Chapter 2

Numerical Experiments on
Turbulent Forced Convection
using Low-Reynolds-Number
Two-Equation Models

Main contents of this chapter are published as

R. Consul, C.D. Pérez-Segarra, J. Cadafalch and K. Claramunt. Numerical experiments on
turbulent forced convection using low-Reynolds-number two-equation models. In Proceedings
of the Fifth ECCOMAS Computational Fluid Dynamics Conference, Barcelona, 2000.

Abstract. The aim of this work is to perform numerical experiments on finite volume com-
putations of turbulent forced convection using different low-Reynolds-number two-equation
k-¢ models. Studied is the performance of these models when predicting different physical
phenomena: normal boundary layers, flow with recirculations, impinging flow... To do so,
five common test cases of the technical specialized literature corresponding to two dimen-
sional and axisymmetric flows have been selected: flow through a channel, impinging slot
jet, low downstream of a backward facing step, straight pipe flow and axisymmetric sudden
expansion. Special emphasis is given on the verification of the computed results by means
of an evaluation of the numerical error and the order of accuracy of the solutions. The
numerical results are also compared to the experimental data available for each one of the
test cases.
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2.1 Introduction

The modeling of thermal and fluid-dynamic phenomena involving turbulent forced
convection is a key aspect in the design and optimization of many systems of techno-
logical interest: heat exchangers, ventilation of buildings, aerodynamics... Nowadays,
and due to the increase of the computational capabilities and the improvement of
the numerical methods, advanced turbulence models such as DNS (Direct Numeri-
cal Simulations) and LES (Large Eddy Simulations) present an encouraging future.
Nevertheless, and for practical engineering calculations, RANS (Reynolds Average
Navier-Stokes Simulations) and the two-equation turbulent models in particular [1],
are still the most popular. In fact, an important effort is still being carried out by
many investigators so as to improve the capabilities of these models [2] [3].

The aim of this work is to perform numerical experiments on finite volume com-
putations of turbulent forced convection using different low-Reynolds-number two-
equation k-e models of Jones and Launder [4], Launder and Sharma [5], Ince and
Launder [6] and Chien [7]. Studied is the performance of these models when predict-
ing different physical phenomena: normal boundary layers, flow with recirculations,
impinging flow... To do so, five common test cases of the technical specialized liter-
ature corresponding to two dimensional and axisymmetric flows have been selected:
flow through a channel, impinging slot jet, flow downstream of a backward facing
step, straight pipe flow and axisymmetric sudden expansion. Special emphasis is
given on the verification of the computed results by means of an evaluation of the
numerical error and the order of accuracy of the solutions. The numerical results are
also compared to the experimental data available for each one of the test cases.

2.2 Mathematical Formulation

The time-averaged governing equations of the fluid flow (continuity, momentum and
energy) in two-dimensional Cartesian coordinates, neglecting body forces, heat fric-
tion, influence of pressure in temperature, radiation effects, and assuming constant
fluid properties and fluid Newtonian behaviour, may be written in tensor notation as:
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where:

u=H 6xj 63:1 Pty 7 4= 63:1

+ cppui T’ (2.4)
and x; is the Cartesian coordinate in the i-direction; ¢ the time; u; the mean velocity
in ¢-direction; T' the mean temperature; pg the mean dynamic pressure; and p, u, A, ¢,
are respectively: density, dynamic viscosity, conductivity and specific heat at constant
pressure. The turbulent fluctuating velocity in the i-direction and the turbulent
fluctuating temperature are indicated by u} and T".

Eddy-viscosity models, like k& — € turbulence models, use a phenomenological ap-
proach in order to evaluate the turbulent stresses and the turbulent heat flux. By
analogy to Stokes’s viscosity law and Fourier’s law, these terms are written in the
form:
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where: p; and oy are respectively the turbulent viscosity and the turbulent Prandtl
number, and §;; is the Kronecker delta. The turbulent Prandtl number is usually
taken as a constant (a value of 0.9 has been considered in this work). The turbulent
viscosity is related to the turbulent kinetic energy (k) and its dissipation (g) by
means of the empirical expression of Kolmogorov-Prandtl. The turbulent kinetic
energy and its dissipation are obtained from their transport equations. Although
the exact form of these equations results from the Navier-Stokes equations, empirical
approximations of some terms are necessary. The resulting k — ¢ equations, together
with the Kolmogorov-Prandtl expression, can be written, after taking low-Reynolds-
number effects into account, as:
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where £, defined as € = e — D/p, is introduced for computational convenience in order
to obtain a zero value of € at the wall, T} is the realizable time scale [8] and Py, is the
production of turbulence kinetic energy described as:

—_du,
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= i o (29)

The boundary conditions and the empirical values (¢, c-1, ¢z2 , Ok, e, f1, f2, fus

D and E) depend on the turbulence model adopted. In this work, different models

have been employed: Launder and Sharma[5], Jones and Launder[4], Chien[7], Ince
and Launder[6]. Hereafter they will be called as LS, JL, CH and IL respectively.

2.3 Numerical Aspects

2.3.1 Numerical Method

The governing equations are discretized on rectangular or cylindrical staggered grids
using the finite-volume technique with fully implicit temporal differentiation. The
SIMPLEC algorithm is used to couple the discretized equations[9]. The high order
scheme SMART is used for the evaluation of the convective terms of the momentum
and energy equations, while the convective terms of the turbulent quantities equations
are computed using the exponential scheme. On the other hand, the diffusive terms
are always evaluated by means of second order central differences. A pressure outflow
boundary condition, which allow to reduce the computational domain to that confined
within the zones of interest, has been adopted [10]. The resulting set of algebraic
equations are solved by means of multigrid solvers [11].

2.3.2 Verification of the computations

In order to asses credibility to the numerical solutions presented in this work, a post-
processing tool for the estimation of the numerical error and the order of accuracy has
been used. An h-refinement treatment is adopted: the problem is solved on different
meshes related by a mesh ratio r (in this work r=2 and five levels of refinement
are studied). According to the Richardson extrapolation, with three solutions of a
problem obtained on three fine enough consecutive levels of refinement, the order of
accuracy of the solutions can be determined.

A map of the estimated order of accuracy is calculated with each three consecutive
mesh levels. Thus, as five levels of refinement are used, three order of accuracy maps
are obtained.

A high quality solution using a very fine grid and high order numerical schemes is
calculated for each one of the test cases, and it is considered the reference solution.
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Maps of differences between each refinement level and the corresponding reference
solution are carried out, obtaining an estimation of the local numerical error.

The average order of accuracy and the averaged error have been adopted as global
estimators of the global order of accuracy and the global numerical error. The post-
processing procedure is applied segregately on all the dependent variables of the prob-
lem obtaining an estimation of the global order of accuracy and numerical error for
each one of them.

More details about this post-processing procedure can be found in [12].

2.4 Test Cases

The aim of this work is to analyze the numerical response of different turbulence
models under different turbulent air (Pr=0.71) flows. The models are applied to two
simple benchmark situations, a channel and a straight pipe, and to three complex tur-
bulent air flows confined within rectangular and cylindrical geometries: a backward
facing step flow, a single turbulent impinging jet and an axisymmetric sudden expan-
sion. Main interest of the two simple benchmark situations is that semi-analytical
expressions of the velocity profiles within the wall layer (log-law) and correlations for
the skin friction factors and the Nusselt numbers are available. Therefore, results
from the computations can be validated by comparison to detailed semi-analytical
and experimental data. Concerning the three other cases, some experimental infor-
mation is also available, and although their geometry is rather simple, the physical
phenomena occurring in them involve stagnation and recirculation zones providing
strengthen conditions for testing turbulence models.

2.4.1 Channel flow

The developed air flow within a channel of length L and height H with a Reynolds
number of Rep, = 10° has been considered. Details on the computational domain and
the boundary conditions adopted are given in Fig. 2.1. The inlet and the outlet have
been modeled by a plug-flow boundary condition and a fixed pressure (pg) boundary
condition respectively. In order to asses a fully developed flow independent from the
inlet boundary condition assumed, a geometry ratio between the domain length L
and the hydraulic diameter Dy, of L/D;, = 60 has been adopted. The computational
domain has been limited to the lower half part of the channel, considering a symmetry
boundary condition at the top side, and an isothermal wall, at a temperature of T,,
at the bottom side.

Non-uniformly distributed meshes of n*n control grid nodes have been use (levels
of refinement: n=10, 20, 40, 80 and 160). A concentration tanh-like function with a
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Figure 2.1: Channel flow. Computational domain the boundary conditions.

Pressure: p = py

concentration factor of 1 in the x-direction intensified at the inlet, and with a factor
of 4 in the y-direction intensified at the wall are considered.

Computation results are compared to the semi-analytical expression for the u-
velocity profile at the logarithmic layer, to the friction factor values Cy from the
experimental correlation of Ozisik [13], and to the Nusselt numbers Nu from the
correlation of Dittus-Boelter:

ut =25In(y") +5.5 (2.10)

= 2.0log Rep, /Cf — 0.8 (2.11)

3

Nu = 0.023Re%® Pr04 (2.12)

2.4.2 Flow downstream of a backward facing step

In this second test case, the flow downstream of a backward facing step has been
studied. Boundary conditions and the computational domain are described in detail
in Fig. 2.2. A fully developed flow over a flat plate has been considered at the inlet
with Rey = 2.8 * 10* and with constant temperature Tj,. At the outlet, a pressure
boundary condition has been imposed. The left side wall has been fixed at a constant
temperature of T,, and a heat flux ¢, = 270W/m? has been imposed at the bottom
wall. Main stream values have been considered far enough from the wall.

The case has been computed also over non-uniformly distributed meshes (five
refinement levels: n=10, 20, 40, 80 and 160). Distributions of tanh-like functions have
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Figure 2.2: Flow downstream of a backward facing step. Computational domain
and boundary conditions.

been used considering intensification factors of 4 near the walls. The recirculation zone
has been discretized uniformly and decreasing the mesh density to the outlet. The
domain is discretized using n grid nodes in the y-direction at the inlet, 0.4n grid nodes
in the y-direction at the side wall, and 1.8n grid nodes in the overall x-direction. For
example, for the fourth level of grid refinement n=80, an overall number of grid nodes
of 112 % 144 have been used.

Numerical results have been compared to the experimental data of Adams et al.
[14] and Vogel and Eaton [15].

2.4.3 Impinging slot jet flow

The third test case consists of a slot jet flow with Rey = 10* impinging a flat plate.
See Fig. 2.3 for details on the boundary conditions and computational domain. The
structure of the turbulent flow is computed considering two parallel plates at different
temperatures with a flow entrance at the top plate. The flow enters into the domain
perpendicular to the parallel plates. Due to the domain symmetry characteristics,
only half channel with symmetry boundary conditions is calculated.

The computational domain has been discretized using n grid nodes in the y-
direction and 1.7n in the x-direction over five levels of refinement: n=10, 20, 40, 80
and 160. Therefore, a mesh of n=80 means 136 * 80 nodes. Near the walls the grid
has been concentrated by means of a tanh-like function with a concentrator factor of
2. Concerning the x-direction, the stagnation region has been discretized regularly,
and the outer region (from the stagnation region to the outlet) decreasing the grid
density when approaching the outlet.

Numerical results have been compared to experimental data of Van Heiningen[16].
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Figure 2.3: Impinging slot jet flow. Computational domain and boundary con-
ditions.

r L e o o e e M M e e o e oo -
3 Inlet: Axis
— u.=v Rep/D

: > u, = 0.0
— k=0.003u’
o e =C.k"’/0.03R

Pressure: p=p,

| 200 R

Figure 2.4: Pipe flow. Computational domain and boundary conditions.

2.4.4 Pipe flow

Fully developed turbulent flow with Rep = 4 % 10* within a pipe of length L and
diameter D=2R. Details on the axisymmetric computational domain and the bound-
ary conditions adopted are given in Fig. 2.4. In order to assure fully development of
the flow, a geometry ratio of L/D = 100 has been adopted.

A mesh of n x n number of grid has been used, intensifying the grid in the axial
direction at the inlet and in the radial direction at the wall by means of a tanh-like
function with a concentrator factor of 1 and 4 respectively.

Computed results have been compared to the experimental data given by Laufer[17].
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Figure 2.5: Axisymmetric sudden expansion. Computational domain and bound-
ary conditions.

2.4.5 Axisymmetric sudden expansion

The separated flow following a sudden expansion in axisymmetric configurations has
both theoretical and practical importance since it involves a complex phenomena and
is found in a wide variety of important applications (e.g. combusters). Furthermore,
due to the axial symmetry of the flow, axisymmetric computations can be compared
to experimental measurements with a high level of accuracy.

The computed test case is based on the experimental studies carried out by Gould
et al. [18] for a Reynolds number of Rey = 4.7 * 10%. In Gould’s set-up, two tubes
with different diameters where connected with a nozzle and forcing the expansion after
it. Details on the axisymmetric computational domain and the boundary conditions
adopted are given in Fig. 2.5. The inner tube radius is H and the outer tube radius
is 2h (i.e. the step size is H). Fully development of the flow after the reattachment
point has been assured using a computation domain length forty time the step size
H. As a first attempt to reproduce numerically the experimental results of Gould et
al., fully development of the flow before the expansion has been considered. However,
there are some discrepancies between this assumption and the conditions imposed at
the set-up of Gould et at.

The grid employed in terms of the grid parameter n, is similar to that used in
the test case flow downstream of a backward, being the five levels of grid refinement
n=16, 32, 64, 128 and 256.

2.5 Results

This section is divided into two parts. In the first part some of the data obtained
from the verification process applied to each one of the solutions is given. The second
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part encompasses physical data such as Nusselt numbers Nu, velocity profiles and
friction factors, C'¢, compared to available experimental and semi-analytical values.
They can be useful for further comparison to solutions of other numerical codes or
future versions of the numerical code here used, and for benchmarking purposes in
general.

2.5.1 Results from the verification process

Much information is obtained from the verification process for each one of the depen-
dent variables of the problems: local and global estimates of the order of accuracy,
local and global estimates of the numerical error, classification of the computational
nodes according to how the solution converges with the mesh refinement... This large
amount of data is difficult to be given in a paper like this in a clear manner. Fortu-
nately, similar results from the verification have been obtained for each test case when
study different turbulence models and dependent variables (temperature or velocity
components). Therefore, only some of the data corresponding to one of the dependent
variables, x/axial-component of the velocity field, and for solutions obtained with one
turbulence model will be given for each test case. These data are the evolution with
the mesh refinement of the average absolute discretization error normalized by the
entrance velocity %, and of the observed averaged order of accuracy p.

As already commented in previous sections, all solutions have been obtained on a
h-refinement procedure over five levels of refinement represented by the parameter n.
As described in section 2.4, the parameter n does not mean for all the tested cases
that the number of grid points used is n * n. For example, in the impinging slot jet
flow solutions, the number of grid points in terms of n is 1.7n * n.

For the evaluation of the discretization error % the solutions with the finest mesh,
and with the high order numerical scheme SMART has been used as reference solution.

For discussion purposes, verification data here presented is compared to that ob-
tained when using the first order accurate UDS scheme to approximate the convective
terms of the momentum equations.

The data corresponding to the channel flow case are given in Fig. 2.6a and Table
2.1a. The five levels of refinement correspond to n=10, 20, 40, 80 and 160. Due to
the one-dimensional nature of the flow structure, diffusive terms are predominant.
Therefore, as observed in Table 2.1a, the order of accuracy tends to the formal order
of accuracy of the central difference scheme used for the diffusive schemes whatever
numerical scheme is used for the convective terms of the momentum equation, i.e.
p = 2. As it can be observed in Fig. 2.6a, the average absolute discretization error is
decreased by a factor of around 4 between two consecutive levels of refinement, and
normalized errors below 0.2% are predicted for n=80 and 160.

The estimated values for the discretization error and the order of accuracy cor-
responding to the solutions of the flow downstream of a backward facing step are



2.5. Results 35

grid P grid 2
n UDS SMART n UDS SMART
40 1.33 1.11 40 - 0.77
80 1.73 1.68 80 1.20 1.31
160 1.83 1.89 160 1.30 1.60
(a) (b)

Table 2.1: Average order of accuracy of the ug-velocity field vs. grid level. (a)
Channel flow. Turbulence model: JL. (b) Flow downstream of a backward facing
step. Turbulence model: IL.
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Figure 2.6: Average absolute normalized discretization error of the uj-velocity
field vs. grid level. (a) Channel flow. Turbulence model: JL. (b) Flow downstream
of a backward facing step. Turbulence model: IL.

given in Fig. 2.6b and Table 2.1b. In the recirculation zone both convective and
diffusive terms characterize the flow, thus, the resulting observed order of accuracy
is the result of the effects of the numerical schemes used for both terms. Therefore,
higher observed order of accuracy are computed for the solutions using SMART (with
a theoretical order of accuracy between 1 and 3) than for those using UDS (with a
theoretical order of accuracy of 1). Concerning the normalized absolute discretization
error, when using the SMART scheme values below 0.2% are obtained for the two
finer grid levels, n=80 and 160.

Physical phenomena involved in the pipe flow and the axisymmetric sudden ex-
pansion are similar to that of the channel flow and the flow downstream of a backward
facing step. In fact they are the same problem in axisymmetric and Cartesian coordi-
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grid 7 grid P
n UDS SMART n UDS SMART
40 1.10 1.25 64 0.60 0.43
80 1.73 1.81 128 0.71 0.80
160 1.88 1.90 256 1.07 2.35
(a) (b)

Table 2.2: Average order of accuracy of the axial-velocity field vs. level of refine-
ment. (a) Pipe flow. Turbulence model: LS. (b) Axisymmetric sudden expansion.
Turbulence model: IL.
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Figure 2.7: Average absolute normalized discretization error of axial-velocity
field. (a) Pipe flow. Turbulence model: LS. (b) Axisymmetric sudden expansion.
Turbulence model: IL.

nates respectively. Data obtained from the verification process of the solution of the
axisymmetric cases are given in Fig. 2.7 and Table 2.2. Some differences respect to
the tendencies observed in the corresponding cases with Cartesian coordinates previ-
ously discussed are observed, see Fig. 2.6 and Table 2.1. This can be justified by the
fact the the Reynolds numbers adopted for the corresponding cases with Cartesian
and axisymmetric coordinates are not the same. Nevertheless, reasonable values are
also obtained. Values of e}, for the axial-velocity field are below 0.4 + 0.2% for the
solutions using SMART, and values of p approaching the theoretical order of accuracy
are found for the finest set of solutions.

Further results regarding the effect of the level of grid refinement on the solutions
of the backward facing step case and the axisymmetric sudden expansion case are also
given in Table 2.3. Given is the reattachment point calculated using the IL turbulence
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grid reattachment point grid reattachment point
n UDS SMART n UDS SMART
10 3.20 4.04 16 8.69 8.77

20 3.94 4.70 32 9.65 9.71

40 4.64 5.11 64 10.42 10.50
80 5.08 5.33 128 11.11 11.32
160 5.32 5.46 256 11.47 11.51

(a) (b)

Table 2.3: Reattachment point vs. grid level n. Turbulence model: IL. (a) Flow
downstream of a backward facing step. (b) Axisymmetric sudden expansion.

model in terms of the level of refinement represented by the parameter n. Again, for
comparison purposes, results computed with UDS scheme for the convective terms of
the momentum equations are also given.

Results of the verification process of the solutions of the impinging slot jet were
not as successful as those previously presented. The observed order of accuracy did
not tend to the expected theoretical values, and the estimated normalized error did
not vanish asymptotically with the mesh refinement. A possible explanation of this
behaviour is the presence of laminar-turbulent flow that is typically difficult to be han-
dled by the two-equations turbulence models. Therefore, the results for the impinging
slot jet flow must be kept in caution, because the verification process is indicating
that the discretization levels used may not be enough.

2.5.2 Phenomenological data

Data presented in this subsection correspond to those simulations obtained with the
SMART numerical scheme and with the fourth level of refinement for all the cases
except to the channel flow, which results correspond to the fifth level of refinement.

Channel flow

Results of the channel flow case are shown in Table 2.4. Given are the computed
values of the skin friction coefficients C¢, the Nusselt number Nu, the velocity profile
at the logarithmic layer and the normalized turbulent kinetic energy at the symmetry
axis of the channel k™ = k/u2, where u, is the shear velocity. The values of the fric-
tion coefficients and the Nusselt number have been compared to those given by the
empirical correlation of Ozisik and Dittus-Boelter obtaining the relative errors given
in Table 2.4 within brackets. All the models considered have a very similar behaviour,
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model Cy * 10 Nu kt a b
LS & IL 458  (1.7%) (=7.9%) 0.904 2.82  3.87
JL 462 (2.7%) (—8.5%) 0.944 2,98  2.77
CH 459  (2.0%) (—8.2%) 0.886 2.71  4.51

Table 2.4: Channel flow: skin friction C'¢, Nusselt number Nu, normalized
turbulent kinetic energy at the symmetry axis of the channel k¥, and a and b
coefficients of the log-law ut = aln(y™) + b. Relative errors of the Cy and
Nu respect to the correlations of Ozisik and Dittus-Boelter are indicated within

brackets.

model reattachment point Stmaz * 103
LS 4.83H (—27.5%) 22.7 (611%)
JL 5.33H (—20.0%) 19.8 (520%)
CH 4.60H (—31.1%) 9.45 (195%)
1L 5.33H  (—20.0%) 4.32  (35.0%)

Table 2.5: Flow downstream of a backward facing step: reattachment point
in terms of the step size H and maximum Stanton number. Comparison to the
experimental values from Vogel and Eaton. Within brackets the relative error
respect to the experimental values are given.

appearing only small differences between them and having a good agreement to the
values obtained from the correlations. The velocity profile at the logarithmic layer is
given according to the expression u™ = aln(y™)+b. Coefficients a and b have been cal-
culated by means of the straight line from y+=100 to y™=500, i.e. from (In(100),u™)
to (In(500),u™). The best fit to the semi-analytical log-law u™ = 2.5In(y™*) + 5.5 is
provided by the model CH.

Flow downstream of a backward facing step

In Table 2.5 the values of the reattachment point and the maximum value of the
Stanton number at the wall are presented compared to the experimental values from
Vogel and Eaton. The percentage error respect to these experimental values are also
shown. The numerical solutions show a poor agreement with the experimental data
for all the turbulence models except for the Ince-Launder (IL) model. In Fig. 2.8, the
Stanton number and the skin friction profiles are presented. As it can be seen, only
IL model predicts the curve shapes measured by Vogel and Eaton[15] and Adams et
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Figure 2.8: Flow downstream of a backward facing step (step size=H). (a)
Stanton number vs. x/H. Comparison to the experimental values from Vogel &
Eaton. (b) Skin friction vs. x/H. Comparison to the experimental values from
Vogel & Eaton and from Adams et al.

al.[14]. A peak value in the Stanton number profile is obtained with LS and JL models
in the reattachment point coinciding with near infinite slopes in the corresponding
curves of the friction factor. The model CH predicts the presence of two peaks in the
St number before and after the reattachment point, and a non-real maximum value
of the friction factor coefficient after the reattachment point.

Impinging slot jet flow

Fig. 2.9 shows the Nusselt number and the skin friction profiles at the hottest wall
(bottom) considering IL and CH models in comparison to the experimental data
obtained by Van Heiningen[16]. The heat transfer rate measured by van Heiningen
has its peak value at the center of the impingement, decreasing and having a second
lower peak at x=5W, where W is the inlet aperture. Although the computations
reproduce this global structure, the location of the second peak is predicted for =
larger than 11W. Furthermore, the location of this second peak has been found to be
very sensitive to the mesh used, being difficult to find a grid independent solution.

Pipe flow

Main computed features of the pipe flow are given in Table 2.6: the friction factor
coefficient C'y, the axial mean-velocity v at the axis normalized by the mean stream
velocity ug, the turbulent kinetic energy normalized by the shear velocity u, up to the
power of 2, k* = k/u2, and the coefficients of the velocity profile in the logarithmic

T
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Figure 2.9: Impinging slot jet flow (inlet aperture = W). (a) Nusselt number vs.
x/W. Comparison to the experimental values of Van Heiningen. (b) Skin friction
vs. x/W.

region according to the log-law expressed as ut = aln(y*) + b. Coefficients a and b
have been calculated from the u™ values at the points y™=100 and y+=500.

When comparing the results of different turbulence models, small discrepancies
are found for the skin friction coefficient, the axial mean-velocity at the axis and
the turbulent kinetic energy at the axis. More relevant differences appear in the
parameters of the log-law, which are always rather different from the semi-empirical
parameters of the universal law of the wall a=2.5 and b=5.5.

More detailed data is given in Fig. 2.10 and Fig. 2.11 compared to that of the
experimental data of Laufer [17]. Fig. 2.10 shows the axial mean-velocity distribution
u normalized by the mean stream velocity us as a function of (R —r)/R, where R is
the radius of the pipe and r the coordinate in the radial direction (r = 0 corresponds
to the pipe center). The mean-velocity profiles in the wall layer are given in Fig.
2.11b. It can be observed as the mean-velocity calculated with all the turbulence
models fit quite well to the experimental values of Laufer. On the other hand, more
important discrepancies are observed in the fluctuating velocities. The root-mean-
square values of the axial velocity fluctuations near wall are shown in Fig. 2.11a
normalized by the shear velocity u-. Now, as it could be expected a priori, differences
between experimental data and numerical data are important. The components of the
fluctuation of velocity when approaching the wall differ. While tangential components
grow up near the wall, the perpendicular components tend to drop down. Assumptions
made in the two-equations turbulence models avoid these anisotropic effects and,
therefore, experimental data cannot be reproduced by the model properly.
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model Cy *10° w/us kT a b

LS & IL 5.44 1.19 1.20 2.86 3.66
JL 5.52 1.20 1.27 3.03 2.63
CH 5.52 1.19 1.19 2.74 4.45

Table 2.6: Pipe flow: skin friction C', axial mean-velocity u at the axis normal-
ized by the mean stream velocity us, normalized turbulent kinetic energy at the
axis kT, and a and b coefficients of the log-law u™ = aIn(y™) + b.
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Figure 2.10: Pipe flow. Mean-velocity distribution normalized by the mean
stream velocity us. (a) Whole distribution. (b) Near-wall values.

Axisymmetric sudden expansion

The last test studied is the axisymmetric sudden expansion. The reattachment point
obtained by the different models is indicated in Table 2.7 compared to the experimen-
tal data measured by Gould [18]. Important differences respect to the experimental
data are found. Further work need to be done in the computation of this case so
as to try to reproduce more properly the experimental conditions at the inlet of the
computational domain. Differences between the assumption of fully development of
the flow at the inlet and the experimental conditions could justify the discrepancies
of the predicted reattachment points respect to the experimental value.

2.6 Conclusions

Numerical studies of turbulent forced convection using different low-Reynolds number
two-equation models have been presented.
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Figure 2.11: Pipe flow. (a) Root-mean-square values of the axial velocity fluc-
tuations near wall normalized by the shear velocity u-. (b) Mean-velocity profile
in the wall layer: u™ vs. y™.

model reattachment point
LS 9.29H (+16.2%)
JL 10.53H  (+31.6%)
CH 12.68H  (+58.5%)
IL 11.32H  (+41.5%)

Table 2.7: Axisymmetric sudden expansion: reattachment point in terms of the
step size H. In brackets, the relative error respect to the experimental values of
Gould are indicated.

Five common test cases of the technical specialized bibliography have been selected
in order to analyze the performance of the different turbulence models considered. The
test cases chosen for these studies correspond to two-dimensional and axisymmetric
air flows: the flow through a channel, the impinging slot jet, the downstream of a
backward facing step , the straight pipe flow, and the axisymmetric sudden expansion.

Numerical results have been verified by means of a post-processing procedure
for the estimation of the order of accuracy and the discretization error of numerical
solutions obtained on a h-refinement criteria. All numerical results here presented
except those corresponding to the impinging slot jet have been shown to be nearly
free of numerical errors. Whenever available, numerical solutions have been compared
to experimental data from the literature.

For the simpler test cases: channel flow and pipe flow, the differences on the solu-
tions obtained with different turbulence model are not significant and the agreement
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with the experimental data is quite good. For the more complex flows (the imping-
ing slot jet, the downstream of a backward facing step and the axisymmetric sudden
expansion) more important discrepancies between the models and the experimental
data have been observed.

2.7 Acknowledgments

This work has been financially supported by the Comisién Interministerial de Ciencia
y Tecnologia, Spain (project TIC99-0770).

References

[1] C.D. Pérez-Segarra, A. Oliva, M. Costa, and F. Escanes. Numerical experiments
in turbulent natural and mixed convection in internal flows. International Journal
for Numerical Methods for Heat and Fluid Flow, 5(1):13-33, 1995.

[2] J. Piquet. Turbulent flows-models and physics. Springer-Berlag, 1999.

[3] K. Heyerichs and A. Pollard. Heat transfer in separated and impinging turbulent
flows. International Journal of Heat and Mass Transfer, 39(12):2385-2400, 1996.

[4] W.P. Jones and B.E. Launder. The prediction of laminarization with a two-
equation model of turbulence. International Journal of Heat and Mass Transfer,
15:301-314, 1972.

[5] B.E. Launder and B.I. Sharma. Application of the energy dissipation model
of turbulence to the calculation of flow near a spinning disc. Letters in Heat
Transfer, 1:131-138, 1974.

[6] N.Z. Ince and B.E. Launder. Computation of turbulent natural convection in
closed rectangular cavities. In Proceedings of the 2nd U.K. Natural Conference
Heat Transfer, volume 2, pages 1389-1400, 1988.

[7] K.Y. Chien. Prediction of channel and boundary layer flows with a low reynolds
number 0 model. ATAA Journal, 20:33-38, 1982.

[8] U. Goldberg, O. Peroomian, and S. Chakravarthy. A wall-distance-free k-e model
with enhanced near-wall treatment. Journal of Fluids Engineering, 120:457-462,
1998.

[9] S.V. Patankar. Numerical heat transfer and fluid flow. Hemiosphere Publishing
Corporation, 1980.



44

[10]

References

S.R. Marthur and J.Y. Murthy. Pressure boundary conditions for incompressible
flow using unstructured meshes. Numerical Heat Transfer, Part B, 32:283—-298,
1997.

B.R. Hutchinson and G.D.Raithby. A multigrid method based on the additive
correction strategy. Numerical Heat Transfer, Part B, 9:511-537, 1986.

J. Cadafalch, A. Oliva, C.D. Pérez-Segarra, M. Costa, and J. Salom. Compar-
ative study of conservative and nonconservative interpolation schemes for the
domain decomposition method on laminar incompressible flows. Numerical Heat

Transfer, Part B, 35(1):65-84, 1999.
M.N. Ozisik. Heat transfer. A basic approach. McGraw-Hill, 1985.

E.W. Adams, J.P. Johnston, and J.K. Eaton. Experiments on the structure of
turbulent reattaching flow. Technical report, Thermosciences Group, 1984.

J.C. Vogel and J.K. Eaton. Heat transfer and fluid mechanics measurements in
the turbulent reattaching flow behind a backward-facing step. Technical report,
Thermosciences Group, 1984.

A .R.P. Van Heiningen. Heat transfer under impinging slot jet. PhD thesis, McGill
University, 1982.

J. Laufer. The structure of turbulence in fully 0 flow. Technical report, National
Association for Campus Activities, 1954.

R.D. Gould, W.H. Stevenson, and H.D Thompson. Investigation of turbulent
transport in an axisymmetric sudden expansion. AIAA Journal, 28(2):276-283,
1990.



