 41: (a) Group of eight particles in contact with the ith particles. (b)
Contact force vector for two particles interacting with a gap distance. (c) Dis-
tance vectors and velocity vector for two particle in contact. (d) Normal and
tangential forces and displacement at a contact point. (e) Linear elastic dash
pot system modeling the mechanical behaviour at a contact point[1, 37]

Contact radius The contact radius is the radius used by a particle when its
contact with another particle or a wall is being computed. The value of the
contact radius, in general, is the radius of the particle, but there is a possibility
to increase or decrease its value according to other interests. In PFlow there is
the possibility to increase the contact radius to a value equal to the element size.
This means that, even if the particles are much smaller that the �uid mesh, the

71



contact between particles is established at a distance of one element size. This
obviously changes the concentration of particles per element, from an accurate
one to a meaningless value, but other properties are conserved correctly. For
example, if a particle is detached from a solid by means of an erosion process,
one of the main interests is knowing the transport of this particle. While the
particulate �ow remains disperse (particle concentration low enough to assume
that the hydraulic forces do not a�ect other particles) the traveler particle can
increase its contact radius to detect the walls and other particles at a distance
of one element size, so the deposition generates new solid elements that have
the desired size, as expressed in Section 4.1.3. This can be understood as a sort
of coarse graining [62].

Fluid-to-particle forces The interaction force between the �uid and a parti-
cle is written as Ffpi = Fdi +Fbi , where F

b
i and Fdi are, respectively, the buoyancy

and drag forces on the ith particle. These forces are computed as follows.
Buoyancy forces
The buoyancy force depends on the volume of the particle and the gradient

of pressure of the �uid:
Fbi = −Ωi∇p (53)

Note that ∇p is not always aligned with gravity, but depends on the �uid
dynamics.

Drag forces
The drag force is de�ned as

Fdi = −F di v̂ri (54)

where

v̂ri =
vri
|vri |

with vri = ui − vi (55)

vri is the relative velocity of the particle with respect to the �uid, with vi being
the velocity vector of the �uid point coinciding with the ith particle.

The computation of the drag force F d
i is explained in the next Subsection

(5.1.4).

Computation of fpfi The force term component fpfi in the right hand side
of the momentum equations (Eqs. 29 and 30) is computed for each particle (in
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vector form) as fpf = −ffp with vector ffp computed at each node in the �uid
mesh from the drag forces Fdi as

ffpj =
1

Vj

nj∑

i=1

Nj(xi)F
d
i , j = 1, N (56)

where Nj(xi) is the value of the shape function of node j at the position of the
ith particle.

A continuum distribution of ffp is obtained by interpolating its nodal values
over each element in the FEM fashion.

The forces on the particles due to lift e�ects have been neglected in the
present analysis. These forces can be accounted for as explained in [46].

Duality of the traveler nodes If the PFlow option of increasing the contact
radius to the value of one element size is activated, another feature can be
activated as well: the duality of the traveler nodes. This option forces the
traveler node to have two di�erent velocities:

• the velocity of the �uid at that point

• the velocity of the traveler particle

The second one is chosen to move the particle, as explained above in this Section.
At the same time, the node representing the traveler particle is used to model
the �uid and solve the FEM equations, it is, it has a �uid velocity and a pressure
coming from the solution of the system of equations. The �uid velocity is ignored
in terms of trajectory integration, but it is crucial for the �uid solution.

As a consequence of this duality, the PFEM mesh is distorted more than
it would where there are traveler particles, but it has no e�ect in terms of
robustness, as the mesh is rebuilt at the next time step.

5.1.4 The drag force for non-Newtonian �uids

The drag forces on particles immersed in a Newtonian �uid are well known.
However, when dealing with non-Newtonian �uids di�erent approaches for com-
puting these forces can be followed depending on the type of �uid. Non-
Newtonian �uids, for example, can be shear thickening, shear thinning or Bing-
ham plastics, and each one of these requires a di�erent drag law. Most drag laws
require �nding a suitable value for the drag coe�cient (Cd) and the Reynold's
number.
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Drilling �uids for the oil-drilling industry usually exhibit a Herschel-Bulkley
behavior ([47]). Drag laws for particles moving in drilling �uids based on a
shear thickening behavior can be discarded. On the other hand, drag laws
developed under the assumptions of a Bingham plastic ([48, 49, 50]) fail to
predict accurately the drag force when they are applied to Herschel-Bulkley
�uids. In fact, no drag laws for particles in Herschel-Bulkley �uids, or in �uids
characterized by a power law rheogram are found in the literature.

Despite the lack of suitable drag laws for particles in Herschel-Bulkley �uids,
some accurate estimations of the terminal velocity of the particle (i.e. the steady
state velocity reached by a particle falling freely in a liquid) can be found in
several papers for di�erent �uids [53, 54]. In particular, Shah [39] proposed
an estimation of the terminal velocity in power law �uids characterized by the
following value of the (non linear) viscosity

µ(γ) = Kγn−1 (57)

where γ was de�ned in Eq. 39, and K and n are material parameters. Shah's
method has proven to give good estimations of the terminal velocity of particles
falling in drilling muds in accordance to published experiments in [50] (see Fig.
42). The terminal velocity will be used later on in this Section to generate a
drag law.

Computation of the terminal velocity of the particles In the following
lines the steps for estimating the terminal velocity of the particles using Shah's
method are summarized (according to [39]):

1. Compute
A = 6.9148(n2)− 24.838(n) + 22.642 (58)

and
B = −0.5067(n2) + 1.3234(n)− 0.1744 (59)

where n is the power exponent in Eq. 57.

2. Obtain Shah's dimensionless parameter Si for the ith particle as

Si = (Ctd)
2−n
2 Reit (60)

where the drag coe�cient for the ith particle is de�ned as

Cid =
4

3

(
dipg

(vit)
2

)(
ρip − ρf
ρf

)
(61)
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Figure 42: Relation between the experimental terminal velocity and the values
predicted by Shah's method [39]. The straight line indicates the exact correla-
tion between experimental and predicted values [50]

with

Reit =
(dip)

n(vit)
2−nρf

2n−1K
(62)

being the Reynolds number at the terminal velocity for power law �uids
(other authors such as Walker et al. give other de�nition for Re in [52, 51]).
In Eq. 61 g is the gravity acceleration, di is the particle diameter and K
is the parameter in Eq. 57. Substituting Eqs. 61 and 62 into 60 Shah's
dimensionless parameter can be computed as

Si =
1

2n−1K

√(
4

3

)2−n
(dip)

n+2ρnf (ρip − ρf )2−ng2−n (63)

Note that Eq. 63 does not depend on vit.

3. Obtain the Reynolds number for the ith particle from

Reit =

(
Si
A

) 1
B

(64)
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4. The terminal velocity for the ith particle vit is computed from Eq. 62 as

vit =

[
2n−1KReit

(dip)
nρf

] 1
(2−n)

(65)

Computation of the drag force In this Thesis a linear drag force law is
proposed for cuttings moving in drilling muds of the type

F di (vri ) = aisi +
Wi − F bi − aisi

vit
vri (66)

where ai is a parameter that is a function of the gel strength of the �uid and its
dynamics [47], si is the surface area of the particle, Wi = |Fwi | is the weight of
the particle, F bi the modulus of the buoyancy force vector (F bi = |Fbi |), vri is the
relative velocity of the particle with respect to to the �uid (vri = |vri |, see Eq.
57) and vit is the relative terminal velocity obtained by Shah's method via Eq.
65. Note that for vri = vit the equilibrium of forces for the terminal slip velocity
is recovered (i.e. F di = Wi−F bi ). On the other hand, for vri = 0 the initial force
(gel strength) is recovered.

The gel strength is the maximum stress the �uid can withstand before show-
ing some measurable shear rate. For those cases when vri = 0 the drag law
presents a singularity and its derivative is in�nite. This means that the force
can be any value between 0 and aisi. To solve this problem, the drag force law
must be regularized. In this work I have modi�ed the drag force as

F̄ di (vri ) =
F di (v̂ri )

v̂ri
vri for vri ∈ [0, v̂ri ] (67)

where v̂ri is a very small value.
Note that ai is equal to the gel strength for every part of the �uid where

the equivalent shear rate is zero. However, in those parts of the �uid where the
shear rate is not zero, the apparent viscosity perceived by the particle decreases.
In this situation, the gel strength has already been overcome and ai must be set
to zero.

Accounting for the e�ect of the non sphericity of the particles The
sphericity coe�cient (Ψ) is de�ned as the ratio between the skin surface of the
non-spherical particle and the skin surface of a sphere with the same volume. For
the same relative velocity of the particle with respect to the �uid, the drag force
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grows as the sphericity decreases. Although some authors use the sphericity
coe�cient within a range between 0.125 and 1.0 [47] it must be pointed out that
very low values of Ψ correspond actually to shapes that are far from spherical
(plates, �at discs, thin sticks, ...). In those cases, the correction that Ψ brings
to the equations that assume spherical shape can be very wrong. The authors
do not recommended using Ψ below 0.65.

Di�erent authors have established the dependency of the drag coe�cient
with the Reynold's number and the sphericity parameter for Newtonian �uids.
For instance, Chien [53] proposed

Cd =
30

Re
+ 67.289e(−5.03Ψ) (68)

while Haider and Levenspiel [55] propose:

Cd =
24

Re

[
1 + exp(2.3288− 6.4581Ψ + 2.4486Ψ2)Re(0.0964+0.5565Ψ)

]
+

73.69Re · exp(−5.0748Ψ)

Re+ 5.378 exp(6.2122Ψ)
(69)

Both expressions and others mentioned in [50] can be used to obtain the
drag coe�cient for spherical particles simply making Ψ = 1.

In order to include the e�ect of the non sphericity of the particles in Shah's
method, the dimensionless parameter Si (Eq. 60) has to be modi�ed. This
has been done in this work by substituting the drag coe�cient by an equivalent
one which accounts for the sphericity e�ect. For that purpose, the following
parameter is used:

ϕi =
Cid,non−sphere
Cid,sphere

(70)

where ϕi is the ratio of drag coe�cients for a particle in Newtonian �uids com-
puted via Eqs. 68 or 69.

Taking into account that Cd in Eq. 60 corresponds to an spherical particle,
Shah's dimensionless parameter is re-written using Eq. 70 as :

Si =

(
Cid,non−sphere

ϕi

) 2−n
2

Reit (71)

Eq. 61 holds for both spherical and non-spherical particles. For non-
spherical particles dip is the diameter of the sphere with the same volume. Note
that A and B were obtained for spherical particles in Eqs. 58 and 59. This
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is why Cid must be divided by ϕi in order to compute the correct (equivalent)
expression of Cd for a spherical particle.

The two-step procedure implemented in this work to compute the drag force
for non-spherical particles is as follows:

1. Compute the terminal velocity for the particles using the standard Shah's
method (Eq. 65) where di is the equivalent diameter for the non-spherical
particle.

2. Compute the drag coe�cient for spherical (ϕ = 1) and non-spherical (ϕ 6=
1) particles via Eqs. 68 or 69 using the Reynolds number of Eq. 64.

3. Compute the value of ϕi at the obtained Reynolds number (Eqs. 64 and
68).

4. Update Si as S2
i = S1

i (ϕi)
2

2−n , where S1
i is the value of Shah's parameter

computed using Eq. 63.

5. With the updated Shah's parameter, perform the rest of operations in
Eqs. 64 and 66.

The terminal velocity and the drag force obtained after this procedure includes
the e�ect of the non sphericity of the particle.

5.2 Examples

5.2.1 Example 1. Vertical annulus transporting cuttings

The �rst problem concerned the study of the transport of cuttings in drilling
muds in a vertical wellbore with a centered non-rotating drill string. Numerical
results for this problem were obtained with the Lagrangian formulation pre-
sented in this work and the PFEM. The average velocity of the particles at a
section of the annulus was measured and compared to the average �uid veloc-
ity. Non-spherical particles were considered. The drag force was computed as
explained in Section 5.1.4using the sphericity correction of Eq. 69 [55]. Results
are plotted in Fig. 43, where experimental data [40] is also shown for compari-
son. Table 1 shows the rheological properties of the �uids used for de�ning the
viscosity function (Eq. 57).
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Figure 43: Average velocity of cuttings velocity vs. �uid velocity for di�erent
�uids in a vertical annulus. Lines: Experimental data

n K (Pa sn) ρ (kg/m3)

Thick mud 0.33958 3.15275 1030

Intermediate mud 0.37826 1.7637 1030

Water 1 10−3 1030

Table 1: Rheological properties of the �uids used in Fig. 43

Fig. 44 shows results of the motion of the cuttings in a centered drill string,
rotating at 100 rpm, which causes the cuttings to move upwards faster. The �uid
is an intermediate mud with the following rheogram characteristics n = 0, 37826
and K = 1, 7637 Pa sn (Eq. 57). Results were obtained using the PFlow-Code
developed in this Thesis. The boundary conditions used were the imposed
velocity at the inlet, non-slip condition on all walls (v̄ = 0) and free surface at
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the outlet (σijnj = 0). The free surface is kept at the same location by removing
the nodes crossing the outlet.

The particles have the following characteristics: diameter (4.96 mm), spheric-
ity (0.76766), density (2000 kg/m3}). These characteristics correspond to par-
ticles with the shape of a brick with dimensions 1/8× 1/4× 1/8 inches, which
have been treated as spheres. It must be clari�ed that the experiments carried
out by Si�erman et al. [40] were done with �uids with a density of 8.6 lb/gal
(1030 kg/m3) and simulated denser �uids with lighter particles.

The DEM contact properties were chosen to just prevent particles from pene-
trating each other. For this purpose the parameters used were Kn = 3·105 N/m,
Ks = 6, 5 · 104 N/m, a Coulomb friction coe�cient of µ = 0.3 and the critical
damping parameter.

The method to obtain the drag force for non-Newtonian �uids is the one
explained in Section 5.1.4. The example in this Section is a vertical wellbore
where the slip velocity of the cuttings is close to the terminal velocity, so it is an
example well suited for the method. However, the velocity pro�le in the annulus
must be computed accurately and the distribution of the particles, a�ected by
its horizontal velocity, must also be accurate to match the experimental results.
Note that the concentration of particles in the section of the annulus is not
imposed, but every single particle is injected in a random position of the inlet,
and only after some time of ascending motion they reach a steady position in
the section. Measurements of the average velocity of the particles were taken
close to the outlet.
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Figure 44: Global view (left) and top view (right) of particles �owing at a rate
of 1500 particles/(m$^2$s) within a vertical annulus. The centered drilling pipe
rotates at 100 rpm

5.2.2 Example 2. Inclined and horizontal wellbores with cuttings

PFlow has been used for the study of the transport of cuttings in inclined and
horizontal wellbores that can lead to the formation of particle beds (Fig. 45).
The high concentration of particles does not a�ect the stability of the �uid solver
until the size of the cuttings equals the �uid mesh size. The �uid used is the
same intermediate mud as in Section 5.2.1. Results in Fig. 45 were obtained
using PF low.
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Figure 45: Global view of an inclined (above) and horizontal (below) annulus
carrying mud and cuttings at a rate of 1500 particles/(m$^2$s). The horizontal
annulus includes a centered non-rotating drilling pipe

5.2.3 Example 3. Tooljoints and elbow.

The formulation presented has been tested with more complex geometries, like
a section of the wellbore with a tool joint (Fig. 46a) and a curved wellbore with
a rotating drill string (100 rmp) (Fig. 46b). The �uid properties are the same
as in Section 5.2.2. All the computations for these problems were carried out
with PFlow.

In some of these problems, particle beds can be formed. In such conditions,
the drag forces are no longer accurate, since they are based on the assumption
that the particles are disperse. This method should therefore used carefully, as
no estimations of the error has been obtained in dense packing conditions. How-
ever, the examples shown prove the stability of the method in those situations.
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Figure 46: Simulation of drill cuttings transported in straight and curved well-
bores by mud as a result of a drilling operation. Arrows denote the velocity
vector of each particle

5.3 Fluid-Soil-Solid Interaction

This Section brings together all the technology, methods, algorithms and strate-
gies mentioned in the previous Sections of this thesis. This is done just showing
a test case that was run with all the features of the PFlow tool: the �uid solver
interacting with solids that can move freely, that can collide with each other,
that can be eroded, and the eroded parts travel a certain distance until they
settle and form new solids.

5.3.1 Examples

The test case shows the front of a �ood, which is dragging large objects (cars,
barrels) and passes through a notch in a soil dyke (Fig. 47). The erosion process
of the dyke (modeled with the technologies described in Section 4) modi�es the
shape of the boundaries. The �oating objects hit the dyke and hit with each
other. The eroded parts of the dyke get dragged as small particles (transport
modeled with the technologies described in Section 5) until they settle and form
a new, smaller dyke, which is eroded again later on.
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Figure 47: Dyke eroded by water current dragging particles with sizes ranging
from small stones to cars.

5.4 Conclusions

A FEM-DEM technique has been developed in this Thesis to solve the transport
of particles in non-Newtonian �uids which can be applied to wellbores full of
circulating �uid, typical of the drilling industry. I have proposed a procedure
for computing the drag force on the particles for non-Newtonian �uids using
predictions of the terminal velocity available from the existing literature. The
procedure has been extended to non-spherical particles, treating them as spheres
in terms of contact forces but correcting the drag force according to the shape
of the particles.

The usefulness of the numerical method proposed for studying the motion of
the drill cuttings in vertical wellbores has been validated and the applicability
and stability to other non-vertical and more complex con�gurations have been
pointed out.

The coupling procedure is actually not dependent on the method used to
solve the equations for the �uid. Therefore, it can be applied to other exist-
ing CFD methods, such as Eulerian Finite Element Method, the Finite Volume
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Method (FVM) [58], the Lattice-Bolzmann Method (LBM) [59] or the Smoothed
Particle Hydrodynamics (SPH) method [60]. This technique can also be com-
bined with the erosion estimation method explained in Section 4.

Section 5.3 is the culmination of the work by the author devoted to the
PFEM and the implementation of the PFlow-code. The examples shown involve
all the technologies developed since the beginning of author's research and they
are used simultaneously. The possibilities of such software are undoubtedly
extense, and prove the great potential of the PFEM as an approach that allows
the resolution of many engineering problems.

5.5 Published research

One of the annexed papers in the present PhD Thesis ([1]) explains with de-
tail the advances achieved in this direction and proposes a drag law for non-
Newtonian �uids and non-spherical particles. The starting point for the devel-
opments in this paper was a paper written by Shah et al. in 2007 ([39]). In this
paper, a procedure is provided to estimate accurately the terminal velocity of
particles falling in Power Law �uids. The author of the present work �rst starts
validating the predictions by the approach published by Shah et al. (see Fig.
42) and then proposes a drag law based on these reliable estimations.
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6 Other applications of PFlow

The PFlow developments have been used in many competitive or private re-
search projects along this Thesis. A brief description of them is presented in
this Section. The reader will observe that the applications of PFlow are multi-
ple and in a wide variety of �elds that have not been mentioned in the rest of
this document.

6.1 Numerical computation of an unmanned underwater
vehicle (NICOP)

In this project, funded by the O�ce of Naval Research (ONR) in the U.S., the
goal was to compute the motion of self-propelled mechanical device in large do-
mains. The need of a extremely �ne mesh around the �ns required a progressive
re�nement of the mesh. The whole domain, even with a coarse mesh far from
the vehicle. The computational cost was too expensive and only the close �eld
around the UUV was calculated (Fig. 48).

Figure 48: Unmanned underwater vehicle in large domain

Much detail was needed near the �ns, due to the sharp edges of their design.
Mesh re�nement was used next to the body of the UUV (Fig. 49) in order to
obtain engineer-useful results, like the pressure �eld or the velocity �eld (Fig.
50).
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Figure 49: Mesh re�nement (cut) around the UUV

Figure 50: Velocity �eld around the UUV

6.2 Safety assessment in breakwaters under construction
(SAYOM)

The project included numerical computation of:

• the motion of concrete blocks of a breakwater under heavy waves (Fig.
51)
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• the dynamics of concrete caissons during their transport and sinking, sta-
bilized by cables (Fig. 52)

• the e�ect of overtopping waves on trucks operating on a breakwater during
its construction (Fig. 53)

• the erosion of an experimental model of a submerged, unprotected break-
water under a set of 12 minutes of irregular waves (Fig. 54)

Figure 51: Waves hitting the breakwater under construction (protected int win-
ter)

Figure 52: Concrete caisson about to be sunk. The vectors on the corners
represent the forces exerted by the stabilizing cables
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Figure 53: E�ect of an overtopping wave on a truck operating on a breakwater

Figure 54: Calibrated computation of the erosion of a submerged, unprotected
breakwater. Experiment (top, original shape, and bottom left, after erosive
action) vs. computational results (right).

6.3 Numerical prediction of the energy dissipated by a
pendular breakwater (DILAPE )

This project consisted on estimating the e�ect of a pendular wall acting as a
breakwater (Fig. 55) with the goal of dissipating energy from the waves. The
water level at a wall behind the oscillating wall was measured and compared
with the e�ect of a locked wall. After several computations it was proven that
the net e�ect of the moving wall was negligible, as no energy is extracted from
the system just by using a free oscillating pendular wall. Many computations
were necessary to design alternatives to the initial proposal, including virtual
(coded) pistons extracting energy from the motion or inverted pendula.
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Figure 55: Pendular breakwater

6.4 Numerical estimation of the air demand in bottom
outlets of dams (VADIVAP)

The project consisted on estimating the air demand after the main valve of the
bottom outlet of a dam (Fig. 56). Computations with two �uids were carried
out with the PFlow. Part of the outcomes of this project was published in a
paper co-authored by the author of this Thesis ([41]).

Figure 56: 3D computation of the bottom outlet (left). 2D cut of the same
computation (right). Figures obtained from [41]
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6.5 Numerical computation of the transport of drill cut-
tings in well bores with non-Newtonian �uids and non-
spherical particles

The project consisted on developing a numerical method and the corresponding
software capable of modeling the hole cleaning. It is, transport the cuttings
from the bottom of the wellbore to the surface. Apart from the process followed
to reach a satisfactory formulation and a validation of the results (Section 5),
several critical situations were considered, like the tooljoints (Fig. 57) and
curved annuli (Fig. 58) with rotating drill strings.

Figure 57: Particulate �ow around a tooljoint in the drill string
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Figure 58: Particulate �ow along a curved annulus with a rotating drill string

6.6 General research on the transport of particles in �uids
(SAFECON)

This project pushed the PFlow developments to new limits, with computations
where big particles, small particles and erosion processes were taking place. Part
of the outcomes of this project are the developments explained in Section 5.3.

6.7 Analysis of failure of the 'Prat' Dock in the Barcelona
harbor. Numerical study of the liquefaction of the
hydraulic �lling.

The spontaneous liquefaction caused the failure of the whole 'Prat' Dock, mov-
ing the concrete caissons seawards over 90 m. (Fig. 59). The liquefaction was
simulated by a drastic change in the viscosity of the �uid. Many computations
were carried out under di�erent assumptions about the liquefaction initiation
point or the initial shape of the sea bottom. The computational results were
later used by experts in the �eld to determine the exact source of the dock
failure.
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Figure 59: Failure of the Prat Dock. Situation of the caissons after the failure
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7 Research works related with this thesis

The works listed in this Section contain research related to this thesis that was
done in collaboration with this author, either in the form of supervision or in
collaboration. Journal papers are excluded from this list, as they are included
in the References Section and they have already been cited several times in the
text.

Works supervised by the author in the academic context

• Güell i Pons, Maria (2007) Modelling sediment transport: short introduc-
tion and validation with PFEM. Master's Thesis at Universitat Politècnica
de Catalunya.

• Calderer Elias, Ramon (2007) Aplicació del mètode dels elements �nits i
partícules (PFEM) al problema de transport de sediment. Tesina (Bach-
elor degree thesis) at Universitat Politècnica de Catalunya.

• Sancho Marín, Eliseo (2008) Validación del PFEM en problemas de cuer-
pos sumergidos. Tesina (Bachelor degree thesis) at Universitat Politècnica
de Catalunya.

• Hospital Bravo, Raúl. (2009) Posibilidades del método de elementos �ni-
tos y partículas (PFEM) en problemas de interacción �uido-estructura
en �ujos incompresibles. Tesina (Bachelor degree thesis) at Universitat
Politècnica de Catalunya.

• Latorre Sánchez, J. Salvador (2009) Estudio del impacto del oleaje sobre
diques de bloques en puertos utilizando el método de elementos �nitos y
partículas (PFEM). Tesina (Bachelor degree thesis) at Universitat Politèc-
nica de Catalunya.

• Rodríguez Prat, Francisco (2013) Posibilidades del método de elementos
�nitos y partículas (PFEM) en problemas de erosión de suelos granulares.
Tesina (Bachelor degree thesis) at Universitat Politècnica de Catalunya.

Works where PFlow was used

• Larese De Tetto, Antonia (2006) On the application of particle �nite ele-
ment method (PFEM) to problems in civil engineering. Tesi di laurea at
Università degli Studi di Padova.
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8 Summary of research developments and con-

clusions

Section 5.3 shows examples which is almost impossible to reproduce with stan-
dard numerical tools. It involves Fluid Dynamics, Fluid-Structure-Interaction,
multi-body contact, erosion, particles transport and deposition. Even with all
these couplings, almost the totality of the CPU time is consumed by the �uid
dynamics solver. As stated in this document, the computational cost of the rest
of the tasks is almost negligible because they take advantage of all the opera-
tions the PFEM already requires (basically the re-meshing step). This is one
of the most important conclusions of the work during the author's research.
A PFEM code allows a large variety of problems coupled all-to-all with little
extra computational time versus its simplest version with just �uid dynamics.
However, a list of many other conclusions follows in the next Sections.

8.1 Fluid solution

Papers [8] and [5], among others, demonstrated the good agreement of the
solution given by the �uid solver used compared to experimental results. The
PFEM is useful as a CFD tool for the study of free surface �ows.

8.2 Fluid-multibody-interaction

As presented in the paper [4], the Lagrangian approach used for the �uid solver
allows the imposition of exact Dirichlet velocity boundary conditions at the
interface with the structure. No intersection or mapping must be computed
and no enrichment is needed for the �uid element formulation.

Paper [4](one of the annexed papers) details how to solve the contact between
rigid bodies by means of a penalty method. The detection of the contact takes
advantage of the frequent re-meshing process and a minimal cost is added to
detect the contact elements.

Both the contact between solids and the contact between the �uid and the
solid are treated in a very simple, natural way that actually works.

8.3 Erosion

The node-based formulation of the PFEM allows the transformation of a node
representing part of a rigid body into a particle that travels inside the �uid.
Details can be read in the paper [2], where a model is proposed. The PFEM is
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capable of modeling the erosion processes, the transport of the eroded material
and the subsequent deposition. The obtained results can be accepted as quali-
tatively good, while the accuracy strongly depends on the calibration stage (see
Section 9.3 for more details).

8.4 Particles transport

As a result of the erosion, or coming from other sources, particles are suspended
and transported by the �uid. A paper was published on this topic [1] for non-
Newtonian �uids and non-spherical particles. Thus, it is possible to carry out
computations of particles dragged by non-Newtonian �uids in certain ranges,
like the solution proposed in Section 5, which is limited to mud-type �uids.
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9 Future lines of research

Many years of work spent in the development of PFlow (and PFEM in general)
has brought a very powerful tool for computing engineering problems related
to �uids, moving bodies and particles, but they have also evidenced several is-
sues and lacks that are listed in this Section. It could be a source of upcoming
research in the PFEM world and they can also be understood as a recommen-
dation of future developments by the author.

9.1 Fluid solution

Even though the results were very satisfactory in general, the conservation of
volume proved to be extremely dependent from the time step. Bigger time
steps allowed fast computations, but much �uid volume was lost. Alternative
formulations can be developed in order to reduce the volume losses, as done in
[33] and [13].

The PFlow code, based on the PFEM, has demonstrated to be an extremely
versatile method and an accurate tool for those problems involving free surface
�ows and �uid-structure-interaction. The main concepts of

• Using a Lagrangian approach

• Re-meshing to avoid element distortion

• Alpha-shape method to detect the free surface

are enough to enable the solution of many problems that would be unapproach-
able (or hard to solve) by other means. However, the PFEM presents some
issues that should be considered:

• In PFlow, the Delaunay Triangulation is a bottleneck due to the paral-
lelization restrictions. Some authors claim to have developed parallel com-
puting techniques for this algorithm for shared memory ([19, 20]). This
is something to be studied and tested. Some other authors even claim to
have developed it for hybrid (shared/distributed memory) parallelism in
[42], which would be an interesting jump forward to be done in PFlow as
well.

• The re-meshing process, even if it only consists on a diagonal swapping,
does not conserve momentum or incompressibility. This can generate local
problems in those parts of the domain where large strains occur and small
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time steps are used. Large strains provoke frequent diagonal swapping,
and when the equations try to enforce incompressibility in small time
steps, some peaks of negative or positive pressure can appear at the nodes
nearby. Despite the time dedicated to solve this issue, no satisfactory
solution has been found by the author.

• The re-meshing process and the Alpha-Shape Method change the total
volume of �uid between time steps. However, it is possible to tune the
re-meshing input parameters in such a way that no losses or gains are accu-
mulated in time. It is not an exact calibration, and a certain dependency
remains, which is dependent on the speci�c case run.

• Mass conservation is typically a problem of the CFD solvers, and the for-
mulations used in the PFEM are not an exception. Other researchers have
been investigating additional formulations with better properties in terms
of mass conservation. Examples of these publications are [33] and [13].
Considering that the mass losses are highly dependent on the time step,
it is an open issue if these formulations are better in terms of computa-
tional cost: a cheap, less accurate scheme could use a smaller time step to
achieve the same accuracy as an expensive, very accurate scheme.

9.2 Fluid-multibody-interaction

There are several issues that were detected in the �uid-multibody Interaction:

• Every time a �uid sub domain gets isolated from the rest of the �uid due
to multiple contacts between solids (this happens commonly in 2D and
much less in 3D) the pressure is not calculated properly in that isolated
sub domain. This is because a Dirichlet pressure condition is needed as
a pressure reference. When a sub domain has no communication with
the free surface or with some point with a known imposed pressure, even
though the pressure gradient is calculated correctly, the actual pressure
values yielded by the solver can be very far from the values in nearby
points. This makes the �uid-structure interaction completely unstable
in these cases, as a consequence of the incompressibility hypothesis. A
compressible formulation, or a slightly compressible formulation, would
probably be a solution, but is something that has should be investigated
in the PFEM.

• The contact elements between two solids that are submerged present an-
other problem: the �uid cannot be calculated correctly inside them be-
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cause there are no free degrees of freedom (the motion of all nodes is
imposed by the kinematics of both solids and all nodes have a Dirich-
let velocity condition). This means that the submerged solids that get
in contact and form a layer of contact elements are not surrounded by
a correct �eld of pressure. Therefore they get usually stuck and never
separate from each other again unless strong forces move them apart. In
order to overcome this problem, several possibilities are under study, such
as slip velocity conditions in the contact elements or computing a smooth
propagation of the pressure (Laplacian) inside the contact elements. An
experimental version of the latter approach has been used successfully in
PFlow recently.

• The algorithm for the contact between bodies published by the author in
[4] was further developed by Carbonell in his PhD Thesis ([27]). Among
other improvements, the visible gap between solids was reduced to a much
smaller distance.

The layer of contact elements represents a visible error of the size of the element.
This was addressed already in the paper [11], that was published after the
publication included in this work ([4]).

9.3 Erosion

There are several issues that were detected in the modeling of erosion with
PFlow :

• The solid was considered a rigid body always. However, it is well known
that some erosion processes trigger landslides. For that, the solid should
be computed as elastic-plastic, so that shear bands could be captured.

• The conditions established for detaching or re-attaching nodes can repro-
duce accurately many erosion and sedimentation processes if a previous
calibration process is carried out. So far it has not been possible to get
accurate results without calibration, using just parameters of the �uid or
the soil (or erodible solid in general) but it would represent a big step
forward if achieved.

• The second Condition for Re-attachment of eroded material is an energetic
criterion based on the shear stress [44]. It can be noted that the element
size hk appears in Equation 24. However, this equation gives an accurate
estimation of the work only if the mesh is �ne enough to capture the actual
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shear stresses occurring close to the walls (Dirichlet velocity condition).
When the mesh is not �ne enough, similar jumps in the velocity �eld can
appear for di�erent layers with one element in thickness, regardless of the
element size. This means that the solution is strongly mesh dependent.

9.4 Particles transport

The node-based particles transport limits the CPU consumption, but can lose
much detail about the behavior of the particles. An embedded approach should
be developed where the particles are no longer nodes of the mesh, but they are
moving freely over the �uid mesh. This would allow accumulations of particles
in each element, and possibly increasing the computational cost a lot.

• The formulation detailed in the annexed paper [1] assumes that the par-
ticles are nodes of the �uid mesh. Even though their motion responds
only to the dynamics of the particle, the location of the particle is used
for computing the �uid as well. This means that particles cannot get as
close as they should, or the �uid mesh could end up very distorted. Then,
the contact between particles occurs at a distance which is bigger than it
should, in the same fashion as in the coarse graining methods (sometimes
called upscaling). Therefore, all the possible drawbacks of these methods
are possible drawbacks of PFlow, too. In order to solve this issue (if it was
so for speci�c cases), the particles could be independent from the �uid
mesh, embedded in the elements and not sharing the position with the
�uid mesh nodes. If this approach was used, the same interaction forces
described in this Thesis (Section 5) could be used.

• Apart from the hydrodynamic interactions considered in [1], other forces
and moment can be added to the �uid-particle interaction, such as the
Magnus lift and the Hydrodynamic torque and the Basset forces.

• The density of particles can a�ect the �uid equations themselves, and they
should be modi�ed when beds are formed and the �ow is more similar to
a �ow in porous medium rather than a free �ow.

• The drag forces also change for high density of particles.

• The shape of the particles can be considered in order to change the drag
force, not only as a sphericity factor but as a term that depends on the
orientation of the particle with respect to the �uid velocity.
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Paper 1

This paper, published in 2006, explains with detail the approach explained in
Section 4. The PFlow code was used for all the computations.
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Abstract. We present a general formulation for modeling bed erosion in free surface
flows using the particle finite element method (PFEM). The key feature of the
PFEM is the use of an updated Lagrangian description to model the motion of
nodes (particles) in domains containing fluid and solid subdomains. Nodes are
viewed as material points (called particles) which can freely move and even separate
from the fluid and solid subdomains representing, for instance, the effect of water
drops or soil/rock particles. A mesh connects the nodes defining the discretized
domain in the fluid and solid regions where the governing equations, expressed in
an integral form, are solved as in the standard FEM. The necessary stabilization for
dealing with the incompressibility of the fluid is introduced via the finite calculus
(FIC) method. An incremental iterative scheme for the solution of the non linear
transient coupled fluid-structure problem is described. The erosion mechanism is
modeled by releasing the material adjacent to the bed surfarce accordingly to the
frictional work generated by the fluid shear stresses. The released bed material is
subsequently transported by the fluid flow. Examples of application of the PFEM
to solve a number of bed erosion problems involving large motions of the free surface
and splashing of waves are presented.

Key words: bed erosion, free surface flows, particle finite element method

1 INTRODUCTION

The calculation of bed erosion and sediment transport in open channel flows are
extremely important tasks in many areas of river and environmental engineering and
related areas. For example, bed erosion can lead to instabilities of the river basin
slopes. It can also undermine the foundation of bridge piles thereby favouring struc-
tural failure. Modeling of bed erosion is also relevant for predicting the evolution of
surface material dragged in earth dams in overspill situations. Bed erosion is one of
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the main causes of environmental damage in floods.

Prediction of erosion of soil/rock particles in bed surfaces due to water streams is
very difficult due to the complexity of accurately predicting the tangential stresses
at the fluid-bed interface which are mainly responsible for the detachment of bed
particles. The definition of the erosion onset conditions for different bed geomate-
rials is also an important and difficult task. The modeling of sediment transport
phenomena is also very complex.

The erosion and transport of sediment particles in environmental flows can be
analyzed by solving the Navier-Stokes equations for the water flow, either in the
fully 3D version, or via a simpler 2D depth average model in combination with
an assumed vertical velocity profile (typically of logarithmic type). The flow field
variables computed at each time step, or at every iteration within a time step in a
strongly coupled scheme, are used as input data for solving the sediment transport
equations and other relevant information such as the suspended load concentration,
the bed load transport rate and the bed deformation. Numerical solutions for these
type of problems have been reported using mainly finite difference and finite volume
schemes in Eulerian and arbitrary Lagrangian-Eulerian (ALE) grids for solving both
the fluid flow and the sediment transport equations [van Rijn (1984,85); Struiksma
et al. (1985); Phillips and Sutherland (1989); Rahuel et al. (1989); Kovacs and
Parker (1994); Darby and Thorne (1996); Wu et al. (1997); Fell et al. (2003); Wan
and Fell (2004); Parker et al. (2005)].

In addition to the intrinsic complexities of the multiphysics flow-erosion-transport
problem, the numerical solution of the equations for the fluid-structure interaction
(FSI) problem in free surface flows is faced with the treatment of the convective
terms and the incompressibility constraint in the fluid equations, the modeling of
the free surface accounting for wave splashing, the transfer of information between
the fluid and solid domains via the contact interfaces and the tracking of solid
elements within the fluid domain. Indeed most of these problems are extremely
difficult to model using the Eulerian and ALE formulations.

An alternative approach which simplifies many of above difficulties is to use a
Lagrangian description to formulate the governing equations of both the solid and
the fluid domains. In the Lagrangian formulation the motion of the individual
particles are followed and, consequently, nodes in a finite element mesh can be
viewed as moving material points (hereforth called “particles”). Hence, the motion
of the mesh discretizing the total domain (including both the fluid and solid regions)
is followed during the transient solution.

In this paper we present a particular class of Lagrangian formulation developed
by the authors to solve bed erosion problems in free surface flows. The method is
an extension of the so-called particle finite element method (PFEM). The PFEM
treats the mesh nodes in the fluid and solid domains as particles which can freely
move and even separate from each domain representing, for instance, the effect of
water drops or solid particles. A finite element mesh connects the nodes defining the
discretized domain where the governing equations are solved in the standard FEM
fashion. The particular application of the PFEM to model bed erosion problems
here described is the natural evolution of recent work of the authors for the solution
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of FSI problems using Lagrangian finite element and meshless methods [Oñate et
al. (2003; 2004a,b); Idelsohn et al. (2003a; 2003b; 2004); Aubry et al. (2005)].

An obvious advantage of the Lagrangian formulation is that the convective terms
disappear from the fluid equations. The difficulty is however transferred to the prob-
lem of adequately (and efficiently) moving the mesh nodes. Indeed in the PFEM
approach remeshing is a frequent necessity along the time solution. We use an
innovative mesh regeneration procedure blending elements of different shapes us-
ing an extended Delaunay tesselation with adequate C◦ continuous shape functions
[Idelsohn et al. (2003a; 2003c)].

The need to properly treat the incompressibility condition in the fluid still remains
in the Lagrangian formulation. The use of standard finite element interpolations may
lead to a volumetric locking defect unless some precautions are taken [Donea and
Huerta (2003), Zienkiewicz et al. (2006)]. In our work volumetric locking is avoided
via a finite calculus (FIC) procedure [Oñate (2004)].

The layout of the paper is the following. In the next section the basic ideas of the
PFEM are outlined. Next the basic equation for an incompressible flow using a La-
grangian description and the FIC formulation are presented. Then a fractional step
scheme for the transient solution via standard finite element procedures is described.
Details of the treatment of the coupled FSI problem are given. The procedures for
mesh generation, for identification of the free surface nodes, for treating frictional
contact situations and for modeling bed erosion are described. Finally, the effi-
ciency of the PFEM is shown in its application to a number of bed erosion problems
involving surface waves.

2 THE BASIS OF THE PARTICLE FINITE ELEMENT METHOD

Let us consider a continuum domain containing both fluid and solid subdomains.
The fluid particles interact with the solid boundaries thereby inducing the deforma-
tion of the solid which in turn affects the flow motion and, therefore, the problem
is fully coupled.

In the PFEM approach, both the fluid and the solid domains are modeled using
an updated Lagrangian formulation. That is, all variables in the fluid and solid
domains are assumed to be known in the current configuration at time t. The new
set of variables in both domains are sought for in the next or updated configuration
at time t + ∆t (Figure 1). The finite element method (FEM) is used to solve the
continuum equations in both domains. Hence a mesh discretizing these domains
is generated in order to solve the governing equations for both the fluid and solid
problems in the standard FEM fashion. We note again that the nodes discretizing
the fluid and solid domains are viewed as material particles whose motion is tracked
during the transient solution. This is useful to model the separation of fluid particles
from the main fluid domain, or solid particles from the bed surface, and to follow
their subsequent motion as individual particles with a known density, an initial
acceleration and velocity and subject to gravity forces.

It is important to recall that each particle is treated as a material point charac-
terized by the density of the solid or fluid domain to which it belongs. The mass
of a given domain is obtained by integrating the density at the different material
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points over the domain.
The quality of the numerical solution depends on the discretization chosen as in

the standard FEM. Adaptive mesh refinement techniques can be used to improve
the solution in zones where large gradients of the fluid or the structure variables
occur.

2.1 Basic steps of the PFEM

For clarity purposes we will define the collection or cloud of nodes (C) pertaining
to either the fluid and the solid for bed erosion problems subdomains, the volume
(V) defining the analysis domain for the fluid and the solid, and the mesh (M)
discretizing both domains.

A typical solution with the PFEM involves the following steps.

1. The starting point at each time step is the cloud of points in the fluid and
solid subdomains. For instance nC denotes the cloud at time t = tn (Figure
2).

2. Identify the boundaries for both the fluid and solid domains defining the anal-
ysis domain nV in the fluid and the solid. This is an essential step as some
boundaries, such as the free surface in fluids or the bed surface, may be severely
distorted during the solution process including separation and re-entering of
nodes. The Alpha Shape method [Edelsbrunner and Mucke (1999)] is used for
the boundary definition (Section 7).

3. Discretize the fluid and solid subdomains with a finite element mesh nM . In
our work we use an innovative mesh generation scheme based on the extended
Delaunay tesselation (Section 6) [Idelsohn et al. (2003a; 2003b; 2004)].

4. Solve the coupled Lagrangian equations of motion for the fluid and the solid
domains. Compute the relevant state variables in both domains at the next
(updated) configuration for t+∆t: velocities, pressure and viscous stresses in
the fluid and displacements, stresses and strains in the solid. An overview of
the coupled FSI algorithm is given in the next section.

5. Compute the frictional work (Wf) performed by the tangential stresses at the
bed surface. Bed erosion initiates if Wf exceeds a critical value Wc. Bed
surface points where Wf > Wc are released from the bed domain and are
subsequently transported by the fluid velocity.

6. Move the mesh nodes to a new position n+1C where n + 1 denotes the time
tn+∆t, in terms of the time increment size. This step is typically a consequence
of the solution process of step 4. Recall that a node identifies a material point
in either the fluid or solid subdomains.

7. Go back to step 1 and repeat the solution process for the next time step.
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Figure 2: Sequence of steps to update a “cloud” of nodes from time n (t = tn) to time n + 1
(t = tn +∆t)

2.2 Overview of the coupled FSI algoritm

Figure 3 shows a typical domain V with external boundaries ΓV and Γt where
the velocity and the surface tractions are prescribed, respectively. The domain V
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is formed by fluid (VF ) and solid (VS) subdomains. Both subdomains interact at
a common boundary ΓFS where the surface tractions and the kinematic variables
(displacements, velocities and acelerations) are the same for both subdomains. Note
that both sets of variables (the surface tractions and the kinematic variables) are
equivalent in the equilibrium configuration.
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FLUID
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t t
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boundary Traction prescribed

boundary
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the fluid domain

Prescribed tractions t at ΓSF in the 
solid domain

Note:         and          are  equivalentt
FS

v
FS

Γ
FS
=  Γ

SF

Γ
FS

Γ
SF

Figure 3: Split of the analysis domain V into fluid and solid subdomains. Equivalence of surface
tractions and kinematic variables at the common interface

Note that the flow in an open channel is a particular case of above situations
where the solid domain constitutes the bed region whose surface is eroded by the
interaction with the fluid particles in motion.

Let us define tS and tF as the set of variables defining the kinematics and the
stress-strain fields in the solid and fluid domains at time t, respectively, i.e.

tS := [txs,
tus,

tvs,
tas,

tεεεεεεεεεεεεεεs,
tσσσσσσσσσσσσσσs, · · · ]T (1)

tF := [txF ,
tuF ,

tvF ,
taF ,

tε̇εεεεεεεεεεεεεF ,
tσσσσσσσσσσσσσσF , · · · ]T (2)

where x is the nodal coordinate vector, u, v and a are the vector of displacements,
velocities and accelerations, respectively, εεεεεεεεεεεεεε, ε̇εεεεεεεεεεεεε and σσσσσσσσσσσσσσ are the strain vector, the strain-
rate (or rate of deformation) vectors and the Cauchy stress vector, respectively and
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F and S denote the variables in the fluid and solid domains, respectively. In the
discretized problem, a bar over these variables will denote nodal values.

The coupled FSI problem of Figure 3 is solved using the following conceptual
scheme:

0. We assume that the variables in the solid and fluid domains at time t (tS and
tF ) are known.

1. Solve for the variables at the solid domain at time t +∆t (t+∆tS) under pre-
scribed surface tractions at the fluid-solid boundary ΓFS.

2. Solve for the variables at the fluid domain at time t+∆t (t+∆tF ) under pre-
scribed surface tractions at the external boundary Γt and prescribed velocities
at the external and internal boundaries ΓV and ΓFS, respectively.

Iterate between 1 and 2 until convergence.

The variables at the solid domain t+∆tS are found via the integration of the
dynamic equations of motion in the solid region written as

Msas + gs − fs = 0 (3)

where Ms, gs and fs denote the mass matrix, the internal node force vector and the
external nodal force vector in the solid domain. The time integration of Eq.(3) is
performed using a standard Newmark method. An incremental iterative scheme is
implemented within each time step to account for nonlinear geometrical and material
effects [Zienkiewicz and Taylor (2005)].

The FEM solution of the variables in the (incompressible) fluid domain implies
solving the momentum and incompressibility equations. In our work we use a sta-
bilized FEM based on the Finite Calculus approach which allows to use a linear
approximation for the velocity and pressure variables [Oñate (1998,2004)]. Details
of the FEM/FIC formulation used are given in the next section.

Figure 4 shows a typical example of a PFEM solution in 2D. The pictures cor-
respond to the analysis of the problem of breakage of a water column [Oñate et al.
(2004); Idelsohn et al. (2004)]. Figure 4a shows the initial grid of four node rect-
angles discretizing the fluid domain and the solid walls. Boundary nodes identified
with the Alpha-Shape method have been marked with a circle. Figures 4b and 4c
show the mesh for the solution at two later times.

3 FIC/FEM FORMULATION FOR A LAGRANGIAN INCOMPRESS-
IBLE FLUID

The standard infinitesimal equations for a viscous incompressible fluid can be
written in a Lagrangian frame as [Oñate (1998); Zienkiewicz et al. (2006)].

Momentum

rmi
= 0 in VF (4)
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(a) (b)

(c)

Figure 4: Breakage of a water column. (a) Discretization of the fluid domain and the solid walls.
Boundary nodes are marked with circles. (b) and (c) Mesh in the fluid and solid domains at two
different times.

Mass balance
rd = 0 in VF (5)

where

rmi
= ρ

∂vi
∂t
− ∂σij

∂xj
− bi , σji = σij (6)

rd =
∂vi
∂xi

i, j = 1, nd (7)

Above nd is the number of space dimensions, vi is the velocity along the ith global
axis (vi = ∂ui/∂t, where ui is the ith displacement), ρ is the (constant) density of
the fluid, bi are the body forces, σij are the total stresses given by σij = sij − δijp,
p is the absolute pressure (defined positive in compression) and sij are the viscous
deviatoric stresses related to the viscosity µ by the standard expression

sij = 2µ

(
ε̇ij − δij

1

3

∂vk
∂xk

)
(8)

where δij is the Kronecker delta and the strain rates ε̇ij are

ε̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(9)

In the above all variables are defined at the current time t (current configura-
tion). The standard summation convention for repeated indexes is assumed unless
otherwise specified.
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In our work we will solve a modified set of governing equations derived using a
finite calculus (FIC) formulation. The FIC governing equations are [Oñate (1998;
2000; 2004); Oñate and Garćıa (2001)].

Momentum

rmi
− 1

2
hj

∂rmi

∂xj
= 0 in VF (10)

Mass balance

rd −
1

2
hj

∂rd
∂xj

= 0 in VF (11)

The problem definition is completed with the following boundary conditions

njσij − ti +
1

2
hjnjrmi

= 0 on Γt (12)

vj − vpj = 0 on Γv (13)

and the initial condition is vj = v0j for t = t0.
In Eqs.(12) and (13), ti and vpj are surface tractions and prescribed velocities on

the boundaries Γt and Γv, respectively, nj are the components of the unit normal
vector to the boundary.

The h′
is in above equations are characteristic lengths of the domain where balance

of momentum and mass is enforced. In Eq.(12) these lengths define the domain
where equilibrium of boundary tractions is established. In our work we have taken
hi to be constant at each element and equal to a typical element dimension he

computed as he = [V e]m where V e is the element volume and m = 1/2 for 2D
problems and m = 1/3 for 3D problems. Details of the derivation of Eqs.(10)–(13)
can be found in Oñate (1998,2000,2004).

Eqs.(10)–(13) are the starting points for deriving stabilized finite element meth-
ods to solve the incompressible Navier-Stokes equations in a Lagrangian frame of
reference using equal order interpolation for the velocity and pressure variables [Idel-
sohn et al. (2002; 2003a; 2003b; 2004); Oñate et al. (2003); Aubry et al. (2005)].
Application of the FIC formulation to finite element and meshless analysis of fluid
flow problems can be found in [Garćıa and Oñate (2003); Oñate (2000; 2004); Oñate
et al. (2000; 2004a); Oñate and Garćıa (2001); Oñate and Idelsohn (1988)].

3.1 Transformation of the mass balance equation. Integral governing
equations

The underlined term in Eq.(11) can be expressed in terms of the momentum
equations. The new expression for the mass balance equation is [Oñate (2000);
Oñate et al. (2004b)]

rd −
nd∑

i=1

τi
∂rmi

∂xi
= 0 with τi =

3h2
i

8µ
(14)

9



At this stage it is no longer necessary to retain the stabilization terms in the mo-
mentum equations. These terms are critical in Eulerian formulations to stabilize the
numerical solution for high values of the convective terms. In the Lagrangian formu-
lation the convective terms dissappear from the momentum equations and the FIC
terms in these equations are just useful to derive the form of the mass balance equa-
tion given by Eq.(14) and can be disregarded there onwards. Consistently, the sta-
bilization terms are also neglected in the Neumann boundary conditions (Eq.(12)).

The weighted residual expression of the final form of the momentum and mass
balance equations can be written as

∫

VF

δvirmi
dV +

∫

Γt

δvi(njσij − ti)dΓ = 0 (15)

∫

VF

q

[
rd −

nd∑

i=1

τi
∂rmi

∂xi

]
dV = 0 (16)

where δvi and q are arbitrary weighting functions equivalent to virtual velocity and
virtual pressure fields.

The computation of the residual terms in Eq.(16) is simplified if we introduce the
pressure gradient projections πi, defined as

πi = rmi
− ∂p

∂xi
(17)

We express now rmi
in Eq.(16) in terms of the πi which then become additional

variables. The system of integral equations is therefore augmented in the necessary
number of equations by imposing that the residual rmi

vanishes within the analysis
domain (in an average sense). We proceed next to integrate by parts the rmi

term
in Eq.(16) and the deviatoric stresses and the pressure terms within rmi

in Eq.(15).
The final system of governing equation is

∫

VF

[
δviρ

∂vi
∂t

+ δε̇ij(sij − δijp)

]
dV −

∫

VF

δvibidV −
∫

Γt

δvitidΓ = 0 (18)

∫

VF

q
∂vi
∂xi

dV +

∫

VF

nd∑

i=1

τi
∂q

∂xi

(
∂p

∂xi
+ πi

)
dV = 0 (19)

∫

VF

δπiτi

(
∂p

∂xi

+ πi

)
dV = 0 no sum in i (20)

with i, j, k = 1, nd. In Eq.(18) δε̇ij are virtual strain rates. In Eqs.(20) δπi are
appropriate weighting functions and the τi weights are introduced for symmetry
reasons. Note that the boundary term resulting from the integration by parts of rmi

in Eq.(16) has been neglected as the influence of this term in the numerical solution
has been found to be negligible.
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3.2 Finite element discretization

We choose equal order C◦ continuous interpolations of the velocities, the pressure
and the pressure gradient projections πi over each element with n nodes. The
interpolations are written as

vi =

n∑

j=1

Nj v̄
j
i , p =

n∑

j=1

Nj p̄
j , πi =

n∑

j=1

Nj π̄
j
i (21)

where (̄·)j denotes nodal variables and Nj are the shape functions [Zienkiewicz et
al. (2006)].

Substituting the approximations (21) into Eqs.(19–20) and choosing a Galerkin
form with δvi = q = δπi = Ni leads to the following system of discretized equations

M ˙̄v +Kv̄ −Gp̄− f = 0 (22a)

GT v̄ + Lp̄+Qπ̄πππππππππππππ = 0 (22b)

QT p̄+ M̂π̄πππππππππππππ = 0 (22c)

The matrices and vectors in Eqs.(22) are assembled from the element contribu-
tions given by (for 2D problems)

Mij =

∫

V e
F

ρNiNjdV , Kij =

∫

V e
F

BT
i DBjdV

D = µ



2 0 0
0 2 0
0 0 1


 , Bi =




∂Ni

∂x1
0

0
∂Ni

∂x2
∂Ni

∂x2

∂Ni

∂x1




Lij =

∫

V e
F

τk
∂Ni

∂xk

∂Nj

∂xk
dV , Q = [Q1,Q2] , Qk

ij =

∫

V e
F

τk
∂Ni

∂xk
NjdV

M̂ =

[
M̂1 0

0 M̂2

]
, M̂k

ij =

∫

V e
F

τkNiNjdV , Gij =

∫

V e
F

BT
i mNjdV

fi =

∫

V e
F

NibdV +

∫

Γe
t

NitdΓ , b = [b1, b2]
T , t = [t1, t2]

T (23)

with i, j = 1, n and k, l = 1, 2.

In above B is the strain rate matrix [Zienkiewicz et al. (2006)], V e
F and Γe

t are
the volume and the Neumann boundary of the element and m = [1, 1, 0]T for 2D
problems.
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3.3 Fractional step algorithm for the fluid variables

The starting point of the iterative algorithm are the variables at time n in the
fluid domain (nF ). The sought variables are the variables at time n+1 (n+1F ). For
the sake of clarity we will skip the upper left index n+ 1 for all variables, i.e.

n+1x̄ ≡ x̄ ; n+1p̄ ≡ p̄ ; n+1π̄πππππππππππππ ≡ π̄πππππππππππππ ; n+1x̄ ≡ x̄ ; etc. (24)

A simple iterative algorithm is obtained by splitting the pressure from the mo-
mentum equations as follows

v̄∗ = nv̄ −∆tM−1[Kv̄j −Gnp− f ] (25)

v̄j+1 = v̄∗ +∆tM−1Gδp̄ (26)

where δp̄ denotes a pressure increment. In above equations and in the following the
left upper index n refers to values in the current configuration nVF whereas the right
index j denotes the iteration number within each time step.

The value of v̄j+1 from Eq.(26) is substituted now into Eq.(22b) to give

GT v̄∗ +∆tSδp̄+ Lp̄j+1 +Qπ̄πππππππππππππj = 0 (27a)

where
S = GTM−1G (27b)

Typically matrix S is computed using a diagonal matrix M = Md, where the
subscript d denotes hereonward a diagonal matrix. Diagonalization can be performed
by a lumping technique.

An alternative is to approximate matrix S by a Laplacian matrix. This reduces
considerably the bandwith of S. The disadvantage is that the pressure increment
must be prescribed on the free surface and this reduces the accuracy in the satisfac-
tion of the incompressibility condition in these regions.

A semi-implicit algorithm can be derived as follows. For each iteration:

Step 1 Compute v∗ from Eq.(25) with M = Md. For the first iteration
(v̄1, p̄1, π̄πππππππππππππ1, x̄1) ≡ (nv̄, np̄, nπ̄πππππππππππππ, nx̄)

Step 2 Compute δp̄ and p̄j+1 from Eq.(27a) as

δp̄ = −(L+∆tS)−1[GT v̄∗ +Qπ̄πππππππππππππj + Lp̄j ] (28a)

The pressure p̄j+1 is computed as follows

p̄j+1 = p̄j + δp̄j (28b)

Step 3 Compute v̄j+1 from Eq.(26) with M = Md

Step 4 Compute π̄πππππππππππππj+1 from Eq.(22c) as

π̄πππππππππππππj+1 = −M̂−1
d QT p̄j+1 (29)

12



Step 5 Update the coordinates of the mesh nodes. From the definition of the
velocity vi = ∂ui/∂t it is deduced.

xj+1
i = nxi + v̄j+1

i ∆t (30)

Step 6 Check the convergence of the velocity and pressure fields. If convergence is
achieved move to the next time step, otherwise return to step 1 for the next iteration
with j ← j + 1.

Note that solution of steps 1, 3 and 4 does not require the solution of a system
of equations as a diagonal form is chosen for M and M̂.

In the examples presented in the paper the time increment size has been chosen
as

∆t = min(∆ti) with ∆ti =
hmin
i

|v| (31)

where hmin
i is the distance between node i and the closest node in the mesh.

Although not explicitely mentioned all matrices and vectors in Eqs.(27)–(31) are
computed at the updated configuration n+1VF . This means that the integration do-
main changes for each iteration and, hence, all the terms involving space derivatives
must be updated at each iteration. An alternative is to refer the integrations domain
at each time step to the current configuration nVF . The jacobian matrix is needed
in this case to transform the space derivatives and the differencial of volume from
n+1VF to nVF at each iteration.

The boundary conditions are applied as follows. No condition is applied for the
computation of the fractional velocities v̄∗ in Eq.(25). The prescribed velocities at
the boundary are applied when solving for v̄j+1 in step 3.

4 STAGGERED SCHEME FOR THE FSI PROBLEM

The solution for the variables in the solid and fluid domains at the updated
configuration n+1F, n+1S is found using the staggered scheme shown in Box 1.

Indeed a “weak” version of the staggered scheme can be implemented simply by
eliminating the loop over the staggered solution in Box 1. The strong staggered
scheme shown in Box 1 is recommended for problems with a large number of solid
bodies interacting with the fluid particles. For the bed erosion problems presented
in this paper we have used the weak staggered scheme.

5 TREATMENT OF CONTACT BETWEEN THE FLUID AND A
FIXED BOUNDARY

The motion of the solid is governed by the action of the fluid flow forces induced
by the pressure and the viscous stresses acting at the fixed boundary, as mentioned
above.

The condition of prescribed velocities at the fixed boundaries in the PFEM are
applied in strong form to the boundary nodes. These nodes might belong to fixed ex-
ternal boundaries or to moving boundaries linked to the interacting solids. Contact
between the fluid particles and the fixed boundaries is accounted for by the incom-
pressibility condition which naturally prevents the penetration of the fluid nodes into

13



Box 1. Staggered scheme for the FSI problem

the solid boundaries (Figure 5). This simple way to treat the fluid-wall contact is
another distinct and attractive feature of the PFEM formulation.

6 GENERATION OF A NEW MESH

One of the key points for the success of the PFEM formulation is the fast re-
generation of a mesh at every time step on the basis of the position of the nodes
in the space domain. In our work the mesh is regenerated at each time step using
the so called extended Delaunay tesselation (EDT) [Idelsohn et al. (2003a; 2003c;
2004)]. The EDT generates non-standard meshes combining elements of arbitrary
polyhedrical shapes (triangles, quadrilaterals and other polygons in 2D and tetra-
hedra, hexahedra and arbitrary polyhedra in 3D) in a computing time of order n,
where n is the total number of nodes in the mesh (Figure 6). The C◦ continuous
shape functions of each element are obtained using the so-called meshless finite el-
ement interpolation (MFEM). Details of the mesh generation procedure and the
derivation of the MFEM shape functions can be found in [Idelsohn et al. (2003a;
2003c; 2004)].
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Figure 5: Automatic treatment of contact condition at the fluid-wall interface

7 IDENTIFICATION OF BOUNDARY SURFACES

One of the main tasks in the PFEM is the correct definition of the boundary do-
main. Sometimes, boundary nodes are explicitly identified differently from internal
nodes. In other cases, the total set of nodes is the only information available and
the algorithm must recognize the boundary nodes.

The extended Delaunay partition makes it easier to recognize boundary nodes.
Considering that the nodes follow a variable h(x) distribution, where h(x) is typically
the minimum distance between two nodes, the following criterion has been used. All

15



Figure 6: Generation of non standard meshes combining different polygons (in 2D) and polyhedra
(in 3D) using the extended Delaunay technique.

nodes on an empty sphere with a radius greater than αh, are considered as boundary
nodes. In practice α is a parameter close to, but greater than one. This criterion is
coincident with the Alpha Shape concept [Edelsbrunner and Mucke (1999)]. Figure
7 shows an example of the boundary recognition using the Alpha Shape technique.

Once a decision has been made concerning which nodes are on the boundaries,
the boundary surface and its normal are defined by all the polyhedral surfaces (or
polygons in 2D) having all their nodes on the boundary and belonging to just one
polyhedron.

The boundary definition allows us to compute the volume of each of the fluid
and solid subdomains which is also an important task. In the criterion proposed
above, the error in the boundary surface definition is proportional to h which is an
acceptable error.

The method described also allows one to identify isolated fluid particles outside
the main fluid domain. These particles are treated as part of the external boundary
where the pressure is fixed to the atmospheric value (Figure 7). We recall that each
particle is a material point characterized by the density of the solid or fluid domain
to which it belongs. Mass is lost in the analysis domain when a boundary element
is eliminated due to departure of a node (a particle) from the domain. This mass is
however regained when the “flying” node falls down and a new boundary element
is created by the Alpha Shape algorithm when the falling node is at a distance less
than αh from the boundary. This concept is essential for modeling the splashing
of surface waves and bed erosion as described in Section 8. An example of wave
splashing is presented in Figure 8 where the motion of a fluid within an oscillating
container is shown.

7.1 Contact between solid-solid interfaces

The contact between two solid interfaces can be modeled by introducing a layer
of contact elements between the two interacting solid interfaces. This layer is au-
tomatically created during the mesh generation by prescribing a minimum distance
between two solid boundaries. If the distance exceeds the minimum value, then the
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Figure 7: Identification of individual particles (or a group of particles) starting from a given
collection of nodes.

Figure 8: Motion of a liquid within an oscillating container. Position of the liquid particles at two
different times. Arrows represent the velocity vector.

generated elements are treated as fluid (or air) elements. Otherwise the elements are
treated as contact elements where a relationship between the tangential and normal
forces and the corresponding displacement is introduced so as to model elastic and
frictional contact in the normal and tangential directions, respectively (Figure 9).

This algorithm has proven to be very effective and it allows to identify and model
complex frictional contact conditions between two or more interacting solids in an
extremely simple manner. The accuracy on this contact model depends on the
critical distance above mentioned.

Figure 10 shows an example of the contact algorithm in the analysis of the drag-
ging of a cubic object by a water stream. The contact algorithm described above
models accurately the frictional contact effects between the moving cube and the
fixed bottom. Other examples of this kind can be found in Oñate et al. (2006).

8 MODELING OF BED EROSION

Bed erosion models are traditionally based on a relationship between the rate of
erosion and the shear stress level [Kovacs and Parker (1994); Wan and Fell (2004)].
The effect of water velocity on soil erosion was studied in Parker et al. (1995). In
our work we propose a simple erosion model based on the frictional work at the bed
surface originated by the shear stresses in the fluid. The resulting erosion model
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Figure 9: Contact conditions at a solid-solid interface

Figure 10: Dragging of a cubic object by a water stream. Note the contact elements at the cubic
bottom interface.

ressembles Archard law typically used for modeling abbrasive wear in surfaces under
frictional contact conditions [Archard (1953)]. An application of Archard law for
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modeling surface wear in rock cutting tools can be found in Oñate and Rojek (2004).
The algorithm proposed to model the erosion of soil/rock particles at the fluid

bed is the following:

1. Compute at every point of the bed surface the resultant tangential stress τ
induced by the fluid motion. In 3D problems τ = (τ 2sn + τtn)

2 where s and t
are the tangential stresses in the plane defined by the normal direction n at
the bed node. The value of τ for 2D problems can be estimated as follows:

τt = µγt (32a)

with

γt =
1

2

∂vt
∂n

=
vkt
2hk

(32b)

where vkt is the modulus of the tangential velocity at the node k point (i.e.
vkt = (v2sn + v2tn)

1/2) and hk is a prescribed distance along the normal of the
bed node k. Typically hk is of the order of magnitude of the smallest fluid
element adjacent to node k (Figure 11).

2. Compute the frictional work originated by the tangential stresses at the bed
surface as

Wf =

∫ t

◦
τtγt dt =

∫ t

◦

µ

4

(
vkt
hk

)2

dt (33)

Eq.(33) is integrated in time using a simple scheme as

nWf = n−1Wf + τγt ∆t (34)

3. The onset of erosion at a bed point occurs when nWf exceeds a critical thresh-
old value Wc defined empirically according to the specific properties of the bed
material.

4. If nWf > Wc at a bed node, then the node is detached from the bed region
and it is allowed to move with the fluid flow, i.e. it becomes a fluid node.
As a consequence, the mass of the patch of bed elements surrounding the bed
node vanishes in the bed domain and it is transferred to the new fluid node.
This mass is subsequently transported with the fluid. Conservation of mass
of the bed particles within the fluid is guaranteed by changing the density of
the new fluid node so that the mass of the suspended sediment traveling with
the fluid equals the mass originally assigned to the bed node. Note that the
mass assigned to a node is computed by multiplying the node density by the
tributary domain of the node.

5. Sediment deposition is modeled by an inverse process to that described in the
previous step. Hence, a suspended node adjacent to the bed surface with a
velocity below a threshold value is assigned to the bed surface. This automat-
ically leads to the generation of new bed elements adjacent to the boundary of
the bed region. The original mass of the bed region is recovered by adjusting
the density of the newly generated bed elements.
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Figure 11: Modeling of bed erosion by dragging of bed material

Figure 11 shows an schematic view of the bed erosion algorithm proposed.

The examples chosen show the applicability of the PFEM to solve bed erosion
problems in free surface flows.

9 EXAMPLES

We present next a collection of simple, schematic, but very illustrative two and
three dimensional examples showing the potential of the PFEM formulation pre-
sented here to model bed erosion in complex free surface flows. Sediment deposition
is not considered in any of the examples.

9.1 Example 1. Erosion of a sand hill under a water stream

Figure 12 shows the progressive erosion of a compacted sand domain under the
action of an impacting water stream originated by a water jet. The situation is
typical in sand shapes built by children in the beach and subsequently destroyed
by dropping water on them. The frames in Figure 12 show the progressive erosion
of the surface of the sand domain. A kind of hydraulic jump is generated by the
water jet and the sand obstacle as clearly seen in the figures. The erosion process
continues until the sand domain is fully dragged by the fluid flow.

9.2 Example 2. Erosion of a 3D earth dam due to an overspill stream

The second example illustrates the erosion of an earth dam under a water stream
running over the dam top. An schematic geometry of the dam has been chosen to
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Figure 12: Erosion of a sand hill due to a water stream

Figure 13: Erosion of a 3D earth dam due to an overspill streams.

simplify the computations. The images of Figure 13 show the progressive erosion of
the dam surface until the whole dam is wiped out by the fluid flow.
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Figure 14: Evolution of the erosion of the soil in the vecinity of a bridge pile. Water particles are
not shown.

9.3 Example 3. 3D erosion of a river bed adjacent to a bridge pile

The next example models the progressive erosion of a river bed domain in the
vecinity of a bridge pile under a water stream. Figure 14 shows a view of the eroded
bed surface at different times. The flowing water particles are not shown in the
pictures, for clarity. The erosion process continues until the bridge pile foundation
is unveiled by the erosion of the adjacent bed particles. We note that the deposition
of the eroded particles was not modeled in this case.

9.4 Example 4. Erosion of a solid domain with an object on the top

This final example was chosen so as to demonstrate the effectiveness of the PFEM
algorithm to combine the erosion process with the dragging of solid objects.

The pictures in Figure 15 represent schematically a temple on the top of a moun-
tain. The mountain is progressively eroded by a strong water stream until the temple
is dragged by the fluid.

10 CONCLUSIONS

The particle finite element method (PFEM) is a powerful technique to model
bed erosion problems involving fluids with free surfaces and submerged or floating
structures. Problems such as surface erosion, sediment transport and deposition,
fluid-structure interaction, large motion of fluid or solid particles, surface waves,
water splashing, separation of water drops, etc. can be solved with the PFEM. The
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Figure 15: Erosion of a sand hill with an object on the top.

success of the method lies in the accurate and efficient solution of the coupled equa-
tions for an incompressible fluid and solid dynamics using an updated Lagrangian
formulation and a stabilized finite element method. Low order elements with equal
order interpolation for all the variables can be effectively used. Other essential
solution ingredients are the fast regeneration of the finite element mesh using an
extended Delaunay tesselation, the meshless finite element interpolation (MFEM),
the identification of the boundary nodes using an Alpha Shape type technique and
the simple algorithms to model onset of erosion, sediment transport and material de-
position and contact conditions at the fluid-solid and solid-solid interfaces via mesh
generation. The examples presented have shown the great potential of the PFEM
for modeling bed erosion in complex free surface flows accounting for the dragging
of solid objects. Applications of the sediment transport and the material deposition
algorithm sketched in this paper will be reported in a forthcoming publication.
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Paper 2

This paper, published in 2007, extends the research published in the previous
paper ([2]) and adds the technology introduced in Section 3. The PFlow code
was used for all the computations.
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Abstract. We present some advances in the formulation of the Particle Finite Ele-
ment Method (PFEM) for solving complex fluid-structure interaction problems with
free surface waves. In particular, we present extensions of the PFEM for the analysis
of the interaction between a collection of bodies in water allowing for frictional con-
tact conditions at the fluid-solid and solid-solid interfaces via mesh generation. An
algorithm to treat bed erosion in free surface flows is also presented. Examples of
application of the PFEM to solve a number of fluid-multibody interaction problems
involving splashing of waves, large motions of floating and submerged bodies and
bed erosion situations are given.

Key words: Lagrangian formulation, fluid-structure interaction, particle finite el-
ement method, bed erosion, free surface flows

1 INTRODUCTION

The analysis of problems involving the interaction of fluids and structures ac-
counting for large motions of the fluid free surface and the existence of fully or
partially submerged bodies which interact among themselves is of big relevance in
many areas of engineering. Examples are common in ship hydrodynamics, off-shore
and harbour structures, spill-ways in dams, free surface channel flows, environmental
flows, liquid containers, stirring reactors, mould filling processes, etc.

Typical difficulties of fluid-multibody interaction analysis in free surface flows
using the FEM with both the Eulerian and ALE formulation include the treatment
of the convective terms and the incompressibility constraint in the fluid equations,
the modelling and tracking of the free surface in the fluid, the transfer of information
between the fluid and the moving solid domains via the contact interfaces, the
modeling of wave splashing, the possibility to deal with large motions of the bodies
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within the fluid domain, the efficient updating of the finite element meshes for both
the structure and the fluid, etc. For a comprehensive list of references in FEM for
fluid flow problems see [5, 34] and the references there included. A survey of recent
works in fluid-structure interaction analysis can be found in [16], [25] and [32].

Most of the above problems disappear if a Lagrangian description is used to
formulate the governing equations of both the solid and the fluid domains. In the
Lagrangian formulation the motion of the individual particles are followed and,
consequently, nodes in a finite element mesh can be viewed as moving material
points (hereforth called “particles”). Hence, the motion of the mesh discretizing
the total domain (including both the fluid and solid parts) is followed during the
transient solution.

The authors have successfully developed in previous works a particular class of
Lagrangian formulation for solving problems involving complex interaction between
fluids and solids. The method, called the particle finite element method (PFEM),
treats the mesh nodes in the fluid and solid domains as particles which can freely
move and even separate from the main fluid domain representing, for instance, the ef-
fect of water drops. A finite element mesh connects the nodes defining the discretized
domain where the governing equations are solved using a stabilized FEM based in the
Finite Calculus (FIC) approach. An advantage of the Lagrangian formulation is that
the convective terms disappear from the fluid equations. The difficulty is however
transferred to the problem of adequately (and efficiently) moving the mesh nodes.
We use a mesh regeneration procedure blending elements of different shapes using
an extended Delaunay tesselation with special shape functions [9, 11]. The theory
and applications of the PFEM are reported in [2, 4, 9, 10, 12, 13, 24, 25, 26, 28, 29].

The aim of this paper is to describe two recent advances of the PFEM: a) the
analysis of the interaction between a collection of bodies which are floating and/or
submerged in the fluid, and b) the modeling of bed erosion in open channel flows.
Both problems are of great relevance in many areas of civil, marine and naval engi-
neering, among others. It is shown in the paper that the PFEM provides a general
analysis methodology for treat such a complex problems in a simple and efficient
manner.

The layout of the paper is the following. In the next section the key ideas of the
PFEM are outlined. Next the basic equations for an incompressible flow using a
Lagrangian description and the FIC formulation are presented. Then a fractional
step scheme for the transient solution is briefly described. Details of the treatment
of the coupled FSI problem are given. The methods for mesh generation and for
identification of the free surface nodes are outlined. The procedure for treating at
mesh generation level the contact conditions at fluid-wall interfaces and the frictional
contact interaction between moving solids is explained. A methodology for modeling
bed erosion due to fluid forces is described. Finally, the efficiency of the PFEM is
shown in its application to a number of problems involving large flow motions,
surface waves, moving bodies in water and bed erosion.
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2 THE BASIS OF THE PARTICLE FINITE ELEMENT METHOD

Let us consider a domain containing both fluid and solid subdomains. The moving
fluid particles interact with the solid boundaries thereby inducing the deformation
of the solid which in turn affects the flow motion and, therefore, the problem is fully
coupled.

In the PFEM both the fluid and the solid domains are modelled using an updated
Lagrangian formulation. That is, all variables in the fluid and solid domains are
assumed to be known in the current configuration at time t. The new set of vari-
ables in both domains are sought for in the next or updated configuration at time
t + ∆t (Figure 1). The finite element method (FEM) is used to solve the contin-
uum equations in both domains. Hence a mesh discretizing these domains must
be generated in order to solve the governing equations for both the fluid and solid
problems in the standard FEM fashion. Recall that the nodes discretizing the fluid
and solid domains are treated as material particles which motion is tracked during
the transient solution. This is useful to model the separation of fluid particles from
the main fluid domain in a splashing wave, or soil particles in a bed erosion problem,
and to follow their subsequent motion as individual particles with a known density,
an initial acceleration and velocity and subject to gravity forces. The mass of a
given domain is obtained by integrating the density at the different material points
over the domain.

The quality of the numerical solution depends on the discretization chosen as in
the standard FEM. Adaptive mesh refinement techniques can be used to improve
the solution in zones where large motions of the fluid or the structure occur.

2.1 Basic steps of the PFEM

For clarity purposes we will define the collection or cloud of nodes (C) pertaining
to the fluid and solid domains, the volume (V) defining the analysis domain for the
fluid and the solid and the mesh (M) discretizing both domains.

A typical solution with the PFEM involves the following steps.

1. The starting point at each time step is the cloud of points in the fluid and
solid domains. For instance nC denotes the cloud at time t = tn (Figure 2).

2. Identify the boundaries for both the fluid and solid domains defining the anal-
ysis domain nV in the fluid and the solid. This is an essential step as some
boundaries (such as the free surface in fluids) may be severely distorted during
the solution, including separation and re-entering of nodes. The Alpha Shape
method [6] is used for the boundary definition (Section 5).

3. Discretize the fluid and solid domains with a finite element mesh nM . In our
work we use an innovative mesh generation scheme based on the extended
Delaunay tesselation (Section 4) [9, 10, 12].

4. Solve the coupled Lagrangian equations of motion for the fluid and the solid
domains. Compute the relevant state variables in both domains at the next
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Figure 1: Updated lagrangian description for a continuum containing a fluid and a solid domain

(updated) configuration for t+∆t: velocities, pressure and viscous stresses in
the fluid and displacements, stresses and strains in the solid.

5. Move the mesh nodes to a new position n+1C where n + 1 denotes the time
tn+∆t, in terms of the time increment size. This step is typically a consequence
of the solution process of step 4.

6. Go back to step 1 and repeat the solution process for the next time step to
obtain n+2C. The process is shown in Figure 2.

2.2 Overview of the coupled FSI algoritm

Figure 3 shows a typical domain V with external boundaries ΓV and Γt where
the velocity and the surface tractions are prescribed, respectively. The domain V
is formed by fluid (VF ) and solid (VS) subdomains (i.e. V = VF ∪ VS). Both
subdomains interact at a common boundary ΓFS where the surface tractions and
the kinematic variables (displacements, velocities and acelerations) are the same for
both subdomains. Note that both set of variables (the surface tractions and the
kinematic variables) are equivalent in the equilibrium configuration.

Let us define tS and tF the set of variables defining the kinematics and the
stress-strain fields at the solid and fluid domains at time t, respectively, i.e.

tS := [txs,
tus,

tvs,
tas,

tεεεεεεεεεεεεεεs,
tσσσσσσσσσσσσσσs, · · · ]T (1)

tF := [txF ,
tuF ,

tvF ,
taF ,

tε̇εεεεεεεεεεεεεF ,
tσσσσσσσσσσσσσσF , · · · ]T (2)
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Figure 2: Sequence of steps to update a “cloud” of nodes from time n (t = tn) to time n + 2
(t = tn + 2∆t)

where x is the nodal coordinate vector, u, v and a are the vector of displacements,
velocities and accelerations, respectively, εεεεεεεεεεεεεε, ε̇εεεεεεεεεεεεε and σσσσσσσσσσσσσσ are the strain vector, the strain-
rate (or rate of deformation) vectors and the Cauchy stress vector, respectively and
F and S denote the variables in the fluid and solid domains, respectively. In the
discretized problem, a bar over these variables will denote nodal values.

The coupled fluid-structure interaction (FSI) problem of Figure 3 is solved, in
this work, using the following strongly coupled staggered scheme:

0. We assume that the variables in the solid and fluid domains at time t (tS and
tF ) are known.

1. Solve for the variables at the solid domain at time t +∆t (t+∆tS) under pre-
scribed surface tractions at the fluid-solid boundary ΓFS. The boundary con-
ditions at the part of the external boundary intersecting the domain are the
standard ones in solid mechanics.

2. Solve for the variables at the fluid domain at time t +∆t (t+∆tF ) under pre-
scribed surface tractions at the external boundary Γt and prescribed velocities
at the external and internal boundaries ΓV and ΓFS, respectively.
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Iterate between 1 and 2 until convergence.

The variables at the solid domain t+∆tS are found via the integration of the
equations of dynamic motion in the solid written as

Msas + gs − fs = 0 (3)

where Ms, gs and fs denote the mass matrix, the internal node force vector and
the external nodal force vector at the solid domain. The time integration of Eq.(3)
is performed using a standard Newmark method. An incremental iterative scheme
is implemented within each time step to account for non linear geometrical and
material effects.

The FEM solution of the variables in the (incompressible) fluid domain implies
solving the momentum and incompressibility equations. As mentioned above this
is not such as simple problem as the incompressibility condition limits the choice
of the FE approximations for the velocity and pressure to overcome the well known
div-stability condition [5, 34]. In our work we use a stabilized mixed FEM based on
the Finite Calculus (FIC) approach which allows for a linear approximation for the
velocity and pressure variables. Details of the FEM/FIC formulation are given in
the next section.
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Figure 4 shows a typical example of a PFEM solution in 2D. The pictures corre-
spond to the analysis of the problem of breakage of a water column [12, 26]. Figure
4a shows the initial grid of four node rectangles discretizing the fluid domain and
the solid walls. Figures 4b and 4c show the mesh for the solution at two later times.

(a) (b)

(c)

Figure 4: Breakage of a water column. (a) Discretization of the fluid domain and the solid walls.
Boundary nodes are marked with circles. (b) and (c) Mesh in the fluid domain at two different
times.

3 FIC/FEM FORMULATION FOR A LAGRANGIAN INCOMPRESS-
IBLE FLUID

The standard infinitesimal equations for a viscous incompressible fluid can be
written in a Lagrangian frame as [17, 34].

Momentum
rmi

= 0 in VF (4)

Mass balance
rd = 0 in VF (5)

where

rmi
= ρ

∂vi
∂t

+
∂σij

∂xj

− bi , σji = σij (6)

rd =
∂vi
∂xi

i, j = 1, nd (7)
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Above nd is the number of space dimensions, vi is the velocity along the ith global
axis (vi =

∂ui

∂t
, where ui is the ith displacement), ρ is the (constant) density of the

fluid, bi are the body forces, σij are the total stresses given by σij = sij − δijp, p
is the absolute pressure (defined positive in compression) and sij are the viscous
deviatoric stresses related to the viscosity µ by the standard expression

sij = 2µ

(
ε̇ij − δij

1

3

∂vk
∂xk

)
(8)

where δij is the Kronecker delta and the strain rates ε̇ij are

ε̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(9)

In the above all variables are defined at the current time t (current configuration).
In our work we will solve a modified set of governing equations derived using a

finite calculus (FIC) formulation. The FIC governing equations are [17, 18, 19, 21].

Momentum

rmi
− 1

2
hj

∂rmi

∂xj
= 0 in VF (10)

Mass balance

rd −
1

2
hj

∂rd
∂xj

= 0 in VF (11)

The problem definition is completed with the following boundary conditions

njσij − ti +
1

2
hjnjrmi

= 0 on Γt (12)

vj − vpj = 0 on Γv (13)

and the initial condition is vj = v0j for t = t0. The standard summation convention
for repeated indexes is assumed unless otherwise specified.

In Eqs.(12) and (13) ti and vpj are surface tractions and prescribed velocities on
the boundaries Γt and Γv, respectively, nj are the components of the unit normal
vector to the boundary. Recall that Γv includes both the external boundary and the
internal boundary ΓFS

(Figure 3).
The h′

is in above equations are characteristic lengths of the domain where bal-
ance of momentum and mass is enforced. In Eq.(12) these lengths define the do-
main where equilibrium of boundary tractions is established. We note that at the
discretized level, the h′

is become of the order of a typical element or grid dimension
[17, 18, 19].

Eqs.(10)–(13) are the starting point for deriving stabilized finite element meth-
ods to solve the incompressible Navier-Stokes equations in a Lagrangian frame of
reference using equal order interpolation for the velocity and pressure variables
[2, 8, 9, 10, 12, 24]. Application of the FIC formulation to finite element and meshless
analysis of fluid flow problems can be found in [7, 18, 19, 20, 21, 23, 25, 27].
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3.1 Transformation of the mass balance equation. Integral governing
equations

The underlined term in Eq.(11) can be expressed in terms of the momentum
equations. The new expression for the mass balance equation is [18, 26]

rd −
nd∑

i=1

τi
∂rmi

∂xi

= 0 (14)

with

τi =
3h2

i

8µ
(15)

In our work we have taken the characteristic distances hi to be constant within
each element and equal to a typical element dimension computed as he = [V e]m

where V e is the element domain and m = 1/2 for 2D problems and m = 1/3 for 3D
problems.

At this stage it is no longer necessary to retain the stabilization terms in the
momentum equations and the traction boundary conditions (Eqs.(10) and (12)).
These terms are critical in Eulerian formulations to stabilize the numerical solution
for high values of the convective terms [18, 21, 27, 28].

The weighted residual expression of the final form of the momentum and mass
balance equations is written as

∫

VF

δvirmi
dV +

∫

Γt

δvi(njσij − ti)dΓ = 0 (16)

∫

VF

q

[
rd −

nd∑

i=1

τi
∂rmi

∂xi

]
dV = 0 (17)

where δvi and q are arbitrary weighting functions equivalent to virtual velocity and
virtual pressure fields.

The rmi
term in Eq.(17) and the deviatoric stresses and the pressure terms within

rmi
in Eq.(16) are integrated by parts to give

∫

VF

[
δviρ

∂vi
∂t

+ δε̇ij(sij − δijp)

]
dV −

∫

VF

δvibidΩ−
∫

Γt

δvitidΓ = 0 (18)

∫

VF

q
∂vi
∂xi

dV +

∫

VF

[
nd∑

i=1

τi
∂q

∂xi

rmi

]
dV = 0 (19)

In Eq.(18) δε̇ij are virtual strain rates. Note that the boundary term resulting
from the integration by parts of rmi

in Eq.(19) has been neglected in this work.
Retaining this term has been recently found to be advantageous for enhancing the
satisfaction of the incompressibility condition in FEM predictor-corrector schemes
for incompressible fluid flow analysis [30].
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3.2 Pressure gradient projection

The computation of the residual terms in Eq.(19) is simplified if we introduce the
pressure gradient projections πi, defined as

πi = rmi
− ∂p

∂xi
(20)

We express rmi
in Eq.(19) in terms of the πi which then become additional vari-

ables. The system of integral equations is now augmented in the necessary number
of equations by imposing that the residual rmi

vanishes within the analysis domain
(in an average sense). This gives the final system of governing equation as:

∫

VF

[
δviρ

∂vi
∂t

+ δε̇ij(sij − δijp)

]
dV −

∫

VF

δvibidV −
∫

Γt

δvitidΓ = 0 (21)

∫

VF

q
∂vi
∂xi

dV +

∫

VF

nd∑

i=1

τi
∂q

∂xi

(
∂p

∂xi
+ πi

)
dV = 0 (22)

∫

VF

δπiτi

(
∂p

∂xi
+ πi

)
dV = 0 no sum in i (23)

with i, j, k = 1, nd. In Eqs.(23) δπi are appropriate weighting functions and the τi
weights are introduced for symmetry reasons.

3.3 Finite element discretization

We choose equal order C◦ continuous interpolations of the velocities, the pressure
and the pressure gradient projections πi over each element with n nodes. The
interpolations are written as

vi =

n∑

j=1

Nj v̄
j
i , p =

n∑

j=1

Nj p̄
j , πi =

n∑

j=1

Nj π̄
j
i (24)

where (̄·)j denotes nodal variables and Nj are the shape functions [34]. More details
of the mesh discretization process and the choice of shape functions are given in
Section 4.

Substituting the approximations (24) into Eqs.(21–23) and choosing a Galerkin
form with δvi = q = δπi = Ni leads to the following system of discretized equations

M ˙̄v +Kv̄ −Gp̄− f = 0 (25a)

GT v̄ + Lp̄+Qπ̄πππππππππππππ = 0 (25b)

QT p̄+ M̂π̄πππππππππππππ = 0 (25c)

The form of the element matrices and vectors in Eqs.(25) can be found in [28].
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3.4 Fractional step algorithm for the fluid variables

The starting point of the iterative algorithm are the variables at time n in the
fluid domain (nF ). The sought variables are the variables at time n+1 (n+1F ). For
the sake of clarity we will skip the upper left index n+ 1 for all variables, i.e.

n+1x̄ ≡ x̄ ; n+1p̄ ≡ p̄ ; n+1π̄πππππππππππππ ≡ π̄πππππππππππππ ; n+1x̄ ≡ x̄ ; etc. (26)

A simple iterative algorithm is obtained by splitting the pressure from the mo-
mentum equations as follows

v̄∗ = nv̄ −∆tM−1[Kv̄j −Gnp− f ] (27)

v̄j+1 = v̄∗ +∆tM−1Gδp̄ (28)

where δp̄ denotes the pressure increment. In above equations and in the following
the left upper index n refers to values in the current configuration nV , whereas the
right upper index j denotes the iteration number within each time step.

The value of v̄j+1 from Eq.(29) is substituted now into Eq.(25b) to give

GT v̄∗ +∆tSδp̄+ Lp̄j+1 +Qπ̄πππππππππππππj = 0 (29a)

where
S = GTM−1G (29b)

Typically matrix S is computed using a diagonal matrix M = Md, where the
subscript d denotes hereonward a diagonal matrix. We note that the form of S in
Eq.(29b) avoids the need for prescribing the pressure at the boundary nodes.

An alternative is to approximate S by a Laplacian matrix. This reduces consid-
erably the bandwidth of S. The disadvantage is that the pressure increment must be
then prescribed on the free surface and this reduces the accuracy in the satisfaction
of the incompressibility condition in these regions. These problems are overcome
however by retaining the residual term rmi

in the boundary integral resulting from
the integration by parts of Eq.(17) [30]. In this work however the form of matrix S
given by Eq.(29a) has been used.

A semi-implicit algorithm can be derived as follows. For each iteration:

Step 1 Compute v∗ from Eq.(27) with M = Md. For the first iteration
(v̄1, p̄1, π̄πππππππππππππ1, x̄1) ≡ (nv̄, np̄, nπ̄πππππππππππππ, nx̄)

Step 2 Compute δp̄ and pj+1 from Eq.(29a) as

δp̄ = −(L +∆tS)−1[GT v̄∗ +Qπ̄πππππππππππππj + Lp̄j ] (30a)

The pressure p̄n+1,j is computed as

p̄j+1 = p̄j + δp̄j (30b)

Step 3 Compute v̄j+1 from Eq.(28) with M = Md
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Step 4 Compute π̄πππππππππππππj+1 from Eq.(25c) as

π̄πππππππππππππj+1 = −M̂−1
d QT p̄j+1 (31)

Step 5 Update the coordinates of the mesh nodes as

xj+1
i = nxi + v̄j+1

i ∆t (32)

Step 6 Check the convergence of the velocity and pressure fields. If convergence is
achieved move to the next time step, otherwise return to step 1 for the next iteration
with j ← j + 1.

Note that solution of steps 1, 3 and 4 does not require the solution of a system
of equations as a diagonal form is chosen for M and M̂.

In the examples presented in the paper the time increment size has been chosen
as

∆t = min(∆ti) with ∆ti =
hmin
i

|v| (33)

where hmin
i is the distance between node i and the closest node in the mesh.

Although not explicitely mentioned all matrices and vectors in Eqs.(25) are com-
puted at the updated configuration n+1VF . This means that the integration domain
changes for each iteration and, hence, all the terms involving space derivatives must
be updated at each iteration.

The boundary conditions are applied as follows. No condition is applied for the
computation of the fractional velocities v∗ in Eq.(27). The prescribed velocities at
the boundary are applied when solving for v̄j+1 in step 3. As mentioned earlier there
is no need for prescribing the pressure at the boundary if the form of Eq.(29b) is
chosen for S.

Box 1 shows a summary of the staggered scheme used for the solution for the
variables in the solid and fluid domain at the updated configuration (n+1F, n+1S).

4 GENERATION OF A NEW MESH

One of the key points for the success of the PFEM is the fast regeneration of
a mesh at every time step on the basis of the position of the nodes in the space
domain. Indeed, any fast meshing algorithm can be used for this purpose. In our
work the mesh is generated at each time step using the so called extended Delaunay
tesselation (EDT) presented in [9, 11, 12]. The EDT allows one to generate non
standard meshes combining elements of arbitrary polyhedrical shapes (triangles,
quadrilaterals and other polygons in 2D and tetrahedra, hexahedra and arbitrary
polyhedra in 3D) in a computing time of order n, where n is the total number of
nodes in the mesh (Figure 5). The C◦ continuous shape functions of the elements
can be simply obtained using the so called meshless finite element interpolation
(MFEM). In our work the simpler linear C◦ interpolation has been chosen. Details
of the mesh generation procedure and the derivation of the linear MFEM shape
functions can be found in [9, 11, 12].

Figure 6 shows the evolution of the CPU time required for generating the mesh,
for solving the system of equations and for assembling such a system in terms of the
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LOOP OVER TIME STEPS = time1,...n n  

 ,n nS F  

LOOP OVER STAGGERED SOLUTION = stag1,...j n  

Solve for solid variables (prescribed tractions at + Γ1n
FS ) 

LOOP OVER ITERATIONS = iter1,...i n  

 Solve for +1n i
jS  

 Integrate Eq.(3) using a Newmark scheme 
 Check convergence. Yes: solve for fluid variables 

 NO: Next iteration ← + 1i i  
  

 Solve for fluid variables  (prescribed velocities at + Γ1n
FS ) 

LOOP OVER ITERATIONS = iter1,...i n  

 Solve for +1n i
jF  using the scheme of Section 3.4 

 Check convergence. Yes: go to C 
 Next iteration ← + 1i i  
 

C Check convergence of surface tractions at + Γ1n
FS  

  Yes: Next time step 
    Next staggered solution ← +1j j , ← + 1i i  
 

 Next time step + +←1 1 ,n n i
jS S  + +←1 1n n i

jF F  
 
  

Box 1. Staggered scheme for the FSI problem (see also Figure 3)

@A

BA

Figure 5: Generation of non standard meshes combining different polygons (in 2D) and polyhedra
(in 3D) using the extended Delaunay technique.

number of nodes. the numbers correspond to the solution of a 3D flow in an open
channel with the PFEM. The figure shows the CPU time in seconds for each time
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step of the algorithm of Section 3.4. It is clearly seen that the CPU time required
for meshing grows linearly with the number of nodes, as expected. Note also that
the CPU time for solving the equations exceeds that required for meshing as the
number of nodes increases. This situation has been found in all the problems solved
with the PFEM. As a general rule for large 3D problems meshing consumes around
30% of the total CPU time for each time step, while the solution of the equations
and the assembling of the system consume approximately 40% and 20% of the CPU
time for each time step, respectively. These figures prove that the generation of the
mesh has an acceptable cost in the PFEM solution. An improvement of the mesh
generation process will in any case help to reducing the computational cost.

Figure 6: 3D flow problem solved with the PFEM. CPU time for meshing, assembling and solving
the system of equations at each time step in terms of the number of nodes

5 IDENTIFICATION OF BOUNDARY SURFACES

One of the main tasks in the PFEM is the correct definition of the boundary
domain. Boundary nodes are sometimes explicitly identified. In other cases, the
total set of nodes is the only information available and the algorithm must recognize
the boundary nodes.

In our work we use an extended Delaunay partition for recognizing boundary
nodes. Considering that the nodes follow a variable h(x) distribution, where h(x) is
typically the minimum distance between two nodes, the following criterion has been
used. All nodes on an empty sphere with a radius greater than αh, are considered as
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boundary nodes. In practice α is a parameter close to, but greater than one. Values
of α ranging between 1.3 and 1.5 have been found to be optimal in all examples
analyzed. This criterion is coincident with the Alpha Shape concept [6]. Figure 7
shows an example of the boundary recognition using the Alpha Shape technique.

Once a decision has been made concerning which nodes are on the boundaries,
the boundary surface is defined by all the polyhedral surfaces (or polygons in 2D)
having all their nodes on the boundary and belonging to just one polyhedron.

The method described also allows one to identify isolated fluid particles outside
the main fluid domain. These particles are treated as part of the external boundary
where the pressure is fixed to the atmospheric value. We recall that each particle is
a material point characterized by the density of the solid or fluid domain to which
it belongs. The mass which is lost when a boundary element is eliminated due to
departure of a node (a particle) from the main analysis domain is again regained
when the “flying” node falls down and a new boundary element is created by the
Alpha Shape algorithm (Figures 2 and 7).

Figure 7: Identification of individual particles (or a group of particles) starting from a given
collection of nodes.

The boundary recognition method above described is also useful for detecting
contact conditions between the fluid domain and a fixed boundary, as well as between
different solids interacting with each other. The contact detection procedure is
detailed in Section 6.

In order to show the quality of the boundary recognition approach, the following
simple example has been performed. A square fluid domain of 0.25m2 is at a sta-
tionary position within a recipient (Figure 8). Then, as time evolves, the fluid falls
down into the lower part of the recipient due to gravity effects. At the end of the
process the total volume of the fluid within the recipient must be the same as that
of the initial square domain. It must be noted that during the different time steps,
the fluid has completely different free-surfaces including waves, breaking waves and
fluid fragmentation zones.

The meshes used have average element sizes of 0.05m, 0.025m and 0.01m each
which correspond to a total initial number of particles of 161, 552 and 3105 each.
A value of α = 1.4 for the Alpha-Shape method was used for the three analyses.
Figure 8 shows the initial position of the fluid domain and one of the three meshes
used for the analysis. Figure 9 shows the fluid domain at different time steps.
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Figure 8: Fluid domain following into a recipient. Initial position. Fine mesh of 3105 nodes
(element size of 0.01m)

(a) t = 0.2s (b) t = 0.4s (c) t = 0.6s (d) t = 0.8s

(e) t = 1.0s (f) t = 2.0s (g) t = 3.0s (h) t = 4.0s

Figure 9: Positions of the fluid domain at different time steps.

This simple example is interesting to show the quality of the boundary iden-
tification procedure. Another aim is to evaluate the volume variation from the
incompressibility point of view, as well as the preservation of the total volume of
the fluid due to possible errors in the boundary recognition using the Alpha-Shape
method. Figure 10 shows the total fluid volume during the different time steps for
the three different meshes. The charge of volume is insignificant for the fine mesh
and becomes larger but acceptable for the coarse meshes.

It must be noted that the main difference between the PFEM and the classical
FEM is just the remeshing technique and the evaluation of the boundary position at
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Figure 10: Total volume change as a function of time for different meshes.

each time step. The rest of the steps in the computation are coincident with those
of the classical FEM. This simple example shows that in spite of the permanent
remeshing and the evaluation of the boundary position via the Alpha-Shape method,
the total fluid mass is preserved. We note however, that a good selection of the α
parameter is essential for the good behaviour of the boundary recognition process.
Examples showing the accuracy of the PFEM for fixed boundary problems can be
found in [2].

6 TREATMENT OF CONTACT CONDITIONS IN THE PFEM

6.1 Contact between the fluid and a fixed boundary

The motion of the solid is governed by the action of the fluid flow forces induced
by the pressure and the viscous stresses acting at the common boundary ΓFS, as
mentioned above.

The condition of prescribed velocities at the fixed boundaries in the PFEM are
applied in strong form to the boundary nodes. These nodes might belong to fixed ex-
ternal boundaries or to moving boundaries linked to the interacting solids. Contact
between the fluid particles and the fixed boundaries is accounted for by the incom-
pressibility condition which naturally prevents the fluid nodes to penetrate into the
solid boundaries (Figure 11). This simple way to treat the fluid-wall contact at mesh
generation level is a distinct and attractive feature of the PFEM formulation.

6.2 Contact between solid-solid interfaces

The contact between two solid interfaces is simply treated by introducing a layer
of contact elements between the two interacting solid interfaces. This layer is auto-
matically created during the mesh generation step by prescribing a minimum distance
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Figure 11: Automatic treatment of contact conditions at the fluid-wall interface

(hc) between two solid boundaries. If the distance exceeds the minimum value (hc)
then the generated elements are treated as fluid elements. Otherwise the elements
are treated as contact elements where a relationship between the tangential and nor-
mal forces and the corresponding displacement is introduced so as to model elastic
and frictional contact effects in the normal and tangential directions, respectively
(Figure 12).

This algorithm has proven to be very effective and it allows to identifying and
modeling complex frictional contact conditions between two or more interacting
bodies moving in water in an extremely simple manner. Of course the accuracy of
this contact model depends on the critical distance above mentioned.

This contact algorithm can also be used effectively to model frictional contact
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conditions between rigid or elastic solids in standard structural mechanics applica-
tions. Figures 13–16 show examples of application of the contact algorithm to the
bumping of a ball falling in a container, the failure of a domino set, the failure of an
arch formed by a collection of stone blocks under a seismic loading and the motion of
five tetrapods as they fall and slip over an inclined plane, respectively. The images
in Figures 13 and 17 show explicitely the layer of contact elements which controls
the accuracy of the contact algorithm.

Fluid domain

Fixed boundary

Solid

RM

Fti = - β K1(hc - h) Sign(V ti)

Fni = K1(hc - h) – K2 Vni Sign(V ni)

Fti

Fni

e
i

Vni

Vti

h < hc

Contact between solid boundaries

Contact elements are introduced

between the solid-solid interfaces

during mesh generation

Contact forces

Contact elements at the fixed boundary

RS∆RM

h < hc

Solid

Solid

Contact interface

Figure 12: Contact conditions at a solid-solid interface

7 MODELING OF BED EROSION

Prediction of bed erosion and sediment transport in open channel flows are im-
portant tasks in many areas of river and environmental engineering. Bed erosion can
lead to instabilities of the river basin slopes. It can also undermine the foundation
of bridge piles thereby favouring structural failure. Modeling of bed erosion is also
relevant for predicting the evolution of surface material dragged in earth dams in
overspill situations. Bed erosion is one of the main causes of environmental damage
in floods.

Bed erosion models are traditionally based on a relationship between the rate of
erosion and the shear stress level [14, 33]. The effect of water velocity on soil erosion
was studied in [31]. In a recent work we have proposed an extension of the PFEM
to model bed erosion [29]. The erosion model is based on the frictional work at the
bed surface originated by the shear stresses in the fluid. The resulting erosion model
resembles Archard law typically used for modeling abrasive wear in surfaces under
frictional contact conditions [1, 22].
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Figure 13: Bumping of a ball within a container. The layer of contact elements is shown at each
contact instant

The algorithm for modeling the erosion of soil/rock particles at the fluid bed is
the following:

1. Compute at every point of the bed surface the resultant tangential stress τ
induced by the fluid motion. In 3D problems τ = (τ 2s + τt)

2 where τs and τt
are the tangential stresses in the plane defined by the normal direction n at
the bed node. The value of τ for 2D problems can be estimated as follows:

τt = µγt (34a)

with

γt =
1

2

∂vt
∂n

=
vkt
2hk

(34b)
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Figure 14: Failure of a domino set. The distance between the domino chips shows the contact
element layer

where vkt is the modulus of the tangential velocity at the node k and hk is a
prescribed distance along the normal of the bed node k. Typically hk is of the
order of magnitude of the smallest fluid element adjacent to node k (Figure
18).

2. Compute the frictional work originated by the tangential stresses at the bed
surface as

Wf =

∫ t

◦
τtγt dt =

∫ t

◦

µ

4

(
vkt
hk

)2

dt (35)

Eq.(35) is integrated in time using a simple scheme as

nWf = n−1Wf + τtγt∆t (36)

3. The onset of erosion at a bed point occurs when nWf exceeds a critical thresh-
old value Wc defined empirically according to the specific properties of the bed
material.
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Figure 15: Failure of an arch formed by stone blocks under seismic loading

4. If nWf > Wc at a bed node, then the node is detached from the bed region
and it is allowed to move with the fluid flow, i.e. it becomes a fluid node.
As a consequence, the mass of the patch of bed elements surrounding the bed
node vanishes in the bed domain and it is transferred to the new fluid node.
This mass is subsequently transported with the fluid. Conservation of mass
of the bed particles within the fluid is guaranteed by changing the density of
the new fluid node so that the mass of the suspended sediment traveling with
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Figure 16: Motion of five tetrapods on an inclined plane

the fluid equals the mass originally assigned to the bed node. Recall that the
mass assigned to a node is computed by multiplying the node density by the
tributary domain of the node.

5. Sediment deposition can be modeled by an inverse process to that described
in the previous step. Hence, a suspended node adjacent to the bed surface
with a velocity below a threshold value is assigned to the bed surface. This
automatically leads to the generation of new bed elements adjacent to the
boundary of the bed region. The original mass of the bed region is recovered
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Figure 17: Detail of five tetrapods on an inclined plane. The layer of elements modeling the
frictional contact conditions is shown

by adjusting the density of the newly generated bed elements.

Figure 18 shows an schematic view of the bed erosion algorithm proposed.

8 FSI EXAMPLES

The examples chosen show the applicability of the PFEM to solve problems in-
volving large motions of the free surface, fluid-multibody interactions and bed ero-
sion.

8.1 Rigid objects falling into water

The analysis of the motion of submerged or floating objects in water is of great
interest in many areas of harbour and coastal engineering and naval architecture
among others.

Figure 19 shows the penetration and evolution of a cube and a cylinder of rigid
shape in a container with water. The colours denote the different sizes of the ele-
ments at several times. In order to increase the accuracy of the FSI problem smaller
size elements have been generated in the vicinity of the moving bodies during their
motion (Figure 20).

8.2 Impact of water streams on rigid structures

Figure 21 shows an example of a wave breaking within a prismatic container
including a vertical cylinder. Figure 22 shows the impact of a wave on a vertical
column sustained by four pillars. The objective of this example was to model the
impact of a water stream on a bridge pier accounting for the foundation effects.
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Figure 18: Modeling of bed erosion by dragging of bed material
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Figure 19: 2D simulation of the penetration and evolution of a cube and a cylinder in a water
container. The colours denote the different sizes of the elements at several times.

8.3 Dragging of objects by water streams

Figure 23 shows the effect of a wave impacting on a rigid cube representing a
vehicle. This situation is typical in flooding and Tsunami situations. Note the layer
of contact elements modeling the frictional contact conditions between the cube and
the bottom surface.

8.4 Impact of sea waves on breakwaters and piers

Figure 24 shows the 3D simulation of the impact of a wave generated in an
experimental flume on a collection of rigid rocks representing a breakwater. Details
of the water-rock interaction are shown in Figure 25.

Figure 26 shows a 3D analysis of a similar problem. Figure 27 shows the 3D
simulation of the interaction of a wave with a vertical pier formed by a collection of
reinforced concrete cylinders.

The examples shown in Figures 28 and 29 evidence the potential of the PFEM to
solve 3D problems involving complex interactions between water and moving solid
objects. Figure 28 shows the simulation of the falling of two tetrapods in a water
container. Figure 29 shows the motion of a collection of ten tetrapods placed in a
slope under an incident wave.

Figure 30 shows a detail of the complex three-dimensional interactions between
the water particles and the tetrapods and between the tetrapods themselves, which
can be easily modeled with the PFEM.

8.5 Erosion of a 3D earth dam due to an overspill stream

We present finally a simple, schematic, but very illustrative example showing the
potential of the PFEM to model bed erosion in free surface flows.
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Figure 20: Detail of element sizes during the motion of a rigid cylinder within a water container.

The example represents the erosion of an earth dam under a water stream running
over the dam top. A schematic geometry of the dam has been chosen to simplify the
computations. Sediment deposition is not considered in the solution. The images of
Figure 31 show the progressive erosion of the dam until the whole dam is dragged
out by the fluid flow.

Other applications of the PFEM to bed erosion problems can be found in [29].

9 CONCLUSIONS

The particle finite element method (PFEM) is ideal to treat problems involving
fluids with free surfaces and submerged or floating structures and bodies within
a unified Lagrangian finite element framework. Problems such as fluid-structure
interaction, large motion of fluid or solid particles, surface waves, water splashing,
separation of water drops, frictional contact situations between fluid-solid and solid-
solid interfaces, bed erosion, etc. can be easily solved with the PFEM. The success
of the method lies in the accurate and efficient solution of the equations of an
incompressible fluid and of solid dynamics using an updated Lagrangian formulation
and a stabilized finite element method, allowing the use of low order elements with
equal order interpolation for all the variables. Other essential solution ingredients
are the efficient regeneration of the finite element mesh using an extended Delaunay
tesselation, the identification of the boundary nodes using an Alpha-Shape type
technique and the simple algorithm to treat frictional contact conditions at fluid-
solid and solid-solid interfaces via mesh generation. The examples presented have
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Figure 21: Evolution of a water column within a prismatic container including a vertical cylinder.

shown the great potential of the PFEM for solving a wide class of practical FSI
problems in engineering. Examples of validation of the PFEM results with data
from experimental tests are reported in [15].
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Figure 28: Motion of two tetrapods falling in a water container.
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Figure 29: Motion of ten tetrapods on a slope under an incident wave.
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Figure 30: Detail of the motion of ten tetrapods on a slope under an incident wave. The figure
shows the complex interactions between the water particles and the tetrapods.
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Figure 31: Erosion of a 3D earth dam due to an overspill stream.
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Paper 3

This paper, published in 2008, consists on a validation of the �uid kernel of
PFlow. The validation is based on experimental test of sloshing water in moving
tanks. Special emphasis is put on the validation of the pressure values. The
PFlow code was used for all the computations.
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Abstract 

Sloshing for low filling level resonant pitch motion is 
studied experimentally and numerically using SPH. Spe-
cial attention is paid to the pressure fields on the tanks. 
Comparisons are made with experimental data and with 
Particle Finite Element Method (PFEM) calculations. 
 
1 Introduction 

Extensive experimental programs aimed at a better 
comprehension of the sloshing loads have been con-
ducted for the last 30 years (refs. [1] and [2]). The rea-
son for this interest lies mainly in the influence of these 
loads in the design and operation of LNG tankers. CFD 
technologies are helping in the understanding of these 
loads, usually tracing the free surface evolution by 
VOF techniques [4], but to date, it is difficult for these 
techniques to model fragmentation and compressibility 
effects, which are crucial during the impact. Meshless 
methods like Smoothed Particle Hydrodynamics (SPH) 
[5] can be especially appropriate when modelling the 
highly non linear free surface flows with impact and 
fragmentation that appear in violent sloshing flows. 
This short paper focuses on the assessment of these lo-
cal loads, following a previous one from the same 
group [7], in which global loads were successfully re-
produced. SPH results are compared with experiments 
and with monophasic Particle Finite Element Method 
(PFEM) results [3] for the same case. 
 
2 Experimental Results 

The case studied is a 2D longitudinal section of a 
tank that belongs to a 138 000 m3 LNG membrane tanker 
in operation, at scale 1:50. Model dimensions are 90 x 58 

x 5 cm and water depth is 9.3 cm (depth ratio ≈ 0.1). The 
tank is excited with a sinusoidal type motion (θmax = 4º) 
whose period matches the first sloshing period T0 = 1.9s. 

 
The flow is composed by a main wave, travelling 

from one side of the tank to the other, forming a plung-
ing-type breaker at half way that impacts on the struc-
ture. The dissipation due to breaking is high and the ex-
periments demonstrate that the water motion in the tank 
is qualitatively periodic, including the breaking process. 

 
Figure 1 shows the angle and pressure time series. In 

the following, the angle is made non-dimensional with 
θmax, the time with T0 and the pressure with the hydro-
static one. The pressure sensor is located at the unper-
turbed free-surface height. The pressure register is quali-
tatively repetitive at each cycle. However, the maximum 
value of the pressure is not equal in each cycle. These 
peaks result from the impact of the wave on the tank, 
presenting a random behavior. This can be explained by 
the very short duration of the impact and the extreme 
sensitivity of the impact pressure to the shape of the 
wave just before impact. Other physical parameters, such 
as the compressibility of the air and water mixture as 
well as the ullage pressure, have also a very important 
effect (refs. [1] and [2]) and are very difficult to model 

A zoom of the time series over one impact event is 
shown in figure 2. Frames F1 to F6 have been located on 
the pressure curve representing the most interesting in-
stants regarding the pressure history. Pressure register 
and videos demonstrate this process to be qualitatively 
repetitive 

 

 

 

 



 

Figure 1: Experimental angle and pressure versus time (non-dimensional values) 
 
3 Simulations 

A standard SPH formulation has been used for the 
simulation [5]. Free slip boundary conditions have been 
imposed with boundary particles [5]. In order to calcu-
late the pressure at the sensor position, the forces exerted 
by all the boundary particles within a distance h to the 
center of the sensor have been averaged, h being the 
smoothing length. The standard viscosity term is used 
with α=0.02. Numerical integration has been performed 
with a leap-frog scheme. 

Simulations have been performed with 5 different 
resolutions: 3043, 4928, 8970, 12924 and 20205 fluid 
particles. Figure 3 presents the pressure time series for 
three resolutions. The graph shows that the trends in the 
experimental curve are qualitatively reproduced with 
SPH. However, numerical instabilities appear that need 
further study. 

PFEM results for the same case are presented in fig-
ure 4. The shape of the pressure curve is qualitatively re-
produced too. PFEM results present numerical instabili-
ties of greater amplitude and frequency. Pressure 
maxima at the impact are greater and this can be ex-

plained by the incompressibility of the fluid, imposed 
when using PFEM. 

The compressibility of the fluid plays an important 
role in the impact phenomena [2]. This has been investi-
gated performing SPH simulations with different nu-
merical sound speeds. Sound speed is typically chosen 
such that the Mach number is 0.01. SPH simulations 
have been performed using sound speeds 10, 20, 30 and 
40 m/s but the variations found in the values of the pres-
sure peaks were not significant. 

It has been demonstrated [6] that the impulse given 
by a wave is a more useful information than the pressure 
in assessing its impact. The pressure impulse (integral of 
the pressure through the impact) can be calculated from 
the pressure time series and compared with the experi-
ments (figure 5). After the third cycle, the variations of 
the impulse are small and it can be noticed that both SPH 
and PFEM overestimate the experimental value. The bi-
phasic nature of the impact could explain the lower ex-
perimental values but further investigation has to be 
done. 

 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 Figure 2: Experimental register above one impact event with the corresponding frame 
 
 

 

 

 
 
 
 
 
 
 
 
 
 Figure 3: Non-dimensional pressure over one impact event. SPH results 
   

 

 



 

The global dynamics of the flow, including breaking 
waves, is well reproduced by both methods. Figure 6, for 
instance, presents the frames of figure 2 obtained with 
SPH, showing good agreement, even after more than 
eight cycles. 

4 Conclusions 
Numerical computations of long impact pressure se-

quences for a 2D low filling sloshing case have been per-
formed both with SPH and PFEM codes. Good agree-
ment has been found in the general dynamics but un-
physical oscillations in the time series of the pressure 
appear for both methods. Pressure impulse has been 
compared and reasonable but overestimated values have 
been found, regardless of the resolution and of the SPH 
numerical sound speed. So far, the influence of the gas 
phase on the pressure history has not been assessed with 
enough quality to discriminate the origin of the numeri-
cal errors. Further work has yet to be done. 
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Paper 4

This paper, published in 2009, consists on another validation of the �uid kernel
of PFlow. The validation is based on experimental test of water waves in a
�ume. In this case, the emphasis is put on the tracking of the free surface. The
PFlow code was used for all the computations.
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ABSTRACT   

OLIVEIRA, T.C.A., GIRONELLA, F.X., SANCHEZ-ARCILLA, A., SIERRA, J.P. and CELIGUETA, M.A., 2009. 
Nonlinear regular wave generation in numerical and physical flumes. Journal of Coastal Research, SI 56 
(Proceedings of the 10th International Coastal Symposium), 1025 – 1029. Lisbon, Portugal, ISSN 0749-0258. 

The generation of nonlinear regular waves in a numerical wave flume using first-order wavemaker theory is 
discussed comparing numerical results with free surface data from large scale physical tests (CIEM wave flume) 
and Stokes wave theories. A general formulation for the analysis of fluid-structure interaction problems is 
employed to simulate the numerical wave flume using the Particle Finite Element Method (PFEM). This method 
uses a Lagrangian description to model the motion of particles in both the fluid and the structure domains. With 
this work we can conclude that PFEM formulations simulate the generation of naturally-occurring nonlinear 
waves with different paddles types, for varied wave conditions and at different scales. Like in physical flumes if 
we use first-order wavemaker theory in numerical flumes unwanted nonlinearities can be found for some wave 
conditions.    

ADITIONAL INDEX WORDS: Particle Finite Element Method, first-order wavemaker theory, unwanted 
nonlinearities

 

INTRODUCTION 
Physical wave flumes have been widely applied in laboratory 

studies on hydraulic and stability behavior of coastal structures, 
beach profile evolution and other related costal phenomena 
involving waves. The wave generation is one of most important 
tasks in this kind of laboratory studies. 

The most common way to generate waves in physical flumes is 
through the movement of a paddle that is generally located at one 
of the ends of the flume. Of the several types of paddles used, we 
can identify as the most frequent the flap, piston and wedge types. 
They differ among themselves by the kind of movement executed 
and consequently, the imposed water boundary condition and the 
necessary mechanisms to control their movements. 

An analytical solution for waves generated by piston and flap 
wavemakers based on linear wave theory was derived by 
HAVELOCK (1929). The first order wavemaker theory for a piston 
was experimentally verified by URSELL et al. (1960) and FLICK 
and GUZA (1980). HUDSPETH et al. (1981) did an experimental 
verification for the flap first order wavemaker theory. Due to the 
difference in the type of movement, the velocity field in the area 
near the paddle changes depending on the type of paddle used. If 
we compare the form of the velocity profiles generated by the 
three most common paddles near the wavemaker with the profiles 
according to linear theory, we can conclude that each paddle 
reproduces different conditions. Thus, for a flap we have profiles 
that are similar to deep water wave conditions, for piston shallow 
water wave conditions (DEAN AND DALRYMPLE, 1992) and for 
wedge intermediate water wave conditions (GIRONELLA, 2004). 
The maximum wave heights generated by a paddle depend on the 
wave period, the water depth in front of the paddle, and the power 
of the actuator. The firsts two are related with wave breaking and 

the third with the maximum paddle stroke and velocity allowed 
(GIRONELLA, 2004).  

In the last years numerical waves flumes begun to be considered 
as a possible tool to support the design of vertical breackwaters 
(OUMERACI et al., 2001), the design of low crested structures 
(HAWKINS et al., 2007) and the overtopping calculation 
(Overtopping Manual, 2007). 

The numerical wave flumes presented in the scientific literature 
can be grouped in several ways. One simple way is to divide them 
into two groups, one based on Non Linear Shallow Water 
(NLSW) equations and another one based on the Navier Stokes 
equations.  

Examples of numerical waves flumes based on NLSW can be 
found in VAN GENT (1994), DODD (1998) and HU et al. (2000). 

Numerical wave flumes based on the Navier-Stokes equations 
are in most cases controlled by two techniques: i) Volume of Fluid 
(VOF) described the first time by HIRT and NICHOLS (1981) and 
ii) Smooth Particle Hydrodynamics (SPH) technique developed at 
the end of the 70s in the astrophysics community by GINGOLD and 
MONAGHAN (1977).  

LEMOS (1990) developed a VOF numerical model for the study 
of the movement of two-dimensional waves. VAN GENT et al. 
(1994) presented a model that can simulate plunging waves 
breaking into porous structures using the VOF technique for 
solving (2D-V) Navier-Stokes equations for incompressible fluids. 
LIN and LIU (1998) described the development of the COBRA 
numerical model to study the evolution of groups of waves, 
shoaling and breaking in Swash zone. LARA et al. (2006) show the 
ability of the COBRA model to simulate the interaction of 
irregular waves with permeable slope structures. 

The SPH application to Coastal Engineering began at the end of 
the 90's (MONAGHAN AND KOS, 1999). DALRYMPLE and ROGERS 
(2006) studied the plunging wave type breaking using a model 
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based on SPH method. SHAO et al. (2006) presented an 
incompressible SPH model to investigate overtopping in coastal 
structures. 

The Moving Particle Semi-implicit (MPS) method proposed by 
KOSHIZUKA et al. (1995) and the Particle Finite Element Method 
(PFME) revised in OÑATE et al. (2004) are other two less common 
methods based on Navier Stokes equations and used as numerical 
wave flumes (KOSHIZUKA et al. 1998 and OLIVEIRA et al. 2007). 

In numerical wave flumes based on non fixed mesh methods as 
SPH, MPS and PFEM the generation of waves by means of 
different wavemaker types is possible. In these cases the 
wavemakers can be simulated by means of solid bodies located at 
one end of the flume and moving according to the transfer 
functions, the same ones used in physical flumes to determine the 
paddle movement. The selection of the paddle type could be based 
on the wave condition required and contrary to physical flumes the 
channel dimensions, the stroke and actuator velocity is not a 
limitation in the maximum generated wave height.  

Within this context, the main aim of this paper is to study and 
compare the nonlinear regular wave generation in a numerical 
wave flume based on the PFEM formulation and using the same 
first order wavemaker theory that is used in physical flumes to 
generate waves.  

PARTICLE FINITE ELEMENT METHOD  
The PFEM is a well Know method in literature (OÑATE et al., 

2004). However, some important key features of the PFEM are 
presented in this paper. 

The PFEM is a particular class of Lagrangian flow formulation 
developed at the International Center for Numerical Methods in 
Engineering (CIMNE) in Barcelona to solve free surface flow 
problems involving large motions of the free surface, as well as 
the interaction with rigid bodies. 

The PFEM treats the mesh nodes in the fluid and solid domains 
as particles which can freely move and even separate from the 
main fluid domain representing, for instance, the effect of water 
drops or melted zones. The finite element method (FEM) is used 
to solve the continuum equations in both domains. Hence a mesh 
discretizing these domains must be generated in order to solve the 
governing equations for the fluid, in the standard FEM fashion. To 
do this, the nodes discretizing the fluid and solid domains are 
treated as material particles whose motion is tracked during the 
transient solution.  

In the PFEM the motion of the individual particles are followed 
using a Lagrangian description and, consequently, nodes in a finite 
element mesh can be viewed as moving particles. Hence, the 
motion of the mesh discretizing the total domain (including both 
the fluid and solid parts) is followed during the transient solution. 

An obvious advantage of the Lagrangian formulation used in 
the PFEM is that the convective terms disappear from the fluid 
and energy equations. The difficulty is however transferred to the 
problem of adequately (and efficiently) moving the mesh nodes. 
Indeed for large mesh motions remeshing may be a frequent 
necessity along the time solution. An innovative mesh 
regeneration procedure is used, based on the well known 
Delaunay Tessellation (IDELSOHN et al., 2003).  

It must be noted that the information in the PFEM is typically 
nodal-based, i.e. the element mesh is mainly used to obtain the 
values of the state variables (i.e. velocities, pressure, viscosity, 
etc.) at the nodes. A difficulty arises in the identification of the 
boundary of the domain from a given collection of nodes. Indeed 
the boundary can include the free surface in the fluid and the 
individual particles moving outside the fluid domain. The Alpha 

Shape technique is used to identify the boundary nodes (IDELSOHN 
et al., 2003). 

In the PFEM both the fluid and the solid domains are modelled 
using an updated Lagrangian description of the motion. That is, all 
variables in the fluid and solid domains are assumed to be known 
in the current configuration at time t. The new set of variables in 
both domains is sought for in the next or updated configuration at 
the next time step.  

NONLINEAR WAVE GENERATION  
In the following two points the validation of naturally-occurring 

nonlinearities in wave generation is made comparing free surface 
data from a numerical flume with experimental data and with 
theoretical free surface profiles given by Stokes Wave theories.   

Then, scale effects in wave generation are analyzed comparing 
data from three different scale numerical flumes. 

Finally, an example of unwanted nonlinearities generated in a 
numerical flume using first-order wavemaker theory is presented. 

Comparison with experimental data  
The experiments were carried out at the Maritime, Experimental 

and Research Flume (CIEM, Canal d’Investigació I 
Experimentació Marítima) of the Maritime Engineering 
Laboratory (LIM, Laboratori d’Enginyeria Marítima) of the 
Technical University of Catalonia (UPC, Universitat Politecnica 
de Catalunya). The flume is 100m long, 3m wide and 5m deep. 
Due to its dimensions the CIEM flume is an excellent tool for 
scaled tests and analyses close to reality allowing a reduction of 
scale effects inherent to all scaled experiments. Controlled wave 
generation is achieved by a wedge-type wave paddle, particularly 
suited for intermediate depth waves. 

The experimental set-up is presented in Figure 1. A rigid bottom 
was used across the flume and a dissipative rock beach was 
constructed at the right end side. A constant 2.62m water depth 
zone in front of the paddle has been separated from a second 
1.50m constant water depth zone by a 1V:9.3H follow by a 
1V:36.2H slopes. Six resistence wave gauges (WG) were used to 
measure the free surface elevation. Their positions are represented 
in Figure 1. A positional sensor was used to measure the paddle 
movement. Twenty two regular wave cases were tested for 
different wave heights (0.1m<H<0.6m) and wave periods 
(0.5s<T<4.0s).  

The firsts 100s of experiments were simulated using PFEM for 
the three cases denoted in this work as case 1 (H=0.182m, 
T=3.0s), case 2 (H=0.351, T=4.0s) and case 3 (H=0.546m, 
T=3.0s). The maximum time step used during the simulations was 
0.01s and the nodes distance 0.10m corresponding to 14045 initial 
nodes.  

The free surface for case 3 at 58s of simulation is presented at 
Figure1. The waves were generated reproducing the paddle 
movement recorded by the positional sensor used during the 
physical experiments. 

Figure 1. Experimental set-up and numerical flume for H=0.546m 
T=3.0s (case 3) after 58s of simulation 
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The paddle was simulated as a vertical solid wall moving 

through a 30 degrees inclined plane according with CIEM 
wavemaker system layout.  

The free experimental water surface obtained experimentally at 
WG0 (see Figure 1) is compared with numerical results for case 1, 
2 and 3 in Figure 2 where the dashed line represents physical data 
and the dot line numerical results.  

Comparison with Stokes Waves Theory  
A numerical prototype scale flume with a 15m constant water 

depth with 250m length and with a dissipative beach of 250m 
length was simulated with PFEM. Four regular wave cases, called 
here case A (H=0.20m, T=6.93s), case B (H=1.25m, T=6.93s), 
case C (H=5.00m, T=6.93s) and case D (H=7.00m, T=6.93s) were 
generated using a numerical piston paddle. The paddle movement 
was determined using the corresponding first order wavemaker 
theory.  

The maximum time step used during the simulations was 0.02s 
and the nodal distance 0.50m corresponding to 23078 initial 
nodes. A snapshot of the four cases is presented in Figure 3 after 

58s of simulation. 
The comparison between the free surface given by the smallest 

order wave theory applicable to wave conditions tested according 
LE MÉHAUTÉ (1976) and the numerical results obtained at 50m far 
from the paddle is presented in Figure 4 for all cases. For case A 
the 1st order Stokes theory is applicable, for case B the 2nd order, 
case C with the 3rd order, and case D with 5th order. 

Scale effects analysis  
A regular wave of H=0.75m and T=6.93s was generated in the 

prototype scale numerical wave flume presented above. This 
situation was repeated in a 1:5 large scale numerical flume and in 
a 1:30 small scale numerical flume, with corresponding regular 
waves of H= 0.15m, T=3.10s and H=0.025m, T=1.27s.             

Table 1 summarizes the three flume dimensions and the 
numerical features used in each scale.   

 
Table 1: Numerical features and flume dimensions. 

Scale Mesh size 
(m) 

Time 
step (s) 

Depth 
(m) 

Flume 
length (m) 

1:1 0.50 0.020 15.0 500.0 
1:5 0.10 0.009 3.0 100.0 
1:30 0.02 0.004 0.5 16.6 

Figure 2. Comparison between physical and numerical free surface 
at WG0; case 1 (H=0.182m, T=3.0s), case 2 (H=0.351, T=4.0s) and 
case 3 (H=0.546m, T=3.0s)  

Figure 3. Snapshot for case A, B, C and D (order from top to 
bottom), 58s after the beginning of simulation 

Figure 4.  Comparison between numerical and Stokes wave theory 
for case A (H=0.20m, T=6.93s), case B (H=1.25m, T=6.93s), case 
C (H=5.00m, T=6.93s) and case D ( H=7.00m, T=6.93s) 

1027



 

Journal of Coastal Research, Special Issue 56, 2009 

Nonlinear Regular Wave Generation in numerical and physical flumes 

The paddle movement in the three scales was generated using 
the first order wavemaker theory for a piston paddle type. In 
Figure 5 the free surface obtained at small, large and prototype 
scale at 1.67m, 10m and 50m respectively in front of paddle is 
presented and compared with the free surface given by second 
order Stokes wave theory.   

Unwanted nonlinearities generation 
A regular wave of H=5.00m and T=13.0s was generated in the 

prototype scale numerical wave flume presented above. A piston 
paddle type was used to generate the wave and its movement was 
calculated using the first order wavemaker theory. The maximum 
time step used during the simulations was 0.02s and the nodes 
distance 0.50m corresponding to 23078 initial nodes.  

The free surface obtained at 50m, 100m, and 150m far from the 
paddle is presented in Figure 6. 

DISCUSSION 
As it is seen in Figure 2 the numerical free surface results are in 

a good agreement with physical data. The wave height, wave 
period and wave shape are well reproduced by the numerical 
model in the three cases. However, in maximum steepness wave 
cases (case 3) differences up to 0.05m at the wave crest are found. 
Differences between the three cases in wave shape due to 
nonlinear effects are reproduced with numerical and physical 
models. 

Analyzing Figure 4 it is possible to see that for case A and B the 
wave shapes obtained with PFEM agree well with the wave shapes 
proposed by the Stokes wave theories. Increasing wave height and 

consequently wave steepness some differences can be found (case 
C and D). 

For case C the wave height generated is 0.20m less than the 
theoretical wave height being the largest differences at the wave 
crests. For case D at the wave crest the free surface is steeper for 
numerical results than in theory. As we can expect is possible to 
see also differences induced by nonlinear effects in wave shapes 
for all four cases.       

Observing Figure 5 we can see that the numerical results for the 
three scales studied are in good agreement with 2nd Stokes wave 
theory. The free surface in the three scaled numerical flumes is 
qualitative equivalent. At the three cases the first arriving wave is 
smaller than expected and the second one hasn’t the imposed 
period. This characteristic can be considered as transient waves 
due to wavemaker movement start effect.           

As is possible to see in numerical free surface presented in 
Figure 6 a second crest is generated also by the paddle. The 
second crest position in the wave profile is not the same one at 
different distances from the paddle. This means that the second 
crest travels at a velocity different from that of the principal wave.     

CONCLUSIONS 
With the capacity of PFEM to simulate solid-fluid interactions 

the generation of linear and nonlinear regular waves by means of 
different paddles types is possible.    

Based on results here presented, with the PFEM formulation it 
is possible to simulate and to obtain the same waves generated in 
physical flumes reproducing the recorded physical paddle 
movement in the numerical paddle. By this way the real paddle 
performance can be imposed in the numerical paddle. This is an 
advantaged in front of others numerical flumes that can’t add the 
“imperfections” in the real wavemaker systems. 

Figure 5. Comparison between numerical results and 2nd order 
Stokes theory for small scale (H=0.025m, T=1.27s), large scale 
(H=0.15m, T=3.10s) and prototype scale (H=0.75m, T=6.93s)    

 

 

Figure 6. Numerical free surface  at 50m, 100m and 150m far 
from the paddle (H=5m; T=13s)  
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The capacity of PFEM to simulate a large motion of the free 
surface allows the reproduction of very steep waves.  

The first-order wavemaker theory used in physical flumes for 
different paddle types can be used in PFEM to generate a bigger 
range of wave conditions.  

Generation of waves at different scales, including prototype 
dimensions can be reproduced with this numerical facility.    

Like in physical flumes transient waves appear in PFEM 
numerical flume and should be taken into account in numerical 
wave studies.   

The unwanted nonlinearities presents in laboratories with first-
order wavemaker performance also occur in PFEM numerical 
flume.   

PFEM numerical wave flume is a possible tool to find the range 
of applicability of first order wavemaker theory without the 
generation of unwanted nonlinearities. 

Higher order wavemaker theories can be a possible solution to 
avoid the generation of unwanted wave nonlinearities in numerical 
flumes. The second-order wavemaker theories being used 
successfully at some physical flumes can be tested in numerical 
flumes based on the PFEM formulation.  
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Abstract We present some developments in the Par-
ticle Finite Element Method (PFEM) for analysis of

complex coupled problems in mechanics involving fluid-

soil-structure interaction (FSSI). The PFEM uses an

updated Lagrangian description to model the motion

of nodes (particles) in both the fluid and the solid do-
mains (the later including soil/rock and structures). A

mesh connects the particles (nodes) defining the dis-

cretized domain where the governing equations for each

of the constituent materials are solved as in the stan-
dard FEM. The stabilization for dealing with an incom-

pressibility continuum is introduced via the finite cal-

culus (FIC) method. An incremental iterative scheme

for the solution of the non linear transient coupled FSSI

problem is described. The procedure to model frictional
contact conditions and material erosion at fluid-solid

and solid-solid interfaces is described. We present sev-

eral examples of application of the PFEM to solve FSSI

problems such as the motion of rocks by water streams,
the erosion of a river bed adjacent to a bridge founda-

tion, the stability of breakwaters and constructions sea

waves and the study of landslides.
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1 Introduction

The analysis of problems involving the interaction of

fluids, soil/rocks and structures is of relevance in many
areas of engineering. Examples are common in the study

of landslides and their effect on reservoirs and adja-

cent structures, off-shore and harbour structures under

large waves, constructions hit by floods and tsunamis,
soil erosion and stability of rock-fill dams in overspill

situations, etc.

These studies can be considered as an extension of

the so-called fluid-structure interaction (FSI) problems

[46]. Typical difficulties of FSI analysis in free surface

flows using the FEM both the Eulerian or ALE for-
mulation include the treatment of the convective terms

and the incompressibility constraint in the fluid equa-

tions, the modelling and tracking of the free surface in

the fluid, the transfer of information between the fluid
and the moving solid domains via the contact interfaces,

the modeling of wave splashing, the possibility to deal

with large motions of multi-bodies within the fluid do-

main, the efficient updating of the finite element meshes

for both the structure and the fluid, etc. Examples of
3D analysis of FSI problems using ALE and space-time

FEM are reported in [4,6,26,27,31,34,40].

Most of the above problems disappear if a Lagrangian

description is used to formulate the governing equations

of both the solid and the fluid domains. In the La-
grangian formulation the motion of the individual par-

ticles are followed and, consequently, nodes in a finite

element mesh can be viewed as moving material points

(hereforth called “particles”). Hence, the motion of the
mesh discretizing the total domain (including both the

fluid and solid parts) is followed during the transient

solution.



2 Eugenio Oñate et al.

A powerful Lagrangian method for FSI analysis is

the so-called Soboran Grid CIP technique, which has

been successfully applied to different class of 3D prob-

lems [44].

The authors have successfully developed in previ-

ous works a particular class of Lagrangian formula-

tion for solving problems involving complex interactions
between (free surface fluids) and solids. The method,

called the particle finite element method (PFEM,

www.cimne.com/pfem), treats the mesh nodes in the

fluid and solid domains as particles which can freely

move and even separate from the main fluid domain
representing, for instance, the effect of water drops. A

mesh connects the nodes discretizing the domain where

the governing equations are solved using a stabilized

FEM.

An advantage of the Lagrangian formulation is that

the convective terms disappear from the fluid equa-

tions [11,48]. The difficulty is however transferred to
the problem of adequately (and efficiently) moving the

mesh nodes. We use a mesh regeneration procedure

blending elements of different shapes using an extended

Delaunay tesselation with special shape functions [17,

19]. The theory and applications of the PFEM are re-
ported in [2,7,10,18,20,21,23,26,32,34–39].

The FEM solution of (incompressible) fluid flow prob-

lem implies solving the momentum and incompressibil-
ity equations. This is not a simple problem as the in-

compressibility condition limits the choice of the FE ap-

proximations for the velocity and pressure to overcome

the well known div-stability condition [11,48]. In our
work we use a stabilized mixed FEM based on the Finite

Calculus (FIC) approach which allows for a linear ap-

proximation for the velocity and pressure variables [15,

29–31,33,34]. Among the other stabilized FEM with

similar features we mention the PSPG method [41],
multiscale methods [3,6,8,9] and the CBS method [9,

48].

The aim of this paper is to describe recent advances

of the PFEM for fluid-soil-structure interaction (FSSI)

problems. These problems are of relevance in many ar-

eas of civil, hydraulic, marine and environmental en-

gineering, among others. It is shown that the PFEM
provides a general analysis methodology for treat such

complex problems in a simple and efficient manner.

The layout of the paper is the following. In the next
section the key ideas of the PFEM are outlined. Next

the basic equations for a compressible/incompressible

continuum using a Lagrangian description and the FIC

formulation are schematically presented. Then an al-
gorithm for the transient solution is briefly described.

The treatment of the coupled FSSI problem and the

methods for mesh generation and for identification of

the free surface nodes are outlined. The procedure for

treating the frictional contact interaction between fluid,

soil and structure interfaces is explained. We present

several examples of application of the PFEM to solve

FSSI problems such as the motion of rocks by water
streams, the erosion of a river bed adjacent to a bridge

foundation, the stability of breakwaters and construc-

tions under sea waves and the study of landslides falling

into reservoirs.

2 The basis of the particle finite element

method

Let us consider a domain containing both fluid and solid

subdomains (the solid subdomain may include soil/rock

materials and/or structural elements). The moving fluid

particles interact with the solid boundaries thereby in-
ducing the deformation of the solid which in turn affects

the flow motion and, therefore, the problem is fully cou-

pled.

In the PFEM both the fluid and the solid domains

are modelled using an updated Lagrangian formulation

[47]. That is, all variables are assumed to be known

in the current configuration at time t. The new set of

variables in both domains are sought for in the next or
updated configuration at time t+∆t. The finite element

method (FEM) is used to solve the equations of con-

tinuum mechanics for each of the subdomains. Hence a

mesh discretizing these domains must be generated in
order to solve the governing equations for each subdo-

main in the standard FEM fashion.

The quality of the numerical solution depends on
the discretization chosen as in the standard FEM. Adap-

tive mesh refinement techniques can be used to improve

the solution in zones where large motions of the fluid

or the structure occur.

2.1 Basic steps of the PFEM

For clarity purposes we will define the collection or

cloud of nodes (C) pertaining to the fluid and solid do-
mains, the volume (V) defining the analysis domain for

the fluid and the solid and the mesh (M) discretizing

both domains.

A typical solution with the PFEM involves the fol-

lowing steps.

1. The starting point at each time step is the cloud of

points in the fluid and solid domains. For instance
nC denotes the cloud at time t = tn (Figure 1).

2. Identify the boundaries for both the fluid and solid

domains defining the analysis domain nV in the
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Fig. 1 Sequence of steps to update a “cloud” of nodes representing a domain containing a fluid and a solid part from time n
(t = tn) to time n + 2 (t = tn + 2∆t)

fluid and the solid. This is an essential step as some

boundaries (such as the free surface in fluids) may

be severely distorted during the solution, includ-

ing separation and re-entering of nodes. The Alpha
Shape method [12] is used for the boundary defini-

tion.

3. Discretize the fluid and solid domains with a finite

element mesh nM . In our work we use an innova-

tive mesh generation scheme based on the extended
Delaunay tesselation [17,19,20].

4. Solve the coupled Lagrangian equations of motion

for the fluid and the solid domains. Compute the

state variables in both domains at the next (up-
dated) configuration for t+∆t: velocities, pressure

and viscous stresses in the fluid and displacements,

stresses and strains in the solid.

5. Move the mesh nodes to a new position n+1C where

n+1 denotes the time tn+∆t, in terms of the time
increment size. This step is typically a consequence

of the solution process of step 4.

6. Go back to step 1 and repeat the solution process

for the next time step to obtain n+2C (Figure 1).

3 FIC/FEM formulation for a Lagrangian

continuum

3.1 Governing equations

The equations to be solved are the standard ones in
continuum mechanics, written in the Lagrangian frame

of reference:

Momentum

ρ
∂vi
∂t

=
∂σij

∂xj
+ bi in V (1)

Pressure-velocity relationship

1

K

∂p

∂t
− ∂vi

∂xi
= 0 in V (2)

In above equations vi is the velocity along the ith

global (cartesian) axis, p is the pressure (assumed to be
positive in compression) ρ and K are the density and

bulk modulus of the material, respectively, bi and σij

are the body forces and the (Cauchy) stresses. Eqs.(1)

and (2) are completed with the constitutive relation-

ships:

Incompressible continuum

t+1σij = 2µε̇ij − t+1pδij (3)
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Compressible/quasi-incompressible continuum

t+1sij =
tσ̂ij + 2µε̇ij + λε̇iiδij (4a)

where σ̂ij are the component of the stress tensor [σ̂]

[σ̂] =
1

J
FTSF (4b)

where S is the second Piola-Kirchhoff stress tensor, F

is the deformation gradient tensor and J = detF [22,
47]. Parameters µ and λ take the following values for a

fluid or solid material:

Fluid: µ: viscosity; λ = ∆tK − 2µ
3

Solid: µ =
∆tG

J
; λ =

2Gν∆t

J(1− 2ν)
, where ν is the Pois-

son ration, G is the shear modulus and ∆t the time
increment.

In Eqs.(3) and (4), sij are the deviatoric stresses,

ε̇ij is the rate of deformation, µ is the viscosity and δij
is the Kronecker delta. t(·) denotes values at time t.

Indexes in Eqs.(1)–(4) range from i, j = 1, nd, where
nd is the number of space dimensions of the problem

(i.e. nd = 2 for 2D problems). These equations are

completed with the standard boundary conditions of

prescribed velocities and surface tractions in the me-
chanical problem [11,36,47,48].

3.2 Discretization of the equations

A key problem in the numerical solution of Eqs.(1)–

(4) is the satisfaction of the mass balance condition

for the incompressible case (i.e. K = ∞ in Eq.(2)).

A number of procedures to solve his problem exist in
the finite element literature [11,48]. In our approach

we use a stabilized formulation based in the so-called

finite calculus procedure [15,29–31,33,34]. The essence

of this method is the solution of a modified mass balance
equation which is written as

1

K

∂p

∂t
− ∂vi

∂xi
−

3∑

i=1

τ
∂q

∂xi

[
∂p

∂xi
+ πi

]
= 0 (5)

where q are weighting functions, τ is a stabilization pa-

rameter given by [34]

τ =

(
2ρ|v|
h

+
8µ

3h2

)−1

(6)

In the above, h is a characteristic length of each
finite element and |v| is the modulus of the velocity

vector. In Eq.(5) πi are auxiliary pressure projection

variables chosen so as to ensure that the second term in

Eq.(5) can be interpreted as weighted sum of the resid-

uals of the momentum equations and therefore it van-

ishes for the exact solution. The set of governing equa-

tions is completed by adding the following constraint

equation [32,36]

∫

V

τwi

(
∂p

∂xi
+ πi

)
dV = 0 i = 1, nd (no sum in )i

(7)

where wi are arbitrary weighting functions.

The rest of the integral equations are obtained by

applying the standard weighted residual technique to
the governing equations (1), (2), (3) and (5) and the

corresponding boundary conditions [11,22,48].

We interpolate next in the standard finite element

fashion the set of problem variables. For 3D problems
these are the three velocities vi, the pressure p, the tem-

perature T and the three pressure gradient projections

πi. In our work we use equal order linear interpola-

tion for all variables over meshes of 3-noded triangles

(in 2D) and 4-noded tetrahedra (in 3D). The resulting
set of discretized equations using the standard Galerkin

technique has the following form

Momentum

M ˙̄v +Kv̄ −Gp̄ = f (8)

Pressure-velocity relationship

M̄ ˙̄p−Gv̄ − Lp̄−Qπ̄πππππππππππππ = 0 (9)

Pressure gradient projection

M̂π̄πππππππππππππ +QT p̄ = 0 (10)

In Eqs.(8)–(10) (̄·) denotes nodal variables, ˙̄(·) =
∂
∂t (̄·). The different matrices and vectors are given in

[22,34,36].

The solution in time of Eqs.(8)–(10) can be per-
formed using any time integration scheme typical of the

updated Lagrangian FEM [36,47]. A basic algorithm

following the conceptual process described in Section 2

is presented in Box I.

4 Generation of a new mesh

One of the key points for the success of the PFEM is the

fast regeneration of a mesh at every time step on the

basis of the position of the nodes in the space domain.

Indeed, any fast meshing algorithm can be used for this
purpose. In our work the mesh is generated at each time

step using the so called extended Delaunay tesselation

(EDT) presented in [17,19].
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Box I. Basic PFEM algorithm for a Lagrangian continuum

1. LOOP OVER TIME STEPS, t = 1, NTIME
Known values
tx̄, tv̄, tp̄, tπ̄πππππππππππππ, tT̄ , tµ, tf , tq, tC, tV, tM

2. LOOP OVER NUMBER OF ITERATIONS, i = 1,
NITER

• Compute nodal velocities by solving Eq.(8)
[

1

∆t
M+K

]
t+1v̄i+1 = t+1f +Gt+1p̄i +

1

∆t
Mtv̄

• Compute nodal pressures from Eq.(9)
[

1

∆t
− LM̄

]
t+1p̄i+1 = GT t+1v̄i+1 +Qt+1π̄πππππππππππππi +

1

∆t
M̄tp̄

• Compute nodal pressure gradient projections from
Eq.(10)

n+1π̄πππππππππππππi+1 = −M̂−1
D

[
QT

]
t+1p̄i+1 , M̂D = diag

[
M̂D

]

• Update position of analysis domain nodes:

t+∆tx̄i+1 = txi + t+∆tvi+1∆t

Define new “cloud” of nodes t+1Ci+1

• Update strain rate and strain values

• Update stress values

Check convergence → NO → Next iteration i → i+ 1

↓ YES

Next time step t → t + 1

• Identify new analysis domain boundary: t+1V

• Generate mesh:t+1M

Go to 1

The CPU time required for meshing grows linearly

with the number of nodes. The CPU time for solving the

equations exceeds that required for meshing as the num-

ber of nodes increases. This situation has been found in

all the problems solved with the PFEM. As a general
rule for large 3D problems meshing consumes around

15% of the total CPU time for each time step, while the

solution of the equations (with typically 3 iterations to

reach convergence within a time step) and the assem-
bling of the system consume approximately 70% and

15% of the CPU time for each time step, respectively.

These figures refer to solutions obtained in a standard

single processor Pentium IV PC for all the computa-

tions and prove that the generation of the mesh has an
acceptable cost in the PFEM. The cost of remeshing

is similar to that reported in [24]. Indeed considerable

speed can be gained using parallel computation tech-

niques.

5 Identification of boundary surfaces

One of the main tasks in the PFEM is the correct def-

inition of the boundary domain. Boundary nodes are

sometimes explicitly identified. In other cases, the total

set of nodes is the only information available and the

algorithm must recognize the boundary nodes.

In our work we use an extended Delaunay parti-

tion for recognizing boundary nodes [19]. Considering

that the nodes follow a variable h(x) distribution, where

h(x) is typically the minimum distance between two

nodes.All nodes on an empty sphere with a radius greater
than αh, are considered as boundary nodes. In practice

α is a parameter close to, but greater than one. Values

of α ranging between 1.3 and 1.5 have been found to

be optimal in all examples analyzed. This criterion is
coincident with the Alpha Shape concept [12].

Once a decision has been made concerning which

nodes are on the boundaries, the boundary surface is
defined by all the polyhedral surfaces (or polygons in

2D) having all their nodes on the boundary and belong-

ing to just one polyhedron.

The method described also allows one to identify

isolated fluid particles outside the main fluid domain.

These particles are treated as part of the external bound-

ary where the pressure is fixed to the atmospheric value.
We recall that each particle is a material point char-

acterized by the density of the solid or fluid domain

to which it belongs. The mass which is lost when a

boundary element is eliminated due to departure of a

node from the main analysis domain is again regained
when the “flying” node falls down and a new boundary

element is created by the Alpha Shape algorithm.

The boundary recognition method is also useful for
detecting contact conditions between the fluid domain

and a fixed boundary, as well as between different solids

interacting with each other as detailed in the next sec-

tion.

We emphasize that the main difference between the

PFEM and the classical FEM is just the remeshing

technique and the identification of the domain bound-
ary at each time step.

6 Treatment of contact conditions in the PFEM

6.1 Contact between the fluid and a fixed boundary

The condition of prescribed velocities at the fixed bound-

aries in the PFEM is applied in strong form to the
boundary nodes. These nodes might belong to fixed ex-

ternal boundaries or to moving boundaries linked to the

interacting solids. Contact between the fluid particles

and the fixed boundaries is accounted for by the in-
compressibility condition which naturally prevents the

fluid nodes to penetrate into the solid boundaries [32,

36].
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Fig. 2 Modelling of contact conditions at a solid-solid interface with the PFEM

6.2 Contact between solid-solid interfaces

The contact between two solid interfaces is simply treated
by introducing a layer of contact elements between the

two interacting solid interfaces. This layer is automat-

ically created during the mesh generation step by pre-

scribing a minimum distance (hc) between two solid

boundaries. If the distance exceeds the minimum value
(hc) then the generated elements are treated as fluid el-

ements. Otherwise the elements are treated as contact

elements where a relationship between the tangential

and normal forces and the corresponding displacement
is introduced (Figure 2).

This algorithm has proven to be very effective and

it allows to identifying and modeling complex frictional
contact conditions between two or more interacting bod-

ies moving in water in an extremely simple manner.

This algorithm can also be used effectively to model
frictional contact conditions between rigid or elastic

solids in structural mechanics applications [7,36].

7 Modeling of bed erosion

Prediction of bed erosion and sediment transport in

open channel flows are important tasks in many ar-

eas of river and environmental engineering. Bed erosion
can lead to instabilities of the river basin slopes. It can

also undermine the foundation of bridge piles thereby

favouring structural failure. Modeling of bed erosion is

also relevant for predicting the evolution of surface ma-
terial dragged in earth dams in overspill situations. Bed

erosion is one of the main causes of environmental dam-

age in floods.

Bed erosion models are traditionally based on a re-

lationship between the rate of erosion and the shear

stress level [25]. In a recent work we have proposed an
extension of the PFEM to model bed erosion [35,36].

The erosion model is based on the frictional work at the

bed surface originated by the shear stresses in the fluid.

The resulting erosion model resembles Archard law typ-
ically used for modeling abrasive wear in surfaces under

frictional contact conditions [1].

The algorithm for modeling the erosion of soil/rock

particles at the fluid bed is the following:

1. Compute at every point of the bed surface the resul-

tant tangential stress τ induced by the fluid motion.

In 3D problems τ = (τ2s + τt)
2 where τs and τt are

the tangential stresses in the plane defined by the

normal direction n at the bed node. The value of τ
for 2D problems can be estimated as follows:

τt = µγt with γt =
1

2

∂vt
∂n

=
vkt
2hk

(11)

where vkt is the modulus of the tangential velocity

at the node k and hk is a prescribed distance along

the normal of the bed node k. Typically hk is of
the order of magnitude of the smallest fluid element

adjacent to node k (Figure 3).

2. Compute the frictional work originated by the tan-

gential stresses at the bed surface as

Wf =

∫ t

◦
τtγt dt =

∫ t

◦

µ

4

(
vkt
hk

)2

dt (12)

Eq.(12) is integrated in time as

nWf = n−1Wf + τtγt ∆t (13)
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Fig. 3 Modeling of bed erosion with the PFEM by dragging of bed material

3. The onset of erosion at a bed point occurs when
nWf exceeds a critical threshold value Wc.

4. If nWf > Wc at a bed node, then the node is de-

tached from the bed region and it is allowed to move

with the fluid flow. As a consequence, the mass of
the patch of bed elements surrounding the bed node

vanishes in the bed domain and it is transferred to

the new fluid node. This mass is subsequently trans-

ported with the fluid.
5. Sediment deposition can be modeled by an inverse

process to that described in the previous step. Hence,

a suspended node adjacent to the bed surface with

a velocity below a threshold value is attached to the

bed surface.

Figure 3 shows an schematic view of the bed erosion

algorithm described.

8 Examples

8.1 Dragging of rocks by a water stream

Predicting the critical speed at which a rock will be

dragged by a water stream is of great importance in

many problems in hydraulic, harbour, civil and envi-
ronmental engineering.

The PFEM has been successfully applied to the

study of the motion of a 1Tn quasi-spherical rock due to

a water stream. The rock lays on a collection of rocks
that are kept rigid. Frictional conditions between the

analyzed rock and the rest of the rocks have been as-

sumed. Figure 4a shows that a water stream of 1m/s is

not able to displace the individual rock. An increase of
the water speed to 2m/s induces the motion of the rock

as shown in Figure 4b.

8.2 Impact of sea waves on piers and breakwaters

Figures 5 and 6 show the analysis of the effect of break-

ing waves on two different sites of a breakwater contain-

ing reinforced concrete blocks (each one of 4 × 4 mts).

The figures correspond to the study of Langosteira har-
bour in A Coruña, Spain using PFEM.

8.3 Soil erosion problems

Figure 7 shows the capacity of the PFEM for modelling
soil erosion, sediment transport and material deposition

in a river bed. The soil particles are first detached from

the bed surface under the action of the jet stream. Then

they are transported by the flow and eventually fall
down due to gravity forces into the bed surface at a

downstream point.

Figure 8 shows the progressive erosion of the un-

protected part of a breakwater slope in the Langosteira

harbour in A Coruña, Spain. The non protected up-

per shoulder zone is progressively eroded under the sea
waves.

Figure 9 displays the progressive erosion and drag-
ging of soil particles in a river bed adjacent to the foot

of bridge pile due to the water stream (water is not

shown in the figure). Note the disclosure of the bridge
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(a) Water speed of 1m/s. The individual rock can not
be dragged by the stream

(b) Water speed of 2m/s. The individual rock is
dragged by the stream

Fig. 4 Study of the drag of an individual rock of 1Tn under a water stream at speeds of (a) 1m/s and (b) 2m/s

Fig. 5 Breaking waves on breakwater slope containing reinforced concrete blocks. Mesh of 4-noded tetrahedra near the slope

Fig. 6 Study of breaking waves on the edge of a breakwater structure formed by reinforced concrete blocks

Fig. 7 Erosion, transport and deposition of soil particles at a river bed due to an impacting jet stream
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Fig. 8 Erosion of an unprotected shoulder of a breakwater
due to sea waves

Fig. 9 Erosion and dragging of soil particles in a river bed
adjacent to the foot of a bridge pile due to a water stream.
Water is not shown

foundation as the adjacent soil particles are removed

due to erosion.

Other applications of the PFEM to bed erosion prob-
lems can be found in [35,36].

8.4 Falling of a lorry into the sea by sea wave erosion

of the road slope

Figure 10 shows a representative example of the pro-

gressive erosion of a soil mass adjacent to the shore due
to sea waves and the subsequent falling into the sea of a

2D object representing the section of a lorry. The object

has been modeled as a rigid solid.

This example, although still quite simple and schematic,

shows the possibility of the PFEM for modeling com-

plex FSSI problems involving soil erosion, free surface

waves and rigid/deformable structures.

8.5 Simulation of landslides

The PFEM is particularly suited for modelling and sim-

ulation of landslides and their effect in the surrounding

structures. Figure 11 shows an schematic 2D simula-
tion of a landslide falling on two adjacent constructions.

The landslide material has been modelled as a viscous

incompressible fluid.

8.6 The landslide in Lituya Bay

A case of much interest is when the landslide occurs in
the vicinity of a reservoir [43]. The fall of debris mate-

rial into the reservoir typically induces large waves that

can overtop the dam originating an unexpected flood-

ing that can cause severe damage to the constructions

and population in the downstream area.

In the example, we present some results of the 3D
analysis of the landslide produced in Lituya Bay (Alaska)

on July 9th 1958 (Figure 12). The landslide was origi-

nated by an earthquake and movilized 90 millions tons

of rocks that fell on the bay originating a large wave
that reached a hight on the opposed slope of 524 mts.

Figure 13 shows images of the simulation of the

landslide with PFEM. The sliding mass has been mod-

elled as a quasi-incompressible continuum with a pre-

scribed shear modulus. No frictional effect between the
sliding mass and the underneath soil has been consid-

ered. Also the analysis has not taken into account the

erosion and dragging of soil material induced by the

landslide mass during motion.

PFEM results have been compared with observed
values of the maximum water level in the north hill

adjacent to the reservoir. The maximum water level in

this hill obtained with PFEM was 551 mts. This is 5%

higher than the value of 524 mts. observed experimental

by [13,14]. The maximum height location differs in 300
mts from the observed value [13,14]. In the south slope

the maximum water height observed was 208 mts, while

the PFEM result (not shown here) was 195 mts (6%

error).

More information on the PFEM solutions of this
example can be found in [38,39].

9 Conclusions

The particle finite element method (PFEM) is a promis-

ing numerical technique for solving fluid-soil-structure
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Fig. 10 Erosion of a soil mass due to sea waves and the subsequent falling into the sea of an adjacent lorry

Fig. 11 Landslide falling on two constructions 2D simulation using PFEM

Fig. 12 Lituya Bay landslide. Left: Geometry for the simulation. Right: Landslide direction and maximum wave level [13,14]
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Fig. 13 Lituya Bay landslide. Evolution of the landslide into the reservoir obtained with the PFEM. Maximum level of
generated wave (551 mts) in the north slope

interaction (FSSI) problems involving large motion of

fluid and solid particles, surface waves, water splash-

ing, frictional contact situations between fluid-solid and

solid-solid interfaces and bed erosion, among other com-

plex phenomena. The success of the PFEM lies in the
accurate and efficient solution of the equations of an in-

compressible continuum using an updated Lagrangian

formulation and a stabilized finite element method al-

lowing the use of low order elements with equal order
interpolation for all the variables. Other essential so-

lution ingredients are the efficient regeneration of the

finite element mesh, the identification of the boundary

nodes using the Alpha-Shape technique and the sim-

ple algorithm to treat frictional contact conditions and
erosion/wear at fluid-solid and solid-solid interfaces via

mesh generation. The examples presented have shown

the potential of the PFEM for solving a wide class of

practical FSSI problems in engineering.
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32. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004b) The
particle finite element method. An overview. Int. J. Com-
put. Methods 1(2):267–307
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This paper, published in 2014, extends the research published in the previous
paper ([6]) and adds the technology of particles transport in �uids introduced
in Section 5. The PFlow code was used for all the computations.
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Lagrangian analysis of multiscale particulate flows with the particle finite
element method

Eugenio Oñate · Miguel Angel Celigueta · Salvador
Latorre · Guillermo Casas · Riccardo Rossi · Jerzy Rojek

Abstract We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles
of different sizes. The numerical approach is based on the Particle Finite Element Method (PFEM) which blends
concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate
flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid
are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a
stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the
PFEM to several particulate flows problems are given.

Keywords Lagrangian analysis · Multiscale particulate flows · Particle finite element method

1 Introduction

The study of fluid flows containing particles of different sizes (hereafter called particulate flows) is relevant to many
areas of engineering and applied sciences. In this work we are concerned with particulate flows containing small to
large particles. This type of flows is typical in slurry flows originated by natural hazards such as floods, tsunamis
and landslides, as well as in many processes of the bio-medical and pharmaceutical industries, in the manufacturing
industry and in the oil and gas industry (i.e. cuttings transport in boreholes), among other applications [1, 2, 6,
13, 14, 16, 21–23, 26, 47, 50, 51, 55, 61, 62].

Our interest in this work is the modelling and simulation of free surface particulate quasi-incompressible flows
containing particles of different sizes using a particular class of Lagrangian FEM termed the Particle Finite Element
Method (PFEM, www.cimne.com/pfem) [4, 5, 8, 11, 17–20, 25, 27, 28, 35, 36, 38, 40, 42–46]. The PFEM treats
the mesh nodes in the fluid and solid domains as particles which can freely move and even separate from the main
fluid domain. A mesh connects the nodes discretizing the domain where the governing equations are solved using
a stabilized FEM.

In Lagrangian analysis procedures (such as the PFEM) the motion of fluid particles is tracked during the
transient solution. Hence, the convective terms vanish in the momentum equations and no numerical stabilization
is needed. Another source of instability, however, remains in the numerical solution of Lagrangian flows, that due
to the treatment of the incompressibility constraint which requires using a stabilized numerical method.

In this work we use a stabilized Lagrangian formulation that has excellent mass preservation features. The
success of the formulation relies on the consistent derivation of a residual-based stabilized expression of the mass
balance equation using the Finite Calculus (FIC) method [29–33, 37–39].
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The lay-out of the paper is the following. In the next section we present the basic equations for conservation of
linear momentum and mass for a quasi-incompressible particulate fluid in a Lagrangian framework. The treatment
of the different force terms for micro, macro and large particles are explained. Next we derive the stabilized FIC
form of the mass balance equation. Then, the finite element discretization using simplicial element with equal
order approximation for the velocity and the pressure is presented and the relevant matrices and vectors of the
discretized problem are given. Details of the implicit transient solution of the Lagrangian FEM equations for a
particulate flow using a Newton-Raphson type iterative scheme are presented. The basic steps of the PFEM for
solving free-surface particulate flow problems are described.

The efficiency and accuracy of the PFEM for analysis of particulate flows are verified by solving a set of free
surface and confined fluid flow problems incorporating particles of small and large sizes in two (2D) and three
(3D) dimensions. The problems include the study of soil erosion, landslide situations, tsunami and flood flows,
soil dredging problems and particle filling of fluid containers, among others. The excellent performance of the
numerical method proposed for analysis of particulate flows is highlighted.

2 Modelling of micro, macro and large particles

Figure 1 shows a domain containing a fluid and particles of different sizes. Particles will be termed microscopic,
macroscopic and large in terms of their dimensions. Microscopic and macroscopic particles will be assumed to
have a cylindrical (in 2D) or spherical (in 3D) shape. These particles are modelled as rigid objects that undergo
interaction forces computed in terms of the relative distance between particles (for microscropic particles) or via
the physical contact between a particle and its neighbors (for macroscopic particles), as in the standard discrete
element method (DEM) [2, 16, 34].

Fig. 1: Microscopic, macroscopic and large particles within a fluid domain

In this work microscopic and macroscopic particles are assumed to be spherical and submerged in the fluid
(Figure 2). Fluid-to-particle forces are transferred to the particles via appropriate drag and buoyancy functions.
Particle-to-fluid forces have equal magnitude and opposite direction as the fluid-to-particle ones and are transferred
to the fluid points as an additional body force vector in the momentum equation (Figure 3). These equations, as
well as the mass balance equations account for the percentage of particles in the fluid, similarly at it is done in
standard immersed approaches for particulate flows [53, 54, 56].

Large particles, on the other hand, can have any arbitrary shape and they can be treated as rigid or deformable
bodies. In the later case, they are discretized with the standard FEM. The forces between the fluid and the particles
and viceversa are computed via fluid-structure interaction (FSI) procedures [31, 60].

The following sections describe the basic governing equations for a Lagrangian particulate fluid and the com-
putation of the forces for microscopic, macroscopic and large particles.
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(a) (b)

Fig. 2: (a) Particles of different sizes surrounding the nodes in a FEM mesh. (b) Representative volume for a node
(in shadowed darker colour)

Fig. 3: Immersed approach for treating the motion of physical particles in a fluid [61]

3 Basic governing equations for a Lagrangian particulate fluid [1, 22, 23, 61]

Conservation of linear momentum

ρf
Dvi
Dt

=
∂σij
∂xj

+ bi +
1

nf
fpfi , i, j = 1, · · · , ns in V (1)

In V is the analysis domain, ns is the number of space dimensions (ns = 3 for 3D problems), ρf is the density
of the fluid, vi and bi are the velocity and body force components along the ith cartesian axis, respectively, σij are

the fluid Cauchy stresses, fpfi are averaged particle-to-fluid interaction forces for which closure relations must be
provided and nf is the fluid volume fraction defined for each node j as

nfj = 1− 1

Vj

nj∑

i=1

V ij (2)

where Vj is the volume of the representative domain associated to a fluid node j, V ij is the volume of the ith
particle belonging to Vj and nj is the number of particles contained in Vj . Note that nfj = 1 for a representative
fluid domain containing no particles (Figure 2).

The fluid volume fraction nf in Eq.(1) is a continuous function that is interpolated from the nodal values in
the finite element fashion [22].

Summation of terms with repeated indices is assumed in Eq.(1) and in the following, unless otherwise specified.

Remark 1. The term Dvi
Dt in Eq.(1) is the material derivative of the velocity vi. This term is typically computed

in a Lagrangian framework as
Dvi
Dt

=
n+1vi − nvi

∆t
(3a)

with
n+1vi := vi(

n+1x, n+1t) , nvi := vi(
nx, nt) (3b)

where nvi(
nx, nt) is the velocity of the material point that has the position nx at time t = nt, where x =

[x1, x2, x3]T is the coordinates vector of a point in a fixed Cartesian system. Note that the convective term,
typical of Eulerian formulations, does not appear in the definition of the material derivative [3, 9, 60].
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Constitutive equations

The Cauchy stresses σij in the fluid are split in the deviatoric (sij) and pressure (p) components as

σij = sij + pδij (4)

where δij is the Kronecker delta. In this work the pressure is assumed to be positive for a tension state.
The relationship between the deviatoric stresses and the strain rates has the standard form for a Newtonian

fluid [9],

sij = 2µε′ij with ε′ij = εij −
1

3
εvδij and εv = εii (5)

In Eq.(5) µ is the viscosity, ε′ij and εv are the deviatoric and volumetric strain rates, respectively. The strain
rates εij are related to the velocities by

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(6)

Mass conservation equation

The mass conservation equation for a particulate flow is written as

rv = 0 (7a)

with

rv :=
D(nfρf )

Dt
+ nfρfεv (7b)

Expanding the material derivative and dividing Eq.(7a) by nf the expression of rv can be rewritten as

rv :=
1

κ

Dp

Dt
+

1

nf

Dnf
Dt

+ εv (8)

where κ = ρfc
2 and c = −∂p∂ρ is the speed of sound in the fluid.

Remark 2. For nf = 1 (i.e. no particles are contained in the fluid) the standard momentum and mass conservation
equations for the fluid are recovered.

Boundary conditions

The boundary conditions at the Dirichlet (Γv) and Neumann (Γt) boundaries with Γ = Γv ∪ Γt are

vi − vpi = 0 on Γv (9)

σijnj − tpi = 0 on Γt i, j = 1, · · · , ns (10)

where vpi and tpi are the prescribed velocities and prescribed tractions on the Γv and Γt boundaries, respectively
and nj are the components of the unit normal vector to the boundary [3, 9, 60].

At a free surface the Neumann boundary conditions typically apply.

4 Motion of microscopic and macroscopic particles

As mentioned early, microscopic and macroscopic particles are assumed to be rigid spheres (in 3D). Their motion
follows the standard law for Lagrangian particles. For the ith spherical particle

miu̇i = Fi , Jiẇi = Ti (11)

where ui and wi are the velocity and rotation vector of the center of gravity of the particle, mi and Ji are the
mass and rotational inertia of the particle, respectively and Fi and Ti are the vectors containing the forces and
torques acting at the gravity center of the particle [34].

The forces Fi acting on the ith particle are computed as

Fi = Fwi + Fci + Ffpi (12)

Fwi , Fci and Ffpi are the forces on the particle due to self-weight, contact interactions and fluid effects. These forces
are computed as follows.
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Self-weight forces

Fwi = −ρiΩig (13)

where ρi and Ωi are the density and the volume of the ith particle, respectively and g is the gravity acceleration
vector.

Contact forces

Fci =

ni∑

j=1

Fcij (14)

where ni is the number of contact interfaces for the ith particle.

Fcij = Fijn + Fijs = F ijn ni + Fijs (15)

where Fijn and Fijs are the normal and tangential forces acting at the ith interface connecting particles i and j
(Figure 4). These forces are computed in terms of the relative motion of the interacting particles as in the standard
DEM [2, 16, 34].

For microscopic particles the tangential forces Fijs are neglected in Eq.(15).

Fluid-to-particle forces: Ffpi = Fdi + Fbi , where Fbi and Fdi are, respectively, the buoyancy and drag forces on
the ith particle. These forces are computed as:

Buoyancy forces

Fbi = Ωi∇∇∇∇∇∇∇∇∇∇∇∇∇∇p (16)

Drag forces

Fdi = fdi n
−(χ+1)
f

where χ = χ(Re) is a coefficient that depends on the local Reynolds number for the particle Re [1, 6, 15, 22, 23]
and

fdi =
1

2
ρfAiCd‖vfi − vi‖(vfi − vi) (17)

In Eq.(17) vfi and vi are respectively the velocity of the fluid and of the particle center, Ai is the area of the
particle surface with radius ri (2πri or 4πr2i for a circle or a sphere, respectively) and Cd is a drag coefficient that
depends on the particle geometry and the rugosity of its surface [22, 23].

The force term fpfi in the r.h.s. of the momentum equations (Eq.(1)) is computed for each particle (in vector
form) as fpf = −ffp with vector ffp computed at each node in the fluid mesh from the drag forces Fdi as

ffpj =
1

Vj

nj∑

i=1

Fdi , j = 1, N (18)

A continuum distribution of ffp is obtained by interpolating its nodal values over each element in the FEM
fashion.

We note that the forces on the particles due to lift effects have been neglected in the present analysis. These
forces can be accounted for as explained in [22].
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(a) Contact between microscopic particles

Forces between two microscopic particles act in the direction of the line connecting their radii

(b) Contact “a la DEM” between macroscopic particles [34]

Fijn = Knu
ij
n + Cnu̇

ij
n

Fijs = Ksu
ij
s

uijn ,u
ij
s relative displacements in the normal and

tangential directions to a contact interface

Fig. 4: Interacting forces between microscopic (a) and macroscopic (b) particles

5 Motion of large particles

As mentioned earlier, large particles may be considered as rigid or deformable bodies. In the first case the motion
follows the rules of Eq.(11) for rigid Lagrangian particles. The contact forces at the particle surface due to the
adjacent interacting particles are computed using a frictional contact interface layer between particles as in the
standard PFEM (Section 10.2).

The fluid forces on the particles are computing by integrating the tangential (viscous) and normal (pressure)
forces at the edges of the fluid elements surrounding the particles.

Large deformable particles, on the other hand, behave as deformable bodies immersed in the fluid which are
discretized via the standard FEM. Their motion can be followed using a staggered FSI scheme, or else by treating
the deformable bodies and the fluid as a single continuum with different material properties. Details of this unified
treatment of the interaction between fluids and deformable solids can be found in [12, 18, 46].
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6 Stabilized FIC form of the mass balance equation

The modelling of incompressible fluids with a mixed finite element method using an equal order interpolation for
the velocities and the pressure requires introducing a stabilized formulation for the mass balance equation.

In our work we use a stabilized form of the mass balance equation obtained via the Finite Calculus (FIC)
approach [29–33, 37–39]. The FIC stabilized mass balance equation is written as

rv − τ
∂r̄mi

∂xi
= 0 in V (19)

where

r̄mi
=
∂σij
∂xj

+ bi +
1

nf
fpfi (20)

is a static momentum term and τ is a stabilization parameter computed as

τ =

(
8µ

h2
+

2ρf
δ

)−1
(21)

where h is a characteristic distance of each finite element and δ is a time parameter.

The derivation of Eq.(19) for an homogeneous quasi-incompressible fluid is presented in [45].

The stabilization parameter τ is computed in practice for each element e using h = le and δ = ∆t as

τ =

(
8µ

(le)2
+

2ρ

∆t

)−1
(22)

where ∆t is the time step used for the transient solution and le is a characteristic element length computed as
le = 2(V e)1/ns where V e is the element area (for 3-noded triangles) or volume (for 4-noded tetrahedra). For fluids
with heterogeneous material properties the values of µ and ρ in Eq.(22) are computed at the element center.

7 Variational equations for the fluid

The variational form of the momentum and mass balance equations is obtained via the standard weighted residual
approach [9, 60]. The resulting integral expressions after integration by parts and some algebra are:

Momentum equations

∫

V

wiρ
Dvi
Dt

dV +

∫

V

[
δεij2µε

′
ij + δεvp

]
dV −

∫

V

wi

(
bi +

1

nf
fpfi

)
dV −

∫

Γt

wit
p
i dΓ = 0 (23)

Mass balance equation

∫

V

q

κ

Dp

Dt
dV −

∫

V

q

(
1

nf

Dnf
Dt

+ εv

)
dV +

∫

V

τ
∂q

∂xi

(
∂

∂xi
(2µεij) +

∂p

∂xi
+ bi

)
dV

−
∫

Γt

qτ

[
ρ
Dvn
Dt
− 2

hn
(2µ

∂vn
∂n

+ p− tn)

]
dΓ = 0

(24)

The derivation of Eqs.(23) and (24) for homogeneous fluids can be found in [45].
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8 FEM discretization

We discretize the analysis domain containing Np microscopic and macroscopic particles and a number of large
particles into finite elements with n nodes in the standard manner leading to a mesh with a total number of
Ne elements and N nodes. In our work we will choose simple 3-noded linear triangles (n = 3) for 2D problems
and 4-noded tetrahedra (n = 4) for 3D problems with local linear shape functions Ne

i defined for each node i of
element e [41, 58]. The velocity components, the weighting functions and the pressure are interpolated over the
mesh in terms of their nodal values in the same manner using the global linear shape functions Nj spanning over
the elements sharing node j (j = 1, N) [41, 58].

The finite element interpolation over the fluid domain can be written in matrix form as

v = Nvv̄ , w = Nvw̄ , p = Npp̄ , q = Npq̄ (25)

where

v̄ =





v̄1

v̄2

...
v̄N





with v̄i =




v̄i1
v̄i2
v̄i3



 , w̄ =





w̄1

w̄2

...
w̄N





with w̄i =




w̄i1
w̄i2
w̄i3



 , p̄ =





p̄1

p̄2

...
p̄N





and q̄ =





q̄1

q̄2

...
q̄N





Nv = [N1,N2, · · · ,NN ]T , Np = [N1, N2, · · · , NN ]

(26)

with Nj = NjIns where Ins is the ns × ns unit matrix.

In Eq.(26) vectors v̄, (w̄, q̄) and p̄ contain the nodal velocities, the nodal weighting functions and the nodal
pressures for the whole mesh, respectively and the upperindex denotes the nodal value for each vector or scalar
magnitude.

Substituting the approximation (25) into the variational forms (23) and (24) gives the system of algebraic
equations for the particulate fluid in matrix form as

M0 ˙̄v + Kv̄ + Qp̄− fv = 0 (27a)

M1 ˙̄p−QT v̄ + (L + Mb)p̄− fp = 0 (27b)

The different matrices and vectors in Eqs.(27) are shown in Box 1 for 2D problems.

Remark 3. The boundary terms of vector fp can be incorporated in the matrices of Eq.(27b). This, however,
leads to a non symmetrical set of equations. For this reason we have chosen to compute these boundary terms
iteratively within the incremental solution scheme.

Remark 4. Matrix Mb in Eq.(27b) allows us to compute the pressure without the need of prescribing its value at
the free surface. This eliminates the error introduced when the pressure is prescribed to zero in free boundaries,
which may lead to considerable mass losses [20, 45].

9 Incremental solution of the discretized equations

Eqs.(27) are solved in time with an implicit Newton-Raphson type iterative scheme [3, 9, 58, 60]. The basic steps
within a time interval [n, n+ 1] are:

- Initialize variables: (n+1x1, n+1v̄1, n+1p̄1, n+1nif ,
n+1r̄1m) ≡ {nx, nv̄, np̄, nnf ,

nr̄m}.
- Iteration loop: k = 1, · · · , NITER.

For each iteration.
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Me
0ij

=

∫

V e
ρNe

i N
e
j I2dV , Ke

ij =

∫

V e
BeTi DBejdV , Qe

ij =

∫

V e
BeTi mNe

j dV

Me
1ij

=

∫

V e

1

κ
Ne
i N

e
j dV , Me

bij
=

∫

Γe
t

2τ

hn
Ne
i N

e
j dΓ

Leij =

∫

V e
τ(∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNe

i )∇∇∇∇∇∇∇∇∇∇∇∇∇∇Ne
j dV , fevi =

∫

V e
Ne
i

(
b +

1

nf
fpf
)
dV +

∫

Γe
t

Ne
i t
pdΓ

fepi =

∫

Γe
t

τNe
i

[
ρ
Dvn

Dt
− 2

hn
(2µ

∂vn

∂n
− tn)

]
dΓ −

∫

V e

(
τ∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNe

i b−Ne
i

1

nf

Dnf

Dt

)
dV

with i, j = 1, n.

D = 2µ




2/3 −1/3 0
−1/3 2/3 0

0 0 1/2


 , Bei =




∂Ne
i

∂x1
0

0
∂Ne

i

∂x2
0 0

∂Ne
i

∂x2

∂Ne
i

∂x1




Ne
i = Ne

i I2 and ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =





∂

∂x1
∂

∂x2





, m =





1
1
0





Ne
i : Local shape function of node i of element e [41, 45]

Box 1. Element form of the matrices and vectors in Eqs.(27) for 2D problems

Step 1. Compute the nodal velocity increments ∆v̄

From Eq.(27a), we deduce
n+1Hi

v∆v̄ = −n+1r̄km → ∆v̄ (28a)

with the momentum residual r̄m and the iteration matrix Hv given by

r̄m = M0 ˙̄v + Kv̄ + Qp̄− fv , Hv =
1

∆t
M0 + K + Kv (28b)

with

Ke
v =

∫

nV e

BTmθ∆tκmTBdV (28c)

Step 2. Update the velocities

Fluid nodes: n+1v̄k+1 = n+1v̄k +∆v̄ (29a)

Rigid particles:

{
n+1/2u̇j = n−1/2u̇j + nük+1

j ∆t

u̇j = 1
mj

nFk+1
j , j = 1, Np

(29b)

Step 3. Compute the nodal pressures n+1p̄k+1

From Eq.(27b) we obtain

n+1Hi
p
n+1p̄k+1 =

1

∆t
M1

n+1p̄i + QT n+1v̄k+1 + n+1f̄ ip → n+1p̄k+1 (30a)

with

Hp =
1

∆t
M1 + L + Mb (30b)
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Step 4. Update the coordinates of the fluid nodes and particles

Fluid nodes: n+1xk+1
i = n+1xki +

1

2
(n+1v̄k+1

i + nv̄i)∆t , i = 1, N (31a)

Rigid particles:





n+1uk+1
i = nuk+1

i + n+1/2u̇k+1
i ∆t

n+1xk+1
i = nxi + n+1uk+1

i , i = 1, Np

(31b)

Step 5. Compute the fluid volume fractions for each node n+1nk+1
fi

via Eq.(2)

Step 6. Compute forces and torques on particles: n+1Fk+1
i , n+1Tk+1

i , i = 1, Np

Step 7. Compute particle-to-fluid nodes: (n+1fpfi )k+1 = −(n+1ffpi )k+1 , i = 1, N with ffpi computed by Eq.(18)

Step 8. Check convergence

Verify the following conditions:

‖n+1v̄k+1 − n+1v̄k‖ ≤ ev‖nv̄‖
‖n+1p̄k+1 − n+1p̄k‖ ≤ ep‖np̄‖ (32)

where ev and ep are prescribed error norms for the nodal velocities and the nodal pressures, respectively. In the
examples solved in this work we have set ev = ep = 10−3.

If both conditions (32) are satisfied then make n← n+ 1 and proceed to the next time step.

Otherwise, make the iteration counter k ← k + 1 and repeat Steps 1–8.

Remark 5. In Eqs.(28)–(32) n+1(·) denotes the values of a matrix or a vector computed using the nodal unknowns
at time n+ 1. In our work the derivatives and integrals in the iteration matrices Hv and Hp and the residual
vector r̄m are computed on the discretized geometry at time n (i.e. V e = nV e) while the nodal force vectors
fv and fp are computed on the current configuration at time n + 1. This is equivalent to using an updated
Lagrangian formulation [3, 12, 44, 59].

Remark 6. The tangent “bulk” stiffness matrix Kv in the iteration matrix Hv of Eq.(28b) accounts for the
changes of the pressure due to the velocity. Including matrix Kv in Hv has proven to be essential for the fast
convergence, mass preservation and overall accuracy of the iterative solution [11, 45].

Remark 7. The parameter θ in Kv (0 < θ ≤ 1) has the role of preventing the ill-conditioning of the iteration
matrix Hv for very large values of the speed of sound in the fluid that lead to a dominant role of the terms
of the tangent bulk stiffness matrix Kv. An adequate selection of θ also improves the overall accuracy of the
numerical solution and the preservation of mass for large time steps. Details of the derivation of Eq.(28c) can
be found in [45].

Remark 8. The iteration matrix Hv in Eq.(28a) is an approximation of the exact tangent matrix in the updated
Lagrangian formulation for a quasi/fully incompressible fluid [44]. The simplified form of Hv used in this work
has yielded very good results with convergence achieved for the nodal velocities and pressure in 3–4 iterations
in all the problems analyzed.

Remark 9. The time step within a time interval [n, n + 1] has been chosen as ∆t = min
(

nlemin

|nv|max
, ∆tb

)
where

nlemin is the minimum characteristic distance of all elements in the mesh, with le computed as explained in
Section 6, |nv|max is the maximum value of the modulus of the velocity of all nodes in the mesh and ∆tb is the
critical time step of all nodes approaching a solid boundary [45].
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10 About the particle finite element method (PFEM)

10.1 The basis of the PFEM

Let us consider a domain V containing fluid and solid subdomains. Each subdomain is characterized by a set of
points, hereafter termed virtual particles. The virtual particles contain all the information for defining the geometry
and the material and mechanical properties of the underlying subdomain. In the PFEM both subdomains are
modelled using an updated Lagrangian formulation [3, 44, 59].

The solution steps within a time step in the PFEM are as follows:

1. The starting point at each time step is the cloud of points C in the fluid and solid domains. For instance nC
denotes the cloud at time t = nt (Figure 5).

2. Identify the boundaries defining the analysis domain nV , as well as the subdomains in the fluid and the solid.
This is an essential step as some boundaries (such as the free surface in fluids) may be severely distorted
during the solution, including separation and re-entering of nodes. The Alpha Shape method [10] is used for
the boundary definition. Clearly, the accuracy in the reconstruction of the boundaries depends on the number
of points in the vicinity of each boundary and on the Alpha Shape parameter. In the problems solved in this
work the Alpha Shape method has been implementation as described in [17, 35].

3. Discretize the the analysis domain nV with a finite element mesh nM.We use an efficient mesh generation
scheme based on an enhanced Delaunay tesselation [17, 35].

4. Solve the Lagrangian equations of motion for the overall continuum using the standard FEM. Compute the
state variables in at the next (updated) configuration for nt + ∆t: velocities, pressure and viscous stresses in
the fluid and displacements, stresses and strains in the solid.

5. Move the mesh nodes to a new position n+1C where n+1 denotes the time nt + ∆t, in terms of the time
increment size.

6. Go back to step 1 and repeat the solution for the next time step to obtain n+2C.

n+1
x ,  

n+1
u , n+1

v, n+1
a ,n+1ε , n+1ε , n+1σ 

n
M → 

n+1 
C  

n+1
V → 

n+1
M  

n+1 
C → 

n+1 
V  

n+1
M → 

n+2 
C  

n
V → 

n 
M  

n 
C → 

n 
V  

Solid node 

Fixed boundary node 
Fluid node 

Initial “cloud” of nodes 
n 
C 

Domain n 

Flying Sub-domains 

Fixed 
boundary 

n

Γ 

Mesh n 

M 

n
x ,  

n
u , nv, na ,nε , nε , nσ 

. 
. 

Cloud  n+2 
C 

Domain n+1 Fixed 
boundary 

nΓ 

Mesh n+1 

M 

Cloud n+1 
C 

. 

etc…  

Fig. 5: Sequence of steps in the PFEM to update a “cloud” of nodes representing a domain containing a fluid and
a solid part (in darker shadow) from time n (t =n t) to time n+ 2 (t =n t+ 2∆t)

Note that the key differences between the PFEM and the classical FEM are the remeshing technique and the
identification of the domain boundary at each time step.
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The CPU time required for meshing grows linearly with the number of nodes. As a general rule, meshing
consumes for 3D problems around 15% of the total CPU time per time step [43].

Application of the PFEM in fluid and solid mechanics and in fluid-structure interaction problems can be found
in [4, 5, 8, 11, 17–20, 25, 27, 28, 35, 36, 38, 40, 42–46], as well in www.cimne.com/pfem.

10.2 Treatment of contact conditions

Known velocities at boundaries in the PFEM are prescribed in strong form to the boundary nodes. These nodes
might belong to fixed external boundaries or to moving boundaries linked to the interacting solids. Surface tractions
are applied to the Neumann part of the boundary, as usual in the FEM.

Contact between fluid particles and fixed boundaries is accounted for by adjusting the time step so that fluid
nodes do not penetrate into the solid boundaries [45].

The contact between two large particles (and between two bodies, in general) is treated by introducing a layer
of contact elements between the two interacting particles. This contact interface layer is automatically created
during the mesh generation step by prescribing a minimum distance (hc) between two interacting particles. If the
distance exceeds the minimum value (hc) then the generated elements are treated as fluid elements. Otherwise the
elements are treated as contact elements where a relationship between the tangential and normal forces and the
corresponding displacement is introduced [35, 40, 43] (Figure 6).

(a) (b)

Fig. 6: (a) Large particles (in dark shadow) surrounded by a finite element mesh. The contact interface is shown
in lighter shadow. (b) Contact interface between two objects treated as large particles and between an object and
a wall

This algorithm allows us to model complex frictional contact conditions between two or more interacting
bodies moving in water in an a simple manner. The algorithm has been used to model frictional contact situations
between rigid and elastic solids in structural mechanics applications, such as soil/rock excavation problems [4, 5].
The frictional contact algorithm described above has been extended by Oliver et al. [27, 28] for analysis of metal
cutting and machining problems.

Figure 7 shows an example of the analysis with the PFEM of a collection of large particles submerged in a
tank containing water in sloshing motion.

10.3 Treatment of surface erosion

Prediction of bed erosion and sediment transport in open channel flows are important tasks in many areas of
river and environmental engineering. Bed erosion can lead to instabilities of the river basin slopes. It can also
undermine the foundation of bridge piles thereby favouring structural failure. Modeling of bed erosion is also
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Fig. 7: PFEM results for the motion of large particles submerged in a tank containing water in sloshing motion

relevant for predicting the evolution of surface material dragged in earth dams in overspill situations. Bed erosion
is one of the main causes of environmental damage in floods.

Oñate et al. [36] have proposed an extension of the PFEM to model bed erosion. The erosion model is based
on the frictional work at the bed surface originated by the shear stresses in the fluid.

The algorithm for modeling the erosion of soil/rock particles at the fluid bed is briefly the following:

1. Compute at every point of the bed surface the tangential stress τ induced by the fluid motion.
2. Compute the frictional work Wf originated by the tangential stress at the bed surface.
3. The onset of erosion at a bed point occurs when nWf exceeds a critical threshold value Wc.
4. If nWf > Wc at a bed node, then the node is detached from the bed region and it is allowed to move with the

fluid flow. As a consequence, the mass of the patch of bed elements surrounding the bed node vanishes in the
bed domain and it is transferred to the adjacent fluid node. This mass is subsequently transported with the
fluid as an immersed macroscopic particle.

5. Sediment deposition can be modeled by an inverse process to that described in the previous step. Hence, a
suspended node adjacent to the bed surface with a velocity below a threshold value is attached to the bed
surface.

Figure 8 shows an schematic view of the bed erosion algorithm described. Details of the algorithm can be found
in [36].

Fig. 8: Modeling of bed erosion with the PFEM. The mass of the eroded domain is assigned to the fluid node k
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11 A nodal algorithm for transporting microscopic and macroscopic particles within a finite
element mesh

The fact that in the PFEM a new mesh is regenerated at each time step allows us to make microscopic and
macroscopic particles to be coincident with fluid nodes. An advantage of this procedure is that it provides an
accurate definition of the particles at each time step which is useful for FSI problems.

The algorithm to compute the position of the particles using the nodal algorithm is as follows.
At each time step nt:

1. Compute the converged value of the position of the fluid nodes (n+1xi, i = 1, · · · , N) and the particles
(n+1xj , j = 1, · · · , Np) using the algorithm of Section 9. The Np particles coinciding with Np fluid nodes
(Np ≤ N) will typically move to a different position than that of the corresponding fluid nodes (Figure 9).

2. Regenerate the mesh discretizing the fluid domain treating the position of the Np particles as fluid nodes and
ignore the fluid nodes originally coinciding with the Np particles at n+1t.

3. Interpolate the velocity of the fluid nodes at the position of the Np particles surrounding the fluid nodes.

The algorithm is schematically described in Figure 9.
Figures 10 show an example of the application of the nodal algorithm to the study of the motion of an individual

particle within a rectangular domain filled with water. The correct end velocity for the individual particle is
obtained as shown in Figure 10c. Figures 11–13 show other examples of application of the nodal algorithm to the
motion of macro-particles in water containers.

Other examples of application of this algorithm are shown in the next section.

Fig. 9: Nodal algorithm for tracking the motion of particles submerged in a fluid. (a) Particle i is coincident with
a fluid node. (b) Update the position of the particle and the adjacent nodes. (c) Regeneration of the fluid mesh
consistent with the new particle position

12 Examples

We present the study of a several problems involving the transport of macroscopic and large particles in fluid
flows. The problems are schematic representations of particulate flows occurring in practical problems of civil and
environmental engineering and industrial problems.

Most problems studied have been solved with the PFEM using the nodal algorithm for the transport of
macroscopic particles described in the previous section. An exception are the problems in Section 12.6 dealing
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(a) (b)
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Fig. 10: Cylindrical particles falling in a water container. 2D PFEM solution using the nodal algorithm for tracking
the particle motion. (a) Mesh and particle at a certain instant. (b) Contours of the vertical velocity module. (c)
Evolution of the vertical velocity of the particle until a steady state solution is found [6, 15]

(a) (b)

Fig. 11: Motion of ascending and descending particles of different density in a fluid domain. PFEM results using
the nodal algorithm for tracking the particles motion

with the vertical transport of spherical particles in a cylinder where the standard immersed approach for the
transport macroparticles described in Sections 1–4 was used and the fluid equations were solved with an Eulerian
flow solver implemented in the Kratos open-source software platform of CIMNE [24].

12.1 Erosion of a slope adjacent to the shore due to sea waves

Figure 14 shows a representative example of the progressive erosion of a soil mass adjacent to the shore due to sea
waves and the subsequent falling into the sea of a 2D object representing the section of a lorry. The object has
been modeled as a rigid solid. Note that the eroded soil particles accumulate at the sea bottom.

This example, although still quite simple and schematic, evidences the possibility of the PFEM for modeling
FSSI problems involving soil erosion, free surface waves and rigid/deformable structures.
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Fig. 12: Motion of three macroscopic particles in a water sloshing problem within a tank. PFEM results obtained
using the nodal algorithm for particle tracking

Fig. 13: PFEM analysis of the penetration of a collection of spherical (macroscopic) particles into a water container

12.2 Landslide falling on houses

Figure 15 shows two instants of the 2D simulation with PFEM of the motion of a collection of macroscopic particles
as they slide over an inclined wall and fall into a water container.

The PFEM is particularly suited for the modelling and simulation of landslides and their effect in the surround-
ing structures. Figure 16 shows an schematic 2D simulation of a landslide falling on two adjacent constructions.
The landslide material has been assumed to behave as a pure viscoplastic material modelled as a non-Newtonian
viscous incompressible fluid [57]. Other applications of the PFEM to the modelling of landslides can be found in
[8, 49].
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(a) (b) (c) (d)

Fig. 14: Falling of a lorry into the sea by erosion of the underlying soil mass due to the action of waves

Fig. 15: Sliding of macroscopic particles over an inclined wall entering a container with water

(a) (b)

Fig. 16: 3D PFEM simulation of a landslide falling on four houses

12.3 Dragging of rocks by a water stream

Figure 17 shows the dragging of a collection of rocks modelled as large rigid particles of arbitrary shape by the
action of a water stream. The particles move due to the action of the water forces on the particles computed by
integrating the pressure and the viscous stresses in the elements surrounding each particle.

12.4 Suction of cohesive material submerged in water

Figures 18 and 19 show two examples of the detachment, suction and transport of particles of a cohesive material
submerged on water. Figure 18 shows how the particles detatch from the cohesive soil bed and are transported
within the suctioning tube (modelled as a 2D problem). The last picture shows the erosion in the soil as the
mixture of water and eroded particles falls down from within the tube and hits the soil surface due to a stop in
the suction pressure.

Figure 19 shows a similar 3D problem. The suction in the tube erodes the surface of the soil bed in the right
hand container. The mixture of water and eroded particles is transported to the adjacent containers.



18 Eugenio Oñate et al.

(a) (b)

(c) (d)

Fig. 17: 3D PFEM results for the dragging of a collection of large rocks by a water stream

Fig. 18: 2D PFEM analysis of the detachment and suction of cohesive material submerged in water. The last
picture shows the erosion of the bed material after the impact of the mixture of water and eroded particles falling
from within the tube

12.5 Filling of a water container with particles

Figure 20 shows a 3D example of the filling of a cylindrical container with water containing macroscopic spherical
particles. Water is allowed to exit the cylinder by a lateral hole while particles enter from two other holes at different
height and fall down by gravity until they progressively fill the cylinder. The figures show different instants of the
filling process.
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(a) (b)

(c) (d)

Fig. 19: 3D PFEM simulation of the detachment, suction and transport of submerged cohesive material from one
recipient to another

Fig. 20: Filling of a container by injecting water containing macroscopic particles from two holes. Water is allowed
to exit through a third hole at the upper right hand side of the cylinder. 3D PFEM results at four instants

12.6 Transport of spherical particles in a tube filled with water

The example in Figure 21 models the vertical transport of some 120.000 spherical particles to the surface of a tube
filled with water and the subsequent deposition of the particles on the free water surface at the top of the tube.
Particles move upwards within the tube due to a fluid velocity of 1 m/s. The average size of the particles radius
is 2 mm and their density is 2300 Kg/m3. Particles move vertically until they reach the top of the fluid domain
and accumulate there due to the combined effect of their weight and the effect of the interaction force from the
fluid. Figure 21 shows two instants of the particles ascending process. The accumulation of particles in the water
free surface at the top of the tube is clearly seen.

Figure 22 shows the interaction of eigth jets of ascending air bubbles with 200.000 spherical solid particles that
fall down within a cylinder filled with water.
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Fig. 21: Transport of spherical macroparticles up to the free surface of a tube filled with water. Particles move up
with a prescribed velocity until they accumulate on the free surface. Results obtained with a coupled DEM-Eulerian
CFD code [24]

(a) (b) (c) (d)

Fig. 22: Interaction of eight jets of ascending air bubbles with a thick layer of 200.000 spherical particles that fall
down within a cylinder filled with water. Numerical results obtained with a coupled DEM-Eulerian CFD code [24]

12.7 Dragging of large objects and small particles in a tsunami type flow

The last example is the dragging of cars, barrels and debris (modelled as macroscopic particles) by a water stream
that flows over a vertical wall. The problem represents an schematic study of a real situation corresponding to the
tsunami in Fukushima (Japan) on March 2011 (Figure 23). Figures 24 show two snapshots of the PFEM solution
of this complex problem.

Fig. 23: Dragging of cars and large and small objects in the Fukushima tsunami (Japan)
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(a)

(b)

Fig. 24: Dragging of large objects and macroscopic particles in a tsunami type flow passing over a vertical wall.
3D PFEM results

13 Concluding remarks

We have presented a Lagrangian numerical technique for analysis of flows incorporating physical particles of
different sizes. The numerical approach is based on the Particle Finite Element Method (PFEM) and a stabilized
Lagrangian mixed velocity-pressure formulation. The examples presented in the paper evidence the possibilities of
the PFEM for analysis of practical multiscale particulate flows in industrial and environmental problems.
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39. Oñate E, Valls A, Garćıa J (2007) Computation of turbulent flows using a finite calculus-finite element for-
mulation. Int. J. Numer. Meth. Engng. 54:609–637
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This paper, published in 2015, explains the details of the research about the
transport of non-spherical particles in non-Newtonian �uids. The PFlow code
was used for all the computations.
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A FEM-DEM technique for studying the motion of particles in
non-Newtonian fluids. Application to the transport of drill cuttings in
wellbores

Miguel Angel Celigueta · Kedar M. Deshpande
· Salvador Latorre · Eugenio Oñate

Abstract We present a procedure for coupling the finite element method (FEM) and the discrete element method
(DEM) for analysis of the motion of particles in non-Newtonian fluids. Particles are assumed to be spherical and
immersed in the fluid mesh. A new method for computing the drag force on the particles in a non-Newtonian fluid
is presented. A drag force correction for non-spherical particles is proposed. The FEM-DEM coupling procedure
is explained for Eulerian and Lagrangian flows and the basic expressions of the discretized solution algorithm
are given. The usefulness of the FEM-DEM technique is demonstrated in its application to the transport of drill
cuttings in wellbores.

Keywords FEM-DEM procedure · Motion of particles · Drill cuttings · Wellbores

1 INTRODUCTION

The cuttings transport process (hole-cleaning) is one challenging aspect associated with the efficiency of the
wellbore drilling operations [1]. This process involves complex interactions between cuttings, drill pipe, wellbore
and drilling mud [2]. The investigation of cuttings transport in a wellbore using advanced computational techniques
for analysis of particulate non-Newtonian fluids can provide valuable insight for scientific and practical purposes.
The focus of this work is to develop a procedure for coupling the finite element method (FEM) and the discrete
element method (DEM) for analysis of the motion of particles in non-Newtonian incompressible fluids such as mud.
The goal is to understand the cuttings behavior locally in critical sections of the wellbore during their transport
by action of the drilling mud. Methods such as that presented here can provide useful information to estimate hole
cleaning duration, find zones in danger of clogging or estimate the hole pressure gradient.

Particles within the fluid are modelled with the DEM. The coupling effects between the particles and the fluid
are introduced via an immersed technique [3–5]. The fluid motion is modelled either with an Eulerian stabilized
FEM formulation using a fixed mesh, or using a Lagrangian formulation using the Particle Finite Element Method
(PFEM) [4, 6–16] for which the mesh evolves in time. For both the Eulerian and the Lagrangian formulations we
use a mixed finite element formulation with an equal order linear interpolation for the velocities and the pressure
variables.

In the Lagrangian PFEM the convective terms vanish in the momentum equations and no numerical stabi-
lization is needed for these equations. Another source of instability, however, remains in the numerical solution of
Lagrangian flows such as PFEM, that due to the treatment of the incompressibility constraint which still requires
using a stabilized numerical method. In this work we use a PFEM formulation based on a residual-based stabilized
expression of the mass balance equation [10–16]. The excellent mass preservation feature of this formulation has
been demonstrated previously [7, 16].
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The layout of the paper is the following. In the next section we present the basic equations for the conservation
of linear momentum and mass for a quasi-incompressible particulate fluid in Eulerian and Lagrangian frameworks.
The different force terms acting on the particles are explained. Details of the computation of the drag force
for spherical and non spherical particles in non-Newtonian fluids are given. The finite element discretization is
presented and the relevant matrices and vectors of the discretized problem are given. The transient solution of the
FEM-DEM equations for a particulate flow using a Newton-Raphson type iterative scheme for solving the fluid
equations is presented.

The efficiency and accuracy of the FEM-DEM procedure for analysis of particulate flows in non-Newtonian
fluids are verified by solving a number of drilling transport problems in wellbores.

2 DESCRIPTION OF THE FEM-DEM ALGORITHM

2.1 Modelling of the particles

Figure 1 shows a fluid domain containing particles of small and moderate sizes relative to the representative volume
for a node. Particles are assumed to have a spherical shape in two and three-dimensions (2D/3D) and are modelled
as rigid objects that undergo interaction forces due to the physical contact between a particle and its neighbors,
as in the standard DEM [17–20].

(a) (b)

Fig. 1: (a) Particles of different sizes surrounding the nodes in a FEM mesh. (b) Representative volume for a node
(in shadowed darker colour)

Fluid-to-particle forces are transferred to the particles via appropriate drag and buoyancy functions. Particle-
to-fluid forces have equal magnitude and opposite direction as the fluid-to-particle ones and are transferred to the
fluid points as an additional body force vector in the momentum equations (Figure 2). These forces, as well as
the mass balance equations account for the percentage of particles in the fluid, similarly as it is done in immersed
approaches for particulate flows [4, 5, 17]. The rest of the interaction forces between fluid and particles are neglected
(lift forces, virtual mass forces, drag torque, etc.) [21, 22].

Fig. 2: Immersed approach for treating the motion of physical particles in a fluid [5]

The following sections describe the governing equations for a particulate fluid and the computation of the forces
on the particles.
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2.2 Basic governing equations for a particulate fluid

2.2.1 Conservation of linear momentum

The equation for linear momentum conservation can be expressed as

rmi = 0 (1a)

with

rmi := ρf
Dvi
Dt
− ∂σij
∂xj

−
(
bi − 1

nf
fpfi

)
, i, j = 1, · · · , ns in V (1b)

Summation of terms with repeated indices is assumed in Eq.(1) and in the following, unless otherwise specified.
In Eq.(1) V is the analysis domain, ns is the number of space dimensions (ns = 3 for 3D problems), ρf is the

density of the fluid, vi and bi are the velocity and body force components along the ith Cartesian axis, respectively,
σij are the fluid Cauchy stresses, fpfi are averaged particle-to-fluid interaction forces for which closure relations
must be provided and nf is the fluid volume fraction at a point defined for each node j as

nfj = 1− 1

Vj

nj∑

i=1

V ij (2)

where Vj is the volume of the representative domain associated to a fluid node j, V ij is the volume of the ith
particle belonging to Vj and nj is the number of particles contained in Vj . Note that nfj = 1 for a representative
fluid domain containing no particles (Figure 1).

The fluid volume fraction nf in Eq.(1) is a continuous function that is interpolated from the nodal values in
the finite element fashion [14, 23, 24].

Remark 1. The time derivative Dvi
Dt in Eq.(1) is computed in the Eulerian and Lagrangian frameworks as

Eulerian :
Dvi
Dt

=
∂vi
∂t

+ vj
∂vi
∂xj

(3a)

Lagrangian :
Dvi
Dt

=
∂vi
∂t

=
n+1vi − nvi

∆t
(3b)

with
n+1vi := vi(

n+1x, n+1t) , nvi := vi(
nx, nt) (3c)

In Eq.(3c) nvi(
nx, nt) is the velocity of the material point that has the position nx at time t = nt, where

x = [x1, x2, x3]T is the coordinates vector of a point in a fixed Cartesian system. Note that the convective
term, typical of the Eulerian formulation, does not appear in the definition of the material derivative in Eq.(3b)
[24–26].

2.2.2 Constitutive equations

The Cauchy stresses in the fluid, σij , are split into the deviatoric (sij) and pressure (p) components as

σij = sij + pδij (4)

where δij is the Kronecker delta. In this work the pressure is assumed to be positive for a tension state.
The relationship between the deviatoric stresses and the strain rates has the standard form for a Newtonian

fluid [24, 26],

sij = 2µε′ij with ε′ij = εij − 1

3
εvδij and εv = εii (5)

In Eq.(5), µ is the viscosity and ε′ij and εv are the deviatoric and volumetric strain rates, respectively. The
strain rates, εij , are related to the velocities by

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(6)
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For the non-Newtonian fluids considered in this work the viscosity dependence with the strain rate is defined
as

µ(γ) =
τ(γ)

γ
(7)

where the expression of the shear stress, τ(γ), is obtained experimentally from a viscometer test. For multidimen-
sional flows, γ is defined as the second invariant of the symmetric gradient of the velocity field, i.e.

γ =

√
1

2
εijεij (8)

2.2.3 Mass conservation equation

The mass conservation equation for a particulate flow is written as

rv = 0 (9a)

with

rv :=
D(nfρf )

Dt
+ nfρfεv (9b)

Expanding the term and dividing Eq.(9a) by nfρf , the expression of rv can be redefined as

rv := − 1

κ

Dp

Dt
+

1

nf

Dnf
Dt

+ εv (10)

where κ (κ = ρfc
2) is the bulk compressibility parameter, c being the speed of sound and c2 = −∂p∂ρ .

Remark 2. For nf = 1, no particles are contained in the fluid. Consequently, fρfi = 0 and the standard momentum
and mass conservation equations for a viscous fluid are recovered [24, 26].

Remark 3. Similarly as in Eqs.(2.2.1) the time derivative term in Eqs.(9b) and (10) has different forms in Eulerian
and Lagrangian frameworks, i.e.

Eulerian :
D(·)
Dt

=
∂(·)
∂t

+ vj
∂(·)
∂xj

(11)

Lagrangian :
D(·)
Dt

=
∂(·)
∂t

=
n+1(·)− n(·)

∆t
(12)

with n(·) having the same meaning as in Eq.(3b).

2.2.4 Boundary conditions

The boundary conditions at the Dirichlet (Γv) and Neumann (Γt) boundaries with the fluid boundary Γ = Γv ∪Γt
are

vi − vpi = 0 on Γv (13a)

σijnj − tpi = 0 on Γt i, j = 1, · · · , ns (13b)

where vpi and tpi are the prescribed velocities and prescribed tractions at the Γv and Γt boundaries, respectively
and nj are the components of the unit normal vector to the boundary [24–26].

At a free surface the Neumann boundary conditions (Eq.(13b)) apply. These conditions are enforced at every
time step.
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2.3 Motion of particles

The motion of particles follows the standard law for Lagrangian particles. For the ith particle

miu̇i = Fi , Jiẇi = Ti (14)

where ui and wi are the velocity and the rotation vector of the center of gravity of the particle, mi and Ji are the
mass and rotational inertia of the particle, respectively and Fi and Ti are the vectors containing the forces and
torques acting at the gravity center of the particle [19, 20].

Eqs.(14) are integrated in time in order to compute the motion of the particles. An explicit Forward Euler
scheme has been used with substeppping. The substepping is necessary to avoid instabilities in the DEM solution
since the fluid time steps are usually too large for the DEM solver. The information of the fluid which is projected
to the particles is interpolated linearly between two steps of the fluid solution to the substep of the DEM solution.

The forces Fi acting on the ith particle are computed as

Fi = Fwi + Fci + Ffpi (15)

Fwi , Fci and Ffpi are the forces on the particle due to self-weight, contact interactions between particles and fluid
effects. These forces are computed as follows.

2.3.1 Self-weight forces

The self-weight force acting on a particle can be written as

Fwi = −ρiΩig (16)

where ρi and Ωi are the density and the volume of the ith particle, respectively and g is the gravity acceleration
vector.

2.3.2 Contact forces

The contact forces acting on a particle coming from other particles and walls are summed as follows:

Fci =

ni∑

j=1

Fcij (17)

where ni is the number of contact interfaces for the ith particle.

Fcij = Fijn + Fijs = F ijn ni + Fijs (18)

where Fijn and Fijs are the normal and tangential forces acting at the ith interface connecting particles i and j
(Figure 3) or particle i with a wall. These forces are computed in terms of the relative motion of the interacting
particles as in the standard DEM [17–20]. Figure 3 summarizes some aspects of the DEM. Figure 3a depicts
the particle i with 8 neighbor particles (j, k, l,m, n, p, q and r). Figure 3b shows details of the contact between
particles i and j: dij is the distance between centers, rijc is the vector from the center of the particle i to the
contact point between i and j, F ij is the force exerted by particle j on particle i at the contact point. Figure
3c shows the scheme of the kinematics of the contact. Both particles have a velocity (u̇i, u̇j) and an angular
velocity (wi, wj). The relative displacement of the particles at the contact point is penalized with elastic constants
to avoid interpenetration between particles. Figure 3d shows the decomposition of the relative displacement and
the contact force in the normal and tangential directions at the contact point. Figure 3e shows the linear elastic
dashpot system used for modeling the mechanical behaviour at a contact point. The elastic penalty constants are
Kn (normal direction) and Ks (tangential direction); Cn is a viscous parameter that provides damping to the
contact; µ is the Coulomb’s friction parameter. It affects the limit at which sliding between particles occurs, which
follows the expression Fijs ≤ µFijn .

2.3.3 Fluid-to-particle forces

The interaction force between the fluid and a particle is written as Ffpi = Fdi + Fbi , where Fbi and Fdi are,
respectively, the buoyancy and drag forces on the ith particle. These forces are computed as:
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(a) (b) (c) (d)

(e)

Fijn = Knu
ij
n + Cnu̇

ij
n uijn ,u

ij
s relative displacements in the normal and

Fijs = Ksu
ij
s tangential directions to a contact interface

Fig. 3: (a) Group of eight particles in contact with the ith particles. (b) Contact force vector for two particles
interacting with a gap distance. (c) Distance vectors and velocity vector for two particle in contact. (d) Normal and
tangential forces and displacement at a contact point. (e) Linear elastic dash pot system modeling the mechanical
behaviour at a contact point [20]

2.3.4 Buoyancy forces

The buoyancy force depends on the volume of the particle and the gradient of pressure of the fluid:

Fbi = −Ωi∇∇∇∇∇∇∇∇∇∇∇∇∇∇p (19)

Note that ∇∇∇∇∇∇∇∇∇∇∇∇∇∇p is not always aligned with gravity, but depends on the fluid dynamics.

2.3.5 Drag forces

The drag force is defined as
Fdi = −F di v̂ri (20)

where

v̂ri =
vri
|vri |

with vri = ui − vi (21)

is the relative velocity of the particle with respect to the fluid, with vi being the velocity vector of the fluid point
coinciding with the ith particle.

The computation of the drag force F di is explained in the next section.

2.3.6 Computation of fpfi

The force term component fpfi in the right hand side of the momentum equations (Eq.(1)) is computed for each
particle (in vector form) as fpf = −ffp with vector ffp computed at each node in the fluid mesh from the drag
forces Fdi as

ffpj =
1

Vj

nj∑

i=1

Nj(xi)F
d
i , j = 1, N (22)



Title Suppressed Due to Excessive Length 7

where Nj(xi) is the value of the shape function of node j at the position of the ith particle.
A continuum distribution of ffp is obtained by interpolating its nodal values over each element in the FEM

fashion.
The forces on the particles due to lift effects have been neglected in the present analysis. These forces can be

accounted for as explained in [27].

2.4 Computation of the drag force Fdi for non-Newtonian fluids

The drag forces on particles immersed in a Newtonian fluid [28] are well known. However, when dealing with
non-Newtonian fluids different approaches for computing these forces can be followed depending on the type of
fluid. Non-Newtonian fluids, for example, can be shear thickening, shear thinning or Bingham plastics, and each
one of these requires a different drag law. Most drag laws require finding a suitable value for the drag coefficient
(Cd) and the Reynold’s number.

Drilling fluids for the oil-drilling industry usually exhibit a Herschel-Bulkley behavior [1]. Drag laws for particles
moving in drilling fluids based on a shear thickening behavior can be discarded. On the other hand, drag laws
developed under the assumptions of a Bingham plastic [29–31] fail to predict accurately the drag force when they
are applied to Herschel-Bulkley fluids. In fact, no drag laws for particles in Herschel-Bulkley fluids, or in fluids
characterized by a power law rheogram are found in the literature.

Despite the lack of suitable drag laws for particles in Herschel-Bulkley fluids, some accurate estimations of the
terminal velocity of the particle (i.e. the steady state velocity reached by a particle falling freely in a liquid) can be
found in several papers for different fluids [21, 32]. In particular, Shah [33] proposed an estimation of the terminal
velocity in power law fluids characterized by the following value of the (non linear) viscosity

µ(γ) = Kγn−1 (23)

where γ was defined in Eq.(8), and K and n are material parameters. Shah’s method has proven to give good
estimations of the terminal velocity of particles falling in drilling muds in accordance to published experiments
[31] (see Figure 4). The terminal velocity will be used later on in this section to generate a drag law.

Fig. 4: Relation between the experimental terminal velocity and the values predicted by Shah’s method [33]. The
straight line indicates the exact correlation between experimental and predicted values [31]

2.4.1 Computation of the terminal velocity of the particles

In the following lines we summarize the steps for estimating the terminal velocity of the particles using Shah’s
method.



8 M.A. Celigueta, K.M. Deshpande, S. Latorre, E. Oñate

1. Compute

A = 6.9148(n2) − 24.838(n) + 22.642 and B = − 0.5067(n2) + 1.3234(n)− 0.1744 (24)

where n is the power exponent in Eq.(23).
2. Obtain Shah’s dimensionless parameter Si for the ith particle as

Si = (Ctd)
2−n
2 Reit (25)

where the drag coefficient for the ith particle is defined as

Cid =
4

3

(
dipg

(vit)
2

)(
ρip − ρf
ρf

)
(26)

with

Reit =
(dip)n(vit)

2−nρf
2n−1K

(27)

being the Reynolds number at the terminal velocity for power law fluids (other authors such as Walker et al.
[34, 35] give other definition for Re). In Eq.(26) g is the gravity acceleration, di is the particle diameter and K
is the parameter in Eq.(23).
Substituting Eqs.(26) and (27) into (25) Shah’s dimensionless parameter can be computed as

Si =
1

2n−1K

√(
4

3

)2−n
(dip)n+2ρnf (ρip − ρf )2−ng2−n (28)

Note that Eq.(28) does not depend on vit.
3. Obtain the Reynolds number for the ith particle from

Reit =

(
Si
A

) 1
B

(29)

4. The terminal velocity for the ith particle vit is computed from Eq.(27) as

vit =

[
2n−1KReit

(dip)nρf

] 1
(2−n)

(30)

2.4.2 Computation of the drag force

In this work a linear drag force law is proposed for cuttings moving in drilling muds of the type

F di (vri ) = aisi +
Wi − F bi − aisi

vit
vri (31)

where ai is a parameter that is a function of the gel strength of the fluid and its dynamics [1], si is the surface area
of the particle, Wi = |Fwi | is the weight of the particle, F bi the modulus of the buoyancy force vector (F bi = |Fbi |),
vri is the relative velocity of the particle with respect to to the fluid (vri = |vri |, see Eq.(23)) and vit is the relative
terminal velocity obtained by Shah’s method via Eq.(30). Note that for vri = vit the equilibrium of forces for the
terminal slip velocity is recovered (i.e. F di = Wi−F bi ). On the other hand, for vri = 0 the initial force (gel strength)
is recovered.

The gel strength is the maximum stress the fluid can withstand before showing some measurable shear rate.
For those cases when vri = 0 the drag law presents a singularity and its derivative is infinite. This means that the
force can be any value between 0 and ai si. To solve this problem, the drag force law must be regularized. In this
work we have modified the drag force as

F̄ di (vri ) =
F di (v̂ri )

v̂ri
vri for vri ∈ [0, v̂ri ] (32)

where v̂ri is a very small value.
Note that ai is equal to the gel strength for every part of the fluid where the equivalent shear rate is zero.

However, in those parts of the fluid where the shear rate is not zero, the apparent viscosity perceived by the particle
decreases. In this situation, the gel strength has already been overcome and ai must be set to zero.
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2.4.3 Accounting for the effect of the non sphericity of the particles

The sphericity coefficient (Ψ) is defined as the ratio between the skin surface of the non-spherical particle and the
skin surface of a sphere with the same volume. For the same relative velocity of the particle with respect to the
fluid, the drag force grows as the sphericity decreases. Although some authors use the sphericity coefficient within
a range between 0.125 and 1.0 [1] it must be pointed out that very low values of Ψ correspond actually to shapes
that are far from spherical (plates, flat discs, thin sticks, ...). In those cases, the correction that Ψ brings to the
equations that assume spherical shape can be very wrong. The authors do not recommended using Ψ below 0.65.

Different authors have established the dependency of the drag coefficient with the Reynolds number and the
sphericity parameter for Newtonian fluids. For instance, Chien [32] proposed

Cd =
30

Re
+ 67.289e(−5.03Ψ) (33)

while Haider and Levenspiel [36] propose:

Cd =
24

Re

[
1 + exp(2.3288− 6.4581Ψ + 2.4486Ψ2)Re(0.0964+0.5565Ψ)

]
+

73.69Re · exp(−5.0748Ψ)

Re+ 5.378 exp(6.2122Ψ)
(34)

Both expressions and others mentioned in [31] can be used to obtain the drag coefficient for spherical particles
simply making Ψ = 1.

In order to include the effect of the non sphericity of the particles in Shah’s method, the dimensionless parameter
Si (Eq.(25)) has to be modified. This can be done by substituting the drag coefficient by an equivalent one which
accounts for the sphericity effect. For that purpose, the following parameter is used:

ϕi =
Cid,non−sphere
Cid,sphere

(35)

where ϕi is the ratio of drag coefficients for a particle in Newtonian fluids computed via Eqs.(33) or (34).
Taking into account that Cd in Eq.(25) corresponds to an spherical particle, Shah’s dimensionless parameter

is re-written using Eq.(35) as :

Si =

(
Cid,non−sphere

ϕi

) 2−n
2

Reit (36)

Eq.(26) holds for both spherical and non-spherical particles. For non-spherical particles dip is the diameter of
the sphere with the same volume. Note that A and B were obtained for spherical particles in Eq.(24). This is why
Cid must be divided by ϕi in order to compute the correct (equivalent) expression of Cd for a spherical particle.

The two-step procedure to compute the drag force for non-spherical particles is as follows:

1. Compute the terminal velocity for the particles using the standard Shah’s method (Eq.(30)) where di is the
equivalent diameter for the non-spherical particle.

2. Compute the drag coefficient for spherical (ϕ = 1) and non-spherical (ϕ 6= 1) particles via Eqs.(33) or (34)
using the Reynolds number of Eq.(29).

3. Compute the value of ϕi.

4. Update Si as S2
i = S1

i (ϕi)
2

2−n , where S1
i is the value of Shah’s parameter computed using Eq.(28).

5. With the updated Shah’s parameter, perform the rest of operations in Eqs.(29)–(31).
The terminal velocity and the drag force obtained after this second step includes the effect of the non sphericity
of the particle.

2.5 Discretization of the fluid equations

The modelling of incompressible fluids with a mixed finite element method using an equal order interpolation for
the velocities and the pressure requires introducing a stabilized formulation for the mass balance equation.

In our work we use a stabilized form of the momentum mass balance equations obtained via the Finite Calculus
(FIC) technique [12, 16, 19, 37] written as

rmi −
hij
2

∂rmi

∂xj
= 0 in V (37a)
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rv − τs ∂r̄mi

∂xi
= 0 in V (37b)

where

r̄mi =
∂σij
∂xj

+ bi +
1

nf
fpfi (38)

is a static momentum term and τs is a stabilization parameter computed as

τs =

(
8µ

h2
+

2ρf
δ

)−1

(39)

In Eqs.(37b) and (39) hij and h are characteristic length distances that are expressed in terms of the finite
element dimensions and δ is a time parameter [12, 16, 19, 37].

The derivation of Eq.(37) for an homogeneous Lagrangian quasi-incompressible fluid is presented in [16].

The stabilization parameter τ is computed in practice for each element e using h = le and δ = ∆t as

τs =

(
8µ

(le)2
+

2ρ

∆t

)−1

(40)

where ∆t is the time step used for the transient solution and le is a characteristic element length computed as
le = 2(V e)1/ns where V e is the element area (for 3-noded triangles) or volume (for 4-noded tetrahedra). For fluids
with heterogeneous material properties the values of µ and ρ in Eq.(40) are computed at the element center.

2.5.1 Variational equations for the fluid

The variational form of the momentum and mass balance equations is obtained via the standard weighted residual
approach [16, 23–26]. The resulting integral expressions after integration by parts and some algebra are:

2.5.2 Momentum equations

The momentum equations can be written as

∫

V

wiρ
Dvi
Dt

dV +

∫

V

[
δεij2µε

′
ij + δεvp

]
dV −

∫

V

wi

(
bi +

1

nf
fpfi

)
dV −

∫

Γt

wit
p
i dΓ +

∫

V

∂Wi

∂xj

hij
2
rmidV = 0 (41)

2.5.3 Mass balance equation

The mass balance equation can be written as

∫

V

q

κ

Dp

Dt
dV −

∫

V

q

(
1

nf

Dnf
Dt

+ εv

)
dV +

∫

V

τs
∂q

∂xi

(
∂

∂xi
(2µεij) +

∂p

∂xi
+ bi

)
dV

−
∫

Γt

qτ

[
ρ
Dvn
Dt
− 2

hn
(2µ

∂vn
∂n

+ p− tn)

]
dΓ = 0

(42)

where hn is a characteristic length size of an element adjacent to the boundary. For instance in our work hn is
taken as the square root of twice the element area for a triangle.

The derivation of Eqs.(41) and (42) for homogeneous Lagrangian fluids can be found in [16]. Their applications
in the context of particulate Newtonian Lagrangian fluids is presented in [4].

Remark 4. For Lagrangian fluids the underlined stabilized terms in Eqs.(37) and (41) are zero.
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2.5.4 FEM discretization

We discretize the analysis domain containing Np particles into finite elements with ne nodes in the standard
manner leading to a mesh with a total number of Ne elements and N nodes. In our work we will choose simple
3-noded linear triangles (ne = 3) for 2D problems and 4-noded tetrahedra (ne = 4) for 3D problems with local
linear shape functions Ne

i defined for each node i of element e [14, 23, 25]. The velocity components, the weighting
functions and the pressure are interpolated over the mesh in terms of their nodal values in the same manner using
the global linear shape functions, Nj , spanning over the elements sharing node j (j = 1, N) [14, 23, 25].

The finite element interpolation over the fluid domain can be written in matrix form as

v = Nvv̄ , w = Nvw̄ , p = Npp̄ , q = Npq̄ (43)

where

v̄ =





v̄1

v̄2

...

v̄N





with v̄i =




v̄i1
v̄i2
v̄i3



 , w̄ =





w̄1

w̄2

...

w̄N





with w̄i =




w̄i1
w̄i2
w̄i3



 , p̄ =





p̄1

p̄2

...

p̄N





and q̄ =





q̄1

q̄2

...

q̄N





Nv = [N1,N2, · · · ,NN ]T , Np = [N1, N2, · · · , NN ]

(44)

with Nj = NjIns , where Ins is the ns × ns unit matrix.
In Eq.(44), vectors v̄, w̄, q̄ and p̄ contain the nodal velocities, the nodal weighting functions and the nodal

pressures for the whole mesh, respectively and the upper index denotes the nodal value for each vector or scalar
magnitude.

Substituting the approximation (43) into the variational forms (41) and (42) gives the system of algebraic
equations for the particulate fluid in matrix form as

M0 ˙̄v + (K + A + S)v̄ + Qp̄− fv = 0 (45a)

M1 ˙̄p−QT v̄ + (L + Mb)p̄− fp = 0 (45b)

where

Me
0ij

=

∫

Ωe

ρNe
i NjI3dΩ , Ke

ij =

∫

Ωe

BeTi DBejdΩ and D = µ




2 0 0
0 2 0
0 0 1


 , Bi =




∂Ni
∂x1

0

0
∂Ni
∂x2

∂Ni
∂x2

∂Ni
∂x1




(for 2D)

Ae
ij =

[∫

Ωe

Ni(ρu
T∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNj)dΩ

]
I3 , Seij =

(∫

Ωe

∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNiD̂∇∇∇∇∇∇∇∇∇∇∇∇∇∇NjdΩ
)
I3

Qe
ij =

∫

Ωe

BeTi mNe
j dΩ , Me

1ij
=

∫

Ωe

1

κ
Ne
i N

e
j dΩ , Me

bij =

∫

Γt

2τs
hn

Ne
i N

e
j dΓ

Leij =

∫

Ωe

τs(∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNe
i )∇∇∇∇∇∇∇∇∇∇∇∇∇∇Ne

j dΩ , fevi =

∫

Ωe

Ne
ibdΩ +

∫

Γt

Ne
i tdΓ

fepi =

∫

Γt

τsN
e
i

[
ρ
Dvn
Dt
− 2

hn
(2µεn − tn)

]
dΓ −

∫

Ωe

τs∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNe
i bdΩ with i, j = 1, ns

In the expressions of Ae
ij and Seij , I3 is the 3× 3 unit matrix and D̂ =

ρ

2
huT , with h being a characteristic length

parameter. A typical definition of h is

h = hs
u

u
+ hc

∇∇∇∇∇∇∇∇∇∇∇∇∇∇u
|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u| (46)

where u = |u| and hs and hc are “streamline” and “cross wind” characteristic lengths given by hs = max(lTj u)/u

and hc = max(lTj ∇∇∇∇∇∇∇∇∇∇∇∇∇∇u)/|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u|, where j ranges from one to the number of element sides and lj is the vector defining
the jth element side [12].

In Eq.(45a), K, A and S are matrices emanating from the viscosity, the advection terms and the stabilization
terms in the momentum equations. Matrices A and S are zero for Lagrangian flows. The derivation of the matrices
and vectors in Eqs.(45) for Eulerian and Lagrangian flows can be found in [12, 16].
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2.5.5 Incremental solution of the discretized equations

Eqs.(45) are solved in time with an implicit Newton-Raphson type iterative scheme [23–26]. The basic steps within
a time interval [n, n+ 1] are:

- Generate a new mesh using the position of the fluid nodes at tn. This step is required for a Lagrangian
formulation (such as PFEM) only.

- Initialize variables: (n+1x1, n+1v̄1, n+1p̄1, n+1nif ,
n+1r̄1m) ≡ {nx, nv̄, np̄, nnf , nr̄m}.

- Iteration loop: k = 1, · · · , NITER.
For each iteration.

Step 1. Compute the nodal velocity increments ∆v̄

From Eq.(45a), we deduce
n+1Hi

v∆v̄ = −n+1r̄km → ∆v̄ (47a)

with the momentum residual r̄m and the iteration matrix Hv given by

r̄m = M0 ˙̄v + (K + A + S)v̄ + Qp̄− fv , Hv =
1

∆t
M0 + K + A + S + Kv (47b)

where Ke
v is

Ke
v =

∫

nV e

BTmθ∆tκmTBdV (47c)

The tangent “bulk” stiffness matrix, Kv, accounts for the changes of the pressure due to the velocity. Matrix
Kv in Hv is important for the fast convergence, mass preservation and overall accuracy of the iterative solution
[7, 16].

The parameter θ in Kv (0 < θ ≤ 1) has the role of preventing the ill-conditioning of the iteration matrix Hv

for quasi-incompressible fluids characterized by very large values of the bulk parameter κ. An adequate selection
of θ improves the overall accuracy of the numerical solution and preserves the mass for large time steps [7, 16].

Step 2. Update the velocities

Fluid nodes: n+1v̄k+1 = n+1v̄k +∆v̄ (48a)

Rigid particles:

{
n+1/2u̇j = n−1/2u̇j + nük+1

j ∆t

u̇j = 1
mj

nFk+1
j , j = 1, Np

(48b)

Step 3. Compute the nodal pressures n+1p̄k+1

From Eq.(45b) we obtain

n+1Hi
p
n+1p̄k+1 =

1

∆t
M1

n+1p̄i + QT n+1v̄k+1 + n+1f̄ ip → n+1p̄k+1 (49a)

with

Hp =
1

∆t
M1 + L + Mb (49b)

Step 4. Update the coordinates of the particles

Rigid particles:





n+1uk+1
i = nuk+1

i + n+1/2u̇k+1
i ∆t

n+1xk+1
i = nxi + n+1uk+1

i , i = 1, Np

(50a)
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Step 5. Update the coordinate of the fluid nodes (for Lagrangian flows only)

Fluid nodes: n+1xk+1
i = n+1xki +

1

2
(n+1v̄k+1

i + nv̄i)∆t , i = 1, N (50b)

Step 6. Compute the fluid volume fraction for each node n+1nk+1
fi

via Eq.(2)

Step 7. Compute forces and torques on particles: n+1Fk+1
i , n+1Tk+1

i , i = 1, Np

Step 8. Compute particle-to-fluid forces: (n+1fpfi )k+1 = −(n+1ffpi )k+1 , i = 1, N with ffpi computed by Eq.(18)

Step 9. Check convergence

Verify the following conditions:

‖n+1v̄k+1 − n+1v̄k‖ ≤ ev‖nv̄‖
‖n+1p̄k+1 − n+1p̄k‖ ≤ ep‖np̄‖

(51)

where ev and ep are prescribed error norms for the nodal velocities and the nodal pressures, respectively. In the
examples solved in this work we have set ev = ep = 10−3.

If both conditions (51) are satisfied, then make n← n+ 1 and proceed to the next time step.
Otherwise, make the iteration counter k ← k + 1 and repeat Steps 1–8.

Remark 5. In Eqs.(47)–(51), n+1(·) denote values at time n+1. For the Lagrangian formulation using the PFEM
the derivatives and integrals in the iteration matrices, Hv and Hp and the residual vector r̄m, are computed
on the discretized geometry at time n (i.e. V e = nV e) while the nodal force vectors, fv and fp, are computed
on the current configuration at time n+ 1 [16].

Remark 6. The time step within a time interval [n, n + 1] has been chosen as ∆t = min
(

nlemin

|nv|max
,∆tb

)
, where

nlemin is the minimum characteristic distance of all elements in the mesh, with le computed as explained in
Eq.(40), |nv|max is the maximum value of the modulus of the velocity of all nodes in the mesh and ∆tb is the
critical time step of all nodes adjacent to a solid boundary [16].

Remark 7. The Eulerian and Lagrangian versions of the formulation have been implemented in the open-source
Kratos software platform [38]. The generation of the analysis data and the visualization of the results have
been carried out using the GiD pre/postprocessing system [39].

3 EXAMPLES

3.1 Motion of cuttings in a vertical annulus for different fluids

The first problem concerned the study of the transport of cuttings in drilling muds in a vertical wellbore with a
centered non-rotating drill string. Numerical results for this problem were obtained with the Lagrangian formulation
presented in this work and the PFEM. The average velocity of the particles at a section of the annulus was measured
and compared to the average fluid velocity. Non-spherical particles were considered. The drag force was computed
as explained in Section 5.1 using the sphericity correction of Eq.(34) [36]. Results are plotted in Figure 5, where
experimental data [2] is also shown for comparison. Table 1 shows the rheological properties of the fluids used for
defining the viscosity function (Eq.(23)).

n K (Pa sn) ρ (kg/m3)

Thick mud 0.33958 3.15275 1030

Intermediate mud 0.37826 1.7637 1030

Water 1 10−3 1030

Table 1: Rheological properties of the fluids used in Figure 5
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Fig. 5: Average velocity of cuttings velocity vs. fluid velocity for different fluids in a vertical annulus. Lines:
Experimental data [2]. Squares: PFEM results

Figure 6 shows results of the motion of the cuttings in a centered drill string, rotating at 10 rpm, which causes
the cuttings to move upwards faster. The fluid is an intermediate mud with the following rheogram characteristics
n = 0, 37826 and K = 1, 7637 Pa sn (Eq.(23)). Results were obtained using PFEM. The boundary conditions
used were the imposed velocity at the inlet, non-slip condition on all was (v̄ = 0) and free surface at the outlet
(σijnj = 0). The free surface is kept at the same location by removing the nodes crossing the outlet.

The particles have the following characteristics: diameter (4.96 mm), sphericity (0.76766), density (2000 kg/m3).
These characteristics correspond to particles with the shape of a brick with dimensions 1/8× 1/4× 1/8 in, which
have been treated as spheres. It must be clarified that the experiments carried out by Sifferman et al. [2] were
done with fluids with a density of 8.6 le/gal (1030 kg/m3) and simulated denser fluids with lighter particles.

The DEM contact properties were chosen to just prevent particles from penetrating each other. For this purpose
we have used Kn = 3 · 105 N/m, Ks = 6, 5 · 104 N/m, a Coulomb friction coefficient of µ = 0.3 and the critical
damping parameter.

The method to obtain the drag force for non-Newtonian fluids is the one explained in Section 2.4. The example
in this section is a vertical wellbore where the slip velocity of the cuttings is close to the terminal velocity, so
it is an example well suited for the method. However, the velocity profile in the annulus must be computed
accurately and the distribution of the particles, affected by its horizontal velocity, must also be accurate to match
the experimental results. Note that the concentration of particles in the section of the annulus is not imposed, but
every single particle is injected in a random position of the inlet, and only after some time of ascending motion
they reach a steady position in the section. Measurements of the average velocity of the particles were taken close
to the outlet.

3.2 Transport of cuttings in inclined and horizontal drilling annulus

The Eulerian and Lagrangian formulations have been applied to the study of the transport of cuttings in inclined
and horizontal wellbores that can lead to the formation of particle beds (Figures 7 and 8). The high concentration
of particles does not affect the stability of the fluid solver until the size of the cuttings equals the fluid mesh size.
The fluid used is the same intermediate mud as in Section 7.1. Results in Figure 7 were obtained using PFEM,
while those in Figure 8 were obtained using an Eulerian approach implemented in Kratos [12, 38].
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Fig. 6: Global view (left) and top view (rigth) of particles flowing at a rate of 1500 particles/(m2s) within a vertical
annulus. The centered drilling pipe rotates at 100 rpm

 

 

 

 
Fig. 7: Global view of an inclined (above) and horizontal (below) annulus carrying mud and cuttings at a rate of
1500 particles/(m2s). The horizontal annulus includes a centered non-rotating drilling pipe

3.3 Cutting transport through more complex sections of the wellbore

The formulation presented has been tested with more complex geometries, like a section of the wellbore with a
tool joint (Figure 9a) and a curved wellbore with a rotating drill string (100 rmp) (Figure 9b). The fluid properties
are the same as in Section 7.1. All the computations for these problems were carried out with PFEM.

In some of these problems beds can be formed. In such conditions, the drag forces are no longer accurate, since
they are based on the assumption that the particles are disperse. This method should therefore used carefully, as
no estimations of the error has been obtained in dense packing conditions. However, the examples shown prove
the stability of the method in those situations.
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Fig. 8: Simulation of the accumulation of particles as they fall towards the bottom of a tube filled with mud

(a) (b)

Fig. 9: Simulation of drill cuttings transported in straight and curved wellbores by mud as a result of a drilling
operation. Arrows denote the velocity vector of each particle

4 CONCLUSIONS

A FEM-DEM technique has been presented to solve the transport of particles in non-Newtonian fluids which can
be applied to wellbores full of circulating fluid, typical of the drilling industry. We have proposed a procedure
for computing the drag force on the particles for non-Newtonian fluids using predictions of the terminal velocity
available from the existing literature. The procedure has been extended to non-spherical particles, treating them
as spheres in terms of contact forces but correcting the drag force according to the shape of the particles.

The usefulness of the proposed numerical method for studying the motion of the drill cuttings in vertical well-
bores has been validated and the applicability and stability to other non-vertical and more complex configurations
have been pointed out.

All of the developments done in terms of coupling between the non-Newtonian fluid and the DEM can be
applied both to a Lagrangian PFEM approach for the fluid or to an Eulerian one. The coupling procedure is
actually not dependent on the method used to solve the equations for the fluid. Therefore, it can be applied to
other popular CFD methods, such as the Finite Volume Method (FVM) [40], the Lattice-Bolzmann Method (LBM)
[41] or the Smoothed Particle Hydrodynamics (SPH) method [42]. This technique can also be combined with the
erosion estimation methods published previously by the authors [11, 13].
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10. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004c) The particle finite element method. An overview. Int. J.
Comput. Methods 1(2):267–307
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This paper, published in 2016, explains the methodology used to assess the air
demand in bottom outlets of dams. A formulation with two �uids was used.
The PFlow code was used for all the computations.
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Centre International de Mètodes Numèrics en Enginye-
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Abstract Dam bottom outlets play a vital role in dam operation and safety, as
they allow controlling the water surface elevation below the spillway level. For
partial openings, water flows under the gate lip at high-velocity and drags the air
downstream of the gate, which may cause damages due to cavitation and vibration.
The convenience of installing air vents in dam bottom outlets is well known by
practitioners. The design of this element depends basically on the maximum air
flow through the air vent, which in turn is a function of the specific geometry and
the boundary conditions. The intrinsic features of this phenomenon makes it hard
to analyse either on site or in full scaled experimental facilities. As a consequence,
empirical formulas are frequently employed, which offer a conservative estimate
of the maximum air flow. In this work, the particle finite element method was
used to model the air-water interaction in Susqueda Dam bottom outlet, with
different gate openings. Specific enhancements of the formulation were developed
to consider air-water interaction. The results were analysed as compared to the
conventional design criteria and to information gathered on site during the gate
operation tests. This analysis suggests that numerical modelling with the PFEM
can be helpful for the design of this kind of hydraulic works.

Keywords Particle finite element method · Two fluids · Bottom outlets · Air
demand

1 Introduction

Air-water interaction is a relevant phenomenon in multiple hydraulic works in-
volving high-velocity free-surface flows, such as spillways and bottom outlets [37].
Under this conditions, the turbulent flow produces air entrainment, which results
in flow bulking. Hence, the density of the aerated flow is given by ρw (1− V ) +
ρa (V ) ≈ ρw (1− V ), where ρw is the water density, ρa is the air density and V is
the void fraction [6].

The practical consequences of this phenomenon are diverse. Flow bulking
favours the energy dissipation and results in a water-solid friction reduction. [40].
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Fig. 1 Typical flow pattern in high-head bottom outlets. Adapted from [36]

In spillway chutes and open channels, aeration produces an increase of the effective
depth, so that a larger section is needed to avoid wall overtopping.

In bottom outlets, there is a need to allow and even encourage air entrance to
avoid the formation of negative pressures that can damage the structure [42]. To
this end, a conduit is typically installed in the downstream side of the gate, which
allows air supply. The design of this element is mostly based on the maximum air
demand, i.e., the maximum air flow to be conducted within the gate operation
range.

The occurrence of major breakdowns in Roosevelt and Pathfinder dams [9] re-
vealed this need, and encouraged several authors to investigate the phenomenon.
As a result, several systematic experimental campaigns were carried out with the
aim of deriving empirical formulas [35], [4], as well as identifying the most influ-
ential factors.

Thus, it was observed that the aerated flow pattern downstream of a high-head
gate essentially depends on [36]:

– The upstream and downstream boundary conditions
– The gate opening
– The presence of bottom aerators
– The geometry of the conduit

Fig. 1 depicts the typical flow pattern in a partially-opened high-head gate
with bottom aerator.

Although the phenomenon was the subject of numerous studies in the past, the
hydraulic behaviour of aerated flows in bottom outlets is not fully understood and
depends on each particular case. Hydraulic modelling on experimental facilities at
convenient scale is typically recommended [41].

As a first approximation for a preliminary design, the formulas proposed by
Sharma [35] are frequently used. They are conservative, since they are based on
the envelope of the maximum values obtained in laboratory for each situation. Dif-
ferent expressions are recommended in function of the flow regime in the conduit.
The same author identified six types of aerated flow regimes in bottom outlets, as
a function of the gate opening and the downstream boundary conditions (Fig. 2).

The applicability of these formulas is limited, because they are based on results
of small-scale tests. Moreover, they were performed on square conduits, while many
bottom outlets feature round sections.

Tullis and Larchar [38] proposed a general methodology for designing the aer-
ation system, also based on experimental results. Nonetheless, this method is spe-
cific for small to medium-sized embankment dams with an inclined slide gate.

These methods are far from being generally applicable. As a result, it is fre-
quent, in practice, to perform specific experimental tests (e. g. [31], [38], [11]).
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Fig. 2 Types of aerated flow regimes in bottom outlets, as defined by Sharma [35]. Qa = air
flow; Qw = water flow;

Numerical modelling is an obvious alternative to these empirical and exper-
imental approaches. However, the complexity of the air-water interaction phe-
nomenon prevented practitioners from its application. The problem is three-dimensional,
and requires considering two fluids which strongly interact by means of diverse pro-
cesses [6]: the turbulence induces free-surface breakup which allows air entrainment
into the water flow; the entrapped air may travel within the flow in bubbles and
droplets of a broad range of sizes; these can collide and eventually join, or exit
again if the appropriate flow conditions occur.

The direct simulation of these processes is infeasible, but they can be consid-
ered at a macroscopic scale producing useful results for practical purposes. Some
formulations exist to consider the turbulent air entrainment coupled with variable
density estimation, such as that implemented in the commercial software Flow3D
[12]. Some examples of application to spillway hydraulics were already published
[40]. In general, the objective is to calculate the macroscopic variables (air con-
centration, and especially air flow), which suffice to determine the appropriate
geometry of the aeration system. Other commercial softwares such as ANSYS use
a similar approach [2], also based on the volume of fluid (VOF) model [20]. The
main drawback of this method is that convenient models need to be chosen for air
entrainment and flow turbulence, whose parameters require a detailed calibration
process.

The authors have implemented a particular class of Lagrangian formulation for
solving problems involving complex interactions between free surface fluids. The
so-called Particle Finite Element Method (PFEM) tracks the trajectory of the
nodes of the mesh, including those on the free surface or in a fluid-fluid interface,
and is even able to model the separation of parts of the domain, such as droplets.
A mesh connects the nodes discretising the domain where the governing equations
are solved using a stabilised version of the Finite Element Method (FEM). Details
of the PFEM can be found in [1], [24], [27], [19], [15], [16], [3], [34].

With the PFEM, air entrainment can be naturally modelled by means of mixed
elements (combining water and air nodes). This can be done because the informa-
tion in the PFEM is stored in the nodes, as opposite to Eulerian approaches. The
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density of the aerated flow is automatically computed depending on the propor-
tion of air and water nodes in a certain sub-domain. The purpose of this approach
is also to extract the macroscopic variables, rather than to model each volume
of trapped air, which can appear in a broad range of sizes, from microscopic to
centimetric. In particular, it is possible to quantitatively reproduce the air drag
capacity of the flow, and therefore the air flow rate of a determined facility, which
is the basis of the design of the aeration system. Additionally, other variables of
interest can be analysed, as the pressure on the downstream face of the gate, or
the velocity in the air vent.

The evolution of PFEM led to the so-called PFEM2 technique [14]. It shares
most of the PFEM features while using large time steps, hence resulting in lower
computational cost. Since the PFEM2 is also adequate to analyse multifluid flows
[17], it could be an alternative to face the problem under consideration. Nonethe-
less, we chose PFEM instead of PFEM2 because a) the computational cost was
not critical in our problem, and b) the first version was specifically validated for
simulation of free surface flows in the field of dam hydraulics [18].

This paper presents some improvements implemented in the PFEM formula-
tion to tackle the simulation of air-water flows, together with its application to
verify the performance of the bottom outlet of Susqueda Dam. The results were
analysed, both qualitatively and quantitatively, for different gate openings. They
are consistent with the performance observed during the operation tests, as well
as with existing design recommendations [39].

The rest of the paper is organised as follows: first, a brief introduction to the
PFEM is presented, together with the description of some specific functionalities
developed for this application. Then, the case study is introduced, and the numer-
ical model set described. In the final sections, the results are shown and discussed,
and some conclusions are drawn regarding future applications and developments.

2 Numerical model

In the PFEM, the domain is modelled using an updated Lagrangian formulation
[43]. That is, all variables are assumed to be known in the current configuration
at time t. The new set of variables in the domain are sought for in the next or
updated configuration at time t+∆t. The finite element method (FEM) is used to
solve the equations of continuum mechanics. Hence a mesh discretising the domain
must be generated in order to solve the governing equations in the standard FEM
fashion.

The equations to be solved are the Navier-Stokes equations for incompressible
fluids:

Momentum conservation

ρ
Dui
Dt

= − ∂

∂xi
p+ µ

∂

∂xj

(
∂ui
∂xj

)
+ ρfi (1)

for i, j = x, y, z
Mass conservation

∂ui
∂xi

= 0 (2)
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for i = x, y, z

with

u = ū (3)

for the solid nodes and

p = 0 (4)

for the free surface fluid nodes.

In above equations, ρ and µ are the fluid density and dynamic viscosity, re-
spectively, p is the pressure, ui are the velocities along the ith global (cartesian)
axis, fi are the body forces, and ū is the prescribed velocity.

According with the PFEM technique [27], equations 1 and 2 are discretised
with a standard FEM mesh and then solved. When the finite elements get very
distorted, the mesh is re-generated, but the nodes and their information are con-
served. Adaptive mesh refinement techniques can be used to improve the solution
in zones where large motions of the fluid or the structure occur.

The method has been employed to face a variety of problems in different fields of
engineering, such as free surface flows [19], landslides [33], [34], industrial forming
processes [26], ground excavation [5], fluid-structure interaction [21], among others
[23], [22], [13], [28]. The details of the algorithm and our implementation was
described in previous publications [21], [24], [25]. In this paper, only the basic
steps of the algorithm are succinctly described, together with some enhancements
specifically implemented for the present application.

2.1 Basic steps of the PFEM

In the PFEM, the mesh nodes in the fluid and solid domains are treated as particles
that contain all the information as regards the geometry and the material and
mechanical properties of the underlying subdomains.

A typical solution with the PFEM involves the following steps.

1. The starting point at each time step is the cloud of points C in the fluid and
solid (boundary) domains. For instance, nC denotes the cloud at time t = nt
(Fig. 3).

2. The domain is discretised with a finite element mesh nM using the particles
as the mesh nodes. We use an efficient mesh generation scheme based on the
Delaunay tesselation [16].

3. The free surface is detected by means of the Alpha Shape Method [8], which
removes big and distorted elements.

4. The Lagrangian equations of motion for the overall continuum are solved using
the standard FEM. The state variables in the next (updated) configuration for
nt+∆t are computed: velocities, pressure, strain rate and viscous stresses.

5. The mesh nodes are moved to a new position n+1C where n + 1 denotes the
time nt+∆t, in terms of the time increment size.

6. Go back to step 1 and repeat the solution for the next time step to obtain a
new n+1C.
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Fig. 3 Sequence of steps to update a “cloud” of particles (nodes) representing a domain
containing two fluids and a solid boundary from nt to n+1t (colour figure online).

2.2 Mesh quality maintenance operations

It was previously mentioned that PFEM is suitable for modelling fluids in which
the free surface suffers severe distortions during the transient solution. In the case
of aeration in bottom outlets, a fluid (water) enters at high velocity into a domain
initially occupied by another fluid (air) at rest. This implies a greater difficulty
for maintaining a sufficient quality mesh during the calculation. To ensure this
quality, some improvements in the meshing algorithm have been implemented, as
described below.

Removing nodes: Usually, the computations carried out with the PFEM tend
to create very distorted meshes. This means that the nodes, when following their
trajectories in a Lagrangian fashion, can get very close one to another. Sometimes,
two, three or more nodes join in a reduced space, generating very distorted ele-
ments with near null volume and a high aspect ratio. To avoid this problem, the
authors have adopted a method consisting on removing one node of the mesh if it
detects that another is present at a short distance (a fraction of h, where h is the
desired/imposed mesh size). During the generation of the Delaunay Tessellation,
for which the incremental insertion method is used [7], if the node to be inserted is
marked with a special flag, it is not inserted. By doing this, the final connectivities
of the mesh do not include the removed node, but do have elements that connect
the remaining nodes according to the Delaunay Tessellation (Fig. 4).

Adding nodes: When the Delaunay Tessellation is complete, the resulting el-
ements filling the space previously occupied by a removed node might be bigger
than the desired size. If nothing is done, the Alpha-shape method might remove
these elements, resulting in a void in the interior of the fluid, the free surface con-
dition would be imposed on the nodes next to the void and the fluid pressure field
would be spoiled. There must be then another mesh reparation step before the
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Fig. 4 Mesh quality maintenance by removing a node that forms distorted elements

Fig. 5 Node insertion to enhance mesh quality after removing a node

Alpha-shape method is applied. Those elements bigger than a certain size (mea-
sured with the circumradius) must be refined by adding a node in the circumcenter
of the element (Fig. 5). This step must be done far from the free surface detected
in the last time step, or the Alpha-shape method would never remove any element.
A local Delaunay Tessellation is enough for each node inserted.

2.3 Modelling water and air

For modelling water that fills a pipe (or a cavity) full of air, the whole domain
was filled with air nodes and the water was injected from one of the sides. The
density of an element is taken as the average of the densities of the nodes of the
element. The fluid mixture is solved as a single fluid with a heterogeneous density.
When two nodes of different material get too close and the mesh is too distorted,
one of the nodes must be removed. The water node is considered prevalent, so the
air node is removed. If one node must be added, its material will be that of the
nodes which are in majority. With this approach, the mass conservation of each
fluid is not enforced geometrically. However, the water behaviour is very similar
to that observed in the PFEM computations with a single fluid (no air) and the
free surface is modelled as a null pressure condition.

The typical velocities and pressures of this problem do not require treating the
air as a compressible fluid, so the mass conservation equation imposes a divergence-
free velocity field even for those parts of the domain that represent the air.

Neither the turbulence nor the surface tension between water and air were
accounted for in this work, since they do not play a significant role at the mesh
scale used, which is of the order of centimetres. As a result, small-scale effects,
such as small bubbles that are formed and trapped by the turbulent flow of the
water, cannot be modelled in full detail. Nonetheless, the numerical modelling with
PFEM can be useful to obtain an estimation of the air flow demand for different
situations, which is essential for designing the aeration system.
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Fig. 6 Susqueda Dam. Left: view from the right abutment with one outlet in operation
(courtesy of F.J. Conesa); Right: cross-section through a bottom outlet

3 Susqueda Dam case study

Susqueda Dam (Fig. 6) is located at the Ter river basin, in the north-eastern
region of Spain. It is a double-curvature arch dam with a maximum height of m
above foundation. The bottom outlets are situated at 37 m above the stilling basin.
They comprise four round conduits of 1.5 m diameter. Each one is controlled by
two identical flat-seat round-section valves [30]: that installed upstream serves as
a guard gate, whereas the one in the downstream part is used for flow regulation.

This type of valves were developed for circular conduits to join the robustness
of the conventional bonneted slide gates [10], [32], while avoiding the need for
round-to-square upstream transition and square-to-round downstream transition
[30]. Thus, the results of the conventional formulas and the design criteria for the
aeration system need to be verified for its application to this typology.

The bottom outlets at Susqueda Dam feature a 4-m reach from the down-
stream face of the regulation gate to the downstream face of the dam (Fig. 7).
A deflector was installed at the end of the conduit to improve energy dissipation
by widening the flow impact area. It comprises a cone-shaped plate. The aeration
system consists of a 0.4-m diameter air conduit, with a vertical 4-m long reach, a
90o elbow, and a horizontal 3.5-m long reach which also ends at the downstream
dam face (Fig. 7).

4 Numerical model set

4.1 Geometry and mesh

The numerical model reproduces one of the bottom outlets of Susqueda Dam. The
upstream guard gate was not considered in the computation, since it remains fully
open during normal operation. As a result, the model geometry comprised a 1.5
m diameter conduit, a partially-opened gate with 0.3 m thickness, and a 0.4 m
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0.4 m

4.0 m

4.0 m

3.5 m

1.5 m

Downstream dam face

Air vent

Bottom outlet

Deflector

Fig. 7 Geometry of the bottom outlet in the numerical model. Perspective.

diameter air vent with a 90o elbow. Fig. 7 depicts the more relevant aspects of the
model geometry.

Both the outlet end section and the exit of the air vent are connected to a
large volume, initially filled with air, which represents the domain at the down-
stream area of the dam body. Fig. 8 shows the main dimensions of the overall
computational domain.

8 m
60 m

27 m

(a) Plane view

40 m

(b) Side view

Fig. 8 Overall view of the computational domain, including the air surrounding the down-
stream face of the dam.

PFEM allows considering different mesh sizes within certain sub-domains. This
is useful to optimise the computational resources, as a fine mesh can be used in
the areas of interest, while other regions can be meshed with larger elements. In
this implementation of the PFEM, the mesh size is defined by means of nested
parallelepiped, sharing the same centre. They feature increasing mesh sizes in the
inside-outside direction, from 0.07 to 1.6 m. Fig. 9 shows a detail of the different
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Fig. 9 Variable mesh size.

Table 1 Inflow discharge for each gate opening

Gate opening (%) Inflow (m3s−1)

25 10.94
50 20.73
75 33.84
80 36.19
90 40.59
100 44.18

mes sizes. The software GiD [29] was employed for geometry and mesh generation
and results post-process.

4.2 Boundary conditions

In all cases, the upstream hydraulic head was set to 0.49 MPa, equivalent to 50
m of water. Since the study focused on the aeration system, the upstream water
volume (from the upstream side of the gate to the reservoir free surface) was not
considered. As an alternative, the incoming flow rate for each gate opening was
computed by means of a separate numerical simulation (not described here), whose
results are included in table 1.

The downstream volume was limited by solid boundaries, except by a 12 x 5
m surface where zero pressure was imposed.
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5 Results and discussion

5.1 Flow regime

The downstream water level is not relevant in Susqueda Dam, as the outlet exits
at a sufficient height over the stilling basin so as to avoid drowning. However, the
deflector introduces a localised head loss, which may modify the expected flow
regime for a free discharge conduit. As a result, it was considered interesting to
analyse the air-water interaction in the conduit, between the gate and the deflector.
The results are presented in Fig. 10 for each gate opening.

As expected, the gate opening conditioned the air-water interaction. As it
increased, a greater portion of the conduit was filled with water. The flow regime
varied: it can be classified as spray flow for 25% opening; free flow for 50-80%,
and foamy flow for 90%. For full gate opening, the water also flowed through the
air vent, showing no air demand and a fully pressurised flow (Fig. 11). The latter
behaviour was also observed on site, as depicted in Fig. 11. It should be noted
that the water exits at low pressure through the air vent.

(a) 25% gate opening (b) 50% gate opening

(c) 75% gate opening (d) 80% gate opening

(e) 90% gate opening (f) 100% gate opening

Fig. 10 Flow regime in the outlet for different gate openings. Iso-surface of density = 500
kg/m3. (Colour figure online).
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Fig. 11 Water flowing through the air vent for 100% gate opening. Left: image taken during
the gate operation tests. Right: numerical model results. (Colour figure online).

5.2 Air flow pattern

The flow pattern of both fluids was analysed, both in the air vent and in the
outlet. To that end, the velocity vectors were drawn on a longitudinal section of
the model, as depicted in Fig. 12. The objective was to compare the velocity field
for various gate openings to those defined by Sharma (Fig. 2).

It was observed that for small gate openings (up to 50%), the air demand was
satisfied both from the air vent and from the downstream end of the outlet (it
entered through the area around the deflector which is free from the water flow).

Between 75 and 90% gate opening, all the air was supplied by the air vent,
since most of the outlet section was occupied by the water flow. In these cases, a
recirculating area appeared at the top of the conduit, where part of the air flow
was trapped by the high-velocity water flow at the bottom, while the mixture was
evacuated around the deflector.

Finally, as mentioned in the previous section, the water completely filled the
conduit for 100% gate opening. In this situation there was no air demand, and
part of the water exited through the air vent towards the downstream face of the
dam body with low pressure.

A more detailed analysis was carried out for 25, 50, 75 and 90 % gate opening.
Fig. 13 shows results in four cross-sections between the gate and the deflector:
a) the contour for 95% air concentration (C = 0.95), and b) the sign of the
velocity in the x-axis direction. It can be seen that for small openings the water
concentrated at the bottom central area, while part of the air was dragged towards
the deflector (vx > 0). By contrast, for large openings only the top-central zone
featured C ≥ 95%.

In the Fig. 14 only the air nodes are plotted, separated by the sign of their
x-velocity. The air flow from the deflector area for 25-50% gate opening can be
clearly observed, as well as the small volume occupied by air for 90 % opening.
The ratio of air nodes with positive x-velocity increased with large gate openings.

5.3 Air flow rate

The air vent design (axis and diameter) is mostly based on the maximum air
flow. In the general case, the problem is coupled, i.e. the air demand depends
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Air

Water

(a) 25% gate opening

Air

Water

(b) 50% gate opening

Air

Water

(c) 75% gate opening

Air

Water

(d) 80% gate opening

Air

Water

(e) 90% gate opening

Air

Water

(f) 100% gate opening

Fig. 12 Velocity vectors for different openings. Longitudinal section. The dark area depicts
air concentration ≤ 50%

on the geometry of the air vent. In this particular case study, the design was
already decided and built, and the numerical modelling was carried out as a further
verification.

The air flow rate for each gate opening was computed by integrating the veloc-
ity field in a horizontal section of the air vent. The result was averaged over five
seconds of simulation (from t = 1s to t = 6s), once a pseudo-stationary regime
was reached (in the beginning of the simulation, the incoming water flow pushes
the air). The results are presented in Fig. 15.

It can be observed that the maximum air demand is registered for 80% gate
opening. This value coincides with the practical criteria suggested by some authors
(e.g. [36], [39], [4]). Nonetheless, it should be mentioned that according to some
publications, the gate opening for the maximum air flow rate depends on the spe-
cific features of each facility. For instance, Tullis and Larchar reported a maximum
air demand for 50% gate opening [38]. Their experimental study focused on slide
gates installed on the upstream sloping face of embankment dams.

The velocity values (and consequently also the flow rate) showed high fluctua-
tion for some gate openings along the period considered. This was also observed in
experimental tests [38], and was attributed to the high turbulence and instability
of the flow downstream of the gate. Fig. 15 also shows the standard deviation of
the flow rate for each gate opening.
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> 95% air
< 95% air

Vx < 0
Vx > 0

x

z

(a) 25% gate opening

Vx < 0
Vx > 0

x

z

> 95% air
< 95% air

(b) 50% gate opening

Vx < 0
Vx > 0

x

z

> 95% air
< 95% air

(c) 75% gate opening

Vx < 0
Vx > 0

x

z

> 95% air
< 95% air

(d) 90% gate opening

Fig. 13 Air-water interaction downstream of the air vent. Cross sections at 1.5, 2.5, 3.5
and 4.5 m from the gate. For each gate opening, the sign of the x-velocity (top) and the air
concentration (bottom) are plotted. It should be noted that the darker region in the bottom
figures represents the area occupied by the aerated flow (0-95% air concentration).

The maximum velocity in the air vent was also verified, as this is the funda-
mental parameter its design. Fig. 16 shows that the relation between gate opening
and maximum velocity sensibly coincides with that for the mean air flow, although
the absolute maximum was recorded for 90% gate opening: an instant value of 33
m/s was obtained. Since the typical recommendation is to limit the maximum
velocity to 45 m/s ([39], [4]), it can be concluded that the aeration for Susqueda
Dam was correctly dimensioned.

These results might seem contradictory as compared to those depicted in Fig.
13: the higher air demand coincides with gate openings for which the area occupied
by water is greater. However, it should be noted that for small openings most of
the air circulates with negative velocity in the x-axis, i.e., it comes from the area
around the deflector. By contrast, for 75-90% gate opening all the air demand is
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Vx (m/s)
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z

(a) 25% gate opening. Air nodes with pos-
itive x-velocity

Vx (m/s)

(b) 25% gate opening. Air nodes with neg-
ative x-velocity

Vx (m/s)

x

z

(c) 50% gate opening. Air nodes with pos-
itive x-velocity

Vx (m/s)

(d) 50% gate opening. Air nodes with neg-
ative x-velocity

Vx (m/s)

x

z

(e) 75% gate opening. Air nodes with pos-
itive x-velocity

Vx (m/s)

(f) 75% gate opening. Air nodes with neg-
ative x-velocity

Vx (m/s)

(g) 90% gate opening. Air nodes with pos-
itive x-velocity

Vx (m/s)

(h) 90% gate opening. Air nodes with neg-
ative x-velocity

Fig. 14 Air nodes for 25, 50, 75 and 90% gate opening, separated by the sign of the x-velocity.
Most of the air is supplied from the deflector area for small gate openings. (Colour figure online)

supplied by the air duct, the re-circulation area is smaller, and the air velocity is
higher. These factors result in greater air flow through the air vent (Fig. 14).

6 Summary and conclusions

The PFEM was applied to simulate the air-water interaction in the downstream
reach of Susqueda Dam bottom outlet. Different gate openings were analysed for
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Fig. 15 Air flow rate as a function of the gate opening. The bars show the standard deviation.
The maximum air demand was registered for 80% opening.

Fig. 16 Maximum instant air flow velocity in the vent as a function of the gate opening.

a constant upstream head. In the PFEM, the information is stored at the nodes
of the mesh, which is regenerated at every time step. Thus, air-water mixture can
be naturally modelled by means of mixed elements (formed by nodes from air and
water).

The phenomenon is highly complex, with a broad range of air and water particle
sizes. Although the direct simulation of every droplet and bubble is infeasible,
PFEM allows considering the air drag produced by the high-velocity water flow,
as well as analysing the air-water flow pattern.

The numerical results were analysed and compared to previous studies and
common design criteria. The main conclusions that can be drawn from that anal-
ysis are:

– Some of the flow regimes defined by Sharma [35] were observed for increasing
gate openings: from spray flow with 25% opening to fully pressurised flow for
100% opening. Free and foamy flows were also observed for intermediate gate
openings.
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– The maximum air demand on average was recorded for 80% gate opening,
which is in accordance with the reference studies and design guides ([38], [39],
[36]).

– For full opening, the conduit is fully pressurised and part of the water flow fills
the air vent. Thus, the air demand is null in this situation. This behaviour was
observed on site during the operation tests (Fig. 11).

The results suggest that the PFEM can be useful for calculating the air demand
in dam bottom outlets. In the case study presented, the appropriateness of the
existing design was verified. For new facilities, the possibilities of the PFEM for
identifying the flow patterns, and for computing the pressure and velocity fields
should be helpful for designing the aeration system.
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15. Idelsohn, S., Oñate, E., Del Pin, F.: A lagrangian meshless finite element method applied
to fluid-structure interaction problems. Computers and Structures 81(8), 655–671 (2003)
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21. Oñate, E., Idelsohn, S.R., Celigueta, M.A., Rossi, R.: Advances in the particle finite ele-
ment method for the analysis of fluid–multibody interaction and bed erosion in free sur-
face flows. Computer Methods in Applied Mechanics and Engineering 197(19), 1777–1800
(2008)
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