
Chapter 4

Fully Conservative Multiblock
Method for the Resolution of
Turbulent Incompressible
Flows

Main contents of this chapter are published as
J. Cadafalch, C.D. Pérez-Segarra, M. Sòria and A. Oliva. Fully conservative multiblock
method for the resolution of turbulent incompressible flow. In Proceedings of the Fourth EC-

COMAS Computational Fluid Dynamics Conference, volume 1.2, pages 1234-1239, Athens,
1998.

Abstract. This paper presents a fully conservative finite-volume overlapping multiblock

formulation for the analyses of turbulent natural and forced internal flows. In order to

study in detail the well-posedness of the method, the work is restricted to simple scenarios

(Cartesian meshes which overlap in arbitrary directions, and two-dimensional flows). The

turbulence is modeled by means of two-equation low-Reynolds-number k-ε models. The

mass and momentum equations are solved by a coupled algebraic multigrid method, while

the scalar transport equations (energy, k and ε) are solved segregately by a multigrid solver.

The free convection in a tall cavity is studied with decomposed and non-decomposed domains.

The numerical errors are compared, and the generalized Richardson extrapolation is adopted

to estimate the order of accuracy of the solution.
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4.1 Introduction

Recently, many efforts have been made by the computational fluid dynamics commu-
nity in the research of methods that provide a higher computational power. Coupled
solvers for the resolution of the Navier-Stokes equations have been shown to be more
efficient than segregated solvers in many situations [1]; the parallel computation re-
duces the execution time [2]; and the multiblock technique has been adopted by many
scientists as a tool which, combined with body-fitted coordinates, can give structured
grids the capability of fitting into complex geometries [3], as an alternative to the
non-structured grids and the blocking off technique (approximation of the geometry
in a stepwise manner).

In the multiblock method the global domain is divided up in several subdomains
or blocks. The governing equations are solved in each subdomain, and information
of the dependent variable values is transferred between each other in the sharing
boundaries.

During the last decade, many studies have been carried out on the multiblock
technique for the analyses of incompressible flows. They can be classified into two
groups: Patched Grid, in which the domain is divided into subdomains without over-
lapping zones [4]; and Overlapping Grid which divides the domain into overlapped
subdomains [5]. The most important difference between the works presented by differ-
ent authors is the way of transferring information between subdomains. Interpolation
schemes that preserve local fluxes of the physical quantities between the subdomains
are known as conservative schemes; on the other hand, interpolation schemes such as
Lagrangian interpolations are known as non-conservative. It is widely accepted that
conservative schemes yield to better results. However, some so-called conservative
schemes which only preserve mass fluxes can lead to wrong solutions [6].

A multiblock method should accomplish the well-posedness conditions; i.e. the
adopted interpolation scheme should not affect the result of the differential equations.
This aspect clearly depends on the nature of the PDEs. Henshaw and Chesshire [5]
demonstrate that for one 2nd order PDE, non-conservative and conservative inter-
polations are well-posed. If this conclusion is extrapolated to the resolution of the
Navier-Stokes equations (in two-dimensional problems two second-order PDEs cou-
pled by a first-order PDE), Lagrangian interpolation could be thought to be a suitable
interpolation scheme, which has been shown in previous works to be false [7].

The purpose of this paper is to demonstrate that the fully conservative formu-
lation based on finite-volume techniques presented here preserves the well-posedness
condition. Therefore, a simple two-dimensional problem is studied. The extension of
this formulation to three-dimensional situations and body-fitted coordinates will be
considered in a future work.

The turbulence is modeled by means of two equation low-Reynolds number k-
ε models. The discretized governing equations are obtained using the finite-volume
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method on staggered structured Cartesian grids. The mass and momentum equations
are solved by a coupled algebraic multigrid method [1], and the energy, the turbulent
kinetic energy and its dissipation rate equations are solved segregately by means of
a multigrid solver. A global explicit procedure for the information transfer between
subdomains is adopted.

A post-processing tool based on the Richardson extrapolation [8] has been devel-
oped to study the order of accuracy of the numerical solutions. The numerical errors
are also studied. This tool requires solving each problem adopting an h-refinement
criterion (use of different meshes related by a mesh ratio r; in this work r = 2 and five
levels of refinement are studied). The numerical solutions of the free convection in a
tall cavity using a decomposed domain and a non-decomposed domain are compared.
The well-posedness condition of the multiblock method requires the order of accuracy
and the numerical errors of both solutions to be similar.

4.2 Formulation

4.2.1 Governing equations

The time-averaged governing equations of the fluid flow (continuity, momentum and
energy) assuming: the Boussinesq approximation (density variations are relevant only
in the buoyancy terms of the momentum equations), fluid Newtonian behavior, negli-
gible heat friction and influence of pressure on temperature, non-participant radiating
medium, may be written in tensor notation as:

∂ui

∂xi
= 0 (4.1)
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dt
= −∂pd
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.
qi = −λ

∂T

∂xi
+ cpρu′

iT
′ (4.5)

and, xi is the Cartesian coordinate in the i-direction (x1=x, x2=y); t the time; ui

the mean velocity in the i-direction (u1=u, u2=v); pd the mean dynamic pressure;
T the mean temperature; gi the i-component of the gravitational acceleration vector
(g1 = 0,g2 = g); To is the reference temperature; and ρ, µ, β, λ, cp are respectively:
the density, the dynamic viscosity, the coefficient of thermal expansion, the thermal
conductivity and the specific heat at constant pressure. The turbulent fluctuating
velocity in the xi-direction and the fluctuating temperature are indicated by u′

i and
T ′.

The turbulence is modeled using a low-Reynolds k-ε turbulence models. The
turbulent stresses and the turbulent heat fluxes are evaluated by analogy with the
Stokes viscosity law and the Fourier heat conduction law. Thus, these terms are
written in the form:

ρu′

iu
′

j = −µt

(

∂ui

∂xj
+

∂uj

∂xi

)

+
2

3
ρkδij (4.6)

ρu′

iT
′ = −µt

σt

∂T

∂xi
(4.7)

where: µt and σt are the turbulent viscosity and the turbulent Prandtl number,
and δij is the Kronecker delta. The turbulent Prandtl number is usually taken as a
constant. The turbulent viscosity is related to the turbulent kinetic energy (k) and
the dissipation of turbulent kinetic energy (ε) by means of the empirical expression
of Kolmogorov-Prandtl.

The turbulent kinetic energy and its dissipation are obtained from their transport
equations. Although the exact form of these equations results from the Navier-Stokes
equations, empirical approximations of some terms are necessary. The resulting k-ε
equations, together with the Kolmogorov-Prandtl expression, can be written, after
taking low-Reynolds-number effects into account, as:

µt = cµfµ
ρk2

ε̃
(4.8)

d(ρk)
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∂
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+ Pk + Gk − (ρε̃ + D) (4.9)
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where the variable ε̃, defined as ε̃=ε-D/ρ is introduced in some turbulence models
for computational convenience in order to obtain a zero value of ε̃ at the wall. The
shear production and buoyancy production/destruction of turbulent kinetic energy are
respectively Pk = −ρu′

iu
′

j∂ui/∂xj and Gk = −βu′

iT
′gi. In these terms the turbulent

stresses and heat fluxes are evaluated using the standard eddy-diffusivity model.
The boundary conditions and the empirical values (cµ, cε1, cε2, cε3, σk, σε, σt, fµ,

f1, f2, D and E) depend on the turbulence model adopted.

4.2.2 Multiblock interpolation scheme

The resolution of the above-presented governing equations by means of multiblock
method requires special boundary conditions in the boundaries of the overlapping
zones.

For the averaged Navier-Stokes equations, the entrance mean velocity is calculated
via local mass balances, and the tangential mean velocity using local balances of
the tangential-momentum fluxes. This procedure has been proved to be suitable in
previous works on laminar simply connected incompressible flows [6][7].

The scalar fields (k, ε and T ) are coupled with the Navier-Stokes equations in the
coefficients of the momentum diffusion (turbulent viscosity) and in the body force
term. However, in the multiblock method they behave as if they were non-coupled
single 2nd order PDEs. A conservative scheme based on Lagrangian interpolations
in one subdomain, and which preserves convective and diffusive fluxes in the other,
has been proved to be well-posed for the temperature field [7]. In this work, this
procedure is used for all the scalar fields.

4.2.3 Post-processing tool

In order to evaluate the quality of the numerical solutions, the numerical error and the
order of accuracy (p) are estimated using a post-processing tool described in detail in
[6]. An h-refinement treatment is adopted. The problem is solved on different meshes
related by a mesh ratio r (in this work r=2 and five levels of refinement are studied).
According to the Richardson extrapolation [8], with three solutions of a problem (φ1,
φ2 and φ3) obtained on the grids h1=h (fine grid), h2=rh (middle grid) and h3=r2h
(coarse grid), the order of accuracy of the numerical solution can be determinated
by the following equation when the assumptions of smoothness and monotone error
convergence in the mesh spacing apply:
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p =
ln

(

φ2−φ3

φ1−φ2

)

ln r
(4.11)

A map of the estimated order of accuracy is calculated with three consecutive
mesh levels.

A single grid independent solution is also carried out. It is considered to be the
”exact” or reference solution, and maps of errors for each refinement level are obtained
by direct comparison to this reference solution.

In both the error map and the numerical accuracy map, as the compared meshes do
not have coinciding nodes, it has been necessary to interpolate information from the
solutions. Bi-quadratic interpolations have always been used so as not to introduce
uncertainties in the post-processing study.

The averaged p and the averaged error have been adopted as global estimates of
the global order of accuracy and the global numerical error. As the calculation of
p requires three consecutive mesh levels, and the h-refinement treatment has been
carried out on five levels, only three p estimators are calculated. On the other hand,
the numerical error estimation is evaluated for each level of refinement.

This post-processing tool has to be applied segregately on all the variables of the
problem.

RESULTS

The fully conservative multiblock method has been tested on the resolution of the
incompressible turbulent air flow (Pr=0.71) in a tall rectangular cavity (aspect ra-
tio=30) with differentially heated vertical walls (Ra=2.43·1010) and adiabatic top and
bottom walls.

The turbulent empirical values and functions proposed by To and Humphrey [9]
and the boundary conditions k=0 and ∂ε/∂xn=0 have been adopted.

Both the first-order accurate upwind difference scheme (UDS) and the high-order
SMART scheme [10] for the convective terms have been adopted, together with
second-order accurate central differences for the diffusive terms.

Rectangular structured meshes of nx ∗ ny control volumes, concentrated at the
walls by means of a tanh-like function [11] with concentration factors κx and κy have
been used (κx: concentration factor in the x-Cartesian direction, κy: concentration
factor in the y-Cartesian direction), see Fig. 4.1.

An h-refinement study using a single-domain and two overlapped domains has
been performed with five refinement levels of n=10, n=20, n=40, n=80 and n=160
(where nx=ny=n for the non-decomposed domain, and nx=n and ny=n/2 + 1 for
the decomposed domain). In the overlapping zone of the decomposed domain, which
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Figure 4.1: (a) Grid for the non-decomposed domain study (nx=ny=n , κx=4,

κy=3). (b) Grid for decomposed domain study (nx=n, ny=n/2+1 , κx=4, κy=3;

subdomain 2: nx=n, ny=n/2+1,κx=3, κy=2). (c) Averaged absolute normalized

error of the T -field vs. discretization level for different numerical schemes (UDS

and SMART).

contains at least two nodes of the involved subdomains, no concentration factor in
the y-Cartesian direction has been used in order to avoid convergence difficulties that
could arise from relating meshes with highly different sizes. in order to point out the
generality of the Interpolation scheme adopted, in the subdomains of the decomposed-
domain study the meshes have been concentrated with different concentration factors
in such a way that the control volumes faces of both do not coincide, see Fig. 4.1b.

The solution in a single block with 320 ∗ 320 control volumes refined at the walls
(κx=4, κy=3) and using the SMART scheme has been taken as the reference solution
for the error studies.

The numerical error and the order of accuracy of the study on the single domain
and on the decomposed domain have been calculated and compared for the variables
u, v, T , k and ε. As similar results have always been achieved, only the corresponding
to the T -field will be presented.

Fig. 4.1c compares the evolution of the average normalized error of the temper-
ature field (normalized by the temperature difference between the vertical walls) for
the single domain and for the decomposed domain studies. The discretization errors
are similar when the same levels of refinement are compared, and both vanish with
the mesh. Only some discordance appear for the coarsest grid (n = 10), where the
numerical solution is far from the grid independent solution and little differences in
the mesh spacing can lead to important differences in the solution.

Table 4.1 compares the average p values of the T -field calculated for the study on
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p̄

grid UDS SMART

n3/n2/n1 1 dom 2 subd 1 dom 2 subd

10/20/40 1.33 1.15 1.79 2.37

20/40/80 1.18 1.35 2.18 1.77

40/80/160 1.15 1.23 1.64 1.75

Table 4.1: Average p of the T -field for different numerical schemes (UDS and

SMART).

the non-decomposed domain and on the decomposed domain. For example, with the
set of coarsest solutions (n3=10, n2=20 and n1=40), the estimated order of accuracy
for the solution on the single domain corresponding to the UDS and SMART are
respectively 1.33 and 1.79, and the values for the study on the decomposed domain are
1.15 and 2.37. The comparison between levels of refinement involves the hypothesis of
equality of the grid spacing. As different concentration factors have been adopted for
the decomposed domain study, some differences in the values of the estimated order
of accuracy could be expected a priori. However, good agreement is always achieved
between the values calculated for both studies. All of them are also reasonable values:
around 1 when the convective terms are modeled by means of the first order UDS
scheme, and around 2 for the cases with the high order SMART scheme.

4.3 Conclusions

The multiblock method is an efficient tool used for improving the power of the com-
putational fluid dynamics and heat transfer. Some multiblock approaches for in-
compressible flows have been developed recently by different authors. Some of these
approaches have been shown in previous works not to be well-posed although in some
problems, generally those with low gradients, they can lead to satisfactory results (e.g.
conservative named schemes based only on the local conservation of mass). There-
fore, in order to have confidence in a multiblock method, it is important to study it
in detail before it is applied to the resolution of complex problems.

The present work demonstrates that the fully conservative multiblock formulation
adopted for turbulent incompressible flows preserves the order of numerical accuracy
and does not introduce additional uncertainty in the numerical solution, thus, it
accomplishes the well-posedness condition.
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Nomenclature

cp specific heat at constant pressure
cε1, cε2, cε3, cµ empirical constants in the turbulence models
D, E extra terms in the k and ε equations
eD discretization error
f1, f2, fµ empirical functions in the turbulence models
g gravitational acceleration
Gk buoyancy production/destruction of k
k turbulent kinetic energy
n number of nodes
p order of accuracy
pd dynamic pressure
Pk shear production of k
Pr Prandtl number
r mesh ratio in the h-refinement
Ra Rayleigh number
t time
T temperature
u, v Cartesian velocity components
x, y Cartesian coordinates

Greek symbols Superscripts

β thermal expansion coefficient ′ fluctuating quantity
δij Kronecker delta ∗ non-dimensional value
ε dissipation rate of k − average value
κ concentration factor
λ thermal conductivity
µ dynamic viscosity Subscripts
µt turbulent viscosity
ρ density i, j Cartesian directions
σk, σε, σt turb. Pr for k, ε and T o reference value
τij shear-stresses



80 References

References

[1] P.S. Sathyamurthy. Development and evaluation of efficient solution procedures
for fluid flow and heat transfer problems in complex geometries. PhD thesis,
University of Minnesota, 1991.

[2] D. Drikakis, E. Schreck, and F. Durst. Performance analysis of viscous flow
computations on various parallel architectures. Journal of Fluids Engineering,
116:635–841, 1994.

[3] Y. Zang and R.L. Street. A composite multigrid method for calculating unsteady
incompressible flows in geometrically complex domains. International Journal for
Numerical Methods in Fluids, 20(5):341–361, 1995.

[4] D. Lee and J.J. Chiu. Computation of physiological bifurcation flows using a
patched grid. Computers Fluid, 21(4):519–535, 1992.

[5] G. Chesshire and W.D. Henshaw. A scheme for conservative interpolation on
overlapping grids. SIAM Journal of Scientific Computing, 15(4):819–845, 1994.

[6] J. Cadafalch, J. Salom, M. Costa, and A. Oliva. Domain decomposition as a
method for the parallel computing of laminar incompressible flows. In Proceedings
of the Second European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS), pages 845–851, 1996.
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