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Preface
Work here presented is the result of basic research in key aspects of the currently

available engineering tools and methodologies for the design, optimisation and devel-
opment of thermal systems and equipment: turbulence modeling, high perfomance
computing and quality tests and procedures so as to assess credibility to the numerical
solutions (verification and validation).

The thesis comprises six main chapters written in a paper format. Two of them
have already been published in international journals, one in the proceedings of a
Spanish conference and two in proceedings of international conferences on Computa-
tional Fluid Dynamics and heat transfer. The last chapter has recently been submitted
for publication to an international journal. Therefore, all the chapters are written so
as to be self-contained, complete and concise. As a consecuence, some contents of
the chapters such those describing the governing equations, or the verification proce-
dure used to assess the credibility of the numerical solutions, are repeated in several
of them. Furthermore, as only minor changes have been introduced in the chapters
respect to the original papers, each of them reflect the know-how of the CTTC (Heat
and Mass Transfer Technological Center were the research has been carried out) when
they were published.

Papers presented in chapter 1 and 2 deal with turbulence modeling. A general
overview is given on the formulation and numerical techniques of the different levels
of turbulence modelling: Direct Numerical Simulation (DNS), Large Eddy Simulation
(LES) and Reynolds Averaged Navier-Stokes Simultion (RANS). Main attention is
foccused on the eddy viscosity two-equation RANS models. Their formulation is
presented in more detail, and numerical solutions of the most extended Benchmark
problems on turbulence modeling are given compared to the available experimental
data.

Chapter 3 and 4 focuss on the use of the multiblock method (domain decompo-
sition method), as a numerical technique that combined with the parallel computing
may allow to reduce the demanding computational time and memory (high perfor-
mance computing). The multiblock approach used is based on the conservation of
all the physical quantites (fully conservative method) and on an explicit information
exchange between the different blocks of the domain. The goal of the work presented
in these two chapters is to verify that such a multiblock approach does not introduce
additional uncertainty in the numerical solutions.

Chapter 5 presents a tool that has been developed at the CTTC for the verification
of finite volume computations. In fact, this tool is also partilly used and described in
the results presented in the previous chapters. Here, it is described and discussed in
detail and it is applied to a set of different CFD and heat transfer problems in two
and three dimensions, with free and forced convection, with reactive and non-reactive
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8 Preface

flows and with laminar and turbulent flows.
The last chapter shows a complete study for the development of a credible heat

transfer relation for the heat evacuated from a ventilation channel. Such study com-
prises all the different steps that have to be accomplished so as to develope credible
and applicable results in mechanical engineering. It comprises a description of the
mathematical model to represent the physical phenomena in the channel, the nu-
merical model to solve the set of coupled differential equations of the mathematical
model, the construction and testing of an ad-hoc experimental set-up, and a verifi-
cation and validation (V&V) test that guarantees that the numerical solution is an
accurate enough approximation of the mathematical model (verification), and that it
properly predicts the reality (validation).
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Chapter 1

Analysis of Turbulent Flows
by Means of RANS Models

Main contents of this chapter are published as
C.D. Pérez-Segarra, J. Cadafalch and A. Oliva. Análisis de flujos turbulentos en base a
modelos de tipo RANS. In Proceeding of the XIII Congreso Nacional de Ingenieŕıa Mecánica,
volume 4, pages 608-615, Terrassa, 1998.

Abstract. A general overview of the mathematical formulation and numerical techniques

used for the solution of turbulence flow is presented. Among the different strategies for the

analysis of these phenomena (DNS, LES, RANS, stochastic models,....), the study has been

focussed on those formulations that use time-averaged variables (which are known by the

acronym RANS, i.e. Reynolds Averaged Navier-Stokes Simulation). These models require

the use of additional information to get a close system of equations. The closure problem

introduce some kind of empirical information giving a wide range of turbulence models. In

this work the formulation of different RANS turbulence models usually used in the design

of thermal systems and equipment are presented.
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14 Chapter 1. Analysis of Turbulent Flows...

1.1 Introduction

The turbulent flow is characterized by a transient and tri-dimensional structure, lead-
ing to a wide range of time and length scales. For high Reynolds numbers, the energy-
cascade model of Kolmogorov establishes a transport of the kinetic energy from the
main flow to the bigger vortexes, which are characterized by length scales with the
same order of magnitude of the main flow, with a high level of anisotropy and with low
fluctuation frequencies. The interaction between these vortexes leads to a stretching
process (known as vortex stretching) that reduces their diameter increasing their an-
gular velocity. In this process, the kinetic energy goes from larger vortexes to smaller
vortex until it is dissipated and converted to internal energy by means of the viscous
forces. The smaller scales (dissipative scales or Kolmogorov scales) are characterized
by high fluctuation frequencies and a isotropic structure (high Re). In some situa-
tions, an inversion of the energy-cascade process from the smaller to the larger scales
can also occur (backscatter).

As in most engineering applications the dissipative scales (Kolmogorov scales) of
the turbulent flow are of several order of magnitudes bigger than the molecular scales
(which in gases are characterized by the free mean path), see for example Tennekes and
Lumley [1], the constitutive equations of Stokes’s viscosity for Newtonian fluids and
of Fourier for conductive heat transfer are suitable for the description of this kind of
flows. Once introduced in the governing equations (mass, energy and momentum), the
Navier-Stokes equations are obtained. Historically, the Navier-Stokes equations take
account of the mass and momentum equations. However, in the CFD literature usually
the Navier-Stokes equations include all the governing equations. For incompressible
flows and avoiding the body forces effects, this equation system takes the form:

∂uj

∂xj
= 0 (1.1)

∂(ρui)

∂t
+

∂(ρujui)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(

µ
∂ui

∂xj

)

(1.2)

∂(ρT )

∂t
+

∂(ρujT )

∂xj
=

1

cp

∂

∂xj

(

λ
∂T

∂xj

)

(1.3)

Tennekes and Lumley [1], show that the ratio between the turbulence dissipative
scales and the turbulence integral scales (with the size of the larger vortexes) has an
order of magnitude proportional to the turbulent Reynolds number up to the power
of −3/4. The Direct Numerical Simulation (DNS) of these equations needs a space
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and time discretization fine enough so as to ensure a proper description of the smaller
turbulent scales. This kind of approximation does not require any empirical informa-
tion because the equation system is closed (5 equations and 5 unknown variables: p,ui

and T). In fact, results derived from the DNS are considered by the scientific commu-
nity of the same nature that those derived from experimental studies. However, as
direct numerical simulation is highly computational demanding, nowadays it is still
restricted to flows with simple geometries and low Reynolds numbers (remember the
exponential relation between the dissipative and integral turbulence scales previously
described).

Therefore, as usualy it is not possible to directly solve the Navier-Stokes equations
in turbulent flows, it has been necessary to transform the instantaneous equations into
averaged equations. The statistical averaging process can be both in space or in time.
Whatever the kind of averaging used, the averaged Navier-Stokes equations introduce
additional unknowns due to the non-linearity of the convective terms. The approxi-
mation of these additional unknowns in terms of the averaged variables leads to the
turbulence models. Two main analysis lines can be found: the Large Eddy Simulation
models (LES), and the Reynolds Averaged Navier-Stokes Simulation (RANS).

The LES models come out from the work of Smagorinsky [2]. They are based on
the volume-averaged Navier-Stokes. The averaging process (filtering) is only carried
out for the smaller turbulence scales. While the tridimensional and transient structure
of the larger turbulence scales are simulated in detail, the smaller scales (of the size of
the discretization mesh used) are modeled. As these smaller scales are characterized
by an isotropic structure (at least for high Re numbers), they are relatively easy to
be modeled. Therefore, relatively coarse meshes and large time increments can be
adopted. In a medium term, these models can become very relevant as a tool for the
analysis of turbulent flows of engineering applications.

The RANS models are based on the time averaged Navier-Stokes equations. In
principle, these equations are restricted to steady state turbulent flows (averaged val-
ues are constant in time), and to transient flows with a time scale of the medium flow
significatively larger than the turbulence time scales. Details about the formulation
of the RANS models will be given in the following sections.

1.2 RANS: Reynolds averaged Navier-Stokes simu-
lations

The time averaged Navier-Stokes equations are obtained from equations (1.1), (1.2)
and (1.3), substituting the instantaneous variables for its time averaged value plus a
fluctuation value (i.e. φ = φ + φ′), and averaging in time the resulting equations:
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∂uj

∂xj
= 0 (1.4)

∂(ρui)

∂t
+

∂(ρujui)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(

µ
∂ui

∂xj
− ρu′

iu
′

j

)

(1.5)

∂(ρT )

∂t
+

∂(ρujT )

∂xj
=

∂

∂xj

(

λ

cp

∂T

∂xj
− ρu′

jT
′

)

(1.6)

As indicated in the previous section, the non-linearity of the convective terms in-
troduces new unknowns: the turbulent stresses tensor (or Reynolds tensor) ρu′

iu
′

j and

the turbulent heat tensor ρu′

jT
′. These terms correspond to the convective transport

of momentum and energy due to the fluctuating component. Therefore, the averaging
process maintains the number of equations, 5, and increases the number of unknown
variables, 14: ui, p, T , 6 components of the Reynolds tensor (which is symmetric),
and 3 components of the heat tensor.

Representing the instantaneous momentum equation (1.2) of the velocity com-
ponent ui with the operator M(ui), a new transport equation for each one of the
Reynolds tensor components can be obtained by means of the following operation

ujM(ui) + uiM(uj) (1.7)

They are known as the Reynolds stress equations and in a compact form can be
written as follows:

Cij = dij + Pij + φij − εij (1.8)

where:

Cij =
Du′

iu
′

j

Dt
=

∂u′

iu
′

j

∂t
+ uk

∂u′

iu
′

j

∂xk
(1.9)

dij =
∂

∂xk

{

ν
∂u′

iu
′

j

∂xk
− u′

iu
′

ju
′

k − p′u′

i

ρ
δjk −

p′u′

j

ρ
δik

}

(1.10)
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Pij = −u′

iu
′

k

∂uj

∂xk
− u′

ju
′

k

∂ui

∂xk
(1.11)

φij =
p′

ρ

(

∂u′

i

∂xj
+

∂u′

j

∂xi

)

(1.12)

εij = 2ν
∂u′

i

∂xk

∂u′

j

∂xk
(1.13)

These equations describe the convective transport and storage process (Cij), the
diffusive transport (dij), generation (Pij ), redistribution (φij) and destruction (εij) of

each one of the components of the Reynolds tensor ρu′

iu
′

j . Although the mathematical
processes described yields to a new equation for each one of the Reynolds tensor
terms, 22 new additional unknowns are also derived (u′

iu
′

ju
′

k, p′u′

i, φij , εij). Similar
mathematical procedures can be used to obtain new additional equations for the third
and higher order momentums, however the resulting equation system would never be
closed because the number of unknowns would ever be larger than the number of
equations.

The averaging process obviously leads to a los of some of the information con-
tained within the instantaneous Navier-Stokes equations. This lack of information is
overcome by means of approximations of those unknown terms as a function of the
average variables (closure problem). The approximations used in the closure problem
must be as general and as accurate as possible so as to be able to model different
turbulent phenomena. Different procedures used to handle the closure problem lead
to the RANS turbulent models.

For the turbulent heat flux, see equation (1.6), and in general for all the turbulent
terms corresponding to scalar variables, similar transport equations to that of the
Reynolds tensor components can be obtained.

1.2.1 Turbulent kinetic energy

Before going through the different levels of RANS analysis, it is worth to keep atten-
tion on the turbulent kinetic energy transport equation (k = u′

iu
′

i/2). This equation
can be directly obtained summing up the normal components of the Reynolds tensor
and dividing the result by 2:

Ck = dk + Pk − ε (1.14)
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where:

Ck =
∂k

∂t
+ uj

k

∂xj
(1.15)

dk =
∂

∂xj

{

ν
∂k

∂xj
− u′

j

(

p′

ρ
+

u′

iu
′

i

2

)

}

(1.16)

Pk = −u′

iu
′

j

∂ui

∂xj
(1.17)

ε = ν
∂u′

i

∂xj

∂u′

i

∂xj
(1.18)

All the terms of this equation can be calculated except dk and ε, which respectively
account for the diffusion and dissipation of turbulent kinetic energy, and they have
to be modeled (approximated).

1.2.2 Levels of RANS analysis

Among all the different possibilities to handle the closure problem, three levels of
analysis commonly used in engineering applications can be distinguished:

• Reynolds Stress Models (RSM) or Differentially Second-Moment Closures. These
models make use of the differential transport equations of the Reynolds tensor,
equations (1.8) (and in general of the turbulent fluctuation terms), the turbu-
lent kinetic energy k equation, equation (1.14), and of an additional differential
equation for the dissipation of turbulent kinetic energy ε (instead, other dissi-
pation variables can also be used such as ω = ε/k, with vorticity dimensions,
or τ = k/ε, with time dimensions). The remaining unknown terms are mod-
eled. For example, the triple correlations of velocities are commonly modeled
as follows:

−u′

iu
′

ju
′

k ≈ Cs
k

ε
u′

ku′

l

∂u′

iu
′

j

∂xl
(1.19)

where Cs is an empirical constant. In these models, major difficulties appear
in the formulation of the equation for the dissipation of the turbulent kinetic
energy and in the approximation of the terms that account for the pressure
redistribution in the zones close to the solid boundaries.
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• Algebraic Stress Models (ASM) or Algebraic Second Moment Closures. The
main idea in these models is based on the transformation of the differential
equations of the Reynolds tensor terms (and of all the turbulent fluctuation
terms) into algebraic equations. The primary step of the procedure is based on
the following assumption:

Cij − dij ≈
u′

iu
′

j

k
(Ck − dk) =

u′

iu
′

j

k
(Pk − ε) (1.20)

The last equality can be obtained from the equation of k, equation (1.14). These
models require the use of two additional differential equations (as the RSM
models), one for the turbulent kinetic energy k and another for its dissipation
rate ε (or another dissipation quantity such as ω or τ). The standard version
of the ASM models is fully implicit, and the stiffness of the resulting equations
makes the convergence difficult. Speziale (1996) has proposed explicit versions
that overcome some of the numerical problems of the standard version.

• Eddy Viscosity Models (EVM). They are the most popular models in engineer-
ing. Main relevant aspects of these models will be explained in the following
sections.

1.3 EVM: Eddy viscosity models

1.3.1 Constitutive law of the turbulent stresses

In these models, the turbulent stresses are calculated as a function (linear or not) of
the mean velocity gradients adopting the idea of turbulent viscosity νt.

In linear models (L-EVM), the “constitutive law” of the turbulent stresses is ob-
tained from a linear relation between the turbulent stresses and the corresponding
terms of the stress tensor:

u′

iu
′

j −
2

3
kδij = −2νtSij (1.21)

where:

Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

(1.22)



20 Chapter 1. Analysis of Turbulent Flows...

This kind of models assume the Reynolds tensor to have an isotropic behaviour
(i.e., the function relating the stresses and the deformations is maintained invariable
for any rotation of axis of the co-ordinates system).

Due to its linearity and isotropy, the L-EVM model cannot properly evaluate flows
characterized by curvature effects, body forces, etc. Recently, new improved versions
based on non-linear models (NL-EVM) have been coming up in the literature. Speziale
[3] developed an explicit non-linear version taking into account the second order terms:

u′

iu
′

j −
2

3
kδij = −2νtSij + 4

CDν2
t

k

[

SikSkj −
1

3
SklSklδij + S̃ij −

1

3
S̃kkδij

]

(1.23)

where:

S̃ij =
∂Sij

∂t
+ uk

∂Sij

∂xk
− Skj

∂ui

∂xk
− Ski

∂uj

∂xk
(1.24)

New other expressions have been proposed by Speziale and other authors. As an
example, Craft, Launder and Suga [4] propose a formulation considering the third
order non-linear terms.

1.3.2 Turbulent viscosity

Three different models are usually adopted for the evaluation of the turbulent viscosity
νt. They are hereafter indicated from less to more generality (range of application):

• Eddy-viscosity 0-equations models. Algebraic models based on expressions such
as

νt = l2m(2SijSij)
1/2 (1.25)

where lm is the mixing length and is evaluated by means of algebraic expressions
obtained from empirical analysis. The Prandtl mixing length is one of the most
popular expressions for lm. It is discussed in most of the basic books on fluid
mechanics and heat transfer.

• Eddy-viscosity one-equation models. Models based on expressions obtained
from dimensional analysis or from analogy to the molecular viscosity of the
kinetic-molecular theory. Typical expressions are

νt = Cµk1/2l (1.26)



1.4. Eddy-viscosity two-equations models 21

The characteristic velocity, k1/2, is calculated by means of the corresponding
differential transport equation (1.14) with the turbulent diffusion and dissipation
terms properly modeled; Cµ is an empirical constant; and the length scale, l, is
calculated using semi-empirical algebraic expressions.

• Eddy-viscosity two-equations models. The third level of modeling is based on
the resolution of two transport equations properly modeled: the equation of the
turbulent kinetic energy k, and another equation accounting for the dissipation
term knεm (commonly used variables are ε, ω or τ). The turbulent viscosity is
obtained from dimensional analysis or from analogy to the molecular viscosity
of the kinetic-molecular theory (as done in the previous level of modeling):

νt = Cµfµk1/2l (1.27)

where the length scale is obtained from l = k3/2/ε (or l = k1/2/ω or l = k1/2τ),
Cµ is a empirical constant, and fµ is an empirical function introduced so as to
account for those zones with low turbulent Reynolds numbers (if the turbulent
Reynolds is high, fµ = 1). While the turbulent kinetic energy equation only
requires the modeling of two terms (turbulent diffusion and dissipation), the
equation of dissipation energy is almost fully empirical.

1.4 Eddy-viscosity two-equations models

Presently, these are the most extended models in the engineering world, because
they combine generality, reasonable accuracy, simplicity (they are quite easy to be
implemented in a Computational Fluid Dynamics code) and they do not demand a
high computational effort.

Different models can be found in the literature. The standard model is prepared
for the modeling of high turbulent Reynolds flows. Hence, it cannot properly describe
the flow close to solid boundaries. In these situations empirical functions, known as
wall functions, are usually used. The wall functions express the shear stress (or the
heat fluxes) at the walls in terms of the velocities (or temperatures) at the mesh node
closer to the wall (usually situated at the logarithmic zone, i.e. y+ = yut/ν = 40÷100,

where y is the wall distance and ut = (τw/ρ)1/2 is the friction velocity).
More general models, known as low-Reynolds number two-equations models, also

take into account the effects in zones with low turbulent Reynolds number. Therefore,
they can directly be used for the modeling of the zones close to the walls (laminar
subboundary layer and transition zone). These models require a finer mesh (and,
therefore, more computational effort) so as to be able to properly describe the flow
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close to the solid boundaries. In spite of their higher computational demands, the
use of the low-Reynolds number two-equations models is preferable, because they are
prepared to handle a major variety of flow phenomena (they are more general).

The modeled transport equations for the turbulent kinetic energy k and for the
dissipation term ϕ can be expressed in a generic form as follows:

D(ρk)

Dt
=

∂

∂xj

[(

µ

σ∗

k

+
µt

σk

)

∂k

∂xj

]

+ Pk − β∗ρε + D (1.28)

D(ρϕ)

Dt
=

∂

∂xj

[(

µ

σ∗

ϕ

+
µt

σϕ

)

∂ϕ

∂xj

]

+ cϕ1f1
Pk

Tϕ
− cϕ2f2

ρϕ̂

Tϕ
+ E (1.29)

In the widely extended k-ε model of Launder and Sharma [5], the dissipation
variable is ϕ = ϕ̂=ε, while the empirical functions and constants are: Tϕ = k/ε, β∗ =

1, D = 2µ(∂k
1
2 /∂xj)

2, E = 2(µµt/ρ)(∂2Ui/∂xj∂xk)2, f1 = 1, f2 = 1 − 0.3exp(−R2
t ),

fµ = exp(−3.4/(1 + Rt/50)2), σk = σ∗

k = 1, σε = 1.3, σ∗

ε = 1, cε1 = 1.44, cε2 = 1.92,
cµ = 0.09. At the walls: kw = ε̃w = 0.

In the Wilcox k-ω model [6], the dissipation variable is ϕ = ω and ϕ̂ = kω,
and the empirical functions and constants are: Tϕ = k/ω, β∗ = (9/100)[5/18 +
(Rt/Rβ)4]/[1+(Rt/Rβ)2], D = E = 0, f1 = [αo +Rt/Rω]/[cµfµ(1+Rt/Rω)], f2 = 1,
fµ = [α∗

o + Rt/Rk]/[1 + Rt/Rk], σk = 2, σ∗

k = 1, σω = 2, σ∗

ω = 1, cω1 = 5/9,
cω2 = 3/40, cµ = 1, Rk = 6, Rω = 2.7, Rβ = 8, αo = 0.1, α∗

o = cω2/3. At the walls:
kw = 0 and for the node closer to the wall ω1 = [2u2

τ ]/[νβ∗y+2
1 ].

Results of free and forced convection flows obtained with different two-equation
models including the two here referenced can be found in [7] and [8].

1.5 Conclusions

A general outlook of the problems involved in the mathematical formulation of tur-
bulent flows has been presented. Kicking of from a general point of view, the dif-
ferent strategies for the resolution of the turbulent phenomena (levels of simulation)
have been discussed: Direct Numerical Simulation (DNS) vs. statistical models such
as Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Simulations
(RANS). Main attention has been kept on RANS, the most commonly used strat-
egy in the engineering field: Reynolds Stress Models (RSM), Algebraic Stress Models
(ASM) and Eddy Viscosity Models (EVM). Within the group of Eddy Viscosity Mod-
els, the models called Two-Equation Eddy-Viscosity Models, have been discussed in
more detail. In these models, two additional transport differential equations must be
solved accounting for the turbulent kinetic energy and its dissipation energy.
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Generally, the “best” level of turbulence simulation is that with a larger field of
applicability (generality), with the best accuracy and with the lowest computational
requirements. Unfortunately, this model does not exists. Furthermore, the most
general model it is not always the most accurate. Therefore, a complete understanding
of all the simulation levels is a key aspect, because the most suitable model depends
on the design requirements and the application being studied.
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[7] C.D. Pérez-Segarra, A. Oliva, M. Costa, and F. Escanes. Numerical experiments
in turbulent natural and mixed convection in internal flows. International Journal
for Numerical Methods for Heat and Fluid Flow, 5(1):13–33, 1995.
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