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Abstract

Human Body Segmentation in RGB images has been a core problem on the Computer

Vision field since its early beginnings. In this particular problem, the goal is to provide

with a complete segmentation of the human/s body parts appearing in an image, discrim-

inating the human body from the rest of the image. It is a very challenging area since it

has to face many handicaps related to high variability in data such as lighting conditions,

cluttering, clothes, appearance, background, point of view and number of human body

parts, among others. Even so, it has become one of the areas of research because of its ca-

pabilities in real applications (i.e.surveillance, medical imaging, sign language, interactive

virtual reality systems).

Hand-crafted methods covered traditional methods such as simple matching templates,

deformable models, pictorial structures with tree and loopy models and discriminative en-

sembles learning. These approaches took researchers to point out rigorous studies to con-

straint the problem either by kinematic structure reasons or variability in poses/samples.

However, with the appearance of deep-based methods, the traditional pipelines and meth-

ods have changed to use Deep Convolutional Neural Networks in its different variations

merely. As a result, deep-based methods have been surpassing by a large margin the

hand-crafted methods getting the researchers to focus on the latter methods and in their

combination with traditional ones.

The writing of this thesis coincides with the paradigm shift; therefore, it is evidenced

into two distinctive blocks. In the first block, we focus on a novel dataset in order to

extend the state-of-the-art in human pose estimation and body segmentation. Next, we

present a novel two-stage approach for human body part segmentation. We propose to

use a cascade of classifiers as body parts detectors combining their outputs in an Error-

Correcting Output Codes framework. Once we obtain the body pose, we apply Graph Cut

segmentation optimization. Then, we use HOG features to describe the dataset and train

SVM classifiers combined with the ECOC framework to feed a body part segmentation

Graph Cut approach.

Moreover, we face full body segmentation, but differently, we present a novel two-

stage human body segmentation method based on the discriminative Multi-Scale Stacked
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Sequential Learning (MSSL) framework. In the first stage of our method for human

segmentation, a multi-class Error-Correcting Output Codes classifier (ECOC) is trained

to detect body parts and to produce a soft likelihood map for each body part. In the

second stage, multi-scale decomposition of these maps and a neighborhood sampling is

performed, resulting in a new set of features. This extensive set is trained in a stacked

learning fashion with a Random Forest binary classifier. Finally, in order to obtain the

resulting binary human segmentation, a post-processing step is performed through Graph

Cuts optimization, which is applied to the output of the binary classifier.

In the second block of the thesis, we analyze four related human analysis tasks in still

images in a multi-task scenario by leveraging synthetic datasets. Specifically, we study

the correlation of 2D/3D pose estimation, body part segmentation, and full-body depth

estimation. The main goal is to analyze how training together these four related tasks

can benefit each task for a better generalization. Results show that all four tasks benefit

from the multi-task approach, but with different combinations of tasks.

In conclusion, this thesis shows the benefit of stacked and multi-task learning for the

task of human body part segmentation in still images.



Resumen

La segmentación de personas en imágenes RGB ha sido un problema central en el campo

de la Visión por Computador desde sus inicios. En este problema en particular, el objetivo

es proporcionar una segmentación completa de las partes del cuerpo de la persona que

aparecen en dicha imagen. De esta manera, discriminando el cuerpo entero del resto de lo

que aparezca en la imagen. Es una ĺınea de investigación muy compleja, ya que se tiene

que lidiar con muchos obstáculos relacionados, por ejemplo, la variabilidad de los datos,

cambios de tonalidad de la iluminación, aparición de multitud de objetos en la imagen, la

variedad de vestimentas por persona, apariencia f́ısica, tipo de paisaje o escenario, el sitio

desde dónde se ha sacado la imagen y el número de partes del cuerpo humano, entre otros

casos. Aun aśı, se ha convertido en una de las principales áreas de investigación debido a

sus potenciales capacidades en aplicaciones (por ejemplo, video-vigilancia, tratamiento de

imágenes médicas, lenguaje de signos, sistemas de realidad virtual con el que interactuar).

Los métodos diseñados manualmente han sido los métodos tradicionales tales como

simples plantillas de repetición de patrones, modelos deformables, estructuras pictóricas

con modelos de árboles, en bucle y aprendizaje discriminativo v́ıa ensamblado. Todas

estas variantes, llevaron a los investigadores a realizar rigurosos estudios para acotar el

problema. La principal razón fue la complejidad, por ejemplo, el gran abanico de poses

que la persona puede realizar. Sin embargo, con la aparición de métodos de aprendizaje

profundo, los métodos tradicionales han sido substituidos por los modelos llamados redes

neuronales convolucionales y sus diferentes subtipos. Como resultado, los métodos de

aprendizaje profundo han superado en cierto grado a los métodos diseñados manualmente.

Este hecho hace que los investigadores se centren en éstos primeros métodos y en su uso

complementario con los métodos tradicionales.

En el momento de escribir esta tesis, coincide con el cambio de paradigma; teniendo

esto en cuenta, se muestra en dos bloques distintos. En el primer bloque, nos centramos en

un nuevo conjunto de datos para avanzar en el estado del arte en la estimación de la pose

de la persona y la segmentación del cuerpo y sus partes. A continuación, presentamos

un novedoso enfoque basado en dos etapas para la segmentación de partes de personas.

Proponemos utilizar una cascada de clasificadores como detectores de partes del cuerpo

vii



viii

combinando sus salidas con un marco corrector de códigos de errores llamado ECOC.

Una vez que obtenemos la postura del cuerpo, aplicamos la optimización de segmentación

v́ıa Graph Cut. Luego, usamos las caracteŕısticas basado en el descriptor HOG para

describir el conjunto de datos y entrenar un conjunto de clasificadores SVM combinados

con el marco ECOC. A continuación, inicializamos un modelo gráfico para obtener la

segmentación final.

Por otro lado, también tratamos la segmentación de todo el cuerpo, pero de manera

diferente, presentamos un método novedoso de segmentación del cuerpo en dos etapas

basado en el marco Discriminativo de Aprendizaje Secuencial Apilado a Múltiples Escalas

(MSSL). En la primera etapa de nuestro método para la segmentación, un clasificador

utilizado conjuntamente con un corrector de códigos de salida de corrección de errores

(ECOC) de varias clases está definido para detectar partes del cuerpo y producir un

mapa inicial de probabilidad para cada parte del cuerpo. En la segunda etapa, se realiza

una descomposición a gran escala de estos mapas y un muestreo de regiones colindantes, lo

que resulta en un nuevo conjunto de caracteŕısticas. Este nuevo conjunto está entrenado

en una forma de aprendizaje apilado con un clasificador binario. Finalmente, para obtener

la segmentación binaria, se realiza una inicialización a través de la optimización de Graph

Cuts, que se aplica a la salida de dicho clasificador.

En el segundo bloque de esta tesis, analizamos cuatro problemas relacionados con

el análisis humano en imágenes RGB usando el paradigma de aprendizaje multi-tarea

aprovechando un conjunto de múltiples datos sintéticos. En concreto, estudiamos la

correlación de la estimación de la pose 2D / 3D, la segmentación de partes del cuerpo y la

estimación de la profundidad de todo el cuerpo. El objetivo principal es analizar cómo la

resolución conjunta de estas cuatro tareas relacionadas puede beneficiar a cada tarea para

una mejor generalización. Los resultados muestran que las cuatro tareas se benefician del

paradigma multi-tarea, pero combinándolas de diferentes maneras.

En conclusión, esta tesis muestra el beneficio del aprendizaje apilado y multi-tarea

para el problema de segmentación de partes de la persona en imágenes.



Resum

La segmentació de persones en imatges RGB ha estat un problema central en el camp de

la Visió per Computador des dels seus inicis. En aquest problema en particular, l’objectiu

és proporcionar una segmentació completa de les parts del cos de la persona que apareixen

en la imatge. D’aquesta manera, discriminant el cos sencer de la resta del que aparegui

a la imatge. És una ĺınia d’investigació molt complexa, ja que s’ha de tenir en compte

molts obstacles relacionats, per exemple, la variabilitat de les dades, canvis de tonalitat

de la il·luminació, aparició de multitud d’objectes en la imatge, la varietat de vestimentes

per persona , aparença f́ısica, tipus de paisatge o escenari, el lloc des d’on s’ha tret la

imatge i el número de parts del cos humà, entre altres casos. Tot i aix́ı, s’ha convertit

en una de les principals àrees d’investigació a causa de les seves potencials capacitats en

aplicacions (per exemple, v́ıdeo-vigilància, tractament d’imatges mèdiques, llenguatge de

signes, sistemes de realitat virtual amb el qual interactuar).

Els mètodes dissenyats manualment han estat els mètodes tradicionals com ara sim-

ples plantilles de repetició de patrons, models deformables, estructures pictòriques com

models d’arbres, en bucle i aprenentatge discriminatiu via ensamblatge. Totes aquestes

variants, van portar als investigadors a realitzar rigorosos estudis per delimitar el prob-

lema. La principal raó va ser la complexitat, per exemple, el gran ventall de postures

que la persona pot realitzar. No obstant això, amb l’aparició de mètodes d’aprenentatge

profund, els mètodes tradicionals han estat substitüıts pels models anomenats xarxes

neuronals convolucionals i els seus variants. Com a resultat, els mètodes d’aprenentatge

profund han superat en cert grau als mètodes dissenyats manualment. Aquest fet fa que

els investigadors es centrin en aquests primers mètodes i en el seu ús complementari amb

els mètodes tradicionals.

En el moment d’escriure aquesta tesi, coincideix amb el canvi de paradigma; tenint

en compte això, es mostra en dos diferents blocs. En el primer bloc, ens centrem en

un nou conjunt de dades per avançar en l’estat de l’art en l’estimació de la postura de

la persona i la segmentació del cos i les seves parts. A continuació, presentem un nou

enfoc basat en dues etapes per a la segmentació de parts de persones. Proposem utilitzar

una cascada de classificadors com detectors de parts del cos combinant les seves sortides
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amb un marc corrector de codis d’errors anomenat ECOC. Una vegada que obtenim la

postura del cos, apliquem l’optimització de segmentació via Graph Cut. Després, fem

servir les caracteŕıstiques basat en el descriptor HOG per descriure el conjunt de dades i

entrenar un conjunt de classificadors SVM combinats amb el marc ECOC. A continuació,

inicialitzem un model gràfic per obtenir la segmentació final.

D’altra banda, també tractem la segmentació del cos sencer, però de manera diferent,

vam presentar un mètode nou de segmentació del cos en dues etapes basat en el marc

discriminatiu d’Aprenentatge Seqüencial Apilat a Múltiples Escales (MSSL). A la primera

etapa del nostre mètode per a la segmentació, un classificador utilitzat conjuntament amb

un corrector de codis de sortida de correcció d’errades (ECOC) de diverses classes està

definit per detectar parts del cos i produir un mapa inicial de probabilitat per a cada part

del cos. En la segona etapa, es realitza una descomposició a gran escala d’aquests mapes

i un mostreig de regions properes, el que resulta en un nou conjunt de caracteŕıstiques.

Aquest nou conjunt està entrenat en una forma d’aprenentatge apilat amb un classificador

binari. Finalment, per obtenir la segmentació binària, es realitza una inicialització a través

de l’optimització de Graph Cuts, que s’aplica a la sortida d’aquest classificador.

En el segon bloc d’aquesta tesi, analitzem quatre problemes relacionats amb l’anàlisi

humà en imatges RGB usant el paradigma d’aprenentatge multi-tasca aprofitant un con-

junt de múltiples dades sintètiques. En concret, estudiem la correlació de l’estimació de

la postura 2D / 3D, la segmentació de parts del cos i l’estimació de la profunditat de

tot el cos. L’objectiu principal és analitzar com la resolució conjunta d’aquestes qua-

tre tasques relacionades pot beneficiar a cada tasca per a una millor generalització. Els

resultats mostren que les quatre tasques es beneficien del paradigma multi-tasca, però

combinant-les de maneres diferents.

En conclusió, aquesta tesi mostra el benefici de l’aprenentatge apilat i multi-tasca per

al problema de segmentació de parts de la persona en imatges.
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Chapter 1

Introduction

1.1 Introduction to visual human analysis

1.1.1 Human Visual System

The biological human’s condition lets us observe the world around us and infer judgments.

Specifically, such idiosyncrasy regard to visual perception and reasoning is the central gap

between our species and the others from the Earth, making us unique through history.

Some samples can trace such a trip in our evolutionary history (Fig. 1.1). From left to

right, a paleolithic cave painting of bison from Altamira cave, Spain, dated back to 20,000

years ago. This is one of our early ancestor illustrations which resembles the different

type of bison used to live in the surrounding plains. At that time, we were already able to

create visual art in caves with beautiful subtle paintings. That piece of art gives us some

hints of the human brain functioning. First, the way we conceive in mind an object with

its characteristics, color, weight, smell, shapes, sizes, appearance, location. Second, what

we understand with all this information altogether in order to perceive new objects with

similar characteristics. As a result, for that example, this mechanism allowed humans

painting bison on that cave. This is an exercise of creating entity sense in our mind about

bison and many characteristics. Painting the head, torso, hoofs, legs, tail thoroughly and

so on means that humans assign semantic meaning to each bison body part. Thus, we

can understand that the bison concept can be broken down from its holistic form into a

composite of parts and vice versa. Similarly, the second image in Fig. 1.1 illustrates the

standard Ur wooden box made during the Sumerian Civilization 4,600 years ago. It shows

human figures dressing in different ways like slaves, warriors, king, farmers. Note human

ability to paint in a very detailed way the different clothes and ornaments. Following the

previous example, human observations on these clothes come up reasoning the concept of

dressing with its characteristics and the human consisting in a set of body parts where
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2 1 Introduction

Figure 1.1: From left to right. Cave painting of bison from Altamira, Spain

from Wikipedia (2011). War panel from Sumerian Civilization from Wikipedia (2016b).

Illustration of craftworkers in ancient Egypt from Wikipedia (2016a). Artcraft of Herakles

and Athena in ancient Greece from Wikipedia (2007).

each one fits with a piece of cloth. Additionally, from the last two images in Fig. 1.1 we

can observe both the variability humans illustrate themselves. First, farmers working in

ancient Egypt 3,500 years ago depicts more exceptional detail and different subtle poses.

Second, two representative figures in the ancient Greece 2,700 years back, Herakles and

Athena, depicts finer silhouettes representing in a more precise manner pose and body

parts, being able to summarize actions, gestures, and behaviors from a single image.

Those few examples illustrate some light of our visual perception from the world

captured in some pieces of art. This way of understanding any scene and objects around

us has brought to the fore during the history. In fact, regarding our curiosity, is an

appealing question done in the center of humanity.

In like manner, in nearer current times, some researchers like Blakemore, Hubel,

Wiesel, back in the ’60s made a similar question ’¿Is the ability to see innate or ac-

quired?’ (Blakemore and Cooper, 1970; Hubel and Wiesel, 1959, 1970). In order to pull

forward that question, they made different studies about how the experience can influ-

ence the brain, in concrete, the development in the visual cortex on kittens and how it

is affected in their first visual environment. They demonstrated that if one of the kitten

eyes is covered for a specific period during a few weeks, the cortical cells lose their input

from that eye and then the other eye only influences it. This experiment manifested

that kittens deprived of vision for a few months remain blind on that eye for lifelong.

Consequently, they used two different cylinders, one with only vertical bars drawn inside

and the second with horizontal ones. A newborn kitten was introduced in each cylinder
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for a few months. Kittens that only perceived vertical lines could only see that type of

pattern and not horizontal ones for lifelong and vice versa. Furthermore, they studied

that neurons in the visual cortex of the kitten can be excited by moving patterns. They

set up a microelectrode in some region of the kitten’s visual cortex. Then, kitten’s face

was fixed to look at a television screen showing vertical and horizontal bars. It turned

out that the electrode, recording the responses, discharged very vigorously if a vertical

bar moves in front of it. Given these experiments, these neurophysiologist researchers

proofed that a new visual environment is crucial for constructing visual parts of the brain

since the most basic pattern such a line and more complex ones rely on environment and

experience. This support the hypothesis that there are some essential aspects of visual

perception acquired rather than innate. Those neurons responding to edges as orientation

detectors are the bases of Gabor filter in Computer Vision (Jones and Palmer, 1987).

1.1.2 Recognizing humans from visual data

The same question can be made from that research field which is in charge to deal with

how computers can understand what is taking place on digital visual information such

as images and videos. It is a sub-field of Artificial Intelligence and interdisciplinary

where Machine Learning and Image Analysis overlap, called Computer Vision. Some

standard tasks to cope are from simple edges detection, face recognition, human body

segmentation to scene understanding passing through to many more complex tasks as

autonomous driving or emotion recognition. More concretely, understanding the human

in visual scenes, is still an open problem (Krizhevsky et al., 2012). The human body has

many degrees of freedom, just from the wrist, ankles, head, shoulder we can decompose

all body parts and joints in a wide range of kinematic configurations. This leads to a

coarse list of poses than implicitly we can distinguish at high accuracy, but nowadays a

computer cannot do it as simple as us. Many works are facing this problem with some

astonishing results (Alp Güler et al., 2018; Kocabas et al., 2018; Li et al., 2019; Tang et al.,

2018; Xiao et al., 2018; Zhang et al., 2019). However, understanding and simulating the

way humans recognize our body parts to infer a pose is still far to be solved with the

current research knowledge. This involves various perceptual tasks such as detection,

people localization, counting them, decomposed people in their semantic body categories

and labeling each pixel, among others. As a result, the visual analysis of humans on

standard pictures arguably implies a hard work for a machine. As an illustration, let

us imagine a human appearing in a picture that is dressing a set of clothes made of

different tonalities and material, in front of intense lights and bordered by the shade of

forest partially occluding him. At first, glance, see Fig. 1.2, our eyes can distinguish his

body parts and assign semantic meaning to each one to end up in a holistic conception
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Figure 1.2: Human pose images illustrating scenarios from MPII Human Pose

Dataset (Andriluka et al., 2014) showing high intraclass variability.

of himself. On the contrary, a machine must deal with the difficulties that arise from

such a scenario: appearance variation due to clothing and pose which are very person-

dependent, wearing different clothes in different situations, body kinematic proportions,

depth information is missing, occlusions, cluttered scenes, heterogeneous scenarios and

backgrounds, camera viewpoints, lighting conditions (Leung and Yang, 1995).

Given its complexity, it is critical for the visual analysis of humans to be able to

detect and segment body parts. This will allow advancing in the automatic recognition

and understanding of complex behaviors. Potential real applications of the automatic

analysis of humans include virtual reality, video editing, intelligent vehicles, automatic

product recommendation, robotics, group behavior analysis, human-computer interaction,

e-commerce, action recognition, geometry ambiguities, mixed reality interfaces, anima-

tion, among others.

To understand a human body by a machine, it is needed a set of crucial stages to

describe what is and what is not a human being. Thus, it comes up with the idea of

paying attention to which characteristics or features make a particular human from the

rest of the objects in the scene. In that sense, a feature is any piece of information that is

relevant to describe and distinguish any concept from others. In concrete, for visual data,

we find elementary features such as color, shape, texture, edges, points. For example,

a human body consists of an own physiognomy, look, expression, shape, height, width,

colors, among other features which can be beneficial to give a preliminary description.

However, that rough description could not be enough to distinguish two or more humans,

and there would need more precise features in order to be able not to get confused. Then,

we could think that a human consists of a composite of body parts such as head, shoulders,

torso, upper/lower arms, upper/lower legs, feet. Alternatively, even, we could consider

joints instead of body parts since the latter by definition is a group of joints (upper leg

involves the kinematic connection of hip and knee). Therefore, it is crucial to describe

the human body regarding some collection of features that would discriminate more than

others. Besides, these features can be chosen beforehand with some prior knowledge. For

that purpose, in Computer Vision, there exist different feature descriptors that give a
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connection between the pixels of a digital image and what humans understand by looking

at it. Such descriptors, called handcrafted features since we specify what kind of features

we want to analyze, can summarize elementary statistics information commonly used such

as color, shape, regions, textures, points, edges, contours. That is, containing a low-level

description of the concept to be described. For example, ones used in Computer Vision

are SIFT (Lowe, 1999), HOG (Dalal and Triggs, 2005a), and SURF (Bay et al., 2006),

among others.

In order to extract features, it is equally important to define which source of informa-

tion is used under the feature description stage. To do so, researchers collect data regard-

ing some predefined setting to build a dataset. This is a crucial step since the final results

depend to a greater extent to the quality of the data. That quality can be interpreted

from different approaches. The amount of data that is, samples are broadly collected; as

a result to have a dataset as many representatives as possible. For instance, in the human

body segmentation problem, it would be helpful to gather samples taking into account

different sizes, heights, widths, clothing or skin color, to cite a few constraints. Then,

once the features are extracted from samples, we can obtain a more representative and

general description of the problem for several configurations of the human body. However,

the complexity, quantity, and availability of datasets have been low till years back and

probably one of the main reasons in order not to come into further advances. In concrete,

human body segmentation lacked complex datasets. Existing datasets from previous years

include a limited number of images, few annotations labeled on body parts, low human

configuration variability and weak challenging cases like extreme poses in constrained en-

vironments. Instead, a few years back, the amount of datasets that are released, including

the one introduced in this thesis, in the first block, has helped to push forward the re-

search field. Moreover, it is worth mentioning that some of the new datasets are synthetic

and work efficiently since they allow to generate automatically annotated data which one

of them is evaluated in the second block of this thesis. In summary, human analysis is one

of the hottest and challenging problems in computer vision. Detecting and segmenting

human body and its parts in still images and image sequences (video) is an open problem,

but necessary in order to define the basis for posterior human behavior understanding

analysis, and to open the door to a vast range of high impact real applications.

1.1.3 Data and deep learning for human analysis

The size of available annotated datasets for human analysis has been considerably in-

creased in recent years. This is due, in part, the large number of devices such as smart-

phones, sensors that generate data and massive data available on the cloud. Besides,

online labeling platforms, such as Amazon Mechanical Turk also helped to provide anno-
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tations to these massive amounts of available data. Under those circumstances, and taking

into account the enormous computational progress in hardware during the last decade,

a set of algorithms that can take profit of these conditions have started to be used by

researchers. These learning algorithms mainly consist of neural networks, which take into

account the difference aside, try to mimic the structured neural system embedded in the

human brain.

These neural networks consist of a set of layers, each one stacked on each other,

that process any data. In the case of visual data, there is a variant network called

Convolutional Neural Networks (CNN) which processes images or videos. Moreover, as

a general tendency, the deeper the network is in terms of layers, the highest recognition

performance uses to be. This paradigm is called Deep Learning (Cireşan et al., 2011).

Given the vast amount of parameters involved in deep models, i.e., tens of millions, recent

progress in GPU parallel computing allowed for practical training of these models. The

increase in terms of computation capability of GPUs and the amount of annotated and

available data are essential in order to understand the enormous improvement in a few

years by deep learning models. Equally important, Deep Learning works as a hierarchical

feature extractor on the data because of its architectural nature. This makes automatically

discovering and learning a particular set of features for each sample. On the contrary,

handcrafted features are already selectively predefined, applied to all samples from the

dataset in the same fashion and feed them to an external learning algorithm.

1.2 Objectives of the thesis

This thesis is mainly focused in human pose segmentation, but also to apply the lessons

learned from human pose to multi-task learning in order to cover additional tasks such

as full body depth regression and 3D pose estimation. Therefore, the main goal of this

research is to find new techniques to improve human pose segmentation (both binary and

multi-part) in still images, extend state-of-the-art with a new dataset and analyze the

impact of dealing with multiple tasks in a multi-task learning paradigm. More precisely,

we can classify the objectives of the thesis into the following goals:

1. Develop a new large and complex dataset to cover mainly human pose estimation

and complementary action recognition. This dataset also serves to evaluate human

body segmentation strategies.

2. Propose a two-stage segmentation approach based on the ECOC framework to eval-

uate human body segmentation.
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3. Propose a two-stage scheme based on discriminative Multi-Scale Stacked Sequential

Learning approach to tackle human body segmentation.

4. Analyze multiple human analysis tasks from a synthetic dataset in a multi-task

framework.

Human segmentation in RGB images is a vital Computer Vision tasks nowadays, and

it has recently attracted much interest in the research community due to its need as

the first stage of many human-related applications. Nevertheless, it is an arduous task

because of the full range of human poses and variability in many human patterns.

In order to provide with baseline results on the proposed dataset, we proposed a new

model to benefit from ensembles of classifiers and error correction. The new ECOC-based

model can contextualize several classifiers instead of merely using predictions with no

context agreement.

Several approaches such as graphical models, a cascade of classifiers, generative models

are studied by the community to deal with human body segmentation. A recent approach

called Stacked Learning had paid attention by some researchers to benefit from the deci-

sions of previous classifiers to be used as input features of a posterior classifier. In this

case, a meta-learner is introduced in order to learn if those decisions make sense, that is,

to refine them in a higher-learning level.

In a different scenario, some approaches deal with one source of information, such as

2D key-point coordinates or pixel labeling for human pose estimation or segmentation,

respectively. It turns out that a different understanding can be given in order to tackle

the problem. That is, instead of describing the problem as one task to solve, to define it

as multiple tasks or subtasks to deal with. Thus, we could utilize a multi-task learning

paradigm to explore the benefit of learning multiple end-to-end tasks, analyzing how they

complement each other.

1.3 Organization of the thesis

The rest of this thesis is organized as follows:

• Chapter 2 presents briefly the kind of problem we are dealing with and a set of

definitions useful to guide the reader through the thesis. In this sense, different

methods used during the research are explained for a better understanding. More

precisely, these definitions are sorted in two blocks: first, related to hand-crafted

features and non-deep learning approaches; second, related to feature learning and

indirectly to deep learning approaches such as deep neural networks.
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• Chapter 3 contains two published contributions of this thesis related to non-deep

learning techniques, as detailed below:

– In Section 3.1, the first published contribution of the thesis is presented,

Sánchez et al. (2015). In this chapter, a novel dataset is introduced in order to

extend state of the art in human pose estimation and segmentation with minor

effect on gesture recognition. Next, we present a novel two-stage approach for

human body part segmentation. We propose to use a cascade of classifiers as

body parts detectors combining their outputs in an Error-Correcting Output

Codes framework. Once we obtain the body pose, we apply Graph Cut seg-

mentation optimization. Then, we use HOG features to describe the dataset

and train SVM classifiers combined with the ECOC framework. Moreover, a

baseline for action recognition is introduced.

– Section 3.2, presents the second published contribution of the thesis, Puertas

et al. (2014). In this chapter, we present a novel two-stage human body seg-

mentation method based on the discriminative Multi-Scale Stacked Sequential

Learning (MSSL) framework. In the first stage of our method for human seg-

mentation, a multi-class Error-Correcting Output Codes classifier (ECOC), is

trained to detect body parts and to produce a soft likelihood map for each

body part. In the second stage, multi-scale decomposition of these maps and a

neighborhood sampling is performed, resulting in a new set of features. This ex-

tensive set is trained in a stacked learning fashion with a Random Forest binary

classifier. Finally, in order to obtain the resulting binary human segmentation,

a post-processing step is performed through Graph Cuts optimization, which

is applied to the output of the binary classifier.

• Chapter 4 contains one contribution related to multi-task deep learning, as detailed

below:

– In Section 4.1, the third published contribution of the thesis is presented. In

this chapter, we analyze four related human analysis tasks in still images in

a multi-task scenario by leveraging synthetic datasets. Specifically, we study

the correlation of 2D/3D pose estimation, body part segmentation, and full-

body depth estimation. These tasks are learned via the well-known Stacked

Hourglass module such that each of the task-specific streams shares information

with the others. The main goal is to analyze how training together these four

related tasks can benefit each task for a better generalization. Results on the

newly released SURREAL dataset show that all four tasks benefit from the

multi-task approach, but with different combinations of tasks.
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• Lastly, Chapter 5 presents the concluding remarks of the thesis, in conjunction with

some possible directions for future research.
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Chapter 2

Background

2.1 Methods and definitions

2.1.1 Problem definition

Human Body Segmentation: It is a Computer Vision problem established in the

category of Human Body Analysis (Gavrila, 1999; Leung and Yang, 1987). In concrete,

Human Body Segmentation features from visual data such as images and videos. Its main

goal is to acknowledge Human Body Shape from Background at different levels (Mori

et al., 2004). At the most basic level, a human is defined by its contour as a result of

defining a binary partition between the human body and its background. Next, in a

higher abstract level, the human body decomposes into body parts such as head, torso,

upper/lower arms, upper/lower legs and so on. Similarly, there is an approach per joint

division where the human body resembles following a kinematic joint structure. That is,

common joints such as neck, shoulders, elbows, ankles represent us. The main problem

on this understanding is that joints cover a small area of the muscle to be segmented

thoroughly. Thus, it may arise more difficulties than body part approach detection if the

spatial context is not adequately taken into account. Furthermore, another abstract level

consists of body parts groupings such as head, upper body, lower body or even further

groups like hands and feet. Additionally, all those human body splitting abstractions

could be combined to define a more accurate segmentation procedure. As a result, in

this particular problem (Weinland et al., 2011), the goal of any of those approaches is to

provide with a complete segmentation of the human body splitting appearing in an image

in order to obtain the pixels belonging to the different parts of interest. Traditionally,

the datasets that approach such problem are structured in binary masks per image where

each mask represents a region category of the person/s.

11
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2.1.2 Block I

Hand-Crafted Features: This kind of nontrainable feature extractor based paradigm

has been used for the last decades along with well-established Machine Learning

methods: SVM, Random Forest, Kernel methods, to cite a few. It is related to

making use of the information properties present in the visual data extracted by

some algorithms. For example, some predefined functions extract corners and edges

in order to compose the representative feature vector for a particular concept. Some

of its inspirations are basic algorithms including Harris Corner Detector (Harris

and Stephens, 1988), Canny Edge Detector (Canny, 1987), Difference of Gaussians

(DoG) (Marr and Hildreth, 1980), among others. Along the time, the number

of features increased in order to solve more Computer Vision complex problems

from such as lane detection to scene understanding, among others. In this sense,

researchers take into account specific features such as occlusions and scale variations

along with illumination. In particular, the design of hand-crafted features often

involves finding the right trade-off between accuracy and computational efficiency.

Besides, the accuracy can vary regarding the dataset samples. In contrast, some

of these features are general-purpose, such as Gabor filtering and LBP features.

Moreover, they are easy to implement and efficient for low-standard requirements.

It is essential to remark; it is not defined along a trainable process as neural networks

but just as a feature extractor stage.

Histogram of Oriented Gradients: Also known as HOG, it is a feature descriptor

used in object detection (Dalal and Triggs, 2005a) which consists of counting the

frequency of gradient orientation in different regions of an image. The idea behind

such feature descriptor is that gradient orientation and magnitude represented in his-

tograms can represent local object appearance and shape on an image. In general,

HOG is expressed by four necessary computational steps: gradient computation,

orientation binning, descriptor blocks and block normalization. First, a standard

procedure is calculated over the image, the computation of gradient values. This

is done by convolving a predefined set of kernels with the image in two directions,

horizontal and vertical. Second, the image is divided into cells, which can be rect-

angular or radial, in order to calculate distributed histograms. These histograms

are based on several channels that may vary depending on the problem and take

into account the gradients values at pixel precision organized by cells. Third, as a

way to make the descriptor robust to brightness, illumination and contrast changes,

the gradient magnitude is locally normalized. This is achieved by grouping the cells

in a larger cell, called blocks. These blocks, at the same time, are partially over-

lapped, so some cells of different blocks overlap to each other in order to influence
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the illumination invariance in those block locations. Fourth, block normalization

is computed following different options such as L2-norm, L1-norm, among others.

Therefore, the non-normalized vector containing all histograms in a block is normal-

ized as a result of obtaining all blocks from the descriptor concatenated representing

the feature descriptor for a particular region of an image. Thus, HOG depends on

three parameters: the number of cells per block, number of pixels per cell and the

number of channels per cell histogram. Moreover, it offers a few advantages over

other descriptors in terms of object shape information: gradients calculated on a

dense grid, contrast normalization.

Grabcut: The primary purpose of this algorithm (Rother et al., 2004b) is to minimize the

user interaction for foreground extraction. At the user level, first, the user draws

a rectangle around the object in order to assign the outer space as background

and inside the rectangle as an unknown combination distribution of foreground and

background. Follow up with the user actions; these are the main constraints that

the algorithm takes into account as a first solution to the problem. Moreover, the

user can brush some areas of the image as background and foreground. Following

up, a set of iterations are applied to the result in order to refine accuracy on fore-

ground and background. In the light of the insider functioning, those regions that

user brush either foreground or background will not change in the process of pixel

labeling. Besides, regions outside rectangle are assigned as background and will not

change. Instead, inside the box, the rectangle, the iterative process will decide which

pixels label as background and foreground. As a result, the algorithm gives initial

labeling based on user regions selection. Second, a probabilistic model, Gaussian

Mixture Model (GMM) is learned to model the foreground and background color dis-

tribution. This model generates a new pixel distribution which disentangles better

than previous initialization those pixels that are unknown, labeling them as proba-

ble foreground or probable background. These pixels assignation takes into account

the initial user interaction at choosing those pixel regions either solid background

or hard foreground in terms of color statistics. Furthermore, a graph, concretely, a

Markov Random Field, is built representing the pixel distribution. Each node in the

graph represents each pixel in the image. Edges represent the neighbor similarity.

Moreover, two nodes are added that are the bases to the optimization algorithm

coming next. These two additional nodes called Source and Sink are connected

to the pixels. The former node to foreground pixels and the latter to background

pixels. At the same time, each edge has a weight that represents the strength, in

similarity terms, the connection between nodes pixels. Besides, Source and Sink

connected to pixels have weights representing the probability belonging to these
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two classes. As the next step, a ’mincut’ (Boykov et al., 2001) algorithm is applied

to segment the graph. That is separate foreground (Source) and background (Sink)

using a minimization cost energy which prefers similar regions having the same la-

bel. This function is the summation of all weights edges that are cut. Once the cost

energy is minimized as much as possible and the cut is done, all pixels connected

to Source become foreground and the Sink ones become background. The process

runs iteratively until convergence.

Stacked Learning: It is a set of multiple learning algorithms under the theoretical

framework of ensemble learning. This type of ensembles defined as Stacked Gener-

alization (Wolpert, 1992) builds on previous variants as references such as boosting,

bootstrap aggregating, a bucket of models, among others. Stacked Generalization

defines an ensemble of classifiers that are first trained by bootstrapping k-folds par-

titions of data in order to get the training predictions. As a result, it first generates

a set of classifiers, meaning that there is an initial set of predictions. Consequently,

those predictions are used to train another classifier, called combine-classifier or

meta-classifier. Thus, the central insight behind it is to learn the degree of learn-

ability that previous classifiers were able to learn. As an example, if one of the

initial classifiers learns a category incorrectly, the combine-classifier could be able

to learn such drifted behavior jointly with the others classifiers as a result of correct-

ing the wrong behavior. Later on, and apart from classification, there was published

a regression approach (Breiman, 1996). Moreover, a variant that takes into account

context and long-range interactions are called Stacked Sequential Learning (Co-

hen, 2005). This variant deals with the following problems of sequential learning,

namely: (a) how to capture and exploit sequential correlations; (b) how to represent

and incorporate complex loss functions in contextual learning; (c) how to identify

long-distance interactions and (d) how to make sequential learning computationally

efficient.

Error Correcting Output Codes Framework: It is a meta-learning scheme that per-

mits to expand any binary classifier to a multi-class case. In that sense, this

framework offers a decomposition of a multi-class classification problem into sim-

pler sub-problems. The representative ECOC meta-learning algorithm (Dietterich

and Bakiri, 1994; Kong and Dietterich, 1995) is divided into two stages: the for-

mer regards learning, at such stage an ECOC encoding matrix is built to specify

the combination of M binary classifiers that permit full multi-class classification.

The latter stage is in charge of testing (decoding). A set of N training samples

X = {x1, ...,xN}, where each xi belongs to a particular class Ci ∈ {C1, ..., CK}
and K defined as the number of classes, are classified regarding to the previous M
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binary classifiers. These classifiers, also called dichotomizers, hj, are used to build

the ECOC matrix taking into account K. At each dichotomizer column, the binary

class is split into {+1, 0,−1}, forming a KXM encoding ternary ECOC matrix

T . Then, when a new sample turns to be classified, each dichotomizers’ output

(columns of the matrix T ) is used to generate the codeword that is compared on

each row from T . At this stage, the decoding algorithm is responsible for finding

the most similar class label for the test sample utilizing the outputs of the M bi-

nary classifiers. There are different decoding strategies such as minimization by

Hamming distance (stems from the binary decisions) (Kong and Dietterich, 1995),

Euclidean distance (Dietterich and Bakiri, 1994), loss-based metric (Escalera et al.,

2008), among others. We recommend readers check Block I for further information

about ECOC framework 3.1.3.3.

2.1.3 Block II

Feature Learning: This kind of trainable feature extractor based paradigm can learn

data representations directly from raw information such as images, audio or any

other kind of modality and detect which features or cluster of features are more

worthwhile for particular tasks. Moreover, these features can be used for another

similar task, which is called transfer learning. The main idea in this paradigm and

taking as an example a simple neural network of two hidden layers is to discover

multiple levels of representation through the model training process (LeCun et al.,

2015). The lowest layers represent simple features/statistics, and higher layers give

more essential discoveries such as semantic information, features that distinguish a

concept from another. This, in turn, can come up with more significant robustness

to intra-class variability. In case of visual information, such as images, for a CNN

with a dozen of layers, lower layers represent edges, corners, bright spots, simple ob-

ject/forms, and higher layers constitute growing sophisticated details of the image,

such as shapes, patterns, semantics, more elaborated concepts such as table than a

dull edge. It turns out that the lower layers already represent what Gabor filters

or color blobs were representing a few years ago. Thus, these features make the

network to be more discriminative than just a discrete bank of filters considered by

classical approaches. Furthermore, these layers are possible to be used as a feature

extractor for other related tasks.

Deep Learning: Deep Learning resembles a trainable hierarchical feature extractor that

consists in a composite of stacked neural layers able to extract features from raw

inputs and at the same time able to train in order to approximate an objective

function for prediction purposes (LeCun et al., 2015). This research field, most
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concretely, neural networks, stemmed from some findings between primary neural

cortex and the way it can be built on hardware. Then, some research lines on

the 70’s defined basic neural blocks models but got stuck for a few decades. After

all, it started back a few years ago because of the availability of more complex

and fast hardware and availability of new large and annotated datasets. It turned

out that these two factors were decisive to evolve the research on deep learning.

As a result, deep networks stack many layers on top each other, showing high

recognition performance but at the same time more complexity. It is important

to remark that is has been tested that very deep networks not always reach better

performance. In the case of visual data either images or videos, Convolutional Neural

Networks (CNN) use raw images as input from low to high-level vision problems.

There is also research behind input features instead of the raw images, that is,

pixels intensities. Then, the network extracts the features from those images and

trains without human intervention. In order to end up with a model with high

generalization capability, it is desirable to have a dataset with thousands of samples,

even millions, containing the whole visual variability of the problem at hands. This is

one of the main drawbacks regarding Deep Learning. However, new datasets, the use

of automatically generated synthetic data, and new research on semi/un-supervised

learning are providing new findings in order to deal with the vast annotated data

requirements of deep learning.

Convolutional Neural Networks: This type of network is the main one making use

of visual information in the Deep Learning paradigm. It is a class of feed-forward

artificial neural network which roughly mimics the animal visual cortex functioning.

That is, the way Convolutional Neural Networks (CNN) preprocess data is based

on the experiments that Hubel and Wiesel carried out (Hubel and Wiesel, 1959,

1970) with kittens. With attention to the whole structure of the network, the layer

that captures the main difference with other neural networks is the Convolutional

Layer. This layer is the core building block and works following the state-of-the-art

algorithms related to the edge, corner detection. More precisely, the layer has a set

of filters and bias, also called learnable kernels, which slide throw the entire input

(i.e., an image) like in a sliding window fashion, and are multiplied by a particular

piece of input region. Thus, between a kernel and an image region, a standard dot

product is computed and assigned to the output as a result of generating a feature

response map, one for each kernel. All these feature response maps from all kernels

for a particular convolutional layer in a network form its output. Moreover, there

are standard layers like pooling, fully connected, normalization, non-linear (ReLU,

Sigmoid and so on) that form the network. One of its major strengths is that
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kernels do not need to be hand-selected in contrast with classical filters approaches

that were hand-chosen. Therefore, prior knowledge is independent that the network

learns by itself.

Stacked Hourglass: This is an appropriate adjustment of a standard CNN (Newell

et al., 2016c). In concrete, it is similar to an auto-encoder structure at which a

set of convolutional layers plus others downsample the input up to a small feature

response map followed by a set of symmetric layers to reach the same input size.

Moreover, each symmetric layer is connected by skip connections in order to preserve

more knowledge from very low resolution to very high resolution layers. This forms

an Hourglass module which can be stacked with another Hourglass by combining the

output of the former with the input of the latter to combine features. Then, it forms

a stack of Hourglasses modules with intermediate supervision, that is a loss between

modules helping to mitigate the vanishing gradient problem. Each module benefits

from previous module outputs, refining and improving final network predictions.

Multi-Task Learning (MTL): It makes sense to analyze the ’autonomous driving’

problem defining a set of tasks such as road, traffic signals, and pedestrian detection

than just road detection which would give poorer results and minor understanding

of the overall problem. Thus, the idea in multi-task learning for computer vision

problems is to deal with multiple related tasks and train them jointly to enhance

the recognition of isolated problems by the sharing of information. This can also

serve to enhance the recognition performance of a higher level problem composed

by several of these smaller tasks.

2.2 Related work

2.2.1 Hand-Crafted methods for human pose estimation and

segmentation

Human body analysis in visual data is a challenging area since it has to face many hand-

icaps related to high variability in data such as lighting conditions, cluttering, clothes,

appearance, background, point of view, number of human body limbs. Even so, it has

become one of the main interest areas of research because of its capabilities in final appli-

cations (i.e., surveillance, medical imaging, sign language, people recognition, interactive

virtual reality systems).

A few years ago, a new application domain raised dealing with human analysis, cus-

tomarily named ”Looking at people,” involving a set of main topics: human body(parts)
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detection/segmentation and gesture recognition, both located in the sub-area of human

pose estimation.

Human limb segmentation in RGB images has been a core problem on the Computer

Vision field since its early beginnings. In this particular problem, the goal is to pro-

vide with a complete segmentation of the human/s body parts appearing in an image,

discriminating the human body from the rest of the image. Usually, the human body

segmentation is treated in a two-stage fashion. First, a human body part detection is

performed, obtaining a large set of candidate body parts. Then, these detections are

used as prior knowledge to be optimized by segmentation strategies in order to obtain the

pixels belonging to the different limbs of interest.

Related to human pose estimation and segmentation, two main stages are commonly

considered: body part detectors, and whole pose/segmentation inference. In the first

stage, which is detection of body parts, usually weak classifiers are trained in order to

obtain a soft prior of body parts (which are often noisy and unreliable). Most works

in literature have used edge detectors, convolutions with filters, linear SVM classifiers,

Adaboost or Cascading classifiers as in Viola and Jones (2001a). The work of Dalal and

Triggs (2005b) detects the human body using a cascade of classifiers architecture with

SVM and HOG features, which are the ones used in most state-of-the-art works. This is

one of the main approaches used to initialize posterior pose estimation and segmentation

approaches. Ramanan et al. (2005) used quadratic logistic regression on RGB features

as the part detectors. Ramanan et al. (2007) detected body parts by using a tubular

edge template as a detector, and convolved it with an image defining locally maximal

responses above a threshold as detections. Then, they used a pictorial tree structure to

infer the final pose of the human. Bourdev and Malik (2009) used body part detections

in an AND-OR graph to obtain the pose estimation. Other works, have applied more

robust part detectors such as SVM classifiers in Chakraborty et al. (2013); Gkioxari et al.

(2013) or AdaBoost in Pishchulin et al. (2013a) trained on HOG features from Dalal and

Triggs (2005a). Besides, Dantone et al. (2013) used Random Forest as classifiers to learn

body parts. In spite that robust classifiers have been used, part detectors still involve

false-positive and false-negatives problems given the similarity nature among body parts

and the presence of background artifacts. Therefore, a second stage is usually required in

order to provide an accurate segmentation.

In the second stage, once the human body pose is obtained, soft part detections are

jointly optimized taking into account the nature of the human body. However, standard

segmentation techniques (i.e.region-growing, thresholding, edge detection, among others.)

are not applicable in this context due to the large variability of environmental factors (i.e.,

lightning, clothing, cluttering, among others.) and the changing nature of body textures.

Nevertheless, one of the methods that have generated more attraction is the well-known
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pictorial structure for object recognition Fischler and Elschlager (1973). It was redefined

by Felzenszwalb and Huttenlocher (2000, 2005) in order to obtain an enriched final pose

of the human body. Their proposed method represents an object that consists of hard

parts linked by spring in order to give them some deformation. Thus, for example, a

cat can be represented by a set of those parts belong to anatomical parts. Instead of an

inanimate object, such a car can be interpreted by parts like wheels, linked by springs to

the main structure. Those spring are interpreted as flexible cables that can shorten or

enlarge. Imagine a tractor with high performance on damping. Their wheels will be more

separated as long as tractor ride hills. So, they reformulate the method with complemen-

tary new techniques there were not in the ’70s. Some works have applied an adaptation

of pictorial structures using a set of joint limb marks to infer spatial probabilities. An-

driluka et al. (2009) used body part detections in a boosting fashion to obtain the pose

estimation. They proposed a method that covers non-rigid object detection and articu-

lated pose estimation. Those cases are pedestrian detection, upper body estimation in

TV footage and human full-body estimation in different scenarios. This work shows that

such specialization may not be necessary, and proposes a general approach based on the

pictorial structure framework. To do this, they focused on the appearance of body parts

by approaching a densely sampled shape context descriptors and discriminatingly trained

AdaBoost classifiers. In concrete, their approach uses robust generic part detectors that

do not require a prefiltering search space for choosing those hypothesis candidates for

final pose estimation. They compute dense appearance representations based on shape

context descriptors and a boosting of classifiers to reduce as much as possible the false

positives rate. That is, reducing the possible candidates to those with significant confi-

dence. Additionally, once the classifiers are trained, it is applied a bootstrapping process

to improve performance. Thus, combining those robust classifiers makes more accurate

results. In this sense, the most known models for the optimization/inference of soft part

priors are Poselets from Bourdev et al. (2010); Pishchulin et al. (2013a) and Pictorial

Structures in Andriluka et al. (2009); Felzenszwalb and Huttenlocher (2000); Sapp et al.

(2010a), both of which optimize the initial soft body part priors to obtain a more ac-

curate estimation of the human pose and provide with a multi-limb detection. Later

on, an extension was presented by Yang and Ramanan (2011, 2013) which proposed a

discriminatively trained pictorial structure that models the body joints instead of limbs.

A flexible mixture of parts is used in this work in order to alleviate those cases where

the standard method fails mainly because of the rigidity of considered pictorial models.

Given a set of parts, P, for each one there is a set of type T part that represents the

normalized part but with foreshortening, orientation, and rotation in order to consider

the variability of those parts. On the other hand, Wang and Mahadevan (2013) defined

that a composition of the parts is a hierarchy for different combinations of pictorial struc-
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ture. In this way, it is possible to consider different poses and connections of the parts.

In contrast, there is a different approach that takes into account Stacked Learning for

pose estimation Ramakrishna et al. (2014); Wolpert (1992), performing very similar to

pictorial structure framework yet in a simple fashion. In order to apply a problem solver

like pictorial structures, Stacked Learning Cohen (2005); Wolpert (1992) first learns a set

of initial models to subsequently train a combine-model that involves previous predictions

for a more fine-grained prediction. Some works in the literature tackle the problem of

human body segmentation following or benefiting from a similar methodology to human

body pose estimation. Vineet et al. (2011) proposed to use Conditional Random Fields

(CRF) based on body part detectors to obtain a complete person/background segmenta-

tion. Belief propagation, branch and bound or Graph Cuts optimization are conventional

approaches used to perform inference of the graphical models defined by either human

body parts or person segmentation as in Hernández-Vela et al. (2012a,b); Rother et al.

(2004a). Finally, methods like structured SVM or mixture of parts Yang and Ramanan

(2011); Yu and Joachims (2009) can be used in order to take profit of the contextual

relations of body parts. Following section reviews a few recent works dealing with human

pose estimation and segmentation based on deep learning. Furthermore, a short review

on MTL is also presented, with the main focus on the learning of multiple tasks related

to the human body that can be beneficial for human pose estimation and segmentation.

2.2.2 Deep Learning and MTL for human pose estimation and

segmentation

The use of deep-learning techniques has been a breakthrough in most Computer Vision

applications, particularly Convolutional Neural Networks (CNN). It is the predominant

methodology used by state-of-the-art approaches, including human analysis scenarios. In

the case of human pose estimation, there has been an incremental shift from traditional

approaches such as Random Forest, Bag of Visual Words (BOVW), SVM towards this

hierarchical feature learnable extractor, CNN. For instance, Wei et al. (2016) developed

a sequential prediction framework called ’Convolutional Pose Machines’ that learned rich

implicit spatial features to infer human pose estimation. Concretely, a repeated sequence

of a basic CNN architecture is stacked in order to reuse the previous output heatmaps

features with the input ones. As a result, this framework was able to learn long-range

dependencies since the receptive field turned larger as the network made deeper. Then,

Newell et al. (2016a) contributed to improving previous sequential prediction network by

adding: residual modules, skip connections and an encoder-decoder shape. The resulting

basic architecture was called ’Stacked Hourglass.’ Each ’Hourglass’ module consists of

an encoder-decoder architecture with residual connections from encoder layers to corre-
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sponding decoder ones. The residual module includes several convolutional layers plus

skips connections. The skip connections from the encoder to decoder allow the model to

fuse low-level features (e.g., edges, corners) with higher level features (e.g., semantics).

This is the main network used by most human pose estimation works. Chu et al. (2017)

analyzed the ’Stacked Hourglass’ by plugging at its different decoder layers a set of At-

tention Modules (AM) and changing the standard Residual Modules (RM) by Hourglass

Residual Modules (HRM). There were three different AM, from low-level local attention

to high-level semantic attention: multi-resolution, multi-semantics and hierarchical vi-

sual scheme. Regarding RM, the new one contributed to increase the Receptive Field

(converge earlier), made robust to scale changes and incorporated features from different

scales. Chen et al. (2017b) published the first attempt of incorporating in an ’Hourglass’

two Adversarial Module in order to highlight two issues: exploiting geometric constraints

of joint inter-connectivity and incorporating priors about the structure of human bodies.

The generator outputs visible and occluded heatmaps. Then, the discriminators were

able to distinguish between real poses from fake ones (such as biologically implausible

ones). Similarly, Chou et al. (2018) approached human pose estimation implementing

an encoder-decoder-based discriminator (similar to ’Hourglass’) based on Berthelot et al.

(2017) in order to take into consideration the spatial relationships in the loss function and

not just a binary decision of real or fake. Then, the discriminator can give some hints to

improve the heatmaps.

Additionally, the human body part segmentation approaches have followed the same

trend, turning a similar transition from well-known methods such as structured-SVM,

CRF, MRF to deep hierarchical feature learning methods, CNN. For example, Luo et al.

(2013) worked on parsing pedestrian images into semantic regions, such as legs, arms,

body, head, and hair by training a Deep Decompositional Network (DDN). It was one of

the first approaches using deep neural networks, which consists of three different hidden

layers: occlusion estimation, data completion, and data transformation. These layers

unify the traditional machine learning pipeline of data pre-processing in one-all-model

since it directly maps low-level visual features to the label maps of body parts. Oliveira

et al. (2016) collected images captured from a drone for people in disaster situations.

Then, they took a pre-trained network on image classification and trained a refined Fully

Convolutional Network (FCN) composed of multiple layers, where top layers combine

upsampled outputs with layers from the bottom. The work of Luo et al. (2018) also studied

how to tackle human parsing utilizing Adversarial Learning. In concrete, they made

use of two discriminators to palliate adversarial side effects such as local and semantic

inconsistency. Thus, one discriminator focused on low-resolution label map penalizing

the semantic inconsistency (i.e., misplaced body parts). The other discriminator focused

on multiples patches of the high-resolution label map dealing the local inconsistency
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(i.e., blur and holes). Moreover, Kalayeh et al. (2018) faced human semantic parsing by

extracting robust discriminative features from two very deep networks, Inception-V3 and

ResNet-152. Then, they applied global average pooling to harness local visual features.

Given the need for large volumes of data to train deep learning models, there is a recent

trend in learning MTL approaches. This paradigm shares information among different

tasks for a better generalization while leveraging the amount of annotated data for each

task. Such amount of data are publicly available for the automatic analysis of humans on

works from Everingham et al. (2015); Liang et al. (2018); Lin et al. (2014); Varol et al.

(2017). Related tasks include 2D pose estimation from Alp Güler et al. (2018); Andriluka

et al. (2014); Gong et al. (2017); Lassner et al. (2017); Liang et al. (2018); Lin et al.

(2014), body part segmentation from Alp Güler et al. (2018); Andriluka et al. (2014);

Everingham et al. (2015); Lassner et al. (2017); Liang et al. (2018); Lin et al. (2014); Nie

et al. (2017), human re-identification by Lassner et al. (2017), clothes parsing from Gong

et al. (2017); Liang et al. (2018); Nie et al. (2017), motion/optical flow by Shahroudy

et al. (2016); Zhang et al. (2013), depth estimation of Lassner et al. (2017); Varol et al.

(2017), body shape model by Alp Güler et al. (2018); Varol et al. (2017), body parts

shape segmentation of Varol et al. (2017), human 3D pose estimation from Ionescu et al.

(2011, 2014); Mehta et al. (2017), or sign language recognition of Newell et al. (2016b),

among others.

On the one hand, outstanding results have been achieved by using deep learning

in tasks like the 2D pose in the wild by Alp Güler et al. (2018); Liang et al. (2018).

On the other hand, the performance of other related tasks such as 3D pose, pixel-level

segmentation, and human body depth estimation from RGB images still require further

improvements in order to be accurately applied in real-world scenarios.

Recent approaches tend to benefit from unsupervised and cross-domain scenarios

as Zamir et al. (2018b) in order to reuse data and deal with related tasks. One stan-

dard technique in this scope is the use of multi-task approaches from Everingham et al.

(2015); Ionescu et al. (2011); Lin et al. (2014). Multi-task learning paradigm examined in

depth by Baluja and Caruana (1995) has been shown to benefit human analysis tasks by

leveraging the amount of data to be annotated since each image/video does not need a

full annotation of all attributes: subsets of data can be annotated for different problems.

Most importantly, while solving several tasks together, information is shared among them

during training, providing them with complementary information for a better generaliza-

tion.

Such multi-task works from He et al. (2017); Kokkinos (2017); Omran et al. (2018);

Varol et al. (2018) tend to extend the number of tasks to better benefit from sharing

knowledge within cross-domain tasks. One extreme example can be found in He et al.

(2017), that extended the number of tasks to eight, not just analyzing humans but ob-
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jects and animals. He et al. (2017) developed a pyramid image decomposition as input to

deal with semantic/boundary/object detection, standard estimation saliency/normal es-

timation, semantic/human part segmentation, semantic boundary detection, and region

proposal generation. Other works such as as Dai et al. (2016); Luvizon et al. (2018);

Popa et al. (2017); Zhao et al. (2018) added additional tasks such for instance segmen-

tation, multi-human parsing, and mask segmentation. As an example, Dai et al. (2016)

faced instance segmentation, object detection and mask segmentation in a stacked fashion.

Moreover, some research has been conducted by using multi-task of 2D/3D pose and body

parts parsing by Alp Güler et al. (2018); Xia et al. (2017), sometimes including additional

tasks as 3D body shape estimation from Omran et al. (2018); Varol et al. (2018).

One can find different strategies in order to define multi-task schemes. Zamir et al.

(2018b) performed the most large-scale analysis of cross-domain for indoor scenes with

no-human interaction in their new dataset. They trained 26 neural networks, one per

category and new combinations related to multiple domains via transfer learning instead

of multi-tasking. Most patterns found on this dataset exclude human kinematic con-

straints. Xia et al. (2017) built a two-stage FCN process that initially detects human

pose and finally refines body parts parsing through the conditional random field. The

work of Alp Güler et al. (2018) used Mask-RCNN from He et al. (2017) in a multi-task

cascade fashion connecting several intermediate layers for pose estimation and body parts

parsing, while Kokkinos (2017) used Mask R-CNN for instance/mask segmentation and

object/key-point detection problems. The work of Zhao et al. (2018) made use of adver-

sarial networks in a nested way, i.e., GANs outputs are used as the input to other GAN to

deal with pose estimation and body parts parsing. In Popa et al. (2017); Wei et al. (2016)

recursive processing stages are used to detect and segment 2d/3d pose and body-parts.

While Kocabas et al. (2018) performed faster inference facing person/keypoint detection,

person segmentation and pose estimation on two streams: key-point and person detection.

Another common combination of tasks is 2D/3D pose and body/clothes parsing in Ionescu

et al. (2011) on datasets such as Pascal from Everingham et al. (2015) or COCO from Lin

et al. (2014). The work of Nie et al. (2018) used two encoders (2D pose and clothes

parsing) with a module as a middle stream that acts as a parameter adapting to merge

the features of both tasks and perform classification separately. In contrast, Liang et al.

(2018) proposed a two-stage multi-task procedure that first extracts sharing features with

residual networks to be used in a second stage consisting of two CNN performing 2D pose

estimation and clothes parsing, respectively.

Finally, Varol et al. (2017) published SURREAL, a dataset of sequences of realistic

synthetic human bodies. The dataset includes RGB, 2D/3D joints, segmented body parts,

optical flow, and depth information. This new dataset allows exploring new multi-task

approaches for human body analysis.
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Chapter 3

Block I

In this chapter, we present two distinct approaches to tackle human multi-limb and full-

body segmentation. These approaches are based on traditional state-of-the-art methods

such as Random Forest, AdaBoost and SVM’s. Besides, we make use of hand-crafted fea-

tures, in particular, HOG and Haar-like features. Complementary, methods from graph-

ical models (GraphCuts), ensemble learning (Stacked Generalization Learning, ECOC

framework) are used to optimize the learning procedure.

3.1 HuPBA 8k+: Dataset and ECOC-GraphCut based

Segmentation of Human Limbs

3.1.1 Introduction

Human body analysis in visual data is a challenging area since it has to face many hand-

icaps related to high variability in data such as lighting conditions, cluttering, clothes,

appearance, background, point of view, number of human body limbs. Even so, it has

become one of the main interest areas of research because of its capabilities in final appli-

cations (i.e., surveillance, medical imaging, sign language, people recognition, interactive

virtual reality systems).

In the last years, a new application domain has raised dealing with human analysis,

customarily named ”Looking at people,” involving a set of main topics that cover this

work: human body(parts) detection/segmentation and gesture recognition, both located

in the sub-area of human pose estimation.

Human limb segmentation in RGB images has been a the core problem in the Com-

puter Vision field since its early beginnings. In this particular problem, the goal is to

provide with a complete segmentation of the human/s body parts appearing in an image,

discriminating the human body from the rest of the image. Usually, human body segmen-

25
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tation is treated in a two-stage fashion. First, a human body part detection is performed,

and then, these detections are used as prior knowledge to be optimized by segmentation

strategies in order to obtain the pixels belonging to the different limbs of interest.

Related to human pose estimation, either detection or segmentation approach. In the

first stage, Dalal and Triggs (2005b) detect the human body using a cascade of classifiers

architecture with SVM and HOG features. This is one of the main approaches used to

initialize posterior pose estimation and segmentation approaches. Agarwal and Triggs

(2006) make use of human silhouettes since most of the body pose information remains

there and applied regression of joint angles against clustering of a histogram of shape

context. As a result, no body model or labeled localizations of body parts are needed.

Ramanan et al. (2007) detect body parts and use a pictorial tree structure to infer the

final pose of the human. Bourdev and Malik (2009) use body part detections in an AND-

OR graph to obtain the pose estimation. Similarly, Andriluka et al. (2010) use Adaboost

Classifiers as boosted part detectors and shape context representation in a tree pictorial

structure to initialize a pedestrian tracking system. A distinct paradigm can be found in

the work of Yao and Fei-Fei (2010) that defines a new descriptor including logical rela-

tions where local features are codified using logical operators, permitting a discriminative

understanding of the person and the context. Wang et al. (2011) employ hierarchical

poselets as part-based models to deal with non-rigid parts (e.g., ankle, neck, wrist) and

to capture different granularity of details. Finally, Pishchulin et al. (2013a,b) expand a

tree-structure conditioned on poselet hypotheses as medium level feature representation

to keep an exact yet tractable inference for both unary and binary terms.

In the second stage, once the human body pose is obtained, many methods can be ap-

plied in order to obtain a human/background segmentation. Vineet et al. (2011) propose

to use Conditional Random Fields based on body part detectors to obtain a complete per-

son/background segmentation. Shotton et al. (2013) build a real-time system so-called

Kinect by using depth images to train very deep random forests with depth pixel dif-

ference features for body part segmentation. Besides, there are different approaches to

obtain either a multi-limb or a complete human body segmentation. One of the methods

that are giving superior performance is the well-known pictorial structure in Andriluka

et al. (2009); Sapp et al. (2010a) for object recognition. This method was introduced

by Fischler and Elschlager (1973) and revisited by Felzenszwalb and Huttenlocher (2005),

which uses a set of joint limb marks involving a pictorial structure to infer spatial proba-

bilities. The method of Felzenszwalb and Huttenlocher (2005) represents an object that

consists of hard parts linked by spring in order to give them some deformation. Andriluka

et al. (2009) use body part detections in a boosting fashion to obtain the pose estimation,

which proposes a method that covers non-rigid object detection and articulated pose es-

timation. Felzenszwalb et al. (2010) introduce mixtures of multi-scale deformable part
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models where each human body part is trained discriminatively and improve matching

deformable models. An extension is presented by Yang and Ramanan (2011, 2013) which

proposes a discriminatively trained pictorial structure that models the body joints in-

stead of limbs. The work of Sapp et al. (2010b) defines a discriminative coarse-to-fine

cascade of pictorial structure to reduce the pose search space and get finer poses includ-

ing multiple features descriptors such as contour, geometry, shape, and appearance. On

the other hand, Wang and Mahadevan (2013) define that a composition of the parts is a

hierarchy for different combinations of pictorial structures. In this way, it is possible to

consider a different set of poses and connections of the parts. Similarly to pictorial struc-

ture, Felzenszwalb and McAllester (2011) and Girshick et al. (2011) formalize grammar

models in order to provide a flexible framework for people detection and segmentation

where the human body is a compositional structure of body parts complemented with

deformation rules that allow relative body part movement. A compositional AND-OR

graph grammar model from Rothrock et al. (2013) include the Background cue to deal

with clutter scenes, occlusions in the human body and body part segmentation. Similarly,

Ladicky et al. (2013) combine the articulated poses from a pictorial structure part-based

model and learn a graphical structure pixel-based model plus color and texture features

to segment body parts. In contrast, there are some works using Graph Cuts optimization

such in human body parts segmentation of Hernández-Vela et al. (2012b) or person seg-

mentation of Rother et al. (2004a). Eichner et al. (2012) make use of an edge-template

model to learn priors of Foreground and the human body and initialize a following Grab-

Cut procedure of Foreground/Background labeling in order to reduce body parts search

space. Another kind of pose initialization is done by Sapp et al. (2011) for human motion

where decoupling a complex problem in an ensemble-based approach of tree-structure per

joint is learned to obtain an exact inference. Besides, there are other approaches such

as the one proposed by Ramanan (2006) which uses an iterative parsing procedure for

learning a model for each sample. Besides, the multi-person pose estimation from Eich-

ner and Ferrari (2010) utilizes an upper-body detector as first rough estimates in order

to incorporate a multi-pictorial structure to obtain all poses jointly with occlusion priors

and an inter-people exclusion penalty.

In gesture recognition, there exists a vast number of methods based on dynamic pro-

gramming algorithms for alignment and clustering of temporal series like Zhou et al.

(2013). Other probabilistic methods such as Hidden Markov Models (HMM) or Condi-

tional Random Fields (CRF) have been commonly used in the literature as in Starner

and Pentland (1997). Nevertheless, one of the most common methods for Human Gesture

Recognition is Dynamic Time Warping(DTW) is the one from Reyes et al. (2011) since

it offers a simple yet effective temporal alignment between sequences of different lengths.

Typically, in order to apply an evaluation procedure, these methods are applied on RGB
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images which are collections of people performing different gestures. Therefore, part of

the performance of those methods involves creating a dataset robust enough to deal with

the constraints of the problem to address.

In the Computer Vision community, we can find different datasets according to vari-

able scenarios, people, illumination characteristics and so on. Such datasets like Parse

from Ramanan (2006), Buffy in Ferrari et al. (2008), UIUC People from Tran and Forsyth

(2010), Pascal VOC in Everingham et al. (2010), to cite a few, are widely used to eval-

uate the different methods than the community use. As a result of the lack of variety

of samples, we introduced by previous search, a new dataset named HuPBA in order to

tackle much more specific human body analysis and recovery (i.e., multi-limb segmenta-

tion, gesture recognition). Such datasets on literature do not scale enough the number of

properties such as several limbs annotation at pixel precision, limbs labeled with a second

plus of gesture recognition approach.

In this chapter, we present a novel double two-stage approach for the segmentation of

the human body on RGB data. We propose to use a cascade of classifiers as body part

detectors in a tree-structure combining their outputs in an Error-Correcting Output Codes

framework. Once the body-pose estimation is obtained, it is used as initialization of a

GMM color modeling and posterior binary Graph Cut segmentation optimization. Then,

HOG features are used to describe the dataset and used train SVM classifiers according

to a tree-structure without taking into account the background category (since in the

previous step we remove it). After that, the binary person segmentation from Graph Cut

is applied to each RGB image as an overlapping base in order to constrain the region to

evaluate. Once it is done, GraphCut multi-limb is applied to each image and with the

priors of each limb in order to segment as many limb categories as are defined. Besides,

gesture recognition is applied by using HMM and DTW. Furthermore, we provide a novel

dataset consisting of 8 000 images in which 14 limbs were manually tagged. As a result of

our double two-stage segmentation methodology, we show performance in comparison to

state-of-art methods applied to binary segmentation, multi-limb segmentation and gesture

recognition.

3.1.2 HuPBA 8K+ Dataset

Automatic human-limb detection and segmentation, human pose recovery and behavior

analysis are challenging problems in computer vision, not only for the intrinsic complexity

of the tasks, but also the lack of large public and annotated datasets. Usually, public

available dataset lack of refined labeling or contain a very reduced number of samples per

limb (e.g., Buffy Stickmen V3.01, Leeds Sports and Hollywood Human Actions from Ferrari

et al. (2008); Johnson and Everingham (2010); Laptev et al. (2008)). Besides, large
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datasets often use synthetic samples or capture human limbs with sensor technologies

such as MoCap in very controlled environments from De la Torre et al. (2008).

Being aware of this lack of publicly available datasets for multi-limb human pose

detection, segmentation and gesture recognition, we present a novel fully limb labeled

dataset, the HuPBA 8k+ dataset. This dataset is formed by more than 8 000 frames

where 14 limbs are labeled at pixel precision1. Furthermore, the HuPBA 8k+ dataset

also contains gesture annotations for 11 separate and collaborative gesture categories.

The main characteristics of the dataset are the following:

1. The images are obtained from 9 videos (RGB sequences) and a total of 14 different

actors appear in those 9 sequences. In concrete, each sequence has the main actor

(9 in total) which during the video interacts with secondary actors performing a set

of different actions.

2. Each video (RGB sequence) was recorded with a 15 fps rate.

3. RGB images were stored with resolution 480x360 in BMP file format.

4. For each image 14 limbs were manually tagged: Head, Torso, R-L Upper-arm, R-L

Lower-arm, R-L Hand, R-L Upper-leg, R-L Lower-leg, R-L Foot.

5. Limbs are manually labeled using binary masks, and the minimum bounding box

containing each subject is defined.

6. The actors appear in a wide range of different poses and performing different ac-

tions/gestures.

7. For each video we manually labeled a set of 11 gesture categories: Wave, Point,

Clap, Crouch, Jump, Walk, Run, Shake Hands, Hug, Kiss, Fight.

Finally, the easy and challenging aspects of the HuPBA 8k+ dataset are listed in

Table 3.1.

3.1.2.1 Data Format and Structure

The dataset we introduce is composed of RGB images, labeled limbs (binary masks) and

additional information that has a specific structure to distinguish the location of limbs

and gestures for each actor. Additionally, for each actor, a pair of structured files are

created to store the location of the bounding-boxes for each RGB image and the start-

end frames associated with the gestures executed. The folder structure that contains the

HuPBA 8k+ dataset is shown in Fig. 3.1.

1The whole number of manually labeled limbs exceeds 120 000.
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Easy

Fixed Camera

Frontal point of view

Full body capture

The main actor is kept within a sequence

Several instances of each gesture

Gestures differentiated by an idle pose

Fixed background across all video sequences

Challenging

Within each sequence:

Gestures executions involve most limbs

Gestures imply the interaction of various actors

Between sequences:

Variations in clothing, skin color, height and width person

Some parts of the body may be occluded

Table 3.1: Easy and challenging aspects of the HuPBA 8k+ dataset.

\HuPBA_dataset

README.txt

\actors

{\01, … ,\09}

\masks\images\csv_files

0X_boundingbox.csv

0X_gestures.csv

\video

Figure 3.1: Folders structure.
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3.1.2.1.1 Folder \images

In this folder, we store the set of frames for a given video sequence. The folder \images

contains the sequence of RGB images (480x360 pixels). Each image name has the structure

idActor numberFrame.bmp, where:

• idActor: Numerical identifier of the actor {01, 02, ..., 09}.

• numberFrame: Numerical identifier of the image in the sequence.

3.1.2.1.2 Folder \masks

This folder contains the binary masks for each one of the 14 limbs appearing on each

frame. In the case of two actors appearing in a frame, there will be a id for each

one in order to distinguish limbs. Each binary mask name has the structure idAc-

tor numberFrame idUser idLimb.bmp, where:

• idActor: Numerical identifier of the actor {01, 02, ..., 09}.

• numberFrame: Numerical identifier of the image in the sequence.

• idUser: Numerical identifier for the actor that appears in the image. Values

{1, 2, ..., n}. In the case of appearing two actors: The main actor and another,

the main actor is 1, the second is 2, and so on.

• idLimb: Numerical identifier of the limb, which are described in Fig. 3.2.

3.1.2.1.3 Bounding-boxes

In addition, for each sequence of images there is a file 0X boundingbox.csv located in the

directory \csv files that contains the bounding-boxes of all actors that appear in that

sequence. That is, for each actor that appears in an image, its bounding-box is given. In

the case of two actors appearing in an image, two bounding-boxes will be described, one

for each actor, as shown in Fig. 3.3. The csv file contains the following structure:

• id user: Numerical identifier for the actor that appears in the image. Values

{1, 2, ..., n}. In the case of appearing two actors: The main actor and another,

the main actor is 1 and the second is 2. Thus, there will be two bounding-boxes,

one for 1, another for 2, and so on.

• number frame: Numerical identifier of the image in the sequence.

• x: Minimum position of X. That is, the leftmost.
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Label 1: Head

Label 2: Torso

Label 3:
 L. Hand

Label 4: 
R. Hand

Label 5: 
L. ForearmLabel 6: 

R. Forearm

Label 7: L. Arm
Label 8: 
R. Arm

Label 9: L. Foot
Label 10: 
R. Foot

Label 11: L. LegLabel 12:
 R. Leg

Label 13: 
L. Thigh

Label 14: 
R. Thigh

Figure 3.2: Human-Limb labelling on the HuPBA 8k+ dataset.

Figure 3.3: Sample of two bounding-boxes in a frame.

• y: Minimum position of Y. That is, the uppermost.

• width: Width of the bounding-box.

• height: Height of the bounding-box.

3.1.2.1.4 Gestures

Besides of the human-limb labeling provided on the dataset, we also annotated gestures

performed by the actors. The 11 gesture categories labeled are the following: Wave,

Point, Clap, Crouch, Jump, Walk, Run, Shake Hands, Hug, Kiss, and Fight. An example

of keyframes for the different gesture categories are shown in Fig. 3.4. Each set of gestures
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HuPBAPARSE 2006BUFFY 2008UIUC 2010LEEDS 2010HW 2008MMGR13 2013Human Actions 2004Pascal VOC 2010

Labeling at

pixel

precision

Yes No No No No - No No Yes

Number of

limbs
14 10 6 14 14 - 16 - 5

Number of

labeled limbs
124 761 3 050 4 488 18 186 28 000 - 27 532 800 - 8 500

Number of

frames
8 234 305 748 1 299 2 000 - 1 720 800 - 1 218

Full body Yes Yes No Yes Yes - Yes Yes Yes

Limb

annotation
Yes Yes Yes Yes Yes No Yes No Yes

Gesture

annotation
Yes No No No No Yes Yes Yes No

Number of

gestures
11 - - - - 8 20 6 -

Number of

gesture

samples

235 - - - - 430 13 858 600 -

Table 3.2: Comparison of public dataset characteristics.

performed by an actor is associated with a file ./csv files/0X gestures.csv that contains

the following structure:

• id user: Numerical identifier for the actor that appears in the image. Values

{1, 2, ..., n}.

• label gesture: Numerical identifier related to the gesture performed. There are

gestures that involve just one actor (i.e. walk or run), and others more than one

actor (i.e. fight or kiss).

• start frame: The number of image where the gesture starts.

• end frame: The number of the image where the gesture ends.

Finally, in Table 3.2 we compare the HuPBA 8k+ dataset characteristics with some

publicly available datasets. These public datasets are chosen to take into account the

variability of limbs and gestures. Thus, we present a novelty dataset in which the limbs

are labeled at pixel precision with more labeled limbs for many images higher than most

public datasets (i.e., Pascal VOC, PARSE, BUFFY, UIUC people, LEEDS SPORTS).

In case of gestures, there is more equality in the number of gestures set with the others

datasets (i.e., HOLLYWOOD (HW), MMGR13, Human Actions) but ours lets work with

much more precision because of limbs labeled at pixel precision. In contrast, MMGR13

present much more variety of gestures and samples than us.

3.1.3 Methodology

In the following subsections, we describe the proposed system for automatic segmentation

of human limbs. To accomplish this task, we start by defining a framework divided into
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(a) Wave (b) Point (c) Clap

(d) Crouch (e) Jump (f) Walk

(g) Run (h) Shake hands (i) Hug

(j) Kiss (k) Fight (l) Idle

Figure 3.4: Different gesture categories labeled on the HuPBA 8k+ dataset. Images from

(a) to (g) illustrate single actor gestures, and images from (h) to (k) show gestures that

required interacting with a secondary actor. Additionally, (l) shows an example of an idle

gesture.
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ECOC multi­limb

detection

Binary GrabCut 
optimization for
foreground mask

extraction

Stage 1: Binary Segmentation

Stage 2: Multi­limb Segmentation

 
Tree­structure body

part learning without
background

 
Alpha­beta swap

Graph Cuts 
multi­limb

segmentation

● Haar­like features
● Cascade of AdaBoost

● Loss­Weighted decoding

● HOG features
● SVM+RBF Kernel
● Loss­Weighted decoding

 

ECOC multi­limb
detection

(a) (b) (c) (d)

Body­like 
probability map

Limb­like
probability map 

definition

(e) (f) (g) (h)

Person/Background
segmentation input

Tree­structure 
learning of 
human limbs

Input

(i)

Head
Torso 
Arms
Forearms
Thighs
Legs

Figure 3.5: Scheme of the proposed human-limb segmentation method.

a two-stage procedure. The first stage focused on binary person/background segmenta-

tion is split in four main steps: a) Body part learning using a cascade of classifiers, b)

Tree-structure learning of human limbs, c) ECOC multi-limb detection, also, d) Binary

GrabCut optimization for foreground extraction. In the second stage, we segment the

person/background binary mask into different limb regions. This stage is split into the

following four steps: e) Tree-structure body part learning without background, f) ECOC

multi-limb detection, g) Limb-like probability map definition, and h) Alpha-beta swap

Graph Cuts multi-limb segmentation. The scheme of the proposed system is illustrated

in Fig. 3.5.

3.1.3.1 Body part learning using a cascade of classifiers

The core of most human body segmentation methods in the literature relies on body part

detectors. In this sense, most part detectors in literature follow a cascade of classifiers

architecture as in Chen and Chen (2008); Enzweiler and Gavrila (2009); Freund and

Schapire (1995); Mikolajczyk et al. (2004); Zhu et al. (2006). The Cascades of classifiers

are based on the idea of learning and unbalanced binary problem by using the negative
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outputs of a classifier di as an input for the following classifier di+1. Mainly, this cascade

structure allows any classifier to refine the prediction by reducing the false positive rate

at every stage of the cascade. In this sense, we use AdaBoost as the base classifier in our

cascade architecture.

Besides, in order to make the body part detection rotation invariant, all body parts

are rotated to the dominant gradient region orientation. Then, Haar-like features are used

to describe body parts.

Because of its properties, a cascade of classifiers is usually trained to split one visual

object from the rest of the possible objects of an image. This means that the cascade

of classifiers learns to detect a particular object (body part in our case), ignoring all

other objects (all other body parts). However, if we define our problem as a multi-limb

detection procedure, some body parts are similar in appearance, and thus, it makes sense

to group them in the same visual category. Because of this reason, we propose to learn

a set of a cascade of classifiers where a subset of limbs are included in the a positive

set of a cascade and the remaining limbs are included as negative instances together with

background images in the negative set off the cascade. Applying this grouping for different

cascades of classifiers in a tree-structure way and combining them in an Error-Correcting

Output Codes (ECOC) framework enables the system to perform multi-limb detection as

in Escalera et al. (2010a).

3.1.3.2 Tree-structure learning of human limbs

The first issue to take into account when defining a set of cascades of classifiers is how to

define the groups of limbs to be learned by each cascade. For this task, we propose to train

a tree-structure a cascade of classifiers. This tree-structure defines the set of meta-classes

for each dichotomy (a cascade of classifiers) taking into account the visual appearance

of body parts, which has two purposes. On the one hand, we aim to avoid dichotomies

in which body parts with different visual appearance belong to the same meta-class. On

the other hand, the dichotomies that deal with classes that are difficult to learn (body

parts with similar visual appearance) are defined taking into account a few classes. An

example of the body part tree-structure defined taking into account these issues for a set

of 7 body limbs is shown in Fig. 3.6(a). Notice that classes with similar visual appearance

(e.g., upper-arm and lower-arm) are grouped in the same meta-class in most dichotomies.

Besides, dichotomies that deal with severe problems (e.g., d5) are focused only on the

problematic classes, without taking into account all other body parts. In this case, class

c7 denotes the background.
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Figure 3.6: (a) Tree-structure classifier of body parts, where nodes represent the defined

dichotomies. Notice that the single or double lines indicate the meta-class defined. (b)

ECOC decoding step, in which a head sample is classified. The coding matrix codifies

the tree-structure of (a), where black and white positions are codified as +1 and −1,

respectively. c, d, y, w, X, and δ correspond to a class category, a dichotomy, a class

codeword, a dichotomy weight, a test codeword, and a decoding function, respectively.

3.1.3.3 ECOC multi-limb detection

In the ECOC framework, given a set of N classes (body parts) to be learned, n different

bi-partitions (groups of classes or dichotomies) are formed, and n binary problems over

the partitions are trained as in Bautista et al. (2012b). As a result, a codeword of length n

is obtained for each class, where each position (bit) of the code corresponds to a response

of a given classifier d (coded by +1 or −1 according to their class set membership, or 0

if a particular class is not considered for a given classifier). Arranging the codewords as

rows of a matrix, we define a coding matrix M , where M ∈ {−1, 0,+1}N×n. During

the decoding (or testing) process, applying the n binary classifiers, a code x is obtained

for each data sample ρ in the test set. This code is compared to the base codewords

(yi, i ∈ [1, .., N ]) of each class defined in the matrix M and the data sample is assigned

to the class with the closest codeword as in Escalera et al. (2010a).

The ECOC coding step has been widely tackled in the literature either by predefined

or problem-dependent strategies. However, recent works showed that problem-dependent

strategies could obtain high performance by focusing on the idiosyncrasies of the problem,

similar to Bautista et al. (2014). Following this fashion, we define a problem dependent

coding matrix in order to allow the inclusion of cascade of classifiers and learn the body

parts. In particular, we propose to use a predefined coding matrix in which each dichotomy

is obtained from the body part tree-structure described in the previous section. Fig. 3.6(b)

shows the coding matrix codification of the tree-structure in Fig. 3.6(a).
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3.1.3.3.1 Loss-weighted decoding using cascade of classifier weights

In the ECOC decoding step an image is processed using a windowing method, and then,

each image patch, that is, a sample ρ is described and tested. In this sense, each clas-

sifier d outputs a prediction whether ρ belongs to one of the two previously learned

meta-classes. Once the set of predictions xρ1×n is obtained, it is compared to the set

of codewords of M , using a decoding function δ(xρ,M). Thus, the final prediction is

the class with the codeword that minimizes δ(xρ,M). Escalera et al. (2010a) proposed a

problem-dependent decoding function (distance function that takes into account classi-

fier performances) obtaining very satisfying results. Following this core idea, we use the

Loss-Weighted decoding of Equation 3.1, where Mw is a matrix of weights and L is a loss

function (L(θ) = exp−θ).

δLW (xs, i) =
n∑
j=1

Mw(i, j)L(yij · dj(xs)) (3.1)

In Equation 3.1, Mw (weight matrix) corresponds to the product of cascade accuracy at

each stage. Thus, each column i of Mw is assigned a weight wi as,

wi =
k∏
j=1

TP (dij) + TN(dij)

TP (dij) + FN(dij) + FP (dij) + TN(dij)
, (3.2)

for a cascade of classifiers of k stages, where dij stands for the i-th cascade and stage

j, j ∈ [1, .., k], and TP, TN, FN, and FP computes the number of true positives, true

negatives, false negatives and false positives, respectively. Finally, a body-like probability

map P bl ∈ [0, 1]l×w, where l and w are the length and width of I, is build. This map

contains, at each position P bl
ij , the proportion of body part detections for each pixel over

the total number of detections for the whole image. In other words, pixels belonging to

the human body will show a higher body-like probability than the pixels belonging to the

background. Examples of probability maps obtained from ECOC outputs are shown in

Fig. 3.9(e) and 3.9(g), respectively. (see also step (c) in Fig. 3.5).

3.1.3.4 Binary GrabCut optimization for foreground mask extraction

GrabCut approach from Hernández-Vela et al. (2012b) has been widely used for interactive

background/foreground extraction (binary segmentation). Formally, given a color image

I, let us consider the array z = (z1, ..., zq, ..., zQ) of Q pixels where zi = (Ri, Gi, Bi),

i ∈ [1, ..., Q] in RGB space. The segmentation is defined as an array α = (α1, ...αQ), αi ∈
{0, 1}, assigning a label to each pixel of the image indicating if it belongs to background

or foreground. A trimap T is defined consisting of three regions: TB, TF and TU , each

one containing initial background, foreground, and uncertain pixels, respectively. Pixels
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belonging to TB and TF are clamped as background and foreground respectively—which

means GrabCut will not be able to modify these labels, whereas those belonging to TU

are actually the ones the algorithm will be able to label. Color information is introduced

by GMMs. A full co-variance GMM of U components is defined for background pixels

(αi = 0), and another one for foreground pixels (αj = 1), characterized as follows,

θ = {π(α, u), µ(α, u),Σ(α, u), α ∈ {0, 1}, u = 1..U}, (3.3)

being π the weights, µ the means and Σ the co-variance matrices of the model. We

also consider the array u = {u1, ..., ui, ...uQ}, ui ∈ {1, ...U}, i ∈ [1, ..., Q] indicating the

component of the background or foreground GMM (according to αi) the pixel zi belongs

to. The energy function for segmentation E is then,

E(α,u,θ, z) = U(α,u,θ, z) + λV(α, z), (3.4)

where U is the likelihood potential based on the probabilities p(·) of the GMM,

U(α,u,θ, z) =
∑
i

−log p(zi|αi, ui,θ)− log π(αi, ui), (3.5)

and V is a regularizing prior assuming that segmented regions should be coherent in terms

of color, taking into account a neighborhood N around each pixel,

V(α, z) = γ
∑

{m,q}∈N

[αq 6= αm] exp (−β‖zm − zq‖2), (3.6)

where weight λ ∈ R+ specifies the relative importance of the boundary term against the

unary term U .

With this energy minimization scheme and given the initial trimap T , the final seg-

mentation is performed using a minimum cut algorithm. However, we propose to omit the

classical semiautomatic trimap initialization by an automatic trimap assignment based

on the human body probability map P bl ∈ [0, 1]l×w. In this sense, depending on the

probability of each pixel it will be assigned to a particular tag TB, TF and TU .

3.1.3.5 Tree-structure body part learning without background

Once the binary person/background segmentation is performed utilizing GrabCut (mask

shown in Fig. 3.5(e)), we apply a second procedure in order to split the person mask into

a set of human limbs.

For this step, we define a new tree-structure classifier similar to the one described

in Section 3.1.3.2 without including the background class c7 shown in Fig. 3.6(a). An

example of the tree-structure body part taking into account the set of 6 body limbs is

shown in Fig. 3.7(a).
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Figure 3.7: (a) tree-structure classifier of 6 body parts, (b) ECOC decoding step.

3.1.3.6 ECOC multi-limb detection fine-grained

In order to obtain an accurate detection of human limbs within the segmented user mask,

we base on HOG descriptor from Dalal and Triggs (2005b) and SVM classifier which

has shown to obtain robust results in human estimation scenarios as in Dalal and Triggs

(2005b); Freund and Schapire (1995); Hernández-Vela et al. (2012b). We extract HOG

features for the different body parts (previously normalized to dominant region orien-

tation), so then, SVM classifiers are trained on that feature space, using a Generalized

Gaussian RBF Kernel based on Chi-squared distance applied in Yang et al. (2009).

This stage follows a similar pipeline as the one described in Section 3.1.3.3. In this

sense, each SVM classifier learns a binary partition of human limbs but without taking

into account the background class. As shown in Fig. 3.6(b), we train n = 6 SVMs with

different binary human-limb partitions.

At the ECOC decoding step, we also use the Loss-Weighted decoding function from Es-

calera et al. (2010a) shown in Equation 3.1 (an example is shown in Fig 3.7(b)). In this

sense, for each RGB test image corresponding to the binary mask shown in Fig. 3.5(e), we

adopt a sliding window approach and test each patch on our ECOC multi-limb recogni-

tion system. Then, based on the ECOC output we construct a set of limb-like probability

maps. Each map P c contains, at each position P c
ij, the probability of pixel at the entry

(i, j) of belonging to the body part class c, where c ∈ {1, 2, ..., 6}. This probability is

computed as the proportion of detections at point (i, j) overall detection for class c. Ex-

amples of probability maps obtained from ECOC outputs are shown in Fig. 3.5(h). While

Haar-like based on AdaBoost gave us a very accurate and fast initialization of human re-

gions for binary user segmentation, in this second step, HOG-SVM is applied in a reduced

region of the image, providing better estimates of human limb locations.
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Head Torso Arms Forearms Thighs Legs Background

Head 0 20 35 50 70 90 1

Torso 20 0 15 25 40 70 1

Arms 35 15 0 10 60 80 1

Forearms 50 25 10 0 30 60 1

Thighs 70 40 60 30 0 10 1

Legs 90 70 80 60 10 0 1

Background 1 1 1 1 1 1 1

Table 3.3: Prior cost between each pair of labels.

3.1.3.7 Alpha-beta swap Graph Cuts multi-limb segmentation

In our proposal, we base on Graph Cuts theory to tackle our human-limb segmentation

problem as in Boykov and Funka-Lea (2006); Boykov and Kolmogorov (2003); Boykov

et al. (2001); Hernández-Vela et al. (2012b); Rother et al. (2004a). Boykov et al. (2001)

developed an algorithm, named α-β swap graph-cut, which can cope with the multi-label

segmentation problem. The α-β swap graph-cut is an extension of binary graph cuts that

performs an iterative procedure where each pair of labels (αq, αm), {m, q} ∈ {1, 2, ..., 6},
are segmented using GC. This procedure segment all α pixels from β pixels with GC

and the algorithm will change the α-β combination at each iteration until convergence.

However, to cope with the multi-label case, an extension of the minimization framework

described in Section 3.1.3.4 is needed.

In this sense, αi ∈ {1, ..., c} and an initial labeling T ∈ {T1, ..., Tc} is defined by an

automatic trimap assignment based on the set of limb-like probability maps P c ∈ [0, 1]l×w

defined in previous section. In addition, the coefficient that multiplies the exponential

term in Equation 3.6, [αq 6= αm], is changed to Ω(cq, cm), which penalizes relations between

pixels zq and zm depending on their label assignations and a user-predefined pair-wise cost

to each possible combination of labels,

V(c, z) = γ
∑

{m,q}∈N

Ω(cq, cm) exp (−β‖zm − zq‖2). (3.7)

In concrete, in order to introduce prior costs between different labels, Ω(cq, cm) must

fulfill some constraints related to spatial coherence between the different labels, taking

into account the natural constraints of the human limbs (i.e., head must be closer to torso

than legs, arms are nearer to forearms than head, etc.). In particular, we experimentally

fixed the penalization function Ω as follows in Table 3.3:
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3.1.4 Experimental results

In order to present the experimental results, we first discuss the data, experimental set-

tings, methods and validation protocol.

3.1.4.1 Data

We use the proposed HuPBA 8k+ dataset described in Section 3.1.2. We reduced the

number of limbs from the 14 available in the dataset to 6, grouping those that are similar

by symmetry (right-left) as arms, forearms, thighs, and legs. Thus, the set of limbs of

our problem is head, torso, forearms, arms, thighs, and legs. Although labeled within the

dataset, we did not include hands and feet in our multi-limb segmentation scheme. Finally,

in order to train the limb classifiers, ground truth masks are used to normalize all limb

regions per dominant orientation, and both Haar-like features and HOG descriptors are

computed based on the aspect ratio of each region, being the descriptions scale invariant.

3.1.4.2 Methods and experimental settings

In this section we introduce the different methods compared for binary segmentation,

multi-limb segmentation and gesture recognition tasks. In addition, the experi-

mental settings for these methods are explained.

3.1.4.2.1 Binary segmentation

• P.Detector+GbCut: The well-known Person Detector of Dalal and Triggs (2005b)

followed by GrabCut segmentation.

• C.Class+GbCut: The cascade of classifiers proposed by Viola and Jones (2001a),

training one cascade of classifiers per limb and GrabCut segmentation.

• ECOC+GbCut: The proposed ECOC tree-structure body part classifier and au-

tomatic GrabCut segmentation.

3.1.4.2.2 Multi-limb segmentation

• FMP: This method was proposed by Yang and Ramanan (2011, 2013) and it is

based on Flexible Mixtures-of-Parts (FMP). We compute the average of each set of

mixtures for each limb and each pyramid level in order to obtain the probability

maps for each limb category. In order to compute the probability map of the back-

ground category, we subtract 1 with the maximum probability of the set of limbs

detection at the pixel location.
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• IPP: This method is proposed by Ramanan (2006) and it is based on an Iterative

Parsing Process (IPP). We use it to extract the limb-like probability maps followed

by α-β swap graph-cut multi-limb segmentation. The background category is com-

puted as shown in FMP method.

• ECOC+GraphCut: Our proposed human limb segmentation scheme shown in

Fig. 3.5.

3.1.4.2.3 Gesture recognition

For the case of the gesture recognition task, our goal is to provide with a firm baseline of

the recognition of the 11 actions categories labeled within the HuPBA 8K+ dataset. In

order to do it, we compare the performance of the following methodologies:

• Dynamic Time Warping using a random sample: We use the standard DTW

algorithm to recognize the different actions categories in the dataset Sakoe et al.

(1990). In order to compute the cost matrix for each of the gesture classes, we

choose a sample of that category at random.

• Dynamic Time Warping using the mean sample: Following the trend in

Hernández-Vela et al. (2013), to compute the cost matrix we form a mean sample of

each one of the action classes. That is, we choose the sample of each category and

align all samples with it. Then, once all samples from the same class are aligned

(they have the same length) we compute the mean, an example is shown in Fig. 3.8.

The cost-threshold for both DTW experiments was obtained by cross-validation on

training data, using a leave-one-sequence-out procedure.

• Hidden Markov Model: We use the standard discrete HMM framework from

Starner and Pentland (1997). Each HMM, was trained using the Baum-Welch al-
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gorithm, and 3 states were experimentally set for the every action category, using a

vocabulary of 10 symbols computed using K-means over the training data features.

Final recognition is performed with temporal sliding windows of different wide sizes,

based on the training samples length variability. The probability-threshold for the

HMM experiment was obtained by cross-validation on training data, using a leave-

one-sequence-out procedure.

3.1.4.2.4 Experimental settings

We used the standard Cascade of Classifiers based on AdaBoost from Viola and Jones

(2001a), and we forced a 0.99 false positive rate and a maximum of 0.4 false alarm rate

during 8 stages. In a preprocessing step, we resized al limb sample to a 32x32 pixels region

for computational purposes. To detect limbs doing cascades of classifiers, we applied a

sliding window approach with an initial patch size of 32x32 pixels up to 60x60 pixels. As a

final part of the first stage, GrabCut was applied to obtain the binary segmentation where

the initialization values of Foreground and background were provided to the GrabCut

algorithm and tuned via cross-validation.

For the second stage, we set the following parameters for the HOG descriptor: 32x32

window size, 16x16 block size, 8x8 block stride, 8x8 cell size and 8 for several bins. Then,

we trained SVMs with a Generalized Gaussian RBF kernel based on Chi-squared distance,

(see Fig.(a) 3.7). The parameters of the kernel, C and γ were tuned via cross-validation.

Finally, the model selection step was done via a leave-one-sequence-out CV. For multi-

limb segmentation we used the GraphCut procedure where we tuned the λ parameter of

GC, using CV setting an 8x8 neighboring grid.

3.1.4.3 Validation measurement

In order to evaluate the results for the three different tasks: binary segmentation, multi-

label segmentation, and gesture recognition, we use the Jaccard Index (J = A
⋂
B

A
⋃
B

) with

the ground-truth.

3.1.4.4 Experimental Results

In this section we show both qualitative and quantitative results for the three different

tasks: binary segmentation, multi-label segmentation and gesture recognition.

3.1.4.4.1 Binary segmentation

In Fig. 3.9 we can see an example of the person/background segmentation obtained by the

compared methodologies. In particular, we can see in Fig. 3.9(d) how the segmentation
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P.Detector+GbCut C.Class+GbCut ECOC+GbCut

49.60± 5.36 58.26± 4.24 61.79± 14.02

Table 3.4: Mean overlapping and standard deviation.

obtained by the Person Detector+GbCut method yields a poor result, segmenting dark

regions of the image. Furthermore, when comparing Fig. 3.9(e) and 3.9(f), the improve-

ment in the body-like probability map obtained by the ECOC+GbCut approach over the

cascade class+GbCut method is significant.

In order to evaluate the performance of the compared methodologies, Table 3.4 shows

the mean overlapping obtained on the whole dataset together with the standard deviation.

From the results, one can see the ECOC+GbCut method outperforms the compared

methodologies at least by a 5%. This improvement is the effect of two causes. The former

is the Error-Correcting capabilities of the ECOC framework. The latter is the tree-

structure definition of the coding matrix, which allows base classifiers to obtain accurate

results.

3.1.4.4.2 Multi-limb segmentation

Multi-limb segmentation, we show in Fig. 3.10 and Fig. 3.11 qualitative results. When

comparing the qualitative results, we can see how the FMP method from Yang and Ra-

manan (2011, 2013) performs worse than its counterparts. Besides, one can see how IPP

and our method obtain similar results.

Furthermore, we provide with quantitative results in terms of the Jaccard Index. In

Fig. 3.12 we show the different overlapping performance obtained by the different methods,

where each plot shows the overlapping for a particular limb. Besides, we analyze the

overlapping performance as a function of a ”Do not care” value that ranges from 0 to 4.

We use a ”Do not care” value which provides a more flexible interpretation of the

results. Consider the ground truth of a certain gesture category in a video sequence as a

binary vector, which activates when a sample of such category is observed in the sequence.

Then, the ”Do not care” value is defined as the number of bits (frames) which are ignored

at the limits of each one of the ground truth instances. Thus, by using this approach, we

can compensate for the pessimistic overlap metric in situations when the detection has

shifted some frames.

When analyzing quantitative results, we see how our method outperforms the com-

pared methodologies most of the times. In particular, for the Head region, both methods

obtain similar results, which is intuitive since the method used to detect the head is the

well-known face detector. Finally, we see how FMP method is in all cases obtaining the

worst performance.



46 3 Block I

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.9: (a) Original RGB image. (b) Multi-limb ground truth. (c) Probability map

obtained by the Person Detector method. (d) Person/background segmentation of the

Person Detector+GbCut approach. (e) Probability map yielded by the cascade class.

method. (f) Person/background segmentation of the cascade class method. (g) Proba-

bility map obtained from the ECOC method. (h) RGB segmentation obtained by the

ECOC+GbCut approach.
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RGB                    GT             ECOC+GraphCut          FMP                    IPP

Figure 3.10: Multi-limb segmentation results for the three methods, for each sample, we

also show the RGB image and the ground-truth (GT).
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RGB                    GT           ECOC+GraphCut          FMP                   IPP

Figure 3.11: Multi-limb segmentation results for the three methods, for each sample, we

also show the RGB image and the ground-truth (GT).
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Figure 3.12: Overlap/Don’t care size graph for each limb class and mean overlapping.
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3.1.4.4.3 Gesture recognition

In this section, we show the quantitative results obtained by the different gesture recog-

nition methods in terms of the Jaccard Index. Furthermore, to allow a more in-depth

analysis of the proposed methodologies, in our evaluations we use a Do not care value

which provides a more flexible interpretation of the results. Consider the ground truth

of a particular action category in a video sequence as a binary vector, which activates

when a sample of such category is observed in the sequence. Then, the Do not care value

is defined as the number of bits (frames) which are ignored at the limits of each one of

the ground truth instances. For further explanation of the algorithm see Bautista et al.

(2015). Thus, by using this approach, we can compensate for the pessimistic overlap

metric in situations when the detection has shifted some frames. The Jaccard Index as

a function of the Do not care value for the 11 action categories and the mean Jaccard

Index among action categories are shown in Fig. 3.13.

When analyzing quantitative results we see how the DTW Mean methods outperform

for most action categories the standard DTW Random and HMM methods. Besides,

when computing the mean Jaccard Index among all gesture categories the DTW Mean

approach also ranks first, obtaining a mean Jaccard Index of 0.20. This good result is due

to the use of information from all action samples which encodes the intra-class variability

of the gesture categories. Finally, we can see how in every case the Hidden Markov Model

is the worst performing method.

In the next section, we will see a particular approach for refining the limb-like prob-

ability maps by using Stacked Generalization Learning from Wolpert (1992). Following

this approach, we will be able to train a second classifier, called meta-classifier which

takes into account an extensive set of features that contains the likelihoods from previous

classifiers.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.13: Jaccard Indexes for the different action categories from (a) to (k). (l) Shows

the mean Jaccard Index among all action categories
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3.2 Learning To Segment Humans By Stacking Their

Body Parts

3.2.1 Introduction

Human segmentation in RGB images is a challenging task due to the high variability

of the human body, which includes a wide range of human poses, lighting conditions,

cluttering, clothes, appearance, background, point of view, number of human body limbs,

etc. In this particular problem, the goal is to provide a complete segmentation of the

person/people appearing in an image. In literature, human body segmentation is usually

treated in a two-stage fashion. First, a human body part detection step is performed,

obtaining a large set of candidate body parts. These parts are used as prior knowledge by

segmentation/inference optimization algorithms in order to obtain the final human body

segmentation.

In the first stage, that is the detection of body parts; weak classifiers are trained

in order to obtain a soft prior of body parts (which are often noisy and unreliable).

Most works in literature have used edge detectors, convolutions with filters, linear SVM

classifiers, Adaboost or Cascading classifiers from Viola and Jones (2001b). For example,

Ramanan (2006) used a tubular edge template as a detector and convolved it with an

image defining locally maximal responses above a threshold as detections. Ramanan et al.

(2005) used quadratic logistic regression on RGB features as the part detectors. Other

works, have applied more robust part detectors such as SVM classifiers from Chakraborty

et al. (2013); Hernández-Vela et al. (2012a,b) or AdaBoost in Pishchulin et al. (2013a)

trained over HOG features from Dalal and Triggs (2005b). More recently, Dantone et al.

(2013) used Random Forest as classifiers to learn body parts. Although recently robust

classifiers have been used, part detectors still involve false-positive and false-negatives

problems given the similarity nature among body parts and the presence of background

artifacts. Therefore, a second stage is usually required in order to provide an accurate

segmentation.

In the second stage, soft part detections are jointly optimized taking into account the

nature of the human body. However, standard segmentation techniques (that is, region-

growing, thresholding, edge detection, etc.) are not applicable in this context due to the

large variability of environmental factors (i.e., lightning, clothing, cluttering, etc.) and

the changing nature of body textures. In this sense, the most known models for the opti-

mization/inference of soft part priors are the Poselets in Bourdev et al. (2010); Pishchulin

et al. (2013a) and the Pictorial Structures in Andriluka et al. (2009); Felzenszwalb and

Huttenlocher (2000); Sapp et al. (2010a) both of which optimize the initial soft body
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part priors to obtain a more accurate estimation of the human pose, and provide with a

multi-limb detection. Besides, some works in literature tackle the problem of human body

segmentation (segmenting the full body as one class) obtaining satisfying results. For in-

stance, Vineet et al. (2011) proposed to use Conditional Random Fields (CRF) based on

body part detectors to obtain a complete person/background segmentation. Belief propa-

gation, branch and bound or Graph Cut optimization are conventional approaches used to

perform inference of the graphical models defined by the human body in Hernández-Vela

et al. (2012a,b); Rother et al. (2004a). Finally, methods like structured SVM or a mixture

of parts from Yang and Ramanan (2011); Yu and Joachims (2009) can be used in order

to take profit of the contextual relations of body parts.

In this chapter, we present a novel two-stage human body segmentation method

based on the discriminative Multi-Scale Stacked Sequential Learning (MSSL) framework

from Gatta et al. (2011). Therefore, Ting and Witten (1997, 1999) studied firstly the type

of generalizer that is more appropriate at a higher level model, also called meta-classifier

or meta-regressor. Secondly, which type of features can be better used as input. It turned

out that it is more convenient to use class probabilities than class predictions as input

for the meta-model. Moreover, multi-response linear regression algorithm (MLR) gave

the best results as a meta-model. Additionally, Stacked Learning has been applied for

regression problems by Breiman (1996). Until now stacked sequential learning has been

used in several domains, mainly in text sequences and time series from Carvalho and

Cohen (2005); Dietterich (2002) showing significant computational and performance im-

provements when compared with other contextual inference methods such as CRF. Munoz

et al. (2010) utilized several classifiers at different levels in order to define a hierarchical

labeling strategy for semantic segmentation as a result of combining them per level in a

stacking fashion. The work of Sun (2011) tackled a Natural Language Processing problem

of Chinese word segmentation applying word, character, and local character classification

and then stacked the segmented output sentences concerning efficiency and effectiveness.

These and previous examples are approached in a ’cheap’ manner to alternatives such as

graphical models where there is a specific structured form. As another example, research

on sociology and social media has been conducted by Dinakar et al. (2014), analyzing an

online community supporting adolescents under duress by training different weak learners

and combining their output in a stacked learning approach. Recently, the MSSL frame-

work has also been successfully used on pixel-wise classification problems in Puertas et al.

(2015). To the best of our knowledge, this is the first work that uses MSSL in order to find

a context-aware feature set that encodes high order relations between body parts, which

suffers non-rigid transformations, to obtain a robust human body segmentation. Fig. 3.14

shows the proposed human body segmentation approach. In the first stage of our method

for human segmentation, a multi-class Error-Correcting Output Codes classifier (ECOC)
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is trained to detect body parts and to produce a soft likelihood map for each body part. In

the second stage, multi-scale decomposition of these maps and a neighborhood sampling

is performed, resulting in a new set of features. The extended set of features encodes

spatial, contextual and relational information among body parts. This extensive set is

then fed to the second classifier of MSSL, in this case, a Random Forest binary classifier,

which maps a multi-limb classification to a binary human classification problem. Finally,

in order to obtain the resulting binary human segmentation, a post-processing step is

performed through Graph Cuts optimization, which is applied to the output of the binary

classifier.

3.2.2 Method

The proposed method for human body segmentation is based on the Multi-Scale Stacked

Sequential Learning (MSSL) from Puertas et al. (2015) pipeline. Generalized Stacked

Sequential Learning was proposed as a method for solving the main problems of sequen-

tial learning, namely: (a) how to capture and exploit sequential correlations; (b) how

to represent and incorporate complex loss functions in contextual learning; (c) how to

identify long-distance interactions; and (d) how to make sequential learning computa-

tionally efficient. Fig. 3.14 (a) shows the abstract blocks of the process2. Consider a

training set consisting of data pairs {(xi, yi)}, where xi ∈ Rn is a feature vector and

yi ∈ Y , Y = {1, . . . , K} its class label. The first block consists of a classifier H1(x)

trained with the input data set. The output results in a set of predicted labels or confi-

dence values Y ′. The next block in the pipeline defines the policy for taking into account

the context and long-range interactions. It is composed of two steps: first, a multi-

resolution decomposition models the relationship among nearby locations, and second, a

neighborhood sampling proportional to the resolution scale defines the support lattice.

This last step allows for modeling the interaction range. This block is represented by the

function z = J(x, ρ, θ) : R → Rw, characterized by the interaction range θ in a neigh-

borhood ρ. The last step of the algorithm creates an extended data set by adding to the

original data the new set of features resulting from the sampling of the multi-resolution

confidence maps which is the input of a second classifier H2(x).

3.2.2.1 Stage One: Body Parts Soft Detection

In this chapter, the first stage detector H1(x) in the MSSL pipeline is based on the

soft body parts detectors defined in Sánchez et al. (2013). The work of Sánchez et al.

(2013) is based on an ECOC ensemble of cascades of AdaBoost classifiers. Each of the

2The original formulation of MSSL also includes the input vector X as an additional feature in the

extended set X ′.
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cascades focuses on a subset of body parts described using Haar-like features where regions

have been previously moved towards main orientation to make the recognition rotation

invariant. Although any other part detector the technique could be used in the first stage

of our process, we also choose the same methodology. ECOC has shown to be a powerful

and the general framework that allows the inclusion of any base classifier, involving error-

correction capabilities and allowing to reduce the bias and variance errors of the ensemble

as in Dietterich and Bakiri (1994); Escalera et al. (2008). As a case study, although any

classifier can be included in the ECOC framework, here we considered as a base learner

also the same ensemble of cascades given its fast computation.

Because of its properties, a cascade of classifiers is usually trained to split one visual

object from the rest of the possible objects of an image. This means that the cascade of

classifiers learns to detect a particular object (body part in our case), ignoring all other

objects (all other body parts). However, somebody parts have a similar appearance, that

is, legs and arms, and thus, it makes sense to group them in the same visual category.

Because of this, we learn a set of cascades of classifiers where a subset of limbs are

included in the positive set of one cascade, and the remaining limbs are included as

negative instances together with background images in the negative set of the cascade.

In this sense, classifier H1 is learned by different grouping cascades of classifiers in a

tree-structure way and combining them in an Error-Correcting Output Codes (ECOC)

framework as Escalera et al. (2010b). Then, H1 outputs correspond to a multi-limb

classification prediction.

An example of the body part tree-structure defined taking into account the nature

of human body parts is shown in Fig. 3.15(a). Notice that classes with similar visual

appearance (that is, upper-arm and lower-arm) are grouped in the same meta-class in

most dichotomies. Besides, dichotomies that deal with difficult problems (that is, d5) are

focused only on the difficult classes, without taking into account all other body parts. In

this case, class c7 denotes the background.

In the ECOC framework, given a set of K classes (body parts) to be learned, m

different bi-partitions (groups of classes or dichotomies) are formed, and n binary problems

over the partitions are trained as in Bautista et al. (2012a). As a result, a codeword of

length n is obtained for each class, where each position (bit) of the code corresponds to a

response of a given classifier d (coded by +1 or −1 according to their class set membership,

alternatively, 0 if a particular class is not considered for a given classifier). Arranging the

codewords as rows of a matrix, we define a coding matrix M , where M ∈ {−1, 0,+1}K×n.

During the decoding (or testing) process, applying the n binary classifiers, a code c is

obtained for each data sample x in the test set. This code is compared to the base

codewords (yi, i ∈ {1, .., K}3) of each a class defined in the matrix M , and the data

3Observe that we are overloading the notation of y so that yi corresponds to the codeword of the
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Figure 3.14: Method overview. (a) Abstract pipeline of the proposed MSSL method

where the outputs Y ′i of the first multi-class classifier H1(x) are fed to the multi-scale

decomposition and sampling function J(x) and then used to train the second stacked

classifier H2(x) which provides a binary output Ŷ. (b) Detailed pipeline for the MSSL

approach used in the human segmentation context where H1(x) is a multi-class classifier

that takes a vector X of images from a dataset. As a result, a set of likelihood maps

Y ′1 . . . Y
′
n for each part is produced. Then a multi-scale decomposition with a neighborhood

sampling function J(x) is applied. The output X′ produced is taken as the input of the

second classifier H2(x), which produces the final likelihood map Ŷ, showing for each point

the confidence of belonging to human body class.
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Figure 3.15: (a) Tree-structure classifier of body parts, where nodes represent the defined

dichotomies. Notice that the single or double lines indicate the meta-class defined. (b)

ECOC decoding step, in which a head sample is classified. The coding matrix codifies

the tree-structure of (a), where black and white positions are codified as +1 and −1,

respectively. c, d, y, w, X, and δ correspond to a class category, a dichotomy, a class

codeword, a dichotomy weight, a test codeword, and a decoding function, respectively.

sample is assigned to the class with the closest codeword as in Escalera et al. (2010b).

We use the problem dependent coding matrix defined in Sánchez et al. (2013) in order

to allow the inclusion of cascade of classifiers and learn the body parts. In particular, each

dichotomy is obtained from the body part tree-structure. Fig. 3.15(b) shows the coding

matrix codification of the tree-structure in Fig. 3.15(a).

In the ECOC decoding step an image is processed using a sliding windowing approach.

Each image patch x is described and tested. In our case, each patch is first rotated by

main gradient orientation and tested using the ECOC ensemble with Haar-like features

and cascade of the classifier. In this sense, each classifier d outputs a prediction whether

x belongs to one of the two previously learned meta-classes. Once the set of predictions

c ∈ {+1,−1}1×n is obtained, it is compared to the set of codewords of the classes yi

from M , using a decoding function δ(c, yi) and the final prediction is the class with the

codeword with minimum decoding, that is, arg mini δ(c, y
i). As a decoding function,

we use the Loss-Weighted approach with linear loss function defined in Escalera et al.

(2010b). Then, a body-like probability map is built. This map contains, at each position

the proportion of body part detections for each pixel over the total number of detections

for the whole image. In other words, pixels belonging to the human body will show a

higher body-like probability that the pixels belonging to the background. Additionally,

we also construct a set of limb-like probability maps. Each map contains at each position

(i, j) the probability of pixel at the entry (i, j) of belonging to the body part class. This

matrix associated with class i, that is, it is the i-th row of the matrix, M(i, :).
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Figure 3.16: Limb-like probability maps for the set of 6 limbs and body-like probability

map. Image (a) shows the original RGB image. Images from (b) to (g) illustrate the

limb-like probability maps and (h) shows the union of these maps.

probability is computed as the proportion of detections at point (i, j) overall detection

for that class. Examples of probability maps obtained from ECOC outputs are shown in

Fig. 3.16, which represents the H1(x) outputs Y ′1 . . . Y
′
n defined in Fig. 3.14 (a).

3.2.2.2 Stage Two: Fusing Limb Likelihood Maps Using MSSL

The goal of this stage is to fuse all partial body parts into a full human body likelihood

map (see Fig. 3.14 (b) the second stage). The input data for the neighborhood modeling

function J(x) are the body parts likelihood maps obtained in the first stage (Y ′1 . . . Y
′
n). In

the first step of the modeling, a set of different Gaussian filters is applied on each map. All

these multi-resolution decompositions give information about the influence of each body

part at different scales along with space. Then, an 8-neighbor sampling is performed for

each pixel with a sampling distance proportional to its decomposition scale. This allows

taking into account the different limbs influence and their context. The extended set X ′

is formed by stacking all the resulting sampling at each scale for each limb likelihood map

(see the extended feature set X ′ in Fig. 3.14(b)). As a result, X ′ will have dimensionality

equals the number of sampling multiplied by the number of scales and the number of

body parts. In our experiments, we use eight neighbor sampling, three scales, and six

body parts. Notice that contrary to the MSSL traditional framework, we do not feed

the second classifier H2 with both the original X and extended X ′ features, and only the

extended set X ′ is provided. In this sense, the goal of H2 is to learn spatial relations
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among body parts based on the confidences produced by the first classifier. As a result,

the second classifier provides a likelihood of the membership of an image pixel to the

class ’person’. Thus, the multiple spatial relations of body parts (obtained as a multi-

class classifier in H1), are labelled as a two-class problem (person vs no person) and

trained by H2. Consequently, the label set associated with the extended training data

X ′ corresponds to the union of the ground truths of all human body parts. Although

within our method, any binary classifier can be considered for H2, we use a Random

Forest classifier to train 50 random trees that focus on different configurations of the data

features. This strategy has shown robust results for human body segmentation in multi-

modal data as in Shotton et al. (2013). Fig. 3.17 shows a comparison between the union

of the likelihood maps obtained by the first classifier and the final likelihoods obtained

after the second stage. We can see that a naive fusion of the limb likelihoods produces

noisy outputs in many body parts. The last column shows how the second stage detects

the human body using the same data. For instance, Fig. 3.17 (f) shows how it works well

also when two bodies are a close one to others, splitting them accurately, preserving the

poses. Notice that in Fig. 3.17 (f) there is a different to zero both silhouettes, existence of

handshaking. Finally in Fig. 3.17 (c) we can see how the foreground person is highlighted

in the likelihood map, while in previous stage (Fig. 3.17 (b)) it was completely missed.

This shows that the second stage can restore body objects at different scales. Finally, the

output likelihood maps obtained after this stage are used as input of a post-process based

on graph-cut to obtain final segmentation.

3.2.3 Experimental Results

Before present the experimental results, we first discuss the data, experimental settings,

methods, and validation protocol.

3.2.3.1 Dataset

We used HuPBA 8k+ dataset described in Sánchez et al. (2015). This dataset contains

more than 8000 labeled images at pixel precision, including more than 120000 manually

labeled samples of 14 different limbs. The images are obtained from 9 videos (RGB

sequences), and a total of 14 different actors appear in those 9 sequences. In concrete,

each sequence has the main actor (9 in total) which during the sequence interacts with

secondary actors portraying a wide range of poses. For our experiments, we reduced the

number of limbs from the 14 available in the dataset to 6, grouping those that are similar

by symmetry (right-left) as arms, forearms, thighs, and legs. Thus, the set of limbs of our

problem is composed by: head, torso, forearms, arms, thighs and legs. Although labeled

within the dataset, we did not include hands and feet in our segmentation scheme. In
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Figure 3.17: Comparative between H1 and H2 output. First column are the original

images. Second column are H2 output likelihood maps. Last column are the union of all

likelihood map of body parts

Fig. 3.18 some samples of the HuPBA 8k+ dataset are shown.

Figure 3.18: Different samples of the HuPBA 8k+ dataset.

3.2.3.2 Methods

We compare the following methods for Human Segmentation: Soft Body Parts (SBP)

detectors + MSSL + Graphcut. The proposed method, where the body like confi-

dence map obtained by each body part soft detector is learned employing MSSL, and the

output is then fed to a GraphCut optimization to obtain the final segmentation. SBP

detectors + MSSL + GMM-Graphcut. Variation of the proposed method, where the
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final GraphCut optimization also learns a GMM color model to obtain the final segmen-

tation as in the GrabCut model Rother et al. (2004b). SBP detectors + GraphCut.

In this method, the body like confidence map obtained by aggregating all body parts soft

detectors outputs is fed to a GraphCut optimization to obtain the final segmentation.

SBP detectors + GMM-GraphCut. We also use the GMM color modeling variant

in the comparison.

3.2.3.3 Settings and validation protocol

In a preprocessing step, we resized all limb samples to a 32 × 32 pixels region. Regions

are first rotated by main gradient orientation. In the first stage, we used the standard

Cascade of Classifiers based on AdaBoost and Haar-like features from Viola and Jones

(2001b) as our body part multi-class classifier H1. As model parameters, we forced a

0.99 false positive rate and maximum of 0.4 false alarm rate during 8 stages. To detect

limbs with trained cascades of classifiers, we applied a sliding window approach with an

initial patch size of 32 × 32 pixels up to 60 × 60 pixels. As a result of this stage, we

obtained 6 likelihood maps for each image. In the second stage, we performed 3-scale

Gaussian decomposition with σ ∈ [8, 16, 32] for each body part. Then, we generated

an extensive set selecting for each pixel its 8-neighbors with σ displacement. From this

extensive set, a sampling of 1500 selected points formed the input examples for the second

classifier. As the second classifier, we used a Random Forest with 50 decision trees.

Finally, in a post-processing stage, binary Graph Cuts with a GMM color modeling (we

experimentally set 3 components) were applied to obtain the binary segmentation where

the initialization seeds of foreground and background were tuned via cross-validation.

For the binary Graph Cuts without a GMM color modeling we directly fed the body

likelihood map to the optimization method. In order to assess our results, we used 9-fold

cross-validation, where each fold correspond to images of the main actor sequence. As

results the measurement we used the Jaccard Index of overlapping (J = A
⋂
B

A
⋃
B

) where A

is the ground-truth also, B is the corresponding prediction.

3.2.3.4 Quantitative Results

In Table 3.5 we show overlapping results for the HuPBA 8K+ dataset. Specifically, we

show the mean overlapping value obtained by the compared methods on 9 folds of the

HuPBA 8k+ dataset. We can see how our MSSL proposal consistently obtains a higher

overlapping value on every fold.

Notice that MSSL proposal outperforms in the SBP+GC method in all folds (by at

least a 3% difference), which is the state-of-the-art method for human segmentation in

the HuPBA 8k+ dataset from Sánchez et al. (2013).
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Figure 3.19: Samples of the segmentation results obtained by the compared approaches.



3.2. Learning To Segment Humans By Stacking Their Body Parts 63

GMM-GC GC

MSSL Soft Detect. MSSL Soft Detect.

Fold Overlap Overlap Overlap Overlap

1 62.35 60.35 63.16 60.53

2 67.77 63.72 67.28 63.75

3 62.22 60.72 61.76 60.67

4 58.53 55.69 58.28 55.42

5 55.79 51.60 55.21 51.53

6 62.58 56.56 62.33 55.83

7 63.08 60.67 62.79 60.62

8 67.37 64.84 67.41 65.41

9 64.95 59.83 64.21 59.90

Mean 62,73 59,33 62,49 59,29

Table 3.5: Overlapping results over the 9 folds of the HupBA8K+ dataset for the proposed

MSSL method and the Soft detectors post-processing their outputs with the Graph-Cuts

method and GMM Graph-Cuts method.

3.2.3.5 Qualitative Results

In Fig. 3.19 some qualitative results of the compared methodologies for human segmen-

tation are shown. It can be observed how in general SBP+MSSL+GMM-GC obtains a

better segmentation of the human body than the SBP + GMM-GC method. This im-

provement is due to the contextual body part information encoded in the extended feature

set. In particular, this performance difference is clearly visible in Fig. 3.19(f) where the

human pose is completely extracted from the background. We also observe how the pro-

posed method can detect a significative number of body parts at different scales. This is

clearly appreciated in Fig. 3.19(c), where persons at different scales are segmented, while

in Fig. 3.19(b) the SBP+GMM-GC fails to segment the rightmost person. Furthermore,

Fig. 3.19(i) shows how the proposed method can recover the whole body pose by stack-

ing all body parts, while in Fig. 3.19(h) the SBP+GMM-GC method just detected the

head of the left most user. In this pair of images also we can see how our method can

discriminate the different people appearing in an image, segmenting as background the in-

terspace between them. Although, it may cause some loss, especially in the thinner body

parts, like happens with the extended arm. Due to space restrictions, a table with more

examples of segmentation results can be found in the supplementary material. Regards

the dataset used, it is important to remark the large amount of segmented bodies (more

than 10.000) and their high variability in terms of pose (performing different activities
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and interactions with different people), size and clothes. The scale variations are learned

by H2 through spatial relationships of body parts. In addition, although background is

maintained across the data, H2 is trained over the soft predictions from H1 (see the large

number of false positive predictions shown in Fig. 3.16), and our method considerably

improves those person confidence maps, as shown in Fig. 3.17.

At this point, we have seen different methodologies to tackle human multi-limb or full-

body segmentation by using traditional state-of-the-art techniques where the pipeline is

divided into several stages. That is, data preparation, feature extraction, model training,

and predictions are done separately. The next chapter is focused on an alternative way of

approaching human pose and segmentation problems through using Deep Convolutional

Neural Networks (DCNN) and Multi-Task Learning (MTL) paradigm. The former is a

hierarchical feature extractor and a learnable model framework which extracts features

from samples and optimizes a decision function at the same time. Thus, some of these

stages are done altogether in the same framework and not separately. The latter is a well-

known paradigm in machine learning that has not been yet exploited in Deep Learning,

and it aims to divide a problem or task into subtasks in order to ease the learning procedure

and to make each subtask help each other.
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3.3 Conclusions

The main conclusions of the two works presented in this chapter are summarized in the

following sections:

3.3.1 HuPBA 8k+: Dataset and ECOC-GraphCut based Seg-

mentation of Human Limbs

We defined in this chapter a novel dataset introduced in the Chalearn ECCV’14 Escalera

et al. (2014) that consists of around 8000 images of human poses and annotated 14 body-

limbs to tackle either the human multi-limb segmentation or the human pose estimation

problem.

Moreover, we introduced a two-stage approach for human multi-limb segmentation

that reduced in each stage the multi-limb search space. First, a set of AdaaBost cascades

with Haar-like features were trained on top of an ECOC framework for human binary

classification. Then, once the human body was obtained, a set of SVM’s with HOG

features was trained on top of an ECOC in order to get the limb-like probability maps.

Finally, these maps were used to initialize GraphCuts to obtain the final segmentation.

The current approach was compared over two state-of-the-art pose estimation approaches

obtaining noticeably higher performance.

3.3.2 Learning to segment humans by stacking their body parts

In this chapter, we focused on the Stacked Generalization Learning approach which is a

type of ensemble learning method. Concretely, we made use of a two-stage scheme based

on the MSSL framework for human body segmentation. In the first stage, a pipeline

consisting in AdaBoost cascades with Haar-like features initialized a set of soft limb-like

probability maps to be stacked in a second classifier to infer finer detections. This second

classifier learned co-dependencies among features and spatial relationships, and it was

tested over state-of-the-art methods reaching accurate results.
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Chapter 4

Block II

In this chapter, we make use of multi-task learning paradigm to approach multiple tasks

where human body part segmentation is among them. Besides, we study deep learning

methods to fuse the multiples tasks jointly in one model and not separately. Finally,

we analyze in detail which tasks benefits or helps each other in order to validate the

performance both per task and globally.

4.1 Multi-task human analysis in still images: 2D/3D

pose, depth map, and multi-part segmentation

4.1.1 Introduction

Nowadays large amounts of annotated (or weakly annotated) data are publicly available

for the automatic analysis of humans. Lin et al. (2014) collect a vast richly-annotated

data for image classification, object localization, semantic/instance segmentation which

person category is defined plus animals and objects. Besides, Everingham et al. (2015)

publish one of the first large datasets including person among other classes for detection,

classification and segmentation tasks. Moreover, Varol et al. (2017) release a large-scale

dataset consisting of realistic synthetic data captured by MoCap and covering several

cues: body depth maps, 2D/3D coordinates, body part segmentation, optical flow and

surface normal. The dataset of Liang et al. (2018) is made up of multiple people which

cues are 2D coordinates, body part segmentation and clothes parsing. Related tasks

include several 2D pose estimation, body part segmentation, clothes parsing. Andriluka

et al. (2014) release a larger dataset than previous with a high degree of variability in the

human pose, viewpoint and covering a wide range of daily activities. Gong et al. (2017)

make public a human pose and semantic part labels which range from the viewpoint,

occlusions, and background complexity. Lassner et al. (2017) extend previous smaller

67
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datasets with body parts segmentation and more joint coordinates by fitting a gender-

neutral body model into the images. Nie et al. (2017) define a multiple person pose

estimation by leveraging centroids embeddings in a dense joint regression deep neural

network. Similarly, Liang et al. (2018) contribute state-of-the-art with multiple people

in the images and diversify segmentation in clothes and body parts in order to obtain

a hierarchy of human abstraction. Alp Güler et al. (2018) collect a subset of Lin et al.

(2014) in order to focus on person class by accurately setting pose, body parts among

other tasks for multiple people. Another works also include motion/optical flow. Zhang

et al. (2013) release a dataset for action recognition and tackle the problem training a

collection of discriminative spatiotemporal patches based on temporal features and person

joint coordinates, among others. Shahroudy et al. (2016) release a significant dataset

surpassingly samples, human subjects, and camera views than previous ones and take

into account 3D joints coordinates in order to enrich featuring for action classification by

a part-aware LSTM framework. Furthermore, there are tasks involving 3D like body shape

model, body parts shape segmentation, human 3D pose estimation. Ionescu et al. (2011)

tackle human localization and 3D pose reconstruction by applying tractable augmented

kernels to better encode complex dependencies among body parts and to reduce human

pose search space. Ionescu et al. (2014) generate a large-scale 3D dataset by using motion

capture and a set of body shape models to obtain multiple cues such as depth, 2D/3D

joint coordinates, and body surface scan. They provide studies including nearest neighbor,

standard linear/non-linear regression methods and kernels methods. Mehta et al. (2017)

apply transfer learning from 2D to 3D human pose as a result of boosting performance

on still images and generalize to a new dataset with a more extensive variety of real

and augmented people views and appearances. Newell et al. (2016b) introduce a novel

Convolutional Neural Networks (CNN) architecture to tackle 2D human pose that consists

of intermediate supervision and skip connections in a stacked encoder-decoder fashion. As

a consequence, they obtain very significant results and hence, that architecture is used in

many works as the core network.

As it is common nowadays in most computer vision problems, deep learning, and

particularly CNN, is the predominant methodology used by state of the art approaches.

Outstanding results have been achieved by using deep learning in tasks like the 2D pose

in the wild. However, other related tasks such as 3D pose, pixel-level segmentation, and

human body depth estimation from RGB images still require further improvement in

order to be accurately applied to real-world scenarios.

Recent approaches tend to benefit from unsupervised and cross-domain scenarios as in

Zamir et al. (2018a) in order to reuse data and deal with related tasks by transfer learning.

One standard technique in this scope is the use of multi-task approaches as in Everingham

et al. (2015); Ionescu et al. (2011); Lin et al. (2014). Multi-task learning has been shown
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to benefit human analysis tasks by leveraging the amount of data to be annotated since

each image/video does not need a full annotation of all attributes: subsets of data can be

annotated for different problems. Most importantly, while solving several tasks together,

information is shared among them during training, providing them with complementary

information for a better generalization.

In this chapter, we focus on multi-task learning of 2D pose, 3D pose, human body

depth map, and body part segmentation from still images, which are common input

cues for several human analysis tasks. We claim that these four tasks share semantic

knowledge of the human body and, when jointly trained, can benefit each other for a better

generalization. In particular, we extend the successful Hourglass network from Newell

et al. (2016a) by learning each task as a separate stream and share information between

tasks at different levels of the topology. Our contribution lies in the complementary

analysis among the four main human body tasks on a multi-task setup. We evaluate

which task combinations complement each other the best. To the best of our knowledge,

this is the first time such a detailed analysis has been done in this domain.

To evaluate our framework, we focus on SURREAL from Varol et al. (2017), a synthetic

dataset with real human bodies and annotations. Our results show that all four tasks

benefit from the proposed multi-task module. We show some pairs of tasks do not help

each other (e.g., 3D pose and body part segmentation), while others do so significantly

(e.g., 2D pose and depth). Besides, multi-task learning provides higher performance

improvements in those human body parts that show more variability in terms of spatial

distribution, appearance and shape, e.g., wrists and ankles.

4.1.2 Related Work

The use of deep-learning techniques has been a breakthrough in most computer vision

applications, including human analysis scenarios. Given the need for large volumes of data

to train deep learning models, there is a recent trend in learning multi-task approaches.

This paradigm shares information among different tasks for a better generalization, which

can leverage the amount of annotated data required for each task.

Recent works like He et al. (2017); Kokkinos (2017); Omran et al. (2018); Varol et al.

(2018) tend to extend the number of tasks to better benefit from sharing knowledge within

cross-domain tasks. One extreme example can be found in He et al. (2017), where authors

extend the number of tasks to eight, not just analyzing humans but objects and animals.

Pyramid image decomposition is used as input to deal with semantic/boundary/object

detection, normal estimation saliency/normal estimation, semantic/human part segmen-

tation, semantic boundary detection, and region proposal generation. Other works like

Dai et al. (2016); Luvizon et al. (2018); Popa et al. (2017); Zhao et al. (2018) add additional
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tasks such as for instance segmentation, multi-human parsing, and mask segmentation.

As an example, Dai et al. (2016) tackles instance segmentation, object detection and mask

segmentation in a stacked fashion.

Different strategies exist in order to define multi-task schemes. Zamir et al. (2018a)

perform a large-scale, cross-domain analysis on a new dataset of indoor scenes with no

human interaction. They trained 26 neural networks, one per category and new combi-

nations related to multiple domains via transfer learning. Most patterns found on this

dataset exclude human kinematic constraints. Xia et al. (2017) build a two-stage FCN

process that first detects human pose and then performs body parts parsing through a

Conditional Random Field. The work of Alp Güler et al. (2018) uses Mask-RCNN from

He et al. (2017) in a multi-task cascade fashion, connecting several intermediate layers for

pose estimation and body parts parsing, while the Mask R-CNN from Kokkinos (2017)

tackles instance/mask segmentation and object/key-point detection problems. Zhao et al.

(2018) makes use of adversarial networks in a nested way, i.e., GAN outputs are used as

the input to other GANs to deal with pose estimation and body parts parsing. In Popa

et al. (2017); Wei et al. (2016) recursive processing stages are used to detect and segment

2d/3d pose and body-parts.

Another common combination of tasks is 2D/3D pose and body/clothes parsing from Ionescu

et al. (2011) on datasets such as Pascal in Everingham et al. (2015) or COCO in Lin et al.

(2014). The work of Nie et al. (2018) uses two encoders (2D pose and clothes parsing)

with a module as a middle stream that acts as a parameter adapting to merge the fea-

tures of both tasks and perform classification separately. In contrast, Liang et al. (2018)

proposes a two-stage multi-task procedure that first uses a residual network to extract

shared features. These are used by two CNN’s performing 2D pose estimation and clothes

parsing, respectively.

4.1.3 Multi-task human analysis

In this section, we first address the four selected tasks and then describe the proposed

multi-task architecture for this analysis. We select four common tasks in many recent

works: 2D/3D pose estimation, body parts segmentation, and body depth estimation.

These tasks have some overlapping in the shared features/information, but each has a

different definition: from depth or joints regression to pixel level classification. The

goal is to design a compact model, consistent across tasks, such that overlapping fea-

tures/information can be easily shared among all tasks in the model. By doing so, we

can analyze which tasks are more correlated and in which parts we can achieve better

improvement. The four tasks are described below.

• 2D pose: This task tackles the estimation of 2D human joint coordinates. Heatmaps-
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(a) RGB (b) 2D pose (c) Body Parts (d) Depth (e) 3D pose

Figure 4.1: Samples from SURREAL dataset with the chosen modalities.

based methods are state of the art for this task as in Newell et al. (2016a), consisting

of estimating the location as Gaussian probability distribution around each joint.

Each body joint is represented as a 2D heat map. These are stacked together, re-

sulting in a 3D tensor where spatial relationships can be learned like Andriluka et al.

(2014). In this method we use a tensor of size 64 × 64 × 16, where #joints = 16

(see Fig.4.1(b)).

• Body parts segmentation: The state-of-the-art on human body segmentation

advocates training fully-convolutional networks that generate per pixel body part

probabilities as in He et al. (2017); Xia et al. (2017). Body parts include hands,

arms, legs, torso, and joints like ankles and knees. We define the segmentation

output as a tensor of size 64 × 64 × 15 where #parts = 14 + Background (see

Fig.4.1(c)).

• Full-body depth: We tackle depth estimation as described in Haque et al. (2016),

i.e. instead of regressing each pixel depth as a continuous value we quantize depth

into #bins = 19 bins resulting in a tensor of size 64×64×(#bins+1) (see Fig.4.1(d)).

We define an extra bin for the background.

• 3D pose: The standard approach for 3D pose estimation is coordinates regression

as in Popa et al. (2017). However, regressing coordinates is highly non-linear and

difficult to learn by a feature-coordinates mapping like Luvizon et al. (2018). Also,

it is not consistent with other tasks. Following the heatmaps-based methods used

in 2D pose estimation from Chen et al. (2017a), we use the target encoding used

in Pavlakos et al. (2017); Varol et al. (2017, 2018). These works encode the 3D



72 4 Block II

Figure 4.2: Proposed multi-task architecture.

location of the joints in the camera coordinate system like Luvizon et al. (2018)

into 3D heat maps. 3D Gaussians are defined by a tensor of 3 dimensions for each

joint (the same number of joints as in the 2D case) taking as referencing their

corresponding 3D coordinates (see Fig.4.1(e)). The x and y axes are the standard

Cartesian coordinates, being z-axis the depth as in the full-body depth estimation

task. We output a tensor of size 64 × 64 × (#bins × #joints) by binning depth

information into 19 bins for each body part.

4.1.3.1 Multi-task architecture

We define all targets at the pixel level. Therefore any fully-convolutional deep architec-

ture can be used for individual tasks. However, in this method we consider the Stacked

Hourglass network (SH) from Newell et al. (2016a). This network has shown outstanding

results for human pose estimation in still images. Each hourglass module consists of an

encoder-decoder architecture with residual connections from encoder layers to correspond-

ing decoder ones. The encoder consists of down-sampling residual modules that compress
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the feature space in a latent representation tensor of size 4 × 4. The decoder contains

up-sampling residual modules that enlarge the tensor to 64 × 64. The residual module

includes several convolutional layers plus skips connections as in Kocabas et al. (2018).

The skip connections from the encoder to decoder allows the model to fuse low-level fea-

tures (e.g., edges, corners) with higher level features (e.g., semantics). The intermediate

supervision at each hourglass module benefits from previous module outputs, refining

and improving final network predictions. Given its high performance, its conceptual sim-

plicity, and that allows for an easy multi-task integration among stacked modules, this

architecture is serving as a baseline model in several works like Chen et al. (2017a); Ke

et al. (2018); Luvizon et al. (2017); Ning et al. (2018); Yang et al. (2017).

In this method we use a stream, consisting of an SH network, to learn each task. These

streams are then integrated by adding intermediate connectivity and supervision, as shown

in Fig. 4.2. The resulting network is end-to-end trainable. Given an input RGB image, a

set of residual modules are applied in order to generate shared features among all network

streams (different tasks). Based on Newell et al. (2016a), several Hourglass modules can be

stacked per stream. Each module has independent supervision and provides intermediate

predictions as input to the next stacks. In our case, output features from each stream are

concatenated to form a tensor of size 64× 64× (#stream× 256), where 256 is the default

number of Hourglass features. Next, two residual modules are applied to each stream,

the first convolving the joint features to the same feature space (standard practice as

shown in Simonyan and Zisserman (2014)), and the second one compressing them to 256

features, again through convolution1.

Regarding parameter estimation, a root-mean-square-error (RMSE) loss is used for 2D

(L2Dpose) and 3D (L3Dpose) pose estimation, while cross-entropy (CE) across the spatial

dimension of the heatmaps is used for depth estimation (LDepth) and body part segmenta-

tion (LBodyPart). Overall multi-task optimization is minimized by summing up the losses

of all Hourglasses (4.1).

LTotal = L2Dpose + LBodyPart + LDepth + L3Dpose (4.1)

4.1.4 Experiments

Here we describe the employed dataset, metrics and analysis of all four tasks, both stan-

dalone and multi-task networks.

1Note that our contribution in this chapter is not a design to compete with the state-of-the-art in each

task, but rather a compact design to analyze cross-task contributions.
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4.1.4.1 Data

In order to evaluate all multi-task combinations, we use SURREAL from Varol et al.

(2017), a new large-scale dataset consisting of realistic synthetic data. The dataset is

created by using recorded motion capture (MoCap) data to mimic realistic body move-

ments in short video clips. The human body is rendered based on a body shape model.

Then a cloth texture is added to the model including different lighting conditions. Finally,

the model is projected to the image plane with a static background to have a realistic

RGB image. The background is selected from indoor image datasets. Given this synthe-

sis pipeline, different targets can be generated along with the RGB image: body depth

maps, 2D/3D coordinates, body part segmentation, optical flow, and surface normals.

The dataset contains nearly 6.5M frames. It consists of 145 subjects (115 train/30 test),

2,607 (1964 train/703 test) video sequences and 67,582 clips (55,001 train/12,528 test).

Some samples are shown in Fig. 4.1 for the different data modalities.

4.1.4.2 Implementation details

We train different multi-task SH architectures considering different combinations of modal-

ities to analyze their complementarity better. We train all models for 30 epochs using 2

Stacks of Hourglass, with a batch size of 5 and the RMSprop optimizer with learning rate

1e − 3. We first crop the image regions containing the centered human bodies using the

provided bounding boxes of the dataset and resize them to 256× 256 for training. Then,

we apply standard data augmentation techniques such as scaling, jittering and rotation

from Newell et al. (2016a). Moreover, the train/test splits are done such that 20% of the

total is kept apart as in Varol et al. (2017).

In order to evaluate each modality, we make use of standard metrics: Intersection over

Union (IOU) for body part segmentation, Percentage of Correct Keypoints thresholded

at 50% of the head length (PCKh) as in Andriluka et al. (2014) for 2D pose estimation,

root-mean-square-error (RMSE) for full body depth estimation and mean joint distance

MJD in millimeters (mm) for 3D pose estimation. We also use success rate trend to

analyze the evolution of the error/accuracy within different thresholds. This is given by

the percentage of frames with an error smaller than the given thresholds.

4.1.4.3 Analysis of single-task models

Here we evaluate the models trained on specific tasks, which will serve as baselines to

multi-task comparison.
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4.1.4.3.1 Body part segmentation

The first column in Table 4.1 shows the single-task segmentation results, with an average

IOU 67.48%. When looking at different body parts, the model shows high variability

in accuracy: high performance for upper-body parts such as the head, torso, and legs,

and lower performance for the feet, upper arms, and hands. This low accuracy in some

parts (feet, hands) is due to these spanning just a few pixels, and regions of difficult

interpretation, such as complex self-occlusions.

4.1.4.3.2 2D pose estimation

Regarding 2D pose estimation, the single-task 2D pose model already obtained an out-

standing accuracy of 96.50% PCKh, as shown in Table 4.3. This may hint to the dataset

being relatively simple for this kind of task, given the current state-of-the-art approaches.

More specifically, we see lower accuracy on the wrists and elbows. These need a finer

location since they have large scale variations. They may also be confused with the

background on cluttered environments, depending on the clothing.

4.1.4.3.3 Full-body depth estimation

As shown in Table 4.4 the single-task depth model is capable of estimating the full-body

depth (Mean Full Body row) with a 4.39% RMSE, a very low error. We can measure the

depth prediction error on each body part by masking the predictions with the body part

segmentation masks. Results obtained using only depth (Table 4.4, first column) show a

higher error on hands and feet, and lower error on the torso, upper legs and upper arms

due to their highly unconstrained kinematics in humans.

4.1.4.3.4 3D pose

In the case of 3D pose (Table 4.2, first column), we obtain an average error of 60.13mm,

with the error being higher for the ankles and wrists. This is due to these covering a

small spatial region, as well as corresponding to parts with many degrees of freedom. In

summary, ankle, wrist, and elbow are the most difficult joints to learn. Again, we see

those body parts and joints are difficult to predict for all tasks.

4.1.4.4 Analysis of multi-task models

The various considered tasks are highly related to each other and are based on similar

visual cues. Thus, features extracted to solve a task may help to solve the others by

providing a richer description of the body appearance. In this section, we evaluate how

multi-task models help improve the accuracy of each individual task.
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IOU seg. seg. + depth 3D pose + seg. 2D pose + seg. 2D pose + seg. + depth 2D/3D pose + seg. 3D pose + seg. + depth 2D/3D pose + seg. + depth

Background 98.0329 98.0726 98.0012 98.0631 98.0781 98.0641 98.0732 97.7579

Head 74.3689 74.4037 73.7297 74.2553 74.1704 74.3771 74.2328 74.7454

Torso 84.6390 84.8324 84.3057 84.9853 84.8013 84.9098 84.9153 80.6780

Upper R.Arm 65.8220 66.6616 65.8635 67.0540 66.1376 66.7216 66.4946 67.7473

Lower R.Arm 62.0338 62.5079 61.2258 62.6833 62.5857 62.1622 62.9103 63.0192

R. Hand 49.3243 48.4630 48.2553 49.4606 50.8114 48.5266 48.7750 50.5932

Upper L.Arm 65.4599 66.2077 65.8938 66.2191 65.3423 65.5865 65.8665 66.7359

Lower L.Arm 60.5462 61.4842 61.1205 61.1449 61.1934 60.5194 61.5981 61.8868

L.Hand 48.9188 48.9596 48.3028 46.8697 49.2583 46.1885 46.8591 48.6889

Upper R.Leg 75.2125 76.1054 75.1161 76.0184 76.1120 75.9127 75.8433 76.0172

Lower R.Leg 71.4514 72.2720 71.0750 71.9844 72.3200 71.7808 71.8441 71.9378

R.Feet 55.2237 55.5759 54.5336 55.4427 56.7137 54.4733 56.3635 55.8747

Upper L.Leg 75.2612 75.7805 75.4932 76.2944 76.2151 75.7273 76.1662 75.7628

Lower L.Leg 71.4049 72.2354 71.0951 72.2172 72.3119 71.5317 72.1089 71.5965

L.Feet 54.6201 55.1762 53.5035 53.9172 56.4636 53.6977 55.0263 54.9013

Mean 67.4880 67.9159 67.1677 67.7740 68.1677 67.3453 67.8051 67.8629

Table 4.1: Results on SURREAL dataset measuring body parts segmentation under IOU

metric.

MJD (mm) 3D pose 2D/3D pose 3D pose + seg. 3D pose + depth 2D/3D pose + seg. 2D/3D pose + depth 3D pose + seg. + depth 2D/3D pose + seg. + depth

R.Ankle 86.1138 89.1075 81.6803 83.0312 87.9071 83.4697 79.6775 90.4500

R.Knee 59.9885 58.7382 54.4890 55.2095 56.9172 55.7307 55.1506 57.0098

R.Hip 25.6693 26.4384 25.7580 26.0962 26.5351 25.8593 25.5101 25.4791

L.Hip 25.4341 25.6198 25.7240 25.5058 26.2216 25.4403 25.5606 25.0999

L.Knee 56.9181 59.8854 56.5708 56.4425 58.4527 55.4873 55.3666 57.2093

L.Ankle 87.7192 89.7298 82.2631 84.6840 86.5020 83.1461 81.0259 87.6353

Thorax 31.2580 31.3804 31.4161 30.9884 31.1042 31.3439 30.5244 30.0228

Upper Neck 44.5032 42.5916 42.7647 42.3535 42.1803 42.7474 41.2902 42.2552

Head Top 49.6059 47.1529 46.9462 46.7176 49.1450 47.1224 46.8806 47.2783

R.Wrist 103.3092 103.4721 101.2466 107.9753 107.3964 105.2247 100.6127 102.6424

R.Elbow 70.3126 71.3751 70.3185 74.4315 72.5787 70.6057 68.8732 70.5880

R.Shoulder 46.1421 45.4316 46.1537 45.6363 45.7330 44.8304 43.3576 44.1882

L.Shoulder 47.4316 47.8410 45.2717 45.5204 46.2654 44.9013 43.9592 45.5271

L.Elbow 67.3347 68.6716 67.8447 68.5134 68.7963 67.6302 63.9457 65.2997

L.Wrist 100.3381 99.5600 96.5120 102.8758 103.0282 100.1062 93.1507 93.9053

Mean 60.1386 60.4664 58.3306 59.7321 60.5842 58.9097 56.9924 58.9727

Table 4.2: Results on SURREAL dataset measuring 3D pose under MJD (mm) metric.
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4.1.4.4.1 Body Part Segmentation

As shown in Table 4.1, the tasks contributing the most to body part segmentation are 2D

pose and depth estimation. Training a model to jointly solve these three tasks supposes a

1% improvement to the segmentation accuracy in terms of IOU (from 67.48% to 68.16%).

Possible reasons are: 2D pose estimation may help to disambiguate pixel labels in the

segmentation task by providing rough estimates of the body part locations; and depth

estimation can help mitigating effects such as foreshortening, crowding and occlusion.

Separately, both 2D pose and depth estimation improve the segmentation results relative

to both IOU and pixel error.

Table 4.1 also shows that 3D body pose estimation is an inadequate complement for

the segmentation task in terms of IOU. This may be due to the complexity of estimating

the landmarks depth, with the model dedicating most of its capacity to this subtask.

Moreover, the model encodes a relatively poor representation of the landmark locations

in the image plane. This hypothesis is reinforced by the results of performing 2D+3D

pose estimation along with body part segmentation. While 2D pose estimation does help

the segmentation task, further adding 3D pose estimation results in worse accuracy than

performing body part segmentation alone. The same effect happens with depth estimation

and 3D pose. While depth estimation improves the overall segmentation accuracy, further

performing 3D pose recovery results in worse accuracy.

Looking at body parts results, one can see that performing 2D pose recovery along

with body part segmentation improves IOU for the torso, arms, and legs. This is better

reflected in the results for the model exploiting all considered subtasks. While adding 3D

body pose recovery to the pipeline worsens the overall results of the best model, it does

improve the segmentation accuracy of those parts it has been shown to improve on its

own such as arms and hands.

Overall, we can say that the cues of 2D pose and depth estimation help to improve

the segmentation accuracy. At the same time, 3D pose estimation worsens the overall

results but helps improve the results for some specific body parts. The best overall model

is found by performing 2D pose and depth estimation along with segmentation.

4.1.4.4.2 2D pose estimation

The results in Table 4.3 show the performance of the different multi-task models on 2D

human pose estimation. We can see all task combinations improve on the single-task

model, with the best results achieved by considering all tasks. Specifically, using all tasks

results in a 0.51% improvement on the PCKh, going from 96.50% with the single-task

model to 97.01% when using all tasks.

The single task contributing the most to 2D pose recovery is segmentation, resulting
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(a) 3D pose (b) 2D pose

(c) Full-body Depth map (d) Body Parts segmentation

Figure 4.3: Success rate error for the different tasks. For each task: isolated task vs best

multi-task approach; and for joint/part with highest multi-task improvement, its isolated

task vs multi-task score.
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PCKh 2D pose 2D pose + depth 2D/3D pose 2D pose + seg. 2D pose + seg. + depth 2D/3Dpose + seg. 2D/3D pose + depth 2D/3D pose + seg. + depth

R.Ankle 95.8064 95.8146 95.8064 96.3378 96.8119 96.6566 96.1007 96.6402

R.Knee 97.0326 96.959 96.91 97.2942 97.4822 97.1471 97.0817 97.4495

R.Hip 99.0109 99.1090 99.0272 99.1417 99.1090 99.0599 99.1662 99.0844

L.Hip 99.1253 99.2725 99.1008 99.2806 99.3052 99.2234 99.2970 99.2970

L.Knee 97.376 97.1552 97.2615 97.5721 97.8256 97.5149 97.5313 97.6457

L.Ankle 96.3214 96.0762 96.3132 96.8364 97.0653 96.8691 96.4686 96.9427

Pelvis 99.4687 99.5340 99.4932 99.5831 99.6158 99.4687 99.5586 99.6158

Thorax 99.3787 99.5095 99.4196 99.5014 99.5177 99.3951 99.5177 99.5831

Upper Neck 99.0763 99.1580 99.0763 99.1989 99.1171 99.0844 99.0763 99.2234

Head Top 98.7738 98.8556 98.8065 98.8229 98.8147 98.7329 98.8474 98.9210

R.Wrist 88.9970 89.0378 89.3567 89.9779 90.2068 89.8635 89.2586 90.6237

R.Elbow 94.3023 93.5339 94.0898 94.4004 94.6211 94.4167 93.9671 94.3268

R.Shoulder 98.3569 98.1362 98.3324 98.3978 98.5776 98.3733 98.2833 98.7411

L.Shoulder 98.0136 98.0544 97.9890 98.1852 98.2343 98.0953 97.8256 98.4060

L.Elbow 93.9099 94.2287 94.1061 94.6211 94.6129 94.6129 94.2042 94.7029

L.Wrist 89.1850 89.6264 89.3812 90.2232 90.5420 90.1659 90.2068 91.0978

Mean 96.5085 96.5039 96.5294 96.8360 96.9662 96.7925 96.6495 97.0188

Table 4.3: Results on SURREAL dataset measuring 2D pose under PCKh metric.

RMSE depth 2D pose + depth seg. + depth 3D pose + depth 2D pose + seg. + depth 2D/3D pose + depth 3D pose + seg. + depth 2D/3D pose + seg. + depth

Background 0.5151 0.4955 0.6372 0.5425 0.5727 0.6887 0.6830 0.5590

Head 4.7828 4.8319 4.5270 4.4978 4.5397 4.3778 4.1174 4.3523

Torso 2.7179 2.7216 2.4842 2.5810 2.538 2.5024 2.3779 2.5559

Upper R.Arm 3.8742 3.9463 3.4306 3.8128 3.5647 3.5505 3.4756 3.4641

Lower R.Arm 5.4385 5.4198 5.1384 5.3129 4.9385 5.1128 4.8428 5.0613

R. Hand 7.0447 7.0778 7.0683 6.9167 6.6483 6.8738 6.6380 6.9056

Upper L.Arm 3.7487 3.9582 3.4299 3.7295 3.5149 3.4873 3.3240 3.3965

Lower L.Arm 5.4778 5.6605 5.2851 5.4003 5.0954 5.1793 4.8899 5.1538

L.Hand 7.1597 7.2365 7.1001 6.9587 6.7485 6.9643 6.6202 6.9522

Upper R.Leg 3.3767 3.4739 3.2649 3.4919 3.2430 3.3522 3.1933 3.3732

Lower R.Leg 5.2455 5.3893 5.4107 5.3243 5.0982 5.1117 4.8619 5.1820

R.Feet 7.8622 7.9182 8.0064 7.9454 7.4462 7.7262 7.3937 7.7420

Upper L.Leg 3.3694 3.5158 3.2660 3.4426 3.2235 3.3606 3.2014 3.3314

Lower L.Leg 5.1918 5.4304 5.4314 5.3661 5.1769 5.1402 4.9026 5.1566

L.Feet 7.8774 8.0233 8.0535 7.9773 7.6125 7.8496 7.5477 7.8853

Mean Body Parts 4.9122 5.0066 4.8356 4.8867 4.6641 4.7518 4.5378 4.7381

Mean Full Body 4.3900 4.2300 4.3100 4.3500 4.1900 4.2500 4.0400 4.2400

Table 4.4: Results on SURREAL dataset measuring depth body parts estimation under

RMSE metric.

in 0.3% increase. The said task may provide cues for the exact outline and localization

of body parts, which can be easily leveraged for 2D body pose recovery. This is not the

case of depth estimation, where body parts are not segmented. Still, depth estimation

slightly improves the results, likely due to it providing an outline of the overall body,

along with depth cues of the said outline, helping to disambiguate the location of the

parts. 3D pose estimation, on the other hand, provides little complementary information

about the location of the landmark relative to the camera plane, if any at all. If we look

at individual joints, combining 2D pose, segmentation and depth improve on ankles and

knees. Combining 2D/3D pose, segmentation and depth improves on the upper body and

upper legs at the expense of losing precision on the other joints. This trade-off may be

due to the ability of 3D pose estimation to disambiguate those joint locations suffering

from cluttering and occlusions.

Summarizing, we see that performing all 4 tasks obtains the best results. By analyzing

the other task combinations, we see that segmentation helps the most, followed by depth
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estimation. Finally, 3D body pose estimation only helps marginally.

4.1.4.4.3 Full-body depth estimation

Here we evaluate the error on depth estimation for a collection of multi-task networks.

Specifically, Table 4.4 shows that complementing depth estimation with 3D pose estima-

tion and body part segmentation results in the best results: while the single-task model

obtains a mean 4.39 RMSE calculated directly from the full-body depth prediction, the

multi-task model goes down to an RMSE of 4.04, an 8% error reduction. Mean Body

parts are the average of computing RMSE at each body part using its segmentation

masks. Looking at tasks individually, segmentation contributes the most, with 3D pose

estimation following closely. Segmentation may help depth estimation by providing richer

semantic information on the body parts being segmented, allowing for a better model of

the possible depth variability. On the other hand, 2D pose estimation does not contribute

to solving the task, resulting in a higher error. This is due to this task not making use of

depth information, resulting in bigger combined feature space with no additional depth

cues in the encoding. We see this in higher order combinations: combining the successful

tasks (segmentation and 3D pose estimation in addition to depth estimation) results in

the best results. Further adding 2D pose estimation to the pipeline increases the overall

error.

If we look at the results by a body part (Table 4.4), the best model, combining all

tasks except for 2D pose estimation, obtains the lowest error in all cases. Compared to

the baseline, some improvements to remark are the head, lower arms, and hands. This

is due to the contribution of segmentation to better localize the parts layout and the 3D

pose information to refine ambiguities at the depth level. Some difficult parts include the

feet, lower legs, and hands.

4.1.4.4.4 3D pose estimation

This section analyzes the performance on 3D pose estimation of different multi-task mod-

els. Table 4.2 shows the prediction errors, in millimeters, for the different body joints and

task combinations. The best overall results are obtained by considering the segmentation

and depth estimation tasks along with 3D pose recovery, reducing the prediction error by

5% (from 60.13mm to 56.99mm).

It is interesting to see that, similarly to 2D pose recovery, where 3D pose did not help

improve the predictions, now it is the 3D pose that does not help. One can consider 2D

pose recovery as a subtask of the 3D case, and thus the features used in 3D pose recovery

already include those provided by the 2D case. In this case, the single task contributing

the most to 3D pose recovery is segmentation, followed by depth estimation. This is
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(a) Segmentation IOU:

seg. vs 2D+seg.+depth

(b) Segmentation Pixel Accu-

racy: seg. vs 2D+seg+depth

(c) Full-body depth:

depth vs 3D+seg.+depth

(d) 2D pose:

2D vs 2D/3D+seg.+depth

(e) 3D pose:

3D vs 3D+seg.+depth

Figure 4.4: Error visualization per each body part and task. The higher the value the

higher the performance improvement for a particular metric of the best multi-task model

compared to the baseline isolated task.

likely due to the same reasons discussed in the previous section: providing an outline

of the body parts, and providing a general outline of the body with depth information,

helping to disambiguate between parts during pose recovery.

Further combining both segmentation and depth estimation, as mentioned, obtains

the best results, but not if we further consider 2D pose recovery. While in the previous

section further adding 3D pose recovery to the 2D task did result in marginal benefits, in

this case, there is no further information provided: 2D landmark localization is a problem

already tackled when performing the same task in the 3D space. This results in slightly

worse results when considering all tasks: a larger feature representation is provided but

without encoding extra information, facilitating over-fitting.

If we inspect the results by the body joint, we find the best combination of tasks for

most joints includes segmentation and depth to the 3D pose. On the other hand, hips

and thorax also benefit from including 2D body pose information. This is likely due to
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these parts forming the main portion of the body. A good 2D pose estimate may be more

important for these parts since the ambiguity in depth is smaller. For parts with more

depth uncertainty, like the ankles, knees, and wrists, considering 2D landmark estimation

is highly detrimental to the 3D accuracy.

4.1.4.4.5 Analysis of success rate

We show success rate plots for different tasks in Fig. 4.3. For each modality, we compare

independent SH network with the best multi-task network performing that task. We also

show the trend for one of the parts that multi-task approach better improves, specifically

left wrist for the 3D pose, Right ankle for the 2D pose, left a hand for depth map and

left foot for part segmentation. As one can see in Fig. 4.3(c), full-body depth estimation

benefits the most from multi-task learning, while 2D pose in Fig. 4.3(b) is the most

accurate modality. In all cases, selected parts have higher than average gains for smaller

error thresholds.

4.1.4.5 Comparison to the state-of-the-art

To the best of our knowledge, Varol et al. (2018) is the only state-of-the-art multi-task

work evaluating on the SURREAL dataset. Similar to ours, they use SH modules to

compute 2D/3D pose estimation and part segmentation. Differently, from us, 2D pose

and body part segmentation are independent streams feeding information to the 3D pose

stream. Full body depth estimation is not considered. We compare the results in Table

4.5. Note that we exclude background to compute segmentation IoU as in Varol et al.

(2018). Unlike Varol et al. (2018) that trains 8 stacks for independent tasks and fine-tune

2 stacks in the multi-task model, we train our model from scratch using 2 stacks.

As one can see, our model is performing the best for 2D pose estimation in both in-

dependent and multi-task networks. Although our single-stream network performs better

than Varol et al. (2018) in segmentation, our multi-task approach obtains similar results.

In the case of 3D pose estimation, Varol et al. (2018) performs the best in both networks.

Our multi-task network improves independent 3D pose by more than 3 mm while this

improvement is 5.3 mm for Varol et al. (2018).

4.1.4.6 Discussion

This section summarizes some insights from the experiments performed for all tasks.

We have seen that at the 2D level cues from depth estimation are highly useful for both

body parts segmentation and human pose recovery, while 3D pose estimation contributes

marginally to the final performance. At the same time, body part segmentation and 2D

pose estimation mutually benefit each other. Regarding body part segmentation, features
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Seg. 2D pose 3D pose

(IoU) (PCKh) (MJD mm)

Varol et al. Varol et al. (2018)

independent tasks 59.2 82.7 46.1

Varol et al. Varol et al. (2018)

multi-tasks 69.2 90.8 40.8

Ours - independent tasks 65.3 96.5 60.1

Ours - multi-tasks 66.1 97.0 57.0

Table 4.5: State-of-the-art comparison on SURREAL.

from depth estimation improve the results the most, followed by 2D pose. Human pose

recovery benefits from all other tasks, with the strongest cue being segmentation, followed

by depth.

In contrast, at the 3D level, depth estimation and human pose recovery benefit from

segmentation, similarly to the two 2D tasks. In contrast, 2D pose cues are the least

relevant, since we can interpret the task as a subtask of 3D pose recovery. Both tasks use

the same model to get the lowest error, that is, depth + segmentation + 3D pose. We

argue this is due to segmentation enriching the representation with semantic cues, and

the extra depth information either providing a more restrictive deformation model (3D

pose estimation) or a more dense depth representation (body depth estimation).

Finally, a visual representation of the overall improvement of the best model per task

and body part over the baseline are shown in Fig. 4.4. The higher the value the better

average improvement for each particular task metric (e.g. 1.2 for a 3D joint represents an

average improvement of 1.2 MJD error reduction). We can see in IOU and Pixel accuracy

that parts with more degrees of freedom, such as feet, hands, and legs, are benefited the

most from multi-tasking. In contrast, the trunk, head and upper arms, along with the

background receive marginal improvements. For depth estimation, the improvements are

more pronounced on the main body parts, such as the trunk and head, as well as the

arms and hands. Then, for 2D and 3D pose, the former improved especially on the hands,

while the latter improved on the upper body joints and ankles.



84 4 Block II

4.2 Conclusions

4.2.1 Multi-task human analysis in still images: 2D/3D pose,

depth map, and multi-part segmentation

We analyzed the multi-tasking paradigm on four human body problems: 2D/3D body

pose estimation, full-body depth estimation, and body parts segmentation. We concluded

that each task benefits each other at some ratios an aspects. Depth estimation and body

part segmentation help each other, while 2D/3D pose estimation benefit mainly from the

segmentation one. Depth helps to disambiguate body parts, while segmentation provides

more robust region context for joints localization. However, very related tasks such as 3D

pose and 2D pose do not take benefit of each other since the latter can be contextualized

as a subtask of the 3D pose.



Chapter 5

Conclusions and future research

5.1 Conclusions

5.1.1 HuPBA 8k+: Dataset and ECOC-GraphCut based Seg-

mentation of Human Limbs

In this chapter, we introduced the HuPBA 8K+ dataset, which to the best of our knowl-

edge is the most significant multi-limb RGB dataset for Pose Recovery, with more than

120 000 manually labeled limb regions. Besides, we proposed a novel two-stage method

for human multi-limb segmentation in RGB images. In the first stage, we perform a per-

son/background segmentation by training a set of body parts using cascades of classifiers

embedded in an ECOC framework. In the second stage, to obtain a multi-limb segmen-

tation we applied multi-label GraphCuts to a set of limb-like probability maps obtained

from a more powerful problem-dependent ECOC scheme.

We compared our proposal with state-of-the-art pose-recovery approaches on the novel

dataset obtaining very satisfying results in terms of both person/background and multi-

limb segmentation. For completeness, the novel dataset was also labeled with different

human actions drawn from a 11 gesture dictionary. In this sense, we also provide with

gesture recognition results as a firm baseline to share with the Computer Vision commu-

nity.

5.1.2 Learning to segment humans by stacking their body parts

We presented a two-stage scheme based on the MSSL framework for the segmentation

of the human body in still images. We defined an extended feature set by stacking a

multi-scale decomposition of body part likelihood maps, which are learned employing a

multi-class classifier based on soft body part detectors. The extended set of features

85
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encodes spatial and contextual information of human limbs which combined enabled us

to define features with high order information. We tested our proposal on a large dataset

obtaining significant segmentation improvement over state-of-the-art methodologies. As

future work, we plan to extend the MSSL framework to the multi-limb case, in which

two multi-class classifiers will be concatenated to obtain a multi-limb segmentation of the

human body that takes into account contextual information of human parts.

5.1.3 Multi-task human analysis in still images: 2D/3D pose,

depth map, and multi-part segmentation

In this chapter, we analyzed the contribution of multi-tasking on four standard bodies

pose analysis problems: 2D/3D body pose recovery, full-body depth estimation, and body

parts segmentation. We have found that problems looking at complementary aspects of

the problem benefit each other the most. Depth estimation and body part segmentation

help each other, while 2D/3D body poses estimation benefit mainly from body part seg-

mentation, followed by depth estimation. These tasks provide complementary features:

depth information helps disambiguate body parts, while body part segmentation provides

more robust features for locating joints during body pose estimation. Also, 3D pose es-

timation helps depth estimation, likely by reducing ambiguity: 3D pose estimation helps

to restrict the space of possible body poses. On the other hand, features from problems

that are too closely related do not help significantly improve the predictions: 3D pose

recovery already includes the 2D problem as a subtask, already encoding its features.

For 2D pose recovery, features coming from the 3D case sacrifice precision in the camera

plane, allotting more network capacity to estimate the landmarks depth.

5.2 Possible directions for future research

Different possibilities for future research in the different contributions of this thesis are

discussed in the following sections.

5.2.1 HuPBA 8k+: Dataset and ECOC-GraphCut based Seg-

mentation of Human Limbs

As a future perspective, it would be interesting to exploit the dataset key features, in

order for the Computer Vision community to use in every possible manner (comparisons,

validation, challenges, etc.). Furthermore, the experimental results obtained encourages

us to follow this line by making use of more advanced techniques for both multi-class

classification (taking into account contextual information and relative spatial relations)



5.2. Possible directions for future research 87

and multi-label segmentation. The proposed ensemble strategy is independent of the

base classifier considered for body-part estimation. In this sense, future work includes

the adaptation of more accurate deep learning approaches and multi-task ones, as the

one presented in the last chapter, within the ensemble strategy proposed in this work for

human body segmentation.

5.2.2 Learning to segment humans by stacking their body parts

As future work, one way is to extend the MSSL framework to the multi-limb case, in

which two multi-class classifiers will be concatenated to obtain a multi-limb segmentation

of the human body that takes into account contextual information of human parts. In the

same way as previous work, stacked learning is also independent of the primary classifier

to be stacked. One example is the Hourglass model used in the last chapter. Thus, future

work also includes the adaptation of more accurate deep detectors to be stacked using the

methodology used in this work.

5.2.3 Multi-task human analysis in still images: 2D/3D pose,

depth map, and multi-part segmentation

Several research lines are open to work in the future. First, based on the research of Zamir

et al. (2018b), we can study how the pre-trained models learned from the 26 categories

of indoor scenarios can contribute if fused with our multi-task model. We must take

into account that most patterns found on taskonomy dataset exclude human kinematic

constraints. Thus, we could use both approaches to model human-scene interaction.

Second, we face training on synthetic data, and some research has already been done

to study the gap between synthetic and real data. However, few works have carried

out human body analysis using pre-trained models on synthetic data to be applied to

real data. In this sense, the study of common latent spaces of real and synthetic data

to benefit human pose estimation and segmentation can be considered as future work.

Third, it is interesting to study a different kind of architectures to perform a more detail

analysis and an interpretation of network topology/structure concerning generalization

capability to human pose and segmentation problems.
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