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Abstract. This study examines the resolution of the Navier-Stokes equations for laminar

natural or forced incompressible flows by means of the domain decomposition method. Con-

servative and non-conservative interpolation schemes available in the literature are studied

and compared to a formulation completely based on finite-volume techniques. The dis-

cretized governing equations are obtained in each subdomain using a finite-volume method

on staggered grids and are solved adopting a pressure-based segregated algorithm. A mesh

refinement study and the generalized Richardson extrapolation have been adopted to evalu-

ate the errors and the order of accuracy of each interpolation scheme. Illustrative numerical

results of a complex flow through a junction are shown.
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3.1 Introduction

The resolution of the Navier-Stokes equations applied to incompressible flows is quite a
cumbersome problem that appears in many engineering mechanical problems. The sci-
entific community has developed several numerical methods, such as finite-volume or
finite-element methods, using structured or unstructured meshes. When fine meshes
are used in zones with high gradients, the structured grids force inevitably a fine mesh
in the zones with smooth gradients. Moreover, it is quite common in problems with
complicated geometry to use rectangular or cylindrical coordinates, approximating
the geometry boundaries in a step-wise manner (blocking-off techniques). In all these
cases the computer memory and the calculation time are clearly penalized. With
Domain Decomposition Methods these problems can be avoided, and the codes can
be easily parallelized, thus increasing the computational power [1]. In the domain
decomposition methods the whole domain is divided into several Subdomains joined
by the interpolation boundaries. The discretized governing equations are solved in
each subdomain with the appropriate boundary conditions and the required grid and
numerical scheme. Therefore, the discretized system of equations that defines the
physical processes in a problem is divided into smaller systems of equations, each
one representative of one subdomain, which can be solved simultaneously by different
CPUs. The boundary conditions in the interpolation boundaries are calculated via
procedures called Interpolation Schemes, which are responsible for the information
transfer among subdomains.

Several methods for the domain decomposition have been developed. They can
be classified into two large groups: Patched Grid, in which the domain is divided into
subdomains without overlapping zones [2]; and Overlapping Grid which divides the
domain into overlapped subdomains [3][4].

Two different interpolation types will be considered in this work:

• Interpolations based on finite-volume techniques. The fluxes through an inter-
polation boundary (i.e. mass, momentum or heat fluxes) are calculated from
local balances in the source subdomain and are introduced as a boundary con-
dition in the sink subdomain. This procedure will be named as Conservative
Interpolation.

• Mathematical interpolations (such as Lagrange interpolations), which are usu-
ally Non-Conservative.

Many efforts have recently been carried out for the resolution of the Navier-Stokes
equations using domain decomposition methods in incompressible flows. Chesshire
and Henshaw [4][5] have studied in great detail the domain decomposition method for
the numerical resolution of one 2nd order PDE, such as Burger’s equation. They have
developed conservative and non-conservative interpolation schemes on overlapping
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grids and established criteria for the evaluation of the accuracy of the solution. Zang
and Street [6] solved the pressure Poisson equation globally and the velocity in each
subdomain using a conservative scheme for the mass balance (MIC). And Shyy et al.
[3][7] have used conservative interpolation schemes with the SIMPLE algorithm.

Although in the literature it is widely accepted that conservative schemes for the
domain decomposition method on incompressible flows are recommended, there are
some problems which have not been resolved yet. They can be briefly described by
the following questions:

• Could the conclusions of studies on one 2nd order PDE be directly applied
on the Navier-Stokes equations? Otherwise, do these equations require specific
interpolation schemes?

• What kind of physical fluxes need to be preserved in order to accomplish the
condition of well-posedness?

• Do the errors introduced by the imbalances of the non-conservative interpola-
tions disappear with the mesh refinement?

This work is focussed on the analysis of the above described questions. The studies
have been restricted to two-dimensional Cartesian grids that overlap at arbitrary
angles in order to carry out the analysis in greater detail. However, the extension
of this study and its conclusions to three-dimensional and body fitted coordinates is
straightforward. Different interpolation schemes (conservative and non-conservative)
already available and used in the literature have been studied and compared together
with a fully-conservative formulation completely based on finite-volume techniques.
The discretized governing equations are obtained using the finite-volume method.
The set of algebraic equations is solved in a segregated manner using the SIMPLEC
algorithm [8][9]. The geometry is discretized with structured Cartesian staggered
grids, and both high and low-order accurate numerical schemes are adopted for the
numerical discretization. The algebraic system of equations has been solved with a
multigrid algebraic solver [10] with explicit information transfer between subdomains.

During the last years the computational fluid dynamics community has been point-
ing out the need of improving the rigor of the numerical results. Many authors have
discussed the importance of using high-order numerical schemes [11]. Techniques such
as the Grid Convergence Index (GCI) [12] have been developed in order to control
the numerical uncertainty. In this work the numerical errors and the order of accu-
racy of the computational solutions have been estimated using a post processing tool
based on the Richardson extrapolation [13]. This tool has given criteria about the
uncertainty introduced by the interpolation schemes.

The following section presents the mathematical formulation and an overview of
the finite-volume formulation proposed. The finite-volume local balances used in



48 Chapter 3. Comparative Study of...

the conservative interpolation schemes, and the principles of the conservative and
non-conservative interpolation schemes are described. Finally, some comments of
the mathematics involved in the estimation of errors and order of accuracy of the
numerical solutions are given.

In section 3.3, the results of a comparative study of three different interpolation
schemes for the velocity field and three different interpolation schemes for the scalar
fields (temperature) are presented. The same problems have been solved using an
h-refinement criterion (mesh-refinement) on a non-decomposed domain and on a de-
composed domain with the studied interpolation schemes. Then, the comparison of
the numerical errors and the order of accuracy of the numerical solutions has given
criteria about the suitability of the interpolation schemes.

3.2 Formulation

3.2.1 Governing equations

Though a bi-dimensional formulation will be used for convenience, all the equations
and results hereafter presented and discussed can be extrapolated to three-dimensional
problems. All the thermophysical properties are constant except the influence of den-
sity variations in the body term of the momentum equations (Boussinesq approxima-
tion).

The set of governing equations can be joined in the convection-diffusion equation:

∂(ρφ)

∂t
+ ∇ · (j) = S (3.1)

where the total flux j is made up of the convection flux (jC) and the diffusion flux
(jD) as follows:

j = ρvφ − Γ∇φ = jC + jD (3.2)

and where the dependent variable φ, the diffusion coefficient Γ and the source term
S depend on the transport equation [8].

The fully-implicit discretized form of the convection-diffusion equation on a finite
rectangular-volume of volume VP is as follows:

ρ
φP − φ◦

P

∆t
VP + Je − Jw + Jn − Js = SVP (3.3)

where Ji are the fluxes (mass, momentum or heat fluxes) through the control volume
faces. For example, for a west face of area Ay,
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Jw =

(

ρuφ − Γ
∂φ

∂x

)

w

Ay = JC
w + JD

w (3.4)

Introducing (3.4) in (3.3) and adopting the numerical scheme, the algebraic dis-
cretized equation takes the form [8]:

aP φP = aEφE + aW φW + aNφN + aSφS + b (3.5)

where the algebraic coefficients ai and b are function of the local Peclet number, the
mass flow rates through the cell faces, the diffusive coefficients, the transient term,
the source term, the cells’ dimensions and the correction term corresponding to the
deferred-correction approach [14].

The integral fluxes through the cell faces (3.4) can be calculated in terms of the
values involved in the algebraic formulation. For example, for the west face,

Jw = aW φW − (aW − Fw)φP − Fw(φl
w − φh

w) (3.6)

where φl
w stands for the φ value at the west face estimated with the low-order numer-

ical scheme, φh
w stands for the φ value at the west face estimated with the high-order

numerical scheme, and Fw is the mass flow through the west face.

3.2.2 Flux through an arbitrary area inside the control volume

For convenience, the explanation will firstly be carried out on the calculation of the
flux through an arbitrary section parallel to the control volume faces (Fig. 3.1a). For
the control volume ĈV a similar balance to the one carried out in equation (3.3) leads
to:

β̂ρ
φP − φ◦

P

∆t
VP + Ĵx − Jw + α̂Jn − α̂Js = β̂SVP (3.7)

where β̂ and α̂ are geometric ratios between ĈV and CV (β̂ = V̂ /VP and α̂ = Âx/Ax).

As β̂ = α̂, manipulating (3.3) and (3.7), Ĵx can be expressed as a linear interpo-
lation of the known fluxes Jw and Je:

Ĵx = Jw + β̂(Je − Jw) (3.8)
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Figure 3.1: Local balance for the calculation of a flux through a section. (a)

Section parallel to the control volume faces. (b) General case.

Now, the general case presented in Fig. 3.1b will be discussed. The local balance
at the shaded control volume CV ∗ is

β∗ρ
φP − φ◦

P

∆t
VP + J∗ − J∗

x − J∗

y = β∗SVP (3.9)

where β∗ is the volume ratio between CV ∗ and CV (β∗ = V ∗/VP ). Then, introducing
equation (3.3) in (3.9), the flux J∗ of Fig. 3.1b can be expressed as follows:

J∗ = J∗

x + J∗

y + β∗(Je − Jw + Jn − Js) (3.10)

where J∗

x = (A∗

y/Ay)Ĵx, J∗

y = (A∗

x/Ax)Ĵy and Ĵx and Ĵy can be obtained from linear
interpolations of the known fluxes at the cell faces, equation (3.8). As J ∗ has been
obtained via local balances, the global balances are also preserved.

3.2.3 Interpolation Schemes

Description

This explanation will be focussed on the interpolations of a generic variable φW in
the west interpolation face of the sink subdomain control volume shown in Fig. 3.2a.

The boundary conditions in a control volume that belongs to an interpolation
boundary have to be calculated from the source subdomain. Fig. 3.2b shows the
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Figure 3.2: Interpolation in a west control volume face. (a) Subdomains with

parallel axis. (b) Interpolation boundary nodes for the mass, energy and tangential-

momentum equation (non-interpolated information for the entrance-momentum

equation is used). (c) Subdomains with parallel axis. Local balance. (d) Sloped

subdomains. Local balance.
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interpolation boundary nodes involved in a west interpolation boundary. Boundary
conditions have been given for the mass, energy and y-momentum equations (i.e. en-
trance velocity, temperature and tangential velocity at the boundary node for Dirichlet
boundary conditions, and mass, heat and tangential-momentum fluxes for Neumann
conditions). In simply-connected flow domains the entrance momentum boundary
condition is not needed, however in multiply-connected flow domains this boundary
condition is necessary to avoid unrealistic solutions [15]. The interpolation procedure
for all the variables are analogous, using the appropriate meshes in both sink and
source subdomains.

Non-conservative interpolation schemes. A bi-dimensional Lagrange interpo-
lation is adopted. According to Chesshire and Henshaw [4], the order of accuracy of
an interpolation scheme has to be at least one order higher than that of the numerical
discretization to preserve the overall accuracy. All the nonconservative interpolations
considered here are bi-quadratic interpolations, which are third-order accurate. With
this kind of interpolation, the conservation of physical fluxes through the interpolation
face is not guaranteed because no balances are made.

Conservative interpolation schemes. The flux (mass, tangential-momentum or
energy flux) through the interpolation boundary is calculated from a local balance (see
section 3.2.2), and it is introduced as a boundary condition of the sink subdomain.
Then, the conservative boundary condition for the mass, the tangential-momentum
and the energy equation of the sink subdomain, are obtained by a mass, tangential-
momentum and heat local balance at the source subdomain.

Thus, the flux Jw through the west interpolation face presented in Fig. 3.2c is

Jw = J1 + J2 + J3 (3.11)

where J1, J2 and J3 are calculated from local balances on the shaded control volumes.
Jw can be introduced directly as a boundary condition in the sink grid reformulating
the algebraic coefficients, see [3], or as a boundary value φW in such a way that the
prescribed flux is automatically satisfied in the sink control volume. That is, using
the flux equation (3.6) as follows,

φW =
Jw + (aW − Fw)φP

aW
(3.12)

where the internal nodal value φP is treated in an explicit manner for convenience. It
is worth mentioning that at the boundaries the deferred-corrective convection term is
equal to zero, and thus, it has not been considered in equation (3.12).
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Interpolation schemes on sloped subdomains

The previous description has been focused on the information exchange between two
subdomains with parallel axis (Fig. 3.2a). Its generalization to sloped subdomains
involves some aspects that will now be discussed on the control volume face depicted
in Fig. 3.2d.

Interpolation of scalar variables (temperature). The treatment of scalar vari-
ables does not introduce any modification either for the formulation of the Lagrange
interpolations or for the formulation of the conservative schemes, keeping in mind
that now the local balance to be carried out is the one depicted in Fig. 3.2d.

Interpolation of the velocity field. When a velocity component of an interpo-
lation boundary is interpolated from the velocity field of a source subdomain with
parallel axis, only the field of the velocity component in the studied direction is re-
quired. Thus, the velocity field can be interpolated as two segregated scalar fields
(in bi-dimensional problems). However, when sloped subdomains are involved, the
velocity field has to be considered as a vector field. In order to interpolate a velocity
component with a bi-dimensional Lagrange interpolation, it is necessary to interpolate
the velocity vector (from the source subdomain information) and project it into the
desired direction of the coordinate system of the sink subdomain (s1 or s2 directions).

Concerning the conservative interpolation of the velocity field, two kinds of fluxes
have to be taken into account: the mass and the tangential-momentum flux through
the sink subdomain interpolation boundary. The required balances (mass balance
and momentum balance in the s2 direction, see Fig. 3.2d), have to be studied in a
different way.

The mass flux going through the depicted west face in Fig. 3.2d is obtained via

Jw = J1 + J2 (3.13)

where J1 and J2 are calculated from local mass balances on the shaded control volumes
1 and 2 of the source subdomain and Jw stands for the mass flux through the studied
face.

On the other hand, a momentum balance implies the manipulation of the vector
momentum equation. For convenience, in the discretized formulation this vector
equation is decomposed into one equation for each direction (the x-momentum and
y-momentum equations for the source subdomain, and the s1-momentum and s2-
momentum equations for the sink subdomain). Hence, considering the west boundary
face of Fig. 3.2d as a section of the source subdomain, it is crossed by two kinds of
momentum fluxes: the x-momentum flux and the y-momentum flux. That gives the
momentum flux a vector profile:
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Jmom = (Jx−mom, Jy−mom) (3.14)

Therefore, the momentum flux in the tangential direction (s2-momentum flux)
can be easily obtained from the projection of the momentum flux vector in the s2

direction. This procedure requires two balances of the same kind of equation (3.13)
for the calculation of Jx−mom and Jy−mom. The former has to be carried out using
the x -staggered mesh of the source subdomain and the latter using the y-staggered
mesh. It can be seen that when the subdomains have parallel axis ({x,y} = {s1, s2}),
the entrance component of the vector momentum flux is not needed. Then the con-
servative boundary condition for the tangential-momentum equation is obtained only
from the information of the source momentum equation in the tangential direction
(as explained in section 3.2.3).

3.2.4 Errors and order of accuracy of a numerical solution

General aspects

In numerical heat transfer and computational fluid dynamics the computational errors
are due to the discretization errors when the convergence criteria is strong enough.
There are two discretization error sources: the geometric discretization (mesh size),
and the numerical schemes. In order to quantify each of them two different parameters
are usually adopted:
h: geometric discretization parameter (representative of the mesh spacing). p: order
of accuracy of the numerical schemes.

The local discretization error (at an x point of the domain) in a numerical solution
can be expressed as [13]

eD(x) = Cp(x)hp (3.15)

where Cp(x) depends on the numerical scheme. If the refinement level is strong enough
the solution belongs to the called asymptotic range. In this range the error can be
estimated, and so, the uncertainty of the numerical solution can be controlled.

The h-refinement treatment is commonly used to reduce the discretization errors.
A numerical scheme is fixed and h is refined. In h-refinement studies, the Richard-
son extrapolation has usually been adopted as a formally upper-order extrapolated
solution estimator and as an error estimator [12]. Accordingly, two solutions of the
problem in the asymptotic range are required. This theory can also be used as a p
estimator [13]. With three solutions of a problem (φ1, φ2 and φ3) obtained on the
grids h1 = h (fine grid), h2 = rh (middle grid) and h3 = r2h (coarse grid), a three
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equation system of the unknown variables p, φE (extrapolated solution) and Cp(x)
can be posed:

eDi = φi − φE = Cp(x)(ri−1h)p i = 1, 2, 3 (3.16)

from which it can be determined that

p =
ln[(φ2 − φ3)/(φ1 − φ2)]

lnr
(3.17)

This equation must be used with caution, because the Richardson extrapolation
involves the assumptions of smoothness and monotone error convergence in the mesh
spacing h.

Evaluation of the error of a numerical solution

In order to calculate the error of a numerical solution, it would be necessary to know
the exact solution of the governing equations. Usually, the exact solution is unknown,
and a grid independent numerical solution is taken as a reference or “exact” solution.
Some grid-independent benchmark solutions are given in the literature. They give
information of global values (such as the average Nu or the velocity distribution in a
section of the domain), which are useful for the code validation, but are limited for a
detailed error evaluation. Thus, a grid independent solution has been calculated for
all the testing problems used in this paper. They have been considered the “exact” or
reference solution for the error studies. Then, the numerical normalized error maps
of the same testing problems solved on different grids, domain decompositions or
numerical schemes have been carried out by

e∗D(x) =| φ∗(x) − φ∗

E(x) | (3.18)

where φ∗(x) is the normalized solution, φ∗

E(x) is the normalized “exact” solution and x
stands for the coordinates of the discretization nodes of the studied solution (position
vector). These nodal coordinates of the studied cases generally do not coincide with
the nodal coordinates of the “exact” solution. Then an interpolation of the exact
solution nodal values is needed. This is an important aspect in this analysis. If a
low-order accurate interpolation is used, the obtained error map is not representative
of the real solution error. Bi-quadratic interpolations (3rd order accurate) have been
used. The average of the local error has been adopted as a global error estimator.
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Evaluation of the order of accuracy of a numerical solution

Generally, it is not possible to know the order of accuracy of a solution a priori. It
depends on the accuracy of the numerical schemes used in the inner and boundary dif-
fusive and convective terms. The calculated terms accuracy in some cases is formally
known (when the numerical scheme is, for example, upwind or central difference), but
when hybrid schemes like power-law are used, the order of accuracy is bounded but
not fixed (it depends on the nature of the problem). Furthermore, different accurate
schemes are usually adopted in the calculation of the diffusive and convective terms.
The more and less accurate scheme in a problem bound the expected values of p. This
can be used as a post-processing tool to ensure the certainty of a numerical solution.

With three different solutions obtained from an h-refinement study with a refine-
ment ratio r, equation (3.17) allows the estimation of local and global p values (if
local values or global values are processed).

In the local studies, generally the nodal coordinates of the calculated solution do
not coincide. The analysis here presented has been carried out at the coarse mesh
nodes, using bi-quadratic interpolations of the finer grid values.

When a calculated p is out of the expected bounds, this is an indicator that the
Richardson extrapolation cannot be applied. There are two possible causes: φ values
are nearly zero, or the studied solution values do not belong to the asymptotic range
and, thus, a finer mesh is required. Furthermore, in some problems, or in some zones
of the studied domain, where the solution converges in an oscillatory way when h
is refined, the Richardson extrapolation has no meaning. In the local studies of p
presented in this work, p has been calculated in all the nodes using equation (3.17)
except in the oscillatory nodes and the nodes with φ near zero, and the average p has
been taken as a representative value of the global p distribution.

3.3 Results

3.3.1 Comparative study of the interpolation schemes

Description

The numerical error and the order of accuracy have been chosen as the criteria to
analyze the interpolation schemes. For different numerical schemes (i.e. upwind
(UDS), central difference (CDS) and SMART [16]) the testing problems have been
solved without domain decomposition (on nxn square control volumes) and with
domain decomposition with the studied interpolation scheme. The evolution of the
numerical errors and the order of accuracy of both solutions when the mesh is refined
(with and h-refinement of r = 2 and five refinement levels: n = 10, n = 20, n = 40,
n = 80 and n = 160) have been compared. All the differences that have been detected
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Figure 3.3: Domain decomposition for a square cavity of length L. (a) Two

non-sloped subdomains. (b) Three sloped subdomains.

are due to the interpolation scheme. This analysis has been carried out for all the
dependent variables. As similar results have been obtained for all of them, only the
corresponding ones to the u-field are given.

Three studies (I, II and III) are presented. Study I and II analyze the behavior
of different conservative and non-conservative interpolation schemes for the velocity
and the scalar field (temperature) in the domain decomposition represented in Fig.
3.3a (non-coinciding meshes in the overlapping zone are used, otherwise the mass
flux is automatically preserved for all the studied interpolation schemes [17]). The
conclusions of studies I and II are checked in study III on a more complex domain
decomposition involving sloped subdomains (Fig. 3.3b).

These studies have been carried out on two testing problems hereafter called A
and B. Problem A is a square cavity whose topside moves with a uniform velocity in
its own plain (forced convection) with Re = 102; and problem B is a square cavity
with top and bottom adiabatic sides and differentially heated vertical sides (natural
convection) with Ra = 105 and Pr = 0.71.

The required grid independent solutions for the evaluation of the error evolution
(see section 3.2.4), have been obtained on a 160x160 uniform grid using SMART .
The u-field values in problem A (forced convection) have been normalized by the u-
maximum value (i.e. velocity of the moving wall), and in problem B by a reference
velocity of u∞ = k/ρcpL.
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Figure 3.4: Average absolute normalized error of the u-field vs. discretization

level in problem A using UDS and CDS.

Study I: Interpolation of the velocity field

The mass and tangential-momentum conservation has been studied in problem A
(forced convection). Three different interpolation schemes have been adopted to cou-
ple the subdomains:

• N (No-conservation): bi-quadratic interpolation for both entrance and tangen-
tial velocities.

• MC (Mass Conservation): conservative interpolation for the entrance velocity
(mass balance) and bi-quadratic non-conservative interpolation for the tangen-
tial velocity.

• MMC (Mass and Momentum Conservation): conservative interpolation for both
entrance and tangential velocity (mass and momentum balances).

Fig. 3.4 Table 3.1 have been obtained solving problem A by means of UDS and
CDS. The study has been carried out both on one domain and on the decomposed
domain shown in Fig. 3.3a with the interpolation schemes N, MC and MMC. Fig.
3.4 shows the average absolute normalized error of the u variable when the mesh is
refined. Table 3.1 shows the average values of p calculated from the u-field maps. For
example, observing the results employing UDS, with the set of the coarsest solutions
(n=10, 20 and 40) the average p for the non-decomposed domain solution (1 dom.) is
1.12, and for the decomposed domain solutions are: .23 when the domains are coupled
by N, 1.47 when they are coupled by MC and .91 when they are coupled by MMC.
The average p when the meshes are refined for both the one domain solution and the
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p̄

grid UDS CDS

2 subd 2 subd 2 subd 2 subd 2 subd 2 subd

n3/n2/n1 1 dom N MC MMC 1 dom N MC MMC

10/20/40 1.12 0.23 1.47 0.91 1.30 0.60 1.16 1.25

20/40/80 0.94 -0.07 0.30 0.90 1.78 0.93 -1.07 1.77

40/80/160 1.01 0.01 -0.52 0.99 1.98 -2.25 -0.38 1.88

Table 3.1: Average p of the u-field in problem A using UDS and CDS.

Figure 3.5: Evolution of the normalized mass error with the number of iterations

(problem A using UDS and n=40).

solution using MMC, are near 1 (1.01 and .99 respectively), which is the expected
order of accuracy corresponding to the UDS numerical scheme. On the other hand,
the average p coupling the subdomains using N or MC have meaningless values.

When mass and tangential momentum fluxes through the interpolation faces are
preserved, the numerical error introduced by the interpolation scheme is not signifi-
cant and it disappears when the mesh is refined. Furthermore, p achieves the expected
values. On the other hand, if any non-conservative interpolation is adopted to calcu-
late the tangential or entrance velocity, a numerical error due to the interpolation is
generated and does not improve when the mesh is refined, and the order of accuracy,
p, for these cases has meaningless values.

In addition, MMC has the lower computational cost since the imbalances intro-
duced by non-conservative interpolations make the convergence difficult. In Fig. 3.5
the evolution of the normalized mass error (ε∗m) with the iteration number is given
using UDS and n=40. In this particular case the domain decomposed solution using
MMC and the one domain solution require the same number of iterations. At the very
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Figure 3.6: Average absolute normalized error of the u-field vs. discretization

level in problem B using UDS and CDS.

beginning of the number of iterations all the curves (i.e. 1 dom., N, MC and MMC)
coincide. In this zone, as the numerical solution is still far from the asymptotic solu-
tion the imbalances introduced by N and MC do not affect the convergence. However,
after approximately 100 iterations, the convergence becomes slower for these schemes.
Furthermore, as N does not preserve the conservation of mass, with this scheme the
normalized mass error cannot be reduced beyond 10−7. This convergence difficulty
for N and MC compared to MMC has found to be a general tendency that has been
observed in all the studies.

Study II: Interpolation of scalar fields (temperature)

Problem B (natural convection) has been adopted to study the behavior of the scalar
fields (in this case the temperature). For the velocity field the best of the analyzed
schemes (conservation of mass and momentum) has been adopted. Three different
schemes for the temperature interpolation have been studied:

• NE (No-Energy conservation): bi-quadratic interpolation.

• EC1 (Energy Conservation 1): conservative interpolation (heat balances).

• EC2 (Energy Conservation 2): conservative interpolation based on heat bal-
ances in one subdomain and on bi-quadratic interpolations in the other (mixed
scheme).

Fig. 3.6 and Table 3.2 show the average errors and the order of accuracy obtained
solving problem B on one domain and on the decomposed domain shown in Fig. 3.3a
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p̄

grid UDS CDS

2 subd 2 subd 2 subd 2 subd 2 subd

n3/n2/n1 1 dom NE EC1 EC2 1 dom NE EC2

10/20/40 -0.08 -0.21 -0.13 -0.15 1.18 0.91 1.09

20/40/80 1.35 1.26 -0.56 1.27 1.79 1.73 1.73

40/80/160 1.32 1.27 -1.86 1.30 1.97 1.97 1.89

Table 3.2: Average p of the u-field in problem B using UDS and CDS.

with the studied interpolation schemes NE, EC1 and EC2. The numerical schemes
UDS and CDS have been adopted. The results with both NE and EC2 schemes agree
with the values calculated with the non-decomposed domain solution. However, the
values estimated for the interpolation scheme based only on flux balances (EC1) have
no meaning. These values are only given for the study with UDS.

The conservative scheme EC1 is not proper because this scheme makes the set
of discretization equations indeterminate. As a consequence, an unphysical jump in
the numerical solution of the scalar variable appears in the interpolation boundary
[18][19].

The NE and EC2 interpolation schemes have been found as appropriate schemes
for the interpolation of scalar fields. Non-important differences in the computational
cost have been detected in the tested cases, and the asymptotic numerical solution
when the mesh is refined is the same. In Fig. 3.7a the evolution of the normalized
mass error (ε∗m) with the iteration number is given using UDS and n=40. The coin-
cidence of the curves corresponding to NE and EC2 can be observed. In this specific
study, the use of domain decomposition with explicit information transfer increases
the number of iterations required compared to the one domain solution for all the
studied interpolation schemes.

The imbalances introduced by NE in the previous studies have been analyzed
comparing the average Nu in the west and east boundary faces of the square cavity.
As expected, the imbalance is reduced with the mesh refinement. In this case the flux
balances are not relevant due to the low values of the velocities and gradients. Even
for the coarse mesh (n=10) the discrepancies are less than 0.2% . In other studies
not presented here more important imbalance has been detected.

Some mathematical aspects about the interpolation schemes for scalar
fields The conclusions of the suitability of the interpolation schemes adopted for the
scalar fields can be corroborated with a mathematical discussion of a simple problem:
the convection-diffusion equation for a steady one-dimensional problem without source
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Figure 3.7: (a) Evolution of the normalized mass error with the number of

iterations (problem B using UDS and n=40). (b) Physical domain and domain

decomposition for the simplified convection-diffusion problem.

term and constant physical properties. The corresponding governing equation is

P
∂φ

∂x
− ∂2φ

∂x2
= 0 (3.19)

where P = ρu/Γ. Its analytical solution on the domain D = [x1, x2] (Fig. 3.7b) for
the Dirichlet boundary conditions φ(x1) = φ1 and φ(x2) = φ2 is as follows:

φ(x) =
φ1 − φ2

ePx1 − ePx2
ePx − φ1e

Px2 − φ2e
Px1

ePx1 − ePx2
(3.20)

Now, the domain D = [x1, x2] will be decomposed into two overlapping subdo-
mains DI = [x1, x2i] and DII = [x1i, x2] where DI ∩ DII = [x1i, x2i] (Fig. 3.7b),
and the same problem will be solved analytically coupling the subdomains with the
interpolation schemes for scalar variables adopted in the numerical studies: NE, EC1
and EC2.

The differential equation (19) has to be solved twice: in subdomain DI and in
subdomain DII :

φI (x) = CI
1 ePx + CI

2 ∀x ∈ [x1, x2i] φII(x) = CII
1 ePx + CII

2 ∀x ∈ [x1i, x2]
(3.21)

Four interpolation constants appear, two for every subdomain. Thus, four con-
strains are required. Two of them are the same boundary conditions used before,
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Figure 3.8: Average absolute normalized error of the u-field vs. discretization

level. (a) Problem A using UDS and SMART. (b) Problem B using UDS and CDS.

φI(x1) = φ1 and φII (x2) = φ2. The other constrains will be fixed by the interpola-
tion scheme in the two interpolation boundaries (x = x1i and x = x2i). A Lagrange
interpolation forces the φ value to be equal for both subdomains (φI = φII ), and
a conservative interpolation scheme forces the equality of fluxes in the interpolation
boundary (JI = JII), where the fluxes are evaluated by means of equation (4).

The interpolation constrains, both for the non-conservative scheme (NE) and the
mixed scheme (EC2), together with the boundary conditions, give the equation system
the desirable solution:

φI(x) = φ(x) ∀x ∈ [x1, x2i] φII (x) = φ(x) ∀x ∈ [x1i, x2] (3.22)

where φ(x) is the analytical solution of the problem on a non-decomposed domain,
equation (20). However, the two equations corresponding to the interpolation con-
strains for the fully conservative scheme (EC1) degenerate into only one equation.
Thus, only three independent equations are available for the determination of the four
integration constants, and it makes the solution of the decomposed domain problem
indeterminate.

Study III: Application on sloped subdomains

In studies I and II, only parallel subdomains have been adopted. In order to corrob-
orate the suitability of the mass and tangential-momentum conservative interpola-
tion scheme for the velocity field (MMC), and the no-energy conservative and mixed
conservative schemes for the temperature (NE and EC2), different studies on more
complicated domain decompositions involving sloped subdomains have been carried
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p̄

Problem A Problem B

grid UDS SMART UDS CDS

n3/n2/n1 1 dom 3 subd 1 dom 3 subd 1 dom 3 subd 1 dom 3 subd

10/20/40 1.12 1.73 1.51 1.86 -0.08 0.39 1.28 1.57

20/40/80 0.94 1.24 1.97 1.88 1.35 1.24 1.79 1.87

40/80/160 1.01 1.03 2.03 1.79 1.32 1.24 1.97 2.03

Table 3.3: Average p of the u-field in problem A and in problem B for different

numerical schemes.

out. Good agreement between the error and p evolution of the non-decomposed do-
main studies and the decomposed domain studies has always been achieved. Two
of these studies are presented in Table 3.3 and in Fig. 3.8. The first is problem A
solved using UDS and SMART. The values for the non-decomposed domain solution
are compared to the values of the numerical solutions obtained on the domain decom-
position exposed in Fig. 3.3b with the MMC scheme. A similar study on problem
B is presented adopting the UDS and CDS numerical schemes, and with the EC2
interpolation scheme for the coupling of the subdomains.

It is worth mentioning that in these studies the agreement between the results for
non-decomposed and decomposed domain studies is not as good as in the previous
studies. The parameter n has been used to characterize the grid density. Thus, the
comparison between two solutions in a level n assumes that the level of geometric
discretization in both solutions is equal and this has not been exactly kept in this
study. As a result, certain discordance is introduced.

3.3.2 Flow in a junction

In section 3.3.1 the suitability of the fully-conservative finite-volume formulation for
the domain decomposition method has been proved and compared to the behavior of
different non-conservative formulations. Now, the well-posedness of these formulation
is checked on a bi-dimensional flow in a junction with two inlets and one outlet (see
Fig. 3.9a). A constant entrance velocity profile is given in the inlets (Re = 103), and
in the outlet developed flow conditions are assumed. This problem has been solved
on a non-decomposed square domain of size L using the blocking-off technique (ap-
proximation of the geometry in a step-wise manner) and on the decomposed domain
shown in Fig. 3.9a. A mesh refinement of r=2 and five regular meshes of n = 10,
n = 20, n = 40, n = 80 and n = 160 (where ∆x ≈ ∆y ≈ 2L/5n) are used. The grid
independent solution in a single blocked-off domain with a grid of 800x800 control
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p̄

grid UDS SMART

n3/n2/n1 1 dom 4 subd 1 dom 4 subd

10/20/40 1.12 1.73 1.51 1.86

20/40/80 0.94 1.24 1.97 1.88

40/80/160 1.01 1.03 2.03 1.79

Table 3.4: Average p of the u-field in the junction problem using UDS and

SMART.

volumes (∆x = ∆y = L/800) and SMART scheme has been considered the reference
solution. The numerical errors and the order of accuracy of the numerical solutions
using both UDS and SMART schemes are presented in Fig. 3.9b and Table 3.4,
where the u-component of the velocity has been normalized respect to the entrance
velocity. Good agreement between the results in the non-decomposed domain and in
the decomposed domain is achieved, and expected values for the order of accuracy
are obtained. The discordance, especially in the average order of accuracy p, is more
important than in the previous studies. With the adopted domain decomposition
most control volumes are orientated in the flow direction; on the other hand, in the
non-decomposed domain the control volumes in the sloped channel are not orientated
in the mean flow direction. Thus, the upwind criteria fit better in the decomposed
domain, and as a consequence, the order of accuracy of the numerical solutions, es-
pecially for coarse grids, may have some differences. Some more discrepancies could
arise from the fact that in order to exactly fit the physical geometry the size of the
control volumes in both studies has not been kept exactly equal, while the comparison
between levels of refinement involves the hypothesis of equality of the grid spacing.

The streamlines of the flow are presented in Fig. 3.9c, and the velocity profiles in
sections of the central zone are shown in Fig. 3.9d. In both figures the results are
obtained from the finest grid (∆x ≈ ∆y ≈ L/400) using the SMART scheme and the
decomposed domain. The developed flow boundary condition at the outlet produces
a recirculation in the outer zone. Internal recirculations are detected in the entrance
as a consequence of the impinge of the inlet fluxes, and in corners. A small eddy
appears at the top corner of the sloped duct, and larger eddies are formed close to
the east wall of the sloped duct and at the bottom of the outer duct.
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Figure 3.9: Flow in a junction. (a) Physical domain and domain decomposition.

(b) Average absolute normalized error of the u-field vs. discretization level using

UDS and SMART. (c) Streamlines. Results for the finest mesh (∆x≈ ∆y≈L/400)

using the SMART scheme and the decomposed domain. (Solid lines: uniform

streamline intervals; dotted lines: non-uniform streamline intervals). (d) Zoom of

velocity profiles in the central zone. Results for the finest mesh (∆x≈ ∆y≈L/400)

using the SMART scheme and the decomposed domain.
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3.4 Conclusions

An essential aspect in domain decomposition methods is the behavior of the inter-
polation schemes used to relate the physical variables in each domain. Conservative
and non-conservative numerical schemes for the Navier-Stokes equations have been
studied in detail and compared, together with a well-posed generic conservative do-
main decomposition formulation completely based on finite-volume techniques. The
mass, tangential momentum and energy fluxes through the interpolation boundaries
are calculated from local balances in the source subdomain and are introduced as
boundary conditions in the sink subdomain.

The numerical errors that the interpolation schemes introduce in the numerical
solution have been analyzed, and the Richardson extrapolation has been adopted as
a tool to estimate the order of accuracy of the numerical solutions.

From the numerical studies presented here, the suitability of the interpolation
scheme for the velocity field based on the conservation of mass and the tangential-
momentum flux has been clearly proved. Although in problems with low gradients
a non-conservative interpolation scheme for the velocity field might not introduce
significant numerical errors, the well-posedness condition is not satisfied, and the
imbalances introduced make the method convergence difficult.

For the scalar variables, two schemes have been found suitable: a non-conservative
scheme based on Lagrange interpolations, and a conservative scheme based on flux
balances in one subdomain and Lagrange interpolations in the other. Although they
have similar computational cost, the former introduces imbalances of the physical
property (e.g. energy) that for coarse meshes could be important.
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Nomenclature

cp specific heat Greek symbols
eD discretization error
g gravitational acceleration β thermal expansion
h mesh spacing ∆t interval of time
k thermal conductivity µ dynamic viscosity
L reference length ρ density
n parameter that defines εm mass error

the number of grid nodes φ generic dependent variable
p order of numerical accuracy
pd dynamic pressure
Pr Prandtl number Superscripts
r refinement ratio (r > 1)
Ra Rayleigh number e,w,n,s value at cell face
Re Reynolds number P ,E,W ,N ,S value at cell nodes
T temperature ∞ reference value
u,v Cartesian velocities

components
V volume of a cell Subscripts
x,y Cartesian coordinates

∗ normalized value
◦ value at the previous ∆t
− averaged value
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