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Abstract. This work presents a post-processing tool for the verification of steady state
fluid flow and heat transfer finite volume computations. It is based both on the generalised
Richardson extrapolation and the Grid Convergence Index (GCI). The observed order of
accuracy and a error band where the grid independent solution is expected to be contained are
estimated. The results corresponding to the following two and three dimensional steady state
simulations are post processed: a flow inside a cavity with moving top wall, an axisymmetric
turbulent flow through a compressor valve, a premixed methane/air laminar flat flame on
a perforated burner and the heat transfer from an isothermal cylinder enclosed by a square
duct. Discussion is carried out about the certainty of the estimators obtained with the
post-processing procedure. They have been shown to be useful parameters in order to assess
credibility and quality to the reported numerical solutions.
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5.1 Introduction

During the last decades the numerical methods on heat transfer and fluid flow have
been consolidated as an indispensable tool for the resolution of thermal and me-
chanical engineering problems, being nowadays an essential complement to the ex-
perimental studies. The aim of the Computational Fluid Dynamics (CFD) scientific
community up to the last years was mainly focussed on improving the performance
of the numerical methods in order to increase the range of applications, i.e. larger
domains and more and more complex physical phenomena. As a result, many com-
mercial codes have appeared on the market and are being used by many engineers
and technicians in their projects and companies for design, evaluation and testing
of new equipment and even entire systems (virtual prototyping and virtual testing),
decreasing dramatically the time and cost of bringing new products to the market.
Together with the increase of the number of users on these techniques, a discussion
about the need of assessing the credibility of the numerical results has emerged in the
scientific Computational Fluid Dynamics community. Prestigious journals and insti-
tutes in the field of CFD and heat transfer have adopted statement policies about this
subject [1][2], and many papers have been published concerning the quantification of
the numerical errors and the quality of the numerical solutions [3][4].

A numerical solution is the final result of two steps: a modeling of the physical
phenomena so as to obtain a set of PDEs (physical or mathematical model), and the
conversion of these PDEs to algebraic equations and their solution on a computer
(computational model). The first step concerns modeling research such as turbulence
modeling and modeling of chemical kinetics. The second step involves the discretiza-
tion of the PDEs, the numerical procedures to solve the algebraic equations, the
programming of the code, the criteria for finishing the convergence procedure and
the computer accuracy. Both steps introduce approximations in the solutions, and
the resulting errors should be independently understood and quantified, if possible.
The errors introduced in the second step are known as computational errors and the
process to study these errors as verification process. Once the mathematical model
and the computational model have been independently verified, the final validation
of the simulation process should be carried out by comparing the results predicted
by the simulation with experimental data, which is known as validation process. In
this context, validation process is the last step of the overall procedure required to
assess credibility. Furthermore, in validation processes, uncertainties arise in both
the experimental results and the computational results. Therefore, when analyzing
discrepancies between simulation and experimental data attention must be focussed
not only on the numerical solution (mathematical model and computational model),
but also on the procedure adopted to obtain the experimental data. Fer example, ex-
perimental uncertainties can come about when testing is done under conditions other
than the operating conditions of the studied system or equipment.
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From the different processes involved to assess the credibility of fluid dynamics and
heat transfer computations (the study of the physical model, the verification and the
validation), this work focuses on the verification process. The main source of compu-
tational errors is the discretization. In steady state problems, using double precision
real numbers with strong enough convergence criteria, and when the code is free of
programming errors and bugs, the remaining computational error is caused by the
geometric discretization (mesh) and the numerical discretization (numerical scheme).
In order to quantify these errors, two different parameters are usually adopted: h,
which is representative of the mesh spacing, and p, which stands for the order of
accuracy of the numerical scheme. The h-refinement treatment is commonly used to
reduce the grid discretization errors in finite volume techniques (i.e. the numerical
scheme is fixed and the mesh is refined). In these studies, the Richardson extrapo-
lation can be adopted as a formally upper-order extrapolated solution estimator and
as an error estimator [5].

The goal of this work is to show the capability of a post-processing tool for the
computational error analysis of the simulations of different kind of steady state flows
and physical phenomena: laminar flows, turbulent flows using two equations tur-
bulence models [6] and reactive flows [7]. The studies are based on the generalized
Richardson extrapolation for h-refinement studies and on the Grid Convergence Index
(GCI) proposed by Roache [8]. First results using this tool for steady state laminar
and turbulent flows have already been reported by the authors [9][10].

The post-processing procedure here described, has been designed so as to establish
criteria about the sensitivity of the simulation to the computational model parameters
that account for the discretization: the mesh spacing and the order of accuracy. For
transient calculations, not considered here, an additional parameter should be added
in order to account for the order of accuracy of the time-marching scheme. This
tool estimates the order of accuracy of the numerical solution (observed order of
accuracy) and a error band where the grid independent solution is expected to be
contained (uncertainty due to discretization), also giving criteria about the credibility
of these estimations. Both global estimators and local estimators are calculated.
Local estimators make it possible to find out local source of error such as zones
with inadequate mesh concentration or problems with an inadequate formulation of
the boundary conditions. Therefore, they are very useful to improve the numerical
solutions. However, as they consist of a large amount of data such as maps of observed
order of accuracy or maps of estimated local discretization error, they seem to give too
much information and usually not clear enough, for the final reporting of the results.
For such purposes, the global estimators are easier to be used and reproduced for
different authors in different reports.

To show the capability of these tools, different results of two and three dimensional
steady state problems solved on a h-refinement criteria have been post processed: a
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flow inside a cavity with moving top wall, an axisymmetric turbulent flow through a
compressor valve, a premixed methane/air laminar flat flame on a perforated burner
and the heat transfer from an isothermal cylinder enclosed by a square duct. Both
structured rectangular or axisymmetric staggered grids, and body fitted non-staggered
grids are used. A solution with a very fine grid and high order numerical scheme has
been calculated for all the tested cases and it has been considered the ”exact” or
reference solution. With this ”exact” solution, the ”exact” errors of the numerical
solutions have been calculated and compared to the uncertainty obtained from the
post-processing tool. The values of the global estimators are given for all the post
processed cases together with the “exact” absolute error. The values of some local
estimators for one of the cases are also given and discussed.

So as to point out the credibility of the estimators obtained with the post pro-
cessing tool, a simple case with analytical solution has been solved numerically using
an h-refinement criteria. The uncertainty due to discretization calculated from the
post-processing has been compared to the real discretization error obtained from the
comparison of the numerical solution to the analytical solution.

In the following section an overview of the mathematical basis on the evaluation
of discretization errors is given. In section 3 details of the post-processing tool are
described. The test problems and the mesh used in each of them are explained in
section 4. Finally, the results are given and discussed in section 5.

5.2 Fundamentals

5.2.1 Estimation of the discretization errors: Mathematical
formulation

Assuming that the numerical solution of a problem is free of convergence errors,
round-off errors and programming errors, the computational error at a given point x
of the computational domain is only due to the discretization process. Therefore, the
absolute error due to discretization can be defined as the absolute difference between
the computed solution ¢(x) and the exact solution ¢g(x):

ep(x) =[ ¢(x) — or(x) | (5.1)

As in practical situations the exact solution or an estimation of the exact solution
is not available, the discretization error cannot be calculated using Eq. (5.1). In this
section, it is shown how the magnitude of the discretization error can be estimated by
means of the Richardson extrapolation theory [5] and the concept of Grid Convergence
Index (GCT) for uniform reporting of grid refinement studies [4].



5.2. Fundamentals 85

In steady state computations, there are two discretization error sources: the mesh
and the numerical schemes. In order to quantify each of them, two parameters of the
computational model are usually adopted:

h : geometric discretization parameter representative of the mesh spacing
p : order of accuracy of the numerical schemes

According to the Richardson extrapolation theory, at a given point x of the domain
and when the solution is in the asymptotic range (sufficient small h), the local absolute
discretization error can be expressed in terms of the above mentioned parameters and
of a coefficient C,(x) [5]:

ep(x) =| Gp(x)h” | (5:2)

With three solutions of a problem (¢1(x), ¢2(x) and ¢3(x)) obtained by means
of a h-refinement treatment on the grids hy = h (fine grid), he = rh (middle grid),
and hz = r2h (coarse grid), a three-equation system of the unknown variables p(x),
¢e(x), and Cp(x) can be posed:

epi(x) =| ¢i(x) — ¢p(x) |=| Cpx)[F' TP | i=1,2,3 (5.3)

where the order of accuracy p has been assumed to be dependent on the position x,
and r is the refinement ratio.
From Eq. (5.3) it can be determined that:

_ In[(¢2(x) = ¢3(x))/(¢1 (%) = da(x))]

Inr

p(x) (5.4)

x) — ¢a(x
e, (x) =1 610) — 930 |=| L2269 (55)
where Eq. (5.4) is meaningful only in case of monotonic convergence to the exact
numerical solution as the grid is refined.

With this formulation, a formally upper-order extrapolated value of ¢g(x) can
be calculated [8]. However, the use of the extrapolated value of ¢ (x) is generally
not recommended because of its lack of conservation, and because the assumptions
involved in its calculation not always apply in practical problems. On the other hand,
the estimator of the absolute discretization error, Eq. (5.5), is a good parameter in

order to assess credibility to the numerical solution. Roache [4] incorporates a safety
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factor Fs into this estimator and defines the Grid Convergence Index (GCI). At a
given point x of the computational domain, the GCI corresponding to the fine grid
solution ¢;(x) takes the following form:

X) — ¢a(x
GCL(x) = F, | % | (5.6)
In a two-grid convergence study where p(x) must be assumed according to the
formal order of accuracy, a conservative value of Fs = 3 is recommended. For higher
quality studies using three or more grids, as those presented in this work, and where
p(x) can be estimated by means of Eq. (5.4), a value of Fy = 1.25 appears to be
adequately conservative.

5.2.2 Classification of the calculation nodes

As previously estated, Eq. (5.4) can only be used for the estimation of p(x) at
those nodes with monotone error convergence. Futhermore, as the argument of the
logarithm function is the ratio between the solution changes (¢2(x) — ¢3(x)) and
(¢1(x) — ¢2(x)), numerical problems can arise when analysing ¢(x) values close to 0
or nodes with both solution changes approaching 0.

It is useful to classify the calculation nodes into three groups according to the
following conditions:

Richardson node : [¢5(x) — ¢5(x)] * [¢] (x) — ¢5(x)] > Co
Converged node = | [¢5(x) — ¢3(x)] * [¢1(x) — ¢3(x)] |< Co (5.7)
Oscillatory node : [¢5(x) — ¢3(x)] * [¢7(x) — ¢5(x)] < —Co

where the upper-index * indicates that the solutions have been normalized by means
of the maximum absolute ¢(x), and Cj is a positive coefficient approaching 0 (Cy =
10730 in this work, where all the computations have been performed using double
precision real numbers).

From the numerical point of view, the Richardson nodes can be defined as those
nodes where Eq. (5.4) can be calculated. These Richardson nodes do not necessarily
fulfill all the requirements for the generalized Richardson extrapolation. In fact, the
solution may be outside the assymptotic range (h not small enough).

Formally, the condition of converged nodes is ill-defined because it can also be ac-
complished by inflection points in the solution where all three solutions cross through
the same point, which are abviously not converged nodes. Nevertheless, no relevant
effects of these nodes have been observed in the results post-processed by the authors
of this work up to now.



5.8. Post-processing tool for the evaluation of the discretization errors 87

5.2.3 The observed order of accuracy as a certainty parameter

The formal or theoretical order of accuracy depends on the accuracy of the numerical
schemes used in the inner and boundary nodes for both the diffusive and convective
terms. In some cases such as when the numerical scheme is fully first order (upwind
differencial scheme) or second order (central differences), the accuracy of these terms is
formally known. However, when hybrid schemes such as Power Law are used, the order
of accuracy is bounded but not fixed and it depends on the nature of the problem.
Furthermore, different schemes are usually used in the evaluation of the diffusive and
convective terms. Therefore, it is plausible to expect an overall order of accuracy p
bounded by the order of accuracy of the schemes used. For example, a numerical
solution obtained with a code using the first order accurate upwind difference scheme
for convective terms and second order accurate central differences for the diffusive
terms, should have an order of accuracy between 1 and 2.

A global observed p calculated using the procedure explained in the following
section contained within the expected limits of the theoretical p (i.e. observed order
of accuracy equals the theoretical order of accuracy), indicates that the numerical
solution is converging asymptotically observing the assumptions of the Richardson
extrapolation. When this condition is satisfied, the corresponding GCT is expected
to be reliable.

5.3 Post-processing tool for the evaluation of the
discretization errors

The goal of a tool for the evaluation of the discretization error of a numerical solution
is to provide a good estimation of the magnitude of the error. If a grid independent
solution is available, this error can be easily calculated. Even for those more extended
benchmark problems generally only grid-independent global values are available, such
as the average Nu or the velocity distribution in a section of a domain. They are
useful for code verification but are still limited for a detailed error evaluation. In
fact, in most practical problems the grid independent solution is not available, and it
is usually far beyond the available solutions in terms of computational requirements.
Therefore, a post-processing tool must deal with concepts such as error estimators
and extrapolations, and must also give criteria about the certainty of these estimators
and extrapolations as well.

The tool here described is based on the mathematical concepts given in the previ-
ous section. This tool not only calculates an error band where the grid-independent
solution is expected to be contained, but also the order of accuracy of the numerical
solution (observed p). Both local and global estimators are given. When analyzing a
problem, local estimators give a detailed information to the CFD code users in order
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to know where the convergence problems occurs, to find out where more refinement
is necessary or to find bugs in the code. However, when reporting the results they
seem to give too much information. In this case, global estimators are more useful.

The post-processing procedure is described in the following subsection step by
step. All these steps have to be carried out for all the dependent variables of the
problem obtaining for each of them a global observed p and GCI, local values p(x)
and GCI(x), and a measurement of the deviation of the local values from the global
values.

Step 1: Interpolation at the post-processing grid. The discretized solution
of three consecutive refinement levels of a h-refinement study with a constant refine-
ment ratio r (fine grid solution ¢;(x), middle grid solution ¢2(x), and coarse grid
solution ¢3(x)), are interpolated at the main nodes of the grid where the estimators
are calculated (the post-processing grid). This aspect is specially relevant when the
numerical solution has been obtained on non-staggered grids. Typically, this mesh
could be the coarsest one (grid 3). So as not to introduce additional uncertainties in
the post processed numerical solution, third order accurate Lagrangian interpolations
are used. Second order interpolations could introduce additional inaccuracies in the
numerical solutions obtained with high order schemes such as SMART or QUICK.
Grids finer than the coarsest are also not recommended because the extrapolations
required in this situation could also introduce additional inaccuracies.

Step 2: Classification of the calculation nodes. All the calculation nodes
of the post processing grid are classified into Richardson nodes, converged nodes and
oscillatory nodes according to the conditions described in Eq. (5.7). The percentage
of each type of calculation node is computed. Boundary nodes and the nodes with
fixed ¢ value (blocked-off nodes), are not considered as calculation nodes.

Step 3: Calculation of the local observed p. The local observed order of
accuracy p(x) is calculated at all the Richardson nodes of the post-processing grid
using Eq. (5.4).

Step 4: Calculation of the global observed p. The global observed order of
accuracy is estimated by means of the average of the local order of accuracy at the
Richardson nodes. The standard deviation of the local values from the mean values is
also calculated. The standard deviation of p(x) from the global p can be considered
as a measure of how close the solutions are to the asymptotic range, and, therefore,
of the credibility of the estimates obtained from the post-processing procedure.

Step 5: Calculation of the local GCI. The local Grid Convergence Index
GCI(x) of the fine mesh is calculated at all the Richardson nodes and converged
nodes. At the Richardson nodes GCI(x) is calculated by means of Eq. (5.6) using
Fs = 1.25 and assuming the order of accuracy p(x) in Eq. (5.6) to be equal to the
global observed p calculated in Step 4. At the converged nodes the GCI(x) is assumed
to be 0.
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Step 6: Calculation of the global GCI. The local GCI weighted by the
fraction of volume (between each control volume and the overall volume occupied by
all the Richardson nodes and converged nodes) is calculated. The volume weighted
average value is taken as the estimator of the global GCI. The standard deviation of
the local volume weighted GCI(x) is also calculated. If the global GCT is calculated
from the statistical moments of the distribution of the local GCIs without weighting
them by the fraction of volume, when post-processing locally refined grids unexpected
high values of the global GCI are obtained because the local refinement usually
coincide with those zones where the discretization error (and thus the GCT) is higher.
In these cases, the global GCIs corresponding to different meshes cannot be directly
compared. Another way to avoid this problem is to use a uniform post processing
grid instead of using the coarse grid of the studied set of solution, which in practical
problems may be refined in some zones.

5.4 Tested cases

The cases presented in this section have been chosen so as to show the capability of the
post-processing tool described in this paper for the evaluation of the computational
error of different kind of flows, using different grids and different numerical schemes.
All of them have been solved with a h-refinement criterion using four, five or six
different refinement levels with a refinement ratio r = 2 (doubling the mesh). Each
refinement level is referenced by means of the parameter n which is properly defined
for each case. The values of some governing parameters are pointed out: reference
values of the dependent variables for the normalization of the results, main features of
the mesh and numerical schemes used. More details about the numerical procedure,
solvers, boundary conditions and so on have been left out in this work. They can be
found in the references.

5.4.1 Case A: Cavity with moving top wall

Laminar forced flow inside a cavity whose top side moves with a uniform velocity in
its own plane in the x direction. The main parameters describing the test case are:
Re = 102 and Re = 103; reference velocity=top wall velocity; reference length =
wall length (L). Several variants have been computed: two-dimensional flows with
side walls inclined at an angle 6 with respect to the vertical, see Fig. 5.1a, and three-
dimensional flow in a cubic cavity, see Fig. 5.1b. The cavity is discretized with a
uniform mesh of n*n control volumes on five levels (n = 10, 20, 40,80 and 160) in the
two-dimensional variants, see Fig. 5.1a, and with a uniform mesh of n % n * n control
volumes on four levels (n = 10,20,40 and 80) in the three-dimensional variant, see
Fig. 5.1b. Diffusive terms are modeled by means of second order central differences
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Figure 5.1: Case A: Cavity with moving top wall. (a) Two-dimensional case. (b)
Three-dimensional case.

while both the first order accurate UDS scheme (upwind) or the high order accurate
SMART scheme are used for the convective terms. For more details see [11][12].

5.4.2 Case B: Axisymmetric turbulent flow through a com-
pressor valve

Modeling of an axisymmetric turbulent flow through an idealized discharge compressor
valve by means of low-Reynolds number k& — € turbulence models. The main param-
eters describing the test case are: Re = 10%; reference velocity=average velocity
at the entrance (vin); reference length=inlet diameter (d); valve lift = (s/d);
reference k = 0.5v;,%; and reference € = (d/s)v;,®/d. The idealized physical do-
main is described in Fig. 5.2a. It is divided in zones with different number of nodes
and with a concentrated grid where necessary (i.e. in the boundary layer close to the
solid walls of the inlet port and the radial diffuser), see Fig. 5.2b. A concentration
tanh-like function with a concentration factor of 1 has been adopted. Roman num-
bers from I to XII label the zones. The side of the zones with grid concentration are
indicated by a solid triangle, and the number of nodes corresponding to each zone
are indicated in terms of the grid parameter n (e.g. when n = 10, 40 % 40, 40 % 10
and 20 % 10 control volumes are used in the zones I, IIT and IV respectively). The
h-refinement study is performed with five levels of refinement (n = 5,10, 20,40 and
80). The post-processing study has been carried out in the zones of interest: the
inlet valve port zone and the radial diffuser (zones I, III and IV in Fig. 5.2b). The
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Figure 5.2: Case B: Axisymmetric turbulent flow through a compressor valve.
(a) Idealized valve geometry. (b) Mesh and computational domain.

diffusive terms are modeled by means of central differences, the convective terms of
the momentum equations with SMART scheme and the convective terms of the ad-
ditional convection-diffusion equations for the turbulence modeling (k — ¢) with the
Power-Law scheme. See [6][13] for details.

5.4.3 Case C: Premixed methane/air laminar flat flame on a
perforated burner

A methane-air homogeneous mixture flows through a drilled burner plate to an open
domain. The main parameters describing the test case are: mass flow rate =
0.05925g/cm?s; inlet temperature=298.2K; stoichiometric mixture; reference veloc-
ity=mean inlet velocity; re ference temperature = inlet temperature; and re ference
mass fractions=ten per cent the mass fractions of the stoichiometric combustion.
The burner plate forms a regular pattern of small drilled holes. This plate may be
viewed as an ensemble of tiny premixed Bunsen-like burners of a diameter d ordered
in a regular honeycomb structure with pitch p. Choosing a small enough diameter
and a small enough pitch, the three-dimensional behaviour of the flame is reduced
notably adopting a global flat structure disturbed only at the edges of the burner rim
and in the vicinity of the drilled holes. Neglecting the effects of the burner rim, the
combustion phenomena can be modeled adopting a two-dimensional computational
domain enclosed within two symmetry planes, as shown in Fig. 5.3a, accounting for
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Figure 5.3: Case C: Premixed methane/air laminar flat flame on a perforated
burner. (a) Idealized geometry. (b) Mesh and computational domain.

a half burner hole and the corresponding part of the open domain above the burner
(L =04 cm, d =0.03 cm and p = 0.045 cm). The computational domain is divided
in zones with different number of nodes and with a concentrated grid where necessary
(i.e. near the burner walls and at the flame front) by means of a tanh-like function.
The number of grid nodes in each direction and zones is schematically described in
Fig. 5.3b. Roman numbers from I to X label the zones. The side of the zones with grid
concentration are indicated by a solid triangle, and the number of nodes correspond-
ing to each zone are indicated in terms of the grid parameter n. The h-refinement
study is performed with seven levels of refinement (n = 5,10, 20, 40, 80, 160 and 320).
This means that when n = 360, the domain is discretized with 332.800 control vol-
umes. The post-processing study has been carried out in the zones of interest: flame
front (zones III, V, VI, VII and VIII in Fig. 5.3b). The diffusive terms are modeled
by means of central differences and both UDS or SMART scheme are used for the
convective terms. For details see [6][14][15].
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Figure 5.4: Case D: Heat transfer from an isothermal cylinder enclosed by a
square duct. Mesh and computational domain.

5.4.4 Case D: Heat transfer from an isothermal cylinder en-
closed by a square duct

Heat transfer from a cylinder whose wall is maintained at a constant temperature and
is enclosed by an isothermal square duct. The main parameters describing the test
case are: Ra = 10% Pr = 10; reference length=square duct side (L); reference
temperature = reference dif ference of temperature = cylinder temperature —
square duct temperature (AT); reference velocity = \/gBATL. Details about the
geometry and mesh are given in Fig. 5.4. The domain is divided in three different
zones. The number of nodes corresponding to each zone is indicated in terms of the
grid parameter n. A solid triangle in Fig. 5.4 indicates the zones where the grid has
been concentrated by means of a tanh-like function. The domain is discretized using
body fitted coordinates with non-staggered grids on five levels of refinement (n =
2,4,8,16 and 32). The diffusive terms are modeled by means of central differences,
while both UDS or SMART schemes are used for the convective terms. See [6][11][12]
for details.
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5.5 Results

5.5.1 Description

Calculation of the “exact” computational error.

In order to point out the certainty of the estimators obtained from the post-
processing tool, the “exact” computational error has been estimated. To do so, the
most accurate solution of each problem (finest mesh with the higher order numerical
scheme) has been considered the “exact” solution, ¢g(x). For each solution 4 in the
h-refinement, the absolute discretization error ep(x) has been estimated at all the
computational nodes of the post-processing grid by means of Eq. (5.1), and finally
a global discretization error (ep) and the standard deviation of the local values have
been calculated. The interpolation of the “exact” solution and the solution ¢ at the
nodes of the post-processing grid has been performed as indicated in Step 1 of section
5.3, and the global discretization error has been obtained from the local discretization
error following the same procedure used for the GC1I, see Step 6 of section 5.3 .

Description of the tables of global estimators. For each set of three consec-
utive meshes on the h-refinement represented by the grid parameter n, the following
values are indicated: the percentage of Richardson nodes (Rn), the observed global
p, the standard deviation of the local observed p(x) from the global value, the global
GCI and the global “exact” absolute discretization error ep. The upper-index * in
the GCI and ep indicates that they have been normalized using the reference val-
ues given in section 5.4 for each of the tested cases (i.e. GCI* = GCI/¢res and
ep =ep/Pref).

Other data also obtained from the post-processing tool and that have not been
included in the tables of global estimators are the percentage of converged nodes
and oscillatory nodes, and the standard deviation of the local values of GCI and ep
from the global values. For all the post-processing results presented in this work, the
percentage of converged nodes was always 0. Therefore, all those nodes that did not
accomplish the condition of Richardson node, Eq. (5.7), were oscillatory nodes. On
the other hand, observed deviations of the GCT and ep in all the cases were of similar
magnitude and tended to vanish with the mesh refinement.

For example, table 5.3 shows the global estimators of the three-dimensional driven
cavity with moving top wall (case A). As four refinement levels are used in this case,
two sets of solutions can be analyzed. For the set of solutions involving the grids
n = 20, n = 40 and n = 80 and the numerical scheme UDS, when evaluating the
x — velocity, 90% of Richardson nodes have been detected. (i.e. 10% of oscillatory
nodes). The global order of accuracy of the finest solution of this set (n = 80) is 1.2
with a standard deviation of 1.2. The global GCI has a good coincidence with the
“exact” absolute error ep, beeing 0.32 and 0.22 percent of the x — velocity reference
value respectively. As the most accurate solution is used as “exact” solution for the
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estimation of e7,, the e}, of these solutions is equal to 0. The cells corresponding to
these situations are indicated with a dash (i.e. the set of grids n = 20, n = 40 and
n = 80 using the SMART scheme).

5.5.2 Discussion about the tested cases

Case A is a laminar forced flow mainly dominated by internal forces in the inner
regions, and the tangential forces at the boundaries. There are no additional source
terms that make the convergence with the grid spacing difficult. When solving the
Reynolds number Re = 102, both for the two-dimensional variants (considering two
different inclination angles #) and the three-dimensional variant, even the most coarse
meshes seem to belong to the asymptotic range where the generalized Richardson
extrapolation can be applied. Therefore, the calculated estimators are expected to
be reliable. The global estimators obtained from the post-processing tool are given
in tables 5.1 to 5.3.

The results of the variants corresponding to Re = 102 are given in table 5.1
(two-dimensional flow) and table 5.3 (three-dimensional flow). Specially for the finest
meshes, a high percentage of Richardson nodes are computed. The use of the SMART
scheme generally increases the number of nodes that converge in an oscillatory manner
with the mesh, reducing the number of Richardson nodes. As the flow is dominated
by the inertial forces (convective terms), the observed order of accuracy tends to be
the one corresponding to the formal order of accuracy of the numerical scheme used
for the convective terms (1 in case of UDS, and approximately between 2 and 3 for
SMART). The €%, are pretty well estimated by GCT*. The biggest discrepancies are
found for the coarsest set of meshes when using the SMART scheme, coinciding with
the set of meshes with a lower number of Richardson nodes.

More discrepancies are observed in the variants with Re = 103 (see table 5.2).
With the uniform meshes used, the low-accurate UDS scheme is inappropriate for
the case with # = 0. The observed order of accuracies are significatively lower than
the theoretical value of 1 corresponding to this scheme, and they only take values
closer to 1 for the finest set of meshes. When using the SMART scheme, observed
order of accuracy only differs from the theoretical value for the coarsest set of meshes.
The discrepancies between the observed and theoretical values of p for the coarsest
meshes indicate that the corresponding estimators of the computational errors are not
very reliable. In fact, when comparing the “exact” error to the estimated absolute
computational error, differences are observed for the coarsest meshes, which tend to
vanish for the higher levels of refinement.

Case B, see table 5.4, is a complex turbulent flow impinging a wall with recir-
culation zones and zones with a high level of turbulence. Therefore, the results with
the coarsest meshes may not be contained in the asymptotic range of convergence. In
spite of that, the observed order of accuracy has acceptable values even for the coarse
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UDS
x-velocity y-velocity
grid 0 Rn p Op(x) GCT* eh Rn P Op(a) GCT* eh
ng/n2/n1 [deg] [%] [%] [%] (%] [%] [%]
10/20/40 66 1.0 2.4 1.5 .88 7 1.2 1.5 .96 .81
20/40/80 0 89 1.1 1.3 .57 .43 88 1.2 1.3 47 .39
40/80/160 96 1.1 0.9 .26 .21 96 1.1 0.8 .22 .18
10/20/40 75 1.5 1.4 .76 .52 68 2.0 2.4 .23 .40
20/40/80 60 84 1.5 1.4 .25 .22 84 2.0 1.9 .09 .18
40/80/160 93 1.4 1.0 12 .08 90 1.5 1.4 .07 .07
SMART
x-velocity y-velocity

grid 0 Rn D Op() GCI* ep Rn D Op(a) GCI* ep
nz/n2/n1  [deg] (%] [%] [%] (%] [%] [%]
10/20/40 66 1.4 1.9 .76 .21 7 1.6 1.8 .40 .21
20/40/80 0 82 2.4 1.6 .07 .05 83 2.4 1.3 .05 .05

40/80/160 88 2.1 1.4 .02 - 88 2.2 1.4 .02 -
10/20/40 71 1.6 1.7 .64 27 62 2.1 2.0 .19 .09
20/40/80 60 84 2.0 1.4 11 .07 82 2.5 1.6 .04 .04

40/80/160 93 1.9 0.8 .03 - 92 2.1 1.0 .02 -

Table 5.1: Case A: Square cavity with moving top wall, Re=100. Post-processing
results. Numerical scheme: UDS and SMART for convective terms and central
differences for diffusive terms. (For table description see section 5.5.1).
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UDS
x-velocity y-velocity

grid 0 Rn p Opzy GCI™ ep Rn p Opz) GCIT eh
ng/n2/n1 [deg] (%] (%] (%] (%] (%] (%]
10/20/40 84 0.2 1.5 20. 5.3 85 -0.1 1.5 42. 5.4
20/40/80 0 78 0.2 1.5 26. 3.4 91 0.3 1.1 12. 3.3
40/80/160 86 0.7 1.2 3.1 2.0 92 0.8 1.1 2.7 1.9
10/20/40 72 1.6 1.8 1.3 2.4 72 1.8 1.5 .35 1.1
20/40/80 60 82 1.0 1.6 1.6 1.4 80 1.0 1.9 .56 .67
40/80/160 90 1.1 1.3 71 .78 89 1.1 1.4 .32 .39

SMART
x-velocity y-velocity

grid 0 Rn P Op() GCTI* eh Rn D Op(a) GCI* ep
ng/nz/n1_ [deg] (%] (%] (%] (%] (%] (%]
10/20/40 81 0.9 1.1 3.5 1.3 80 0.4 1.9 11. 1.4
20/40/80 0 66 1.6 1.8 .70 .29 74 1.5 1.8 71 31
40/80/160 93 1.9 1.0 .14 - 96 1.9 0.7 .14 -
10/20/40 65 2.1 1.8 .69 .45 55 1.6 2.2 .45 .30
20/40/80 60 75 2.1 1.9 .18 .10 78 2.0 1.7 .09 .07
40/80,/160 78 1.9 16 .06 - 82 22 15 .02 -

Table 5.2: Case A: Square cavity with moving top wall, Re=1000. Post-

processing results.

Numerical scheme:

UDS and SMART for convective terms
and central differences for diffusive terms. (For table description see section 5.5.1).
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UDS
x-velocity y-velocity
grid Rn P Op(a) GCTI* eh Rn 13 Op() GCTI* eh
ng/n2/m [%] [%] [%] [%] (%] [%]
10/20/40 85 1.3 1.3 .58 .49 84 0.9 1.1 1.3 .48
20/40/80 90 1.2 1.2 .32 .22 91 1.1 1.1 .37 .20
z-velocity
grid Rn P Op(a) GCTI* eh
n3/na/n1 [%] [%] [%]
10/20,/40 84 07 13 27 12
20/40/80 91 08 1.0 11 .06
SMART
x-velocity y-velocity
grid Rn P Op(a) GCTI* eh Rn 13 Op(a) GCTI* eh
ng/n2/m [%] [%] [%] [%] (%] [%]
10/20/40 68 1.7 2.3 .30 .14 70 1.3 1.9 .63 .14
20/40/80 90 1.9 1.2 .07 - 87 2.0 1.2 .08 -
z-velocity
grid Rn D Op(a) GCOrI* ep
n3/na/n1 [%] [%] [%]
10/20/40 7 1.2 1.8 .08 .02
20/40/80 87 1.9 1.3 .01 -

Table 5.3: Case A: Cubic cavity with moving top wall, Re=100. Post-processing

results.

Numerical scheme:

differences for diffusive terms. (For table description see section 5.5.1).

UDS and SMART for convective terms and central
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radial-velocity axial-velocity
grid Rn P Op(a) GCTI* eh Rn P Op() GCTI* eh
n3/n2/n1 [%] [%] [%] [%] (%] [%]
5/10/20 68 0.8 1.7 8.4 1.1 79 1.3 1.7 .72 .57
10/20/40 70 1.4 1.8 .76 31 72 1.3 1.6 .35 .23
20/40/80 85 1.4 1.3 29 . 85 14 1.4 14 .
turbulent kinetic energy (k) dissipation rate of k (¢)
grid Rn D Tp() GCI* ep Rn p Tp() GCI* ep
ng/n2/n1 [%] [%] [%] [%] (%] [%]
5/10/20 88 1.0 1.3 9.7 3.5 84 0.9 1.6 23. 5.8
10/20/40 90 1.1 1.1 3.2 1.0 88 1.0 1.2 5.1 2.0
20/40/80 90 1.2 1.0 .94 - 87 1.3 1.2 1.5 -

Table 5.4: Case B: Axisymmetric turbulent flow through a valve. Post-processing
results. Numerical scheme: central differences for diffusive terms and SMART and
PLDS for the momentum and turbulent quantities convective terms respectively.
(For table description see section 5.5.1).

meshes. Furthermore, the e}, and the GCI* have similar order of magnitude.

Case C involves, apart from the momentum, energy and continuity equations,
the resolution of four additional convection diffusion equations to account for the
mass fraction of the products and reactives of the combustion process. Therefore, the
resulting algebraic equation system to be solved is highly complicated with a strong
coupling between all the variables and with the algebraic coefficients highly dependent
on the dependent variables.

The corresponding global estimators are given in tables 5.5 and 5.6. For all the
situations, even for the most coarse set of solutions, the observed order of accuracy
approximates the expected theoretical value. Most important discrepancies are found
for the coarsest meshes, and for the finest meshes using the SMART schemes (where
a degradation of the observed order of accuracy is detected, tending to 1). However,
even in these cases, the observed order of accuracy approaches the expected p enough,
so as to make the estimator GCI* reliable. In fact, differences between e}, and the
GCI* are quite acceptable for the coarse meshes and tend to vanish for the finest
meshes.

Case D is a two-dimensional heat transfer flow. The global estimators obtained
from the post-processing are given in table 5.7. Reasonable values of observed accu-
racy are obtained and good accordance between the computational error estimator
and the “exact” computational error is observed.

Global estimators like those presented in the previously referenced tables, are quite
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radial-velocity axial-velocity
grid Rn p opy GCI* eph Rn p Op@y GOI™  ep
ns/nz/n1 [%] [%] (%] [%] (%] (%]
5/10/20 82 1.1 1.0 .67 .35 93 1.2 0.9 1.8 3.0
10/20/40 90 1.3 1.0 .18 17 93 0.7 1.1 3.0 1.6
20/40/80 95 1.2 0.8 .09 .08 98 1.0 0.7 1.0 .86
40/80/160 98 1.1 0.5 .05 .04 98 1.0 0.5 .53 44
80/160/320 97 1.0 0.6 .03 .02 98 1.0 0.5 27 .23
CHy O
grid Rn P Op(x) GCT* eh Rn p Tp() GOrI* eph
ns/nz/n1 [%] [%] (%] [%] (%] (%]
5/10/20 100 0.7 0.8 11. 6.1 100 0.6 0.7 1.2 6.0
10/20/40 98 0.8 0.6 5.4 3.2 100 0.9 0.4 4.4 3.1
20/40/80 99 0.9 0.3 2.2 1.6 100 0.9 0.4 2.3 1.6
40/80/160 100 1.0 0.1 1.1 .84 99 1.0 0.2 1.0 .82
80/160/320 100 1.0 0.1 .53 42 100 1.0 0.1 .55 42
CO2 H,O
grid Rn P Op(x) GCT* eh Rn D Tp() GOrI* ep
ng/n2/n1 [%] (%] (%] [%] (%] (%]
5/10/20 93 0.4 0.7 17. 5.7 96 0.6 0.6 13. 6.5
10/20/40 95 0.8 0.3 4.6 3.0 99 0.9 0.4 4.4 3.4
20/40/80 100 0.9 0.3 2.0 1.5 100 1.0 0.3 2.1 1.7
40/80/160 100 0.9 0.2 .99 .79 100 1.0 0.2 1.1 .88
80/160/320 100 1.0 0.1 .51 .40 100 1.0 0.1 .55 44
temperature
grid Rn D Op() GCI* eh
n3/na/n1 [%] [%] (%]
5/10/20 93 0.7 0.6 6.7 4.4
10/20/40 100 0.8 0.2 3.7 2.3
20/40/80 100 0.9 0.1 1.6 1.2
40/80/160 100 1.0 0.2 7 .61
80/160/320 100 1.0 0.1 .37 .31

Table 5.5: Case C: Premixed methane/air laminar flat flame on a perforated
burner. Post-processing results. Numerical scheme: UDS for convective terms and
central differences for diffusive terms. (For table description see section 5.5.1).
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Results
radial-velocity axial-velocity
grid Rn p opy GCI* eph Rn p opy GCI™ eph
ng/n2/n [%] [%] (%] (%] [%] [%]
5/10/20 75 1.8 1.4 27 .14 70 2.0 2.3 .78 .65
10/20/40 81 2.2 1.5 .05 .06 82 1.7 1.3 .34 .20
20/40/80 58 1.1 2.0 .06 .03 93 1.4 0.9 .11 06
40/80/160 89 0.7 1.1 .04 .01 97 1.6 0.6 .03 .02
80/160/320 98 0.8 0.6 .01 - 95 1.4 0.9 .01 -
CHy O3
grid Rn P Op(x) GCT* eph Rn P Op(x) GCT* eh
ng/n2/n [%] [%] (%] (%] [%] [%]
5/10/20 44 1.8 2.4 91 .46 44 1.6 2.5 .95 .45
10/20/40 91 2.0 1.0 .15 13 94 1.8 1.1 .18 13
20/40/80 87 1.8 1.2 .05 .04 90 1.7 1.2 .05 .05
40/80/160 91 1.5 1.0 .02 .01 93 1.6 1.1 .02 .01
80/160/320 93 1.3 1.0 .01 - 91 1.4 1.2 .01 -
CO2 H,O
grid Rn P Op(x) GCT* eh Rn P Op(x) GCT* eh
ng/n2/n1 [%] (%] [%] (%] [%] [%]
5/10/20 49 0.8 2.4 2.4 47 39 2.7 1.9 .43 .46
10/20/40 95 1.9 0.9 .16 .14 92 1.9 0.7 .18 .13
20/40/80 93 1.9 1.1 .05 .05 87 1.8 1.2 .05 .04
40/80/160 90 1.8 1.1 .02 .02 90 1.5 1.1 .02 .01
80/160/320 83 1.1 1.1 .02 - 93 1.2 1.0 .01 -
temperature
grid Rn D Op() GCI* eh
n3/na/n1 [%] [%] (%]
5/10/20 77 08 13 1.9 .40
10/20/40 85 1.8 0.9 17 .13
20/40/80 90 1.8 1.2 05 .04
40/80/160 87 15 1.1 02 .01
80/160,/320 92 12 08 .01 .

Table 5.6: Case C: Premixed methane/air laminar flat flame on a perforated
burner. Post-processing results. Numerical scheme: SMART for convective terms
and central differences for diffusive terms. (For table description see section 5.5.1).
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UDS
x-velocity y-velocity
grid Rn p Op(a) GCOrI* ep Rn p Op(a) GCOrI* ep
n3/n2/n1 (%] [%] [%] [%] (%] [%]
2/4/8 77 25 23 .05 .06 70 1.6 1.5 17 .09
4/8/16 7 1.8 1.7 .02 .03 80 1.2 1.4 .06 .05
8/16/32 68 1.3 1.6 .01 .01 77 1.2 1.4 .02 .02
temperature
grid Rn P Op(a) GCTI* eh
n3/na/ni [%] [%] [%]
2/4/8 85 1.2 1.5 1.2 1.0
4/8/16 85 1.2 1.1 48 .58
8/16/32 84 0.9 0.7 A1 .30
SMART
x-velocity y-velocity
grid Rn P Op(a) GCTI* eh Rn 13 Op(a) GCTI* eh
n3/n2/n1 [%] [%] [%] [%] (%] [%]
2/4/8 73 21 26 .10 .05 64 1.9 1.9 13 .05
4/8/16 76 2.3 1.9 .02 .01 71 2.0 1.6 .02 .01
8/16/32 80 1.9 1.2 .01 - 80 1.8 1.2 .01 -
temperature
grid Rn D Op(a) GCOrI* ep
n3/na/n1 [%] [%] [%]
2/4/8 41 23 20 A1 .26
4/8/16 65 1.4 1.7 18 .10
8/16/32 79 1.7 1.1 .03 -

Table 5.7: Case D: Heat transfer from an isothermal cylinder enclosed by a square
duct. Post-processing results. Numerical scheme: UDS and SMART for convective
terms and central differences for diffusive terms. (For table description see section
5.5.1).
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promising in terms of reporting purposes because they can be reproduced by different
authors, and they can be reported in a compact manner. When these estimators
are obtained from the procedure described in this paper, they arise from a statistical
treatment of local estimators. These estimators made up a large amount of data which
is difficult to be reported. However, this information is very useful for the user of the
computational code, because it makes it possible to find out local source of errors,
such as zones with insufficient mesh concentration or problems with the boundary
conditions.

As an example, the local estimators corresponding to the solution of case D with
the grid n = 32, and the numerical scheme UDS, are shown in Fig. 5.5. For each one
of the dependent variables of the case (x-velocity, y-velocity and temperature), the
isolines, the post-processing grid (n = 8), the Richardson nodes, the estimated order
of accuracy p(x), the estimated normalized local computational error GCT*(x), and
the “exact” normalized local computational error e},(x) are given. In the maps of
local p and local GCT*, the zones corresponding to non-Richardson nodes (all of them
oscillatory nodes) and where the post-processing procedure cannot be performed,
have been blanked. As expected, local observed p at a given point of the domain
can have quite different values from one dependent variable to another, depending on
the local nature of the corresponding physical equation. Furthermore, obviously one
point in the domain may not fulfill the conditions required for the Richardson nodes
when analyzing one of the variables, while being a Richardson node when analyzing
the other dependent variables. On the other hand, it can been observed that the
maps of GOI*(x) predict the corresponding maps of “exact” normalized absolute
computational error quite well. Therefore, these kind of maps are quite useful when
analyzing a new problem to be solved by means of computational techniques, giving
criteria to the code user about how and where the grid has to be intensified so as to
improve the quality of the computational solution.

5.5.3 Further discussion

Results discussed in the previous section show that the estimated discretization error
band obtained from the post-processing procedure reproduces the “exact” absolute
computational error (obtained numerically as indicated in section 5.5.1) quite well
in all the tested problems. All these results give confidence about the certainty of
the estimators. However, the estimated discretization error is compared to a value
(the “exact” computational error) which may not be free from computational error.
Therefore, some doubts about the certainty of the estimators can still remain.

So as to go a step further towards assessing the credibility of the estimator of the
discretization error, in this subsection the post-processed results of the numerical so-
lution of a case with analytical solution will be shown. These results will be compared
to the exact absolute computational error (take note that now the word exact is not
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Figure 5.5: Case D: Heat transfer from an isothermal cylinder enclosed by a
square duct. Post-processing results. Local estimators of the solution with the grid
n = 32 (post-processing grid n = 8) and the numerical scheme UDS.
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Figure 5.6: Case with analytical solution: One dimensional steady state
convection-diffusion process without source term, with constant transport prop-
erties and with Dirichlet boundary conditions. Computational domain: square
domain with an inclination of 45° and discretized by means of a uniform mesh of
n * 1 control volumes.

written within quotation marks because it is obtained from the analytical solution).

The evaluated case consists of the steady state convection-diffusion process of
a variable ¢(z,y) without source term and constant transport properties within a
domain with infinite height (y dimension), a width L (x dimension), and with the
Dirichlet boundary conditions in the z direction ¢(0,y) = ¢9 = 0 and ¢(L,y) =
¢r, = 1, see Fig. 5.6. In such conditions the convection-diffusion equation yields to
a one-dimensional equation (z dependent) with the well known analytical solution
d(x) = (1 —ePeT)/(1 — eP), where Pe is the Peclet number (ratio between the
convective and diffusive coefficients). For more details see [9].

The computational domain is a square domain inclined at an angle of 45° with
respect to the x direction, with one vertex at x = 0 and the opposite vertex at x = L.
Dirichlet boundary conditions have been fixed according to the analytical solution.
A uniform mesh of n * n control volumes is used. Both calculations using the UDS
and SMART schemes for the convective terms have been performed, while central
differences have always been used for the diffusive terms.

Six levels of h-refinement have been solved (n = 10, 20,40, 80, 160 and 320). Re-
sults of the post-processing of these results are given in table 5.8 for two different
Pe numbers and the two numerical schemes used for the convective terms. Other
Pe numbers not presented herewith have also been studied. The Grid Convergence
Index GCT and the exact absolute discretization error e p have been normalized using
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UDS SMART

grid Pe Rn P Op(a) GCTI* eh Rn D Op(a) GCI* en
ng/n2/m (%] [%] (%] (%] (%] [%]
10/20/40 89 1.1 1.1 1.2 1.0 85 1.8 0.9 .48 .32
20/40/80 1 94 1.0 0.8 .69 .52 96 1.8 1.0 12 .09
40/80/160 97 1.0 0.6 .35 .26 99 1.9 0.7 .03 .02
80/160/320 98 1.0 0.5 17 .13 100 1.9 0.5 .01 .01
10/20/40 99 0.8 0.4 17. 12. 83 1.8 1.4 1.8 .80
20/40/80 10 99 0.9 0.3 8.7 6.5 89 1.8 0.6 42 .21
40/80/160 100 0.9 0.2 4.4 3.3 97 1.8 0.7 .09 .05
80/160/320 100 1.0 0.2 2.2 1.7 99 1.9 0.4 .02 .01

Table 5.8: Case with analytical solution: One dimensional steady state
convection-diffusion process without source term, with constant transport proper-
ties and with Dirichlet boundary conditions, Pe = 1 and Pe = 10. Post-processing
results. (For table description see section 5.5.1).

a reference value of A¢ = 0.01(¢r, — ¢o). As it is shown, the GCT has predicted the
exact absolute discretization error for all the studied situations quite well.

5.6 Conclusions

This work addresses the verification process of finite volume numerical solutions. Even
when a code has been previously submitted to a credibility test by comparison with a
set of either previously accepted simulations or experimental data, the credibility of
the results of new problems or situations is not assessed. Therefore, specific credibility
tests must be carried out before the solution can be accepted. The credibility tests
encompass the study of the physical model used to represent the physical phenomena,
the verification of the numerical solution (accuracy of the computational model) and
the validation by comparison to experimental results.

A post-processing tool for the study of the discretization errors (verification pro-
cess) based on the generalized Richardson extrapolation and on the concept of grid
convergence index GCI has been presented. This tool not only estimates an error
band where the grid-independent solution is expected to be contained, but also the
order of accuracy of the numerical solution (observed p). Both local and global es-
timators are computed. While local estimators are a good tool for the code user in
order to improve the quality of the numerical solutions, global error estimators seem
easier to be used and reproduced for different authors in the final reporting of the
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results.

The numerical results of different heat transfer and fluid flow problems involving
different phenomena (laminar flow, turbulent flow and reactive flow), adopting dif-
ferent meshes (Cartesian grids in a staggered arrangement, axisymmetric grids in a
staggered arrangement, and body fitted coordinates in a non-staggered arrangement)
and different numerical schemes have been post processed. The obtained global error
band estimators have been given for all of them. Local absolute error estimators of
one of the post processed results have also been shown. The certainty of the error
band estimators has been checked comparing its value to the ”exact” absolute error of
the numerical solutions always obtaining very reasonable values. The post-processing
results have been discussed in detail in order to give criteria about the credibility
of the numerical solutions. Although the error estimators obtained with the post-
processing procedure here described have been shown to be quite reliable for all the
studied cases, whether these estimators are reliable or not in other kind of flows, will
require further research.
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