Chapter 6

Natural Convection in a
Large Channel with
Asymmetric Radiative
Coupled Isothermal Plates

Main contents of this chapter have been submitted for publication as:

J. Cadafalch, A. Oliva, G. van der Graaf and X. Albets. Natural Convection in a Large
Channel with Asymmetric Radiative Coupled Isothermal Plates. Journal of Heat Transfer,
July 2002.

Abstract. Finite volume numerical computations have been carried out in order to obtain
a correlation for the heat transfer in large air channels made up by an isothermal plate
and an adiabatic plate, considering radiative heat transfer between the plates and different
inclination angles. Numerical results presented are verified by means of a post-processing
tool to estimate their uncertainty due to discretization. A final validation process has been
done by comparing the numerical data to experimental fluid flow and heat transfer data
obtained from an ad-hoc experimental set-up.
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6.1 Introduction

An important effort has already been done by many authors towards to study the nat-
ural convection between parallel plates for electronic equipment ventilation purposes.
In such situations, since channels are short and the driving temperatures are not high,
the flow is usually laminar, and the physical phenomena involved can be studied in
detail both by means of experimental and numerical techniques. Therefore, a large
experience and much information is available [1][2][3]. In fact, in vertical channels
with isothermal or isoflux walls and for laminar flow, the fluid flow and heat trans-
fer can be described by simple equations arisen from the analytical solutions of the
natural convection boundary layer in isolated vertical plates and the fully developed
flow between two vertical plates.

Ventilation channels with larger dimensions are frequently encountered in other
applications such as solar energy (ventilated facades). These channels involve more
complex physical phenomena as radiative heat transfer between the walls of the chan-
nel, turbulent flow, and inclination respect to the gravity direction. Although the
equations developed for simpler situations in some cases could lead to reasonable pre-
dictions of the behavior of these channels, work is still required so as to have more
reliable expressions.

The work here presented is addressed to obtain equations for the heat transfer in
large air channels with asymmetric radiative coupled isothermal plates and consid-
ering different inclinations. Correlations of the Nusselt number are obtained from a
parametric study carried out by means of high level Computational Fluid Dynamics
(CFD) calculations based on finite-volume techniques. The numerical solutions are
verified using a post-processing tool based on the Richardson extrapolation theory
and on the Grid Convergence Index (GCI) that estimates their uncertainty due to
discretization [4][5]. Furthermore, in order to know how far the numerical model is
from the reality, results of the numerical model are validated by comparison to ex-
perimental fluid flow and heat transfer data obtained from an ad-hoc experimental
set-up.

6.2 Description of the studied problem

A schematic of the problem under study is shown in Fig. 6.1a. It consists of a
large air channel (Pr = 0.71) that can be positioned vertically or inclined, with an
isothermal wall and an adiabatic wall (respectively upper and lower walls when the
channel is inclined). The channel length L varies from L =1 m to L = 2 m and the
inter-plate spacing b can vary from b = 0.01 m to b = 0.04 m leading to aspect ratios
from L/b = 25 to L/b = 200. The inclination of the channel is referenced by the
angle 6 and varies from 6 = 0° (vertical channel) to § = 60°. Radiative heat transfer
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Figure 6.1: (a) Schematic of the studied problem. (b) Mesh and computational
domain used in the numerical simulations. The mesh is expressed in terms of the
parameter 1. The solid triangles indicate that the mesh has been concentrated near
the walls.

between the two walls is considered. Both plates have the same emissivity e that can
have a value from e = 0 corresponding to non-radiating surfaces (white surfaces) to
e = 1 (black surfaces). The isothermal plate temperature, T,,, reaches values from
Ty =T, +25°C to T, = T, + 125°C, where T, is the ambient temperature.

In the limiting case with non radiating plates (¢ = 0), heat transfer is only due to
convection at the isothermal plate. In other cases, heat transfer to the air is also due
to the heat radiation from the isothermal plate to the adiabatic plate which, in his
turn, transfers the radiating energy to the surrounding air by convection.

The global Nusselt number accounting for the natural convection in channels with
isothermal walls is typically defined in terms of the inter-plate spacing b as follows

Nub{ /4 ]”

(Tw - Ta) X (61)

where A is the air thermal conductivity, ) is the total rate of heat transfer from the
plates to the air and A is the surface of the heat source. In the case under study A
represents the surface of the isothermal plate.
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Transition from laminar to turbulent flow in natural convection vertical boundary
layers is typically assumed at Gr; = Rar/Pr = [gB8(T, — T,)L3/v?] = 10°, where
Gr is the Grashof number, the subindex L means that the channel length is used
as geometrical parameter, g is the gravitational acceleration, and § and v are the
volumetric coefficient of thermal expansion and the kinematic viscosity of the air
at the film temperature (Ty, + T,)/2. Transition from laminar to turbulent flow in
channels, though, is expected to occur at higher values of Gry due to the merging
effect of the two boundary layers. Most situations under study in this work have
a Gry, number in the order of 10'°. Therefore the assumption of laminar flow may
apply. In fact, some numerical experiments not presented here have been carried out
using two equations turbulent models as those used in [6] . The results showed that
these turbulent models did not predict turbulence within the channel.

6.3 Mathematical model

6.3.1 Governing equations

The fluid flow and heat transfer within the channel is assumed to be governed by
the two-dimensional Navier-Stokes equations together with the energy equation with
the following restrictions: steady state, laminar flow, constant physical properties,
density variations are relevant only in the buoyancy terms of the momentum equa-
tions (Boussinesq approximation), fluid Newtonian behavior, negligible heat friction
and influence of pressure on temperature, non-participant radiating medium. The
corresponding set of differential equations may be written:
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where (z,y) are the coordinates in the Cartesian-coordinate system -y indicated
in Fig. 6.1a; T is the temperature; T, the reference temperature; py the dynamic
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pressure; (u,v) and (g, gy) the velocity and the gravitational acceleration vector
expressed in the reference system z-y, and the physical properties of the air p, i, 5, A
and ¢, are respectively: the density, the dynamic viscosity, the thermal expansion
coefficient, the thermal conductivity and the specific heat at constant pressure, which
are assumed constant (Pr = 0.71).

6.3.2 Boundary conditions

The temperature of the isothermal plate (upper plate) is T,,. On the other hand, the
temperature at the coordinate x of the adiabatic plate, results from a surface heat
balance considering that the net radiative heat incoming the plate equals the heat
transfered from the plate to the surrounding air:

€

. 6U(T;j - T = A= (6.6)

(z,y=0)

where o is the Stefan-Boltzmann constant and A is the thermal conductivity of the
air. In this heat balance, the radiative heat transfer between the plates (left term
of the equality) is modeled assuming non-participating media, infinite surfaces, and
grey-diffuse plate surfaces with the identic emissivity value e.

The boundary conditions to be assumed at the inlet and outlet are rather more
complicated because an inappropriate formulation of these boundary conditions may
lead to a fluid flow and heat transfer very different from that under study. Typical
assumptions adopted for free convective flow through channels are here adopted, see
[2]. The air is assumed to enter at the channel from the surroundings with a tempera-
ture equal to T, (ambient temperature) and with an adiabatic and reversible process,
so that dynamic pressure energy at the surrounding air (which is 0) is converted to
kinematic energy (i.e. to %pvQ, where v is the module of the velocity vector) and
dynamic pressure energy at the inlet:

1
T|(Z:L,y) =T, 0= 5pv2 + pg (6.7)
(z=L.y)
At the outlet the temperature is assumed to remain constant in the z direction and
all the kinematic energy of the air is assumed to be converted to heat, resulting into
an outlet dynamic pressure equal to the surrounding air dynamic pressure, i.e. equal
to O:

or

o =0 Paly_g, =0 (6.8)

(z=0,y)
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6.3.3 Governing numbers

A non-dimensionalisation of the governing equations and of the boundary conditions
shows that Nu, depends on the Rayleigh number, the aspect ratio, the inclination, the
plates thermal emissivity and on two radiation numbers, Pl and R, that arise from the
adiabatic wall boundary condition when radiative heat transfer is considered. Thus:

Nuy = Nup(Rap, b/ L, cost, €, P, R) (6.9)

where the Rayleigh number in terms of the geometrical parameter b is defined as
Ray = [gB(Ty — Ta)b3/v?|Pr. The radiation numbers are the Planck number Pl =
A boT2 and R = (T, — T,)/T,, where o is the Stefan-Boltzmann constant and A is
the air thermal conductivity at the film temperature.

6.4 Numerical model

The set of coupled partial differential equations and the boundary conditions de-
scribed in section 6.3 are converted to algebraic equations by means of finite-volume
techniques using rectangular meshes on a staggered arrangement. Diffusive terms at
the boundaries of the control volumes are evaluated by means of second order central
differences, while the convective terms are approximated by means of the high order
SMART scheme [7], which theoretical order of accuracy is between 1 and 3. A special
treatment of the inlet and outlet pressure boundary conditions has been implemented
according to [8].

The domain where the computations are performed and a schematic of the mesh
adopted is shown in Fig. 6.1b. The mesh is represented by the parameter n. Accord-
ing to Fig. 6.1b, 6n * n control volumes are used (for example, when n = 40 it means
that the problem is solved on 240 * 40 control volumes). The mesh is intensified near
the two plates using a tanh-like function with a concentration factor of 1, see [6], so
as to properly solve the boundary layer. This aspect is indicated in the figure with
two solid triangles.

The resulting algebraic equation system has been solved using a pressure based
SIMPLE-like algorithm [9][10], and the iterative convergence procedure has been trun-
cated once relative increments of the computed Nusselt (equation 6.1) in the last 50
iterations were below 0.005 per cent.

6.4.1 Verification of the numerical model

Numerical solutions here presented have been calculated adopting a h-refinement cri-
teria. That is, all the numerical parameters are fixed (numerical scheme, numerical
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case b L 0 Tw — Ta € (b/L)Raycosb
[m]  [m]  [deg] [°C] -] -]
a 0.01  1.00 30 25 0.25 2.0-10%
b 0.02  1.50 15 50 0.25 4.8-102
0.03 1.75 45 75 0.50 2.3-10%
d 0.04  2.00 0 125 1.00 1.5-10*

Table 6.1: Parameters of the cases used for detailed verification purposes: inter-
plate spacing (b), channel length (L), inclination angle (6), isothermal wall tem-
perature (T,), ambient temperature (T, = 300 K) and plates emissivity (€).

boundary conditions, etc.) and the mesh is refined obtaining a set of numerical solu-
tions each one represented by the mesh parameter n. This set of numerical solutions
have been post-processed by means of a tool based on the Richardson extrapola-
tion theory and on the concept of Grid Convergence Index (GCI) [4][5]. When the
numerical solutions are free of bugs, convergence errors and round-off errors, the com-
putational error is only due to the discretization. The tool processes a set of three
consecutive solutions in the h-refinement. The main output is an estimate of the
uncertainty of the numerical solutions due to discretization, the GCI. Other infor-
mation also obtained from the tool, is the order of accuracy of the numerical solution
(apparent or observed order of accuracy) and the percentage of nodes with monotone
convergence with the mesh (Richardson nodes, see [4]). An observed order of accu-
racy approaching the theoretical value (order of accuracy of the numerical schemes
used) and a high percentage of Richardson nodes, indicate that the estimator GCT is
reliable, and that the solution is free of bugs, convergence errors and round-off errors.

So as to show the appropriateness of the numerical parameters adopted in all the
numerical solutions of this work, the results of a detailed verification process will be
here discussed. The numerical parameters to be considered are the grid, the numerical
scheme and the convergence criteria.

In order to obtain the final correlation for the Nusselt number, a parametric study
of the air channel has been carried out involving up to 2500 different computations,
see section. 6.6.1. Data obtained from the post-processing that are presented here,
correspond to four of these computations that are representative of all the others.
They will be hereafter called as case a, case b, case ¢ and case d. Their corresponding
parameters (inter-plate spacing b, channel length L, inclination angle 6, difference
between isothermal wall temperature and the ambient temperature T,, — T, and plates
emissivity €), are presented in Table 6.1.

For each of the four cases, a set of 5 solutions on the h-refinement criteria with
a refinement ratio of 2 (doubling the mesh) have been computed. They correspond
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case a
u v T
grid Rn D GCTI* Rn D GCTI* Rn D GCTI*
n [%] (%] (%] (%] (%] (%]
20 89 1.1 273 87 2.0 .0017 99 1.7 .208
40 97 2.5 .013 91 2.0 .0023 84 3.9 .005
80 96 1.1 .014 89 1.8 .0010 83 1.6 .0120
case b
u v T
grid Rn D GCTI* Rn D GCTI* Rn D GCTI*
n [%] (%] (%] (%] (%] (%]
20 75 1.9 .162 71 2.2 .0013 67 2.2 .070
40 82 0.9 .162 71 1.2 .0036 72 1.2 .068
80 91 1.9 .014 79 1.6 .0015 81 1.8 .010
case ¢
u v T
grid Rn D GCTI* Rn D GCTI* Rn D GCTI*
n [%] (%] (%] (%] (%] (%]
20 78 1.3 .568 43 2.1 .0069 7 1.5 .320
40 84 2.1 .063 43 1.9 .0030 58 2.6 .020
80 88 2.0 .014 76 1.9 .0023 74 2.0 012
case d
u v T
grid Rn D GCITI* Rn D GCTI* Rn D GCTI*
n [%] (%] (%] (%] (%] (%]
20 63 1.6 .350 43 1.4 .0213 73 0.9 1.44
40 51 2.1 .087 48 1.6 .0080 59 2.6 .026
80 67 1.2 .087 50 1.3 .0070 59 1.2 .072

Table 6.2: Results from the post-processing tool: Richardson nodes (Rn), global
observed order of accuracy (p), and global uncertainty due to discretization nor-
malized by the reference values (GCI*). (Note: * means that the GCIs have
been normalized using a reference value of vyer = [LgB(Tw — T,)cosf)/? for the

velocity components and Ty = T, — T, for the temperature).
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Figure 6.2: Verification. (a) Evolution of the Nuy in terms of the mesh parameter
n. (b) Evolution of the Nup during the convergence procedure in terms of the
number of iterations. A spot line indicates that the convergence criteria has already
been overcome.

to n = 5, 10, 20, 40 and 80. The post-processing results are given in Table 6.2
for n = 20, 40 and 80. Presented are the global observed order of accuracy, p, the
percentage of Richardson nodes, Rn, and the global uncertainty due to discretization,
GC1, corresponding to the different dependent variables of the problem u, v and T'.

The percentage of Richardson nodes given in the Table is high for the cases a
and b, but decreases in the cases ¢ and d were the physical phenomena is more
complex. While the two first cases have a value of the (b/L)Raycosf below 5-102, the
corresponding values to the cases ¢ and d are beyond 2-103. On the other hand, most
estimates of the order of accuracy, p, approach the theoretical values of the differential
scheme used (between 1 and 3). However, they do not tend to an asymptotic value
with the mesh. As the GCI is directly calculated from p, GCI increases with the
mesh in some situations where p degenerates with the mesh to values close to 1. This
means that for those cases the calculated uncertainty due to discretization increases
when the mesh is refined! This aspect is in accordance with the practice of the use of
the GCI, which indicates that low values of the observed order of accuracy tend to
overestimate the uncertainty due to discretization. When dealing with a single case,
it may be possible to overcome this problem by just changing the numerical schemes
or the discretization of the domain. Though, as in this work up to 2500 different cases
are studied, it is not practical to find a particular mesh for each of them.

All the numerical solutions used in the previous discussion have been obtained
using the convergence criteria as explained in the beginning of this section 6.4. This
convergence criteria results in a reasonable number of iterations of the convergence
procedure and, therefore, in a reasonable cpu time. However, it apparently is a
non-restrictive convergence criteria. Several computations have been carried out con-
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sidering various situations, including the four cases analyzed in this section, with a
more restrictive convergence criteria. Some small differences have been found in the
estimates obtained from the post-processing. This indicates that the numerical er-
ror of the solutions with the non-restrictive convergence criteria are not totally free
of convergence error. However, the general tendency is that whenever the estimates
obtained from the verification process indicated that the solution was credible, there
were no variations in the value of Nu;, when the convergence criteria was strengthen.

Some of this information is given in Fig. 6.2. The evolution of the Nu, with
the mesh parameter n for the four cases is shown in Fig. 6.2a. Beyond the fourth
level of refinement n = 40 no relevant differences are observed in the Nu,. The
evolution of the Nu; during the iterative process in terms of the number of iterations
is shown in Fig. 6.2b. A continuous line is used which turns into a spot line when
the non-restrictive convergence criteria is reached. As observed, all the spot lines
are horizontal lines, indicating that there are no deviations in the Nu; when the
non-restrictive convergence criteria has been reached.

6.5 Experimental set-up

The experimental set-up consists of a 45° lifted channel built-up by two parallel plates
1600 mm length and 800 mm width with a spacing of 20 mm. A schematic of the
set-up is shown in Fig. 6.3. The channel is closed at its sides by two lids covered
by rock wool on the external side. Two additional adiabatic lids can be mounted
at the inlet and the outlet when required so as to stop the air circulation through
the channel. The lower plate is a single plate insulated from the ambient by rock
wool. The upper plate is made up by eight square modules of 400 * 400 mm?2. Each
module is heated by electrical heaters glued at the upper side. A self-calibrated K-
type thermocouple sensor is placed at its center. Heaters of the two modules placed
at the same height are connected to an AC controlled power supply, forming four
pairs of modules connected to four different power lines. Four glass windows with an
observation area of 20 * 20 mm? are mounted at one side wall at 200, 600, 1000 and
1400 mm from the outlet of the channel in order to to permit the visualization of
the air flow in the channel. The ambient temperature T, (laboratory temperature) is
measured by a self-calibrated Resistance Thermal Device PT-100. Control, regulation
and data acquisition is carried out by a HP acquisition data unit series VXI managed
by a software programmed in HPVEE language.

Measurements of the heat transfer and the velocity field have been performed
in separate experimental campaigns. In the measurements of the heat transfer, the
overall heat loss of the set-up P is measured at some specific isothermal plate tem-
peratures, T,,, and ambient temperatures, T,.

In the fluid flow experiments the velocity field is visualized at a section of the
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Figure 6.3: Schematic of the set up. (a) General view. (b) Detail of the modules
that make up the isothermal plate.

channel parallel to and 200 mm from the side wall with windows at different values
of T, — T,,. To do so, the air is seeded by aerosols of olive oil generated by a so-called
Laskin nozzle. The diameter of the aerosols are in the order of 5 um. The images
of the flow are captured using a Digital Particle Image Velocimetry (DPIV) facility
from LaVision. Main features of the DPIV device used in the fluid flow experiments
are: double-cavity Nd-YAG (2x35 mJ/pulse) laser from Quantel, optics consisting
on one spherical and two cylindrical lenses forming a Galilei telescope to create and
focus a light-sheet, a high sensitive (peltier-element cooled) 12 bit CCD camera with
resolution of 1280 % 1024 pixels and a Nikkor camera lens with focal length of 105
mm.

Details on the experimental procedures adopted for both the heat transfer and
fluid flow measurements are explained in the following two subsections.

6.5.1 Measurement of the heat transfer

With both the channel open and closed, the global heat loss of the set-up, P, has
been measured at different temperatures of the isothermal plate: T,=70, 100, 125
and 150 °C. The global heat loss has been obtained by measuring the power that
has been supplied to the electrical heaters. This has been realized by means of power
transducers with a precision of £[0.5 4+ 0.02P] W. Data have been recorded for a
period of 15 minutes in intervals of 3 seconds when the steady state of the set-up was
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reached.

Measurements of the heat loss with the channel closed have been fitted by a least
squares method to a second order equation in terms of the temperature difference
AT = (T, — Ty). This leaded to a correlation for the experimental set-up heat loss
without heat evacuation through the channel, Q;oss = (a + bAT)AT.

Experimental values of the heat evacuated from the channel, @), have been calcu-
lated by subtracting the corresponding @Q;,ss from the overall measured heat loss P
obtained from the experiments with the channel open. The Nusselt number has been
calculated from @) according to equation (6.1).

6.5.2 Measurement of the fluid flow

Measurements of the velocity field at each window of the channel have been obtained
at two different temperatures of the isothermal plate: T, = 70°C" and T, = 150°C.
Each measurement consists of five series of ten data sets of velocity fields taken at a
sample rate of 8 Hz, making up a total series of 50 data sets of velocity fields. From
the image analyses it turned out that the maximum particle image displacements were
in the order of 9 pixels. Adaptive interrogation areas from 6464 to 32%32 pixels with
a 50% of overlapping have been applied. Effects of in-plane loss of particle pairs have
been minimized by a zero-offsetting of the interrogation areas. Errors of the measured
velocities due to the DPIV device, the data acquisition and the post-processing are
expected to be below +0.03 m/s.

Even if an optimum PIV experiment has been carried out, there is always a
probability of erroneous velocity vectors, usually called outliers. Therefore, a post-
processing of the PIV results is always necessary in order to detect and eliminate as
many erroneous vectors as possible [11]. Outliers have been detected by the median
test performed by a self-written algorithm and substituted by the local mean value
of the nine surrounding velocities.

6.6 Results and discussion

6.6.1 Parametric study

A parametric study has been carried out varying the channel length L, the inter-plate
spacing b, the inclination angle @, the plates thermal emissivity € and the isothermal
wall temperature T, and setting the ambient temperature at T, = 300 K. Values for
each parameters have been fixed within the interval range under study and for equal
sized intervals (see section 6.2). Four different values for b and five different values
for the other parameters have been used. This resulted into a total number of 2500
situations. Numerical results obtained for all the situations have been calculated with
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the level of refinement n = 40, and by using the convergence criteria and numerical
schemes as explained in section 6.4. These numerical parameters are in accordance
to the conclusions of the verification process as discussed in section 6.4. Conclusions
of this verification process were focussed on the analysis of 4 of the 2500 situations
under study. Therefore, there is no guarantee that these numerical parameters may
lead to solutions free of computational errors for all the situations. Thus, so as to
discard all those non-credible numerical solutions, all of them have been submitted to
a verification test. It consisted in two steps. In the first step, the global observed order
of accuracy p, the normalized global grid convergence index GCI* and the percentage
of Richardson nodes Rn have been calculated by means of of the post-processing tool,
see 6.4. In the second step, the solutions have been filtered according to the post-
processing results. The values of acceptance adopted are: p within the interval [1 : 4],
GCTI* below 1% and Rn over 40%. These filtering criteria has been accomplished
by 1842 cases from the 2500. Values of the parameters L, b, 0, € and T\, — T, of
those cases that have not accomplished the criteria were rather random without clear
tendencies. More restrictive filtering leaded to discard those solutions with higher
values of the number (b/L)Rapcosf. This was mainly because the convergence with
the mesh was more difficult and, as a consequence, the number of Richardson nodes
was lower. Differences between the fit of the solutions that passed a more restrictive
filtering and the fit of the solutions finally accepted were not relevant. Therefore, the
given correlation is not expected to be disturbed by wrong-converged solutions.

6.6.2 Heat transfer relation

From the non-dimensionalisation of the governing equations and boundary conditions
as discussed in section 6.3.3, it turns out that Nu;, depends on 6 different governing
numbers: Rap, b/L, cosf, e, P, and R. By using a single group (b/L)Rapcost as
correlating group instead of the three separate groups groups (b/L), Rap and cosf,
the number of correlating numbers is reduced to 4. This is a widely adopted practice
for inclined plates [3]. Furthermore, and after a first evaluation of the data to be
fitted, the influence of the radiating groups (Planck number and R) was shown to be
negligible. Therefore, the set of correlating number has been reduced to 2. Accord-
ingly, data of all the 1842 solutions accomplishing the verification-filtering criteria as
described in section 6.6.1 have been fitted to a heat transfer relation for the Nusselt
number Nuy, in terms of the groups (b/L)Rapcost and e. The resulting relation reads:

L 12
Nuy, = l(%(b/L)Rawos@) + (O.59[(b/L)Rabcosﬁ]1/4[1 + 64/5]4/5) ] (6.10)

The fitting process has been carried out minimizing the average of the relative dif-
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Figure 6.4: Results from the fitting process. (a) Nup in terms of (b/ L) Raycost
and €. Solid lines: heat transfer relation 6.10 for different values of plates emis-
sivity €. Dashed line: relation of Bar-Cohen [1] for symmetric isothermal vertical
plates using the Nup number as defined in equation 6.1. Dots: fitted data. (b)
Relative errors between the fitted data and the heat transfer relation 6.10 in terms

of (b/L)Rapcost

ferences between the data and the fitting relation by means of the Powell method.
Several fitting procedures have been done by fitting a different number of constants.
The final fitting process actually accepted has been done by fixing all the parame-
ters in equation (6.10), except the two exponents that affect only e. Relation (6.10)
has been shown to properly accommodate all the data. The maximum relative error
between the fitted data and the correlation was found below 13% and the average
relative error below 4%.

One outstanding issue is that in case of non-radiating surfaces (¢ = 0), equation
(6.10) exactly coincides with the well-known composite-relation proposed by Bar-
Cohen [1] for laminar natural convection in parallel vertical (cosf = 1) asymmetric
isothermal plates. Bar-Cohen’s relation was based on the analytical solutions for the
two limiting situations of fully developed laminar flow and laminar flow along an
isolated plate and was validated with experimental data obtained in short channels.

The main results of the fitting process are shown in Fig. 6.4. The heat transfer
relation (6.10) for the Nusselt number is presented in Fig. 6.4a in terms of the
parameter (b/L)Rapcost (abscissas) and e (five different lines corresponding to the
values e = 1, 0.75, 0.5, 0.25 and 0).

The composite-relation of Bar-Cohen for laminar natural convection in parallel
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vertical asymmetric plates overlaps the curve for ¢ = 0. On the other hand, the
composite-relation for symmetric isothermal plates (both plates isothermal), also
given by Bar-Cohen, is presented in Fig. 6.4a with a dashed line. This relation
is used here for convenience with the Nusselt number as defined in equation (6.1),
even though this is not the standard definition for symmetric isothermal plates, see
[1].

The limiting situation of fully developed laminar flow (fully developed limit) and
laminar flow along an isolated plate (isolated plate limit) are indicated in the figure
by an arrow. While Nu; in the fully developed limit for symmetric or asymmetric
isothermal plates is identic, in the isolated plate limit Nu of the symmetric isothermal
plates is twice as large than that of the asymmetric isothermal plates.

For (b/L)Rapcosf values larger than 102, the physical phenomena tends towards
the isolated plate limit. For these cases and at a fixed value of (b/L)Rapcos), Nuy,
increases with the e from the value corresponding to asymmetric plates to the value
corresponding to symmetric plates. However, the Nu; of the symmetric plates situ-
ation is never reached. This is explained by the fact that the lower plate is unable
to reach the temperature of the isothermal plate along the entire channel even in
situations using black surfaces (e = 1).

In the situations studied here (b/L)Rapcosf is never below around 5-10°. In spite
of that, the heat transfer relation (6.10) is also consistent in this zone with the results
of Bar-Cohen (fully developed limit). All the computed Nu; presented here tend to
converge to the fully developed limit solution for low values of (b/L)Rapcosf, showing
no dependency of the plate emissivity.

The relative errors between the fitted data and the heat transfer relation (6.10)
are pictured in Fig. 6.4b in terms of (b/L)Rapcosf. Major deviations are observed for
(b/L)Rapcosf values between 5 - 10 and 102. According to Bar-Cohen [1], equation
(6.10) is a composite relation derived from a linear superposition of two known limiting
expressions within which the Nu; varies smoothly (i.e. the fully developed limit and
the isolated plate limit). The zone with major observed relative errors coincides
with the intermediate zone between the two limiting expressions, were such kind
of composite relation has more problems to properly accommodate the data. As
observed, equation (6.10) fits pretty accurately all data (with a maximum relative
error below 8%) if (b/L)Raycosf is larger than 102.

Fitting errors in the intermediate zone could be reduced by a fitting procedure
permitting the variation of the constant that affects the first term of equation (6.10)
together with the two exponents affecting €. The following relation has been obtained:

9 . —1/2
Nub:l(2—29(b/L)Rab0059) +(0.59[(b/L)Rabcose]1/4[1+e4/5]4/5) ] (6.11)
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Nuy,

(b/L)Raycosd e experimental numerical fit (equation 6.10)
3.2+ 102 1 418 (2.6 %)  4.31 (0.5 %) 4.29
5.1-102 1 5.01 (3.3 %) 4.98 (2.7 %) 4.85
6.7 - 102 1 5.52 (6.1 %) 5.40 (3.8 %) 5.20
8.7 102 1 6.09 (9.5 %)  5.86 (5.4 %) 5.56

Table 6.3: Comparison of the Nu; obtained from the experiment, from the
numerical model and from the heat transfer relation 6.10. Relative differences
respect to the value corresponding to the heat transfer relation are indicated within
brackets in %.

The maximum relative fitting errors of this relation are below 9% and the average
relative errors around 2%. However, this relation is not consistent with the solution
of the fully developed limit for low values of (b/L)Rapcosf, as the fitted parameter
2/29 has been applied instead of 1/12 (that arises from the analytical solution of the
fully developed limit).

6.6.3 Validation

As a final step to asses the credibility of the heat transfer relation, the results of a
validation test are presented in this section. The direct comparison of solutions of the
numerical model to the experimental heat transfer and fluid flow data obtained (see
section 6.5) are discussed. Numerical solutions used in this validation test have been
carried out reproducing the experimental conditions.

The numerical and experimental values of the Nusselt numbers are given in Table
6.3 together with the corresponding values from the heat transfer relation (6.10).
Relative differences to the Nuy from the heat transfer relation are also indicated and
have always kept below 10%.

The comparison of the numerical and experimental fluid flow data is shown in
Fig. 6.5 and Fig. 6.6. They respectively correspond to the case of T,, = 70°C
and T, = 150°C. Compared is the u component of the velocity normalized by
the reference velocity vyep = [LgB(Tw — Tu)cosf]'/2. The upper index * indicates
that u has been normalized. Both figures are made up by two sets of data. At the
bottom there are the velocity profiles at the central vertical section of each observation
window. At the top there are the maps of local differences Au*(x,y) between the
numerical and experimental data in the four observation windows. These maps of
differences have been obtained by interpolating the experimental and numerical data
at the nodes of a regular mesh of 50 * 50 nodes, and by calculating the differences
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Figure 6.5: Comparison of the u-velocity obtained from the experimental set-up
and from the numerical model for T, = 70°C' and T, =laboratory temperature.
Top: map of differences in the four observation windows. Bottom: profiles at the
central vertical section of each observation window. (Note: * means the u-velocity
is normalized by the reference velocity vrer = [Lgf(Tw — T,)cos6]/?).

at each one of the nodes. Third order accurate interpolations have been used so as
not to introduce additional errors in the data-processing. Apart from a few local
large differences in some nodes arisen from errors in the experimental data (white
gaps close to the top walls), all local differences in the u* are below 10%. However,
the experimental uw*-profiles are not perfectly reproduced by the numerical profiles.
Experimental measurements at the window # 2 of the case with T, = 70°C' and at
the windows # 2 and # 3 for T, = 150° show an irregular velocity profile close to
the bottom wall. There is no clear explanation of these irregularities in the u-profile
and, therefore would require further investigation.

6.7 Conclusions

A parametric numerical study has been performed to obtain a relation of the Nusselt
number for free air (Pr = 0.71) convection in asymmetric radiative coupled isother-
mal large plates. Variations in the channel length, the inter-plate spacing, the incli-
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Figure 6.6: Comparison of the wu-velocity obtained from the experimental
set-up and from the numerical model for T, = 150°C' and T, =laboratory
temperature. Top: map of differences in the four observation windows. Bot-
tom: profiles at the central vertical section of each observation window. (Note: *
means the the u-velocity is normalized by the reference velocity vy.ef = [LgB(Tw —

T,)cos0)/?).

nation of the channel, the plates emissivity and the temperature difference between
the isothermal wall and the ambient have been taken into account. The channels
under study were out of the applicability range of the heat transfer relations already
presented by other authors, and that seemingly were limited to small aspect ratios,
lower Grashof numbers and did not consider radiation heat transfer.

The parametric study has consisted in 2500 different cases. All numerical solutions
have been submitted to a verification process obtaining estimates for their numerical
uncertainty and order of accuracy, and assessing their credibility.

The Nusselt number of all those credible solutions have been fitted to a relation in
terms of two numbers: the surface emissivity and a modified Rayleigh number includ-
ing the channel aspect ratio and the inclination angle. In the case of non-radiating ver-
tical plates, the equation coincides with the previously available composite-relations
for lower Grashof numbers.

A final validation test has been carried out by comparing numerical data with
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experimental heat transfer and fluid flow data measured in a ad-hoc experimental
set-up. The fluid flow has been measured by a Digital Particle Image Velocimetry
device.
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